Limits of detection and decision. Part 4
NASA Astrophysics Data System (ADS)
Voigtman, E.
2008-02-01
Probability density functions (PDFs) have been derived for a number of commonly used limit of detection definitions, including several variants of the Relative Standard Deviation of the Background-Background Equivalent Concentration (RSDB-BEC) method, for a simple linear chemical measurement system (CMS) having homoscedastic, Gaussian measurement noise and using ordinary least squares (OLS) processing. All of these detection limit definitions serve as both decision and detection limits, thereby implicitly resulting in 50% rates of Type 2 errors. It has been demonstrated that these are closely related to Currie decision limits, if the coverage factor, k, is properly defined, and that all of the PDFs are scaled reciprocals of noncentral t variates. All of the detection limits have well-defined upper and lower limits, thereby resulting in finite moments and confidence limits, and the problem of estimating the noncentrality parameter has been addressed. As in Parts 1-3, extensive Monte Carlo simulations were performed and all the simulation results were found to be in excellent agreement with the derived theoretical expressions. Specific recommendations for harmonization of detection limit methodology have also been made.
Laser Diagnostics for Reacting Flows
2010-01-11
noise characteristics of the diagnostic will be in the shot - noise limit , a fundamental limit of the LIF signal intensity... noise related to the discrete nature of photons. In the shot - noise limit , the fluctuation detection limit can be predicted using nVP B S f f 1...detection limit was shot - noise limited . Figure 2.2.3 illustrates the fluctuation detection limits for line LIF imaging. Figure 2.2.3a
Method for early detection of cooling-loss events
Bermudez, Sergio A.; Hamann, Hendrik; Marianno, Fernando J.
2015-06-30
A method of detecting cooling-loss event early is provided. The method includes defining a relative humidity limit and change threshold for a given space, measuring relative humidity in the given space, determining, with a processing unit, whether the measured relative humidity is within the defined relative humidity limit, generating a warning in an event the measured relative humidity is outside the defined relative humidity limit and determining whether a change in the measured relative humidity is less than the defined change threshold for the given space and generating an alarm in an event the change is greater than the defined change threshold.
Method for early detection of cooling-loss events
Bermudez, Sergio A.; Hamann, Hendrik F.; Marianno, Fernando J.
2015-12-22
A method of detecting cooling-loss event early is provided. The method includes defining a relative humidity limit and change threshold for a given space, measuring relative humidity in the given space, determining, with a processing unit, whether the measured relative humidity is within the defined relative humidity limit, generating a warning in an event the measured relative humidity is outside the defined relative humidity limit and determining whether a change in the measured relative humidity is less than the defined change threshold for the given space and generating an alarm in an event the change is greater than the defined change threshold.
Hansen, Claus Toni; Ritz, Christian; Gerhard, Daniel; Jensen, Jens Erik; Streibig, Jens Carl
2015-12-01
Current regulatory assessment of pesticide contamination of Danish groundwater is exclusively based on samples with pesticide concentrations above detection limit. Here we demonstrate that a realistic quantification of pesticide contamination requires the inclusion of "non-detect" samples i.e. samples with concentrations below the detection limit, as left-censored observations. The median calculated pesticide concentrations are shown to be reduced 10(4) to 10(5) fold for two representative herbicides (glyphosate and bentazone) relative to the median concentrations based upon observations above detection limits alone. Copyright © 2015 Elsevier B.V. All rights reserved.
Shot noise limited detection of OH using the technique of laser induced fluorescence
NASA Technical Reports Server (NTRS)
Bakalyar, D. M.; Davis, L. I., Jr.; Guo, C.; James, J. V.; Kakos, S.; Morris, P. T.; Wang, C. C.
1984-01-01
Nearly shot-noise limited detection of OH using the technique of laser-induced fluorescence is reported. A LIDAR configuration is used to excite fluorescence in a large volume and a narrow-bandwidth interference filter provides spectral discrimination. This arrangement alleviates the effect of ozone interference and facilitates image processing at relatively close distances. The detection limit is determined mainly by the shot-noise of the solar background. Ground-based measurements in Dearborn indicate a detection limit of better than 1 x 10 to the 6th power OH/cubic cm over a forty-minute acquisition period. Under favorable conditions, a comparable detection limit was also observed for airborne measurements.
Shot noise limited detection of OH using the technique of laser-induced fluorescence
NASA Technical Reports Server (NTRS)
Bakalyar, D. M.; Davis, L. I., Jr.; Guo, C.; James, J. V.; Wang, C. C.; Kakos, S.; Morris, P. T.
1984-01-01
Nearly shot-noise limited detection of OH using the technique of laser-induced fluorescence is reported. A LIDAR configuration is used to excite fluoresence in a large volume and a narrow-bandwidth interference filter provides spectral discrimination. This arrangement alleviates the effect of ozone interference and facilitates image processing at relatively close distances. The detection limit is determined mainly by the short-noise of the solar background. Ground-based measurements in Dearborn indicate a detection limit of better than 1 x 10 to the 6th power OH/cubic cm over a forty-minute acquisition period. Under favorable conditions, a comparable detection limit was also observed for airborne measurements.
Korun, M; Vodenik, B; Zorko, B
2018-03-01
A new method for calculating the detection limits of gamma-ray spectrometry measurements is presented. The method is applicable for gamma-ray emitters, irrespective of the influences of the peaked background, the origin of the background and the overlap with other peaks. It offers the opportunity for multi-gamma-ray emitters to calculate the common detection limit, corresponding to more peaks. The detection limit is calculated by approximating the dependence of the uncertainty in the indication on its value with a second-order polynomial. In this approach the relation between the input quantities and the detection limit are described by an explicit expression and can be easy investigated. The detection limit is calculated from the data usually provided by the reports of peak-analyzing programs: the peak areas and their uncertainties. As a result, the need to use individual channel contents for calculating the detection limit is bypassed. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Daily, J. W.
1978-01-01
Laser induced fluorescence spectroscopy of flames is discussed, and derived uncertainty relations are used to calculate detectability limits due to statistical errors. Interferences due to Rayleigh scattering from molecules as well as Mie scattering and incandescence from particles have been examined for their effect on detectability limits. Fluorescence trapping is studied, and some methods for reducing the effect are considered. Fluorescence trapping places an upper limit on the number density of the fluorescing species that can be measured without signal loss.
Yang, Cheng-Ta
2011-12-01
Change detection requires perceptual comparison and decision processes on different features of multiattribute objects. How relative salience between two feature-changes influences the processes has not been addressed. This study used the systems factorial technology to investigate the processes when detecting changes in a Gabor patch with visual inputs from orientation and spatial frequency channels. Two feature-changes were equally salient in Experiment 1, but a frequency-change was more salient than an orientation-change in Experiment 2. Results showed that all four observers adopted parallel self-terminating processing with limited- to unlimited-capacity processing in Experiment 1. In Experiment 2, one observer used parallel self-terminating processing with unlimited-capacity processing, and the others adopted serial self-terminating processing with limited- to unlimited-capacity processing to detect changes. Postexperimental interview revealed that subjective utility of feature information underlay the adoption of a decision strategy. These results highlight that observers alter decision strategies in change detection depending on the relative saliency in change signals, with relative saliency being determined by both physical salience and subjective weight of feature information. When relative salience exists, individual differences in the process characteristics emerge.
Ziegler, Ronny; Brendel, Bernhard; Rinneberg, Herbert; Nielsen, Tim
2009-01-21
Using a statistical (chi-square) test on simulated data and a realistic noise model derived from the system's hardware we study the performance of diffuse optical tomography systems for fluorescence imaging. We compare the predicted smallest size of detectable lesions at various positions in slab and cup geometry and model how detection sensitivity depends on breast compression and lesion fluorescence contrast. Our investigation shows that lesion detection is limited by relative noise in slab geometry and by absolute noise in cup geometry.
Raboud, J M; Rae, S; Hogg, R S; Yip, B; Sherlock, C H; Harrigan, P R; O'Shaughnessy, M V; Montaner, J S
1999-10-01
Suppression of human immunodeficiency virus type 1 plasma virus load (PVL) to <20 copies/mL is associated with a longer virologic response after initiation of antiretroviral therapy. The relationship between duration of virologic response and PVL nadir according to a less sensitive assay was explored. When compared with subjects with a PVL nadir >500 copies/mL, the relative risks of PVL rising above 1000 copies/mL for participants in the INCAS trial and the British Columbia Drug Treatment Program with a PVL nadir below the limit of detection (LOD) were 0.04 (95% confidence interval [CI], 0.02-0.09) and 0.06 (95% CI, 0.03-0.12), respectively. The corresponding relative risks for persons with a detectable but not quantifiable PVL nadir were 0.25 (95% CI, 0.13-0.50) and 0.54 (95% CI, 0.25-1.19). The relative risks of virologic failure associated with a PVL nadir detectable but not quantifiable and a PVL nadir below the LOD were statistically different (P<.0001) in both data sets.
NASA Astrophysics Data System (ADS)
Hatzenbuhler, Chelsea; Kelly, John R.; Martinson, John; Okum, Sara; Pilgrim, Erik
2017-04-01
High-throughput DNA metabarcoding has gained recognition as a potentially powerful tool for biomonitoring, including early detection of aquatic invasive species (AIS). DNA based techniques are advancing, but our understanding of the limits to detection for metabarcoding complex samples is inadequate. For detecting AIS at an early stage of invasion when the species is rare, accuracy at low detection limits is key. To evaluate the utility of metabarcoding in future fish community monitoring programs, we conducted several experiments to determine the sensitivity and accuracy of routine metabarcoding methods. Experimental mixes used larval fish tissue from multiple “common” species spiked with varying proportions of tissue from an additional “rare” species. Pyrosequencing of genetic marker, COI (cytochrome c oxidase subunit I) and subsequent sequence data analysis provided experimental evidence of low-level detection of the target “rare” species at biomass percentages as low as 0.02% of total sample biomass. Limits to detection varied interspecifically and were susceptible to amplification bias. Moreover, results showed some data processing methods can skew sequence-based biodiversity measurements from corresponding relative biomass abundances and increase false absences. We suggest caution in interpreting presence/absence and relative abundance in larval fish assemblages until metabarcoding methods are optimized for accuracy and precision.
Epidemiologic Evaluation of Measurement Data in the Presence of Detection Limits
Lubin, Jay H.; Colt, Joanne S.; Camann, David; Davis, Scott; Cerhan, James R.; Severson, Richard K.; Bernstein, Leslie; Hartge, Patricia
2004-01-01
Quantitative measurements of environmental factors greatly improve the quality of epidemiologic studies but can pose challenges because of the presence of upper or lower detection limits or interfering compounds, which do not allow for precise measured values. We consider the regression of an environmental measurement (dependent variable) on several covariates (independent variables). Various strategies are commonly employed to impute values for interval-measured data, including assignment of one-half the detection limit to nondetected values or of “fill-in” values randomly selected from an appropriate distribution. On the basis of a limited simulation study, we found that the former approach can be biased unless the percentage of measurements below detection limits is small (5–10%). The fill-in approach generally produces unbiased parameter estimates but may produce biased variance estimates and thereby distort inference when 30% or more of the data are below detection limits. Truncated data methods (e.g., Tobit regression) and multiple imputation offer two unbiased approaches for analyzing measurement data with detection limits. If interest resides solely on regression parameters, then Tobit regression can be used. If individualized values for measurements below detection limits are needed for additional analysis, such as relative risk regression or graphical display, then multiple imputation produces unbiased estimates and nominal confidence intervals unless the proportion of missing data is extreme. We illustrate various approaches using measurements of pesticide residues in carpet dust in control subjects from a case–control study of non-Hodgkin lymphoma. PMID:15579415
Gold nanoparticle-based low limit of detection Love wave biosensor for carcinoembryonic antigens.
Li, Shuangming; Wan, Ying; Su, Yan; Fan, Chunhai; Bhethanabotla, Venkat R
2017-09-15
In this work, a Love wave biosensing platform is described for detecting cancer-related biomarker carcinoembryonic antigen (CEA). An ST 90°-X quartz Love wave device with a layer of SiO 2 waveguide was combined with gold nanoparticles (Au NPs) to amplify the mass loading effect of the acoustic wave sensor to achieve a limit of detection of 37pg/mL. The strategy involves modifying the Au NPs with anti-CEA antibody conjugates to form nanoprobes in a sandwich immunoassay. The unamplified detection limit of the Love wave biosensor is 9.4ng/mL. This 2-3 order of magnitude reduction in the limit of detection brings the SAW platform into the range useful for clinical diagnosis. Measurement electronics and microfluidics are easily constructed for acoustic wave biosensors, such as the Love wave device described here, allowing for robust platforms for point of care applications for cancer biomarkers in general. Copyright © 2017 Elsevier B.V. All rights reserved.
Sato, Miki; Maeda, Yuki; Ishioka, Toshio; Harata, Akira
2017-11-20
The detection limits and photoionization thresholds of polycyclic aromatic hydrocarbons and their chlorides and nitrides on the water surface are examined using laser two-photon ionization and single-photon ionization, respectively. The laser two-photon ionization methods are highly surface-selective, with a high sensitivity for aromatic hydrocarbons tending to accumulate on the water surface in the natural environment due to their highly hydrophobic nature. The dependence of the detection limits of target aromatic molecules on their physicochemical properties (photoionization thresholds relating to excess energy, molar absorptivity, and the octanol-water partition coefficient) is discussed. The detection limit clearly depends on the product of the octanol-water partition coefficient and molar absorptivity, and no clear dependence was found on excess energy. The detection limits of laser two-photon ionization for these types of molecules on the water surface are formulated.
Browne, Richard W; Whitcomb, Brian W
2010-07-01
Problems in the analysis of laboratory data commonly arise in epidemiologic studies in which biomarkers subject to lower detection thresholds are used. Various thresholds exist including limit of detection (LOD), limit of quantification (LOQ), and limit of blank (LOB). Choosing appropriate strategies for dealing with data affected by such limits relies on proper understanding of the nature of the detection limit and its determination. In this paper, we demonstrate experimental and statistical procedures generally used for estimating different detection limits according to standard procedures in the context of analysis of fat-soluble vitamins and micronutrients in human serum. Fat-soluble vitamins and micronutrients were analyzed by high-performance liquid chromatography with diode array detection. A simulated serum matrix blank was repeatedly analyzed for determination of LOB parametrically by using the observed blank distribution as well as nonparametrically by using ranks. The LOD was determined by combining information regarding the LOB with data from repeated analysis of standard reference materials (SRMs), diluted to low levels; from LOB to 2-3 times LOB. The LOQ was determined experimentally by plotting the observed relative standard deviation (RSD) of SRM replicates compared with the concentration, where the LOQ is the concentration at an RSD of 20%. Experimental approaches and example statistical procedures are given for determination of LOB, LOD, and LOQ. These quantities are reported for each measured analyte. For many analyses, there is considerable information available below the LOQ. Epidemiologic studies must understand the nature of these detection limits and how they have been estimated for appropriate treatment of affected data.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-06
...] Leakage Detection Systems,'' to define a new time limit for restoring inoperable RCS leakage detection instrumentation to operable status, establish alternate methods of monitoring RCS leakage when monitors are... design bases related to the operability of the RCS leakage detection instrumentation. Date of issuance...
Enhanced Detectability of Community Structure in Multilayer Networks through Layer Aggregation.
Taylor, Dane; Shai, Saray; Stanley, Natalie; Mucha, Peter J
2016-06-03
Many systems are naturally represented by a multilayer network in which edges exist in multiple layers that encode different, but potentially related, types of interactions, and it is important to understand limitations on the detectability of community structure in these networks. Using random matrix theory, we analyze detectability limitations for multilayer (specifically, multiplex) stochastic block models (SBMs) in which L layers are derived from a common SBM. We study the effect of layer aggregation on detectability for several aggregation methods, including summation of the layers' adjacency matrices for which we show the detectability limit vanishes as O(L^{-1/2}) with increasing number of layers, L. Importantly, we find a similar scaling behavior when the summation is thresholded at an optimal value, providing insight into the common-but not well understood-practice of thresholding pairwise-interaction data to obtain sparse network representations.
Hill, Shannon B; Faradzhev, Nadir S; Powell, Cedric J
2017-12-01
We discuss the problem of quantifying common sources of statistical uncertainties for analyses of trace levels of surface contamination using X-ray photoelectron spectroscopy. We examine the propagation of error for peak-area measurements using common forms of linear and polynomial background subtraction including the correlation of points used to determine both background and peak areas. This correlation has been neglected in previous analyses, but we show that it contributes significantly to the peak-area uncertainty near the detection limit. We introduce the concept of relative background subtraction variance (RBSV) which quantifies the uncertainty introduced by the method of background determination relative to the uncertainty of the background area itself. The uncertainties of the peak area and atomic concentration and of the detection limit are expressed using the RBSV, which separates the contributions from the acquisition parameters, the background-determination method, and the properties of the measured spectrum. These results are then combined to find acquisition strategies that minimize the total measurement time needed to achieve a desired detection limit or atomic-percentage uncertainty for a particular trace element. Minimization of data-acquisition time is important for samples that are sensitive to x-ray dose and also for laboratories that need to optimize throughput.
Calculation of the detection limit in radiation measurements with systematic uncertainties
NASA Astrophysics Data System (ADS)
Kirkpatrick, J. M.; Russ, W.; Venkataraman, R.; Young, B. M.
2015-06-01
The detection limit (LD) or Minimum Detectable Activity (MDA) is an a priori evaluation of assay sensitivity intended to quantify the suitability of an instrument or measurement arrangement for the needs of a given application. Traditional approaches as pioneered by Currie rely on Gaussian approximations to yield simple, closed-form solutions, and neglect the effects of systematic uncertainties in the instrument calibration. These approximations are applicable over a wide range of applications, but are of limited use in low-count applications, when high confidence values are required, or when systematic uncertainties are significant. One proposed modification to the Currie formulation attempts account for systematic uncertainties within a Gaussian framework. We have previously shown that this approach results in an approximation formula that works best only for small values of the relative systematic uncertainty, for which the modification of Currie's method is the least necessary, and that it significantly overestimates the detection limit or gives infinite or otherwise non-physical results for larger systematic uncertainties where such a correction would be the most useful. We have developed an alternative approach for calculating detection limits based on realistic statistical modeling of the counting distributions which accurately represents statistical and systematic uncertainties. Instead of a closed form solution, numerical and iterative methods are used to evaluate the result. Accurate detection limits can be obtained by this method for the general case.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-13
... Specifications (STS) to define a new time limit for restoring inoperable RCS leakage detection instrumentation to... contents of the facility design bases related to the operability of the RCS leakage detection... leakage detection instrumentation to operable status and establish alternate methods of monitoring RCS...
Hunting Faint Dwarf Galaxies in the Field Using Integrated Light Surveys
NASA Astrophysics Data System (ADS)
Danieli, Shany; van Dokkum, Pieter; Conroy, Charlie
2018-03-01
We discuss the approach of searching the lowest mass dwarf galaxies, ≲ {10}6 {M}ȯ , in the general field, using integrated light surveys. By exploring the limiting surface brightness-spatial resolution (μ eff,lim‑θ) parameter space, we suggest that faint field dwarfs in the Local Volume, between 3 and 10 Mpc, are expected to be detected very effectively and in large numbers using integrated light photometric surveys, complementary to the classical star counts method. We use a sample of dwarf galaxies in the Local Group to construct relations between their photometric and structural parameters, M *–μ eff,V and M *–R eff. We use these relations, along with assumed functional forms for the halo mass function and the stellar mass–halo mass (SMHM) relation, to calculate the lowest detectable stellar masses in the Local Volume and the expected number of galaxies as a function of the limiting surface brightness and spatial resolution. The number of detected galaxies depends mostly on the limiting surface brightness for distances >3 Mpc, while spatial resolution starts to play a role for galaxies at distances >8 Mpc. Surveys with μ eff,lim ∼ 30 mag arcsec‑2 should be able to detect galaxies with stellar masses down to ∼104 M ⊙ in the Local Volume. Depending on the form of the SMHM relation, the expected number of dwarf galaxies with distances between 3 and 10 Mpc is 0.04–0.35 per square degree, assuming a limiting surface brightness of ∼29–30 mag arcsec‑2 and a spatial resolution <4″. We plan to search for a population of low-mass dwarf galaxies in the field by performing a blank wide field photometric survey with the Dragonfly Telephoto Array, an imaging system optimized for the detection of extended ultra low surface brightness structures.
Attentional Capacity Limits Gap Detection during Concurrent Sound Segregation.
Leung, Ada W S; Jolicoeur, Pierre; Alain, Claude
2015-11-01
Detecting a brief silent interval (i.e., a gap) is more difficult when listeners perceive two concurrent sounds rather than one in a sound containing a mistuned harmonic in otherwise in-tune harmonics. This impairment in gap detection may reflect the interaction of low-level encoding or the division of attention between two sound objects, both of which could interfere with signal detection. To distinguish between these two alternatives, we compared ERPs during active and passive listening with complex harmonic tones that could include a gap, a mistuned harmonic, both features, or neither. During active listening, participants indicated whether they heard a gap irrespective of mistuning. During passive listening, participants watched a subtitled muted movie of their choice while the same sounds were presented. Gap detection was impaired when the complex sounds included a mistuned harmonic that popped out as a separate object. The ERP analysis revealed an early gap-related activity that was little affected by mistuning during the active or passive listening condition. However, during active listening, there was a marked decrease in the late positive wave that was thought to index attention and response-related processes. These results suggest that the limitation in detecting the gap is related to attentional processing, possibly divided attention induced by the concurrent sound objects, rather than deficits in preattentional sensory encoding.
Theoretical limitations of quantification for noncompetitive sandwich immunoassays.
Woolley, Christine F; Hayes, Mark A; Mahanti, Prasun; Douglass Gilman, S; Taylor, Tom
2015-11-01
Immunoassays exploit the highly selective interaction between antibodies and antigens to provide a vital method for biomolecule detection at low concentrations. Developers and practitioners of immunoassays have long known that non-specific binding often restricts immunoassay limits of quantification (LOQs). Aside from non-specific binding, most efforts by analytical chemists to reduce the LOQ for these techniques have focused on improving the signal amplification methods and minimizing the limitations of the detection system. However, with detection technology now capable of sensing single-fluorescence molecules, this approach is unlikely to lead to dramatic improvements in the future. Here, fundamental interactions based on the law of mass action are analytically connected to signal generation, replacing the four- and five-parameter fittings commercially used to approximate sigmoidal immunoassay curves and allowing quantitative consideration of non-specific binding and statistical limitations in order to understand the ultimate detection capabilities of immunoassays. The restrictions imposed on limits of quantification by instrumental noise, non-specific binding, and counting statistics are discussed based on equilibrium relations for a sandwich immunoassay. Understanding the maximal capabilities of immunoassays for each of these regimes can greatly assist in the development and evaluation of immunoassay platforms. While many studies suggest that single molecule detection is possible through immunoassay techniques, here, it is demonstrated that the fundamental limit of quantification (precision of 10 % or better) for an immunoassay is approximately 131 molecules and this limit is based on fundamental and unavoidable statistical limitations.
NASA Astrophysics Data System (ADS)
Midgley, M.; Phillips, R.
2014-12-01
Microbes mediate fluxes of carbon (C), nitrogen (N), and phosphorus (P) in soils depending on ratios of available C, N, and P relative to microbial demand. Hence, characterizing microbial C and nutrient limitation in soils is critical for predicting how ecosystems will respond to human alterations of climate and nutrient availability. Here, we take a stoichiometric approach to assessing microbial C, N, and P limitation by using threshold element ratios (TERs). TERs enable shifting resource limitation to be assessed by matching C, N and P ratios from microbial biomass, extracellular enzyme activities, and soil nutrient concentrations. We assessed microbial nutrient limitation in temperate forests dominated by trees that associate with one of two mycorrhizal symbionts: arbsucular mycorrhizal (AM) or ectomycorrhizal (ECM) fungi. We found that both ECM and AM microbial communities were co-limited by C and N, supporting conventional wisdom that microbes are C-limited and temperate forests are N-limited. However, AM microbial communities were relatively more C-limited than ECM communities (P=0.001). In response to chronic field N fertilization, both AM and ECM communities became relatively more P-limited (P=0.011), but they remained N- and C-limited overall. Thus, realistic levels of N deposition may not dampen microbial N limitation. Reflecting differences in relative limitation, N mineralization rates were higher in AM soils than in ECM soils (P=0.004) while C mineralization rates were higher in ECM soils than in AM soils (P=0.023). There were no significant differences in P flux between AM and ECM soils or detectable mineralization responses to N addition, indicating that mineralization rates are closely tied to C and nutrient limitation. Overall, we found that 1) microbial resource limitation can be detected without resource addition; and 2) TERs and ratios of labile resources are viable tools for predicting mineralization responses to resource additions.
Gaur, Aditya H; Flynn, Patricia M; Heine, Daniel J; Giannini, Mary Anne; Shenep, Jerry L; Hayden, Randall T
2005-05-01
Current methods for in situ diagnosis of catheter-related bloodstream infections require concurrent collection of central venous catheter (CVC) and peripheral vein (PV) blood cultures. Both the pain and inconvenience of PV cultures are undesirable. A prospective study was conducted (August 2002 to March 2004) to assess the accuracy of diagnosing catheter-related bloodstream infections based on the difference in time to detection of blood cultures drawn concurrently from 2 lumens of a multilumen CVC. This difference in time to detection between 2 lumens was compared with results of the standard criterion with paired CVC and PV blood cultures. Twenty-one infectious episodes were categorized as catheter-related bloodstream infections and 38 as non-catheter-related bloodstream infections. With a cutoff in difference in time to detection between 2 lumens of > or =180 minutes, the sensitivity of this test to diagnose a catheter-related bloodstream infection was 61% (95% confidence interval, 39-80%) and the specificity was 94% (95% confidence interval, 82-99%). In 4 of 7 episodes with false-negative results, the colony counts in cultures from both lumens were >400 colony-forming units/mL (maximal value reported), indicating the limitation of this method when both lumens of the catheter are colonized. With the pretest probability of catheter-related bloodstream infections ranging from 28% to 54%, the positive predictive value of a difference in time to detection between 2 lumens of > or =180 minutes for diagnosis of catheter-related bloodstream infections ranged from 81% to 93% and the negative predictive value ranged from 67% to 86%. Within the context of its limitations, this novel method provides an alternative for diagnosing catheter-related bloodstream infections among patients with a CVC, without PV cultures.
Restricted Replication of Xenotropic Murine Leukemia Virus-Related Virus in Pigtailed Macaques
Del Prete, Gregory Q.; Kearney, Mary F.; Spindler, Jon; Wiegand, Ann; Chertova, Elena; Roser, James D.; Estes, Jacob D.; Hao, Xing Pei; Trubey, Charles M.; Lara, Abigail; Lee, KyeongEun; Chaipan, Chawaree; Bess, Julian W.; Nagashima, Kunio; Keele, Brandon F.; Macallister, Rhonda; Smedley, Jeremy; Pathak, Vinay K.; KewalRamani, Vineet N.; Coffin, John M.
2012-01-01
Although xenotropic murine leukemia virus-related virus (XMRV) has been previously linked to prostate cancer and myalgic encephalomyelitis/chronic fatigue syndrome, recent data indicate that results interpreted as evidence of human XMRV infection reflect laboratory contamination rather than authentic in vivo infection. Nevertheless, XMRV is a retrovirus of undefined pathogenic potential that is able to replicate in human cells. Here we describe a comprehensive analysis of two male pigtailed macaques (Macaca nemestrina) experimentally infected with XMRV. Following intravenous inoculation with >1010 RNA copy equivalents of XMRV, viral replication was limited and transient, peaking at ≤2,200 viral RNA (vRNA) copies/ml plasma and becoming undetectable by 4 weeks postinfection, though viral DNA (vDNA) in peripheral blood mononuclear cells remained detectable through 119 days of follow-up. Similarly, vRNA was not detectable in lymph nodes by in situ hybridization despite detectable vDNA. Sequencing of cell-associated vDNA revealed extensive G-to-A hypermutation, suggestive of APOBEC-mediated viral restriction. Consistent with limited viral replication, we found transient upregulation of type I interferon responses that returned to baseline by 2 weeks postinfection, no detectable cellular immune responses, and limited or no spread to prostate tissue. Antibody responses, including neutralizing antibodies, however, were detectable by 2 weeks postinfection and maintained throughout the study. Both animals were healthy for the duration of follow-up. These findings indicate that XMRV replication and spread were limited in pigtailed macaques, predominantly by APOBEC-mediated hypermutation. Given that human APOBEC proteins restrict XMRV infection in vitro, human XMRV infection, if it occurred, would be expected to be characterized by similarly limited viral replication and spread. PMID:22238316
Geiss, S; Einax, J W
2001-07-01
Detection limit, reporting limit and limit of quantitation are analytical parameters which describe the power of analytical methods. These parameters are used for internal quality assurance and externally for competing, especially in the case of trace analysis in environmental compartments. The wide variety of possibilities for computing or obtaining these measures in literature and in legislative rules makes any comparison difficult. Additionally, a host of terms have been used within the analytical community to describe detection and quantitation capabilities. Without trying to create an order for the variety of terms, this paper is aimed at providing a practical proposal for answering the main questions for the analysts concerning quality measures above. These main questions and related parameters were explained and graphically demonstrated. Estimation and verification of these parameters are the two steps to get real measures. A rule for a practical verification is given in a table, where the analyst can read out what to measure, what to estimate and which criteria have to be fulfilled. In this manner verified parameters detection limit, reporting limit and limit of quantitation now are comparable and the analyst himself is responsible to the unambiguity and reliability of these measures.
Sensitivity of photoacoustic microscopy
Yao, Junjie; Wang, Lihong V.
2014-01-01
Building on its high spatial resolution, deep penetration depth and excellent image contrast, 3D photoacoustic microscopy (PAM) has grown tremendously since its first publication in 2005. Integrating optical excitation and acoustic detection, PAM has broken through both the optical diffusion and optical diffraction limits. PAM has 100% relative sensitivity to optical absorption (i.e., a given percentage change in the optical absorption coefficient yields the same percentage change in the photoacoustic amplitude), and its ultimate detection sensitivity is limited only by thermal noise. Focusing on the engineering aspects of PAM, this Review discusses the detection sensitivity of PAM, compares the detection efficiency of different PAM designs, and summarizes the imaging performance of various endogenous and exogenous contrast agents. It then describes representative PAM applications with high detection sensitivity, and outlines paths to further improvement. PMID:25302158
Cody, R B; Tamura, J; Finch, J W; Musselman, B D
1994-03-01
Array detection was compared with point detection for solutions of hen egg-white lysozyme, equine myoglobin, and ubiquitin analyzed by electrospray ionization with a magnetic sector mass spectrometer. The detection limits for samples analyzed by using the array detector system were at least 10 times lower than could be achieved by using a point detector on the same mass spectrometer. The minimum detectable quantity of protein corresponded to a signal-to-background ratio of approximately 2∶1 for a 500 amol/μL solution of hen egg-white lysozyme. However, the ultimate practical sample concentrations appeared to be in the 10-100 fmol/μL range for the analysis of dilute solutions of relatively pure proteins or simple mixtures.
Selecting Power-Efficient Signal Features for a Low-Power Fall Detector.
Wang, Changhong; Redmond, Stephen J; Lu, Wei; Stevens, Michael C; Lord, Stephen R; Lovell, Nigel H
2017-11-01
Falls are a serious threat to the health of older people. A wearable fall detector can automatically detect the occurrence of a fall and alert a caregiver or an emergency response service so they may deliver immediate assistance, improving the chances of recovering from fall-related injuries. One constraint of such a wearable technology is its limited battery life. Thus, minimization of power consumption is an important design concern, all the while maintaining satisfactory accuracy of the fall detection algorithms implemented on the wearable device. This paper proposes an approach for selecting power-efficient signal features such that the minimum desirable fall detection accuracy is assured. Using data collected in simulated falls, simulated activities of daily living, and real free-living trials, all using young volunteers, the proposed approach selects four features from a set of ten commonly used features, providing a power saving of 75.3%, while limiting the error rate of a binary classification decision tree fall detection algorithm to 7.1%.Falls are a serious threat to the health of older people. A wearable fall detector can automatically detect the occurrence of a fall and alert a caregiver or an emergency response service so they may deliver immediate assistance, improving the chances of recovering from fall-related injuries. One constraint of such a wearable technology is its limited battery life. Thus, minimization of power consumption is an important design concern, all the while maintaining satisfactory accuracy of the fall detection algorithms implemented on the wearable device. This paper proposes an approach for selecting power-efficient signal features such that the minimum desirable fall detection accuracy is assured. Using data collected in simulated falls, simulated activities of daily living, and real free-living trials, all using young volunteers, the proposed approach selects four features from a set of ten commonly used features, providing a power saving of 75.3%, while limiting the error rate of a binary classification decision tree fall detection algorithm to 7.1%.
Lidar-Based Navigation Algorithm for Safe Lunar Landing
NASA Technical Reports Server (NTRS)
Myers, David M.; Johnson, Andrew E.; Werner, Robert A.
2011-01-01
The purpose of Hazard Relative Navigation (HRN) is to provide measurements to the Navigation Filter so that it can limit errors on the position estimate after hazards have been detected. The hazards are detected by processing a hazard digital elevation map (HDEM). The HRN process takes lidar images as the spacecraft descends to the surface and matches these to the HDEM to compute relative position measurements. Since the HDEM has the hazards embedded in it, the position measurements are relative to the hazards, hence the name Hazard Relative Navigation.
A bottom-up model of spatial attention predicts human error patterns in rapid scene recognition.
Einhäuser, Wolfgang; Mundhenk, T Nathan; Baldi, Pierre; Koch, Christof; Itti, Laurent
2007-07-20
Humans demonstrate a peculiar ability to detect complex targets in rapidly presented natural scenes. Recent studies suggest that (nearly) no focal attention is required for overall performance in such tasks. Little is known, however, of how detection performance varies from trial to trial and which stages in the processing hierarchy limit performance: bottom-up visual processing (attentional selection and/or recognition) or top-down factors (e.g., decision-making, memory, or alertness fluctuations)? To investigate the relative contribution of these factors, eight human observers performed an animal detection task in natural scenes presented at 20 Hz. Trial-by-trial performance was highly consistent across observers, far exceeding the prediction of independent errors. This consistency demonstrates that performance is not primarily limited by idiosyncratic factors but by visual processing. Two statistical stimulus properties, contrast variation in the target image and the information-theoretical measure of "surprise" in adjacent images, predict performance on a trial-by-trial basis. These measures are tightly related to spatial attention, demonstrating that spatial attention and rapid target detection share common mechanisms. To isolate the causal contribution of the surprise measure, eight additional observers performed the animal detection task in sequences that were reordered versions of those all subjects had correctly recognized in the first experiment. Reordering increased surprise before and/or after the target while keeping the target and distractors themselves unchanged. Surprise enhancement impaired target detection in all observers. Consequently, and contrary to several previously published findings, our results demonstrate that attentional limitations, rather than target recognition alone, affect the detection of targets in rapidly presented visual sequences.
Schwarz, A; Heumann, K G
2002-09-01
Inductively coupled plasma-mass spectrometry (ICP-MS) was coupled to a gas chromatographic (GC) system with electron capture detector (ECD), which enables relatively easy characterization and quantification of brominated and iodinated (halogenated) volatile organic compounds (HVOCs) in aquatic and air samples. The GC-ECD system is connected in series with an ICP-MS by a directly heated transfer line and an outlet port-hole for elimination of the ECD make-up gas during ignition of the plasma. The hyphenated GC-ECD/ICP-MS system provides high selectivity and sensitivity for monitoring individual HVOCs under fast chromatographic conditions. The ECD is most sensitive for the detection of chlorinated and brominated but the ICP-MS for iodinated compounds. The greatest advantage of the use of an ICP-MS is its element-specific detection, which allows clear identification of compounds in most cases. The absolute detection limits for ICP-MS are 0.5 pg for iodinated, 10 pg for brominated, and 50 pg for chlorinated HVOCs with the additional advantage that calibration is almost independent on different compounds of the same halogen. In contrast to that detection limits for ECD vary for the different halogenated compounds and lie in the range of 0.03-11 pg. The two-dimensional GC-ECD/ICP-MS instrumentation is compared with electron impact mass spectrometry (EI-MS) and microwave induced plasma atomic emission detection (MIP-AED). Even if EI-MS has additional power in identifying unknown peaks by its scan mode, the detection limits are much higher compared with GC-ECD/ICP-MS, whereas the selective ion monitoring mode (SIM) reaches similar detection limits. The MIP-AED detection limits are at the same level as EI-MS in the scan mode.
Early detection network design and search strategy issues
We conducted a series of field and related modeling studies (2005-2012) to evaluate search strategies for Great Lakes coastal ecosystems that are at risk of invasion by non-native aquatic species. In developing a network, we should design to achieve an acceptable limit of detect...
Zhang, Feng-Song; Xie, Yun-Feng; Li, Xue-Wen; Wang, Dai-Yi; Yang, Lin-Sheng; Nie, Zhi-Qiang
2015-12-15
Steroid hormones released from manure agricultural application are a matter of global concern. The residual levels of steroid hormones were studied in a typical intensive vegetable cultivation area in northeast China, with a long history of heavy manure application. Seven steroids (estrone, 17α-estradiol, 17β-estradiol, estriol, testosterone, androstendione and progesterone) were analyzed from soil sampled from vegetable greenhouses, from sediments and water from the adjacent drainage ditch and from the groundwater. The results showed that target steroids were detected in the soil samples, with detection frequencies varying from 3.13 to 100%. The steroid concentrations varied substantially in soils, ranging from below the detection limit to 109.7μg·kg(-1). Three steroids-progesterone, androstendione and estrone-were found to have relatively high residue concentrations in soil, with maximum concentrations of 109.7, 9.83 and 13.30μg·kg(-1), respectively. In adjacent groundwater, all the steroids, with the exception of estrone, were detected in one or more of the 13 groundwater samples. The concentrations of steroids in groundwater ranged from below the method detection limit to 2.38ng·L(-1). Six of the seven (excluding androstendione) were detected in drainage ditch water samples, with concentrations ranging from below the detection limit to 14ng·L(-1). Progesterone, androstendione and estrone accumulated relatively easily in soils; their concentrations in groundwater were lower than those of other steroids. The concentrations of testosterone and estriol were relatively low in soil, while in groundwater were higher than those of other steroids. The residual levels of steroids in soil and groundwater showed a clear spatial variation in the study area. The residual levels of steroid hormones in soil varied substantially between differently planted greenhouses. Copyright © 2015. Published by Elsevier B.V.
Redundant Calibration: breaking the constraints of limited sky information
NASA Astrophysics Data System (ADS)
Joseph, Ronniy C.
2018-05-01
The latest generation of low frequency radio interferometers, e.g. LOFAR, MWA, PAPER, has been pushing down the detection limits on the hydrogen signal from the Epoch of Reionisation. However, due to the challenges posed by foregrounds and instrumental systematics the signal has eluded detection thus far. To overcome these challenges we require a detailed understanding of the calibration of these relatively new telescopes. This led to a renewed interest in redundant calibration. Classical calibration schemes depend on sky models based on limited knowledge of the low frequency sky. Redundant calibration, however, allows us to escape our ignorance as it is sky model independent. We will review the field of redundant calibration, and present work we have undertaken to understand the limitations of this calibration method.
Improved detectivity of pyroelectric detectors
NASA Technical Reports Server (NTRS)
Marshall, D. E.; Gelpey, J. C.; Marciniec, J. W.; Chiang, A. M.; Maciolek, R. B.
1978-01-01
High detectivity single-element SBN pyroelectric detectors were fabricated. The theory and technology developments related to improved detector performance were identified and formulated. Improved methods of material characterization, thinning, mounting, blackening and amplifier matching are discussed. Detectors with detectivities of 1.3 x 10 to the 9th power square root of Hz/watt at 1 Hz are reported. Factors limiting performance and recommendations for future work are discussed.
NASA Astrophysics Data System (ADS)
Salem, A. A.; Barsoum, B. N.; Izake, E. L.
2004-03-01
New spectrophotometric and fluorimetric methods have been developed to determine diazepam, bromazepam and clonazepam (1,4-benzodiazepines) in pure forms, pharmaceutical preparations and biological fluid. The new methods are based on measuring absorption or emission spectra in methanolic potassium hydroxide solution. Fluorimetric methods have proved selective with low detection limits, whereas photometric methods showed relatively high detection limits. Successive applications of developed methods for drugs determination in pharmaceutical preparations and urine samples were performed. Photometric methods gave linear calibration graphs in the ranges of 2.85-28.5, 0.316-3.16, and 0.316-3.16 μg ml -1 with detection limits of 1.27, 0.08 and 0.13 μg ml -1 for diazepam, bromazepam and clonazepam, respectively. Corresponding average errors of 2.60, 5.26 and 3.93 and relative standard deviations (R.S.D.s) of 2.79, 2.12 and 2.83, respectively, were obtained. Fluorimetric methods gave linear calibration graphs in the ranges of 0.03-0.34, 0.03-0.32 and 0.03-0.38 μg ml -1 with detection limits of 7.13, 5.67 and 16.47 ng ml -1 for diazepam, bromazepam and clonazepam, respectively. Corresponding average errors of 0.29, 4.33 and 5.42 and R.S.D.s of 1.27, 1.96 and 1.14 were obtained, respectively. Statistical Students t-test and F-test have been used and satisfactory results were obtained.
Bioelectrocatalytic application of titania nanotube array for molecule detection.
Xie, Yibing; Zhou, Limin; Huang, Haitao
2007-06-15
A bioelectrocatalysis system based on titania nanotube electrode has been developed for the quantitative detection application. Highly ordered titania nanotube array with inner diameter of 60 nm and total length of 540 nm was formed by anodizing titanium foils. The functionalization modification was achieved by embedding glucose oxidases inside tubule channels and electropolymerizing pyrrole for interfacial immobilization. Morphology and microstructure characterization, electrochemical properties and bioelectrocatalytic reactivities of this composite were fully investigated. The direct detection of hydrogen peroxide by electrocatalytic reduction reaction was fulfilled on pure titania nanotube array with a detection limit up to 2.0 x 10(-4)mM. A biosensor based on the glucose oxidase-titania/titanium electrode was constructed for amperometric detection and quantitative determination of glucose in a phosphate buffer solution (pH 6.8) under a potentiostatic condition (-0.4V versus SCE). The resulting glucose biosensor showed an excellent performance with a response time below 5.6s and a detection limit of 2.0 x 10(-3)mM. The corresponding detection sensitivity was 45.5 microA mM(-1)cm(-2). A good operational reliability was also achieved with relative standard deviations below 3.0%. This novel biosensor exhibited quite high response sensitivity and low detection limit for potential applications.
de Macedo, A. N.; Vicente, G. H. L.; Nogueira, A. R. A.
2010-01-01
A method for the determination of pesticide residues in water and sediment was developed using the QuEChERS method followed by gas chromatography – mass spectrometry. The method was validated in terms of accuracy, specificity, linearity, detection and quantification limits. The recovery percentages obtained for the pesticides in water at different concentrations ranged from 63 to 116%, with relative standard deviations below 12%. The corresponding results from the sediment ranged from 48 to 115% with relative standard deviations below 16%. The limits of detection for the pesticides in water and sediment were below 0.003 mg L−1 and 0.02 mg kg−1, respectively. PMID:21165598
Liu, Qianhong; Wei, Jie; Sun, Qingsong; Wang, Ben; Wang, Yuting; Hu, Ying; Wu, Wenrong
2017-07-01
Brucellosis (Brucella bovis) in sika deer ( Cervus nippon ) can cause enormous losses to stag breeding, especially in areas in which stag breeding has become an important industry. It also poses a threat to humans because it is a zoonotic disease. Use of the loop-mediated isothermal amplification (LAMP) assay has been poorly described in the diagnosis of brucellosis in deer. We developed a LAMP assay targeting the omp25 gene sequence to detect brucellosis in sika deer. The reaction can be completed in 60 min at 63 C and, with a detection limit of 17 pg, it was more sensitive than conventional PCR, with its detection limit of 1.7 ng. No cross-reactivity was observed with four bacteria: Escherichia coli , Salmonella enterica subsp. enterica, Clostridium pasteurianum , and Pseudomonas aeruginosa . We used 263 samples of blood to evaluate the reaction. The percentage of agreement between LAMP and PCR reached 91%; relative specificity reached 87%, and relative sensitivity reached 100%. The results indicate LAMP can be a simple and rapid diagnostic tool for detecting brucellosis in sika deer, particularly in the field, where it is essential to control brucellosis in deer with a rapid and accurate diagnosis for removal of positive animals.
Douša, Michal; Srbek, Jan; Rádl, Stanislav; Cerný, Josef; Klecán, Ondřej; Havlíček, Jaroslav; Tkadlecová, Marcela; Pekárek, Tomáš; Gibala, Petr; Nováková, Lucie
2014-06-01
Two new impurities were described and determined using gradient HPLC method with UV detection in retigabine (RET). Using LC-HRMS, NMR and IR analysis the impurities were identified as RET-dimer I: diethyl {4,4'-diamino-6,6'-bis[(4-fluorobenzyl)amino]biphenyl-3,3'-diyl}biscarbamate and RET-dimer II: ethyl {2-amino-5-[{2-amino-4-[(4-fluorobenzyl) amino] phenyl} (ethoxycarbonyl) amino]-4-[(4-fluorobenzyl)amino] phenyl}carbamate. Reference standards of these impurities were synthesized followed by semipreparative HPLC purification. The mechanism of the formation of these impurities is also discussed. An HPLC method was optimized in order to separate, selectively detect and quantify all process-related impurities and degradation products of RET. The presented method, which was validated in terms of linearity, limit of detection (LOD), limit of quantification (LOQ) and selectivity is very quick (less than 11min including re-equilibration time) and therefore highly suitable for routine analysis of RET related substances as well as stability studies. Copyright © 2014 Elsevier B.V. All rights reserved.
Development of an enzyme-linked immunosorbent assay for the detection of dicamba.
Clegg, B S; Stephenson, G R; Hall, J C
2001-05-01
A competitive indirect enzyme-linked immunosorbent assay (CI-ELISA) was developed to quantitate the herbicide dicamba (3,6-dichloro-2-methoxybenzoic acid) in water. The CI-ELISA has a detection limit of 2.3 microg L(-1) and a linear working range of 10--10000 microg L(-1) with an IC(50) value of 195 microg L(-1). The dicamba polyclonal antisera did not cross-react with a number of other herbicides tested but did cross-react with a dicamba metabolite, 5-hydroxydicamba, and structurally related chlorobenzoic acids. The assay was used to estimate quantitatively dicamba concentrations in water samples. Water samples were analyzed directly, and no sample preparation was required. To improve detection limits, a C(18) (reversed phase) column concentration step was devised prior to analysis, and the detection limits were increased by at least by 10-fold. After the sample preconcentration, the detection limit, IC(50), and linear working range were 0.23, 19.5, and 5-200 microg L(-1), respectively. The CI-ELISA estimations in water correlated well with those from gas chromatography-mass spectrometry (GC-MS) analysis (r(2) = 0.9991). This assay contributes to reducing laboratory costs associated with the conventional GC-MS residue analysis techniques for the quantitation of dicamba in water.
Bauld, T; Teasdale, P; Stratton, H; Uwins, H
2007-01-01
The presence of unpleasant taste and odour in drinking water is an ongoing aesthetic concern for water providers worldwide. The need for a sensitive and robust method capable of analysis in both natural and treated waters is essential for early detection of taste and odour events. The purpose of this study was to develop and optimise a fast stir bar sorptive extraction (SBSE) method for the analysis of geosmin and 2-methylisoborneol (MIB) in both natural water and drinking water. Limits of detection with the optimised fast method (45 min extraction time at 60 degrees C using 24 microL stir bars) were 1.1 ng/L for geosmin and 4.2 ng/L for MIB. Relative standard deviations at the detection limits were under 17% for both compounds. Use of multiple stir bars can be used to decrease the detection limits further. The use of 25% NaCl and 5% methanol sample modifiers decreased the experimental recoveries. Likewise, addition of 1 mg/L and 1.5 mg/L NaOCI decreased the recoveries and this effect was not reversed by addition of 10% thiosulphate. The optimised method was used to measure geosmin concentrations in treated and untreated drinking water. MIB concentrations were below the detection limits in these waters.
de Kruijf, Marcel; Govender, Rodney; Yearsley, Dermot; Coffey, Aidan; O'Mahony, Jim
2017-05-01
The aim of this study was to investigate the efficacy of IS_MAP04 as a potential new diagnostic quantitative PCR (qPCR) target for the detection of Mycobacterium avium subspecies paratuberculosis from bovine faeces. IS_MAP04 primers were designed and tested negative against non-MAP strains. The detection limit of IS_MAP04 qPCR was evaluated on different MAP K-10 DNA concentrations and on faecal samples spiked with different MAP K-10 cell dilutions. A collection of 106 faecal samples was analysed and the efficacy of IS_MAP04 was statistically compared with IS900 and IS_MAP02. The detection limits observed for IS_MAP04 and IS900 on MAP DNA was 34 fg and 3.4 fg respectively. The detection limit of MAP from inoculated faecal samples was 10 2 CFU/g for both IS_MAP04 and IS900 targets and a detection limit of 10 2 CFU/g was also achieved with a TaqMan qPCR targeting IS_MAP04. The efficacy of IS_MAP04 to detect positive MAP faecal samples was 83.0% compared to 85.8% and 83.9% for IS900 and IS_MAP02 respectively. Strong kappa agreements were observed between IS_MAP04 and IS900 (κ=0.892) and between IS_MAP04 and IS_MAP02 (κ=0.897). As a new molecular target, IS_MAP04 showed that the detection limit was comparable to IS900 to detect MAP from inoculated faecal material. The MAP detection efficacy of IS_MAP04 from naturally infected faecal samples proved to be relatively comparable to IS_MAP02, but yielded efficacy results slightly less than IS900. Moreover, IS_MAP04 could be of significant value when used in duplex or multiplex qPCR assays. Copyright © 2017 Elsevier B.V. All rights reserved.
Cognitive foundations for model-based sensor fusion
NASA Astrophysics Data System (ADS)
Perlovsky, Leonid I.; Weijers, Bertus; Mutz, Chris W.
2003-08-01
Target detection, tracking, and sensor fusion are complicated problems, which usually are performed sequentially. First detecting targets, then tracking, then fusing multiple sensors reduces computations. This procedure however is inapplicable to difficult targets which cannot be reliably detected using individual sensors, on individual scans or frames. In such more complicated cases one has to perform functions of fusing, tracking, and detecting concurrently. This often has led to prohibitive combinatorial complexity and, as a consequence, to sub-optimal performance as compared to the information-theoretic content of all the available data. It is well appreciated that in this task the human mind is by far superior qualitatively to existing mathematical methods of sensor fusion, however, the human mind is limited in the amount of information and speed of computation it can cope with. Therefore, research efforts have been devoted toward incorporating "biological lessons" into smart algorithms, yet success has been limited. Why is this so, and how to overcome existing limitations? The fundamental reasons for current limitations are analyzed and a potentially breakthrough research and development effort is outlined. We utilize the way our mind combines emotions and concepts in the thinking process and present the mathematical approach to accomplishing this in the current technology computers. The presentation will summarize the difficulties encountered by intelligent systems over the last 50 years related to combinatorial complexity, analyze the fundamental limitations of existing algorithms and neural networks, and relate it to the type of logic underlying the computational structure: formal, multivalued, and fuzzy logic. A new concept of dynamic logic will be introduced along with algorithms capable of pulling together all the available information from multiple sources. This new mathematical technique, like our brain, combines conceptual understanding with emotional evaluation and overcomes the combinatorial complexity of concurrent fusion, tracking, and detection. The presentation will discuss examples of performance, where computational speedups of many orders of magnitude were attained leading to performance improvements of up to 10 dB (and better).
Superhydrophobic SERS substrates based on silicon hierarchical nanostructures
NASA Astrophysics Data System (ADS)
Chen, Xuexian; Wen, Jinxiu; Zhou, Jianhua; Zheng, Zebo; An, Di; Wang, Hao; Xie, Weiguang; Zhan, Runze; Xu, Ningsheng; Chen, Jun; She, Juncong; Chen, Huanjun; Deng, Shaozhi
2018-02-01
Silicon nanostructures have been cultivated as promising surface enhanced Raman scattering (SERS) substrates in terms of their low-loss optical resonance modes, facile functionalization, and compatibility with today’s state-of-the-art CMOS techniques. However, unlike their plasmonic counterparts, the electromagnetic field enhancements induced by silicon nanostructures are relatively small, which restrict their SERS sensing limit to around 10-7 M. To tackle this problem, we propose here a strategy for improving the SERS performance of silicon nanostructures by constructing silicon hierarchical nanostructures with a superhydrophobic surface. The hierarchical nanostructures are binary structures consisted of silicon nanowires (NWs) grown on micropyramids (MPs). After being modified with perfluorooctyltriethoxysilane (PFOT), the nanostructure surface shows a stable superhydrophobicity with a high contact angle of ˜160°. The substrate can allow for concentrating diluted analyte solutions into a specific area during the evaporation of the liquid droplet, whereby the analytes are aggregated into a small volume and can be easily detected by the silicon nanostructure SERS substrate. The analyte molecules (methylene blue: MB) enriched from an aqueous solution lower than 10-8 M can be readily detected. Such a detection limit is ˜100-fold lower than the conventional SERS substrates made of silicon nanostructures. Additionally, the detection limit can be further improved by functionalizing gold nanoparticles onto silicon hierarchical nanostructures, whereby the superhydrophobic characteristics and plasmonic field enhancements can be combined synergistically to give a detection limit down to ˜10-11 M. A gold nanoparticle-functionalized superhydrophobic substrate was employed to detect the spiked melamine in liquid milk. The results showed that the detection limit can be as low as 10-5 M, highlighting the potential of the proposed superhydrophobic SERS substrate in practical food safety inspection applications.
NASA Astrophysics Data System (ADS)
Sharma, K.; Abdul Khudus, M. I. M.; Alam, S. U.; Bhattacharya, S.; Venkitesh, D.; Brambilla, G.
2018-01-01
Relative performance and detection limit of conventional, amplified, and gain-clamped cavity ring-down techniques (CRDT) in all-fiber configurations are compared experimentally for the first time. Refractive index measurement using evanescent field in tapered fibers is used as a benchmark for the comparison. The systematic optimization of a nested-loop configuration in gain-clamped CRDT is also discussed, which is crucial for achieving a constant gain in a CRDT experiment. It is found that even though conventional CRDT has the lowest standard error in ring-down time (Δτ), the value of ring-down time (τ) is very small, thus leading to poor detection limit. Amplified CRDT provides an improvement in τ, albeit with two orders of magnitude higher Δτ due to amplifier noise. The nested-loop configuration in gain-clamped CRDT helps in reducing Δτ by an order of magnitude as compared to amplified CRDT whilst retaining the improvement in τ. A detection limit of 1 . 03 × 10-4 RIU at refractive index of 1.322 with a 3 mm long and 4.5 μm diameter tapered fiber is demonstrated with the gain-clamped CRDT.
NASA Astrophysics Data System (ADS)
Chen, Zhibin; Xiao, Cheng; Xiao, Wenjian; Qin, Mengze; Liu, Xianhong
2016-01-01
To prevent tragic disasters caused by terror acts and warfare threats, security check personnel must be capable of discovering, distinguishing and eliminating the explosives at multiple circumstances. Standoff technology for the remote detection of explosives and their traces on contaminated surfaces is a research field that has become a heightened priority in recent years for homeland security and counter-terrorism applications. There has been a huge increase in research within this area, the improvement of standoff trace explosives detection by optical-related technology. This paper provides a consolidation of information relating to recent advances in several key problems of, without being limited to one specific research area or explosive type. Working laser wavelength of detection system is discussed. Generation and collection of explosives spectra signal are summarized. Techniques for analysing explosives spectra signal are summed up.
Robustness of dark matter constraints and interplay with collider searches for New Physics
NASA Astrophysics Data System (ADS)
Arbey, A.; Boudaud, M.; Mahmoudi, F.; Robbins, G.
2017-11-01
We study the implications of dark matter searches, together with collider constraints, on the phenomenological MSSM with neutralino dark matter and focus on the consequences of the related uncertainties in some detail. We consider, inter alia, the latest results from AMS-02, Fermi-LAT and XENON1T. In particular, we examine the impact of the choice of the dark matter halo profile, as well as the propagation model for cosmic rays, for dark matter indirect detection and show that the constraints on the MSSM differ by one to two orders of magnitude depending on the astrophysical hypotheses. On the other hand, our limited knowledge of the local relic density in the vicinity of the Earth and the velocity of Earth in the dark matter halo leads to a factor 3 in the exclusion limits obtained by direct detection experiments. We identified the astrophysical models leading to the most conservative and the most stringent constraints and for each case studied the complementarities with the latest LHC measurements and limits from Higgs, SUSY and monojet searches. We show that combining all data from dark matter searches and colliders, a large fraction of our supersymmetric sample could be probed. Whereas the direct detection constraints are rather robust under the astrophysical assumptions, the uncertainties related to indirect detection can have an important impact on the number of the excluded points.
Saikali, Melody; Tanios, Alain; Saab, Antoine
2017-11-21
The aim of the study was to evaluate the sensitivity and resource efficiency of a partially automated adverse event (AE) surveillance system for routine patient safety efforts in hospitals with limited resources. Twenty-eight automated triggers from the hospital information system's clinical and administrative databases identified cases that were then filtered by exclusion criteria per trigger and then reviewed by an interdisciplinary team. The system, developed and implemented using in-house resources, was applied for 45 days of surveillance, for all hospital inpatient admissions (N = 1107). Each trigger was evaluated for its positive predictive value (PPV). Furthermore, the sensitivity of the surveillance system (overall and by AE category) was estimated relative to incidence ranges in the literature. The surveillance system identified a total of 123 AEs among 283 reviewed medical records, yielding an overall PPV of 52%. The tool showed variable levels of sensitivity across and within AE categories when compared with the literature, with a relatively low overall sensitivity estimated between 21% and 44%. Adverse events were detected in 23 of the 36 AE categories defined by an established harm classification system. Furthermore, none of the detected AEs were voluntarily reported. The surveillance system showed variable sensitivity levels across a broad range of AE categories with an acceptable PPV, overcoming certain limitations associated with other harm detection methods. The number of cases captured was substantial, and none had been previously detected or voluntarily reported. For hospitals with limited resources, this methodology provides valuable safety information from which interventions for quality improvement can be formulated.
Limits and signatures of relativistic spaceflight
NASA Astrophysics Data System (ADS)
Yurtsever, Ulvi; Wilkinson, Steven
2018-01-01
While special relativity imposes an absolute speed limit at the speed of light, our Universe is not empty Minkowski spacetime. The constituents that fill the interstellar/intergalactic vacuum, including the cosmic microwave background photons, impose a lower speed limit on any object travelling at relativistic velocities. Scattering of cosmic microwave photons from an ultra-relativistic object may create radiation with a characteristic signature allowing the detection of such objects at large distances.
Assessing the severity of sleep apnea syndrome based on ballistocardiogram
Zhou, Xingshe; Zhao, Weichao; Liu, Fan; Ni, Hongbo; Yu, Zhiwen
2017-01-01
Background Sleep Apnea Syndrome (SAS) is a common sleep-related breathing disorder, which affects about 4-7% males and 2-4% females all around the world. Different approaches have been adopted to diagnose SAS and measure its severity, including the gold standard Polysomnography (PSG) in sleep study field as well as several alternative techniques such as single-channel ECG, pulse oximeter and so on. However, many shortcomings still limit their generalization in home environment. In this study, we aim to propose an efficient approach to automatically assess the severity of sleep apnea syndrome based on the ballistocardiogram (BCG) signal, which is non-intrusive and suitable for in home environment. Methods We develop an unobtrusive sleep monitoring system to capture the BCG signals, based on which we put forward a three-stage sleep apnea syndrome severity assessment framework, i.e., data preprocessing, sleep-related breathing events (SBEs) detection, and sleep apnea syndrome severity evaluation. First, in the data preprocessing stage, to overcome the limits of BCG signals (e.g., low precision and reliability), we utilize wavelet decomposition to obtain the outline information of heartbeats, and apply a RR correction algorithm to handle missing or spurious RR intervals. Afterwards, in the event detection stage, we propose an automatic sleep-related breathing event detection algorithm named Physio_ICSS based on the iterative cumulative sums of squares (i.e., the ICSS algorithm), which is originally used to detect structural breakpoints in a time series. In particular, to efficiently detect sleep-related breathing events in the obtained time series of RR intervals, the proposed algorithm not only explores the practical factors of sleep-related breathing events (e.g., the limit of lasting duration and possible occurrence sleep stages) but also overcomes the event segmentation issue (e.g., equal-length segmentation method might divide one sleep-related breathing event into different fragments and lead to incorrect results) of existing approaches. Finally, by fusing features extracted from multiple domains, we can identify sleep-related breathing events and assess the severity level of sleep apnea syndrome effectively. Conclusions Experimental results on 136 individuals of different sleep apnea syndrome severities validate the effectiveness of the proposed framework, with the accuracy of 94.12% (128/136). PMID:28445548
Sign detection for autonomous navigation
NASA Astrophysics Data System (ADS)
Goodsell, Thomas G.; Snorrason, Magnus S.; Cartwright, Dustin; Stube, Brian; Stevens, Mark R.; Ablavsky, Vitaly X.
2003-09-01
Mobile robots currently cannot detect and read arbitrary signs. This is a major hindrance to mobile robot usability, since they cannot be tasked using directions that are intuitive to humans. It also limits their ability to report their position relative to intuitive landmarks. Other researchers have demonstrated some success on traffic sign recognition, but using template based methods limits the set of recognizable signs. There is a clear need for a sign detection and recognition system that can process a much wider variety of signs: traffic signs, street signs, store-name signs, building directories, room signs, etc. We are developing a system for Sign Understanding in Support of Autonomous Navigation (SUSAN), that detects signs from various cues common to most signs: vivid colors, compact shape, and text. We have demonstrated the feasibility of our approach on a variety of signs in both indoor and outdoor locations.
Comparing methods of detecting alcohol-related emergency department presentations.
Indig, D; Copeland, J; Conigrave, K M
2009-08-01
To assess the strengths and limitations of different methods for detecting alcohol-related emergency department (ED) presentations and to compare the characteristics of patients who present to the ED with an alcohol-related presentation with ED patients who are found to be risky drinkers by a questionnaire. Survey at two Sydney Australia ED over four weekends of 389 patients. Alcohol-related presentations were identified using a range of methods and were compared with presentations in ED patients who reported risky drinking using the alcohol use disorders identification test (AUDIT). Overall, 20% of ED patients had alcohol-related presentations and 28% were identified as risky drinkers by AUDIT. Diagnostic codes detected only 7% of all alcohol-related ED presentations, compared with 34% detected by nursing triage text, 60% by medical record audits and 69% by self-report. Among risky drinkers, just over half (51%) were not attending for an alcohol-related reason, whereas among alcohol-related ED presentations, nearly a third (31%) were not identified as risky drinkers by AUDIT. Not all patients with an alcohol-related ED presentation usually drink at risky levels, nor do all risky drinkers present to the ED for an alcohol-related reason. The use of routinely recorded nursing triage text detects over a third of alcohol-related ED presentations with no additional burden on busy clinicians. As these data are potentially readily accessible, further research is needed to evaluate their validity for the detection of alcohol-related ED presentations.
Measurement of curium in marine samples
NASA Astrophysics Data System (ADS)
Schneider, D. L.; Livingston, H. D.
1984-06-01
Measurement of environmentally small but detectable amounts of curium requires reliable, accureate, and sensitive analytical methods. The radiochemical separation developed at Woods Hole is briefly reviewed with specific reference to radiochemical interferences in the alpha spectrometric measurement of curium nuclides and to the relative amounts of interferences expected in different oceanic regimes and sample types. Detection limits for 242 Cm and 244 Cm are ultimately limited by their presence in the 243Am used as curium yield monitor. Environmental standard reference materials are evaluated with regard to curium. The marine literature is reviewed and curium measurements are discussed in relation to their source of introduction to the environment. Sources include ocean dumping of low-level radioactive wastes and discharges from nuclear fuel reporcessing activities, In particular, the question of a detectable presence of 244Cm in global fallout from nuclear weapons testing is addressed and shown to be essentially negligible. Analyses of Scottish coastal sedimantes show traces of 242Cm and 244Cm activity which are believed to originate from transport from sources in the Irish Sea.
Nilsson, Lars B; Skansen, Patrik
2012-06-30
The investigations in this article were triggered by two observations in the laboratory; for some liquid chromatography/tandem mass spectrometry (LC/MS/MS) systems it was possible to obtain linear calibration curves for extreme concentration ranges and for some systems seemingly linear calibration curves gave good accuracy at low concentrations only when using a quadratic regression function. The absolute and relative responses were tested for three different LC/MS/MS systems by injecting solutions of a model compound and a stable isotope labeled internal standard. The analyte concentration range for the solutions was 0.00391 to 500 μM (128,000×), giving overload of the chromatographic column at the highest concentrations. The stable isotope labeled internal standard concentration was 0.667 μM in all samples. The absolute response per concentration unit decreased rapidly as higher concentrations were injected. The relative response, the ratio for the analyte peak area to the internal standard peak area, per concentration unit was calculated. For system 1, the ionization process was found to limit the response and the relative response per concentration unit was constant. For systems 2 and 3, the ion detection process was the limiting factor resulting in decreasing relative response at increasing concentrations. For systems behaving like system 1, simple linear regression can be used for any concentration range while, for systems behaving like systems 2 and 3, non-linear regression is recommended for all concentration ranges. Another consequence is that the ionization capacity limited systems will be insensitive to matrix ion suppression when an ideal internal standard is used while the detection capacity limited systems are at risk of giving erroneous results at high concentrations if the matrix ion suppression varies for different samples in a run. Copyright © 2012 John Wiley & Sons, Ltd.
Lane, Eric J; Lating, Jeffrey M; Lowry, Jenny L; Martino, Traci P
2010-01-01
Law enforcement detectives who work with traumatized individuals, especially children who were victims of sexual abuse or assault, are likely to experience job-related emotional distress. The purpose of this study was to examine the relations among compassion fatigue, probable PTSD symptoms, and personal relationship satisfaction, including communication and sexual satisfaction, in a sample of 47 male and female detectives. Responses to the administered questionnaires indicated a relation between compassion fatigue symptoms and probable PTSD symptoms. There also were compelling gender differences. For example, for male detectives, open communication with their spouse or significant other was negatively correlated with burnout, indicating the more open the communication, the lower the reported burnout. However for female detectives there was a negative correlation between open communication with spouse or significant other and compassion satisfaction, suggesting that more open communication was related to lower levels of satisfaction with their ability to be a professional caregiver Furthermore, although stepwise regression analysis indicated that years of service as a detective is independently associated with sexual desire, female detectives evidenced less sexual desire and more difficulty with sexual functioning than did male detectives. Implications of these preliminary findings are discussed and limitations addressed.
Liu, Xiaolu; Yang, Tao; Hu, Jiye
2013-01-01
A method has been developed and established for residue determination of benazolin-ethyl in soil and rape seed samples by gas chromatography with electron capture detection (GC-ECD). Limits of quantification of the method are 0.005 mg/kg for both soil and rape seed, which are sufficiently below the maximum residue limit, and the limit of detection is 0.0023 ng. The average recoveries of the analyte range from 85.89 to 105.84% with relative standard deviations (coefficient of variation) less than 5.53% at the three spike levels (0.005, 0.1 and 0.5 mg/kg). The half-life of benazolin-ethyl in soil from the experimental field is 4.62 days. The final residues of benazolin-ethyl in soil and rape seed samples are lower than 0.005 mg/kg at harvest time. Direct confirmation of the analyte in real samples is achieved by GC-mass spectrometry. It is demonstrated that the proposed method is simple, rapid and efficient, and reliable to detect benazolin-ethyl residues in soil and rape seed samples.
Multiplexed detection of anthrax-related toxin genes.
Moser, Michael J; Christensen, Deanna R; Norwood, David; Prudent, James R
2006-02-01
Simultaneous analysis of three targets in three colors on any real-time polymerase chain reaction (PCR) instrument would increase the flexibility of real-time PCR. For the detection of Bacillus strains that can cause inhalation anthrax-related illness, this ability would be valuable because two plasmids confer virulence, and internal positive controls are needed to monitor the testing in cases lacking target-specific signals. Using a real-time PCR platform called MultiCode-RTx, multiple assays were developed that specifically monitor the presence of Bacillus anthracis-specific virulence plasmid-associated genes. In particular for use on LightCycler-1, two triplex RTx systems demonstrated high sensitivity with limits of detection nearing single-copy levels for both plasmids. Specificity was established using a combination of Ct values and correct amplicon melting temperatures. All reactions were further verified by detection of an internal positive control. For these two triplex RTx assays, the analytical detection limit was one to nine plasmid copy equivalents, 100% analytical specificity with a 95% confidence interval (CI) of 9%, and 100% analytical sensitivity with a CI of 2%. Although further testing using clinical or environmental samples will be required to assess diagnostic sensitivity and specificity, the RTx platform achieves similar results to those of probe-based real-time systems.
Thermodynamic framework to assess low abundance DNA mutation detection by hybridization.
Willems, Hanny; Jacobs, An; Hadiwikarta, Wahyu Wijaya; Venken, Tom; Valkenborg, Dirk; Van Roy, Nadine; Vandesompele, Jo; Hooyberghs, Jef
2017-01-01
The knowledge of genomic DNA variations in patient samples has a high and increasing value for human diagnostics in its broadest sense. Although many methods and sensors to detect or quantify these variations are available or under development, the number of underlying physico-chemical detection principles is limited. One of these principles is the hybridization of sample target DNA versus nucleic acid probes. We introduce a novel thermodynamics approach and develop a framework to exploit the specific detection capabilities of nucleic acid hybridization, using generic principles applicable to any platform. As a case study, we detect point mutations in the KRAS oncogene on a microarray platform. For the given platform and hybridization conditions, we demonstrate the multiplex detection capability of hybridization and assess the detection limit using thermodynamic considerations; DNA containing point mutations in a background of wild type sequences can be identified down to at least 1% relative concentration. In order to show the clinical relevance, the detection capabilities are confirmed on challenging formalin-fixed paraffin-embedded clinical tumor samples. This enzyme-free detection framework contains the accuracy and efficiency to screen for hundreds of mutations in a single run with many potential applications in molecular diagnostics and the field of personalised medicine.
Fidalgo-Used, Natalia; Montes-Bayón, Maria; Blanco-González, Elisa; Sanz-Medel, Alfredo
2008-05-15
A method for enantioselective determination of bromocyclen enantiomers in fish tissue has been developed. The enantiomers were resolved by capillary gas chromatography (GC) using a commercial chiral column (CP-Chirasil-Dex CB) and a temperature program from 50 degrees C (held for 1 min), raised to 140 degrees C at 40 degrees C min(-1) and then raised at 0.2 degrees C min(-1) to 155 degrees C. This enantioselective gas chromatographic separation was combined with a clean-up/enrichment procedure based on solid-phase microextraction (SPME). Under SPME optimized conditions, precision, linearity range and detection limits of the developed SPME-enantioselective GC procedure were evaluated and compared using two different detection systems: a classical electron-capture detection (ECD) and an element specific detection using inductively coupled plasma mass spectrometry (ICP-MS). The SPME-GC-ECD method exhibited an excellent sensitivity, with detection limits of 0.2 ng L(-1) for each enantiomer of bromocyclen. Although ICP-MS offered poorer detection limits (7 ng L(-1) as Br, equivalent to 36 ng L(-1) of each enantiomer) than conventional ECD detector, it proved to be clearly superior in terms of selectivity. The relative potential and performance of the two compared methods for real-life analysis has been illustrated by the determination of enantiomers of bromocyclen in spiked tissue extracts of trout.
Leblond, Frederic; Tichauer, Kenneth M.; Pogue, Brian W.
2010-01-01
The spatial resolution and recovered contrast of images reconstructed from diffuse fluorescence tomography data are limited by the high scattering properties of light propagation in biological tissue. As a result, the image reconstruction process can be exceedingly vulnerable to inaccurate prior knowledge of tissue optical properties and stochastic noise. In light of these limitations, the optimal source-detector geometry for a fluorescence tomography system is non-trivial, requiring analytical methods to guide design. Analysis of the singular value decomposition of the matrix to be inverted for image reconstruction is one potential approach, providing key quantitative metrics, such as singular image mode spatial resolution and singular data mode frequency as a function of singular mode. In the present study, these metrics are used to analyze the effects of different sources of noise and model errors as related to image quality in the form of spatial resolution and contrast recovery. The image quality is demonstrated to be inherently noise-limited even when detection geometries were increased in complexity to allow maximal tissue sampling, suggesting that detection noise characteristics outweigh detection geometry for achieving optimal reconstructions. PMID:21258566
Mercury bioaccumulation in organisms from three Puerto Rican estuaries.
Burger, J; Cooper, K; Saliva, J; Gochfeld, D; Lipsky, D; Gochfeld, M
1992-09-01
We analyzed mercury levels in shrimp (Palaemonetes sp.), Blue Crabs (Callinectes sp.), fish (Tarpon Megalops atlantica and Tilapia Tilapia mossambica), lizards (Ameiva exsul), Cattle Egret (Bubulcus ibis) and Moorhen (Gallinula chloropus) in three estuaries in Puerto Rico in 1988. There were no quantifiable concentrations greater than the method detection limit of mercury in shrimp, crabs and lizards from any site. Mercury levels were also below detection limits in Tilapia, except for specimens collected at Frontera Creek, allegedly contaminated with mercury. However, mercury levels ranged from 92-238 μg/kg (wet weight) in Tarpon, a predaceous fish that feeds on smaller fish. Few of the birds had detectable levels of mercury. Our results indicate relatively low concentrations of mercury in biota collected in all of the three estuaries at most trophic levels, although 10 of 12 Tarpon fillet samples from Frontera had detectable mercury compared to 3 of 12 fillet samples for the other two lagoons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gundlach-Graham, Alexander W.; Dennis, Elise; Ray, Steven J.
An inductively coupled plasma distance-of-flight mass spectrometer (ICP-DOFMS) has been coupled with laser-ablation (LA) sample introduction for the elemental analysis of solids. ICP-DOFMS is well suited for the analysis of laser-generated aerosols because it offers both high-speed mass analysis and simultaneous multi-elemental detection. Here, we evaluate the analytical performance of the LA-ICP-DOFMS instrument, equipped with a microchannel plate-based imaging detector, for the measurement of steady-state LA signals, as well as transient signals produced from single LA events. Steady-state detection limits are 1 mg g1, and absolute single-pulse LA detection limits are 200 fg for uranium; the system is shown capablemore » of performing time-resolved single-pulse LA analysis. By leveraging the benefits of simultaneous multi-elemental detection, we also attain a good shot-to-shot reproducibility of 6% relative standard deviation (RSD) and isotope-ratio precision of 0.3% RSD with a 10 s integration time.« less
Chobtang, Jeerasak; de Boer, Imke J. M.; Hoogenboom, Ron L. A. P.; Haasnoot, Willem; Kijlstra, Aize; Meerburg, Bastiaan G.
2011-01-01
Dioxins and dioxin-like polychlorinated biphenyls (DL-PCBs) are hazardous toxic, ubiquitous and persistent chemical compounds, which can enter the food chain and accumulate up to higher trophic levels. Their determination requires sophisticated methods, expensive facilities and instruments, well-trained personnel and expensive chemical reagents. Ideally, real-time monitoring using rapid detection methods should be applied to detect possible contamination along the food chain in order to prevent human exposure. Sensor technology may be promising in this respect. This review gives the state of the art for detecting possible contamination with dioxins and DL-PCBs along the food chain of animal-source foods. The main detection methods applied (i.e., high resolution gas-chromatography combined with high resolution mass-spectrometry (HRGC/HRMS) and the chemical activated luciferase gene expression method (CALUX bioassay)), each have their limitations. Biosensors for detecting dioxins and related compounds, although still under development, show potential to overcome these limitations. Immunosensors and biomimetic-based biosensors potentially offer increased selectivity and sensitivity for dioxin and DL-PCB detection, while whole cell-based biosensors present interpretable biological results. The main shortcoming of current biosensors, however, is their detection level: this may be insufficient as limits for dioxins and DL-PCBs for food and feedstuffs are in pg per gram level. In addition, these contaminants are normally present in fat, a difficult matrix for biosensor detection. Therefore, simple and efficient extraction and clean-up procedures are required which may enable biosensors to detect dioxins and DL-PCBs contamination along the food chain. PMID:22247688
Chobtang, Jeerasak; de Boer, Imke J M; Hoogenboom, Ron L A P; Haasnoot, Willem; Kijlstra, Aize; Meerburg, Bastiaan G
2011-01-01
Dioxins and dioxin-like polychlorinated biphenyls (DL-PCBs) are hazardous toxic, ubiquitous and persistent chemical compounds, which can enter the food chain and accumulate up to higher trophic levels. Their determination requires sophisticated methods, expensive facilities and instruments, well-trained personnel and expensive chemical reagents. Ideally, real-time monitoring using rapid detection methods should be applied to detect possible contamination along the food chain in order to prevent human exposure. Sensor technology may be promising in this respect. This review gives the state of the art for detecting possible contamination with dioxins and DL-PCBs along the food chain of animal-source foods. The main detection methods applied (i.e., high resolution gas-chromatography combined with high resolution mass-spectrometry (HRGC/HRMS) and the chemical activated luciferase gene expression method (CALUX bioassay)), each have their limitations. Biosensors for detecting dioxins and related compounds, although still under development, show potential to overcome these limitations. Immunosensors and biomimetic-based biosensors potentially offer increased selectivity and sensitivity for dioxin and DL-PCB detection, while whole cell-based biosensors present interpretable biological results. The main shortcoming of current biosensors, however, is their detection level: this may be insufficient as limits for dioxins and DL-PCBs for food and feedstuffs are in pg per gram level. In addition, these contaminants are normally present in fat, a difficult matrix for biosensor detection. Therefore, simple and efficient extraction and clean-up procedures are required which may enable biosensors to detect dioxins and DL-PCBs contamination along the food chain.
Highly sensitive and specific on-site detection of serum cocaine by a low cost aptasensor.
Oueslati, Rania; Cheng, Cheng; Wu, Jayne; Chen, Jiangang
2018-06-15
Cocaine is one of the most used illegal recreational drugs. Developing an on-site test for cocaine use detection has been a focus of research effort, since it is essential to the control and legal action against drug abuse. Currently most of cocaine detection methods are time-consuming and require special or expensive equipment, and the detection often suffers from high cross-reactivity with cocaine metabolites and relative low sensitivity with the best limit of detection reported at sub nanomolar (nM) level. In this work, an aptasensor has been developed using capacitive monitoring of sensor surface incorporating alternating current electrokinetics effects to speed up molecular transport and minimize matrix effects. The aptasensor is rapid, low cost, highly sensitive and specific as well as simple-to-use for the detection of cocaine from serum. The assay has a sample-to-result time of 30 s, a limit of detection of 7.8 fM, and a linear response for cocaine ranging from 14.5fM to 14.5pM in standard buffer, which are great improvements from other reported cocaine sensors. Special buffer is used for serum cocaine detection, and a limit of detection of 13.4 fM is experimentally demonstrated for cocaine spiked in human serum (equivalent to 1.34pM cocaine in neat serum). The specificity of the biosensor is also demonstrated with structurally similar chemicals, ecgonine ethyl ester and methylecgonidine. This biosensor shows high promise in detection of low levels of cocaine from complex matrices. Copyright © 2018 Elsevier B.V. All rights reserved.
Narang, Jagriti; Malhotra, Nitesh; Singhal, Chaitali; Mathur, Ashish; Pn, Anoop Krishna; Pundir, C S
2017-11-01
We present results of the studies relating to fabrication of a microfluidic biosensor chip based on urchin like Ag@ Pd shell nano-hybrids that is capable of sensing alprazolam through electrochemical detection. Using this chip we demonstrate, with high reliability and in a time efficient manner, the detection of alprazolam present in buffer solutions at clinically relevant concentrations. Methylene blue (MB) was also doped as redox transition substance for sensing alprazolam. Nano-hybrids modified EμPAD showed wide linear range 1-300ng/ml and low detection limit of 0.025ng/l. Low detection limit can further enhance its suitability for forensic application. Nano-hybrids modified EμPAD was also employed for determination of drug in real samples such as human urine. Reported facile lab paper approach integrated with urchin like Ag@ Pd shell nano-hybrids could be well applied for the determination of serum metabolites. Copyright © 2016 Elsevier B.V. All rights reserved.
Signal averaging limitations in heterodyne- and direct-detection laser remote sensing measurements
NASA Technical Reports Server (NTRS)
Menyuk, N.; Killinger, D. K.; Menyuk, C. R.
1983-01-01
The improvement in measurement uncertainty brought about by the averaging of increasing numbers of pulse return signals in both heterodyne- and direct-detection lidar systems is investigated. A theoretical analysis is presented which shows the standard deviation of the mean measurement to decrease as the inverse square root of the number of measurements, except in the presence of temporal correlation. Experimental measurements based on a dual-hybrid-TEA CO2 laser differential absorption lidar system are reported which demonstrate that the actual reduction in the standard deviation of the mean in both heterodyne- and direct-detection systems is much slower than the inverse square-root dependence predicted for uncorrelated signals, but is in agreement with predictions in the event of temporal correlation. Results thus favor the use of direct detection at relatively short range where the lower limit of the standard deviation of the mean is about 2 percent, but advantages of heterodyne detection at longer ranges are noted.
Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit
NASA Astrophysics Data System (ADS)
Pan, Weicheng; Wu, Haodi; Luo, Jiajun; Deng, Zhenzhou; Ge, Cong; Chen, Chao; Jiang, Xiaowei; Yin, Wan-Jian; Niu, Guangda; Zhu, Lujun; Yin, Lixiao; Zhou, Ying; Xie, Qingguo; Ke, Xiaoxing; Sui, Manling; Tang, Jiang
2017-11-01
Sensitive X-ray detection is crucial for medical diagnosis, industrial inspection and scientific research. The recently described hybrid lead halide perovskites have demonstrated low-cost fabrication and outstanding performance for direct X-ray detection, but they all contain toxic Pb in a soluble form. Here, we report sensitive X-ray detectors using solution-processed double perovskite Cs2AgBiBr6 single crystals. Through thermal annealing and surface treatment, we largely eliminate Ag+/Bi3+ disordering and improve the crystal resistivity, resulting in a detector with a minimum detectable dose rate as low as 59.7 nGyair s-1, comparable to the latest record of 0.036 μGyair s-1 using CH3NH3PbBr3 single crystals. Suppressed ion migration in Cs2AgBiBr6 permits relatively large external bias, guaranteeing efficient charge collection without a substantial increase in noise current and thus enabling the low detection limit.
Penney, Zachary L.; Moffitt, Christine M.; Jones, Bryan; Marston, Brian
2016-01-01
The physiological status of migrating steelhead kelts (Oncorhynchus mykiss) from the Situk River, Alaska, and two tributaries of the Clearwater River, Idaho, was evaluated to explore potential differences in post-spawning survival related to energy reserves. Blood plasma samples were analyzed for metrics related to nutritional and osmotic status, and samples of white muscle tissue collected from recent mortalities at weirs were analyzed for proximate constituents. Female kelts from the Situk River had significantly higher plasma cholesterol, triglycerides, glucose and calcium concentrations, all of which suggested higher lipid and energy stores. Additional support for energy limitation in kelts was provided by evaluating the presence of detectable proteins in the plasma. Most all kelts sampled from the Situk River populations had detectable plasma proteins, in contrast to kelts sampled from the Clearwater River tributary populations where 27 % of kelts from one tributary, and 68 % of the second tributary were below the limits of detection. We found proximate constituents of kelt mortalities were similar between the Situk and Clearwater River populations, and the lipid fraction of white muscle averaged 0.1 and 0.2 %. Our findings lend support to the hypothesis that energetic limitations likely affect post-spawn survival in the Clearwater River kelts.
[Analysis of Cr in soil by LIBS based on conical spatial confinement of plasma].
Lin, Yong-Zeng; Yao, Ming-Yin; Chen, Tian-Bing; Li, Wen-Bing; Zheng, Mei-Lan; Xu, Xue-Hong; Tu, Jian-Ping; Liu, Mu-Hua
2013-11-01
The present study is to improve the sensitivity of detection and reduce the limit of detection in detecting heavy metal of soil by laser induced breakdown spectroscopy (LIBS). The Cr element of national standard soil was regarded as the research object. In the experiment, a conical cavity with small diameter end of 20 mm and large diameter end of 45 mm respectively was installed below the focusing lens near the experiment sample to mainly confine the signal transmitted by plasma and to some extent to confine the plasma itself in the LIBS setup. In detecting Cr I 425.44 nm, the beast delay time gained from experiment is 1.3 micros, and the relative standard deviation is below 10%. Compared with the setup of non-spatial confinement, the spectral intensity of Cr in the soil sample was enhanced more than 7%. Calibration curve was established in the Cr concentration range from 60 to 400 microg x g(-1). Under the condition of spatial confinement, the liner regression coefficient and the limit of detection were 0.997 71 and 18.85 microg x g(-1) respectively, however, the regression coefficient and the limit of detection were 0.991 22 and 36.99 microg x g(-1) without spatial confinement. So, this shows that conical spatial confinement can/improve the sensitivity of detection and enhance the spectral intensity. And it is a good auxiliary function in detecting Cr in the soil by laser induced breakdown spectroscopy.
Toward multimodal signal detection of adverse drug reactions.
Harpaz, Rave; DuMouchel, William; Schuemie, Martijn; Bodenreider, Olivier; Friedman, Carol; Horvitz, Eric; Ripple, Anna; Sorbello, Alfred; White, Ryen W; Winnenburg, Rainer; Shah, Nigam H
2017-12-01
Improving mechanisms to detect adverse drug reactions (ADRs) is key to strengthening post-marketing drug safety surveillance. Signal detection is presently unimodal, relying on a single information source. Multimodal signal detection is based on jointly analyzing multiple information sources. Building on, and expanding the work done in prior studies, the aim of the article is to further research on multimodal signal detection, explore its potential benefits, and propose methods for its construction and evaluation. Four data sources are investigated; FDA's adverse event reporting system, insurance claims, the MEDLINE citation database, and the logs of major Web search engines. Published methods are used to generate and combine signals from each data source. Two distinct reference benchmarks corresponding to well-established and recently labeled ADRs respectively are used to evaluate the performance of multimodal signal detection in terms of area under the ROC curve (AUC) and lead-time-to-detection, with the latter relative to labeling revision dates. Limited to our reference benchmarks, multimodal signal detection provides AUC improvements ranging from 0.04 to 0.09 based on a widely used evaluation benchmark, and a comparative added lead-time of 7-22 months relative to labeling revision dates from a time-indexed benchmark. The results support the notion that utilizing and jointly analyzing multiple data sources may lead to improved signal detection. Given certain data and benchmark limitations, the early stage of development, and the complexity of ADRs, it is currently not possible to make definitive statements about the ultimate utility of the concept. Continued development of multimodal signal detection requires a deeper understanding the data sources used, additional benchmarks, and further research on methods to generate and synthesize signals. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Feng, L.; Vaulin, R.; Hewitt, J. N.; Remillard, R.; Kaplan, D. L.; Murphy, Tara; Kudryavtseva, N.; Hancock, P.; Bernardi, G.; Bowman, J. D.; Briggs, F.; Cappallo, R. J.; Deshpande, A. A.; Gaensler, B. M.; Greenhill, L. J.; Hazelton, B. J.; Johnston-Hollitt, M.; Lonsdale, C. J.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Oberoi, D.; Ord, S. M.; Prabu, T.; Udaya Shankar, N.; Srivani, K. S.; Subrahmanyan, R.; Tingay, S. J.; Wayth, R. B.; Webster, R. L.; Williams, A.; Williams, C. L.
2017-03-01
Many astronomical sources produce transient phenomena at radio frequencies, but the transient sky at low frequencies (<300 MHz) remains relatively unexplored. Blind surveys with new wide-field radio instruments are setting increasingly stringent limits on the transient surface density on various timescales. Although many of these instruments are limited by classical confusion noise from an ensemble of faint, unresolved sources, one can in principle detect transients below the classical confusion limit to the extent that the classical confusion noise is independent of time. We develop a technique for detecting radio transients that is based on temporal matched filters applied directly to time series of images, rather than relying on source-finding algorithms applied to individual images. This technique has well-defined statistical properties and is applicable to variable and transient searches for both confusion-limited and non-confusion-limited instruments. Using the Murchison Widefield Array as an example, we demonstrate that the technique works well on real data despite the presence of classical confusion noise, sidelobe confusion noise, and other systematic errors. We searched for transients lasting between 2 minutes and 3 months. We found no transients and set improved upper limits on the transient surface density at 182 MHz for flux densities between ˜20 and 200 mJy, providing the best limits to date for hour- and month-long transients.
Are Small Radii of Compact Stars Ruled out by GW170817/AT2017gfo?
NASA Astrophysics Data System (ADS)
Burgio, G. F.; Drago, A.; Pagliara, G.; Schulze, H.-J.; Wei, J.-B.
2018-06-01
The detection of GW170817 and its electromagnetic counterparts allows us to constrain the equation of state of dense matter in new and complementary ways. Very stiff equations of state are ruled out by the upper limit on the average tidal deformability, \\tilde{{{Λ }}}≲ 800, imposed by the detected gravitational wave signal. A lower limit, \\tilde{{{Λ }}}≳ 400, can also be extracted by considering the large amount of ejected matter that powers the kilonova AT2017gfo. By using several microscopic nucleonic equations of state, we first confirm the existence of a monotonic relation between R 1.5 (the radius of the 1.5 M ⊙ configuration) and \\tilde{{{Λ }}}. This translates the limits on \\tilde{{{Λ }}} into limits on the radius: 11.8 km ≲ R 1.5 ≲ 13.1 km. We then show that the monotonic relation is violated if a second branch of compact stars composed of quark matter exists, as in the two-families or twin-stars scenarios. In particular, it is possible to fulfill the limits on \\tilde{{{Λ }}} while having R 1.5 significantly smaller than 12 km. In both of these scenarios, the event GW170817/AT2017gfo originates from the merger of a hadronic star and a star containing quark matter.
Current trends in explosive detection techniques.
Caygill, J Sarah; Davis, Frank; Higson, Seamus P J
2012-01-15
The detection of explosives and explosive-related compounds has become a heightened priority in recent years for homeland security and counter-terrorism applications. There has been a huge increase in research within this area-through both the development of new, innovative detection approaches and the improvement of existing techniques. Developments for miniaturisation, portability, field-ruggedisation and improvements in stand-off distances, selectivity and sensitivity have been necessary to develop and improve techniques. This review provides a consolidation of information relating to recent advances in explosive detection techniques without being limited to one specific research area or explosive type. The focus of this review will be towards advances in the last 5 years, with the reader being referred to earlier reviews where appropriate. Copyright © 2011. Published by Elsevier B.V.
Nanoscale volume confinement and fluorescence enhancement with double nanohole aperture
Regmi, Raju; Al Balushi, Ahmed A.; Rigneault, Hervé; Gordon, Reuven; Wenger, Jérôme
2015-01-01
Diffraction ultimately limits the fluorescence collected from a single molecule, and sets an upper limit to the maximum concentration to isolate a single molecule in the detection volume. To overcome these limitations, we introduce here the use of a double nanohole structure with 25 nm gap, and report enhanced detection of single fluorescent molecules in concentrated solutions exceeding 20 micromolar. The nanometer gap concentrates the light into an apex volume down to 70 zeptoliter (10−21 L), 7000-fold below the diffraction-limited confocal volume. Using fluorescence correlation spectroscopy and time-correlated photon counting, we measure fluorescence enhancement up to 100-fold, together with local density of optical states (LDOS) enhancement of 30-fold. The distinctive features of double nanoholes combining high local field enhancement, efficient background screening and relative nanofabrication simplicity offer new strategies for real time investigation of biochemical events with single molecule resolution at high concentrations. PMID:26511149
Quantitation of acrylamide in foods by high-resolution mass spectrometry.
Troise, Antonio Dario; Fiore, Alberto; Fogliano, Vincenzo
2014-01-08
Acrylamide detection still represents one of the hottest topics in food chemistry. Solid phase cleanup coupled to liquid chromatography separation and tandem mass spectrometry detection along with GC-MS detection are nowadays the gold standard procedure for acrylamide quantitation thanks to high reproducibility, good recovery, and low relative standard deviation. High-resolution mass spectrometry (HRMS) is particularly suitable for the detection of low molecular weight amides, and it can provide some analytical advantages over other MS techniques. In this paper a liquid chromatography (LC) method for acrylamide determination using HRMS detection was developed and compared to LC coupled to tandem mass spectrometry. The procedure applied a simplified extraction, no cleanup steps, and a 4 min chromatography. It proved to be solid and robust with an acrylamide mass accuracy of 0.7 ppm, a limit of detection of 2.65 ppb, and a limit of quantitation of 5 ppb. The method was tested on four acrylamide-containing foods: cookies, French fries, ground coffee, and brewed coffee. Results were perfectly in line with those obtained by LC-MS/MS.
Probing Sub-GeV Dark Matter with Conventional Detectors.
Kouvaris, Chris; Pradler, Josef
2017-01-20
The direct detection of dark matter particles with mass below the GeV scale is hampered by soft nuclear recoil energies and finite detector thresholds. For a given maximum relative velocity, the kinematics of elastic dark matter nucleus scattering sets a principal limit on detectability. Here, we propose to bypass the kinematic limitations by considering the inelastic channel of photon emission from bremsstrahlung in the nuclear recoil. Our proposed method allows us to set the first limits on dark matter below 500 MeV in the plane of dark matter mass and cross section with nucleons. In situations where a dark-matter-electron coupling is suppressed, bremsstrahlung may constitute the only path to probe low-mass dark matter awaiting new detector technologies with lowered recoil energy thresholds.
Optimization of optical systems.
Champagne, E B
1966-11-01
The power signal-to-noise ratios for coherent and noncoherent optical detection are presented, with the expression for noncoherent detection being examined in detail. It is found that for the long range optical system to compete with its microwave counterpart it is necessary to optimize the optical system. The optical system may be optimized by using coherent detection, or noncoherent detection if the signal is the dominate noise factor. A design procedure is presented which, in principle, always allows one to obtain signal shot-noise limited operation with noncoherent detection if pulsed operation is used. The technique should make reasonable extremely long range, high data rate systems of relatively simple design.
Detection of chitinase activity by 2-aminobenzoic acid labeling of chito-oligosaccharides.
Ghauharali-van der Vlugt, Karen; Bussink, Anton P; Groener, Johanna E M; Boot, Rolf G; Aerts, Johannes M F G
2009-01-01
Chitinases are hydrolases capable of hydrolyzing the abundant natural polysaccharide chitin. Next to artificial fluorescent substrates, more physiological chito-oligomers are commonly used in chitinase assays. Analysis of chito-oligosaccharides products is generally accomplished by UV detection. However, the relatively poor sensitivity poses a serious limitation. Here we report on a novel, much more sensitive assay for the detection of chito-oligosaccharide reaction products released by chitinases, based on fluorescent detection, following chemical labeling by 2-aminobenzoic acid. Comparison with existing UV-based assays, shows that the novel assay offers the same advantages yet allows detection of chito-oligosaccharides in the low picomolar range.
Parallel Molecular Distributed Detection With Brownian Motion.
Rogers, Uri; Koh, Min-Sung
2016-12-01
This paper explores the in vivo distributed detection of an undesired biological agent's (BAs) biomarkers by a group of biological sized nanomachines in an aqueous medium under drift. The term distributed, indicates that the system information relative to the BAs presence is dispersed across the collection of nanomachines, where each nanomachine possesses limited communication, computation, and movement capabilities. Using Brownian motion with drift, a probabilistic detection and optimal data fusion framework, coined molecular distributed detection, will be introduced that combines theory from both molecular communication and distributed detection. Using the optimal data fusion framework as a guide, simulation indicates that a sub-optimal fusion method exists, allowing for a significant reduction in implementation complexity while retaining BA detection accuracy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Ziqiang
1999-12-10
Fast methods for separation and detection of important neurotransmitters and the releases in central nervous system (CNS) were developed. Enzyme based immunoassay combined with capillary electrophoresis was used to analyze the contents of amino acid neurotransmitters from single neuron cells. The release of amino acid neurotransmitters from neuron cultures was monitored by laser induced fluorescence imaging method. The release and signal transduction of adenosine triphosphate (ATP) in CNS was studied with sensitive luminescence imaging method. A new dual-enzyme on-column reaction method combined with capillary electrophoresis has been developed for determining the glutamate content in single cells. Detection was based onmore » monitoring the laser-induced fluorescence of the reaction product NADH, and the measured fluorescence intensity was related to the concentration of glutamate in each cell. The detection limit of glutamate is down to 10 -8 M level, which is 1 order of magnitude lower than the previously reported detection limit based on similar detection methods. The mass detection limit of a few attomoles is far superior to that of any other reports. Selectivity for glutamate is excellent over most of amino acids. The glutamate content in single human erythrocyte and baby rat brain neurons were determined with this method and results agreed well with literature values.« less
Shah, Umang; Patel, Shraddha; Raval, Manan
2018-01-01
High performance liquid chromatography is an integral analytical tool in assessing drug product stability. HPLC methods should be able to separate, detect, and quantify the various drug-related degradants that can form on storage or manufacturing, plus detect any drug-related impurities that may be introduced during synthesis. A simple, economic, selective, precise, and stability-indicating HPLC method has been developed and validated for analysis of Rifampicin (RIFA) and Piperine (PIPE) in bulk drug and in the formulation. Reversed-phase chromatography was performed on a C18 column with Buffer (Potassium Dihydrogen Orthophosphate) pH 6.5 and Acetonitrile, 30:70), (%, v/v), as mobile phase at a flow rate of 1 mL min-1. The detection was performed at 341 nm and sharp peaks were obtained for RIFA and PIPE at retention time of 3.3 ± 0.01 min and 5.9 ± 0.01 min, respectively. The detection limits were found to be 2.385 ng/ml and 0.107 ng/ml and quantification limits were found to be 7.228ng/ml and 0.325ng/ml for RIFA and PIPE, respectively. The method was validated for accuracy, precision, reproducibility, specificity, robustness, and detection and quantification limits, in accordance with ICH guidelines. Stress study was performed on RIFA and PIPE and it was found that these degraded sufficiently in all applied chemical and physical conditions. Thus, the developed RP-HPLC method was found to be suitable for the determination of both the drugs in bulk as well as stability samples of capsule containing various excipients. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Active sampling technique to enhance chemical signature of buried explosives
NASA Astrophysics Data System (ADS)
Lovell, John S.; French, Patrick D.
2004-09-01
Deminers and dismounted countermine engineers commonly use metal detectors, ground penetrating radar and probes to locate mines. Many modern landmines have a very low metal content, which severely limits the effectiveness of metal detectors. Canines have also been used for landmine detection for decades. Experiments have shown that canines smell the explosives which are known to leak from most types of landmines. The fact that dogs can detect landmines indicates that vapor sensing is a viable approach to landmine detection. Several groups are currently developing systems to detect landmines by "sniffing" for the ultra-trace explosive vapors above the soil. The amount of material that is available to passive vapor sensing systems is limited to no more than the vapor in equilibrium with the explosive related chemicals (ERCs) distributed in the surface soils over and near the landmine. The low equilibrium vapor pressure of TNT in the soil/atmosphere boundary layer and the limited volume of the boundary layer air imply that passive chemical vapor sensing systems require sensitivities in the picogram range, or lower. ADA is working to overcome many of the limitations of passive sampling methods, by the use of an active sampling method that employs a high-powered (1,200+ joules) strobe lamp to create a highly amplified plume of vapor and/or ERC-bearing fine particulates. Initial investigations have demonstrated that this approach can amplify the detectability of TNT by two or three orders of magnitude. This new active sampling technique could be used with any suitable explosive sensor.
Kamel, Alaa
2010-05-26
An analytical method was refined for the extraction and determination of neonicotinoid pesticide residues and their metabolites in honey bees and bee products. Samples were extracted with 2% triethylamine (TEA) in acetonitrile (ACN) followed by salting out, solid phase extraction (SPE) cleanup, and detection using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The method was validated in triplicate at three fortification concentrations in each matrix. Good recoveries were observed for most analytes and ranged between 70 and 120% with relative standard deviations between replicates of <20% in most cases. The method limits of detection were 0.2 ng/g for the parent neonicotinoid pesticides and ranged between 0.2 and 15 ng/g for the neonicotinoid metabolites. This refined method provides lower detection limits and improved recovery of neonicotinoids and their metabolites, which will help researchers evaluate subchronic effects of these pesticides, address data gaps related to colony collapse disorder (CCD), and determine the role of pesticides in pollinator decline.
Explosives signatures and analysis
NASA Astrophysics Data System (ADS)
Fountain, Augustus Way, III; Oyler, Jonathan M.; Ostazeski, Stanley A.
2008-04-01
The challenge of sampling explosive materials for various high threat military and civilian operational scenarios requires the community to identify and exploit other chemical compounds within the mixtures that may be available to support stand-off detection techniques. While limited surface and vapor phase characterization of IEDs exist, they are insufficient to guide the future development and evaluation of field deployable explosives detection (proximity and standoff) capabilities. ECBC has conducted a limited investigation of three artillery ammunition types to determine what chemical vapors, if any, are available for sensing; the relative composition of the vapors which includes the more volatile compounds in munitions, i.e., plastersizers and binders; and the sensitivity needed detect these vapors at stand-off. Also in partnership with MIT-Lincoln Laboratory, we performed a background measurement campaign at the National Training Center to determine the baseline ambient amounts and variability of nitrates and nitro-ester compounds as vapors, particulates, and on surfaces; as well as other chemical compounds related to non-energetic explosive additives. Environmental persistence studies in contexts relevant to counter-IED sensing operations, such as surface residues, are still necessary.
NASA Astrophysics Data System (ADS)
Liu, Chuanwu; Mutch, Simon J.; Angel, P. W.; Duffy, Alan R.; Geil, Paul M.; Poole, Gregory B.; Mesinger, Andrei; Wyithe, J. Stuart B.
2016-10-01
In this paper, we present calculations of the UV luminosity function (LF) from the Dark-ages Reionization And Galaxy-formation Observables from Numerical Simulations project, which combines N-body, semi-analytic and seminumerical modelling designed to study galaxy formation during the Epoch of Reionization. Using galaxy formation physics including supernova feedback, the model naturally reproduces the UV LFs for high-redshift star-forming galaxies from z ˜ 5 through to z ˜ 10. We investigate the luminosity-star formation rate (SFR) relation, finding that variable SFR histories of galaxies result in a scatter around the median relation of 0.1-0.3 dex depending on UV luminosity. We find close agreement between the model and observationally derived SFR functions. We use our calculated luminosities to investigate the LF below current detection limits, and the ionizing photon budget for reionization. We predict that the slope of the UV LF remains steep below current detection limits and becomes flat at MUV ≳ -14. We find that 48 (17) per cent of the total UV flux at z ˜ 6 (10) has been detected above an observational limit of MUV ˜ -17, and that galaxies fainter than MUV ˜ -17 are the main source of ionizing photons for reionization. We investigate the luminosity-stellar mass relation, and find a correlation for galaxies with MUV < -14 that has the form M_{ast } ∝ 10^{-0.47M_UV}, in good agreement with observations, but which flattens for fainter galaxies. We determine the luminosity-halo mass relation to be M_vir ∝ 10^{-0.35M_UV}, finding that galaxies with MUV = -20 reside in host dark matter haloes of 1011.0±0.1 M⊙ at z ˜ 6, and that this mass decreases towards high redshift.
Limitations of Mass Spectrometry-Based Peptidomic Approaches
NASA Astrophysics Data System (ADS)
Fricker, Lloyd D.
2015-12-01
Mass spectrometry-based peptidomic approaches are powerful techniques to detect and identify the peptide content of biological samples. The present study investigated the limitations of peptidomic approaches using trimethylammonium butyrate isotopic tags to quantify relative peptide levels and Mascot searches to identify peptides. Data were combined from previous studies on human cell lines or mouse tissues. The combined databases contain 2155 unique peptides ranging in mass from 444 to 8765 Da, with the vast majority between 1 and 3 kDa. The amino acid composition of the identified peptides generally reflected the frequency in the Eukaryotic proteome with the exception of Cys, which was not present in any of the identified peptides in the free-SH form but was detected at low frequency as a disulfide with Cys residues, a disulfide with glutathione, or as S-cyanocysteine. To test if the low detection rate of peptides smaller than 500 Da, larger than 3 kDa, or containing Cys was a limitation of the peptidomics procedure, tryptic peptides of known proteins were processed for peptidomics using the same approach used for human cell lines and mouse tissues. The identified tryptic peptides ranged from 516 to 2418 Da, whereas the theoretical digest ranged from 217 to 7559 Da. Peptides with Cys were rarely detected and, if present, the Cys was usually modified S-cyanocysteine. Additionally, peptides with mono- and di-iodo Tyr and His were identified. Taken together, there are limitations of peptidomic techniques, and awareness of these limitations is important to properly use and interpret results.
Orbital Signature Analyzer (OSA): A spacecraft health/safety monitoring and analysis tool
NASA Technical Reports Server (NTRS)
Weaver, Steven; Degeorges, Charles; Bush, Joy; Shendock, Robert; Mandl, Daniel
1993-01-01
Fixed or static limit sensing is employed in control centers to ensure that spacecraft parameters remain within a nominal range. However, many critical parameters, such as power system telemetry, are time-varying and, as such, their 'nominal' range is necessarily time-varying as well. Predicted data, manual limits checking, and widened limit-checking ranges are often employed in an attempt to monitor these parameters without generating excessive limits violations. Generating predicted data and manual limits checking are both resource intensive, while broadening limit ranges for time-varying parameters is clearly inadequate to detect all but catastrophic problems. OSA provides a low-cost solution by using analytically selected data as a reference upon which to base its limits. These limits are always defined relative to the time-varying reference data, rather than as fixed upper and lower limits. In effect, OSA provides individual limits tailored to each value throughout all the data. A side benefit of using relative limits is that they automatically adjust to new reference data. In addition, OSA provides a wealth of analytical by-products in its execution.
An intelligent detection method for high-field asymmetric waveform ion mobility spectrometry.
Li, Yue; Yu, Jianwen; Ruan, Zhiming; Chen, Chilai; Chen, Ran; Wang, Han; Liu, Youjiang; Wang, Xiaozhi; Li, Shan
2018-04-01
In conventional high-field asymmetric waveform ion mobility spectrometry signal acquisition, multi-cycle detection is time consuming and limits somewhat the technique's scope for rapid field detection. In this study, a novel intelligent detection approach has been developed in which a threshold was set on the relative error of α parameters, which can eliminate unnecessary time spent on detection. In this method, two full-spectrum scans were made in advance to obtain the estimated compensation voltage at different dispersion voltages, resulting in a narrowing down of the whole scan area to just the peak area(s) of interest. This intelligent detection method can reduce the detection time to 5-10% of that of the original full-spectrum scan in a single cycle.
Thermodynamic framework to assess low abundance DNA mutation detection by hybridization
Willems, Hanny; Jacobs, An; Hadiwikarta, Wahyu Wijaya; Venken, Tom; Valkenborg, Dirk; Van Roy, Nadine; Vandesompele, Jo; Hooyberghs, Jef
2017-01-01
The knowledge of genomic DNA variations in patient samples has a high and increasing value for human diagnostics in its broadest sense. Although many methods and sensors to detect or quantify these variations are available or under development, the number of underlying physico-chemical detection principles is limited. One of these principles is the hybridization of sample target DNA versus nucleic acid probes. We introduce a novel thermodynamics approach and develop a framework to exploit the specific detection capabilities of nucleic acid hybridization, using generic principles applicable to any platform. As a case study, we detect point mutations in the KRAS oncogene on a microarray platform. For the given platform and hybridization conditions, we demonstrate the multiplex detection capability of hybridization and assess the detection limit using thermodynamic considerations; DNA containing point mutations in a background of wild type sequences can be identified down to at least 1% relative concentration. In order to show the clinical relevance, the detection capabilities are confirmed on challenging formalin-fixed paraffin-embedded clinical tumor samples. This enzyme-free detection framework contains the accuracy and efficiency to screen for hundreds of mutations in a single run with many potential applications in molecular diagnostics and the field of personalised medicine. PMID:28542229
Detection of particle flow patterns in tumor by directional spatial frequency analysis
NASA Astrophysics Data System (ADS)
Russell, Stewart; Camara, Hawa; Shi, Lingyan; Hoopes, P. Jack; Kaufman, Peter; Pogue, Brian; Alfano, Robert
2016-04-01
Drug delivery to tumors is well known to be chaotic and limited, partly from dysfunctional vasculature, but also because of microscopic regional variations in composition. Modeling the of transport of nanoparticle therapeutics, therefore must include not only a description of vascular permeability, but also of the movement of the drug as suspended in tumor interstitial fluid (TIF) once it leaves the blood vessel. Understanding of this area is limited because we currently lack the tools and analytical methods to characterize it. We have previously shown that directional anisotropy of drug delivery can be detected using Directional Fourier Spatial Frequency (DFSF) Analysis. Here we extend this approach to generate flow line maps of nanoparticle transport in TIF relative to tumor ultrastructure, and show that features of tumor spatial heterogeneity can be identified that are directly related to local flow isometries. The identification of these regions of limited flow may be used as a metric for determining response to therapy, or for the optimization of adjuvant therapies such as radiation pre-treatment, or enzymatic degradation.
Herbicide Orange Site Characterization Study Naval Construction Battalion Center
1987-01-01
U.S. Testing Laboratories for analysis. Over 200 additional analyses were performed for a variety of quality assurance criteria. The resultant data...TABLE 9. NCBC PERFORMANCE AUDIT SAMPLE ANALYSIS SUNMARYa (SERIES 1) TCDD Sppb ) Reported Detection Relative b Sample Number Concentration Limit...limit rather than estimating the variance of the results. The sample results were transformed using the natural logarithm. The Shapiro-Wilk W test
Liquid chromatographic separation of zalcitabine and its stereoisomers.
Scypinski, S; Ross, A J
1994-10-01
A liquid chromatographic method capable of separating and quantitating the stereoisomers of zalcitabine has been developed and validated. The separation was achieved with an Astec Cyclobond I--RSP column and a mobile phase of 0.25% triethylamine in water adjusted to a pH of 6.5 with glacial acetic acid. All enantiomers were found to exhibit a linear response in the range of 0.1-10% in the presence of 100% zalcitabine. Precision of analysis was found to be less than 1.5% at a level of 1% relative to zalcitabine. The limit of detection for two of the three enantiomeric impurities was determined to be 0.05% relative to zalcitabine. The detection limit for the third was found to be 0.1%. This method was successfully applied to the analysis of reference standards and several production scale batches. All of these materials were found to be stereochemically pure to a level of 99.8% or better.
A Validation of Remotely Sensed Fires Using Ground Reports
NASA Astrophysics Data System (ADS)
Ruminski, M. G.; Hanna, J.
2007-12-01
A satellite based analysis of fire detections and smoke emissions for North America is produced daily by NOAA/NESDIS. The analysis incorporates data from the MODIS (Terra and Aqua) and AVHRR (NOAA-15/16/17) polar orbiting instruments and GOES East and West geostationary spacecraft with nominal resolutions of 1km and 4 km for the polar and geostationary platforms respectively. Automated fire detection algorithms are utilized for each of the sensors. Analysts perform a quality control procedure on the automated detects by deleting points that are deemed to be false detects and adding points that the algorithms did not detect. A limited validation of the final quality controlled product was performed using high resolution (30 m) ASTER data in the summer of 2006. Some limitations in using ASTER data are that each scene is only approximately 3600 square km, the data acquisition time is relatively constant at around 1030 local solar time and ASTER is another remotely sensed data source. This study expands on the ASTER validation by using ground reports of prescribed burns in Montana and Idaho for 2003 and 2004. It provides a non-remote sensing data source for comparison. While the ground data do not have the limitations noted above for ASTER there are still limitations. For example, even though the data set covers a much larger area (nearly 600,000 square km) than even several ASTER scenes, it still represents a single region of North America. And while the ground data are not restricted to a narrow time window, only a date is provided with each report, limiting the ability to make detailed conclusions about the detection capabilities for specific instruments, especially for the less temporally frequent polar orbiting MODIS and AVHRR sensors. Comparison of the ground data reports to the quality controlled fire analysis revealed a low rate of overall detection of 23.00% over the entire study period. Examination of the daily detection rates revealed a wide variation, with some days resulting in as little as 5 detects out of 107 reported fires while other days had as many as 84 detections out of 160 reports. Inspection of the satellite imagery from the days with very low detection rates revealed that extensive cloud cover prohibited satellite fire detection. On days when cloud cover was at a minimum, detection rates were substantially higher. An estimate of the fire size was also provided with the ground data set. Statistics will be presented for days with minimal cloud cover which will indicate the probability of detection for fires of various sizes.
Detection of movement intention from single-trial movement-related cortical potentials
NASA Astrophysics Data System (ADS)
Niazi, Imran Khan; Jiang, Ning; Tiberghien, Olivier; Feldbæk Nielsen, Jørgen; Dremstrup, Kim; Farina, Dario
2011-10-01
Detection of movement intention from neural signals combined with assistive technologies may be used for effective neurofeedback in rehabilitation. In order to promote plasticity, a causal relation between intended actions (detected for example from the EEG) and the corresponding feedback should be established. This requires reliable detection of motor intentions. In this study, we propose a method to detect movements from EEG with limited latency. In a self-paced asynchronous BCI paradigm, the initial negative phase of the movement-related cortical potentials (MRCPs), extracted from multi-channel scalp EEG was used to detect motor execution/imagination in healthy subjects and stroke patients. For MRCP detection, it was demonstrated that a new optimized spatial filtering technique led to better accuracy than a large Laplacian spatial filter and common spatial pattern. With the optimized spatial filter, the true positive rate (TPR) for detection of movement execution in healthy subjects (n = 15) was 82.5 ± 7.8%, with latency of -66.6 ± 121 ms. Although TPR decreased with motor imagination in healthy subject (n = 10, 64.5 ± 5.33%) and with attempted movements in stroke patients (n = 5, 55.01 ± 12.01%), the results are promising for the application of this approach to provide patient-driven real-time neurofeedback.
Fast obstacle detection based on multi-sensor information fusion
NASA Astrophysics Data System (ADS)
Lu, Linli; Ying, Jie
2014-11-01
Obstacle detection is one of the key problems in areas such as driving assistance and mobile robot navigation, which cannot meet the actual demand by using a single sensor. A method is proposed to realize the real-time access to the information of the obstacle in front of the robot and calculating the real size of the obstacle area according to the mechanism of the triangle similarity in process of imaging by fusing datum from a camera and an ultrasonic sensor, which supports the local path planning decision. In the part of image analyzing, the obstacle detection region is limited according to complementary principle. We chose ultrasonic detection range as the region for obstacle detection when the obstacle is relatively near the robot, and the travelling road area in front of the robot is the region for a relatively-long-distance detection. The obstacle detection algorithm is adapted from a powerful background subtraction algorithm ViBe: Visual Background Extractor. We extracted an obstacle free region in front of the robot in the initial frame, this region provided a reference sample set of gray scale value for obstacle detection. Experiments of detecting different obstacles at different distances respectively, give the accuracy of the obstacle detection and the error percentage between the calculated size and the actual size of the detected obstacle. Experimental results show that the detection scheme can effectively detect obstacles in front of the robot and provide size of the obstacle with relatively high dimensional accuracy.
Survey on Ranging Sensors and Cooperative Techniques for Relative Positioning of Vehicles
de Ponte Müller, Fabian
2017-01-01
Future driver assistance systems will rely on accurate, reliable and continuous knowledge on the position of other road participants, including pedestrians, bicycles and other vehicles. The usual approach to tackle this requirement is to use on-board ranging sensors inside the vehicle. Radar, laser scanners or vision-based systems are able to detect objects in their line-of-sight. In contrast to these non-cooperative ranging sensors, cooperative approaches follow a strategy in which other road participants actively support the estimation of the relative position. The limitations of on-board ranging sensors regarding their detection range and angle of view and the facility of blockage can be approached by using a cooperative approach based on vehicle-to-vehicle communication. The fusion of both, cooperative and non-cooperative strategies, seems to offer the largest benefits regarding accuracy, availability and robustness. This survey offers the reader a comprehensive review on different techniques for vehicle relative positioning. The reader will learn the important performance indicators when it comes to relative positioning of vehicles, the different technologies that are both commercially available and currently under research, their expected performance and their intrinsic limitations. Moreover, the latest research in the area of vision-based systems for vehicle detection, as well as the latest work on GNSS-based vehicle localization and vehicular communication for relative positioning of vehicles, are reviewed. The survey also includes the research work on the fusion of cooperative and non-cooperative approaches to increase the reliability and the availability. PMID:28146129
NASA Astrophysics Data System (ADS)
Wang, Z.; Quek, S. T.
2015-07-01
Performance of any structural health monitoring algorithm relies heavily on good measurement data. Hence, it is necessary to employ robust faulty sensor detection approaches to isolate sensors with abnormal behaviour and exclude the highly inaccurate data in the subsequent analysis. The independent component analysis (ICA) is implemented to detect the presence of sensors showing abnormal behaviour. A normalized form of the relative partial decomposition contribution (rPDC) is proposed to identify the faulty sensor. Both additive and multiplicative types of faults are addressed and the detectability illustrated using a numerical and an experimental example. An empirical method to establish control limits for detecting and identifying the type of fault is also proposed. The results show the effectiveness of the ICA and rPDC method in identifying faulty sensor assuming that baseline cases are available.
Bautista, Leonelo E; Herrera, Víctor M
2018-05-24
We evaluated whether outbreaks of Zika virus (ZIKV) infection, newborn microcephaly, and Guillain-Barré syndrome (GBS) in Latin America may be detected through current surveillance systems, and how cases detected through surveillance may increase health care burden. We estimated the sensitivity and specificity of surveillance case definitions using published data. We assumed a 10% ZIKV infection risk during a non-outbreak period and hypothetical increases in risk during an outbreak period. We used sensitivity and specificity estimates to correct for non-differential misclassification, and calculated a misclassification-corrected relative risk comparing both periods. To identify the smallest hypothetical increase in risk resulting in a detectable outbreak we compared the misclassification-corrected relative risk to the relative risk corresponding to the upper limit of the endemic channel (mean + 2 SD). We also estimated the proportion of false positive cases detected during the outbreak. We followed the same approach for microcephaly and GBS, but assumed the risk of ZIKV infection doubled during the outbreak, and ZIKV infection increased the risk of both diseases. ZIKV infection outbreaks were not detectable through non-serological surveillance. Outbreaks were detectable through serologic surveillance if infection risk increased by at least 10%, but more than 50% of all cases were false positive. Outbreaks of severe microcephaly were detected if ZIKV infection increased prevalence of this condition by at least 24.0 times. When ZIKV infection did not increase the prevalence of severe microcephaly, 34.7 to 82.5% of all cases were false positive, depending on diagnostic accuracy. GBS outbreaks were detected if ZIKV infection increased the GBS risk by at least seven times. For optimal GBS diagnosis accuracy, the proportion of false positive cases ranged from 29 to 54% and from 45 to 56% depending on the incidence of GBS mimics. Current surveillance systems have a low probability of detecting outbreaks of ZIKV infection, severe microcephaly, and GBS, and could result in significant increases in health care burden, due to the detection of large numbers of false positive cases. In view of these limitations, Latin American countries should consider alternative options for surveillance.
Code of Federal Regulations, 2010 CFR
2010-07-01
... calculated method detection limit. To insure that the estimate of the method detection limit is a good...) where: MDL = the method detection limit t(n-1,1- α=.99) = the students' t value appropriate for a 99... Determination of the Method Detection Limit-Revision 1.11 B Appendix B to Part 136 Protection of Environment...
Material limitations on the detection limit in refractometry.
Skafte-Pedersen, Peder; Nunes, Pedro S; Xiao, Sanshui; Mortensen, Niels Asger
2009-01-01
We discuss the detection limit for refractometric sensors relying on high-Q optical cavities and show that the ultimate classical detection limit is given by min {Δn} ≳ η, with n + iη being the complex refractive index of the material under refractometric investigation. Taking finite Q factors and filling fractions into account, the detection limit declines. As an example we discuss the fundamental limits of silicon-based high-Q resonators, such as photonic crystal resonators, for sensing in a bio-liquid environment, such as a water buffer. In the transparency window (λ ≳ 1100 nm) of silicon the detection limit becomes almost independent on the filling fraction, while in the visible, the detection limit depends strongly on the filling fraction because the silicon absorbs strongly.
Molecularly Imprinted Polymer Nanoparticles for Formaldehyde Sensing with QCM.
Hussain, Munawar; Kotova, Kira; Lieberzeit, Peter A
2016-06-30
Herein, we report on molecularly imprinted polymers (MIPs) for detecting formaldehyde vapors in air streams. A copolymer thin film consisting of styrene, methacrylic acid, and ethylene glycol dimethacrylate on quartz crystal microbalance (QCM) yielded a detection limit of 500 ppb formaldehyde in dry air. Surprisingly, these MIPs showed specific behavior when tested against a range of volatile organic compounds (VOCs), such as acetaldehyde, methanol, formic acid, and dichloromethane. Despite thus being a suitable receptor in principle, the MIPs were not useful for measurements at 50% humidity due to surface saturation by water. This was overcome by introducing primary amino groups into the polymer via allyl amine and by changing the coating morphology from thin film to nanoparticles. This led to the same limit of detection (500 ppb) and selectivity as before, but at the real-life conditions of 50% relative humidity.
NASA Astrophysics Data System (ADS)
Ney, Michael; Abdulhalim, Ibrahim
2015-12-01
Mueller matrix imaging sensitivity, to delicate water content changes in tissue associated with early stages of skin cancer, is demonstrated by numerical modeling to be enhanced by localized surface plasmon resonance (LSPR) effects at the terahertz (THz) range when InN nanoparticles (NPs) coated with Parylene-C are introduced into the skin. A skin tissue model tailored for THz wavelengths is established for a Monte Carlo simulation of polarized light propagation and scattering, and a comparative study based on simulated Mueller matrices is presented considering different NPs' parameters and insertion into the skin methods. The insertion of NPs presenting LSPR in the THz is demonstrated to enable the application of polarization-based sample characterization techniques adopted from the scattering dominated visible wavelengths domain for the, otherwise, relatively low scattering THz domain, where such approach is irrelevant without the NPs. Through these Mueller polarimetry techniques, the detection of water content variations in the tissue is made possible and with high sensitivity. This study yields a limit of detection down to 0.0018% for relative changes in the water content based on linear degree of polarization-an improvement of an order of magnitude relative to the limit of detection without NPs calculated in a previous ellipsometric study.
Ney, Michael; Abdulhalim, Ibrahim
2015-01-01
Mueller matrix imaging sensitivity, to delicate water content changes in tissue associated with early stages of skin cancer, is demonstrated by numerical modeling to be enhanced by localized surface plasmon resonance (LSPR) effects at the terahertz (THz) range when InN nanoparticles (NPs) coated with Parylene-C are introduced into the skin. A skin tissue model tailored for THz wavelengths is established for a Monte Carlo simulation of polarized light propagation and scattering, and a comparative study based on simulated Mueller matrices is presented considering different NPs’ parameters and insertion into the skin methods. The insertion of NPs presenting LSPR in the THz is demonstrated to enable the application of polarization-based sample characterization techniques adopted from the scattering dominated visible wavelengths domain for the, otherwise, relatively low scattering THz domain, where such approach is irrelevant without the NPs. Through these Mueller polarimetry techniques, the detection of water content variations in the tissue is made possible and with high sensitivity. This study yields a limit of detection down to 0.0018% for relative changes in the water content based on linear degree of polarization--an improvement of an order of magnitude relative to the limit of detection without NPs calculated in a previous ellipsometric study.
Xu, Bruce S; Lollar, Barbara Sherwood; Passeport, Elodie; Sleep, Brent E
2016-04-15
Aqueous phase diffusion-related isotope fractionation (DRIF) for carbon isotopes was investigated for common groundwater contaminants in systems in which transport could be considered to be one-dimensional. This paper focuses not only on theoretically observable DRIF effects in these systems but introduces the important concept of constraining "observable" DRIF based on constraints imposed by the scale of measurements in the field, and on standard limits of detection and analytical uncertainty. Specifically, constraints for the detection of DRIF were determined in terms of the diffusive fractionation factor, the initial concentration of contaminants (C0), the method detection limit (MDL) for isotopic analysis, the transport time, and the ratio of the longitudinal mechanical dispersion coefficient to effective molecular diffusion coefficient (Dmech/Deff). The results allow a determination of field conditions under which DRIF may be an important factor in the use of stable carbon isotope measurements for evaluation of contaminant transport and transformation for one-dimensional advective-dispersive transport. This study demonstrates that for diffusion-dominated transport of BTEX, MTBE, and chlorinated ethenes, DRIF effects are only detectable for the smaller molar mass compounds such as vinyl chloride for C0/MDL ratios of 50 or higher. Much larger C0/MDL ratios, corresponding to higher source concentrations or lower detection limits, are necessary for DRIF to be detectable for the higher molar mass compounds. The distance over which DRIF is observable for VC is small (less than 1m) for a relatively young diffusive plume (<100years), and DRIF will not easily be detected by using the conventional sampling approach with "typical" well spacing (at least several meters). With contaminant transport by advection, mechanical dispersion, and molecular diffusion this study suggests that in field sites where Dmech/Deff is larger than 10, DRIF effects will likely not be observable for common groundwater contaminants. Importantly, under most field conditions, Dmech/Deff≥10 is usually satisfied in the longitudinal direction, suggesting that DRIF is not likely to be observable in most groundwater systems in which contaminant transport is predominantly one-dimensional. Given the importance in the MDL it is recommended that MDL should always be explicitly reported in both modeling and field studies. Copyright © 2016. Published by Elsevier B.V.
Interstellar molecules. [detection from Copernicus satellite UV absorption data
NASA Technical Reports Server (NTRS)
Drake, J. F.
1974-01-01
The Princeton equipment on the Copernicus satellite provides the means to study interstellar molecules between the satellite and stars from 20 to 1000 pc distant. The study is limited to stars relatively unobscured by dust which strongly attenuates the ultraviolet continuum flux used as a source to probe the interstellar medium. Of the 14 molecules searched for only three have been detected including molecular hydrogen, molecular HD, and carbon monoxide.
NASA Astrophysics Data System (ADS)
Sun, Di; Guo, Chao; Zhang, Ziyang; Han, Tongshuai; Liu, Jin
2016-10-01
The blood hemoglobin concentration's (BHC) measurement using Photoplethysmography (PPG), which gets blood absorption to near infrared light from the instantaneous pulse of transmitted light intensity, has not been applied to the clinical use due to the non-enough precision. The main challenge might be caused of the non-enough stable pulse signal when it's very weak and it often varies in different human bodies or in the same body with different physiological states. We evaluated the detection limit of BHC using PPG as the measurement precision level, which can be considered as a best precision result because we got the relative stable subject's pulse signals recorded by using a spectrometer with high signal-to-noise ratio (SNR) level, which is about 30000:1 in short term. Moreover, we optimized the used pathlength using the theory based on optimum pathlength to get a better sensitivity to the absorption variation in blood. The best detection limit was evaluated as about 1 g/L for BHC, and the best SNR of pulse for in vivo measurement was about 2000:1 at 1130 and 1250 nm. Meanwhile, we conclude that the SNR of pulse signal should be better than 400:1 when the required detection limit is set to 5 g/L. Our result would be a good reference to the BHC measurement to get a desired BHC measurement precision of real application.
NASA Astrophysics Data System (ADS)
Yahav, Gilad; Fixler, Dror; Gershanov, Sivan; Goldenberg-Cohen, Nitza
2016-03-01
Brain tumors are the second leading cause of cancer-related deaths in children, after leukemia. Patients with cancer in the central nervous system have a very low recovery rate. Today known imaging and cytology techniques are not always sensitive enough for an early detection of both tumor and its metastatic spread, moreover the detection is generally limited, reviewer dependent and takes a relatively long time. Medulloblastoma (MB) is the most common malignant brain tumor in children. The aim of our talk is to present the frequency domain fluorescence lifetime imaging microscopy system as a possible method for an early detection of MB and its metastatic spread in the cerebrospinal fluids within the pediatric population.
NASA Astrophysics Data System (ADS)
Marguí, E.; Floor, G. H.; Hidalgo, M.; Kregsamer, P.; Roman-Ross, G.; Streli, C.; Queralt, I.
2010-12-01
A significant amount of environmental studies related to selenium determination in different environmental compartments have been published in the last years due to the narrow range between the Se nutritious requirement as essential element and toxic effects upon exposure. However, the direct analysis of complex liquid samples like natural waters and extraction solutions presents significant problems related to the low Se concentrations and the complicated matrix of this type of samples. The goal of the present research was to study the applicability of direct TXRF analysis of different type of solutions commonly used in environmental and geochemical studies, confirm the absence or presence of matrix effects and evaluate the limits of detection and accuracy for Se determination in the different matrices. Good analytical results were obtained for the direct analysis of ground and rain water samples with limits of detection for Se two orders of magnitude lower than the permissible Se concentration in drinking waters ([Se] = 10 μg/L) according to the WHO. However, the Se detection limits for more complex liquid samples such as thermal waters and extraction solutions were in the μg/L range due to the presence of high contents of other elements present in the matrix (i.e., Br, Fe, Zn) or the high background of the TXRF spectrum that hamper the Se determination at trace levels. Our results give insight into the possibilities and drawbacks of direct TXRF analysis and to a certain extent the potential applications in the environmental and geochemical field.
Hisatomi, Toshio; Tachibana, Takashi; Notomi, Shoji; Koyanagi, Yoshito; Murakami, Yusuke; Takeda, Atsunobu; Ikeda, Yasuhiro; Yoshida, Shigeo; Enaida, Hiroshi; Murata, Toshinori; Sakamoto, Taiji; Sonoda, Koh-Hei; Ishibashi, Tatsuro
2018-03-01
To examine retinal changes after vitrectomy with internal limiting membrane (ILM) peeling, we used 3-dimensional optical coherence tomography (3D-OCT) in rhegmatogenous retinal detachment cases. The 68 eyes from 67 patients with rhegmatogenous retinal detachment were studied, including 35 detached macula cases (51%) and 33 attached macula cases. Internal limiting membrane peeling was performed with fine forceps after brilliant blue G staining. The 3D-OCT images were obtained with volume-rendering technologies from cross-sectional OCT images. The 3D-OCT detected 45 eyes (66%) with ILM peeling-dependent retinal changes, including dissociated optic nerve fiber layer appearance, dimple sign, temporal macular thinning, ILM peeling area thinning, or forceps-related retinal thinning. The ILM peeled area was detectable in only 9 eyes with 3D-OCT, whereas it was undetectable in other 59 eyes. The dissociated optic nerve fiber layer appearance was detected in 8 of the total cases (12%), and dimple signs were observed in 14 cases (21%). Forceps-related thinning was also noted in eight cases (24%) of attached macula cases and in four cases (11%) of detached macula cases. No postoperative macular pucker was noted in the observational period. The 3D-OCT clearly revealed spatial and time-dependent retinal changes after ILM peeling. The changes occurred in 2 months and remained thereafter.
AW UMa observed with MOST satellite
NASA Astrophysics Data System (ADS)
Rucinski, S. M.; Matthews, J. M.; Cameron, C.; Guenther, D. B.; Kuschnig, R.; Moffat, A. F. J.; Rowe, J. F.; Sasselov, D.; Weiss, W. W.
2013-11-01
MOST observations were obtained to search for photometric non-radial oscillations; none was detected with an upper limit of 0.0001 in relative amplitude. A single, precise moment of the primary eclipse confirms the progressive shortening of the orbital period.
Kim, Dong Wook; Kilgore, Paul Evan; Kim, Eun Jin; Kim, Soon Ae; Anh, Dang Duc; Seki, Mitsuko
2011-10-01
Haemophilus influenzae type b (Hib) is one of the leading causes of meningitis in developing countries. To establish and evaluate a novel loop-mediated isothermal amplification (LAMP) assay for Hib, we designed a LAMP primer set targeting the Hib-specific capsulation locus. LAMP detected 10 copies of purified DNA in a 60-min reaction. This indicated that the detection limit of LAMP was >100-fold lower than the detection limits of both a PCR for the detection of bexA and a nested PCR for Hib (Hib PCR). No H. influenzae, other than Hib or control bacteria, was detected. Linear determination ranged from 10 to 1,000,000 microorganisms per reaction mixture using real-time turbidimetry. We evaluated the Hib LAMP assay using a set of 52 randomly selected cerebrospinal fluid (CSF) specimens obtained from children with suspected meningitis. For comparison, the CSF specimens were tested using a conventional Hib PCR assay. Hib was detected in 30 samples using LAMP and in 22 samples using the Hib PCR assay. The Hib PCR showed a clinical sensitivity of 73.3% and a clinical specificity of 100% relative to the Hib LAMP assay. These results suggest that further development and evaluation of the Hib LAMP will enhance the global diagnostic capability for Hib detection.
Material Limitations on the Detection Limit in Refractometry
Skafte-Pedersen, Peder; Nunes, Pedro S.; Xiao, Sanshui; Mortensen, Niels Asger
2009-01-01
We discuss the detection limit for refractometric sensors relying on high-Q optical cavities and show that the ultimate classical detection limit is given by min {Δn} ≳ η, with n + iη being the complex refractive index of the material under refractometric investigation. Taking finite Q factors and filling fractions into account, the detection limit declines. As an example we discuss the fundamental limits of silicon-based high-Q resonators, such as photonic crystal resonators, for sensing in a bio-liquid environment, such as a water buffer. In the transparency window (λ ≳ 1100 nm) of silicon the detection limit becomes almost independent on the filling fraction, while in the visible, the detection limit depends strongly on the filling fraction because the silicon absorbs strongly. PMID:22291513
Tripp, K M; Dubois, M; Delahaut, P; Verstegen, J P
2009-08-01
Florida manatees (Trichechus manatus latirostris) have relatively low peripheral concentrations of progesterone (P4). The objective of this study was to determine if these relatively low P4 concentrations are associated with a high ratio of progestin metabolites and to document metabolite concentrations from individual blood samples obtained from manatees during diestrus or pregnancy. Metabolites known to exist in elephants-terrestrial manatee relatives-were targeted. These included 5alpha-reduced progestins (5alpha-pregnane-3,20-dione [5alpha-DHP] and 3alpha-hydroxy-5alpha-pregnan-20-one [5alpha-P3-OH]) and 17alpha-hydroxyprogesterone (17alpha-OHP), which occurs in Asian elephants. An additional, inactive metabolite, 20alpha-hydroxyprogesterone (20alpha-OHP), indicative of P4 overproduction, was also targeted. Progesterone itself was the predominant progestin detected in pregnant and nonpregnant manatee plasma (n = 10) using gas chromatography-mass spectrometry with tandem quadrupole detectors (GC/MS/MS). Progesterone concentrations in pregnant females varied from early (moderate to high) through mid and late (low) pregnancy. Progesterone concentrations ranged from low to high in nonpregnant, nonlactating females. The most commonly detected metabolite was 5alpha-P3-OH (n = 7), which occurred in pregnant (lower limit of detection [LLOD] to high) and nonpregnant (trace to high) females. The 5alpha-DHP metabolite was also detected in pregnant (LLOD to moderate) and nonpregnant (low) females. The 17alpha-OHP metabolite was not detected in any tested female. The 20alpha-OHP metabolite was detected in one nonpregnant, nonlactating, captive female (LLOD). Metabolites were most prevalent during early pregnancy, concurrent with maximum P4 concentrations. Based on their concentrations in peripheral circulation, we inferred that these metabolites may have, opposite to elephants, a limited physiologic role during luteal, pregnant, and nonpregnant phases in the manatee.
A practical and highly sensitive C3N4-TYR fluorescent probe for convenient detection of dopamine
NASA Astrophysics Data System (ADS)
Li, Hao; Yang, Manman; Liu, Juan; Zhang, Yalin; Yang, Yanmei; Huang, Hui; Liu, Yang; Kang, Zhenhui
2015-07-01
The C3N4-tyrosinase (TYR) hybrid is a highly accurate, sensitive and simple fluorescent probe for the detection of dopamine (DOPA). Under optimized conditions, the relative fluorescence intensity of C3N4-TYR is proportional to the DOPA concentration in the range from 1 × 10-3 to 3 × 10-8 mol L-1 with a correlation coefficient of 0.995. In the present system, the detection limit achieved is as low as 3 × 10-8 mol L-1. Notably, these quantitative detection results for clinical samples are comparable to those of high performance liquid chromatography. Moreover, the enzyme-encapsulated C3N4 sensing arrays on both glass slide and test paper were evaluated, which revealed sensitive detection and excellent stability. The results reported here provide a new approach for the design of a multifunctional nanosensor for the detection of bio-molecules.The C3N4-tyrosinase (TYR) hybrid is a highly accurate, sensitive and simple fluorescent probe for the detection of dopamine (DOPA). Under optimized conditions, the relative fluorescence intensity of C3N4-TYR is proportional to the DOPA concentration in the range from 1 × 10-3 to 3 × 10-8 mol L-1 with a correlation coefficient of 0.995. In the present system, the detection limit achieved is as low as 3 × 10-8 mol L-1. Notably, these quantitative detection results for clinical samples are comparable to those of high performance liquid chromatography. Moreover, the enzyme-encapsulated C3N4 sensing arrays on both glass slide and test paper were evaluated, which revealed sensitive detection and excellent stability. The results reported here provide a new approach for the design of a multifunctional nanosensor for the detection of bio-molecules. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03316k
Modern Directions for Potentiometric Sensors
Bakker, Eric; Chumbimuni-Torres, Karin
2009-01-01
This paper gives an overview of the newest developments of polymeric membrane ion-selective electrodes. A short essence of the underlying theory is given, emphasizing how the electromotive force may be used to assess binding constants of the ionophore, and how the selectivity and detection limit are related to the underlying membrane processes. The recent developments in lowering the detection limits of ISEs are described, including recent approaches of developing all solid state ISEs, and breakthroughs in detecting ultra-small quantities of ions at low concentrations. These developments have paved the way to use potentiometric sensors as in ultra-sensitive affinity bioanalysis in conjunction with nanoparticle labels. Recent results establish that potentiometry compares favorably to electrochemical stripping analysis. Other new developments with ion-selective electrodes are also described, including the concept of backside calibration potentiometry, controlled current coulometry, pulsed chronopotentiometry, and localized flash titration with ion-selective membranes to design sensors for the direct detection of total acidity without net sample perturbation. These developments have further opened the field for exciting new possibilities and applications. PMID:19890473
Dettmer, K; Hanna, D; Whetstone, P; Hansen, R; Hammock, B D
2007-08-01
Autism is a complex neurodevelopmental disorder with unknown etiology. One hypothesis regarding etiology in autism is the "opioid peptide excess" theory that postulates that excessive amounts of exogenous opioid-like peptides derived from dietary proteins are detectable in urine and that these compounds may be pathophysiologically important in autism. A selective LC-MS/MS method was developed to analyze gliadinomorphin, beta-casomorphin, deltorphin 1, and deltorphin 2 in urine. The method is based on on-line SPE extraction of the neuropeptides from urine, column switching, and subsequent HPLC analysis. A limit of detection of 0.25 ng/mL was achieved for all analytes. Analyte recovery rates from urine ranged between 78% and 94%, with relative standard deviations of 0.2-6.8%. The method was used to screen 69 urine samples from children with and without autism spectrum disorders for the occurrence of neuropeptides. The target neuropeptides were not detected above the detection limit in either sample set.
Real-time detection of hazardous materials in air
NASA Astrophysics Data System (ADS)
Schechter, Israel; Schroeder, Hartmut; Kompa, Karl L.
1994-03-01
A new detection system has been developed for real-time analysis of organic compounds in ambient air. It is based on multiphoton ionization by an unfocused laser beam in a single parallel-plate device. Thus, the ionization volume can be relatively large. The amount of laser created ions is determined quantitatively from the induced total voltage drop between the biased plates (Q equals (Delta) V(DOT)C). Mass information is obtained from computer analysis of the time-dependent signal. When a KrF laser (5 ev) is used, most of the organic compounds can be ionized in a two-photon process, but none of the standard components of atmospheric air are ionized by this process. Therefore, this instrument may be developed as a `sniffer' for organic materials. The method has been applied for benzene analysis in air. The detection limit is about 10 ppb. With a simple preconcentration technique the detection limit can be decreased to the sub-ppb range. Simple binary mixtures are also resolved.
Advances in SAW gas sensors based on the condensate-adsorption effect.
Liu, Jiuling; Wang, Wen; Li, Shunzhou; Liu, Minghua; He, Shitang
2011-01-01
A surface-acoustic-wave (SAW) gas sensor with a low detection limit and fast response for volatile organic compounds (VOCs) based on the condensate-adsorption effect detection is developed. In this sensor a gas chromatography (GC) column acts as the separator element and a dual-resonator oscillator acts as the detector element. Regarding the surface effective permittivity method, the response mechanism analysis, which relates the condensate-adsorption effect, is performed, leading to the sensor performance prediction prior to fabrication. New designs of SAW resonators, which act as feedback of the oscillator, are devised in order to decrease the insertion loss and to achieve single-mode control, resulting in superior frequency stability of the oscillator. Based on the new phase modulation approach, excellent short-term frequency stability (±3 Hz/s) is achieved with the SAW oscillator by using the 500 MHz dual-port resonator as feedback element. In a sensor experiment investigating formaldehyde detection, the implemented SAW gas sensor exhibits an excellent threshold detection limit as low as 0.38 pg.
Functionalized gold nanoparticles for the detection of arsenic in water.
Domínguez-González, R; González Varela, L; Bermejo-Barrera, P
2014-01-01
Gold nanoparticles are attractive as sensing materials because of their size and shape are related with their optical properties. The color change produced by the aggregation of functionalized AuNPs allows the detection of arsenic at low levels. A simple, cheap and fast analytical procedure to perform arsenic determination using functionalized gold nanoparticles (AuNPs) and VIS spectrometry as a detection technique is studied. Three different synthesis procedures to obtain the AuNPs and two different functionalization modes were studied. AuNPs functionalized with GSH-DTT-CYs-PDCA were selected as the most adequate. The correlation between the decrease in the absorbance signal and the arsenic concentration was good in the 2-20 µg l(-1)interval. Repeatability, expressed as average of RSD (%), obtained for the different arsenic concentrations studied was 0.6%. The average value of the analytical recovery was 99.7%. The detection and quantifications limits were 2.5 and 8.4 µg l(-1) respectively. These limits are sufficient to detect World Health Organization's guideline value of 10 µg l(-1). © 2013 Published by Elsevier B.V.
Integrated Multi-process Microfluidic Systems for Automating Analysis
Yang, Weichun; Woolley, Adam T.
2010-01-01
Microfluidic technologies have been applied extensively in rapid sample analysis. Some current challenges for standard microfluidic systems are relatively high detection limits, and reduced resolving power and peak capacity compared to conventional approaches. The integration of multiple functions and components onto a single platform can overcome these separation and detection limitations of microfluidics. Multiplexed systems can greatly increase peak capacity in multidimensional separations and can increase sample throughput by analyzing many samples simultaneously. On-chip sample preparation, including labeling, preconcentration, cleanup and amplification, can all serve to speed up and automate processes in integrated microfluidic systems. This paper summarizes advances in integrated multi-process microfluidic systems for automated analysis, their benefits and areas for needed improvement. PMID:20514343
Akbas, Neval; Schryver, Patricia G; Algeciras-Schimnich, Alicia; Baumann, Nikola A; Block, Darci R; Budd, Jeffrey R; Gaston, S J Stephen; Klee, George G
2014-11-01
We evaluated the analytical performance of 24 immunoassays using the Beckman Coulter DxI 800 immunoassay systems at Mayo Clinic, Rochester, MN for trueness, precision, detection limits, linearity, and consistency (across instruments and reagent lots). Clinically oriented performance goals were defined using the following methods: trueness-published desirable accuracy limits, precision-published desirable biologic variation; detection limits - 0.1 percentile of patient test values, linearity - 50% of total error, and consistency-percentage test values crossing key decision points. Local data were collected for precision, linearity, and consistency. Data were provided by Beckman Coulter, Inc. for trueness and detection limits. All evaluated assays except total thyroxine were within the proposed goals for trueness. Most of the assays met the proposed goals for precision (86% of intra-assay results and 75% of inter-assay results). Five assays had more than 15% of the test results below the minimum detection limits. Carcinoembryonic antigen, total thyroxine and free triiodothyronine exceeded the proposed goals of ±6.3%, ±5% and ±5.7% for dilution linearity. All evaluated assays were within the proposed goals for instrument consistency. Lot-to-lot consistency results for cortisol, ferritin and total thyroxine exceeded the proposed goals of 3.3%, 11.4% and 7% at one medical decision level, while vitamin B12 exceeded the proposed goals of 5.2% and 3.8% at two decision levels. The Beckman Coulter DxI 800 immunoassay system meets most of these proposed goals, even though these clinically focused performance goals represent relatively stringent limits. Copyright © 2014 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
Tiwari, Sachchidanand; Gupta, Pramod K; Bagbi, Yana; Sarkar, Tamal; Solanki, Pratima R
2017-03-15
In this paper, we present the result of studies related to the in situ synthesis of amino acid (L-Cysteine) capped lanthanum hydroxide nanoparticles [Cys-La(OH) 3 NPs] towards the fabrication of efficient immunosensor for non-invasive detection of oral cancer. The characterization of Cys-La(OH) 3 NPs was carried out by different techniques including X-ray diffraction, scanning electron microscopy, transmission electron microscopy, fourier transform infrared spectroscopy and electrochemical techniques. These Cys-La(OH) 3 NPs were electrophoretically deposited onto an indium-tin-oxide glass substrate and used for immobilization of anti-cytokeratin fragment-21-1 (anti-Cyfra-21-1) for the electrochemical detection of Cyfra-21-1. This immunosensor shows a broad detection range of 0.001-10.2ngmL -1 , the low detection limit of 0.001ngmL -1 , and high sensitivity of 12.044µA (ng per mL cm -2 ) -1 with a response time of 5min. This immunosensor was found to be more advanced in terms of high sensitivity and low detection limit as compared to previously reported biosensors and commercially available ELISA kit (Kinesis DX). Copyright © 2016 Elsevier B.V. All rights reserved.
Chow, Cheuk-Fai; Ho, Pui-Yu; Gong, Cheng-Bin
2014-09-07
A tetranuclear bimetallic complex, [Ru(II)((t)Bubpy)(CN)4]2-[Fe(III)(H2O)3Cl]2·8H2O (1) has been synthesized and characterized. It was found to be a multifunctional device that can detect, signal amplify, and degrade an organic pollutant, oxalate. Results of the chemosensing studies of 1 toward common anions show that only oxalate selectively induces naked-eye colorimetric and luminometric responses with method detection limits down to 78.7 and 5.5 ppm, respectively from 1. Meanwhile, results of the photo-degradation studies of 1 toward oxalate show that the dissolved organic carbon content of oxalate decreased and reached complete mineralization into CO2 within 6 hours. Complex 1 was also found as the catalyst that amplified the detection signal toward oxalate. Through the photoassisted Fenton reaction by 1, methyl orange, an additional coloring agent, could be degraded so that the visual detection limit of 1 toward oxalate was magnified 50 times from 100 to 2 ppm. The detection, degradation, mineralization and signal amplification were found applicable in real water bodies such as river, pond and underground water with excellent recoveries and relative standard deviation.
NASA Astrophysics Data System (ADS)
McEvoy, Thomas Richard; Wolthusen, Stephen D.
Recent research on intrusion detection in supervisory data acquisition and control (SCADA) and DCS systems has focused on anomaly detection at protocol level based on the well-defined nature of traffic on such networks. Here, we consider attacks which compromise sensors or actuators (including physical manipulation), where intrusion may not be readily apparent as data and computational states can be controlled to give an appearance of normality, and sensor and control systems have limited accuracy. To counter these, we propose to consider indirect relations between sensor readings to detect such attacks through concurrent observations as determined by control laws and constraints.
Nano/Micro and Spectroscopic Approaches to Food Pathogen Detection
NASA Astrophysics Data System (ADS)
Cho, Il-Hoon; Radadia, Adarsh D.; Farrokhzad, Khashayar; Ximenes, Eduardo; Bae, Euiwon; Singh, Atul K.; Oliver, Haley; Ladisch, Michael; Bhunia, Arun; Applegate, Bruce; Mauer, Lisa; Bashir, Rashid; Irudayaraj, Joseph
2014-06-01
Despite continuing research efforts, timely and simple pathogen detection with a high degree of sensitivity and specificity remains an elusive goal. Given the recent explosion of sensor technologies, significant strides have been made in addressing the various nuances of this important global challenge that affects not only the food industry but also human health. In this review, we provide a summary of the various ongoing efforts in pathogen detection and sample preparation in areas related to Fourier transform infrared and Raman spectroscopy, light scattering, phage display, micro/nanodevices, and nanoparticle biosensors. We also discuss the advantages and potential limitations of the detection methods and suggest next steps for further consideration.
NASA Astrophysics Data System (ADS)
Xu, Wen-Zhi; Liu, Wei-Yan; Zhou, Ting-Ting; Yang, Yu-Tao; Li, Wei
2018-03-01
We constructed a novel probe for hydrazine detection based on ICT and PET mechanism. Phthalimide and acetyl ester groups were used as the recognition units. Addition of hydrazine produced a turn-on fluorescence at 525 nm along with the fluorescent color change from dark to yellow. The probe could selectively detect hydrazine over other related interfering species. The detection limit of the probe for hydrazine was calculated to be 0.057 μM which was lower than the EPA standard (0.320 μM). Furthermore, the probe could also be applied for the imaging of hydrazine in living cells.
[Analysis of Arsenic Compounds in Blood and Urine by HPLC-ICP-MS].
Lin, L; Zhang, S J; Xu, W C; Luo, R X; Ma, D; Shen, M
2018-02-01
To establish an analysis method for the detection of 6 arsenic compounds [AsC, AsB, As(Ⅲ), DMA, MMA and As(V)] in blood and urine by high-performance liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS), and apply it to real cases. Triton was used to damage cells, and then EDTA·2Na·2H2O was used to complex arsenic compounds in cells, and sonication and protein deposition by acetonitrile were performed for sample pretreatment. With the mobile phase consisted of ammonium carbonate and ultrapure water, gradient elution was performed for obtaining the arsenic compounds in samples, which were analysed by ICP-MS with Hamilton PRP-X100 column. The limits of detection in blood were 1.66-10 ng/mL, while the lower limits of quantitation in blood ranged from 5 to 30 ng/mL. The limits of detection in urine were 0.5-10 ng/mL, while the lower limits of quantitation in urine were 5-30 ng/mL. The relative standard deviation of inter-day and intra-day precisions was less than 10%. This method had been successfully applied to 3 cases. This study has established an analysis method for detecting 6 common arsenic compounds in blood and urine, which can be used to detect the arsenic compounds in the blood and urine from arsenic poisoning cases as well as the patients under arsenic treatment. Copyright© by the Editorial Department of Journal of Forensic Medicine.
Ji, Yanwei; Ren, Meiling; Li, Yanping; Huang, Zhibing; Shu, Mei; Yang, Hongwei; Xiong, Yonghua; Xu, Yang
2015-09-01
Immunochromatographic test strips (ICTS) are commonly limited to higher concentrations of analytes. This limitation stems from the relatively low sensitivity of conventional gold nanospheres (AuNSs with a diameter of 20 nm) to emit detectable brightness values. The larger multi-branched gold nanoflowers (AuNFs) with a higher optical brightness as well as good colloidal stability exhibit significant improvements over conventional AuNSs for enhanced sensitivity of ICTS. In this study, blue AuNFs with an average diameter of 75±5 nm were synthetized and employed as a signal amplification probe for ultrasensitive and quantitative detection of aflatoxin B1 (AFB1) in rice. A portable optical strip reader was used to record the optical densities of test and control lines of the strip. Under the optimal conditions, the AuNF based ICTS system accurately detected AFB1 linearly and dynamically over the range of 0.5-25 pg/mL with a half maximal inhibitory concentration at 4.17 pg/mL. The inhibitory concentration was achieved 10 times lower than that of the traditional AuNS based ICTS systems (41.25 pg/mL). The limit of detection for AFB1 in rice extract was achieved at 0.32 pg/mL. In summary, AuNFs are a novel probe that exhibited excellent sensitivity in the ICTS system and could be used for ultrasensitive detection of other analytes in food safety monitoring, and even medical diagnostics. Copyright © 2015 Elsevier B.V. All rights reserved.
STATISTICS OF GAMMA-RAY POINT SOURCES BELOW THE FERMI DETECTION LIMIT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malyshev, Dmitry; Hogg, David W., E-mail: dm137@nyu.edu
2011-09-10
An analytic relation between the statistics of photons in pixels and the number counts of multi-photon point sources is used to constrain the distribution of gamma-ray point sources below the Fermi detection limit at energies above 1 GeV and at latitudes below and above 30 deg. The derived source-count distribution is consistent with the distribution found by the Fermi Collaboration based on the first Fermi point-source catalog. In particular, we find that the contribution of resolved and unresolved active galactic nuclei (AGNs) to the total gamma-ray flux is below 20%-25%. In the best-fit model, the AGN-like point-source fraction is 17%more » {+-} 2%. Using the fact that the Galactic emission varies across the sky while the extragalactic diffuse emission is isotropic, we put a lower limit of 51% on Galactic diffuse emission and an upper limit of 32% on the contribution from extragalactic weak sources, such as star-forming galaxies. Possible systematic uncertainties are discussed.« less
Srivastava, Ashutosh K; Trivedi, Purushottam; Srivastava, M K; Lohani, M; Srivastava, Laxman Prasad
2011-05-01
The study was conducted on 20 vegetables including leafy, root, modified stem, and fruity vegetables like bitter gourd, jack fruit, french-bean, onion, colocassia, pointed gourd, capsicum, spinach, potato, fenugreek seeds, carrot, radish, cucumber, beetroot, brinjal, cauliflower, cabbage, tomato, okra, and bottle gourd. Forty-eight pesticides including 13 organochlorines (OCs), 17 organophosphates (OPs), 10 synthetic pyrethriods (SPs), and eight herbicides (H) pesticides were analyzed. A total number of 60 samples, each in triplicates, were analyzed using Quick, Easy, Cheap, Effective, Rugged, and Safe method. The quantification was done by GC-ECD/NPD. The recovery varies from 70.22% to 96.32% with relative standard deviation (RSD) of 15%. However the limit of detection ranged from 0.001-0.009 mg kg(-1)for OCs, SPs, OPs, and H, respectively. Twenty-three pesticides were detected from total 48 analyzed pesticides in the samples with the range of 0.005-12.35 mg kg(-1). The detected pesticides were: Σ-HCH, Dicofol, Σ-Endosulfan, Fenpropathrin, Permethrin-II, β-cyfluthrin-II, Fenvalerate-I, Dichlorvos, Dimethoate, Diazinon, Malathion, Chlorofenvinfos, Anilophos, and Dimethachlor. In some vegetables like radish, cucumber, cauliflower, cabbage, and okra, the detected pesticides (Σ-HCH, Permethrin-II, Dichlorvos, and Chlorofenvinfos) were above maximum residues limit (MRL) (PFA 1954). However, in other vegetables the level of pesticide residues was either below detection limit or MRL.
Razu, Md Enayet; Kim, Jungkyu; Stockton, Amanda M.; Turin, Paul; Butterworth, Anna
2017-01-01
Abstract Enceladus presents an excellent opportunity to detect organic molecules that are relevant for habitability as well as bioorganic molecules that provide evidence for extraterrestrial life because Enceladus' plume is composed of material from the subsurface ocean that has a high habitability potential and significant organic content. A primary challenge is to send instruments to Enceladus that can efficiently sample organic molecules in the plume and analyze for the most relevant molecules with the necessary detection limits. To this end, we present the scientific feasibility and engineering design of the Enceladus Organic Analyzer (EOA) that uses a microfluidic capillary electrophoresis system to provide sensitive detection of a wide range of relevant organic molecules, including amines, amino acids, and carboxylic acids, with ppm plume-detection limits (100 pM limits of detection). Importantly, the design of a capture plate that effectively gathers plume ice particles at encounter velocities from 200 m/s to 5 km/s is described, and the ice particle impact is modeled to demonstrate that material will be efficiently captured without organic decomposition. While the EOA can also operate on a landed mission, the relative technical ease of a fly-by mission to Enceladus, the possibility to nondestructively capture pristine samples from deep within the Enceladus ocean, plus the high sensitivity of the EOA instrument for molecules of bioorganic relevance for life detection argue for the inclusion of EOA on Enceladus missions. Key Words: Lab-on-a-chip—Organic biomarkers—Life detection—Planetary exploration. Astrobiology 17, 902–912. PMID:28915087
NASA Astrophysics Data System (ADS)
Zhang, Ziyang; Sun, Di; Han, Tongshuai; Guo, Chao; Liu, Jin
2016-10-01
In the non-invasive blood components measurement using near infrared spectroscopy, the useful signals caused by the concentration variation in the interested components, such as glucose, hemoglobin, albumin etc., are relative weak. Then the signals may be greatly disturbed by a lot of noises in various ways. We improved the signals by using the optimum path-length for the used wavelength to get a maximum variation of transmitted light intensity when the concentration of a component varies. And after the path-length optimization for every wavelength in 1000-2500 nm, we present the detection limits for the components, including glucose, hemoglobin and albumin, when measuring them in a tissue phantom. The evaluated detection limits could be the best reachable precision level since it assumed the measurement uses a high signal-to-noise ratio (SNR) signal and the optimum path-length. From the results, available wavelengths in 1000-2500 nm for the three component measurements can be screened by comparing their detection limit values with their measurement limit requirements. For other blood components measurement, the evaluation their detection limits could also be designed using the method proposed in this paper. Moreover, we use an equation to estimate the absorbance at the optimum path-length for every wavelength in 1000-2500 nm caused by the three components. It could be an easy way to realize the evaluation because adjusting the sample cell's size to the precise path-length value for every wavelength is not necessary. This equation could also be referred to other blood components measurement using the optimum path-length for every used wavelength.
Preparation of genosensor for detection of specific DNA sequence of the hepatitis B virus
NASA Astrophysics Data System (ADS)
Honorato Castro, Ana C.; França, Erick G.; de Paula, Lucas F.; Soares, Marcia M. C. N.; Goulart, Luiz R.; Madurro, João M.; Brito-Madurro, Ana G.
2014-09-01
An electrochemical genosensor was constructed for detection of specific DNA sequence of the hepatitis B virus, based on graphite electrodes modified with poly(4-aminophenol) and incorporating a specific oligonucleotide probe. The modified electrode containing the probe was evaluated by differential pulse voltammetry, before and after incubation with the complementary oligonucleotide target. Detection was performed by monitoring oxidizable DNA bases (direct detection) or using ethidium bromide as indicator of the hybridization process (indirect detection). The device showed a detection limit for the oligonucleotide target of 2.61 nmol L-1. Indirect detection using ethidium bromide was promising in discriminating mismatches, which is a very desirable attribute for detection of disease-related point mutations. In addition, it was possible to observe differences between hybridized and non-hybridized surfaces by atomic force microscopy.
NASA Astrophysics Data System (ADS)
Trofimov, Vyacheslav A.; Varentsova, Svetlana A.; Trofimov, Vladislav V.; Tikhomirov, Vasily V.
2015-08-01
Principal limitations of the standard THz-TDS method for the detection and identification are demonstrated under real conditions (at long distance of about 3.5 m and at a high relative humidity more than 50%) using neutral substances thick paper bag, paper napkins and chocolate. We show also that the THz-TDS method detects spectral features of dangerous substances even if the THz signals were measured in laboratory conditions (at distance 30-40 cm from the receiver and at a low relative humidity less than 2%); silicon-based semiconductors were used as the samples. However, the integral correlation criteria, based on SDA method, allows us to detect the absence of dangerous substances in the neutral substances. The discussed algorithm shows high probability of the substance identification and a reliability of realization in practice, especially for security applications and non-destructive testing.
Gustavo Ramirez-Paredes, Jose; Harold, Graham; Lopez-Jimena, Benjamin; Adams, Alexandra; Weidmann, Manfred
2018-01-01
Francisella noatunensis subsp. orientalis (Fno) is the causative agent of piscine francisellosis in warm water fish including tilapia. The disease induces chronic granulomatous inflammation with high morbidity and can result in high mortality. Early and accurate detection of Fno is crucial to set appropriate outbreak control measures in tilapia farms. Laboratory detection of Fno mainly depends on bacterial culture and molecular techniques. Recombinase polymerase amplification (RPA) is a novel isothermal technology that has been widely used for the molecular diagnosis of various infectious diseases. In this study, a recombinase polymerase amplification (RPA) assay for rapid detection of Fno was developed and validated. The RPA reaction was performed at a constant temperature of 42°C for 20 min. The RPA assay was performed using a quantitative plasmid standard containing a unique Fno gene sequence. Validation of the assay was performed not only by using DNA from Fno, closely related Francisella species and other common bacterial pathogens in tilapia farms, but also by screening 78 Nile tilapia and 5 water samples. All results were compared with those obtained by previously established real-time qPCR. The developed RPA showed high specificity in detection of Fno with no cross-detection of either the closely related Francisella spp. or the other tested bacteria. The Fno-RPA performance was highly comparable to the published qPCR with detection limits at 15 and 11 DNA molecules detected, respectively. The RPA gave quicker results in approximately 6 min in contrast to the qPCR that needed about 90 min to reach the same detection limit, taking only 2.7–3 min to determine Fno in clinical samples. Moreover, RPA was more tolerant to reaction inhibitors than qPCR when tested with field samples. The fast reaction, simplicity, cost-effectiveness, sensitivity and specificity make the RPA an attractive diagnostic tool that will contribute to controlling the infection through prompt on-site detection of Fno. PMID:29444148
Shahin, Khalid; Gustavo Ramirez-Paredes, Jose; Harold, Graham; Lopez-Jimena, Benjamin; Adams, Alexandra; Weidmann, Manfred
2018-01-01
Francisella noatunensis subsp. orientalis (Fno) is the causative agent of piscine francisellosis in warm water fish including tilapia. The disease induces chronic granulomatous inflammation with high morbidity and can result in high mortality. Early and accurate detection of Fno is crucial to set appropriate outbreak control measures in tilapia farms. Laboratory detection of Fno mainly depends on bacterial culture and molecular techniques. Recombinase polymerase amplification (RPA) is a novel isothermal technology that has been widely used for the molecular diagnosis of various infectious diseases. In this study, a recombinase polymerase amplification (RPA) assay for rapid detection of Fno was developed and validated. The RPA reaction was performed at a constant temperature of 42°C for 20 min. The RPA assay was performed using a quantitative plasmid standard containing a unique Fno gene sequence. Validation of the assay was performed not only by using DNA from Fno, closely related Francisella species and other common bacterial pathogens in tilapia farms, but also by screening 78 Nile tilapia and 5 water samples. All results were compared with those obtained by previously established real-time qPCR. The developed RPA showed high specificity in detection of Fno with no cross-detection of either the closely related Francisella spp. or the other tested bacteria. The Fno-RPA performance was highly comparable to the published qPCR with detection limits at 15 and 11 DNA molecules detected, respectively. The RPA gave quicker results in approximately 6 min in contrast to the qPCR that needed about 90 min to reach the same detection limit, taking only 2.7-3 min to determine Fno in clinical samples. Moreover, RPA was more tolerant to reaction inhibitors than qPCR when tested with field samples. The fast reaction, simplicity, cost-effectiveness, sensitivity and specificity make the RPA an attractive diagnostic tool that will contribute to controlling the infection through prompt on-site detection of Fno.
Determination of sulphite in wines using suppressed ion chromatography.
Yoshikawa, Kenji; Uekusa, Yuki; Sakuragawa, Akio
2015-05-01
Suppressed ion chromatography with the use of a conductivity detector was developed for the determination of sulphite ions in wine samples. When a mixed solution of sodium carbonate, sodium bicarbonate, and acetone was used as the mobile phase, simultaneous determination of eight inorganic anions (i.e., fluoride, chloride, nitrite, nitrate, sulphite, phosphate, sulphate, and thiosulphate) was completed in approximately 25 min. Linearity, reproducibility, and detection limits were determined for the proposed method. In the case of sulphite detection, a linear calibration curve with a good correlation coefficient of 0.9992 was obtained from the peak height of sulphite with a relative standard deviation (n = 6) 1.48%. In addition, the detection limit of sulphite was 0.27 mg/L at a signal-to-noise ratio of 3. Further, the developed method was applied for the determination of sulphite contained in several wine samples. Copyright © 2014 Elsevier Ltd. All rights reserved.
Molecularly Imprinted Polymer Nanoparticles for Formaldehyde Sensing with QCM
Hussain, Munawar; Kotova, Kira; Lieberzeit, Peter A.
2016-01-01
Herein, we report on molecularly imprinted polymers (MIPs) for detecting formaldehyde vapors in air streams. A copolymer thin film consisting of styrene, methacrylic acid, and ethylene glycol dimethacrylate on quartz crystal microbalance (QCM) yielded a detection limit of 500 ppb formaldehyde in dry air. Surprisingly, these MIPs showed specific behavior when tested against a range of volatile organic compounds (VOCs), such as acetaldehyde, methanol, formic acid, and dichloromethane. Despite thus being a suitable receptor in principle, the MIPs were not useful for measurements at 50% humidity due to surface saturation by water. This was overcome by introducing primary amino groups into the polymer via allyl amine and by changing the coating morphology from thin film to nanoparticles. This led to the same limit of detection (500 ppb) and selectivity as before, but at the real-life conditions of 50% relative humidity. PMID:27376287
Natural occurrence of ochratoxin A in wolfberry fruit wine marketed in China.
Kuang, Ying; Qiu, Feng; Kong, Weijun; Yang, Meihua
2012-01-01
Wolfberry fruit wine (WFW) is widely used as a global functional food to improve the immune system and prevent human disease. A total of 36 bottled WFWs were randomly collected in China between 2005 and 2010. Samples were analysed for the presence of ochratoxin A (OTA) using immunoaffinity column (IAC) clean-up and high-performance liquid chromatography with fluorescence detection (HPLC-FLD). Positive results were confirmed by liquid chromatography-electrospray ionisation-tandem mass spectrometry (LC-ESI-MS/MS). The limit of detection (LOD), based on a signal-to-noise ratio of 3, was 0.05 ng mL⁻¹. Recoveries ranged from 78.3% to 94.7% and relative standard deviations from 1.1% to 4.3% within the spiking range of 0.2-20 ng mL⁻¹. OTA was detected in one sample, below the maximum allowable limit as established by the European community.
Optical hydrogen sensors based on metal-hydrides
NASA Astrophysics Data System (ADS)
Slaman, M.; Westerwaal, R.; Schreuders, H.; Dam, B.
2012-06-01
For many hydrogen related applications it is preferred to use optical hydrogen sensors above electrical systems. Optical sensors reduce the risk of ignition by spark formation and are less sensitive to electrical interference. Currently palladium and palladium alloys are used for most hydrogen sensors since they are well known for their hydrogen dissociation and absorption properties at relatively low temperatures. The disadvantages of palladium in sensors are the low optical response upon hydrogen loading, the cross sensitivity for oxygen and carbon, the limited detection range and the formation of micro-cracks after some hydrogen absorption/desorption cycles. In contrast to Pd, we find that the use of magnesium or rear earth bases metal-hydrides in optical hydrogen sensors allow tuning of the detection levels over a broad pressure range, while maintaining a high optical response. We demonstrate a stable detection layer for detecting hydrogen below 10% of the lower explosion limit in an oxygen rich environment. This detection layer is deposited at the bare end of a glass fiber as a micro-mirror and is covered with a thin layer of palladium. The palladium layer promotes the hydrogen uptake at room temperature and acts as a hydrogen selective membrane. To protect the sensor for a long time in air a final layer of a hydrophobic fluorine based coating is applied. Such a sensor can be used for example as safety detector in automotive applications. We find that this type of fiber optic hydrogen sensor is also suitable for hydrogen detection in liquids. As example we demonstrate a sensor for detecting a broad range of concentrations in transformer oil. Such a sensor can signal a warning when sparks inside a high voltage power transformer decompose the transformer oil over a long period.
NASA Astrophysics Data System (ADS)
Guo, Lei; Zhang, Chang Xing; Deng, Li; Zhang, Guo Xin; Xu, Hai Jun; Sun, Xiao Ming
2014-06-01
A green, low-cost and highly efficient surface-enhanced Raman scattering (SERS) substrate was achieved by a chemical deposition of silver nanoparticles on a cicada wing, which has the large-scale nanosized protrusions on its surface. Employing the already-formed Ag/cicada wing as substrate for SERS detection, the detection limit for rhodamine 6G could reach 10-7M, the Raman enhancement factor of the substrate was as large as 106 and the relative standard deviation remains lower than 7%. The three-dimensional finite-difference time-domain simulation results showed that two types of inter-Ag-nanoparticle nanogaps in the formed geometry created a huge number of SERS "hot spots" where the electromagnetic field is substantially amplified and contributes to the higher SERS sensitivity. Meanwhile, the water contact angle of the SERS substrate is roughly 150°, which indicates the super-hydrophobic surface of the substrate. This feature may be conducive to the gathering of target molecules during the SERS detection, which in turn further improves the detection limit of target molecules. In order to improve the application of the substrate, thiram was used as the probe molecule, and the detection limit also reached 10-7 M. Meanwhile, the calibration of the Raman peak intensities of Rhodamine 6G and thiram allowed their quantitative detection. Therefore, the green and low-cost SERS substrates could be used for fast and quantitative detection of trace organic molecules. Our findings may contribute to the development of the green and low-cost SERS substrates and will allow the fast and quantitative detection of trace organic molecules.
Kääriä, K; Hirvonen, A; Norppa, H; Piirilä, P; Vainio, H; Rosenberg, C
2001-04-01
Occupational exposure to 4,4'-methylenediphenyl diisocyanate (MDI) was measured during moulding of rigid polyurethane foam. The aim of the study was to find out whether an MDI-derived urinary amine metabolite could be detected in the urine of workers exposed to apparently low levels of MDI. Airborne MDI was sampled on 1-(2-methoxyphenyl)-piperazine (2MP)-impregnated glass fibre filters and determined by high-performance liquid chromatography (HPLC) using ultraviolet (UV) and electrochemical (EC) detection. The limit of detection of MDI was 3 ng ml-1 for a 20 microliters injection. The precision of sample preparation, expressed as relative standard deviation (RSD), was 1.3% with UV detection and 2.1% with EC detection at a concentration of 70 ng MDI ml-1 (n = 6). The 2MP-MDI derivative was stable at +4 degrees C up to eight weeks. The accuracy of the method was validated in an international quality control programme. Workers (n = 57) from three different factories participated in the study. Urinary 4,4'-methylenedianiline (MDA) metabolite was determined after acid hydrolysis as heptafluorobutyric anhydride derivatives by gas chromatography-mass spectrometry using chemical ionisation and monitoring negative ions. The limit of detection in urine was 0.2 nmol l-1. The precision of six analyses for a urine sample spiked to a concentration of 1 nmol l-1 was 29% (RSD). The MDI concentrations were below the limit of detection in most (64%) of the air samples collected in the worker's breathing zone. Still, detectable amounts of MDA were found in 97% of the urine samples. Monitoring of urinary MDA appears to be an appropriate method of assessing MDI exposure in work environments with low or undetectable MDI concentrations in the workplace air.
NASA Astrophysics Data System (ADS)
Tian, Qianqian; Wang, Ying; Deng, Ruijie; Lin, Lei; Liu, Yang; Li, Jinghong
2014-12-01
The detection of microRNAs (miRNAs) is imperative for gaining a better understanding of the functions of these biomarkers and has great potential for the early diagnosis of human disease. High sensitivity and selectivity for miRNA detection brings new challenges. Herein, an ultrasensitive protocol for electrochemical detection of miRNA is designed through carbon nanotube (CNT) enhanced label-free detection based on hairpin probe triggered solid-phase rolling-circle amplification (RCA). Traditionally, RCA, widely applied for signal enhancement in the construction of a variety of biosensors, has an intrinsic limitation of ultrasensitive detection, as it is difficult to separate the enzymes, templates, and padlock DNAs from the RCA products in the homogeneous solution. We purposely designed a solid-phase RCA strategy, using CNTs as the solid substrate, integrated with a hairpin structured probe to recognize target miRNA. In the presence of miRNA the stem-loop structure will be unfolded, triggering the CNT based RCA process. Due to the efficient blocking effect originating from the polymeric RCA products, the label-free assay of miRNA exhibits an ultrasensitive detection limit of 1.2 fM. Furthermore, the protocol possesses excellent specificity for resolving lung cancer-related let-7 family members which have only one-nucleotide variations. The high sensitivity and selectivity give the method great potential for applications in online diagnostics and in situ detection in long-term development.The detection of microRNAs (miRNAs) is imperative for gaining a better understanding of the functions of these biomarkers and has great potential for the early diagnosis of human disease. High sensitivity and selectivity for miRNA detection brings new challenges. Herein, an ultrasensitive protocol for electrochemical detection of miRNA is designed through carbon nanotube (CNT) enhanced label-free detection based on hairpin probe triggered solid-phase rolling-circle amplification (RCA). Traditionally, RCA, widely applied for signal enhancement in the construction of a variety of biosensors, has an intrinsic limitation of ultrasensitive detection, as it is difficult to separate the enzymes, templates, and padlock DNAs from the RCA products in the homogeneous solution. We purposely designed a solid-phase RCA strategy, using CNTs as the solid substrate, integrated with a hairpin structured probe to recognize target miRNA. In the presence of miRNA the stem-loop structure will be unfolded, triggering the CNT based RCA process. Due to the efficient blocking effect originating from the polymeric RCA products, the label-free assay of miRNA exhibits an ultrasensitive detection limit of 1.2 fM. Furthermore, the protocol possesses excellent specificity for resolving lung cancer-related let-7 family members which have only one-nucleotide variations. The high sensitivity and selectivity give the method great potential for applications in online diagnostics and in situ detection in long-term development. Electronic supplementary information (ESI) available: Preparation of the chemically modified multi-walled carbon nanotubes (CNTs), characterization of the CNTs and modified CNTs, preparation of the circular probe, gel electrophoresis of the RCA products, and DNA probes as noted in the text. See DOI: 10.1039/c4nr05243a
NASA Astrophysics Data System (ADS)
Tian, Gang; Zhang, Xiao-Qing; Zhu, Ming-Song; Zhang, Zhong; Shi, Zheng-Hu; Ding, Min
2016-03-01
Simple, rapid and accurate detection of ethanol concentration in blood is very crucial in the diagnosis and management of potential acute ethanol intoxication patients. A novel electrochemical detection method was developed for the quantification of ethanol in human plasma with disposable unmodified screen-printed carbon electrode (SPCE) without sample preparation procedure. Ethanol was detected indirectly by the reaction product of ethanol dehydrogenase (ADH) and cofactor nicotinamide adenine dinucleotide (NAD+). Method validation indicated good quantitation precisions with intra-day and inter-day relative standard deviations of ≤9.4% and 8.0%, respectively. Ethanol concentration in plasma is linear ranging from 0.10 to 3.20 mg/mL, and the detection limit is 40.0 μg/mL (S/N > 3). The method shows satisfactory correlation with the reference method of headspace gas chromatography in twenty human plasma samples (correlation coefficient 0.9311). The proposed method could be applied to diagnose acute ethanol toxicity or ethanol-related death.
Tian, Gang; Zhang, Xiao-Qing; Zhu, Ming-Song; Zhang, Zhong; Shi, Zheng-Hu; Ding, Min
2016-01-01
Simple, rapid and accurate detection of ethanol concentration in blood is very crucial in the diagnosis and management of potential acute ethanol intoxication patients. A novel electrochemical detection method was developed for the quantification of ethanol in human plasma with disposable unmodified screen-printed carbon electrode (SPCE) without sample preparation procedure. Ethanol was detected indirectly by the reaction product of ethanol dehydrogenase (ADH) and cofactor nicotinamide adenine dinucleotide (NAD+). Method validation indicated good quantitation precisions with intra-day and inter-day relative standard deviations of ≤9.4% and 8.0%, respectively. Ethanol concentration in plasma is linear ranging from 0.10 to 3.20 mg/mL, and the detection limit is 40.0 μg/mL (S/N > 3). The method shows satisfactory correlation with the reference method of headspace gas chromatography in twenty human plasma samples (correlation coefficient 0.9311). The proposed method could be applied to diagnose acute ethanol toxicity or ethanol-related death. PMID:27006081
Gurung, Arati; Scrafford, Carolyn G; Tielsch, James M; Levine, Orin S; Checkley, William
2011-01-01
Rationale The standardized use of a stethoscope for chest auscultation in clinical research is limited by its inherent inter-listener variability. Electronic auscultation and automated classification of recorded lung sounds may help prevent some these shortcomings. Objective We sought to perform a systematic review and meta-analysis of studies implementing computerized lung sounds analysis (CLSA) to aid in the detection of abnormal lung sounds for specific respiratory disorders. Methods We searched for articles on CLSA in MEDLINE, EMBASE, Cochrane Library and ISI Web of Knowledge through July 31, 2010. Following qualitative review, we conducted a meta-analysis to estimate the sensitivity and specificity of CLSA for the detection of abnormal lung sounds. Measurements and Main Results Of 208 articles identified, we selected eight studies for review. Most studies employed either electret microphones or piezoelectric sensors for auscultation, and Fourier Transform and Neural Network algorithms for analysis and automated classification of lung sounds. Overall sensitivity for the detection of wheezes or crackles using CLSA was 80% (95% CI 72–86%) and specificity was 85% (95% CI 78–91%). Conclusions While quality data on CLSA are relatively limited, analysis of existing information suggests that CLSA can provide a relatively high specificity for detecting abnormal lung sounds such as crackles and wheezes. Further research and product development could promote the value of CLSA in research studies or its diagnostic utility in clinical setting. PMID:21676606
Gurung, Arati; Scrafford, Carolyn G; Tielsch, James M; Levine, Orin S; Checkley, William
2011-09-01
The standardized use of a stethoscope for chest auscultation in clinical research is limited by its inherent inter-listener variability. Electronic auscultation and automated classification of recorded lung sounds may help prevent some of these shortcomings. We sought to perform a systematic review and meta-analysis of studies implementing computerized lung sound analysis (CLSA) to aid in the detection of abnormal lung sounds for specific respiratory disorders. We searched for articles on CLSA in MEDLINE, EMBASE, Cochrane Library and ISI Web of Knowledge through July 31, 2010. Following qualitative review, we conducted a meta-analysis to estimate the sensitivity and specificity of CLSA for the detection of abnormal lung sounds. Of 208 articles identified, we selected eight studies for review. Most studies employed either electret microphones or piezoelectric sensors for auscultation, and Fourier Transform and Neural Network algorithms for analysis and automated classification of lung sounds. Overall sensitivity for the detection of wheezes or crackles using CLSA was 80% (95% CI 72-86%) and specificity was 85% (95% CI 78-91%). While quality data on CLSA are relatively limited, analysis of existing information suggests that CLSA can provide a relatively high specificity for detecting abnormal lung sounds such as crackles and wheezes. Further research and product development could promote the value of CLSA in research studies or its diagnostic utility in clinical settings. Copyright © 2011 Elsevier Ltd. All rights reserved.
Zhang, Cheng; Nestorova, Gergana; Rissman, Robert A.; Feng, June
2013-01-01
8-Hydroxy-2′-deoxyguanosine (8-OHdG) is one of the major forms of oxidative deoxyribonucleic acid (DNA) damage, and is commonly analyzed as an excellent marker of DNA lesions. The purpose of this study was to develop a sensitive method to accurately and rapidly quantify the 8-OHdG by using capillary electrophoresis with laser-induced fluorescence detection (CE-LIF). The method involved the use of specific antibody to detect DNA lesions (8-OHdG) and consecutive fluorescence labeling. Next, the urine sample with 8-OHdG fluorescently labeled along with other constituents was resolved by capillary electrophoretic system and the lesion of interest was detected using fluorescence detector. The limit of detection was 0.18 fmol, which is sufficient sensitivity for detection and quantification of 8-OHdG in untreated urine samples. The relative standard deviation (RSD) was found to be 11.32 % for migration time, and 5.52 % for peak area. To demonstrate the utility of this method, the urinary concentration of 8-OHdG in an Alzheimer’s transgenic mouse model was determined. Collectively, our results indicate that this methodology offers great advantages such as high separation efficiency, good selectivity, low limit of detection (LOD), simplicity and low cost of analysis. PMID:23712533
Fang, Bi-Yun; Yao, Ming-Hao; Wang, Chun-Yuan; Wang, Chao-Yang; Zhao, Yuan-Di; Chen, Fang
2016-04-01
A method for ATP quantification based on dye-labeled aptamer/graphene oxide (aptamer/GO) using capillary electrophoresis-laser induced fluorescence (CE-LIF) detecting technique has been established. In this method, the carboxyfluorescein (FAM)-labelled ATP aptamers were adsorbed onto the surface of GO, leading to the fluorescence quenching of FAM; after the incubation with a limited amount of ATP, stronger affinity between ATP aptamer and ATP resulted in the desorption of aptamers and the fluorescence restoration of FAM. Then, aptamer-ATP complex and excess of aptamer/GO and GO were separated and quantified by CE-LIF detection. It was shown that a linear relation was existing in the CE-LIF peak intensity of aptamer-ATP and ATP concentration in range of 10-700 μM, the regression equation was F=1.50+0.0470C(ATP) (R(2)=0.990), and the limit of detection was 1.28 μM (3S/N, n=5), which was one order magnitude lower than that of detection in solution by fluorescence method. The approach with excellent specificity and reproducibility has been successfully applied to detecting concentration of ATP in HeLa cell. Copyright © 2015 Elsevier B.V. All rights reserved.
Shukla, Shruti; Leem, Hyerim; Lee, Jong-Suk; Kim, Myunghee
2014-06-01
This study was designed to confirm the applicability of a liposome-based immunochromatographic assay for the rapid detection of Salmonella enterica subsp. enterica serovar Typhimurium (Salmonella Typhimurium) in artificially contaminated tomato samples. To determine the detection limit and pre-enrichment incubation time (10, 12, and 18 h pre-enrichment in 1% buffered peptone water), the tests were performed with different cell numbers of Salmonella Typhimurium (3 × 10(0), 3 × 10(1), 3 × 10(2), and 3 × 10(3) CFU·mL(-1)) inoculated into 25 g of crushed tomato samples. The assay was able to detect as few as 30 Salmonella Typhimurium cells per 25 g of tomato samples (1.2 cells·g(-1)) after 12 h pre-enrichment incubation. Moreover, when the developed assay was compared with traditional morphological and biochemical culture-based methods as well as colloidal gold nanoparticle-based commercial test strips, the developed assay yielded positive results for the detection of Salmonella Typhimurium within a shorter period time. These findings confirm that the developed assay may have practical application for the sensitive detection of Salmonella Typhimurium in various food samples, including raw vegetables, with a relatively low detection limit and shorter analysis time.
He, Guochun; Tsutsumi, Tomoaki; Zhao, Bin; Baston, David S; Zhao, Jing; Heath-Pagliuso, Sharon; Denison, Michael S
2011-10-01
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD, dioxin) and related dioxin-like chemicals are widespread and persistent environmental contaminants that produce diverse toxic and biological effects through their ability to bind to and activate the Ah receptor (AhR) and AhR-dependent gene expression. The chemically activated luciferase expression (CALUX) system is an AhR-responsive recombinant luciferase reporter gene-based cell bioassay that has been used in combination with chemical extraction and cleanup methods for the relatively rapid and inexpensive detection and relative quantitation of dioxin and dioxin-like chemicals in a wide variety of sample matrices. Although the CALUX bioassay has been validated and used extensively for screening purposes, it has some limitations when screening samples with very low levels of dioxin-like chemicals or when there is only a small amount of sample matrix for analysis. Here, we describe the development of third-generation (G3) CALUX plasmids with increased numbers of dioxin-responsive elements, and stable transfection of these new plasmids into mouse hepatoma (Hepa1c1c7) cells has produced novel amplified G3 CALUX cell bioassays that respond to TCDD with a dramatically increased magnitude of luciferase induction and significantly lower minimal detection limit than existing CALUX-type cell lines. The new G3 CALUX cell lines provide a highly responsive and sensitive bioassay system for the detection and relative quantitation of very low levels of dioxin-like chemicals in sample extracts.
NASA Astrophysics Data System (ADS)
Santamaría, Beatriz; Laguna, María. Fe; López-Romero, David; López-Hernandez, A.; Sanza, F. J.; Lavín, A.; Casquel, R.; Maigler, M.; Holgado, M.
2018-02-01
A novel compact optical biochip based on a thin layer-sensing BICELL surface of nitrocellulose is used for in-situ labelfree detection of dry eye disease (DED). In this work the development of a compact biosensor that allows obtaining quantitative diagnosis with a limited volume of sample is reported. The designed sensors can be analyzed with an optical integrated Point-of-Care read-out system based on the "Increase Relative Optical Power" principle which enhances the performance and Limit of Detection. Several proteins involved with dry eye dysfunction have been validated as biomarkers. Presented biochip analyzes three of those biomarkers: MMP9, S100A6 and CST4. BICELLs based on nitrocellulose permit to immobilize antibodies for each biomarker recognition. The optical response obtained from the biosensor through the readout platform is capable to recognize specifically the desired proteins in the concentrations range for control eye (CE) and dry eye syndrome (DES). Preliminary results obtained will allow the development of a dry eye detection device useful in the area of ophthalmology and applicable to other possible diseases related to the eye dysfunction.
Walser, Sandra M; Gerstner, Doris G; Brenner, Bernhard; Bünger, Jürgen; Eikmann, Thomas; Janssen, Barbara; Kolb, Stefanie; Kolk, Annette; Nowak, Dennis; Raulf, Monika; Sagunski, Helmut; Sedlmaier, Nadja; Suchenwirth, Roland; Wiesmüller, Gerhard; Wollin, Klaus-Michael; Tesseraux, Irene; Herr, Caroline E W
2015-10-01
Studies suggest adverse health effects following exposure to bioaerosols in the environment and in particular at workplaces. However, there is still a lack of health-related exposure limits based on toxicological or epidemiological studies from environmental health or from the working environment. The aim of this study was to derive health-based exposure limits for bioaerosols that can protect the general population as group "at risk" via environmental exposure using analysis of peer-reviewed studies related to occupational medicine, indoor air and environmental health. The derivation of exposure limits should be conducted by the members of a bioaerosol expert panel according to established toxicological criteria. A systematic review was performed in Medline (PubMed) including studies containing both data on exposure measurements and observed health outcomes. In addition, literature recommended by the experts was considered. A comprehensive search strategy was generated and resulted in a total of n=1569 studies in combination with the literature recommendations. Subsequently, abstracts were screened using defined exclusion criteria yielding a final number of n=44 studies. A standardized extraction sheet was used to combine data on health effects and exposure to different bioaerosols. After full-text screening and extraction according to the defined exclusion criteria n=20 studies were selected all related to occupational exposures comprising the working areas wood processing, farming, waste processing and others. These studies were analyzed in collaboration with the bioaerosol expert network in terms of suitability for derivation of health-related exposure limits. The bioaerosol expert network concluded that none of the analyzed studies provided suitable dose-response relationships for derivation of exposure limits. The main reasons were: (1) lack of studies with valid dose-response data; (2) diversity of employed measuring methods for microorganisms and bioaerosol-emitting facilities; (3) heterogeneity of health effects; (4) insufficient exposure assessment. However, several indicator parameters and exposure concentrations could be identified for different bioaerosol-emitting facilities. Nevertheless, health-related exposure limits are urgently needed especially in approval procedures of facilities like composting plants or livestock farms emitting bioaerosols in the neighbourhood of residents. In the regulatory toxicology framework, it is common to use animal experimental studies for derivation of general exposure limits if appropriate environmental epidemiological studies on harmful substances are lacking. This might be another possibility to obtain health-related exposure limits for specific bioaerosol parameters. Furthermore, we recommend to use suitable measurable outcome parameters related to bioaerosols; to measure bioaerosols according to a protocol representative for exposure pattern and duration at the particular work place; to develop standardized detection methods for indicator parameters; to combine different detection methods to compensate for the limitations of each method; to apply new analysis methods to identify the real risk potential. Copyright © 2015 Elsevier GmbH. All rights reserved.
Diagnosing Prion Diseases: Mass Spectrometry-Based Approaches
USDA-ARS?s Scientific Manuscript database
Mass spectrometry is an established means of quantitating the prions present in infected hamsters. Calibration curves relating the area ratios of the selected analyte peptides and their oxidized analogs to stable isotope labeled internal standards were prepared. The limit of detection (LOD) and limi...
Rapid detection of mecA and spa by the loop-mediated isothermal amplification (LAMP) method.
Koide, Y; Maeda, H; Yamabe, K; Naruishi, K; Yamamoto, T; Kokeguchi, S; Takashiba, S
2010-04-01
To develop a detection assay for staphylococcal mecA and spa by using loop-mediated isothermal amplification (LAMP) method. Staphylococcus aureus and other related species were subjected to the detection of mecA and spa by both PCR and LAMP methods. The LAMP successfully amplified the genes under isothermal conditions at 64 degrees C within 60 min, and demonstrated identical results with the conventional PCR methods. The detection limits of the LAMP for mecA and spa, by gel electrophoresis, were 10(2) and 10 cells per tube, respectively. The naked-eye inspections were possible with 10(3) and 10 cells for detection of mecA and spa, respectively. The LAMP method was then applied to sputum and dental plaque samples. The LAMP and PCR demonstrated identical results for the plaque samples, although frequency in detection of mecA and spa by the LAMP was relatively lower for the sputum samples when compared to the PCR methods. Application of the LAMP enabled a rapid detection assay for mecA and spa. The assay may be applicable to clinical plaque samples. The LAMP offers an alternative detection assay for mecA and spa with a great advantage of the rapidity.
Combining hyperspectral imaging and Raman spectroscopy for remote chemical sensing
NASA Astrophysics Data System (ADS)
Ingram, John M.; Lo, Edsanter
2008-04-01
The Photonics Research Center at the United States Military Academy is conducting research to demonstrate the feasibility of combining hyperspectral imaging and Raman spectroscopy for remote chemical detection over a broad area of interest. One limitation of future trace detection systems is their ability to analyze large areas of view. Hyperspectral imaging provides a balance between fast spectral analysis and scanning area. Integration of a hyperspectral system capable of remote chemical detection will greatly enhance our soldiers' ability to see the battlefield to make threat related decisions. It can also queue the trace detection systems onto the correct interrogation area saving time and reconnaissance/surveillance resources. This research develops both the sensor design and the detection/discrimination algorithms. The one meter remote detection without background radiation is a simple proof of concept.
Zhu, Qing; Shih, Wan Y.; Shih, Wei-Heng
2007-01-01
We have examined non-insulated PZT/gold-coated glass cantilevers for real-time, label-free detection of Salmonella t. by partial dipping at any relative humidity. The PZT/gold-coated glass cantilevers were consisted of a 0.127 mm thick PZT layer about 0.8 mm long, 2 mm wide bonded to a 0.15 mm thick gold-coated glass layer with a 3.0 mm long gold-coated glass tip for detection. We showed that by placing the water level at the nodal point, about 0.8 mm from the free end of the gold-glass tip, there was a 1-hr window in which the resonance frequency was stable despite the water level change by evaporation at 20% relative humidity or higher. By dipping the cantilevers to their nodal point, we were able to do real-time, label-free detection without background resonance frequency corrections at any relative humidity. The partially dipped PZT/gold-coated glass cantilever exhibited mass detection sensitivity, Δm/Δf = −5×10−11g/Hz, and a detection concentration sensitivity, 5×103 cells/ml in 2 ml of liquid, which was about two orders of magnitude lower than that of a 5 MHz QCM. It was also about two orders of magnitude lower than the infection dosage and one order of magnitude lower that the detection limit of a commercial Raptor sensor. PMID:22872784
Detecting Visually Observable Disease Symptoms from Faces.
Wang, Kuan; Luo, Jiebo
2016-12-01
Recent years have witnessed an increasing interest in the application of machine learning to clinical informatics and healthcare systems. A significant amount of research has been done on healthcare systems based on supervised learning. In this study, we present a generalized solution to detect visually observable symptoms on faces using semi-supervised anomaly detection combined with machine vision algorithms. We rely on the disease-related statistical facts to detect abnormalities and classify them into multiple categories to narrow down the possible medical reasons of detecting. Our method is in contrast with most existing approaches, which are limited by the availability of labeled training data required for supervised learning, and therefore offers the major advantage of flagging any unusual and visually observable symptoms.
Noor, M Omair; Krull, Ulrich J
2013-08-06
A multiplexed solid-phase nucleic acid hybridization assay on a paper-based platform is presented using multicolor immobilized quantum dots (QDs) as donors in fluorescence resonance energy transfer (FRET). The surface of paper was modified with imidazole groups to immobilize two types of QD-probe oligonucleotide conjugates that were assembled in solution. Green-emitting QDs (gQDs) and red-emitting QDs (rQDs) served as donors with Cy3 and Alexa Fluor 647 (A647) acceptors. The gQD/Cy3 FRET pair served as an internal standard, while the rQD/A647 FRET pair served as a detection channel, combining the control and analytical test zones in one physical location. Hybridization of dye-labeled oligonucleotide targets provided the proximity for FRET sensitized emission from the acceptor dyes, which served as an analytical signal. Hybridization assays in the multicolor format provided a limit of detection of 90 fmol and an upper limit of dynamic range of 3.5 pmol. The use of an array of detection zones was designed to provide improved analytical figures of merit compared to that which could be achieved on one type of array design in terms of relative concentration of multicolor QDs. The hybridization assays showed excellent resistance to nonspecific adsorption of oligonucleotides. Selectivity of the two-plex hybridization assay was demonstrated by single nucleotide polymorphism (SNP) detection at a contrast ratio of 50:1. Additionally, it is shown that the use of preformed QD-probe oligonucleotide conjugates and consideration of the relative number density of the two types of QD-probe conjugates in the two-color assay format is advantageous to maximize assay sensitivity and the upper limit of dynamic range.
Yılmaz, Pelin Köseoğlu; Ertaş, Abdulselam; Kolak, Ufuk
2014-08-01
A sensitive, rapid, and simple high-performance liquid chromatography with UV detection method was developed for the simultaneous determination of seven phthalic acid esters (dimethyl phthalate, dipropyl phthalate, di-n-butyl phthalate, benzyl butyl phthalate, dicyclohexyl phthalate, di-(2-ethylhexyl) phthalate, and di-n-octyl phthalate) in several kinds of beverage samples. Ultrasound and vortex-assisted dispersive liquid-liquid microextraction method was used. The separation was performed using an Intersil ODS-3 column (C18 , 250 × 4.6 mm, 5.0 μm) and a gradient elution with a mobile phase consisting of MeOH/ACN (50:50) and 0.2 M KH2 PO4 buffer. Analytes were detected by a UV detector at 230 nm. The developed method was validated in terms of linearity, limit of detection, limit of quantification, repeatability, accuracy, and recovery. Calibration equations and correlation coefficients (> 0.99) were calculated by least squares method with weighting factor. The limit of detection and quantification were in the range of 0.019-0.208 and 0.072-0.483 μg/L. The repeatability and intermediate precision were determined in terms of relative standard deviation to be within 0.03-3.93 and 0.02-4.74%, respectively. The accuracy was found to be in the range of -14.55 to 15.57% in terms of relative error. Seventeen different beverage samples in plastic bottles were successfully analyzed, and ten of them were found to be contaminated by different phthalic acid esters. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A ppb level sensitive sensor for atmospheric methane detection
NASA Astrophysics Data System (ADS)
Xia, Jinbao; Zhu, Feng; Zhang, Sasa; Kolomenskii, Alexandre; Schuessler, Hans
2017-11-01
A high sensitivity sensor, combining a multipass cell and wavelength modulation spectroscopy in the near infrared spectral region was designed and implemented for trace gas detection. The effective length of the multipass cell was about 290 meters. The developed spectroscopic technique demonstrates an improved sensitivity of methane in ambient air and a relatively short detection time compared to previously reported sensors. Home-built electronics and software were employed for diode laser frequency modulation, signal lock-in detection and processing. A dual beam scheme and a balanced photo-detector were implemented to suppress the intensity modulation and noise for better detection sensitivity. The performance of the sensor was evaluated in a series of measurements ranging from three hours to two days. The average methane concentration measured in ambient air was 2.01 ppm with a relative error of ± 2.5%. With Allan deviation analysis, it was found that the methane detection limit of 1.2 ppb was achieved in 650 s. The developed sensor is compact and portable, and thus it is well suited for field measurements of methane and other trace gases.
Enzyme-free detection and quantification of double-stranded nucleic acids.
Feuillie, Cécile; Merheb, Maxime Mohamad; Gillet, Benjamin; Montagnac, Gilles; Hänni, Catherine; Daniel, Isabelle
2012-08-01
We have developed a fully enzyme-free SERRS hybridization assay for specific detection of double-stranded DNA sequences. Although all DNA detection methods ranging from PCR to high-throughput sequencing rely on enzymes, this method is unique for being totally non-enzymatic. The efficiency of enzymatic processes is affected by alterations, modifications, and/or quality of DNA. For instance, a limitation of most DNA polymerases is their inability to process DNA damaged by blocking lesions. As a result, enzymatic amplification and sequencing of degraded DNA often fail. In this study we succeeded in detecting and quantifying, within a mixture, relative amounts of closely related double-stranded DNA sequences from Rupicapra rupicapra (chamois) and Capra hircus (goat). The non-enzymatic SERRS assay presented here is the corner stone of a promising approach to overcome the failure of DNA polymerase when DNA is too degraded or when the concentration of polymerase inhibitors is too high. It is the first time double-stranded DNA has been detected with a truly non-enzymatic SERRS-based method. This non-enzymatic, inexpensive, rapid assay is therefore a breakthrough in nucleic acid detection.
Conebeam CT of the head and neck, part 1: physical principles.
Miracle, A C; Mukherji, S K
2009-06-01
Conebeam x-ray CT (CBCT) is a developing imaging technique designed to provide relatively low-dose high-spatial-resolution visualization of high-contrast structures in the head and neck and other anatomic areas. This first installment in a 2-part review will address the physical principles underlying CBCT imaging as it is used in dedicated head and neck scanners. Concepts related to CBCT acquisition geometry, flat panel detection, and image quality will be explored in detail. Particular emphasis will be placed on technical limitations to low-contrast detectability and radiation dose. Proposed methods of x-ray scatter reduction will also be discussed.
Laboratory and Astronomical Detection of the Negative Molecular Ion C3N-
NASA Astrophysics Data System (ADS)
Thaddeus, P.; Gottlieb, C. A.; Gupta, H.; Brünken, S.; McCarthy, M. C.; Agúndez, M.; Guélin, M.; Cernicharo, J.
2008-04-01
The negative molecular ion C3N- has been detected at millimeter wavelengths in a low-pressure laboratory discharge, and then with frequencies derived from the laboratory data in the molecular envelope of IRC+10216. Spectroscopic constants derived from laboratory measurements of 12 transitions between 97 and 378 GHz allow the rotational spectrum to be calculated well into the submillimeter-wave band to 0.03 km s-1 or better in equivalent radial velocity. Four transitions of C3N- were detected in IRC+10216 with the IRAM 30 m telescope at precisely the frequencies calculated from the laboratory measurements. The column density of C3N- is 0.5% that of C3N, or approximately 20 times greater than that of C4H- relative to C4H. The C3N- abundance in IRC+10216 is compared with a chemical model calculation by Petrie & Herbst. An upper limit in TMC-1 for C3N- relative to C3N (<0.8%) and a limit for C4H- relative to C4H (<0.004%) that is 5 times lower than that found in IRC+10216, were obtained from observations with the NRAO 100 m Green Bank Telescope (GBT). The fairly high concentration of C3N- achieved in the laboratory implies that other molecular anions containing the CN group may be within reach.
Optimum Cyclic Redundancy Codes for Noisy Channels
NASA Technical Reports Server (NTRS)
Posner, E. C.; Merkey, P.
1986-01-01
Capabilities and limitations of cyclic redundancy codes (CRC's) for detecting transmission errors in data sent over relatively noisy channels (e.g., voice-grade telephone lines or very-high-density storage media) discussed in 16-page report. Due to prevalent use of bytes in multiples of 8 bits data transmission, report primarily concerned with cases in which both block length and number of redundant bits (check bits for use in error detection) included in each block are multiples of 8 bits.
Determination of benzocaine in rainbow trout plasma
Bernardy, Jeffery A.; Coleman, K.S.; Stehly, G.R.; Gingerich, William H.
1996-01-01
A liquid chromatographic method is described for analysis of benzocaine (BZ), a proposed fish anesthetic, in rainbow trout plasma, Mean recoveries of BZ from plasma samples fortified at 44-10 100 ng/mL were 96-100%. The method detection limit is 10 ng/mL, and the limit of quantitation is 37 ng/mL. Acetylation of BZ occurs in whole blood after storage at room temperature (i.e., 21 degrees C) for 10 min. However, no acetylation of BZ was detected in plasma samples held at room temperature for 4 h, Mean method precision for plasma samples with incurred BZ residue is similar to that for fortified samples in the same concentration range (relative standard deviations of 0.9 and 1.2%, respectively).
Friedman, J.D.; Huth, P.C.; Smiley, D.
1990-01-01
Reconnaissance sampling and chemical analysis of water from selected lakes, streams and springs of the northern Shawangunk Mountains in 1987 to 1988 to determine the influence of lithology on trace-metal concentrations in surface water, and to establish a base level of concentration of 27 selected metals by ICP-AES and Hg by cold-vapor AAS methods, for geochemical exploration, ecologic, acid-rain, and climatic-change studies, have yielded trace-metal concentrations greater than detection limits for 10 metallic elements. Eighteen additional metallic elements were also present in trace quantities below the quantitative detection limit. Two distinct geochemical populations are related to source lithology and pH. -from Authors
Concentration of enteric viruses from tap water using an anion exchange resin-based method.
Pérez-Méndez, A; Chandler, J C; Bisha, B; Goodridge, L D
2014-09-01
Detecting low concentrations of enteric viruses in water is needed for public health-related monitoring and control purposes. Thus, there is a need for sensitive, rapid and cost effective enteric viral concentration methods compatible with downstream molecular detection. Here, a virus concentration method based on adsorption of the virus to an anion exchange resin and direct isolation of nucleic acids is presented. Ten liter samples of tap water spiked with different concentrations (10-10,000 TCID50/10 L) of human adenovirus 40 (HAdV-40), hepatitis A virus (HAV) or rotavirus (RV) were concentrated and detected by real time PCR or real time RT-PCR. This method improved viral detection compared to direct testing of spiked water samples where the ΔCt was 12.1 for AdV-40 and 4.3 for HAV. Direct detection of RV in water was only possible for one of the three replicates tested (Ct of 37), but RV detection was improved using the resin method (all replicates tested positive with an average Ct of 30, n=3). The limit of detection of the method was 10 TCID50/10 L for HAdV-40 and HAV, and 100 TCID50/10 L of water for RV. These results compare favorably with detection limits reported for more expensive and laborious methods. Copyright © 2014 Elsevier B.V. All rights reserved.
Marín-Sáez, Jesús; Romero-González, Roberto; Garrido Frenich, Antonia
2017-10-06
Tropane alkaloids are a wide group of substances that comprises more than 200 compounds occurring especially in the Solanaceae family. The main aim of this study is the development of a method for the analysis of the principal tropane alkaloids as atropine, scopolamine, anisodamine, tropane, tropine, littorine, homatropine, apoatropine, aposcopolamine, scopoline, tropinone, physoperuvine, pseudotropine and cuscohygrine in cereals and related matrices. For that, a simple solid-liquid extraction was optimized and a liquid chromatographic method coupled to a single stage Exactive-Orbitrap was developed. The method was validated obtaining recoveries in the range of 60-109% (except for some compounds in soy), precision values (expressed as relative standard deviation) lower than 20% and detection and quantification limits equal to or lower than 2 and 3μg/kg respectively. Finally, the method was applied to the analysis of different types of samples as buckwheat, linseed, soy and millet, obtaining positives for anisodamine, scopolamine, atropine, littorine and tropinone in a millet flour sample above the quantification limits, whereas atropine and scopolamine were detected in a buckwheat sample, below the quantification limit. Contaminated samples with Solanaceaes seeds (Datura Stramonium and Brugmansia Arborea) were also analysed, detecting concentrations up to 693μg/kg (scopolamine) for contaminated samples with Brugmansia seeds and 1847μg/kg (atropine) when samples were contaminated with Stramonium seeds. Copyright © 2017 Elsevier B.V. All rights reserved.
Tao, H; Rajendran, R B; Quetel, C R; Nakazato, T; Tominaga, M; Miyazaki, A
1999-10-01
A sensitive method for the determination of ultratrace organotin species in seawater is described. The merits and demerits of derivatization methods using Grignard reagent or sodium tetraethylborate (NaBEt4) were evaluated in terms of derivatization efficiency, applicability to the programmed temperature vaporization (PTV) method, and procedural blanks. The sensitivity of the gas chromatography/inductively coupled plasma mass spectrometry (GC/ICPMS) was improved by more than 100-fold by operating the shield torch at normal plasma conditions, compared with that obtained without using it. The absolute detection limit as tin reached subfemtogram (fg) levels. Furthermore, the detection limit in terms of relative concentration was improved 100-fold by using the PTV method, which enabled the injection of a large sample volume of as much as 100 microL without loss of analyte. When the organotin species in seawater were extracted into hexane with a preconcentration factor of 1000 after ethylation with NaBEt4 and a 100 microL aliquot of the extract was injected into the GC, the instrumental detection limit in relative concentration reached 0.01 pg/L in original seawater. Sources of contamination of organotin species during the sample preparation were examined, and a purification method of NaBEt4 was developed. Finally, the method was successfully applied to open ocean seawater samples containing organotin species at the level of 1-100 pg/L.
Yang, Tianxi; Guo, Xiaoyu; Wang, Hui; Fu, Shuyue; Wen, Ying; Yang, Haifeng
2015-06-15
New developments in the fields of human healthcare and social security call for the exploration of an easy and on-field method to detect drug-related biomarkers. In this paper, Au nanoparticles dotted magnetic nanocomposites (AMN) modified with inositol hexakisphosphate (IP6) were used as surface-enhanced Raman scattering (SERS) substrate to quickly monitor trace drug-related biomarkers in saliva and to on-site screen a trace drug biomarker in fingerprints. Due to inducing with an external magnet, such substrate presented a huge SERS activity, which has met the sensitivity requirement for assay to detect the drug biomarkers in saliva from the U.S. Substance Abuse and Mental Health Services Administration, and also the limit of detection for drug biomarker in fingerprint reached 100 nM. In addition, this AMN-based SERS assay was successfully conducted using a portable Raman spectrometer, which could be used to on-site and accurately differentiate between the smokers and drug addicts in near future. Copyright © 2015 Elsevier B.V. All rights reserved.
Foley, P; Shaw, D; Runyon, C; McConkey, S; Ikede, B
2000-01-01
A thymoma was tentatively diagnosed by radiographic and cytologic examination in a dog with hypercalcemia and elevated serum parathyroid hormone-related protein (PTHrP) concentration. Following surgical excision, the diagnosis of thymoma was confirmed via histopathologic examination, the hypercalcemia resolved, and the PTHrP concentration decreased to below detectable limits. Images Figure 1. Figure 2. PMID:11126493
A microRNA detection system based on padlock probes and rolling circle amplification
Jonstrup, Søren Peter; Koch, Jørn; Kjems, Jørgen
2006-01-01
The differential expression and the regulatory roles of microRNAs (miRNAs) are being studied intensively these years. Their minute size of only 19–24 nucleotides and strong sequence similarity among related species call for enhanced methods for reliable detection and quantification. Moreover, miRNA expression is generally restricted to a limited number of specific cells within an organism and therefore requires highly sensitive detection methods. Here we present a simple and reliable miRNA detection protocol based on padlock probes and rolling circle amplification. It can be performed without specialized equipment and is capable of measuring the content of specific miRNAs in a few nanograms of total RNA. PMID:16888321
A microRNA detection system based on padlock probes and rolling circle amplification.
Jonstrup, Søren Peter; Koch, Jørn; Kjems, Jørgen
2006-09-01
The differential expression and the regulatory roles of microRNAs (miRNAs) are being studied intensively these years. Their minute size of only 19-24 nucleotides and strong sequence similarity among related species call for enhanced methods for reliable detection and quantification. Moreover, miRNA expression is generally restricted to a limited number of specific cells within an organism and therefore requires highly sensitive detection methods. Here we present a simple and reliable miRNA detection protocol based on padlock probes and rolling circle amplification. It can be performed without specialized equipment and is capable of measuring the content of specific miRNAs in a few nanograms of total RNA.
Singh, Amardeep; Park, Seonhwa; Yang, Haesik
2013-05-21
Catalytic reactions of enzyme labels in enzyme-linked immunosorbent assays require a long incubation period to obtain high signal amplification. We present herein a simple immunosensing scheme in which the incubation period is minimized without a large increase in the detection limit. This scheme is based on electrochemical-enzymatic (EN) redox cycling using glucose oxidase (GOx) as an enzyme label, Ru(NH3)6(3+) as a redox mediator, and glucose as an enzyme substrate. Fast electron mediation of Ru(NH3)6(3+) between the electrode and the GOx label attached to the electrode allows high signal amplification. The acquisition of chronocoulometric charges at a potential in the mass transfer-controlled region excludes the influence of the kinetics of Ru(NH3)6(2+) electrooxidation and also facilitates high signal-to-background ratios. The reaction between reduced GOx and Ru(NH3)6(3+) is rapid even in air-saturated Tris buffer, where the faster competitive reaction between reduced GOx and dissolved oxygen also occurs. The direct electrooxidation of glucose at the electrode and the direct electron transfer between glucose and Ru(NH3)6(3+) that undesirably increase background levels occur relatively slowly. The detection limit for the EN redox cycling-based detection of cancer antigen 125 (CA-125) in human serum is slightly higher than 0.1 U/mL for the incubation period of 0 min, and the detection limits for the incubation periods of 5 and 10 min are slightly lower than 0.1 U/mL, indicating that the detection limits are almost similar irrespective of the incubation period and that the immunosensor is highly sensitive.
A SEARCH FOR MAGNESIUM IN EUROPA'S ATMOSPHERE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoerst, S. M.; Brown, M. E., E-mail: sarah.horst@colorado.edu
Europa's tenuous atmosphere results from sputtering of the surface. The trace element composition of its atmosphere is therefore related to the composition of Europa's surface. Magnesium salts are often invoked to explain Galileo Near Infrared Mapping Spectrometer spectra of Europa's surface, thus magnesium may be present in Europa's atmosphere. We have searched for magnesium emission in the Hubble Space Telescope Faint Object Spectrograph archival spectra of Europa's atmosphere. Magnesium was not detected and we calculate an upper limit on the magnesium column abundance. This upper limit indicates that either Europa's surface is depleted in magnesium relative to sodium and potassium,more » or magnesium is not sputtered as efficiently resulting in a relative depletion in its atmosphere.« less
Ultra-sensitive detection of leukemia by graphene
NASA Astrophysics Data System (ADS)
Akhavan, Omid; Ghaderi, Elham; Hashemi, Ehsan; Rahighi, Reza
2014-11-01
Graphene oxide nanoplatelets (GONPs) with extremely sharp edges (lateral dimensions ~20-200 nm and thicknesses <2 nm) were applied in extraction of the overexpressed guanine synthesized in the cytoplasm of leukemia cells. The blood serums containing the extracted guanine were used in differential pulse voltammetry (DPV) with reduced graphene oxide nanowall (rGONW) electrodes to develop fast and ultra-sensitive electrochemical detection of leukemia cells at leukemia fractions (LFs) of ~10-11 (as the lower detection limit). The stability of the DPV signals obtained by oxidation of the extracted guanine on the rGONWs was studied after 20 cycles. Without the guanine extraction, the DPV peaks relating to guanine oxidation of normal and abnormal cells overlapped at LFs <10-9, and consequently, the performance of rGONWs alone was limited at this level. As a benchmark, the DPV using glassy carbon electrodes was able to detect only LFs ~ 10-2. The ultra-sensitivity obtained by this combination method (guanine extraction by GONPs and then guanine oxidation by rGONWs) is five orders of magnitude better than the sensitivity of the best current technologies (e.g., specific mutations by polymerase chain reaction) which not only are expensive, but also require a few days for diagnosis.Graphene oxide nanoplatelets (GONPs) with extremely sharp edges (lateral dimensions ~20-200 nm and thicknesses <2 nm) were applied in extraction of the overexpressed guanine synthesized in the cytoplasm of leukemia cells. The blood serums containing the extracted guanine were used in differential pulse voltammetry (DPV) with reduced graphene oxide nanowall (rGONW) electrodes to develop fast and ultra-sensitive electrochemical detection of leukemia cells at leukemia fractions (LFs) of ~10-11 (as the lower detection limit). The stability of the DPV signals obtained by oxidation of the extracted guanine on the rGONWs was studied after 20 cycles. Without the guanine extraction, the DPV peaks relating to guanine oxidation of normal and abnormal cells overlapped at LFs <10-9, and consequently, the performance of rGONWs alone was limited at this level. As a benchmark, the DPV using glassy carbon electrodes was able to detect only LFs ~ 10-2. The ultra-sensitivity obtained by this combination method (guanine extraction by GONPs and then guanine oxidation by rGONWs) is five orders of magnitude better than the sensitivity of the best current technologies (e.g., specific mutations by polymerase chain reaction) which not only are expensive, but also require a few days for diagnosis. Electronic supplementary information (ESI) available. See DOI: 10.1039/C4NR04589K
Indoor determinants of dustborne allergens in Mexican homes
Hernández-Cadena, Leticia; Zeldin, Darryl C.; Sever, Michelle L.; Sly, Peter D.; London, Stephanie J.; Escamilla-Nuñez, María Consuelo; Romieu, Isabelle
2015-01-01
Exposure to indoor allergens represents a significant risk factor for allergies and asthma in several parts of the world. In Mexico, few studies have evaluated indoor allergens, including cat, dog, and mouse allergens and the factors that predict their presence. This study evaluates the main environmental and household predictors of high prenatal allergen levels and multiple allergen exposures in a birth cohort from Mexico City. A cross-sectional study was conducted as part of a birth cohort study of 1094 infants recruited during pregnancy and followed until delivery. We collected dust samples in a subset of 264 homes and assessed environmental factors. Der p 1, Der f 1, dust mite group 2, Fel d 1, Can f 1, Rat n 1, Mus m 1, and Bla g 2 concentrations in dust samples were measured using immunoassays. To define detectable allergen levels, the lowest limits of detection for each allergen were taken as cutoff points. Overall allergen exposure was considered high when four or more allergens exceeded detectable levels in the same household. Logistic regression was used for predictive models. Eighty-five percent of homes had at least one allergen in dust over the detection limit, 52.1% had high exposure (four or more allergens above detectable limits), and 11.7% of homes had detectable levels for more than eight allergens. Der p 1, Der p 2, Mus m 1, and Fel d 1 were the most frequent allergens detected. Each allergen had both common and distinct predictors. The main predictors of a high multiple allergen index were the size of the home, pesticide use, mother's age, mother as homemaker, and season. Increased indoor environmental allergen exposure is mainly related to sociodemographic factors and household cleaning. PMID:25715241
Singlet oxygen detection in biological systems: Uses and limitations.
Koh, Eugene; Fluhr, Robert
2016-07-02
The study of singlet oxygen in biological systems is challenging in many ways. Singlet oxygen is a relatively unstable ephemeral molecule, and its properties make it highly reactive with many biomolecules, making it difficult to quantify accurately. Several methods have been developed to study this elusive molecule, but most studies thus far have focused on those conditions that produce relatively large amounts of singlet oxygen. However, the need for more sensitive methods is required as one begins to explore the levels of singlet oxygen required in signaling and regulatory processes. Here we discuss the various methods used in the study of singlet oxygen, and outline their uses and limitations.
Nucleic Acid Aptamers: An Emerging Tool for Biotechnology and Biomedical Sensing
Ku, Ti-Hsuan; Zhang, Tiantian; Luo, Hua; Yen, Tony M.; Chen, Ping-Wei; Han, Yuanyuan; Lo, Yu-Hwa
2015-01-01
Detection of small molecules or proteins of living cells provides an exceptional opportunity to study genetic variations and functions, cellular behaviors, and various diseases including cancer and microbial infections. Our aim in this review is to give an overview of selected research activities related to nucleic acid-based aptamer techniques that have been reported in the past two decades. Limitations of aptamers and possible approaches to overcome these limitations are also discussed. PMID:26153774
Detection of the Spermicide Nonoxynol-9 Via GC-MS
NASA Astrophysics Data System (ADS)
Musah, Rabi A.; Vuong, Angela L.; Henck, Colin; Shepard, Jason R. E.
2012-05-01
The spermicide nonoxynol-9 is actually a complex mixture of dozens of closely related amphiphilic compounds, and the chemical properties of this assortment significantly hamper its characterization by GC-MS. The inability to perform routine GC-MS testing on nonoxynol-9 has limited its evidentiary value in forensic casework, which relies heavily on this technique for analysis. A disturbing trend in sexual assault is the use of condoms by assailants, to avoid leaving behind DNA evidence that can connect a perpetrator to a victim. This observation necessitates the development of alternative methods for the analysis of trace evidence that can show causal links between a victim and a suspect. Detection of lubricants associated with sexual assault is one such way to establish this connection. The development of GC-MS methods that permit facile detection of both nonoxynol-9 alone and nonoxynol-9 extracted from other complex matrices that have potential as trace evidence in sexual assault is reported. A detection limit of 2.14 μg of nonoxynol-9 is demonstrated, and a detailed mass spectral profile that elaborates on what is known of its structure is provided.
De Wild, John F.; Olsen, Mark L.; Olund, Shane D.
2002-01-01
A recent national sampling of streams in the United States revealed low methyl mercury concentrations in surface waters. The resulting median and mean concentrations, calculated from 104 samples, were 0.06 nanograms per liter (ng/L) and 0.15 ng/L, respectively. This level of methyl mercury in surface water in the United States has created a need for analytical techniques capable of detecting sub-nanogram per liter concentrations. In an attempt to create a U.S. Geological Survey approved method, the Wisconsin District Mercury Laboratory has adapted a distillation/ethylation/ gas-phase separation method with cold vapor atomic fluorescence spectroscopy detection for the determination of methyl mercury in filtered and unfiltered waters. This method is described in this report. Based on multiple analyses of surface water and ground-water samples, a method detection limit of 0.04 ng/L was established. Precision and accuracy were evaluated for the method using both spiked and unspiked ground-water and surface-water samples. The percent relative standard deviations ranged from 10.2 to 15.6 for all analyses at all concentrations. Average recoveries obtained for the spiked matrices ranged from 88.8 to 117 percent. The precision and accuracy ranges are within the acceptable method-performance limits. Considering the demonstrated detection limit, precision, and accuracy, the method is an effective means to quantify methyl mercury in waters at or below environmentally relevant concentrations
Yasaki, Hirotoshi; Yasui, Takao; Yanagida, Takeshi; Kaji, Noritada; Kanai, Masaki; Nagashima, Kazuki; Kawai, Tomoji; Baba, Yoshinobu
2017-10-11
Measuring ionic currents passing through nano- or micropores has shown great promise for the electrical discrimination of various biomolecules, cells, bacteria, and viruses. However, conventional measurements have shown there is an inherent limitation to the detectable particle volume (1% of the pore volume), which critically hinders applications to real mixtures of biomolecule samples with a wide size range of suspended particles. Here we propose a rational methodology that can detect samples with the detectable particle volume of 0.01% of the pore volume by measuring a transient current generated from the potential differences in a microfluidic bridge circuit. Our method substantially suppresses the background ionic current from the μA level to the pA level, which essentially lowers the detectable particle volume limit even for relatively large pore structures. Indeed, utilizing a microscale long pore structure (volume of 5.6 × 10 4 aL; height and width of 2.0 × 2.0 μm; length of 14 μm), we successfully detected various samples including polystyrene nanoparticles (volume: 4 aL), bacteria, cancer cells, and DNA molecules. Our method will expand the applicability of ionic current sensing systems for various mixed biomolecule samples with a wide size range, which have been difficult to measure by previously existing pore technologies.
Li, Xiang; Wang, Xiuxiu; Yang, Jielin; Liu, Yueming; He, Yuping; Pan, Liangwen
2014-05-16
To date, over 150 genetically modified (GM) crops are widely cultivated. To comply with regulations developed for genetically modified organisms (GMOs), including labeling policies, many detection methods for GMO identification and quantification have been developed. To detect the entrance and exit of unauthorized GM crop events in China, we developed a novel quadruplex real-time PCR method for simultaneous detection and quantification of GM cotton events GHB119 and T304-40 in cotton-derived products (based on the 5'-flanking sequence) and the insect-resistance gene Cry2Ae. The limit of detection was 10 copies for GHB119 and Cry2Ae and 25 copies for T304-40. The limit of quantification was 25 copies for GHB119 and Cry2Ae and 50 copies for T304-40. Moreover, low bias and acceptable standard deviation and relative standard deviation values were obtained in quantification analysis of six blind samples containing different GHB119 and T304-40 ingredients. The developed quadruplex quantitative method could be used for quantitative detection of two GM cotton events (GHB119 and T304-40) and Cry2Ae gene ingredient in cotton derived products.
2014-01-01
Background To date, over 150 genetically modified (GM) crops are widely cultivated. To comply with regulations developed for genetically modified organisms (GMOs), including labeling policies, many detection methods for GMO identification and quantification have been developed. Results To detect the entrance and exit of unauthorized GM crop events in China, we developed a novel quadruplex real-time PCR method for simultaneous detection and quantification of GM cotton events GHB119 and T304-40 in cotton-derived products (based on the 5′-flanking sequence) and the insect-resistance gene Cry2Ae. The limit of detection was 10 copies for GHB119 and Cry2Ae and 25 copies for T304-40. The limit of quantification was 25 copies for GHB119 and Cry2Ae and 50 copies for T304-40. Moreover, low bias and acceptable standard deviation and relative standard deviation values were obtained in quantification analysis of six blind samples containing different GHB119 and T304-40 ingredients. Conclusions The developed quadruplex quantitative method could be used for quantitative detection of two GM cotton events (GHB119 and T304-40) and Cry2Ae gene ingredient in cotton derived products. PMID:24884946
Zelaya, Ian A; Anderson, Jennifer A H; Owen, Micheal D K; Landes, Reid D
2011-03-23
Endogenous shikimic acid determinations are routinely used to assess the efficacy of glyphosate in plants. Numerous analytical methods exist in the public domain for the detection of shikimic acid, yet the most commonly cited comprise spectrophotometric and high-pressure liquid chromatography (HPLC) methods. This paper compares an HPLC and two spectrophotometric methods (Spec 1 and Spec 2) and assesses the effectiveness in the detection of shikimic acid in the tissues of glyphosate-treated plants. Furthermore, the study evaluates the versatility of two acid-based shikimic acid extraction methods and assesses the longevity of plant extract samples under different storage conditions. Finally, Spec 1 and Spec 2 are further characterized with respect to (1) the capacity to discern between shikimic acid and chemically related alicyclic hydroxy acids, (2) the stability of the chromophore (t1/2), (3) the detection limits, and (4) the cost and simplicity of undertaking the analytical procedure. Overall, spectrophotometric methods were more cost-effective and simpler to execute yet provided a narrower detection limit compared to HPLC. All three methods were specific to shikimic acid and detected the compound in the tissues of glyphosate-susceptible crops, increasing exponentially in concentration within 24 h of glyphosate application and plateauing at approximately 72 h. Spec 1 estimated more shikimic acid in identical plant extract samples compared to Spec 2 and, likewise, HPLC detection was more effective than spectrophotometric determinations. Given the unprecedented global adoption of glyphosate-resistant crops and concomitant use of glyphosate, an effective and accurate assessment of glyphosate efficacy is important. Endogenous shikimic acid determinations are instrumental in corroborating the efficacy of glyphosate and therefore have numerous applications in herbicide research and related areas of science as well as resolving many commercial issues as a consequence of glyphosate utilization.
Improving the detection of wind fields from LIDAR aerosol backscatter using feature extraction
NASA Astrophysics Data System (ADS)
Bickel, Brady R.; Rotthoff, Eric R.; Walters, Gage S.; Kane, Timothy J.; Mayor, Shane D.
2016-04-01
The tracking of winds and atmospheric features has many applications, from predicting and analyzing weather patterns in the upper and lower atmosphere to monitoring air movement from pig and chicken farms. Doppler LIDAR systems exist to quantify the underlying wind speeds, but cost of these systems can sometimes be relatively high, and processing limitations exist. The alternative is using an incoherent LIDAR system to analyze aerosol backscatter. Improving the detection and analysis of wind information from aerosol backscatter LIDAR systems will allow for the adoption of these relatively low cost instruments in environments where the size, complexity, and cost of other options are prohibitive. Using data from a simple aerosol backscatter LIDAR system, we attempt to extend the processing capabilities by calculating wind vectors through image correlation techniques to improve the detection of wind features.
Kim, Yong-Hyun; Kim, Ki-Hyun
2012-10-02
To understand the ultimately lowest detection range of volatile organic compounds (VOCs) in air, application of a high sensitivity analytical system was investigated by coupling thermal desorption (TD) technique with gas chromatography (GC) and time-of-flight (TOF) mass spectrometry (MS). The performance of the TD-GC/TOF MS system was evaluated using liquid standards of 19 target VOCs prepared in the range of 35 pg to 2.79 ng per μL. Studies were carried out using both total ion chromatogram (TIC) and extracted ion chromatogram (EIC) mode. EIC mode was used for calibration to reduce background and to improve signal-to-noise. The detectability of 19 target VOCs, if assessed in terms of method detection limit (MDL, per US EPA definition) and limit of detection (LOD), averaged 5.90 pg and 0.122 pg, respectively, with the mean coefficient of correlation (R(2)) of 0.9975. The minimum quantifiable mass of target analytes, when determined using real air samples by the TD-GC/TOF MS, is highly comparable to the detection limits determined experimentally by standard. In fact, volumes for the actual detection of the major aromatic VOCs like benzene, toluene, and xylene (BTX) in ambient air samples were as low as 1.0 mL in the 0.11-2.25 ppb range. It was thus possible to demonstrate that most target compounds including those in low abundance could be reliably quantified at concentrations down to 0.1 ppb at sample volumes of less than 10 mL. The unique sensitivity of this advanced analytical system can ultimately lead to a shift in field sampling strategy with smaller air sample volumes facilitating faster, simpler air sampling (e.g., use of gas syringes rather than the relative complexity of pumps or bags/canisters), with greatly reduced risk of analyte breakthrough and minimal interference, e.g., from atmospheric humidity. The improved detection limits offered by this system can also enhance accuracy and measurement precision.
Monopole search below the Parker limit with the MACRO detector at Gran Sasso
NASA Technical Reports Server (NTRS)
Tarle, G.
1985-01-01
The MACRO detector approved for the Gran Sasso Underground Laboratory in Italy will be the first capable of performing a definitive search for super-massive grand unified theory (GUT) monopoles at a level significantly below the Parker flux limit of 10 to the minus 15th power square centimeters Sr(-1) 5(-1). GUT monopoles will move at very low velocities (V approx. 0.001 c) relative to the Earth and a multifaceted detection technique is required to assume their unambiguous identification. Calculations of scintillator response to slow monopoles and measurements of scintillation efficiency for low energy protons have shown that bare monopoles and electrically charged monopoles moving at velocities as low as 5 x .0001 c will produce detectable scintillation signals. The time-of-flight between two thick (25 cm) liquid scintillation layers separated by 4.3m will be used in conjunction with waveform digitization of signals of extended duration in each thick scintillator to provide a redundant signature for slow penetrating particles. Limited streamer tubes filled with He and n-pentane will detect bare monopoles with velocities as low as 1 x 0.0001 c by exploiting monopole induced level mixing and the Penning effect.
Breath acetone monitoring by portable Si:WO3 gas sensors
Righettoni, Marco; Tricoli, Antonio; Gass, Samuel; Schmid, Alex; Amann, Anton; Pratsinis, Sotiris E.
2013-01-01
Breath analysis has the potential for early stage detection and monitoring of illnesses to drastically reduce the corresponding medical diagnostic costs and improve the quality of life of patients suffering from chronic illnesses. In particular, the detection of acetone in the human breath is promising for non-invasive diagnosis and painless monitoring of diabetes (no finger pricking). Here, a portable acetone sensor consisting of flame-deposited and in situ annealed, Si-doped epsilon-WO3 nanostructured films was developed. The chamber volume was miniaturized while reaction-limited and transport-limited gas flow rates were identified and sensing temperatures were optimized resulting in a low detection limit of acetone (~20 ppb) with short response (10–15 s) and recovery times (35–70 s). Furthermore, the sensor signal (response) was robust against variations of the exhaled breath flow rate facilitating application of these sensors at realistic relative humidities (80–90%) as in the human breath. The acetone content in the breath of test persons was monitored continuously and compared to that of state-of-the-art proton transfer reaction mass spectrometry (PTR-MS). Such portable devices can accurately track breath acetone concentration to become an alternative to more elaborate breath analysis techniques. PMID:22790702
Cryogen-free heterodyne-enhanced mid-infrared Faraday rotation spectrometer
Wang, Yin; Nikodem, Michal; Wysocki, Gerard
2013-01-01
A new detection method for Faraday rotation spectra of paramagnetic molecular species is presented. Near shot-noise limited performance in the mid-infrared is demonstrated using a heterodyne enhanced Faraday rotation spectroscopy (H-FRS) system without any cryogenic cooling. Theoretical analysis is performed to estimate the ultimate sensitivity to polarization rotation for both heterodyne and conventional FRS. Sensing of nitric oxide (NO) has been performed with an H-FRS system based on thermoelectrically cooled 5.24 μm quantum cascade laser (QCL) and a mercury-cadmium-telluride photodetector. The QCL relative intensity noise that dominates at low frequencies is largely avoided by performing the heterodyne detection in radio frequency range. H-FRS exhibits a total noise level of only 3.7 times the fundamental shot noise. The achieved sensitivity to polarization rotation of 1.8 × 10−8 rad/Hz1/2 is only 5.6 times higher than the ultimate theoretical sensitivity limit estimated for this system. The path- and bandwidth-normalized NO detection limit of 3.1 ppbv-m/Hz1/2 was achieved using the R(17/2) transition of NO at 1906.73 cm−1. PMID:23388967
Influence of the vibro-acoustic sensor position on cavitation detection in a Kaplan turbine
NASA Astrophysics Data System (ADS)
Schmidt, H.; Kirschner, O.; Riedelbauch, S.; Necker, J.; Kopf, E.; Rieg, M.; Arantes, G.; Wessiak, M.; Mayrhuber, J.
2014-03-01
Hydraulic turbines can be operated close to the limits of the operating range to meet the demand of the grid. When operated close to the limits, the risk increases that cavitation phenomena may occur at the runner and / or at the guide vanes of the turbine. Cavitation in a hydraulic turbine can cause material erosion on the runner and other turbine parts and reduce the durability of the machine leading to required outage time and related repair costs. Therefore it is important to get reliable information about the appearance of cavitation during prototype operation. In this experimental investigation the high frequency acoustic emissions and vibrations were measured at 20 operating points with different cavitation behaviour at different positions in a large prototype Kaplan turbine. The main goal was a comparison of the measured signals at different sensor positions to identify the sensitivity of the location for cavitation detection. The measured signals were analysed statistically and specific values were derived. Based on the measured signals, it is possible to confirm the cavitation limit of the examined turbine. The result of the investigation shows that the position of the sensors has a significant influence on the detection of cavitation.
Molecular diagnosis of protozoan parasites by Recombinase Polymerase Amplification.
Castellanos-Gonzalez, A; White, A C; Melby, P; Travi, B
2018-06-01
Infections caused by protozoan parasites affect millions of people around the world. Traditionally, diagnosis was made by microscopy, which is insensitive and in some cases not specific. Molecular methods are highly sensitive and specific, but equipment costs and personnel training limit its availability only to specialized centers, usually far from populations with the highest risk of infection. Inexpensive methods that can be applied at the point of care (POC), especially in places with limited health infrastructure, would be a major advantage. Isothermal amplification of nucleic acids does not require thermocyclers and is relatively inexpensive and easy to implement. Among isothermal methods, recombinase polymerase amplification (RPA) is sensitive and potentially applicable at POC. We and others have developed RPA diagnostic tests to detect protozoan parasites of medical importance. Overall, our results have shown high specificity with limits of detection similar to PCR. Currently, the optimization of RPA for use at the POC is under development, and in the near future the tests should become available to detect protozoan infections in the field. In this review we discuss the current status, challenges, and future of RPA in the field of molecular diagnosis of protozoan parasites. Copyright © 2018 Elsevier B.V. All rights reserved.
Han, Dan; Wei, Chunying
2018-05-01
In this work, we develop a fluorescent molecular beacon based on the DNA-templated silver nanoclusters (DNA-Ag NCs). The skillfully designed molecular beacon can be conveniently used for detection of diverse virulence genes as long as the corresponding recognition sequences are embedded. Importantly, the constructed detection system allows simultaneous detection of multiple nucleic acids, which is attributed to non-overlapping emission spectra of the as-synthesized silver nanoclusters. Based on the target-induced fluorescence enhancement, three infectious disease-related genes HIV, H1N1, and H5N1 are detected, and the corresponding detection limits are 3.53, 0.12 and 3.95nM, respectively. This design allows specific, versatile and simultaneous detection of diverse targets with easy operation and low cost. Copyright © 2017 Elsevier B.V. All rights reserved.
Tang, Tianyu; Zhou, Shilin; Deng, Zhipeng; Zou, Huanxin; Lei, Lin
2017-02-10
Detecting vehicles in aerial imagery plays an important role in a wide range of applications. The current vehicle detection methods are mostly based on sliding-window search and handcrafted or shallow-learning-based features, having limited description capability and heavy computational costs. Recently, due to the powerful feature representations, region convolutional neural networks (CNN) based detection methods have achieved state-of-the-art performance in computer vision, especially Faster R-CNN. However, directly using it for vehicle detection in aerial images has many limitations: (1) region proposal network (RPN) in Faster R-CNN has poor performance for accurately locating small-sized vehicles, due to the relatively coarse feature maps; and (2) the classifier after RPN cannot distinguish vehicles and complex backgrounds well. In this study, an improved detection method based on Faster R-CNN is proposed in order to accomplish the two challenges mentioned above. Firstly, to improve the recall, we employ a hyper region proposal network (HRPN) to extract vehicle-like targets with a combination of hierarchical feature maps. Then, we replace the classifier after RPN by a cascade of boosted classifiers to verify the candidate regions, aiming at reducing false detection by negative example mining. We evaluate our method on the Munich vehicle dataset and the collected vehicle dataset, with improvements in accuracy and robustness compared to existing methods.
Lee, Gyeong-Hweon; Bang, Dae-Young; Lim, Jung-Hoon; Yoon, Seok-Min; Yea, Myeong-Jai; Chi, Young-Min
2017-10-15
In this study, a rapid method for simultaneous detection of ethyl carbamate (EC) and urea in Korean rice wine was developed. To achieve quantitative analysis of EC and urea, the conditions for Ultra-performance liquid chromatography (UPLC) separation and atmospheric-pressure chemical ionization tandem mass spectrometry (APCI-MS/MS) detection were first optimized. Under the established conditions, the detection limit, relative standard deviation and linear range were 2.83μg/L, 3.75-5.96%, and 0.01-10.0mg/L, respectively, for urea; the corresponding values were 0.17μg/L, 1.06-4.01%, and 1.0-50.0μg/L, respectively, for EC. The correlation between the contents of EC and its precursor urea was determined under specific pH (3.5 and 4.5) and temperature (4, 25, and 50°C) conditions using the developed method. As a result, EC content was increased with greater temperature and lower pH. In Korean rice wine, urea was detected 0.19-1.37mg/L and EC was detected 2.0-7.7μg/L. The method developed in this study, which has the advantages of simplified sample preparation, low detection limits, and good selectivity, was successfully applied for the rapid analysis of EC and urea. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
He, Yi; Peng, Rufang
2014-11-01
In this work, luminol functionalized gold nanoparticles (LuAuNPs) were used as colorimetric and chemiluminescent probes for visual, label free, sensitive and selective detection of minocycline (MC). The LuAuNPs were prepared by simple one-pot reduction of HAuCl4 with luminol, which exhibited a good chemiluminescence (CL) activity owing to the presence of luminol molecules on their surface and surface plasmon resonance absorption. In the absence of MC, the color of LuAuNPs was wine red and their size was relatively small (˜25 nm), which could react with silver nitrate, producing a strong CL emission. Upon the addition of MC at acidic buffer solutions, the electrostatic interaction between positively charged MC and negatively charged LuAuNPs caused the aggregation of LuAuNPs, generating a purple or blue color. Simultaneously, the aggregated LuAuNPs did not effectively react with silver nitrate, producing a weak CL emission. The signal change was linearly dependent on the logarithm of MC concentration in the range from 30 ng to 1.0 μg for colorimetric detection and from 10 ng to 1.0 μg for CL detection. With colorimetry, a detection limit of 22 ng was achieved, while the detection limit for CL detection modality was 9.7 ng.
He, Guochun; Tsutsumi, Tomoaki; Zhao, Bin; Baston, David S.; Zhao, Jing; Heath-Pagliuso, Sharon; Denison, Michael S.
2011-01-01
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD, dioxin) and related dioxin-like chemicals are widespread and persistent environmental contaminants that produce diverse toxic and biological effects through their ability to bind to and activate the Ah receptor (AhR) and AhR-dependent gene expression. The chemically activated luciferase expression (CALUX) system is an AhR-responsive recombinant luciferase reporter gene–based cell bioassay that has been used in combination with chemical extraction and cleanup methods for the relatively rapid and inexpensive detection and relative quantitation of dioxin and dioxin-like chemicals in a wide variety of sample matrices. Although the CALUX bioassay has been validated and used extensively for screening purposes, it has some limitations when screening samples with very low levels of dioxin-like chemicals or when there is only a small amount of sample matrix for analysis. Here, we describe the development of third-generation (G3) CALUX plasmids with increased numbers of dioxin-responsive elements, and stable transfection of these new plasmids into mouse hepatoma (Hepa1c1c7) cells has produced novel amplified G3 CALUX cell bioassays that respond to TCDD with a dramatically increased magnitude of luciferase induction and significantly lower minimal detection limit than existing CALUX-type cell lines. The new G3 CALUX cell lines provide a highly responsive and sensitive bioassay system for the detection and relative quantitation of very low levels of dioxin-like chemicals in sample extracts. PMID:21775728
Connor, Brooke F.; Rose, Donna L.; Noriega, Mary C.; Murtaugh, Lucinda K.; Abney, Sonja R.
1998-01-01
This report presents precision and accuracy data for volatile organic compounds (VOCs) in the nanogram-per-liter range, including aromatic hydrocarbons, reformulated fuel components, and halogenated hydrocarbons using purge and trap capillary-column gas chromatography/mass spectrometry. One-hundred-four VOCs were initially tested. Of these, 86 are suitable for determination by this method. Selected data are provided for the 18 VOCs that were not included. This method also allows for the reporting of semiquantitative results for tentatively identified VOCs not included in the list of method compounds. Method detection limits, method performance data, preservation study results, and blank results are presented. The authors describe a procedure for reporting low-concentration detections at less than the reporting limit. The nondetection value (NDV) is introduced as a statistically defined reporting limit designed to limit false positives and false negatives to less than 1 percent. Nondetections of method compounds are reported as ?less than NDV.? Positive detections measured at less than NDV are reported as estimated concentrations to alert the data user to decreased confidence in accurate quantitation. Instructions are provided for analysts to report data at less than the reporting limits. This method can support the use of either method reporting limits that censor detections at lower concentrations or the use of NDVs as reporting limits. The data-reporting strategy for providing analytical results at less than the reporting limit is a result of the increased need to identify the presence or absence of environmental contaminants in water samples at increasingly lower concentrations. Long-term method detection limits (LTMDLs) for 86 selected compounds range from 0.013 to 2.452 micrograms per liter (?g/L) and differ from standard method detection limits (MDLs) in that the LTMDLs include the long-term variance of multiple instruments, multiple operators, and multiple calibrations over a longer time. For these reasons, LTMDLs are expected to be slightly higher than standard MDLs. Recoveries for all of the VOCs tested ranged from 36 (tert-butyl formate) to 155 percent (pentachlorobenzene). The majority of the compounds ranged from 85 to 115 percent recovery and had less than 5 percent relative standard deviation for concentrations spiked between 1 to 500 ?g/L in volatile blank-, surface-, and ground-water samples. Recoveries of 60 set spikes at low concentrations ranged from 70 to 114 percent (1,2,3- trimethylbenzene and acetone). Recovery data were collected over 6 months with multiple instruments, operators, and calibrations. In this method, volatile organic compounds are extracted from a water sample by actively purging with helium. The VOCs are collected onto a sorbent trap, thermally desorbed, separated by a Megabore gas chromatographic capillary column, and finally determined by a full-scan quadrupole mass spectrometer. Compound identification is confirmed by the gas chromatographic retention time and by the resultant mass spectrum, typically identified by three unique ions. An unknown compound detected in a sample can be tentatively identified by comparing the unknown mass spectrum to reference spectra in the mass-spectra computer-data system library compiled by the National Institute of Standards and Technology.
Search times and probability of detection in time-limited search
NASA Astrophysics Data System (ADS)
Wilson, David; Devitt, Nicole; Maurer, Tana
2005-05-01
When modeling the search and target acquisition process, probability of detection as a function of time is important to war games and physical entity simulations. Recent US Army RDECOM CERDEC Night Vision and Electronics Sensor Directorate modeling of search and detection has focused on time-limited search. Developing the relationship between detection probability and time of search as a differential equation is explored. One of the parameters in the current formula for probability of detection in time-limited search corresponds to the mean time to detect in time-unlimited search. However, the mean time to detect in time-limited search is shorter than the mean time to detect in time-unlimited search and the relationship between them is a mathematical relationship between these two mean times. This simple relationship is derived.
Sarais, Giorgia; Caboni, Pierluigi; Sarritzu, Erika; Russo, Mariateresa; Cabras, Paolo
2008-05-14
Neem-based insecticides containing azadirachtin and related azadirachtoids are widely used in agriculture. Here, we report an analytical method for the rapid and accurate quantification of the insecticide azadirachtin A and B and other azadirachtoids such as salannin, nimbin, and their deacetylated analogues on tomatoes and peaches. Azadirachtoids were extracted from fruits and vegetables with acetonitrile. Using high-performance liquid chromatography/electrospray ionization tandem mass spectrometer, azadirachtoids were selectively detected monitoring the multiple reaction transitions of sodium adduct precursor ions. For azadirachtin A, calibration was linear over a working range of 1-1000 microg/L with r > 0.996. The limit of detection and limit of quantification for azadirachtin A were 0.4 and 0.8 microg/kg, respectively. The presence of interfering compounds in the peach and tomato extracts was evaluated and found to be minimal. Because of the linear behavior, it was concluded that the multiple reaction transitions of sodium adduct ions can be used for analytical purposes, that is, for the identification and quantification of azadirachtin A and B and related azadirachtoids in fruit and vegetable extracts at trace levels.
ABSENCE OF SIGNIFICANT COOL DISKS IN YOUNG STELLAR OBJECTS EXHIBITING REPETITIVE OPTICAL OUTBURSTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Hauyu Baobab; Hirano, Naomi; Takami, Michihiro
2016-01-10
We report Submillimeter Array 1.3 mm high angular resolution observations toward the four EXor-type outbursting young stellar objects VY Tau, V1118 Ori, V1143 Ori, and NY Ori. The data mostly show low dust masses M{sub dust} in the associated circumstellar disks. Among the sources, NY Ori possesses a relatively massive disk with M{sub dust} ∼ 9 × 10{sup −4}M{sub ⊙}. V1118 Ori has a marginal detection equivalent to M{sub dust} ∼ 6 × 10{sup −5}M{sub ⊙}. V1143 Ori has a non-detection also equivalent to M{sub dust} < 6 × 10{sup −5}M{sub ⊙}. For the nearest source, VY Tau, we get a surprising non-detection that provides a stringent upper limit M{sub dust} < 6 × 10{sup −6}M{sub ⊙}.more » We interpret our findings as suggesting that the gas and dust reservoirs that feed the short-duration, repetitive optical outbursts seen in some EXors may be limited to the small-scale, innermost region of their circumstellar disks. This hot dust may have escaped our detection limits. Follow-up, more sensitive millimeter observations are needed to improve our understanding of the triggering mechanisms of EXor-type outbursts.« less
Molecular interferometric imaging study of molecular interactions
NASA Astrophysics Data System (ADS)
Zhao, Ming; Wang, Xuefeng; Nolte, David
2008-02-01
Molecular Interferometric Imaging (MI2) is a sensitive detection platform for direct optical detection of immobilized biomolecules. It is based on inline common-path interferometry combined with far-field optical imaging. The substrate is a simple thermal oxide on a silicon surface with a thickness at or near the quadrature condition that produces a π/2 phase shift between the normal-incident wave reflected from the top oxide surface and the bottom silicon surface. The presence of immobilized or bound biomolecules on the surface produces a relative phase shift that is converted to a far-field intensity shift and is imaged by a reflective microscope onto a CCD camera. Shearing interferometry is used to remove the spatial 1/f noise from the illumination to achieve shot-noise-limited detection of surface dipole density profiles. The lateral resolution of this technique is diffraction limited at 0.4 micron, and the best longitudinal resolution is 10 picometers. The minimum detectable mass at the metrology limit is 2 attogram, which is 8 antibody molecules of size 150 kDa. The corresponding scaling mass sensitivity is 5 fg/mm compared with 1 pg/mm for typical SPR sensitivity. We have applied MI2 to immunoassay applications, and real-time binding kinetics has been measured for antibody-antigen reactions. The simplicity of the substrate and optical read-out make MI2 a promising analytical assay tool for high-throughput screening and diagnostics.
Tregidgo, Daniel J; West, Sarah E; Ashmore, Mike R
2013-11-01
Citizen science is having increasing influence on environmental monitoring as its advantages are becoming recognised. However methodologies are often simplified to make them accessible to citizen scientists. We tested whether a recent citizen science survey (the OPAL Air Survey) could detect trends in lichen community composition over transects away from roads. We hypothesised that the abundance of nitrophilic lichens would decrease with distance from the road, while that of nitrophobic lichens would increase. The hypothesised changes were detected along strong pollution gradients, but not where the road source was relatively weak, or background pollution relatively high. We conclude that the simplified OPAL methodology can detect large contrasts in nitrogenous pollution, but it may not be able to detect more subtle changes in pollution exposure. Similar studies are needed in conjunction with the ever-growing body of citizen science work to ensure that the limitations of these methods are fully understood. Copyright © 2013 Elsevier Ltd. All rights reserved.
Tran, H V; Piro, B; Reisberg, S; Huy Nguyen, L; Dung Nguyen, T; Duc, H T; Pham, M C
2014-12-15
We design an electrochemical immunosensor for miRNA detection, based on screen-printed gold electrodes modified with reduced graphene oxide and carbon nanotubes. An original immunological approach is followed, using antibodies directed to DNA.RNA hybrids. An electrochemical ELISA-like amplification strategy was set up using a secondary antibody conjugated to horseradish peroxidase (HRP). Hydroquinone is oxidized into benzoquinone by the HRP/H2O2 catalytic system. In turn, benzoquinone is electroreduced into hydroquinone at the electrode. The catalytic reduction current is related to HRP amount immobilized on the surface, which itself is related to miRNA.DNA surface density on the electrode. This architecture, compared to classical optical detection, lowers the detection limit down to 10 fM. Two miRNAs were studied: miR-141 (a prostate biomarker) and miR-29b-1 (a lung cancer biomarker). Copyright © 2014 Elsevier B.V. All rights reserved.
Some Aspects of the Radio Emission of EGRET-Detected Blazars
NASA Technical Reports Server (NTRS)
Lin, Y. C.; Bertsch, D. L.; Bloom, S. D.; Esposito, J. A.; Hartman, R. C.; Hunter, S. D.; Kniffen, D. A.; Kanbach, G.; Mayer-Hasselwander, H. A.; Michelson, P. F.
1999-01-01
It has long been recognized that the high-latitude Energetic Gamma Ray Experiment Telescope (EGRET) sources can be identified with blazars of significant radio emission. Many aspects of the relation between high-energy gamma-ray emission and radio emission of EGRET-detected blazars remain uncertain. In this paper, we use the results of the recently published Third EGRET Source Catalog to examine in more detail to what extent the EGRET flux and the radio flux are correlated. In particular we examine the correlation (or the lack of it) in flux level, spectral shape, temporal variation, and detection limit. Many significant previous studies in these areas are also evaluated.
[Detection of recombinant-DNA in foods from stacked genetically modified plants].
Sorokina, E Iu; Chernyshova, O N
2012-01-01
A quantitative real-time multiplex polymerase chain reaction method was applied to the detection and quantification of MON863 and MON810 in stacked genetically modified maize MON 810xMON 863. The limit of detection was approximately 0,1%. The accuracy of the quantification, measured as bias from the accepted value and the relative repeatability standard deviation, which measures the intra-laboratory variability, were within 25% at each GM-level. A method verification has demonstrated that the MON 863 and the MON810 methods can be equally applied in quantification of the respective events in stacked MON810xMON 863.
Probabilistic double guarantee kidnapping detection in SLAM.
Tian, Yang; Ma, Shugen
2016-01-01
For determining whether kidnapping has happened and which type of kidnapping it is while a robot performs autonomous tasks in an unknown environment, a double guarantee kidnapping detection (DGKD) method has been proposed. The good performance of DGKD in a relative small environment is shown. However, a limitation of DGKD is found in a large-scale environment by our recent work. In order to increase the adaptability of DGKD in a large-scale environment, an improved method called probabilistic double guarantee kidnapping detection is proposed in this paper to combine probability of features' positions and the robot's posture. Simulation results demonstrate the validity and accuracy of the proposed method.
NASA Technical Reports Server (NTRS)
Biemann, K.; Lavoie, J. M., Jr.
1979-01-01
The Viking molecular analysis experiment has demonstrated the absence (within the detection limits which range from levels of parts per million to below parts per billion) of organic substances in the Martian surface soil at the two Viking landing sites. Laboratory experiments with sterile and nonsterile antarctic samples further demonstrate the capability and reliability of the instrument. The circumstances under which organic components could have escaped detection, such as inaccessibility or extreme thermal stability of organic polymers, are discussed but are found to be unlikely. The inability of the instrument to detect free oxygen evolved from soil samples is pointed out.
Quantifying environmental limiting factors on tree cover using geospatial data.
Greenberg, Jonathan A; Santos, Maria J; Dobrowski, Solomon Z; Vanderbilt, Vern C; Ustin, Susan L
2015-01-01
Environmental limiting factors (ELFs) are the thresholds that determine the maximum or minimum biological response for a given suite of environmental conditions. We asked the following questions: 1) Can we detect ELFs on percent tree cover across the eastern slopes of the Lake Tahoe Basin, NV? 2) How are the ELFs distributed spatially? 3) To what extent are unmeasured environmental factors limiting tree cover? ELFs are difficult to quantify as they require significant sample sizes. We addressed this by using geospatial data over a relatively large spatial extent, where the wall-to-wall sampling ensures the inclusion of rare data points which define the minimum or maximum response to environmental factors. We tested mean temperature, minimum temperature, potential evapotranspiration (PET) and PET minus precipitation (PET-P) as potential limiting factors on percent tree cover. We found that the study area showed system-wide limitations on tree cover, and each of the factors showed evidence of being limiting on tree cover. However, only 1.2% of the total area appeared to be limited by the four (4) environmental factors, suggesting other unmeasured factors are limiting much of the tree cover in the study area. Where sites were near their theoretical maximum, non-forest sites (tree cover < 25%) were primarily limited by cold mean temperatures, open-canopy forest sites (tree cover between 25% and 60%) were primarily limited by evaporative demand, and closed-canopy forests were not limited by any particular environmental factor. The detection of ELFs is necessary in order to fully understand the width of limitations that species experience within their geographic range.
Luber, Florian; Demmel, Anja; Hosken, Anne; Busch, Ulrich; Engel, Karl-Heinz
2012-06-13
The confectionery ingredient marzipan is exclusively prepared from almond kernels and sugar. The potential use of apricot kernels, so-called persipan, is an important issue for the quality assessment of marzipan. Therefore, a ligation-dependent probe amplification (LPA) assay was developed that enables a specific and sensitive detection of apricot DNA, as an indicator for the presence of persipan. The limit of detection was determined to be 0.1% persipan in marzipan. The suitability of the method was confirmed by the analysis of 20 commercially available food samples. The integration of a Prunus -specific probe in the LPA assay as a reference allowed for the relative quantitation of persipan in marzipan. The limit of quantitation was determined to be 0.5% persipan in marzipan. The analysis of two self-prepared mixtures of marzipan and persipan demonstrated the applicability of the quantitation method at concentration levels of practical relevance for quality control.
Mass Spectrometry Based Ultrasensitive DNA Methylation Profiling Using Target Fragmentation Assay.
Lin, Xiang-Cheng; Zhang, Ting; Liu, Lan; Tang, Hao; Yu, Ru-Qin; Jiang, Jian-Hui
2016-01-19
Efficient tools for profiling DNA methylation in specific genes are essential for epigenetics and clinical diagnostics. Current DNA methylation profiling techniques have been limited by inconvenient implementation, requirements of specific reagents, and inferior accuracy in quantifying methylation degree. We develop a novel mass spectrometry method, target fragmentation assay (TFA), which enable to profile methylation in specific sequences. This method combines selective capture of DNA target from restricted cleavage of genomic DNA using magnetic separation with MS detection of the nonenzymatic hydrolysates of target DNA. This method is shown to be highly sensitive with a detection limit as low as 0.056 amol, allowing direct profiling of methylation using genome DNA without preamplification. Moreover, this method offers a unique advantage in accurately determining DNA methylation level. The clinical applicability was demonstrated by DNA methylation analysis using prostate tissue samples, implying the potential of this method as a useful tool for DNA methylation profiling in early detection of related diseases.
Jacchia, Sara; Nardini, Elena; Savini, Christian; Petrillo, Mauro; Angers-Loustau, Alexandre; Shim, Jung-Hyun; Trijatmiko, Kurniawan; Kreysa, Joachim; Mazzara, Marco
2015-02-18
In this study, we developed, optimized, and in-house validated a real-time PCR method for the event-specific detection and quantification of Golden Rice 2, a genetically modified rice with provitamin A in the grain. We optimized and evaluated the performance of the taxon (targeting rice Phospholipase D α2 gene)- and event (targeting the 3' insert-to-plant DNA junction)-specific assays that compose the method as independent modules, using haploid genome equivalents as unit of measurement. We verified the specificity of the two real-time PCR assays and determined their dynamic range, limit of quantification, limit of detection, and robustness. We also confirmed that the taxon-specific DNA sequence is present in single copy in the rice genome and verified its stability of amplification across 132 rice varieties. A relative quantification experiment evidenced the correct performance of the two assays when used in combination.
The Role of Coherent Detection
NASA Technical Reports Server (NTRS)
Zmuidzinas, J.
2004-01-01
Many interesting astronomical objects, such as galaxies, molecular clouds, PDRs, star - forming regions, protostars, evolved stars, planets, and comets, have rich submillimeter spectra. In order to avoid line blending, and to be able to resolve the line shape, it is often necessary to measure these spectra at high resolution. This paper discusses the relative advantages and limitations of coherent and direct detection for high resolution spectroscopy in the submillimeter and far - infrared. In principle, direct detection has a fundamental sensitivity advantage. In practice, it is di.cult to realize this advantage given the sensitivities of existing detectors and reasonable constraints on the instrument volume. Thus, coherent detection can be expected to play an important role in submillimeter and far - infrared astrophysics well into the future.
Gunasekara, Dulan B.; Hulvey, Matthew K.; Lunte, Susan M.
2012-01-01
The combination of microchip electrophoresis (ME) with amperometric detection leads to a number of analytical challenges that are associated with isolating the detector from the high voltages used for the separation. While methods such as end-channel alignment and the use of decouplers have been employed, they have limitations. A less common method has been to utilize an electrically isolated potentiostat. This approach allows placement of the working electrode directly in the separation channel without using a decoupler. This paper explores the use of microchip electrophoresis and electrochemical detection (ME-EC) with an electrically isolated potentiostat for the separation and in-channel detection of several biologically important anions. The separation employed negative polarity voltages and tetradecyltrimethylammonium bromide (TTAB, as a buffer modifier) for the separation of nitrite (NO2-), glutathione (GSH), ascorbic acid (AA), and tyrosine (Tyr). A half-wave potential (E½) shift of approximately negative 500 mV was observed for NO2- and H2O2 standards in the in-channel configuration compared to end channel. Higher separation efficiencies were observed for both NO2- and H2O2 with the in-channel detection configuration. The limits of detection were approximately two-fold lower and the sensitivity was approximately two-fold higher for in-channel detection of nitrite when compared to end-channel. The application of this microfluidic device for the separation and detection of biomarkers related to oxidative stress is described. PMID:21437918
Sheu, Ceshing; Chen, Shu-Chuan; Lo, Chi-Chu
2010-07-01
A high performance liquid chromatographic (HPLC) analysis method with an ultraviolet (UV) detector and an Aqua C18 (250 x 4.6 mm, Phenomenex) column were applied to analyze the antibiotic fungicide kasugamycin in water. An aromatic sulfonic acid spe column (Backerbond, J. T. Backer) was used to remove the interfering materials from irrigation water. A good linear relation existed between the concentration of the fungicide and the peak area, and correlation coefficient of linearity from 0.1 to 10.2 microg/mL was 0.998. The accuracies expressed as the recoveries of kasugamycin from irrigation water ranged from 112.2 to 111.7 %. The precisions expressed as relative standard deviations (RSD) were found to be below 7.0 %. The quantitative detection limit (LOQ) of kasugamycin in irrigation water was set at 2.2 microg/mL which was 2-times higher than the method detection limit (MDL) 1.03 microg/mL. Electrospray ionization-mass (ESI-MS) and fast-atom bombardment-mass (FAB-MS) were applied to compare the ability of identifying the component of the eluent peak from HPLC, and the result indicated that electrospray ionization-mass (ESI-MS) was more sensitive than fast-atom bombardment-mass (FAB-MS) in the detection of kasugamycin. There was no kasugamycin residue detected in irrigation water samples collected from paddyfields at Wufong, indicated that the residues of kasugamycin in water were less than 2.2 microg/mL, and the risk of water contamination was very low.
Lee, E.A.; Zimmerman, L.R.; Bhullar, B.S.; Thurman, E.M.
2002-01-01
A novel, sensitive, linker-assisted enzyme-linked immunosorbent assay (L'ELISA) was compared to on-line solidphase extraction (SPE) with high-performance liquid chromatography/mass spectrometry (HPLC/MS) for the analysis of glyphosate in surface water and groundwater samples. The L'ELISA used succinic anhydride to derivatize glyphosate, which mimics the epitotic attachment of glyphosate to horseradish peroxidase hapten. Thus, L'ELISA recognized the derivatized glyphosate more effectively (detection limit of 0.1 μg/L) and with increased sensitivity (10-100 times) over conventional ELISA and showed the potential for other applications. The precision and accuracy of L'ELISA then was compared with on-line SPE/HPLC/MS, which detected glyphosate and its degradate derivatized with 9-fluorenylmethyl chloroformate using negative-ion electrospray (detection limit 0.1 μg/L, relative standard deviation ±15%). Derivatization efficiency and matrix effects were minimized by adding an isotope-labeled glyphosate (2-13C15N). The accuracy of L'ELISA gave a false positive rate of 18% between 0.1 and 1.0 μg/L and a false positive rate of only 1% above 1.0 μg/L. The relative standard deviation was ±20%. The correlation of L'ELISA and HPLC/MS for 66 surface water and groundwater samples was 0.97 with a slope of 1.28, with many detections of glyphosate and its degradate in surface water but not in groundwater.
McLain, B.J.
1993-01-01
Graphite furnace atomic absorption spectrophotometry is a sensitive, precise, and accurate method for the determination of chromium in natural water samples. The detection limit for this analytical method is 0.4 microg/L with a working linear limit of 25.0 microg/L. The precision at the detection limit ranges from 20 to 57 percent relative standard deviation (RSD) with an improvement to 4.6 percent RSD for concentrations more than 3 microg/L. Accuracy of this method was determined for a variety of reference standards that was representative of the analytical range. The results were within the established standard deviations. Samples were spiked with known concentrations of chromium with recoveries ranging from 84 to 122 percent. In addition, a comparison of data between graphite furnace atomic absorption spectrophotometry and direct-current plasma atomic emission spectrometry resulted in suitable agreement between the two methods, with an average deviation of +/- 2.0 microg/L throughout the analytical range.
Freitas, Andreia; Barbosa, Jorge; Ramos, Fernando
2015-01-22
A multiresidue quantitative screening method covering 39 antibiotics from 7 different families by ultra-high-pressure-liquid-chromatography-tandem mass spectrometry (UHPLC-MS/MS) is described. Sulfonamides, trimethoprim, tetracyclines, macrolides, quinolones, penicillins and chloramphenicol are simultaneously detected in liver tissue. A simple sample treatment method consisting of extraction with a mixture of acetonitrile and ethylenediaminetetraacetic acid (EDTA) followed by solid-phase extraction (SPE) with a hydrophilic-lipophilic balanced (HLB) cartridge was developed. The methodology was validated, in accordance with Decision 2002/657/EC, by evaluating the following required parameters: decision limit (CCα), detection capability (CCβ), specificity, repeatability and reproducibility. The precision, in terms of the relative standard deviation, was under 22% for all of the compounds, and the recoveries were between 80% and 110%. The CCα and CCβ were determined according to the maximum residue limit (MRL) or the minimum required performance limit (MRPL), when established. Copyright © 2014 Elsevier B.V. All rights reserved.
Verification of spectrophotometric method for nitrate analysis in water samples
NASA Astrophysics Data System (ADS)
Kurniawati, Puji; Gusrianti, Reny; Dwisiwi, Bledug Bernanti; Purbaningtias, Tri Esti; Wiyantoko, Bayu
2017-12-01
The aim of this research was to verify the spectrophotometric method to analyze nitrate in water samples using APHA 2012 Section 4500 NO3-B method. The verification parameters used were: linearity, method detection limit, level of quantitation, level of linearity, accuracy and precision. Linearity was obtained by using 0 to 50 mg/L nitrate standard solution and the correlation coefficient of standard calibration linear regression equation was 0.9981. The method detection limit (MDL) was defined as 0,1294 mg/L and limit of quantitation (LOQ) was 0,4117 mg/L. The result of a level of linearity (LOL) was 50 mg/L and nitrate concentration 10 to 50 mg/L was linear with a level of confidence was 99%. The accuracy was determined through recovery value was 109.1907%. The precision value was observed using % relative standard deviation (%RSD) from repeatability and its result was 1.0886%. The tested performance criteria showed that the methodology was verified under the laboratory conditions.
Direct sampling of chemical weapons in water by photoionization mass spectrometry.
Syage, Jack A; Cai, Sheng-Suan; Li, Jianwei; Evans, Matthew D
2006-05-01
The vulnerability of water supplies to toxic contamination calls for fast and effective means for screening water samples for multiple threats. We describe the use of photoionization (PI) mass spectrometry (MS) for high-speed, high-throughput screening and molecular identification of chemical weapons (CW) threats and other hazardous compounds. The screening technology can detect a wide range of compounds at subacute concentrations with no sample preparation and a sampling cycle time of approximately 45 s. The technology was tested with CW agents VX, GA, GB, GD, GF, HD, HN1, and HN3, in addition to riot agents and precursors. All are sensitively detected and give simple PI mass spectra dominated by the parent ion. The target application of the PI MS method is as a routine, real-time early warning system for CW agents and other hazardous compounds in air and in water. In this work, we also present comprehensive measurements for water analysis and report on the system detection limits, linearity, quantitation accuracy, and false positive (FP) and false negative rates for concentrations at subacute levels. The latter data are presented in the form of receiver operating characteristic curves of the form of detection probability P(D) versus FP probability P(FP). These measurements were made using the CW surrogate compounds, DMMP, DEMP, DEEP, and DIMP. Method detection limits (3sigma) obtained using a capillary injection method yielded 1, 6, 3, and 2 ng/mL, respectively. These results were obtained using 1-microL injections of water samples without any preparation, corresponding to mass detection limits of 1, 6, 3, and 2 pg, respectively. The linear range was about 3-4 decades and the dynamic range about 4-5 decades. The relative standard deviations were generally <10% at CW subacute concentrations levels.
Ware, M W; Keely, S P; Villegas, E N
2013-07-01
This study developed and systematically evaluated performance and limit of detection of an off-the-slide genotyping procedure for both Cryptosporidium oocysts and Giardia cysts. Slide standards containing flow-sorted (oo)cysts were used to evaluate the off-the-slide genotyping procedure by microscopy and PCR. Results show approximately 20% of cysts and oocysts are lost during staining. Although transfer efficiency from the slide to the PCR tube could not be determined by microscopy, it was observed that the transfer process aided in the physical lysis of the (oo)cysts likely releasing DNA. PCR detection rates for a single event on a slide were 44% for Giardia and 27% for Cryptosporidium, and a minimum of five cysts and 20 oocysts are required to achieve a 90% PCR detection rate. A Poisson distribution analysis estimated the relative PCR target densities and limits of detection, it showed that 18 Cryptosporidium and five Giardia replicates are required for a 95% probability of detecting a single (oo)cyst on a slide. This study successfully developed and evaluated recovery rates and limits of detection of an off-the-slide genotyping procedure for both Cryptosporidium and Giardia (oo)cysts from the same slide. This off-the-slide genotyping technique is a simple and low cost tool that expands the applications of US EPA Method 1623 results by identifying the genotypes and assemblages of the enumerated Cryptosporidium and Giardia. This additional information will be useful for microbial risk assessment models and watershed management decisions. Journal of Applied Microbiology Published [2013]. This article is a U.S. Government work and is in the public domain in the USA.
Yan, Wenwu; Wang, Nani; Zhang, Peimin; Zhang, Jiajie; Wu, Shuchao; Zhu, Yan
2016-08-01
Sucralose is widely used in food and beverages as sweetener. Current synthesis approaches typically provide sucralose products with varying levels of related chlorinated carbohydrates which can affect the taste and flavor-modifying properties of sucralose. Quantification of related compounds in sucralose is often hampered by the lack of commercially available standards. In this work, nine related compounds were purified (purity>97%) and identified by liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR), then a rapid and simple HPLC coupled with evaporative light scattering detection (ELSD) method has been developed for the simultaneous determination of sucralose and related compounds. Under optimized conditions, the method showed good linearity in the range of 2-600μgmL(-1) with determination coefficients R(2)⩾0.9990. Moreover, low limits of detection in the range of 0.5-2.0μgmL(-1) and good repeatability (RSD<3%, n=6) were obtained. Recoveries were from 96.8% to 101.2%. Finally, the method has been successfully applied to sucralose quality control and purification process monitoring. Copyright © 2016 Elsevier Ltd. All rights reserved.
Singlet oxygen detection in biological systems: Uses and limitations
Koh, Eugene; Fluhr, Robert
2016-01-01
ABSTRACT The study of singlet oxygen in biological systems is challenging in many ways. Singlet oxygen is a relatively unstable ephemeral molecule, and its properties make it highly reactive with many biomolecules, making it difficult to quantify accurately. Several methods have been developed to study this elusive molecule, but most studies thus far have focused on those conditions that produce relatively large amounts of singlet oxygen. However, the need for more sensitive methods is required as one begins to explore the levels of singlet oxygen required in signaling and regulatory processes. Here we discuss the various methods used in the study of singlet oxygen, and outline their uses and limitations. PMID:27231787
NASA Technical Reports Server (NTRS)
Valentine, J. W.
1985-01-01
The relationship between marine temperature and marine organisms is investigated. The adaptation of organisms to extreme temperatures is studied; it is observed that chemautotrophic and chemoheterotrophic prokaryotes adapt to 100 C, photoautotrophic prokaryotes to 73 C, and fungi to 60 C. The physiological and molecular factors related to thermal limits in organisms such as enzymes, lipids, or plasma membranes, are examined. Two types of thermal adaptations, resistance and capacity, are detected in organisms. Reasons for species distributions according to temperature barriers are proposed by Read (1967) and Bullock (1955) and are related to enzyme limits. The effects of an organism's composition on thermal stability is analyzed.
Recent Advances in Biosensor Development for Foodborne Virus Detection
Neethirajan, Suresh; Ahmed, Syed Rahin; Chand, Rohit; Buozis, John; Nagy, Éva
2017-01-01
Outbreaks of foodborne diseases related to fresh produce have been increasing in North America and Europe. Viral foodborne pathogens are poorly understood, suffering from insufficient awareness and surveillance due to the limits on knowledge, availability, and costs of related technologies and devices. Current foodborne viruses are emphasized and newly emerging foodborne viruses are beginning to attract interest. To face current challenges regarding foodborne pathogens, a point-of-care (POC) concept has been introduced to food testing technology and device. POC device development involves technologies such as microfluidics, nanomaterials, biosensors and other advanced techniques. These advanced technologies, together with the challenges in developing foodborne virus detection assays and devices, are described and analysed in this critical review. Advanced technologies provide a path forward for foodborne virus detection, but more research and development will be needed to provide the level of manufacturing capacity required. PMID:29071193
Turkia, Heidi; Sirén, Heli; Penttilä, Merja; Pitkänen, Juha-Pekka
2015-01-01
The amino acid composition of cultivation broth is known to affect the biomass accumulation, productivity, and vitality of yeast during cultivation. A separation method based on capillary electrophoresis with laser-induced fluorescence (LIF) detection was developed for the determination of amino acid consumption by Saccharomyces cerevisiae during beer fermentation. Intraday relative standard deviations were less than 2.1% for migration times and between 2.9% and 9.9% for peak areas. Interday relative standard deviations were less than 2.5% for migration times and between 4.4% and 18.9% for peak areas. The quantification limit was even as low as 62.5 pM which equals to below attomole level detection. The method was applied to study the rate of amino acid utilization during beer fermentation. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yu, Fei; Wu, Yongjun; Yu, Songcheng; Zhang, Huili; Zhang, Hongquan; Qu, Lingbo; Harrington, Peter de B.
With alkaline phosphatase (ALP)-adamantane (AMPPD) system as the chemiluminescence (CL) detection system, a highly sensitive, specific and simple competitive chemiluminescence enzyme immunoassay (CLEIA) was developed for the measurement of enrofloxacin (ENR). The physicochemical parameters, such as the chemiluminescent assay mediums, the dilution buffer of ENR-McAb, the volume of dilution buffer, the monoclonal antibody concentration, the incubation time, and other relevant variables of the immunoassay have been optimized. Under the optimal conditions, the detection linear range of 350-1000 pg/mL and the detection limit of 0.24 ng/mL were provided by the proposed method. The relative standard deviations were less than 15% for both intra and inter-assay precision. This method has been successfully applied to determine ENR in spiked samples with the recovery of 103%-96%. It showed that CLEIA was a good potential method in the analysis of residues of veterinary drugs after treatment of related diseases.
Challenges, issues and trends in fall detection systems
2013-01-01
Since falls are a major public health problem among older people, the number of systems aimed at detecting them has increased dramatically over recent years. This work presents an extensive literature review of fall detection systems, including comparisons among various kinds of studies. It aims to serve as a reference for both clinicians and biomedical engineers planning or conducting field investigations. Challenges, issues and trends in fall detection have been identified after the reviewing work. The number of studies using context-aware techniques is still increasing but there is a new trend towards the integration of fall detection into smartphones as well as the use of machine learning methods in the detection algorithm. We have also identified challenges regarding performance under real-life conditions, usability, and user acceptance as well as issues related to power consumption, real-time operations, sensing limitations, privacy and record of real-life falls. PMID:23829390
Fast Detection of Airports on Remote Sensing Images with Single Shot MultiBox Detector
NASA Astrophysics Data System (ADS)
Xia, Fei; Li, HuiZhou
2018-01-01
This paper introduces a method for fast airport detection on remote sensing images (RSIs) using Single Shot MultiBox Detector (SSD). To our knowledge, this could be the first study which introduces an end-to-end detection model into airport detection on RSIs. Based on the common low-level features between natural images and RSIs, a convolution neural network trained on large amounts of natural images was transferred to tackle the airport detection problem with limited annotated data. To deal with the specific characteristics of RSIs, some related parameters in the SSD, such as the scales and layers, were modified for more accurate and rapider detection. The experiments show that the proposed method could achieve 83.5% Average Recall at 8 FPS on RSIs with the size of 1024*1024. In contrast to Faster R-CNN, an improvement on AP and speed could be obtained.
2014-01-01
Background Hospital cleanliness in hospitals with a tendency toward long-term care in Japan remains unevaluated. We therefore visualized hospital cleanliness in Japan over a 2-month period by two distinct popular methods: ATP bioluminescence (ATP method) and the standard stamp agar method (stamp method). Methods The surfaces of 752 sites within nurse and patient areas in three hospitals located in a central area of Sapporo, Japan were evaluated by the ATP and stamp methods, and each surface was sampled 8 times in 2 months. These areas were located in different ward units (Internal Medicine, Surgery, and Obstetrics and Gynecology). Detection limits for the ATP and stamp methods were determined by spike experiments with a diluted bacterial solution and a wipe test on student tables not in use during winter vacation, respectively. Values were expressed as the fold change over the detection limit, and a sample with a value higher than the detection limit by either method was defined as positive. Results The detection limits were determined to be 127 relative light units (RLU) per 100 cm2 for the ATP method and 5.3 colony-forming units (CFU) per 10 cm2 for the stamp method. The positive frequency of the ATP and stamp methods was 59.8% (450/752) and 47.7% (359/752), respectively, although no significant difference in the positive frequency among the hospitals was seen. Both methods revealed the presence of a wide range of organic contamination spread via hand touching, including microbial contamination, with a preponderance on the entrance floor and in patient rooms. Interestingly, the data of both methods indicated considerable variability regardless of daily visual assessment with usual wiping, and positive surfaces were irregularly seen. Nurse areas were relatively cleaner than patient areas. Finally, there was no significant correlation between the number of patients or medical personnel in the hospital and organic or microbiological contamination. Conclusions Ongoing daily hospital cleanliness is not sufficient in Japanese hospitals with a tendency toward long-term care. PMID:24593868
Watanabe, Reina; Shimoda, Tomoko; Yano, Rika; Hayashi, Yasuhiro; Nakamura, Shinji; Matsuo, Junji; Yamaguchi, Hiroyuki
2014-03-04
Hospital cleanliness in hospitals with a tendency toward long-term care in Japan remains unevaluated. We therefore visualized hospital cleanliness in Japan over a 2-month period by two distinct popular methods: ATP bioluminescence (ATP method) and the standard stamp agar method (stamp method). The surfaces of 752 sites within nurse and patient areas in three hospitals located in a central area of Sapporo, Japan were evaluated by the ATP and stamp methods, and each surface was sampled 8 times in 2 months. These areas were located in different ward units (Internal Medicine, Surgery, and Obstetrics and Gynecology). Detection limits for the ATP and stamp methods were determined by spike experiments with a diluted bacterial solution and a wipe test on student tables not in use during winter vacation, respectively. Values were expressed as the fold change over the detection limit, and a sample with a value higher than the detection limit by either method was defined as positive. The detection limits were determined to be 127 relative light units (RLU) per 100 cm2 for the ATP method and 5.3 colony-forming units (CFU) per 10 cm2 for the stamp method. The positive frequency of the ATP and stamp methods was 59.8% (450/752) and 47.7% (359/752), respectively, although no significant difference in the positive frequency among the hospitals was seen. Both methods revealed the presence of a wide range of organic contamination spread via hand touching, including microbial contamination, with a preponderance on the entrance floor and in patient rooms. Interestingly, the data of both methods indicated considerable variability regardless of daily visual assessment with usual wiping, and positive surfaces were irregularly seen. Nurse areas were relatively cleaner than patient areas. Finally, there was no significant correlation between the number of patients or medical personnel in the hospital and organic or microbiological contamination. Ongoing daily hospital cleanliness is not sufficient in Japanese hospitals with a tendency toward long-term care.
Rhodes-Mordov, Elisheva; Katz, Ben; Oberegelsbacher, Claudia; Yasin, Bushra; Tzadok, Hanan; Huber, Armin
2017-01-01
Drosophila photoreceptors respond to oscillating light of high frequency (∼100 Hz), while the detected maximal frequency is modulated by the light rearing conditions, thus enabling high sensitivity to light and high temporal resolution. However, the molecular basis for this adaptive process is unclear. Here, we report that dephosphorylation of the light-activated transient receptor potential (TRP) ion channel at S936 is a fast, graded, light-dependent, and Ca2+-dependent process that is partially modulated by the rhodopsin phosphatase retinal degeneration C (RDGC). Electroretinogram measurements of the frequency response to oscillating lights in vivo revealed that dark-reared flies expressing wild-type TRP exhibited a detection limit of oscillating light at relatively low frequencies, which was shifted to higher frequencies upon light adaptation. Strikingly, preventing phosphorylation of the S936-TRP site by alanine substitution in transgenic Drosophila (trpS936A) abolished the difference in frequency response between dark-adapted and light-adapted flies, resulting in high-frequency response also in dark-adapted flies. In contrast, inserting a phosphomimetic mutation by substituting the S936-TRP site to aspartic acid (trpS936D) set the frequency response of light-adapted flies to low frequencies typical of dark-adapted flies. Light-adapted rdgC mutant flies showed relatively high S936-TRP phosphorylation levels and light–dark phosphorylation dynamics. These findings suggest that RDGC is one but not the only phosphatase involved in pS936-TRP dephosphorylation. Together, this study indicates that TRP channel dephosphorylation is a regulatory process that affects the detection limit of oscillating light according to the light rearing condition, thus adjusting dynamic processing of visual information under varying light conditions. SIGNIFICANCE STATEMENT Drosophila photoreceptors exhibit high temporal resolution as manifested in frequency response to oscillating light of high frequency (≤∼100 Hz). Light rearing conditions modulate the maximal frequency detected by photoreceptors, thus enabling them to maintain high sensitivity to light and high temporal resolution. However, the precise mechanisms for this process are not fully understood. Here, we show by combination of biochemistry and in vivo electrophysiology that transient receptor potential (TRP) channel dephosphorylation at a specific site is a fast, light-activated and Ca2+-dependent regulatory process. TRP dephosphorylation affects the detection limit of oscillating light according to the adaptation state of the photoreceptor cells by shifting the detection limit to higher frequencies upon light adaptation. This novel mechanism thus adjusts dynamic processing of visual information under varying light conditions. PMID:28314815
Ankireddy, Seshadri Reddy; Kim, Jongsung
2015-01-01
Dopamine is a neurotransmitter of the catecholamine family and has many important roles, especially in human brain. Several diseases of the nervous system, such as Parkinson's disease, attention deficit hyperactivity disorder, restless legs syndrome, are believed to be related to deficiency of dopamine. Several studies have been performed to detect dopamine by using electrochemical analysis. In this study, quantum dots (QDs) were used as sensing media for the detection of dopamine. The surface of the QDs was modified with l-cysteine by coupling reaction to increase the selectivity of dopamine. The fluorescence of cysteine-capped indium phosphide/zinc sulfide QDs was quenched by dopamine with various concentrations in the presence of ascorbic acid. This method shows good selectivity for dopamine detection, and the detection limit was 5 nM.
Detection of uranium using laser-induced breakdown spectroscopy.
Chinni, Rosemarie C; Cremers, David A; Radziemski, Leon J; Bostian, Melissa; Navarro-Northrup, Claudia
2009-11-01
The goal of this work is a detailed study of uranium detection by laser-induced breakdown spectroscopy (LIBS) for application to activities associated with environmental surveillance and detecting weapons of mass destruction (WMD). The study was used to assist development of LIBS instruments for standoff detection of bulk radiological and nuclear materials and these materials distributed as contaminants on surfaces. Uranium spectra were analyzed under a variety of different conditions at room pressure, reduced pressures, and in an argon atmosphere. All spectra displayed a high apparent background due to the high density of uranium lines. Time decay curves of selected uranium lines were monitored and compared to other elements in an attempt to maximize detection capabilities for each species in the complicated uranium spectrum. A survey of the LIBS uranium spectra was conducted and relative emission line strengths were determined over the range of 260 to 800 nm. These spectra provide a guide for selection of the strongest LIBS analytical lines for uranium detection in different spectral regions. A detection limit for uranium in soil of 0.26% w/w was obtained at close range and 0.5% w/w was achieved at a distance of 30 m. Surface detection limits were substrate dependent and ranged from 13 to 150 microg/cm2. Double-pulse experiments (both collinear and orthogonal arrangements) were shown to enhance the uranium signal in some cases. Based on the results of this work, a short critique is given of the applicability of LIBS for the detection of uranium residues on surfaces for environmental monitoring and WMD surveillance.
Sidor, Inga F; Dunn, J Lawrence; Tsongalis, Gregory J; Carlson, Jolene; Frasca, Salvatore
2013-01-01
Brucellosis has emerged as a disease of concern in marine mammals in the last 2 decades. Molecular detection techniques have the potential to address limitations of other methods for detecting infection with Brucella in these species. Presented herein is a real-time polymerase chain reaction (PCR) method targeting the Brucella genus-specific bcsp31 gene. The method also includes a target to a conserved region of the eukaryotic mitochondrial 16S ribosomal RNA gene to assess suitability of extracted DNA and a plasmid-based internal control to detect failure of PCR due to inhibition. This method was optimized and validated to detect Brucella spp. in multiple sample matrices, including fresh or frozen tissue, blood, and feces. The analytical limit of detection was low, with 95% amplification at 24 fg, or an estimated 7 bacterial genomic copies. When Brucella spp. were experimentally added to tissue or fecal homogenates, the assay detected an estimated 1-5 bacteria/µl. An experiment simulating tissue autolysis showed relative persistence of bacterial DNA compared to host mitochondrial DNA. When used to screen 1,658 field-collected marine mammal tissues in comparison to microbial culture, diagnostic sensitivity and specificity were 70.4% and 98.3%, respectively. In addition to amplification in fresh and frozen tissues, Brucella spp. were detected in feces and formalin-fixed, paraffin-embedded tissues from culture-positive animals. Results indicate the utility of this real-time PCR for the detection of Brucella spp. in marine species, which may have applications in surveillance or epidemiologic investigations.
On Integral Upper Limits Assuming Power-law Spectra and the Sensitivity in High-energy Astronomy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahnen, Max L., E-mail: m.knoetig@gmail.com
The high-energy non-thermal universe is dominated by power-law-like spectra. Therefore, results in high-energy astronomy are often reported as parameters of power-law fits, or, in the case of a non-detection, as an upper limit assuming the underlying unseen spectrum behaves as a power law. In this paper, I demonstrate a simple and powerful one-to-one relation of the integral upper limit in the two-dimensional power-law parameter space into the spectrum parameter space and use this method to unravel the so-far convoluted question of the sensitivity of astroparticle telescopes.
Limits of quantitation - Yet another suggestion
NASA Astrophysics Data System (ADS)
Carlson, Jill; Wysoczanski, Artur; Voigtman, Edward
2014-06-01
The work presented herein suggests that the limit of quantitation concept may be rendered substantially less ambiguous and ultimately more useful as a figure of merit by basing it upon the significant figure and relative measurement error ideas due to Coleman, Auses and Gram, coupled with the correct instantiation of Currie's detection limit methodology. Simple theoretical results are presented for a linear, univariate chemical measurement system with homoscedastic Gaussian noise, and these are tested against both Monte Carlo computer simulations and laser-excited molecular fluorescence experimental results. Good agreement among experiment, theory and simulation is obtained and an easy extension to linearly heteroscedastic Gaussian noise is also outlined.
Stevens, Richard C.; Soelberg, Scott D.; Near, Steve; Furlong, Clement E.
2011-01-01
Saliva provides a useful and non-invasive alternative to blood for many biomedical diagnostic assays. The level of the hormone cortisol in blood and saliva is related to the level of stress. We present here the development of a portable surface plasmon resonance (SPR) biosensor system for detection of cortisol in saliva. Cortisol-specific monoclonal antibodies were used to develop a competition assay with a 6-channel portable SPR biosensor designed in our laboratory. The detection limit of cortisol in laboratory buffers was 0.36 ng/ml (1.0 nM). An in-line filter based on diffusion through a hollow fiber hydrophilic membrane served to separate small molecules from the complex macromolecular matrix of saliva prior to introduction to the sensor surface. The filtering flow cell provided in-line separation of small molecules from salivary mucins and other large molecules with only a 29% reduction of signal compared with direct flow of the same concentration of analyte over the sensor surface. A standard curve for detection of cortisol in saliva was generated with a detection limit of 1.0 ng/ml (3.6 nM), sufficiently sensitive for clinical use. The system will also be useful for a wide range of applications where small molecular weight analytes are found in complex matrices. PMID:18656950
Putnin, Thitirat; Jumpathong, Watthanachai; Laocharoensuk, Rawiwan; Jakmunee, Jaroon; Ounnunkad, Kontad
2018-08-01
This work focuses on fabricating poly(2-aminobenzylamine)-modified screen-printed carbon electrode as an electrochemical immunosensor for the label-free detection of human immunoglobulin G. To selectively detect immunoglobulin G, the anti-immunoglobulin G antibody with high affinity to immunoglobulin G was covalently linked with the amine group of poly(2-aminobenzylamine) film-deposited screen-printed carbon electrode. The selectivity for immunoglobulin G was subsequently assured by being challenged with redox-active interferences and adventitious adsorption did not significantly interfere the analyte signal. To obviate the use of costly secondary antibody, the [Fe(CN) 6 ] 4-/3- redox probe was instead applied to measure the number of human immunoglobulin G through the immunocomplex formation that is quantitatively related to the level of the differential pulse voltammetric current. The resulting immunosensor exhibited good sensitivity with the detection limit of 0.15 ng mL -1 , limit of quantitation of 0.50 ng mL -1 and the linear range from 1.0 to 50 ng mL -1 . Given those striking analytical performances and the affordability arising from using cheap screen-printed carbon electrode with label-free detection, the immunosensor serves as a promising model for the next-step development of a diagnostic tool.
Baltussen, E; Snijders, H; Janssen, H G; Sandra, P; Cramers, C A
1998-04-10
A recently developed method for the extraction of organic micropollutants from aqueous samples based on sorptive enrichment in columns packed with 100% polydimethylsiloxane (PDMS) particles was coupled on-line with HPLC analysis. The sorptive enrichment procedure originally developed for relatively nonpolar analytes was used to preconcentrate polar phenylurea herbicides from aqueous samples. PDMS extraction columns of 5, 10 and 25 cm were used to extract the herbicides from distilled, tap and river water samples. A model that allows prediction of retention and breakthrough volumes is presented. Despite the essentially apolar nature of the PDMS material, it is possible to concentrate sample volumes up to 10 ml on PDMS cartridges without losses of the most polar analyte under investigation, fenuron. For less polar analytes significantly larger sample volumes can be applied. Since standard UV detection does not provide adequate selectivity for river water samples, an electrospray (ES)-MS instrument was used to determine phenylurea herbicides in a water sample from the river Dommel. Methoxuron was present at a level of 80 ng/l. The detection limit of the current set-up, using 10 ml water samples and ES-MS detection is 10 ng/l in river water samples. Strategies for further improvement of the detection limits are identified.
A flexible spatial scan statistic with a restricted likelihood ratio for detecting disease clusters.
Tango, Toshiro; Takahashi, Kunihiko
2012-12-30
Spatial scan statistics are widely used tools for detection of disease clusters. Especially, the circular spatial scan statistic proposed by Kulldorff (1997) has been utilized in a wide variety of epidemiological studies and disease surveillance. However, as it cannot detect noncircular, irregularly shaped clusters, many authors have proposed different spatial scan statistics, including the elliptic version of Kulldorff's scan statistic. The flexible spatial scan statistic proposed by Tango and Takahashi (2005) has also been used for detecting irregularly shaped clusters. However, this method sets a feasible limitation of a maximum of 30 nearest neighbors for searching candidate clusters because of heavy computational load. In this paper, we show a flexible spatial scan statistic implemented with a restricted likelihood ratio proposed by Tango (2008) to (1) eliminate the limitation of 30 nearest neighbors and (2) to have surprisingly much less computational time than the original flexible spatial scan statistic. As a side effect, it is shown to be able to detect clusters with any shape reasonably well as the relative risk of the cluster becomes large via Monte Carlo simulation. We illustrate the proposed spatial scan statistic with data on mortality from cerebrovascular disease in the Tokyo Metropolitan area, Japan. Copyright © 2012 John Wiley & Sons, Ltd.
Dielectrophoretic label-free immunoassay for rare-analyte quantification in biological samples
NASA Astrophysics Data System (ADS)
Velmanickam, Logeeshan; Laudenbach, Darrin; Nawarathna, Dharmakeerthi
2016-10-01
The current gold standard for detecting or quantifying target analytes from blood samples is the ELISA (enzyme-linked immunosorbent assay). The detection limit of ELISA is about 250 pg/ml. However, to quantify analytes that are related to various stages of tumors including early detection requires detecting well below the current limit of the ELISA test. For example, Interleukin 6 (IL-6) levels of early oral cancer patients are <100 pg/ml and the prostate specific antigen level of the early stage of prostate cancer is about 1 ng/ml. Further, it has been reported that there are significantly less than 1 pg /mL of analytes in the early stage of tumors. Therefore, depending on the tumor type and the stage of the tumors, it is required to quantify various levels of analytes ranging from ng/ml to pg/ml. To accommodate these critical needs in the current diagnosis, there is a need for a technique that has a large dynamic range with an ability to detect extremely low levels of target analytes (
Rapid and sensitive detection of mink circovirus by recombinase polymerase amplification.
Ge, Junwei; Shi, Yunjia; Cui, Xingyang; Gu, Shanshan; Zhao, Lili; Chen, Hongyan
2018-06-01
To date, the pathogenic role of mink circovirus (MiCV) remains unclear, and its prevalence and economic importance are unknown. Therefore, a rapid and sensitive molecular diagnosis is necessary for disease management and epidemiological surveillance. However, only PCR methods can identify MiCV infection at present. In this study, we developed a nested PCR and established a novel recombinase polymerase amplification (RPA) assay for MiCV detection. Sensitivity analysis showed that the detection limit of nested PCR and RPA assay was 10 1 copies/reaction, and these methods were more sensitive than conventional PCR, which has a detection limit of 10 5 copies/reaction. The RPA assay had no cross-reactivity with other related viral pathogens, and amplification was completed in less than 20 min with a simple device. Further assessment of clinical samples showed that the two assays were accurate in identifying positive and negative conventional PCR samples. The detection rate of MiCV by the RPA assay in clinical samples was 38.09%, which was 97% consistent with that by the nested PCR. The developed nested PCR is a highly sensitive tool for practical use, and the RPA assay is a simple, sensitive, and potential alternative method for rapid and accurate MiCV diagnosis. Copyright © 2018 Elsevier B.V. All rights reserved.
Naveen, P.; Lingaraju, H. B.; Prasad, K. Shyam
2017-01-01
Mangiferin, a polyphenolic xanthone glycoside from Mangifera indica, is used as traditional medicine for the treatment of numerous diseases. The present study was aimed to develop and validate a reversed-phase high-performance liquid chromatography (RP-HPLC) method for the quantification of mangiferin from the bark extract of M. indica. RP-HPLC analysis was performed by isocratic elution with a low-pressure gradient using 0.1% formic acid: acetonitrile (87:13) as a mobile phase with a flow rate of 1.5 ml/min. The separation was done at 26°C using a Kinetex XB-C18 column as stationary phase and the detection wavelength at 256 nm. The proposed method was validated for linearity, precision, accuracy, limit of detection, limit of quantification, and robustness by the International Conference on Harmonisation guidelines. In linearity, the excellent correlation coefficient more than 0.999 indicated good fitting of the curve and also good linearity. The intra- and inter-day precision showed < 1% of relative standard deviation of peak area indicated high reliability and reproducibility of the method. The recovery values at three different levels (50%, 100%, and 150%) of spiked samples were found to be 100.47, 100.89, and 100.99, respectively, and low standard deviation value < 1% shows high accuracy of the method. In robustness, the results remain unaffected by small variation in the analytical parameters, which shows the robustness of the method. Liquid chromatography–mass spectrometry analysis confirmed the presence of mangiferin with M/Z value of 421. The assay developed by HPLC method is a simple, rapid, and reliable for the determination of mangiferin from M. indica. SUMMARY The present study was intended to develop and validate an RP-HPLC method for the quantification of mangiferin from the bark extract of M. indica. The developed method was validated for linearity, precision, accuracy, limit of detection, limit of quantification and robustness by International Conference on Harmonization guidelines. This study proved that the developed assay by HPLC method is a simple, rapid and reliable for the quantification of the mangiferin from M. indica. Abbreviations Used: M. indica: Mangifera indica, RP-HPLC: Reversed-phase high-performance liquid chromatography, M/Z: Mass to charge ratio, ICH: International conference on harmonization, % RSD: Percentage of relative standard deviation, ppm: Parts per million, LOD: Limit of detection, LOQ: Limit of quantification. PMID:28539748
Naveen, P; Lingaraju, H B; Prasad, K Shyam
2017-01-01
Mangiferin, a polyphenolic xanthone glycoside from Mangifera indica , is used as traditional medicine for the treatment of numerous diseases. The present study was aimed to develop and validate a reversed-phase high-performance liquid chromatography (RP-HPLC) method for the quantification of mangiferin from the bark extract of M. indica . RP-HPLC analysis was performed by isocratic elution with a low-pressure gradient using 0.1% formic acid: acetonitrile (87:13) as a mobile phase with a flow rate of 1.5 ml/min. The separation was done at 26°C using a Kinetex XB-C18 column as stationary phase and the detection wavelength at 256 nm. The proposed method was validated for linearity, precision, accuracy, limit of detection, limit of quantification, and robustness by the International Conference on Harmonisation guidelines. In linearity, the excellent correlation coefficient more than 0.999 indicated good fitting of the curve and also good linearity. The intra- and inter-day precision showed < 1% of relative standard deviation of peak area indicated high reliability and reproducibility of the method. The recovery values at three different levels (50%, 100%, and 150%) of spiked samples were found to be 100.47, 100.89, and 100.99, respectively, and low standard deviation value < 1% shows high accuracy of the method. In robustness, the results remain unaffected by small variation in the analytical parameters, which shows the robustness of the method. Liquid chromatography-mass spectrometry analysis confirmed the presence of mangiferin with M/Z value of 421. The assay developed by HPLC method is a simple, rapid, and reliable for the determination of mangiferin from M. indica . The present study was intended to develop and validate an RP-HPLC method for the quantification of mangiferin from the bark extract of M. indica . The developed method was validated for linearity, precision, accuracy, limit of detection, limit of quantification and robustness by International Conference on Harmonization guidelines. This study proved that the developed assay by HPLC method is a simple, rapid and reliable for the quantification of the mangiferin from M. indica . Abbreviations Used: M. indica : Mangifera indica , RP-HPLC: Reversed-phase high-performance liquid chromatography, M/Z: Mass to charge ratio, ICH: International conference on harmonization, % RSD: Percentage of relative standard deviation, ppm: Parts per million, LOD: Limit of detection, LOQ: Limit of quantification.
USDA-ARS?s Scientific Manuscript database
Eradication programs for the boll weevil (Anthonomus grandis Boheman) rely on pheromone-baited traps to trigger insecticide treatments and monitor program progress. A key objective of monitoring in these programs is the timely detection of incipient weevil populations to limit or prevent re-infestat...
Effects of Hurricane Katrina-Related Levee Failures on Wetland Sediments
2008-09-01
80-84 209 1 Non-detects in IPET study and synthesis of USEPA data were handled by taking ½ reporting limit. 2 Presley et al. (2006) report geometric...2,2’-oxybis( 1 - Chloropropane ) 4,6-Dinitro-2- methylphenol Hexachlorobenzene 2,4,6-Trichlorophenol 4-Bromophenyl phenyl ether Hexachlorobutadiene...viii 1 Introduction
The Use and Abuse of Limits of Detection in Environmental Analytical Chemistry
Brown, Richard J. C.
2008-01-01
The limit of detection (LoD) serves as an important method performance measure that is useful for the comparison of measurement techniques and the assessment of likely signal to noise performance, especially in environmental analytical chemistry. However, the LoD is only truly related to the precision characteristics of the analytical instrument employed for the analysis and the content of analyte in the blank sample. This article discusses how other criteria, such as sampling volume, can serve to distort the quoted LoD artificially and make comparison between various analytical methods inequitable. In order to compare LoDs between methods properly, it is necessary to state clearly all of the input parameters relating to the measurements that have been used in the calculation of the LoD. Additionally, the article discusses that the use of LoDs in contexts other than the comparison of the attributes of analytical methods, in particular when reporting analytical results, may be confusing, less informative than quoting the actual result with an accompanying statement of uncertainty, and may act to bias descriptive statistics. PMID:18690384
Koneru, Jayanthi N; Swerdlow, Charles D; Ploux, Sylvain; Sharma, Parikshit S; Kaszala, Karoly; Tan, Alex Y; Huizar, Jose F; Vijayaraman, Pugazhendi; Kenigsberg, David; Ellenbogen, Kenneth A
2017-02-01
Implantable cardioverter defibrillators (ICDs) must establish a balance between delivering appropriate shocks for ventricular tachyarrhythmias and withholding inappropriate shocks for lead-related oversensing ("noise"). To improve the specificity of ICD therapy, manufacturers have developed proprietary algorithms that detect lead noise. The SecureSense TM RV Lead Noise discrimination (St. Jude Medical, St. Paul, MN, USA) algorithm is designed to differentiate oversensing due to lead failure from ventricular tachyarrhythmias and withhold therapies in the presence of sustained lead-related oversensing. We report 5 patients in whom appropriate ICD therapy was withheld due to the operation of the SecureSense algorithm and explain the mechanism for inhibition of therapy in each case. Limitations of algorithms designed to increase ICD therapy specificity, especially for the SecureSense algorithm, are analyzed. The SecureSense algorithm can withhold appropriate therapies for ventricular arrhythmias due to design and programming limitations. Electrophysiologists should have a thorough understanding of the SecureSense algorithm before routinely programming it and understand the implications for ventricular arrhythmia misclassification. © 2016 Wiley Periodicals, Inc.
O'Toole, Ronan F; Gautam, Sanjay S
2017-10-01
The genome sequence of Mycobacterium tuberculosis strain H37Rv is an important and valuable reference point in the study of M. tuberculosis phylogeny, molecular epidemiology, and drug-resistance mutations. However, it is becoming apparent that use of H37Rv as a sole reference genome in analysing clinical isolates presents some limitations to fully investigating M. tuberculosis virulence. Here, we examine the presence of single locus variants and the absence of entire genes in H37Rv with respect to strains that are responsible for cases and outbreaks of tuberculosis. We discuss how these polymorphisms may affect phenotypic properties of H37Rv including pathogenicity. Based on our observations and those of other researchers, we propose that use of a single reference genome, H37Rv, is not sufficient for the detection and characterisation of M. tuberculosis virulence-related loci. We recommend incorporation of genome sequences of other reference strains, in particular, direct clinical isolates, in such analyses in addition to H37Rv. Copyright © 2017 Elsevier Inc. All rights reserved.
Kolpin, D.W.; Goolsby, D.A.; Thurman, E.M.
1995-01-01
In 1992, the U.S. Geological Survey (USGS) determined the distribution of pesticides in near-surface aquifers of the midwestern USA to be much more widespread than originally determined during a 1991 USGS study. The frequency of pesticide detection increased from 28.4% during the 1991 study to 59.0% during the 1992 study. This increase in pesticide detection was primarily the result of a more sensitive analytical method that used reporting limits as much as 20 times lower than previously available and a threefold increase in the number of pesticide metabolites analyzed. No pesticide concentrations exceeded the U.S. Environmental Protection Agency's (USEPAs) maximum contaminant levels or health advisory levels for drinking water. However, five of the six most frequently detected compounds during 1992 were pesticide metabolites that currently do not have drinking water standards determined. The frequent presence of pesticide metabolites for this study documents the importance of obtaining information on these compounds to understand the fate and transport of pesticides in the hydrologic system. It appears that the 56 parent compounds analyzed follow similar pathways through the hydrologic system as atrazine. When atrazine was detected by routine or sensitive analytical methods, there was an increased likelihood of detecting additional parent compounds. As expected, the frequency of pesticide detection was highly dependent on the analytical reporting limit. The number of atrazine detections more than doubled as the reporting limit decreased from 0.10 to 0.01 µg/L. The 1992 data provided no indication that the frequency of pesticide detection would level off as improved analytical methods provide concentrations below 0.003 µg/L. A relation was determined between groundwater age and the frequency of pesticide detection, with 15.8% of the samples composed of pre-1953 water and 70.3% of the samples of post-1953 water having a detection of at least one pesticide or metabolite. Pre-1953 water is less likely to contain pesticides because it tends to predate the use of pesticides to increase crop production in the Midwest. Pre-1953 water was more likely to occur in the near-surface bedrock aquifers (50.0%) than in the near-surface unconsolidated aquifers (9.1%) sampled.
Stone, Mars; Bainbridge, John; Sanchez, Ana M; Keating, Sheila M; Pappas, Andrea; Rountree, Wes; Todd, Chris; Bakkour, Sonia; Manak, Mark; Peel, Sheila A; Coombs, Robert W; Ramos, Eric M; Shriver, M Kathleen; Contestable, Paul; Nair, Sangeetha Vijaysri; Wilson, David H; Stengelin, Martin; Murphy, Gary; Hewlett, Indira; Denny, Thomas N; Busch, Michael P
2018-05-23
Detection of acute HIV infection is critical for HIV public health and diagnostics. Clinical 4 th generation antigen-antibody (Ag/Ab) combination (combo) and p24 Ag immunoassays have enhanced detection of acute infection compared to Ab alone assays, but require ongoing evaluation with currently circulating diverse subtypes. Genetically and geographically diverse HIV clinical isolates were used to assess clinical HIV diagnostic, blood screening and next generation assays. Blinded 300 member panels of 20 serially diluted well-characterized antibody negative HIV isolates were distributed to manufacturers and end-user labs to assess relative analytic sensitivity of currently approved and pre-approved clinical HIV 4 th generation Ag/Ab combo or p24 Ag alone immunoassays across diverse subtypes. The limits of virus detection (LODs) were estimated for different subtypes relative to confirmed viral loads. Analysis of immunoassay sensitivity was benchmarked against confirmed viral load measurements on the blinded panel. Based on the proportion of positive results on 300 observations all Ag/Ab combo and standard sensitivity p24 Ag assays performed similarly and within half log LODs, illustrating similar breadth of reactivity and diagnostic utility. Ultrasensitive p24 Ag assays achieved dramatically increased sensitivities, while the rapid combo-assays performed poorly. Similar performance of the different commercially available 4 th gen assays on diverse subtypes supports their use in broad geographic settings with locally circulating HIV clades and recombinant strains. Next generation pre-clinical ultrasensitive p24 Ag assays achieved dramatically improved sensitivity, while p24 Ag detection by rapid 4 th gen assays performed poorly. Copyright © 2018 American Society for Microbiology.
Xavier, Glaciele Nascimento; Duarte, Antonio Carlos Magalhães; Melo-Silva, César Augusto; dos Santos, Carlos Eduardo Ventura Gaio; Amado, Veronica Moreira
2014-12-01
Pulmonary auscultation is a method used in clinical practice for the evaluation and detection of abnormalities relating to the respiratory system. This method has limitations, as it depends on the experience and hearing acuity of the examiner to determine adventitious sounds. In this context, it's important to analyze whether there is a correlation between auscultation of lung sounds and the behavior of the respiratory mechanical properties of the respiratory system in patients with immediate postoperative cardiac surgery. Copyright © 2014 Elsevier Ltd. All rights reserved.
Multimedia data from two probability-based exposure studies were investigated in terms of how censoring of non-detects affected estimation of population parameters and associations. Appropriate methods for handling censored below-detection-limit (BDL) values in this context were...
Katz, J B; Hanson, S K
1987-02-01
A competitive blocking enzyme-linked immunoassay (CELIA) was developed to detect bovine viral diarrhea virus (BVDV) antibodies in undiluted fetal bovine serum (FBS). The CELIA was based on competition of serum BVDV antibodies with biotin-labelled anti-BVDV immunoglobulins (Ig) for a limited quantity of solid-phase BVDV antigen. Antigen preparation was simple, FBS could be tested undiluted, and detergent-containing washes were unnecessary. A series of dilutions of postnatal bovine BVDV antiserum prepared in FBS and a set of 147 undiluted abbatoir FBS samples were tested by both CELIA and serum neutralization tests (SNT). CELIA results on both sets of specimens correlated positively with SNT titers (r = 0.99 and r = 0.85). Relative to the SNT, CELIA sensitivity was 100%; specificity was 76%. CELIA detected a level of BVDV antibody below the 1:2-titer threshold detectable with the SNT. Advantages, limitations, and theoretical differences between the CELIA and SNT are discussed. A similar comparison of CELIA with non-competitive enzyme-linked immunoassay approaches to BVDV serodiagnosis is made. It is concluded that the CELIA is valuable in selecting only BVDV-seronegative FBS for use in virologic cell culture media.
Mulpur, Pradyumna; Yadavilli, Sairam; Mulpur, Praharsha; Kondiparthi, Neeharika; Sengupta, Bishwambhar; Rao, Apparao M; Podila, Ramakrishna; Kamisetti, Venkataramaniah
2015-10-14
The relatively low sensitivity of fluorescence detection schemes, which are mainly limited by the isotropic nature of fluorophore emission, can be overcome by utilizing surface plasmon coupled emission (SPCE). In this study, we demonstrate directional emission from fluorophores on flexible Ag-C60 SPCE sensor platforms for point-of-care sensing, in healthcare and forensic sensing scenarios, with at least 10 times higher sensitivity than traditional fluorescence sensing schemes. Adopting the highly sensitive Ag-C60 SPCE platform based on glass and novel low-cost flexible substrates, we report the unambiguous detection of acid-fast Mycobacterium tuberculosis (Mtb) bacteria at densities as low as 20 Mtb mm(-2); from non-acid-fast bacteria (e.g., E. coli and S. aureus), and the specific on-site detection of acid-fast sperm cells in human semen samples. In combination with the directional emission and high-sensitivity of SPCE platforms, we also demonstrate the utility of smartphones that can replace expensive and cumbersome detectors to enable rapid hand-held detection of analytes in resource-limited settings; a much needed critical advance to biosensors, for developing countries.
Fernandes, Virginia C; Domingues, Valentina F; Mateus, Nuno; Delerue-Matos, Cristina
2011-07-27
A rapid, specific, and sensitive method based on the Quick Easy Cheap Effective Rugged and Safe (QuEChERS) method and a cleanup using dispersive solid-phase extraction with MgSO(4), PSA, and C18 sorbents has been developed for the routine analysis of 14 pesticides in strawberries. The analyses were performed by three different analytical methodologies: gas chromatography (GC) with electron capture detection (ECD), mass spectrometry (MS), and tandem mass spectrometry (MS/MS). The recoveries for all the pesticides studied were from 46 to 128%, with relative standard deviation of <15% in the concentration range of 0.005-0.250 mg/kg. The limit of detection (LOD) for all compounds met maximum residue limits (MRL) accepted in Portugal for organochlorine pesticides (OCP). A survey study of strawberries produced in Portugal in the years 2009-2010 obtained from organic farming (OF) and integrated pest management (IPM) was developed. Lindane and β-endosulfan were detected above the MRL in OF and IPM. Other OCP (aldrin, o,p'-DDT and their metabolites, and methoxychlor) were found below the MRL. The OCP residues detected decreased from 2009 to 2010. The QuEChERS method was successfully applied to the analysis of strawberry samples.
Kwallah, Allan ole; Inoue, Shingo; Muigai, Anne W T; Kubo, Toru; Sang, Rosemary; Morita, Kouichi; Mwau, Matilu
2013-10-01
Yellow fever, a mosquito-borne disease, is an important viral hemorrhagic fever in Africa and South America where it is endemic. Detection of yellow fever virus (YFV) in Africa remains a challenge due to a lack of highly specific tests. The aim of this study was to develop and optimize a rapid detection reverse transcription loop-mediated isothermal amplification (RT-LAMP) for YFV. The RT-LAMP was done isothermally at 62 °C using a real-time turbidimeter that allowed detection within 1h. Specificity of the RT-LAMP was determined using RNA from flaviviruses and other related viruses where only YFV RNA was detected: West Nile virus, dengue viruses, Japanese encephalitis virus, Rift Valley fever virus, and chikungunya virus. In addition, equal sensitivity was also observed when the RT-LAMP and the real-time RT-PCR were compared using YFV-spiked human serum samples with a detection limit of 0.29 PFU/ml. Two Kenyan YFV wild strains showed an equal detection limit as the vaccine strain 17D in this study. The RT-LAMP reduced the time of reaction from 3h to 1h and increased sensitivity tenfold compared to RT-PCR. Therefore, this test offers a simple, rapid and reliable diagnostic tool for yellow fever when there are outbreaks of acute hemorrhagic fever in Kenya and other African countries. Copyright © 2013 Elsevier B.V. All rights reserved.
Maeda, Hiroshi; Kokeguchi, Susumu; Fujimoto, Chiyo; Tanimoto, Ichiro; Yoshizumi, Wakako; Nishimura, Fusanori; Takashiba, Shogo
2005-02-01
A method for nucleic acid amplification, loop-mediated isothermal amplification (LAMP) was employed to develop a rapid and simple detection system for periodontal pathogen, Porphyromonas gingivalis. A set of six primers was designed by targeting the 16S ribosomal RNA gene. By the detection system, target DNA was amplified and visualized on agarose gel within 30 min under isothermal condition at 64 degrees C with a detection limit of 20 cells of P. gingivalis. Without gel electrophoresis, the LAMP amplicon was directly visualized in the reaction tube by addition of SYBR Green I for a naked-eye inspection. The LAMP reaction was also assessed by white turbidity of magnesium pyrophosphate (a by-product of LAMP) in the tube. Detection limits of these naked-eye inspections were 20 cells and 200 cells, respectively. Although false-positive DNA amplification was observed from more than 10(7) cells of Porphyromonas endodontalis, no amplification was observed in other five related oral pathogens. Further, quantitative detection of P. gingivalis was accomplished by a real-time monitoring of the LAMP reaction using SYBR Green I with linearity over a range of 10(2)-10(6) cells. The real-time LAMP was then applied to clinical samples of dental plaque and demonstrated almost identical results to the conventional real-time PCR with an advantage of rapidity. These findings indicate the potential usefulness of LAMP for detecting and quantifying P. gingivalis, especially in its rapidity and simplicity.
Cheng, Hong; Macaluso, Maurizio; Vermund, Sten H.; Hook, Edward W.
2001-01-01
Published estimates of the sensitivity and specificity of PCR and ligase chain reaction (LCR) for detecting Chlamydia trachomatis are potentially biased because of study design limitations (confirmation of test results was limited to subjects who were PCR or LCR positive but culture negative). Relative measures of test accuracy are less prone to bias in incomplete study designs. We estimated the relative sensitivity (RSN) and relative false-positive rate (RFP) for PCR and LCR versus cell culture among 1,138 asymptomatic men and evaluated the potential bias of RSN and RFP estimates. PCR and LCR testing in urine were compared to culture of urethral specimens. Discordant results (PCR or LCR positive, but culture negative) were confirmed by using a sequence including the other DNA amplification test, direct fluorescent antibody testing, and a DNA amplification test to detect chlamydial major outer membrane protein. The RSN estimates for PCR and LCR were 1.45 (95% confidence interval [CI] = 1.3 to 1.7) and 1.49 (95% CI = 1.3 to 1.7), respectively, indicating that both methods are more sensitive than culture. Very few false-positive results were found, indicating that the specificity levels of PCR, LCR, and culture are high. The potential bias in RSN and RFP estimates were <5 and <20%, respectively. The estimation of bias is based on the most likely and probably conservative parameter settings. If the sensitivity of culture is between 60 and 65%, then the true sensitivity of PCR and LCR is between 90 and 97%. Our findings indicate that PCR and LCR are significantly more sensitive than culture, while the three tests have similar specificities. PMID:11682509
Metabonomics approaches and the potential application in foodsafety evaluation.
Kuang, Hua; Li, Zhe; Peng, Chifang; Liu, Liqiang; Xu, Liguang; Zhu, Yingyue; Wang, Libing; Xu, Chuanlai
2012-01-01
It is essential that the novel biomarkers discovered by means of advanced detection tools based on metabonomics could be used for long-term monitoring in food safety. By summarizing the common biomarkers discovery flowsheet based on metabonomics, this review evaluates the possible application of metabonomics in new biomarker discovery, especially in relation to food safety issues. Metabonomics have the advantages of decreasing detection limits and constant monitoring. Although metabonomics is still in the developmental stage, we believe that, based on its properties, such as noninvasiveness, sensitivity, and persistence, together with rigorous experimental designs, new and novel technologies, as well as increasingly accurate chemometrics and a relational database, metabonomics can demonstrate extensive application in food safety in the postgenome period.
Petropoulou, Syrago-Styliani E; Duong, Wendy; Petreas, Myrto; Park, June-Soo
2014-08-22
Hydroxylated polybrominated diphenyl ethers (OH-PBDEs) are formed from the oxidative metabolism of polybrominated diphenyl ethers (PBDEs) in humans, rats and mice, but their quantitation in human blood and other matrices with liquid chromatography-mass spectrometric techniques has been a challenge. In this study, a novel analytical method was developed and validated using only 250 μL of human serum for the quantitation of twelve OH-PBDEs, fully chromatographically separated in a 15 min analytical run. This method includes two novel approaches: an enzymatic hydrolysis procedure and a chromatographic separation using a mixed mode chromatography column. The enzymatic hydrolysis (EH) was found critical for 4'-OH-BDE17, which was not detectable without it. For the sample clean up, a solid phase extraction protocol was developed and validated for the extraction of the 12 congeners from human serum. In addition, for the first time baseline resolution of two components was achieved that correspond to a single peak previously identified as 6'-OH-BDE99. The method was validated for linearity, accuracy, precision, matrix effects, limit of quantification, limit of detection, sample stability and overall efficiency. Recoveries (absolute and relative) ranged from 66 to 130% with relative standard deviations <21% for all analytes. Limit of detection and quantitation ranged from 4 to 90 pg mL(-1) and 6-120 pg mL(-1), respectively, with no carry over effects. This method was applied in ten commercially available human serum samples from the general US population. The mean values of the congeners detected in all samples are 4'-OH-BDE17 (34.2 pg mL(-1)), 4-OH-BDE42 (33.9 pg mL(-1)), 5-OH-BDE47 (17.5 pg mL(-1)) and 4'-OH-BDE49 (12.4 pg mL(-1)). Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Cordiner, M. A.; Charnley, S. B.; Kisiel, Z.; McGuire, B. A.; Kuan, Y.-J.
2017-12-01
The 100 m Robert C. Byrd Green Bank Telescope K-band (KFPA) receiver was used to perform a high-sensitivity search for rotational emission lines from complex organic molecules in the cold interstellar medium toward TMC-1 (cyanopolyyne peak), focussing on the identification of new carbon-chain-bearing species as well as molecules of possible prebiotic relevance. We report a detection of the carbon-chain oxide species HC7O and derive a column density of (7.8+/- 0.9)× {10}11 cm-2. This species is theorized to form as a result of associative electron detachment reactions between oxygen atoms and C7H-, and/or reaction of C6H2 + with CO (followed by dissociative electron recombination). Upper limits are given for the related HC6O, C6O, and C7O molecules. In addition, we obtained the first detections of emission from individual 13C isotopologues of HC7N, and derive abundance ratios HC7N/HCCC13CCCCN = 110 ± 16 and HC7N/HCCCC13CCCN = 96 ± 11, indicative of significant 13C depletion in this species relative to the local interstellar elemental 12C/13C ratio of 60-70. The observed spectral region covered two transitions of HC11N, but emission from this species was not detected, and the corresponding column density upper limit is 7.4× {10}10 {{cm}}-2 (at 95% confidence). This is significantly lower than the value of 2.8× {10}11 {{cm}}-2 previously claimed by Bell et al. and confirms the recent nondetection of HC11N in TMC-1 by Loomis et al. Upper limits were also obtained for the column densities of malononitrile and the nitrogen heterocycles quinoline, isoquinoline, and pyrimidine.
Combining markers with and without the limit of detection
Dong, Ting; Liu, Catherine Chunling; Petricoin, Emanuel F.; Tang, Liansheng Larry
2014-01-01
In this paper, we consider the combination of markers with and without the limit of detection (LOD). LOD is often encountered when measuring proteomic markers. Because of the limited detecting ability of an equipment or instrument, it is difficult to measure markers at a relatively low level. Suppose that after some monotonic transformation, the marker values approximately follow multivariate normal distributions. We propose to estimate distribution parameters while taking the LOD into account, and then combine markers using the results from the linear discriminant analysis. Our simulation results show that the ROC curve parameter estimates generated from the proposed method are much closer to the truth than simply using the linear discriminant analysis to combine markers without considering the LOD. In addition, we propose a procedure to select and combine a subset of markers when many candidate markers are available. The procedure based on the correlation among markers is different from a common understanding that a subset of the most accurate markers should be selected for the combination. The simulation studies show that the accuracy of a combined marker can be largely impacted by the correlation of marker measurements. Our methods are applied to a protein pathway dataset to combine proteomic biomarkers to distinguish cancer patients from non-cancer patients. PMID:24132938
Nanotechnology: moving from microarrays toward nanoarrays.
Chen, Hua; Li, Jun
2007-01-01
Microarrays are important tools for high-throughput analysis of biomolecules. The use of microarrays for parallel screening of nucleic acid and protein profiles has become an industry standard. A few limitations of microarrays are the requirement for relatively large sample volumes and elongated incubation time, as well as the limit of detection. In addition, traditional microarrays make use of bulky instrumentation for the detection, and sample amplification and labeling are quite laborious, which increase analysis cost and delays the time for obtaining results. These problems limit microarray techniques from point-of-care and field applications. One strategy for overcoming these problems is to develop nanoarrays, particularly electronics-based nanoarrays. With further miniaturization, higher sensitivity, and simplified sample preparation, nanoarrays could potentially be employed for biomolecular analysis in personal healthcare and monitoring of trace pathogens. In this chapter, it is intended to introduce the concept and advantage of nanotechnology and then describe current methods and protocols for novel nanoarrays in three aspects: (1) label-free nucleic acids analysis using nanoarrays, (2) nanoarrays for protein detection by conventional optical fluorescence microscopy as well as by novel label-free methods such as atomic force microscopy, and (3) nanoarray for enzymatic-based assay. These nanoarrays will have significant applications in drug discovery, medical diagnosis, genetic testing, environmental monitoring, and food safety inspection.
NASA Astrophysics Data System (ADS)
Martin, Madhavi Z.; Allman, Steve; Brice, Deanne J.; Martin, Rodger C.; Andre, Nicolas O.
2012-08-01
Laser-induced breakdown spectroscopy (LIBS) has been used to determine the limits of detection of strontium (Sr) and cesium (Cs), common nuclear fission products. Additionally, detection limits were determined for cerium (Ce), often used as a surrogate for radioactive plutonium in laboratory studies. Results were obtained using a laboratory instrument with a Nd:YAG laser at fundamental wavelength of 1064 nm, frequency doubled to 532 nm with energy of 50 mJ/pulse. The data was compared for different concentrations of Sr and Ce dispersed in a CaCO3 (white) and carbon (black) matrix. We have addressed the sampling errors, limits of detection, reproducibility, and accuracy of measurements as they relate to multivariate analysis in pellets that were doped with the different elements at various concentrations. These results demonstrate that LIBS technique is inherently well suited for in situ analysis of nuclear materials in hot cells. Three key advantages are evident: (1) small samples (mg) can be evaluated; (2) nuclear materials can be analyzed with minimal sample preparation; and (3) samples can be remotely analyzed very rapidly (ms-seconds). Our studies also show that the methods can be made quantitative. Very robust multivariate models have been used to provide quantitative measurement and statistical evaluation of complex materials derived from our previous research on wood and soil samples.
León-Ruiz, V; Vera, S; San Andrés, M P
2005-04-01
Simultaneous determination of the fat-soluble vitamins A and E and the water-soluble vitamins B1, B2 and B6 has been carried using a screening method from fluorescence contour graphs. These graphs show different colour zones in relation to the fluorescence intensity measured for the pair of excitation/emission wavelengths. The identification of the corresponding excitation/emission wavelength zones allows the detection of different vitamins in an aqueous medium regardless of the fat or water solubility of each vitamin, owing to the presence of a surfactant which forms micelles in water at the used concentration (over the critical micelle concentration). The micelles dissolve very water insoluble compounds, such as fat-soluble vitamins, inside the aggregates. This approach avoids the use of organic solvents in determining these vitamins and offers the possibility of analysing fat- and water-soluble vitamins simultaneously. The method has been validated in terms of detection limit, cut-off limit, sensitivity, number of false positives, number of false negatives and uncertainty range. The detection limit is about microg L(-1). The screening method was applied to different samples such as pharmaceuticals, juices and isotonic drinks.
Thermal background noise limitations
NASA Technical Reports Server (NTRS)
Gulkis, S.
1982-01-01
Modern detection systems are increasingly limited in sensitivity by the background thermal photons which enter the receiving system. Expressions for the fluctuations of detected thermal radiation are derived. Incoherent and heterodyne detection processes are considered. References to the subject of photon detection statistics are given.
Cho, Il-Hoon; Ku, Seockmo
2017-09-30
The development of novel and high-tech solutions for rapid, accurate, and non-laborious microbial detection methods is imperative to improve the global food supply. Such solutions have begun to address the need for microbial detection that is faster and more sensitive than existing methodologies (e.g., classic culture enrichment methods). Multiple reviews report the technical functions and structures of conventional microbial detection tools. These tools, used to detect pathogens in food and food homogenates, were designed via qualitative analysis methods. The inherent disadvantage of these analytical methods is the necessity for specimen preparation, which is a time-consuming process. While some literature describes the challenges and opportunities to overcome the technical issues related to food industry legal guidelines, there is a lack of reviews of the current trials to overcome technological limitations related to sample preparation and microbial detection via nano and micro technologies. In this review, we primarily explore current analytical technologies, including metallic and magnetic nanomaterials, optics, electrochemistry, and spectroscopy. These techniques rely on the early detection of pathogens via enhanced analytical sensitivity and specificity. In order to introduce the potential combination and comparative analysis of various advanced methods, we also reference a novel sample preparation protocol that uses microbial concentration and recovery technologies. This technology has the potential to expedite the pre-enrichment step that precedes the detection process.
Carbon Nanotube-based microelectrodes for enhanced detection of neurotransmitters
NASA Astrophysics Data System (ADS)
Jacobs, Christopher B.
Fast-scan cyclic voltammetry (FSCV) is one of the common techniques used for rapid measurement of neurotransmitters in vivo. Carbon-fiber microelectrodes (CFMEs) are typically used for neurotransmitter detection because of sub-second measurement capabilities, ability to measure changes in neurotransmitter concentration during neurotransmission, and the small size electrode diameter, which limits the amount of damage caused to tissue. Cylinder CFMEs, typically 50 -- 100 microm long, are commonly used for in vivo experiments because the electrode sensitivity is directly related to the electrode surface area. However the length of the electrode can limit the spatial resolution of neurotransmitter detection, which can restrict experiments in Drosophila and other small model systems. In addition, the electrode sensitivity toward dopamine and serotonin detection drops significantly for measurements at rates faster than 10 Hz, limiting the temporal resolution of CFMEs. While the use of FSCV at carbon-fiber microelectrodes has led to substantial strides in our understanding of neurotransmission, techniques that expand the capabilities of CFMEs are crucial to fully maximize the potential uses of FSCV. This dissertation introduces new methods to integrate carbon nanotubes (CNT) into microelectrodes and discusses the electrochemical enhancements of these CNT-microelectrodes. The electrodes are specifically designed with simple fabrication procedures so that highly specialized equipment is not necessary, and they utilize commercially available materials so that the electrodes could be easily integrated into existing systems. The electrochemical properties of CNT modified CFMEs are characterized using FSCV and the effect of CNT functionalization on these properties is explored in Chapter 2. For example, CFME modification using carboxylic acid functionalized CNTs yield about a 6-fold increase in dopamine oxidation current, but modification with octadecylamine CNTs results in a negligible change to the signal. Chapter 3 is devoted to the development and characterization of new CNT-Yarn Microelectrodes (CNTYME) which display a beneficial enhancement in sensitivity and reduction in both electron transfer kinetics and overpotential. Chapter 4 introduces the high-speed dopamine detection capabilities of CNTYMEs, almost two orders of magnitude faster than at CFMEs without any compromise in electrochemical sensitivity, and discusses how adsorption and desorption relate to this phenomenon.
Screening of European coffee final products for occurrence of ochratoxin A (OTA).
vd Stegen, G; Jörissen, U; Pittet, A; Saccon, M; Steiner, W; Vincenzi, M; Winkler, M; Zapp, J; Schlatter, C
1997-04-01
Samples (633) of final coffee products were drawn from the markets of different European countries relative to the market share of each product type and brand. These samples were analysed in a cooperative action with nine different laboratories. With low limits of detection (mean detection limit approximately 0.5 ng/g) no OTA was found in over half of the samples (334 negatives). In the remaining samples occurrence of OTA at a rather low level was seen. Only four samples (all instants) exceeded a level of 10 ng/g, whereas for both instants, and roast and grounds (R & G), over three-quarters of the samples were in the range from nondetectable to 1 ng/g. The overall mean for all R & Gs was 0.8 ng/g and for all instant 1.3 ng/g (for samples in which no OTA was detected, half of the detection limit was included in this calculation). In the brewing methods frequently used in Europe the OTA is essentially fully extracted. Consumption of four cups of coffee per day (approximately 24 g R & G or approximately 8 g instant coffee) contributes on average 19 or 10 ng/day respectively. Four cups/day is above the per caput consumption level in most European contries. Compared with the Provisional Tolerable Weekly Intake (PTWI) recently set by the Joint FAO/WHO Expert Committee on Food Additives at 100 ng/kg bodyweight/week, consumption of 28 cups/week contributes up to 2% to the PTWI.
Radio and gamma-ray properties of extragalactic jets from the TANAMI sample
Böck, M.; Kadler, M.; Müller, C.; ...
2016-05-04
The TANAMI program has been observing parsec-scale radio jets of southern (declination south of - 30°) γ-ray bright AGN, simultaneously with Fermi/LAT monitoring of their γ-ray emission, via high-resolution radio imaging with Very Long Baseline Interferometry techniques. In this paper, we present the radio and γ-rayproperties of the TANAMI sources based on one year of contemporaneous TANAMI and Fermi/LAT data. A large fraction (72%) of the TANAMI sample can be associated with bright γ-ray sources for this time range. Association rates differ for different optical classes with all BL Lacs, 76% of quasars, and just 17% of galaxies detected bymore » the LAT. Upper limits were established on the γ-ray flux from TANAMI sources not detected by LAT. This analysis led to the identification of three new Fermi sources whose detection was later confirmed. The γ-ray and radio luminosities are related by L γ ∝ L r 0.89±0.04. The brightness temperatures of the radio cores increase with the average γ-ray luminosity and the presence of brightness temperatures above the inverse Compton limit implies strong Doppler boosting in those sources. The undetected sources have lower γ/radio luminosity ratios and lower contemporaneous brightness temperatures. Finally, unless the Fermi/LAT-undetected blazars are much γ-ray-fainter than the Fermi/LAT-detected sources, their γ-ray luminosity should not be significantly lower than the upper limits calculated here.« less
Equine infectious anemia virus in naturally infected horses from the Brazilian Pantanal.
Cursino, Andreia Elisa; Vilela, Ana Paula Pessoa; Franco-Luiz, Ana Paula Moreira; de Oliveira, Jaquelline Germano; Nogueira, Márcia Furlan; Júnior, João Pessoa Araújo; de Aguiar, Daniel Moura; Kroon, Erna Geessien
2018-05-11
Equine infectious anemia (EIA) has a worldwide distribution, and is widespread in Brazil. The Brazilian Pantanal presents with high prevalence comprising equine performance and indirectly the livestock industry, since the horses are used for cattle management. Although EIA is routinely diagnosed by the agar gel immunodiffusion test (AGID), this serological assay has some limitations, so PCR-based detection methods have the potential to overcome these limitations and act as complementary tests to those currently used. Considering the limited number of equine infectious anemia virus (EIAV) sequences which are available in public databases and the great genome variability, studies of EIAV detection and characterization molecular remain important. In this study we detected EIAV proviral DNA from 23 peripheral blood mononuclear cell (PBMCs) samples of naturally infected horses from Brazilian Pantanal using a semi-nested-PCR (sn-PCR). The serological profile of the animals was also evaluated by AGID and ELISA for gp90 and p26. Furthermore, the EIAV PCR amplified DNA was sequenced and phylogenetically analyzed. Here we describe the first EIAV sequences of the 5' LTR of the tat gene in naturally infected horses from Brazil, which presented with 91% similarity to EIAV reference sequences. The Brazilian EIAV sequences also presented variable nucleotide similarities among themselves, ranging from 93,5% to 100%. Phylogenetic analysis showed that Brazilian EIAV sequences grouped in a separate clade relative to other reference sequences. Thus this molecular detection and characterization may provide information about EIAV circulation in Brazilian territories and improve phylogenetic inferences.
AMS of 93Zr: Passive absorber versus gas-filled magnet
NASA Astrophysics Data System (ADS)
Hain, Karin; Deneva, Boyana; Faestermann, Thomas; Fimiani, Leticia; Gómez-Guzmán, José Manuel; Koll, Dominik; Korschinek, Gunther; Ludwig, Peter; Sergeyeva, Victoria; Thiollay, Nicolas
2018-05-01
Two different isobar separation techniques were tested for the detection of the long-lived fission product 93Zr (T1/2 = 1.64 · 106 a) using Accelerator Mass Spectrometry (AMS), i.e. a passive absorber and a gas-filled magnet, respectively. Both techniques were used in combination with a Time-of-Flight path for the identification of the stable neighboring isotopes 92Zr and 94Zr. The passive absorber was represented by a stack of silicon nitride foils for high flexibility regarding the thickness for optimal isobar separation. Ion beams with a large variety of energies, between 80 and 180 MeV, were provided for this experiment by the tandem accelerator at the Maier-Leibnitz Laboratory in Garching, Germany. With these beams, the stopping powers of 93Zr and 93Nb as a function of energy were determined experimentally and compared to the results obtained with the simulation program SRIM. Considerable discrepancies regarding the energy dependence of the two stopping power curves relative to each other were found. The lowest detection limit for 93Zr achieved with the passive absorber setup was 93Zr/Zr = 1 · 10-10. In comparison, by optimizing the gas-filled magnet set-up, 93Nb was suppressed by around six orders of magnitude and a detection limit of 93Zr/Zr = 5 · 10-11 was obtained. To our knowledge, these results represent the lowest detection limit achieved for 93Zr until now.
NASA Astrophysics Data System (ADS)
Chasteen, Thomas Girard
1990-01-01
The first part of this dissertation describes capillary chromatography coupled to a fluorine-induced chemiluminescence detector as a sensitive method by which biologically methylated metalloids can be determined in the presence of high concentrations of potentially interfering molecules. With a wide linear range and excellent sensitivity, this method was applied to the detection of dimethyl selenide (DMSe), dimethyl diselenide (DMDSe), and dimethyl telluride (DMTe), often found in biological environments in the presence of interfering methylated sulfur gases, such as methanethiol, dimethyl sulfide, dimethyl disulfide, and dimethyl trisulfide. Detection limits for DMSe, DMDSe, and DMTe were 30, 9, and 7 picograms, respectively. This DMTe detection limit is the lowest reported to date for a volatile tellurium gas. A variety of selenium-resistant bacteria emitted mixtures of methylated sulfur/selenium gases when dosed with inorganic selenium salts in the presence of sulfur containing growth media. One of the gases detected was dimethyl selenenyl sulfide, CH_3SeSCH _3, reported here for the first time in headspace above microorganisms. In addition, this detector responded to reduced phosphorus compounds such as phosphine. The detection limit for this compound was 2.8 picograms. Detection limits for alkylated phosphines trimethyl and triethyl phosphine were 0.5 and 17 picograms respectively, based on the relative response of these compounds compared to dimethyl sulfide. This method can be used for the simultaneous determination of methylated sulfur, selenium, tellurium compounds found in biological systems. Part II of this dissertation describes work with methyldithiocarbhydrazide, a compound that has been synthesized for use as a derivatization reagent to capture formaldehyde in the gas phase. Chosen for its ability to react in a manner similar to 2,4-dinitrophenylhydrazine, this molecule was selected based on two structural characteristics: a hydrazine tag to react with and thereby capture carbonyls and a methyl sulfide group to allow for sensitive detection by fluorine-induced chemiluminescence. Although in the final analysis methyldithiocarbohydrazide failed as a successful means by which formaldehyde can be determined using gas chromatography in conjunction with fluorine-induced chemiluminescence, it did successfully derivatize formaldehyde in both solution and the gas phase without the need for low pH conditions.
Barua, Suman; Rahman, Ismail M M; Alam, Iftakharul; Miyaguchi, Maho; Sawai, Hikaru; Maki, Teruya; Hasegawa, Hiroshi
2017-08-15
A relatively rapid and precise method is presented for the determination of lead in aqueous matrix. The method consists of analyte quantitation using the liquid electrode plasma-optical emission spectrometry (LEP-OES) coupled with selective separation/preconcentration by solid-phase extraction (SPE). The impact of operating variables on the retention of lead in SPEs such as pH, flow rate of the sample solution; type, volume, flow rate of the eluent; and matrix effects were investigated. Selective SPE-separation/preconcentration minimized the interfering effect due to manganese in solution and limitations in lead-detection in low-concentration samples by LEP-OES. The LEP-OES operating parameters such as the electrical conductivity of sample solution; applied voltage; on-time, off-time, pulse count for applied voltage; number of measurements; and matrix effects have also been optimized to obtain a distinct peak for the lead at λ max =405.8nm. The limit of detection (3σ) and the limit of quantification (10σ) for lead determination using the technique were found as 1.9 and 6.5ng mL -1 , respectively. The precision, as relative standard deviation, was lower than 5% at 0.1μg mL -1 Pb, and the preconcentration factor was found to be 187. The proposed method was applied to the analysis of lead contents in the natural aqueous matrix (recovery rate:>95%). The method accuracy was verified using certified reference material of wastewaters: SPS-WW1 and ERM-CA713. The results from LEP-OES were in good agreement with inductively coupled plasma optical emission spectrometry measurements of the same samples. The application of the method is rapid (≤5min, without preconcentration) with a reliable detection limit at trace levels. Copyright © 2017 Elsevier B.V. All rights reserved.
Campillo-Gimenez, Boris; Garcelon, Nicolas; Jarno, Pascal; Chapplain, Jean Marc; Cuggia, Marc
2013-01-01
The surveillance of Surgical Site Infections (SSI) contributes to the management of risk in French hospitals. Manual identification of infections is costly, time-consuming and limits the promotion of preventive procedures by the dedicated teams. The introduction of alternative methods using automated detection strategies is promising to improve this surveillance. The present study describes an automated detection strategy for SSI in neurosurgery, based on textual analysis of medical reports stored in a clinical data warehouse. The method consists firstly, of enrichment and concept extraction from full-text reports using NOMINDEX, and secondly, text similarity measurement using a vector space model. The text detection was compared to the conventional strategy based on self-declaration and to the automated detection using the diagnosis-related group database. The text-mining approach showed the best detection accuracy, with recall and precision equal to 92% and 40% respectively, and confirmed the interest of reusing full-text medical reports to perform automated detection of SSI.
[Detection of KRAS mutation in colorectal cancer patients' cfDNA with droplet digital PCR].
Luo, Yuwen; Li, Yao
2018-03-25
This study aims to develop a new method for the detection of KRAS mutations related to colorectal cancer in cfDNA, and to evaluate the sensitivity and accuracy of the detection. We designed a method of cfDNA based KRAS detection by droplets digital PCR (ddPCR). The theoretical performance of the method is evaluated by reference standard and compared to the ARMS PCR method. Two methods, ddPCR and qPCR, were successfully established to detect KRAS wild type and 7 mutants. Both methods were validated using plasmid standards and actual samples. The results were evaluated by false positive rate, linearity, and limit of detection. Finally, 52 plasma cfDNA samples from patients and 20 samples from healthy people were tested, the clinical sensitivity is 97.64%, clinical specificity is 81.43%. ddPCR method shows higher performance than qPCR. The LOD of ddPCR method reached single digits of cfDNA copies, it can detect as low as 0.01% to 0.04% mutation abundance.
Wang, Jixiang; Qiu, Hao; Shen, Hongqiang; Pan, Jianming; Dai, Xiaohui; Yan, Yongsheng; Pan, Guoqing; Sellergren, Börje
2016-11-15
Molecularly imprinted fluorescent polymers have shown great promise in biological or chemical separations and detections, due to their high stability, selectivity and sensitivity. In this work, molecularly imprinted fluorescent hollow nanoparticles, which could rapidly and efficiently detect λ-cyhalothrin (a toxic insecticide) in water samples, was reported. The molecularly imprinted fluorescent sensor showed excellent sensitivity (the limit of detection low to 10.26nM), rapid detection rate (quantitative detection of λ-cyhalothrin within 8min), regeneration ability (maintaining good fluorescence properties after 8 cycling operation) and appreciable selectivity over several structural analogs. Moreover, the fluorescent sensor was further used to detect λ-cyhalothrin in real samples form the Beijing-Hangzhou Grand Canal Water. Despite the relatively complex components of the environmental water, the molecularly imprinted fluorescent hollow nanosensor still showed good recovery, clearly demonstrating the potential value of this smart sensor nanomaterial in environmental monitoring. Copyright © 2016 Elsevier B.V. All rights reserved.
Nondetect (ND) or below detection limit (BDL) results cannot be measured accurately, and, therefore, are reported as less than certain detection limit (DL) values. However, since the presence of some contaminants (e.g., dioxin) in environmental media may pose a threat to human he...
Drug detection in breath: non-invasive assessment of illicit or pharmaceutical drugs.
Trefz, Phillip; Kamysek, Svend; Fuchs, Patricia; Sukul, Pritam; Schubert, Jochen K; Miekisch, Wolfram
2017-03-20
Breath analysis not only holds great potential for the development of new non-invasive diagnostic methods, but also for the identification and follow up of drug levels in breath. This is of interest for both, forensic and medical science. On the one hand, the detection of drugs of abuse in exhaled breath-similar to the well-known breath alcohol tests-would be highly desirable as an alternative to blood or urine analysis in situations such as police controls for drugged driving. The non-invasive detection of drugs and their metabolites is thus of great interest in forensic science, especially since marijuana is becoming legalized in certain parts of the US and the EU. The detection and monitoring of medical drugs in exhaled breath without the need of drawing blood samples on the other hand, is of high relevance in the clinical environment. This could facilitate a more precise medication and enable therapy control without any burden to the patient. Furthermore, it could be a step towards personalized medicine. This review gives an overview of the current state of drug detection in breath, including both volatile and non-volatile substances. The review is divided into two sections. The first section deals with qualitative detection of drugs (drugs of abuse), while the second is related to quantitative drug detection (medical drugs). Chances and limitations are discussed for both aspects. The detection of the intravenous anesthetic propofol is presented as a detailed example that demonstrates the potential, requirements, pitfalls and limitations of therapeutic drug monitoring by means of breath analysis.
Electrochemical detection of leukemia oncogenes using enzyme-loaded carbon nanotube labels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ai Cheng; Du, Dan; Chen, Baowei
2014-09-07
Here we describe an ultrasensitive electrochemical nucleic acids assay amplified by carbon nanotubes (CNTs)-based labels for the detection of human acute lymphocytic leukemia (ALL) related p185 BCR-ABL fusion transcript. The carboxylated CNTs were functionalized with horseradish peroxidase (HRP) molecules and target-specific detection probes (DP) via diimide-activated amidation, and used to label and amplify target hybridization signal. The activity of captured HRP was monitored by square-wave voltammetry measuring the electroactive enzymatic product in the presence of 2-aminophenol and hydrogen peroxide substrate solution. The effect of DP and HRP loading of the CNT-based labels on its signal-to-noise ratio of electrochemical detection wasmore » studied systematically for the first time. Under optimized conditions, the signal-amplified assay achieved a detection limit of 83 fM targets oligonuecleotides and a 4-order wide dynamic range of target concentration. The resulting assay allowed a robust discrimination between the perfect match and a three-base mismatch sequence. When subjected to full-length (491 bp) DNA oncogene, the approach demonstrated a detection limit of approximately 33 pg of the target gene. The high sensitivity and specificity of assay enabled PCR-free detection of target transcripts in as little as 65 ng of mRNA extracted from positive ALL cell lines SUP-B15, in comparison to those obtained from negative cell lines HL-60. The approach holds promise for simple, low cost and ultrasensitive electrochemical nucleic acids detection in portable devices, point-of-care and early disease diagnostic applications.« less
Buelow, Daelynn; Sun, Yilun; Tang, Li; Gu, Zhengming; Pounds, Stanley; Hayden, Randall
2016-07-01
Monitoring of Epstein-Barr virus (EBV) load in immunocompromised patients has become integral to their care. An increasing number of reagents are available for quantitative detection of EBV; however, there are little published comparative data. Four real-time PCR systems (one using laboratory-developed reagents and three using analyte-specific reagents) were compared with one another for detection of EBV from whole blood. Whole blood specimens seeded with EBV were used to determine quantitative linearity, analytical measurement range, lower limit of detection, and CV for each assay. Retrospective testing of 198 clinical samples was performed in parallel with all methods; results were compared to determine relative quantitative and qualitative performance. All assays showed similar performance. No significant difference was found in limit of detection (3.12-3.49 log10 copies/mL; P = 0.37). A strong qualitative correlation was seen with all assays that used clinical samples (positive detection rates of 89.5%-95.8%). Quantitative correlation of clinical samples across assays was also seen in pairwise regression analysis, with R(2) ranging from 0.83 to 0.95. Normalizing clinical sample results to IU/mL did not alter the quantitative correlation between assays. Quantitative EBV detection by real-time PCR can be performed over a wide linear dynamic range, using three different commercially available reagents and laboratory-developed methods. EBV was detected with comparable sensitivity and quantitative correlation for all assays. Copyright © 2016 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
Quantum cascade laser-based multipass absorption system for hydrogen peroxide detection
NASA Astrophysics Data System (ADS)
Cao, Yingchun; Sanchez, Nancy P.; Jiang, Wenzhe; Ren, Wei; Lewicki, Rafal; Jiang, Dongfang; Griffin, Robert J.; Tittel, Frank K.
2015-01-01
Hydrogen peroxide (H2O2) is a relevant molecular trace gas species, that is related to the oxidative capacity of the atmosphere, the production of radical species such as OH, the generation of sulfate aerosol via oxidation of S(IV) to S(VI), and the formation of acid rain. The detection of atmospheric H2O2 involves specific challenges due to its high reactivity and low concentration (ppbv to sub-ppbv level). Traditional methods for measuring atmospheric H2O2 concentration are often based on wet-chemistry methods that require a transfer from the gas- to liquid-phase for a subsequent determination by techniques such as fluorescence spectroscopy, which can lead to problems such as sampling artifacts and interference by other atmospheric constituents. A quartz-enhanced photoacoustic spectroscopy-based system for the measurement of atmospheric H2O2 with a detection limit of 75 ppb for 1-s integration time was previously reported. In this paper, an updated H2O2 detection system based on long-optical-path-length absorption spectroscopy by using a distributed feedback quantum cascade laser (DFB-QCL) will be described. A 7.73-μm CW-DFB-QCL and a thermoelectrically cooled infrared detector, optimized for a wavelength of 8 μm, are employed for theH2O2 sensor system. A commercial astigmatic Herriott multi-pass cell with an effective optical path-length of 76 m is utilized for the reported QCL multipass absorption system. Wavelength modulation spectroscopy (WMS) with second harmonic detection is used for enhancing the signal-to-noise-ratio. A minimum detection limit of 13.4 ppb is achieved with a 2 s sampling time. Based on an Allan-Werle deviation analysis the minimum detection limit can be improved to 1.5 ppb when using an averaging time of 300 s.
Zuway, Khaled Y; Smith, Jamie P; Foster, Christopher W; Kapur, Nikil; Banks, Craig E; Sutcliffe, Oliver B
2015-09-21
The global increase in the production and abuse of cathinone-derived New Psychoactive Substances (NPSs) has developed the requirement for rapid, selective and sensitive protocols for their separation and detection. Electrochemical sensing of these compounds has been demonstrated to be an effective method for the in-field detection of these substances, either in their pure form or in the presence of common adulterants, however, the technique is limited in its ability to discriminate between structurally related cathinone-derivatives (for example: (±)-4′-methylmethcathinone (4-MMC, 2a) and (±)-4′-methyl-N-ethylmethcathinone (4-MEC, 2b) when they are both present in a mixture. In this paper we demonstrate, for the first time, the combination of HPLC-UV with amperometric detection (HPLC-AD) for the qualitative and quantitative analysis of 4-MMC and 4-MEC using either a commercially available impinging jet (LC-FC-A) or custom-made iCell channel (LC-FC-B) flow-cell system incorporating embedded graphite screen-printed macroelectrodes. The protocol offers a cost-effective, reproducible and reliable sensor platform for the simultaneous HPLC-UV and amperometric detection of the target analytes. The two systems have similar limits of detection, in terms of amperometric detection [LC-FC-A: 14.66 μg mL(-1) (2a) and 9.35 μg mL(-1) (2b); LC-FC-B: 57.92 μg mL(-1) (2a) and 26.91 μg mL(-1) (2b)], to the previously reported oxidative electrochemical protocol [39.8 μg mL(-1) (2a) and 84.2 μg mL(-1) (2b)], for two synthetic cathinones, prevalent on the recreational drugs market. Though not as sensitive as standard HPLC-UV detection, both flow cells show a good agreement, between the quantitative electroanalytical data, thereby making them suitable for the detection and quantification of 4-MMC and 4-MEC, either in their pure form or within complex mixtures. Additionally, the simultaneous HPLC-UV and amperometric detection protocol detailed herein shows a marked improvement and advantage over previously reported electroanalytical methods, which were either unable to selectively discriminate between structurally related synthetic cathinones (e.g. 4-MMC and 4-MEC) or utilised harmful and restrictive materials in their design.
Convolutional neural networks for event-related potential detection: impact of the architecture.
Cecotti, H
2017-07-01
The detection of brain responses at the single-trial level in the electroencephalogram (EEG) such as event-related potentials (ERPs) is a difficult problem that requires different processing steps to extract relevant discriminant features. While most of the signal and classification techniques for the detection of brain responses are based on linear algebra, different pattern recognition techniques such as convolutional neural network (CNN), as a type of deep learning technique, have shown some interests as they are able to process the signal after limited pre-processing. In this study, we propose to investigate the performance of CNNs in relation of their architecture and in relation to how they are evaluated: a single system for each subject, or a system for all the subjects. More particularly, we want to address the change of performance that can be observed between specifying a neural network to a subject, or by considering a neural network for a group of subjects, taking advantage of a larger number of trials from different subjects. The results support the conclusion that a convolutional neural network trained on different subjects can lead to an AUC above 0.9 by using an appropriate architecture using spatial filtering and shift invariant layers.
On the Unreasonable Effectiveness of post-Newtonian Theory in Gravitational-Wave Physics
Will, Clifford M.
2017-12-22
The first indirect detection of gravitational waves involved a binary system of neutron stars. In the future, the first direct detection may also involve binary systems -- inspiralling and merging binary neutron stars or black holes. This means that it is essential to understand in full detail the two-body system in general relativity, a notoriously difficult problem with a long history. Post-Newtonian approximation methods are thought to work only under slow motion and weak field conditions, while numerical solutions of Einstein's equations are thought to be limited to the final merger phase. Recent results have shown that post-Newtonian approximations seem to remain unreasonably valid well into the relativistic regime, while advances in numerical relativity now permit solutions for numerous orbits before merger. It is now possible to envision linking post-Newtonian theory and numerical relativity to obtain a complete "solution" of the general relativistic two-body problem. These solutions will play a central role in detecting and understanding gravitational wave signals received by interferometric observatories on Earth and in space.
NASA Astrophysics Data System (ADS)
Caridad, José M.; Winters, Sinéad; McCloskey, David; Duesberg, Georg S.; Donegan, John F.; Krstić, Vojislav
2017-03-01
Reproducible and enhanced optical detection of molecules in low concentrations demands simultaneously intense and homogeneous electric fields acting as robust signal amplifiers. To generate such sophisticated optical near-fields, different plasmonic nanostructures were investigated in recent years. These, however, exhibit either high enhancement factor (EF) or spatial homogeneity but not both. Small interparticle gaps or sharp nanostructures show enormous EFs but no near-field homogeneity. Meanwhile, approaches using rounded and separated monomers create uniform near-fields with moderate EFs. Here, guided by numerical simulations, we show how arrays of weakly-coupled Ag nanohelices achieve both homogeneous and strong near-field enhancements, reaching even the limit forreproducible detection of individual molecules. The unique near-field distribution of a single nanohelix consists of broad hot-spots, merging with those from neighbouring nanohelices in specific array configurations and generating a wide and uniform detection zone (“hot-volume”). We experimentally assessed these nanostructures via surface-enhanced Raman spectroscopy, obtaining a corresponding EF of ~107 and a relative standard deviation <10%. These values demonstrate arrays of nanohelices as state-of-the-art substrates for reproducible optical detection as well as compelling nanostructures for related fields such as near-field imaging.
Antibiotic resistance genes across a wide variety of metagenomes.
Fitzpatrick, David; Walsh, Fiona
2016-02-01
The distribution of potential clinically relevant antibiotic resistance (AR) genes across soil, water, animal, plant and human microbiomes is not well understood. We aimed to investigate if there were differences in the distribution and relative abundances of resistance genes across a variety of ecological niches. All sequence reads (human, animal, water, soil, plant and insect metagenomes) from the MG-RAST database were downloaded and assembled into a local sequence database. We show that there are many reservoirs of the basic form of resistance genes e.g. blaTEM, but the human and mammalian gut microbiomes contain the widest diversity of clinically relevant resistance genes using metagenomic analysis. The human microbiomes contained a high relative abundance of resistance genes, while the relative abundances varied greatly in the marine and soil metagenomes, when datasets with greater than one million genes were compared. While these results reflect a bias in the distribution of AR genes across the metagenomes, we note this interpretation with caution. Metagenomics analysis includes limits in terms of detection and identification of AR genes in complex and diverse microbiome population. Therefore, if we do not detect the AR gene is it in fact not there or just below the limits of our techniques? © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Possibilities for the detection of microbial life on extrasolar planets.
Knacke, Roger F
2003-01-01
We consider possibilities for the remote detection of microbial life on extrasolar planets. The Darwin/Terrestrial Planet Finder (TPF) telescope concepts for observations of terrestrial planets focus on indirect searches for life through the detection of atmospheric gases related to life processes. Direct detection of extraterrestrial life may also be possible through well-designed searches for microbial life forms. Satellites in Earth orbit routinely monitor colonies of terrestrial algae in oceans and lakes by analysis of reflected ocean light in the visible region of the spectrum. These remote sensing techniques suggest strategies for extrasolar searches for signatures of chlorophylls and related photosynthetic compounds associated with life. However, identification of such life-related compounds on extrasolar planets would require observations through strong, interfering absorptions and scattering radiances from the remote atmospheres and landmasses. Techniques for removal of interfering radiances have been extensively developed for remote sensing from Earth orbit. Comparable techniques would have to be developed for extrasolar planet observations also, but doing so would be challenging for a remote planet. Darwin/TPF coronagraph concepts operating in the visible seem to be best suited for searches for extrasolar microbial life forms with instruments that can be projected for the 2010-2020 decades, although resolution and signal-to-noise ratio constraints severely limit detection possibilities on terrestrial-type planets. The generation of telescopes with large apertures and extremely high spatial resolutions that will follow Darwin/TPF could offer striking possibilities for the direct detection of extrasolar microbial life.
On the production of N2O from the reaction of O/1D/with N2.
NASA Technical Reports Server (NTRS)
Simonaitis, R.; Lissi, E.; Heicklen, J.
1972-01-01
Ozone was photolyzed at 2537 A and at 25 C in the presence of 42-115 torr of O2 and about 880 torr of N2 to test the relative importance of the two reactions O(1D) + N2 + M leading to N2O + M and O(1D) + N2 leading to O(3P) + N2. In this study N2O was not found as a product. Thus from our detectability limit for N2O an upper limit to the efficiency of the first reaction relative to the second of 2.5 times 10 to the -6 power at 1000-torr total pressure was computed.
Clustering approaches to feature change detection
NASA Astrophysics Data System (ADS)
G-Michael, Tesfaye; Gunzburger, Max; Peterson, Janet
2018-05-01
The automated detection of changes occurring between multi-temporal images is of significant importance in a wide range of medical, environmental, safety, as well as many other settings. The usage of k-means clustering is explored as a means for detecting objects added to a scene. The silhouette score for the clustering is used to define the optimal number of clusters that should be used. For simple images having a limited number of colors, new objects can be detected by examining the change between the optimal number of clusters for the original and modified images. For more complex images, new objects may need to be identified by examining the relative areas covered by corresponding clusters in the original and modified images. Which method is preferable depends on the composition and range of colors present in the images. In addition to describing the clustering and change detection methodology of our proposed approach, we provide some simple illustrations of its application.
Kim, Nam Sook; Hong, Sang Hee; An, Joon Geon; Shin, Kyung-Hoon; Shim, Won Joon
2015-06-15
The occurrence and distribution of tributyltin (TBT) and alternative biocides were investigated in sediment from semi-enclosed bays, fishing ports, and large commercial harbors in Korea. Extremely high concentration of TBT (55,264ngSn/g) was detected near a large shipyard, even after a total ban on its use in Korea. Diuron was the biocide with the highest detection frequency and concentration levels, followed by Irgarol 1051. Sea-Nine 211 was detected at 3 of 32 stations surveyed. Dichlofluanid, zinc and copper pyrithiones levels were below the detection limits at all the stations surveyed. The relatively high levels of Diuron (9-62.3ng/g) and Irgarol 1051 (1.5-11.5ng/g) were detected in harbor and shipyard areas. Diuron and Irgarol 1051 levels including TBT in sediments from hot spots in Korea exceeded global sediment quality guidelines. Copyright © 2015 Elsevier Ltd. All rights reserved.
Wang, Jixiang; Wang, Yunyun; Qiu, Hao; Sun, Lin; Dai, Xiaohui; Pan, Jianming; Yan, Yongsheng
2017-01-01
Fluorescent molecularly imprinted polymers have shown great promise in biological or chemical separations and detection, due to their high stability, selectivity and sensitivity. In this work, fluorescent molecularly imprinted microsphere was synthesized via precipitation polymerization, which could separate efficiently and rapidly detect τ-fluvalinate (a toxic insecticide) in water samples, was reported. The fluorescent imprinted sensor showed excellent stability, outstanding selectivity and the limit of detection low to 12.14 nM, good regeneration ability which still kept good sensitivity after 8 cycling experiments and fluorescence quenching mechanism was illustrated in details. In addition, the fluorescent sensor was further used to detect τ-fluvalinate in real samples from Taihu Lake. Despite the relatively complex components of the environment water, the fluorescent imprinted microspheres sitll showed good recovery, clearly demonstrating the potental value of this smart sensor nanomaterial in environment monitoring. PMID:28485402
Savoca, Mark E.; Tobias, Jennifer L.; Sadorf, Eric M.; Birkenholtz, Trevor L.
1997-01-01
Four herbicides (alachlor, atrazine, cyanazine, and metolachlor) and one nutrient (nitrate) were selected for study on the basis of frequent usage in Iowa and high detection rates in ground water (Detroy and Kuzniar, 1988). Alachlor was not detected at concentrations greater than the method detection limit (MDL). Atrazine was detected at concentrations greater than the MDL in samples from 48 percent of the 23 wells, cyanazine from 13 percent, metolachlor from 26 percent, and nitrate from 91 percent. None of the four herbicides were detected at concentrations greater than the respective U.S. Environmental Protection Agency's (USEPA) Maximum Contaminant Level (MCL) for drinking water. Thirteen percent of the samples had nitrate concentrations above the USEPA's MCL of 10 mg/L (milligrams per liter). Relations between constituent concentration and well depth were observed for specific constituents at individual well nests.
Ankireddy, Seshadri Reddy; Kim, Jongsung
2015-01-01
Dopamine is a neurotransmitter of the catecholamine family and has many important roles, especially in human brain. Several diseases of the nervous system, such as Parkinson’s disease, attention deficit hyperactivity disorder, restless legs syndrome, are believed to be related to deficiency of dopamine. Several studies have been performed to detect dopamine by using electrochemical analysis. In this study, quantum dots (QDs) were used as sensing media for the detection of dopamine. The surface of the QDs was modified with l-cysteine by coupling reaction to increase the selectivity of dopamine. The fluorescence of cysteine-capped indium phosphide/zinc sulfide QDs was quenched by dopamine with various concentrations in the presence of ascorbic acid. This method shows good selectivity for dopamine detection, and the detection limit was 5 nM. PMID:26347250
Sichilongo, Kwenga; Chinyama, Mompati; Massele, Amos; Vento, Sandro
2014-01-15
A contrast between the analytical performance characteristics using gas chromatography-mass spectrometry (GC-MS) liquid chromatography-mass spectrometry (LC-MS) and liquid chromatography-ultraviolet (LC-UV) detection for the determination of the antiretroviral drug (ARV) nevirapine (NVP) in fortified human plasma after QuEChERS extraction has been made. Analytical performance characteristics, i.e. linearities, instrument detection limits (IDLs), limits of quantitation (LOQs), method detection limits (MDLs), % mean recoveries and the corresponding relative standard deviations (%RSDs) were estimated using techniques above. Using GC-MS, the correlation coefficients (r(2)) were ≥0.990, which were deemed acceptable linearities. The MDLs ranged between 11.1-29.8μg/L and 13.7-36.0μg/L using helium and hydrogen carrier gases respectively. The LOQs ranged between 16.5-66.7μg/L and 28.4-98.7μg/L using helium and hydrogen carrier gases respectively with a % mean recovery of 83% and %RSD of 4.6%. Using LC-MS and LC-UV, the correlation coefficients (r(2)) were ≥0.990. The MDLs were ranged between 3.14 and 47.1μg/L. The LOQs ranged between 2.85 and 90.0μg/L respectively. The MDLs using GC-MS, LC-MS and LC-UV were below the therapeutic range for NVP in human plasma is considered to be between 2300μg/L (Cmin) and 8000μg/L (Cmax). This study also demonstrated that helium can be substituted with hydrogen which is relatively cheaper and easily obtainable even by use of a generator. Copyright © 2013 Elsevier B.V. All rights reserved.
On Aethalometer measurement uncertainties and an instrument correction factor for the Arctic
NASA Astrophysics Data System (ADS)
Backman, John; Schmeisser, Lauren; Virkkula, Aki; Ogren, John A.; Asmi, Eija; Starkweather, Sandra; Sharma, Sangeeta; Eleftheriadis, Konstantinos; Uttal, Taneil; Jefferson, Anne; Bergin, Michael; Makshtas, Alexander; Tunved, Peter; Fiebig, Markus
2017-12-01
Several types of filter-based instruments are used to estimate aerosol light absorption coefficients. Two significant results are presented based on Aethalometer measurements at six Arctic stations from 2012 to 2014. First, an alternative method of post-processing the Aethalometer data is presented, which reduces measurement noise and lowers the detection limit of the instrument more effectively than boxcar averaging. The biggest benefit of this approach can be achieved if instrument drift is minimised. Moreover, by using an attenuation threshold criterion for data post-processing, the relative uncertainty from the electronic noise of the instrument is kept constant. This approach results in a time series with a variable collection time (Δt) but with a constant relative uncertainty with regard to electronic noise in the instrument. An additional advantage of this method is that the detection limit of the instrument will be lowered at small aerosol concentrations at the expense of temporal resolution, whereas there is little to no loss in temporal resolution at high aerosol concentrations ( > 2.1-6.7 Mm-1 as measured by the Aethalometers). At high aerosol concentrations, minimising the detection limit of the instrument is less critical. Additionally, utilising co-located filter-based absorption photometers, a correction factor is presented for the Arctic that can be used in Aethalometer corrections available in literature. The correction factor of 3.45 was calculated for low-elevation Arctic stations. This correction factor harmonises Aethalometer attenuation coefficients with light absorption coefficients as measured by the co-located light absorption photometers. Using one correction factor for Arctic Aethalometers has the advantage that measurements between stations become more inter-comparable.
NASA Astrophysics Data System (ADS)
Kaplan, H. H.; Milliken, R.
2014-12-01
Laboratory, field-, and satellite-based visible-near infrared reflectance spectroscopy allows for rapid, remote, and non-destructive analysis of geologic materials to identify mineralogy as well as organic compounds. This type of analysis has potential to aid the search for organics on Mars as a means of first detection of reduced carbon, or to study organic matter nondestructively in valuable samples such as meteorites. In order to assess potential applications of this method we aim to answer fundamental questions about detection limits and quantification of organic matter using reflectance spectroscopy. Laboratory mixtures and natural samples are measured for total organic carbon (TOC in wt.%) with standard methods and reflectance spectroscopy. Absorption features due to C-H2 and C-H3 bonds are observed in the 3.3 to 3.5μm (3000 to 2850 cm-1) wavelength region. A strong H2O feature near 3μm, as well as carbonate-related absorptions near 3.4µm, are also found in this spectral region and can complicate detection of organic material, particularly at low TOC values. In natural samples without carbonate there appears to be a linear trend between TOC and the band depth of organic absorptions; samples that have low albedo, or strong 3μm water features deviate from this trend line. Spectra of samples with carbonate may be modeled with Gaussians to remove the influence of the carbonate features and better match the organic absorption trend. Early results indicate that quantification of organic matter in natural fine-grained samples using reflectance spectroscopy will need to take low-albedo components and water content into account. Detection limits may also depend on these properties; organic absorption features are clearly seen in the lowest TOC sample measured so far (0.08wt% or 800ppm), which is a relatively bright, carbonate-free, quartz- and clay-dominated outcrop sample. A series of laboratory experiments have been undertaken in which known amounts of organic compounds are mixed with smectitic clay in order to understand detection limits and the effects of albedo and hydration in a controlled setting. These laboratory results are compared with findings from natural samples that represent a wide range of ages and depositional settings.
Siddique, Nadeem A; Mujeeb, Mohd; Ahmad, Sayeed; Panda, Bibhu P; Makhmoor, Mohd
2013-01-01
The intention of the proposed work is to study the presence of the aflatoxins B1, B2, G1 and G2 in medicinal plants, namely Mucuna pruriens, Delphinium denudatum and Portulaca oleraceae. The aflatoxins were extracted, purified by immunoaffinity column chromatography and analysed by high-performance liquid chromatography-tandem quadrupole mass spectrometry with electrospray ionisation (HPLC-MS/MS). Fungal count was carried out in PDA media. A good linear relationship was found for AFB1, AFB2, AFG1 and AFG2 at 1-10 ppb (r>0.9995). The analyte accuracy under three different spiking levels was 86.7-108.1 %, with low per cent relative standard deviations in each case. The aflatoxins can be separated within 5 to7 min using an Agilent XDB C18-column. We found that AFB1 and AFB2 were in trace amounts below the detection limit in M. pruriens whilst they were not detected in D. denudatum. P. oleraceae was found to be contaminated with AFB1 and AFB2. AFG1 and AFG2 were not detected in M. pruriens, P. oleraceae and were below the detection limit in D. denudatum. This was consistent with very low numbers of fungal colonies observed after 6 hr of incubation. The analytical method developed is simple, precise, accurate, economical and can be effectively used to determine the aflatoxins in medicinal plants and therefore to control the quality of products. The aflatoxin levels in the plant extracts examined were related to the minimal fungal load in the medicinal plants examined.
Zuo, Ming; Gao, Jieying; Zhang, Xiaoqing; Cui, Yue; Fan, Zimian; Ding, Min
2015-07-01
Capillary electrophoresis with electrochemiluminescence detection for the simultaneous analysis of cisatracurium besylate and its degradation products (laudanosine, quaternary monoacrylate) in pharmaceutical preparation was developed and fully validated. The significant parameters that influence capillary electrophoresis separation and electrochemiluminescence detection were optimized. The total analysis time of the analytes was 15 min. The linearities of the method were 0.1∼40.0 μg/mL for cisatracurium besylate and 0.04∼8.00 μg/mL for laudanosine, with correlation coefficients (r) of 0.999 and 0.998, respectively. The detection limits (S/N = 3) were 83.0 ng/mL for cisatracurium besylate and 32.0 ng/mL for laudanosine. The intraday relative standard deviations of the analytes were <3.0%, and the interday relative standard deviations were <8.0%. The developed method was cost-effective, sensitive, fast, and resource-saving, which was suitable for the ingredient analysis in pharmaceutical preparation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wongniramaikul, Worawit; Limsakul, Wadcharawadee; Choodum, Aree
2018-05-30
A biodegradable colorimetric film was fabricated on the lid of portable tube for in-tube formaldehyde detection. Based on the entrapment of colorimetric reagents within a thin film of tapioca starch, the yellow reaction product was observed with formaldehyde. Intensity of the blue channel from the digital image of yellow product showed a linear relationship in the range of 0-25 mg L -1 with low detection limit of 0.7 ± 0.1 mg L -1 . Inter-day precision of 0.61-3.10%RSD were obtained with less than 4.2% relative error from control samples. The developed method was applied for various food samples in Phuket and formaldehyde concentration range was non-detectable to 1.413 mg kg -1 . The quantified concentrations of formaldehyde in fish and squid samples provided relative errors of -7.7% and +10.8% compared to spectrophotometry. This low cost sensor (∼0.04 USD/test) with digital image colorimetry was thus an effective alternative for formaldehyde detection in food sample. Copyright © 2018 Elsevier Ltd. All rights reserved.
Chao, Yu-Ying; Chen, Yen-Ling; Lin, Hong-Yi; Huang, Yeou-Lih
2018-06-20
Thermal desorption electrospray ionization/mass spectrometry (TD-ESI-MS) employing a quickly interchangeable ionization source is a relatively new ambient ionization mass spectrometric technique that has had, to date, only a limited number of applications related to food safety control. With reallocation of resources, this direct-analysis technique has had wider use in food analysis when operated in dual-working mode (pretreatment-free qualitative screening and conventional quantitative confirmation) after switching to an ambient ionization source from a traditional atmospheric pressure ionization source. Herein, we describe the benefits and challenges associated with the use of a TD-ESI source to detect adulterants in processed vegetables (PVs), as a proof-of-concept for the detection of basic colorants. While TD-ESI can offer direct qualitative screening analyses for PVs with detection capabilities lower than those provided with liquid chromatography/UV detection within 30 s, the use of TD-ESI for semi-quantification is applicable only for homogeneous food matrices. Copyright © 2018 Elsevier B.V. All rights reserved.
Censoring: a new approach for detection limits in total-reflection X-ray fluorescence
NASA Astrophysics Data System (ADS)
Pajek, M.; Kubala-Kukuś, A.; Braziewicz, J.
2004-08-01
It is shown that the detection limits in the total-reflection X-ray fluorescence (TXRF), which restrict quantification of very low concentrations of trace elements in the samples, can be accounted for using the statistical concept of censoring. We demonstrate that the incomplete TXRF measurements containing the so-called "nondetects", i.e. the non-measured concentrations falling below the detection limits and represented by the estimated detection limit values, can be viewed as the left random-censored data, which can be further analyzed using the Kaplan-Meier (KM) method correcting for nondetects. Within this approach, which uses the Kaplan-Meier product-limit estimator to obtain the cumulative distribution function corrected for the nondetects, the mean value and median of the detection limit censored concentrations can be estimated in a non-parametric way. The Monte Carlo simulations performed show that the Kaplan-Meier approach yields highly accurate estimates for the mean and median concentrations, being within a few percent with respect to the simulated, uncensored data. This means that the uncertainties of KM estimated mean value and median are limited in fact only by the number of studied samples and not by the applied correction procedure for nondetects itself. On the other hand, it is observed that, in case when the concentration of a given element is not measured in all the samples, simple approaches to estimate a mean concentration value from the data yield erroneous, systematically biased results. The discussed random-left censoring approach was applied to analyze the TXRF detection-limit-censored concentration measurements of trace elements in biomedical samples. We emphasize that the Kaplan-Meier approach allows one to estimate the mean concentrations being substantially below the mean level of detection limits. Consequently, this approach gives a new access to lower the effective detection limits for TXRF method, which is of prime interest for investigation of metallic impurities on the silicon wafers.
Gellenbeck, Dorinda J.; Anning, David W.
2002-01-01
Samples of ground water and surface water from the Sierra Vista subbasin, the Upper Santa Cruz Basin, and the West Salt River Valley were collected and analyzed to determine the occurrence and distribution of pesticides and volatile organic compounds in central Arizona. The study was done during 1996-98 within the Central Arizona Basins study unit of the National Water-Quality Assessment program. This study included 121 wells and 4 surface-water sites in the 3 basins and the analyses of samples from 4 sites along the Santa Cruz River that were part of a separate study. Samples were collected from 121 wells and 3 surface-water sites for pesticide analyses, and samples were collected from 109 wells and 3 surface-water sites for volatile organic compound analyses. Certain pesticides detected in ground water and surface water can be related specifically to agricultural or urban uses; others can be related to multiple land uses. Effects from historical agriculture are made evident by detections of DDE in ground-water and surface-water samples collected in the West Salt River Valley and detections of atrazine and deethylatrazine in the ground water in the Upper Santa Cruz Basin. Effects from present agriculture are evident in the seasonal variability in concentrations of pre-emergent pesticides in surface-water samples from the West Salt River Valley. Several detections of DDE and dieldrin in surface water were higher than established water-quality limits. Effects of urban land use are made evident by detections of volatile organic compounds in ground water and surface water from the West Salt River Valley. Detections of volatile organic compounds in surface water from the Santa Cruz River near Nogales, Arizona, also are indications of the effects of urban land use. One detection of tetrachloroethene in ground water was higher than established water-quality limits. Water reuse is an important conservation technique in the Southwest; however, the reuse of water provides a transport mechanism for pesticides and volatile organic compounds to reach areas that are not normally affected by manmade compounds from specific land-use activities. The most complex mixture of pesticides and volatile organic compounds is in the West Salt River Valley and is the result of water-management practices and the combination of land uses in this basin throughout history.
Ultrasensitive Detection of Shigella Species in Blood and Stool.
Luo, Jieling; Wang, Jiapeng; Mathew, Anup S; Yau, Siu-Tung
2016-02-16
A modified immunosensing system with voltage-controlled signal amplification was used to detect Shigella in stool and blood matrixes at the single-digit CFU level. Inactivated Shigella was spiked in these matrixes and detected directly. The detection was completed in 78 min. Detection limits of 21 CFU/mL and 18 CFU/mL were achieved in stool and blood, respectively, corresponding to 2-7 CFUs immobilized on the detecting electrode. The outcome of the detection of extremely low bacterium concentration, i.e., below 100 CFU/mL, blood samples show a random nature. An analysis of the detection probabilities indicates the correlation between the sample volume and the success of detection and suggests that sample volume is critical for ultrasensitive detection of bacteria. The calculated detection limit is qualitatively in agreement with the empirically determined detection limit. The demonstrated ultrasensitive detection of Shigella on the single-digit CFU level suggests the feasibility of the direct detection of the bacterium in the samples without performing a culture.
Bakhori, Noremylia Mohd; Yusof, Nor Azah; Abdullah, Abdul Halim; Hussein, Mohd Zobir
2013-12-12
An optical DNA biosensor based on fluorescence resonance energy transfer (FRET) utilizing synthesized quantum dot (QD) has been developed for the detection of specific-sequence of DNA for Ganoderma boninense, an oil palm pathogen. Modified QD that contained carboxylic groups was conjugated with a single-stranded DNA probe (ssDNA) via amide-linkage. Hybridization of the target DNA with conjugated QD-ssDNA and reporter probe labeled with Cy5 allows for the detection of related synthetic DNA sequence of Ganoderma boninense gene based on FRET signals. Detection of FRET emission before and after hybridization was confirmed through the capability of the system to produce FRET at 680 nm for hybridized sandwich with complementary target DNA. No FRET emission was observed for non-complementary system. Hybridization time, temperature and effect of different concentration of target DNA were studied in order to optimize the developed system. The developed biosensor has shown high sensitivity with detection limit of 3.55 × 10-9 M. TEM results show that the particle size of QD varies in the range between 5 to 8 nm after ligand modification and conjugation with ssDNA. This approach is capable of providing a simple, rapid and sensitive method for detection of related synthetic DNA sequence of Ganoderma boninense.
Mohd Bakhori, Noremylia; Yusof, Nor Azah; Abdullah, Abdul Halim; Hussein, Mohd Zobir
2013-12-01
An optical DNA biosensor based on fluorescence resonance energy transfer (FRET) utilizing synthesized quantum dot (QD) has been developed for the detection of specific-sequence of DNA for Ganoderma boninense, an oil palm pathogen. Modified QD that contained carboxylic groups was conjugated with a single-stranded DNA probe (ssDNA) via amide-linkage. Hybridization of the target DNA with conjugated QD-ssDNA and reporter probe labeled with Cy5 allows for the detection of related synthetic DNA sequence of Ganoderma boninense gene based on FRET signals. Detection of FRET emission before and after hybridization was confirmed through the capability of the system to produce FRET at 680 nm for hybridized sandwich with complementary target DNA. No FRET emission was observed for non-complementary system. Hybridization time, temperature and effect of different concentration of target DNA were studied in order to optimize the developed system. The developed biosensor has shown high sensitivity with detection limit of 3.55 × 10(-9) M. TEM results show that the particle size of QD varies in the range between 5 to 8 nm after ligand modification and conjugation with ssDNA. This approach is capable of providing a simple, rapid and sensitive method for detection of related synthetic DNA sequence of Ganoderma boninense.
Wu, Jing; Dong, Mingling; Zhang, Cheng; Wang, Yu; Xie, Mengxia; Chen, Yiping
2017-06-05
Magnetic lateral flow strip (MLFS) based on magnetic bead (MB) and smart phone camera has been developed for quantitative detection of cocaine (CC) in urine samples. CC and CC-bovine serum albumin (CC-BSA) could competitively react with MB-antibody (MB-Ab) of CC on the surface of test line of MLFS. The color of MB-Ab conjugate on the test line relates to the concentration of target in the competition immunoassay format, which can be used as a visual signal. Furthermore, the color density of the MB-Ab conjugate can be transferred into digital signal (gray value) by a smart phone, which can be used as a quantitative signal. The linear detection range for CC is 5-500 ng/mL and the relative standard deviations are under 10%. The visual limit of detection was 5 ng/mL and the whole analysis time was within 10 min. The MLFS has been successfully employed for the detection of CC in urine samples without sample pre-treatment and the result is also agreed to that of enzyme-linked immunosorbent assay (ELISA). With the popularization of smart phone cameras, the MLFS has large potential in the detection of drug residues in virtue of its stability, speediness, and low-cost.
Early warning system for Douglas-fir tussock moth outbreaks in the Western United States.
Gary E. Daterman; John M. Wenz; Katharine A. Sheehan
2004-01-01
The Early Warning System is a pheromone-based trapping system used to detect outbreaks of Douglas-fir tussock moth (DFTM, Orgyia pseudotsugata) in the western United States. Millions of acres are susceptible to DFTM defoliation, but Early Warning System monitoring focuses attention only on the relatively limited areas where outbreaks may be...
ERIC Educational Resources Information Center
Ari, Omer
2009-01-01
Fluency instruction has had limited effects on reading comprehension relative to reading rate and prosodic reading (Dowhower, 1987; Herman, 1985; National Institute of Child Health and Human Development, 2000a). More specific components (i.e., error detection) of comprehension may yield larger effects through exposure to a wider range of materials…
Integration of lidar and Landsat ETM+ data for estimating and mapping forest canopy height.
Andrew T. Hudak; Michael A. Lefsky; Warren B. Cohen; Mercedes Berterretche
2002-01-01
Light detection and ranging (LIDAR) data provide accurate measurements of forest canopy structure in the vertical plane; however, current LIDAR sensors have limited coverage in the horizontal plane. Landsat data provide extensive coverage of generalized forest structural classes in the horizontal plane but are relatively insensitive to variation in forest canopy height...
ERIC Educational Resources Information Center
Suskauer, Stacy J.; Huisman, Thierry A. G. M.
2009-01-01
Although neuroimaging has long played a role in the acute management of pediatric traumatic brain injury (TBI), until recently, its use as a tool for understanding and predicting long-term brain-behavior relationships after TBI has been limited by the relatively poor sensitivity of routine clinical imaging for detecting diffuse axonal injury…
Comparision of ICP-OES and MP-AES in determing soil nutrients by Mechlich3 method
NASA Astrophysics Data System (ADS)
Tonutare, Tonu; Penu, Priit; Krebstein, Kadri; Rodima, Ako; Kolli, Raimo; Shanskiy, Merrit
2014-05-01
Accurate, routine testing of nutrients in soil samples is critical to understanding soil potential fertility. There are different factors which must be taken into account selecting the best analytical technique for soil laboratory analysis. Several techniques can provide adequate detection range for same analytical subject. In similar cases the choise of technique will depend on factors such as sample throughput, required infrastructure, ease of use, used chemicals and need for gas supply and operating costs. Mehlich 3 extraction method is widely used for the determination of the plant available nutrient elements contents in agricultural soils. For determination of Ca, K, and Mg from soil extract depending of laboratory ICP and AAS techniques are used, also flame photometry for K in some laboratories. For the determination of extracted P is used ICP or Vis spectrometry. The excellent sensitivity and wide working range for all extracted elements make ICP a nearly ideal method, so long as the sample throughput is big enough to justify the initial capital outlay. Other advantage of ICP techniques is the multiplex character (simultaneous acquisition of all wavelengths). Depending on element the detection limits are in range 0.1 - 1000 μg/L. For smaller laboratories with low sample throughput requirements the use of AAS is more common. Flame AAS is a fast, relatively cheap and easy technique for analysis of elements. The disadvantages of the method is single element analysis and use of flammable gas, like C2H2 and oxidation gas N2O for some elements. Detection limits of elements for AAS lays from 1 to 1000 μg/L. MP-AES offers a unique alternative to both, AAS and ICP-OES techniques with its detection power, speed of analysis. MP-AES is quite new, simple and relatively inexpensive multielemental technique, which is use self-sustained atmospheric pressure microwave plasma (MP) using nitrogen gas generated by nitrogen generator. Therefore not needs for argon and flammable (C2H2) gases, cylinder handling and the running costs of equipment are low. Detection limits of elements for MP-AES lays between the AAS and ICP ones. The objective of this study was to compare the results of soil analysis using two multielemental analytical methods - ICP-OES and MP-AES. In the experiment, different soil types with various texture, content of organic matter and pH were used. For the study soil samples of Albeluvisols, Leptosols, Cambisols, Regosols and Histosols were used . The plant available nutrients were estimated by Mehlich 3 extraction. The ICP-OES analysis were provided in the Estonian Agricultural Research Centre and MP-AES analysis in department of Soil Science and Agrochemistry at Estonian University of Life Sciences. The detection limits and limits of quantification of Ca, K, Mg and P in extracts are calculated and reported.
Verdam, Mathilde G E; Oort, Frans J; Sprangers, Mirjam A G
2016-06-01
The structural equation modeling (SEM) approach for detection of response shift (Oort in Qual Life Res 14:587-598, 2005. doi: 10.1007/s11136-004-0830-y ) is especially suited for continuous data, e.g., questionnaire scales. The present objective is to explain how the SEM approach can be applied to discrete data and to illustrate response shift detection in items measuring health-related quality of life (HRQL) of cancer patients. The SEM approach for discrete data includes two stages: (1) establishing a model of underlying continuous variables that represent the observed discrete variables, (2) using these underlying continuous variables to establish a common factor model for the detection of response shift and to assess true change. The proposed SEM approach was illustrated with data of 485 cancer patients whose HRQL was measured with the SF-36, before and after start of antineoplastic treatment. Response shift effects were detected in items of the subscales mental health, physical functioning, role limitations due to physical health, and bodily pain. Recalibration response shifts indicated that patients experienced relatively fewer limitations with "bathing or dressing yourself" (effect size d = 0.51) and less "nervousness" (d = 0.30), but more "pain" (d = -0.23) and less "happiness" (d = -0.16) after antineoplastic treatment as compared to the other symptoms of the same subscale. Overall, patients' mental health improved, while their physical health, vitality, and social functioning deteriorated. No change was found for the other subscales of the SF-36. The proposed SEM approach to discrete data enables response shift detection at the item level. This will lead to a better understanding of the response shift phenomena at the item level and therefore enhances interpretation of change in the area of HRQL.
Spahillari, Aferdita; Parikh, Chirag R.; Sint, Kyaw; Koyner, Jay L.; Patel, Uptal D.; Edelstein, Charles L.; Passik, Cary S.; Thiessen-Philbrook, Heather; Swaminathan, Madhav; Shlipak, Michael G.
2012-01-01
Background The primary aim of this study was to compare the sensitivity and rapidity of AKI detection by cystatin C relative to creatinine following cardiac surgery. Study Design Prospective cohort study Settings and Participants 1,150 high-risk, adult cardiac surgery patients in the TRIBE-AKI (Translational Research Investigating Biomarker Endpoints for Acute Kidney Injury) Consortium. Predictor Changes in serum creatinine and cystatin C Outcome Post-surgical incidence of AKI Measurements Serum creatinine and cystatin C were measured at the preoperative visit and daily on postoperative days 1–5. To allow comparisons between changes in creatinine and cystatin C, AKI endpoints were defined by the relative increases in each marker from baseline (25, 50 and 100%) and the incidence of AKI was compared based upon each marker. Secondary aims were to compare clinical outcomes among patients defined as having AKI by cystatin C and/or creatinine. Results Overall, serum creatinine detected more cases of AKI than cystatin C: 35% developed a ≥25% increase in serum creatinine, whereas only 23% had ≥25% increase in cystatin C (p < 0.001). Creatinine also had higher proportions meeting the 50% (14% and 8%, p<0.001) and 100% (4% and 2%, p=0.005) thresholds for AKI diagnosis. Clinical outcomes were generally not statistically different for AKI cases detected by creatinine or cystatin C. However, for each AKI threshold, patients with AKI confirmed by both markers had significantly higher risk of the combined mortality/dialysis outcome compared with patients with AKI detected by creatinine alone (p=0.002). Limitations There were few adverse clinical outcomes, limiting our ability to detect differences in outcomes between subgroups of patients based upon their definitions of AKI. Conclusion In this large multicenter study, we found that cystatin C was less sensitive for AKI detection compared with creatinine. However, confirmation by cystatin C appeared to identify a subset of AKI patients with substantially higher risk of adverse outcomes. PMID:22809763
Schmitz, Patric; Hildebrandt, Julian; Valdez, Andre Calero; Kobbelt, Leif; Ziefle, Martina
2018-04-01
In virtual environments, the space that can be explored by real walking is limited by the size of the tracked area. To enable unimpeded walking through large virtual spaces in small real-world surroundings, redirection techniques are used. These unnoticeably manipulate the user's virtual walking trajectory. It is important to know how strongly such techniques can be applied without the user noticing the manipulation-or getting cybersick. Previously, this was estimated by measuring a detection threshold (DT) in highly-controlled psychophysical studies, which experimentally isolate the effect but do not aim for perceived immersion in the context of VR applications. While these studies suggest that only relatively low degrees of manipulation are tolerable, we claim that, besides establishing detection thresholds, it is important to know when the user's immersion breaks. We hypothesize that the degree of unnoticed manipulation is significantly different from the detection threshold when the user is immersed in a task. We conducted three studies: a) to devise an experimental paradigm to measure the threshold of limited immersion (TLI), b) to measure the TLI for slowly decreasing and increasing rotation gains, and c) to establish a baseline of cybersickness for our experimental setup. For rotation gains greater than 1.0, we found that immersion breaks quite late after the gain is detectable. However, for gains lesser than 1.0, some users reported a break of immersion even before established detection thresholds were reached. Apparently, the developed metric measures an additional quality of user experience. This article contributes to the development of effective spatial compression methods by utilizing the break of immersion as a benchmark for redirection techniques.
Ellis, Jenny L; Conklin, Sean D; Gallawa, Christina M; Kubachka, Kevin M; Young, Andrea R; Creed, Patricia A; Caruso, Joseph A; Creed, John T
2008-04-01
The simultaneous detection of arsenic and sulfur in thioarsenicals was achieved using xenon-based collision-cell inductively coupled plasma (ICP) mass spectrometry (MS) in combination with high-performance liquid chromatography. In an attempt to minimize the (16)O(16)O(+) interference at m/z 32, both sample introduction and collision-cell experimental parameters were optimized. Low flow rates (0.25 mL/min) and a high methanol concentration (8%) in the mobile phase produced a fourfold decrease in the m/z 32 background. A plasma sampling depth change from 3 to 7 mm produced a twofold decrease in background at m/z 32, with a corresponding fourfold increase in the signal associated with a high ionization surrogate for sulfur. The quadrupole bias and the octopole bias were used as a kinetic energy discriminator between background and analyte ions, but a variety of tuning conditions produced similar (less than twofold change) detection limits for sulfur ((32)S). A 34-fold improvement in the (32)S detection limit was achieved using xenon instead of helium as a collision gas. The optimized xenon-based collision cell ICP mass spectrometer was then used with electrospray ionization MS to provide elemental and molecular-based information for the analysis of a fortified sample of NIST freeze-dried urine. The 3sigma detection limits, based on peak height for dimethylthioarsinic acid (DMTA) and trimethylarsine sulfide (TMAS), were 15 and 12 ng/g, respectively. Finally, the peak area reproducibilities (percentage relative standard deviation) of a 5-ppm fortified sample of NIST freeze dried urine for DMTA and TMAS were 7.4 and 5.4%, respectively.
PCR technology for screening and quantification of genetically modified organisms (GMOs).
Holst-Jensen, Arne; Rønning, Sissel B; Løvseth, Astrid; Berdal, Knut G
2003-04-01
Although PCR technology has obvious limitations, the potentially high degree of sensitivity and specificity explains why it has been the first choice of most analytical laboratories interested in detection of genetically modified (GM) organisms (GMOs) and derived materials. Because the products that laboratories receive for analysis are often processed and refined, the quality and quantity of target analyte (e.g. protein or DNA) frequently challenges the sensitivity of any detection method. Among the currently available methods, PCR methods are generally accepted as the most sensitive and reliable methods for detection of GM-derived material in routine applications. The choice of target sequence motif is the single most important factor controlling the specificity of the PCR method. The target sequence is normally a part of the modified gene construct, for example a promoter, a terminator, a gene, or a junction between two of these elements. However, the elements may originate from wildtype organisms, they may be present in more than one GMO, and their copy number may also vary from one GMO to another. They may even be combined in a similar way in more than one GMO. Thus, the choice of method should fit the purpose. Recent developments include event-specific methods, particularly useful for identification and quantification of GM content. Thresholds for labelling are now in place in many countries including those in the European Union. The success of the labelling schemes is dependent upon the efficiency with which GM-derived material can be detected. We will present an overview of currently available PCR methods for screening and quantification of GM-derived DNA, and discuss their applicability and limitations. In addition, we will discuss some of the major challenges related to determination of the limits of detection (LOD) and quantification (LOQ), and to validation of methods.
Du, Hong; El-Mohri, Youcef; Zhao, Qihua; Su, Zhong; Yamamoto, Jin; Wang, Yi
2009-01-01
Active matrix, flat-panel x-ray imagers based on a-Si:H thin film transistors offer many advantages and are widely utilized in medical imaging applications. Unfortunately, the detective quantum efficiency (DQE) of conventional flat-panel imagers incorporating scintillators or a-Se photoconductors is significantly limited by their relatively modest signal to noise ratio, particularly in applications involving low x-ray exposures or high spatial resolution. For this reason, polycrystalline HgI2 is of considerable interest by virtue of its low effective work function, high atomic number, and the possibility of large-area deposition. In this study, a detailed investigation of the properties of prototype, flat-panel arrays coated with two forms of this high-gain photoconductor are reported. Encouragingly, high x-ray sensitivity, low dark current, and spatial resolution close to the theoretical limits were observed from a number of prototypes. In addition, input-quantum-limited DQE performance was measured from one of the prototypes at relatively low exposures. However, high levels of charge trapping, lag, and polarization, as well as pixel-to-pixel variations in x-ray sensitivity are of concern. While the results of the current study are promising, further development will be required to realize prototypes exhibiting the characteristics necessary to allow practical implementation of this approach. PMID:18296765
Symmetry as Bias: Rediscovering Special Relativity
NASA Technical Reports Server (NTRS)
Lowry, Michael R.
1992-01-01
This paper describes a rational reconstruction of Einstein's discovery of special relativity, validated through an implementation: the Erlanger program. Einstein's discovery of special relativity revolutionized both the content of physics and the research strategy used by theoretical physicists. This research strategy entails a mutual bootstrapping process between a hypothesis space for biases, defined through different postulated symmetries of the universe, and a hypothesis space for physical theories. The invariance principle mutually constrains these two spaces. The invariance principle enables detecting when an evolving physical theory becomes inconsistent with its bias, and also when the biases for theories describing different phenomena are inconsistent. Structural properties of the invariance principle facilitate generating a new bias when an inconsistency is detected. After a new bias is generated. this principle facilitates reformulating the old, inconsistent theory by treating the latter as a limiting approximation. The structural properties of the invariance principle can be suitably generalized to other types of biases to enable primal-dual learning.
Dou, Z; Chen, J; Jiang, Z; Song, W L; Xu, J; Wu, Z Y
2017-11-10
Objective: To understand the distribution of population viral load (PVL) data in HIV infected men who have sex with men (MSM), fit distribution function and explore the appropriate estimating parameter of PVL. Methods: The detection limit of viral load (VL) was ≤ 50 copies/ml. Box-Cox transformation and normal distribution tests were used to describe the general distribution characteristics of the original and transformed data of PVL, then the stable distribution function was fitted with test of goodness of fit. Results: The original PVL data fitted a skewed distribution with the variation coefficient of 622.24%, and had a multimodal distribution after Box-Cox transformation with optimal parameter ( λ ) of-0.11. The distribution of PVL data over the detection limit was skewed and heavy tailed when transformed by Box-Cox with optimal λ =0. By fitting the distribution function of the transformed data over the detection limit, it matched the stable distribution (SD) function ( α =1.70, β =-1.00, γ =0.78, δ =4.03). Conclusions: The original PVL data had some censored data below the detection limit, and the data over the detection limit had abnormal distribution with large degree of variation. When proportion of the censored data was large, it was inappropriate to use half-value of detection limit to replace the censored ones. The log-transformed data over the detection limit fitted the SD. The median ( M ) and inter-quartile ranger ( IQR ) of log-transformed data can be used to describe the centralized tendency and dispersion tendency of the data over the detection limit.
Rare Earth Optical Temperature Sensor
NASA Technical Reports Server (NTRS)
Chubb, Donald L.; Wolford, David S.
2000-01-01
A new optical temperature sensor suitable for high temperatures (greater than 1700 K) and harsh environments is introduced. The key component of the sensor is the rare earth material contained at the end of a sensor that is in contact with the sample being measured. The measured narrow wavelength band emission from the rare earth is used to deduce the sample temperature. A simplified relation between the temperature and measured radiation was verified experimentally. The upper temperature limit of the sensor is determined by material limits to be approximately 2000 C. The lower limit, determined by the minimum detectable radiation, is found to be approximately 700 K. At high temperatures 1 K resolution is predicted. Also, millisecond response times are calculated.
Qian Tang, Xue; Dan Zhang, Yi; Wei Jiang, Zhong; Mei Wang, Dong; Zhi Huang, Cheng; Fang Li, Yuan
2018-03-01
In this work, Fe 3 O 4 and metal-organic framework MIL-101(Fe) composites (Fe 3 O 4 /MIL-101(Fe)) was demonstrated to possess excellent catalytic property to directly catalyze luminol chemiluminescence without extra oxidants. We utilized Fe 3 O 4 /MIL-101(Fe) to develop a ultra-sensitive quantitative analytical method for H 2 O 2 and glucose. The possible mechanism of the chemiluminescence reaction had been investigated. Under optimal conditions, the relative chemiluminescence intensity was linearly proportional to the logarithm of H 2 O 2 concentration in the range of 5-150nM with a limit of detection of 3.7nM (signal-to-noise ratio = 3), and glucose could be linearly detected in the range from 5 to 100nM and the detection limit was 4.9nM (signal-to-noise ratio = 3). Furthermore, the present approach was successfully applied to quantitative determination of H 2 O 2 in medical disinfectant and glucose in human serum samples. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sianglam, Pradthana; Kulchat, Sirinan; Tuntulani, Thawatchai; Ngeontae, Wittaya
2017-08-01
We demonstrate an advance in the fabrication of circular dichroism (CD) sensors for detection of Cd2 + and S2 - based on chiral CdS quantum dots (QDs) generated by a facile in-situ reaction. The chiral quantum dots are generated in solutions composed of Cd2 +, S2 -, cysteamine (CA) and L-penicillamine (L-PA), with the number of the generated particles limited by either the Cd2 + or S2 - concentration. We show that the magnitude of the CD signal produced by the QDs is linearly related to the initial concentration of Cd2 + and S2 -, with excellent selectivity over other ions. Our sensor functions over concentration ranges of 65-200 μM and 7-125 μM with detection limits of 59.7 and 1.6 μM for Cd2 + and S2 -, respectively. The sensor is applied in real water samples with results comparing favorably with those obtained from ICP-OES (for Cd2 +) and HPLC (for S2 -).
Curry, Scott R.; Schlackman, Jessica L.; Hamilton, Travis M.; Henderson, Tatianna K.; Brown, Nakita T.; Marsh, Jane W.; Shutt, Kathleen A.; Brooks, Maria M.; Pasculle, A. William; Muto, Carlene A.; Harrison, Lee H.
2011-01-01
Active surveillance testing to identify and isolate asymptomatic carriers of toxigenic Clostridium difficile has been limited by the lack of a test that is sensitive, specific, and timely enough to serve as an infection control tool. We tested DNA preamplified from perirectal surveillance specimens in a liquid medium selective for C. difficile by using a modified commercial real-time PCR assay. All fermenting specimens were subcultured, and isolates were tested for toxigenicity. Culture-positive toxigenic isolates served as the gold standard for comparison with the broth preamplification/PCR assay. The limit of detection for the assay was 1 CFU. Relative to toxigenic anaerobic culture, the sensitivity, specificity, and positive and negative predictive values of this assay were 70/70 (100.0%), 422/426 (99.1%), 70/74 (94.6%), and 422/422 (100.0%), respectively. These data demonstrate that selective broth preamplification and real-time PCR of perirectal swab specimens constitute a practical approach to the detection of asymptomatic C. difficile carriage. PMID:21880961
Xiang, Xiaoling; Wang, Liyuan; Shen, Xianghong; Li, Chunsong; Shen, Jianfu; Wu, Pinggu
2017-09-01
To establish the method of determination of 3-monochloropropane-1,2-diol( 3-MCPD) in grease food by gas chromatography-mass spectrometry( GC-MS). 3-MCPD in grease food represented by bean paste was extracted by ultrasound,purified by alkaline earth solid phase extraction column,derivatived using phenylboronic acid( PBA) and detected by GC-MS. The linearity of 3-MCPD ranged from 1-100 ng/mL,with correlation coefficient at 0. 9993.The limits of quantitation( LOQ) in soy sauce,bean paste,pepper oil were 0. 6,0. 5 and7. 0 μg/kg and limits of detection( LOD) were 1. 9,1. 6 and 18. 8 μg/kg,respectively.Average recovery rate and relative standard deviation was 78. 3%-106. 7% and 1. 9%-11. 6%( n = 6), when 3-MCPD was added in grease food at 2. 5-1000 μg/kg. The method has good purification effect and the detection sensitivity and accuracy,and can be used for the determination of 3-MCPD in grease food.
Repeatability Assessment by ISO 11843-7 in Quantitative HPLC for Herbal Medicines.
Chen, Liangmian; Kotani, Akira; Hakamata, Hideki; Tsutsumi, Risa; Hayashi, Yuzuru; Wang, Zhimin; Kusu, Fumiyo
2015-01-01
We have proposed an assessment methods to estimate the measurement relative standard deviation (RSD) of chromatographic peaks in quantitative HPLC for herbal medicines by the methodology of ISO 11843 Part 7 (ISO 11843-7:2012), which provides detection limits stochastically. In quantitative HPLC with UV detection (HPLC-UV) of Scutellaria Radix for the determination of baicalin, the measurement RSD of baicalin by ISO 11843-7:2012 stochastically was within a 95% confidence interval of the statistically obtained RSD by repetitive measurements (n = 6). Thus, our findings show that it is applicable for estimating of the repeatability of HPLC-UV for determining baicalin without repeated measurements. In addition, the allowable limit of the "System repeatability" in "Liquid Chromatography" regulated in a pharmacopoeia can be obtained by the present assessment method. Moreover, the present assessment method was also successfully applied to estimate the measurement RSDs of quantitative three-channel liquid chromatography with electrochemical detection (LC-3ECD) of Chrysanthemi Flos for determining caffeoylquinic acids and flavonoids. By the present repeatability assessment method, reliable measurement RSD was obtained stochastically, and the experimental time was remarkably reduced.
Kuster, William C; Harren, Frans J M; de Gouw, Joost A
2005-06-15
Laser photoacoustic spectroscopy (LPAS) is highly suitable for the detection of ethene in air due to the overlap between its strongest absorption lines and the wavelengths accessible by high-powered CO2 lasers. Here, we test the ability of LPAS to measure ethene in ambient air by comparing the measurements in urban air with those from a gas chromatography flame-ionization detection (GC-FID) instrument. Over the course of several days, we obtained quantitative agreement between the two measurements. Over this period, the LPAS instrument had a positive offset of 330 +/- 140 pptv (parts-per-trillion by volume) relative to the GC-FID instrument, possibly caused by interference from other species. The detection limit of the LPAS instrument is currently estimated around 1 ppbv and is limited by this offset and the statistical noise in the data. We conclude that LPAS has the potential to provide fast-response measurements of ethene in the atmosphere, with significant advantages over existing techniques when measuring from moving platforms and in the vicinity of emission sources.
Impedance Biosensing to detect food allergens, endocrine disrupting chemicals, and food pathogens
NASA Astrophysics Data System (ADS)
Radhakrishnan, Rajeswaran
Electrochemical impedance biosensors can be viewed as an AC electroanalytical method for the analyte detection in the fields of biomedicine, environmental monitoring, and food and agriculture, amongst others. The most common format for AC impedance biosensing involves surface immobilization of an antibody, receptor protein, DNA strand, or other species capable of bio-recognition, and AC impedance detection of the binding event. Technological application of AC impedance biosensors has been hindered by several obstacles, including the more complex circuitry required for AC relative to DC electrochemistry, chemical and physical interference arising from non-specific adsorption, and the stability and reproducibility of protein immobilization. One focus of these PhD studies is on methods to reduce or compensate for non-specific adsorption, including sample dilution, site blocking with BSA, and the use of control electrodes onto which reference antibodies are immobilized. Examples that will be presented include impedance detection of food pathogens, such as Listeria monocytogenes, using a mouse monoclonal antibody immobilized onto an Au electrode. This yields detection limits of 5 CFU/ml and 4 CFU/ml for ideal solutions and filtered tomato extract, respectively. Control experiments with an Au electrode onto which a mouse monoclonal antibody to GAPDH is immobilized demonstrate that non-specific adsorption is insignificant for the system and methodology studied here. Control experiments with Salmonella enterica demonstrate no cross-reactivity to this food pathogen. In addition, Detection of two endocrine-disrupting chemicals (EDC), norfluoxetine and BDE-47, is reported here by impedance biosensing, with a detection limit of 8.5 and 1.3 ng/ml for norfluoxetine and BDE-47, respectively. Additional research has focused on alternative substrates and linker chemistries for protein immobilization, including the use of degenerate (highly doped) Si and bidendate thiol monolayer onto Au. Advantages of degenerate Si include a simpler equivalent circuit, simple and reproducible surface preparation, easy incorporation into ULSI devices, and the greater strength of Si-C bonds (~520 kJ/mole) relative to Au-S bonds (125-150 kJ/mole). New results demonstrating antibody regeneration atop degenerate (highly doped) Si are also reported. Using 0.2 M KSCN and 10 mM HF for antibody regeneration, peanut protein Ara h 1 is detected daily during a thirty-day trial. An impedance biosensor is reported that employs the bidentate thiol 16-[3,5-bis(mercaptomethyl)phenoxy]-hexadecanoic acid (BMPHA) to immobilize the mouse monoclonal antibody to peanut protein Ara h 1. The detection limit for Ara h 1 is approximately 0.71 ng/mL (0.01 nM), which is about one order of magnitude lower than that obtained for antibody immobilization atop the monodendate thiol, 16-mercaptohexadecanoic acid (16 MHA). Antibody regeneration was studied daily using a gentle denaturing agent, 0.2 M KSCN at pH 7.3. The antibody-coated on Au electrodes retained activity towards Ara h1 for 10 and 20 days of regeneration of the monodendate- and BMPHA-coated Au electrodes, respectively. This prolonged activity illustrates the superior stability of protein films atop the BMPHA bidentate thiol- coated Au electrode relative to the 16-MHA monodendate thiol-coated Au electrode.
Nilsen, Elena B.; Alvarez, David A.
2011-01-01
Significant Findings Water and sediment quality monitoring was conducted before and after the removal of a piling field located in Coal Creek Slough near Longview, Washington. Passive chemical samplers and continuous water-quality monitoring instruments were deployed at the piling removal site, Coal Creek Slough Site 1 (CCS1), and at a comparison site, Coal Creek Slough Site 2 (CCS2), before (2008) and after (2009) piling removal. Surface and subsurface (core) sediment samples were collected before and after piling removal and were analyzed for grain size, organic carbon content, and chemicals of concern. Significant findings from this study include: * Phenanthrene was the only compound detected in wood piling samples analyzed for a large suite of semivolatile organic compounds and polycyclic aromatic hydrocarbons (PAHs). Metals potentially associated with wood treatment were detected in the wood piling samples at low concentrations. * Organic carbon was slightly lower in core samples from CCS1 in pre-removal (2008) and post-removal (2009) samples than in surface samples from both sites in both years. * Grain-size class distributions were relatively uniform between sites and years. * Thirty-four out of 110 chemicals of concern were detected in sediments. Eight of those detected were anthropogenic waste indicator (AWI) compounds, 18 were PAHs, 4 were sterols, and 4 were metals potentially associated with wood treatment. * Nearly all reported concentrations of chemicals of concern in sediments are qualified as estimates, primarily due to interferences in extracts resulting from complex sample matrices. Indole, perylene, and fluoranthene are reported without qualification for some of the samples, and the metals are reported without qualification for all samples. * The highest frequency of detection of chemicals of concern was seen in the pre-removal surface samples at both sites. * AWI compounds were detected less frequently and at lower concentrations during the post-removal sampling compared to the pre-removal sampling. * Several PAHs were detected at relatively high concentrations in core samples, likely indicating historical sources. * Most commonly detected PAHs in sediments were 2,6-dimethylnaphthalene, fluoranthene, perylene, and pyrene. * Most commonly detected AWIs in sediments were 3-methyl-1h-indole (skatol), acetophenone, indole, phenol, and paracresol. * Sedimentary concentrations of perylene exceeded available sediment quality guidelines. Perylene is widespread in the environment and has large potential natural sources in addition to its anthropogenic sources. * Concentrations of metals did not exceed sediment quality guidelines. * Multiple organochlorine pesticides, both banned and currently used, were detected at each site using passive samplers. * Commonly detected pesticides included hexachlorobenzene, pentachloroanisole (a degradation product of pentachlorophenol), diazinon, cis-chlordane, endosulfan, DDD, and endosulfan sulfate. * PBDE concentrations detected in passive sampler extracts were less than the method detection limit at all sites with the exception of PBDE-99, detected at a concentration less than the reporting limit. * The fragrance galaxolide was detected at a concentration greater than the method detection limit. * Common PAHs, such as phenanthrene, fluoranthene, and pyrene, were detected in every passive sampler. * Dissolved oxygen concentration was slightly higher at site CCS1 compared to site CCS2 in both years. * Overall, there was no systematic increase in chemicals of concern at the restoration site during post-removal monitoring compared to conditions during pre-removal monitoring. Any immediate, short-duration effects of piling removal on water quality could not be determined because monitoring was not conducted during the removal.
Summary of vulnerability related technologies based on machine learning
NASA Astrophysics Data System (ADS)
Zhao, Lei; Chen, Zhihao; Jia, Qiong
2018-04-01
As the scale of information system increases by an order of magnitude, the complexity of system software is getting higher. The vulnerability interaction from design, development and deployment to implementation stages greatly increases the risk of the entire information system being attacked successfully. Considering the limitations and lags of the existing mainstream security vulnerability detection techniques, this paper summarizes the development and current status of related technologies based on the machine learning methods applied to deal with massive and irregular data, and handling security vulnerabilities.
Guillo, Christelle; Ferrance, Jerome P; Landers, James P
2006-04-28
Highly selective and sensitive assays are required for detection and quantitation of the small masses of DNA typically encountered in clinical and forensic settings. High detection sensitivity is achieved using fluorescent labeling dyes and detection techniques such as spectrofluorometers, microplate readers and cytometers. This work describes the use of a laser-induced fluorescence (LIF) detector in conjunction with a commercial capillary electrophoresis instrument for DNA quantitation. PicoGreen and YO-PRO-1, two fluorescent DNA labeling dyes, were used to assess the potential of the system for routine DNA analysis. Linearity, reproducibility, sensitivity, limits of detection and quantitation, and sample stability were examined for the two assays. The LIF detector response was found to be linear (R2 > 0.999) and reproducible (RSD < 9%) in both cases. The PicoGreen assay displayed lower limits of detection and quantitation (20 pg and 60 pg, respectively) than the YO-PRO-1 assay (60 pg and 260 pg, respectively). Although a small variation in fluorescence was observed for the DNA/dye complexes over time, quantitation was not significantly affected and the solutions were found to be relatively stable for 80 min. The advantages of the technique include a 4- to 40-fold reduction in the volume of sample required compared to traditional assays, a 2- to 20-fold reduction in the volume of reagents consumed, fast and automated analysis, and low cost (no specific instrumentation required).
NASA Astrophysics Data System (ADS)
Belkin, Shimshon; Yagur-Kroll, Sharon; Zohar, Cheinat; Rabinovitz, Zahi; Nussinovitch, Amos; Kabessa, Yossi; Agranat, Aharon J.
2017-06-01
Current landmine detection methodologies are not much different in principle from those employed 75 years ago, in that they require actual presence in the minefield, with obvious risks to personnel and equipment. Other limitations include an extremely large ratio of false positives, as well as a very limited ability to detect non-metallic landmines. In this lecture a microbial-based solution for the remote detection of buried landmines described. The small size requirements, rapid responses and sensing versatility of bacterial bioreporters allow their integration into diverse types of devices, for laboratory as well as field applications. The relative ease by which molecular sensing and reporting elements can be fused together to generate dose-dependent quantifiable physical (luminescent, fluorescent, colorimetric, electrochemical) responses to pre-determined conditions allows the construction of diverse classes of sensors. Over the last two decades we and others have employed this principle to design and construct microbial bioreporter strains for the sensitive detection of (a) specific chemicals of environmental concern (heavy metals, halogenated organics etc.) or (b) their deleterious biological effects on living systems (such as toxicity or genotoxicity). In many of these cases, additional molecular manipulations beyond the initial sensor-reporter fusion may be highly beneficial for enhancing the performance of the engineered sensor systems. This presentation highlights several of the approaches we have adopted over the years to achieve this aim, while focusing on the application of live cell microbeads for the remote detection of buried landmines and other explosive devices.
Procedure for rapid concentration and detection of enteric viruses from berries and vegetables.
Butot, S; Putallaz, T; Sánchez, G
2007-01-01
Several hepatitis A virus (HAV) and norovirus (NV) outbreaks due to consumption of berries and vegetables have been reported during recent years. To facilitate the detection of enteric viruses that may be present on different fresh and frozen products, we developed a rapid and sensitive detection method for HAV, NV, and rotavirus (RV). Initial experiments focused on optimizing the composition of the elution buffer, improving the viral concentration method, and evaluating the performance of various extraction kits. Viruses were extracted from the food surface by a direct elution method in a glycine-Tris (pH 9.5) buffer containing 1% beef extract and concentrated by ultrafiltration. Occasionally, PCR inhibitors were present in the processed berry samples, which gave relatively poor detection limits. However, this problem was overcome by adding a pectinase treatment in the protocol, which markedly improved the sensitivity of the method. After optimization, this concentration method was applied in combination with real-time reverse transcription-PCR (RT-PCR) using specific primers in various types of berries and vegetables. The average detection limits were 1 50% tissue culture infective dose (TCID(50)), 54 RT-PCR units, and 0.02 TCID(50) per 15 g of food for HAV, NV, and RV, respectively. Based on our results, it is concluded that this procedure is suitable to detect and quantify enteric viruses within 6 h and can be applied for surveillance of enteric viruses in fresh and frozen products.
Wang, Yuanchao; Wu, Qiong; Cheng, Meirong; Cai, Cheng
2011-04-15
A novel method for simultaneous determination of atenolol, metoprolol and esmolol was proposed by capillary electrophoresis (CE) separation and electrochemiluminescence (ECL) detection. Poly-β-cyclodextrin (Poly-β-CD) was used as an additive in the running buffer to improve the separation of three analytes. The conditions for CE separation, ECL detection and effect of Poly-β-CD were investigated in detail. The three β-blockers with very similar structures were well separated and detected under the optimum conditions. The linear ranges of the standard solution for atenolol and esmolol were 2.5-125 μmol/L with a detection limit (S/N=3) of 0.5 μmol/L, and for metoprolol was 0.5-25 μmol/L with a detection limit of 0.1 μmol/L. For three β-blockers from spiked aqueous and urine samples, the accuracy and precision including intraday and interday experiments were performed by calculating the recovery, the relative standard deviations of the ECL intensity and the migration time, respectively. The developed method was applied to the determination of metoprolol content in commercial pharmaceutical, and the analytical results are in good agreement with the nominal value with recoveries in the range of 98.7-105%. The proposed method was also applied to the monitoring of pharmacokinetics for metoprolol in human body. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, He; Cao, Zhoujian; Zhang, Bing, E-mail: gaohe@bnu.edu.cn
Neutron stars may sustain a non-axisymmetric deformation due to magnetic distortion and are potential sources of continuous gravitational waves (GWs) for ground-based interferometric detectors. With decades of searches using available GW detectors, no evidence of a GW signal from any pulsar has been observed. Progressively stringent upper limits of ellipticity have been placed on Galactic pulsars. In this work, we use the ellipticity inferred from the putative millisecond magnetars in short gamma-ray bursts (SGRBs) to estimate their detectability by current and future GW detectors. For ∼1 ms magnetars inferred from the SGRB data, the detection horizon is ∼30 Mpc andmore » ∼600 Mpc for the advanced LIGO (aLIGO) and Einstein Telescope (ET), respectively. Using the ellipticity of SGRB millisecond magnetars as calibration, we estimate the ellipticity and GW strain of Galactic pulsars and magnetars assuming that the ellipticity is magnetic-distortion-induced. We find that the results are consistent with the null detection results of Galactic pulsars and magnetars with the aLIGO O1. We further predict that the GW signals from these pulsars/magnetars may not be detectable by the currently designed aLIGO detector. The ET detector may be able to detect some relatively low-frequency signals (<50 Hz) from some of these pulsars. Limited by its design sensitivity, the eLISA detector seems to not be suitable for detecting the signals from Galactic pulsars and magnetars.« less
NASA Astrophysics Data System (ADS)
Gao, He; Cao, Zhoujian; Zhang, Bing
2017-08-01
Neutron stars may sustain a non-axisymmetric deformation due to magnetic distortion and are potential sources of continuous gravitational waves (GWs) for ground-based interferometric detectors. With decades of searches using available GW detectors, no evidence of a GW signal from any pulsar has been observed. Progressively stringent upper limits of ellipticity have been placed on Galactic pulsars. In this work, we use the ellipticity inferred from the putative millisecond magnetars in short gamma-ray bursts (SGRBs) to estimate their detectability by current and future GW detectors. For ˜1 ms magnetars inferred from the SGRB data, the detection horizon is ˜30 Mpc and ˜600 Mpc for the advanced LIGO (aLIGO) and Einstein Telescope (ET), respectively. Using the ellipticity of SGRB millisecond magnetars as calibration, we estimate the ellipticity and GW strain of Galactic pulsars and magnetars assuming that the ellipticity is magnetic-distortion-induced. We find that the results are consistent with the null detection results of Galactic pulsars and magnetars with the aLIGO O1. We further predict that the GW signals from these pulsars/magnetars may not be detectable by the currently designed aLIGO detector. The ET detector may be able to detect some relatively low-frequency signals (<50 Hz) from some of these pulsars. Limited by its design sensitivity, the eLISA detector seems to not be suitable for detecting the signals from Galactic pulsars and magnetars.
Koo, Kevin M; Wee, Eugene J H; Trau, Matt
2016-01-01
TMPRSS2 (Exon 1)-ERG (Exon 4) is the most frequent gene fusion event in prostate cancer (PC), and is highly PC-specific unlike the current serum prostate specific antigen (PSA) biomarker. However, TMPRSS2-ERG levels are currently measured with quantitative reverse-transcription PCR (RT-qPCR) which is time-consuming and requires costly equipment, thus limiting its use in clinical diagnostics. Herein, we report a novel rapid, cost-efficient and minimal-equipment assay named "FusBLU" for detecting TMPRSS2-ERG gene fusions from urine. TMPRSS2-ERG mRNA was amplified by isothermal reverse transcription-recombinase polymerase amplification (RT-RPA), magnetically-isolated, and detected through horseradish peroxidase (HRP)-catalyzed colorimetric reaction. FusBLU was specific for TMPRSS2-ERG mRNA with a low visual detection limit of 10(5) copies. We also demonstrated assay readout versatility on 3 potentially useful platforms. The colorimetric readout was detectable by naked eye for a quick yes/no evaluation of gene fusion presence. On the other hand, a more quantitative TMPRSS2-ERG detection was achievable by absorbance/electrochemical measurements. FusBLU was successfully applied to 12 urinary samples and results were validated by gold-standard RT-qPCR. We also showed that sediment RNA was likely the main source of TMPRSS2-ERG mRNA in urinary samples. We believe that our assay is a potential clinical screening tool for PC and could also have wide applications for other disease-related fusion genes.
Li, Peng; Jia, Junwei; Bai, Lan; Pan, Aihu; Tang, Xueming
2013-07-01
Genetically modified carnation (Dianthus caryophyllus L.) Moonshade was approved for planting and commercialization in several countries from 2004. Developing methods for analyzing Moonshade is necessary for implementing genetically modified organism labeling regulations. In this study, the 5'-transgene integration sequence was isolated using thermal asymmetric interlaced (TAIL)-PCR. Based upon the 5'-transgene integration sequence, conventional and TaqMan real-time PCR assays were established. The relative limit of detection for the conventional PCR assay was 0.05 % for Moonshade using 100 ng total carnation genomic DNA, corresponding to approximately 79 copies of the carnation haploid genome, and the limits of detection and quantification of the TaqMan real-time PCR assay were estimated to be 51 and 254 copies of haploid carnation genomic DNA, respectively. These results are useful for identifying and quantifying Moonshade and its derivatives.
The detection of planetary systems from Space Station - A star observation strategy
NASA Technical Reports Server (NTRS)
Mascy, Alfred C.; Nishioka, Ken; Jorgensen, Helen; Swenson, Byron L.
1987-01-01
A 10-20-yr star-observation program for the Space Station Astrometric Telescope Facility (ATF) is proposed and evaluated by means of computer simulations. The primary aim of the program is to detect stars with planetary systems by precise determination of their motion relative to reference stars. The designs proposed for the ATF are described and illustrated; the basic parameters of the 127 stars selected for the program are listed in a table; spacecraft and science constraints, telescope slewing rates, and the possibility of limiting the program sample to stars near the Galactic equator are discussed; and the effects of these constraints are investigated by simulating 1 yr of ATF operation. Viewing all sky regions, the ATF would have 81-percent active viewing time, observing each star about 200 times (56 h) per yr; only small decrements in this performance would result from limiting the viewing field.
Determination of nitrobenzene in wastewater using a hanging mercury drop electrode.
Liang, Shu-Xuan; Zhang, Huan-Kun; Lu, Da
2007-06-01
The determination of trace amount nitrobenzene in wastewater on a hanging mercury drop electrode was studied. The determination conditions of pH, supporting electrolyte, accumulation potential, accumulation time, and voltammetric response were optimized. The sharp peak of the nitrobenzene was appeared at 0.05 V. The peak electric current was proportional to the concentration of nitrobenzene in the range of 1.47 x 10(-5) approximately 1.0 x 10(-3) mol/l with relative standard deviations of 3.99 approximately 8.94%. The detection limit of the nitrobenzene in water was 5 x 10(-6) mol/l. The proposed method offered low limit of determination, easy operation, the use of simple instrumentation, high sensitivity and good reproducibility. It was applied to the determination of nitrobenzene in wastewater with an average recovery of 94.0% approximately 105%. The proposed method provided fast, sensitive and sometimes real time detection of nitrobenzene.
Characterization of X80 and X100 Microalloyed Pipeline Steel Using Quantitative X-ray Diffraction
NASA Astrophysics Data System (ADS)
Wiskel, J. B.; Li, X.; Ivey, D. G.; Henein, H.
2018-06-01
Quantitative X-ray diffraction characterization of four (4) X80 and three (3) X100 microalloyed steels was undertaken. The effect of through-thickness position, processing parameters, and composition on the measured crystallite size, microstrain, and J index (relative magnitude of crystallographic texture) was determined. Microstructure analysis using optical microscopy, scanning electron microscopy, transmission electron microscopy, and electron-backscattered diffraction was also undertaken. The measured value of microstrain increased with increasing alloy content and decreasing cooling interrupt temperature. Microstructural features corresponding to crystallite size in the X80 steels were both above and below the detection limit for quantitative X-ray diffraction. The X100 steels consistently exhibited microstructure features below the crystallite size detection limit. The yield stress of each steel increased with increasing microstrain. The increase in microstrain from X80 to X100 is also associated with a change in microstructure from predominantly polygonal ferrite to bainitic ferrite.
Physically incorporated extraction phase of solid-phase microextraction by sol-gel technology.
Liu, Wenmin; Hu, Yuan; Zhao, Jinghong; Xu, Yuan; Guan, Yafeng
2006-01-13
A sol-gel method for the preparation of solid-phase microextraction (SPME) fiber was described and evaluated. The extraction phase of poly(dimethysiloxane) (PDMS) containing 3% vinyl group was physically incorporated into the sol-gel network without chemical bonding. The extraction phase itself is then partly crosslinked at 320 degrees C, forming an independent polymer network and can withstand desorption temperature of 290 degrees C. The headspace extraction of BTX by the fiber SPME was evaluated and the detection limit of o-xylene was down to 0.26 ng/l. Extraction and determination of organophosphorus pesticides (OPPs) in water, orange juice and red wine by the SPME-GC thermionic specified detector (TSD) was validated. Limits of detection of the method for OPPs were below 10 ng/l except methidathion. Relative standard deviations (RSDs) were in the range of 1-20% for pesticides being tested.
Heterogeneity, histological features and DNA ploidy in oral carcinoma by image-based analysis.
Diwakar, N; Sperandio, M; Sherriff, M; Brown, A; Odell, E W
2005-04-01
Oral squamous carcinomas appear heterogeneous on DNA ploidy analysis. However, this may be partly a result of sample dilution or the detection limit of techniques. The aim of this study was to determine whether oral squamous carcinomas are heterogeneous for ploidy status using image-based ploidy analysis and to determine whether ploidy status correlates with histological parameters. Multiple samples from 42 oral squamous carcinomas were analysed for DNA ploidy using an image-based system and scored for histological parameters. 22 were uniformly aneuploid, 1 uniformly tetraploid and 3 uniformly diploid. 16 appeared heterogeneous but only 8 appeared to be genuinely heterogeneous when minor ploidy histogram peaks were taken into account. Ploidy was closely related to nuclear pleomorphism but not differentiation. Sample variation, detection limits and diagnostic criteria account for much of the ploidy heterogeneity observed. Confident diagnosis of diploid status in an oral squamous cell carcinoma requires a minimum of 5 samples.
Virome comparisons in wild-diseased and healthy captive giant pandas.
Zhang, Wen; Yang, Shixing; Shan, Tongling; Hou, Rong; Liu, Zhijian; Li, Wang; Guo, Lianghua; Wang, Yan; Chen, Peng; Wang, Xiaochun; Feng, Feifei; Wang, Hua; Chen, Chao; Shen, Quan; Zhou, Chenglin; Hua, Xiuguo; Cui, Li; Deng, Xutao; Zhang, Zhihe; Qi, Dunwu; Delwart, Eric
2017-08-07
The giant panda (Ailuropoda melanoleuca) is a vulnerable mammal herbivore living wild in central China. Viral infections have become a potential threat to the health of these endangered animals, but limited information related to these infections is available. Using a viral metagenomic approach, we surveyed viruses in the feces, nasopharyngeal secretions, blood, and different tissues from a wild giant panda that died from an unknown disease, a healthy wild giant panda, and 46 healthy captive animals. The previously uncharacterized complete or near complete genomes of four viruses from three genera in Papillomaviridae family, six viruses in a proposed new Picornaviridae genus (Aimelvirus), two unclassified viruses related to posaviruses in Picornavirales order, 19 anelloviruses in four different clades of Anelloviridae family, four putative circoviruses, and 15 viruses belonging to the recently described Genomoviridae family were sequenced. Reflecting the diet of giant pandas, numerous insect virus sequences related to the families Iflaviridae, Dicistroviridae, Iridoviridae, Baculoviridae, Polydnaviridae, and subfamily Densovirinae and plant viruses sequences related to the families Tombusviridae, Partitiviridae, Secoviridae, Geminiviridae, Luteoviridae, Virgaviridae, and Rhabdoviridae; genus Umbravirus, Alphaflexiviridae, and Phycodnaviridae were also detected in fecal samples. A small number of insect virus sequences were also detected in the nasopharyngeal secretions of healthy giant pandas and lung tissues from the dead wild giant panda. Although the viral families present in the sick giant panda were also detected in the healthy ones, a higher proportion of papillomaviruses, picornaviruses, and anelloviruses reads were detected in the diseased panda. This viral survey increases our understanding of eukaryotic viruses in giant pandas and provides a baseline for comparison to viruses detected in future infectious disease outbreaks. The similar viral families detected in sick and healthy giant pandas indicate that these viruses result in commensal infections in most immuno-competent animals.
da Silva, Claudia Pereira; Emídio, Elissandro Soares; de Marchi, Mary Rosa Rodrigues
2015-01-01
This paper describes the validation of a method consisting of solid-phase extraction followed by gas chromatography-tandem mass spectrometry for the analysis of the ultraviolet (UV) filters benzophenone-3, ethylhexyl salicylate, ethylhexyl methoxycinnamate and octocrylene. The method validation criteria included evaluation of selectivity, analytical curve, trueness, precision, limits of detection and limits of quantification. The non-weighted linear regression model has traditionally been used for calibration, but it is not necessarily the optimal model in all cases. Because the assumption of homoscedasticity was not met for the analytical data in this work, a weighted least squares linear regression was used for the calibration method. The evaluated analytical parameters were satisfactory for the analytes and showed recoveries at four fortification levels between 62% and 107%, with relative standard deviations less than 14%. The detection limits ranged from 7.6 to 24.1 ng L(-1). The proposed method was used to determine the amount of UV filters in water samples from water treatment plants in Araraquara and Jau in São Paulo, Brazil. Copyright © 2014 Elsevier B.V. All rights reserved.
Song, Jinzhao; Pandian, Vikram; Mauk, Michael G; Bau, Haim H; Cherry, Sara; Tisi, Laurence C; Liu, Changchun
2018-04-03
Rapid and quantitative molecular diagnostics in the field, at home, and at remote clinics is essential for evidence-based disease management, control, and prevention. Conventional molecular diagnostics requires extensive sample preparation, relatively sophisticated instruments, and trained personnel, restricting its use to centralized laboratories. To overcome these limitations, we designed a simple, inexpensive, hand-held, smartphone-based mobile detection platform, dubbed "smart-connected cup" (SCC), for rapid, connected, and quantitative molecular diagnostics. Our platform combines bioluminescent assay in real-time and loop-mediated isothermal amplification (BART-LAMP) technology with smartphone-based detection, eliminating the need for an excitation source and optical filters that are essential in fluorescent-based detection. The incubation heating for the isothermal amplification is provided, electricity-free, with an exothermic chemical reaction, and incubation temperature is regulated with a phase change material. A custom Android App was developed for bioluminescent signal monitoring and analysis, target quantification, data sharing, and spatiotemporal mapping of disease. SCC's utility is demonstrated by quantitative detection of Zika virus (ZIKV) in urine and saliva and HIV in blood within 45 min. We demonstrate SCC's connectivity for disease spatiotemporal mapping with a custom-designed website. Such a smart- and connected-diagnostic system does not require any lab facilities and is suitable for use at home, in the field, in the clinic, and particularly in resource-limited settings in the context of Internet of Medical Things (IoMT).
Nagvenkar, Anjani P; Gedanken, Aharon
2016-08-31
Nanomaterial-based enzyme mimetics (nanozymes) is an emerging field of research that promises to produce alternatives to natural enzymes for a variety of applications. The search for the most cost-effective and efficient inorganic nanomaterials, such as metal oxides, cannot be won by pristine CuO. However, unlike CuO, the Zn-doped CuO (Zn-CuO) nanoparticles reported in this paper reveal superior peroxidase-like enzyme activity. This places Zn-CuO in a good position to participate in a range of activities aimed at developing diverse enzyme applications. The peroxidase-like activity was tested and confirmed against various chromogenic substrates in the presence of H2O2 and obeyed the Michaelis-Menten enzymatic pathway. The mechanism of enhanced enzymatic activity was proved by employing terephthalic acid as a fluorescence probe and by electron spin resonance. The nanozyme, when tested for the detection of glucose, showed a substantial enhancement in the detection selectivity. The limit of detection (LOD) was also decreased reaching a limit as low as 0.27 ppm. Such a low LOD has not been reported so far for the metal oxides without any surface modifications. Moreover, the nanozyme (Zn-CuO) was utilized to detect the three antioxidants tannic acid, tartaric acid, and ascorbic acid and the relative strength of their antioxidant capacity was compared.
Nanoparticle-enhanced electrical detection of Zika virus on paper microchips.
Draz, Mohamed Shehata; Venkataramani, Manasa; Lakshminarayanan, Harini; Saygili, Ecem; Moazeni, Maryam; Vasan, Anish; Li, Yudong; Sun, Xiaoming; Hua, Stephane; Yu, Xu G; Shafiee, Hadi
2018-06-08
Zika virus (ZIKV) is a reemerging flavivirus causing an ongoing pandemic and public health emergency worldwide. There are currently no effective vaccines or specific therapy for Zika infection. Rapid, low-cost diagnostics for mass screening and early detection are of paramount importance in timely management of the infection at the point-of-care (POC). The current Zika diagnostics are laboratory-based and cannot be implemented at the POC particularly in resource-limited settings. Here, we develop a nanoparticle-enhanced viral lysate electrical sensing assay for Zika virus detection on paper microchips with printed electrodes. The virus is isolated from biological samples using antibodies and labeled with platinum nanoparticles (PtNPs) to enhance the electrical signal. The captured ZIKV-PtNP complexes are lysed using a detergent to release the electrically charged molecules associated with the intact virus and the PtNPs on the captured viruses. The released charged molecules and PtNPs change the electrical conductivity of the solution, which can be measured on a cellulose paper microchip with screen-printed microelectrodes. The results confirmed a highly specific detection of ZIKV in the presence of other non-targeted viruses, including closely related flaviviruses such as dengue virus-1 and dengue virus-2 with a detection limit down to 101 virus particles per μl. The developed assay is simple, rapid, and cost-effective and has the potential for POC diagnosis of viral infections and treatment monitoring.
Scheel, Christina M.; Samayoa, Blanca; Herrera, Alejandro; Lindsley, Mark D.; Benjamin, Lynette; Reed, Yvonne; Hart, John; Lima, Sandra; Rivera, Blanca E.; Raxcaco, Gabriella; Chiller, Tom; Arathoon, Eduardo; Gómez, Beatriz L.
2009-01-01
Histoplasma capsulatum infection causes significant morbidity and mortality in human immunodeficiency virus-infected individuals, particularly those in countries with limited access to rapid diagnostics or antiretroviral therapies. The fungus easily disseminates in persons with AIDS, resulting in progressive disseminated histoplasmosis (PDH), which can progress rapidly to death if undiagnosed. The availability of a simple, rapid method to detect H. capsulatum infection in less developed countries where the infection is endemic would dramatically decrease the time to diagnosis and treatment of PDH. We have developed an antigen-capture enzyme-linked immunosorbent assay (ELISA) to detect PDH antigenuria in infected patients. The assay uses polyclonal antibodies against H. capsulatum as both capture and detection reagents, and a standard reference curve is included to quantify antigenuria and ensure reproducibility. We evaluated this assay using specimens collected from patients with AIDS and culture-proven histoplasmosis in a Guatemalan clinic (n = 48), from healthy persons (n = 83), and from patients with other, nonhistoplasmosis diseases (n = 114). The ELISA demonstrated a sensitivity of 81% and a specificity of 95% in detecting H. capsulatum antigen in urine. This assay relies on simple technology that can be performed in institutions with limited resources. Use of this test will facilitate rapid diagnosis of PDH in countries where mortality is high, expediting treatment and likely reducing PDH-related mortality. PMID:19357311
Qi, Yong; Yin, Qiong; Shao, Yinxiu; Cao, Min; Li, Suqin; Chen, Hongxia; Shen, Wanpeng; Rao, Jixian; Li, Jiameng; Li, Xiaoling; Sun, Yu; Lin, Yu; Deng, Yi; Zeng, Wenwen; Zheng, Shulong; Liu, Suyun; Li, Yuexi
2018-05-01
Orientia tsutsugamushi is an obligate intracellular pathogen that causes scrub typhus. Diagnosing scrub typhus remains a challenge, and a sensitive, specific, simple, and rapid diagnostic test is still needed. A recombinase polymerase amplification (RPA) assay combined with a lateral flow (LF) test targeting the 56-kDa gene of a Karp-like strain of O. tsutsugamushi was developed and optimized. The detection limits, sensitivity, specificity, and simulative clinical performance were evaluated. Primers and probe were screened to establish the RPA assay, and the reaction conditions were optimized. The detection limit was 10 copies/reaction in detecting plasmid DNA and 12 copies/reaction in detecting genomic DNA. The RPA-LF method could differentiate O. tsutsugamushi from other phylogenetically related bacteria. The sensitivity was 100% and specificity was over 90%, when evaluated using infected animal samples or simulative clinical samples. Furthermore, the method was completed in 20min at 37°C followed by a 3-5min incubation at room temperature for the development of an immunochromatographic strip, and the results could be determined visually. This method is promising for wide-ranging use in basic medical units considering that it requires minimal instruments and infrastructure and is highly time-efficient, sensitive, and specific for diagnosing scrub typhus. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Wahyudi, Haris; Pranoto, Hadi; Leman, A. M.; Sebayang, Darwin; Baba, I.
2017-09-01
Every second, the number of road traffic deaths is increased globally with millions more sustaining severe injuries and living with long-term adverse health consequences. Jakarta alone in year 2015 had recorded 556 people died due to road accidents, approximately reached 6.231 road accident cases. The identified major contributory factors of such unfortunate events are both driver fatigue and over speeding habit especially related to the driving of truck and bus. This paper presents the idea on how to control the electronic system from input fuel system of injection pump and the combustion chamber engine will control the valve solenoid in injection pump which can lock and fuel will stop for moment, and speed limit can be success, by using sensor heart rate we can input reduce speed limit when fatigue detection driver. Integration process this tool can be relevant when Speed Limiter Integrated Fatigue Analyser (SLIFA) trial in the diesel engine for truck and bus, the result of this research Speed Limiter Integrated Fatigue Analyser (SLIFA) able to control speed of diesel engine for truck and bus almost 30km/h, 60km/h, and until 70 km/h. The installation of the sensor heart rate as the input speed limit SLIFA would work when the driver is detected to be in the fatigue condition. We make Speed Limiter Integrated Fatigue Analyser (SLIFA) for control and monitoring system for diesel engine in truck and bus. Speed Limiter Integrated Fatigue Analyser (SLIFA) system can save the historical of the speed record, fatigue, rpm, and body temperature of the driver.
Ball, J.W.; Nordstrom, D. Kirk
1994-01-01
Sixty-three water samples collected during June to October 1982 from the Leviathan/Bryant Creek drainage basin were originally analyzed by simultaneous multielement direct-current plasma (DCP) atomic-emission spectrometry, flame atomic-absorption spectrometry, graphite-furnace atomic-absorption spectrometry (GFAAS) (thallium only), ultraviolet-visible spectrometry, and hydride-generation atomic-absorption spectrometry.Determinations were made for the following metallic and semi-metallic constituents: AI, As, B, Ba, Be, Bi, Cd, Ca, Cr, Co, Cu, Fe(11), Fe(total), Li, Pb, Mg, Mn, Mo, Ni, K, Sb, Se, Si, Na, Sr, TI, V, and Zn. These samples were re-analyzed later by simultaneous multielement inductively coupled plasma (ICP) atomic-emission spectrometry and Zeeman-corrected GFAAS to determine the concentrations of many of the same constituents with improved accuracy, precision, and sensitivity. The result of this analysis has been the generation of comparative concentration values for a significant subset of the solute constituents. Many of the more recently determined values replace less-than-detection values for the trace metals; others constitute duplicate analyses for the major constituents. The multiple determinations have yielded a more complete, accurate, and precise set of analytical data. They also have resulted in an opportunity to compare the performance of the plasma-emission instruments operated in their respective simultaneous multielement modes. Flame atomic-absorption spectrometry was judged best for Na and K and hydride-generation atomic-absorption spectrometry was judged best for As because of their lower detection limit and relative freedom from interelement spectral effects. Colorimetric determination using ferrozine as the color agent was judged most accurate, precise, and sensitive for Fe. Cadmium, lead, and vanadium concentrations were too low in this set of samples to enable a determination of whether ICP or DCP is a more suitable technique. Of the remaining elements, Ba, Be, Ca, Cr, Mg, Mn, Sr, and Zn have roughly equivalent accuracy, precision, and detection limit by ICP and DCP. Cobalt and Ni were determined to be better analyzed by ICP, because of lower detection limits; B, Cu, Mo, and Si were determined to be better analyzed by DCP, because of relative freedom from interferences. The determination oral by DCP was far more sensitive, owing to the use of a more sensitive wavelength, compared with the ICP. However, there is a very serious potential interference from a strong Ca emission line near the 396.15 nanometer DCP wavelength. Thus, there is no clear choice between the plasma techniques tested, for the determination oral. The ICP and DCP detection limits are typically between 0.001 and 0.5 milligrams per liter in acid mine waters. For those metals best analyzed by ICP and/or DCP, but below these limits, GFAAS is the method of choice because of its relatively greater sensitivity and specificity. Six of the elements were not determined by DCP, ICP or Zeeman-corrected GFAAS, and are not discussed in this report. These elements are: Bi, Fe(11), Li, Sb, Se, and TI.
Pacurariu, Alexandra C; Straus, Sabine M; Trifirò, Gianluca; Schuemie, Martijn J; Gini, Rosa; Herings, Ron; Mazzaglia, Giampiero; Picelli, Gino; Scotti, Lorenza; Pedersen, Lars; Arlett, Peter; van der Lei, Johan; Sturkenboom, Miriam C; Coloma, Preciosa M
2015-12-01
Spontaneous reporting systems (SRSs) remain the cornerstone of post-marketing drug safety surveillance despite their well-known limitations. Judicious use of other available data sources is essential to enable better detection, strengthening and validation of signals. In this study, we investigated the potential of electronic healthcare records (EHRs) to be used alongside an SRS as an independent system, with the aim of improving signal detection. A signal detection strategy, focused on a limited set of adverse events deemed important in pharmacovigilance, was performed retrospectively in two data sources-(1) the Exploring and Understanding Adverse Drug Reactions (EU-ADR) database network and (2) the EudraVigilance database-using data between 2000 and 2010. Five events were considered for analysis: (1) acute myocardial infarction (AMI); (2) bullous eruption; (3) hip fracture; (4) acute pancreatitis; and (5) upper gastrointestinal bleeding (UGIB). Potential signals identified in each system were verified using the current published literature. The complementarity of the two systems to detect signals was expressed as the percentage of the unilaterally identified signals out of the total number of confirmed signals. As a proxy for the associated costs, the number of signals that needed to be reviewed to detect one true signal (number needed to detect [NND]) was calculated. The relationship between the background frequency of the events and the capability of each system to detect signals was also investigated. The contribution of each system to signal detection appeared to be correlated with the background incidence of the events, being directly proportional to the incidence in EU-ADR and inversely proportional in EudraVigilance. EudraVigilance was particularly valuable in identifying bullous eruption and acute pancreatitis (71 and 42 % of signals were correctly identified from the total pool of known associations, respectively), while EU-ADR was most useful in identifying hip fractures (60 %). Both systems contributed reasonably well to identification of signals related to UGIB (45 % in EudraVigilance, 40 % in EU-ADR) but only fairly for signals related to AMI (25 % in EU-ADR, 20 % in EudraVigilance). The costs associated with detection of signals were variable across events; however, it was often more costly to detect safety signals in EU-ADR than in EudraVigilance (median NNDs: 7 versus 5). An EHR-based system may have additional value for signal detection, alongside already established systems, especially in the presence of adverse events with a high background incidence. While the SRS appeared to be more cost effective overall, for some events the costs associated with signal detection in the EHR might be justifiable.
2011-01-01
Background From April 2010 to January 2011, a severe new viral disease had devastated most duck-farming regions in China. This disease affected not only laying ducks but also meat ducks, causing huge economic losses for the poultry industry. The objective of this study is to develop a one-step reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for the detection of the new virus related to Tembusu-related Flavivirus. Results The RT-LAMP assay is very simple and rapid, and the amplification can be completed within 50 min under isothermal conditions at 63°C by a set of 6 primers targeting the E gene based on the sequences analysis of the newly isolated viruses and other closely related Flavivirus.The monitoring of gene amplification can also be visualized by using SYBR green I fluorescent dye. In addition, the RT-LAMP assay for newly isolated Tembusu-related Flavivirus showed higher sensitivity with an RNA detection-limit of 2 copies/μL compared with 190 copies/μL of the conventional RT-PCR method. The specificity was identified without cross reaction to other common avian pathogens. By screening a panel of clinical samples this method was more feasible in clinical settings and there was higher positive coincidence rate than conventional RT-PCR and virus isolation. Conclusion The RT-LAMP assay for newly isolated Tembusu-related Flavivirus is a valuable tool for the rapid and real-time detection not only in well-equipped laboratories but also in general conditions. PMID:22185513
Aptamer based electrochemical sensor for detection of human lung adenocarcinoma A549 cells
NASA Astrophysics Data System (ADS)
Sharma, Rachna; Varun Agrawal, Ved; Sharma, Pradeep; Varshney, R.; Sinha, R. K.; Malhotra, B. D.
2012-04-01
We report results of the studies relating to development of an aptamer-based electrochemical biosensor for detection of human lung adenocarcinoma A549 cells. The aminated 85-mer DNA aptamer probe specific for the A549 cells has been covalently immobilized onto silane self assembled monolayer (SAM) onto ITO surface using glutaraldehyde as the crosslinker. The results of cyclic voltammetry and differential pulse voltammetry studies reveal that the aptamer functionalized bioelectrode can specifically detect lung cancer cells in the concentration range of 103 to 107 cells/ml with detection limit of 103 cells/ml within 60 s. The specificity studies of the bioelectrode have been carried out with control KB cells. No significant change in response is observed for control KB cells as compared to that of the A549 target cells.
Zhao, Sen; Ma, Wei; Xu, Liguang; Wu, Xiaoling; Kuang, Hua; Wang, Libing; Xu, Chuanlai
2015-06-15
For the first time, we demonstrated the fabrication of silver nanoparticle ornamented-gold nanoparticle pyramids (Ag-Au Pys) using an aptamer-based self-assembly process and investigated their surface-enhanced Raman scattering (SERS) properties in the detection of vascular endothelial growth factor (VEGF). Under optimized conditions, the SERS signal was negatively related to VEGF concentration over the range 0.01-1.0 fM and the limit of detection (LOD) was as low as 22.6 aM. The matrix effect and the specificity of this developed method were further examined, and the results showed that the superstructure sensor was ultrasensitive and highly selective. This developed aptamer-based SERS detection method suggests that it may be a promising strategy for a variety of sensing applications. Copyright © 2015 Elsevier B.V. All rights reserved.
Yang, Bo-Yun; Liu, Xiao-Lu; Wei, Yu-Mei; Wang, Jing-Qi; He, Xiao-Qing; Jin, Yi; Wang, Zi-Jian
2014-02-14
The aim of this paper was to develop a reverse transcription loop-mediated isothermal amplification (RT-LAMP) method for rapid, sensitive and inexpensive detection of astrovirus. The detection limit of LAMP using in vitro RNA transcripts was 3.6 × 10 copies·μL⁻¹, which is as sensitive as the presently used PCR assays. However, the LAMP products could be identified as different colors with the naked eye following staining with hydroxynaphthol blue dye (HNB). No cross-reactivity with other gastroenteric viruses (rotavirus and norovirus) was observed, indicating the relatively high specificity of LAMP. The RT-LAMP method with HNB was used to effectively detect astrovirus in reclaimed water samples. The LAMP technique described in this study is a cheap, sensitive, specific and rapid method for the detection of astrovirus. The RT-LAMP method can be simply applied for the specific detection of astrovirus and has the potential to be utilized in the field as a screening test.
Intentional retrieval suppression can conceal guilty knowledge in ERP memory detection tests☆
Bergström, Zara M.; Anderson, Michael C.; Buda, Marie; Simons, Jon S.; Richardson-Klavehn, Alan
2013-01-01
Brain-activity markers of guilty knowledge have been promoted as accurate and reliable measures for establishing criminal culpability. Tests based on these markers interpret the presence or absence of memory-related neural activity as diagnostic of whether or not incriminating information is stored in a suspect's brain. This conclusion critically relies on the untested assumption that reminders of a crime uncontrollably elicit memory-related brain activity. However, recent research indicates that, in some circumstances, humans can control whether they remember a previous experience by intentionally suppressing retrieval. We examined whether people could use retrieval suppression to conceal neural evidence of incriminating memories as indexed by Event-Related Potentials (ERPs). When people were motivated to suppress crime retrieval, their memory-related ERP effects were significantly decreased, allowing guilty individuals to evade detection. Our findings indicate that brain measures of guilty knowledge may be under criminals’ intentional control and place limits on their use in legal settings. PMID:23664804
NASA Astrophysics Data System (ADS)
la Grone, Marcus J.; Cumming, Colin J.; Fisher, Mark E.; Fox, Michael J.; Jacob, Sheena; Reust, Dennis; Rockley, Mark G.; Towers, Eric
2000-08-01
The explosive charge within a landmine is the source for a mixture of chemical vapors that form a distinctive 'chemical signature' indicative of a landmine. The concentration of these compounds in the air over landmines is extremely low, well below the minimum detection limits of most field- portable chemical sensors. Described in this paper is a man- portable landmine detection system that has for the first time demonstrated the ability to detect landmines by direct sensing of the vapors of signature compounds in the air over landmines. The system utilizes fluorescent polymers developed by collaborators at the MIT. The sensor can detect ultra-trace concentrations of TNT vapor and other nitroaromatic compounds found in many landmine explosives. Thin films of the polymers exhibit intense fluorescence, but when exposed to vapors of nitroaromatic explosives the intensity of the light emitted from the films decreases. A single molecule of TNT binding to a receptor site quenches the fluorescence from many polymer repeat units, increasing the sensitivity by orders of magnitude. A sensor prototype has been develop that response in near real-time to low femtogram quantities of nitroaromatic explosives. The prototype is portable, lightweight, has low power consumption, is simple to operate, and is relatively inexpensive. Simultaneous field testing of the sensor and experienced canine landmine detection teams was recently completed. Although the testing was limited in scope, the performance of the senor met or exceeded that of the canines against buried landmines.
Controlled biological and biomimetic systems for landmine detection.
Habib, Maki K
2007-08-30
Humanitarian demining requires to accurately detect, locate and deactivate every single landmine and other buried mine-like objects as safely and as quickly as possible, and in the most non-invasive manner. The quality of landmine detection affects directly the efficiency and safety of this process. Most of the available methods to detect explosives and landmines are limited by their sensitivity and/or operational complexities. All landmines leak with time small amounts of their explosives that can be found on surrounding ground and plant life. Hence, explosive signatures represent the robust primary indicator of landmines. Accordingly, developing innovative technologies and efficient techniques to identify in real-time explosives residue in mined areas represents an attractive and promising approach. Biological and biologically inspired detection technology has the potential to compete with or be used in conjunction with other artificial technology to complement performance strengths. Biological systems are sensitive to many different scents concurrently, a property that has proven difficult to replicate artificially. Understanding biological systems presents unique opportunities for developing new capabilities through direct use of trained bio-systems, integration of living and non-living components, or inspiring new design by mimicking biological capabilities. It is expected that controlled bio-systems, biotechnology and microbial techniques will contribute to the advancement of mine detection and other application domains. This paper provides directions, evaluation and analysis on the progress of controlled biological and biomimetic systems for landmine detection. It introduces and discusses different approaches developed, underlining their relative advantages and limitations, and highlighting trends, safety and ecology concern, and possible future directions.
The Kepler Mission: A Photometric Search for Earthlike Planets
NASA Technical Reports Server (NTRS)
Lissauer, Jack J.; Borucki, William; Koch, David; Young, Richard E. (Technical Monitor)
1998-01-01
If Earth lies in or near the orbital plane of an extrasolar planet, that planet passes in front of the disk of its star once each orbit as viewed from Earth. Precise photometry can reveal such transits, which can be distinguished from rotationally-modulated starspots and intrinsic stellar variability by their periodicity, square-well shapes and relative spectral neutrality. Transit observations would provide the size and orbital period of the detected planet. Although geometrical considerations limit the fraction of planets detectable by this technique, many stars can be surveyed within the field of view of one telescope, so transit photometry is quite efficient. Scintillation in and variability of Earth's atmosphere limit photometric precision to roughly one-thousandth of a magnitude, allowing detection of transits by Jupiter-sized planets but not by Earth-sized planets from the ground. The COROT spacecraft will be able to detect Uranus-sized planets orbiting near stars. The Kepler Mission, which is being proposed to NASA's Discovery Program this year, will have a photometer with a larger aperture (1 meter) than will COROT, so it will be able to detect transits by planets as small as Earth. Moreover, the Kepler mission will examine the same star field for four years, allowing confirmation of planets with orbital periods of a year. If the Sun's planetary system is typical for single stars, Kepler should detect approximately 480 terrestrial planets. Assuming the statistics from radial velocity surveys are typical, Kepler should also detect transits of 150 inner giant planets and reflected light variations of 1400 giant planets with orbital periods of less than one week.
Mostafaei, F; McNeill, F E; Chettle, D R; Prestwich, W V
2013-10-01
We previously published a method for the in vivo measurement of bone fluoride using neutron activation analysis (NAA) and demonstrated the utility of the technique in a pilot study of environmentally exposed people. The method involved activation of the hand in an irradiation cavity at the McMaster University Accelerator Laboratory and acquisition of the resultant γ-ray signals in a '4π' NaI(Tl) detector array of nine detectors. In this paper we describe a series of improvements to the method. This was investigated via measurement of hand simulating phantoms doped with varying levels of fluorine and fixed amounts of sodium, chlorine and calcium. Four improvements to the technique were tested since our first publication. The previously published detection limit for phantom measurements using this system was 0.66 mg F/g Ca. The accelerator irradiation and detection facilities were relocated to a new section of the laboratory and one more detector was added to the detection system. This was found to reduce the detection limit (possibly because of better detection shielding and additional detector) to 0.59 mg F/g Ca, a factor of 1.12. A new set of phantoms was developed and in this work we show that they improved the minimum detectable limit for fluoride in phantoms irradiated using neutrons produced by 2.15 MeV protons on lithium by a factor of 1.55. We compared the detection limits previously obtained using a summed signal from the nine detectors with the detection limit obtained by acquiring the spectra in anticoincidence mode for reduction of the disturbing signal from chlorine in bone. This was found to improve the ratio of the detection of fluorine to chlorine (an interfering signal) by a factor of 2.8 and the resultant minimum detection limit was found to be reduced by a factor of 1.2. We studied the effects of changing the timing of γ-ray acquisition. Our previously published data used a series of three 10 s acquisitions followed by a 300 s count. Changing the acquisition to a series of six 5 s acquisitions was found to further improve the detection limit by a factor of 1.4. We also present data showing that if the neutron dose is delivered to the phantom in a shorter time period, i.e. the dose rate is increased and irradiation shortened then the detection limit can be reduced by a further factor of 1.35.The overall improvement in detection limit by employing all of these changes was found to be a factor of 3.9. The technique now has an in phantom detection limit of 0.17 mg F/g Ca compared to a previous detection limit of 0.66 mg F/g Ca. The system can now be tested on human volunteers to see if individuals with diagnosed fluorosis can be distinguished from the general Canadian population using this technique.
Amplification of biological targets via on-chip culture for biosensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harper, Jason C.; Edwards, Thayne L.; Carson, Bryan
The present invention, in part, relates to methods and apparatuses for on-chip amplification and/or detection of various targets, including biological targets and any amplifiable targets. In some examples, the microculture apparatus includes a single-use, normally-closed fluidic valve that is initially maintained in the closed position by a valve element bonded to an adhesive coating. The valve is opened using a magnetic force. The valve element includes a magnetic material or metal. Such apparatuses and methods are useful for in-field or real-time detection of targets, especially in limited resource settings.
Jonkers, R E; Oosterhuis, B; ten Berge, R J; van Boxtel, C J
1982-12-10
A relatively simple assay with improved reliability and sensitivity for measuring levels of 6-mercaptopurine in human plasma is presented. After extraction of the compound and the added internal standard with phenyl mercury acetate, samples were separated by ion-pair reversed-phase high-performance liquid chromatography. On-line the analytes were oxidized to fluorescent products and detected in a flow-fluorimeter. The within-day coefficient of variation was 3.8% at a concentration of 25 ng/ml. The lower detection limit was 2 ng/ml when 1.0 ml of plasma was used. Mercaptopurine concentration versus time curves of two subjects after a single oral dose of azathioprine are shown.
Optimised detection of mitochondrial DNA strand breaks.
Hanna, Rebecca; Crowther, Jonathan M; Bulsara, Pallav A; Wang, Xuying; Moore, David J; Birch-Machin, Mark A
2018-05-04
Intrinsic and extrinsic factors that induce cellular oxidative stress damage tissue integrity and promote ageing, resulting in accumulative strand breaks to the mitochondrial DNA (mtDNA) genome. Limited repair mechanisms and close proximity to superoxide generation make mtDNA a prominent biomarker of oxidative damage. Using human DNA we describe an optimised long-range qPCR methodology that sensitively detects mtDNA strand breaks relative to a suite of short mitochondrial and nuclear DNA housekeeping amplicons, which control for any variation in mtDNA copy number. An application is demonstrated by detecting 16-36-fold mtDNA damage in human skin cells induced by hydrogen peroxide and solar simulated radiation. Copyright © 2018 Elsevier B.V. and Mitochondria Research Society. All rights reserved.
Kuhlmann, O; Stoldt, G; Struck, H G; Krauss, G J
1998-09-01
A sensitive and selective bioanalytical method for simultaneous determination of diclofenac and oxybuprocaine in human aqueous humor using reversed-phase HPLC and electrochemical detection is described. Chromatographic separation was achieved by using a Regis SPS 100 RP-8 column (5 microns; 150 x 4.6 mm I.D.). This support is coated with a hydrophilic polyoxyethylenepolymer. It allows protein-containing samples to be injected directly onto the column. The electrochemical detector permit a detection limit of 500 pg diclofenac per ml (daily relative standard deviation 6.3%) and 50 ng oxybuprocaine per ml (daily R.S.D. 2.6%), respectively. Results of administered and measured drug-concentrations in time dependent decrease are presented.
Shimada, K; Mino, T; Nakajima, M; Wakabayashi, H; Yamato, S
1994-11-04
A simple and sensitive high-performance liquid chromatographic (HPLC) method for the determination of phenothiazine (PHE) is described. PHE is converted to diphenylamine (DIP) by desulfurization with Raney nickel catalyst. DIP is highly sensitive to electrochemical detection. The calibration graph for PHE quantification after desulfurization was linear between 0.1 and 2.0 ng per injection. The detection limit (signal-to-noise ratio = 3) of PHE after desulfurization was 10 pg, which is twenty times higher than that of the parent compound PHE. The proposed desulfurization technique was applied to other PHE-related compounds. The structural confirmation of the desulfurized product of PHE was carried out by LC-MS using atmospheric pressure chemical ionization.
Statistical behavior of ten million experimental detection limits
NASA Astrophysics Data System (ADS)
Voigtman, Edward; Abraham, Kevin T.
2011-02-01
Using a lab-constructed laser-excited fluorimeter, together with bootstrapping methodology, the authors have generated many millions of experimental linear calibration curves for the detection of rhodamine 6G tetrafluoroborate in ethanol solutions. The detection limits computed from them are in excellent agreement with both previously published theory and with comprehensive Monte Carlo computer simulations. Currie decision levels and Currie detection limits, each in the theoretical, chemical content domain, were found to be simply scaled reciprocals of the non-centrality parameter of the non-central t distribution that characterizes univariate linear calibration curves that have homoscedastic, additive Gaussian white noise. Accurate and precise estimates of the theoretical, content domain Currie detection limit for the experimental system, with 5% (each) probabilities of false positives and false negatives, are presented.
NASA Astrophysics Data System (ADS)
Ajadi, O. A.; Meyer, F. J.; Tello, M.
2015-12-01
This research presents a promising new method for the detection and tracking of oil spills from Synthetic Aperture Radar (SAR) data. The method presented here combines a number of advanced image processing techniques in order to overcome some common performance limitations of SAR-based oil spill detection. Principal among these limitations are: (1) the radar cross section of the ocean surface strongly depends on wind and wave activities and is therefore highly variable; (2) the radar cross section of oil covered waters is often indistinguishable from other dark ocean features such as low wind areas or oil lookalikes, leading to ambiguities in oil spill detection. In this paper, we introduce two novel image analysis techniques to largely mitigate the aforementioned performance limitations, namely Lipschitz regularity (LR) and Wavelet transforms. We used LR, an image texture parameter akin to the slope of the local power spectrum, in our approach to mitigate these limitations. We show that the LR parameter is much less sensitive to variations of wind and waves than the original image amplitude, lending itself well for normalizing image content. Beyond its benefit for image normalization, we also show that the LR transform enhances the contrast between oil-covered and oil-free ocean surfaces and therefore improves overall spill detection performance. To calculate LR, the SAR images are decomposed using two-dimensional continuous wavelet transform (2D-CWT), which are furthermore transformed into Holder space to measure LR. Finally, we demonstrate that the implementation of wavelet transforms provide additional benefits related to the adaptive reduction of speckle noise. We show how LR and CWT are integrated into our image analysis workflow for application to oil spill detection. To describe the performance of this approach under controlled conditions, we applied our method to simulated SAR data of wind driven oceans containing oil spills of various properties. We also show applications to several real life oil spill scenarios using a series of L-band ALOS PALSAR images and X-band TerraSAR-X images acquired during the Deep Water Horizon spill in the Gulf of Mexico in 2010. From our analysis, we concluded that the LR and CWT have distinct advantages in oil spill detection and lead to high performance spill mapping results.
Yang, Rendong; Nelson, Andrew C; Henzler, Christine; Thyagarajan, Bharat; Silverstein, Kevin A T
2015-12-07
Comprehensive identification of insertions/deletions (indels) across the full size spectrum from second generation sequencing is challenging due to the relatively short read length inherent in the technology. Different indel calling methods exist but are limited in detection to specific sizes with varying accuracy and resolution. We present ScanIndel, an integrated framework for detecting indels with multiple heuristics including gapped alignment, split reads and de novo assembly. Using simulation data, we demonstrate ScanIndel's superior sensitivity and specificity relative to several state-of-the-art indel callers across various coverage levels and indel sizes. ScanIndel yields higher predictive accuracy with lower computational cost compared with existing tools for both targeted resequencing data from tumor specimens and high coverage whole-genome sequencing data from the human NIST standard NA12878. Thus, we anticipate ScanIndel will improve indel analysis in both clinical and research settings. ScanIndel is implemented in Python, and is freely available for academic use at https://github.com/cauyrd/ScanIndel.
Changing scenes: memory for naturalistic events following change blindness.
Mäntylä, Timo; Sundström, Anna
2004-11-01
Research on scene perception indicates that viewers often fail to detect large changes to scene regions when these changes occur during a visual disruption such as a saccade or a movie cut. In two experiments, we examined whether this relative inability to detect changes would produce systematic biases in event memory. In Experiment 1, participants decided whether two successively presented images were the same or different, followed by a memory task, in which they recalled the content of the viewed scene. In Experiment 2, participants viewed a short video, in which an actor carried out a series of daily activities, and central scenes' attributes were changed during a movie cut. A high degree of change blindness was observed in both experiments, and these effects were related to scene complexity (Experiment 1) and level of retrieval support (Experiment 2). Most important, participants reported the changed, rather than the initial, event attributes following a failure in change detection. These findings suggest that attentional limitations during encoding contribute to biases in episodic memory.
Development of HPLC-ELSD method for determination of maltodextrin in raw milk.
Moraes, Flávia Santana; da Costa, Marion Pereira; de Melo Silva, Vitor Luiz; de Barros Pinto Moreira, Rodrigo Vilela; de Barros, Raphael Ferreira; Mársico, Eliane Teixeira; Conte-Junior, Carlos Adam; de Oliveira Silva, Adriana Cristina
2017-02-15
An analytical method was developed and validated for the determination of maltodextrin in raw milk, using high-performance liquid chromatography with evaporative light scattering detection. Maltodextrin content was evaluated in adulterated raw milk using a Supelcosil LC-NH2 (25cm×4.6mm) column and isocratic elution (68% of acetonitrile). Validation parameters exhibited adequate linearity, with relative standard deviation values between 0.74 and 2.16% (n=10) for repeatability and 0.11-19.39% (n=5) for intermediate precision. Limits of detection and quantification were 0.78 and 1.56mg.mL(-1), respectively, and recovery rates were between 91 and 93% for three levels. The application of this method shows that maltodextrin concentrations found in adulterated samples are lower than expected, which may be related to the quality of the commercial maltodextrin used. The method proposed proved to be simple and appropriate for the determination of maltodextrin in raw milk, with detection down to adulteration levels of 1%. Copyright © 2016 Elsevier Ltd. All rights reserved.
A Smartphone App to Screen for HIV-Related Neurocognitive Impairment.
Robbins, Reuben N; Brown, Henry; Ehlers, Andries; Joska, John A; Thomas, Kevin G F; Burgess, Rhonda; Byrd, Desiree; Morgello, Susan
2014-02-01
Neurocognitive Impairment (NCI) is one of the most common complications of HIV-infection, and has serious medical and functional consequences. However, screening for it is not routine and NCI often goes undiagnosed. Screening for NCI in HIV disease faces numerous challenges, such as limited screening tests, the need for specialized equipment and apparatuses, and highly trained personnel to administer, score and interpret screening tests. To address these challenges, we developed a novel smartphone-based screening tool, NeuroScreen , to detect HIV-related NCI that includes an easy-to-use graphical user interface with ten highly automated neuropsychological tests. To examine NeuroScreen's : 1) acceptability among patients and different potential users; 2) test construct and criterion validity; and 3) sensitivity and specificity to detect NCI. Fifty HIV+ individuals were administered a gold-standard neuropsychological test battery, designed to detect HIV-related NCI, and NeuroScreen . HIV+ test participants and eight potential provider-users of NeuroScreen were asked about its acceptability. There was a high level of acceptability of NeuroScreen by patients and potential provider-users. Moderate to high correlations between individual NeuroScreen tests and paper-and-pencil tests assessing the same cognitive domains were observed. NeuroScreen also demonstrated high sensitivity to detect NCI. NeuroScreen, a highly automated, easy-to-use smartphone-based screening test to detect NCI among HIV patients and usable by a range of healthcare personnel could help make routine screening for HIV-related NCI feasible. While NeuroScreen demonstrated robust psychometric properties and acceptability, further testing with larger and less neurocognitively impaired samples is warranted.
ON COMPUTING UPPER LIMITS TO SOURCE INTENSITIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kashyap, Vinay L.; Siemiginowska, Aneta; Van Dyk, David A.
2010-08-10
A common problem in astrophysics is determining how bright a source could be and still not be detected in an observation. Despite the simplicity with which the problem can be stated, the solution involves complicated statistical issues that require careful analysis. In contrast to the more familiar confidence bound, this concept has never been formally analyzed, leading to a great variety of often ad hoc solutions. Here we formulate and describe the problem in a self-consistent manner. Detection significance is usually defined by the acceptable proportion of false positives (background fluctuations that are claimed as detections, or Type I error),more » and we invoke the complementary concept of false negatives (real sources that go undetected, or Type II error), based on the statistical power of a test, to compute an upper limit to the detectable source intensity. To determine the minimum intensity that a source must have for it to be detected, we first define a detection threshold and then compute the probabilities of detecting sources of various intensities at the given threshold. The intensity that corresponds to the specified Type II error probability defines that minimum intensity and is identified as the upper limit. Thus, an upper limit is a characteristic of the detection procedure rather than the strength of any particular source. It should not be confused with confidence intervals or other estimates of source intensity. This is particularly important given the large number of catalogs that are being generated from increasingly sensitive surveys. We discuss, with examples, the differences between these upper limits and confidence bounds. Both measures are useful quantities that should be reported in order to extract the most science from catalogs, though they answer different statistical questions: an upper bound describes an inference range on the source intensity, while an upper limit calibrates the detection process. We provide a recipe for computing upper limits that applies to all detection algorithms.« less
Snyder, Jessica L; Giese, Heidi; Bandoski-Gralinski, Cheryl; Townsend, Jessica; Jacobson, Beck E; Shivers, Robert; Schotthoefer, Anna M; Fritsche, Thomas R; Green, Clayton; Callister, Steven M; Branda, John A; Lowery, Thomas J
2017-08-01
In early Lyme disease (LD), serologic testing is insensitive and seroreactivity may reflect active or past infection. In this study, we evaluated a novel assay for the direct detection of three species of Borrelia spirochetes in whole blood. The T2 magnetic resonance (T2MR) assay platform was used to amplify Borrelia DNA released from intact spirochetes and to detect amplicon. Analytical sensitivity was determined from blood spiked with known concentrations of spirochetes, and the assay's limit of detection was found to be in the single-cell-per-milliliter range: 5 cells/ml for B. afzelii and 8 cells/ml for Borrelia burgdorferi and Borrelia garinii Clinical samples ( n = 66) from confirmed or suspected early LD patients were also analyzed. B. burgdorferi was detected using T2MR in 2/2 (100%) of blood samples from patients with confirmed early LD, based on the presence of erythema migrans and documentation of seroconversion or a positive real-time blood PCR. T2MR detected B. burgdorferi in blood samples from 17/54 (31%) of patients with probable LD, based on the presence of erythema migrans without documented seroconversion or of documented seroconversion in patients with a compatible clinical syndrome but without erythema migrans. Out of 21 clinical samples tested by real-time PCR, only 1 was positive and 13 were negative with agreement with T2MR. An additional 7 samples that were negative by real-time PCR were positive with T2MR. Therefore, T2MR enables a low limit of detection (LoD) for Borrelia spp. in whole blood samples and is able to detect B. burgdorferi in clinical samples. Copyright © 2017 American Society for Microbiology.
Giese, Heidi; Bandoski-Gralinski, Cheryl; Townsend, Jessica; Jacobson, Beck E.; Shivers, Robert; Schotthoefer, Anna M.; Fritsche, Thomas R.; Green, Clayton; Callister, Steven M.; Branda, John A.
2017-01-01
ABSTRACT In early Lyme disease (LD), serologic testing is insensitive and seroreactivity may reflect active or past infection. In this study, we evaluated a novel assay for the direct detection of three species of Borrelia spirochetes in whole blood. The T2 magnetic resonance (T2MR) assay platform was used to amplify Borrelia DNA released from intact spirochetes and to detect amplicon. Analytical sensitivity was determined from blood spiked with known concentrations of spirochetes, and the assay's limit of detection was found to be in the single-cell-per-milliliter range: 5 cells/ml for B. afzelii and 8 cells/ml for Borrelia burgdorferi and Borrelia garinii. Clinical samples (n = 66) from confirmed or suspected early LD patients were also analyzed. B. burgdorferi was detected using T2MR in 2/2 (100%) of blood samples from patients with confirmed early LD, based on the presence of erythema migrans and documentation of seroconversion or a positive real-time blood PCR. T2MR detected B. burgdorferi in blood samples from 17/54 (31%) of patients with probable LD, based on the presence of erythema migrans without documented seroconversion or of documented seroconversion in patients with a compatible clinical syndrome but without erythema migrans. Out of 21 clinical samples tested by real-time PCR, only 1 was positive and 13 were negative with agreement with T2MR. An additional 7 samples that were negative by real-time PCR were positive with T2MR. Therefore, T2MR enables a low limit of detection (LoD) for Borrelia spp. in whole blood samples and is able to detect B. burgdorferi in clinical samples. PMID:28566314
Highly Sensitive Detection of UV Radiation Using a Uranium Coordination Polymer.
Liu, Wei; Dai, Xing; Xie, Jian; Silver, Mark A; Zhang, Duo; Wang, Yanlong; Cai, Yawen; Diwu, Juan; Wang, Jian; Zhou, Ruhong; Chai, Zhifang; Wang, Shuao
2018-02-07
The accurate detection of UV radiation is required in a wide range of chemical industries and environmental or biological related applications. Conventional methods taking advantage of semiconductor photodetectors suffer from several drawbacks such as sophisticated synthesis and manufacturing procedure, not being able to measure the accumulated UV dosage as well as high defect density in the material. Searching for new strategies or materials serving as precise UV dosage sensor with extremely low detection limit is still highly desirable. In this work, a radiation resistant uranium coordination polymer [UO 2 (L)(DMF)] (L = 5-nitroisophthalic acid, DMF = N,N-dimethylformamide, denoted as compound 1) was successfully synthesized through mild solvothermal method and investigated as a unique UV probe with the detection limit of 2.4 × 10 -7 J. On the basis of the UV dosage dependent luminescence spectra, EPR analysis, single crystal structure investigation, and the DFT calculation, the UV-induced radical quenching mechanism was confirmed. Importantly, the generated radicals are of significant stability which offers the opportunity for measuring the accumulated UV radiation dosage. Furthermore, the powder material of compound 1 was further upgraded into membrane material without loss in luminescence intensity to investigate the real application potentials. To the best of our knowledge, compound 1 represents the most sensitive coordination polymer based UV dosage probe reported to date.
Genzel, Yvonne; König, Susanne; Reichl, Udo
2004-12-01
The direct separation detection of amino acids by anion exchange chromatography with integrated pulsed amperometric detection was optimized for the analysis of typical mammalian cell culture broth samples. Existing gradient elution conditions were adapted, considering the additions of peptone (2 g/L) and 10 vol% fetal calf serum to the medium as well as changing concentrations of glucose from 5.5 g/L up to complete consumption. Samples had to be analyzed in two dilutions with water (1:33.3 and 1:200) due to the strongly varying amino acid concentrations in the samples as a result of the medium composition and cell metabolism. The method was validated in a linear working range for the most common amino acids (2.5-7.5 and 1.25-3.75 microM for cystine/cysteine with 15 microl injection volume). The relative standard deviation of the method for all amino acids was less than 5%, with detection limits of less than 0.6 microM and quantitation limits of less than 1.6 microM. As an example, data for the amino acid composition of different media used for the production of inactivated influenza vaccines in cell culture are shown.
Yang, Lixin; Li, Heli; Miao, Hong; Zeng, Fangang; Li, Ruifeng; Chen, Huijing; Zhao, Yunfeng; Wu, Yongning
2011-10-01
A method was established for the quantitative determination of 54 organophosphorus pesticide residues and their metabolites in foods of animal origin by dual gas chromatography-dual pulse flame photometric detection. Homogenized samples were extracted with acetone and methylene chloride, and cleaned-up by gel permeation chromatography (GPC). The response of each analyte showed a good linearity with a correlation coefficient not less than 0. 99. The recovery experiments were performed by a blank sample spiked at low, medium and high fortification levels. The recoveries for beef, mutton, pork, chicken were in the range of 50. 5% -128. 1% with the relative standard deviations (n = 6) of 1. 1% -25. 5%, which demonstrated the good precision and accuracy of the present method. The limits of detection for the analytes were in the range of 0. 001 -0. 170 mg/kg, and the limits of quantification were in the range of 0. 002 -0. 455 mg/kg. Animal food samples collected from markets such as meat, liver and kidney were analyzed, and the residues of dichlorovos and disulfoton-sulfoxide were found in the some samples. The established method is sensitive and selective enough to detect organophosphorus pesticide residues in animal foods.
Niu, Tian-Zeng; Zhang, Yu-Wei; Bao, Yong-Li; Wu, Yin; Yu, Chun-Lei; Sun, Lu-Guo; Yi, Jing-Wen; Huang, Yan-Xin; Li, Yu-Xin
2013-03-25
A reversed phase high performance liquid chromatography method coupled with a diode array detector (HPLC-DAD) was developed for the first time for the simultaneous determination of 9 flavonoids in Senecio cannabifolius, a traditional Chinese medicinal herb. Agilent Zorbax SB-C18 column was used at room temperature and the mobile phase was a mixture of acetonitrile and 0.5% formic acid (v/v) in water in the gradient elution mode at a flow-rate of 1.0mlmin(-1), detected at 360nm. Validation of this method was performed to verify the linearity, precision, limits of detection and quantification, intra- and inter-day variabilities, reproducibility and recovery. The calibration curves showed good linearities (R(2)>0.9995) within the test ranges. The relative standard deviation (RSD) of the method was less than 3.0% for intra- and inter-day assays. The samples were stable for at least 96h, and the average recoveries were between 90.6% and 102.5%. High sensitivity was demonstrated with detection limits of 0.028-0.085μg/ml for flavonoids. The newly established HPLC method represents a powerful technique for the quality assurance of S. cannabifolius. Copyright © 2012 Elsevier B.V. All rights reserved.
Morio, Florent; Corvec, Stéphane; Caroff, Nathalie; Le Gallou, Florence; Drugeon, Henri; Reynaud, Alain
2008-07-01
We developed a quantitative real-time PCR assay targeting the mip gene of Legionella pneumophila for a prospective study from September 2004 to April 2005. It was compared with a standard culture method (French guideline AFNOR T90-431), analysing 120 water samples collected to monitor the risk related to Legionellae at Nantes hospital and to investigate a case of legionellosis acquired from hospital environment. Samples from six distinct water distribution systems were analysed by DNA extraction, amplification and detection with specific primers and FRET probes. The detection limit was 100 genomic units of L. pneumophila per liter (GU/l), the positivity threshold about 600 GU/l and the quantification limit 800 GU/l. PCR results were divided into three groups: negative (n=63), positive but non-quantifiable (n=22) or positive (n=35). PCR showed higher sensitivity than culture, whereas four culture-positive samples appeared negative by PCR (PCR inhibitor detected for two of them). Although no correlation was observed between both methods and real-time PCR cannot substitute for the reference method, it represents an interesting complement. Its sensitivity, reproducibility and rapidity appear particularly interesting in epidemic contexts in order to identify the source of contamination or to evaluate critical points of contamination in water distribution systems.
Farhadi, Khalil; Bochani, Shayesteh; Hatami, Mehdi; Molaei, Rahim; Pirkharrati, Hossein
2014-07-01
In this research, a new solid-phase microextraction fiber based on carbon ceramic composites with copper nanoparticles followed by gas chromatography with flame ionization detection was applied for the extraction and determination of some nitro explosive compounds in soil samples. The proposed method provides an overview of trends related to synthesis of solid-phase microextraction sorbents and their applications in preconcentration and determination of nitro explosives. The sorbents were prepared by mixing of copper nanoparticles with a ceramic composite produced by mixture of methyltrimethoxysilane, graphite, methanol, and hydrochloric acid. The prepared sorbents were coated on copper wires by dip-coating method. The prepared nanocomposites were evaluated statistically and provided better limits of detection than the pure carbon ceramic. The limit of detection of the proposed method was 0.6 μg/g with a linear response over the concentration range of 2-160 μg/g and square of correlation coefficient >0.992. The new proposed fiber has been demonstrated to be a suitable, inexpensive, and sensitive candidate for extraction of nitro explosive compounds in contaminated soil samples. The constructed fiber can be used more than 100 times without the need for surface generation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Passive detection of copy-move forgery in digital images: state-of-the-art.
Al-Qershi, Osamah M; Khoo, Bee Ee
2013-09-10
Currently, digital images and videos have high importance because they have become the main carriers of information. However, the relative ease of tampering with images and videos makes their authenticity untrustful. Digital image forensics addresses the problem of the authentication of images or their origins. One main branch of image forensics is passive image forgery detection. Images could be forged using different techniques, and the most common forgery is the copy-move, in which a region of an image is duplicated and placed elsewhere in the same image. Active techniques, such as watermarking, have been proposed to solve the image authenticity problem, but those techniques have limitations because they require human intervention or specially equipped cameras. To overcome these limitations, several passive authentication methods have been proposed. In contrast to active methods, passive methods do not require any previous information about the image, and they take advantage of specific detectable changes that forgeries can bring into the image. In this paper, we describe the current state-of-the-art of passive copy-move forgery detection methods. The key current issues in developing a robust copy-move forgery detector are then identified, and the trends of tackling those issues are addressed. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
He, Xiaoqin; Xi, Cunxian; Tang, Bobin; Wang, Guomin; Chen, Dongdong; Peng, Tao; Mu, Zhaode
2014-01-01
A novel analytical method employing solid-phase extraction (SPE) coupled with ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was developed for the simultaneous determination of 30 hormones in anti-ageing functional foods (capsules, powders and tablets). The analytes were extracted with acetic acid-acetonitrile (1-99 v/v), methanol and acetone, respectively. The extract was purified using a combined column, followed by analyte detection with electrospray ionisation in positive- or negative-ion modes. The results indicated that the 30 compounds had good linear correlations in the range of 1-1000 μg kg⁻¹, and the correlation coefficients were above 0.99. The limits of detection (LOD) and limits of quantification (LOQ) were 0.03-2 and 0.1-5 μg kg⁻¹, respectively. The average recovery of 30 compounds at the three spiked levels varied from 74.7% to 124.1%, and the relative standard deviation (RSD) was 2.4-15.0%. This method was applied to the analysis of hormones in 14 real samples of which seven hormones (such as estrone, dienestrol) were detected in four samples, but the remainder of the hormones were not detected. The developed method is sensitive, efficient, reliable and applicable to real samples.
Yang, Zong-Lin; Li, Hui; Wang, Bing; Liu, Shu-Ying
2016-02-15
Neurotransmitters (NTs) and their metabolites are known to play an essential role in maintaining various physiological functions in nervous system. However, there are many difficulties in the detection of NTs together with their metabolites in biological samples. A new method for NTs and their metabolites detection by high performance liquid chromatography coupled with Q Exactive hybrid quadruple-orbitrap high-resolution accurate mass spectrometry (HPLC-HRMS) was established in this paper. This method was a great development of the applying of Q Exactive MS in the quantitative analysis. This method enabled a rapid quantification of ten compounds within 18min. Good linearity was obtained with a correlation coefficient above 0.99. The concentration range of the limit of detection (LOD) and the limit of quantitation (LOQ) level were 0.0008-0.05nmol/mL and 0.002-25.0nmol/mL respectively. Precisions (relative standard deviation, RSD) of this method were at 0.36-12.70%. Recovery ranges were between 81.83% and 118.04%. Concentrations of these compounds in mouse hypothalamus were detected by Q Exactive LC-MS technology with this method. Copyright © 2016 Elsevier B.V. All rights reserved.
Early detection of emerging forest disease using dispersal estimation and ecological niche modeling.
Meentemeyer, Ross K; Anacker, Brian L; Mark, Walter; Rizzo, David M
2008-03-01
Distinguishing the manner in which dispersal limitation and niche requirements control the spread of invasive pathogens is important for prediction and early detection of disease outbreaks. Here, we use niche modeling augmented by dispersal estimation to examine the degree to which local habitat conditions vs. force of infection predict invasion of Phytophthora ramorum, the causal agent of the emerging infectious tree disease sudden oak death. We sampled 890 field plots for the presence of P. ramorum over a three-year period (2003-2005) across a range of host and abiotic conditions with variable proximities to known infections in California, USA. We developed and validated generalized linear models of invasion probability to analyze the relative predictive power of 12 niche variables and a negative exponential dispersal kernel estimated by likelihood profiling. Models were developed incrementally each year (2003, 2003-2004, 2003-2005) to examine annual variability in model parameters and to create realistic scenarios for using models to predict future infections and to guide early-detection sampling. Overall, 78 new infections were observed up to 33.5 km from the nearest known site of infection, with slightly increasing rates of prevalence across time windows (2003, 6.5%; 2003-2004, 7.1%; 2003-2005, 9.6%). The pathogen was not detected in many field plots that contained susceptible host vegetation. The generalized linear modeling indicated that the probability of invasion is limited by both dispersal and niche constraints. Probability of invasion was positively related to precipitation and temperature in the wet season and the presence of the inoculum-producing foliar host Umbellularia californica and decreased exponentially with distance to inoculum sources. Models that incorporated niche and dispersal parameters best predicted the locations of new infections, with accuracies ranging from 0.86 to 0.90, suggesting that the modeling approach can be used to forecast locations of disease spread. Application of the combined niche plus dispersal models in a geographic information system predicted the presence of P. ramorum across approximately 8228 km2 of California's 84785 km2 (9.7%) of land area with susceptible host species. This research illustrates how probabilistic modeling can be used to analyze the relative roles of niche and dispersal limitation in controlling the distribution of invasive pathogens.
On the Determination of Uncertainty and Limit of Detection in Label-Free Biosensors.
Lavín, Álvaro; Vicente, Jesús de; Holgado, Miguel; Laguna, María F; Casquel, Rafael; Santamaría, Beatriz; Maigler, María Victoria; Hernández, Ana L; Ramírez, Yolanda
2018-06-26
A significant amount of noteworthy articles reviewing different label-free biosensors are being published in the last years. Most of the times, the comparison among the different biosensors is limited by the procedure used of calculating the limit of detection and the measurement uncertainty. This article clarifies and establishes a simple procedure to determine the calibration function and the uncertainty of the concentration measured at any point of the measuring interval of a generic label-free biosensor. The value of the limit of detection arises naturally from this model as the limit at which uncertainty tends when the concentration tends to zero. The need to provide additional information, such as the measurement interval and its linearity, among others, on the analytical systems and biosensor in addition to the detection limit is pointed out. Finally, the model is applied to curves that are typically obtained in immunoassays and a discussion is made on the application validity of the model and its limitations.
Life span prediction from the rate of age-related DNA demethylation in normal and cancer cell lines.
Mazin, A L
1995-01-01
A method has been proposed for the Hayflick Limit prediction by the analysis of the 5-methylcytosine content in DNA at earlier and later cell passages. The following facts were used as the basis of the method: (i) the rate of m5C loss from DNA remains approximately constant during cell divisions and it does not depend on the cell donor age; (ii) this rate is inversely proportional to the Hayflick Limit as well as to the life span of cell donor species; (iii) the period corresponded to loss of all m5C residues from the genome coincides with or somewhat exceeds the Hayflick Limit of normal cells. The prognosis of the Hayflick Limit has usually been found in good agreement with the experimental evidences for various human, hamster, and mouse cell lines. The method proposed may be used for early detection of precrisis and cancer cells. The age-related m5C loss may result from accumulation of the m5C-->T+C transitions occurring with DNA methylation in every cell division.
Relationship between LiDAR-derived forest canopy height and Landsat images
Cristina Pascual; Antonio Garcia-Abril; Warren B. Cohen; Susana Martin-Fernandez
2010-01-01
The mean and standard deviation (SD) of light detection and ranging (LiDAR)-derived canopy height are related to forest structure. However, LiDAR data typically cover a limited area and have a high economic cost compared with satellite optical imagery. Optical images may be required to extrapolate LiDAR height measurements across a broad landscape. Different spectral...
Microelectronics used for Semiconductor Imaging Detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heijne, Erik H. M.
Semiconductor crystal technology, microelectronics developments and nuclear particle detection have been in a relation of symbiosis, all the way from the beginning. The increase of complexity in electronics chips can now be applied to obtain much more information on the incident nuclear radiation. Some basic technologies are described, in order to acquire insight in possibilities and limitations for the most recent detectors.
Faraji, M; Adeli, M
2017-04-15
A new and sensitive pre-column derivatization with dabsyl chloride followed by dispersive liquid-liquid microextraction was developed for the analysis of melamine (MEL) in raw milk and powdered infant formula samples by high performance liquid chromatography (HPLC) with visible detection. Derivatization with dabsyl chloride leads to improving sensitivity and hydrophobicity of MEL. Under optimum conditions of derivatization and microextraction steps, the method yielded a linear calibration curve ranging from 1.0 to 500μgL -1 with a determination coefficient (R 2 ) of 0.9995. Limit of detection and limit of quantification were 0.1 and 0.3μgL -1 , respectively. The relative standard deviation (RSD%) for intra-day (repeatability) and inter-day (reproducibility) at 25 and 100μgL -1 levels of MEL was less than 7.0% (n=6). Finally, the proposed method was successfully applied for the preconcentration and determination of MEL in different raw milk and powdered infant formula, and satisfactory results were obtained (relative recovery ⩾94%). Copyright © 2016 Elsevier Ltd. All rights reserved.
Medeiros, Roberta Antigo; de Carvalho, Adriana Evaristo; Rocha-Filho, Romeu C; Fatibello-Filho, Orlando
2008-07-30
A simple and highly selective electrochemical method was developed for the simultaneous determination of aspartame and cyclamate in dietary products at a boron-doped diamond (BDD) electrode. In square-wave voltammetric (SWV) measurements, the BDD electrode was able to separate the oxidation peak potentials of aspartame and cyclamate present in binary mixtures by about 400 mV. The detection limit for aspartame in the presence of 3.0x10(-4) mol L(-1) cyclamate was 4.7x10(-7) mol L(-1), and the detection limit for cyclamate in the presence of 1.0x10(-4) mol L(-1) aspartame was 4.2x10(-6) mol L(-1). When simultaneously changing the concentration of both aspartame and cyclamate in a 0.5 mol L(-1) sulfuric acid solution, the corresponding detection limits were 3.5x10(-7) and 4.5x10(-6) mol L(-1), respectively. The relative standard deviation (R.S.D.) obtained was 1.3% for the 1.0x10(-4) mol L(-1) aspartame solution (n=5) and 1.1% for the 3.0x10(-3) mol L(-1) cyclamate solution. The proposed method was successfully applied in the determination of aspartame in several dietary products with results similar to those obtained using an HPLC method at 95% confidence level.
Liu, Hui; Yao, Guojun; Liu, Xueke; Liu, Chang; Zhan, Jing; Liu, Donghui; Wang, Peng; Zhou, Zhiqiang
2017-03-22
Food safety problems such as damage to immune, nervous, and endocrine systems leading to cancer and malformations have received increasing attention. To achieve the maximum residue limits, the most discussed method of high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) is widely used with a advantage of high precision and resolution. Prothioconazole is a broad-spectrum thiocarbamate fungicide. It can rapidly metabolize to prothioconazole-desthio in different matrixes. Rapid and effective methods for the determination of prothioconazole-desthio in five kinds of different animal food were developed. Samples were extracted with acetonitrile or acetonitrile/water and determined by HPLC-MS/MS. The limit of detection and limit of quantification values of prothioconazole-desthio were 0.015 and 0.05 mg/kg for porcine liver and kidney, 0.0015 and 0.005 mg/kg for pork, and 0.003 and 0.01 mg/kg for eggs, together with 0.0012 and 0.004 mg/kg for milk of the detected method, respectively. A good linear regression trend can be observed in a certain concentration range for all of the animal food. At fortified levels, recoveries were between 83.6 and 105%, with relative standard deviations of 1.5-10.3%. A sample survey of 150 samples with 30 samples for each kind of animal food across the country was conducted and found that there was no prothioconazole-desthio detected in all samples.
Feasibility of shutter-speed DCE-MRI for improved prostate cancer detection.
Li, Xin; Priest, Ryan A; Woodward, William J; Tagge, Ian J; Siddiqui, Faisal; Huang, Wei; Rooney, William D; Beer, Tomasz M; Garzotto, Mark G; Springer, Charles S
2013-01-01
The feasibility of shutter-speed model dynamic-contrast-enhanced MRI pharmacokinetic analyses for prostate cancer detection was investigated in a prebiopsy patient cohort. Differences of results from the fast-exchange-regime-allowed (FXR-a) shutter-speed model version and the fast-exchange-limit-constrained (FXL-c) standard model are demonstrated. Although the spatial information is more limited, postdynamic-contrast-enhanced MRI biopsy specimens were also examined. The MRI results were correlated with the biopsy pathology findings. Of all the model parameters, region-of-interest-averaged K(trans) difference [ΔK(trans) ≡ K(trans)(FXR-a) - K(trans)(FXL-c)] or two-dimensional K(trans)(FXR-a) vs. k(ep)(FXR-a) values were found to provide the most useful biomarkers for malignant/benign prostate tissue discrimination (at 100% sensitivity for a population of 13, the specificity is 88%) and disease burden determination. (The best specificity for the fast-exchange-limit-constrained analysis is 63%, with the two-dimensional plot.) K(trans) and k(ep) are each measures of passive transcapillary contrast reagent transfer rate constants. Parameter value increases with shutter-speed model (relative to standard model) analysis are larger in malignant foci than in normal-appearing glandular tissue. Pathology analyses verify the shutter-speed model (FXR-a) promise for prostate cancer detection. Parametric mapping may further improve pharmacokinetic biomarker performance. Copyright © 2012 Wiley Periodicals, Inc.
Stimulus discriminability in visual search.
Verghese, P; Nakayama, K
1994-09-01
We measured the probability of detecting the target in a visual search task, as a function of the following parameters: the discriminability of the target from the distractors, the duration of the display, and the number of elements in the display. We examined the relation between these parameters at criterion performance (80% correct) to determine if the parameters traded off according to the predictions of a limited capacity model. For the three dimensions that we studied, orientation, color, and spatial frequency, the observed relationship between the parameters deviates significantly from a limited capacity model. The data relating discriminability to display duration are better than predicted over the entire range of orientation and color differences that we examined, and are consistent with the prediction for only a limited range of spatial frequency differences--from 12 to 23%. The relation between discriminability and number varies considerably across the three dimensions and is better than the limited capacity prediction for two of the three dimensions that we studied. Orientation discrimination shows a strong number effect, color discrimination shows almost no effect, and spatial frequency discrimination shows an intermediate effect. The different trading relationships in each dimension are more consistent with early filtering in that dimension, than with a common limited capacity stage. Our results indicate that higher-level processes that group elements together also play a strong role. Our experiments provide little support for limited capacity mechanisms over the range of stimulus differences that we examined in three different dimensions.
Fe-57 Moessbauer study of tektites
NASA Technical Reports Server (NTRS)
Evans, B. J.; Leung, L. K.
1976-01-01
Moessbauer measurements were made on selected moldavite, australite, philippinite, and Georgia tektites. The spectra consist of two apparent lines, but at least two quadrupole doublets can be fitted to these spectra. The Moessbauer parameters for these doublets indicate that they arise from Fe2+ ions with local environments, which are relatively rich and relatively poor in calcium, respectively, similar to those in clinopyroxenes. No evidence for Fe3+/Fe2+ ratios above 0.01 (estimated detection limit) have been found in any tektite. Tektites are considerably more reduced than previously believed, and the extent of the reduction shows little or no variation among different types of tektites. These results limit the source materials of tektites to minerals in which the iron is uniformly highly reduced and in which the iron is contained clinopyroxene-like phases.
On the production of N2O from the reaction of O(1 D) with N2
NASA Technical Reports Server (NTRS)
Simonaitis, R.; Lissi, E.; Heicklen, J.
1972-01-01
Ozone was photolyzed at 2537 A and 25 C in the presence of 42-115 torr of O2 and about 880 torr of N2 to test the relative importance of the two reactions: (1) O(1D) + N2 + M yields N2O + M, and (2) O(1D) + N2 yields O(3P) + N2. N2O was not found as a product. Thus from our detectability limit for N2O (0.3 micron), an upper limit to the efficiency of the first reaction relative to the second of 0.0000025 at 1000 torr total pressure was computed. This corresponds to k1/k2 smaller than 0.8 x 10 to the minus 25 power cu cm/particle.
Nielsen, Flemming K; Egund, Niels; Peters, David; Jurik, Anne Grethe
2014-12-20
Longitudinal assessment of bone marrow lesions (BMLs) in knee osteoarthritis (KOA) by MRI is usually performed using semi-quantitative grading methods. Quantitative segmentation methods may be more sensitive to detect change over time. The purpose of this study was to evaluate and compare the validity and sensitivity to detect changes of two quantitative MR segmentation methods for measuring BMLs in KOA, one computer assisted (CAS) and one manual (MS) method. Twenty-two patients with KOA confined to the medial femoro-tibial compartment obtained MRI at baseline and follow-up (median 334 days in between). STIR, T1 and fat saturated T1 post-contrast sequences were obtained using a 1.5 T system. The 44 sagittal STIR sequences were assessed independently by two readers for quantification of BML. The signal intensities (SIs) of the normal bone marrow in the lateral femoral condyles and tibial plateaus were used as threshold values. The volume of bone marrow with SIs exceeding the threshold values (BML) was measured in the medial femoral condyle and tibial plateau and related to the total volume of the condyles/plateaus.The 95% limits of agreement at baseline were used to determine the sensitivity to change. The mean threshold values of CAS and MS were almost identical but the absolute and relative BML volumes differed being 1319 mm3/10% and 1828 mm3/15% in the femur and 941 mm3/7% and 2097 mm3/18% in the tibia using CAS and MS, respectively. The BML volumes obtained by CAS and MS were significantly correlated but the tissue changes measured were different. The volume of voxels exceeding the threshold values was measured by CAS whereas MS included intervening voxels with normal SI.The 95% limits of agreement were narrower by CAS than by MS; a significant change of relative BML by CAS was outside the limits of -2.0%-4.7% whereas the limits by MS were -6.9%-8.2%. The BML changed significantly in 13 knees using CAS and in 10 knees by MS. CAS was a reliable method for measuring BML and more sensitive to detect changes over time than MS. The BML volumes measured by the two methods differed but were significantly correlated.
Geometrical superresolved imaging using nonperiodic spatial masking.
Borkowski, Amikam; Zalevsky, Zeev; Javidi, Bahram
2009-03-01
The resolution of every imaging system is limited either by the F-number of its optics or by the geometry of its detection array. The geometrical limitation is caused by lack of spatial sampling points as well as by the shape of every sampling pixel that generates spectral low-pass filtering. We present a novel approach to overcome the low-pass filtering that is due to the shape of the sampling pixels. The approach combines special algorithms together with spatial masking placed in the intermediate image plane and eventually allows geometrical superresolved imaging without relation to the actual shape of the pixels.
Quantum Limits of Space-to-Ground Optical Communications
NASA Technical Reports Server (NTRS)
Hemmati, H.; Dolinar, S.
2012-01-01
For a pure loss channel, the ultimate capacity can be achieved with classical coherent states (i.e., ideal laser light): (1) Capacity-achieving receiver (measurement) is yet to be determined. (2) Heterodyne detection approaches the ultimate capacity at high mean photon numbers. (3) Photon-counting approaches the ultimate capacity at low mean photon numbers. A number of current technology limits drive the achievable performance of free-space communication links. Approaching fundamental limits in the bandwidth-limited regime: (1) Heterodyne detection with high-order coherent-state modulation approaches ultimate limits. SOA improvements to laser phase noise, adaptive optics systems for atmospheric transmission would help. (2) High-order intensity modulation and photon-counting can approach heterodyne detection within approximately a factor of 2. This may have advantages over coherent detection in the presence of turbulence. Approaching fundamental limits in the photon-limited regime (1) Low-duty cycle binary coherent-state modulation (OOK, PPM) approaches ultimate limits. SOA improvements to laser extinction ratio, receiver dark noise, jitter, and blocking would help. (2) In some link geometries (near field links) number-state transmission could improve over coherent-state transmission
A Strong Limit on the Very-high-energy Emission from GRB 150323A
NASA Astrophysics Data System (ADS)
Abeysekara, A. U.; Archer, A.; Benbow, W.; Bird, R.; Brose, R.; Buchovecky, M.; Bugaev, V.; Connolly, M. P.; Cui, W.; Errando, M.; Falcone, A.; Feng, Q.; Finley, J. P.; Flinders, A.; Fortson, L.; Furniss, A.; Gillanders, G. H.; Hütten, M.; Hanna, D.; Hervet, O.; Holder, J.; Hughes, G.; Humensky, T. B.; Johnson, C. A.; Kaaret, P.; Kar, P.; Kelley-Hoskins, N.; Kertzman, M.; Kieda, D.; Krause, M.; Krennrich, F.; Lang, M. J.; Lin, T. T. Y.; Maier, G.; McArthur, S.; Moriarty, P.; Mukherjee, R.; O’Brien, S.; Ong, R. A.; Park, N.; Perkins, J. S.; Petrashyk, A.; Pohl, M.; Popkow, A.; Pueschel, E.; Quinn, J.; Ragan, K.; Reynolds, P. T.; Richards, G. T.; Roache, E.; Rulten, C.; Sadeh, I.; Santander, M.; Sembroski, G. H.; Shahinyan, K.; Tyler, J.; Wakely, S. P.; Weiner, O. M.; Weinstein, A.; Wells, R. M.; Wilcox, P.; Wilhelm, A.; Williams, D. A.; Zitzer, B.; VERITAS Collaboration; Vurm, Indrek; Beloborodov, Andrei
2018-04-01
On 2015 March 23, the Very Energetic Radiation Imaging Telescope Array System (VERITAS) responded to a Swift-Burst Alert Telescope (BAT) detection of a gamma-ray burst, with observations beginning 270 s after the onset of BAT emission, and only 135 s after the main BAT emission peak. No statistically significant signal is detected above 140 GeV. The VERITAS upper limit on the fluence in a 40-minute integration corresponds to about 1% of the prompt fluence. Our limit is particularly significant because the very-high-energy (VHE) observation started only ∼2 minutes after the prompt emission peaked, and Fermi-Large Area Telescope observations of numerous other bursts have revealed that the high-energy emission is typically delayed relative to the prompt radiation and lasts significantly longer. Also, the proximity of GRB 150323A (z = 0.593) limits the attenuation by the extragalactic background light to ∼50% at 100–200 GeV. We conclude that GRB 150323A had an intrinsically very weak high-energy afterglow, or that the GeV spectrum had a turnover below ∼100 GeV. If the GRB exploded into the stellar wind of a massive progenitor, the VHE non-detection constrains the wind density parameter to be A ≳ 3 × 1011 g cm‑1, consistent with a standard Wolf–Rayet progenitor. Alternatively, the VHE emission from the blast wave would be weak in a very tenuous medium such as the interstellar medium, which therefore cannot be ruled out as the environment of GRB 150323A.
Fusarium mycotoxin content of UK organic and conventional wheat.
Edwards, S G
2009-04-01
Each year (2001-2005), 300 samples of wheat from fields of known agronomy were analysed for ten trichothecenes by gas chromatography-mass spectrometry (GC/MS) including deoxynivalenol (DON), nivalenol, 3-acetyl-DON, 15-acetyl-DON, fusarenone X, T2 toxin, HT2 toxin, diacetoxyscirpenol, neosolaniol and T-2 triol and zearalenone by high-performance liquid chromatography (HPLC). Of the eleven mycotoxins analysed from 1624 harvest samples of wheat, only eight were detected, and of these only five-deoxynivalenol, 15-acetyl-DON, nivalenol, HT-2 and zearalenone-were detected above 100 microg kg(-1). DON was the most frequently detected Fusarium mycotoxin, present above the limit of quantification (10 microg kg(-1)) in 86% of samples, and was usually present at the highest concentration. The percentage of samples that would have exceeded the recently introduced legal limits varied between 0.4% and 11.3% over the five-year period. There was a good correlation between DON and zearalenone concentrations, although the relative concentration of DON and zearalenone fluctuated between years. Year and region had a significant effect on all mycotoxins analysed. There was no significant difference in the DON concentration of organic and conventional samples. There was also no significant difference in the concentration of zearalenone between organic and conventional samples, however organic samples did have a significantly lower concentration of HT2 and T2. Overall, the risk of UK wheat exceeding the newly introduced legal limits for Fusarium mycotoxins in cereals intended for human consumption is low, but the percentage of samples above these limits will fluctuate between years.
Environmental acoustic cues guide the biosonar attention of a highly specialised echolocator.
Lattenkamp, Ella Z; Kaiser, Samuel; Kaučič, Rožle; Großmann, Martina; Koselj, Klemen; Goerlitz, Holger R
2018-04-23
Sensory systems experience a trade-off between maximizing the detail and amount of sampled information. This trade-off is particularly pronounced in sensory systems that are highly specialised for a single task and thus experience limitations in other tasks. We hypothesised that combining sensory input from multiple streams of information may resolve this trade-off and improve detection and sensing reliability. Specifically, we predicted that perceptive limitations experienced by animals reliant on specialised active echolocation can be compensated for by the phylogenetically older and less specialised process of passive hearing. We tested this hypothesis in greater horseshoe bats, which possess morphological and neural specialisations allowing them to identify fluttering prey in dense vegetation using echolocation only. At the same time, their echolocation system is both spatially and temporally severely limited. Here, we show that greater horseshoe bats employ passive hearing to initially detect and localise prey-generated and other environmental sounds, and then raise vocalisation level and concentrate the scanning movements of their sonar beam on the sound source for further investigation with echolocation. These specialised echolocators thus supplement echo-acoustic information with environmental acoustic cues, enlarging perceived space beyond their biosonar range. Contrary to our predictions, we did not find consistent preferences for prey-related acoustic stimuli, indicating the use of passive acoustic cues also for detection of non-prey objects. Our findings suggest that even specialised echolocators exploit a wide range of environmental information, and that phylogenetically older sensory systems can support the evolution of sensory specialisations by compensating for their limitations. © 2018. Published by The Company of Biologists Ltd.
NASA Astrophysics Data System (ADS)
Roth, Lorenz
2018-05-01
Far-ultraviolet observations of dwarf-planet (1) Ceres were obtained on several occasions in 2015 and 2016 by the Cosmic Origins Spectrograph (COS) and the Space Telescope Imaging Spectrograph (STIS), both on board the Hubble Space Telescope (HST). We report a search for neutral gas emissions at hydrogen, oxygen and sulfur lines around Ceres from a potential teneous exosphere. No detectable exosphere emissions are present in any of the analyzed HST observations. We apply analytical models to relate the derived upper limits for the atomic species to a water exosphere (for H and O) and a sulfur dioxide exosphere (for S and O), respectively. The H and O upper limits constrain the H2O production rate at the surface to (2 - 4) ×1026 molecules s-1 or lower, similar to or slightly larger than previous detections and upper limits. With low fluxes of energetic protons measured in the solar wind prior to the HST observations and the obtained non-detections, an assessment of the recently suggested sputter-generated water exosphere during solar energetic particle events is not possible. Investigating a sulfur dioxide-based exosphere, we find that the O and S upper limits constrain the SO2 density at the surface to values ∼ 1010 times lower than the equilibrium vapor pressure density. This result implies that SO2 is not present on Ceres' sunlit surface, contrary to previous findings in HST ultraviolet reflectance spectra but in agreement with the absence of SO2 infrared spectral features as observed by the Dawn spacecraft.
Validation of PCR methods for quantitation of genetically modified plants in food.
Hübner, P; Waiblinger, H U; Pietsch, K; Brodmann, P
2001-01-01
For enforcement of the recently introduced labeling threshold for genetically modified organisms (GMOs) in food ingredients, quantitative detection methods such as quantitative competitive (QC-PCR) and real-time PCR are applied by official food control laboratories. The experiences of 3 European food control laboratories in validating such methods were compared to describe realistic performance characteristics of quantitative PCR detection methods. The limit of quantitation (LOQ) of GMO-specific, real-time PCR was experimentally determined to reach 30-50 target molecules, which is close to theoretical prediction. Starting PCR with 200 ng genomic plant DNA, the LOQ depends primarily on the genome size of the target plant and ranges from 0.02% for rice to 0.7% for wheat. The precision of quantitative PCR detection methods, expressed as relative standard deviation (RSD), varied from 10 to 30%. Using Bt176 corn containing test samples and applying Bt176 specific QC-PCR, mean values deviated from true values by -7to 18%, with an average of 2+/-10%. Ruggedness of real-time PCR detection methods was assessed in an interlaboratory study analyzing commercial, homogeneous food samples. Roundup Ready soybean DNA contents were determined in the range of 0.3 to 36%, relative to soybean DNA, with RSDs of about 25%. Taking the precision of quantitative PCR detection methods into account, suitable sample plans and sample sizes for GMO analysis are suggested. Because quantitative GMO detection methods measure GMO contents of samples in relation to reference material (calibrants), high priority must be given to international agreements and standardization on certified reference materials.
Beutin, L; Steinrück, H; Krause, G; Steege, K; Haby, S; Hultsch, G; Appel, B
2007-03-01
To evaluate the suitability of the commercially distributed Ridascreen Verotoxin enzyme immunoassay (EIA) for detection of known genetic types of the Vero (Shiga) toxins 1 (Stx1) and 2 (Stx2) families and to determine its relative sensitivity and specificity. The Ridascreen-EIA was compared with the Vero cell assay, a P(1)-glycoprotein receptor EIA and with stx gene-specific PCs for detection of Stx with 43 Shiga toxin-producing strains of Escherichia coli (STEC) reference strains and with 241 test strains. The Ridascreen-EIA detects strains producing Stx1 and variants Stx1c and Stx1d, as well as Stx2 and variants Stx2d1, Stx2d2, Stx2e, Stx2d, Stx2-O118 (Stx2d-ount), Stx2-NV206, Stx2f and Stx2g. The assay showed a relative sensitivity of 95.7% and a relative specificity of 98.7%. Some of the Stx2-O118-, Stx2e- and Stx2g-producing STEC were not detected with the Ridascreen-EIA probably because of low amount of toxin produced by these strains. The Ridascreen-EIA is able to detect all known types of Stx and is applicable for routine screening of bacterial isolates owing to its high specificity. It is less applicable for testing samples where low amounts of Stx are expected, such as mixed cultures and certain Stx2 variants. This study presents a first comprehensive evaluation of the Ridascreen-EIA, a rapid standardized STEC screening test for routine diagnostic laboratories. Data are presented on the type of the spectrum of Stx that are detected with this immunoassay and its advantages and limits for practical use.
Detection of Nuclear Explosions Using Infrasound Techniques
2007-12-01
signal correlation between array elements in these arrays can seriously limit the reliable detection of infrasound generated ...goals of this investigation are to identify problems with the detection of explosion- generated infrasonic signals at stations in the global infrasound ...restricted to a thermospheric waveguide. The second part is focused on the limitations imposed on array detection of explosion- generated infrasound
ERIC Educational Resources Information Center
Elias, Ryan J.; Hopfer, Helene; Hofstaedter, Amanda N.; Hayes, John E.
2017-01-01
The human nose is a very sensitive detector and is able to detect potent aroma compounds down to low ng/L levels. These levels are often below detection limits of analytical instrumentation. The following laboratory exercise is designed to compare instrumental and human methods for the detection of volatile odor active compounds. Reference…
USE OF METHOD DETECTION LIMITS IN ENVIRONMENTAL MEASUREMENTS
Environmental measurements often produce values below the method detection limit (MDL). Because low or zero values may be used in determining compliance with regulatory limits, in determining emission factors (typical concentrations emitted by a given type of source), or in model...
Sources of variation in detection of wading birds from aerial surveys in the Florida Everglades
Conroy, M.J.; Peterson, J.T.; Bass, O.L.; Fonnesbeck, C.J.; Howell, J.E.; Moore, C.T.; Runge, J.P.
2008-01-01
We conducted dual-observer trials to estimate detection probabilities (probability that a group that is present and available is detected) for fixed-wing aerial surveys of wading birds in the Everglades system, Florida. Detection probability ranged from <0.2 to similar to 0.75 and varied according to species, group size, observer, and the observer's position in the aircraft (front or rear seat). Aerial-survey simulations indicated that incomplete detection can have a substantial effect oil assessment of population trends, particularly river relatively short intervals (<= 3 years) and small annual changes in population size (<= 3%). We conclude that detection bias is an important consideration for interpreting observations from aerial surveys of wading birds, potentially limiting the use of these data for comparative purposes and trend analyses. We recommend that workers conducting aerial surveys for wading birds endeavor to reduce observer and other controllable sources of detection bias and account for uncontrollable sources through incorporation of dual-observer or other calibratior methods as part of survey design (e.g., using double sampling).
Yang, Xi; Zhou, Tao; Yu, Lei; Tan, Wenwen; Zhou, Rui; Hu, Yonggang
2015-03-01
A competitive chemiluminescence enzyme immunoassay (CLEIA) method for porcine β-defensin-2 (pBD-2) detection in transgenic mice was established. Several factors that affect detection, including luminol, p-iodophenol and hydrogen peroxide concentrations, as well as pH, were studied and optimized. The linear range of the proposed method for pBD-2 detection under optimal conditions was 0.05-80 ng/mL with a correlation coefficient of 0.9960. Eleven detections of a 30 ng/mL pBD-2 standard sample were performed. Reproducible results were obtained with a relative standard deviation of 3.94%. The limit of detection of the method for pBD-2 was 3.5 pg/mL (3σ). The proposed method was applied to determine pBD-2 expression levels in the tissues of pBD-2 transgenic mice, and compared with LC-MS/MS and quantitative real-time reverse-transcriptase polymerase chain reaction. This suggests that the CLEIA can be used as a valuable method to detect and quantify pBD-2. Copyright © 2014 John Wiley & Sons, Ltd.
Filip, Katarzyna; Grynkiewicz, Grzegorz; Gruza, Mariusz; Jatczak, Kamil; Zagrodzki, Bogdan
2014-01-01
Escin, a complex mixture of pentacyclic triterpene saponins obtained from horse chestnut seeds extract (HCSE; Aesculus hippocastanum L.), constitutes a traditional herbal active substance of preparations (drugs) used for a treatment of chronic venous insufficiency and capillary blood vessel leakage. A new approach to exploitation of pharmacological potential of this saponin complex has been recently proposed, in which the β-escin mixture is perceived as a source of a hitherto unavailable raw material, pentacyclic triterpene aglycone-protoescigenin. Although many liquid chromatography methods are described in the literature for saponins determination, analysis of protoescigenin is barely mentioned. In this work, a new ultra-high performance liquid chromatography (UHPLC) method developed for protoescigenin quantification has been described. CAD (charged aerosol detection), as a relatively new detection method based on aerosol charging, has been applied in this method as an alternative to ultraviolet (UV) detection. The influence of individual parameters on CAD response and sensitivity was studied. The detection was performed using CAD and UV (200 nm) simultaneously and the results were compared with reference to linearity, accuracy, precision and limit of detection.
Janse, Ingmar; Hamidjaja, Raditijo A; Hendriks, Amber C A; van Rotterdam, Bart J
2013-02-14
Burkholderia mallei and B. pseudomallei are two closely related species of highly virulent bacteria that can be difficult to detect. Pathogenic Burkholderia are endemic in many regions worldwide and cases of infection, sometimes brought by travelers from unsuspected regions, also occur elsewhere. Rapid, sensitive methods for identification of B. mallei and B. pseudomallei are urgently needed in the interests of patient treatment and epidemiological surveillance. Signature sequences for sensitive, specific detection of pathogenic Burkholderia based on published genomes were identified and a qPCR assay was designed and validated. A single-reaction quadruplex qPCR assay for the detection of pathogenic Burkholderia, which includes a marker for internal control of DNA extraction and amplification, was developed. The assay permits differentiation of B. mallei and B. pseudomallei strains, and probit analysis showed a very low detection limit. Use of a multicopy signature sequence permits detection of less than 1 genome equivalent per reaction. The new assay permits rapid detection of pathogenic Burkholderia and combines enhanced sensitivity, species differentiation, and inclusion of an internal control for both DNA extraction and PCR amplification.
Quality Analysis of Chlorogenic Acid and Hyperoside in Crataegi fructus
Weon, Jin Bae; Jung, Youn Sik; Ma, Choong Je
2016-01-01
Background: Crataegi fructus is a herbal medicine for strong stomach, sterilization, and alcohol detoxification. Chlorogenic acid and hyperoside are the major compounds in Crataegi fructus. Objective: In this study, we established novel high-performance liquid chromatography (HPLC)-diode array detection analysis method of chlorogenic acid and hyperoside for quality control of Crataegi fructus. Materials and Methods: HPLC analysis was achieved on a reverse-phase C18 column (5 μm, 4.6 mm × 250 mm) using water and acetonitrile as mobile phase with gradient system. The method was validated for linearity, precision, and accuracy. About 31 batches of Crataegi fructus samples collected from Korea and China were analyzed by using HPLC fingerprint of developed HPLC method. Then, the contents of chlorogenic acid and hyperoside were compared for quality evaluation of Crataegi fructus. Results: The results have shown that the average contents (w/w %) of chlorogenic acid and hyperoside in Crataegi fructus collected from Korea were 0.0438% and 0.0416%, respectively, and the average contents (w/w %) of 0.0399% and 0.0325%, respectively. Conclusion: In conclusion, established HPLC analysis method was stable and could provide efficient quality evaluation for monitoring of commercial Crataegi fructus. SUMMARY Quantitative analysis method of chlorogenic acid and hyperoside in Crataegi fructus is developed by high.performance liquid chromatography.(HPLC).diode array detectionEstablished HPLC analysis method is validated with linearity, precision, and accuracyThe developed method was successfully applied for quantitative analysis of Crataegi fructus sample collected from Korea and China. Abbreviations used: HPLC: High-performance liquid chromatography, GC: Gas chromatography, MS: Mass spectrometer, LOD: Limits of detection, LOQ: Limits of quantification, RSD: Relative standard deviation, RRT: Relative retention time, RPA: Relation peak area. PMID:27076744
Sie, A S; Mensenkamp, A R; Adang, E M M; Ligtenberg, M J L; Hoogerbrugge, N
2014-10-01
Recognising colorectal cancer (CRC) patients with Lynch syndrome (LS) can increase life expectancy of these patients and their close relatives. To improve identification of this under-diagnosed disease, experts suggested raising the age limit for CRC tumour genetic testing from 50 to 70 years. The present study evaluates the efficacy and cost-effectiveness of this strategy. Probabilistic efficacy and cost-effectiveness analyses were carried out comparing tumour genetic testing of CRC diagnosed at age 70 or below (experimental strategy) versus CRC diagnosed at age 50 or below (current practice). The proportions of LS patients identified and cost-effectiveness including cascade screening of relatives, were calculated by decision analytic models based on real-life data. Using the experimental strategy, four times more LS patients can be identified among CRC patients when compared with current practice. Both the costs to detect one LS patient (€9437/carrier versus €4837/carrier), and the number needed to test for detecting one LS patient (42 versus 19) doubled. When family cascade screening was included, the experimental strategy was found to be highly cost-effective according to Dutch standards, resulting in an overall ratio of €2703 per extra life-year gained in additionally tested patients. Testing all CRC tumours diagnosed at or below age 70 for LS is cost-effective. Implementation is important as relatives from the large number of LS patients that are missed by current practice, can benefit from life-saving surveillance. © The Author 2014. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Jiang, Qikun; Liu, Wanjun; Li, Xiaoting; Zhang, Tianhong; Wang, Yongjun; Liu, Xiaohong
2016-01-01
Supercritical fluid chromatography with tandem mass spectrometry was used to comprehensively profile polyene phosphatidyl choline (PPC) extracted from soybean. We achieved an efficient chromatographic analysis using a BEH-2EP column (3 × 100 mm(2) , 1.7 μm) with a mobile phase consisting of CO2 and a cosolvent in gradient combination at a flow rate of 1.0 mL/min. The cosolvent consisted of methanol, acetonitrile, and water (containing 10 mM ammonium acetate and 0.2% formic acid). The total single-run time was 7 min. We used this method to accurately detect ten different phospholipids (PLs) during extraction. The limits of quantification for phosphatidyl choline, lyso-phosphatidylcholine (LPC), phosphatidic acid (PA), sphingomyelin, phosphatidyl glycerol, phosphatidyl inositol (PI), cholesterol, cardiolipin, phosphatidyl serine, and phosphatidyl ethanolamine (PE) were 20.6, 19.52, 1.21, 2.38, 0.50, 2.28, 54.3, 0.60, 0.65, and 4.85 ng/mL, respectively. However, adopting the high-performance liquid chromatography with evaporative light scattering detection method issued by the China Food and Drug Administration, only PA, LPC, PE, PI, and PPC could be analyzed accurately, and the limits of quantification were 33.89, 60.5, 30.3, 10.9, and 61.79 μg/mL, respectively. The total single-run time was at the least 20 min. Consequently, the supercritical fluid chromatography with tandem mass spectrometry method was more suitable for the analysis of related PLs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Li, Shuo; Lei, Sheng; Yu, Qian; Zou, Lina; Ye, Baoxian
2018-08-01
A novel high-sensitive electrochemical sensor with glassy carbon electrode (GCE) as support for hyperin determination is successfully designed and constructed, and the well-shaped nano-meter modified material is synthesized via a one-step and facile route. Functionalized with surfactant sodium dodecyl sulfate (SDS), Single-Walled Carbon Nanotubes (SWCNTs) are synchronously grafted with ZrO 2 nanoparticles to develop into the as-prepared nano-composite (ZrO 2 -SDS-SWCNTs). Compared to the previous reports related with hyperin detection, the linear range gets wider and detection limit (LOD) becomes lower with the aid of this novel nano-composite modified glassy carbon electrode (ZrO 2 -SDS-SWCNTs/GCE). The crystalline phases and functionalization of the preparation process has been investigated by X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) instrument analysis, respectively, and the micro-morphology of related modified materials is also visibly characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM). In addition, electrochemical properties of the modified materials are comparably explored by means of impedance spectroscopy (EIS) and cyclic voltammograms (CV). According to the established calibration curve under optimized condition, the peak current (Differential pulse voltammetry (DPV) signal) keeps a linear relationship with hyperin concentration in the ranges of 1.0 × 10 -9 - 3.0 × 10 -7 mol L -1 , meanwhile detection limit reaches as low as 5 × 10 -10 mol L -1 (S/N = 3). As for practical applications, the proposed sensor has also worked well on sensitive hyperin determination in real species Abelmoschus manihot. Copyright © 2018 Elsevier B.V. All rights reserved.
do Carmo, Sângela Nascimento; Merib, Josias; Dias, Adriana Neves; Stolberg, Joni; Budziak, Dilma; Carasek, Eduardo
2017-11-24
In this study, an environmentally friendly and low-cost biosorbent coating was evaluated, for the first time, as the extraction phase for solid-phase microextraction (SPME) supported on a nitinol alloy. The characterization of the new fiber was performed by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). The applicability of the biosorbent-based fiber in the determination of δ-hexachlorocyclohexane, aldrin, heptachlor epoxide, α-endosulfan, endrin and 4,4'-DDD in water samples was verified, with separation/detection by gas chromatography coupled to electron capture detection (GC-ECD). The influencing parameters (temperature, extraction time and ionic strength) were optimized simultaneously using a central composite design. The optimum conditions were: extraction time of 80min at 80°C and sodium chloride concentration of 15% (w/v). Satisfactory analytical performance was achieved with limits of detection (LOD) between 0.19 and 0.71ngL -1 and limits of quantification (LOQ) between 0.65 and 2.38ngL -1 . The relative recoveries for the analytes were determined using river and lake water samples spiked at different concentrations and ranged from 60% for α-endosulfan to 113% for δ-hexachlorocyclohexane, with relative standard deviations (RSD) lower than 21%. The fiber-to-fiber reproducibility (n=3) was also evaluated and the RSD was lower than 14%. The extraction efficiency obtained for the proposed biosorbent coating was compared to a commercially available DVB/Car/PDMS coating. The proposed fiber provided very promising results, including LODs at the level of parts per trillion and highly satisfactory thermal and mechanical stability. Copyright © 2017 Elsevier B.V. All rights reserved.
A review of Theileria diagnostics and epidemiology
Mans, Ben J.; Pienaar, Ronel; Latif, Abdalla A.
2015-01-01
An extensive range of serological and molecular diagnostic assays exist for most of the economically important Theileira species such as T. annulata, T. equi, T. lestoquardi, T. parva, T. uilenbergi and other more benign species. Diagnostics of Theileria is considered with regard to sensitivity and specificity of current molecular and serological assays and their use in epidemiology. In the case of serological assays, cross-reactivity of genetically closely related species reduces the use of the gold standard indirect fluorescent antibody test (IFAT). Development of antigen-specific assays does not necessarily address this problem, since closely related species will potentially have similar antigens. Even so, serological assays remain an important line of enquiry in epidemiological surveys. Molecular based assays have exploded in the last decade with significant improvements in sensitivity and specificity. In this review, the current interpretation of what constitute a species in Theileria and its impact on accurate molecular diagnostics is considered. Most molecular assays based on conventional or real-time PCR technology have proven to be on standard with regard to analytical sensitivity. However, consideration of the limits of detection in regard to total blood volume of an animal indicates that most assays may only detect >400,000 parasites/L blood. Even so, natural parasitaemia distribution in carrier-state animals seems to be above this limit of detection, suggesting that most molecular assays should be able to detect the majority of infected individuals under endemic conditions. The potential for false-negative results can, however, only be assessed within the biological context of the parasite within its vertebrate host, i.e. parasitaemia range in the carrier-state that will support infection of the vector and subsequent transmission. PMID:25830110
Kim, Chang Sup; Seo, Jeong Hyun; Cha, Hyung Joon
2012-08-07
The development of analytical tools is important for understanding the infection mechanisms of pathogenic bacteria or viruses. In the present work, a functional carbohydrate microarray combined with a fluorescence immunoassay was developed to analyze the interactions of Vibrio cholerae toxin (ctx) proteins and GM1-related carbohydrates. Ctx proteins were loaded onto the surface-immobilized GM1 pentasaccharide and six related carbohydrates, and their binding affinities were detected immunologically. The analysis of the ctx-carbohydrate interactions revealed that the intrinsic selectivity of ctx was GM1 pentasaccharide ≫ GM2 tetrasaccharide > asialo GM1 tetrasaccharide ≥ GM3trisaccharide, indicating that a two-finger grip formation and the terminal monosaccharides play important roles in the ctx-GM1 interaction. In addition, whole cholera toxin (ctxAB(5)) had a stricter substrate specificity and a stronger binding affinity than only the cholera toxin B subunit (ctxB). On the basis of the quantitative analysis, the carbohydrate microarray showed the sensitivity of detection of the ctxAB(5)-GM1 interaction with a limit-of-detection (LOD) of 2 ng mL(-1) (23 pM), which is comparable to other reported high sensitivity assay tools. In addition, the carbohydrate microarray successfully detected the actual toxin directly secreted from V. cholerae, without showing cross-reactivity to other bacteria. Collectively, these results demonstrate that the functional carbohydrate microarray is suitable for analyzing toxin protein-carbohydrate interactions and can be applied as a biosensor for toxin detection.
Computerized pharmacy surveillance and alert system for drug-related problems.
Ferrández, O; Urbina, O; Grau, S; Mateu-de-Antonio, J; Marin-Casino, M; Portabella, J; Mojal, S; Riu, M; Salas, E
2017-04-01
Because of the impact of drug-related problems (DRPs) on morbidity and mortality, there is a need for computerized strategies to increase drug safety. The detection and identification of the causes of potential DRPs can be facilitated by the incorporation of a pharmacy warning system (PWS) in the computerized prescriber order entry (CPOE) and its application in the routine validation of inpatient drug therapy. A limited number of studies have evaluated a clinical decision support system to monitor drug treatment. Most of these applications have utilized a small range of drugs with alerts and/or types of alert. The objective of this study was to describe the implementation of a PWS integrated in the electronic medical record (EMR). The PWS was developed in 2003-2004. Pharmacological information to generate drug alerts was entered on demographic data, drug dosage, laboratory tests related to the prescribed drug and drug combinations (interactions, duplications and necessary combinations). The PWS was applied in the prescription reviews conducted in patients admitted to the hospital in 2012. Information on 83% of the drugs included in the pharmacopeia was introduced into the PWS, allowing detection of 2808 potential DRPs, representing 79·1% of all potential DRPs detected during the study period. Twenty per cent of PWS DRPs were clinically relevant, requiring pharmacist intervention. The PWS detected most potential DRPs, thus increasing inpatient safety. The detection ability of the PWS was higher than that reported for other tools described in the literature. © 2017 John Wiley & Sons Ltd.
Normal Databases for the Relative Quantification of Myocardial Perfusion
Rubeaux, Mathieu; Xu, Yuan; Germano, Guido; Berman, Daniel S.; Slomka, Piotr J.
2016-01-01
Purpose of review Myocardial perfusion imaging (MPI) with SPECT is performed clinically worldwide to detect and monitor coronary artery disease (CAD). MPI allows an objective quantification of myocardial perfusion at stress and rest. This established technique relies on normal databases to compare patient scans against reference normal limits. In this review, we aim to introduce the process of MPI quantification with normal databases and describe the associated perfusion quantitative measures that are used. Recent findings New equipment and new software reconstruction algorithms have been introduced which require the development of new normal limits. The appearance and regional count variations of normal MPI scan may differ between these new scanners and standard Anger cameras. Therefore, these new systems may require the determination of new normal limits to achieve optimal accuracy in relative myocardial perfusion quantification. Accurate diagnostic and prognostic results rivaling those obtained by expert readers can be obtained by this widely used technique. Summary Throughout this review, we emphasize the importance of the different normal databases and the need for specific databases relative to distinct imaging procedures. use of appropriate normal limits allows optimal quantification of MPI by taking into account subtle image differences due to the hardware and software used, and the population studied. PMID:28138354
Srikanthan, Krithika; Klug, Rebecca; Tirona, Maria; Thompson, Ellen; Visweshwar, Haresh; Puri, Nitin; Shapiro, Joseph; Sodhi, Komal
2017-03-01
Cardiotoxicity is an important issue for breast cancer patients receiving anthracycline-trastuzumab therapy in the adjuvant setting. Studies show that 3-36% of patients receiving anthracyclines and/or trastuzumab experience chemotherapy related cardiac dysfunction (CRCD) and approximately 17% of patients must stop chemotherapy due to the consequences of CRCD. There is currently no standardized, clinically verified way to detect CRCD early, but common practices include serial echocardiography and troponin measurements, which can be timely, costly, and not always available in areas where health care resources are scarce. Furthermore, detection of CRCD, before there is any echocardiographic evidence of dysfunction or clinical symptoms present, would allow maximal benefit of chemotherapy and minimize cardiac complications. Creating a panel of serum biomarkers would allow for more specificity and sensitivity in the early detection of CRCD, which would be easy to implement and cost effective in places with limited health care. Based on a review of the literature, we propose creating a biomarker panel consisting of topoisomerase 2β, serum troponin T/I, myeloperoxidase, NT-proBNP, miR-208b, miR-34a, and miR-150 in breast cancer patients receiving anthracyclines and/or trastuzumab to detect CRCD before any signs of overt cardiotoxicity are apparent.
Methicillin-resistant Staphylococcus aureus in hospitalized patients from the Bolivian Chaco.
Bartoloni, Alessandro; Riccobono, Eleonora; Magnelli, Donata; Villagran, Ana Liz; Di Maggio, Tiziana; Mantella, Antonia; Sennati, Samanta; Revollo, Carmen; Strohmeyer, Marianne; Giani, Tommaso; Pallecchi, Lucia; Rossolini, Gian Maria
2015-01-01
Information is lacking on the methicillin-resistant Staphylococcus aureus (MRSA) clonal lineages circulating in Bolivia. We investigated the prevalence and molecular epidemiology of S. aureus colonization in hospitalized patients from the Bolivian Chaco, and compared their features with those of the few clinical isolates available from that setting. S. aureus nasal/inguinal colonization was investigated in 280 inpatients from eight hospitals in two point prevalence surveys (2012, n=90; 2013, n=190). Molecular characterization included genotyping (spa typing, multilocus sequence typing, and pulsed-field gel electrophoresis), detection of virulence genes, and SCCmec typing. Forty-one inpatients (14.6%) were S. aureus nasal/inguinal carriers, of whom five were colonized by MRSA (1.8%). MRSA isolates mostly belonged to spa-type t701, harboured SCCmec IVc, and were negative for Panton-Valentine leukocidin (PVL) genes. However, a USA300-related isolate was also detected, which showed the characteristics of the USA300 Latin American variant (USA300-LV; i.e., ST8, spa-type t008, SCCmec IVc, presence of PVL genes, absence of arcA). Notably, all the available MRSA clinical isolates (n=5, collected during 2011-2013) were also identified as USA300-LV. Overall, MRSA colonization in inpatients from the Bolivian Chaco was low. However, USA300-LV-related isolates were detected in colonization and infections, emphasizing the importance of implementing control measures to limit their further dissemination in this resource-limited area. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Luiz Oenning, Anderson; Lopes, Daniela; Neves Dias, Adriana; Merib, Josias; Carasek, Eduardo
2017-11-01
In this study, the viability of two membrane-based microextraction techniques for the determination of endocrine disruptors by high-performance liquid chromatography with diode array detection was evaluated: hollow fiber microporous membrane liquid-liquid extraction and hollow-fiber-supported dispersive liquid-liquid microextraction. The extraction efficiencies obtained for methylparaben, ethylparaben, bisphenol A, benzophenone, and 2-ethylhexyl-4-methoxycinnamate from aqueous matrices obtained using both approaches were compared and showed that hollow fiber microporous membrane liquid-liquid extraction exhibited higher extraction efficiency for most of the compounds studied. Therefore, a detailed optimization of the extraction procedure was carried out with this technique. The optimization of the extraction conditions and liquid desorption were performed by univariate analysis. The optimal conditions for the method were supported liquid membrane with 1-octanol for 10 s, sample pH 7, addition of 15% w/v of NaCl, extraction time of 30 min, and liquid desorption in 150 μL of acetonitrile/methanol (50:50 v/v) for 5 min. The linear correlation coefficients were higher than 0.9936. The limits of detection were 0.5-4.6 μg/L and the limits of quantification were 2-16 μg/L. The analyte relative recoveries were 67-116%, and the relative standard deviations were less than 15.5%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Methods of Oil Detection in Response to the Deepwater ...
Detecting oil in the northern Gulf of Mexico following the Deepwater Horizon oil spill presented unique challenges due to the spatial and temporal extent of the spill and the subsequent dilution of oil in the environment. Over time, physical, chemical, and biological processes altered the composition of the oil, further complicating its detection. Reservoir fluid, containing gas and oil, released from the Macondo well was detected in surface and subsurface environments. Oil monitoring during and after the spill required a variety of technologies, including nimble adaptation of techniques developed for non-oil-related applications. The oil detection technologies employed varied in sensitivity, selectivity, strategy, cost, usability, expertise of user, and reliability. Innovative technologies ranging from remote sensing to laboratory analytical techniques were employed and produced new information relevant to oil spill detection, including the chemical characterization, the dispersion effectiveness, and the detection limits of oil. The challenge remains to transfer these new technologies to oil spill responders so that detection of oil following a spill can be improved. To publish a perspective paper on oil detection technologies during the Deepwater Horizon Oil Spill. This is for a special issue book/journal.
NASA Astrophysics Data System (ADS)
Lee, Ai Cheng; Ye, Jian-Shan; Ngin Tan, Swee; Poenar, Daniel P.; Sheu, Fwu-Shan; Kiat Heng, Chew; Meng Lim, Tit
2007-11-01
A novel carbon nanotube (CNT) derived label capable of dramatic signal amplification of nucleic acid detection and direct visual detection of target hybridization has been developed. Highly sensitive colorimetric detection of human acute lymphocytic leukemia (ALL) related oncogene sequences amplified by the novel CNT-based label was demonstrated. Atomic force microscope (AFM) images confirmed that a monolayer of horseradish peroxidase and detection probe molecules was immobilized along the carboxylated CNT carrier. The resulting CNT labels significantly enhanced the nucleic acid assay sensitivity by at least 1000 times compared to that of conventional labels used in enzyme-linked oligosorbent assay (ELOSA). An excellent detection limit of 1 × 10-12 M (60 × 10-18 mol in 60 µl) and a four-order wide dynamic range of target concentration were achieved. Hybridizations using these labels were coupled to a concentration-dependent formation of visible dark aggregates. Targets can thus be detected simply with visual inspection, eliminating the need for expensive and sophisticated detection systems. The approach holds promise for ultrasensitive and low cost visual inspection and colorimetric nucleic acid detection in point-of-care and early disease diagnostic application.
Mohd Bakhori, Noremylia; Yusof, Nor Azah; Abdullah, Abdul Halim; Hussein, Mohd Zobir
2013-01-01
An optical DNA biosensor based on fluorescence resonance energy transfer (FRET) utilizing synthesized quantum dot (QD) has been developed for the detection of specific-sequence of DNA for Ganoderma boninense, an oil palm pathogen. Modified QD that contained carboxylic groups was conjugated with a single-stranded DNA probe (ssDNA) via amide-linkage. Hybridization of the target DNA with conjugated QD-ssDNA and reporter probe labeled with Cy5 allows for the detection of related synthetic DNA sequence of Ganoderma boninense gene based on FRET signals. Detection of FRET emission before and after hybridization was confirmed through the capability of the system to produce FRET at 680 nm for hybridized sandwich with complementary target DNA. No FRET emission was observed for non-complementary system. Hybridization time, temperature and effect of different concentration of target DNA were studied in order to optimize the developed system. The developed biosensor has shown high sensitivity with detection limit of 3.55 × 10−9 M. TEM results show that the particle size of QD varies in the range between 5 to 8 nm after ligand modification and conjugation with ssDNA. This approach is capable of providing a simple, rapid and sensitive method for detection of related synthetic DNA sequence of Ganoderma boninense. PMID:25587406
Application of Digital PCR in Detecting Human Diseases Associated Gene Mutation.
Tong, Yu; Shen, Shizhen; Jiang, Hui; Chen, Zhi
2017-01-01
Gene mutation has been considered a research hotspot, and the rapid development of biomedicine has enabled significant advances in the evaluation of gene mutations. The advent of digital polymerase chain reaction (dPCR) elevates the detection of gene mutations to unprecedented levels of precision, especially in cancer-associated genes. dPCR has been utilized in the detection of tumor markers in cell-free DNA (cfDNA) samples from patients with different types of cancer in samples such as plasma, cerebrospinal fluid, urine and sputum, which confers significant value for dPCR in both clinical applications and basic research. Moreover, dPCR is extensively used in detecting pathogen mutations related to typical features of infectious diseases (e.g., drug resistance) and mutation status of heteroplasmic mitochondrial DNA, which determines the manifestation and progression of mtDNA-related diseases, as well as allows for the prenatal diagnosis of monogenic diseases and the assessment of the genome editing effects. Compared with real-time PCR (qPCR) and sequencing, the higher sensitivity and accuracy of dPCR indicates a great advantage in the detection of rare mutation. As a new technique, dPCR has some limitations, such as the necessity of highly allele-specific probes and a large sample volume. In this review, we summarize the application of dPCR in the detection of human disease-associated gene mutations. © 2017 The Author(s). Published by S. Karger AG, Basel.
Diao, Wei; Tang, Min; Ding, Shijia; Li, Xinmin; Cheng, Wenbin; Mo, Fei; Yan, Xiaoyu; Ma, Hongmin; Yan, Yurong
2018-02-15
Early detection, diagnosis and treatment of human immune deficiency virus (HIV) infection is the key to reduce acquired immunodeficiency syndrome (AIDS) mortality. In our research, an innovative surface plasmon resonance (SPR) biosensing strategy has been developed for highly sensitive detection of HIV-related DNA based on entropy-driven strand displacement reactions (ESDRs) and double-layer DNA tetrahedrons (DDTs). ESDRs as enzyme-free and label-free signal amplification circuit can be specifically triggered by target DNA, leading to the cyclic utilization of target DNA and the formation of plentiful double-stranded DNA (dsDNA) products. Subsequently, the dsDNA products bind to the immobilized hairpin capture probes and further combine with DDTs nanostructures. Due to the high efficiency of ESDRs and large molecular weight of DDTs, the SPR response signal was enhanced dramatically. The proposed SPR biosensor could detect target DNA sensitively and specifically in a linear range from 1pM to 150nM with a detection limit of 48fM. In addition, the whole detecting process can be accomplished in 60min with high accuracy and duplicability. In particular, the developed SPR biosensor was successfully used to analyze target DNA in complex biological sample, indicating that the developed strategy is promising for rapid and early clinical diagnosis of HIV infection. Copyright © 2017 Elsevier B.V. All rights reserved.
Health-related quality of life of children with newly diagnosed specific learning disability.
Karande, Sunil; Bhosrekar, Kirankumar; Kulkarni, Madhuri; Thakker, Arpita
2009-06-01
The objective of this study was to measure health-related quality of life (HRQL) of children with newly diagnosed specific learning disability (SpLD) using the Child Health Questionnaire-Parent Form 50. We detected clinically significant deficits (effect size > or = -0.5) in 9 out of 12 domains: limitations in family activities, emotional impact on parents, social limitations as a result of emotional-behavioral problems, time impact on parents, general behavior, physical functioning, social limitations as a result of physical health, general health perceptions and mental health; and in both summary scores (psychosocial > physical). Multivariate analysis revealed having > or = 1 non-academic problem(s) (p < 0.0001), attention-deficit hyperactivity disorder (p = 0.005) or first-born status (p = 0.009) predicted a poor psychosocial summary score; and having > or =1 non-academic problem(s) (p = 0.006) or first-born status (p = 0.035) predicted a poor physical summary score. HRQL is significantly compromised in children having newly diagnosed SpLD.
Alarfaj, Nawal A; Aly, Fatma A; El-Tohamy, Maha F
2015-02-01
A new simple, accurate and sensitive sequential injection analysis chemiluminescence (CL) detection method for the determination of cefditoren pivoxil (CTP) has been developed. The developed method was based on the enhancement effect of silver nanoparticles on the CL signal arising from a luminol-potassium ferricyanide reaction in the presence of CTP. The optimum conditions relevant to the effect of luminol, potassium ferricyanide and silver nanoparticle concentrations were investigated. The proposed method showed linear relationships between relative CL intensity and the investigated drug concentration at the range 0.001-5000 ng/mL, (r = 0.9998, n = 12) with a detection limit of 0.5 pg/mL and quantification limit of 0.001 ng/mL. The relative standard deviation was 1.6%. The proposed method was employed for the determination of CTP in bulk drug, in its pharmaceutical dosage forms and biological fluids such as human serum and urine. The interference of some common additive compounds such as glucose, lactose, starch, talc and magnesium stearate was investigated. In addition, the interference of some related cephalosporins was tested. No interference was recorded. The obtained sequential injection analysis-CL results were statistically compared with those from a reported method and did not show any significant differences. Copyright © 2014 John Wiley & Sons, Ltd.
Detection of Scopolamine Hydrobromide via Surface-enhanced Raman Spectroscopy.
Bao, Lin; Sha, Xuan-Yu; Zhao, Hang; Han, Si-Qin-Gao-Wa; Hasi, Wu-Li-Ji
2017-01-01
Surface-enhanced Raman spectroscopy (SERS) was used to measure scopolamine hydrobromide. First, the Raman characteristic peaks of scopolamine hydrobromide were assigned, and the characteristic peaks were determined. The optimal aggregation agent was potassium iodide based on a comparative experimental study. Finally, the SERS spectrum of scopolamine hydrobromide was detected in aqueous solution, and the semi-quantitative analysis and the recovery rate were determined via a linear fitting. The detection limit of scopolamine hydrobromide in aqueous solution was 0.5 μg/mL. From 0 - 10 μg/mL, the curve of the intensity of the Raman characteristic peak of scopolamine hydrobromide at 1002 cm -1 is y = 4017.76 + 642.47x. The correlation coefficient was R 2 = 0.983, the recovery was 98.5 - 109.7%, and the relative standard deviation (RSD) was about 5.5%. This method is fast, accurate, non-destructive and simple for the detection of scopolamine hydrobromide.
NASA Astrophysics Data System (ADS)
Dutta, Tanoy; Chandra, Falguni; Koner, Apurba L.
2018-02-01
A ;naked-eye; detection of health hazardous bisulfite (HSO3-) and hypochlorite (ClO-) using an indicator dye (Quinaldine Red, QR) in a wide range of pH is demonstrated. The molecule contains a quinoline moiety linked to an N,N-dimethylaniline moiety with a conjugated double bond. Treatment of QR with HSO3- and ClO-, in aqueous solution at near-neutral pH, resulted in a colorless product with high selectivity and sensitivity. The detection limit was 47.8 μM and 0.2 μM for HSO3- and ClO- respectively. However, ClO- was 50 times more sensitive and with 2 times faster response compared to HSO3-. The detail characterization and related analysis demonstrate the potential of QR for a rapid, robust and highly efficient colorimetric sensor for the practical applications to detect hypochlorite in water samples.
Target detection cycle criteria when using the targeting task performance metric
NASA Astrophysics Data System (ADS)
Hixson, Jonathan G.; Jacobs, Eddie L.; Vollmerhausen, Richard H.
2004-12-01
The US Army RDECOM CERDEC Night Vision and Electronic Sensors Directorate of the US Army (NVESD) has developed a new target acquisition metric to better predict the performance of modern electro-optical imagers. The TTP metric replaces the Johnson criteria. One problem with transitioning to the new model is that the difficulty of searching in a terrain has traditionally been quantified by an "N50." The N50 is the number of Johnson criteria cycles needed for the observer to detect the target half the time, assuming that the observer is not time limited. In order to make use of this empirical data base, a conversion must be found relating Johnson cycles for detection to TTP cycles for detection. This paper describes how that relationship is established. We have found that the relationship between Johnson and TTP is 1:2.7 for the recognition and identification tasks.
NASA Astrophysics Data System (ADS)
Chin, Suk-Fun; Tan, Shao-Chien; Pang, Suh-Cem; Ng, Sing-Muk
2017-11-01
Nitrogen (N) doped carbon dots (N-CDs) that showed blue fluorescence with quantum yield (QY) of 12.25% were synthesized by one step microwave irradiation of lysine in ortho-phosphoric acid at 1000 W for 5 min. The as-synthesized N-CDs were successfully explored as fluorescent probes for selective detection of ferric (Fe3+) ions in aqueous condition with a linear range from 0.2 to 5.0 mM and a detection limit of 0.074 mM ± 0.081 (S/N = 3). The N-CDs exhibited high selectivity towards the detection of Fe3+ ions even in the presence of interfering ions. The N-CDs also demonstrated the potential of practical application for determining of Fe3+ ions concentration in real samples with high recovery rate and low relative standard deviation error.
NASA Astrophysics Data System (ADS)
Zhu, Yu-Feng; Wang, Yong-Sheng; Zhou, Bin; Huang, Yan-Qin; Li, Xue-Jiao; Chen, Si-Han; Wang, Xiao-Feng; Tang, Xian
2018-01-01
We for the first time confirmed that the low concentrations of Ag(I) could induce a silver specific aptamer probe (SAP) from a random coil sequence form to G-quadruplex structure. Thereby, a novel highly sensitive fluorescence strategy for silver(I) assay was established. The designed multifunctional SAP could act as a recognition element for Ag(I) and a signal reporter. The use of such a SAP can ultrasensitively and selectively detect Ag(I), giving a detection limit down to 0.64 nM. This is much lower than those reported by related literatures. This strategy has been applied successfully for the detection of Ag(I) in real samples, further proving its reliability. Taken together, the designed SAP is not only a useful recognition and signal probe for silver, but also gives a platform to study the interaction of monovalent cations with DNA.
Cheng, Yongqiang; Guo, Cuilian; Zhao, Bin; Yang, Li
2017-04-01
A fast and effective method was developed to detect domoic acid based upon microchip electrophoresis combined with laser-induced fluorescence detection. Through study of the gated injection process on the cross channel of the microchip, the low-voltage mode with relatively longer sample loading time was adopted to reduce the sample discrimination and improve the signal sensitivity. Fluorescein isothiocyanate was used as the derivatizing reagent for domoic acid. Under the optimized conditions, domoic acid was completely separated in 60 s with separation efficiency of 1.35 × 10 5 m -1 . The calibration curve was obtained in the range of 1.0 × 10 -9 to 1.0 × 10 -7 mol/L, and the detection limit reached 2.8 × 10 -10 mol/L. This developed method was successfully applied to analyze domoic acid in real samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ren, Hu-Bo; Yan, Xiu-Ping
2012-08-15
An ultrasonic assisted approach was developed for rapid synthesis of highly water soluble phosphorescent adenosine triphosphate (ATP)-capped Mn-doped ZnS QDs. The prepared ATP-capped Mn-doped ZnS QDs allow selective phosphorescent detection of arginine and methylated arginine based on the specific recognition nature of supramolecular Mg(2+)-ATP-arginine ternary system in combination with the phosphorescence property of Mn-doped ZnS QDs. The developed QD based probe gives excellent selectivity and reproducibility (1.7% relative standard deviation for 11 replicate detections of 10 μM arginine) and low detection limit (3 s, 0.23 μM), and favors biological applications due to the effective elimination of interference from scattering light and autofluorescence. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhu, Kun; Hong, Zhen; Kang, Shi-Zhao; Qin, Lixia; Li, Guodong; Li, Xiangqing
2018-04-01
The orderly potassium niobate nanosheets/silver oxide (Ag2O) composite films with uniform morphology were achieved by layer-by-layer self-assembly combined with ultraviolet light irradiation. The composition, structure and morphology of the potassium niobate nanosheets/Ag2O composite films were studied by XPS, XRD and SEM. Furthermore, the films were used as a SERS probe to detect crystal violet molecules. The results showed that the potassium niobate nanosheets/Ag2O composite films were an active substrate for fast and sensitive detection of crystal violet with low concentration. The limit of detection by the films can reach 1 × 10-6 mol L-1. Both electromagnetic enhancement and chemical enhancement contributed to the enhanced SERS in the (potassium niobate nanosheets/Ag2O)4 films. Moreover, it was found that the films were relatively stable under light irradiation or heat treatment in a certain range.
Mauk, Michael G.; Song, Jinzhao; Liu, Changchun; Bau, Haim H.
2018-01-01
Designs and applications of microfluidics-based devices for molecular diagnostics (Nucleic Acid Amplification Tests, NAATs) in infectious disease testing are reviewed, with emphasis on minimally instrumented, point-of-care (POC) tests for resource-limited settings. Microfluidic cartridges (‘chips’) that combine solid-phase nucleic acid extraction; isothermal enzymatic nucleic acid amplification; pre-stored, paraffin-encapsulated lyophilized reagents; and real-time or endpoint optical detection are described. These chips can be used with a companion module for separating plasma from blood through a combined sedimentation-filtration effect. Three reporter types: Fluorescence, colorimetric dyes, and bioluminescence; and a new paradigm for end-point detection based on a diffusion-reaction column are compared. Multiplexing (parallel amplification and detection of multiple targets) is demonstrated. Low-cost detection and added functionality (data analysis, control, communication) can be realized using a cellphone platform with the chip. Some related and similar-purposed approaches by others are surveyed. PMID:29495424
Fukushi, Keiichi; Ito, Hideyuki; Kimura, Kenichi; Yokota, Kuriko; Saito, Keiitsu; Chayama, Kenji; Takeda, Sahori; Wakida, Shin-ichi
2006-02-17
We developed capillary zone electrophoresis (CZE) with direct UV detection for determination of ammonium in environmental water samples. Ammonium in the samples was partly converted into ammonia in the alkaline background electrolyte (BGE) during migration and was detected by molecular absorption of ammonia at 190 nm in approximately 7 min. The limit of detection (LOD) for ammonium was 0.24 mg/l (as nitrogen) at a signal-to-noise ratio of three. The respective values of the relative standard deviation (RSD) of peak area, peak height, and migration time for ammonium were 2.1, 1.8, and 0.46%. Major alkali and alkaline earth metal ions coexisting in the samples did not interfere with ammonium determination by the proposed method. The proposed method determined ammonium in surface water and sewage samples. The results were compared to those obtained using ion chromatography (IC).
Intracardiac Shunting and Stroke in Children: A Systematic Review
Dowling, Michael M.; Ikemba, Catherine M.
2017-01-01
In adults, patent foramen ovale or other potential intracardiac shunts are established risk factors for stroke via paradoxical embolization. Stroke is less common in children and risk factors differ. The authors examined the literature on intracardiac shunting and stroke in children, identifying the methods employed, the prevalence of detectible intracardiac shunts, associated conditions, and treatments. PubMed searches with keywords related to intracardiac shunting and stroke in children identified articles of interest. Additional articles were identified via citations in these articles or in reviews. The authors found that studies of intracardiac shunting in children with stroke are limited. No controlled studies were identified. Detection methods vary and the prevalence of echocardiographically detectible intracardiac shunting appears lower than reported in adults and autopsy studies. Defining the role of intracardiac shunting in pediatric stroke will require controlled studies with unified detection methods in populations stratified by additional risk factors for paradoxical embolization. Optimal treatment is unclear. PMID:21212453
Internal seismological stations for monitoring a comprehensive test ban theory
NASA Astrophysics Data System (ADS)
Dahlman, O.; Israelson, H.
1980-06-01
Verification of the compliance with a Comprehensive Test Ban on nuclear explosions is expected to be carried out by a seismological verification system of some fifty globally distributed teleseismic stations designed to monitor underground explosions at large distances (beyond 2000 km). It is attempted to assess various technical purposes that such internal stations might serve in relation to a global network of seismological stations. The assessment is based on estimates of the detection capabilities of hypothetical networks of internal stations. Estimates pertaining to currently used detection techniques (P waves) indicate that a limited number (less than 30) of such stations would not improve significantly upon the detection capability that a global network of stations would have throughout the territories of the US and the USSR. Recently available and not yet fully analyzed data indicate however that very high detection capabilities might be obtained in certain regions.
Drake, David; Kennedy, Rodney; Wallace, Eric
2018-02-06
Isometric multi-joint tests are considered reliable and have strong relationships with 1RM performance. However, limited evidence is available for the isometric squat in terms of effects of familiarization and reliability. This study aimed to assess, the effect of familiarization, stability reliability, determine the smallest detectible difference, and the correlation of the isometric squat test with 1RM squat performance. Thirty-six strength-trained participants volunteered to take part in this study. Following three familiarization sessions, test-retest reliability was evaluated with a 48-hour window between each time point. Isometric squat peak, net and relative force were assessed. Results showed three familiarizations were required, isometric squat had a high level of stability reliability and smallest detectible difference of 11% for peak and relative force. Isometric strength at a knee angle of ninety degrees had a strong significant relationship with 1RM squat performance. In conclusion, the isometric squat is a valid test to assess multi-joint strength and can discriminate between strong and weak 1RM squat performance. Changes greater than 11% in peak and relative isometric squat performance should be considered as meaningful in participants who are familiar with the test.
MacKay, Donald G; James, Lori E
2009-10-01
Two experiments compared the visual cognition performance of amnesic H.M. and memory-normal controls matched for age, background, intelligence, and education. In Experiment 1 H.M. exhibited deficits relative to the controls in detecting "erroneous objects" in complex visual scenes--for example, a bird flying inside a fishbowl. In Experiment 2 H.M. exhibited deficits relative to the controls in standard Hidden-Figure tasks when detecting unfamiliar targets but not when detecting familiar targets--for example, circles, squares, and right-angle triangles. H.M.'s visual cognition deficits were not due to his well-known problems in explicit learning and recall, inability to comprehend or remember the instructions, general slowness, motoric difficulties, low motivation, low IQ relative to the controls, or working-memory limitations. Parallels between H.M.'s selective deficits in visual cognition, language, and memory are discussed. These parallels contradict the standard "systems theory" account of H.M.'s condition but comport with the hypothesis that H.M. has difficulty representing unfamiliar but not familiar information in visual cognition, language, and memory. Implications of our results are discussed for binding theory and the ongoing debate over what counts as "memory" versus "not-memory."
Using personal glucose meters and functional DNA sensors to quantify a variety of analytical targets
Xiang, Yu; Lu, Yi
2012-01-01
Portable, low-cost and quantitative detection of a broad range of targets at home and in the field has the potential to revolutionize medical diagnostics and environmental monitoring. Despite many years of research, very few such devices are commercially available. Taking advantage of the wide availability and low cost of the pocket-sized personal glucose meter—used worldwide by diabetes sufferers—we demonstrate a method to use such meters to quantify non-glucose targets, ranging from a recreational drug (cocaine, 3.4 μM detection limit) to an important biological cofactor (adenosine, 18 μM detection limit), to a disease marker (interferon-gamma of tuberculosis, 2.6 nM detection limit) and a toxic metal ion (uranium, 9.1 nM detection limit). The method is based on the target-induced release of invertase from a functional-DNA–invertase conjugate. The released invertase converts sucrose into glucose, which is detectable using the meter. The approach should be easily applicable to the detection of many other targets through the use of suitable functional-DNA partners (aptamers DNAzymes or aptazymes). PMID:21860458
Using personal glucose meters and functional DNA sensors to quantify a variety of analytical targets
NASA Astrophysics Data System (ADS)
Xiang, Yu; Lu, Yi
2011-09-01
Portable, low-cost and quantitative detection of a broad range of targets at home and in the field has the potential to revolutionize medical diagnostics and environmental monitoring. Despite many years of research, very few such devices are commercially available. Taking advantage of the wide availability and low cost of the pocket-sized personal glucose meter—used worldwide by diabetes sufferers—we demonstrate a method to use such meters to quantify non-glucose targets, ranging from a recreational drug (cocaine, 3.4 µM detection limit) to an important biological cofactor (adenosine, 18 µM detection limit), to a disease marker (interferon-gamma of tuberculosis, 2.6 nM detection limit) and a toxic metal ion (uranium, 9.1 nM detection limit). The method is based on the target-induced release of invertase from a functional-DNA-invertase conjugate. The released invertase converts sucrose into glucose, which is detectable using the meter. The approach should be easily applicable to the detection of many other targets through the use of suitable functional-DNA partners (aptamers, DNAzymes or aptazymes).
Detection limits of antimicrobials in ewe milk by delvotest photometric measurements.
Althaus, R L; Torres, A; Montero, A; Balasch, S; Molina, M P
2003-02-01
The Delvotest method detection limits per manufacturer's instructions at a fixed reading time of 3 h for 24 antimicrobial agents were determined in ewe milk by photometric measurement. For each drug, eight concentrations were tested on 20 ewe milk samples from individual ewes. Detection limits, determined by means of logistic regression models, were (microg/kg): 3, amoxycillin; 2, ampicillin; 18, cloxacillin; 1, penicillin "G"; 34, cefadroxil; 430, cephalosporin "C"; 40, cephalexin; 20, cefoperazone; 33, Ceftiofur; 18, cefuroxime; 6100, streptomycin; 1200, gentamycin; 2600, neomycin; 830, erythromycin; 100, tylosin; 180, doxycycline; 320, oxytetracycline; 590, tetracycline; 88, sulfadiazine; 44, sulfamethoxazole; 140, sulfametoxypyridazine; 48, sulfaquinoxaline; 12,000, chloramphenicol; and 290, trimethoprim. Whereas the beta-lactam antibiotics, sulphonamides, and tylosin were detected by Delvotest method at levels equal to those of maximum residue limits, its sensitivity needs to be enhanced to detect aminoglycosides, tetracyclines, streptomycin, chloramphenicol, and trimethoprim residues in ewe milk or to develop an integrated residue detection system for ewe milk with different sensitive microorganisms for each group of antiinfectious agents.
Code of Federal Regulations, 2010 CFR
2010-07-01
... baghouse equipped with a bag leak detection system, operating and maintaining each bag leak detection... requirements. If you increase or decrease the sensitivity of the bag leak detection system beyond the limits... event of a bag leak detection system alarm or when the hourly average opacity exceeded 5 percent, the...
Evaluation of Raman spectroscopy for the trace analysis of biomolecules for Mars exobiology
NASA Astrophysics Data System (ADS)
Jehlicka, Jan; Edwards, Howell G. M.; Vitek, Petr; Culka, Adam
2010-05-01
Raman spectroscopy is an ideal technique for the identification of biomolecules and minerals for astrobiological applications. Raman spectroscopic instrumentation has been shown to be potentially valuable for the in-situ detection of spectral biomarkers originating from rock samples containing remnants of terrestrial endolithic colonisation. Within the future payloads designed by ESA and NASA for several missions focussing on life detection on Mars, Raman spectroscopy has been proposed as an important non-destructive analytical tool for the in-situ identification of organic compounds relevant to life detection on planetary and moon surfaces or near sub-surfaces. Portable Raman systems equipped with 785 nm lasers permit the detection of pure organic minerals, aminoacids, carboxylic acids, as well as NH-containing compounds outdoors at -20°C and at an altitude of 3300 m. A potential limitation for the use of Raman spectroscopic techniques is the detection of very low amounts of biomolecules in rock matrices. The detection of beta-carotene and aminoacids has been achieved in the field using a portable Raman system in admixture with crystalline powders of sulphates and halite. Relatively low detection limits less than 1 % for detecting beta-carotene, aminoacids using a portable Raman system were obtained analysing traces of these compounds in crystalline powders of sulphates and halite. Laboratory systems permit the detection of these biomolecules at even lower concentrations at sub-ppm level of the order of 0.1 to 1 mg kg-1. The comparative evaluation of laboratory versus field measurements permits the identification of critical issues for future field applications and directs attention to the improvements needed in the instrumentation . A comparison between systems using different laser excitation wavelengths shows excellent results for 785 nm laser excitation . The results of this study will inform the acquisition parameters necessary for the deployment of robotic miniaturised Raman spectrosocpic instrumentation intended for the detection of spectral signatures of extant or relict life on Mars.
Recent trends in high spin sensitivity magnetic resonance
NASA Astrophysics Data System (ADS)
Blank, Aharon; Twig, Ygal; Ishay, Yakir
2017-07-01
Magnetic resonance is a very powerful methodology that has been employed successfully in many applications for about 70 years now, resulting in a wealth of scientific, technological, and diagnostic data. Despite its many advantages, one major drawback of magnetic resonance is its relatively poor sensitivity and, as a consequence, its bad spatial resolution when examining heterogeneous samples. Contemporary science and technology often make use of very small amounts of material and examine heterogeneity on a very small length scale, both of which are well beyond the current capabilities of conventional magnetic resonance. It is therefore very important to significantly improve both the sensitivity and the spatial resolution of magnetic resonance techniques. The quest for higher sensitivity led in recent years to the development of many alternative detection techniques that seem to rival and challenge the conventional ;old-fashioned; induction-detection approach. The aim of this manuscript is to briefly review recent advances in the field, and to provide a quantitative as well as qualitative comparison between various detection methods with an eye to future potential advances and developments. We first offer a common definition of sensitivity in magnetic resonance to enable proper quantitative comparisons between various detection methods. Following that, up-to-date information about the sensitivity capabilities of the leading recently-developed detection approaches in magnetic resonance is provided, accompanied by a critical comparison between them and induction detection. Our conclusion from this comparison is that induction detection is still indispensable, and as such, it is very important to look for ways to significantly improve it. To do so, we provide expressions for the sensitivity of induction-detection, derived from both classical and quantum mechanics, that identify its main limiting factors. Examples from current literature, as well as a description of new ideas, show how these limiting factors can be mitigated to significantly improve the sensitivity of induction detection. Finally, we outline some directions for the possible applications of high-sensitivity induction detection in the field of electron spin resonance.
Pellegrino Vidal, Rocío B; Ibañez, Gabriela A; Escandar, Graciela M
2017-03-07
For the first time, liquid chromatography-diode array detection (LC-DAD) and liquid-chromatography fluorescence detection (LC-FLD) second-order data, collected in a single chromatographic run, were fused and chemometrically processed for the quantitation of coeluting analytes. Two different experimental mixtures composed of fluorescent and nonfluorescent endocrine disruptors were analyzed. Adequate pretreatment of the matrices before their fusion was crucial to attain reliable results. Multivariate curve resolution-alternating least-squares (MCR-ALS) was applied to LC-DAD, LC-FLD, and fused LC-DAD-FLD data. Although different degrees of improvement are observed when comparing the fused matrix results in relation to those obtained using a single detector, clear benefits of data fusion are demonstrated through: (1) the obtained limits of detection in the ranges 2.1-24 ng mL -1 and 0.9-6.3 ng mL -1 for the two evaluated systems and (2) the low relative prediction errors, below 7% in all cases, indicating good recoveries and precision. The feasibility of fusing data and its advantages in the analysis of real samples was successfully assessed through the study of spiked tap, underground, and river water samples.
Censoring approach to the detection limits in X-ray fluorescence analysis
NASA Astrophysics Data System (ADS)
Pajek, M.; Kubala-Kukuś, A.
2004-10-01
We demonstrate that the effect of detection limits in the X-ray fluorescence analysis (XRF), which limits the determination of very low concentrations of trace elements and results in appearance of the so-called "nondetects", can be accounted for using the statistical concept of censoring. More precisely, the results of such measurements can be viewed as the left random censored data, which can further be analyzed using the Kaplan-Meier method correcting the data for the presence of nondetects. Using this approach, the results of measured, detection limit censored concentrations can be interpreted in a nonparametric manner including the correction for the nondetects, i.e. the measurements in which the concentrations were found to be below the actual detection limits. Moreover, using the Monte Carlo simulation technique we show that by using the Kaplan-Meier approach the corrected mean concentrations for a population of the samples can be estimated within a few percent uncertainties with respect of the simulated, uncensored data. This practically means that the final uncertainties of estimated mean values are limited in fact by the number of studied samples and not by the correction procedure itself. The discussed random-left censoring approach was applied to analyze the XRF detection-limit-censored concentration measurements of trace elements in biomedical samples.
Subcommunities and Their Mutual Relationships in a Transaction Network
NASA Astrophysics Data System (ADS)
Iino, T.; Iyetomi, H.
We investigate a Japanese transaction network consisting ofabout 800 thousand firms (nodes) and four million business relations (links) with focus on its modular structure. Communities detected by maximizing modularity often are dominated by firms with common features or behaviors in the network, such as characterized by regions or industry sectors. However, it is well known that the modularity optimization approach has a resolution limit problem, that is, it fails in identifying fine communities buried in large communities. To unfold such hidden structures, we apply the community detection to each of subnetworks formed by isolating those communities from the whole body. Subcommunities thus identified are composed of firms with finer regions, more specified sectors or business affiliations. Also we introduce a new idea of reduced modularity matrix to measure the strength of relations between (sub)communities.
Gilhuley, Kathleen; Cianciminio-Bordelon, Diane; Tang, Yi-Wei
2012-01-01
We compared the performance characteristics of culture and the Cepheid Xpert vanA assay for routine surveillance of vancomycin-resistant enterococci (VRE) from rectal swabs in patients at high risk for VRE carriage. The Cepheid Xpert vanA assay had a limit of detection of 100 CFU/ml and correctly detected 101 well-characterized clinical VRE isolates with no cross-reactivity in 27 non-VRE and related culture isolates. The clinical sensitivity, specificity, positive predictive value, and negative predictive value of the Xpert vanA PCR assay were 100%, 96.9%, 91.3%, and 100%, respectively, when tested on 300 consecutively collected rectal swabs. This assay provides excellent predictive values for prompt identification of VRE-colonized patients in hospitals with relatively high rates of VRE carriage. PMID:22972822
Zhang, Zhiyong; Zhao, Dishun; Xu, Baoyun
2013-01-01
A simple and rapid method is described for the analysis of glyoxal and related substances by high-performance liquid chromatography with a refractive index detector. The following chromatographic conditions were adopted: Aminex HPX-87H column, mobile phase consisting of 0.01N H2SO4, flow rate of 0.8 mL/min and temperature of 65°C. The application of the analytical technique developed in this study demonstrated that the aqueous reaction mixture produced by the oxidation of acetaldehyde with HNO3 was composed of glyoxal, acetaldehyde, acetic acid, formic acid, glyoxylic acid, oxalic acid, butanedione and glycolic acid. The method was validated by evaluating analytical parameters such as linearity, limits of detection and quantification, precision, recovery and robustness. The proposed methodology was successfully applied to the production of glyoxal.
Method of non-destructively inspecting a curved wall portion
Fong, James T.
1996-01-01
A method of non-destructively inspecting a curved wall portion of a large and thick walled vessel for a defect by computed tomography is provided. A collimated source of radiation is placed adjacent one side of the wall portion and an array of detectors for the radiation is placed on the other side adjacent the source. The radiation from the source passing through the wall portion is then detected with the detectors over a limited angle, dependent upon the curvature of the wall of the vessel, to obtain a dataset. The source and array are then coordinately moved relative to the wall portion in steps and a further dataset is obtained at each step. The plurality of datasets obtained over the limited angle is then processed to produce a tomogram of the wall portion to determine the presence of a defect therein. In a preferred embodiment, the curved wall portion has a center of curvature so that the source and the array are positioned at each step along a respective arc curved about the center. If desired, the detector array and source can be reoriented relative to a new wall portion and an inspection of the new wall portion can be easily obtained. Further, the source and detector array can be indexed in a direction perpendicular to a plane including the limited angle in a plurality of steps so that by repeating the detecting and moving steps at each index step, a three dimensional image can be created of the wall portion.
Companions in Color: High-Resolution Imaging of Kepler’s Sub-Neptune Host Stars
NASA Astrophysics Data System (ADS)
Ware, Austin; Wolfgang, Angie; Kannan, Deepti
2018-01-01
A current problem in astronomy is determining how sub-Neptune-sized exoplanets form in planetary systems. These kinds of planets, which fall between 1 and 4 times the size of Earth, were discovered in abundance by the Kepler Mission and were typically found with relatively short orbital periods. The combination of their size and orbital period make them unusual in relation to the Solar System, leading to the question of how these exoplanets form and evolve. One possibility is that they have been influenced by distant stellar companions. To help assess the influence of these objects on the present-day, observed properties of exoplanets, we conduct a NIR search for visual stellar companions to the stars around which the Kepler Mission discovered planets. We use high-resolution images obtained with the adaptive optics systems at the Lick Observatory Shane-3m telescope to find these companion stars. Importantly, we also determine the effective brightness and distance from the planet-hosting star at which it is possible to detect these companions. Out of the 200 KOIs in our sample, 42 KOIs (21%) have visual companions within 3”, and 90 (46%) have them within 6”. These findings are consistent with recent high-resolution imaging from Furlan et al. 2017 that found at least one visual companion within 4” for 31% of sampled KOIs (37% within 4" for our sample). Our results are also complementary to Furlan et al. 2017, with only 17 visual companions commonly detected in the same filter. As for detection limits, our preliminary results indicate that we can detect companion stars < 3-5 magnitudes fainter than the planet-hosting star at a separation of ~ 1”. These detection limits will enable us to determine the probability that possible companion stars could be hidden within the noise around the planet-hosting star, an important step in determining the frequency with which these short-period, sub-Neptune-sized planets occur within binary star systems.
Overview of MPLNET Version 3 Cloud Detection
NASA Technical Reports Server (NTRS)
Lewis, Jasper R.; Campbell, James; Welton, Ellsworth J.; Stewart, Sebastian A.; Haftings, Phillip
2016-01-01
The National Aeronautics and Space Administration Micro Pulse Lidar Network, version 3, cloud detection algorithm is described and differences relative to the previous version are highlighted. Clouds are identified from normalized level 1 signal profiles using two complementary methods. The first method considers vertical signal derivatives for detecting low-level clouds. The second method, which detects high-level clouds like cirrus, is based on signal uncertainties necessitated by the relatively low signal-to-noise ratio exhibited in the upper troposphere by eye-safe network instruments, especially during daytime. Furthermore, a multitemporal averaging scheme is used to improve cloud detection under conditions of a weak signal-to-noise ratio. Diurnal and seasonal cycles of cloud occurrence frequency based on one year of measurements at the Goddard Space Flight Center (Greenbelt, Maryland) site are compared for the new and previous versions. The largest differences, and perceived improvement, in detection occurs for high clouds (above 5 km, above MSL), which increase in occurrence by over 5%. There is also an increase in the detection of multilayered cloud profiles from 9% to 19%. Macrophysical properties and estimates of cloud optical depth are presented for a transparent cirrus dataset. However, the limit to which the cirrus cloud optical depth could be reliably estimated occurs between 0.5 and 0.8. A comparison using collocated CALIPSO measurements at the Goddard Space Flight Center and Singapore Micro Pulse Lidar Network (MPLNET) sites indicates improvements in cloud occurrence frequencies and layer heights.
2011-01-01
Background In Puerto Rico, relative to the United States, a disparity exists in detecting oral precancers and early cancers. To identify factors leading to the deficit in early detection, we obtained the perspectives of San Juan healthcare practitioners whose practice could be involved in the detection of such oral lesions. Methods Key informant (KI) interviews were conducted with ten clinicians practicing in or around San Juan, Puerto Rico. We then triangulated our KI interview findings with other data sources, including recent literature on oral cancer detection from various geographic areas, current curricula at the University of Puerto Rico Schools of Medicine and Dental Medicine, as well as local health insurance regulations. Results Key informant-identified factors that likely contribute to the detection deficit include: many practitioners are deficient in knowledge regarding oral cancer and precancer; oral cancer screening examinations are limited regarding which patients receive them and the elements included. In Puerto Rico, specialists generally perform oral biopsies, and patient referral can be delayed by various factors, including government-subsidized health insurance, often referred to as Reforma. Reforma-based issues include often inadequate clinician knowledge regarding Reforma requirements/provisions, diagnostic delays related to Reforma bureaucracy, and among primary physicians, a perceived financial disincentive in referring Reforma patients. Conclusions Addressing these issues may be useful in reducing the deficit in detecting oral precancers and early oral cancer in Puerto Rico. PMID:21612663
True detection limits in an experimental linearly heteroscedastic system.. Part 2
NASA Astrophysics Data System (ADS)
Voigtman, Edward; Abraham, Kevin T.
2011-11-01
Despite much different processing of the experimental fluorescence detection data presented in Part 1, essentially the same estimates were obtained for the true theoretical Currie decision levels ( YC and XC) and true Currie detection limits ( YD and XD). The obtained experimental values, for 5% probability of false positives and 5% probability of false negatives, were YC = 56.0 mV, YD = 125. mV, XC = 0.132 μg/mL and XD = 0.293 μg/mL. For 5% probability of false positives and 1% probability of false negatives, the obtained detection limits were YD = 158 . mV and XD = 0.371 μg/mL. Furthermore, by using bootstrapping methodology on the experimental data for the standards and the analytical blank, it was possible to validate previously published experimental domain expressions for the decision levels ( yC and xC) and detection limits ( yD and xD). This was demonstrated by testing the generated decision levels and detection limits for their performance in regard to false positives and false negatives. In every case, the obtained numbers of false negatives and false positives were as specified a priori.
Ahn, Sang Hoon; Chun, Ji-Yong; Shin, Soo-Kyung; Park, Jun Yong; Yoo, Wangdon; Hong, Sun Pyo; Kim, Soo-Ok; Han, Kwang-Hyub
2013-12-01
Molecular diagnostic methods have enabled the rapid diagnosis of drug-resistant mutations in hepatitis B virus (HBV) and have reduced both unnecessary therapeutic interventions and medical costs. In this study we evaluated the analytical and clinical performances of the HepB Typer-Entecavir kit (GeneMatrix, Korea) in detecting entecavir-resistance-associated mutations. The HepB Typer-Entecavir kit was evaluated for its limit of detection, interference, cross-reactivity, and precision using HBV reference standards made by diluting high-titer viral stocks in HBV-negative human serum. The performance of the HepB Typer-Entecavir kit for detecting mutations related to entecavir resistance was compared with direct sequencing for 396 clinical samples from 108 patients. Using the reference standards, the detection limit of the HepB Typer-Entecavir kit was found to be as low as 500 copies/mL. No cross-reactivity was observed, and elevated levels of various interfering substances did not adversely affect its analytical performance. The precision test conducted by repetitive analysis of 2,400 replicates with reference standards at various concentrations showed 99.9% agreement (2398/2400). The overall concordance rate between the HepB Typer-Entecavir kit and direct sequencing assays in 396 clinical samples was 99.5%. The HepB Typer-Entecavir kit showed high reliability and precision, and comparable sensitivity and specificity for detecting mutant virus populations in reference and clinical samples in comparison with direct sequencing. Therefore, this assay would be clinically useful in the diagnosis of entecavir-resistance-associated mutations in chronic hepatitis B.
NASA Astrophysics Data System (ADS)
Zimmer, P.; McGraw, J. T.; Ackermann, M. R.
There is considerable interest in the capability to discover and monitor small objects (d 20cm) in geosynchronous (GEO) and near-GEO orbital regimes using small, ground-based optical telescopes (D < 0.5m). The threat of such objects is clear. Small telescopes have an unrivaled cost advantage and, under ideal lighting and sky conditions, have the capability of detecting faint objects. This combination of conditions, however, is relatively rare, making routine and persistent surveillance more challenging. In a truly geostationary orbit, a small object is easy to detect because its apparent rate of motion is nearly zero for a ground-based observer, and signal accumulation occurs as it would for more traditional sidereal-tracked astronomical observations. In this regime, though, small objects are not expected to be in controlled or predictable orbits, thus a range of inclinations and eccentricities is possible. This results in a range of apparent angular rates and directions that must be surveilled. This firmly establishes this task as uncued or blind surveillance. Detections in this case are subject to what is commonly called “trailing loss,” where the signal from the object does not accumulate in a fixed detection element, resulting in far lower sensitivity than for a similar object optimally tracked. We review some of the limits of detecting these objects under less than ideal observing conditions, subject further to the current limitations based on technological and operational realities. We demonstrate progress towards this goal using telescopes much smaller than normally considered viable for this task using novel detection and analysis techniques.
Antibiotic Resistance Gene Detection in the Microbiome Context.
Do, Thi Thuy; Tamames, Javier; Stedtfeld, Robert D; Guo, Xueping; Murphy, Sinead; Tiedje, James M; Walsh, Fiona
2018-06-01
Within the past decade, microbiologists have moved from detecting single antibiotic resistance genes (ARGs) to detecting all known resistance genes within a sample due to advances in next generation sequencing. This has provided a wealth of data on the variation and relative abundances of ARGs present in a total bacterial population. However, to use these data in terms of therapy or risk to patients, they must be analyzed in the context of the background microbiome. Using a quantitative PCR ARG chip and 16S rRNA amplicon sequencing, we have sought to identify the ARGs and bacteria present in a fecal sample of a healthy adult using genomic tools. Of the 42 ARGs detected, 12 fitted into the ResCon1 category of ARGs: cfxA, cphA, bacA, sul3, aadE, bla TEM , aphA1, aphA3, aph(2')-Id, aacA/aphd, catA1, and vanC. Therefore, we describe these 12 genes as the core resistome of this person's fecal microbiome and the remaining 30 ARGs as descriptors of the microbial population within the fecal microbiome. The dominant phyla and genera agree with those previously detected in the greatest abundances in fecal samples of healthy humans. The majority of the ARGs detected were associated with the presence of specific bacterial taxa, which were confirmed using microbiome analysis. We acknowledge the limitations of the data in the context of the limited sample set. However, the principle of combining qPCR and microbiome analysis was shown to be helpful to identify the association of the ARGs with specific taxa.
Talarico, Daria; Arduini, Fabiana; Amine, Aziz; Cacciotti, Ilaria; Moscone, Danila; Palleschi, Giuseppe
2016-10-01
We report a screen-printed electrode (SPE) modified with a dispersion of carbon black (CB) and chitosan by drop casting. A cyclic voltammetry technique towards ferricyanide, caffeic acid, hydroquinone, and thiocholine was performed and an improvement of the electrochemical response with respect to bare SPE as well as SPE modified only with chitosan was observed. The possibility to detect thiocholine at a low applied potential with high sensitivity was exploited and an acetylcholinesterase (AChE) biosensor was developed. A dispersion of CB, chitosan, and AChE was used to fabricate this biosensor in one step by drop casting. The enzymatic activity of the immobilized AChE was determined measuring the enzymatic product thiocholine at +300 mV. Owing to the capability of organophosphorus pesticides to inhibit AChE, this biosensor was used to detect these pollutants, and paraoxon was taken as model compound. The enzyme inhibition was linearly related to the concentration of paraoxon up to 0.5 μg L(-1), and a low detection limit equal to 0.05 μg L(-1) (calculated as 10% of inhibition) was achieved. This biosensor was challenged for paraoxon detection in drinking waters with satisfactory recovery values. The use of AChE embedded in a dispersion of CB and chitosan allowed an easy and fast production of a sensitive biosensor suitable for paraoxon detection in drinking waters at legal limit levels. Graphical Abstract Biosensors based on screen-printed electrodes modified with Acetylcholinesterase, Carbon Black, and Chitosan for organophosphorus pesticide detection.
Manamsa, K; Lapworth, D J; Stuart, M E
2016-10-15
This paper explores the temporal variation of a broad suite of micro organic (MO) compounds within hydrologically linked compartments of a lowland Chalk catchment, the most important drinking water aquifer in the UK. It presents an assessment of results from relatively high frequency monitoring at a well-characterised site, including the type and concentrations of compounds detected and how they change under different hydrological conditions including exceptionally high groundwater levels and river flow conditions during 2014 and subsequent recovery. This study shows for the first time that within the Chalk groundwater there can be a greater diversity of the MOs compared to surface waters. Within the Chalk 26 different compounds were detected over the duration of the study compared to 17 in the surface water. Plasticisers (0.06-39μg/L) were found to dominate in the Chalk groundwater on 5 visits (38.4%) accounting for 14.5% of detections but contributing highest concentrations whilst other compounds dominated in the surface water. Trichloroethene and atrazine were among the most frequently detected compounds. The limit for the total pesticide concentration detected did not exceed EU/UK prescribed concentration values for drinking water. Emerging organic compounds such as caffeine, which currently do not have water quality limits, were also detected. The low numbers of compounds found within the hyporheic zone highlight the role of this transient interface in the attenuation and breakdown of the MOs, and provision of an important ecosystem service. Copyright © 2016 British Geological Survey, NERC. Published by Elsevier B.V. All rights reserved.
Milbury, Coren A.; Chen, Clark C.; Mamon, Harvey; Liu, Pingfang; Santagata, Sandro; Makrigiorgos, G. Mike
2011-01-01
Thorough screening of cancer-specific biomarkers, such as DNA mutations, can require large amounts of genomic material; however, the amount of genomic material obtained from some specimens (such as biopsies, fine-needle aspirations, circulating-DNA or tumor cells, and histological slides) may limit the analyses that can be performed. Furthermore, mutant alleles may be at low-abundance relative to wild-type DNA, reducing detection ability. We present a multiplex-PCR approach tailored to amplify targets of interest from small amounts of precious specimens, for extensive downstream detection of low-abundance alleles. Using 3 ng of DNA (1000 genome-equivalents), we amplified the 1 coding exons (2-11) of TP53 via multiplex-PCR. Following multiplex-PCR, we performed COLD-PCR (co-amplification of major and minor alleles at lower denaturation temperature) to enrich low-abundance variants and high resolution melting (HRM) to screen for aberrant melting profiles. Mutation-positive samples were sequenced. Evaluation of mutation-containing dilutions revealed improved sensitivities after COLD-PCR over conventional-PCR. COLD-PCR improved HRM sensitivity by approximately threefold to sixfold. Similarly, COLD-PCR improved mutation identification in sequence-chromatograms over conventional PCR. In clinical specimens, eight mutations were detected via conventional-PCR-HRM, whereas 12 were detected by COLD-PCR-HRM, yielding a 33% improvement in mutation detection. In summary, we demonstrate an efficient approach to increase screening capabilities from limited DNA material via multiplex-PCR and improve mutation detection sensitivity via COLD-PCR amplification. PMID:21354058
METHODS OF DEALING WITH VALUES BELOW THE LIMIT OF DETECTION USING SAS
Due to limitations of chemical analysis procedures, small concentrations cannot be precisely measured. These concentrations are said to be below the limit of detection (LOD). In statistical analyses, these values are often censored and substituted with a constant value, such ...
Detection limit used for early warning in public health surveillance.
Kobari, Tsuyoshi; Iwaki, Kazuo; Nagashima, Tomomi; Ishii, Fumiyoshi; Hayashi, Yuzuru; Yajima, Takehiko
2009-06-01
A theory of detection limit, developed in analytical chemistry, is applied to public health surveillance to detect an outbreak of national emergencies such as natural disaster and bioterrorism. In this investigation, the influenza epidemic around the Tokyo area from 2003 to 2006 is taken as a model of normal and large-scale epidemics. The detection limit of the normal epidemic is used as a threshold with a specified level of significance to identify a sign of the abnormal epidemic among the daily variation in anti-influenza drug sales at community pharmacies. While auto-correlation of data is often an obstacle to an unbiased estimator of standard deviation involved in the detection limit, the analytical theory (FUMI) can successfully treat the auto-correlation of the drug sales in the same way as the auto-correlation appearing as 1/f noise in many analytical instruments.
Strategies and limitations for fluorescence detection of XAFS at high flux beamlines
Heald, Steve M.
2015-02-17
The issue of detecting the XAFS signal from dilute samples is discussed in detail with the aim of making best use of high flux beamlines that provide up to 10 13 photons -1. Various detection methods are compared, including filters with slits, solid state detectors, crystal analyzers and combinations of these. These comparisons rely on simulations that use experimentally determined parameters. It is found that inelastic scattering places a fundamental limit on detection, and that it is important to take proper account of the polarization dependence of the signals. The combination of a filter–slit system with a solid state detectormore » is a promising approach. With an optimized system good performance can be obtained even if the total count rate is limited to 10 7 Hz. Detection schemes with better energy resolution can help at the largest dilutions if their collection efficiency and count rate limits can be improved.« less
Strategies and limitations for fluorescence detection of XAFS at high flux beamlines
Heald, Steve M.
2015-01-01
The issue of detecting the XAFS signal from dilute samples is discussed in detail with the aim of making best use of high flux beamlines that provide up to 1013 photons s−1. Various detection methods are compared, including filters with slits, solid state detectors, crystal analyzers and combinations of these. These comparisons rely on simulations that use experimentally determined parameters. It is found that inelastic scattering places a fundamental limit on detection, and that it is important to take proper account of the polarization dependence of the signals. The combination of a filter–slit system with a solid state detector is a promising approach. With an optimized system good performance can be obtained even if the total count rate is limited to 107 Hz. Detection schemes with better energy resolution can help at the largest dilutions if their collection efficiency and count rate limits can be improved. PMID:25723945
Applicability of the ParaDNA(®) Screening System to Seminal Samples.
Tribble, Nicholas D; Miller, Jamie A D; Dawnay, Nick; Duxbury, Nicola J
2015-05-01
Seminal fluid represents a common biological material recovered from sexual assault crime scenes. Such samples can be prescreened using different techniques to determine cell type and relative amount before submitting for full STR profiling. The ParaDNA(®) Screening System is a novel forensic test which identifies the presence of DNA through amplification and detection of two common STR loci (D16S539 and TH01) and the Amelogenin marker. The detection of the Y allele in samples could provide a useful tool in the triage and submission of sexual assault samples by enforcement authorities. Male template material was detected on a range of common sexual assault evidence items including cotton pillow cases, condoms, swab heads and glass surfaces and shows a detection limit of 1 in 1000 dilution of neat semen. These data indicate this technology has the potential to be a useful tool for the detection of male donor DNA in sexual assault casework. © 2015 American Academy of Forensic Sciences.
Yue, Yongkang; Huo, Fangjun; Zhang, Yongbin; Chao, Jianbin; Martínez-Máñez, Ramón; Yin, Caixia
2016-11-01
We report herein a highly selective and sensitive turn-on fluorescent probe (compound 1) with a fast response time (less than 2 min) for thiophenol detection based on an "enhanced S N Ar" reaction between thiophenols and a sulfonyl-ester moiety covalently attach to curcumin. Reaction of 1 in Hepes-MeOH (1:1, v/v, pH 7.4) in the presence of 4-methylthiophenol (MTP) resulted in a remarkable enhancement of the fluorescence. A linear response in the presence of MTP of the relative fluorescent intensity (F - F 0 ) of 1 at 536 nm in the 0-40 μM MTP concentration range was found. A limit of detection (LOD) for the detection of MTP of 26 nM, based on the definition by IUPAC (C DL = 3 Sb/m), was calculated. Probe 1 was applied to monitor and imaging exogenous MTP in live cells and to the detection of MTP in real water samples.
NASA Astrophysics Data System (ADS)
Mirzaei, Mohammad; Saeed, Jaber
2011-11-01
A selective and sensitive chemosensor, based on the 2(4-hydroxy pent-3-en-2-ylideneamine) phenol (HPYAP) as chromophore, has been developed for colorimetric and visual detection of Ag(I) ions. HPYAP shows a considerable chromogenic behavior toward Ag(I) ions by changing the color of the solution from pale-yellow to very chromatic-yellow, which can be easily detected with the naked-eye. The chemosensor exhibited selective absorbance enhancement to Ag(I) ions in water samples over other metal ions at 438 nm, with a linear range of 0.4-500 μM ( r2 = 0.999) and a limit of detection 0.07 μM of Ag(I) ions with UV-vis spectrophotometer detection. The relative standard deviation (RSD) for 100 μM Ag(I) ions was 2.05% ( n = 7). The proposed method was applied for the determination Ag(I) ions in water and waste water samples.
MicroRNA Detection by DNA-Mediated Liposome Fusion.
Jumeaux, Coline; Wahlsten, Olov; Block, Stephan; Kim, Eunjung; Chandrawati, Rona; Howes, Philip D; Höök, Fredrik; Stevens, Molly M
2018-03-02
Membrane fusion is a process of fundamental importance in biological systems that involves highly selective recognition mechanisms for the trafficking of molecular and ionic cargos. Mimicking natural membrane fusion mechanisms for the purpose of biosensor development holds great potential for amplified detection because relatively few highly discriminating targets lead to fusion and an accompanied engagement of a large payload of signal-generating molecules. In this work, sequence-specific DNA-mediated liposome fusion is used for the highly selective detection of microRNA. The detection of miR-29a, a known flu biomarker, is demonstrated down to 18 nm within 30 min with high specificity by using a standard laboratory microplate reader. Furthermore, one order of magnitude improvement in the limit of detection is demonstrated by using a novel imaging technique combined with an intensity fluctuation analysis, which is coined two-color fluorescence correlation microscopy. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Visible Contrast Energy Metrics for Detection and Discrimination
NASA Technical Reports Server (NTRS)
Ahumada, Albert; Watson, Andrew
2013-01-01
Contrast energy was proposed by Watson, Robson, & Barlow as a useful metric for representing luminance contrast target stimuli because it represents the detectability of the stimulus in photon noise for an ideal observer. Like the eye, the ear is a complex transducer system, but relatively simple sound level meters are used to characterize sounds. These meters provide a range of frequency sensitivity functions and integration times depending on the intended use. We propose here the use of a range of contrast energy measures with different spatial frequency contrast sensitivity weightings, eccentricity sensitivity weightings, and temporal integration times. When detection threshold are plotting using such measures, the results show what the eye sees best when these variables are taken into account in a standard way. The suggested weighting functions revise the Standard Spatial Observer for luminance contrast detection and extend it into the near periphery. Under the assumption that the detection is limited only by internal noise, discrimination performance can be predicted by metrics based on the visible energy of the difference images
Reyes, John Carlo B; Solon, Juan Antonio A; Rivera, Windell L
2014-07-01
A loop-mediated isothermal amplification (LAMP) assay targeting the 2-kbp repeated DNA species-specific sequence was developed for detection of Trichomonas vaginalis, the causative agent of trichomoniasis. The analytical sensitivity and specificity of the LAMP assay were evaluated using pooled genital swab and urine specimens, respectively, spiked with T. vaginalis trophozoites. Genital secretion and urine did not inhibit the detection of the parasite. The sensitivity of the LAMP was 10-1000 times higher than the PCR performed. The detection limit of LAMP was 1 trichomonad for both spiked genital swab and urine specimens. Also, LAMP did not exhibit cross-reactivity with closely-related trichomonads, Trichomonas tenax and Pentatrichomonas hominis, and other enteric and urogenital microorganisms, Entamoeba histolytica, Candida albicans, Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. This is the first report of a LAMP assay for the detection of T. vaginalis and has prospective application for rapid diagnosis and control of trichomoniasis. Copyright © 2014 Elsevier Inc. All rights reserved.
A rapid low-cost high-density DNA-based multi-detection test for routine inspection of meat species.
Lin, Chun Chi; Fung, Lai Ling; Chan, Po Kwok; Lee, Cheuk Man; Chow, Kwok Fai; Cheng, Shuk Han
2014-02-01
The increasing occurrence of food frauds suggests that species identification should be part of food authentication. Current molecular-based species identification methods have their own limitations or drawbacks, such as relatively time-consuming experimental steps, expensive equipment and, in particular, these methods cannot identify mixed species in a single experiment. This project proposes an improved method involving PCR amplification of the COI gene and detection of species-specific sequences by hybridisation. Major innovative breakthrough lies in the detection of multiple species, including pork, beef, lamb, horse, cat, dog and mouse, from a mixed sample within a single experiment. The probes used are species-specific either in sole or mixed species samples. As little as 5 pg of DNA template in the PCR is detectable in the proposed method. By designing species-specific probes and adopting reverse dot blot hybridisation and flow-through hybridisation, a low-cost high-density DNA-based multi-detection test suitable for routine inspection of meat species was developed. © 2013.
NASA Technical Reports Server (NTRS)
Cordiner, M. A.; Charnley, S. B.; Kisiel, Z.; McGuire, B. A.; Kuan, Y. -J.
2017-01-01
The 100-meter Robert C. Byrd Green Bank Telescope K-band (KFPA) receiver was used to perform a high-sensitivity search for rotational emission lines from complex organic molecules in the cold interstellar medium toward TMC-1 (Taurus Molecular Cloud - cyanopolyyne peak), focussing on the identification of new carbon-chain-bearing species as well as molecules of possible prebiotic relevance. We report a detection of the carbon-chain oxide species HC7O and derive a column density of (7.8 plus or minus 0.9) times 10 (sup 11) per square centimeter. This species is theorized to form as a result of associative electron detachment reactions between oxygen atoms and C7H minus, and/or reaction of C6H2 plus with CO (followed by dissociative electron recombination). Upper limits are given for the related HC6O, C6O, and C7O molecules. In addition, we obtained the fi�rst detections of emission from individual (sup 13) C isotopologues of HC7N, and derive abundance ratios HC7N/HCCCC (sup 13) CCCN equal to 110 plus or minus 16 and HC7N/HCCCC (sup 13) CCCN equal to 96 plus or minus 11, indicative of significant (sup 13) C depletion in this species relative to the local interstellar elemental (sup 12) C divided by (sup 13) C ratio of 60-70. The observed spectral region covered two transitions of HC11N, but emission from this species was not detected, and the corresponding column density upper limit is 7.4 times 10 (sup 10) per square centimeter (at 95 percent confidence). This is significantly lower than the value of 2.8 times 10 (sup 11) per square centimeter previously claimed by Bell et al. and con�rms the recent nondetection of HC11N in TMC-1 by Loomis et al. Upper limits were also obtained for the column densities of malononitrile and the nitrogen heterocycles quinoline, isoquinoline, and pyrimidine.
A highly selective chemiluminescent probe for the detection of chromium(VI)
NASA Astrophysics Data System (ADS)
Jin, Yan; Sun, Yonghua; Li, Chongying; Yang, Chao
2018-03-01
In present work, rhodamine B hydrazide and rhodamine 6G hydrazide were synthesized and the chemiluminescence performance has been investigated. Based on the chemiluminescence of rhodamine 6G hydrazide-chromium(VI), a selective and sensitive method for the direct detection of chromium(VI) was developed. The chemiluminescence intensity was linearly related to the concentration of chromium(VI) in the range of 2.60 × 10- 8-8.00 × 10- 6 mol/L with a correlation coefficient of r = 0.998 and a detection limit of 1.4 × 10- 8 mol/L (S/N = 3). The results indicated rhodamine 6G hydrazide was an excellent chemiluminescent probe for chromium(VI) without reduction of chromium(VI) to chromium(III). A possible mechanism of CL emission was also suggested.
Real-time detection of antibiotic activity by measuring nanometer-scale bacterial deformation
NASA Astrophysics Data System (ADS)
Iriya, Rafael; Syal, Karan; Jing, Wenwen; Mo, Manni; Yu, Hui; Haydel, Shelley E.; Wang, Shaopeng; Tao, Nongjian
2017-12-01
Diagnosing antibiotic-resistant bacteria currently requires sensitive detection of phenotypic changes associated with antibiotic action on bacteria. Here, we present an optical imaging-based approach to quantify bacterial membrane deformation as a phenotypic feature in real-time with a nanometer scale (˜9 nm) detection limit. Using this approach, we found two types of antibiotic-induced membrane deformations in different bacterial strains: polymyxin B induced relatively uniform spatial deformation of Escherichia coli O157:H7 cells leading to change in cellular volume and ampicillin-induced localized spatial deformation leading to the formation of bulges or protrusions on uropathogenic E. coli CFT073 cells. We anticipate that the approach will contribute to understanding of antibiotic phenotypic effects on bacteria with a potential for applications in rapid antibiotic susceptibility testing.
NASA Technical Reports Server (NTRS)
Ahearn, Michael F.; Mcfadden, Lucy A.; Feldman, Paul D.; Boehnhardt, Hermann; Rahe, Juergen; Festou, Michael; Brandt, John C.; Maran, Stephen P.; Niedner, Malcom B.; Smith, Andrew M.
1986-01-01
The IUE spectrophotometry of Comet P/Giacobini-Zinner was acquired in support of the International Cometary Explorer (ICE) mission. The abundances (or upper limits) of UV-active species were calculated. During the ICE encounter the H2O production rate was 3 times 10 to the 28th power/sec, + or - 50%, consistent with values derived from the ICE experiments. Comparison of the abundance of CO2(+) ions with the total electron density measured by the plasma electron experiment on ICE indicates a deficiency of ions relative to electrons indicating a population of ions not detected by remote sensing. The absence of detectable Mg(+) rules out this species as a possible ion of M/Q = 24 detected by the Ion Composition Instrument, part of the ICE complement of instruments.
Hruby, Claire E.; Libra, Robert D.; Fields, Chad L.; Kolpin, Dana W.; Hubbard, Laura E.; Borchardt, Mark R.; Spencer, Susan K.; Wichman, Michael D.; Hall, Nancy; Schueller, Michael D.; Furlong, Edward T.; Weyer, Peter J.
2015-01-01
Studies in Iowa have long documented the vulnerability of wells with less than 50 feet (15 meters) of confining materials above the source aquifer to contamination from nitrate and various pesticides. Recent studies in Wisconsin have documented the occurrence of viruses in untreated groundwater, even in wells considered to have little vulnerability to contamination from near-surface activities. In addition, sensitive methods have become available for analyses of pharmaceuticals and pesticides. This study represents the first comprehensive examination of contaminants of emerging concern in Iowa’s groundwater conducted to date, and one of the first conducted in the United States. Raw groundwater samples were collected from 66 public supply wells during the spring of 2013, when the state was recovering from drought conditions. Samples were analyzed for 206 chemical and biological parameters; including 20 general water-quality parameters and major ions, 19 metals, 5 nutrients, 10 virus groups, 3 species of pathogenic bacteria, 5 microbial indicators, 108 pharmaceuticals, 35 pesticides and pesticide degradates, and tritium. The wells chosen for this study represent a diverse range of ages, depths, confining material thicknesses, pumping rates, and land use settings. The most commonly detected contaminant group was pesticide compounds, which were present in 41% of the samples. As many as 6 pesticide compounds were found together in a sample, most of which were chloroacetanilide degradates. While none of the measured concentrations of pesticide compounds exceeded current benchmark levels, several of these compounds are listed on the U.S. Environmental Protection Agency’s Contaminant Candidate List and could be subject to drinking water standards in the future. Despite heavy use in the past decade, glyphosate was not detected, and its metabolite, aminomethylphosphonic acid, was only detected in two of 60 wells tested (3%) at the detection limit of 0.02 μg/L. Pharmaceutical compounds were detected in 35% of 63 samples. Of the 14 pharmaceuticals detected, six had reported concentrations above the method reporting limit, with the maximum reported concentration of 826 ng/L for acetaminophen. Diphenhydramine was the only pharmaceutical to have two detections above the reporting limit, at 24.5 and 145 ng/L. Eight pharmaceuticals had confirmed detections at concentrations below the method reporting limit. Caffeine was the most frequently detected pharmaceutical compound (25%), followed by the caffeine metabolite, 1,7- dimethylxanthine (16%). Microorganisms were detected in 21% of the wells using quantitative polymerase chain reaction methodologies. The most frequently detected microorganism was the pepper mild mottle virus (PMMV), a plant pathogen found in human waste. PMMV was detected in 17% of samples at concentrations ranging from 0.4 to 6.38 gene copies per liter. GII norovirus, human polyomavirus, bovine polyomavirus, and Campylobacter were also detected, while adenovirus, enterovirus, GI norovirus, swine hepatitis E, Salmonella, and enterohemmorhagic E. coli were not detected. No correlations were found between viruses or pathogenic bacteria and microbial indicators. Wells with less than 50 feet (15 meters) of confining material were shown to have greater incidence of surface-related contaminants; however, significant relationships (p<0.05) between confining layer thickness and contaminants were only found for nitrate and herbicides.
Quantum sensing of weak radio-frequency signals by pulsed Mollow absorption spectroscopy.
Joas, T; Waeber, A M; Braunbeck, G; Reinhard, F
2017-10-17
Quantum sensors-qubits sensitive to external fields-have become powerful detectors for various small acoustic and electromagnetic fields. A major key to their success have been dynamical decoupling protocols which enhance sensitivity to weak oscillating (AC) signals. Currently, those methods are limited to signal frequencies below a few MHz. Here we harness a quantum-optical effect, the Mollow triplet splitting of a strongly driven two-level system, to overcome this limitation. We microscopically understand this effect as a pulsed dynamical decoupling protocol and find that it enables sensitive detection of fields close to the driven transition. Employing a nitrogen-vacancy center, we detect GHz microwave fields with a signal strength (Rabi frequency) below the current detection limit, which is set by the center's spectral linewidth [Formula: see text]. Pushing detection sensitivity to the much lower 1/T 2 limit, this scheme could enable various applications, most prominently coherent coupling to single phonons and microwave photons.Dynamical decoupling protocols can enhance the sensitivity of quantum sensors but this is limited to signal frequencies below a few MHz. Here, Joas et al. use the Mollow triplet splitting in a nitrogen-vacancy centre to overcome this limitation, enabling sensitive detection of signals in the GHz range.
Niu, Chenqi; Xu, Yuancong; Zhang, Chao; Zhu, Pengyu; Huang, Kunlun; Luo, Yunbo; Xu, Wentao
2018-05-01
As genetically modified (GM) technology develops and genetically modified organisms (GMOs) become more available, GMOs face increasing regulations and pressure to adhere to strict labeling guidelines. A singleplex detection method cannot perform the high-throughput analysis necessary for optimal GMO detection. Combining the advantages of multiplex detection and droplet digital polymerase chain reaction (ddPCR), a single universal primer-multiplex-ddPCR (SUP-M-ddPCR) strategy was proposed for accurate broad-spectrum screening and quantification. The SUP increases efficiency of the primers in PCR and plays an important role in establishing a high-throughput, multiplex detection method. Emerging ddPCR technology has been used for accurate quantification of nucleic acid molecules without a standard curve. Using maize as a reference point, four heterologous sequences ( 35S, NOS, NPTII, and PAT) were selected to evaluate the feasibility and applicability of this strategy. Surprisingly, these four genes cover more than 93% of the transgenic maize lines and serve as preliminary screening sequences. All screening probes were labeled with FAM fluorescence, which allows the signals from the samples with GMO content and those without to be easily differentiated. This fiveplex screening method is a new development in GMO screening. Utilizing an optimal amplification assay, the specificity, limit of detection (LOD), and limit of quantitation (LOQ) were validated. The LOD and LOQ of this GMO screening method were 0.1% and 0.01%, respectively, with a relative standard deviation (RSD) < 25%. This method could serve as an important tool for the detection of GM maize from different processed, commercially available products. Further, this screening method could be applied to other fields that require reliable and sensitive detection of DNA targets.
Yang, Xiaoping; Zhang, Xiaohui; Huang, Yanping; Wang, Rong; Xia, Hua; Li, Wenbin; Guo, YouMin
2015-11-01
To establish a method for detecting rifampicin in human cerebrospinal fluid (CSF) with restricted access media coupled with high-performance liquid chromatography that allows online direct sample injection and enrichment. We used the column of restricted access media as the pre-treatment column and a C18 column as the analytical column. The mobile phase of pre-treatment column was water-methanol (95:5,V/V) and the flow rate was 1 mL/min; the mobile phase of the analytical column was methanol-acetonitrile-10 mmol/L ammonuium acetate (volume ratio of 60:5:35). The detection wavelength was 254 nm and the column temperature was set at 25 degrees celsius;. For an injection volume of 100 µL, the peak area of rifampicin was 5.33 times that for an injection volume of 20 µL, and the limit of detection was effectively improved. The calibration curve showed an excellent linear relationship (r=0.9997) between rifampicin concentrations and peak areas within the concentration range of 0.25 to 8 µg/mL in CSF. The limits of detection and quantification was 0.07 µg/mL and 0.25 µg/mL, respecetively, with intra-day and inter-day assay precisions and relative standard deviation (RSD%) all below 5%. The recoveries of rifampicin at 3 blank spiked levels (low, medium, and high) ranged from 87.69% to 102.11%. In patients taking oral rifampicin at the dose of 10 mg/kg, the average rifampicin concentration was 0.29 in the CSF at 2 h after medication. The method we established is simple and fast for detecting rifampicin in CSF and allows direct online injection and enrichment with good detection precisions and accuracies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Able, CM; Baydush, AH; Nguyen, C
Purpose: To determine the effectiveness of SPC analysis for a model predictive maintenance process that uses accelerator generated parameter and performance data contained in trajectory log files. Methods: Each trajectory file is decoded and a total of 131 axes positions are recorded (collimator jaw position, gantry angle, each MLC, etc.). This raw data is processed and either axis positions are extracted at critical points during the delivery or positional change over time is used to determine axis velocity. The focus of our analysis is the accuracy, reproducibility and fidelity of each axis. A reference positional trace of the gantry andmore » each MLC is used as a motion baseline for cross correlation (CC) analysis. A total of 494 parameters (482 MLC related) were analyzed using Individual and Moving Range (I/MR) charts. The chart limits were calculated using a hybrid technique that included the use of the standard 3σ limits and parameter/system specifications. Synthetic errors/changes were introduced to determine the initial effectiveness of I/MR charts in detecting relevant changes in operating parameters. The magnitude of the synthetic errors/changes was based on: TG-142 and published analysis of VMAT delivery accuracy. Results: All errors introduced were detected. Synthetic positional errors of 2mm for collimator jaw and MLC carriage exceeded the chart limits. Gantry speed and each MLC speed are analyzed at two different points in the delivery. Simulated Gantry speed error (0.2 deg/sec) and MLC speed error (0.1 cm/sec) exceeded the speed chart limits. Gantry position error of 0.2 deg was detected by the CC maximum value charts. The MLC position error of 0.1 cm was detected by the CC maximum value location charts for every MLC. Conclusion: SPC I/MR evaluation of trajectory log file parameters may be effective in providing an early warning of performance degradation or component failure for medical accelerator systems.« less
Gounaridis, Lefteris; Groumas, Panos; Schreuder, Erik; Heideman, Rene; Avramopoulos, Hercules; Kouloumentas, Christos
2016-04-04
It is still a common belief that ultra-high quality-factors (Q-factors) are a prerequisite in optical resonant cavities for high refractive index resolution and low detection limit in biosensing applications. In combination with the ultra-short steps that are necessary when the measurement of the resonance shift relies on the wavelength scanning of a laser source and conventional methods for data processing, the high Q-factor requirement makes these biosensors extremely impractical. In this work we analyze an alternative processing method based on the fast-Fourier transform, and show through Monte-Carlo simulations that improvement by 2-3 orders of magnitude can be achieved in the resolution and the detection limit of the system in the presence of amplitude and spectral noise. More significantly, this improvement is maximum for low Q-factors around 104 and is present also for high intra-cavity losses and large scanning steps making the designs compatible with the low-cost aspect of lab-on-a-chip technology. Using a micro-ring resonator as model cavity and a system design with low Q-factor (104), low amplitude transmission (0.85) and relatively large scanning step (0.25 pm), we show that resolution close to 0.01 pm and detection limit close to 10-7 RIU can be achieved improving the sensing performance by more than 2 orders of magnitude compared to the performance of systems relying on a simple peak search processing method. The improvement in the limit of detection is present even when the simple method is combined with ultra-high Q-factors and ultra-short scanning steps due to the trade-off between the system resolution and sensitivity. Early experimental results are in agreement with the trends of the numerical studies.
Probabilistic pipe fracture evaluations for leak-rate-detection applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rahman, S.; Ghadiali, N.; Paul, D.
1995-04-01
Regulatory Guide 1.45, {open_quotes}Reactor Coolant Pressure Boundary Leakage Detection Systems,{close_quotes} was published by the U.S. Nuclear Regulatory Commission (NRC) in May 1973, and provides guidance on leak detection methods and system requirements for Light Water Reactors. Additionally, leak detection limits are specified in plant Technical Specifications and are different for Boiling Water Reactors (BWRs) and Pressurized Water Reactors (PWRs). These leak detection limits are also used in leak-before-break evaluations performed in accordance with Draft Standard Review Plan, Section 3.6.3, {open_quotes}Leak Before Break Evaluation Procedures{close_quotes} where a margin of 10 on the leak detection limit is used in determining the crackmore » size considered in subsequent fracture analyses. This study was requested by the NRC to: (1) evaluate the conditional failure probability for BWR and PWR piping for pipes that were leaking at the allowable leak detection limit, and (2) evaluate the margin of 10 to determine if it was unnecessarily large. A probabilistic approach was undertaken to conduct fracture evaluations of circumferentially cracked pipes for leak-rate-detection applications. Sixteen nuclear piping systems in BWR and PWR plants were analyzed to evaluate conditional failure probability and effects of crack-morphology variability on the current margins used in leak rate detection for leak-before-break.« less
USDA-ARS?s Scientific Manuscript database
The favored method of organic P identification over the last few decades has been 31P NMR. While this technique has the distinct advantage of speciating the organic P fraction, it has a relatively poor detection threshold (0.05 mg/ml), which typically limits 31P NMR to qualitative or confirmative ap...