Science.gov

Sample records for relativistic antihydrogen atoms

  1. Observation of relativistic antihydrogen atoms

    SciTech Connect

    Blanford, Glenn DelFosse

    1998-01-01

    An observation of relativistic antihydrogen atoms is reported in this dissertation. Experiment 862 at Fermi National Accelerator Laboratory observed antihydrogen atoms produced by the interaction of a circulating beam of high momentum (3 < p < 9 GeV/c) antiprotons and a jet of molecular hydrogen gas. Since the neutral antihydrogen does not bend in the antiproton source magnets, the detectors could be located far from the interaction point on a beamline tangent to the storage ring. The detection of the antihydrogen is accomplished by ionizing the atoms far from the interaction point. The positron is deflected by a magnetic spectrometer and detected, as are the back to back photons resulting from its annihilation. The antiproton travels a distance long enough for its momentum and time of flight to be measured accurately. A statistically significant sample of 101 antihydrogen atoms has been observed. A measurement of the cross section for {bar H}{sup 0} production is outlined within. The cross section corresponds to the process where a high momentum antiproton causes e{sup +} e{sup -} pair creation near a nucleus with the e{sup +} being captured by the antiproton. Antihydrogen is the first atom made exclusively of antimatter to be detected. The observation experiment's results are the first step towards an antihydrogen spectroscopy experiment which would measure the n = 2 Lamb shift and fine structure.

  2. Measuring the antihydrogen Lamb shift with a relativistic antihydrogen beam

    SciTech Connect

    Blanford, G.; Gollwitzer, K.; Mandelkern, M.; Schultz, J.; Takei, G.; Zioulas, G.; Christian, D.C.; Munger, C.T.

    1998-06-01

    We propose an experiment to measure the Lamb shift and fine structure (the intervals 2s{sub 1/2}{minus}2p{sub 1/2} and 2p{sub 1/2}{minus}2p{sub 3/2}) in antihydrogen. A sample of 10000 antihydrogen atoms at a momentum of 8.85GeV/c suffices to measure the Lamb shift to 5{percent} and the fine structure to 1{percent}. Atomic collisions excite antihydrogen atoms to states with n=2; field ionization in a Lorentz-transformed laboratory magnetic field then prepares a particular n=2 state, and is used again to analyze that state after it is allowed to oscillate in a region of zero field. This experiment is feasible at Fermilab. {copyright} {ital 1998} {ital The American Physical Society}

  3. Resonant quantum transitions in trapped antihydrogen atoms.

    PubMed

    Amole, C; Ashkezari, M D; Baquero-Ruiz, M; Bertsche, W; Bowe, P D; Butler, E; Capra, A; Cesar, C L; Charlton, M; Deller, A; Donnan, P H; Eriksson, S; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Humphries, A J; Isaac, C A; Jonsell, S; Kurchaninov, L; Little, A; Madsen, N; McKenna, J T K; Menary, S; Napoli, S C; Nolan, P; Olchanski, K; Olin, A; Pusa, P; Rasmussen, C Ø; Robicheaux, F; Sarid, E; Shields, C R; Silveira, D M; Stracka, S; So, C; Thompson, R I; van der Werf, D P; Wurtele, J S

    2012-03-07

    The hydrogen atom is one of the most important and influential model systems in modern physics. Attempts to understand its spectrum are inextricably linked to the early history and development of quantum mechanics. The hydrogen atom's stature lies in its simplicity and in the accuracy with which its spectrum can be measured and compared to theory. Today its spectrum remains a valuable tool for determining the values of fundamental constants and for challenging the limits of modern physics, including the validity of quantum electrodynamics and--by comparison with measurements on its antimatter counterpart, antihydrogen--the validity of CPT (charge conjugation, parity and time reversal) symmetry. Here we report spectroscopy of a pure antimatter atom, demonstrating resonant quantum transitions in antihydrogen. We have manipulated the internal spin state of antihydrogen atoms so as to induce magnetic resonance transitions between hyperfine levels of the positronic ground state. We used resonant microwave radiation to flip the spin of the positron in antihydrogen atoms that were magnetically trapped in the ALPHA apparatus. The spin flip causes trapped anti-atoms to be ejected from the trap. We look for evidence of resonant interaction by comparing the survival rate of trapped atoms irradiated with microwaves on-resonance to that of atoms subjected to microwaves that are off-resonance. In one variant of the experiment, we detect 23 atoms that survive in 110 trapping attempts with microwaves off-resonance (0.21 per attempt), and only two atoms that survive in 103 attempts with microwaves on-resonance (0.02 per attempt). We also describe the direct detection of the annihilation of antihydrogen atoms ejected by the microwaves.

  4. Formation of Antihydrogen Rydberg atoms in strong magnetic field traps

    SciTech Connect

    Pohl, T.; Sadeghpour, H. R.

    2008-08-08

    It is shown that several features of antihydrogen production in nested Penning traps can be described with accurate and efficient Monte Carlo simulations. It is found that cold deeply-bound Rydberg states of antihydrogen (H-bar) are produced in three-body capture in the ATRAP experiments and an additional formation mechanism -Rydberg charge transfer-, particular to the nested Penning trap geometry, is responsible for the observed fast (hot) H-bar atoms. Detailed description of the numerical propagation technique for following extreme close encounters is given. An analytic derivation of the power law behavior of the field ionization spectrum is provided.

  5. CPT tests with antihydrogen and antiprotonic helium atoms

    NASA Astrophysics Data System (ADS)

    Hayano, Ryugo

    2014-09-01

    Recent progress of the CPT tests with antihydrogen and antiprotonic helium atoms by the ASACUSA collaboration at CERN's antiproton decelerator will be presented. The antiprotonic helium atom (antiproton+electron+helium nucleus) is a serendipitously discovered metastable three-body system, whose energy levels can now be studied by laser spectroscopy techniques to a relative precision of ~10-9. By comparing these precise experimental results with the result of three-body QED calculation, the antiproton-to-electron mass ratio was determined to a relative precision of 1 . 2 ×10-9 . While this can be used as a precise test of the CPT symmetry, CODATA instead assumed the CPT, and combined our results with the proton-to-electron mass ratio measured by the Penning trap method in their adjustment of the fundamental physical constants. In addition to the laser spectroscopy of antiprotonic helium, ASACUSA collaboration also aims at measuring the ground-state hyperfine splitting of antihydrogen using the (anti)-atomic beam method. Extraction of antihydrogen atoms from a ``cusp'' trap has so far been demonstrated. Both of these experiments will benefit from the completing of a new antiproton decelerator-cooler ring called ELENA, which is under construction at CERN.

  6. Antihydrogen formation dynamics in a multipolar neutral anti-atom trap

    NASA Astrophysics Data System (ADS)

    Andresen, G. B.; Bertsche, W.; Bowe, P. D.; Bray, C.; Butler, E.; Cesar, C. L.; Chapman, S.; Charlton, M.; Fajans, J.; Fujiwara, M. C.; Gill, D. R.; Hangst, J. S.; Hardy, W. N.; Hayano, R. S.; Hayden, M. E.; Humphries, A. J.; Hydomako, R.; Jørgensen, L. V.; Kerrigan, S. J.; Kurchaninov, L.; Lambo, R.; Madsen, N.; Nolan, P.; Olchanski, K.; Olin, A.; Povilus, A.; Pusa, P.; Robicheaux, F.; Sarid, E.; El Nasr, S. Seif; Silveira, D. M.; Storey, J. W.; Thompson, R. I.; van der Werf, D. P.; Wurtele, J. S.; Yamazaki, Y.; Alpha Collaboration

    2010-03-01

    Antihydrogen production in a neutral atom trap formed by an octupole-based magnetic field minimum is demonstrated using field-ionization of weakly bound anti-atoms. Using our unique annihilation imaging detector, we correlate antihydrogen detection by imaging and by field-ionization for the first time. We further establish how field-ionization causes radial redistribution of the antiprotons during antihydrogen formation and use this effect for the first simultaneous measurements of strongly and weakly bound antihydrogen atoms. Distinguishing between these provides critical information needed in the process of optimizing for trappable antihydrogen. These observations are of crucial importance to the ultimate goal of performing CPT tests involving antihydrogen, which likely depends upon trapping the anti-atom.

  7. FAST TRACK COMMUNICATION: Production of antihydrogen at reduced magnetic field for anti-atom trapping

    NASA Astrophysics Data System (ADS)

    Andresen, G. B.; Bertsche, W.; Boston, A.; Bowe, P. D.; Cesar, C. L.; Chapman, S.; Charlton, M.; Chartier, M.; Deutsch, A.; Fajans, J.; Fujiwara, M. C.; Funakoshi, R.; Gill, D. R.; Gomberoff, K.; Hangst, J. S.; Hayano, R. S.; Hydomako, R.; Jenkins, M. J.; Jørgensen, L. V.; Kurchaninov, L.; Madsen, N.; Nolan, P.; Olchanski, K.; Olin, A.; Page, R. D.; Povilus, A.; Robicheaux, F.; Sarid, E.; Silveira, D. M.; Storey, J. W.; Thompson, R. I.; van der Werf, D. P.; Wurtele, J. S.; Yamazaki, Y.

    2008-01-01

    We have demonstrated production of antihydrogen in a 1 T solenoidal magnetic field. This field strength is significantly smaller than that used in the first generation experiments ATHENA (3 T) and ATRAP (5 T). The motivation for using a smaller magnetic field is to facilitate trapping of antihydrogen atoms in a neutral atom trap surrounding the production region. We report the results of measurements with the Antihydrogen Laser PHysics Apparatus (ALPHA) device, which can capture and cool antiprotons at 3 T, and then mix the antiprotons with positrons at 1 T. We infer antihydrogen production from the time structure of antiproton annihilations during mixing, using mixing with heated positrons as the null experiment, as demonstrated in ATHENA. Implications for antihydrogen trapping are discussed.

  8. Rearrangement and annihilation in antihydrogen-atom scattering

    SciTech Connect

    Jonsell, Svante

    2008-08-08

    I review some results for annihilation and rearrangement processes in low-energy antihydrogen-hydrogen and antihydrogen-helium scattering. For the strong nuclear force results using a {delta}-function potential are compared to a scattering length approach. It is found that the {delta}-function potential does not give correct annihilation cross sections in the case of antihydrogen-helium scattering. Problem associated with the use of the Born-Oppenheimer approximation for rearrangement calculations are reviewed.

  9. Progress towards antihydrogen production by the reaction of cold antiprotons with positronium atoms

    SciTech Connect

    Charlton, M.; Laricchia, G.; Deutch, B.I.

    1995-03-01

    An experiment aimed at producing antihydrogen atoms by the reaction of cold antiprotons stored in a Penning trap with injected ground state positronium atoms is described. The apparatus developed in an attempt to observe the charge conjugate reaction using proton projectiles is discussed. Technically feasible upgrades to this apparatus are identified which may allow, in conjunction with the PS200 trap, antihydrogen production at LEAR.

  10. Aspects of 1S-2S spectroscopy of trapped antihydrogen atoms

    NASA Astrophysics Data System (ADS)

    Rasmussen, C. Ø.; Madsen, N.; Robicheaux, F.

    2017-09-01

    Antihydrogen atoms are now routinely trapped in small numbers. One of the purposes of this effort is to make precision comparisons of the 1S-2S transition in hydrogen and antihydrogen as a precision test of the CPT theorem. We investigate, through calculations and simulations, various methods by which the 1S-2S transition may be probed with only a few trapped atoms. We consider the known constraints from typical experimental geometries, detection methods, sample temperatures, laser light sources etc and we identify a viable path towards a measurement of this transition at the 10‑11 level in a realistic scenario. We also identify ways in which such a first measurement could be improved upon as a function of projected changes and improvements in antihydrogen synthesis and trapping. These calculations recently guided the first observation of the 1S-2S transition in trapped antihydrogen.

  11. Trapped antihydrogen

    NASA Astrophysics Data System (ADS)

    Butler, E.; Andresen, G. B.; Ashkezari, M. D.; Baquero-Ruiz, M.; Bertsche, W.; Bowe, P. D.; Cesar, C. L.; Chapman, S.; Charlton, M.; Deller, A.; Eriksson, S.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Gutierrez, A.; Hangst, J. S.; Hardy, W. N.; Hayden, M. E.; Humphries, A. J.; Hydomako, R.; Jenkins, M. J.; Jonsell, S.; Jørgensen, L. V.; Kemp, S. L.; Kurchaninov, L.; Madsen, N.; Menary, S.; Nolan, P.; Olchanski, K.; Olin, A.; Povilus, A.; Pusa, P.; Rasmussen, C. Ø.; Robicheaux, F.; Sarid, E.; Seif el Nasr, S.; Silveira, D. M.; So, C.; Storey, J. W.; Thompson, R. I.; van der Werf, D. P.; Wurtele, J. S.; Yamazaki, Y.

    Precision spectroscopic comparison of hydrogen and antihydrogen holds the promise of a sensitive test of the Charge-Parity-Time theorem and matter-antimatter equivalence. The clearest path towards realising this goal is to hold a sample of antihydrogen in an atomic trap for interrogation by electromagnetic radiation. Achieving this poses a huge experimental challenge, as state-of-the-art magnetic-minimum atom traps have well depths of only ˜1 T (˜0.5 K for ground state antihydrogen atoms). The atoms annihilate on contact with matter and must be `born' inside the magnetic trap with low kinetic energies. At the ALPHA experiment, antihydrogen atoms are produced from antiprotons and positrons stored in the form of non-neutral plasmas, where the typical electrostatic potential energy per particle is on the order of electronvolts, more than 104 times the maximum trappable kinetic energy. In November 2010, ALPHA published the observation of 38 antiproton annihilations due to antihydrogen atoms that had been trapped for at least 172 ms and then released—the first instance of a purely antimatter atomic system confined for any length of time (Andresen et al., Nature 468:673, 2010). We present a description of the main components of the ALPHA traps and detectors that were key to realising this result. We discuss how the antihydrogen atoms were identified and how they were discriminated from the background processes. Since the results published in Andresen et al. (Nature 468:673, 2010), refinements in the antihydrogen production technique have allowed many more antihydrogen atoms to be trapped, and held for much longer times. We have identified antihydrogen atoms that have been trapped for at least 1,000 s in the apparatus (Andresen et al., Nature Physics 7:558, 2011). This is more than sufficient time to interrogate the atoms spectroscopically, as well as to ensure that they have relaxed to their ground state.

  12. Trapped antihydrogen

    NASA Astrophysics Data System (ADS)

    Butler, E.; Andresen, G. B.; Ashkezari, M. D.; Baquero-Ruiz, M.; Bertsche, W.; Bowe, P. D.; Cesar, C. L.; Chapman, S.; Charlton, M.; Deller, A.; Eriksson, S.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Gutierrez, A.; Hangst, J. S.; Hardy, W. N.; Hayden, M. E.; Humphries, A. J.; Hydomako, R.; Jenkins, M. J.; Jonsell, S.; Jørgensen, L. V.; Kemp, S. L.; Kurchaninov, L.; Madsen, N.; Menary, S.; Nolan, P.; Olchanski, K.; Olin, A.; Povilus, A.; Pusa, P.; Rasmussen, C. Ø.; Robicheaux, F.; Sarid, E.; Seif el Nasr, S.; Silveira, D. M.; So, C.; Storey, J. W.; Thompson, R. I.; van der Werf, D. P.; Wurtele, J. S.; Yamazaki, Y.

    2012-12-01

    Precision spectroscopic comparison of hydrogen and antihydrogen holds the promise of a sensitive test of the Charge-Parity-Time theorem and matter-antimatter equivalence. The clearest path towards realising this goal is to hold a sample of antihydrogen in an atomic trap for interrogation by electromagnetic radiation. Achieving this poses a huge experimental challenge, as state-of-the-art magnetic-minimum atom traps have well depths of only ˜1 T (˜0.5 K for ground state antihydrogen atoms). The atoms annihilate on contact with matter and must be `born' inside the magnetic trap with low kinetic energies. At the ALPHA experiment, antihydrogen atoms are produced from antiprotons and positrons stored in the form of non-neutral plasmas, where the typical electrostatic potential energy per particle is on the order of electronvolts, more than 104 times the maximum trappable kinetic energy. In November 2010, ALPHA published the observation of 38 antiproton annihilations due to antihydrogen atoms that had been trapped for at least 172 ms and then released—the first instance of a purely antimatter atomic system confined for any length of time (Andresen et al., Nature 468:673, 2010). We present a description of the main components of the ALPHA traps and detectors that were key to realising this result. We discuss how the antihydrogen atoms were identified and how they were discriminated from the background processes. Since the results published in Andresen et al. (Nature 468:673, 2010), refinements in the antihydrogen production technique have allowed many more antihydrogen atoms to be trapped, and held for much longer times. We have identified antihydrogen atoms that have been trapped for at least 1,000 s in the apparatus (Andresen et al., Nature Physics 7:558, 2011). This is more than sufficient time to interrogate the atoms spectroscopically, as well as to ensure that they have relaxed to their ground state.

  13. Reactive collisions of atomic antihydrogen with H, He+ and He

    NASA Astrophysics Data System (ADS)

    Cohen, James S.

    2006-03-01

    The fermion molecular dynamics (FMD) method is used to determine the rearrangement and destruction cross sections for collisions of antihydrogen (\\bar{H}) with H, He+ and He at collision energies above 0.1 au. The results for the H and He+ targets satisfactorily merge with previous calculations done for lower collision energies. Despite the absence of a critical distance, the destruction cross section for collisions of \\bar{H} with He, previously uncalculated, is found to be comparable with the destruction cross sections for \\bar{H} collisions with H and He+. All three cross sections are shown to be given quite reasonably by simple classical orbiting formulae at energies that are very low but still high enough for L > 0 partial waves to be dominant. The cross sections for formation of the antiprotonic atoms (Pn or \\barpHe ) and their initial quantum numbers with the \\bar{H} projectile are found to be significantly different from the analogous cross sections for \\barp projectiles.

  14. Trapped antihydrogen.

    PubMed

    Andresen, G B; Ashkezari, M D; Baquero-Ruiz, M; Bertsche, W; Bowe, P D; Butler, E; Cesar, C L; Chapman, S; Charlton, M; Deller, A; Eriksson, S; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Humphries, A J; Hydomako, R; Jenkins, M J; Jonsell, S; Jørgensen, L V; Kurchaninov, L; Madsen, N; Menary, S; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Robicheaux, F; Sarid, E; el Nasr, S Seif; Silveira, D M; So, C; Storey, J W; Thompson, R I; van der Werf, D P; Wurtele, J S; Yamazaki, Y

    2010-12-02

    Antimatter was first predicted in 1931, by Dirac. Work with high-energy antiparticles is now commonplace, and anti-electrons are used regularly in the medical technique of positron emission tomography scanning. Antihydrogen, the bound state of an antiproton and a positron, has been produced at low energies at CERN (the European Organization for Nuclear Research) since 2002. Antihydrogen is of interest for use in a precision test of nature's fundamental symmetries. The charge conjugation/parity/time reversal (CPT) theorem, a crucial part of the foundation of the standard model of elementary particles and interactions, demands that hydrogen and antihydrogen have the same spectrum. Given the current experimental precision of measurements on the hydrogen atom (about two parts in 10(14) for the frequency of the 1s-to-2s transition), subjecting antihydrogen to rigorous spectroscopic examination would constitute a compelling, model-independent test of CPT. Antihydrogen could also be used to study the gravitational behaviour of antimatter. However, so far experiments have produced antihydrogen that is not confined, precluding detailed study of its structure. Here we demonstrate trapping of antihydrogen atoms. From the interaction of about 10(7) antiprotons and 7 × 10(8) positrons, we observed 38 annihilation events consistent with the controlled release of trapped antihydrogen from our magnetic trap; the measured background is 1.4 ± 1.4 events. This result opens the door to precision measurements on anti-atoms, which can soon be subjected to the same techniques as developed for hydrogen.

  15. s-wave elastic scattering of antihydrogen off atomic alkali-metal targets

    SciTech Connect

    Sinha, Prabal K.; Ghosh, A. S.

    2006-03-15

    We have investigated the s-wave elastic scattering of antihydrogen atoms off atomic alkali-metal targets (Li, Na, K, and Rb) at thermal energies (10{sup -16}-10{sup -4} a.u.) using an atomic orbital expansion technique. The elastic cross sections of these systems at thermal energies are found to be very high compared to H-H and H-He systems. The theoretical models employed in this study are so chosen to consider long-range forces dynamically in the calculation. The mechanism of cooling suggests that Li may be considered to be a good candidate as a buffer gas for enhanced cooling of antihydrogen atoms to ultracold temperature.

  16. Relativistic effects in atom gravimeters

    NASA Astrophysics Data System (ADS)

    Tan, Yu-Jie; Shao, Cheng-Gang; Hu, Zhong-Kun

    2017-01-01

    Atom interferometry is currently developing rapidly, which is now reaching sufficient precision to motivate laboratory tests of general relativity. Thus, it is extremely significant to develop a general relativistic model for atom interferometers. In this paper, we mainly present an analytical derivation process and first give a complete vectorial expression for the relativistic interferometric phase shift in an atom interferometer. The dynamics of the interferometer are studied, where both the atoms and the light are treated relativistically. Then, an appropriate coordinate transformation for the light is performed crucially to simplify the calculation. In addition, the Bordé A B C D matrix combined with quantum mechanics and the "perturbation" approach are applied to make a methodical calculation for the total phase shift. Finally, we derive the relativistic phase shift kept up to a sensitivity of the acceleration ˜1 0-14 m/s 2 for a 10 -m -long atom interferometer.

  17. A Simple Relativistic Bohr Atom

    ERIC Educational Resources Information Center

    Terzis, Andreas F.

    2008-01-01

    A simple concise relativistic modification of the standard Bohr model for hydrogen-like atoms with circular orbits is presented. As the derivation requires basic knowledge of classical and relativistic mechanics, it can be taught in standard courses in modern physics and introductory quantum mechanics. In addition, it can be shown in a class that…

  18. A Simple Relativistic Bohr Atom

    ERIC Educational Resources Information Center

    Terzis, Andreas F.

    2008-01-01

    A simple concise relativistic modification of the standard Bohr model for hydrogen-like atoms with circular orbits is presented. As the derivation requires basic knowledge of classical and relativistic mechanics, it can be taught in standard courses in modern physics and introductory quantum mechanics. In addition, it can be shown in a class that…

  19. Towards trapped antihydrogen

    NASA Astrophysics Data System (ADS)

    Jørgensen, L. V.; Andresen, G.; Bertsche, W.; Boston, A.; Bowe, P. D.; Cesar, C. L.; Chapman, S.; Charlton, M.; Fajans, J.; Fujiwara, M. C.; Funakoshi, R.; Gill, D. R.; Hangst, J. S.; Hayano, R. S.; Hydomako, R.; Jenkins, M. J.; Kurchaninov, L.; Madsen, N.; Nolan, P.; Olchanski, K.; Olin, A.; Page, R. D.; Povilus, A.; Robicheaux, F.; Sarid, E.; Silveira, D. M.; Storey, J. W.; Thompson, R. I.; van der Werf, D. P.; Wurtele, J. S.; Yamazaki, Y.; Alpha Collaboration

    2008-02-01

    Substantial progress has been made in the last few years in the nascent field of antihydrogen physics. The next big step forward is expected to be the trapping of the formed antihydrogen atoms using a magnetic multipole trap. ALPHA is a new international project that started to take data in 2006 at CERN's Antiproton Decelerator facility. The primary goal of ALPHA is stable trapping of cold antihydrogen atoms to facilitate measurements of its properties. We discuss the status of the ALPHA project and the prospects for antihydrogen trapping.

  20. Pulsed Sisyphus scheme for laser cooling of atomic (anti)hydrogen.

    PubMed

    Wu, Saijun; Brown, Roger C; Phillips, William D; Porto, J V

    2011-05-27

    We propose a laser cooling technique in which atoms are selectively excited to a dressed metastable state whose light shift and decay rate are spatially correlated for Sisyphus cooling. The case of cooling magnetically trapped (anti)hydrogen with the 1S-2S-3P transitions by using pulsed ultraviolet and continuous-wave visible lasers is numerically simulated. We find a number of appealing features including rapid three-dimensional cooling from ∼1 K to recoil-limited, millikelvin temperatures, as well as suppressed spin-flip loss and manageable photoionization loss. © 2011 American Physical Society

  1. Alpha Antihydrogen Experiment

    NASA Astrophysics Data System (ADS)

    Fujiwara, M. C.; Andresen, G. B.; Ashkezari, M. D.; Baquero-Ruiz, M.; Bertsche, W.; Bray, C. C.; Butler, E.; Cesar, C. L.; Chapman, S.; Charlton, M.; Cesar, C. L.; Fajans, J.; Friesen, T.; Gill, D. R.; Hangst, J. S.; Hardy, W. N.; Hayano, R. S.; Hayden, M. E.; Humphries, A. J.; Hydomako, R.; Jonsell, S.; Kurchaninov, L.; Lambo, R.; Madsen, N.; Menary, S.; Nolan, P.; Olchanski, K.; Olin, A.; Povilus, A.; Pusa, P.; Robicheaux, F.; Sarid, E.; Silveira, D. M.; So, C.; Storey, J. W.; Thompson, R. I.; van der Werf, D. P.; Wilding, D.; Wurtele, J. S.; Yamazaki, Y.

    2011-12-01

    ALPHA is an experiment at CERN, whose ultimate goal is to perform a precise test of CPT symmetry with trapped antihydrogen atoms. After reviewing the motivations, we discuss our recent progress toward the initial goal of stable trapping of antihydrogen, with some emphasis on particle detection techniques.

  2. Cooling by spontaneous decay of highly excited antihydrogen atoms in magnetic traps.

    PubMed

    Pohl, T; Sadeghpour, H R; Nagata, Y; Yamazaki, Y

    2006-11-24

    An efficient cooling mechanism of magnetically trapped, highly excited antihydrogen (H) atoms is presented. This cooling, in addition to the expected evaporative cooling, results in trapping of a large number of H atoms in the ground state. It is found that the final fraction of trapped atoms is insensitive to the initial distribution of H magnetic quantum numbers. Expressions are derived for the cooling efficiency, demonstrating that magnetic quadrupole (cusp) traps provide stronger cooling than higher order magnetic multipoles. The final temperature of H confined in a cusp trap is shown to depend as approximately 2.2T(n0)n(0)(-2/3) on the initial Rydberg level n0 and temperature T(n0).

  3. Relativistic atomic beam spectroscopy II

    SciTech Connect

    1989-12-31

    The negative ion of H is one of the simplest 3-body atomic systems. The techniques we have developed for experimental study of atoms moving near speed of light have been productive. This proposal request continuing support for experimental studies of the H{sup -} system, principally at the 800 MeV linear accelerator (LAMPF) at Los Alamos. Four experiments are currently planned: photodetachment of H{sup -} near threshold in electric field, interaction of relativistic H{sup -} ions with matter, high excitations and double charge escape in H{sup -}, and multiphoton detachment of electrons from H{sup -}.

  4. Antihydrogen-hydrogen elastic scattering at thermal energies using an atomic-orbital technique

    SciTech Connect

    Sinha, Prabal K.; Chaudhuri, Puspitapallab; Ghosh, A.S.

    2003-05-01

    In view of the recent interest in the trapping of antihydrogen atom H(bar sign), at very low temperatures, H-bar-H scattering has been investigated at low incident energies using a close-coupling model with the basis set H-bar(1s,2s,2p-bar)+H(1s,2s,2p-bar). The predicted s-wave elastic phase shifts, scattering length, and effective range are in a good agreement with the other recent predictions of Jonsell et al. and of Armour and Chamberlain. The results indicate that the atomic orbital expansion model is suitable to study the H-bar-H scattering at ultracold temperatures.

  5. Physics with antihydrogen

    NASA Astrophysics Data System (ADS)

    Bertsche, W. A.; Butler, E.; Charlton, M.; Madsen, N.

    2014-12-01

    Performing measurements of the properties of antihydrogen, the bound state of an antiproton and a positron, and comparing the results with those for ordinary hydrogen, has long been seen as a route to test some of the fundamental principles of physics. There has been much experimental progress in this direction in recent years, and antihydrogen is now routinely created and trapped and a range of exciting measurements probing the foundations of modern physics are planned or underway. In this contribution we review the techniques developed to facilitate the capture and manipulation of positrons and antiprotons, along with procedures to bring them together to create antihydrogen. Once formed, the antihydrogen has been detected by its destruction via annihilation or field ionization, and aspects of the methodologies involved are summarized. Magnetic minimum neutral atom traps have been employed to allow some of the antihydrogen created to be held for considerable periods. We describe such devices, and their implementation, along with the cusp magnetic trap used to produce the first evidence for a low-energy beam of antihydrogen. The experiments performed to date on antihydrogen are discussed, including the first observation of a resonant quantum transition and the analyses that have yielded a limit on the electrical neutrality of the anti-atom and placed crude bounds on its gravitational behaviour. Our review concludes with an outlook, including the new ELENA extension to the antiproton decelerator facility at CERN, together with summaries of how we envisage the major threads of antihydrogen physics will progress in the coming years.

  6. Physics with antihydrogen

    NASA Astrophysics Data System (ADS)

    Bertsche, W. A.; Butler, E.; Charlton, M.; Madsen, N.

    2015-12-01

    Performing measurements of the properties of antihydrogen, the bound state of an antiproton and a positron, and comparing the results with those for ordinary hydrogen, has long been seen as a route to test some of the fundamental principles of physics. There has been much experimental progress in this direction in recent years, and antihydrogen is now routinely created and trapped and a range of exciting measurements probing the foundations of modern physics are planned or underway. In this contribution we review the techniques developed to facilitate the capture and manipulation of positrons and antiprotons, along with procedures to bring them together to create antihydrogen. Once formed, the antihydrogen has been detected by its destruction via annihilation or field ionization, and aspects of the methodologies involved are summarized. Magnetic minimum neutral atom traps have been employed to allow some of the antihydrogen created to be held for considerable periods. We describe such devices, and their implementation, along with the cusp magnetic trap used to produce the first evidence for a low-energy beam of antihydrogen. The experiments performed to date on antihydrogen are discussed, including the first observation of a resonant quantum transition and the analyses that have yielded a limit on the electrical neutrality of the anti-atom and placed crude bounds on its gravitational behaviour. Our review concludes with an outlook, including the new ELENA extension to the antiproton decelerator facility at CERN, together with summaries of how we envisage the major threads of antihydrogen physics will progress in the coming years.

  7. Reactive collisions of atomic antihydrogen with the H2 and H2+ molecules

    NASA Astrophysics Data System (ADS)

    Cohen, James S.

    2006-09-01

    The fermion molecular dynamics (FMD) method is used to determine the protonium (Pn) formation and total destruction cross sections for collisions of antihydrogen (\\bar{H}) with the H2 molecule and the H2+ molecular ion at collision energies above 0.1 au in the centre-of-mass system. The cross sections and initial quantum numbers are compared with the analogous cross sections for \\bar{H}+H, \\barp+H, \\barp+H_2 and \\barp+H_2^+ previously calculated. Like the \\barp projectile, the protonium-formation cross sections for the \\bar{H} projectile are much larger and extend to higher energies with the molecular targets than with the atomic target. The possibility is considered that a relatively long-lived state of the \\bar{H}H molecule may be formed in rearrangement scattering of \\bar{H}+H_2 at low energies.

  8. The ALPHA antihydrogen trapping apparatus

    NASA Astrophysics Data System (ADS)

    Amole, C.; Andresen, G. B.; Ashkezari, M. D.; Baquero-Ruiz, M.; Bertsche, W.; Bowe, P. D.; Butler, E.; Capra, A.; Carpenter, P. T.; Cesar, C. L.; Chapman, S.; Charlton, M.; Deller, A.; Eriksson, S.; Escallier, J.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Gutierrez, A.; Hangst, J. S.; Hardy, W. N.; Hayano, R. S.; Hayden, M. E.; Humphries, A. J.; Hurt, J. L.; Hydomako, R.; Isaac, C. A.; Jenkins, M. J.; Jonsell, S.; Jørgensen, L. V.; Kerrigan, S. J.; Kurchaninov, L.; Madsen, N.; Marone, A.; McKenna, J. T. K.; Menary, S.; Nolan, P.; Olchanski, K.; Olin, A.; Parker, B.; Povilus, A.; Pusa, P.; Robicheaux, F.; Sarid, E.; Seddon, D.; Seif El Nasr, S.; Silveira, D. M.; So, C.; Storey, J. W.; Thompson, R. I.; Thornhill, J.; Wells, D.; van der Werf, D. P.; Wurtele, J. S.; Yamazaki, Y.

    2014-01-01

    The ALPHA collaboration, based at CERN, has recently succeeded in confining cold antihydrogen atoms in a magnetic minimum neutral atom trap and has performed the first study of a resonant transition of the anti-atoms. The ALPHA apparatus will be described herein, with emphasis on the structural aspects, diagnostic methods and techniques that have enabled antihydrogen trapping and experimentation to be achieved.

  9. Search for trapped antihydrogen

    NASA Astrophysics Data System (ADS)

    Andresen, G. B.; Ashkezari, M. D.; Baquero-Ruiz, M.; Bertsche, W.; Bowe, P. D.; Bray, C. C.; Butler, E.; Cesar, C. L.; Chapman, S.; Charlton, M.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Hangst, J. S.; Hardy, W. N.; Hayano, R. S.; Hayden, M. E.; Humphries, A. J.; Hydomako, R.; Jonsell, S.; Jørgensen, L. V.; Kurchaninov, L.; Lambo, R.; Madsen, N.; Menary, S.; Nolan, P.; Olchanski, K.; Olin, A.; Povilus, A.; Pusa, P.; Robicheaux, F.; Sarid, E.; Seif El Nasr, S.; Silveira, D. M.; So, C.; Storey, J. W.; Thompson, R. I.; van der Werf, D. P.; Wilding, D.; Wurtele, J. S.; Yamazaki, Y.; Alpha Collaboration

    2011-01-01

    We present the results of an experiment to search for trapped antihydrogen atoms with the ALPHA antihydrogen trap at the CERN Antiproton Decelerator. Sensitive diagnostics of the temperatures, sizes, and densities of the trapped antiproton and positron plasmas have been developed, which in turn permitted development of techniques to precisely and reproducibly control the initial experimental parameters. The use of a position-sensitive annihilation vertex detector, together with the capability of controllably quenching the superconducting magnetic minimum trap, enabled us to carry out a high-sensitivity and low-background search for trapped synthesised antihydrogen atoms. We aim to identify the annihilations of antihydrogen atoms held for at least 130 ms in the trap before being released over ∼30 ms. After a three-week experimental run in 2009 involving mixing of 10 7 antiprotons with 1.3×10 positrons to produce 6×10 antihydrogen atoms, we have identified six antiproton annihilation events that are consistent with the release of trapped antihydrogen. The cosmic ray background, estimated to contribute 0.14 counts, is incompatible with this observation at a significance of 5.6 sigma. Extensive simulations predict that an alternative source of annihilations, the escape of mirror-trapped antiprotons, is highly unlikely, though this possibility has not yet been ruled out experimentally.

  10. Antihydrogen studies in ALPHA

    NASA Astrophysics Data System (ADS)

    Madsen, N.; ALPHA Collaboration

    2016-11-01

    The ALPHA experiment studies antihydrogen as a means to investigate the symmetry of matter and antimatter. Spectroscopic studies of the anti-atom hold the promise of the most precise direct comparisons of matter and antimatter possible. ALPHA was the first to trap antihydrogen in a magnetic trap, allowing the first ever detection of atomic transitions in an anti-atom. More recently, through stochastic heating, we have also been able to put a new limit on the charge neutrality of antihydrogen. ALPHA is currently preparing to perform the first laser-spectroscopy of antihydrogen, hoping to excite the 2s state using a two-photon transition from the 1s state. We discuss the recent results as well as the key developments that led to these successes and discuss how we are preparing to perform the first laser-spectroscopy. We will also discuss plans to use our novel technique for gravitational tests on antihydrogen for a direct measurement of the sign of the gravitational force on antihydrogen.

  11. Reactive collisions of atomic antihydrogen with H, He^+, He, H2^+, and H2

    NASA Astrophysics Data System (ADS)

    Cohen, James S.

    2006-05-01

    The fermion molecular dynamics (FMD) method has been used to determine the rearrangement and destruction cross sections for collisions of antihydrogen (H) with H, He^+, He, H2^+, and H2 at collision energies above 0.1 au. The results for the H and He^+ targets satisfactorily merge with previous calculations done for lower collision energies. There are no previous calculations for the other targets. Despite the absence of a critical distance, the destruction cross section for collisions of H with He is found to be comparable with the destruction cross sections for H collisions with H and He^+, for which there are critical distances. The three atomic cross sections are shown to be given quite reasonably by simple classical orbiting formulas at energies that are very low but still high enough for L>0 partial waves to be dominant. The cross sections for formation of the antiprotonic atoms (Pn or pHe) and their initial quantum numbers are found to be significantly different from the analogous cross sections for p projectiles. The cross sections for the molecular targets are significantly larger.

  12. Relativistic atomic physics at the SSC

    SciTech Connect

    1990-12-31

    This report discusses the following proposed work for relativistic atomic physics at the Superconducting Super Collider: Beam diagnostics; atomic physics research; staffing; education; budget information; statement concerning matching funds; description and justification of major items of equipment; statement of current and pending support; and assurance of compliance.

  13. First Attempts at Antihydrogen Trapping in ALPHA

    SciTech Connect

    Andresen, G. B.; Bowe, P. D.; Hangst, J. S.; Bertsche, W.; Butler, E.; Charlton, M.; Humphries, A. J.; Jenkins, M. J.; Joergensen, L. V.; Madsen, N.; Werf, D. P. van der; Bray, C. C.; Chapman, S.; Fajans, J.; Povilus, A.; Wurtele, J. S.; Cesar, C. L.; Lambo, R.; Silveira, D. M.; Fujiwara, M. C.

    2008-08-08

    The ALPHA apparatus is designed to produce and trap antihydrogen atoms. The device comprises a multifunction Penning trap and a superconducting, neutral atom trap having a minimum-B configuration. The atom trap features an octupole magnet for transverse confinement and solenoidal mirror coils for longitudinal confinement. The magnetic trap employs a fast shutdown system to maximize the probability of detecting the annihilation of released antihydrogen. In this article we describe the first attempts to observe antihydrogen trapping.

  14. First Attempts at Antihydrogen Trapping in ALPHA

    NASA Astrophysics Data System (ADS)

    Andresen, G. B.; Bertsche, W.; Bowe, P. D.; Bray, C. C.; Butler, E.; Cesar, C. L.; Chapman, S.; Charlton, M.; Fajans, J.; Fujiwara, M. C.; Funakoshi, R.; Gill, D. R.; Hangst, J. S.; Hardy, W. N.; Hayano, R. S.; Hayden, M. E.; Humphries, A. J.; Hydomako, R.; Jenkins, M. J.; Jørgensen, L. V.; Kurchaninov, L.; Lambo, R.; Madsen, N.; Nolan, P.; Olchanski, K.; Olin, A.; Page, R. D.; Povilus, A.; Pusa, P.; Robicheaux, F.; Sarid, E.; El Nasr, S. Seif; Silveira, D. M.; Storey, J. W.; Thompson, R. I.; van der Werf, D. P.; Wurtele, J. S.; Yamazaki, Y.

    2008-08-01

    The ALPHA apparatus is designed to produce and trap antihydrogen atoms. The device comprises a multifunction Penning trap and a superconducting, neutral atom trap having a minimum-B configuration. The atom trap features an octupole magnet for transverse confinement and solenoidal mirror coils for longitudinal confinement. The magnetic trap employs a fast shutdown system to maximize the probability of detecting the annihilation of released antihydrogen. In this article we describe the first attempts to observe antihydrogen trapping.

  15. Formation of low-energy antihydrogen

    SciTech Connect

    Holzscheiter, M.H.; ATHENA Collaboration

    1999-03-01

    Antihydrogen atoms, produced near rest, trapped in a magnetic well, and cooled to the lowest possible temperature (kinetic energy) could provide an extremely powerful tool for the search of violations of CPT and Lorentz invariance. The author describes plans to trap antiprotons and positrons in a combined Penning trap and to form a significant number of cold antihydrogen atoms for comparative precision spectroscopy of hydrogen and antihydrogen.

  16. Antihydrogen production

    SciTech Connect

    Rizzini, Evandro Lodi; Venturelli, Luca; Zurlo, Nicola

    2008-08-08

    Antihydrogen production in ATHENA is analyzed more carefully. The most important peculiarities of the different experimental situations are discussed. The protonium production via the first matter-antimatter chemical reaction is commented too.

  17. Observation of the hyperfine spectrum of antihydrogen

    NASA Astrophysics Data System (ADS)

    Ahmadi, M.; Alves, B. X. R.; Baker, C. J.; Bertsche, W.; Butler, E.; Capra, A.; Carruth, C.; Cesar, C. L.; Charlton, M.; Cohen, S.; Collister, R.; Eriksson, S.; Evans, A.; Evetts, N.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Gutierrez, A.; Hangst, J. S.; Hardy, W. N.; Hayden, M. E.; Isaac, C. A.; Ishida, A.; Johnson, M. A.; Jones, S. A.; Jonsell, S.; Kurchaninov, L.; Madsen, N.; Mathers, M.; Maxwell, D.; McKenna, J. T. K.; Menary, S.; Michan, J. M.; Momose, T.; Munich, J. J.; Nolan, P.; Olchanski, K.; Olin, A.; Pusa, P.; Rasmussen, C. Ø.; Robicheaux, F.; Sacramento, R. L.; Sameed, M.; Sarid, E.; Silveira, D. M.; Stracka, S.; Stutter, G.; So, C.; Tharp, T. D.; Thompson, J. E.; Thompson, R. I.; van der Werf, D. P.; Wurtele, J. S.

    2017-08-01

    The observation of hyperfine structure in atomic hydrogen by Rabi and co-workers and the measurement of the zero-field ground-state splitting at the level of seven parts in 1013 are important achievements of mid-twentieth-century physics. The work that led to these achievements also provided the first evidence for the anomalous magnetic moment of the electron, inspired Schwinger’s relativistic theory of quantum electrodynamics and gave rise to the hydrogen maser, which is a critical component of modern navigation, geo-positioning and very-long-baseline interferometry systems. Research at the Antiproton Decelerator at CERN by the ALPHA collaboration extends these enquiries into the antimatter sector. Recently, tools have been developed that enable studies of the hyperfine structure of antihydrogen—the antimatter counterpart of hydrogen. The goal of such studies is to search for any differences that might exist between this archetypal pair of atoms, and thereby to test the fundamental principles on which quantum field theory is constructed. Magnetic trapping of antihydrogen atoms provides a means of studying them by combining electromagnetic interaction with detection techniques that are unique to antimatter. Here we report the results of a microwave spectroscopy experiment in which we probe the response of antihydrogen over a controlled range of frequencies. The data reveal clear and distinct signatures of two allowed transitions, from which we obtain a direct, magnetic-field-independent measurement of the hyperfine splitting. From a set of trials involving 194 detected atoms, we determine a splitting of 1,420.4 ± 0.5 megahertz, consistent with expectations for atomic hydrogen at the level of four parts in 104. This observation of the detailed behaviour of a quantum transition in an atom of antihydrogen exemplifies tests of fundamental symmetries such as charge-parity-time in antimatter, and the techniques developed here will enable more-precise such tests.

  18. General Relativistic Effects in Atom Interferometry

    SciTech Connect

    Dimopoulos, Savas; Graham, Peter W.; Hogan, Jason M.; Kasevich, Mark A.; /Stanford U., Phys. Dept.

    2008-03-17

    Atom interferometry is now reaching sufficient precision to motivate laboratory tests of general relativity. We begin by explaining the non-relativistic calculation of the phase shift in an atom interferometer and deriving its range of validity. From this we develop a method for calculating the phase shift in general relativity. This formalism is then used to find the relativistic effects in an atom interferometer in a weak gravitational field for application to laboratory tests of general relativity. The potentially testable relativistic effects include the non-linear three-graviton coupling, the gravity of kinetic energy, and the falling of light. We propose experiments, one currently under construction, that could provide a test of the principle of equivalence to 1 part in 10{sup 15} (300 times better than the present limit), and general relativity at the 10% level, with many potential future improvements. We also consider applications to other metrics including the Lense-Thirring effect, the expansion of the universe, and preferred frame and location effects.

  19. Antiparticle sources for antihydrogen production and trapping

    NASA Astrophysics Data System (ADS)

    Charlton, M.; Andresen, G. B.; Ashkezari, M. D.; Baquero-Ruiz, M.; Bertsche, W.; Bowe, P. D.; Bray, C. C.; Butler, E.; Cesar, C. L.; Chapman, S.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Hangst, J. S.; Hardy, W. N.; Hayano, R. S.; Hayden, M. E.; Humphries, A. J.; Hydomako, R.; Jonsell, S.; Jørgensen, L. V.; Kerrigan, S. J.; Kurchaninov, L.; Lambo, R.; Madsen, N.; Menary, S.; Nolan, P.; Olchanski, K.; Povilus, A.; Pusa, P.; Robicheaux, F.; Sarid, E.; Seif El Nasr, S.; Silveira, D. M.; So, C.; Storey, J. W.; Thompson, R. I.; Van Der Werf, D. P.; Wilding, D.; Wurtele, J. S.; Yamazaki, Y.; Alpha Collaboration

    2011-12-01

    Sources of positrons and antiprotons that are currently used for the formation of antihydrogen with low kinetic energies are reviewed, mostly in the context of the ALPHA collaboration and its predecessor ATHENA. The experiments were undertaken at the Antiproton Decelerator facility, which is located at CERN. Operations performed on the clouds of antiparticles to facilitate their mixing to produce antihydrogen are described. These include accumulation, cooling and manipulation. The formation of antihydrogen and some of the characteristics of the anti-atoms that are created are discussed. Prospects for trapping antihydrogen in a magnetic minimum trap, as envisaged by the ALPHA collaboration, are reviewed.

  20. Towards antihydrogen trapping and spectroscopy at ALPHA

    NASA Astrophysics Data System (ADS)

    Butler, E.; Andresen, G. B.; Ashkezari, M. D.; Baquero-Ruiz, M.; Bertsche, W.; Bowe, P. D.; Bray, C. C.; Cesar, C. L.; Chapman, S.; Charlton, M.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Hangst, J. S.; Hardy, W. N.; Hayano, R. S.; Hayden, M. E.; Humphries, A. J.; Hydomako, R.; Jonsell, S.; Kurchaninov, L.; Lambo, R.; Madsen, N.; Menary, S.; Nolan, P.; Olchanski, K.; Olin, A.; Povilus, A.; Pusa, P.; Robicheaux, F.; Sarid, E.; Silveira, D. M.; So, C.; Storey, J. W.; Thompson, R. I.; van der Werf, D. P.; Wilding, D.; Wurtele, J. S.; Yamazaki, Y.

    2011-07-01

    Spectroscopy of antihydrogen has the potential to yield high-precision tests of the CPT theorem and shed light on the matter-antimatter imbalance in the Universe. The ALPHA antihydrogen trap at CERN's Antiproton Decelerator aims to prepare a sample of antihydrogen atoms confined in an octupole-based Ioffe trap and to measure the frequency of several atomic transitions. We describe our techniques to directly measure the antiproton temperature and a new technique to cool them to below 10 K. We also show how our unique position-sensitive annihilation detector provides us with a highly sensitive method of identifying antiproton annihilations and effectively rejecting the cosmic-ray background.

  1. Physics: Optical transition seen in antihydrogen

    NASA Astrophysics Data System (ADS)

    Ulmer, Stefan

    2017-01-01

    Precise measurements of antimatter systems might cast light on why the Universe is dominated by matter. The observation of a transition in an antihydrogen atom heralds the next wave of high-precision antimatter studies. See Letter p.506

  2. Microwave Spectroscopy of Trapped Antihydrogen

    NASA Astrophysics Data System (ADS)

    Dehghani Ashkezari, Mohammad

    2012-10-01

    Theory predicts that, under CPTfootnotetextCharge conjugation, Parity inversion, and Time reversal. symmetry, the laws of physics make no distinction between matter and anti-matter. We have every reason to believe that equal amounts of both were produced in the early universe, following the Big Bang. However, our observable universe is overwhelmingly made up of matter. ALPHA is an international project located at CERN and involves ˜30 physicists from 15 different institutions. The primary goal of the collaboration is to investigate this gaping discrepancy between theoretical expectations and reality by precise comparison of matter and anti-matter, in particular hydrogen and antihydrogen. A critical milestone was reported in November 2010, the first-ever stable and reproducible magnetic confinement of neutral antihydrogen atoms. Shortly after, in June 2011, ALPHA announced the long-time (1000 s) trapping of antihydrogen, opening the door to precision spectroscopy. In March 2012, the first proof-of-principle spectroscopic measurement performed on trapped antihydrogen atoms using microwave radiationfootnotetextC. Amole, et al., (ALPHA collaboration), Nature 483, 439 (2012).. Detailed aspects of this measurement is presented in this talk.

  3. Synthesis of Cold Antihydrogen in a Cusp Trap

    SciTech Connect

    Enomoto, Y.; Nagata, Y.; Kanai, Y.; Mohri, A.; Kuroda, N.; Kim, C. H.; Torii, H. A.; Fujii, K.; Ohtsuka, M.; Tanaka, K.; Matsuda, Y.; Michishio, K.; Nagashima, Y.; Higaki, H.; Corradini, M.; Leali, M.; Lodi-Rizzini, E.; Mascagna, V.; Venturelli, L.; Zurlo, N.

    2010-12-10

    We report here the first successful synthesis of cold antihydrogen atoms employing a cusp trap, which consists of a superconducting anti-Helmholtz coil and a stack of multiple ring electrodes. This success opens a new path to make a stringent test of the CPT symmetry via high precision microwave spectroscopy of ground-state hyperfine transitions of antihydrogen atoms.

  4. Bremsstrahlung spectra from atoms and ions at low relativistic energies

    NASA Astrophysics Data System (ADS)

    Avdonina, N. B.; Pratt, R. H.

    1999-09-01

    Analytic expressions for bremsstrahlung spectra from neutral atoms and ions, including the polarizational bremsstrahlung contribution in a stripped atom approximation, are developed for electron scattering at energies of 10-2000 keV. A modified Elwert factor and a simple higher Born correction are used for the Coulomb spectrum, with ordinary bremsstrahlung screening effects in ions and atoms adequately characterized in the non-relativistic Born approximation. In parallel with the development of this analytic description, new numerical results are obtained for ordinary bremsstrahlung from ions and from bare nuclei, appreciably extending the available data set which can be used to study dependences on element, ionicity, energy and the fraction of incident energy radiated. The accuracy of predictions with the analytic expressions is then determined by comparison with the full numerical relativistic partial-wave results for ordinary bremsstrahlung and with non-relativistic numerical results in the Born approximation or in partial waves for the polarizational amplitude.

  5. Antiparticle plasmas for antihydrogen trapping

    NASA Astrophysics Data System (ADS)

    Charlton, M.; Andresen, G. B.; Ashkezari, M. D.; Baquero-Ruiz, M.; Bertsche, W.; Bowe, P. D.; Butler, E.; Carpenter, P. T.; Cesar, C. L.; Chapman, S.; Eriksson, S.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Gutierrez, A.; Hangst, J. S.; Hardy, W. N.; Hayano, R. S.; Hayden, M. E.; Humphries, A. J.; Hurt, J. L.; Hydomako, R.; Jonsell, S.; Kurchaninov, L.; Madsen, N.; Menary, S.; Nolan, P.; Olchanski, K.; Olin, A.; Povilus, A.; Pusa, P.; Robicheaux, F.; Sarid, E.; Silveira, D. M.; So, C.; Storey, J. W.; Thompson, R. I.; van der Werf, D. P.; Wurtele, J. S.; Yamazaki, Y.

    2012-05-01

    Over the last decades it has become routine to form beams of positrons and antiprotons and to use them to produce trapped samples of both species for a variety of purposes. Positrons can be captured efficiently, for instance using a buffer-gas system, and in such quantities to form dense, single component plasmas useful for antihydrogen formation. The latter is possible using developments of techniques for dynamically capturing and then cooling antiprotons ejected from the Antiproton Decelerator at CERN. The antiprotons can then be manipulated by cloud compression and evaporative cooling to form tailored plasmas. We will review recent advances that have allowed antihydrogen atoms to be confined for the first time in a shallow magnetic minimum neutral atom trap superimposed upon the region in which the antiparticles are held and mixed. A new mixing technique has been developed to help achieve this using autoresonant excitation of the centreofmass longitudinal motion of an antiproton cloud. This allows efficient antihydrogen formation without imparting excess energy to the antiprotons and helps enhance the probability of trapping the anti-atom.

  6. Trapping and Probing Antihydrogen

    SciTech Connect

    Wurtele, Jonathan

    2013-03-27

    Precision spectroscopy of antihydrogen is a promising path to sensitive tests of CPT symmetry. The most direct route to achieve this goal is to create and probe antihydrogen in a magnetic minimum trap. Antihydrogen has been synthesized and trapped for 1000s at CERN by the ALPHA Collaboration. Some of the challenges associated with achieving these milestones will be discussed, including mixing cryogenic positron and antiproton plasmas to synthesize antihydrogen with kinetic energy less than the trap potential of .5K. Recent experiments in which hyperfine transitions were resonantly induced with microwaves will be presented. The opportunity for gravitational measurements in traps based on detailed studies of antihydrogen dynamics will be described. The talk will conclude with a discussion future antihydrogen research that will use a new experimental apparatus, ALPHA-I.

  7. Tartarus: A relativistic Green's function quantum average atom code

    NASA Astrophysics Data System (ADS)

    Gill, N. M.; Starrett, C. E.

    2017-09-01

    A relativistic Green's Function quantum average atom model is implemented in the Tartarus code for the calculation of equation of state data in dense plasmas. We first present the relativistic extension of the quantum Green's Function average atom model described by Starrett [1]. The Green's Function approach addresses the numerical challenges arising from resonances in the continuum density of states without the need for resonance tracking algorithms or adaptive meshes, though there are still numerical challenges inherent to this algorithm. We discuss how these challenges are addressed in the Tartarus algorithm. The outputs of the calculation are shown in comparison to PIMC/DFT-MD simulations of the Principal Shock Hugoniot in Silicon. We also present the calculation of the Hugoniot for Silver coming from both the relativistic and nonrelativistic modes of the Tartarus code.

  8. Tartarus: A relativistic Green's function quantum average atom code

    DOE PAGES

    Gill, Nathanael Matthew; Starrett, Charles Edward

    2017-06-28

    A relativistic Green’s Function quantum average atom model is implemented in the Tartarus code for the calculation of equation of state data in dense plasmas. We first present the relativistic extension of the quantum Green’s Function average atom model described by Starrett [1]. The Green’s Function approach addresses the numerical challenges arising from resonances in the continuum density of states without the need for resonance tracking algorithms or adaptive meshes, though there are still numerical challenges inherent to this algorithm. We discuss how these challenges are addressed in the Tartarus algorithm. The outputs of the calculation are shown in comparisonmore » to PIMC/DFT-MD simulations of the Principal Shock Hugoniot in Silicon. Finally, we also present the calculation of the Hugoniot for Silver coming from both the relativistic and nonrelativistic modes of the Tartarus code.« less

  9. Workshop on foundations of the relativistic theory of atomic structure

    SciTech Connect

    1981-03-01

    The conference is an attempt to gather state-of-the-art information to understand the theory of relativistic atomic structure beyond the framework of the original Dirac theory. Abstracts of twenty articles from the conference were prepared separately for the data base. (GHT)

  10. Alternative method for reconstruction of antihydrogen annihilation vertices

    NASA Astrophysics Data System (ADS)

    Amole, C.; Ashkezari, M. D.; Andresen, G. B.; Baquero-Ruiz, M.; Bertsche, W.; Bowe, P. D.; Butler, E.; Cesar, C. L.; Chapman, S.; Charlton, M.; Deller, A.; Eriksson, S.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Gutierrez, A.; Hangst, J. S.; Hardy, W. N.; Hayano, R. S.; Hayden, M. E.; Humphries, A. J.; Hydomako, R.; Jonsell, S.; Kurchaninov, L.; Madsen, N.; Menary, S.; Nolan, P.; Olchanski, K.; Olin, A.; Povilus, A.; Pusa, P.; Robicheaux, F.; Sarid, E.; Silveira, D. M.; So, C.; Storey, J. W.; Thompson, R. I.; van der Werf, D. P.; Wurtele, J. S.; Yamazaki, Y.

    2012-12-01

    The ALPHA experiment, located at CERN, aims to compare the properties of antihydrogen atoms with those of hydrogen atoms. The neutral antihydrogen atoms are trapped using an octupole magnetic trap. The trap region is surrounded by a three layered silicon detector used to reconstruct the antiproton annihilation vertices. This paper describes a method we have devised that can be used for reconstructing annihilation vertices with a good resolution and is more efficient than the standard method currently used for the same purpose.

  11. Alternative method for reconstruction of antihydrogen annihilation vertices

    NASA Astrophysics Data System (ADS)

    Amole, C.; Ashkezari, M. D.; Andresen, G. B.; Baquero-Ruiz, M.; Bertsche, W.; Bowe, P. D.; Butler, E.; Cesar, C. L.; Chapman, S.; Charlton, M.; Deller, A.; Eriksson, S.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Gutierrez, A.; Hangst, J. S.; Hardy, W. N.; Hayano, R. S.; Hayden, M. E.; Humphries, A. J.; Hydomako, R.; Jonsell, S.; Kurchaninov, L.; Madsen, N.; Menary, S.; Nolan, P.; Olchanski, K.; Olin, A.; Povilus, A.; Pusa, P.; Robicheaux, F.; Sarid, E.; Silveira, D. M.; So, C.; Storey, J. W.; Thompson, R. I.; van der Werf, D. P.; Wurtele, J. S.; Yamazaki, Y.

    The ALPHA experiment, located at CERN, aims to compare the properties of antihydrogen atoms with those of hydrogen atoms. The neutral antihydrogen atoms are trapped using an octupole magnetic trap. The trap region is surrounded by a three layered silicon detector used to reconstruct the antiproton annihilation vertices. This paper describes a method we have devised that can be used for reconstructing annihilation vertices with a good resolution and is more efficient than the standard method currently used for the same purpose.

  12. Relativistic theory of the double photoionization of heliumlike atoms

    SciTech Connect

    Yerokhin, Vladimir A.; Surzhykov, Andrey

    2011-09-15

    A fully relativistic calculation of the double photoionization of heliumlike atoms is presented. The approach is based on the partial-wave representation of the Dirac continuum states and accounts for the retardation in the electron-electron interaction as well as the higher-order multipoles of the absorbed photon. The electron-electron interaction is taken into account to the leading order of the perturbation theory. The relativistic effects are shown to become prominent already for the medium-Z ions, changing the shape and the asymptotic behavior of the photon energy dependence of the ratio of the double-to-single photoionization cross section.

  13. The Alpha Antihydrogen Experiment

    NASA Astrophysics Data System (ADS)

    Madsen, N.; Andresen, G.; Bertsche, W.; Boston, A.; Bowe, P. D.; Butler, E.; Cesar, C. L.; Chapman, S.; Charlton, M.; Chartier, M.; Fajans, J.; Funakoshi, R.; Gill, D. R.; Hangst, J. S.; Hardy, W. N.; Hayano, R. S.; Hayden, M.; Hydomako, R.; Jenkins, M. J.; Jørgensen, L. V.; Kurchaninov, L.; Nolan, P.; Olchanski, K.; Olin, A.; Page, R. D.; Povilus, A.; Robicheaux, F.; Sarid, E.; Seif El Nasr, S.; Silveira, D. M.; Storey, J. W.; Thompson, R. I.; van der Werf, D. P.; Wurtele, J. S.; Yamazaki, Y.

    2008-03-01

    ALPHA is a new experiment at the CERN Antiproton Decelerator (AD). The short term goal of ALPHA is trapping of cold antihydrogen, with the long term goal of conducting precise spectroscopic comparisons of hydrogen and antihydrogen. Here we present the current status of ALPHA and the physics considerations and results leading to its design as well as recent progress towards trapping.

  14. Atomic frequency standard relativistic Doppler shift experiment

    NASA Technical Reports Server (NTRS)

    Peters, H. E.; Reinhardt, V. S.

    1974-01-01

    An experiment has been performed to measure possible space anisotropy as it would effect the frequency of a cesium atomic beam standard clock in a laboratory on earth due to motion relative to external coordinate frames. The cesium frequency was measured as a function of orientation with respect to an atomic hydrogen maser standard. Over a period of 34 days 101 measurements were made. The results are consistent with a conclusion that no general orientation dependance attributable to spacial anisotropy was observed. It is shown that both the airplane clock results, and the null results for the atomic beam clock, are consistent with Einstein general or special relativity, or with the Lorentz transformations alone.

  15. GRASP2K: Relativistic Atomic Structure Package

    NASA Astrophysics Data System (ADS)

    Jönsson, P.; Gaigalas, G.; Bieroń, J.; Fischer, C. Froese; Grant, I. P.

    2016-11-01

    GRASP2K is a revised and greatly expanded version of GRASP (ascl:1609.008) and is adapted for 64-bit computer architecture. It includes new angular libraries, can transform from jj- to LSJ-coupling, and coefficients of fractional parentage have been extended to j=9/2, making calculations feasible for the lanthanides and actinides. GRASP2K identifies each atomic state by the total energy and a label for the configuration state function with the largest expansion coefficient in LSJLSJ intermediate coupling.

  16. Relativistic Hydrogen-Like Atom on a Noncommutative Phase Space

    NASA Astrophysics Data System (ADS)

    Masum, Huseyin; Dulat, Sayipjamal; Tohti, Mutallip

    2017-09-01

    The energy levels of hydrogen-like atom on a noncommutative phase space were studied in the framework of relativistic quantum mechanics. The leading order corrections to energy levels 2 S 1/2, 2 P 1/2 and 2 P 3/2 were obtained by using the 𝜃 and the \\bar θ modified Dirac Hamiltonian of hydrogen-like atom on a noncommutative phase space. The degeneracy of the energy levels 2 P 1/2 and 2 P 3/2 were removed completely by 𝜃-correction. And the \\bar θ -correction shifts these energy levels.

  17. Antihydrogen production and precision experiments

    SciTech Connect

    Nieto, M.M.; Goldman, T.; Holzscheiter, M.H.

    1996-12-31

    The study of CPT invariance with the highest achievable precision in all particle sectors is of fundamental importance for physics. Equally important is the question of the gravitational acceleration of antimatter. In recent years, impressive progress has been achieved in capturing antiprotons in specially designed Penning traps, in cooling them to energies of a few milli-electron volts, and in storing them for hours in a small volume of space. Positrons have been accumulated in large numbers in similar traps, and low energy positron or positronium beams have been generated. Finally, steady progress has been made in trapping and cooling neutral atoms. Thus the ingredients to form antihydrogen at rest are at hand. Once antihydrogen atoms have been captured at low energy, spectroscopic methods can be applied to interrogate their atomic structure with extremely high precision and compare it to its normal matter counterpart, the hydrogen atom. Especially the 1S-2S transition, with a lifetime of the excited state of 122 msec and thereby a natural linewidth of 5 parts in 10{sup 16}, offers in principle the possibility to directly compare matter and antimatter properties at a level of 1 part in 10{sup 16}.

  18. Antihydrogen Trapped in the ALPHA Experiment

    ScienceCinema

    None

    2016-07-12

    In 2010 the ALPHA collaboration succeeded in trapping antihydrogen atoms for the first time.[i]  Stored antihydrogen promises to be a unique tool for making high precision measurements of the structure of this first anti-atom. Achieving this milestone presented several substantial experimental challenges and this talk will describe how they were overcome.   The unique design features of the ALPHA apparatus will be explained.[ii]  These allow a high intensity positron source and an antiproton imaging detector similar to the one used in the ATHENA[iii] experiment to be combined with an innovative magnet design of the anti-atom trap. This seeks to minimise the perturbations to trapped charged particles which may cause particle loss and heating[iv].   The diagnostic techniques used to measure the diameter, number, density, and temperatures of both plasmas will be presented as will the methods developed to actively compress and cool of both plasma species to sizes and temperatures [v],[vi], [vii] where trapping attempts with a reasonable chance of success can be tried.   The results of the successful trapping experiments will be outlined as well as some subsequent experiments to improve the trapping rate and storage time. [i] 'Trapped antihydrogen' G.B. Andresen et al., Nature 468, 673 (2010) [ii]'A Magnetic Trap for Antihydrogen Confinement' W. Bertsche et al., Nucl. Instr. Meth. Phys. Res. A566, 746 (2006) [iii] Production and detection of cold antihydrogen atoms M.Amoretti et al., Nature 419, 456 (2002). [iv]' Antihydrogen formation dynamics in a multipolar neutral anti-atom trap' G.B. Andresen et al., Phys. Lett. B 685, 141 (2010) [v]' Evaporative Cooling of Antiprotons to Cryogenic Temperatures',                                   G.B. Andresen et al. Phys. Rev. Lett 105, 013003 (2010) [vi]'Compression of Antiproton Clouds for Antihydrogen Trapping' G. B. Andresen et al. Phys. Rev. Lett 100, 203401 (2008) [vii]  'Autoresonant

  19. Antihydrogen Trapped in the ALPHA Experiment

    SciTech Connect

    2011-02-25

    In 2010 the ALPHA collaboration succeeded in trapping antihydrogen atoms for the first time.[i]  Stored antihydrogen promises to be a unique tool for making high precision measurements of the structure of this first anti-atom. Achieving this milestone presented several substantial experimental challenges and this talk will describe how they were overcome.   The unique design features of the ALPHA apparatus will be explained.[ii]  These allow a high intensity positron source and an antiproton imaging detector similar to the one used in the ATHENA[iii] experiment to be combined with an innovative magnet design of the anti-atom trap. This seeks to minimise the perturbations to trapped charged particles which may cause particle loss and heating[iv].   The diagnostic techniques used to measure the diameter, number, density, and temperatures of both plasmas will be presented as will the methods developed to actively compress and cool of both plasma species to sizes and temperatures [v],[vi], [vii] where trapping attempts with a reasonable chance of success can be tried.   The results of the successful trapping experiments will be outlined as well as some subsequent experiments to improve the trapping rate and storage time. [i] 'Trapped antihydrogen' G.B. Andresen et al., Nature 468, 673 (2010) [ii]'A Magnetic Trap for Antihydrogen Confinement' W. Bertsche et al., Nucl. Instr. Meth. Phys. Res. A566, 746 (2006) [iii] Production and detection of cold antihydrogen atoms M.Amoretti et al., Nature 419, 456 (2002). [iv]' Antihydrogen formation dynamics in a multipolar neutral anti-atom trap' G.B. Andresen et al., Phys. Lett. B 685, 141 (2010) [v]' Evaporative Cooling of Antiprotons to Cryogenic Temperatures',                                   G.B. Andresen et al. Phys. Rev. Lett 105, 013003 (2010) [vi]'Compression of Antiproton Clouds for Antihydrogen Trapping' G. B. Andresen et al. Phys. Rev. Lett 100, 203401 (2008) [vii]  'Autoresonant

  20. Electron shell ionization of atoms with classical, relativistic scattering.

    PubMed

    Ekanayake, N; Luo, S; Grugan, P D; Crosby, W B; Camilo, A D; McCowan, C V; Scalzi, R; Tramontozzi, A; Howard, L E; Wells, S J; Mancuso, C; Stanev, T; Decamp, M F; Walker, B C

    2013-05-17

    We investigate forward scattering of ionization from neon, argon, and xenon in ultrahigh intensities of 2 × 10(19) W/cm(2). Comparisons between the gases reveal the energy of the outgoing photoelectron determines its momentum, which can be scattered as far forward as 45° from the laser wave vector k(laser) for energies greater than 1 MeV. The shell structure in the atom manifests itself as modulations in the photoelectron yield and the width of the angular distributions. We arrive at an agreement with theory by using an independent electron model for the atom, a dipole approximation for the bound state interaction, and a relativistic, three-dimensional, classical radiation field including the laser magnetic field. The studies provide the atomic physics within plasmas, radiation, and particle acceleration in ultrastrong fields.

  1. Antihydrogen formation in laser-assisted positron-antiproton scattering

    NASA Astrophysics Data System (ADS)

    Li, Shu-Min; Miao, Yan-Gang; Zhou, Zi-Fang; Chen, Ji; Liu, Yao-Yang

    1998-09-01

    Antihydrogen formation in the laser-assisted positron-antiproton (nonrelativistic) radiative recombination is investigated. The state of incident positron is given by the Coulomb-Volkov wave function. The perturbative dressed wave function of the atom is obtained in the soft-photon approximation. Our calculation shows that for a geometry of laser polarization parallel to the incident direction, the formation cross section of antihydrogen is greatly reduced. Especially at high impact energy, the reduction is remarkable.

  2. Relativistic Corrections to the Bohr Model of the Atom

    ERIC Educational Resources Information Center

    Kraft, David W.

    1974-01-01

    Presents a simple means for extending the Bohr model to include relativistic corrections using a derivation similar to that for the non-relativistic case, except that the relativistic expressions for mass and kinetic energy are employed. (Author/GS)

  3. Atomic electron energies including relativistic effects and quantum electrodynamic corrections

    NASA Technical Reports Server (NTRS)

    Aoyagi, M.; Chen, M. H.; Crasemann, B.; Huang, K. N.; Mark, H.

    1977-01-01

    Atomic electron energies have been calculated relativistically. Hartree-Fock-Slater wave functions served as zeroth-order eigenfunctions to compute the expectation of the total Hamiltonian. A first order correction to the local approximation was thus included. Quantum-electrodynamic corrections were made. For all orbitals in all atoms with 2 less than or equal to Z less than or equal to 106, the following quantities are listed: total energies, electron kinetic energies, electron-nucleus potential energies, electron-electron potential energies consisting of electrostatic and Breit interaction (magnetic and retardation) terms, and vacuum polarization energies. These results will serve for detailed comparison of calculations based on other approaches. The magnitude of quantum electrodynamic corrections is exhibited quantitatively for each state.

  4. The Los Alamos suite of relativistic atomic physics codes

    SciTech Connect

    Fontes, C. J.; Zhang, H. L.; Jr, J. Abdallah; Clark, R. E. H.; Kilcrease, D. P.; Colgan, J.; Cunningham, R. T.; Hakel, P.; Magee, N. H.; Sherrill, M. E.

    2015-05-28

    The Los Alamos SuitE of Relativistic (LASER) atomic physics codes is a robust, mature platform that has been used to model highly charged ions in a variety of ways. The suite includes capabilities for calculating data related to fundamental atomic structure, as well as the processes of photoexcitation, electron-impact excitation and ionization, photoionization and autoionization within a consistent framework. These data can be of a basic nature, such as cross sections and collision strengths, which are useful in making predictions that can be compared with experiments to test fundamental theories of highly charged ions, such as quantum electrodynamics. The suite can also be used to generate detailed models of energy levels and rate coefficients, and to apply them in the collisional-radiative modeling of plasmas over a wide range of conditions. Such modeling is useful, for example, in the interpretation of spectra generated by a variety of plasmas. In this work, we provide a brief overview of the capabilities within the Los Alamos relativistic suite along with some examples of its application to the modeling of highly charged ions.

  5. The Los Alamos suite of relativistic atomic physics codes

    DOE PAGES

    Fontes, C. J.; Zhang, H. L.; Jr, J. Abdallah; ...

    2015-05-28

    The Los Alamos SuitE of Relativistic (LASER) atomic physics codes is a robust, mature platform that has been used to model highly charged ions in a variety of ways. The suite includes capabilities for calculating data related to fundamental atomic structure, as well as the processes of photoexcitation, electron-impact excitation and ionization, photoionization and autoionization within a consistent framework. These data can be of a basic nature, such as cross sections and collision strengths, which are useful in making predictions that can be compared with experiments to test fundamental theories of highly charged ions, such as quantum electrodynamics. The suitemore » can also be used to generate detailed models of energy levels and rate coefficients, and to apply them in the collisional-radiative modeling of plasmas over a wide range of conditions. Such modeling is useful, for example, in the interpretation of spectra generated by a variety of plasmas. In this work, we provide a brief overview of the capabilities within the Los Alamos relativistic suite along with some examples of its application to the modeling of highly charged ions.« less

  6. Relativistic heavy-atom effects on heavy-atom nuclear shieldings.

    PubMed

    Lantto, Perttu; Romero, Rodolfo H; Gómez, Sergio S; Aucar, Gustavo A; Vaara, Juha

    2006-11-14

    The principal relativistic heavy-atom effects on the nuclear magnetic resonance (NMR) shielding tensor of the heavy atom itself (HAHA effects) are calculated using ab initio methods at the level of the Breit-Pauli Hamiltonian. This is the first systematic study of the main HAHA effects on nuclear shielding and chemical shift by perturbational relativistic approach. The dependence of the HAHA effects on the chemical environment of the heavy atom is investigated for the closed-shell X(2+), X(4+), XH(2), and XH(3) (-) (X=Si-Pb) as well as X(3+), XH(3), and XF(3) (X=P-Bi) systems. Fully relativistic Dirac-Hartree-Fock calculations are carried out for comparison. It is necessary in the Breit-Pauli approach to include the second-order magnetic-field-dependent spin-orbit (SO) shielding contribution as it is the larger SO term in XH(3) (-), XH(3), and XF(3), and is equally large in XH(2) as the conventional, third-order field-independent spin-orbit contribution. Considering the chemical shift, the third-order SO mechanism contributes two-thirds of the difference of approximately 1500 ppm between BiH(3) and BiF(3). The second-order SO mechanism and the numerically largest relativistic effect, which arises from the cross-term contribution of the Fermi contact hyperfine interaction and the relativistically modified spin-Zeeman interaction (FC/SZ-KE), are isotropic and practically independent of electron correlation effects as well as the chemical environment of the heavy atom. The third-order SO terms depend on these factors and contribute both to heavy-atom shielding anisotropy and NMR chemical shifts. While a qualitative picture of heavy-atom chemical shifts is already obtained at the nonrelativistic level of theory, reliable shifts may be expected after including the third-order SO contributions only, especially when calculations are carried out at correlated level. The FC/SZ-KE contribution to shielding is almost completely produced in the s orbitals of the heavy atom

  7. Relativistic heavy-atom effects on heavy-atom nuclear shieldings

    NASA Astrophysics Data System (ADS)

    Lantto, Perttu; Romero, Rodolfo H.; Gómez, Sergio S.; Aucar, Gustavo A.; Vaara, Juha

    2006-11-01

    The principal relativistic heavy-atom effects on the nuclear magnetic resonance (NMR) shielding tensor of the heavy atom itself (HAHA effects) are calculated using ab initio methods at the level of the Breit-Pauli Hamiltonian. This is the first systematic study of the main HAHA effects on nuclear shielding and chemical shift by perturbational relativistic approach. The dependence of the HAHA effects on the chemical environment of the heavy atom is investigated for the closed-shell X2+, X4+, XH2, and XH3- (X =Si-Pb) as well as X3+, XH3, and XF3 (X =P-Bi) systems. Fully relativistic Dirac-Hartree-Fock calculations are carried out for comparison. It is necessary in the Breit-Pauli approach to include the second-order magnetic-field-dependent spin-orbit (SO) shielding contribution as it is the larger SO term in XH3-, XH3, and XF3, and is equally large in XH2 as the conventional, third-order field-independent spin-orbit contribution. Considering the chemical shift, the third-order SO mechanism contributes two-thirds of the difference of ˜1500ppm between BiH3 and BiF3. The second-order SO mechanism and the numerically largest relativistic effect, which arises from the cross-term contribution of the Fermi contact hyperfine interaction and the relativistically modified spin-Zeeman interaction (FC/SZ-KE), are isotropic and practically independent of electron correlation effects as well as the chemical environment of the heavy atom. The third-order SO terms depend on these factors and contribute both to heavy-atom shielding anisotropy and NMR chemical shifts. While a qualitative picture of heavy-atom chemical shifts is already obtained at the nonrelativistic level of theory, reliable shifts may be expected after including the third-order SO contributions only, especially when calculations are carried out at correlated level. The FC/SZ-KE contribution to shielding is almost completely produced in the s orbitals of the heavy atom, with values diminishing with the principal

  8. Cold antihydrogen: a new frontier in fundamental physics.

    PubMed

    Madsen, Niels

    2010-08-13

    The year 2002 heralded a breakthrough in antimatter research when the first low energy antihydrogen atoms were produced. Antimatter has inspired both science and fiction writers for many years, but detailed studies have until now eluded science. Antimatter is notoriously difficult to study as it does not readily occur in nature, even though our current understanding of the laws of physics have us expecting that it should make up half of the universe. The pursuit of cold antihydrogen is driven by a desire to solve this profound mystery. This paper will motivate the current effort to make cold antihydrogen, explain how antihydrogen is currently made, and how and why we are attempting to trap it. It will also discuss what kind of measurements are planned to gain new insights into the unexplained asymmetry between matter and antimatter in the universe.

  9. Possible mechanism for enhancing the trapping and cooling of antihydrogen

    NASA Astrophysics Data System (ADS)

    Cesar, C. L.; Robicheaux, F.; Zagury, N.

    2009-10-01

    We propose a usage of microwave radiation in a magnetic trap for improving the cooling and trapping of cold antihydrogen atoms which are initially produced in high magnetic moment states. Inducing transitions toward lower magnetic moments near the turning points of the atom in the trap, followed by spontaneous emission, should enhance the number of trappable atoms. We present results of simulations based on a typical experimental condition of the antihydrogen experiments at CERN. This technique should also be applicable to other trapped high magnetic moment Rydberg atoms.

  10. Antihydrogen on tap

    NASA Astrophysics Data System (ADS)

    Charlton, Michael

    2005-03-01

    Plentiful quantities of antihydrogen, the bound state system of the antiparticles the positron and the antiproton, have recently been made under very controlled conditions in experiments at the European Laboratory of Particle Physics (CERN) near Geneva. In this article I describe how that was done, and why.

  11. Trapping of antiprotons -- a first step on the way to antihydrogen

    SciTech Connect

    Holzscheiter, M.H.

    1993-07-01

    A first step towards producing and effectively utilizing antihydrogen atoms consists of trapping antiprotons. The immediate next step must then be to control, i.e. trap the produced antihydrogen. The current state of the art in trapping antiprotons and positrons is reviewed, and the challenges in trapping the resulting neutral particles are discussed.

  12. The GBAR experiment: gravitational behaviour of antihydrogen at rest

    NASA Astrophysics Data System (ADS)

    Perez, P.; Sacquin, Y.

    2012-09-01

    The recently recommended experiment GBAR is foreseen to run at CERN at the AD/ELENA antiproton source. It aims at performing the first measurement of the Earth's gravitational acceleration on antimatter by observing the free-fall of antihydrogen atoms. This requires creating anti-atoms at an unprecedented low energy. The different steps of the experiment and their present status are reviewed.

  13. Relativistic (SR-ZORA) quantum theory of atoms in molecules properties.

    PubMed

    Anderson, James S M; Rodríguez, Juan I; Ayers, Paul W; Götz, Andreas W

    2017-01-15

    The Quantum Theory of Atoms in Molecules (QTAIM) is used to elucidate the effects of relativity on chemical systems. To do this, molecules are studied using density-functional theory at both the nonrelativistic level and using the scalar relativistic zeroth-order regular approximation. Relativistic effects on the QTAIM properties and topology of the electron density can be significant for chemical systems with heavy atoms. It is important, therefore, to use the appropriate relativistic treatment of QTAIM (Anderson and Ayers, J. Phys. Chem. 2009, 115, 13001) when treating systems with heavy atoms. © 2016 Wiley Periodicals, Inc.

  14. The grasp2K relativistic atomic structure package

    NASA Astrophysics Data System (ADS)

    Jönsson, P.; He, X.; Froese Fischer, C.; Grant, I. P.

    2007-10-01

    This paper describes grasp2K, a general-purpose relativistic atomic structure package. It is a modification and extension of the GRASP92 package by [F.A. Parpia, C. Froese Fischer, I.P. Grant, Comput. Phys. Comm. 94 (1996) 249]. For the sake of continuity, two versions are included. Version 1 retains the GRASP92 formats for wave functions and expansion coefficients, but no longer requires preprocessing and more default options have been introduced. Modifications have eliminated some errors, improved the stability, and simplified interactive use. The transition code has been extended to cases where the initial and final states have different orbital sets. Several utility programs have been added. Whereas Version 1 constructs a single interaction matrix for all the J's and parities, Version 2 treats each J and parity as a separate matrix. This block structure results in a reduction of memory use and considerably shorter eigenvectors. Additional tools have been developed for this format. The CPU intensive parts of Version 2 have been parallelized using MPI. The package includes a "make" facility that relies on environment variables. These make it easier to port the application to different platforms. The present version supports the 32-bit Linux and ibmSP environments where the former is compatible with many Unix systems. Descriptions of the features and the program/data flow of the package will be given in some detail in this report. Program summaryProgram title: grasp2K Catalogue identifier: ADZL_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADZL_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 213 524 No. of bytes in distributed program, including test data, etc.: 1 328 588 Distribution format: tar.gz Programming language: Fortran and C Computer: Intel

  15. Coupling of (ultra-) relativistic atomic nuclei with photons

    SciTech Connect

    Apostol, M.; Ganciu, M.

    2013-11-15

    The coupling of photons with (ultra-) relativistic atomic nuclei is presented in two particular circumstances: very high electromagnetic fields and very short photon pulses. We consider a typical situation where the (bare) nuclei (fully stripped of electrons) are accelerated to energies ≃ 1 TeV per nucleon (according to the state of the art at LHC, for instance) and photon sources like petawatt lasers ≃ 1 eV-radiation (envisaged by ELI-NP project, for instance), or free-electron laser ≃ 10 keV-radiation, or synchrotron sources, etc. In these circumstances the nuclear scale energy can be attained, with very high field intensities. In particular, we analyze the nuclear transitions induced by the radiation, including both one- and two-photon proceses, as well as the polarization-driven transitions which may lead to giant dipole resonances. The nuclear (electrical) polarization concept is introduced. It is shown that the perturbation theory for photo-nuclear reactions is applicable, although the field intensity is high, since the corresponding interaction energy is low and the interaction time (pulse duration) is short. It is also shown that the description of the giant nuclear dipole resonance requires the dynamics of the nuclear electrical polarization degrees of freedom.

  16. Coupling of (ultra-) relativistic atomic nuclei with photons

    NASA Astrophysics Data System (ADS)

    Apostol, M.; Ganciu, M.

    2013-11-01

    The coupling of photons with (ultra-) relativistic atomic nuclei is presented in two particular circumstances: very high electromagnetic fields and very short photon pulses. We consider a typical situation where the (bare) nuclei (fully stripped of electrons) are accelerated to energies ≃ 1 TeV per nucleon (according to the state of the art at LHC, for instance) and photon sources like petawatt lasers ≃ 1 eV-radiation (envisaged by ELI-NP project, for instance), or free-electron laser ≃ 10 keV-radiation, or synchrotron sources, etc. In these circumstances the nuclear scale energy can be attained, with very high field intensities. In particular, we analyze the nuclear transitions induced by the radiation, including both one- and two-photon proceses, as well as the polarization-driven transitions which may lead to giant dipole resonances. The nuclear (electrical) polarization concept is introduced. It is shown that the perturbation theory for photo-nuclear reactions is applicable, although the field intensity is high, since the corresponding interaction energy is low and the interaction time (pulse duration) is short. It is also shown that the description of the giant nuclear dipole resonance requires the dynamics of the nuclear electrical polarization degrees of freedom.

  17. Relativistic calculations of screening parameters and atomic radii of neutral atoms

    NASA Astrophysics Data System (ADS)

    Guerra, M.; Amaro, P.; Santos, J. P.; Indelicato, P.

    2017-09-01

    Calculations of the effective nuclear charge for elements with 1 ≤ Z ≤ 118 have been performed in a Dirac-Fock approach including all relativistic effects as well as contributions from quantum electrodynamics. Maximum charge density for every subshell of every element in the periodic table was also computed in the same framework as well as atomic radii based on the total charge density. Results were compared with the extensively cited works of Clementi et al., obtained in the 1960s with Roothan's self-consistent-field method.

  18. The Screening Effect in Electromagnetic Production of Electron Positron Pairs in Relativistic Nucleus-Atom Collisions

    NASA Technical Reports Server (NTRS)

    Wu, Jianshi; Derrickson, J. H.; Parnell, T. A.; Strayer, M. R.

    1999-01-01

    We study the screening effects of the atomic electrons in the electromagnetic production of electron-positron pairs in relativistic nucleus-atom collisions for fixed target experiments. Our results are contrasted with those obtained in bare collisions, with particular attention given to its dependence on the beam energy and the target atom.

  19. Relativistic many-body perturbation theory for general open-shell multiplet states of atoms

    NASA Astrophysics Data System (ADS)

    Ishikawa, Yasuyuki; Koc, Konrad

    1996-06-01

    A relativistic many-body perturbation theory, which accounts for relativistic and electron-correlation effects for general open-shell multiplet states of atoms and molecules, is developed and implemented with analytic basis sets of Gaussian spinors. The theory retains the essential aspects of Mo/ller-Plesset perturbation theory by employing the relativistic single-Fock-operator method of Koc and Ishikawa [Phys. Rev. A 49, 794 (1994)] for general open-shell systems. Open-shell Dirac-Fock and relativistic many-body perturbation calculations are reported for the ground and low-lying excited states of Li, B2+, Ne7+, and Ca11+.

  20. Relativistic atomic data for Rb-like tungsten

    NASA Astrophysics Data System (ADS)

    Safronova, U. I.; Safronova, A. S.; Beiersdorfer, P.

    2016-05-01

    Accurate calculations of the atomic properties of Rb-like W37+ are needed for studying high energy density plasma as well as for magnetic fusion applications. In this work, we have calculated energy levels, radiative transition probabilities, and autoionization rates for [Ni] 4s2 4p6 nl , [Ni] 4s2 4p5 4l' nl (l' = d , f , n = 4-7), [Ni] 4 s 4p6 4l' nl ,(l' = d , f , n =4-7), [Ni] 4s2 4p5 5l' nl (n = 5-7), and [Ni] 4 s 4p6 46l' nl (n =6-7) states in Rb-like tungsten (W37+) using the relativistic many-body perturbation theory and the Hartree-Fock-relativistic method. Branching ratios and intensity factors were calculated for satellite lines, and dielectronic recombination rate coefficients were determined for the [Ni] 4s2 4p6 nl (n=4-7) singly excited states, as well as for the [Ni] 4s2 4p5 4 dnl , [Ni] 4s2 4p5 4 fnl , [Ni] 4 s 4p6 4 dnl , [Ni] 4 s 24p6 4 fnl , (n = 4-6), and [Ni] 4s2 4p5 5l' 5 l doubly excited nonautoionizing states. Contributions from the [Ni] 4 s 24p6 4 fnl (n = 6 - 7), [Ni] 4s2 4p5 5l' nl (n = 5 - 6), and [Ni] 4s2 4p5 6l' nl n = 6 - 7) doubly excited autoionizing states are evaluated numerically. Contributions from high-n states (n <= 200) were determined by using a scaling procedure and found to be very important for high temperatures. This research was supported by DOE under the NNSA Cooperative Agreement DE-NA0001984. Work at LLNL was performed under auspices of the US DOE under Contract No. DE-AC52-07NA27344.

  1. Radiationless transitions to atomic M 1,2,3 shells - Results of relativistic theory

    NASA Technical Reports Server (NTRS)

    Chen, M. H.; Crasemann, B.; Mark, H.

    1983-01-01

    Radiationless transitions filling vacancies in atomic M1, M2, and M3 subshells have been calculated relativistically with Dirac-Hartree-Slater wave functions for ten elements with atomic numbers 67-95. Results are compared with those of nonrelativistic calculations and experiment. Relativistic effects are found to be significant. Limitations of an independent-particle model for the calculation of Coster-Kronig rates are noted.

  2. Antihydrogen Production within a Penning-Ioffe Trap

    SciTech Connect

    Gabrielse, G.; Larochelle, P.; Le Sage, D.; Levitt, B.; Kolthammer, W. S.; McConnell, R.; Richerme, P.; Wrubel, J.; Speck, A.; George, M. C.; Grzonka, D.; Oelert, W.; Sefzick, T.; Zhang, Z.; Carew, A.; Comeau, D.; Hessels, E. A.; Storry, C. H.; Weel, M.; Walz, J.

    2008-03-21

    Slow antihydrogen (H) is produced within a Penning trap that is located within a quadrupole Ioffe trap, the latter intended to ultimately confine extremely cold, ground-state H atoms. Observed H atoms in this configuration resolve a debate about whether positrons and antiprotons can be brought together to form atoms within the divergent magnetic fields of a quadrupole Ioffe trap. The number of detected H atoms actually increases when a 400 mK Ioffe trap is turned on.

  3. ANTIHYDROGEN PRODUCTION AND PRECISION SPECTROSCOPY WITH ATHENA/AD-1

    SciTech Connect

    M. HOLZSCHEITER; C. AMSLER; ET AL

    2000-11-01

    CPT invariance is a fundamental property of quantum field theories in flat space-time. Principal consequences include the predictions that particles and their antiparticles have equal masses and lifetimes, and equal and opposite electric charges and magnetic moments. It also follows that the fine structure, hyperfine structure, and Lamb shifts of matter and antimatter bound systems should be identical. It is proposed to generate new stringent tests of CPT using precision spectroscopy on antihydrogen atoms. An experiment to produce antihydrogen at rest has been approved for running at the Antiproton Decelerator (AD) at CERN. We describe the fundamental features of this experiment and the experimental approach to the first phase of the program, the formation and identification of low energy antihydrogen.

  4. Antimatter Advances Include Trapped Antihydrogen in Its Ground State

    NASA Astrophysics Data System (ADS)

    Richerme, Phil

    2012-06-01

    Three recent advances in antimatter physics show significant progress towards precision tests of fundamental symmetries. The first and primary focus of this talk is ATRAP's observation of five simultaneously trapped antihydrogen atoms per trial, confined for long enough to ensure that they are in their ground state.ootnotetextG. Gabrielse et al. (ATRAP Collaboration). Phys. Rev. Lett. 108, 113002 (2012). Large numbers of simultaneously trapped atoms are crucial if laser cooling and spectroscopy of antihydrogen at high levels of precision are to be achieved. Fundamental to this result is the careful control and characterization of the geometry and temperature of the large-number antiproton and positron plasmas from which antihydrogen is formed, along with enhanced event detection and cosmic ray background rejection techniques. A second advance, by the ALPHA collaboration, is a demonstration that smaller numbers of simultaneously trapped antihydrogen atoms can be ejected from a magnetic trap when microwaves flip the spin of the atoms.ootnotetextC. Amole et al. (ALPHA Collaboration). Nature 483, 439 (2012). A third advance is a direct measurement of the proton magnetic moment to 2.5 parts per million using a technique that can be directly applied to an antiprotonootnotetextJ. DiSciacca and G. Gabrielse. Phys. Rev. Lett. 108, 153001 (2012). to improve the precision with which the antiproton magnetic moment is measured by a factor of 1000.

  5. Relativistic distorted-wave calculation of electron scattering from alkali atoms

    NASA Astrophysics Data System (ADS)

    Ji, Weixing

    In electron scattering from alkali atom systems, the distortion of the target atom by the incident electron plays a important role and is represented by a polarization potential. The perturbative formulation (Temkin 1959) works well for systems with moderate polarizability such as the ground states of noble gases. A simple non-relativistic non-perturbative method was developed for the alkali atoms and this was generalized to arbitrary atomic systems by McEachran et al (1995). As the nuclear charge Z of the target atom increases, relativistic effects such as the spin-orbit interaction are expected to play a more important role in the scattering process; even for light atoms such as sodium, relativistic effects are measurable with recent developments in experimental techniques (McClelland et al 1990). Since the relativistic atomic wavefunctions of alkali atoms are available, it is necessary and practical to develop a relativistic, non-perturbative polarized-orbit method (RPO) for highly polarizable systems such as alkali atoms in their ground and excited states. The relativistic polarized orbit method (RPO) is formulated and applied to the elastic scattering from cesium and sodium in the ground state, and sodium in an excited state. We present the differential cross section at the low and intermediate incident electron energies up to 150 eV. We also calculate the various spin asymmetry parameters that have been measured experimentally. In general our results compare favourably with experimental and other theoretical data. However, in some cases, there are deviations of our asymmetry parameters from existing experimental and theoretical results.

  6. Relativistic Dirac-Fock atom properties for Z = 121 to Z = 138

    NASA Astrophysics Data System (ADS)

    Zhou, Z.; Kas, J. J.; Rehr, J. J.; Ermler, W. C.

    2017-03-01

    We present relativistic Dirac-Fock calculations of atomic properties for atomic numbers Z = 121- 138, extending a previous tabulation of Desclaux. The calculations assume a single LS ground state configuration and include a correction for finite nuclear size, with an approximation for the mean nuclear mass A(Z) based on the liquid-drop model.

  7. Generalized quantum similarity in atomic systems: A quantifier of relativistic effects

    NASA Astrophysics Data System (ADS)

    Martín, A. L.; Angulo, J. C.; Antolín, J.; López-Rosa, S.

    2017-02-01

    Quantum similarity between Hartree-Fock and Dirac-Fock electron densities reveals the depth of relativistic effects on the core and valence regions in atomic systems. The results emphasize the relevance of differences in the outermost subshells, as pointed out in recent studies by means of Shannon-like functionals. In this work, a generalized similarity functional allows us to go far beyond the Shannon-based analyses. The numerical results for systems throughout the Periodic Table show that discrepancies between the relativistic and non-relativistic descriptions are patently governed by shell-filling patterns.

  8. Electron correlation and relativistic effects in atomic structure calculations of the thorium atom.

    PubMed

    Roy, S K; Prasad, Rajendra; Chandra, P

    2011-06-21

    Relativistic two-component ab initio calculations have been performed for the Th atom. The spin free low lying states have been calculated at state-averaged complete active space self-consistent field (SA-CASSCF) and multi-state complete active space second-order perturbation (MS-CASPT2) level of theories using different sets of active orbitals. The spin-orbit states have been computed using Douglas-Kroll type of atomic mean-field integral approach. The effects of dynamic electron correlation have been studied at the MS-CASPT2 level. The energy levels of spin-orbit states below 30,000 cm(-1) obtained by the inclusion of dynamic electron correlation are in very good agreement with the experimental values. The radiative properties such as weighted transition probabilities (gA) and oscillator strengths (gf) among several spin-orbit states have been calculated at the SA-CASSCF and MS-CASPT2 levels and are expected to be very helpful for future experiments.

  9. An experimental test of the weak equivalence principle for antihydrogen at the future FLAIR facility

    NASA Astrophysics Data System (ADS)

    Blaum, Klaus; Raizen, Mark G.; Quint, Wolfgang

    2014-05-01

    We present new experimental ideas to investigate the gravitational interaction of antihydrogen. The experiment can first be performed in an off-line mirror measurement on hydrogen atoms, as a testing ground for our methods, before the implementation with antihydrogen atoms. A beam of hydrogen atoms is formed by launching a cold beam of protons through a cloud of trapped electrons in a nested Penning trap arrangement. In the next step, the atoms are stopped in a series of pulsed electromagnetic coils — so-called atomic coilgun. The stopped atoms are confined in a magnetic quadrupole trap and cooled by single-photon laser cooling. We intend to employ the method of Raman interferometry to study the gravitational interaction of atomic hydrogen — and later on antihydrogen at the FLAIR facility — with high sensitivity.

  10. Relativistic Quantum Mechanical Calculations on Alkali Atoms and Dimers from Cesium to Ununennium

    NASA Astrophysics Data System (ADS)

    Arinze, Chukwunonso; Ermler, Walter

    2015-03-01

    Ab initio calculations using relativistic effective core potentials, and intermediate angular momentum coupling of electrons are carried out on the alkali metal atoms, and dimers from cesium through ununennium. A spin-orbit configuration interaction (SOCI) method is employed that includes a spin-orbit coupling operator and a relativistic effective core potential in the Schrodinger Hamiltonian operator. The energy levels from these calculation are found to reproduce the positions of the experimental spectral lines and predict lines not heretofore observed for both of these atoms.

  11. Solid-state continuous Lyman-alpha source for laser-cooling of antihydrogen

    SciTech Connect

    Walz, Jochen; Beyer, Thomas; Kolbe, Daniel; Markert, Frank; Muellers, Andreas; Scheid, Martin

    2008-08-08

    Cooling antihydrogen atoms is important for future experiments both to test the fundamental CPT symmetry by high-resolution laser spectroscopy and also to measure the gravitational acceleration of antimatter. Laser-cooling of antihydrogen can be done on the strong 1 S-2 P transition at the wavelength of Lyman-alpha (121.6 nm). Ongoing work to set up a solid-state continuous-wave laser source at Lyman-alpha is described.

  12. GBAR. Gravitational behavior of antihydrogen at rest

    NASA Astrophysics Data System (ADS)

    Debu, Pascal

    2012-12-01

    The GBAR project aims to perform the first test of the Equivalence Principle with antimatter by measuring the free fall of ultra-cold antihydrogen atoms. The objective is to measure the gravitational acceleration to better than a percent in a first stage, with a long term perspective to reach a much higher precision using gravitational quantum states of antihydrogen. The production of 20 μK atoms proceeds via sympathetic cooling of overline{H^+} ions by Be + ions. overline{H^+} ions are produced via a two-step process, involving the interaction of bursts of 107 slow antiprotons from the AD (or ELENA upgrade) at CERN with a dense positronium cloud. In order to produce enough positronium, it is necessary to realize an intense source of slow positrons, a few 108 per second. This is done with a small electron linear accelerator. A few 1010 positrons are accumulated every cycle in a Penning-Malmberg trap before they are ejected onto a positron-to-positronium converter. The overall scheme of the experiment is described and the status of the installation of the prototype positron source at Saclay is shown. The accumulation scheme of positrons is given, and positronium formation results are presented. The estimated performance and efficiency of the various steps of the experiment are given.

  13. On the temperature of antihydrogen formed in magnetic trap

    NASA Astrophysics Data System (ADS)

    Bobrov, A. A.; Bronin, S. Y.; Manykin, E. A.; Zelener, B. B.; Zelener, B. V.

    2016-11-01

    Kinetic processes taking place after injection of antiprotons in cold positron cloud are discussed. Mixture of antiparticles is considered as low temperature non neutral weakly coupled plasma. Simple estimations of energy of antihydrogen atoms that may be formed due to three body recombination in the system are made. Dependence of atom energy on initial particles temperatures and influence of strong confining magnetic field are discussed.

  14. Fate of accidental symmetries of the relativistic hydrogen atom in a spherical cavity

    NASA Astrophysics Data System (ADS)

    Al-Hashimi, M. H.; Shalaby, A. M.; Wiese, U.-J.

    2015-11-01

    The non-relativistic hydrogen atom enjoys an accidental SO(4) symmetry, that enlarges the rotational SO(3) symmetry, by extending the angular momentum algebra with the Runge-Lenz vector. In the relativistic hydrogen atom the accidental symmetry is partially lifted. Due to the Johnson-Lippmann operator, which commutes with the Dirac Hamiltonian, some degeneracy remains. When the non-relativistic hydrogen atom is put in a spherical cavity of radius R with perfectly reflecting Robin boundary conditions, characterized by a self-adjoint extension parameter γ, in general the accidental SO(4) symmetry is lifted. However, for R =(l + 1) (l + 2) a (where a is the Bohr radius and l is the orbital angular momentum) some degeneracy remains when γ = ∞ or γ =2/R. In the relativistic case, we consider the most general spherically and parity invariant boundary condition, which is characterized by a self-adjoint extension parameter. In this case, the remnant accidental symmetry is always lifted in a finite volume. We also investigate the accidental symmetry in the context of the Pauli equation, which sheds light on the proper non-relativistic treatment including spin. In that case, again some degeneracy remains for specific values of R and γ.

  15. In-beam measurement of the hydrogen hyperfine splitting and prospects for antihydrogen spectroscopy

    NASA Astrophysics Data System (ADS)

    Diermaier, M.; Jepsen, C. B.; Kolbinger, B.; Malbrunot, C.; Massiczek, O.; Sauerzopf, C.; Simon, M. C.; Zmeskal, J.; Widmann, E.

    2017-06-01

    Antihydrogen, the lightest atom consisting purely of antimatter, is an ideal laboratory to study the CPT symmetry by comparison with hydrogen. With respect to absolute precision, transitions within the ground-state hyperfine structure (GS-HFS) are most appealing by virtue of their small energy separation. ASACUSA proposed employing a beam of cold antihydrogen atoms in a Rabi-type experiment, to determine the GS-HFS in a field-free region. Here we present a measurement of the zero-field hydrogen GS-HFS using the spectroscopy apparatus of ASACUSA's antihydrogen experiment. The measured value of νHF=1,420,405,748.4(3.4) (1.6) Hz with a relative precision of 2.7 × 10-9 constitutes the most precise determination of this quantity in a beam and verifies the developed spectroscopy methods for the antihydrogen HFS experiment to the p.p.b. level. Together with the recently presented observation of antihydrogen atoms 2.7 m downstream of the production region, the prerequisites for a measurement with antihydrogen are now available within the ASACUSA collaboration.

  16. Collaborative Research: Experimental and Theoretical Study of the Plasma Physics of Antihydrogen Generation and Trapping

    SciTech Connect

    Robicheaux, Francis

    2013-03-29

    Ever since Dirac predicted the existence of antimatter in 1928, it has excited our collective imagination. Seventy-four years later, two collaborations at CERN, ATHENA and ATRAP, created the first slow antihydrogen. This was a stunning achievement, but the most important antimatter experiments require trapped, not just slow, antihydrogen. The velocity, magnetic moment, and internal energy and state of the antihydrogen depend strongly on how it is formed. To trap antihydrogen, physicists face two broad challenges: (1) Understanding the behavior of the positron and antiprotons plasmas from which the antihydrogen is synthesized; and (2) Understanding the atomic processes by which positrons and antiprotons recombine. Recombination lies on the boundary between atomic and plasma physics, and cannot be studied properly without employing tools from both fields. The proposed collaborative research campaign will address both of these challenges. The collaboration members have unique experience in the relevant fields of experimental and theoretical non-neutral plasma physics, numerical modeling, nonlinear dynamics and atomic physics. This expertise is not found elsewhere amongst antihydrogen researchers. The collaboration members have strong ties already, and seek to formalize them with this proposal. Three of the four PIs are members of the ALPHA collaboration, an international collaboration formed by most of the principal members of the ATHENA collaboration.

  17. Relativistic calculations of the nonresonant two-photon ionization of neutral atoms

    NASA Astrophysics Data System (ADS)

    Hofbrucker, J.; Volotka, A. V.; Fritzsche, S.

    2016-12-01

    The nonresonant, two-photon, one-electron ionization of neutral atoms is studied theoretically in the framework of relativistic second-order perturbation theory and independent particle approximation. In particular, the importance of relativistic and screening effects in the total two-photon ionization cross section is investigated. Detailed computations have been carried out for the K -shell ionization of neutral Ne, Ge, Xe, and U atoms. The relativistic effects significantly decrease the total cross section; for the case of U, for example, they reduce the total cross section by a factor of two. Moreover, we have found that the account for the screening effects of the remaining electrons leads to occurrence of an unexpected minimum in the total cross section at the total photon energies equal to the ionization threshold; for the case of Ne, for example, the cross section drops there by a factor of three.

  18. Kinetically balanced Gaussian basis-set approach to relativistic Compton profiles of atoms

    SciTech Connect

    Jaiswal, Prerit; Shukla, Alok

    2007-02-15

    Atomic Compton profiles (CPs) are a very important property which provide us information about the momentum distribution of atomic electrons. Therefore, for CPs of heavy atoms, relativistic effects are expected to be important, warranting a relativistic treatment of the problem. In this paper, we present an efficient approach aimed at ab initio calculations of atomic CPs within a Dirac-Hartree-Fock (DHF) formalism, employing kinetically balanced Gaussian basis functions. The approach is used to compute the CPs of noble gases ranging from He to Rn, and the results have been compared to the experimental and other theoretical data, wherever possible. The influence of the quality of the basis set on the calculated CPs has also been systematically investigated.

  19. General method to evaluate two-body integrals for relativistic atomic calculations

    NASA Astrophysics Data System (ADS)

    Ley-Koo, E.; Jáuregui, R.; Góngora-T., A.; Bunge, C. F.

    1993-03-01

    The method of Ley-Koo and Bunge [Phys. Rev. A 40, 1215 (1989)] to evaluate nonrelativistic atomic two-body integrals without a series expansion of the interaction function is extended to the relativistic case. Explicit and general formulas are obtained for the efficient evaluation or handling of atomic electron-electron integrals over bispinorial one-electron functions, including the electromagnetic interaction with retardation effects and the parity-nonconserving weak interaction in both the Yukawa and contact forms.

  20. Correlation, relativistic, and quantum electrodynamics effects on the atomic structure of eka-thorium

    SciTech Connect

    Gaigalas, Gediminas; Gaidamauskas, Erikas; Rudzikas, Zenonas; Magnani, Nicola; Caciuffo, Roberto

    2010-02-15

    Large-scale multiconfiguration Dirac-Fock calculations have been performed for the superheavy element eka-thorium, Z=122. The resulting atomic structure is compared with that obtained by various computational approaches involving different degrees of approximation in order to elucidate the role that correlation, relativistic, Breit, and quantum electrodynamics corrections play in determining the low-energy atomic spectrum. The accuracy of the calculations is assessed by comparing theoretical results obtained for thorium with available experimental data.

  1. An experimental limit on the charge of antihydrogen

    NASA Astrophysics Data System (ADS)

    Amole, C.; Ashkezari, M. D.; Baquero-Ruiz, M.; Bertsche, W.; Butler, E.; Capra, A.; Cesar, C. L.; Charlton, M.; Eriksson, S.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Gutierrez, A.; Hangst, J. S.; Hardy, W. N.; Hayden, M. E.; Isaac, C. A.; Jonsell, S.; Kurchaninov, L.; Little, A.; Madsen, N.; McKenna, J. T. K.; Menary, S.; Napoli, S. C.; Nolan, P.; Olchanski, K.; Olin, A.; Povilus, A.; Pusa, P.; Rasmussen, C. Ø.; Robicheaux, F.; Sarid, E.; Silveira, D. M.; So, C.; Tharp, T. D.; Thompson, R. I.; van der Werf, D. P.; Vendeiro, Z.; Wurtele, J. S.; Zhmoginov, A. I.; Charman, A. E.

    2014-06-01

    The properties of antihydrogen are expected to be identical to those of hydrogen, and any differences would constitute a profound challenge to the fundamental theories of physics. The most commonly discussed antiatom-based tests of these theories are searches for antihydrogen-hydrogen spectral differences (tests of CPT (charge-parity-time) invariance) or gravitational differences (tests of the weak equivalence principle). Here we, the ALPHA Collaboration, report a different and somewhat unusual test of CPT and of quantum anomaly cancellation. A retrospective analysis of the influence of electric fields on antihydrogen atoms released from the ALPHA trap finds a mean axial deflection of 4.1±3.4 mm for an average axial electric field of 0.51 V mm-1. Combined with extensive numerical modelling, this measurement leads to a bound on the charge Qe of antihydrogen of Q=(-1.3±1.1±0.4) × 10-8. Here, e is the unit charge, and the errors are from statistics and systematic effects.

  2. Antihydrogen formation by autoresonant excitation of antiproton plasmas

    NASA Astrophysics Data System (ADS)

    Bertsche, William Alan; Andresen, G. B.; Ashkezari, M. D.; Baquero-Ruiz, M.; Bowe, P. D.; Carpenter, P. T.; Butler, E.; Cesar, C. L.; Chapman, S. F.; Charlton, M.; Eriksson, S.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Gutierrez, A.; Hangst, J. S.; Hardy, W. N.; Hayano, R. S.; Hayden, M. E.; Humphries, A. J.; Hurt, J. L.; Hydomako, R.; Jonsell, S.; Kurchaninov, L.; Madsen, N.; Menary, S.; Nolan, P.; Olchanski, K.; Olin, A.; Povilus, A.; Pusa, P.; Robicheaux, F.; Sarid, E.; Silveira, D. M.; So, C.; Storey, J. W.; Thompson, R. I.; Werf, D. P. van der; Wurtele, J. S.; Yamazaki, Y.

    In efforts to trap antihydrogen, a key problem is the vast disparity between the neutral trap energy scale (˜ 50 \\upmueV), and the energy scales associated with plasma confinement and space charge ( 1 eV). In order to merge charged particle species for direct recombination, the larger energy scale must be overcome in a manner that minimizes the initial antihydrogen kinetic energy. This issue motivated the development of a novel injection technique utilizing the inherent nonlinear nature of particle oscillations in our traps. We demonstrated controllable excitation of the center-of-mass longitudinal motion of a thermal antiproton plasma using a swept-frequency autoresonant drive. When the plasma is cold, dense and highly collective in nature, we observe that the entire system behaves as a single-particle nonlinear oscillator, as predicted by a recent theory. In contrast, only a fraction of the antiprotons in a warm or tenuous plasma can be similarly excited. Antihydrogen was produced and trapped by using this technique to drive antiprotons into a positron plasma, thereby initiating atomic recombination. The nature of this injection overcomes some of the difficulties associated with matching the energies of the charged species used to produce antihydrogen.

  3. Antihydrogen formation by autoresonant excitation of antiproton plasmas

    NASA Astrophysics Data System (ADS)

    Bertsche, William Alan; Andresen, G. B.; Ashkezari, M. D.; Baquero-Ruiz, M.; Bowe, P. D.; Carpenter, P. T.; Butler, E.; Cesar, C. L.; Chapman, S. F.; Charlton, M.; Eriksson, S.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Gutierrez, A.; Hangst, J. S.; Hardy, W. N.; Hayano, R. S.; Hayden, M. E.; Humphries, A. J.; Hurt, J. L.; Hydomako, R.; Jonsell, S.; Kurchaninov, L.; Madsen, N.; Menary, S.; Nolan, P.; Olchanski, K.; Olin, A.; Povilus, A.; Pusa, P.; Robicheaux, F.; Sarid, E.; Silveira, D. M.; So, C.; Storey, J. W.; Thompson, R. I.; Werf, D. P. van der; Wurtele, J. S.; Yamazaki, Y.

    2012-12-01

    In efforts to trap antihydrogen, a key problem is the vast disparity between the neutral trap energy scale (˜ 50 \\upmueV), and the energy scales associated with plasma confinement and space charge ( 1 eV). In order to merge charged particle species for direct recombination, the larger energy scale must be overcome in a manner that minimizes the initial antihydrogen kinetic energy. This issue motivated the development of a novel injection technique utilizing the inherent nonlinear nature of particle oscillations in our traps. We demonstrated controllable excitation of the center-of-mass longitudinal motion of a thermal antiproton plasma using a swept-frequency autoresonant drive. When the plasma is cold, dense and highly collective in nature, we observe that the entire system behaves as a single-particle nonlinear oscillator, as predicted by a recent theory. In contrast, only a fraction of the antiprotons in a warm or tenuous plasma can be similarly excited. Antihydrogen was produced and trapped by using this technique to drive antiprotons into a positron plasma, thereby initiating atomic recombination. The nature of this injection overcomes some of the difficulties associated with matching the energies of the charged species used to produce antihydrogen.

  4. An experimental limit on the charge of antihydrogen.

    PubMed

    Amole, C; Ashkezari, M D; Baquero-Ruiz, M; Bertsche, W; Butler, E; Capra, A; Cesar, C L; Charlton, M; Eriksson, S; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Isaac, C A; Jonsell, S; Kurchaninov, L; Little, A; Madsen, N; McKenna, J T K; Menary, S; Napoli, S C; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Rasmussen, C Ø; Robicheaux, F; Sarid, E; Silveira, D M; So, C; Tharp, T D; Thompson, R I; van der Werf, D P; Vendeiro, Z; Wurtele, J S; Zhmoginov, A I; Charman, A E

    2014-06-03

    The properties of antihydrogen are expected to be identical to those of hydrogen, and any differences would constitute a profound challenge to the fundamental theories of physics. The most commonly discussed antiatom-based tests of these theories are searches for antihydrogen-hydrogen spectral differences (tests of CPT (charge-parity-time) invariance) or gravitational differences (tests of the weak equivalence principle). Here we, the ALPHA Collaboration, report a different and somewhat unusual test of CPT and of quantum anomaly cancellation. A retrospective analysis of the influence of electric fields on antihydrogen atoms released from the ALPHA trap finds a mean axial deflection of 4.1 ± 3.4 mm for an average axial electric field of 0.51 V mm(-1). Combined with extensive numerical modelling, this measurement leads to a bound on the charge Qe of antihydrogen of Q=(-1.3 ± 1.1 ± 0.4) × 10(-8). Here, e is the unit charge, and the errors are from statistics and systematic effects.

  5. An experimental limit on the charge of antihydrogen

    PubMed Central

    Amole, C.; Ashkezari, M. D.; Baquero-Ruiz, M.; Bertsche, W.; Butler, E.; Capra, A.; Cesar, C. L.; Charlton, M.; Eriksson, S.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Gutierrez, A.; Hangst, J. S.; Hardy, W. N.; Hayden, M. E.; Isaac, C. A.; Jonsell, S.; Kurchaninov, L.; Little, A.; Madsen, N.; McKenna, J. T. K.; Menary, S.; Napoli, S. C.; Nolan, P.; Olchanski, K.; Olin, A.; Povilus, A.; Pusa, P.; Rasmussen, C.Ø.; Robicheaux, F.; Sarid, E.; Silveira, D. M.; So, C.; Tharp, T. D.; Thompson, R. I.; van der Werf, D. P.; Vendeiro, Z.; Wurtele, J. S.; Zhmoginov, A. I.; Charman, A. E.

    2014-01-01

    The properties of antihydrogen are expected to be identical to those of hydrogen, and any differences would constitute a profound challenge to the fundamental theories of physics. The most commonly discussed antiatom-based tests of these theories are searches for antihydrogen-hydrogen spectral differences (tests of CPT (charge-parity-time) invariance) or gravitational differences (tests of the weak equivalence principle). Here we, the ALPHA Collaboration, report a different and somewhat unusual test of CPT and of quantum anomaly cancellation. A retrospective analysis of the influence of electric fields on antihydrogen atoms released from the ALPHA trap finds a mean axial deflection of 4.1±3.4 mm for an average axial electric field of 0.51 V mm−1. Combined with extensive numerical modelling, this measurement leads to a bound on the charge Qe of antihydrogen of Q=(−1.3±1.1±0.4) × 10−8. Here, e is the unit charge, and the errors are from statistics and systematic effects. PMID:24892800

  6. Confinement of antihydrogen for 1,000 seconds

    NASA Astrophysics Data System (ADS)

    Alpha Collaboration; Andresen, G. B.; Ashkezari, M. D.; Baquero-Ruiz, M.; Bertsche, W.; Bowe, P. D.; Butler, E.; Cesar, C. L.; Charlton, M.; Deller, A.; Eriksson, S.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Gutierrez, A.; Hangst, J. S.; Hardy, W. N.; Hayano, R. S.; Hayden, M. E.; Humphries, A. J.; Hydomako, R.; Jonsell, S.; Kemp, S. L.; Kurchaninov, L.; Madsen, N.; Menary, S.; Nolan, P.; Olchanski, K.; Olin, A.; Pusa, P.; Rasmussen, C. Ø.; Robicheaux, F.; Sarid, E.; Silveira, D. M.; So, C.; Storey, J. W.; Thompson, R. I.; van der Werf, D. P.; Wurtele, J. S.; Yamazaki, Y.

    2011-07-01

    Atoms made of a particle and an antiparticle are unstable, usually surviving less than a microsecond. Antihydrogen, made entirely of antiparticles, is believed to be stable, and it is this longevity that holds the promise of precision studies of matter-antimatter symmetry. We have recently demonstrated trapping of antihydrogen atoms by releasing them after a confinement time of 172ms. A critical question for future studies is: how long can anti-atoms be trapped? Here, we report the observation of anti-atom confinement for 1,000s, extending our earlier results by nearly four orders of magnitude. Our calculations indicate that most of the trapped anti-atoms reach the ground state. Further, we report the first measurement of the energy distribution of trapped antihydrogen, which, coupled with detailed comparisons with simulations, provides a key tool for the systematic investigation of trapping dynamics. These advances open up a range of experimental possibilities, including precision studies of charge-parity-time reversal symmetry and cooling to temperatures where gravitational effects could become apparent.

  7. Electron plasmas as a diagnostic tool for hyperfine spectroscopy of antihydrogen

    NASA Astrophysics Data System (ADS)

    Friesen, T.; Amole, C.; Ashkezari, M. D.; Baquero-Ruiz, M.; Bertsche, W.; Bowe, P. D.; Butler, E.; Capra, A.; Cesar, C. L.; Charlton, M.; Deller, A.; Evetts, N.; Eriksson, S.; Fajans, J.; Fujiwara, M. C.; Gill, D. R.; Gutierrez, A.; Hangst, J. S.; Hardy, W. N.; Hayden, M. E.; Isaac, C. A.; Jonsell, S.; Kurchaninov, L.; Little, A.; Madsen, N.; McKenna, J. T. K.; Menary, S.; Napoli, S. C.; Olchanski, K.; Olin, A.; Pusa, P.; Rasmussen, C. Ø.; Robicheaux, F.; Sarid, E.; Silveira, D. M.; So, C.; Stracka, S.; Thompson, R. I.; van der Werf, D. P.; Wurtele, J. S.

    2013-03-01

    Long term magnetic confinement of antihydrogen atoms has recently been demonstrated by the ALPHA collaboration at CERN, opening the door to a range of experimental possibilities. Of particular interest is a measurement of the antihydrogen spectrum. A precise comparison of the spectrum of antihydrogen with that of hydrogen would be an excellent test of CPT symmetry. One prime candidate for precision CPT tests is the ground-state hyperfine transition; measured in hydrogen to a precision of nearly one part in 1012. Effective execution of such an experiment with trapped antihydrogen requires precise knowledge of the magnetic environment. Here we present a solution that uses an electron plasma confined in the antihydrogen trapping region. The cyclotron resonance of the electron plasma is probed with microwaves at the cyclotron frequency and the subsequent heating of the electron plasma is measured through the plasma quadrupole mode frequency. Using this method, the minimum magnetic field of the neutral trap can be determined to within 4 parts in 104. This technique was used extensively in the recent demonstration of resonant interaction with the hyperfine levels of trapped antihydrogen atoms.

  8. Towards the production of an ultra cold antihydrogen beam with the AEGIS apparatus

    NASA Astrophysics Data System (ADS)

    Storey, James William

    The AEGIS (Antimatter Experiment: Gravity, Interferometry, Spectroscopy) experiment is an international collaboration, based at CERN, with the experimental goal of performing the first direct measurement of the Earth's gravitational acceleration on antihydrogen. In the first phase of the experiment, a gravity measurement with 1% precision will be performed by passing a beam of ultra cold antihydrogen atoms through a classical Moiré deflectometer coupled to a position sensitive detector. The key requirements for this measurement are the production of ultra cold (T˜100 mK) Rydberg state antihydrogen and the subsequent Stark acceleration of these atoms. The aim is to produce Rydberg state antihydrogen by means of the charge exchange reaction between ultra cold antiprotons (T˜100 mK) and Rydberg state positronium. This paper will present details of the developments necessary for the successful production of the ultra cold antihydrogen beam, with emphasis on the detector that is required for the development of these techniques. Issues covered will include the detection of antihydrogen production and temperature, as well as detection of the effects of Stark acceleration.

  9. Towards the production of an ultra cold antihydrogen beam with the AEGIS apparatus

    NASA Astrophysics Data System (ADS)

    Storey, James William

    2012-12-01

    The AEGIS (Antimatter Experiment: Gravity, Interferometry, Spectroscopy) experiment is an international collaboration, based at CERN, with the experimental goal of performing the first direct measurement of the Earth's gravitational acceleration on antihydrogen. In the first phase of the experiment, a gravity measurement with 1% precision will be performed by passing a beam of ultra cold antihydrogen atoms through a classical Moiré deflectometer coupled to a position sensitive detector. The key requirements for this measurement are the production of ultra cold (T˜100 mK) Rydberg state antihydrogen and the subsequent Stark acceleration of these atoms. The aim is to produce Rydberg state antihydrogen by means of the charge exchange reaction between ultra cold antiprotons (T˜100 mK) and Rydberg state positronium. This paper will present details of the developments necessary for the successful production of the ultra cold antihydrogen beam, with emphasis on the detector that is required for the development of these techniques. Issues covered will include the detection of antihydrogen production and temperature, as well as detection of the effects of Stark acceleration.

  10. Cold atom simulation of interacting relativistic quantum field theories.

    PubMed

    Cirac, J Ignacio; Maraner, Paolo; Pachos, Jiannis K

    2010-11-05

    We demonstrate that Dirac fermions self-interacting or coupled to dynamic scalar fields can emerge in the low energy sector of designed bosonic and fermionic cold atom systems. We illustrate this with two examples defined in two spacetime dimensions. The first one is the self-interacting Thirring model. The second one is a model of Dirac fermions coupled to a dynamic scalar field that gives rise to the Gross-Neveu model. The proposed cold atom experiments can be used to probe spectral or correlation properties of interacting quantum field theories thereby presenting an alternative to lattice gauge theory simulations.

  11. Relativistic electronic dressing in laser-assisted ionization of atomic hydrogen by electron impact

    SciTech Connect

    Attaourti, Y.; Taj, S.

    2004-06-01

    Within the framework of the coplanar binary geometry where it is justified to use plane wave solutions for the study of the (e,2e) reaction and in the presence of a circularly polarized laser field, we introduce as a first step the Dirac-Volkov plane wave Born approximation 1 where we take into account only the relativistic dressing of the incident and scattered electrons. Then, we introduce the Dirac-Volkov plane wave Born approximation 2 where we take totally into account the relativistic dressing of the incident, scattered, and ejected electrons. We then compare the corresponding triple differential cross sections for laser-assisted ionization of atomic hydrogen by electron impact both for the nonrelativistic and the relativistic regime.

  12. The Production and Study of Cold Antiprotons and Antihydrogen

    DTIC Science & Technology

    2015-08-03

    H laser cooling and spectroscopy, decided to first pursue producing more cold H atoms from much larger and colder p and e+ plasmas . ALPHA instead...AFRL-AFOSR-VA-TR-2015-0239 THE PRODUCTION AND STUDY OF COLD ANTIPROTONS AND ANTIHYDROGEN Gerald Gabrielse HARVARD COLLEGE PRESIDENT & FELLOWS OF...DISTRIBUTION A: Distribution approved for public release. Production and Study of Cold p and H 1 Overview and Statement of Objectives 3 2 Project

  13. Quenching of antihydrogen gravitational states by surface charges

    NASA Astrophysics Data System (ADS)

    Voronin, A. Yu; Kupriyanova, E. A.; Lambrecht, A.; Nesvizhevsky, V. V.; Reynaud, S.

    2016-10-01

    We study the effect of the quenching of antihydrogen quantum states near the surface of a material in the Earth's gravitational field by local charges randomly distributed along a mirror surface. The quenching reduces the probability of quantum reflection because of the additional atom-charge interaction, and thus the nonadiabatic transitions to excited gravitational states. Our approach is suitable when accounting for quenching caused by any kind of additional interaction with a characteristic range much smaller than the typical gravitational state wavelength.

  14. The Relativistic Effects on the Carbon-Carbon Coupling Constants Mediated by a Heavy Atom.

    PubMed

    Wodyński, Artur; Malkina, Olga L; Pecul, Magdalena

    2016-07-21

    The (2)JCC, (3)JCC, and (4)JCC spin-spin coupling constants in the systems with a heavy atom (Cd, In, Sn, Sb, Te, Hg, Tl, Pb, Bi, and Po) in the coupling path have been calculated by means of density functional theory. The main goal was to estimate the relativistic effects on spin-spin coupling constants and to explore the factors which may influence them, including the nature of the heavy atom and carbon hybridization. The methods applied range, in order of reduced complexity, from the Dirac-Kohn-Sham (DKS) method (density functional theory with four-component Dirac-Coulomb Hamiltonian), through DFT with two- and one-component zeroth-order regular approximation (ZORA) Hamiltonians, to scalar effective core potentials (ECPs) with the nonrelativistic Hamiltonian. The use of DKS and ZORA methods leads to very similar results, and small-core ECPs of the MDF and MWB variety reproduce correctly the scalar relativistic effects. Scalar relativistic effects usually are larger than the spin-orbit coupling effects. The latter tend to influence the most the coupling constants of the sp(3)-hybridized carbon atoms and in compounds of the p-block heavy atoms. Large spin-orbit coupling contributions for the Po compounds are probably connected with the inverse of the lowest triplet excitation energy.

  15. Relativistic theory of excitation and ionization of Rydberg atomic systems in a Black-body radiation field

    NASA Astrophysics Data System (ADS)

    Buyadzhi, V. V.; Zaichko, P. A.; Gurskaya, M. Y.; Kuznetsova, A. A.; Ponomarenko, E. L.; Ternovsky, V. B.

    2017-02-01

    The combined relativistic energy approach and relativistic many-body perturbation theory with the zeroth model density functional approximation are used for computing the thermal Blackbody radiation ionization characteristics of the Rydberg atoms, in particular, the sodium and caesium in Rydberg states with n=40-100. The comparison of the calculated ionization rate values with available theoretical and experimental data is carried out.

  16. Quantum ballistic experiment on antihydrogen fall

    NASA Astrophysics Data System (ADS)

    Voronin, A. Yu; Nesvizhevsky, V. V.; Dufour, G.; Reynaud, S.

    2016-03-01

    We propose an approach to measuring gravitational mass of antihydrogen (\\bar{{{H}}}) based on interferometry of time distribution of free-fall events of antiatoms. Our method consists of preparing a coherent superposition of quantum states of \\bar{{{H}}} localized near a material surface in the gravitational field of the Earth, and then observing the time distribution of annihilation events after the free-fall of the initially prepared superposition from a given height to a detector plate. We show that the time distribution of interest is mapped to a precisely predictable velocity distribution of the initial wave packet. This approach is combined with production of a coherent superposition of gravitational states by inducing a resonant transition using an oscillating gradient magnetic field. We show that the relative accuracy of measuring the \\bar{{{H}}} atom gravitational mass can be achieved with this approach is 10-4, with 103 antiatoms settled in lowest gravitational states.

  17. Around-the-World Atomic Clocks: Predicted Relativistic Time Gains.

    PubMed

    Hafele, J C; Keating, R E

    1972-07-14

    During October 1971, four cesium beam atomic clocks were flown on regularly scheduled commercial jet flights around the world twice, once eastward and once westward, to test Einstein's theory of relativity with macroscopic clocks. From the actual flight paths of each trip, the theory predicts that the flying clocks, compared with reference clocks at the U.S. Naval Observatory, should have lost 40 +/- 23 nanoseconds during the eastward trip, and should have gained 275 +/- 21 nanoseconds during the westward trip. The observed time differences are presented in the report that follows this one.

  18. Antihydrogen Production within a Penning-Ioffe Trap (ATRAP)

    NASA Astrophysics Data System (ADS)

    Hessels, E. A.

    2008-05-01

    Slow antihydrogen atoms are produced in a Penning trap that is located within a quadrupole Ioffe trap. 5-MeV antiprotons provided by the CERN Antiproton Decelerator are slowed in a Be degrader and captured in the Penning trap where they are further cooled by collisions with cold trapped photoelectrons produced using a 20-mJ excimer laser pulse. Positrons from a Na-22 source are cooled with gas molecules and are trapped in a separate Penning trap and then transferred through a small aperture into the 1-T field of the main Penning trap where they are also cooled by electrons. Typically, 60 million positrons and 0.5 million antiprotons are collected within 15 minutes. Antihydrogen is formed as the positrons and antiprotons are mixed in a slowly-ramped nested well, and is detected by Stark-field ionization. The Ioffe trap, intended to ultimately confine extremely cold, ground-state H atoms, results in divergent magnetic fields, and we demonstrate that antihydrogen can be formed by combining its constituents in these fields. In fact, the number of detected antihydrogen atoms increases when the 400-mK Ioffe trap is turned on. This work is done by the ATRAP collaboration: G. Gabrielse (spokesperson), P. Larochelle, D. Le Sage, B. Levitt, W.S. Kolthammer, R. McConnell, P. Richerme, J. Wrubel, A. Speck, M.C. George, D. Grzonka, W. Oelert, T. Sefzick, Z. Zhang, A. Carew, D. Comeau, E.A. Hessels, C.H. Storry, M. Weel and J. Walz.

  19. 4f photoionization and subsequent Auger decay in atomic Pb: Relativistic effects

    SciTech Connect

    Patanen, M.; Kantia, T.; Heinaesmaeki, S.; Aksela, S.; Aksela, H.; Urpelainen, S.

    2011-05-15

    High-resolution 4f photoelectron and subsequent Auger-electron spectra have been measured from free Pb atoms using synchrotron radiation. The fine structure of the spectra has been investigated theoretically by calculating the energies and intensities for 4f photoionization and Auger decay processes using the multiconfigurational Dirac-Fock approach. The role of the relativistic effects in the ground and singly and doubly ionized states has been studied on the basis of computed results and their comparison with experiment.

  20. Breit and Quantum Electrodynamics Energy Contributions in Multielectron Atoms from the Relativistic Screened Hydrogenic Model

    NASA Astrophysics Data System (ADS)

    Di Rocco, Héctor O.; Lanzini, Fernando

    2016-04-01

    The correction to the Coulomb repulsion between two electrons due to the exchange of a transverse photon, referred to as the Breit interaction, as well as the main quantum electrodynamics contributions to the atomic energies (self-energy and vacuum polarization), are calculated using the recently formulated relativistic screened hydrogenic model. Comparison with the results of multiconfiguration Dirac-Hartree-Fock calculations and experimental X- ray energies is made.

  1. Analysis of relativistic effects in electron-impact excitation of SP transitions in heavy atoms.

    NASA Astrophysics Data System (ADS)

    Andersen, Nils; Bartschat, Klaus

    2002-05-01

    While elastic electron scattering from heavy atoms is known to be strongly affected by relativistic effects such as Mott scattering, it seems surprising that several sets of recent experimental results for electron-impact excitation of the (6s)^2S_1/2 (6p)^2P_1/2,3/2 transition [1,2] in Cs could be well reproduced by a non-relativistic ``convergent close-coupling'' (CCC) model. It is, therefore, desirable to analyze the sensitivity of currently measured observables to relativistic effects, as well as to develop new prescriptions to enhance the potential for experimental tests of sophisticated collision theories. Using the above transition as an example, we developed a new formulation to describe the collision process and the experimental investigations, based on the concept of ``generalized Stokes parameters'' [3]. [1] V. Karaganov, P.J.O. Teubner, and M.J. Brunger, in Correlations, Polarization, and Ionization in Atomic Systems, AIP (New York, 2000). [2] G. Baum and I. Bray (2002), private communication. [3] N. Andersen and K. Bartschat, Polarization, Alignment, and Orientation in Atomic Collisions, Springer (New York, 2000).

  2. New version: GRASP2K relativistic atomic structure package

    NASA Astrophysics Data System (ADS)

    Jönsson, P.; Gaigalas, G.; Bieroń, J.; Fischer, C. Froese; Grant, I. P.

    2013-09-01

    A revised version of GRASP2K [P. Jönsson, X. He, C. Froese Fischer, I.P. Grant, Comput. Phys. Commun. 177 (2007) 597] is presented. It supports earlier non-block and block versions of codes as well as a new block version in which the njgraf library module [A. Bar-Shalom, M. Klapisch, Comput. Phys. Commun. 50 (1988) 375] has been replaced by the librang angular package developed by Gaigalas based on the theory of [G. Gaigalas, Z.B. Rudzikas, C. Froese Fischer, J. Phys. B: At. Mol. Phys. 30 (1997) 3747, G. Gaigalas, S. Fritzsche, I.P. Grant, Comput. Phys. Commun. 139 (2001) 263]. Tests have shown that errors encountered by njgraf do not occur with the new angular package. The three versions are denoted v1, v2, and v3, respectively. In addition, in v3, the coefficients of fractional parentage have been extended to j=9/2, making calculations feasible for the lanthanides and actinides. Changes in v2 include minor improvements. For example, the new version of rci2 may be used to compute quantum electrodynamic (QED) corrections only from selected orbitals. In v3, a new program, jj2lsj, reports the percentage composition of the wave function in LSJ and the program rlevels has been modified to report the configuration state function (CSF) with the largest coefficient of an LSJ expansion. The bioscl2 and bioscl3 application programs have been modified to produce a file of transition data with one record for each transition in the same format as in ATSP2K [C. Froese Fischer, G. Tachiev, G. Gaigalas, M.R. Godefroid, Comput. Phys. Commun. 176 (2007) 559], which identifies each atomic state by the total energy and a label for the CSF with the largest expansion coefficient in LSJ intermediate coupling. All versions of the codes have been adapted for 64-bit computer architecture. Program SummaryProgram title: GRASP2K, version 1_1 Catalogue identifier: ADZL_v1_1 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/ADZL_v1_1.html Program obtainable from: CPC Program Library

  3. Antihydrogen synthesis in a double-CUSP trap towards test of the CPT-symmetry

    NASA Astrophysics Data System (ADS)

    Radics, B.; Ishikawa, S.; Kuroda, N.; Murtagh, D. J.; Nagata, Y.; Tajima, M.; Van Gorp, S.; Abo, Y.; Dupre, P.; Higashi, Y.; Kaga, C.; Leali, M.; Mascagna, V.; Venturelli, L.; Zurlo, N.; Breuker, H.; Higaki, H.; Kanai, Y.; Rizzini, E. Lodi; Matsuda, Y.; Ulmer, S.; Yamazaki, Y.

    2016-12-01

    The aim of the ASACUSA-CUSP experiment at CERN is to produce a cold, polarised antihydrogen beam and perform a high precision measurement of the ground-state hyperfine transition frequency of the antihydrogen atom and compare it with that of the hydrogen atom using the same spectroscopic beam line. Towards this goal a significant step was successfully accomplished: synthesised antihydrogen atoms have been produced in a CUSP magnetic configuration and detected at the end of our spectrometer beam line in 2012 [1]. During a long shut down at CERN the ASACUSA-CUSP experiment had been renewed by introducing a new double-CUSP magnetic configuration and a new semi-cylindrical tracking detector (AMT) [2], and by improving the transport feature of low energy antiproton beams. The new tracking detector monitors the antihydrogen synthesis during the mixing cycle of antiprotons and positrons. In this work the latest results and improvements of the antihydrogen synthesis will be presented including highlights from the last beam time.

  4. Exotic hollow atom states pumped by relativistic laser plasma in a radiation dominant regime

    NASA Astrophysics Data System (ADS)

    Woolsey, Nigel; Pikuz, S. A.; Faenov, A. Ya; Dance, R. J.; Wagenaars, E.; Booth, N.; Culfa, O.; Evans, R. G.; Gray, R. J.; Kaempfer, T.; Lancaster, K. L.; McKenna, P.; Rossall, A. L.; Skobelev, I. Yu; Schulze, K. S.; Uschmann, I.; Zhidkov, A. G.; Abdallah, J., Jr.; Colgan, J.

    2013-10-01

    In high-spectral resolution experiments with the petawatt Vulcan laser, strong x-ray radiation of KK hollow atoms (atoms without n = 1 electrons) from aluminium targets was observed at high laser contrast, for intensities of 3 × 1020 Wcm-2 and micron thick targets. These spectral observations are interpreted using detailed atomic kinetics calculations suggesting these exotic hollow atom states occur at near solid density and are driven by an intense polychromatic x-ray field. We estimate that this x-ray radiation field has energy in the kilovolt range and has an intensity exceeding 1018 Wcm-2. The field may arise through relativistic electron Thomson scattering and bremsstrahlung in the electrostatic fields at the target surface.

  5. Collisional and Radiative Relaxation of Antihydrogen.

    NASA Astrophysics Data System (ADS)

    Bass, E. M.; Dubin, D. H. E.

    2007-11-01

    Antihydrogen is produced in high-magnetic-field Penning traps by introducing antiprotons into a pure-positron plasma at cryogenic temperature T.ootnotetextG. Gabrielse et al., Phys. Rev. Lett. 89, 213401 (2002).^,ootnotetextM. Amoretti et al., Nature 419, 456 (2002). In the experimental regime, three-body recombination forms highly-excited atoms which exhibit classical guiding-center drift orbits.ootnotetextM.E. Glinsky and T.M. O'Neil, Phys. Fluids B 3, 1279 (1991).^,ootnotetextF. Robicheaux and J.D. Hanson, Phys. Rev. A 69, 010701 (2004). Using energy transition rates obtained from a Monte-Carlo simulation, we track the collisional evolution of a distribution of atoms from binding energies near T to Uc= e^2 (B^2/mec^2)^1/3, where atom dynamics is chaotic. While the flux through the kinetic bottleneck (U = 4 T) is proportional to T-9/2, data suggest that the flux at Uc (at a fixed time) does not scale strongly with T or magnetic field B. At Uc, radiation begins to take over as the principle energy-loss mechanism. Evolution due to radiation is tracked for a typical collisionally-evolved energy distribution to show that a small number of low-angular-momentum atoms radiate to the ground state rapidly, while others drop into slowly-radiating, circular orbits at intermediate energies.

  6. Interplay of relativistic and nonrelativistic transport in atomically precise segmented graphene nanoribbons.

    PubMed

    Yannouleas, Constantine; Romanovsky, Igor; Landman, Uzi

    2015-01-20

    Graphene's isolation launched explorations of fundamental relativistic physics originating from the planar honeycomb lattice arrangement of the carbon atoms, and of potential technological applications in nanoscale electronics. Bottom-up fabricated atomically-precise segmented graphene nanoribbons, SGNRs, open avenues for studies of electrical transport, coherence, and interference effects in metallic, semiconducting, and mixed GNRs, with different edge terminations. Conceptual and practical understanding of electric transport through SGNRs is gained through nonequilibrium Green's function (NEGF) conductance calculations and a Dirac continuum model that absorbs the valence-to-conductance energy gaps as position-dependent masses, including topological-in-origin mass-barriers at the contacts between segments. The continuum model reproduces the NEGF results, including optical Dirac Fabry-Prot (FP) equidistant oscillations for massless relativistic carriers in metallic armchair SGNRs, and an unequally-spaced FP pattern for mixed armchair-zigzag SGNRs where carriers transit from a relativistic (armchair) to a nonrelativistic (zigzag) regime. This provides a unifying framework for analysis of coherent transport phenomena and interpretation of forthcoming experiments in SGNRs.

  7. Interplay of relativistic and nonrelativistic transport in atomically precise segmented graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Yannouleas, Constantine; Romanovsky, Igor; Landman, Uzi

    2015-01-01

    Graphene's isolation launched explorations of fundamental relativistic physics originating from the planar honeycomb lattice arrangement of the carbon atoms, and of potential technological applications in nanoscale electronics. Bottom-up fabricated atomically-precise segmented graphene nanoribbons, SGNRs, open avenues for studies of electrical transport, coherence, and interference effects in metallic, semiconducting, and mixed GNRs, with different edge terminations. Conceptual and practical understanding of electric transport through SGNRs is gained through nonequilibrium Green's function (NEGF) conductance calculations and a Dirac continuum model that absorbs the valence-to-conductance energy gaps as position-dependent masses, including topological-in-origin mass-barriers at the contacts between segments. The continuum model reproduces the NEGF results, including optical Dirac Fabry-Prot (FP) equidistant oscillations for massless relativistic carriers in metallic armchair SGNRs, and an unequally-spaced FP pattern for mixed armchair-zigzag SGNRs where carriers transit from a relativistic (armchair) to a nonrelativistic (zigzag) regime. This provides a unifying framework for analysis of coherent transport phenomena and interpretation of forthcoming experiments in SGNRs.

  8. Interplay of relativistic and nonrelativistic transport in atomically precise segmented graphene nanoribbons

    DOE PAGES

    Yannouleas, Constantine; Romanovsky, Igor; Landman, Uzi

    2015-01-20

    Graphene's isolation launched explorations of fundamental relativistic physics originating from the planar honeycomb lattice arrangement of the carbon atoms, and of potential technological applications in nanoscale electronics. Bottom-up fabricated atomically-precise segmented graphene nanoribbons, SGNRs, open avenues for studies of electrical transport, coherence, and interference effects in metallic, semiconducting, and mixed GNRs, with different edge terminations. Conceptual and practical understanding of electric transport through SGNRs is gained through nonequilibrium Green's function (NEGF) conductance calculations and a Dirac continuum model that absorbs the valence-to-conductance energy gaps as position-dependent masses, including topological-in-origin mass-barriers at the contacts between segments. The continuum model reproduces themore » NEGF results, including optical Dirac Fabry-Pérot (FP) equidistant oscillations for massless relativistic carriers in metallic armchair SGNRs, and an unequally-spaced FP pattern for mixed armchair-zigzag SGNRs where carriers transit from a relativistic (armchair) to a nonrelativistic (zigzag) regime. This provides a unifying framework for analysis of coherent transport phenomena and interpretation of forthcoming experiments in SGNRs.« less

  9. Interplay of relativistic and nonrelativistic transport in atomically precise segmented graphene nanoribbons

    SciTech Connect

    Yannouleas, Constantine; Romanovsky, Igor; Landman, Uzi

    2015-01-20

    Graphene's isolation launched explorations of fundamental relativistic physics originating from the planar honeycomb lattice arrangement of the carbon atoms, and of potential technological applications in nanoscale electronics. Bottom-up fabricated atomically-precise segmented graphene nanoribbons, SGNRs, open avenues for studies of electrical transport, coherence, and interference effects in metallic, semiconducting, and mixed GNRs, with different edge terminations. Conceptual and practical understanding of electric transport through SGNRs is gained through nonequilibrium Green's function (NEGF) conductance calculations and a Dirac continuum model that absorbs the valence-to-conductance energy gaps as position-dependent masses, including topological-in-origin mass-barriers at the contacts between segments. The continuum model reproduces the NEGF results, including optical Dirac Fabry-Pérot (FP) equidistant oscillations for massless relativistic carriers in metallic armchair SGNRs, and an unequally-spaced FP pattern for mixed armchair-zigzag SGNRs where carriers transit from a relativistic (armchair) to a nonrelativistic (zigzag) regime. This provides a unifying framework for analysis of coherent transport phenomena and interpretation of forthcoming experiments in SGNRs.

  10. Interplay of relativistic and nonrelativistic transport in atomically precise segmented graphene nanoribbons

    PubMed Central

    Yannouleas, Constantine; Romanovsky, Igor; Landman, Uzi

    2015-01-01

    Graphene's isolation launched explorations of fundamental relativistic physics originating from the planar honeycomb lattice arrangement of the carbon atoms, and of potential technological applications in nanoscale electronics. Bottom-up fabricated atomically-precise segmented graphene nanoribbons, SGNRs, open avenues for studies of electrical transport, coherence, and interference effects in metallic, semiconducting, and mixed GNRs, with different edge terminations. Conceptual and practical understanding of electric transport through SGNRs is gained through nonequilibrium Green's function (NEGF) conductance calculations and a Dirac continuum model that absorbs the valence-to-conductance energy gaps as position-dependent masses, including topological-in-origin mass-barriers at the contacts between segments. The continuum model reproduces the NEGF results, including optical Dirac Fabry-Prot (FP) equidistant oscillations for massless relativistic carriers in metallic armchair SGNRs, and an unequally-spaced FP pattern for mixed armchair-zigzag SGNRs where carriers transit from a relativistic (armchair) to a nonrelativistic (zigzag) regime. This provides a unifying framework for analysis of coherent transport phenomena and interpretation of forthcoming experiments in SGNRs. PMID:25599915

  11. Relativistic Calculation of Scattering Parameters for Superelastic Electron-Atom Collisions

    NASA Astrophysics Data System (ADS)

    Zeman, V.; McEachran, R. P.; Stauffer, A. D.; Srivastava, R.

    1996-05-01

    Superelastic electron-atom scattering experiments are often more desirable to perform than inelastic experiments, in part due to the ability to excite specific fine-structure (and hyperfine-structure) states with relative ease. The superelastic scattering parameters measured, however, are often compared with inelastic parameters which have been measured or calculated by other groups, even though the two cases are not exactly the time-reverse of each other (inelastic experiments can't resolve hyperfine-structure states). To do this there must exist a theoretical framework by which the various parameters for the two cases can be compared. In the non-relativistic limit a general framework has been developed for n'p arrow ns transitions in quasi one-electron atoms(I.V. Hertel, M.H. Kelley and J.J. McClelland, Z. Phys. D, 6), 163 (1987). We extend these calculations to the relativistic case where jj-coupling, rather than LS-coupling, is employed. Examples of calculations using the relativistic distorted-wave approximation will be given.

  12. Experimental and computational study of the injection of antiprotons into a positron plasma for antihydrogen production

    NASA Astrophysics Data System (ADS)

    Amole, C.; Ashkezari, M. D.; Baquero-Ruiz, M.; Bertsche, W.; Butler, E.; Capra, A.; Cesar, C. L.; Charlton, M.; Deller, A.; Eriksson, S.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Gutierrez, A.; Hangst, J. S.; Hardy, W. N.; Hayden, M. E.; Isaac, C. A.; Jonsell, S.; Kurchaninov, L.; Little, A.; Madsen, N.; McKenna, J. T. K.; Menary, S.; Napoli, S. C.; Olchanski, K.; Olin, A.; Pusa, P.; Rasmussen, C. Ø.; Robicheaux, F.; Sarid, E.; Shields, C. R.; Silveira, D. M.; So, C.; Stracka, S.; Thompson, R. I.; van der Werf, D. P.; Wurtele, J. S.; Zhmoginov, A.; Friedland, L.

    2013-04-01

    One of the goals of synthesizing and trapping antihydrogen is to study the validity of charge-parity-time symmetry through precision spectroscopy on the anti-atoms, but the trapping yield achieved in recent experiments must be significantly improved before this can be realized. Antihydrogen atoms are commonly produced by mixing antiprotons and positrons stored in a nested Penning-Malmberg trap, which was achieved in ALPHA by an autoresonant excitation of the antiprotons, injecting them into the positron plasma. In this work, a hybrid numerical model is developed to simulate antiproton and positron dynamics during the mixing process. The simulation is benchmarked against other numerical and analytic models, as well as experimental measurements. The autoresonant injection scheme and an alternative scheme are compared numerically over a range of plasma parameters which can be reached in current and upcoming antihydrogen experiments, and the latter scheme is seen to offer significant improvement in trapping yield as the number of available antiprotons increases.

  13. Relativistic Combined Pseudopotential-Restoration Method for Studying Multitude of Properties in Heavy-Atom Systems

    NASA Astrophysics Data System (ADS)

    Titov, Anatoly V.; Petrov, Alexander N.; Skripnikov, Leonid V.; Mosyagin, Nikolai S.

    2011-06-01

    The relativistic pseudopotential (RPP) calculations of valence (spectroscopic, chemical etc.) properties of molecules are very efficient because the modern two-component RPP methods allows one to treat very accurately the correlation and relativistic effects for the valence electrons of a molecule and to reduce dramatically the computational cost. The valence molecular spinors are usually smoothed in atomic cores and, as a result, direct calculation of electronic densities near heavy nuclei within such approach directly is impossible. Precise calculations of such properties, as hyperfine constants and other magnetic properties, parity nonconservation effects, which are described by the operators heavily concentrated in atomic cores, usually require very accurate accounting for both relativistic and correlation effects. Electronic structure should be well evaluated in both valence and atomic core regions. However, precise all-electron four-component treatment of molecules with heavy elements is yet rather consuming. In the report, an alternative approach based on the RPP method and one-center core-restoration technique [1] developed by the authors for such studies is discussed. Its efficiency is illustrated in benchmark to-date calculations of magnetic-dipole and electric quadrupole hyperfine-structure constants, as well as the space parity (P) and time-reversal symmetry (T) nonconservation effects in polar heavy-atom molecules, including HfF^+, PtH^+, ThO and WC, which are studied now as promising candidates for the experimental search of the electron electric dipole moment (eEDM). [1] A.V.Titov, N.S.Mosyagin, A.N.Petrov, T.A.Isaev, D.DeMille, Progr. Theor. Chem. Phys., 15B, 253 (2006).

  14. An improved limit on the charge of antihydrogen from stochastic acceleration.

    PubMed

    Ahmadi, M; Baquero-Ruiz, M; Bertsche, W; Butler, E; Capra, A; Carruth, C; Cesar, C L; Charlton, M; Charman, A E; Eriksson, S; Evans, L T; Evetts, N; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Isaac, C A; Ishida, A; Jones, S A; Jonsell, S; Kurchaninov, L; Madsen, N; Maxwell, D; McKenna, J T K; Menary, S; Michan, J M; Momose, T; Munich, J J; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Rasmussen, C Ø; Robicheaux, F; Sacramento, R L; Sameed, M; Sarid, E; Silveira, D M; So, C; Tharp, T D; Thompson, R I; van der Werf, D P; Wurtele, J S; Zhmoginov, A I

    2016-01-21

    Antimatter continues to intrigue physicists because of its apparent absence in the observable Universe. Current theory requires that matter and antimatter appeared in equal quantities after the Big Bang, but the Standard Model of particle physics offers no quantitative explanation for the apparent disappearance of half the Universe. It has recently become possible to study trapped atoms of antihydrogen to search for possible, as yet unobserved, differences in the physical behaviour of matter and antimatter. Here we consider the charge neutrality of the antihydrogen atom. By applying stochastic acceleration to trapped antihydrogen atoms, we determine an experimental bound on the antihydrogen charge, Qe, of |Q| < 0.71 parts per billion (one standard deviation), in which e is the elementary charge. This bound is a factor of 20 less than that determined from the best previous measurement of the antihydrogen charge. The electrical charge of atoms and molecules of normal matter is known to be no greater than about 10(-21)e for a diverse range of species including H2, He and SF6. Charge-parity-time symmetry and quantum anomaly cancellation demand that the charge of antihydrogen be similarly small. Thus, our measurement constitutes an improved limit and a test of fundamental aspects of the Standard Model. If we assume charge superposition and use the best measured value of the antiproton charge, then we can place a new limit on the positron charge anomaly (the relative difference between the positron and elementary charge) of about one part per billion (one standard deviation), a 25-fold reduction compared to the current best measurement.

  15. An improved limit on the charge of antihydrogen from stochastic acceleration

    NASA Astrophysics Data System (ADS)

    Ahmadi, M.; Baquero-Ruiz, M.; Bertsche, W.; Butler, E.; Capra, A.; Carruth, C.; Cesar, C. L.; Charlton, M.; Charman, A. E.; Eriksson, S.; Evans, L. T.; Evetts, N.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Gutierrez, A.; Hangst, J. S.; Hardy, W. N.; Hayden, M. E.; Isaac, C. A.; Ishida, A.; Jones, S. A.; Jonsell, S.; Kurchaninov, L.; Madsen, N.; Maxwell, D.; McKenna, J. T. K.; Menary, S.; Michan, J. M.; Momose, T.; Munich, J. J.; Nolan, P.; Olchanski, K.; Olin, A.; Povilus, A.; Pusa, P.; Rasmussen, C. Ø.; Robicheaux, F.; Sacramento, R. L.; Sameed, M.; Sarid, E.; Silveira, D. M.; So, C.; Tharp, T. D.; Thompson, R. I.; van der Werf, D. P.; Wurtele, J. S.; Zhmoginov, A. I.

    2016-01-01

    Antimatter continues to intrigue physicists because of its apparent absence in the observable Universe. Current theory requires that matter and antimatter appeared in equal quantities after the Big Bang, but the Standard Model of particle physics offers no quantitative explanation for the apparent disappearance of half the Universe. It has recently become possible to study trapped atoms- of antihydrogen to search for possible, as yet unobserved, differences in the physical behaviour of matter and antimatter. Here we consider the charge neutrality of the antihydrogen atom. By applying stochastic acceleration to trapped antihydrogen atoms, we determine an experimental bound on the antihydrogen charge, Qe, of |Q| < 0.71 parts per billion (one standard deviation), in which e is the elementary charge. This bound is a factor of 20 less than that determined from the best previous measurement of the antihydrogen charge. The electrical charge of atoms and molecules of normal matter is known to be no greater than about 10-21e for a diverse range of species including H2, He and SF6. Charge-parity-time symmetry and quantum anomaly cancellation demand that the charge of antihydrogen be similarly small. Thus, our measurement constitutes an improved limit and a test of fundamental aspects of the Standard Model. If we assume charge superposition and use the best measured value of the antiproton charge, then we can place a new limit on the positron charge anomaly (the relative difference between the positron and elementary charge) of about one part per billion (one standard deviation), a 25-fold reduction compared to the current best measurement.

  16. Software for relativistic atomic structure theory: The GRASP project at Oxford

    NASA Astrophysics Data System (ADS)

    Parpia, F. A.; Grant, I. P.

    1991-08-01

    GRASP is an acronym for General-purpose Relativistic Atomic Structure Program. The objective of the GRASP project at Oxford is to produce user-friendly state-of-the-art multiconfiguration Dirac-Fock (MCDF) software packages for relativistic atomic structure theory. Modules for the computation of angular coefficients (all based upon Racah techniques), the generation and manipulation of radial functions (based exclusively on finite-difference methods) and utility modules, have been assembled under an interface to produce the Oxford MCDF package. The three extant versions of the Oxford MCDF software, MCDF + MCBP/BENA, GRASP, and GRASP-2, are described. Planned improvements to GRASP-2 include extending the capabilities of the package so that systems involving continuum electrons can be modelled, and the development of a new generation of algorithms optimised for shared-memory vector processors operating in parallel. Future versions of the Oxford MCDF program are likely to make use of basis-set methods, ideally suited to the use of multi-reference many-body perturbation theory, for the improvement of MCDF estimates of atomic properties.

  17. Discriminating between antihydrogen and mirror-trapped antiprotons in a minimum-B trap

    NASA Astrophysics Data System (ADS)

    Amole, C.; Andresen, G. B.; Ashkezari, M. D.; Baquero-Ruiz, M.; Bertsche, W.; Butler, E.; Cesar, C. L.; Chapman, S.; Charlton, M.; Deller, A.; Eriksson, S.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Gutierrez, A.; Hangst, J. S.; Hardy, W. N.; Hayden, M. E.; Humphries, A. J.; Hydomako, R.; Kurchaninov, L.; Jonsell, S.; Madsen, N.; Menary, S.; Nolan, P.; Olchanski, K.; Olin, A.; Povilus, A.; Pusa, P.; Robicheaux, F.; Sarid, E.; Silveira, D. M.; So, C.; Storey, J. W.; Thompson, R. I.; van der Werf, D. P.; Wurtele, J. S.

    2012-01-01

    Recently, antihydrogen atoms were trapped at CERN in a magnetic minimum (minimum-B) trap formed by superconducting octupole and mirror magnet coils. The trapped antiatoms were detected by rapidly turning off these magnets, thereby eliminating the magnetic minimum and releasing any antiatoms contained in the trap. Once released, these antiatoms quickly hit the trap wall, whereupon the positrons and antiprotons in the antiatoms annihilate. The antiproton annihilations produce easily detected signals; we used these signals to prove that we trapped antihydrogen. However, our technique could be confounded by mirror-trapped antiprotons, which would produce seemingly identical annihilation signals upon hitting the trap wall. In this paper, we discuss possible sources of mirror-trapped antiprotons and show that antihydrogen and antiprotons can be readily distinguished, often with the aid of applied electric fields, by analyzing the annihilation locations and times. We further discuss the general properties of antiproton and antihydrogen trajectories in this magnetic geometry, and reconstruct the antihydrogen energy distribution from the measured annihilation time history.

  18. Description and first application of a new technique to measure the gravitational mass of antihydrogen

    PubMed Central

    Amole, C.; Ashkezari, M. D.; Baquero-Ruiz, M.; Bertsche, W.; Butler, E.; Capra, A.; Cesar, C. L.; Charlton, M.; Eriksson, S.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Gutierrez, A.; Hangst, J. S.; Hardy, W. N.; Hayden, M. E.; Isaac, C. A.; Jonsell, S.; Kurchaninov, L.; Little, A.; Madsen, N.; McKenna, J. T. K.; Menary, S.; Napoli, S. C.; Nolan, P.; Olin, A.; Pusa, P.; Rasmussen, C. Ø; Robicheaux, F.; Sarid, E.; Silveira, D. M.; So, C.; Thompson, R. I.; van der Werf, D. P.; Wurtele, J. S.; Zhmoginov, A. I.; Charman, A. E.

    2013-01-01

    Physicists have long wondered whether the gravitational interactions between matter and antimatter might be different from those between matter and itself. Although there are many indirect indications that no such differences exist and that the weak equivalence principle holds, there have been no direct, free-fall style, experimental tests of gravity on antimatter. Here we describe a novel direct test methodology; we search for a propensity for antihydrogen atoms to fall downward when released from the ALPHA antihydrogen trap. In the absence of systematic errors, we can reject ratios of the gravitational to inertial mass of antihydrogen >75 at a statistical significance level of 5%; worst-case systematic errors increase the minimum rejection ratio to 110. A similar search places somewhat tighter bounds on a negative gravitational mass, that is, on antigravity. This methodology, coupled with ongoing experimental improvements, should allow us to bound the ratio within the more interesting near equivalence regime. PMID:23653197

  19. Description and first application of a new technique to measure the gravitational mass of antihydrogen

    NASA Astrophysics Data System (ADS)

    Alpha Collaboration; Amole, C.; Ashkezari, M. D.; Baquero-Ruiz, M.; Bertsche, W.; Butler, E.; Capra, A.; Cesar, C. L.; Charlton, M.; Eriksson, S.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Gutierrez, A.; Hangst, J. S.; Hardy, W. N.; Hayden, M. E.; Isaac, C. A.; Jonsell, S.; Kurchaninov, L.; Little, A.; Madsen, N.; McKenna, J. T. K.; Menary, S.; Napoli, S. C.; Nolan, P.; Olin, A.; Pusa, P.; Rasmussen, C. Ø.; Robicheaux, F.; Sarid, E.; Silveira, D. M.; So, C.; Thompson, R. I.; van der Werf, D. P.; Wurtele, J. S.; Zhmoginov, A. I.; Charman, A. E.

    2013-04-01

    Physicists have long wondered whether the gravitational interactions between matter and antimatter might be different from those between matter and itself. Although there are many indirect indications that no such differences exist and that the weak equivalence principle holds, there have been no direct, free-fall style, experimental tests of gravity on antimatter. Here we describe a novel direct test methodology; we search for a propensity for antihydrogen atoms to fall downward when released from the ALPHA antihydrogen trap. In the absence of systematic errors, we can reject ratios of the gravitational to inertial mass of antihydrogen >75 at a statistical significance level of 5% worst-case systematic errors increase the minimum rejection ratio to 110. A similar search places somewhat tighter bounds on a negative gravitational mass, that is, on antigravity. This methodology, coupled with ongoing experimental improvements, should allow us to bound the ratio within the more interesting near equivalence regime.

  20. Experimental limit on the ratio of the gravitational mass to the inertial mass of antihydrogen

    NASA Astrophysics Data System (ADS)

    Fajans, Joel; Wurtele, Jonathan; Charman, Andrew; Zhmoginov, Andrey

    2012-10-01

    Physicists have long wondered if the gravitational interactions between matter and antimatter might be different from those between matter and itself. While there are many indirect indications that no such differences exist, i.e., that the weak equivalence principle holds, there have been no direct, free-fall style, experimental tests of gravity on antimatter. By searching for a propensity for antihydrogen atoms to fall downward when released from the ALPHA antihydrogen trap, we have determined that we can reject ratios of the gravitational mass to the inertial mass of antihydrogen greater than about 100 at a statistical significance level of 5%. A similar search places somewhat lower limits on a negative gravitational mass, i.e., on antigravity.

  1. Temporally Controlled Modulation of Antihydrogen Production and the Temperature Scaling of Antiproton-Positron Recombination

    NASA Astrophysics Data System (ADS)

    Fujiwara, M. C.; Amoretti, M.; Amsler, C.; Bonomi, G.; Bouchta, A.; Bowe, P. D.; Canali, C.; Carraro, C.; Cesar, C. L.; Charlton, M.; Doser, M.; Fontana, A.; Funakoshi, R.; Genova, P.; Hangst, J. S.; Hayano, R. S.; Jørgensen, L. V.; Kellerbauer, A.; Lagomarsino, V.; Landua, R.; Lodi-Rizzini, E.; Macri, M.; Madsen, N.; Manuzio, G.; Mitchard, D.; Montagna, P.; Pruys, H.; Regenfus, C.; Rotondi, A.; Testera, G.; Variola, A.; Venturelli, L.; van der Werf, D. P.; Yamazaki, Y.; Zurlo, N.

    2008-08-01

    We demonstrate temporally controlled modulation of cold antihydrogen production by periodic RF heating of a positron plasma during antiproton-positron mixing in a Penning trap. Our observations have established a pulsed source of atomic antimatter, with a rise time of about 1 s, and a pulse length ranging from 3 to 100 s. Time-sensitive antihydrogen detection and positron plasma diagnostics, both capabilities of the ATHENA apparatus, allowed detailed studies of the pulsing behavior, which in turn gave information on the dependence of the antihydrogen production process on the positron temperature T. Our data are consistent with power law scaling T-1.1±0.5 for the production rate in the high temperature regime from ˜100meV up to 1.5 eV. This is not in accord with the behavior accepted for conventional three-body recombination.

  2. Description and first application of a new technique to measure the gravitational mass of antihydrogen.

    PubMed

    Charman, A E; Amole, C; Ashkezari, M D; Baquero-Ruiz, M; Bertsche, W; Butler, E; Capra, A; Cesar, C L; Charlton, M; Eriksson, S; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Isaac, C A; Jonsell, S; Kurchaninov, L; Little, A; Madsen, N; McKenna, J T K; Menary, S; Napoli, S C; Nolan, P; Olin, A; Pusa, P; Rasmussen, C Ø; Robicheaux, F; Sarid, E; Silveira, D M; So, C; Thompson, R I; van der Werf, D P; Wurtele, J S; Zhmoginov, A I

    2013-01-01

    Physicists have long wondered whether the gravitational interactions between matter and antimatter might be different from those between matter and itself. Although there are many indirect indications that no such differences exist and that the weak equivalence principle holds, there have been no direct, free-fall style, experimental tests of gravity on antimatter. Here we describe a novel direct test methodology; we search for a propensity for antihydrogen atoms to fall downward when released from the ALPHA antihydrogen trap. In the absence of systematic errors, we can reject ratios of the gravitational to inertial mass of antihydrogen >75 at a statistical significance level of 5%; worst-case systematic errors increase the minimum rejection ratio to 110. A similar search places somewhat tighter bounds on a negative gravitational mass, that is, on antigravity. This methodology, coupled with ongoing experimental improvements, should allow us to bound the ratio within the more interesting near equivalence regime.

  3. Relativistic Momentum-Space Equations with Applications to Atomic and Elementary Particle Physics

    NASA Astrophysics Data System (ADS)

    Hardekopf, Eugene Edward

    Relativistic equal-time wave equations obtained from field theory which describe bound states of N Dirac particles inevitably involve free or external-field positive -energy projection operators (LAMDA)(,+)(i). For N > 2 these operators are vital if the equations are to admit normaliz- able solutions. Such equations have been used in the past to obtain relativistic corrections to simple atomic systems, and to provide a theoretical basis for the Dirac-Hartree-Fock type of equations for many-electron atoms. These equations also find applications in ele- mentary particle physics in describing bound states of quarks. Here we initiate a numerical study of such equations, avoiding an expan- sion in powers of v/c. We work in momentum space, where the free projection operators are simple functions of (')p. We describe tech- niques for finding the eigenvalues and eigenfunctions of H(,+)(1,2) = h(,D)(1) + h(,D)(2) + (LAMDA)(,++)V(LAMDA)(,++) where h(,D)(i) is the free Dirac Hamiltonian and V is a local potential with either a (VBAR)(')r(,1)-(')r(,2)(VBAR)('-1) singularity in the case of atomic systems, or a (VBAR)(')r(,1)-(')r(,2)(VBAR) behavior plus a Coulomb-like singular- ity in the case of bound quarks. Results are presented for both pure Coulomb and a Coulomb plus Breit potential for the atomic case, and for a pure Lorentz scalar in the linear potential case. In the atomic case a wide range of m(,1)/m(,2) and coupling strength (gamma) is studied and the m(,2) = (INFIN) limit is compared with the Dirac equation. The magni- tude of level shifts associated with virtual pair production in such two-body systems is discussed. For intermediate values of (gamma) a com- parison is made between the numerical results and those of pertur- bation theory. We find that there can often be large corrections to perturbative results even for not terribly large values of v/c. We also study the strong coupling limit and find the value (gamma)(,max) for which the lowest-lying bound state

  4. Building Relativistic Mean-Field Models for Atomic Nuclei and Neutron Stars

    NASA Astrophysics Data System (ADS)

    Chen, Wei-Chia; Piekarewicz, Jorge

    2014-03-01

    Nuclear energy density functional (EDF) theory has been quite successful in describing nuclear systems such as atomic nuclei and nuclear matter. However, when building new models, attention is usually paid to the best-fit parameters only. In recent years, focus has been shifted to the neighborhood around the minimum of the chi-square function as well. This powerful covariance analysis is able to provide important information bridging experiments, observations, and theories. In this work, we attempt to build a specific type of nuclear EDFs, the relativistic mean-field models, which treat atomic nuclei, nuclear matter, and neutron stars on the same footing. The application of covariance analysis can reveal correlations between observables of interest. The purpose is to elucidate the alleged relations between the neutron skin of heavy nuclei and the size of neutron stars, and to develop insight into future investigations.

  5. Relativistic atomic structure calculations and electron impact excitations of Fe23+

    NASA Astrophysics Data System (ADS)

    El-Maaref, A. A.

    2016-02-01

    Relativistic calculations using the multiconfiguration Dirac-Fock method for energy levels, oscillator strengths, and electronic dipole transition probabilities of Li-like iron (Fe23+) are presented. A configuration state list with the quantum numbers nl, where n = 2 - 7 and l = s , p , d , f , g , h , i has been considered. Excitations up to three electrons and correlation contributions from higher orbitals up to 7 l have been included. Contributions from core levels have been taken into account, EOL (extended optimal level) type calculations have been applied, and doubly excited levels are considered. The calculations have been executed by using the fully relativistic atomic structure package GRASP2K. The present calculations have been compared with the available experimental and theoretical sources, the comparisons show a good agreement between the present results of energy levels and oscillator strengths with the literature. In the second part of the present study, the atomic data (energy levels, and radiative parameters) have been used to calculate the excitation and deexcitation rates of allowed transitions by electron impact, as well as the population densities of some excited levels at different electron temperatures.

  6. Relativistic effects in atom and neutron interferometry and the differences between them

    NASA Astrophysics Data System (ADS)

    Greenberger, Daniel M.; Schleich, Wolfgang P.; Rasel, Ernst M.

    2012-12-01

    In recent years there has been enormous progress in matter wave interferometry. The Colella-Overhauser-Werner (COW) type of neutron interferometer and the Kasevich-Chu (K-C) atom interferometer are the prototypes of such devices and the issue of whether they are sensitive to relativistic effects has recently aroused much controversy. We examine the question as to what extent the gravitational redshift and the related twin paradox effect can be seen in both of these atom and neutron interferometers. We point out an asymmetry between the two types of devices. Because of this, the nonvanishing, nonrelativistic residue of both effects can be seen in the neutron interferometer, while in the K-C interferometer the effects cancel out, leaving no residue, although they could be present in other types of atom interferometers. Also, the necessary shifting of the laser frequency (chirping) in the atom interferometer effectively changes the laboratory into a free-fall system, which could be exploited for other experiments.

  7. Atomic orbital-based cubic response theory for one-, two-, and four-component relativistic self-consistent field models

    NASA Astrophysics Data System (ADS)

    Bast, Radovan; Thorvaldsen, Andreas J.; Ringholm, Magnus; Ruud, Kenneth

    2009-02-01

    We present the first analytic calculations of the second hyperpolarizability in a relativistic framework. The calculations are made possible by our recent developments of a response theory built on a quasienergy formalism, in which the basis set may be both time and perturbation dependent. The approach is formulated for an arbitrary self-consistent field state in the atomic orbital basis. The implementation consists of a stand-alone code that only requires the unperturbed density in the atomic orbital basis as input, as well as a linear response solver by which we can determine the perturbed density matrices to different orders, at each new order solving equations that have the same structure as the linear response equation. Using these features of our formalism, we extend in this paper our approach to the relativistic domain, utilizing both two- and four-component relativistic wave functions. We apply the formalism to the calculation of the electronic and pure vibrational contributions to the second hyperpolarizability tensor for the hydrogen halides. Our results demonstrate that relativistic effects can be substantial for frequency-dependent second hyperpolarizabilities. Due to changes in the pole structure when going to the relativistic domain, the relativistic corrections to the hyperpolarizabilities are not transferable between different optical processes, except for very low frequencies.

  8. A fully relativistic approach for calculating atomic data for highly charged ions

    SciTech Connect

    Zhang, Hong Lin; Fontes, Christopher J; Sampson, Douglas H

    2009-01-01

    We present a review of our fully relativistic approach to calculating atomic data for highly charged ions, highlighting a research effort that spans twenty years. Detailed discussions of both theoretical and numerical techniques are provided. Our basic approach is expected to provide accurate results for ions that range from approximately half ionized to fully stripped. Options for improving the accuracy and range of validity of this approach are also discussed. In developing numerical methods for calculating data within this framework, considerable emphasis is placed on techniques that are robust and efficient. A variety of fundamental processes are considered including: photoexcitation, electron-impact excitation, electron-impact ionization, autoionization, electron capture, photoionization and photorecombination. Resonance contributions to a variety of these processes are also considered, including discussions of autoionization, electron capture and dielectronic recombination. Ample numerical examples are provided in order to illustrate the approach and to demonstrate its usefulness in providing data for large-scale plasma modeling.

  9. K--nucleus relativistic mean field potentials consistent with kaonic atoms

    NASA Astrophysics Data System (ADS)

    Friedman, E.; Gal, A.; Mareš, J.; Cieplý, A.

    1999-08-01

    K- atomic data are used to test several models of the K- nucleus interaction. The t(ρ)ρ optical potential, due to coupled channel models incorporating the Λ(1405) dynamics, fails to reproduce these data. A standard relativistic mean field (RMF) potential, disregarding the Λ(1405) dynamics at low densities, also fails. The only successful model is a hybrid of a theoretically motivated RMF approach in the nuclear interior and a completely phenomenological density dependent potential, which respects the low density theorem in the nuclear surface region. This best-fit K- optical potential is found to be strongly attractive, with a depth of 180+/-20 MeV at the nuclear interior, in agreement with previous phenomenological analyses.

  10. Relativistic multireference coupled-cluster theory based on a B -spline basis: Application to atomic francium

    NASA Astrophysics Data System (ADS)

    Tang, Yong-Bo; Lou, Bing-Qiong; Shi, Ting-Yun

    2017-08-01

    In this paper, we report the relativistic Fock space multireference coupled-cluster method for atomic structure calculations. We use the no-pair Dirac-Coulomb-Breit Hamiltonian, together with a finite B -spline basis set to expand the large and small components of the Dirac wave function. Our method is applied to calculate ionization energies, reduced matrix elements, lifetimes, and polarizabilities for many states of atomic francium. To evaluate uncertainties of our results and investigate the role of electron correlation effects, we carry out calculations using approximated models at different levels. The quality of our calculations is assessed by comparing with available experimental results, showing a good agreement. In addition, the tune-out wavelengths of the ground state in the range of 340-800 nm, the magic wavelengths for the transition 7 s -8 s in the range of 800-1500 nm and the transition 7 s -7 p in the range of 600-1500 nm are determined by evaluating the dynamic polarizabilities of the 7 s , 8 s , and 7 p states for a linearly polarized light. These tune-out and magic wavelengths may be useful for laser cooling and trapping of the Fr atom, and for related high-precision trapping measurements.

  11. Four-component relativistic theory for nuclear magnetic shielding: magnetically balanced gauge-including atomic orbitals.

    PubMed

    Cheng, Lan; Xiao, Yunlong; Liu, Wenjian

    2009-12-28

    It is recognized only recently that the incorporation of the magnetic balance condition is absolutely essential for four-component relativistic theories of magnetic properties. Another important issue to be handled is the so-called gauge problem in calculations of, e.g., molecular magnetic shielding tensors with finite bases. It is shown here that the magnetic balance can be adapted to distributed gauge origins, leading to, e.g., magnetically balanced gauge-including atomic orbitals (MB-GIAOs) in which each magnetically balanced atomic orbital has its own local gauge origin placed on its center. Such a MB-GIAO scheme can be combined with any level of theory for electron correlation. The first implementation is done here at the coupled-perturbed Dirac-Kohn-Sham level. The calculated molecular magnetic shielding tensors are not only independent of the choice of gauge origin but also converge rapidly to the basis set limit. Close inspections reveal that (zeroth order) negative energy states are only important for the expansion of first order electronic core orbitals. Their contributions to the paramagnetism are therefore transferable from atoms to molecule and are essentially canceled out for chemical shifts. This allows for simplifications of the coupled-perturbed equations.

  12. Laplace-transformed atomic orbital-based Møller-Plesset perturbation theory for relativistic two-component Hamiltonians

    NASA Astrophysics Data System (ADS)

    Helmich-Paris, Benjamin; Repisky, Michal; Visscher, Lucas

    2016-07-01

    We present a formulation of Laplace-transformed atomic orbital-based second-order Møller-Plesset perturbation theory (MP2) energies for two-component Hamiltonians in the Kramers-restricted formalism. This low-order scaling technique can be used to enable correlated relativistic calculations for large molecular systems. We show that the working equations to compute the relativistic MP2 energy differ by merely a change of algebra (quaternion instead of real) from their non-relativistic counterparts. With a proof-of-principle implementation we study the effect of the nuclear charge on the magnitude of half-transformed integrals and show that for light elements spin-free and spin-orbit MP2 energies are almost identical. Furthermore, we investigate the effect of separation of charge distributions on the Coulomb and exchange energy contributions, which show the same long-range decay with the inter-electronic/atomic distance as for non-relativistic MP2. A linearly scaling implementation is possible if the proper distance behavior is introduced to the quaternion Schwarz-type estimates as for non-relativistic MP2.

  13. Laplace-transformed atomic orbital-based Møller-Plesset perturbation theory for relativistic two-component Hamiltonians.

    PubMed

    Helmich-Paris, Benjamin; Repisky, Michal; Visscher, Lucas

    2016-07-07

    We present a formulation of Laplace-transformed atomic orbital-based second-order Møller-Plesset perturbation theory (MP2) energies for two-component Hamiltonians in the Kramers-restricted formalism. This low-order scaling technique can be used to enable correlated relativistic calculations for large molecular systems. We show that the working equations to compute the relativistic MP2 energy differ by merely a change of algebra (quaternion instead of real) from their non-relativistic counterparts. With a proof-of-principle implementation we study the effect of the nuclear charge on the magnitude of half-transformed integrals and show that for light elements spin-free and spin-orbit MP2 energies are almost identical. Furthermore, we investigate the effect of separation of charge distributions on the Coulomb and exchange energy contributions, which show the same long-range decay with the inter-electronic/atomic distance as for non-relativistic MP2. A linearly scaling implementation is possible if the proper distance behavior is introduced to the quaternion Schwarz-type estimates as for non-relativistic MP2.

  14. GRASP92: a package for large-scale relativistic atomic structure calculations

    NASA Astrophysics Data System (ADS)

    Parpia, F. A.; Froese Fischer, C.; Grant, I. P.

    2006-12-01

    Program summaryTitle of program: GRASP92 Catalogue identifier: ADCU_v1_1 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADCU_v1_1 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: no Programming language used: Fortran Computer: IBM POWERstation 320H Operating system: IBM AIX 3.2.5+ RAM: 64M words No. of lines in distributed program, including test data, etc.: 65 224 No of bytes in distributed program, including test data, etc.: 409 198 Distribution format: tar.gz Catalogue identifier of previous version: ADCU_v1_0 Journal reference of previous version: Comput. Phys. Comm. 94 (1996) 249 Does the new version supersede the previous version?: Yes Nature of problem: Prediction of atomic spectra—atomic energy levels, oscillator strengths, and radiative decay rates—using a 'fully relativistic' approach. Solution method: Atomic orbitals are assumed to be four-component spinor eigenstates of the angular momentum operator, j=l+s, and the parity operator Π=βπ. Configuration state functions (CSFs) are linear combinations of Slater determinants of atomic orbitals, and are simultaneous eigenfunctions of the atomic electronic angular momentum operator, J, and the atomic parity operator, P. Lists of CSFs are either explicitly prescribed by the user or generated from a set of reference CSFs, a set of subshells, and rules for deriving other CSFs from these. Approximate atomic state functions (ASFs) are linear combinations of CSFs. A variational functional may be constructed by combining expressions for the energies of one or more ASFs. Average level (AL) functionals are weighted sums of energies of all possible ASFs that may be constructed from a set of CSFs; the number of ASFs is then the same as the number, n, of CSFs. Optimal level (OL) functionals are weighted sums of energies of some subset of ASFs; the GRASP92 package is optimized for this latter class of functionals. The composition of an ASF in terms

  15. Delocalization of relativistic dirac particles in disordered one-dimensional systems and its implementation with cold atoms.

    PubMed

    Zhu, Shi-Liang; Zhang, Dan-Wei; Wang, Z D

    2009-05-29

    We study theoretically the localization of relativistic particles in disordered one-dimensional chains. It is found that the relativistic particles tend to delocalization in comparison with the nonrelativistic particles with the same disorder strength. More intriguingly, we reveal that the massless Dirac particles are entirely delocalized for any energy due to the inherent chiral symmetry, leading to a well-known result that particles are always localized in one-dimensional systems for arbitrary weak disorders to break down. Furthermore, we propose a feasible scheme to detect the delocalization feature of the Dirac particles with cold atoms in a light-induced gauge field.

  16. Transformation of bound states of relativistic hydrogenlike atoms into a two-component form

    NASA Astrophysics Data System (ADS)

    Rusin, Tomasz M.

    2016-07-01

    A single-step Eriksen transformation of 1 S1 /2 ,2 P1 /2 , and 2 P3 /2 states of the relativistic hydrogenlike atom is performed exactly by expressing each transformed function (TF) as a linear combination of eigenstates of the Dirac Hamiltonian. The TFs, which are four-component spinors with vanishing two lower components, are calculated numerically and have the same symmetries as the initial states. For all nuclear charges Z ∈[1 ...92 ] a contribution of the initial state to TFs exceeds 86% of the total probability density. Next a large contribution to TFs comes from continuum states with negative energies close to -m0c2-Eb , where Eb is the binding energy of the initial state. The contribution of other states to TFs is less than 0.1 % of the total probability density. Other components of TFs are nearly 0, which confirms both the validity of the Eriksen transformation and the accuracy of the numerical calculations. The TFs of the 1 S1 /2 and 2 P1 /2 states are close to the 1 s and 2 p states of the nonrelativistic hydrogenlike atom, respectively, but the TF of the 2 P3 /2 state differs qualitatively from the 2 p state. Functions calculated with the use of a linearized Eriksen transformation, being equivalent to the second-order Foldy-Wouthuysen transformation, are compared with corresponding functions obtained by Eriksen transformation. Very good agreement between the two results is obtained.

  17. Relativistic Pseudopotential Followed by Restoration Method for Studying Heavy-Atom Systems

    NASA Astrophysics Data System (ADS)

    Petrov, Alexander; Skripnikov, Leonid; Mosyagin, Nikolay; Titov, Anatoly

    2012-06-01

    Precise all-electron four-component treatment of molecules with heavy elements is yet rather consuming. In turn, the relativistic pseudopotential (RPP) method is the most straightforward way now to study efficiently ``valence'' (optic, electric, chemical etc.) properties of rather complicated systems. However, the valence molecular spinors are usually smoothed in atomic cores. Therefore, direct calculation of electronic densities near heavy nuclei within the RPP approach is impossible. In the report, an approach based on the RPP method and one-center core-restoration technique [1] developed by the authors for such studies is discussed. It efficiency is illustrated in benchmark to-date calculations of magnetic-dipole and electric quadrupole hyperfine-structure constants, as well as the space parity (P) and time-reversal symmetry (T) nonconservation effects in polar heavy-atom molecules, including HfF^+, WC, PbF^+, PbO, YbF, ThO and some other candidates which are studied now as promising molecules for the experimental search of the electron electric dipole moment (eEDM). [4pt] [1] A.V.Titov, N.S.Mosyagin, A.N.Petrov, T.A.Isaev, D.DeMille, Progr. Theor. Chem. Phys., 15B, 253 (2006).

  18. Relativistic dynamics of half-spin particles in a homogeneous magnetic field: an atom with nucleus of spin 12.

    PubMed

    Misra, Anirban; Datta, Sambhu N

    2005-08-08

    An investigation of the relativistic dynamics of N+1 spin-12 particles placed in an external, homogeneous magnetic field is carried out. The system can represent an atom with a fermion nucleus and N electrons. Quantum electrodynamical interactions, namely, projected Briet and magnetic interactions, are chosen to formulate the relativistic Hamiltonian. The quasi-free-particle picture is retained here. The total pseudomomentum is conserved, and its components are distinct when the total charge is zero. Therefore, the center-of-mass motion can be separated from the Hamiltonian for a neutral (N+1)-fermion system, leaving behind a unitarily transformed, effective Hamiltonian H(0) at zero total pseudomomentum. The latter operator represents the complete relativistic dynamics in relative coordinates while interaction is chosen through order alpha4mc2. Each one-particle part in the effective Hamiltonian can be brought to a separable form for positive- and negative-energy states by replacing the odd operator in it through two successive unitary transformations, one due to Tsai [Phys. Rev. D 7, 1945 (1973)] and the other due to Weaver [J. Math. Phys. 18, 306 (1977)]. Consequently, the projector changes and the interaction that involves the concerned particle also becomes free from the corresponding odd operators. When this maneuver is applied only to the nucleus, and the non-Hermitian part of the transformed interaction is removed by another unitary transformation, a familiar form of the atomic relativistic Hamiltonian H(atom) emerges. This operator is equivalent to H(0). A good Hamiltonian for relativistic quantum chemical calculations, H(Qchem), is obtained by expanding the nuclear part of the atomic Hamiltonian through order alpha4mc2 for positive-energy states. The operator H(Qchem) is obviously an approximation to H(atom). When the same technique is used for all particles, and subsequently the non-Hermitian terms are removed by suitable unitary transformations, one

  19. Interplay between relativistic energy corrections and resonant excitations in x-ray multiphoton ionization dynamics of Xe atoms

    NASA Astrophysics Data System (ADS)

    Toyota, Koudai; Son, Sang-Kil; Santra, Robin

    2017-04-01

    In this paper, we theoretically study x-ray multiphoton ionization dynamics of heavy atoms taking into account relativistic and resonance effects. When an atom is exposed to an intense x-ray pulse generated by an x-ray free-electron laser (XFEL), it is ionized to a highly charged ion via a sequence of single-photon ionization and accompanying relaxation processes, and its final charge state is limited by the last ionic state that can be ionized by a single-photon ionization. If x-ray multiphoton ionization involves deep inner-shell electrons in heavy atoms, energy shifts by relativistic effects play an important role in ionization dynamics, as pointed out in Phys. Rev. Lett. 110, 173005 (2013), 10.1103/PhysRevLett.110.173005. On the other hand, if the x-ray beam has a broad energy bandwidth, the high-intensity x-ray pulse can drive resonant photoexcitations for a broad range of ionic states and ionize even beyond the direct one-photon ionization limit, as first proposed in Nat. Photon. 6, 858 (2012), 10.1038/nphoton.2012.261. To investigate both relativistic and resonance effects, we extend the xatom toolkit to incorporate relativistic energy corrections and resonant excitations in x-ray multiphoton ionization dynamics calculations. Charge-state distributions are calculated for Xe atoms interacting with intense XFEL pulses at a photon energy of 1.5 keV and 5.5 keV, respectively. For both photon energies, we demonstrate that the role of resonant excitations in ionization dynamics is altered due to significant shifts of orbital energy levels by relativistic effects. Therefore, it is necessary to take into account both effects to accurately simulate multiphoton multiple ionization dynamics at high x-ray intensity.

  20. Relativistic effect on total energies for determination of correlation energies of atoms from their experimental total energies

    NASA Astrophysics Data System (ADS)

    Anno, Tosinobu; Teruya, Hirohide

    1989-10-01

    Relativistic effect Erel upon the total electronic energy of an atom is discussed with particular reference to obtaining the nonrelativistic total energy Eexact from the experimental total energy. Numerical values of this effect obtained by various authors by different nonempirical methods are compared for neutral atoms of rare-gas elements. It is shown that methods either of a Hartree-Fock-type or of a Dirac-Hartree-Fock-type give much the same Erel value for He through Ar. It is pointed out that Erel calculated with Hartree-Fock wave functions is not adequate for use in obtaining Eexact from the experimental total energy and that the Erel value calculated with wave functions including electron correlation should work well, although an actual demonstration can be done only for two-electron systems for lack of data. A semiempirical formula is therefore proposed, which is useful for least-squares fit of experimental total energies of isoelectronic series of atoms to extract nonrelativistic total energies along with the relativistic effect. From nonrelativistic energies thus derived, semiempirical values of correlation energies of atoms are obtained. The results thus obtained are in reasonable agreement with correlation energies derived by Clementi along somewhat different lines. The power series expansion in Z of the fitted formula for the He series shows that numerical values of expansion coefficients agree reasonably well with the corresponding values obtained by accurate relativistic and nonrelativistic Z expansion-type calculations.

  1. Fully relativistic pseudopotential formalism under an atomic orbital basis: spin-orbit splittings and magnetic anisotropies.

    PubMed

    Cuadrado, R; Cerdá, J I

    2012-02-29

    We present an efficient implementation of the spin-orbit coupling within the density functional theory based SIESTA code (2002 J. Phys.: Condens. Matter 14 2745) using the fully relativistic and totally separable pseudopotential formalism of Hemstreet et al (1993 Phys. Rev. B 47 4238). First, we obtain the spin-orbit splittings for several systems ranging from isolated atoms to bulk metals and semiconductors as well as the Au(111) surface state. Next, and after extensive tests on the accuracy of the formalism, we also demonstrate its capability to yield reliable values for the magnetic anisotropy energy in magnetic systems. In particular, we focus on the L1(0) binary alloys and on two large molecules: Mn(6)O(2)(H -sao)(6)(O(2)CH)(2)(CH(3)OH)(4) and Co(4)(hmp)(4)(CH(3)OH)(4)Cl(4). In all cases our calculated anisotropies are in good agreement with those obtained with full-potential methods, despite the latter being, in general, computationally more demanding.

  2. 4-Component relativistic magnetically induced current density using London atomic orbitals.

    PubMed

    Sulzer, David; Olejniczak, Małgorzata; Bast, Radovan; Saue, Trond

    2011-12-14

    We present the implementation and application of 4-component relativistic magnetically induced current density using London atomic orbitals for self-consistent field models. We obtain a magnetically balanced basis by a simple scheme where orbitals obtained by imposing restricted kinetic balance are extended by their unrestricted kinetic balance complement. The presented methodology makes it possible to analyze the concept of aromaticity based on the ring current criterion for closed-shell molecules across the periodic table and is independent of the choice of gauge origin. As a first illustration of the methodology we study plots of the magnetically induced current density and its divergence in the series C(5)H(5)E (E = CH, N, P, As, Sb, Bi) at the Kohn-Sham level, as well as integrated ring current susceptibilities, which we compare to previous results (R. Bast et al., Chem. Phys., 2009, 356, 187) obtained using a common gauge origin approach. We find that the current strength decreases monotonically along the series, but that all molecules qualify as aromatic according to the ring current criterion.

  3. Relativistic correlating basis sets for actinide atoms from 90Th to 103Lr.

    PubMed

    Noro, Takeshi; Sekiya, Masahiro; Osanai, You; Koga, Toshikatsu; Matsuyama, Hisashi

    2007-12-01

    For 14 actinide atoms from (90)Th to (103)Lr, contracted Gaussian-type function sets are developed for the description of correlations of the 5f, 6d, and 7s electrons. Basis sets for the 6d orbitals are also prepared, since the orbitals are important in molecular environments despite their vacancy in the ground state of some actinides. A segmented contraction scheme is employed for the compactness and efficiency. Contraction coefficients and exponents are so determined as to minimize the deviation from accurate natural orbitals of the lowest term arising from the 5f(n-1)6d(1)7s(2) configuration. The spin-free relativistic effects are considered through the third-order Douglas-Kroll approximation. To test the present correlating sets, all-electron calculations are performed on the ground state of (90)ThO molecule. The calculated spectroscopic constants are in excellent agreement with experimental values. (c) 2007 Wiley Periodicals, Inc.

  4. Hydrogen-like atom in a superstrong magnetic field: Photon emission and relativistic energy level shift

    NASA Astrophysics Data System (ADS)

    Skobelev, V. V.

    2017-06-01

    Following our previous work, additional arguments are presented that in superstrong magnetic fields B ≫ (Zα)2 B 0, B 0 = m 2 c 3/ eħ ≈ 4.41 × 1013 G, the Dirac equation and the Schrödinger equation for an electron in the nucleus field following from it become spatially one-dimensional with the only z coordinate along the magnetic field, "Dirac" spinors become two-component, while the 2 × 2 matrices operate in the {0; 3} subspace. Based on the obtained solution of the Dirac equation and the known solution of the "onedimensional" Schrödinger equation by ordinary QED methods extrapolated to the {0; 3} subspace, the probability of photon emission by a "one-dimensional" hydrogen-like atom is calculated, which, for example, for the Lyman-alpha line differs almost twice from the probability in the "three-dimensional" case. Similarly, despite the coincidence of nonrelativistic energy levels, the calculated relativistic corrections of the order of (Zα)4 substantially differ from corrections in the absence of a magnetic field. A conclusion is made that, by analyzing the hydrogen emission spectrum and emission spectra at all, we can judge in principle about the presence or absence of superstrong magnetic fields in the vicinity of magnetars (neutron stars and probably brown dwarfs). Possible prospects of applying the proposed method for calculations of multielectron atoms are pointed out and the possibility of a more reliable determination of the presence of superstrong magnetic fields in magnetars by this method is considered.

  5. Can a relativistic differential equation be set up to treat the angularity of the valence electron density in heavy atom clusters?

    NASA Astrophysics Data System (ADS)

    March, N. H.; Glasser, M. L.

    2015-01-01

    This work provides an explicit relativistic non-linear differential equation to estimate the ground-state electron density, and especially its directionality dependence, for large clusters of heavy atoms, such as Pb, at their experimentally measured equilibrium geometry. The study embodies the early theory of Vallarta and Rosen, which seems to us to build a firm foundation on relativistic semi-classical many-electron theory. Assuming a finite nuclear radius for the heavy atoms would be advisable in subsequent numerical applications.

  6. Compression of Antiproton Clouds for Antihydrogen Trapping

    NASA Astrophysics Data System (ADS)

    Andresen, G. B.; Bertsche, W.; Bowe, P. D.; Bray, C. C.; Butler, E.; Cesar, C. L.; Chapman, S.; Charlton, M.; Fajans, J.; Fujiwara, M. C.; Funakoshi, R.; Gill, D. R.; Hangst, J. S.; Hardy, W. N.; Hayano, R. S.; Hayden, M. E.; Hydomako, R.; Jenkins, M. J.; Jørgensen, L. V.; Kurchaninov, L.; Lambo, R.; Madsen, N.; Nolan, P.; Olchanski, K.; Olin, A.; Povilus, A.; Pusa, P.; Robicheaux, F.; Sarid, E.; Seif El Nasr, S.; Silveira, D. M.; Storey, J. W.; Thompson, R. I.; van der Werf, D. P.; Wurtele, J. S.; Yamazaki, Y.

    2008-05-01

    Control of the radial profile of trapped antiproton clouds is critical to trapping antihydrogen. We report the first detailed measurements of the radial manipulation of antiproton clouds, including areal density compressions by factors as large as ten, by manipulating spatially overlapped electron plasmas. We show detailed measurements of the near-axis antiproton radial profile and its relation to that of the electron plasma.

  7. Compression of Antiproton Clouds for Antihydrogen Trapping

    SciTech Connect

    Andresen, G. B.; Bowe, P. D.; Hangst, J. S.; Bertsche, W.; Butler, E.; Charlton, M.; Jenkins, M. J.; Joergensen, L. V.; Madsen, N.; Werf, D. P. van der; Bray, C. C.; Chapman, S.; Fajans, J.; Povilus, A.; Wurtele, J. S.; Cesar, C. L.; Lambo, R.; Silveira, D. M.; Fujiwara, M. C.; Gill, D. R.

    2008-05-23

    Control of the radial profile of trapped antiproton clouds is critical to trapping antihydrogen. We report the first detailed measurements of the radial manipulation of antiproton clouds, including areal density compressions by factors as large as ten, by manipulating spatially overlapped electron plasmas. We show detailed measurements of the near-axis antiproton radial profile and its relation to that of the electron plasma.

  8. New relativistic atomic natural orbital basis sets for lanthanide atoms with applications to the Ce diatom and LuF3.

    PubMed

    Roos, Björn O; Lindh, Roland; Malmqvist, Per-Ake; Veryazov, Valera; Widmark, Per-Olof; Borin, Antonio Carlos

    2008-11-13

    New basis sets of the atomic natural orbital (ANO) type have been developed for the lanthanide atoms La-Lu. The ANOs have been obtained from the average density matrix of the ground and lowest excited states of the atom, the positive ions, and the atom in an electric field. Scalar relativistic effects are included through the use of a Douglas-Kroll-Hess Hamiltonian. Multiconfigurational wave functions have been used with dynamic correlation included using second-order perturbation theory (CASSCF/CASPT2). The basis sets are applied in calculations of ionization energies and some excitation energies. Computed ionization energies have an accuracy better than 0.1 eV in most cases. Two molecular applications are included as illustration: the cerium diatom and the LuF3 molecule. In both cases it is shown that 4f orbitals are not involved in the chemical bond in contrast to an earlier claim for the latter molecule.

  9. Atomic data from the Iron Project. LIII. Relativistic allowed and forbidden transition probabilities for Fe XVII

    NASA Astrophysics Data System (ADS)

    Nahar, Sultana N.; Eissner, Werner; Chen, Guo-Xin; Pradhan, Anil K.

    2003-09-01

    An extensive set of fine structure levels and corresponding transition probabilities for allowed and forbidden transitions in Fe XVII is presented. A total of 490 bound energy levels of Fe XVII of total angular momenta 0 <= J <= 7 of even and odd parities with 2 <= n<= 10, 0 <= l<= 8, 0 <= L<= 8, and singlet and triplet multiplicities, are obtained. They translate to over 2.6x 104 allowed (E1) transitions that are of dipole and intercombination type, and 2312 forbidden transitions that include electric quadrupole (E2), magnetic dipole (M1), electric octopole (E3), and magnetic quadrupole (M2) type representing the most detailed calculations to date for the ion. Oscillator strengths f, line strengths S, and coefficients A of spontaneous emission for the E1 type transitions are obtained in the relativistic Breit-Pauli R-matrix approximation. A-values for the forbidden transitions are obtained from atomic structure calculations using codes SUPERSTRUCTURE and GRASP. The energy levels are identified in spectroscopic notation with the help of a newly developed level identification algorithm. Nearly all 52 spectroscopically observed levels have been identified, their binding energies agreeing within 1% with our calculation. Computed transition probabilities are compared with other calculations and measurement. The effect of 2-body magnetic terms and other interactions is discussed. The present data set enhances by more than an order of magnitude the heretofore available data for transition probabilities of Fe XVII. Complete electronic data tables of energies and transition probabilities are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/408/789

  10. Highly accurate relativistic universal Gaussian basis set: Dirac-Fock-Coulomb calculations for atomic systems up to nobelium

    NASA Astrophysics Data System (ADS)

    Malli, G. L.; Da Silva, A. B. F.; Ishikawa, Yasuyuki

    1994-10-01

    A universal Gaussian basis set is developed that leads to relativistic Dirac-Fock SCF energies of comparable accuracy as that obtained by the accurate numerical finite-difference method (GRASP2 package) [J. Phys. B 25, 1 (1992)]. The Gaussian-type functions of our universal basis set satisfy the relativistic boundary conditions associated with the finite nuclear model for a finite speed of light and conform to the so-called kinetic balance at the nonrelativistic limit. We attribute the exceptionally high accuracy obtained in our calculations to the fact that the representation of the relativistic dynamics of an electron in a spherical ball finite nucleus near the origin in terms of our universal Gaussian basis set is as accurate as that provided by the numerical finite-difference method. Results of the Dirac-Fock-Coulomb energies for a number of atoms up to No (Z=102) and some negative ions are presented and compared with the recent results obtained with the numerical finite-difference method and geometrical Gaussian basis sets by Parpia, Mohanty, and Clementi [J. Phys. B 25, 1 (1992)]. The accuracy of our calculations is estimated to be within a few parts in 109 for all the atomic systems studied.

  11. Subshell fitting of relativistic atomic core electron densities for use in QTAIM analyses of ECP-based wave functions.

    PubMed

    Keith, Todd A; Frisch, Michael J

    2011-11-17

    Scalar-relativistic, all-electron density functional theory (DFT) calculations were done for free, neutral atoms of all elements of the periodic table using the universal Gaussian basis set. Each core, closed-subshell contribution to a total atomic electron density distribution was separately fitted to a spherical electron density function: a linear combination of s-type Gaussian functions. The resulting core subshell electron densities are useful for systematically and compactly approximating total core electron densities of atoms in molecules, for any atomic core defined in terms of closed subshells. When used to augment the electron density from a wave function based on a calculation using effective core potentials (ECPs) in the Hamiltonian, the atomic core electron densities are sufficient to restore the otherwise-absent electron density maxima at the nuclear positions and eliminate spurious critical points in the neighborhood of the atom, thus enabling quantum theory of atoms in molecules (QTAIM) analyses to be done in the neighborhoods of atoms for which ECPs were used. Comparison of results from QTAIM analyses with all-electron, relativistic and nonrelativistic molecular wave functions validates the use of the atomic core electron densities for augmenting electron densities from ECP-based wave functions. For an atom in a molecule for which a small-core or medium-core ECPs is used, simply representing the core using a simplistic, tightly localized electron density function is actually sufficient to obtain a correct electron density topology and perform QTAIM analyses to obtain at least semiquantitatively meaningful results, but this is often not true when a large-core ECP is used. Comparison of QTAIM results from augmenting ECP-based molecular wave functions with the realistic atomic core electron densities presented here versus augmenting with the limiting case of tight core densities may be useful for diagnosing the reliability of large-core ECP models in

  12. Particle Physics Aspects of Antihydrogen Studies with ALPHA at CERN

    NASA Astrophysics Data System (ADS)

    Fujiwara, M. C.; Andresen, G. B.; Bertsche, W.; Bowe, P. D.; Bray, C. C.; Butler, E.; Cesar, C. L.; Chapman, S.; Charlton, M.; Fajans, J.; Funakoshi, R.; Gill, D. R.; Hangst, J. S.; Hardy, W. N.; Hayano, R. S.; Hayden, M. E.; Humphries, A. J.; Hydomako, R.; Jenkins, M. J.; Jørgensen, L. V.; Kurchaninov, L.; Lai, W.; Lambo, R.; Madsen, N.; Nolan, P.; Olchanski, K.; Olin, A.; Povilus, A.; Pusa, P.; Robicheaux, F.; Sarid, E.; El Nasr, S. Seif; Silveira, D. M.; Storey, J. W.; Thompson, R. I.; van der Werf, D. P.; Wasilenko, L.; Wurtele, J. S.; Yamazaki, Y.

    2008-08-01

    We discuss aspects of antihydrogen studies, that relate to particle physics ideas and techniques, within the context of the ALPHA experiment at CERN's Antiproton Decelerator facility. We review the fundamental physics motivations for antihydrogen studies, and their potential physics reach. We argue that initial spectroscopy measurements, once antihydrogen is trapped, could provide competitive tests of CPT, possibly probing physics at the Planck Scale. We discuss some of the particle detection techniques used in ALPHA. Preliminary results from commissioning studies of a partial system of the ALPHA Si vertex detector are presented, the results of which highlight the power of annihilation vertex detection capability in antihydrogen studies.

  13. High-order harmonic generation by atoms with traveling- and standing-wave pumps of relativistic intensity

    NASA Astrophysics Data System (ADS)

    Taranukhin, Vladimir D.; Shubin, Nickolay Yu.

    2002-05-01

    High-order harmonic generation (HHG) in laser fields of relativistic intensity is studied. It is shown that, owing to relativistic longitudinal displacement of the photoelectrons, significant HHG suppression occurs. Such suppression is greater for the low-frequency part of the HHG spectrum than for the high-frequency part. We propose to use a standing-wave pump instead of a traveling wave to overcome this effect and to enhance the efficiency of HHG. The efficiency of utilizing atoms in a standing wave decreases with growth in the pump intensity. However, in traveling-wave HHG the decrease in efficiency is still greater; therefore, using a standing wave allows one to obtain a HHG intensity that is essentially greater than in a traveling wave (for example, a gain factor of 102 can be achieved when one is pumping Ar8+ ions with a radiation of intensity 1018 W/cm2 and a wavelength of 0.3 μm).

  14. Hydrogen atom in a strong magnetic field. II. Relativistic corrections for low-lying excited states

    NASA Astrophysics Data System (ADS)

    Poszwa, A.; Rutkowski, A.

    2004-02-01

    The highly accurate solution of the Schrödinger equation in the form of common Landau exponential factor multiplied by a power series in two variables, the sine of the cone angle and radial variable is completed by the first-order relativistic correction calculated within the framework of the relativistic direct perturbation theory (DPT). It is found that in contrast to behavior of relativistic corrections for the ground state and 2p-1(ms=-1/2) excited state, which change sign from negative to positive near B≈1011 G and B≈1010 G, respectively [Z. Chen and S. P. Goldman, Phys. Rev A 45, 1722 (1992)], the relativistic corrections for 2s0(ms=-1/2) and 2p0(ms=-1/2) excited states are negative for the magnetic field varying in range 0relativistic correction significantly mix nonrelativistic states the near-degenerate version of DPT is used. The avoided crossings of relativistic levels with μ=-1/2 and π=-1, evolving from field-free states with principal quantum numbers n=2,3,4 are presented.

  15. On the production of the positive antihydrogen ion {{\\bar{H}}^{+}} via radiative attachment

    NASA Astrophysics Data System (ADS)

    Keating, C. M.; Charlton, M.; Straton, Jack C.

    2014-11-01

    We provide an estimate of the cross section for the radiative attachment of a second positron into the (1{{S}2}{{ }1}{{S}e}) state of the {{\\bar{H}}+} ion using Ohmura and Ohmura’s (1960 Phys. Rev. 118 154) effective range theory and the principle of detailed balance. The {{\\bar{H}}+} ion can potentially be created using interactions of positrons with trapped antihydrogen, and our analysis includes a discussion in which estimates of production rates are given. Motivations to produce {{\\bar{H}}+} include its potential use as an intermediary to cool antihydrogen to ultra-cold (sub-mK) temperatures for a variety of studies, including spectroscopy and probing the gravitational interaction of the anti-atom.

  16. Narrowband solid state vuv coherent source for laser cooling of antihydrogen

    NASA Astrophysics Data System (ADS)

    Michan, J. Mario; Polovy, Gene; Madison, Kirk W.; Fujiwara, Makoto C.; Momose, Takamasa

    2015-11-01

    We describe the design and performance of a solid-state pulsed source of narrowband (< 100 MHz) Lyman- α radiation designed for the purpose of laser cooling magnetically trapped antihydrogen. Our source utilizes an injection seeded Ti:Sapphire amplifier cavity to generate intense radiation at 729.4 nm, which is then sent through a frequency doubling stage and a frequency tripling stage to generate 121.56 nm light. Although the pulse energy at 121.56 nm is currently limited to 12 nJ with a repetition rate of 10 Hz, we expect to obtain greater than 0.1 μJ per pulse at 10 Hz by further optimizing the alignment of the pulse amplifier and the efficiency of the frequency tripling stage. Such a power will be sufficient for cooling a trapped antihydrogen atom from 500 mK to 20mK.

  17. Characteristic coupling time between axial and transverse energy modes for anti-hydrogen in magnetostatic traps

    NASA Astrophysics Data System (ADS)

    Zhong, Mike; Fajans, Joel

    2016-10-01

    For upcoming ALPHA collaboration laser spectroscopy and gravity experiments, the nature of the chaotic trajectories of individual antihydrogen atoms trapped in the octupole Ioffe magnetic trap is of importance. Of particular interest for experimental design is the coupling time between the axial and transverse modes of energy for the antihydrogen atoms. Using Monte Carlo simulations of semiclassical dynamics of antihydrogen trajectories, we quantify this characteristic coupling time between axial and transverse modes of energy. There appear to be two classes of trajectories: for orbits whose axial energy is higher than 10% of the total energy, the axial energy varies chaotically on the order of 1-10 seconds, whereas for orbits whose axial energy is around 10% of the total energy, the axial energy remains nearly constant on the order of 1000 seconds or longer. Furthermore, we search through parameter -space to find parameters of the magnetic trap that minimize and maximize this characteristic coupling time. This work was supported by the UC Berkeley Summer Undergraduate Research Fellowship, the Berkeley Research Computing program, the Department of Energy contract DE-FG02-06ER54904, and the National Science Foundation Grant 1500538-PHY.

  18. Shell- and subshell-resolved projectile excitation of hydrogenlike Au{sup 78+} ions in relativistic ion-atom collisions

    SciTech Connect

    Gumberidze, A.; Fritzsche, S.; Bosch, F.; Kraemer, A.; Kozhuharov, C.; Ionescu, D. C.; Stachura, Z.; Surzhykov, A.; Warczak, A.; Stoehlker, Th.

    2010-11-15

    The projectile excitation of high-Z ions has been investigated in relativistic ion-atoms collisions by observing the subsequent x-ray emission. The x-ray spectra from the projectile excitation have been separated from the x-ray emission following electron capture into the excited states using a novel anticoincidence technique. For the particular case of hydrogenlike Au{sup 78+} ions colliding with Ar atoms, Coulomb excitation from the ground state into the fine-structure-resolved n=2 levels as well as into levels with principal quantum number n{>=}3 has been measured with excellent statistics. The observed spectra agree well with simulated spectra that are based on Dirac's relativistic equation and the proper inclusion of the magnetic interaction into the amplitudes for projectile excitation. It is shown that a coherent inclusion of the magnetic part of the Lienard-Wiechert potential leads to the lowering of the excitation cross section by up to 35%. This effect is more pronounced for excitation into states with high angular momentum and is confirmed by our experimental data.

  19. Antihydrogen Relaxation from High-n to Ground State.

    NASA Astrophysics Data System (ADS)

    Bass, E. M.; Dubin, D. H. E.

    2006-10-01

    We explore the rate at which magnetized, high-n Rydberg pairs formed in antihydrogen experiments relax to deep binding. While the theoretical three-body recombination rate scales favorably with low temperature (νTBRnb^3 (n v b^2 ) T-9/2), pairs form with binding energies ɛ near the (low) thermal level. Such atoms have classical drift orbits with negligible radiation. Collisions propel a cascade to deeper binding, but theory and simulation show an atom is unlikely to reach a radiating regime before it escapes the trap. However, simulations show that the energy-loss rate does not decrease as rapidly with increasing ɛ as previously expected. We also discuss the mean magnetic moment of guiding-center atoms, and energy loss from adiation at deep binding, based on the classical Larmour formula and a presumption of stochastic orbits. G. Gabrielse, N.S. Bowden, P. Oxley, et al., Phys. Rev. Lett. 89, 213401 (2002) M. Amoretti, C. Amsler, G. Bonomi, et al., Nature (London) 419, 456 (2002). ME. Glinsky and T.M. O'Neil, Phys. Fluids B 3, 1279 (1991). R. Robicheaux and J.D. Hanson, Phys. Rev. A 69, 010701 (2004). E.M. Bass and D.H.E. Dubin, Phys. Plasmas 11, 1240 (2004).

  20. Observation of the 1S-2S transition in trapped antihydrogen.

    PubMed

    Ahmadi, M; Alves, B X R; Baker, C J; Bertsche, W; Butler, E; Capra, A; Carruth, C; Cesar, C L; Charlton, M; Cohen, S; Collister, R; Eriksson, S; Evans, A; Evetts, N; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Isaac, C A; Ishida, A; Johnson, M A; Jones, S A; Jonsell, S; Kurchaninov, L; Madsen, N; Mathers, M; Maxwell, D; McKenna, J T K; Menary, S; Michan, J M; Momose, T; Munich, J J; Nolan, P; Olchanski, K; Olin, A; Pusa, P; Rasmussen, C Ø; Robicheaux, F; Sacramento, R L; Sameed, M; Sarid, E; Silveira, D M; Stracka, S; Stutter, G; So, C; Tharp, T D; Thompson, J E; Thompson, R I; van der Werf, D P; Wurtele, J S

    2017-01-26

    The spectrum of the hydrogen atom has played a central part in fundamental physics over the past 200 years. Historical examples of its importance include the wavelength measurements of absorption lines in the solar spectrum by Fraunhofer, the identification of transition lines by Balmer, Lyman and others, the empirical description of allowed wavelengths by Rydberg, the quantum model of Bohr, the capability of quantum electrodynamics to precisely predict transition frequencies, and modern measurements of the 1S-2S transition by Hänsch to a precision of a few parts in 10(15). Recent technological advances have allowed us to focus on antihydrogen-the antimatter equivalent of hydrogen. The Standard Model predicts that there should have been equal amounts of matter and antimatter in the primordial Universe after the Big Bang, but today's Universe is observed to consist almost entirely of ordinary matter. This motivates the study of antimatter, to see if there is a small asymmetry in the laws of physics that govern the two types of matter. In particular, the CPT (charge conjugation, parity reversal and time reversal) theorem, a cornerstone of the Standard Model, requires that hydrogen and antihydrogen have the same spectrum. Here we report the observation of the 1S-2S transition in magnetically trapped atoms of antihydrogen. We determine that the frequency of the transition, which is driven by two photons from a laser at 243 nanometres, is consistent with that expected for hydrogen in the same environment. This laser excitation of a quantum state of an atom of antimatter represents the most precise measurement performed on an anti-atom. Our result is consistent with CPT invariance at a relative precision of about 2 × 10(-10).

  1. Electronic structure of stoichiometric and reduced ZnO from periodic relativistic all electron hybrid density functional calculations using numeric atom-centered orbitals.

    PubMed

    Viñes, Francesc; Illas, Francesc

    2017-03-30

    The atomic and electronic structure of stoichiometric and reduced ZnO wurtzite has been studied using a periodic relativistic all electron hybrid density functional (PBE0) approach and numeric atom-centered orbital basis set with quality equivalent to aug-cc-pVDZ. To assess the importance of relativistic effects, calculations were carried out without and with explicit inclusion of relativistic effects through the zero order regular approximation. The calculated band gap is ∼0.2 eV smaller than experiment, close to previous PBE0 results including relativistic calculation through the pseudopotential and ∼0.25 eV smaller than equivalent nonrelativistic all electron PBE0 calculations indicating possible sources of error in nonrelativistic all electron density functional calculations for systems containing elements with relatively high atomic number. The oxygen vacancy formation energy converges rather fast with the supercell size, the predicted value agrees with previously hybrid density functional calculations and analysis of the electronic structure evidences the presence of localized electrons at the vacancy site with a concomitant well localized peak in the density of states ∼0.5 eV above the top of the valence band and a significant relaxation of the Zn atoms near to the oxygen vacancy. Finally, present work shows that accurate results can be obtained in systems involving large supercells containing up to ∼450 atoms using a numeric atomic-centered orbital basis set within a full all electron description including scalar relativistic effects at an affordable cost. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. Electronic relativistic effects on L-shell ionization of atoms by light-ion impact

    SciTech Connect

    Mukoyama, T.; Sarkadi, L.

    1982-03-01

    The L-shell ionization cross sections by charged-particle impact have been calculated in the plane-wave Born approximation, using relativistic hydrogen wave functions for the target electrons. The effects of the binding-energy increase due to penetration of the projectile and the Coulomb deflection of the projectile are taken into account. The calculated values are compared with the corresponding values obtained by other theoretical models as well as the experimental data. It is found that the present theoretical predictions are in satisfactory agreement with the experimental results for low-energy protons.

  3. Multiple ionization and capture in relativistic heavy-ion atom collisions

    SciTech Connect

    Meyerhof, W.E.; Anholt, R.; Xu, Xiang-Yuan; Gould, H.; Feinberg, B.; McDonald, R.J.; Wegner, H.E.; Thieberger, P.

    1987-02-01

    We show that in relativistic heavy-ion collisions the independent electron model can be used to predict cross sections for multiple inner-shell ionization and capture in a single collision. Charge distributions of 82- to 200-MeV/amu Xe and 105- to 955-MeV/amu U ion beams emerging from thin solid targets were used to obtain single- and multiple-electron stripping and capture cross sections. The probabilities of stripping electrons from the K, L, or M shells were calculated using the semiclassical approximation and Dirac hydrogenic wavefunctions. For capture, a simplified model for electron capture was uded. The data generally agree with theory.

  4. Atom-At Chemistry of the Transactinide Element, Rutherfordium (element 104) Towards Experimental Verification of Relativistic Effects in Chemical Properties

    NASA Astrophysics Data System (ADS)

    Nagame, Y.; Tsukada, K.; Asai, M.; Toyoshima, A.; Akiyama, K.; Ishii, Y.; Nishinaka, I.; Sato, T. K.; Hirata, M.; Ichikawa, T.; Haba, H.; Goto, S.; Sakama, M.

    2005-12-01

    Chemical properties of the transactinide element, rutherfordium (Rf), produced in the reaction 248Cm(18O,5n) have been studied at an atom-at-a-time scale. Ion-exchange experiments of Rf together with the lighter homologues in the periodic table of the elements, group-4 elements Zr and Hf, in hydrofluoric acid solutions have been conducted with a rapid ion-exchange separation apparatus. From the systematic study of the anion-exchange behavior of Rf, we have observed an unexpected chemical behavior of Rf; the fluoride complex formation of Rf is significantly different from those of the homologues. Characteristics of the complexing strength of the Rf fluoride are briefly discussed by comparing with those of Zr and Hf and also with theoretical predictions by relativistic molecular density-functional calculations.

  5. Relativistic general-order coupled-cluster method for high-precision calculations: Application to the Al+ atomic clock

    NASA Astrophysics Data System (ADS)

    Kállay, Mihály; Nataraj, H. S.; Sahoo, B. K.; Das, B. P.; Visscher, Lucas

    2011-03-01

    We report the implementation of a general-order relativistic coupled-cluster method for performing high-precision calculations of atomic and molecular properties. As a first application, the black-body radiation shift of the Al+ clock has been estimated precisely. The computed shift relative to the frequency of the 3s21S0e→3s3p3P0o clock transition given by (-3.66±0.60)×10-18 calls for an improvement over the recent measurement with a reported result of (-9±3)×10-18 [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.104.070802 104, 070802 (2010)].

  6. Symmetric eikonal model for projectile-electron excitation and loss in relativistic ion-atom collisions

    SciTech Connect

    Voitkiv, A. B.; Najjari, B.; Shevelko, V. P.

    2010-08-15

    At impact energies > or approx. 1 GeV/u the projectile-electron excitation and loss occurring in collisions between highly charged ions and neutral atoms is already strongly influenced by the presence of atomic electrons. To treat these processes in collisions with heavy atoms we generalize the symmetric eikonal model, used earlier for considerations of electron transitions in ion-atom collisions within the scope of a three-body Coulomb problem. We show that at asymptotically high collision energies this model leads to an exact transition amplitude and is very well suited to describe the projectile-electron excitation and loss at energies above a few GeV/u. In particular, by considering a number of examples we demonstrate advantages of this model over the first Born approximation at impact energies of {approx}1-30 GeV/u, which are of special interest for atomic physics experiments at the future GSI facilities.

  7. Relativistic geodesy

    NASA Astrophysics Data System (ADS)

    Flury, J.

    2016-06-01

    Quantum metrology enables new applications in geodesy, including relativistic geodesy. The recent progress in optical atomic clocks and in long-distance frequency transfer by optical fiber together pave the way for using measurements of the gravitational frequency redshift for geodesy. The remote comparison of frequencies generated by calibrated clocks will allow for a purely relativistic determination of differences in gravitational potential and height between stations on Earth surface (chronometric leveling). The long-term perspective is to tie potential and height differences to atomic standards in order to overcome the weaknesses and inhomogeneity of height systems determined by classical spirit leveling. Complementarily, gravity measurements with atom interferometric setups, and satellite gravimetry with space borne laser interferometers allow for new sensitivities in the measurement of the Earth's gravity field.

  8. A Scheme To Produce The Antihydrogen Ion H-bar{sup +} For Gravity Measurements

    SciTech Connect

    Perez, P.; Liszkay, L.; Carty, M.; Curtoni, A.; Delferrierre, O.; Rey, J.-M.; Sauce, Y.; Boilot, J.-P.; Corbel, C.; Crivelli, P.; Etienne, M.; Walcarius, A.; Gendotti, U.; Rubbia, A.; Hassan, M.; Mohri, A.; Saitoh, H.; Yamazaki, Y.

    2008-08-08

    We propose to use the charge exchange reaction of antiprotons with positronium atoms in order to produce antihydrogen atoms, H-bar, and H-bar{sup +} ions. The ions can be cooled down to {mu}K temperatures and then ionized to recover an ultra slow neutral H-bar atom. Its acceleration is then measured by time of flight. Results on the conversion of slow positrons into positronium are presented. This is a first step towards the creation of a dense cloud of positronium atoms to be used as a target for the antiprotons. The source of positrons is based on a 6 MeV industrial electron linac with 0.2 mA average current to be installed in CEA-Saclay. Equipped with a tungsten target and a moderator, it is aimed at producing rates of order 10{sup 8} s{sup -1} slow positrons.

  9. Annihilation detector for an in-beam spectroscopy apparatus to measure the ground state hyperfine splitting of antihydrogen

    NASA Astrophysics Data System (ADS)

    Sauerzopf, Clemens; Capon, Aaron A.; Diermaier, Martin; Fleck, Markus; Kolbinger, Bernadette; Malbrunot, Chloé; Massiczek, Oswald; Simon, Martin C.; Vamosi, Stefan; Zmeskal, Johann; Widmann, Eberhard

    2017-02-01

    The matter-antimatter asymmetry observed in the universe today still lacks a quantitative explanation. One possible mechanism that could contribute to the observed imbalance is a violation of the combined Charge-, Parity- and Time symmetries (CPT). A test of CPT symmetry using anti-atoms is being carried out by the ASACUSA-CUSP collaboration at the CERN Antiproton Decelerator using a low temperature beam of antihydrogen-the most simple atomic system built only of antiparticles. While hydrogen is the most abundant element in the universe, antihydrogen is produced in very small quantities in a laboratory framework. A detector for in-beam measurements of the ground state hyperfine structure of antihydrogen has to be able to detect very low signal rates within high background. To fulfil this challenging task, a two layer barrel hodoscope detector was developed. It is built of plastic scintillators with double sided readout via Silicon Photomultipliers (SiPMs). The SiPM readout is done using novel, compact and cost efficient electronics that incorporate power supply, amplifier and discriminator on a single board. This contribution will evaluate the performance of the new hodoscope detector.

  10. Ground State and Charge Renormalization in a Nonlinear Model of Relativistic Atoms

    NASA Astrophysics Data System (ADS)

    Gravejat, Philippe; Lewin, Mathieu; Séré, Éric

    2009-02-01

    We study the reduced Bogoliubov-Dirac-Fock (BDF) energy which allows to describe relativistic electrons interacting with the Dirac sea, in an external electrostatic potential. The model can be seen as a mean-field approximation of Quantum Electrodynamics (QED) where photons and the so-called exchange term are neglected. A state of the system is described by its one-body density matrix, an infinite rank self-adjoint operator which is a compact perturbation of the negative spectral projector of the free Dirac operator (the Dirac sea). We study the minimization of the reduced BDF energy under a charge constraint. We prove the existence of minimizers for a large range of values of the charge, and any positive value of the coupling constant α. Our result covers neutral and positively charged molecules, provided that the positive charge is not large enough to create electron-positron pairs. We also prove that the density of any minimizer is an L 1 function and compute the effective charge of the system, recovering the usual renormalization of charge: the physical coupling constant is related to α by the formula αphys ≃ α(1 + 2α/(3π) log Λ)-1, where Λ is the ultraviolet cut-off. We eventually prove an estimate on the highest number of electrons which can be bound by a nucleus of charge Z. In the nonrelativistic limit, we obtain that this number is ≤ 2 Z, recovering a result of Lieb. This work is based on a series of papers by Hainzl, Lewin, Séré and Solovej on the mean-field approximation of no-photon QED.

  11. Existence of a ground state for the confined hydrogen atom in non-relativistic QED

    SciTech Connect

    Amour, Laurent; Faupin, Jeremy

    2008-04-03

    We consider a system of a hydrogen atom interacting with the quantized electromagnetic field. Instead of fixing the nucleus, we assume that the system is confined by its center of mass. This model is used in theoretical physics to explain the Lamb-Dicke effect. After a brief review of the literature, we explain how to verify some properly chosen binding conditions which lead to the existence of a ground state for our model, and for all values of the fine-structure constant.

  12. Relativistic spectrum of hydrogen atom in the space-time non-commutativity

    SciTech Connect

    Moumni, Mustafa; BenSlama, Achour; Zaim, Slimane

    2012-06-27

    We study space-time non-commutativity applied to the hydrogen atom and its phenomenological effects. We find that it modifies the Coulomb potential in the Hamiltonian and add an r{sup -3} part. By calculating the energies from Dirac equation using perturbation theory, we study the modifications to the hydrogen spectrum. We find that it removes the degeneracy with respect to the total angular momentum quantum number and acts like a Lamb shift. Comparing the results with experimental values from spectroscopy, we get a new bound for the space-time non-commutative parameter.

  13. Neutral-atom electron binding energies from relaxed-orbital relativistic Hartree-Fock-Slater calculations for Z between 2 and 106

    NASA Technical Reports Server (NTRS)

    Huang, K.-N.; Aoyagi, M.; Mark, H.; Chen, M. H.; Crasemann, B.

    1976-01-01

    Electron binding energies in neutral atoms have been calculated relativistically, with the requirement of complete relaxation. Hartree-Fock-Slater wave functions served as zeroth-order eigenfunctions to compute the expectation of the total Hamiltonian. A first-order correction to the local approximation was thus included. Quantum-electrodynamic corrections were made. For all elements with atomic numbers ranging from 2 to 106, the following quantities are listed: total energies, electron kinetic energies, electron-nucleus potential energies, electron-electron potential energies consisting of electrostatic and Breit interaction (magnetic and retardation) terms, and vacuum polarization energies. Binding energies including relaxation are listed for all electrons in all atoms over the indicated range of atomic numbers. A self-energy correction is included for the 1s, 2s, and 2p(1/2) levels. Results for selected atoms are compared with energies calculated by other methods and with experimental values.

  14. Neutral-atom electron binding energies from relaxed-orbital relativistic Hartree-Fock-Slater calculations for Z between 2 and 106

    NASA Technical Reports Server (NTRS)

    Huang, K.-N.; Aoyagi, M.; Mark, H.; Chen, M. H.; Crasemann, B.

    1976-01-01

    Electron binding energies in neutral atoms have been calculated relativistically, with the requirement of complete relaxation. Hartree-Fock-Slater wave functions served as zeroth-order eigenfunctions to compute the expectation of the total Hamiltonian. A first-order correction to the local approximation was thus included. Quantum-electrodynamic corrections were made. For all elements with atomic numbers ranging from 2 to 106, the following quantities are listed: total energies, electron kinetic energies, electron-nucleus potential energies, electron-electron potential energies consisting of electrostatic and Breit interaction (magnetic and retardation) terms, and vacuum polarization energies. Binding energies including relaxation are listed for all electrons in all atoms over the indicated range of atomic numbers. A self-energy correction is included for the 1s, 2s, and 2p(1/2) levels. Results for selected atoms are compared with energies calculated by other methods and with experimental values.

  15. The Common Elements of Atomic and Hadronic Physics

    SciTech Connect

    Brodsky, Stanley J.

    2015-02-26

    Atomic physics and hadronic physics are both governed by the Yang Mills gauge theory Lagrangian; in fact, Abelian quantum electrodynamics can be regarded as the zero-color limit of quantum chromodynamics. I review a number of areas where the techniques of atomic physics can provide important insight into hadronic eigenstates in QCD. For example, the Dirac-Coulomb equation, which predicts the spectroscopy and structure of hydrogenic atoms, has an analog in hadron physics in the form of frame-independent light-front relativistic equations of motion consistent with light-front holography which give a remarkable first approximation to the spectroscopy, dynamics, and structure of light hadrons. The production of antihydrogen in flight can provide important insight into the dynamics of hadron production in QCD at the amplitude level. The renormalization scale for the running coupling is unambiguously set in QED; an analogous procedure sets the renormalization scales in QCD, leading to scheme-independent scale-fixed predictions. Conversely, many techniques which have been developed for hadron physics, such as scaling laws, evolution equations, the quark-interchange process and light-front quantization have important applicants for atomic physics and photon science, especially in the relativistic domain.

  16. Reappraisal of nuclear quadrupole moments of atomic halogens via relativistic coupled cluster linear response theory for the ionization process.

    PubMed

    Chaudhuri, Rajat K; Chattopadhyay, Sudip; Mahapatra, Uttam Sinha

    2013-11-27

    The coupled cluster based linear response theory (CCLRT) with four-component relativistic spinors is employed to compute the electric field gradients (EFG) of (35)Cl, (79)Br, and (127)I nuclei. The EFGs resulting from these calculations are combined with experimental nuclear quadrupole coupling constants (NQCC) to determine the nuclear quadrupole moments (NQM), Q of the halide nuclei. Our estimated NQMs [(35)Cl = -81.12 mb, (79)Br = 307.98 mb, and (127)I = -688.22 mb] agree well with the new atomic values [(35)Cl = -81.1(1.2), (79)Br = 302(5), and (127)I = -680(10) mb] obtained via Fock space multireference coupled cluster method with the Dirac-Coulomb-Breit Hamiltonian. Although our estimated Q((79)Br) value deviates from the accepted reference value of 313(3) mb, it agrees well with the recently recommended value, Q((79)Br) = 308.7(20) mb. Good agreement with current reference data indicates the accuracy of the proposed value for these halogen nuclei and lends credence to the results obtained via CCLRT approach. The electron affinities yielded by this method with no extra cost are also in good agreement with experimental values, which bolster our belief that the NQMs values for halogen nuclei derived here are reliable.

  17. A Full-Relativistic B-Spline R-Matrix Method for Electron and Photon Collisions with Atoms and Ions

    NASA Astrophysics Data System (ADS)

    Zatsarinny, Oleg; Bartschat, Klaus

    2008-05-01

    We have extended our B-spline R-matrix (close-coupling) method [1] to fully account for relativistic effects in a Dirac-Coulomb formulation. Our numerical implementation of the close-coupling method enables us to construct term-dependent, non-orthogonal sets of one-electron orbitals for the bound and continuum electrons. This is a critical aspect for complex targets, where individually optimized one-electron orbitals can significantly reduce the size of the multi-configuration expansions needed for an accurate target description. Furthermore, core-valence correlation effets are treated fully ab initio, rather than through semi-empirical, and usually local, model potentials. The method will be described in detail and illustrated by comparing our theoretical predictions for e-Cs collisions with benchmark experiments for angle-integrated and angle-differential cross sections [2], various spin-dependent scattering asymmetries [3], and Stokes parameters measured in superelastic collisions with laser-excited atoms [4]. [1] O. Zatsarinny, Comp. Phys. Commun. 174, 273 (2006). [2] W. Gehenn and E. Reichert, J. Phys. B 10, 3105 (1977). [3] G. Baum et al., Phys. Rev. A 66, 022705 (2002) and 70, 012707 (2004). [4] D.S. Slaughter et al., Phys. Rev. A 75, 062717 (2007).

  18. A Fully Relativistic B-Spline R-Matrix Method for Electron and Photon Collisions with Atoms and Ions

    NASA Astrophysics Data System (ADS)

    Zatsarinny, Oleg; Bartschat, Klaus

    2008-10-01

    We have extended our B-spline R-matrix (close-coupling) method [1] to fully account for relativistic effects in a Dirac-Coulomb formulation. Our numerical implementation of the close-coupling method enables us to construct term-dependent, non-orthogonal sets of one-electron orbitals for the bound and continuum electrons. This is a critical aspect for complex targets, where individually optimized one-electron orbitals can significantly reduce the size of the multi-configuration expansions needed for an accurate target description. Core-valence correlation effets are treated fully ab initio, rather than through semi-empirical model potentials. The method is described in detail and will be illustrated by comparing our theoretical predictions for e-Cs collisions [2] with benchmark experiments for angle-integrated and angle-differential cross sections [3], various spin-dependent scattering asymmetries [4], and Stokes parameters measured in superelastic collisions with laser-excited atoms [5]. [1] O. Zatsarinny, Comp. Phys. Commun. 174, 273 (2006). [2] O. Zatsarinny and K. Bartschat, Phys. Rev. A 77, 062701 (2008). [3] W. Gehenn and E. Reichert, J. Phys. B 10, 3105 (1977). [4] G. Baum et al., Phys. Rev. A 66, 022705 (2002) and 70, 012707 (2004). [5] D.S. Slaughter et al., Phys. Rev. A 75, 062717 (2007).

  19. Kinetic Theory for Antihydrogen Recombination Schemes

    NASA Astrophysics Data System (ADS)

    Stowell, Ronald; Davidson, Ronald C.

    2003-12-01

    Guiding-center kinetic theory has been developed for antihydrogen recombination experiments, which are conducted with magnetic fields of 3 - 5 T; temperatures of 4 - 10 K; positron densities of 107 - 108 cm-3; and antiproton densities of 104 - 2 × 107 cm-3. Collision operators provide the leading-order correction to weak-coupling theory as the coupling parameter increases. Six collision operators — three Landau analogs and three Balescu-Guernsey-Lenard analogs — are found for particles of unlike charges. One operator is the multiple-species generalization of Dubin's and O'Neil's operator. A stability analysis is performed for counter-streaming positrons and antiprotons occupying a cylindrical region coaxial with an outer conducting cylinder in a constant, axial magnetic field. The finite transverse geometry of the system is included, leading to to a three-dimensional Penrose criterion, which is applied to drifting Maxwellian distributions to obtain the regime of stability as a function of the species' temperature ratio, density ratio and relative mean velocity. Collisional corrections are considered. Terms resulting from collisions between particles of the same species cancel under general assumptions satisfied by both O'Neil's operator and Dubin's and O'Neil's operator. The multiple-species generalization of Dubin's and O'Neil's operator is used for unlike-species collisions to find a collisionally corrected dispersion relation, which is applied to a detailed study of stability properties.

  20. Kinetic Theory for Antihydrogen Recombination Schemes

    NASA Astrophysics Data System (ADS)

    Stowell, Ronald; Davidson, Ronald C.

    2003-10-01

    Guiding-center kinetic theory has been developed for antihydrogen recombination experiments, which are conducted with magnetic fields of 3 - 5 T; temperatures of 4 - 15 K; positron densities of 8 x 10^6 - 3 x 10^8 cm-3; and antiproton densities of 10^4 - 4 x 10^6 cm-3. Collision operators provide the leading-order correction to weak-coupling theory as the coupling parameter increases. Novel collision operators - Landau analogs and Balescu-Guernsey-Lenard analogs - are found for particles of unlike charges. One operator is the multiple-species generalization of Dubin's and O'Neil's operator. A stability analysis is performed for counter-streaming positrons and antiprotons occupying a cylindrical region coaxial with an outer conducting cylinder in a constant, axial, magnetic field. The finite transverse geometry of the system is included, leading to a three-dimensional Penrose criterion, which is applied to drifting Maxwellian distributions to obtain the regime of stability as a function of the species' temperature ratio, density ratio and relative mean velocity. Collisional corrections are considered. Terms resulting from collisions between particles of the same species cancel under general assumptions satisfied by both O'Neil's operator and Dubin's and O'Neil's operator. The multiple-species generalization of Dubin's and O'Neil's operator is found and used for unlike-species collisions to obtain a collisionally corrected dispersion relation, which is applied to a detailed study of stability.

  1. Positron plasma control techniques for the production of cold antihydrogen

    NASA Astrophysics Data System (ADS)

    Funakoshi, R.; Amoretti, M.; Bonomi, G.; Bowe, P. D.; Canali, C.; Carraro, C.; Cesar, C. L.; Charlton, M.; Doser, M.; Fontana, A.; Fujiwara, M. C.; Genova, P.; Hangst, J. S.; Hayano, R. S.; Jørgensen, L. V.; Kellerbauer, A.; Lagomarsino, V.; Landua, R.; Lodi Rizzini, E.; Macrì, M.; Madsen, N.; Manuzio, G.; Mitchard, D.; Montagna, P.; Posada, L. G. C.; Rotondi, A.; Testera, G.; Variola, A.; Venturelli, L.; van der Werf, D. P.; Yamazaki, Y.; Zurlo, N.

    2007-07-01

    An observation of a clear dependence of antihydrogen production on positron plasma shapes is reported. For this purpose a plasma control method has been developed combining the plasma rotating-wall technique with a mode diagnostic system. With the help of real-time and nondestructive observations, the rotating-wall parameters have been optimized. The positron plasma can be manipulated into a wide range of shapes (aspect ratio 6.5⩽α≲80 ) and densities (1.5×108⩽n≲7×109cm-3) within a short duration (25s) compatible with the ATHENA antihydrogen production cycle.

  2. Antihydrogen annihilation reconstruction with the ALPHA silicon detector

    NASA Astrophysics Data System (ADS)

    Andresen, G. B.; Ashkezari, M. D.; Bertsche, W.; Bowe, P. D.; Butler, E.; Cesar, C. L.; Chapman, S.; Charlton, M.; Deller, A.; Eriksson, S.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Gutierrez, A.; Hangst, J. S.; Hardy, W. N.; Hayden, M. E.; Hayano, R. S.; Humphries, A. J.; Hydomako, R.; Jonsell, S.; Jørgensen, L. V.; Kurchaninov, L.; Madsen, N.; Menary, S.; Nolan, P.; Olchanski, K.; Olin, A.; Povilus, A.; Pusa, P.; Sarid, E.; Seif El Nasr, S.; Silveira, D. M.; So, C.; Storey, J. W.; Thompson, R. I.; van der Werf, D. P.; Yamazaki, Y.; Alpha Collaboration

    2012-08-01

    The ALPHA experiment has succeeded in trapping antihydrogen, a major milestone on the road to spectroscopic comparisons of antihydrogen with hydrogen. An annihilation vertex detector, which determines the time and position of antiproton annihilations, has been central to this achievement. This detector, an array of double-sided silicon microstrip detector modules arranged in three concentric cylindrical tiers, is sensitive to the passage of charged particles resulting from antiproton annihilation. This article describes the method used to reconstruct the annihilation location and to distinguish the annihilation signal from the cosmic ray background. Recent experimental results using this detector are outlined.

  3. Positron plasma control techniques for the production of cold antihydrogen

    SciTech Connect

    Funakoshi, R.; Hayano, R. S.; Amoretti, M.; Macri, M.; Testera, G.; Variola, A.; Bonomi, G.; Bowe, P. D.; Hangst, J. S.; Madsen, N.; Canali, C.; Carraro, C.; Lagomarsino, V.; Manuzio, G.; Cesar, C. L.; Charlton, M.; Joergensen, L. V.; Mitchard, D.; Werf, D. P. van der; Doser, M.

    2007-07-15

    An observation of a clear dependence of antihydrogen production on positron plasma shapes is reported. For this purpose a plasma control method has been developed combining the plasma rotating-wall technique with a mode diagnostic system. With the help of real-time and nondestructive observations, the rotating-wall parameters have been optimized. The positron plasma can be manipulated into a wide range of shapes (aspect ratio 6.5{<=}{alpha} < or approx. 80) and densities (1.5x10{sup 8}{<=}n < or approx. 7x10{sup 9} cm{sup -3}) within a short duration (25 s) compatible with the ATHENA antihydrogen production cycle.

  4. Producing the positive antihydrogen ion {\\bar{{\\rm{H}}}}^{+} via radiative attachment

    NASA Astrophysics Data System (ADS)

    Keating, C. M.; Pak, K. Y.; Straton, Jack C.

    2016-04-01

    We provide an estimate of the cross section for the radiative attachment of a second positron into the (1 {{{s}}}2 {}1{{{S}}}e) state of the {\\bar{{{H}}}}+ ion that uses a 200-term two-positron wave function composed of explicitly correlated exponentials. This is done by analytically integrating the six-dimensional, three body photoionization integrals that enter into this result (and those utilizing, the alternative, Hylleraas wave functions) and applying the principle of detailed balance. Finally, we obtain the rate coefficient {α }{RA} for attaching a second positron to antihydrogen as a function of temperature via a numerical integral that is a Maxwell-Boltzmann distribution of the product of positron velocity and cross section. Our motivation in studying the production of {\\bar{{{H}}}}+ lies in its potential use as an intermediate stage in the cooling of antihydrogen to ultra-cold (sub-mK) temperatures for spectroscopic studies and probing the gravitational interaction of the anti-atom. Estimates of the reaction rates are given for positron temperatures T e in the range from 50 K to 5 K.

  5. Cryogenic Particle Accumulation In ATRAP And The First Antihydrogen Production Within A Magnetic Gradient Trap For Neutral Antimatter

    SciTech Connect

    Storry, C. H.; Carew, A.; Comeau, D.; Hessels, E. A.; Weel, M.; George, M. C.; Grzonka, D.; Oelert, W.; Sefzick, T.; Zhang, Z.; Gabrielse, G.; Larochelle, P.; LeSage, D.; Levitt, B.; Kolthammer, W. S.; McConnell, R.; Richerme, P.; Wrubel, J.; Speck, A.; Markert, F.

    2008-08-08

    ATRAP has made many important improvements since CERN's Antiproton Decelerator (AD) was restarted in 2006. These include substantial increases in the number of positrons (e{sup +}) and antiprotons (Pbars) used to make antihydrogen (Hbar) atoms, a new technique for loading electrons (e{sup -}) that are used to cool Pbars and e{sup +}, implementation of a completely new, larger and more robust apparatus in our second experimental zone and the inclusion of a quadrupole Ioffe trap intended to trap the coldest Hbar atoms produced. Using this new apparatus we have produced large numbers of Hbar atoms within a Penning trap that is located within this quadrupole Ioffe trap using a new technique which shows promise for producing even colder atoms. These observed Hbar atoms resolve a debate about whether positrons and antiprotons can be brought together to form atoms within the divergent magnetic fields of a quadrupole Ioffe trap.

  6. Observation of the 1S-2S transition in trapped antihydrogen

    NASA Astrophysics Data System (ADS)

    Ahmadi, M.; Alves, B. X. R.; Baker, C. J.; Bertsche, W.; Butler, E.; Capra, A.; Carruth, C.; Cesar, C. L.; Charlton, M.; Cohen, S.; Collister, R.; Eriksson, S.; Evans, A.; Evetts, N.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Gutierrez, A.; Hangst, J. S.; Hardy, W. N.; Hayden, M. E.; Isaac, C. A.; Ishida, A.; Johnson, M. A.; Jones, S. A.; Jonsell, S.; Kurchaninov, L.; Madsen, N.; Mathers, M.; Maxwell, D.; McKenna, J. T. K.; Menary, S.; Michan, J. M.; Momose, T.; Munich, J. J.; Nolan, P.; Olchanski, K.; Olin, A.; Pusa, P.; Rasmussen, C. Ø.; Robicheaux, F.; Sacramento, R. L.; Sameed, M.; Sarid, E.; Silveira, D. M.; Stracka, S.; Stutter, G.; So, C.; Tharp, T. D.; Thompson, J. E.; Thompson, R. I.; van der Werf, D. P.; Wurtele, J. S.

    2017-02-01

    The spectrum of the hydrogen atom has played a central part in fundamental physics over the past 200 years. Historical examples of its importance include the wavelength measurements of absorption lines in the solar spectrum by Fraunhofer, the identification of transition lines by Balmer, Lyman and others, the empirical description of allowed wavelengths by Rydberg, the quantum model of Bohr, the capability of quantum electrodynamics to precisely predict transition frequencies, and modern measurements of the 1S-2S transition by Hänsch to a precision of a few parts in 1015. Recent technological advances have allowed us to focus on antihydrogen—the antimatter equivalent of hydrogen. The Standard Model predicts that there should have been equal amounts of matter and antimatter in the primordial Universe after the Big Bang, but today’s Universe is observed to consist almost entirely of ordinary matter. This motivates the study of antimatter, to see if there is a small asymmetry in the laws of physics that govern the two types of matter. In particular, the CPT (charge conjugation, parity reversal and time reversal) theorem, a cornerstone of the Standard Model, requires that hydrogen and antihydrogen have the same spectrum. Here we report the observation of the 1S-2S transition in magnetically trapped atoms of antihydrogen. We determine that the frequency of the transition, which is driven by two photons from a laser at 243 nanometres, is consistent with that expected for hydrogen in the same environment. This laser excitation of a quantum state of an atom of antimatter represents the most precise measurement performed on an anti-atom. Our result is consistent with CPT invariance at a relative precision of about 2 × 10-10.

  7. Observation of the 1S–2S transition in trapped antihydrogen

    NASA Astrophysics Data System (ADS)

    Ahmadi, M.; Alves, B. X. R.; Baker, C. J.; Bertsche, W.; Butler, E.; Capra, A.; Carruth, C.; Cesar, C. L.; Charlton, M.; Cohen, S.; Collister, R.; Eriksson, S.; Evans, A.; Evetts, N.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Gutierrez, A.; Hangst, J. S.; Hardy, W. N.; Hayden, M. E.; Isaac, C. A.; Ishida, A.; Johnson, M. A.; Jones, S. A.; Jonsell, S.; Kurchaninov, L.; Madsen, N.; Mathers, M.; Maxwell, D.; McKenna, J. T. K.; Menary, S.; Michan, J. M.; Momose, T.; Munich, J. J.; Nolan, P.; Olchanski, K.; Olin, A.; Pusa, P.; Rasmussen, C. Ø.; Robicheaux, F.; Sacramento, R. L.; Sameed, M.; Sarid, E.; Silveira, D. M.; Stracka, S.; Stutter, G.; So, C.; Tharp, T. D.; Thompson, J. E.; Thompson, R. I.; van der Werf, D. P.; Wurtele, J. S.

    2016-12-01

    The spectrum of the hydrogen atom has played a central part in fundamental physics over the past 200 years. Historical examples of its importance include the wavelength measurements of absorption lines in the solar spectrum by Fraunhofer, the identification of transition lines by Balmer, Lyman and others, the empirical description of allowed wavelengths by Rydberg, the quantum model of Bohr, the capability of quantum electrodynamics to precisely predict transition frequencies, and modern measurements of the 1S–2S transition by Hänsch to a precision of a few parts in 1015. Recent technological advances have allowed us to focus on antihydrogen—the antimatter equivalent of hydrogen. The Standard Model predicts that there should have been equal amounts of matter and antimatter in the primordial Universe after the Big Bang, but today’s Universe is observed to consist almost entirely of ordinary matter. This motivates the study of antimatter, to see if there is a small asymmetry in the laws of physics that govern the two types of matter. In particular, the CPT (charge conjugation, parity reversal and time reversal) theorem, a cornerstone of the Standard Model, requires that hydrogen and antihydrogen have the same spectrum. Here we report the observation of the 1S–2S transition in magnetically trapped atoms of antihydrogen. We determine that the frequency of the transition, which is driven by two photons from a laser at 243 nanometres, is consistent with that expected for hydrogen in the same environment. This laser excitation of a quantum state of an atom of antimatter represents the most precise measurement performed on an anti-atom. Our result is consistent with CPT invariance at a relative precision of about 2 × 10‑10.

  8. Measurement and simulations of hollow atom X-ray spectra of solid-density relativistic plasma created by high-contrast PW optical laser pulses

    NASA Astrophysics Data System (ADS)

    Pikuz, S. A.; Faenov, A. Ya.; Colgan, J.; Dance, R. J.; Abdallah, J.; Wagenaars, E.; Booth, N.; Culfa, O.; Evans, R. G.; Gray, R. J.; Kaempfer, T.; Lancaster, K. L.; McKenna, P.; Rossall, A. L.; Skobelev, I. Yu.; Schulze, K. S.; Uschmann, I.; Zhidkov, A. G.; Woolsey, N. C.

    2013-09-01

    K-shell spectra of solid Al excited by petawatt picosecond laser pulses have been investigated at the Vulcan PW facility. Laser pulses of ultrahigh contrast with an energy of 160 J on the target allow studies of interactions between the laser field and solid state matter at 1020 W/cm2. Intense X-ray emission of KK hollow atoms (atoms without n = 1 electrons) from thin aluminum foils is observed from optical laser plasma for the first time. Specifically for 1.5 μm thin foil targets the hollow atom yield dominates the resonance line emission. It is suggested that the hollow atoms are predominantly excited by the impact of X-ray photons generated by radiation friction to fast electron currents in solid-density plasma due to Thomson scattering and bremsstrahlung in the transverse plasma fields. Numerical simulations of Al hollow atom spectra using the ATOMIC code confirm that the impact of keV photons dominates the atom ionization. Our estimates demonstrate that solid-density plasma generated by relativistic optical laser pulses provide the source of a polychromatic keV range X-ray field of 1018 W/cm2 intensity, and allows the study of excited matter in the radiation-dominated regime. High-resolution X-ray spectroscopy of hollow atom radiation is found to be a powerful tool to study the properties of high-energy density plasma created by intense X-ray radiation.

  9. Exotic Atoms and Muonium

    NASA Astrophysics Data System (ADS)

    Horváth, D.

    In exotic atoms, one of the atomic electrons is replaced by a negatively charged particle, whereas muonium consists of a positive muon and an electron. After a general review of the theoretical and experimental aspects, the present knowledge of this field is summarized. These include muonium and the application of the muon spin resonance method in solid-state physics and chemistry, muonic hydrogen atoms, muonic molecules and muon-catalyzed fusion, pionic hydrogen atoms and their use in chemistry, testing quantum electrodynamics on heavy muonic atoms, measuring particle and nuclear properties using hadronic atoms, and testing basic symmetry principles with antiprotonic helium atoms and antihydrogen.

  10. Relativistic effects for the reaction Sg + 6 CO → Sg(CO){sub 6}: Prediction of the mean bond energy, atomization energy, and existence of the first organometallic transactinide superheavy hexacarbonyl Sg(CO){sub 6}

    SciTech Connect

    Malli, Gulzari L.

    2015-02-14

    Our ab initio all-electron fully relativistic Dirac–Fock (DF) and nonrelativistic (NR) Hartree-Fock calculations predict the DF relativistic and NR energies for the reaction: Sg + 6 CO → Sg(CO){sub 6} as −7.39 and −6.96 eV, respectively, i.e., our calculated ground state total DF relativistic and NR energies for the reaction product Sg(CO){sub 6} are lower by 7.39 and 6.96 eV than the total DF and NR ground state energies of the reactants, viz., one Sg atom plus six CO molecules, respectively. Our calculated DF relativistic and NR atomization energies (Ae) are 65.23 and 64.82 eV, respectively, and so the contribution of relativistic effects to the Ae of ∼0.40 eV is marginal. The Sg–C and C–O optimized bond distances for the octahedral geometry as calculated in our DF (NR) calculations are 2.151 (2.318 Å) and 1.119 (1.114 Å), respectively. The BSSE correction calculated using the DIRAC code ∼14 kcal/mol. The relativistic DF and NR mean energies predicted by us are 118.8 and 111.9 kJ/mol, respectively, and the contribution of ∼7 kJ/mol due to relativistic effects to the mean energy of Sg(CO){sub 6} is negligible. Ours are the first calculations of the relativistic effects for the atomization energy, mean bond energy, and energy of the reaction for possible formation of Sg(CO){sub 6}, and both our relativistic DF and the NR treatments clearly predict for the first time the existence of hexacarbonyl of the transactinide superheavy element seaborgium Sg. In conclusion, relativistic effects are not significant for Sg(CO){sub 6}.

  11. Relativistic effects for the reaction Sg + 6 CO → Sg(CO)6: Prediction of the mean bond energy, atomization energy, and existence of the first organometallic transactinide superheavy hexacarbonyl Sg(CO)6.

    PubMed

    Malli, Gulzari L

    2015-02-14

    Our ab initio all-electron fully relativistic Dirac-Fock (DF) and nonrelativistic (NR) Hartree-Fock calculations predict the DF relativistic and NR energies for the reaction: Sg + 6 CO → Sg(CO)6 as -7.39 and -6.96 eV, respectively, i.e., our calculated ground state total DF relativistic and NR energies for the reaction product Sg(CO)6 are lower by 7.39 and 6.96 eV than the total DF and NR ground state energies of the reactants, viz., one Sg atom plus six CO molecules, respectively. Our calculated DF relativistic and NR atomization energies (Ae) are 65.23 and 64.82 eV, respectively, and so the contribution of relativistic effects to the Ae of ∼0.40 eV is marginal. The Sg-C and C-O optimized bond distances for the octahedral geometry as calculated in our DF (NR) calculations are 2.151 (2.318 Å) and 1.119 (1.114 Å), respectively. The BSSE correction calculated using the DIRAC code ∼14 kcal/mol. The relativistic DF and NR mean energies predicted by us are 118.8 and 111.9 kJ/mol, respectively, and the contribution of ∼7 kJ/mol due to relativistic effects to the mean energy of Sg(CO)6 is negligible. Ours are the first calculations of the relativistic effects for the atomization energy, mean bond energy, and energy of the reaction for possible formation of Sg(CO)6, and both our relativistic DF and the NR treatments clearly predict for the first time the existence of hexacarbonyl of the transactinide superheavy element seaborgium Sg. In conclusion, relativistic effects are not significant for Sg(CO)6.

  12. Relativistic effects for the reaction Sg + 6 CO → Sg(CO)6: Prediction of the mean bond energy, atomization energy, and existence of the first organometallic transactinide superheavy hexacarbonyl Sg(CO)6

    NASA Astrophysics Data System (ADS)

    Malli, Gulzari L.

    2015-02-01

    Our ab initio all-electron fully relativistic Dirac-Fock (DF) and nonrelativistic (NR) Hartree-Fock calculations predict the DF relativistic and NR energies for the reaction: Sg + 6 CO → Sg(CO)6 as -7.39 and -6.96 eV, respectively, i.e., our calculated ground state total DF relativistic and NR energies for the reaction product Sg(CO)6 are lower by 7.39 and 6.96 eV than the total DF and NR ground state energies of the reactants, viz., one Sg atom plus six CO molecules, respectively. Our calculated DF relativistic and NR atomization energies (Ae) are 65.23 and 64.82 eV, respectively, and so the contribution of relativistic effects to the Ae of ˜0.40 eV is marginal. The Sg-C and C-O optimized bond distances for the octahedral geometry as calculated in our DF (NR) calculations are 2.151 (2.318 Å) and 1.119 (1.114 Å), respectively. The BSSE correction calculated using the DIRAC code ˜14 kcal/mol. The relativistic DF and NR mean energies predicted by us are 118.8 and 111.9 kJ/mol, respectively, and the contribution of ˜7 kJ/mol due to relativistic effects to the mean energy of Sg(CO)6 is negligible. Ours are the first calculations of the relativistic effects for the atomization energy, mean bond energy, and energy of the reaction for possible formation of Sg(CO)6, and both our relativistic DF and the NR treatments clearly predict for the first time the existence of hexacarbonyl of the transactinide superheavy element seaborgium Sg. In conclusion, relativistic effects are not significant for Sg(CO)6.

  13. Cold Antimatter Plasmas, and Aspirations for Cold Antihydrogen

    DTIC Science & Technology

    2002-06-24

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP012494 TITLE: Cold Antimatter Plasmas, and Aspirations for Cold...part numbers comprise the compilation report: ADP012489 thru ADP012577 UNCLASSIFIED Cold Antimatter Plasmas, and Aspirations for Cold Antihydrogen G...and positrons. The antiprotons come initially from the new Antiproton Decel- erator facility at CERN. Good control of such cold antimatter plasmas is

  14. Correlation and relativistic effects in 2p photoelectron spectra of sodium atoms from the initial state 2{p}^{6}3p

    NASA Astrophysics Data System (ADS)

    Liu, Xiaobin; Shi, Yinglong; Xing, Yongzhong; Lu, Feiping; Chen, Zhanbin

    2017-02-01

    We investigate the 2p photoelectron spectra of sodium atoms with the initial state 2{p}63p at a photon energy of 54 eV. The analysis is performed based on the multi-configuration Dirac–Fock method. Special attention is given to the influences of correlation and relativistic effects on the spectra structures. To explore the nature and importance of such influences, calculations were performed based on detailed analyses of the thresholds, relative intensities and corresponding data calculated in the nonrelativistic limit.

  15. RCCPAC: A parallel relativistic coupled-cluster program for closed-shell and one-valence atoms and ions in FORTRAN

    NASA Astrophysics Data System (ADS)

    Mani, B. K.; Chattopadhyay, S.; Angom, D.

    2017-04-01

    We report the development of a parallel FORTRAN code, RCCPAC, to solve the relativistic coupled-cluster equations for closed-shell and one-valence atoms and ions. The parallelization is implemented through the use of message passing interface, which is suitable for distributed memory computers. The coupled-cluster equations are defined in terms of the reduced matrix elements, and solved iteratively using Jacobi method. The ground and excited states of coupled-cluster wave functions obtained from the code could be used to compute different properties of closed-shell and one-valence atom or ion. As an example we compute the ground state correlation energy, attachment energies, E1 reduced matrix elements and hyperfine structure constants.

  16. Static and frequency-dependent dipole-dipole polarizabilities of all closed-shell atoms up to radium: a four-component relativistic DFT study.

    PubMed

    Bast, Radovan; Hesselmann, Andreas; Sałek, Paweł; Helgaker, Trygve; Saue, Trond

    2008-02-22

    We test the performance of four-component relativistic density functional theory by calculating the static and frequency-dependent electric dipole-dipole polarizabilities of all (ground-state) closed-shell atoms up to Ra. We consider 12 nonrelativistic functionals, including three asymptotically shape-corrected functionals, by using two smooth interpolation schemes introduced by the Baerends group: the gradient-regulated asymptotic connection (GRAC) procedure and the statistical averaging of (model) orbital potentials (SAOP). Basis sets of doubly augmented triple-zeta quality are used. The results are compared to experimental data or to accurate ab initio results. The reference static electric dipole polarizability of palladium has been obtained by finite-field calculations using the coupled-cluster singles, doubles, and perturbative triples method within this work. The best overall performance is obtained using hybrid functionals and their GRAC shape-corrected versions. The performance of SAOP is among the best for nonhybrid functionals for Group 18 atoms but its precision degrades when considering the full set of atoms. In general, we find that conclusions based on results obtained for the rare-gas atoms are not necessarily representative of the complete set of atoms. GRAC cannot be used with effective core potentials since the asymptotic correction is switched on in the core region.

  17. Antihydrogen formation in collisions of positronium with antiprotons

    NASA Technical Reports Server (NTRS)

    Humberston, J. W.

    1990-01-01

    Antihydrogen, consisting of a positron orbiting around an antiproton, is the simplest few body system consisting entirely of antimatter and as such is of considerable importance in providing additional tests of the validity of charge conjugation invariance. In addition, the nature of the gravitational interaction between matter and antimatter might more readily be investigated for an electrically neutral system than one which is charged. Before such studies can be undertaken the antihydrogen must, of course, be produced by attachment of a positron to an antipositron. Several production mechanisms have been proposed, the two most favored of which are radiative capture (spontaneous or stimulated) and charge exchange in positronium-antiproton collisions. The cross section for radiative capture is very much less than that for charge exchange, so that it might be thought that the latter process is greatly to be preferred. Various calculations of the cross section for the charge exchange process are briefly reviewed.

  18. Parametric Study of Radiative Cooling of Solid Antihydrogen

    DTIC Science & Technology

    1989-03-01

    RADIATIVE COOLING OF SOLID ANTIHYDROGEN THESIS Presented to the Faculty of the School of Engineering of the Air Force Institute of Technology Air...University 5 In Partial Fulfillment of the Requirements for the Degree of Master of Science in Nuclear Engineering Accc-sion For NTIS GRA&I DTIC TAB...knowledge of things academic and otherwise. 0 Abstract - .. . / ’A computer model of a cryogenic system for storing solid antimatter is used to explore the

  19. Single particle motion and gravitational measurements in magnetostatic antihydrogen traps

    NASA Astrophysics Data System (ADS)

    Zhmoginov, Andrey; Wurtele, Jonathan; Fajans, Joel; Charman, Andrew

    2012-10-01

    Recent progress in antihydrogen trapping [1-3] marks the beginning of physics measurements on neutral antimatter. One of the goals of such experiments is the observation of gravitational interaction of antimatter with matter. New methods for such measurements have been proposed, based on the statistical analysis of the temporal and spatial pattern of antihydrogen annihilations during slow (compared to bounce times) shutdowns of the mirror and octupole magnets that comprise the magnetic trap. These techniques require a thorough understanding of nonlinear dynamics of antihydrogen in magnetic traps. We apply a Hamiltonian perturbation theory to this system, analyze phase space dynamics and classify single particle orbits. The role of the stochasticity, and the Arnold diffusion accompanying it, on the accuracy of gravitational measurements is discussed. The analytical results are verified numerically, different approaches to slow particle release are compared, and implications for laser-cooling are discussed. [4pt] [1] G. B. Andresen and ALPHA Collaboration, Nature 468, 673 (2010). [2] G. B. Andresen and ALPHA Collaboration, Nature Physics 7, 558 (2011). [3] C. Amole and ALPHA Collaboration, Nature 483, 439 (2012).

  20. De-Excitation of High-Rydberg Antihydrogen in a Strongly Magnetized Pure Positron Plasma

    NASA Astrophysics Data System (ADS)

    Bass, E. M.

    2005-10-01

    The rate at which highly excited atoms relax to deeper binding is found with classical theories and simulations. This rate relates to antihydrogen formation experiments where such atoms are formed in pure-positron, Penning trap plasmas.ootnotetextG.Gabrielse, N.S. Bowden, P. Oxley, et al., Phys. Rev. Lett. 89, 213401 (2002); M. Amoretti, C. Amsler, G. Bonomi, et al., Nature (London) 419, 456 (2002). The analysis concerns atoms that have passed the kinetic bottleneck at binding energy ɛ 4kT.ootnotetextM.E. Glinsky and T.M. O'Neil, Phys. Fluids B 3, 1279 (1991). Energy loss caused by collisions between atoms and plasma positrons is calculated in two ways: For close collisions, a molecular dynamics simulation gives the energy loss; for large-impact parameter collisions, theoretical expressions based on Fokker-Planck theory are employed.ootnotetextEric M. Bass and Daniel H.E. Dubin, Phys. Plasmas 11, 1240 (2004). For a finite magnetic field, the energy loss rate scales as 1/ɛ, just as for infinite field,^2 but with a larger coefficient. A statistical description of energy loss by radiation and Stark mixing will also be discussed.

  1. Relativistic effects in chemistry

    SciTech Connect

    Yatsimirskii, K.B.

    1995-11-01

    Relativistic effects become apparent when the velocity of the electron is arbitrarily close to the speed of light (137 au) without actually attaining it (in heavy atoms of elements at the end of Mendeleev`s Periodic Table). At the orbital level, the relativistic effect is apparent in the radial contraction of penetrating s and p shells, expansion of nonpenetrating d and f shells, and the spin-orbit splitting of p-,d-, and f-shells. The appearance of a relativistic effect is indicated in the variation in the electronic configurations of the atoms in the Periodic Table, the appearance of new types of closed electron shells (6s{sub 1/2}{sup 2}, 6p{sub 1/2}{sup 2}, 7s{sub 1/2}{sup 2}, 5d{sub 3/2}{sup 4}), the stabilization of unstable oxidation states of heavy elements, the characteristic variation in the ionization enthalpies of heavy atoms, their electron affinity, hydration energies, redox potentials, and optical electronegativities. In the spectra of coordination compounds, a relativistic effect is observed when comparing the position of the charge transfer bands in analogous compounds, the parameters characterizing the ligand field strength (10Dq), the interatomic distances and angles in compounds of heavy elements. A relativistic effect is also apparent in the ability of heavy metals to form clusters and superclusters. Relativistic corrections also affect other properties of heavy metal compounds (force constants, dipole moments, biological activity, etc.).

  2. Calculation of fully relativistic cross sections for electron excitation of cesium atom and its application to the diagnostics of hydrogen-cesium plasma

    NASA Astrophysics Data System (ADS)

    Priti; Dipti; Gangwar, R. K.; Srivastava, R.

    2017-01-01

    Electron impact excitation cross-sections and rate coefficients have been calculated using fully relativistic distorted wave theory for several fine-structure transitions from the ground as well as excited states of cesium atom in the wide range of incident electron energy. These processes play dominant role in low pressure hydrogen-cesium plasma, which is relevant to the negative ion based neutral beam injectors for the ITER project. As an application, the calculated detailed cross-sections are used to construct a reliable collisional radiative (CR) model to characterize the hydrogen-cesium plasma. Other processes such as radiative population transfer, electron impact ionization and mutual neutralization of Cs+ ion with negative hydrogen ion along with their reverse processes are also taken into account. The calculated cross-sections and the extracted plasma parameters from the present model are compared with the available experimental and theoretical results.

  3. Relativistic general-order coupled-cluster method for high-precision calculations: Application to the Al{sup +} atomic clock

    SciTech Connect

    Kallay, Mihaly; Nataraj, H. S.; Sahoo, B. K.; Das, B. P.; Visscher, Lucas

    2011-03-15

    We report the implementation of a general-order relativistic coupled-cluster method for performing high-precision calculations of atomic and molecular properties. As a first application, the black-body radiation shift of the Al{sup +} clock has been estimated precisely. The computed shift relative to the frequency of the 3s{sup 2} {sup 1}S{sub 0}{sup e}{yields}3s3p {sup 3}P{sub 0}{sup o} clock transition given by (-3.66{+-}0.60)x10{sup -18} calls for an improvement over the recent measurement with a reported result of (-9{+-}3)x10{sup -18}[Phys. Rev. Lett. 104, 070802 (2010)].

  4. Relativistic configuration-interaction calculations for atoms with one valence electron based on altering hydrogenlike or Dirac-Fock spin orbitals

    NASA Astrophysics Data System (ADS)

    Głowacki, Leszek

    2015-12-01

    Relativistic configuration-interaction calculations using hydrogenlike or Dirac-Fock spin orbitals of the transition from the ground state to some n p1 /2 , n p3 /2 low-lying excited states for the alkali metals are presented. In these calculations each virtual spin orbital corresponds to a unique noninteger atomic number determined iteratively using the virtual-particle model. The virtual-particle model based on "condensed-space" idea is here adopted to many electron systems consisting of a single valence electron and the core. The transition energy and the oscillator strength values were computed for sodium, potassium, rubidium, cesium, and francium. Both hydrogenlike and Dirac-Fock basis functions have been used in the computations for comparison.

  5. Magnetic-dipole-to-electric-quadrupole cross-susceptibilities for relativistic hydrogenlike atoms in some low-lying discrete energy eigenstates

    NASA Astrophysics Data System (ADS)

    Stefańska, Patrycja

    2017-01-01

    In this paper we present tabulated data for magnetic-dipole-to-electric-quadrupole cross-susceptibilities (χ M 1 →E 2) for Dirac one-electron atoms with a pointlike, spinless and motionless nucleus of charge Ze. Numerical values of this susceptibility for the hydrogen atom (Z = 1) and for hydrogenic ions with 2 ⩽ Z ⩽ 137 are computed from the general analytical formula, recently derived by us (Stefanska, 2016), valid for an arbitrary discrete energy eigenstate. In this work we provide 30 tables with the values of χ M 1 →E 2 for the ground state, and also for the first, the second and the third set of excited states (i.e.: 2s1/2, 2p1/2, 2p3/2, 3s1/2, 3p1/2, 3p3/2, 3d3/2, 3d5/2, 4s1/2, 4p1/2, 4p3/2, 4d3/2, 4d5/2, 4f5/2 and 4f7/2) of the relativistic hydrogenlike atoms. The value of the inverse of the fine-structure constant used in the calculations is α-1 = 137.035999139, and was taken from CODATA 2014.

  6. Kinetic theory for antihydrogen recombination schemes

    NASA Astrophysics Data System (ADS)

    Stowell, Ronald Honeycutt

    exceptionally useful in 'molecular' dynamics simulations. The dynamical response of any guiding-center plasma to a charged particle of any non-relativistic velocity is found for the first time at all spatial points. In contrast, Oberman's result [Interactions Onde Electromagnetique-Plasma, edited by F. Troyon et al., 40 (1970)] applies very far from a non-relativistic super-thermal particle in a thermally equilibrated ion-electron plasma without a magnetic field.

  7. All-electron all-virtual spinor space relativistic coupled-cluster calculations for molecules of heavy elements using contracted basis set: Prediction of atomization energy of PbH4*

    NASA Astrophysics Data System (ADS)

    Malli, Gulzari L.; Siegert, Martin; Turner, David P.

    All-electron all-virtual spinor space (AVSS) relativistic second order Møller-Plesset (RMP2), coupled-cluster singles doubles (RCCSD), RCCSD(T) (RCCSD plus the triple excitation correction included perturbationally) calculations are reported for tetrahedral (Td) PbH4 at various bond lengths using our finite contracted universal Gaussian basis set. Our relativistic calculations predict the RMP2, RCCSD, and RCCD(T) molecular correlation energy for PbH4 as -2.2563, -2.1917, and -2.2311 au, respectively. Ours are the first AVSS RMP2, RCCSD, and RCCSD(T) molecular calculations for electron correlation energy of the heavy element molecule PbH4. All-electron AVSS coupled-cluster calculations for the Pb atom are also reported and these were used (in conjunction with the corresponding molecular electron correlation energy calculations for PbH4) to predict atomization energy (Ae) of PbH4 at various levels of coupled-cluster electron correlation. Our predicted atomization energy for PbH4 (at the optimized bond length of 1.749 Å) with our Dirac-Fock, RMP2, RCCSD, and RCCSD(T) calculations is 5.73, 7.27, 11.24, and 11.62 eV, respectively. Neither such relativistic molecular correlation energy nor atomization energy has been reported so far for heavy polyatomic with 86 electrons. Calculation of relativistic molecular correlation energy is no more a nightmare, and bottlenecks are broken for the calculation of relativistic correlation as well as atomization energy for molecules of heavy elements.

  8. Relativistic Effects on Chemical Properties.

    ERIC Educational Resources Information Center

    McKelvey, Donald R.

    1983-01-01

    Discusses how anomalous chemical properties may be explained by considering relativistic effects. Traces development of the relativistic wave equation (Dirac equation) starting with the Borh treatment of the hydrogen atom and discusses major consequences of the Dirac equation. Suggests that these topics receive greater attention in the…

  9. Relativistic Effects on Chemical Properties.

    ERIC Educational Resources Information Center

    McKelvey, Donald R.

    1983-01-01

    Discusses how anomalous chemical properties may be explained by considering relativistic effects. Traces development of the relativistic wave equation (Dirac equation) starting with the Borh treatment of the hydrogen atom and discusses major consequences of the Dirac equation. Suggests that these topics receive greater attention in the…

  10. Relativistic GLONASS and geodesy

    NASA Astrophysics Data System (ADS)

    Mazurova, E. M.; Kopeikin, S. M.; Karpik, A. P.

    2016-12-01

    GNSS technology is playing a major role in applications to civil, industrial and scientific areas. Nowadays, there are two fully functional GNSS: American GPS and Russian GLONASS. Their data processing algorithms have been historically based on the Newtonian theory of space and time with only a few relativistic effects taken into account as small corrections preventing the system from degradation on a fairly long time. Continuously growing accuracy of geodetic measurements and atomic clocks suggests reconsidering the overall approach to the GNSS theoretical model based on the Einstein theory of general relativity. This is essentially more challenging but fundamentally consistent theoretical approach to relativistic space geodesy. In this paper, we overview the basic principles of the relativistic GNSS model and explain the advantages of such a system for GLONASS and other positioning systems. Keywords: relativistic GLONASS, Einstein theory of general relativity.

  11. Evaporative cooling of antiprotons for the production of trappable antihydrogen

    NASA Astrophysics Data System (ADS)

    Silveira, D. M.; Andresen, G. B.; Ashkezari, M. D.; Baquero-Ruiz, M.; Bertsche, W.; Bowe, P. D.; Butler, E.; Cesar, C. L.; Chapman, S.; Charlton, M.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Hangst, J. S.; Hardy, W. N.; Hayden, M. E.; Hydomako, R.; Jonsell, S.; Kurchaninov, L.; Madsen, N.; Menary, S.; Nolan, P.; Olchanski, K.; Olin, A.; Povilus, A.; Pusa, P.; Robicheaux, F.; Sarid, E.; So, C.; Storey, J. W.; Thompson, R. I.; van der Werf, D. P.; Wurtele, J. S.

    2013-03-01

    We describe the implementation of evaporative cooling of charged particles in the ALPHA apparatus. Forced evaporation has been applied to cold samples of antiprotons held in Malmberg-Penning traps. Temperatures on the order of 10 K were obtained, while retaining a significant fraction of the initial number of particles. We have developed a model for the evaporation process based on simple rate equations and applied it succesfully to the experimental data. We have also observed radial re-distribution of the clouds following evaporation, explained by simple conservation laws. We discuss the relevance of this technique for the recent demonstration of magnetic trapping of antihydrogen.

  12. Atomic physics of relativistic high contrast laser-produced plasmas in experiments on Leopard laser facility at UNR

    NASA Astrophysics Data System (ADS)

    Safronova, A. S.; Kantsyrev, V. L.; Faenov, A. Y.; Safronova, U. I.; Wiewior, P.; Renard-Le Galloudec, N.; Esaulov, A. A.; Weller, M. E.; Stafford, A.; Wilcox, P.; Shrestha, I.; Ouart, N. D.; Shlyaptseva, V.; Osborne, G. C.; Chalyy, O.; Paudel, Y.

    2012-06-01

    The results of the recent experiments focused on study of x-ray radiation from multicharged plasmas irradiated by relativistic (I > 1019 W/cm2) sub-ps laser pulses on Leopard laser facility at NTF/UNR are presented. These shots were done under different experimental conditions related to laser pulse and contrast. In particular, the duration of the laser pulse was 350 fs or 0.8 ns and the contrast was varied from high (10-7) to moderate (10-5). The thin laser targets (from 4 to 750 μm) made of a broad range of materials (from Teflon to iron and molybden to tungsten and gold) were utilized. Using the x-ray diagnostics including the high-precision spectrometer with resolution R ˜ 3000 and a survey spectrometer, we have observed unique spectral features that are illustrated in this paper. Specifically, the observed L-shell spectra for Fe targets subject to high intensity lasers (˜1019 W/cm2) indicate electron beams, while at lower intensities (˜1016 W/cm2) or for Cu targets there is much less evidence for an electron beam. In addition, K-shell Mg features with dielectronic satellites from high-Rydberg states, and the new K-shell F features with dielectronic satellites including exotic transitions from hollow ions are highlighted.

  13. Positronium, antihydrogen, light, and the equivalence principle

    NASA Astrophysics Data System (ADS)

    Karshenboim, Savely G.

    2016-07-01

    While discussing a certain generic difference in effects of gravity on particles and antiparticles, various neutral particles (i.e. the particles which are identical with their antiparticles) could be a perfect probe. One such neutral particles is the positronium atom, which has been available for precision experiments for a few decades. The other important neutral particle is the photon. Behavior of light in the presence of a gravitational field has been the key both to build and develop the theory of general relativity and to verify it experimentally. The very idea of antigravity for antimatter strongly contradicts both the principles of general relativity and its experimentally verified consequences. Consideration of existing experimental results on photons and positrons makes antigravity impossible and leads to a conclusion that the deviation of the ratio of acceleration of the free fall of particles and antiparticles cannot exceed the level of 1× {10}-5.

  14. Effect of Irregularities in the Earth's Rotation on Relativistic Shifts in Frequency and Time of Earthbound Atomic Clocks

    NASA Astrophysics Data System (ADS)

    Fateev, V. F.; Kopeikin, S. M.; Pasynok, S. L., S. L.

    2015-10-01

    The effect of irregularities in the earth's rotation (precession and nutation of the earth's axis of rotation, oscillations in the modulus of the angular velocity, periodic deviations in the line of the poles, and the angular momentum of the globe) on the frequency and time of high-stability atomic clocks are examined in terms of the theory of relativity. It is shown that the relative shift in frequency and time owing to these effects can exceed 5×10-16.

  15. Local relativistic exact decoupling

    NASA Astrophysics Data System (ADS)

    Peng, Daoling; Reiher, Markus

    2012-06-01

    We present a systematic hierarchy of approximations for local exact decoupling of four-component quantum chemical Hamiltonians based on the Dirac equation. Our ansatz reaches beyond the trivial local approximation that is based on a unitary transformation of only the atomic block-diagonal part of the Hamiltonian. Systematically, off-diagonal Hamiltonian matrix blocks can be subjected to a unitary transformation to yield relativistically corrected matrix elements. The full hierarchy is investigated with respect to the accuracy reached for the electronic energy and for selected molecular properties on a balanced test molecule set that comprises molecules with heavy elements in different bonding situations. Our atomic (local) assembly of the unitary exact-decoupling transformation—called local approximation to the unitary decoupling transformation (DLU)—provides an excellent local approximation for any relativistic exact-decoupling approach. Its order-N2 scaling can be further reduced to linear scaling by employing a neighboring-atomic-blocks approximation. Therefore, DLU is an efficient relativistic method well suited for relativistic calculations on large molecules. If a large molecule contains many light atoms (typically hydrogen atoms), the computational costs can be further reduced by employing a well-defined nonrelativistic approximation for these light atoms without significant loss of accuracy. We also demonstrate that the standard and straightforward transformation of only the atomic block-diagonal entries in the Hamiltonian—denoted diagonal local approximation to the Hamiltonian (DLH) in this paper—introduces an error that is on the order of the error of second-order Douglas-Kroll-Hess (i.e., DKH2) when compared with exact-decoupling results. Hence, the local DLH approximation would be pointless in an exact-decoupling framework, but can be efficiently employed in combination with the fast to evaluate DKH2 Hamiltonian in order to speed up calculations

  16. Formation Of A Cold Antihydrogen Beam in AEGIS For Gravity Measurements

    SciTech Connect

    Testera, G.; Carraro, C.; Lagomarsino, V.; Manuzio, G.; Zavatarelli, S.; Belov, A. S.; Gninenko, S. N.; Matveev, V. A.; Bonomi, G.; Fontana, A.; Rotondi, A.; Zenoni, A.; Boscolo, I.; Brambilla, N.; Castelli, F.; Cialdi, S.; Formaro, L.; Gervasini, A.; Giammarchi, M. G.; Vairo, A.

    2008-08-08

    The formation of the antihydrogen beam in the AEGIS experiment through the use of inhomogeneous electric fields is discussed and simulation results including the geometry of the apparatus and realistic hypothesis about the antihydrogen initial conditions are shown. The resulting velocity distribution matches the requirements of the gravity experiment. In particular it is shown that the inhomogeneous electric fields provide radial cooling of the beam during the acceleration.

  17. Construction and Operational Experience with a Superconducting Octupole Used to Trap Antihydrogen

    SciTech Connect

    Wanderer P.; Escallier, J.; Marone, A.; Parker, B.

    2011-09-06

    A superconducting octupole magnet has seen extensive service as part of the ALPHA experiment at CERN. ALPHA has trapped antihydrogen, a crucial step towards performing precision measurements of anti-atoms. The octupole was made at the Direct Wind facility by the Superconducting Magnet Division at Brookhaven National Laboratory. The magnet was wound with a six-around-one NbTi cable about 1 mm in diameter. It is about 300 mm long, with a radius of 25 mm and a peak field at the conductor of 4.04 T. Specific features of the magnet, including a minimal amount of material in the coil and coil ends with low multipole content, were advantageous to its use in ALPHA. The magnet was operated for six months a year for five years. During this time it underwent about 900 thermal cycles (between 4K and 100K). A novel operational feature is that during the course of data-taking the magnet was repeatedly shut off from its 950 A operating current. The magnet quenches during the shutoff, with a decay constant of 9 ms. Over the course of the five years, the magnet was deliberately quenched many thousands of times. It still performs well.

  18. Application of the dual-kinetic-balance sets in the relativistic many-body problem of atomic structure

    NASA Astrophysics Data System (ADS)

    Beloy, Kyle; Derevianko, Andrei

    2008-05-01

    The dual-kinetic-balance (DKB) finite basis set method for solving the Dirac equation for hydrogen-like ions [V. M. Shabaev et al., Phys. Rev. Lett. 93, 130405 (2004)] is extended to problems with a non-local spherically-symmetric Dirac-Hartree-Fock potential. We implement the DKB method using B-spline basis sets and compare its performance with the widely- employed approach of Notre Dame (ND) group [W.R. Johnson, S.A. Blundell, J. Sapirstein, Phys. Rev. A 37, 307-15 (1988)]. We compare the performance of the ND and DKB methods by computing various properties of Cs atom: energies, hyperfine integrals, the parity-non-conserving amplitude of the 6s1/2-7s1/2 transition, and the second-order many-body correction to the removal energy of the valence electrons. We find that for a comparable size of the basis set the accuracy of both methods is similar for matrix elements accumulated far from the nuclear region. However, for atomic properties determined by small distances, the DKB method outperforms the ND approach.

  19. Application of the dual-kinetic-balance sets in the relativistic many-body problem of atomic structure

    NASA Astrophysics Data System (ADS)

    Beloy, Kyle; Derevianko, Andrei

    2008-09-01

    The dual-kinetic-balance (DKB) finite basis set method for solving the Dirac equation for hydrogen-like ions [V.M. Shabaev et al., Phys. Rev. Lett. 93 (2004) 130405] is extended to problems with a non-local spherically-symmetric Dirac-Hartree-Fock potential. We implement the DKB method using B-spline basis sets and compare its performance with the widely-employed approach of Notre Dame (ND) group [W.R. Johnson, S.A. Blundell, J. Sapirstein, Phys. Rev. A 37 (1988) 307-315]. We compare the performance of the ND and DKB methods by computing various properties of Cs atom: energies, hyperfine integrals, the parity-non-conserving amplitude of the 6s-7s transition, and the second-order many-body correction to the removal energy of the valence electrons. We find that for a comparable size of the basis set the accuracy of both methods is similar for matrix elements accumulated far from the nuclear region. However, for atomic properties determined by small distances, the DKB method outperforms the ND approach. In addition, we present a strategy for optimizing the size of the basis sets by choosing progressively smaller number of basis functions for increasingly higher partial waves. This strategy exploits suppression of contributions of high partial waves to typical many-body correlation corrections.

  20. Large-scale relativistic calculations of ionization energies and total binding energies of all atoms and positive atomic ions with nuclear charge Z = 1-110

    NASA Astrophysics Data System (ADS)

    Kramida, Alexander; Froese Fischer, Charlotte; Reader, Joseph; Indelicato, Paul

    2015-05-01

    The latest versions of advanced multiconfiguration Dirac-Fock atomic codes, MCDFGME and Grasp2K, are used to calculate ionization energies (IE) and total binding energies of all atomic systems. Comparison with experiment and other benchmark data shows an excellent accuracy achieved in these calculations for H-, He-, and Li-like ions. In particular, our results for H-like ions with Z >2, obtained with the MCDFGME code, are the most accurate available today. For multi-electron ions, we combine the accurate single-configuration MCDFGME calculations with the correlation-difference energy (difference between the multiconfiguration and single-configuration total energies) calculated with Grasp2K. This approach results in a dramatically improved agreement of calculated IEs with experiment (less than 0.7 eV on average) for all systems, excluding those involving open f-shells. The most probable ground states are found for most systems, leaving questionable only about 100 out of total 6105 considered systems.

  1. Compact cryogenic system with mechanical cryocoolers for antihydrogen synthesis.

    PubMed

    Shibata, M; Mohri, A; Kanai, Y; Enomoto, Y; Yamazaki, Y

    2008-01-01

    We have developed a compact cryogenic system which cools a vacuum chamber housing multi-ring trap electrodes (MRTs) of an antihydrogen synthesis trap using mechanical cryocoolers to achieve background pressure less than 10(-12) Torr. The vacuum chamber and the cryocoolers are thermally connected by copper strips of 99.9999% in purity. All components are installed within a diametric gap between the MRT of phi108 mm and a magnet bore of phi160 mm. An adjusting mechanism is prepared to align the MRT axis to the magnet axis. The vacuum chamber was successfully cooled down to 4.0 K after 14 h of cooling with heat load of 0.8 W.

  2. Relativistic atomic beam spectroscopy II

    SciTech Connect

    1991-12-31

    We are requesting support for a postdoctoral person to participate in H{sup -} studies at Los Alamos. In addition, we are requesting funding for a state-of-the-art YAG laser system that would allow us to obtain data at three times our present rate with improved beam quality.

  3. Relativistic Theory of the Electric Quadrupole Moment of a Hydrogen-Like Atom in the s{sub 1/2} and p{sub 1/2} States

    SciTech Connect

    Kozhedub, Yu.S.; Shabaev, V.M.

    2005-10-15

    Relativistic analytical expressions are derived for the electric quadrupole moment induced by the hyperfine interaction of the electron with the nucleus of a hydrogen-like atom in the ns{sub 1/2} and np{sub 1/2} states. The magnetic dipole and electric quadrupole hyperfine interactions are taken into account. The calculations are performed using the generalized virial relationships for the Dirac equation in a central field. The dependences of the electric quadrupole moment on the nuclear charge Z and the principal quantum number n are analyzed. The induced quadrupole moments are compared with the nuclear quadrupole moments.

  4. Compton Effect with Non-Relativistic Kinematics

    ERIC Educational Resources Information Center

    Shivalingaswamy, T.; Kagali, B. A.

    2011-01-01

    In deducing the change of wavelength of x-rays scattered by atomic electrons, one normally makes use of relativistic kinematics for electrons. However, recoiling energies of the electrons are of the order of a few keV which is less than 0.2% of their rest energies. Hence the authors may ask whether relativistic formulae are really necessary. In…

  5. Compton Effect with Non-Relativistic Kinematics

    ERIC Educational Resources Information Center

    Shivalingaswamy, T.; Kagali, B. A.

    2011-01-01

    In deducing the change of wavelength of x-rays scattered by atomic electrons, one normally makes use of relativistic kinematics for electrons. However, recoiling energies of the electrons are of the order of a few keV which is less than 0.2% of their rest energies. Hence the authors may ask whether relativistic formulae are really necessary. In…

  6. Two-component Kramers restricted complete active space self-consistent field method with relativistic effective core potential revisited: Theory, implementation, and applications to spin-orbit splitting of lower p-block atoms

    NASA Astrophysics Data System (ADS)

    Kim, Inkoo; Lee, Yoon Sup

    2013-10-01

    The relativistic two-component complete active space self-consistent field theory in Kramers restricted formalism (KRCASSCF) through the framework of the spin-orbit relativistic effective core potential is implemented into the KPACK package. This paper continues the development previously reported [Y. S. Kim and Y. S. Lee, J. Chem. Phys. 119, 12169 (2003)] and extends the theory by means of adding time-reversal symmetry into the relevant expressions so as to complete the course of theoretical development. We retained the usage of elementary spinor excitation operator for defining the spinor rotation operator and derived the gradient and Hessian in simpler forms than previously found. To eliminate redundant computation resulting from repeating sums in the derivatives, a suitable decomposition method is proposed, which also facilitates the implementation. The two-step near second-order approach is employed for convergence. The present implementation is applicable for both closed- and open-shell systems and is used to calculate the atoms of lower p-block. The results for 5p and 6p are in good agreement with the experiments, and those for 7p are comparable to multi-reference configuration interaction results, showing that KRCASSCF is a versatile tool for the relativistic electronic structure calculation of molecules containing moderate-weight through superheavy elements.

  7. Towards measuring the ground state hyperfine splitting of antihydrogen - a progress report

    NASA Astrophysics Data System (ADS)

    Sauerzopf, C.; Capon, A. A.; Diermaier, M.; Dupré, P.; Higashi, Y.; Kaga, C.; Kolbinger, B.; Leali, M.; Lehner, S.; Rizzini, E. Lodi; Malbrunot, C.; Mascagna, V.; Massiczek, O.; Murtagh, D. J.; Nagata, Y.; Radics, B.; Simon, M. C.; Suzuki, K.; Tajima, M.; Ulmer, S.; Vamosi, S.; Gorp, S. van; Zmeskal, J.; Breuker, H.; Higaki, H.; Kanai, Y.; Kuroda, N.; Matsuda, Y.; Venturelli, L.; Widmann, E.; Yamazaki, Y.

    2016-12-01

    We report the successful commissioning and testing of a dedicated field-ioniser chamber for measuring principal quantum number distributions in antihydrogen as part of the ASACUSA hyperfine spectroscopy apparatus. The new chamber is combined with a beam normalisation detector that consists of plastic scintillators and a retractable passivated implanted planar silicon (PIPS) detector.

  8. Electronic structure of FeTiSb using relativistic and scalar-relativistic approaches

    SciTech Connect

    Sahariya, Jagrati; Mund, H. S.

    2016-05-06

    Electronic and magnetic properties of FeTiSb have been reported. The calculations are performed using spin polarized relativistic Korringa-Kohn-Rostoker scheme based on Green’s function method. Within SPR-KKR a fully relativistic and scalar-relativistic approaches have been used to investigate electronic structure of FeTiSb. Energy bands, total and partial density of states, atom specific magnetic moment along with total moment of FeTiSb alloys are presented.

  9. Relativistic klystrons

    SciTech Connect

    Allen, M.A.; Azuma, O.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fant, K.S.; Fowkes, W.R.; Herrmannsfeldt, W.B.; Hoag, H.A.; Koontz, R.F.

    1989-03-01

    Experimental work is underway by a SLAC-LLNL-LBL collaboration to investigate the feasibility of using relativistic klystrons as a power source for future high gradient accelerators. Two different relativistic klystron configurations have been built and tested to date: a high grain multicavity klystron at 11.4 GHz and a low gain two cavity subharmonic buncher driven at 5.7 GHz. In both configurations power is extracted at 11.4 GHz. In order to understand the basic physics issues involved in extracting RF from a high power beam, we have used both a single resonant cavity and a multi-cell traveling wave structure for energy extraction. We have learned how to overcome our previously reported problem of high power RF pulse shortening, and have achieved peak RF power levels of 170 MW with the RF pulse of the same duration as the beam current pulse. 6 refs., 3 figs., 3 tabs.

  10. Relativistic Astrophysics

    NASA Astrophysics Data System (ADS)

    Jones, Bernard J. T.; Markovic, Dragoljub

    1997-06-01

    Preface; Prologue: Conference overview Bernard Carr; Part I. The Universe At Large and Very Large Redshifts: 2. The size and age of the Universe Gustav A. Tammann; 3. Active galaxies at large redshifts Malcolm S. Longair; 4. Observational cosmology with the cosmic microwave background George F. Smoot; 5. Future prospects in measuring the CMB power spectrum Philip M. Lubin; 6. Inflationary cosmology Michael S. Turner; 7. The signature of the Universe Bernard J. T. Jones; 8. Theory of large-scale structure Sergei F. Shandarin; 9. The origin of matter in the universe Lev A. Kofman; 10. New guises for cold-dark matter suspects Edward W. Kolb; Part II. Physics and Astrophysics Of Relativistic Compact Objects: 11. On the unification of gravitational and inertial forces Donald Lynden-Bell; 12. Internal structure of astrophysical black holes Werner Israel; 13. Black hole entropy: external facade and internal reality Valery Frolov; 14. Accretion disks around black holes Marek A. Abramowicz; 15. Black hole X-ray transients J. Craig Wheeler; 16. X-rays and gamma rays from active galactic nuclei Roland Svensson; 17. Gamma-ray bursts: a challenge to relativistic astrophysics Martin Rees; 18. Probing black holes and other exotic objects with gravitational waves Kip Thorne; Epilogue: the past and future of relativistic astrophysics Igor D. Novikov; I. D. Novikov's scientific papers and books.

  11. Gravitationally confined relativistic neutrinos

    NASA Astrophysics Data System (ADS)

    Vayenas, C. G.; Fokas, A. S.; Grigoriou, D.

    2017-09-01

    Combining special relativity, the equivalence principle, and Newton’s universal gravitational law with gravitational rather than rest masses, one finds that gravitational interactions between relativistic neutrinos with kinetic energies above 50 MeV are very strong and can lead to the formation of gravitationally confined composite structures with the mass and other properties of hadrons. One may model such structures by considering three neutrinos moving symmetrically on a circular orbit under the influence of their gravitational attraction, and by assuming quantization of their angular momentum, as in the Bohr model of the H atom. The model contains no adjustable parameters and its solution, using a neutrino rest mass of 0.05 eV/c2, leads to composite state radii close to 1 fm and composite state masses close to 1 GeV/c2. Similar models of relativistic rotating electron - neutrino pairs give a mass of 81 GeV/c2, close to that of W bosons. This novel mechanism of generating mass suggests that the Higgs mass generation mechanism can be modeled as a latent gravitational field which gets activated by relativistic neutrinos.

  12. Relativistic causality

    NASA Astrophysics Data System (ADS)

    Valente, Giovanni; Owen Weatherall, James

    2014-11-01

    Relativity theory is often taken to include, or to imply, a prohibition on superluminal propagation of causal processes. Yet, what exactly the prohibition on superluminal propagation amounts to and how one should deal with its possible violation have remained open philosophical problems, both in the context of the metaphysics of causation and the foundations of physics. In particular, recent work in philosophy of physics has focused on the causal structure of spacetime in relativity theory and on how this causal structure manifests itself in our most fundamental theories of matter. These topics were the subject of a workshop on "Relativistic Causality in Quantum Field Theory and General Relativity" that we organized (along with John Earman) at the Center for Philosophy of Science in Pittsburgh on April 5-7, 2013. The present Special Issue comprises contributions by speakers in that workshop as well as several other experts exploring different aspects of relativistic causality. We are grateful to the journal for hosting this Special Issue, to the journal's managing editor, Femke Kuiling, for her help and support in putting the issue together, and to the authors and the referees for their excellent work.

  13. Atomic physics and non-equilibrium plasmas

    SciTech Connect

    Weisheit, J.C.

    1986-04-25

    Three lectures comprise the report. The lecture, Atomic Structure, is primarily theoretical and covers four topics: (1) Non-relativistic one-electron atom, (2) Relativistic one-electron atom, (3) Non-relativistic many-electron atom, and (4) Relativistic many-electron atom. The lecture, Radiative and Collisional Transitions, considers the problem of transitions between atomic states caused by interactions with radiation or other particles. The lecture, Ionization Balance: Spectral Line Shapes, discusses collisional and radiative transitions when ionization and recombination processes are included. 24 figs., 11 tabs.

  14. Atomic structure under external confinement: effect of plasma on the spin orbit splitting, relativistic mass correction and Darwin term for hydrogen-like ions

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Supriya K.; Mukherjee, Prasanta K.; Fricke, Burkhard

    2017-03-01

    The effect of Debye and quantum plasma environment on the structural properties such as spin orbit splitting, relativistic mass correction and Darwin term for a few iso-electronic members of hydrogen viz. C5 +, O7 +, Ne9 +, Mg11 +, Si13 +, S15 +, Ar17 +, Ca19 + and Ti21 + has been analysed systematically for the first time for a range of coupling strengths of the plasma. The Debye plasma environment has been treated under a standard screened Coulomb potential (SCP) while the quantum plasma has been treated under an exponential cosine screened Coulomb potential (ECSCP). Estimation of the spin orbit splitting under SCP and ECSCP plasma is restricted to the lowest two dipole allowed states while for the other two properties, the ground state as well as the first two excited states have been chosen. Calculations have been extended to nuclear charges for which appreciable relativistic corrections are noted. In all cases calculations have been extended up to such screening parameters for which the respective excitation energies tend towards their stability limit determined by the ionisation potential at that screening parameter. Interesting behavior of the respective properties with respect to the plasma coupling strength has been noted.

  15. Gravitational mass of relativistic matter and antimatter

    NASA Astrophysics Data System (ADS)

    Kalaydzhyan, Tigran

    2015-12-01

    The universality of free fall, the weak equivalence principle (WEP), is a cornerstone of the general theory of relativity, the most precise theory of gravity confirmed in all experiments up to date. The WEP states the equivalence of the inertial, m, and gravitational, mg, masses and was tested in numerous occasions with normal matter at relatively low energies. However, there is no confirmation for the matter and antimatter at high energies. For the antimatter the situation is even less clear - current direct observations of trapped antihydrogen suggest the limits - 65 relativistic electrons and positrons coming from the absence of the vacuum Cherenkov radiation at the Large Electron-Positron Collider (LEP) and stability of photons at the Tevatron collider in presence of the annual variations of the solar gravitational potential. Our result clearly rules out the speculated antigravity. By considering the absolute potential of the Local Supercluster (LS), we also predict the bounds 1 - 4 ×10-7

  16. Gravitational mass of relativistic matter and antimatter

    DOE PAGES

    Kalaydzhyan, Tigran

    2015-10-13

    The universality of free fall, the weak equivalence principle (WEP), is a cornerstone of the general theory of relativity, the most precise theory of gravity confirmed in all experiments up to date. The WEP states the equivalence of the inertial, m, and gravitational, mg, masses and was tested in numerous occasions with normal matter at relatively low energies. However, there is no confirmation for the matter and antimatter at high energies. For the antimatter the situation is even less clear – current direct observations of trapped antihydrogen suggest the limits -65 < mg/m <110 not excluding the so-called antigravity phenomenon,more » i.e. repulsion of the antimatter by Earth. Here we demonstrate an indirect bound 0.96 < mg/m < 1.04 on the gravitational mass of relativistic electrons and positrons coming from the absence of the vacuum Cherenkov radiation at the Large Electron–Positron Collider (LEP) and stability of photons at the Tevatron collider in presence of the annual variations of the solar gravitational potential. Our result clearly rules out the speculated antigravity. By considering the absolute potential of the Local Supercluster (LS), we also predict the bounds 1 -4 ×10-7 < mg/m <1 +2 ×10-7 for an electron and positron. Lastly, we comment on a possibility of performing complementary tests at the future International Linear Collider (ILC) and Compact Linear Collider (CLIC).« less

  17. Relativistic magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Hernandez, Juan; Kovtun, Pavel

    2017-05-01

    We present the equations of relativistic hydrodynamics coupled to dynamical electromagnetic fields, including the effects of polarization, electric fields, and the derivative expansion. We enumerate the transport coefficients at leading order in derivatives, including electrical conductivities, viscosities, and thermodynamic coefficients. We find the constraints on transport coefficients due to the positivity of entropy production, and derive the corresponding Kubo formulas. For the neutral state in a magnetic field, small fluctuations include Alfvén waves, magnetosonic waves, and the dissipative modes. For the state with a non-zero dynamical charge density in a magnetic field, plasma oscillations gap out all propagating modes, except for Alfvén-like waves with a quadratic dispersion relation. We relate the transport coefficients in the "conventional" magnetohydrodynamics (formulated using Maxwell's equations in matter) to those in the "dual" version of magnetohydrodynamics (formulated using the conserved magnetic flux).

  18. Relativistic electron beam generator

    DOEpatents

    Mooney, L.J.; Hyatt, H.M.

    1975-11-11

    A relativistic electron beam generator for laser media excitation is described. The device employs a diode type relativistic electron beam source having a cathode shape which provides a rectangular output beam with uniform current density.

  19. Relativistic opacities for astrophysical applications

    DOE PAGES

    Fontes, Christopher John; Fryer, Christopher Lee; Hungerford, Aimee L.; ...

    2015-06-29

    Here, we report on the use of the Los Alamos suite of relativistic atomic physics codes to generate radiative opacities for the modeling of astrophysically relevant plasmas under local thermodynamic equilibrium (LTE) conditions. The atomic structure calculations are carried out in fine-structure detail, including full configuration interaction. Three example applications are considered: iron opacities at conditions relevant to the base of the solar convection zone, nickel opacities for the modeling of stellar envelopes, and samarium opacities for the modeling of light curves produced by neutron star mergers. In the first two examples, comparisons are made between opacities that are generatedmore » with the fully and semi-relativistic capabilities in the Los Alamos suite of codes. As expected for these highly charged, iron-peak ions, the two methods produce reasonably similar results, providing confidence that the numerical methods have been correctly implemented. However, discrepancies greater than 10% are observed for nickel and investigated in detail. In the final application, the relativistic capability is used in a preliminary investigation of the complicated absorption spectrum associated with cold lanthanide elements.« less

  20. Relativistic opacities for astrophysical applications

    SciTech Connect

    Fontes, Christopher John; Fryer, Christopher Lee; Hungerford, Aimee L.; Hakel, Peter; Colgan, James Patrick; Kilcrease, David Parker; Sherrill, Manalo Edgar

    2015-06-29

    Here, we report on the use of the Los Alamos suite of relativistic atomic physics codes to generate radiative opacities for the modeling of astrophysically relevant plasmas under local thermodynamic equilibrium (LTE) conditions. The atomic structure calculations are carried out in fine-structure detail, including full configuration interaction. Three example applications are considered: iron opacities at conditions relevant to the base of the solar convection zone, nickel opacities for the modeling of stellar envelopes, and samarium opacities for the modeling of light curves produced by neutron star mergers. In the first two examples, comparisons are made between opacities that are generated with the fully and semi-relativistic capabilities in the Los Alamos suite of codes. As expected for these highly charged, iron-peak ions, the two methods produce reasonably similar results, providing confidence that the numerical methods have been correctly implemented. However, discrepancies greater than 10% are observed for nickel and investigated in detail. In the final application, the relativistic capability is used in a preliminary investigation of the complicated absorption spectrum associated with cold lanthanide elements.

  1. Relativistic opacities for astrophysical applications

    NASA Astrophysics Data System (ADS)

    Fontes, C. J.; Fryer, C. L.; Hungerford, A. L.; Hakel, P.; Colgan, J.; Kilcrease, D. P.; Sherrill, M. E.

    2015-09-01

    We report on the use of the Los Alamos suite of relativistic atomic physics codes to generate radiative opacities for the modeling of astrophysically relevant plasmas under local thermodynamic equilibrium (LTE) conditions. The atomic structure calculations are carried out in fine-structure detail, including full configuration interaction. Three example applications are considered: iron opacities at conditions relevant to the base of the solar convection zone, nickel opacities for the modeling of stellar envelopes, and samarium opacities for the modeling of light curves produced by neutron star mergers. In the first two examples, comparisons are made between opacities that are generated with the fully and semi-relativistic capabilities in the Los Alamos suite of codes. As expected for these highly charged, iron-peak ions, the two methods produce reasonably similar results, providing confidence that the numerical methods have been correctly implemented. However, discrepancies greater than 10% are observed for nickel and investigated in detail. In the final application, the relativistic capability is used in a preliminary investigation of the complicated absorption spectrum associated with cold lanthanide elements.

  2. Low-energy scattering of antihydrogen by helium and molecular hydrogen

    SciTech Connect

    Armour, E. A. G.; Todd, A. C.; Liu, Y.; Gregory, M. R.; Jonsell, S.; Plummer, M.

    2008-08-08

    In this paper, we describe in detail calculations that we have carried out of cross sections for rearrangement processes in very low-energy helium+antihydrogen (H-bar) scattering that result in He{sup +}p-bar+Ps or Hep-bar+e{sup +} or {alpha}p-bar+Ps{sup -}. The interaction between the leptons is taken into account very accurately. Results are presented for all three processes. A description is also given of a preliminary calculation of elastic and antiproton annihilation cross sections for very low-energy H{sub 2}+H-bar scattering.

  3. Relativistic calculation of nuclear magnetic shielding tensor using the regular approximation to the normalized elimination of the small component. III. Introduction of gauge-including atomic orbitals and a finite-size nuclear model

    NASA Astrophysics Data System (ADS)

    Hamaya, S.; Maeda, H.; Funaki, M.; Fukui, H.

    2008-12-01

    The relativistic calculation of nuclear magnetic shielding tensors in hydrogen halides is performed using the second-order regular approximation to the normalized elimination of the small component (SORA-NESC) method with the inclusion of the perturbation terms from the metric operator. This computational scheme is denoted as SORA-Met. The SORA-Met calculation yields anisotropies, Δσ =σ∥-σ⊥, for the halogen nuclei in hydrogen halides that are too small. In the NESC theory, the small component of the spinor is combined to the large component via the operator σ⃗ṡπ⃗U/2c, in which π⃗=p⃗+A⃗, U is a nonunitary transformation operator, and c ≅137.036 a.u. is the velocity of light. The operator U depends on the vector potential A⃗ (i.e., the magnetic perturbations in the system) with the leading order c-2 and the magnetic perturbation terms of U contribute to the Hamiltonian and metric operators of the system in the leading order c-4. It is shown that the small Δσ for halogen nuclei found in our previous studies is related to the neglect of the U(0,1) perturbation operator of U, which is independent of the external magnetic field and of the first order with respect to the nuclear magnetic dipole moment. Introduction of gauge-including atomic orbitals and a finite-size nuclear model is also discussed.

  4. Relativistic calculation of nuclear magnetic shielding tensor using the regular approximation to the normalized elimination of the small component. III. Introduction of gauge-including atomic orbitals and a finite-size nuclear model.

    PubMed

    Hamaya, S; Maeda, H; Funaki, M; Fukui, H

    2008-12-14

    The relativistic calculation of nuclear magnetic shielding tensors in hydrogen halides is performed using the second-order regular approximation to the normalized elimination of the small component (SORA-NESC) method with the inclusion of the perturbation terms from the metric operator. This computational scheme is denoted as SORA-Met. The SORA-Met calculation yields anisotropies, Delta sigma = sigma(parallel) - sigma(perpendicular), for the halogen nuclei in hydrogen halides that are too small. In the NESC theory, the small component of the spinor is combined to the large component via the operator sigma x piU/2c, in which pi = p + A, U is a nonunitary transformation operator, and c approximately = 137.036 a.u. is the velocity of light. The operator U depends on the vector potential A (i.e., the magnetic perturbations in the system) with the leading order c(-2) and the magnetic perturbation terms of U contribute to the Hamiltonian and metric operators of the system in the leading order c(-4). It is shown that the small Delta sigma for halogen nuclei found in our previous studies is related to the neglect of the U(0,1) perturbation operator of U, which is independent of the external magnetic field and of the first order with respect to the nuclear magnetic dipole moment. Introduction of gauge-including atomic orbitals and a finite-size nuclear model is also discussed.

  5. Relativistic ionization of hydrogen by linearly polarized light.

    PubMed

    Crawford, D; Reiss, H

    1998-03-30

    Relativistic ionization of hydrogen by intense, linearly polarized light is treated by the Strong Field Approximation (SFA). Both bound and ionized states are described by the Dirac equation, with spin effects fully included. The applied laser field is also treated relativistically. There is no recourse to the dipole approximation nor to large-component, small-component approximations. Examples are calculated for the long-pulse limit of a uniformly distributed laser field. A prediction is verified that relativistic effects will appear with linear polarization of the laser at lower intensities than with circular polarization. Strong-field atomic stabilization is found to be enhanced by relativistic effects.

  6. Relativistic radiative transfer in relativistic spherical flows

    NASA Astrophysics Data System (ADS)

    Fukue, Jun

    2017-02-01

    Relativistic radiative transfer in relativistic spherical flows is numerically examined under the fully special relativistic treatment. We first derive relativistic formal solutions for the relativistic radiative transfer equation in relativistic spherical flows. We then iteratively solve the relativistic radiative transfer equation, using an impact parameter method/tangent ray method, and obtain specific intensities in the inertial and comoving frames, as well as moment quantities, and the Eddington factor. We consider several cases; a scattering wind with a luminous central core, an isothermal wind without a core, a scattering accretion on to a luminous core, and an adiabatic accretion on to a dark core. In the typical wind case with a luminous core, the emergent intensity is enhanced at the center due to the Doppler boost, while it reduces at the outskirts due to the transverse Doppler effect. In contrast to the plane-parallel case, the behavior of the Eddington factor is rather complicated in each case, since the Eddington factor depends on the optical depth, the flow velocity, and other parameters.

  7. Relativistic linear restoring force

    NASA Astrophysics Data System (ADS)

    Clark, D.; Franklin, J.; Mann, N.

    2012-09-01

    We consider two different forms for a relativistic version of a linear restoring force. The pair comes from taking Hooke’s law to be the force appearing on the right-hand side of the relativistic expressions: dp/dt or dp/dτ. Either formulation recovers Hooke’s law in the non-relativistic limit. In addition to these two forces, we introduce a form of retardation appropriate for the description of a linear (in displacement) force arising from the interaction of a pair of particles with a relativistic field. The procedure is akin to replacing Coulomb’s law in electromagnetism with a retarded form (the first correction in the full relativistic case). This retardation leads to the expected oscillation, but with amplitude growth in both its relativistic and non-relativistic incarnations.

  8. Characterization of a transmission positron/positronium converter for antihydrogen production

    NASA Astrophysics Data System (ADS)

    Aghion, S.; Amsler, C.; Ariga, T.; Bonomi, G.; Brusa, R. S.; Caccia, M.; Caravita, R.; Castelli, F.; Cerchiari, G.; Comparat, D.; Consolati, G.; Demetrio, A.; Di Noto, L.; Doser, M.; Ereditato, A.; Evans, C.; Ferragut, R.; Fesel, J.; Fontana, A.; Gerber, S.; Giammarchi, M.; Gligorova, A.; Guatieri, F.; Haider, S.; Hinterberger, A.; Holmestad, H.; Kellerbauer, A.; Krasnický, D.; Lagomarsino, V.; Lansonneur, P.; Lebrun, P.; Malbrunot, C.; Mariazzi, S.; Matveev, V.; Mazzotta, Z.; Müller, S. R.; Nebbia, G.; Nedelec, P.; Oberthaler, M.; Pacifico, N.; Pagano, D.; Penasa, L.; Petracek, V.; Povolo, L.; Prelz, F.; Prevedelli, M.; Ravelli, L.; Resch, L.; Rienäcker, B.; Robert, J.; Røhne, O. M.; Rotondi, A.; Sacerdoti, M.; Sandaker, H.; Santoro, R.; Scampoli, P.; Simon, M.; Smestad, L.; Sorrentino, F.; Testera, G.; Tietje, I. C.; Widmann, E.; Yzombard, P.; Zimmer, C.; Zmeskal, J.; Zurlo, N.; Andersen, S. L.; Chevallier, J.; Uggerhøj, U. I.; Lyckegaard, F.

    2017-09-01

    In this work a characterization study of forward emission from a thin, meso-structured silica positron/positronium (Ps) converter following implantation of positrons in light of possible antihydrogen production is presented. The target consisted of a ∼1 μm thick ultraporous silica film e-gun evaporated onto a 20 nm carbon foil. The Ps formation and emission was studied via Single Shot Positron Annihilation Lifetime Spectroscopy measurements after implantation of pulses with 3 - 4 ·107 positrons and 10 ns temporal width. The forward emission of implanted positrons and secondary electrons was investigated with a micro-channel plate - phosphor screen assembly, connected either to a CCD camera for imaging of the impinging particles, or to a fast photomultiplier tube to extract information about their time of flight. The maximum Ps formation fraction was estimated to be ∼10%. At least 10% of the positrons implanted with an energy of 3.3 keV are forward-emitted with a scattering angle smaller than 50° and maximum kinetic energy of 1.2 keV. At least 0.1-0.2 secondary electrons per implanted positron were also found to be forward-emitted with a kinetic energy of a few eV. The possible application of this kind of positron/positronium converter for antihydrogen production is discussed.

  9. Experimental and computational study of autoresonant injection of antiprotons into positron plasma in antihydrogen production

    NASA Astrophysics Data System (ADS)

    So, Chukman; Wurtele, Jonathan; Fajans, Joel; Friedland, Lazar; Bertsche, William

    2012-10-01

    The injection of antiprotons into positron plasma during antihydrogen synthesis in ALPHA is simulated numerically and compared with experimental measurements. The antiprotons and positrons are initially confined in adjacent axial potential wells in a nested Penning-Malmberg trap. The antiproton plasma is excited autoresonantly and partially injected into the adjacent positron plasma, creating antihydrogen. The excitation and injection process is modeled numerically with a hybrid code in which the antiproton plasma responds to the autoresonant drive fully dynamically, and the positrons respond quasi-statically. The strong axial magnetic field suppresses radial transport on the timescales of interest. The antiproton plasma is thus assumed to consist of concentric cylindrical tubes within which antiprotons move only in the axial direction, and the evolution of the phase space distributions in each tube obeys a one-dimensional Vlasov equation. The antiproton self-field is obtained by solving the Poisson equation in two-dimensions, thereby coupling the tubes. Alternative injection schemes and the effect of varying antiproton number and temperature are also examined.

  10. Theoretical study of the relativistic molecular rotational g-tensor

    SciTech Connect

    Aucar, I. Agustín Gomez, Sergio S.; Giribet, Claudia G.; Ruiz de Azúa, Martín C.

    2014-11-21

    An original formulation of the relativistic molecular rotational g-tensor valid for heavy atom containing compounds is presented. In such formulation, the relevant terms of a molecular Hamiltonian for non-relativistic nuclei and relativistic electrons in the laboratory system are considered. Terms linear and bilinear in the nuclear rotation angular momentum and an external uniform magnetic field are considered within first and second order (relativistic) perturbation theory to obtain the rotational g-tensor. Relativistic effects are further analyzed by carrying out the linear response within the elimination of the small component expansion. Quantitative results for model systems HX (X=F, Cl, Br, I), XF (X=Cl, Br, I), and YH{sup +} (Y=Ne, Ar, Kr, Xe, Rn) are obtained both at the RPA and density functional theory levels of approximation. Relativistic effects are shown to be small for this molecular property. The relation between the rotational g-tensor and susceptibility tensor which is valid in the non-relativistic theory does not hold within the relativistic framework, and differences between both molecular parameters are analyzed for the model systems under study. It is found that the non-relativistic relation remains valid within 2% even for the heavy HI, IF, and XeH{sup +} systems. Only for the sixth-row Rn atom a significant deviation of this relation is found.

  11. Theoretical study of the relativistic molecular rotational g-tensor.

    PubMed

    Aucar, I Agustín; Gomez, Sergio S; Giribet, Claudia G; Ruiz de Azúa, Martín C

    2014-11-21

    An original formulation of the relativistic molecular rotational g-tensor valid for heavy atom containing compounds is presented. In such formulation, the relevant terms of a molecular Hamiltonian for non-relativistic nuclei and relativistic electrons in the laboratory system are considered. Terms linear and bilinear in the nuclear rotation angular momentum and an external uniform magnetic field are considered within first and second order (relativistic) perturbation theory to obtain the rotational g-tensor. Relativistic effects are further analyzed by carrying out the linear response within the elimination of the small component expansion. Quantitative results for model systems HX (X=F, Cl, Br, I), XF (X=Cl, Br, I), and YH(+) (Y=Ne, Ar, Kr, Xe, Rn) are obtained both at the RPA and density functional theory levels of approximation. Relativistic effects are shown to be small for this molecular property. The relation between the rotational g-tensor and susceptibility tensor which is valid in the non-relativistic theory does not hold within the relativistic framework, and differences between both molecular parameters are analyzed for the model systems under study. It is found that the non-relativistic relation remains valid within 2% even for the heavy HI, IF, and XeH(+) systems. Only for the sixth-row Rn atom a significant deviation of this relation is found.

  12. Static electric multipole susceptibilities of the relativistic hydrogenlike atom in the ground state: Application of the Sturmian expansion of the generalized Dirac-Coulomb Green function

    NASA Astrophysics Data System (ADS)

    Szmytkowski, Radosław; Łukasik, Grzegorz

    2016-06-01

    The ground state of the Dirac one-electron atom, placed in a weak, static electric field of definite 2L polarity, is studied within the framework of the first-order perturbation theory. The Sturmian expansion of the generalized Dirac-Coulomb Green function [R. Szmytkowski, J. Phys. B: At. Mol. Opt. Phys. 30, 825 (1997), 10.1088/0953-4075/30/4/007; erratum R. Szmytkowski, J. Phys. B: At. Mol. Opt. Phys. 30, 2747 (1997), 10.1088/0953-4075/30/11/023] is used to derive closed-form analytical expressions for various far-field and near-nucleus static electric multipole susceptibilities of the atom. The far-field multipole susceptibilities—the polarizabilities αL, the electric-to-magnetic cross susceptibilities αE L →M (L ∓1 ), and the electric-to-toroidal-magnetic cross susceptibilities αE L →T L —are found to be expressible in terms of one or two nonterminating generalized hypergeometric functions F2 with the unit argument. Counterpart formulas for the near-nucleus multipole susceptibilities—the electric nuclear shielding constants σEL→E L, the near-nucleus electric-to-magnetic cross susceptibilities σE L →M (L ∓1 ), and the near-nucleus electric-to-toroidal-magnetic cross susceptibilities σE L →T L —involve one or two terminating F2(1 ) series and for each L may be rewritten in terms of elementary functions. Numerical values of the far-field dipole, quadrupole, octupole, and hexadecapole susceptibilities are provided for selected hydrogenic ions. The effect of a declared uncertainty in the CODATA 2014 recommended value of the fine-structure constant α on the accuracy of numerical results is investigated. Analytical quasirelativistic approximations, valid to the second order in α Z , where Z is the nuclear charge number, are also derived for all types of the far-field and near-nucleus susceptibilities considered in the paper.

  13. Limits of Strong Field Rescattering in the Relativistic Regime

    NASA Astrophysics Data System (ADS)

    Klaiber, M.; Hatsagortsyan, K. Z.; Wu, J.; Luo, S. S.; Grugan, P.; Walker, B. C.

    2017-03-01

    Recollision for a laser driven atomic system is investigated in the relativistic regime via a strong field quantum description and Monte Carlo semiclassical approach. We find the relativistic recollision energy cutoff is independent of the ponderomotive potential Up , in contrast to the well-known 3.2 Up scaling. The relativistic recollision energy cutoff is determined by the ionization potential of the atomic system and achievable with non-negligible recollision flux before entering a "rescattering free" interaction. The ultimate energy cutoff is limited by the available intensities of short wavelength lasers and cannot exceed a few thousand Hartree, setting a boundary for recollision based attosecond physics.

  14. Theoretical Atomic Spectroscopy

    NASA Astrophysics Data System (ADS)

    Rudzikas, Zenonas

    2007-07-01

    Preface; Introduction; Part I. Energy Spectrum of Many-electron Atom. Radiative and Autoionizing Transitions (Initial Formulas): 1. Non-relativistic atomic Hamiltonian and relativistic corrections; 2. Relativistic atomic Hamiltonian. New wave function; 3. Perturbation theory for the energy of an atom; 4. Radiative and autoionizing electronic transitions. Generalized expressions for electric multipole (Ek) transition operators; Part II. Foundations of the Angular Momentum Theory. Graphical Methods: 5. Angular momentum and tensorial algebra; 6. Main quantities of angular momentum theory; 7. Angular momentum theory for relativistic case; 8. Graphical methods: their generalization for perturbation theory; Part III. Description of Complex Electronic Configurations: 9. Non-relativistic and relativistic cases of a shell of equivalent electrons; 10. Two and more shells of equivalent electrons; 11. Classification of energy levels; 12. Relations between various coupling schemes; Part IV. Second-quantization in the Theory of an Atom: Quasispin and Isospin: 13. Second-quantization and irreducible tensorial sets; 14. Operators and matrix elements in second-quantization representation; 15. Quasispin for a shell of equivalent electrons; 16. Algebraic expressions for coefficients of fractional parentage (CFP); 17. Tensorial properties and quasispin of complex configurations; 18. Isospin in the theory of an atom; Part V. Matrix Elements of the Energy Operator: 19. The energy of a shell of equivalent electrons; 20. Interaction energy of two shells in LS coupling; 21. Semi-empirical methods of calculation of the energy spectra; 22. Hyperfine structure of the energy spectra, isotopic and Lamb shift; 23. Quasispin and isospin for relativistic matrix elements; Part VI. Electric and Magnetic Multipole Transitions: 24. General expressions for electric (Ek) and magnetic (Mk) multipole radiation quantities; 25. Non relativistic matrix elements of the Ek-transitions; 26. Relativistic matrix

  15. Relativistic covariance of Ohm's law

    NASA Astrophysics Data System (ADS)

    Starke, R.; Schober, G. A. H.

    2016-04-01

    The derivation of Lorentz-covariant generalizations of Ohm's law has been a long-term issue in theoretical physics with deep implications for the study of relativistic effects in optical and atomic physics. In this article, we propose an alternative route to this problem, which is motivated by the tremendous progress in first-principles materials physics in general and ab initio electronic structure theory in particular. We start from the most general, Lorentz-covariant first-order response law, which is written in terms of the fundamental response tensor χμ ν relating induced four-currents to external four-potentials. By showing the equivalence of this description to Ohm's law, we prove the validity of Ohm's law in every inertial frame. We further use the universal relation between χμ ν and the microscopic conductivity tensor σkℓ to derive a fully relativistic transformation law for the latter, which includes all effects of anisotropy and relativistic retardation. In the special case of a constant, scalar conductivity, this transformation law can be used to rederive a standard textbook generalization of Ohm's law.

  16. Relativistic Linear Restoring Force

    ERIC Educational Resources Information Center

    Clark, D.; Franklin, J.; Mann, N.

    2012-01-01

    We consider two different forms for a relativistic version of a linear restoring force. The pair comes from taking Hooke's law to be the force appearing on the right-hand side of the relativistic expressions: d"p"/d"t" or d"p"/d["tau"]. Either formulation recovers Hooke's law in the non-relativistic limit. In addition to these two forces, we…

  17. Relativistic Guiding Center Equations

    SciTech Connect

    White, R. B.; Gobbin, M.

    2014-10-01

    In toroidal fusion devices it is relatively easy that electrons achieve relativistic velocities, so to simulate runaway electrons and other high energy phenomena a nonrelativistic guiding center formalism is not sufficient. Relativistic guiding center equations including flute mode time dependent field perturbations are derived. The same variables as used in a previous nonrelativistic guiding center code are adopted, so that a straightforward modifications of those equations can produce a relativistic version.

  18. Relativistic Linear Restoring Force

    ERIC Educational Resources Information Center

    Clark, D.; Franklin, J.; Mann, N.

    2012-01-01

    We consider two different forms for a relativistic version of a linear restoring force. The pair comes from taking Hooke's law to be the force appearing on the right-hand side of the relativistic expressions: d"p"/d"t" or d"p"/d["tau"]. Either formulation recovers Hooke's law in the non-relativistic limit. In addition to these two forces, we…

  19. Theoretical motivation for gravitation experiments on ultra-low energy antiprotons and antihydrogen

    SciTech Connect

    Nieto, M.M.

    1995-12-31

    It is known that the generally accepted theories of gravity and quantum mechanics are fundamentally incompatible. Thus, when one tries to combine these theories, one must beware of physical pitfalls. Modern theories of quantum gravity are trying to overcome these problems. Any ideas must confront the present agreement with general relativity, but yet be free to wonder about not understood phenomena, such as the dark matter problem. This all has led some {open_quotes}intrepid{close_quotes} theorists to consider a new gravitational regime, that of antimatter. Even more {open_quotes}daring{close_quotes} experimentalists are attempting, or considering attempting, the measurement of the gravitational force on antimatter, including low-energy antiprotons and, perhaps most enticing, antihydrogen.

  20. Non-relativistic leptogenesis

    SciTech Connect

    Bödeker, Dietrich; Wörmann, Mirco E-mail: mwoermann@physik.uni-bielefeld.de

    2014-02-01

    In many phenomenologically interesting models of thermal leptogenesis the heavy neutrinos are non-relativistic when they decay and produce the baryon asymmetry of the Universe. We propose a non-relativistic approximation for the corresponding rate equations in the non-resonant case, and a systematic way for computing relativistic corrections. We determine the leading order coefficients in these equations, and the first relativistic corrections. The non-relativistic approximation works remarkably well. It appears to be consistent with results obtained using a Boltzmann equation taking into account the momentum distribution of the heavy neutrinos, while being much simpler. We also compute radiative corrections to some of the coefficients in the rate equations. Their effect is of order 1% in the regime favored by neutrino oscillation data. We obtain the correct leading order lepton number washout rate in this regime, which leads to large ( ∼ 20%) effects compared to previous computations.

  1. Development of mini linac-based positron source and an efficient positronium convertor for positively charged antihydrogen production

    NASA Astrophysics Data System (ADS)

    Muranaka, T.; Debu, P.; Dupré, P.; Liszkay, L.; Mansoulie, B.; Pérez, P.; Rey, J. M.; Ruiz, N.; Sacquin, Y.; Crivelli, P.; Gendotti, U.; Rubbia, A.

    2010-04-01

    We have installed in Saclay a facility for an intense positron source in November 2008. It is based on a compact 5.5 MeV electron linac connected to a reaction chamber with a tungsten target inside to produce positrons via pair production. The expected production rate for fast positrons is 5·1011 per second. The study of moderation of fast positrons and the construction of a slow positron trap are underway. In parallel, we have investigated an efficient positron-positronium convertor using porous silica materials. These studies are parts of a project to produce positively charged antihydrogen ions aiming to demonstrate the feasibility of a free fall antigravity measurement of neutral antihydrogen.

  2. Relativistic Brownian motion

    NASA Astrophysics Data System (ADS)

    Dunkel, Jörn; Hänggi, Peter

    2009-02-01

    Over the past one hundred years, Brownian motion theory has contributed substantially to our understanding of various microscopic phenomena. Originally proposed as a phenomenological paradigm for atomistic matter interactions, the theory has since evolved into a broad and vivid research area, with an ever increasing number of applications in biology, chemistry, finance, and physics. The mathematical description of stochastic processes has led to new approaches in other fields, culminating in the path integral formulation of modern quantum theory. Stimulated by experimental progress in high energy physics and astrophysics, the unification of relativistic and stochastic concepts has re-attracted considerable interest during the past decade. Focusing on the framework of special relativity, we review, here, recent progress in the phenomenological description of relativistic diffusion processes. After a brief historical overview, we will summarize basic concepts from the Langevin theory of nonrelativistic Brownian motions and discuss relevant aspects of relativistic equilibrium thermostatistics. The introductory parts are followed by a detailed discussion of relativistic Langevin equations in phase space. We address the choice of time parameters, discretization rules, relativistic fluctuation-dissipation theorems, and Lorentz transformations of stochastic differential equations. The general theory is illustrated through analytical and numerical results for the diffusion of free relativistic Brownian particles. Subsequently, we discuss how Langevin-type equations can be obtained as approximations to microscopic models. The final part of the article is dedicated to relativistic diffusion processes in Minkowski spacetime. Since the velocities of relativistic particles are bounded by the speed of light, nontrivial relativistic Markov processes in spacetime do not exist; i.e., relativistic generalizations of the nonrelativistic diffusion equation and its Gaussian solutions

  3. Relativistic decay widths of autoionization processes: The relativistic FanoADC-Stieltjes method

    NASA Astrophysics Data System (ADS)

    Fasshauer, Elke; Kolorenč, Přemysl; Pernpointner, Markus

    2015-04-01

    Electronic decay processes of ionized systems are, for example, the Auger decay or the Interatomic/ Intermolecular Coulombic Decay. In both processes, an energetically low lying vacancy is filled by an electron of an energetically higher lying orbital and a secondary electron is instantaneously emitted to the continuum. Whether or not such a process occurs depends both on the energetic accessibility and the corresponding lifetime compared to the lifetime of competing decay mechanisms. We present a realization of the non-relativistically established FanoADC-Stieltjes method for the description of autoionization decay widths including relativistic effects. This procedure, being based on the Algebraic Diagrammatic Construction (ADC), was adapted to the relativistic framework and implemented into the relativistic quantum chemistry program package Dirac. It is, in contrast to other existing relativistic atomic codes, not limited to the description of autoionization lifetimes in spherically symmetric systems, but is instead also applicable to molecules and clusters. We employ this method to the Auger processes following the Kr3d-1, Xe4d-1, and Rn5d-1 ionization. Based on the results, we show a pronounced influence of mainly scalar-relativistic effects on the decay widths of autoionization processes.

  4. Relativistic decay widths of autoionization processes: the relativistic FanoADC-Stieltjes method.

    PubMed

    Fasshauer, Elke; Kolorenč, Přemysl; Pernpointner, Markus

    2015-04-14

    Electronic decay processes of ionized systems are, for example, the Auger decay or the Interatomic/ Intermolecular Coulombic Decay. In both processes, an energetically low lying vacancy is filled by an electron of an energetically higher lying orbital and a secondary electron is instantaneously emitted to the continuum. Whether or not such a process occurs depends both on the energetic accessibility and the corresponding lifetime compared to the lifetime of competing decay mechanisms. We present a realization of the non-relativistically established FanoADC-Stieltjes method for the description of autoionization decay widths including relativistic effects. This procedure, being based on the Algebraic Diagrammatic Construction (ADC), was adapted to the relativistic framework and implemented into the relativistic quantum chemistry program package Dirac. It is, in contrast to other existing relativistic atomic codes, not limited to the description of autoionization lifetimes in spherically symmetric systems, but is instead also applicable to molecules and clusters. We employ this method to the Auger processes following the Kr3d(-1), Xe4d(-1), and Rn5d(-1) ionization. Based on the results, we show a pronounced influence of mainly scalar-relativistic effects on the decay widths of autoionization processes.

  5. Relativistic decay widths of autoionization processes: The relativistic FanoADC-Stieltjes method

    SciTech Connect

    Fasshauer, Elke; Kolorenč, Přemysl; Pernpointner, Markus

    2015-04-14

    Electronic decay processes of ionized systems are, for example, the Auger decay or the Interatomic/ Intermolecular Coulombic Decay. In both processes, an energetically low lying vacancy is filled by an electron of an energetically higher lying orbital and a secondary electron is instantaneously emitted to the continuum. Whether or not such a process occurs depends both on the energetic accessibility and the corresponding lifetime compared to the lifetime of competing decay mechanisms. We present a realization of the non-relativistically established FanoADC-Stieltjes method for the description of autoionization decay widths including relativistic effects. This procedure, being based on the Algebraic Diagrammatic Construction (ADC), was adapted to the relativistic framework and implemented into the relativistic quantum chemistry program package Dirac. It is, in contrast to other existing relativistic atomic codes, not limited to the description of autoionization lifetimes in spherically symmetric systems, but is instead also applicable to molecules and clusters. We employ this method to the Auger processes following the Kr3d{sup −1}, Xe4d{sup −1}, and Rn5d{sup −1} ionization. Based on the results, we show a pronounced influence of mainly scalar-relativistic effects on the decay widths of autoionization processes.

  6. Relativistic Kinetic Theory

    NASA Astrophysics Data System (ADS)

    Vereshchagin, Gregory V.; Aksenov, Alexey G.

    2017-02-01

    Preface; Acknowledgements; Acronyms and definitions; Introduction; Part I. Theoretical Foundations: 1. Basic concepts; 2. Kinetic equation; 3. Averaging; 4. Conservation laws and equilibrium; 5. Relativistic BBGKY hierarchy; 6. Basic parameters in gases and plasmas; Part II. Numerical Methods: 7. The basics of computational physics; 8. Direct integration of Boltzmann equations; 9. Multidimensional hydrodynamics; Part III. Applications: 10. Wave dispersion in relativistic plasma; 11. Thermalization in relativistic plasma; 12. Kinetics of particles in strong fields; 13. Compton scattering in astrophysics and cosmology; 14. Self-gravitating systems; 15. Neutrinos, gravitational collapse and supernovae; Appendices; Bibliography; Index.

  7. Relativistic effects on sixth group hydrides

    NASA Astrophysics Data System (ADS)

    Pisani, L.; Clementi, E.

    1994-08-01

    Dirac-Fock (DF) and Hartree-Fock (HF) calculations have been performed for the ground state configuration of the H2O, H2S, H2Se, H2Te, and H2Po molecules. Equilibrium geometries, atomization energies, and molecular orbitals energies are evaluated with both methods, compared and discussed with the help of population analysis and atomic orbital energies. Particular attention has been given to a qualitative understanding of the relativistic effects. Molecular spin-orbits corrections appear to be essential to a description of some in the sixth group hydrides set. A description of the relativistic computer program is presented elsewhere [L. Pisani and E. Clementi, J. Comput. Chem. (in press)].

  8. Relativistic Length Agony Continued

    NASA Astrophysics Data System (ADS)

    Redzic, D. V.

    2014-06-01

    We made an attempt to remedy recent confusing treatments of some basic relativistic concepts and results. Following the argument presented in an earlier paper (Redzic 2008b), we discussed the misconceptions that are recurrent points in the literature devoted to teaching relativity such as: there is no change in the object in Special Relativity, illusory character of relativistic length contraction, stresses and strains induced by Lorentz contraction, and related issues. We gave several examples of the traps of everyday language that lurk in Special Relativity. To remove a possible conceptual and terminological muddle, we made a distinction between the relativistic length reduction and relativistic FitzGerald-Lorentz contraction, corresponding to a passive and an active aspect of length contraction, respectively; we pointed out that both aspects have fundamental dynamical contents. As an illustration of our considerations, we discussed briefly the Dewan-Beran-Bell spaceship paradox and the 'pole in a barn' paradox.

  9. Weakly relativistic plasma expansion

    SciTech Connect

    Fermous, Rachid Djebli, Mourad

    2015-04-15

    Plasma expansion is an important physical process that takes place in laser interactions with solid targets. Within a self-similar model for the hydrodynamical multi-fluid equations, we investigated the expansion of both dense and under-dense plasmas. The weakly relativistic electrons are produced by ultra-intense laser pulses, while ions are supposed to be in a non-relativistic regime. Numerical investigations have shown that relativistic effects are important for under-dense plasma and are characterized by a finite ion front velocity. Dense plasma expansion is found to be governed mainly by quantum contributions in the fluid equations that originate from the degenerate pressure in addition to the nonlinear contributions from exchange and correlation potentials. The quantum degeneracy parameter profile provides clues to set the limit between under-dense and dense relativistic plasma expansions at a given density and temperature.

  10. Relativistic Jets and Collapsars

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Woosley, S. E.

    2001-05-01

    In order to study the relativistic jets from collapsars, we have developed a special relativistic multiple-dimensional hydrodynamics code similar to the GENESIS code (Aloy et al., ApJS, 122, 151). The code is based on the PPM interpolation algorithm and Marquina's Riemann solver. Using this code, we have simulated the propagation of axisymmetric jets along the rotational axis of collapsed rotating stars (collapsars). Using the progenitors of MacFadyen, Woosley, and Heger, a relativistic jet is injected at a given inner boundary radius. This radius, the opening angle of the jet, its Lorentz factor, and its total energy are parameters of the problem. A highly collimated, relativistic outflow is observed at the surface of the star several seconds later. We will discuss the hydrodynamical focusing of the jet, it's break out properties, time evolution, and sensitivity to the adopted parameters.

  11. Exact Relativistic `Antigravity' Propulsion

    NASA Astrophysics Data System (ADS)

    Felber, Franklin S.

    2006-01-01

    The Schwarzschild solution is used to find the exact relativistic motion of a payload in the gravitational field of a mass moving with constant velocity. At radial approach or recession speeds faster than 3-1/2 times the speed of light, even a small mass gravitationally repels a payload. At relativistic speeds, a suitable mass can quickly propel a heavy payload from rest nearly to the speed of light with negligible stresses on the payload.

  12. Relativistic viscoelastic fluid mechanics.

    PubMed

    Fukuma, Masafumi; Sakatani, Yuho

    2011-08-01

    A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.

  13. Relativistic viscoelastic fluid mechanics

    SciTech Connect

    Fukuma, Masafumi; Sakatani, Yuho

    2011-08-15

    A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.

  14. Magnetic tuning of the relativistic BCS-BEC crossover

    NASA Astrophysics Data System (ADS)

    Wang, Jin-Cheng; de La Incera, Vivian; Ferrer, Efrain J.; Wang, Qun

    2011-09-01

    The effect of an applied magnetic field in the crossover from Bose-Einstein condensate (BEC) to Bardeen-Cooper-Schrieffer (BCS) pairing regimes is investigated. We use a model of relativistic fermions and bosons inspired by those previously used in the context of cold fermionic atoms and in the magnetic-color-flavor-locking phase of color superconductivity. It turns out that, as with cold atom systems, an applied magnetic field can also tune the BCS-BEC crossover in the relativistic case. We find that no matter what the initial state is at B=0, for large enough magnetic fields the system always settles into a pure BCS regime. In contrast to the atomic case, the magnetic field tuning of the crossover in the relativistic system is not connected to a Feshbach resonance, but to the relative numbers of Landau levels with either BEC or BCS type of dispersion relations that are occupied at each magnetic field strength.

  15. Positrons for Antihydrogen with ATRAP: efficient transfer of large positron numbers

    NASA Astrophysics Data System (ADS)

    Storry, Cody; Comeau, Daniel; Dror, Asaf; Fitzakerley, Daniel; George, Matthew; Hessels, Eric; Weel, Matthew

    2012-06-01

    Positrons accumulated in a room-temperature buffer-gas-cooled positron accumulator are efficiently transferred into a superconducting solenoid which houses the ATRAP cryogenic Penning trap for antihydrogen research. The positrons are guided along a 9-meter-long magnetic guide which connects the central field lines of the 0.15-tesla field in the positron accumulator to central magnetic field lines of the superconducting solenoid. Seventy independently-controllable electromagnets are required to overcome the fringing field of the large-bore superconducting solenoid. The guide includes both a 15 degree upward bend and a 105 degree downward bend to account for the orthogonal orientation of the accumulator with respect to the cryogenic Penning trap. Low-energy positrons ejected from the accumulator follow the magnetic field lines within the guide and are transferred into the superconducting solenoid with nearly 100% efficiency. 7 meters of 5-cm-diameter stainless-steel tube, and a 20-mm-long, 1.5-mm-diameter cryogenic pumping restriction ensure that the 10-2 mbar pressure in the accumulator is well isolated from the extreme vacuum required in the Penning trap to allow long antimatter storage times.

  16. SAMPEX Relativistic Microbursts Observation

    NASA Astrophysics Data System (ADS)

    Liang, X.; Comess, M.; Smith, D. M.; Selesnick, R. S.; Sample, J. G.; Millan, R. M.

    2012-12-01

    Relativistic (>1 MeV) electron microburst precipitation is thought to account for significant relativistic electron loss. We present the statistical and spectral analysis of relativistic microbursts observed by the Proton/Electron Telescope (PET) on board the Solar Anomalous Magnetospheric Particle Explorer(SAMPEX) satellite from 1992 to 2004. Spectrally we find that microbursts are well fit by an exponential energy distribution in the 0.5-4 MeV range with a spectral e-folding energy of E0 < 375 keV. We also discuss the comparison of morning microbursts with events at midnight, which were first identified as microbursts by O'Brien et al. (2004). Finally, we compare the loss-rates due to microbursts and non-microburst precipitation during storm times and averaged over all times.

  17. B1:. Relativistic Astrophysics

    NASA Astrophysics Data System (ADS)

    Friedman, John L.

    2002-09-01

    This review summarizes the parallel session on relativistic astrophysics at GR16. Much of the work reported here involved the structure and stability of neutron stars and the astrophysics of accretion disks around neutron stars and black holes. A large part of the recent work in relativistic astrophysics is tied to numerical investigations of binary coalescence and gravitational waves, but these topics demanded sessions of their own; gravitational waves in the present session were mentioned in connection with neutron-star instability and in a talk on coupling of gravitational waves to radio waves. Two talks involved relativistic stellar systems and cosmology. Finally, several authors outlined advances involving gravitational collapse, cosmic censorship, and baby universes.

  18. Channeling and electromagnetic radiation of relativistic charged particles in metal-organic frameworks

    NASA Astrophysics Data System (ADS)

    Zhevago, N. K.; Glebov, V. I.

    2017-06-01

    We have developed the theory of electromagnetic interaction of relativistic charged particles with metal-organic frameworks (MOFs). The electrostatic potential and electron number density distribution in MOFs were calculated using the most accurate data for the atomic form factors. Peculiarities of axial channeling of fast charged particles and various types of electromagnetic radiation from relativistic particles has been discussed.

  19. The special relativistic shock tube

    NASA Technical Reports Server (NTRS)

    Thompson, Kevin W.

    1986-01-01

    The shock-tube problem has served as a popular test for numerical hydrodynamics codes. The development of relativistic hydrodynamics codes has created a need for a similar test problem in relativistic hydrodynamics. The analytical solution to the special relativistic shock-tube problem is presented here. The relativistic shock-jump conditions and rarefaction solution which make up the shock tube are derived. The Newtonian limit of the calculations is given throughout.

  20. Finite nucleus effects on relativistic energy corrections

    NASA Technical Reports Server (NTRS)

    Dyall, Kenneth G.; Faegri, Knut, Jr.

    1993-01-01

    The effect of using a finite nucleus model in quantum-chemical calculations is examined. Relativistic corrections from the first order Foldy-Wouthuysen terms are affected indirectly by the change in wavefunction, but also directly as a result of revised expressions for the Darwin and spin-orbit terms due to the change in nuclear potential. A calculation for the Rn atom indicates that the mass-velocity and Darwin corrections are much more sensitive to the finite nucleus than the non-relativistic total energy, but that the total contribution for these two terms is quite stable provided the revised form of the Darwin term is used. The spin-orbit interaction is not greatly affected by the choice of nuclear model.

  1. Crystallization and collapse in relativistically degenerate matter

    NASA Astrophysics Data System (ADS)

    Akbari-Moghanjoughi, M.

    2013-04-01

    In this paper, it is shown that a mass density limit exists beyond which the relativistically degenerate matter would crystallize. The mass density limit, found here, is quite analogous to the mass limit predicted by Chandrasekhar for a type of compact stars called white dwarfs (MCh≃1.43 Solar Mass). In this study, the old problem of white dwarf core collapse, which has been previously investigated by Chandrasekhar using hydrostatic stability criteria, is revisited in the framework of the quantum hydrodynamics model by inspection of the charge screening at atomic scales in the relativistic degeneracy plasma regime taking into account the relativistic Fermi-Dirac statistics and electron interaction features such as the quantum statistical pressure, Coulomb attraction, electron exchange-correlation, and quantum recoil effects. It is revealed that the existence of ion correlation and crystallization of matter in the relativistically degenerate plasma puts a critical mass density limit on white dwarf core region. It is shown that a white dwarf star with a core mass density beyond this critical limit can undergo the spontaneous core collapse (SCC). The SCC phenomenon, which is dominantly caused by the electron quantum recoil effect (interference and localization of the electron wave function), leads to a new exotic state of matter. In such exotic state, the relativistic electron degeneracy can lead the white dwarf crystallized core to undergo the nuclear fusion and an ultimate supernova by means of the volume reduction (due to the enhanced compressibility) and huge energy release (due to the increase in cohesive energy), under the stars huge inward gravitational pressure. Moreover, it is found that the SCC phenomenon is significantly affected by the core composition (it is more probable for heavier plasmas). The critical mass density found here is consistent with the values calculated for core density of typical white dwarf stars.

  2. Crystallization and collapse in relativistically degenerate matter

    SciTech Connect

    Akbari-Moghanjoughi, M.

    2013-04-15

    In this paper, it is shown that a mass density limit exists beyond which the relativistically degenerate matter would crystallize. The mass density limit, found here, is quite analogous to the mass limit predicted by Chandrasekhar for a type of compact stars called white dwarfs (M{sub Ch} Asymptotically-Equal-To 1.43 Solar Mass). In this study, the old problem of white dwarf core collapse, which has been previously investigated by Chandrasekhar using hydrostatic stability criteria, is revisited in the framework of the quantum hydrodynamics model by inspection of the charge screening at atomic scales in the relativistic degeneracy plasma regime taking into account the relativistic Fermi-Dirac statistics and electron interaction features such as the quantum statistical pressure, Coulomb attraction, electron exchange-correlation, and quantum recoil effects. It is revealed that the existence of ion correlation and crystallization of matter in the relativistically degenerate plasma puts a critical mass density limit on white dwarf core region. It is shown that a white dwarf star with a core mass density beyond this critical limit can undergo the spontaneous core collapse (SCC). The SCC phenomenon, which is dominantly caused by the electron quantum recoil effect (interference and localization of the electron wave function), leads to a new exotic state of matter. In such exotic state, the relativistic electron degeneracy can lead the white dwarf crystallized core to undergo the nuclear fusion and an ultimate supernova by means of the volume reduction (due to the enhanced compressibility) and huge energy release (due to the increase in cohesive energy), under the stars huge inward gravitational pressure. Moreover, it is found that the SCC phenomenon is significantly affected by the core composition (it is more probable for heavier plasmas). The critical mass density found here is consistent with the values calculated for core density of typical white dwarf stars.

  3. Scattering of H(1s) off metastable helium atom at thermal energies

    SciTech Connect

    Sinha, Prabal K.; Ghosh, A. S.

    2006-06-15

    Quantal calculations for scattering of ground-state antihydrogen by metastable (n=2S) helium atoms have been performed using the nonadiabatic, atomic orbital expansion technique at thermal energies. The zero-energy elastic cross sections of the present systems are much greater than the corresponding value for the ground-state helium target. The low-energy elastic cross section for the singlet metastable helium [He(2 {sup 1}S)] target is higher than the corresponding value when the target is in the metastable triplet state [He(2 {sup 3}S)].

  4. A magnetic trap for simultaneous confinement of neutral atoms and a non-neutral plasma

    NASA Astrophysics Data System (ADS)

    Dubin, Daniel H. E.

    2002-01-01

    Three methods have been proposed for the simultaneous confinement of neutral atoms and a non-neutral plasma in close proximity [D.H.E. Dubin, Phys. Plasmas 8, 4331 (2001)]. This note discusses one of these methods, in which particles are trapped in an axially-symmetric static magnetic field with a magnetic minimum in a ring around the axis of symmetry. Axial symmetry is required for confinement of the rotating non-neutral plasma, and the magnetic minimum traps the neutral atoms. This trap design may be useful for the production and confinement of cold antihydrogen.

  5. The Relativistic Rocket

    ERIC Educational Resources Information Center

    Antippa, Adel F.

    2009-01-01

    We solve the problem of the relativistic rocket by making use of the relation between Lorentzian and Galilean velocities, as well as the laws of superposition of successive collinear Lorentz boosts in the limit of infinitesimal boosts. The solution is conceptually simple, and technically straightforward, and provides an example of a powerful…

  6. Radiation from Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Mizuno, Y.; Hardee, P.; Sol, H.; Medvedev, M.; Zhang, B.; Nordlund, A.; Frederiksen, J. T.; Fishman, G. J.; Preece, R.

    2008-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., gamma-ray bursts (GRBs), active galactic nuclei (AGNs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations of relativistic electron-ion (electron-positron) jets injected into a stationary medium show that particle acceleration occurs within the downstream jet. In the presence of relativistic jets, instabilities such as the Buneman instability, other two-streaming instability, and the Weibel (filamentation) instability create collisionless shocks, which are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The 'jitter' radiation from deflected electrons in small-scale magnetic fields has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation, a case of diffusive synchrotron radiation, may be important to understand the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  7. Relativistic impulse dynamics.

    PubMed

    Swanson, Stanley M

    2011-08-01

    Classical electrodynamics has some annoying rough edges. The self-energy of charges is infinite without a cutoff. The calculation of relativistic trajectories is difficult because of retardation and an average radiation reaction term. By reconceptuallizing electrodynamics in terms of exchanges of impulses rather than describing it by forces and potentials, we eliminate these problems. A fully relativistic theory using photonlike null impulses is developed. Numerical calculations for a two-body, one-impulse-in-transit model are discussed. A simple relationship between center-of-mass scattering angle and angular momentum was found. It reproduces the Rutherford cross section at low velocities and agrees with the leading term of relativistic distinguishable-particle quantum cross sections (Møller, Mott) when the distance of closest approach is larger than the Compton wavelength of the particle. Magnetism emerges as a consequence of viewing retarded and advanced interactions from the vantage point of an instantaneous radius vector. Radiation reaction becomes the local conservation of energy-momentum between the radiating particle and the emitted impulse. A net action is defined that could be used in developing quantum dynamics without potentials. A reinterpretation of Newton's laws extends them to relativistic motion.

  8. The Relativistic Rocket

    ERIC Educational Resources Information Center

    Antippa, Adel F.

    2009-01-01

    We solve the problem of the relativistic rocket by making use of the relation between Lorentzian and Galilean velocities, as well as the laws of superposition of successive collinear Lorentz boosts in the limit of infinitesimal boosts. The solution is conceptually simple, and technically straightforward, and provides an example of a powerful…

  9. Relativistic timescale analysis suggests lunar theory revision

    NASA Technical Reports Server (NTRS)

    Deines, Steven D.; Williams, Carol A.

    1995-01-01

    The SI second of the atomic clock was calibrated to match the Ephemeris Time (ET) second in a mutual four year effort between the National Physical Laboratory (NPL) and the United States Naval Observatory (USNO). The ephemeris time is 'clocked' by observing the elapsed time it takes the Moon to cross two positions (usually occultation of stars relative to a position on Earth) and dividing that time span into the predicted seconds according to the lunar equations of motion. The last revision of the equations of motion was the Improved Lunar Ephemeris (ILE), which was based on E. W. Brown's lunar theory. Brown classically derived the lunar equations from a purely Newtonian gravity with no relativistic compensations. However, ET is very theory dependent and is affected by relativity, which was not included in the ILE. To investigate the relativistic effects, a new, noninertial metric for a gravitated, translationally accelerated and rotating reference frame has three sets of contributions, namely (1) Earth's velocity, (2) the static solar gravity field and (3) the centripetal acceleration from Earth's orbit. This last term can be characterized as a pseudogravitational acceleration. This metric predicts a time dilation calculated to be -0.787481 seconds in one year. The effect of this dilation would make the ET timescale run slower than had been originally determined. Interestingly, this value is within 2 percent of the average leap second insertion rate, which is the result of the divergence between International Atomic Time (TAI) and Earth's rotational time called Universal Time (UT or UTI). Because the predictions themselves are significant, regardless of the comparison to TAI and UT, the authors will be rederiving the lunar ephemeris model in the manner of Brown with the relativistic time dilation effects from the new metric to determine a revised, relativistic ephemeris timescale that could be used to determine UT free of leap second adjustments.

  10. Particle Transport along Magnetic Null Lines as Sputter or Antihydrogen Source

    NASA Astrophysics Data System (ADS)

    Lane, R. A.; Ordonez, C. A.

    Particle transport along null magnetic lines is investigated using classical trajectory Monte Carlo simulations and described as a traveling wave and through diffusion equations. A magnetic null line is defined as a one-dimensional region where the magnetic field magnitude is zero. This region may take any shape in three-dimensional space. The field used in the simulations is generated by two infinite wires of negligible thickness carrying identical current and separated by a small distance. Thus, an infinite magnetic null line exists directly between the wires. The particle trajectories are simulated by solving the equations of motion for each simulated particle of a mono- energetic set. Each is considered individually, with all trajectories starting from the same position along the null line. Each trajectory is simulated until it reaches a specified distance from the initial point or a maximum time elapses. The simulation is repeated using a full set for multiple endpoints and maximum times for ten different amounts of current in the wires. Each current value is selected so that no particles can travel more than seven times the distance between the wires from the null line. The fraction of particles that reach the endpoint in a given time is calculated and used to describe particle transport parallel to the null line. The results are given in normalized, dimensionless units and their possible applications as an antihydrogen source and use in ultra-high purity sputter are discussed. The results are used to find the conditions necessary to obtain a steady and uniform particle flux suitable for ultra-high purity sputter, assuming that plasma is generated near the null line.

  11. Relativistic effects on x-ray structure factors

    NASA Astrophysics Data System (ADS)

    Batke, Kilian; Eickerling, Georg

    2016-04-01

    Today, combined experimental and theoretical charge density studies based on quantum chemical calculations and x-ray diffraction experiments allow for the investigation of the topology of the electron density at subatomic resolution. When studying compounds containing transition metal elements, relativistic effects need to be adequately taken into account not only in quantum chemical calculations of the total electron density ρ ({r}), but also for the atomic scattering factors employed to extract ρ ({r}) from experimental x-ray diffraction data. In the present study, we investigate the magnitude of relativistic effects on x-ray structure factors and for this purpose {F}({{r}}*) have been calculated for the model systems M(C2H2) (M = Ni, Pd, Pt) from four-component molecular wave functions. Relativistic effects are then discussed by a comparison to structure factors obtained from a non-relativistic reference and different quasi-relativistic approximations. We show, that the overall effects of relativity on the structure factors on average amount to 0.81%, 1.51% and 2.78% for the three model systems under investigation, but that for individual reflections or reflection series the effects can be orders of magnitude larger. Employing the quasi-relativistic Douglas-Kroll-Hess second order or the zeroth order regular approximation Hamiltonian takes these effects into account to a large extend, reducing the differences between the (quasi-)relativistic and the non-relativistic result by one order of magnitude. In order to further determine the experimental significance of the results, the magnitude of the relativistic effects is compared to the changes of the model structure factor data when charge transfer and chemical bonding is taken into account by a multipolar expansion of {F}({{r}}*).

  12. Relativistic effects on plasma expansion

    SciTech Connect

    Benkhelifa, El-Amine; Djebli, Mourad

    2014-07-15

    The expansion of electron-ion plasma is studied through a fully relativistic multi-fluids plasma model which includes thermal pressure, ambipolar electrostatic potential, and internal energy conversion. Numerical investigation, based on quasi-neutral assumption, is performed for three different regimes: nonrelativistic, weakly relativistic, and relativistic. Ions' front in weakly relativistic regime exhibits spiky structure associated with a break-down of quasi-neutrality at the expanding front. In the relativistic regime, ion velocity is found to reach a saturation limit which occurs at earlier stages of the expansion. This limit is enhanced by higher electron velocity.

  13. QED based on self-energy: The relativistic 2 S sub 1/2 r arrow 1 S sub 1/2 +1. gamma. decay rates of hydrogenlike atoms

    SciTech Connect

    Barut, A.O.; Salamin, Y.I. )

    1991-03-01

    Within the framework of the recently advanced formulation of QED based on self-energy, we calculate the relativistic rates of the 2{ital S}{sub 1/2}{r arrow}1{ital S}{sub 1/2}+1{gamma} transition in the hydrogen isoelectronic sequence for values of {ital Z} ranging between 1 and 92. We compare our results with those of Johnson (Phys. Rev. Lett. 29, 1123 (1972)) and Parpia and Johnson (Phys. Rev. A 26, 1142 (1982)), analytically and numerically. Although the two approaches are quite different, the formulas for decay rates are shown to be equivalent.

  14. Relativistic Calculations and Measurements of Energies, Auger Rates, and Lifetimes.

    DTIC Science & Technology

    1982-12-01

    Research and Industry, Denton, Texas, 8-10 November 1982. 7. B. Crasemann: "Efectos Relativ’sticos y de QED Sobre las Transiciones Rayos - X y Auger Entre...INNER-SHELL IONIZATION BY PROTONS X -RAY EMISSION BREIT INTERACTION AUGER TRANSITIONS DIRAC-HARTREE-SLATER COMPUTATIONS SYNCHROTRON RADIATION RESONANT...computations, including relativistic and quantum- electrodynamic effects, of atomic energy levels and of x -ray and Auger transitions in atoms with one or

  15. Relativistic Quantum Chemistry of Heavy Elements: Interatomic potentials and Lines Shift for Systems 'Alkali Elements-Inert Gases'

    SciTech Connect

    Glushkov, A. V.; Khetselius, O.; Gurnitskaya, E.; Loboda, A.; Mischenko, E.

    2009-03-09

    New relativistic approach, based on the gauge-invariant perturbation theory (PT) with using the optimized wave functions basis's, is applied to calculating the inter atomic potentials, hyper fine structure (hfs) collision shift for alkali atoms in atmosphere of inert gases. Data for inter atomic potentials, collision shifts of the Rb and Cs atoms in atmosphere of the inert gas He are presented.

  16. Relativistic electrons in space.

    NASA Technical Reports Server (NTRS)

    Simnett, G. M.

    1972-01-01

    This paper reviews the current state of knowledge concerning relativistic electrons, above 0.3 MeV, in interplanetary space, as measured by detectors on board satellites operating beyond the influence of the magnetosphere. The electrons have a galactic component, which at the lower energies is subject both to solar modulation and to spasmodic 'quiet time' increases and a direct solar component correlated with flare activity. The recent measurements have established the form of the differential energy spectrum of solar flare electrons. Electrons have been detected from flares behind the visible solar disk. Relativistic electrons do not appear to leave the sun at the time of the flash phase of the flare, although there are several signatures of electron acceleration at this time. The delay is interpreted as taking place during the transport of the electrons through the lower corona.

  17. Relativistic Pseudospin Symmetry

    SciTech Connect

    Ginocchio, Joseph N.

    2011-05-06

    We show that the pseudospin symmetry that Akito Arima discovered many years ago (with collaborators) is a symmetry of the the Dirac Hamiltonian for which the sum of the scalar and vector potentials are a constant. In this paper we discuss some of the implications of this relativistic symmetry and the experimental data that support these predictions. In his original paper Akito also discussed pseudo-U(3) symmetry. We show that pseudo-U(3) symmetry is a symmetry of the Dirac Hamiltonian for which the sum of harmonic oscillator vector and scalar potentials are equal to a constant, and we give the generators of pseudo-U(3) symmetry. Going beyond the mean field we summarize new results on non relativistic shell model Hamiltonians that have pseudospin symmetry and pseudo-orbital angular momentum symmetry as a dynamical symmetries.

  18. Relativistic statistical arbitrage

    NASA Astrophysics Data System (ADS)

    Wissner-Gross, Alexander; Freer, Cameron

    2011-03-01

    Recent advances in high-frequency financial trading have made light propagation delays between geographically separated exchanges relevant. Here we show that there exist optimal locations from which to coordinate the statistical arbitrage of pairs of spacelike separated securities, and calculate a representative map of such locations on Earth. Furthermore, trading local securities along chains of such intermediate locations results in a novel econophysical effect, in which the relativistic propagation of tradable information is effectively slowed or stopped by arbitrage.

  19. Relativistic statistical arbitrage

    NASA Astrophysics Data System (ADS)

    Wissner-Gross, A. D.; Freer, C. E.

    2010-11-01

    Recent advances in high-frequency financial trading have made light propagation delays between geographically separated exchanges relevant. Here we show that there exist optimal locations from which to coordinate the statistical arbitrage of pairs of spacelike separated securities, and calculate a representative map of such locations on Earth. Furthermore, trading local securities along chains of such intermediate locations results in a novel econophysical effect, in which the relativistic propagation of tradable information is effectively slowed or stopped by arbitrage.

  20. Relativistic tidal disruption events

    NASA Astrophysics Data System (ADS)

    Levan, A.

    2012-12-01

    In March 2011 Swift detected an extremely luminous and long-lived outburst from the nucleus of an otherwise quiescent, low luminosity (LMC-like) galaxy. Named Swift J1644+57, its combination of high-energy luminosity (1048 ergs s-1 at peak), rapid X-ray variability (factors of >100 on timescales of 100 seconds) and luminous, rising radio emission suggested that we were witnessing the birth of a moderately relativistic jet (Γ ˜ 2 - 5), created when a star is tidally disrupted by the supermassive black hole in the centre of the galaxy. A second event, Swift J2058+0516, detected two months later, with broadly similar properties lends further weight to this interpretation. Taken together this suggests that a fraction of tidal disruption events do indeed create relativistic outflows, demonstrates their detectability, and also implies that low mass galaxies can host massive black holes. Here, I briefly outline the observational properties of these relativistic tidal flares observed last year, and their evolution over the first year since their discovery.

  1. Relativistic gravity gradiometry

    NASA Astrophysics Data System (ADS)

    Bini, Donato; Mashhoon, Bahram

    2016-12-01

    In general relativity, relativistic gravity gradiometry involves the measurement of the relativistic tidal matrix, which is theoretically obtained from the projection of the Riemann curvature tensor onto the orthonormal tetrad frame of an observer. The observer's 4-velocity vector defines its local temporal axis and its local spatial frame is defined by a set of three orthonormal nonrotating gyro directions. The general tidal matrix for the timelike geodesics of Kerr spacetime has been calculated by Marck [Proc. R. Soc. A 385, 431 (1983)]. We are interested in the measured components of the curvature tensor along the inclined "circular" geodesic orbit of a test mass about a slowly rotating astronomical object of mass M and angular momentum J . Therefore, we specialize Marck's results to such a "circular" orbit that is tilted with respect to the equatorial plane of the Kerr source. To linear order in J , we recover the gravitomagnetic beating phenomenon [B. Mashhoon and D. S. Theiss, Phys. Rev. Lett. 49, 1542 (1982)], where the beat frequency is the frequency of geodetic precession. The beat effect shows up as a special long-period gravitomagnetic part of the relativistic tidal matrix; moreover, the effect's short-term manifestations are contained in certain post-Newtonian secular terms. The physical interpretation of this effect is briefly discussed.

  2. A relativistic gravity train

    NASA Astrophysics Data System (ADS)

    Parker, Edward

    2017-08-01

    A nonrelativistic particle released from rest at the edge of a ball of uniform charge density or mass density oscillates with simple harmonic motion. We consider the relativistic generalizations of these situations where the particle can attain speeds arbitrarily close to the speed of light; generalizing the electrostatic and gravitational cases requires special and general relativity, respectively. We find exact closed-form relations between the position, proper time, and coordinate time in both cases, and find that they are no longer harmonic, with oscillation periods that depend on the amplitude. In the highly relativistic limit of both cases, the particle spends almost all of its proper time near the turning points, but almost all of the coordinate time moving through the bulk of the ball. Buchdahl's theorem imposes nontrivial constraints on the general-relativistic case, as a ball of given density can only attain a finite maximum radius before collapsing into a black hole. This article is intended to be pedagogical, and should be accessible to those who have taken an undergraduate course in general relativity.

  3. Point form relativistic quantum mechanics and relativistic SU(6)

    NASA Technical Reports Server (NTRS)

    Klink, W. H.

    1993-01-01

    The point form is used as a framework for formulating a relativistic quantum mechanics, with the mass operator carrying the interactions of underlying constituents. A symplectic Lie algebra of mass operators is introduced from which a relativistic harmonic oscillator mass operator is formed. Mass splittings within the degenerate harmonic oscillator levels arise from relativistically invariant spin-spin, spin-orbit, and tensor mass operators. Internal flavor (and color) symmetries are introduced which make it possible to formulate a relativistic SU(6) model of baryons (and mesons). Careful attention is paid to the permutation symmetry properties of the hadronic wave functions, which are written as polynomials in Bargmann spaces.

  4. Relativistic magnetohydrodynamics in one dimension

    NASA Astrophysics Data System (ADS)

    Lyutikov, Maxim; Hadden, Samuel

    2012-02-01

    We derive a number of solutions for one-dimensional dynamics of relativistic magnetized plasma that can be used as benchmark estimates in relativistic hydrodynamic and magnetohydrodynamic numerical codes. First, we analyze the properties of simple waves of fast modes propagating orthogonally to the magnetic field in relativistically hot plasma. The magnetic and kinetic pressures obey different equations of state, so that the system behaves as a mixture of gases with different polytropic indices. We find the self-similar solutions for the expansion of hot strongly magnetized plasma into vacuum. Second, we derive linear hodograph and Darboux equations for the relativistic Khalatnikov potential, which describe arbitrary one-dimensional isentropic relativistic motion of cold magnetized plasma and find their general and particular solutions. The obtained hodograph and Darboux equations are very powerful: A system of highly nonlinear, relativistic, time-dependent equations describing arbitrary (not necessarily self-similar) dynamics of highly magnetized plasma reduces to a single linear differential equation.

  5. Relativistic magnetohydrodynamics in one dimension.

    PubMed

    Lyutikov, Maxim; Hadden, Samuel

    2012-02-01

    We derive a number of solutions for one-dimensional dynamics of relativistic magnetized plasma that can be used as benchmark estimates in relativistic hydrodynamic and magnetohydrodynamic numerical codes. First, we analyze the properties of simple waves of fast modes propagating orthogonally to the magnetic field in relativistically hot plasma. The magnetic and kinetic pressures obey different equations of state, so that the system behaves as a mixture of gases with different polytropic indices. We find the self-similar solutions for the expansion of hot strongly magnetized plasma into vacuum. Second, we derive linear hodograph and Darboux equations for the relativistic Khalatnikov potential, which describe arbitrary one-dimensional isentropic relativistic motion of cold magnetized plasma and find their general and particular solutions. The obtained hodograph and Darboux equations are very powerful: A system of highly nonlinear, relativistic, time-dependent equations describing arbitrary (not necessarily self-similar) dynamics of highly magnetized plasma reduces to a single linear differential equation.

  6. Relativistic Effect on Multiplet Terms of Rare Earth Ions

    NASA Astrophysics Data System (ADS)

    Itoh, Shinichi; Saito, Riichiro; Kimura, Tadamasa; Yabushita, Satoshi

    1994-02-01

    Ab initio Spin-Orbit Configuration Interaction (SOCI) calculations for the trivalent lanthanide group ions are presented for the special purpose to investigate the relativistic SO effects on their multiplet terms. The effective nuclear charges (Z eff's) for one-body spin-orbit Hamiltonian are calculated by an atomic Dirac-Slater Xα equation and applied to the lanthanide ions. The relativistic effects of core electrons can easily be included in the reduction of Z eff and the multiplet levels shift up to 200 cm-1 by the reduction. The multiplet energies obtained by the present method are in good agreement with experimental values.

  7. The Scalar Relativistic Contribution to Ga-Halide Bond Energies

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Arnold, James O. (Technical Monitor)

    1998-01-01

    The one-electron Douglas Kroll (DK) and perturbation theory (+R) approaches are used to compute the scalar relativistic contribution to the atomization energies of GaFn. These results are compared with the previous GaCln results. While the +R and DK results agree well for the GaCln atom nation energies, they differ for GaFn. The present work suggests that the DK approach is more accurate than the +R approach. In addition, the DK approach is less sensitive to the choice of basis set. The computed atomization energies of GaF2 and GaF3 are smaller than the somewhat uncertain experiments. It is suggested that additional calibration calculations for the scalar relativistic effects in GaF2 and GaF3 would be valuable.

  8. Relativistic and non-relativistic local-density functional, benchmark results and investigation on the dimers Cu2,Ag2,Au2,Rg2

    NASA Astrophysics Data System (ADS)

    Kullie, O.; Zhang, H.; Kolb, D.

    2008-07-01

    Using two spinor minimax method combined with finite element methods accompanied with extrapolation and counterpoise techniques enable us to obtain relativistic highly accurate results for two atomic molecules. Like in our previous work for the (Hartree-) Dirac-Fock-Slater (DFS) functional we investigate in this work the density functional approximations of the relativistic and non-relativistic local-density functional, presenting highly accurate benchmark results of chemical properties on the dimers of the group 11 (Ib) of the periodic table of elements. The comparison with experimental values and literature's results shows that DFS is better behaved than the other two local functionals.

  9. Relativistic Quantum Communication

    NASA Astrophysics Data System (ADS)

    Hosler, Dominic

    In this Ph.D. thesis, I investigate the communication abilities of non-inertial observers and the precision to which they can measure parametrized states. I introduce relativistic quantum field theory with field quantisation, and the definition and transformations of mode functions in Minkowski, Schwarzschild and Rindler spaces. I introduce information theory by discussing the nature of information, defining the entropic information measures, and highlighting the differences between classical and quantum information. I review the field of relativistic quantum information. We investigate the communication abilities of an inertial observer to a relativistic observer hovering above a Schwarzschild black hole, using the Rindler approximation. We compare both classical communication and quantum entanglement generation of the state merging protocol, for both the single and dual rail encodings. We find that while classical communication remains finite right up to the horizon, the quantum entanglement generation tends to zero. We investigate the observers' abilities to precisely measure the parameter of a state that is communicated between Alice and Rob. This parameter was encoded to either the amplitudes of a single excitation state or the phase of a NOON state. With NOON states the dual rail encoding provided greater precision, which is different to the results for the other situations. The precision was maximum for a particular number of excitations in the NOON state. We calculated the bipartite communication for Alice-Rob and Alice-AntiRob beyond the single mode approximation. Rob and AntiRob are causally disconnected counter-accelerating observers. We found that Alice must choose in advance with whom, Rob or AntiRob she wants to create entanglement using a particular setup. She could communicate classically to both.

  10. Electron impact ionization at relativistic energies

    NASA Astrophysics Data System (ADS)

    Belkacem, Ali; Cole, Kyra; Hertlein, Marcus; Feinberg, Benedict; Schriel, Ralf; Adaniya, Hidehito; Neumann, Nadine

    2004-05-01

    We used an ion time-of-flight set up based on a pulsed high-voltage extraction technique to study the charge state distribution of He, Ne, Ar, Kr and Xe atoms after impact of 0.2 to 1.5 GeV electrons. The relativistic electron beam is produced at the booster beamline at the Advanced Light Source at the Lawrence Berkeley National Laboratory. The yield of ions drops drastically with the charge state number. Our measurements show that the ratio of doubly-charge to singly-charged ions reaches an asymptotic limit of 0.0028 for He already at electron energies below 40 MeV. However we observe a very pronounced energy dependence of the ratio of the doubly-charged to singly-charged ions for the heavier atoms such as Kr and Xe in the 0.2 - 1.5 GeV energy range. This energy dependence takes place way above the energy at which theories based on the equivalent photon method or the born- approximation predict the asymptotic limit to be reached. This may be an indication of new physics coming into play in the photoionization process due to relativistic effects.

  11. Modeling relativistic nuclear collisions.

    SciTech Connect

    Anderlik, C.; Magas, V.; Strottman, D.; Csernai, L. P.

    2001-01-01

    Modeling Ultra-Relativistic Heavy Ion Collisioiis at RHIC and LHC energies using a Multi Module Model is presented. The first Module is the Effective String Rope Model for the calculation of the initial stages of the reaction; the output of this module is used as the initial state for the subsequent one-fluid hydrodynainical calculation module. It is shown that such an initial state leads to the creation of the third flow component. The hydrodynamical evolution of the energy density distribution is presented for RHIC energies. The final module describing the Freeze Out; and Hadronization is also discussed.

  12. Newtonian and relativistic cosmologies

    NASA Astrophysics Data System (ADS)

    Green, Stephen R.; Wald, Robert M.

    2012-03-01

    Cosmological N-body simulations are now being performed using Newtonian gravity on scales larger than the Hubble radius. It is well known that a uniformly expanding, homogeneous ball of dust in Newtonian gravity satisfies the same equations as arise in relativistic Friedmann-Lemaître-Robinson-Walker cosmology, and it also is known that a correspondence between Newtonian and relativistic dust cosmologies continues to hold in linearized perturbation theory in the marginally bound/spatially flat case. Nevertheless, it is far from obvious that Newtonian gravity can provide a good global description of an inhomogeneous cosmology when there is significant nonlinear dynamical behavior at small scales. We investigate this issue in the light of a perturbative framework that we have recently developed [S. R. Green and R. M. Wald, Phys. Rev. DPRVDAQ1550-7998 83, 084020 (2011).10.1103/PhysRevD.83.084020], which allows for such nonlinearity at small scales. We propose a relatively straightforward dictionary—which is exact at the linearized level—that maps Newtonian dust cosmologies into general relativistic dust cosmologies, and we use our “ordering scheme” to determine the degree to which the resulting metric and matter distribution solve Einstein’s equation. We find that, within our ordering scheme, Einstein’s equation fails to hold at “order 1” at small scales and at “order ɛ” at large scales. We then find the additional corrections to the metric and matter distribution needed to satisfy Einstein’s equation to these orders. While these corrections are of some interest in their own right, our main purpose in calculating them is that their smallness should provide a criterion for the validity of the original dictionary (as well as simplified versions of this dictionary). We expect that, in realistic Newtonian cosmologies, these additional corrections will be very small; if so, this should provide strong justification for the use of Newtonian simulations

  13. The relativist stance.

    PubMed

    Rössler, O E; Matsuno, K

    1998-04-01

    The two mindsets of absolutism and relativism are juxtaposed, and the relational or relativist stance is vindicated. The only 'absolute' entity which undeniably exists, consciousness has the reality of a dream. The escape hatch from this prison is relational, as Descartes and Levinas found out: Unfalsified relational consistency implies exteriority. Exteriority implies infinite power which in turn makes compassion inevitable. Aside from ethics as a royal way to enlightenment, a new technology called 'deep technology' may be accessible. It changes the whole world in a demonstrable fashion by manipulation of the micro frame--that is, the observer-world interface.

  14. Relativistic quantum information

    NASA Astrophysics Data System (ADS)

    Mann, R. B.; Ralph, T. C.

    2012-11-01

    Over the past few years, a new field of high research intensity has emerged that blends together concepts from gravitational physics and quantum computing. Known as relativistic quantum information, or RQI, the field aims to understand the relationship between special and general relativity and quantum information. Since the original discoveries of Hawking radiation and the Unruh effect, it has been known that incorporating the concepts of quantum theory into relativistic settings can produce new and surprising effects. However it is only in recent years that it has become appreciated that the basic concepts involved in quantum information science undergo significant revision in relativistic settings, and that new phenomena arise when quantum entanglement is combined with relativity. A number of examples illustrate that point. Quantum teleportation fidelity is affected between observers in uniform relative acceleration. Entanglement is an observer-dependent property that is degraded from the perspective of accelerated observers moving in flat spacetime. Entanglement can also be extracted from the vacuum of relativistic quantum field theories, and used to distinguish peculiar motion from cosmological expansion. The new quantum information-theoretic framework of quantum channels in terms of completely positive maps and operator algebras now provides powerful tools for studying matters of causality and information flow in quantum field theory in curved spacetimes. This focus issue provides a sample of the state of the art in research in RQI. Some of the articles in this issue review the subject while others provide interesting new results that will stimulate further research. What makes the subject all the more exciting is that it is beginning to enter the stage at which actual experiments can be contemplated, and some of the articles appearing in this issue discuss some of these exciting new developments. The subject of RQI pulls together concepts and ideas from

  15. Republication of: Relativistic cosmology

    NASA Astrophysics Data System (ADS)

    Robertson, H. P.

    2012-08-01

    This is a reprinting of the paper by Howard Percy Robertson, first published in 1933 in Rev. Mod. Phys., that is a very authoritative summary of relativistic cosmology at the stage at which it was up to 1933. The paper has been selected by the Editors of General Relativity and Gravitation for re-publication in the Golden Oldies series of the journal. This republication is accompanied by an editorial note written by George Ellis, and by Robertson's biography, compiled by Andrzej Krasinski from printed sources.

  16. Relativistic quantum cryptography

    NASA Astrophysics Data System (ADS)

    Kaniewski, Jedrzej

    Special relativity states that information cannot travel faster than the speed of light, which means that communication between agents occupying distinct locations incurs some minimal delay. Alternatively, we can see it as temporary communication constraints between distinct agents and such constraints turn out to be useful for cryptographic purposes. In relativistic cryptography we consider protocols in which interactions occur at distinct locations at well-defined times and we investigate why such a setting allows to implement primitives which would not be possible otherwise. (Abstract shortened by UMI.).

  17. Ultrabaric relativistic superfluids

    NASA Astrophysics Data System (ADS)

    Papini, G.; Weiss, M.

    1985-09-01

    Ultrabaric superfluid solutions are obtained for Einstein's equations to examine the possibility of the existence of superluminal sound speeds. The discussion is restricted only by requiring the energy-momentum tensor and the equation of state of matter to be represented by full relativistic equations. Only a few universes are known to satisfy the conditions, and those exhibit tension and are inflationary. Superluminal sound velocities are shown, therefore, to be possible for the interior Schwarzchild metric, which has been used to explain the red shift of quasars, and the Stephiani solution (1967). The latter indicates repeated transitions between superluminal and subliminal sound velocities in the hyperbaric superfluid of the early universe.

  18. Electronic structure of molecules using relativistic effective core potentials

    SciTech Connect

    Hay, P.J.

    1981-01-01

    Starting with one-component Cowan-Griffin relativistic Hartree-Fock orbitals, which successfully incorporate the mass-velocity and Darwin terms present in more complicated wavefunctions such as Dirac-Hartree-Fock, one can derive relativistic effective core potentials (RECP's) to carry out molecular calculations. These potentials implicitly include the dominant relativistic terms for molecules while allowing one to use the traditional quantum chemical techniques for studying the electronic structure of molecules. The effects of spin-orbit coupling can then be included using orbitals from such calculations using an effective 1-electron, 1-center spin-orbit operator. Applications to molecular systems involving heavy atoms, show good agreement with available spectroscopic data on molecular geometries and excitation energies.

  19. relline: Relativistic line profiles calculation

    NASA Astrophysics Data System (ADS)

    Dauser, Thomas

    2015-05-01

    relline calculates relativistic line profiles; it is compatible with the common X-ray data analysis software XSPEC (ascl:9910.005) and ISIS (ascl:1302.002). The two basic forms are an additive line model (RELLINE) and a convolution model to calculate relativistic smearing (RELCONV).

  20. Relativistic Continuum Shell Model

    NASA Astrophysics Data System (ADS)

    Grineviciute, Janina; Halderson, Dean

    2011-04-01

    The R-matrix formalism of Lane and Thomas has been extended to the relativistic case so that the many-coupled channels problem may be solved for systems in which binary breakup channels satisfy a relative Dirac equation. The formalism was previously applied to the relativistic impulse approximation RIA and now we applied it to Quantum Hadrodynamics QHD in the continuum Tamm-Dancoff approximation TDA with the classical meson fields replaced by one-meson exchange potentials. None of the published QHD parameters provide a decent fit to the 15 N + p elastic cross section. The deficiency is also evident in inability of the QHD parameters with the one meson exchange potentials to reproduce the QHD single particle energies. Results with alternate parameters sets are presented. A. M. Lane and R. G. Thomas, R-Matrix Theory of Nuclear Reactions, Reviews of Modern Physics, 30 (1958) 257

  1. Robust relativistic bit commitment

    NASA Astrophysics Data System (ADS)

    Chakraborty, Kaushik; Chailloux, André; Leverrier, Anthony

    2016-12-01

    Relativistic cryptography exploits the fact that no information can travel faster than the speed of light in order to obtain security guarantees that cannot be achieved from the laws of quantum mechanics alone. Recently, Lunghi et al. [Phys. Rev. Lett. 115, 030502 (2015), 10.1103/PhysRevLett.115.030502] presented a bit-commitment scheme where each party uses two agents that exchange classical information in a synchronized fashion, and that is both hiding and binding. A caveat is that the commitment time is intrinsically limited by the spatial configuration of the players, and increasing this time requires the agents to exchange messages during the whole duration of the protocol. While such a solution remains computationally attractive, its practicality is severely limited in realistic settings since all communication must remain perfectly synchronized at all times. In this work, we introduce a robust protocol for relativistic bit commitment that tolerates failures of the classical communication network. This is done by adding a third agent to both parties. Our scheme provides a quadratic improvement in terms of expected sustain time compared with the original protocol, while retaining the same level of security.

  2. Relativistic harmonic oscillator revisited

    SciTech Connect

    Bars, Itzhak

    2009-02-15

    The familiar Fock space commonly used to describe the relativistic harmonic oscillator, for example, as part of string theory, is insufficient to describe all the states of the relativistic oscillator. We find that there are three different vacua leading to three disconnected Fock sectors, all constructed with the same creation-annihilation operators. These have different spacetime geometric properties as well as different algebraic symmetry properties or different quantum numbers. Two of these Fock spaces include negative norm ghosts (as in string theory), while the third one is completely free of ghosts. We discuss a gauge symmetry in a worldline theory approach that supplies appropriate constraints to remove all the ghosts from all Fock sectors of the single oscillator. The resulting ghost-free quantum spectrum in d+1 dimensions is then classified in unitary representations of the Lorentz group SO(d,1). Moreover, all states of the single oscillator put together make up a single infinite dimensional unitary representation of a hidden global symmetry SU(d,1), whose Casimir eigenvalues are computed. Possible applications of these new results in string theory and other areas of physics and mathematics are briefly mentioned.

  3. The AEgIS experiment at CERN: measuring antihydrogen free-fall in earth’s gravitational field to test WEP with antimatter

    NASA Astrophysics Data System (ADS)

    Brusa, R. S.; Amsler, C.; Ariga, T.; Bonomi, G.; Bräunig, P.; Cabaret, L.; Caccia, M.; Caravita, R.; Castelli, F.; Cerchiari, G.; Comparat, D.; Consolati, G.; Demetrio, A.; Di Noto, L.; Doser, M.; Ereditato, A.; Evans, C.; Ferragut, R.; Fesel, J.; Fontana, A.; Gerber, S.; Giammarchi, M.; Gligorova, A.; Guatieri, F.; Haider, S.; Holmestad, H.; Huse, T.; Kellerbauer, A.; Krasnický, D.; Lagomarsino, V.; Lansonneur, P.; Lebrun, P.; Malbrunot, C.; Mariazzi, S.; Matveev, V.; Mazzotta, Z.; Nebbia, G.; Nedelec, P.; Oberthaler, M.; Pacifico, N.; Pagano, D.; Penasa, L.; Petracek, V.; Pistillo, C.; Prelz, F.; Prevedelli, M.; Ravelli, L.; Rienaecker, B.; Røhne, O. M.; Rotondi, A.; Sacerdoti, M.; Sandaker, H.; Santoro, R.; Scampoli, P.; Smestad, L.; Sorrentino, F.; Strojek, I. M.; Testera, G.; Tietje, I. C.; Vamosi, S.; Widmann, E.; Yzombard, P.; Zmeskal, J.; Zurlo, N.

    2017-01-01

    The AEgIS (Antimatter Experiment: Gravity, Interferometry, Spectroscopy) experiment is designed with the objective to test the weak equivalence principle with antimatter by studying the free fall of antihydrogen in the Earth’s gravitational field. A pulsed cold beam of antihydrogen will be produced by charge exchange between cold Ps excited in Rydberg state and cold antiprotons. Finally the free fall will be measured by a classical moiré deflectometer. The apparatus being assembled at the Antiproton Decelerator at CERN will be described, then the advancements of the experiment will be reported: positrons and antiprotons trapping measurements, Ps two-step excitation and a test-measurement of antiprotons deflection with a small scale moiré deflectometer.

  4. The relation between relativistic and non-relativistic continuum thermodynamics

    NASA Astrophysics Data System (ADS)

    Schellstede, G. O.; von Borzeszkowski, H.-H.; Chrobok, T.; Muschik, W.

    2014-01-01

    We consider the relativistic theory of irreversible processes with the aim to answer the following questions: (1) Under which conditions is this theory a relativistic generalization of the non-relativistic theory of irreversible processes (in particular, this implies to ask for the conditions under which the first law of thermodynamics can be recovered from the relativistic conservation law of total energy), and (2) how do the relativistic corrections look like? To this end, we perform a low-energy approximation for the balance equations underlying the theory, i.e., for the balances of the particle number, the energy-momentum and the entropy. It is shown that, going up to the 3rd order in the expansion series of the balances, the non-relativistic theory can be derived when one assumes that the 4-current of the particle flow is purely convective and the product of the 3-dimensional acceleration and velocity is equal to zero. Afterwards, the higher-order terms are discussed. Since our discussion mainly makes use of those balance equations that lie on the basis of most versions of continuum thermodynamics, the results do not only refer to early TIP presented by Eckart (Phys Rev 58:919, 1940) and Landau and Lifshitz (Fluid mechanics. Pergamon Press, Oxford, 1940), but also to its extended and/or general-relativistic versions.

  5. Use of Relativistic Effective Core Potentials in the Calculation of Electron-Impact Ionization Cross Sections

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Kim, Yong-Ki

    1999-01-01

    Based on the Binary-Encounter-Bethe (BEB) model, the advantage of using relativistic effective core potentials (RECP) in the calculation of total ionization cross sections of heavy atoms or molecules containing heavy atoms is discussed. Numerical examples for Ar, Kr, Xe, and WF6 are presented.

  6. Units of Measurements in Relativistic Context

    NASA Astrophysics Data System (ADS)

    Guinot, Bernard

    2009-05-01

    The units of measurements for the relativistic dynamics remain a controversial topic. The metric defines implicitly coordinates by a mathematical relation with proper time. It is postulated that atomic transitions provide a realization of the ideal proper time of the theory on the world line of the atoms. Proper time is thus measurable by standards in the usual sense of metrology. But coordinates are not. Some authors consider them as pure numbers, others as non-measurable quantities, but with the usual dimensions of time and length, with specific units. The problem of units is further complicated by scaling factors which minimize the deviation of coordinate times with respect to International Atomic Time. After an attempt to define dimensionless "graduation units” for scales and discussions with metrologists, the author concluded that the simplest solution is to apply strictly the rules of the quantity calculus without trying to interpret them in terms of "concrete” measurements. In brief, these rules state that there is only one unit per physical dimension (the second for time, the metre for space), so that algebraic relations between quantities remain valid with their numerical values. In other terms a quantity is defined by its name, not by its unit. This "abstract” point of view may be seen as a convention. The contact between concrete and abstract points of view raises difficulties, essentially of wording. An example is the expression of the duration in seconds of proper time between second markers of a coordinate time, without implying a specific unit for coordinate time. Suggestions to solve these difficulties will be made. Astronomers are used to apply, let us say "blindly,” the abstract point of view, the second being the unit of all classical time scales, sidereal time, Universal Time, etc. The situation with relativistic coordinates is quite similar.

  7. Hydrodynamics of Relativistic Fireballs

    NASA Technical Reports Server (NTRS)

    Piran, Tsvi; Shemi, Amotz; Narayan, Ramesh

    1993-01-01

    Many models of gamma-ray bursts involve a fireball, which is an optically thick concentration of radiation energy with a high ratio of energy density to rest mass. We examine analytically and numerically the evolution of a relativistic fireball. We show that, after an early rearrangement phase, most of the matter and energy in the fireball is concentrated within a narrow shell. The shell propagates at nearly the speed of light, with a frozen radial profile, and according to a simple set of scaling laws. The spectrum of the escaping radiation is harder at early times and softer later on. Depending on the initial energy-to-mass ratio, the final outcome of a fireball is either photons with roughly the initial temperature or ultrarelativistic baryons. In the latter case, the energy could be converted back to gamma-rays via interaction with surrounding material.

  8. Relativistic Celestial Mechanics

    NASA Astrophysics Data System (ADS)

    Brumberg, Victor A.

    2010-08-01

    Relativistic celestial mechanics (RCM) refers to a science to study the motion of celestial bodies within the framework of general relativity theory (GRT) by Einstein. Being a straightforward successor of Newtonian celestial mechanics RCM embraces all aspects of motion of celestial bodies including (1) physics of motion, i.e. investigation of the physical nature of all effects influencing the motion of celestial bodies and formulation of a physical model for a specific problem; (2) mathematics of motion, i.e. investigation of the mathematical characteristics of the solutions of the differential equations of motion of celestial bodies; (3) computation of motion, i.e. the actual determination of the quantitative characteristics of motion; (4) astronomy of motion, i.e. application of mathematical solution of a problem to a specific celestial body, comparison with the results of observations, determination of initial values and parameters of motion, and checking the physical and mathematical models employed for a given problem.

  9. Relativistic theory of gravitation

    SciTech Connect

    Logunov, A.A.; Mestvirishvili, M.A.

    1985-06-01

    This paper constructs a relativistic theory of gravitation based on the special principle of relativity and the principle of geometrization. The gravitational field is regarded as a physical field in the spirit of Faraday and Maxwell, possessing energy, momentum, and spin 2 and 0. The source of the gravitational field is the total conserved energy momentum tensor of the matter and the gravitational field in Minkowski space. Conservation laws hold rigorously for the energy, momentum, and angular momentum of the matter and the gravitational field. The theory explains all the existing gravitational experiments. By virtue of the geometrization principle, the Riemann space has a field origin in the theory, arising as an effective force space through the action of the gravitational field on the matter.

  10. Photodetachment of relativistic ions

    SciTech Connect

    Donahue, J.B.; Gram, P.A.M.; Hamm, M.E.; Hamm, R.W.; Bryant, H.C.; Butterfield, K.B.; Clark, D.A.; Frost, C.A.; Smith, W.W.

    1980-01-01

    A series of fundamental laser ion beam experiments has been made feasible by the high-quality, relativistic (..beta.. = 0.842) H/sup -/ ion beam available at the Clinton P. Anderson Meson Physics Facility (LAMPF). The relatavistic Doppler shift of the light from an ordinary ultraviolet laser provides what is, in effect, a continuously tunable vacuum-ultraviolet laser in the rest frame of the moving ions. The Lorentz transformation of a modest laboratory magnetic field provides an electric field of several megavolts/centimeter. The latest results of photo-detachment work with H/sup -/ beams and our spectroscopic work with H/sup 0/ beams are presented. Plans for future work are discussed.

  11. Processes in relativistic plasmas

    NASA Technical Reports Server (NTRS)

    Gould, R. J.

    1982-01-01

    The establishment and maintenance of a Boltzmann distribution in particle kinetic energies is investigated for a plasma with theta = KTe/mc-squared much greater than unity, where m is the electron mass. It is shown that thermalization of the electron gas by binary collisions is not sufficiently effective to maintain the equilibrium distribution when other processes that perturb the equilibrium are taken into account. Electron-positron pair production in electron-electron and electron-ion collisions, and perturbations of a Boltzmann distribution by nonthermal processes are evaluated. Thermalization by means of other mechanisms, such as interaction with plasma waves is discussed, and the opacity of a relativistic plasma is computed for Compton scattering, pair production in the fields of electrons and ions, inverse bremsstrahlung, and synchrotron self-absorption.

  12. Relativistic Light Sails

    NASA Astrophysics Data System (ADS)

    Kipping, David

    2017-06-01

    One proposed method for spacecraft to reach nearby stars is by accelerating sails using either solar radiation pressure or directed energy. This idea constitutes the thesis behind the Breakthrough Starshot project, which aims to accelerate a gram-mass spacecraft up to one-fifth the speed of light toward Proxima Centauri. For such a case, the combination of the sail’s low mass and relativistic velocity renders previous treatments incorrect at the 10% level, including that of Einstein himself in his seminal 1905 paper introducing special relativity. To address this, we present formulae for a sail’s acceleration, first in response to a single photon and then extended to an ensemble. We show how the sail’s motion in response to an ensemble of incident photons is equivalent to that of a single photon of energy equal to that of the ensemble. We use this principle of ensemble equivalence for both perfect and imperfect mirrors, enabling a simple analytic prediction of the sail’s velocity curve. Using our results and adopting putative parameters for Starshot, we estimate that previous relativistic treatments underestimate the spacecraft’s terminal velocity by ˜10% for the same incident energy. Additionally, we use a simple model to predict the sail’s temperature and diffraction beam losses during the laser firing period; this allows us to estimate that, for firing times of a few minutes and operating temperatures below 300°C (573 K), Starshot will require a sail that absorbs less than one in 260,000 photons.

  13. Gauge origin independent calculations of molecular magnetisabilities in relativistic four-component theory

    NASA Astrophysics Data System (ADS)

    Iliaš, Miroslav; Jensen, Hans Jørgen Aa.; Bast, Radovan; Saue, Trond

    2013-07-01

    The use of magnetic-field dependent London atomic orbitals, also called gauge including atomic orbitals, is known to be an efficient choice for accurate non-relativistic calculations of magnetisabilities. In this work, the appropriate formulas were extended and implemented in the framework of the four-component relativistic linear response method at the self-consistent field single reference level. Benefits of employing the London atomic orbitals in relativistic calculations are illustrated with Hartree-Fock wave functions on the XF3 (X = N, P, As, Sb, Bi) series of molecules. Significantly better convergence of magnetisabilities with respect to the basis set size is observed compared to calculations employing a common gauge origin. In fact, it is mandatory to use London atomic orbitals unless you want to use ridiculously large basis sets. Relativistic effects on magnetisabilities are found to be quite small (<5%) for this particular set of molecules, but should be investigated on a larger set of molecules. We emphasise the breakdown of the connection between the paramagnetic contribution to magnetisabilities and rotational g tensors in the relativistic domain and discuss its origin. Finally, we visualise the magnetisability density which shows markedly atomic features evocative of Pascal's rules.

  14. Some problems in relativistic thermodynamics

    SciTech Connect

    Veitsman, E. V.

    2007-11-15

    The relativistic equations of state for ideal and real gases, as well as for various interface regions, have been derived. These dependences help to eliminate some controversies in the relativistic thermodynamics based on the special theory of relativity. It is shown, in particular, that the temperature of system whose velocity tends to the velocity of light in vacuum varies in accordance with the Ott law T = T{sub 0}/{radical}1 - v{sup 2}/c{sup 2}. Relativistic dependences for heat and mass transfer, for Ohm's law, and for a viscous flow of a liquid have also been derived.

  15. Mixing of relativistic ideal gases with relative relativistic velocities

    NASA Astrophysics Data System (ADS)

    Gonzalez-Narvaez, R. E.; Ares de Parga, A. M.; Ares de Parga, G.

    2017-01-01

    The Redefined Relativistic Thermodynamics is tested by means of mixing two ideal gases at different temperatures and distinct velocities. The conservation of the 4-vector energy-momentum leads to a tremendous increment of the temperature. This phenomenon can be used in order to describe the heating of a cold clump with shocked jets material. A prediction for improving the ignition of a Tokamak is proposed. The compatibility of the Redefined Relativistic Thermodynamics with the Thermodynamical Field Theory is analyzed.

  16. Angular dependence of Wigner time delay: Relativistic Effects

    NASA Astrophysics Data System (ADS)

    Mandal, A.; Deshmukh, P. C.; Manson, S. T.; Kkeifets, A. S.

    2016-05-01

    Laser assisted photoionization time delay mainly consists of two parts: Wigner time delay, and time delay in continuum-continuum transition. Wigner time delay results from the energy derivative of the phase of the photoionization amplitude (matrix element). In general, the photoionization time delay is not the same in all directions relative to the incident photon polarization, although when a single transition dominates the amplitude, the resultant time delay is essentially isotropic. The relativistic-random-phase approximation is employed to determine the Wigner time delay in photoionization from the outer np subshells of the noble gas atoms, Ne through Xe. The time delay is found to significantly depend on angle, as well as energy. The angular dependence of the time delay is found to be quite sensitive to atomic dynamics and relativistic effects, and exhibit strong energy and angular variation in the neighborhood of Cooper minima. Work supported by DOE, Office of Chemical Sciences and DST (India).

  17. The mechanics of relativistic space flights

    NASA Astrophysics Data System (ADS)

    Zakirov, U. N.

    The relativistic mechanics of an artificial space body with a variable rest mass is presented in a systematic manner. In particular, attention is given to the principles of Lobachevskii geometry, Riemann geometry, and relativity; general Lorentz transformations and relativistic kinematics; the principal theorems of the relativistic mechanics of a space vehicle in spherically symmetric gravitational fields; and the relativistic motion of a space vehicle with jet propulsion. Possible applications of relativistic mechanics are examined.

  18. Relativistic Effects in Chemistry: More Common Than You Thought

    NASA Astrophysics Data System (ADS)

    Pyykkö, Pekka

    2012-05-01

    Relativistic effects can strongly influence the chemical and physical properties of heavy elements and their compounds. This influence has been noted in inorganic chemistry textbooks for a couple of decades. This review provides both traditional and new examples of these effects, including the special properties of gold, lead-acid and mercury batteries, the shapes of gold and thallium clusters, heavy-atom shifts in NMR, topological insulators, and certain specific heats.

  19. Chemistry of the 5g Elements: Relativistic Calculations on Hexafluorides.

    PubMed

    Dognon, Jean-Pierre; Pyykkö, Pekka

    2017-08-14

    A Periodic System was proposed for the elements 1-172 by Pyykkö on the basis of atomic and ionic calculations. In it, the elements 121-138 were nominally assigned to a 5g row. We now perform molecular, relativistic four-component DFT calculations and find that the hexafluorides of the elements 125-129 indeed enjoy occupied 5g states. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Relativistic Electron Beams Above Thunderclouds

    NASA Astrophysics Data System (ADS)

    Fullekrug, Martin; Roussel-Dupre, Robert; Symbalisty, Eugene; Chanrion, Olivier; van der Velde, Oscar; Soula, Serge; Odzimek, Anna; Bennett, Alec; Whitley, Toby; Neubert, Torsten

    2010-05-01

    It has recently been discovered that lightning discharges generate upward-directed relativistic electron beams above thunderclouds. This extends the phenomenon of relativistic runaway breakdown believed to occur inside thunderclouds to the atmosphere above thunderclouds. This marks a profound advance in our understanding of the atmosphere because we now know it acts as a giant, natural, particle accelerator. The accelerated electrons can reach significant relativistic energies of some MeV during their passage from the troposphere, through the middle atmosphere, into near-Earth space. These relativistic electron beams constitute a current above thunderclouds and effectively transfer energy from the troposphere to the middle atmosphere. This coupling process thereby forms a novel element of the global atmospheric electric circuit which links tropospheric thunderclouds to the atmosphere above. This contribution describes the radio remote sensing of upward electron beams to determine their occurrence frequency and to characterise their physical properites.

  1. Relativistic Transformation of Solid Angle.

    ERIC Educational Resources Information Center

    McKinley, John M.

    1980-01-01

    Rederives the relativistic transformations of light intensity from compact sources (stars) to show where and how the transformation of a solid angle contributes. Discusses astrophysical and other applications of the transformations. (Author/CS)

  2. Superposition as a Relativistic Filter

    NASA Astrophysics Data System (ADS)

    Ord, G. N.

    2017-07-01

    By associating a binary signal with the relativistic worldline of a particle, a binary form of the phase of non-relativistic wavefunctions is naturally produced by time dilation. An analog of superposition also appears as a Lorentz filtering process, removing paths that are relativistically inequivalent. In a model that includes a stochastic component, the free-particle Schrödinger equation emerges from a completely relativistic context in which its origin and function is known. The result establishes the fact that the phase of wavefunctions in Schrödinger's equation and the attendant superposition principle may both be considered remnants of time dilation. This strongly argues that quantum mechanics has its origins in special relativity.

  3. Theoretical Studies of Atomic Transitions

    SciTech Connect

    Charlotte Froese Fischer

    2005-07-08

    Atomic structure calculations were performed for properties such as energy levels, binding energies, transition probabilities, lifetimes, hyperfine structure, and isotope shifts. Accurate computational procedures were devised so that properties could be predicted even when they could not be obtained from experiment, and to assist in the identification of observed data. The method used was the multiconfiguration Hartree-Fock (MCHF) method, optionally corrected for relativistic effects in the Breit-Pauli approximation. Fully relativistic Dirac-Fock calculations also were performed using the GRASP code A database of energy levels, lifetimes, and transition probabilities was designed and implemented and, at present, includes many results for Be-like to Ar-like.

  4. Interfacing Relativistic and Nonrelativistic Methods: A Systematic Sequence of Approximations

    NASA Technical Reports Server (NTRS)

    Dyall, Ken; Langhoff, Stephen R. (Technical Monitor)

    1997-01-01

    A systematic sequence of approximations for the introduction of relativistic effects into nonrelativistic molecular finite-basis set calculations is described. The theoretical basis for the approximations is the normalized elimination of the small component (ESC) within the matrix representation of the modified Dirac equation. The key features of the normalized method are the retention of the relativistic metric and the ability to define a single matrix U relating the pseudo-large and large component coefficient matrices. This matrix is used to define a modified set of one- and two-electron integrals which have the same appearance as the integrals of the Breit-Pauli Hamiltonian. The first approximation fixes the ratios of the large and pseudo-large components to their atomic values, producing an expansion in atomic 4-spinors. The second approximation defines a local fine-structure constant on each atomic centre, which has the physical value for centres considered to be relativistic and zero for nonrelativistic centres. In the latter case, the 4-spinors are the positive-energy kinetic al ly-balanced solutions of the Levy-Leblond equation, and the integrals involving pseudo-large component basis functions on these centres, are set to zero. Some results are presented for test systems to illustrate the various approximations.

  5. Electron correlation within the relativistic no-pair approximation

    NASA Astrophysics Data System (ADS)

    Almoukhalalati, Adel; Knecht, Stefan; Jensen, Hans Jørgen Aa.; Dyall, Kenneth G.; Saue, Trond

    2016-08-01

    This paper addresses the definition of correlation energy within 4-component relativistic atomic and molecular calculations. In the nonrelativistic domain the correlation energy is defined as the difference between the exact eigenvalue of the electronic Hamiltonian and the Hartree-Fock energy. In practice, what is reported is the basis set correlation energy, where the "exact" value is provided by a full Configuration Interaction (CI) calculation with some specified one-particle basis. The extension of this definition to the relativistic domain is not straightforward since the corresponding electronic Hamiltonian, the Dirac-Coulomb Hamiltonian, has no bound solutions. Present-day relativistic calculations are carried out within the no-pair approximation, where the Dirac-Coulomb Hamiltonian is embedded by projectors eliminating the troublesome negative-energy solutions. Hartree-Fock calculations are carried out with the implicit use of such projectors and only positive-energy orbitals are retained at the correlated level, meaning that the Hartree-Fock projectors are frozen at the correlated level. We argue that the projection operators should be optimized also at the correlated level and that this is possible by full Multiconfigurational Self-Consistent Field (MCSCF) calculations, that is, MCSCF calculations using a no-pair full CI expansion, but including orbital relaxation from the negative-energy orbitals. We show by variational perturbation theory that the MCSCF correlation energy is a pure MP2-like correlation expression, whereas the corresponding CI correlation energy contains an additional relaxation term. We explore numerically our theoretical analysis by carrying out variational and perturbative calculations on the two-electron rare gas atoms with specially tailored basis sets. In particular, we show that the correlation energy obtained by the suggested MCSCF procedure is smaller than the no-pair full CI correlation energy, in accordance with the underlying

  6. Electron correlation within the relativistic no-pair approximation.

    PubMed

    Almoukhalalati, Adel; Knecht, Stefan; Jensen, Hans Jørgen Aa; Dyall, Kenneth G; Saue, Trond

    2016-08-21

    This paper addresses the definition of correlation energy within 4-component relativistic atomic and molecular calculations. In the nonrelativistic domain the correlation energy is defined as the difference between the exact eigenvalue of the electronic Hamiltonian and the Hartree-Fock energy. In practice, what is reported is the basis set correlation energy, where the "exact" value is provided by a full Configuration Interaction (CI) calculation with some specified one-particle basis. The extension of this definition to the relativistic domain is not straightforward since the corresponding electronic Hamiltonian, the Dirac-Coulomb Hamiltonian, has no bound solutions. Present-day relativistic calculations are carried out within the no-pair approximation, where the Dirac-Coulomb Hamiltonian is embedded by projectors eliminating the troublesome negative-energy solutions. Hartree-Fock calculations are carried out with the implicit use of such projectors and only positive-energy orbitals are retained at the correlated level, meaning that the Hartree-Fock projectors are frozen at the correlated level. We argue that the projection operators should be optimized also at the correlated level and that this is possible by full Multiconfigurational Self-Consistent Field (MCSCF) calculations, that is, MCSCF calculations using a no-pair full CI expansion, but including orbital relaxation from the negative-energy orbitals. We show by variational perturbation theory that the MCSCF correlation energy is a pure MP2-like correlation expression, whereas the corresponding CI correlation energy contains an additional relaxation term. We explore numerically our theoretical analysis by carrying out variational and perturbative calculations on the two-electron rare gas atoms with specially tailored basis sets. In particular, we show that the correlation energy obtained by the suggested MCSCF procedure is smaller than the no-pair full CI correlation energy, in accordance with the underlying

  7. Reactions of uranium atoms with ammonia: infrared spectra and quasi-relativistic calculations of the U:NH3, H2N--UH, and HN==UH2 complexes.

    PubMed

    Wang, Xuefeng; Andrews, Lester; Marsden, Colin J

    2008-01-01

    Ammonia molecules interact with U atoms, and the resulting U:NH3 complex rearranges upon visible irradiation to form the H2N--UH and HN==UH2 molecules in excess argon. These products are identified by functional group frequencies, 15NH3 and ND3 isotopic shifts, and comparison to frequencies calculated by using density functional theory. The N==U pi bond in HN==UH2 is enhanced by partial triple-bond character through N(2p) to U(5f) conjugation, which is comparable to that found in the analogous HN==ThH2 molecule. These products also form complexes with additional ammonia molecules in the matrix. The interesting higher-energy N[triple chemical bond]UH3 complex is not formed.

  8. Laser Created Relativistic Positron Jets

    SciTech Connect

    Chen, H; Wilks, S C; Meyerhofer, D D; Bonlie, J; Chen, C D; Chen, S N; Courtois, C; Elberson, L; Gregori, G; Kruer, W; Landoas, O; Mithen, J; Murphy, C; Nilson, P; Price, D; Scheider, M; Shepherd, R; Stoeckl, C; Tabak, M; Tommasini, R; Beiersdorder, P

    2009-10-08

    Electron-positron jets with MeV temperature are thought to be present in a wide variety of astrophysical phenomena such as active galaxies, quasars, gamma ray bursts and black holes. They have now been created in the laboratory in a controlled fashion by irradiating a gold target with an intense picosecond duration laser pulse. About 10{sup 11} MeV positrons are emitted from the rear surface of the target in a 15 to 22-degree cone for a duration comparable to the laser pulse. These positron jets are quasi-monoenergetic (E/{delta}E {approx} 5) with peak energies controllable from 3-19 MeV. They have temperatures from 1-4 MeV in the beam frame in both the longitudinal and transverse directions. Positron production has been studied extensively in recent decades at low energies (sub-MeV) in areas related to surface science, positron emission tomography, basic antimatter science such as antihydrogen experiments, Bose-Einstein condensed positronium, and basic plasma physics. However, the experimental tools to produce very high temperature positrons and high-flux positron jets needed to simulate astrophysical positron conditions have so far been absent. The MeV temperature jets of positrons and electrons produced in our experiments offer a first step to evaluate the physics models used to explain some of the most energetic phenomena in the universe.

  9. Newtonian and Relativistic Cosmologies

    NASA Astrophysics Data System (ADS)

    Green, Stephen; Wald, Robert

    2012-03-01

    Cosmological N-body simulations are now being performed using Newtonian gravity on scales larger than the Hubble radius. It is known that a uniformly expanding, homogeneous ball of dust in Newtonian gravity satisfies the Friedmann equations, and also that a correspondence between Newtonian and relativistic dust cosmologies holds in linearized perturbation theory. Nevertheless, it is not obvious that Newtonian gravity can provide a good global description of an inhomogeneous cosmology with significant nonlinear dynamical behavior at small scales. We investigate this issue in light of a perturbative framework that we have recently developed. We propose a straightforward dictionary---exact at the linearized level---that maps Newtonian dust cosmologies into GR dust cosmologies, and we use our ordering scheme to determine the degree to which the resulting metric and matter distribution solve Einstein's equation. We then find additional corrections needed to satisfy Einstein's equation to ``order 1'' at small scales and to ``order ɛ'' at large scales. We expect that, in realistic Newtonian cosmologies, these additional corrections will be very small; if so, this should provide strong justification for the use of Newtonian simulations to describe GR cosmologies.

  10. Relativistic Electron Vortices

    NASA Astrophysics Data System (ADS)

    Barnett, Stephen M.

    2017-03-01

    The desire to push recent experiments on electron vortices to higher energies leads to some theoretical difficulties. In particular the simple and very successful picture of phase vortices of vortex charge ℓ associated with ℓℏ units of orbital angular momentum per electron is challenged by the facts that (i) the spin and orbital angular momentum are not separately conserved for a Dirac electron, which suggests that the existence of a spin-orbit coupling will complicate matters, and (ii) that the velocity of a Dirac electron is not simply the gradient of a phase as it is in the Schrödinger theory suggesting that, perhaps, electron vortices might not exist at a fundamental level. We resolve these difficulties by showing that electron vortices do indeed exist in the relativistic theory and show that the charge of such a vortex is simply related to a conserved orbital part of the total angular momentum, closely related to the familiar situation for the orbital angular momentum of a photon.

  11. Relativistic Jets from Collapsars

    NASA Astrophysics Data System (ADS)

    Aloy, M. A.; Müller, E.; Ibáñez, J. M.; Martí, J. M.; MacFadyen, A.

    2000-03-01

    Using a collapsar progenitor model of MacFadyen & Woosley, we have simulated the propagation of an axisymmetric jet through a collapsing rotating massive star with the GENESIS multidimensional relativistic hydrodynamic code. The jet forms as a consequence of an assumed (constant or variable) energy deposition in the range of 1050-1051 ergs s-1 within a 30 deg cone around the rotation axis. The jet flow is strongly beamed (approximately less than a few degrees), spatially inhomogeneous, and time dependent. The jet reaches the surface of the stellar progenitor (R*=2.98x1010 cm) intact. At breakout, the maximum Lorentz factor of the jet flow is 33. After breakout, the jet accelerates into the circumstellar medium, whose density is assumed to decrease exponentially and then become constant, ρext=10-5 g cm-3. Outside the star, the flow begins to expand laterally also (v~c), but the beam remains very well collimated. At a distance of 2.54 R*, where the simulation ends, the Lorentz factor has increased to 44.

  12. Relativistic Newtonian dynamics

    NASA Astrophysics Data System (ADS)

    Friedman, Yaakov; Mendel Steiner, Joseph

    2017-05-01

    A new Relativistic Newtonian Dynamics (RND) for motion under a conservative force capable to describe non-classical behavior in astronomy is proposed. The rotor experiments using Mössbauer spectroscopy with synchrotron radiation, described in the paper, indicate the influence of non-gravitational acceleration or potential energy on time. Similarly, the observed precession of Mercury and the periastron advance of binaries can be explained by the influence of gravitational potential energy on spacetime. The proposed RND incorporates the influence of potential energy on spacetime in Newton’s dynamics. The effect of this influence on time intervals, space increments and velocities is described explicitly by the use of the concept of escape trajectory. For an attracting conservative static potential we derived the RND energy conservation and the dynamics equation for motion of objects with non-zero mass and for massless particles. These equations are subsequently simplified for motion under a central force. Without the need to curve spacetime, this model predicts accurately the four non-classical observations in astronomy used to test the General Relativity.

  13. Relativistic theory of gravitation

    SciTech Connect

    Logunov, A.A.; Mestvirishvili, M.A.

    1986-01-01

    In the present paper a relativistic theory of gravitation (RTG) is unambiguously constructed on the basis of the special relativity and geometrization principle. In this a gravitational field is treated as the Faraday--Maxwell spin-2 and spin-0 physical field possessing energy and momentum. The source of a gravitational field is the total conserved energy-momentum tensor of matter and of a gravitational field in Minkowski space. In the RTG the conservation laws are strictly fulfilled for the energy-moment and for the angular momentum of matter and a gravitational field. The theory explains the whole available set of experiments on gravity. By virtue of the geometrization principle, the Riemannian space in our theory is of field origin, since it appears as an effective force space due to the action of a gravitational field on matter. The RTG leads to an exceptionally strong prediction: The universe is not closed but just ''flat.'' This suggests that in the universe a ''missing mass'' should exist in a form of matter.

  14. Refining a relativistic, hydrodynamic solver: Admitting ultra-relativistic flows

    NASA Astrophysics Data System (ADS)

    Bernstein, J. P.; Hughes, P. A.

    2009-09-01

    We have undertaken the simulation of hydrodynamic flows with bulk Lorentz factors in the range 102-106. We discuss the application of an existing relativistic, hydrodynamic primitive variable recovery algorithm to a study of pulsar winds, and, in particular, the refinement made to admit such ultra-relativistic flows. We show that an iterative quartic root finder breaks down for Lorentz factors above 102 and employ an analytic root finder as a solution. We find that the former, which is known to be robust for Lorentz factors up to at least 50, offers a 24% speed advantage. We demonstrate the existence of a simple diagnostic allowing for a hybrid primitives recovery algorithm that includes an automatic, real-time toggle between the iterative and analytical methods. We further determine the accuracy of the iterative and hybrid algorithms for a comprehensive selection of input parameters and demonstrate the latter’s capability to elucidate the internal structure of ultra-relativistic plasmas. In particular, we discuss simulations showing that the interaction of a light, ultra-relativistic pulsar wind with a slow, dense ambient medium can give rise to asymmetry reminiscent of the Guitar nebula leading to the formation of a relativistic backflow harboring a series of internal shockwaves. The shockwaves provide thermalized energy that is available for the continued inflation of the PWN bubble. In turn, the bubble enhances the asymmetry, thereby providing positive feedback to the backflow.

  15. Electron - Atom Bremsstrahlung

    NASA Astrophysics Data System (ADS)

    Kim, Longhuan

    In this work we study the features of bremsstrahlung radiation from neutral atoms and atoms in hot dense plasmas. Predictions for the distributions of electron-atom bremsstrahlung radiation for both the point Coulomb potential and screened potentials are obtained using a classical numerical method. The results agree with exact quantum mechanical partial wave results for low incident electron energies in both the point Coulomb and screened potentials. In the screened potential the asymmetry parameter of a spectrum is reduced from the Coulomb values. The difference increases with decreasing energy and begins to oscillate at very low energies. We also studied the scaling properties of bremsstrahlung spectra and energy losses. It is found that the ratio of the radiative energy loss for positrons to that for electrons obeys a simple scaling law, being expressible fairly accurately as a function only of the quantity T(,1)/Z('2). This scaling is exact in the case of the point Coulomb potential, both for classical bremsstrahlung and for the nonrelativistic dipole Sommerfeld formula. We also studied bremsstrahlung from atoms in hot dense plasmas, describing the atomic potentials by the temperature-and-density dependent Thomas - Fermi model. Gaunt factors are obtained with the relativistic partial wave method for atoms in plasmas of various densities and temperatures. Features of the bremsstrahlung from atoms in such environments are discussed. The dependence of predicted bremsstrahlung spectra on the choice of potential from various average atom potential models for strongly coupled plasmas are also studied. For the energy range and plasma densities were considered, the choice of potential model among the elaborate atomic potentials is less important than the choice of the method of calculation. The use of a detailed configuration accounting method for bremsstrahlung processes in dense plasmas is less important than for some other atomic processes. We justify the usefulness

  16. Holographic View of Non-relativistic Physics

    NASA Astrophysics Data System (ADS)

    Balasubramanian, Koushik

    Motivated by the AdS/CFT correspondence for relativistic CFTs, it seems natural to generalize it to non-relativistic CFTs. Such a dual description could provide insight into strong coupling phenomena observed in condensed matter systems. Scale invariance can be realized in non-relativistic theories in many ways. One freedom is the relative scale dimension of time and space, called the dynamical exponent z. In this thesis, we will mainly focus on the case where z = 2, however gravity duals for other values of z have also been found. In the first part of the thesis, we study NRCFTs that are Galilean invariant. Discrete light cone quantization (DLCQ) of N = 4 super Yang-Mills theory is an example of such a system with z = 2 scaling symmetry. A more realistic example of a system with the same set of symmetries is a system of cold fermions at unitarity. These non-relativistic systems respect a symmetry algebra known as the Schrodinger algebra. We propose a gravity dual that realizes the symmetries of the Schrodinger algebra as isometries. An unusual feature of this duality is that the bulk geometry has two extra dimensions than the CFT, instead of the usual one. The additional direction is a compact direction and shift symmetry along this direction corresponds to the particle number transformation. This solution can be embedded into string theory by performing a set of operations (known as the Null-Melvin twist) on AdS 5 x S5 solution of type IIB supergravity. This method also provides a way of finding a black hole solution which has asymptotic Schrodinger symmetries. The field theory dual of these gravity solutions happens to be a modified version of DLCQ N = 4 super Yang-Mills theory. The thermodynamics of these theories is very different from that of cold atoms. This happens to be a consequence of realizing the entire Schrodinger group as isometries of the spacetime. We give an example of a holographic realization in which the particle number symmetry is realized as

  17. Relativistic coupled-cluster calculations of {sup 20}Ne, {sup 40}Ar, {sup 84}Kr, and {sup 129}Xe: Correlation energies and dipole polarizabilities

    SciTech Connect

    Mani, B. K.; Angom, D.; Latha, K. V. P.

    2009-12-15

    We have carried out a detailed and systematic study of the correlation energies of inert gas atoms Ne, Ar, Kr, and Xe using relativistic many-body perturbation theory and relativistic coupled-cluster theory. In the relativistic coupled-cluster calculations, we implement perturbative triples and include these in the correlation energy calculations. We then calculate the dipole polarizability of the ground states using perturbed coupled-cluster theory.

  18. Efficient transfer of positrons from a buffer-gas-cooled accumulator into an orthogonally oriented superconducting solenoid for antihydrogen studies

    NASA Astrophysics Data System (ADS)

    Comeau, D.; Dror, A.; Fitzakerley, D. W.; George, M. C.; Hessels, E. A.; Storry, C. H.; Weel, M.; Grzonka, D.; Oelert, W.; Gabrielse, G.; Kalra, R.; Kolthammer, W. S.; McConnell, R.; Richerme, P.; Müllers, A.; Walz, J.; ATRAP Collaboration

    2012-04-01

    Positrons accumulated in a room-temperature buffer-gas-cooled positron accumulator are efficiently transferred into a superconducting solenoid which houses the ATRAP cryogenic Penning trap used in antihydrogen research. The positrons are guided along a 9 m long magnetic guide that connects the central field lines of the 0.15 T field in the positron accumulator to the central magnetic field lines of the superconducting solenoid. Seventy independently controllable electromagnets are required to overcome the fringing field of the large-bore superconducting solenoid. The guide includes both a 15° upward bend and a 105° downward bend to account for the orthogonal orientation of the positron accumulator with respect to the cryogenic Penning trap. Low-energy positrons ejected from the accumulator follow the magnetic field lines within the guide and are transferred into the superconducting solenoid with nearly 100% efficiency. A 7 m long 5 cm diameter stainless-steel tube and a 20 mm long, 1.5 mm diameter cryogenic pumping restriction ensure that the 10-2 mbar pressure in the accumulator is isolated well from the extreme vacuum required in the Penning trap to allow for long antimatter storage times.

  19. Relativistic dynamical collapse model

    NASA Astrophysics Data System (ADS)

    Pearle, Philip

    2015-05-01

    A model is discussed where all operators are constructed from a quantum scalar field whose energy spectrum takes on all real values. The Schrödinger picture wave function depends upon space and time coordinates for each particle, as well as an inexorably increasing evolution parameter s which labels a foliation of spacelike hypersurfaces. The model is constructed to be manifestly Lorentz invariant in the interaction picture. Free particle states and interactions are discussed in this framework. Then, the formalism of the continuous spontaneous localization (CSL) theory of dynamical collapse is applied. The collapse-generating operator is chosen to be the particle number space-time density. Unlike previous relativistically invariant models, the vacuum state is not excited. The collapse dynamics depends upon two parameters, a parameter Λ which represents the collapse rate/volume and a scale factor ℓ. A common example of collapse dynamics, involving a clump of matter in a superposition of two locations, is analyzed. The collapse rate is shown to be identical to that of nonrelativistic CSL when the GRW-CSL choice of ℓ=a =1 0-5 cm , is made, along with Λ =λ /a3 (GRW-CSL choice λ =1 0-16s-1). The collapse rate is also satisfactory with the choice ℓ as the size of the Universe, with Λ =λ /ℓa2. Because the collapse narrows wave functions in space and time, it increases a particle's momentum and energy, altering its mass. It is shown that, with ℓ=a , the change of mass of a nucleon is unacceptably large but, when ℓ is the size of the Universe, the change of mass over the age of the Universe is acceptably small.

  20. Integrable nonlinear relativistic equations

    NASA Astrophysics Data System (ADS)

    Hadad, Yaron

    This work focuses on three nonlinear relativistic equations: the symmetric Chiral field equation, Einstein's field equation for metrics with two commuting Killing vectors and Einstein's field equation for diagonal metrics that depend on three variables. The symmetric Chiral field equation is studied using the Zakharov-Mikhailov transform, with which its infinitely many local conservation laws are derived and its solitons on diagonal backgrounds are studied. It is also proven that it is equivalent to a novel equation that poses a fascinating similarity to the Sinh-Gordon equation. For the 1+1 Einstein equation the Belinski-Zakharov transformation is explored. It is used to derive explicit formula for N gravitational solitons on arbitrary diagonal background. In particular, the method is used to derive gravitational solitons on the Einstein-Rosen background. The similarities and differences between the attributes of the solitons of the symmetric Chiral field equation and those of the 1+1 Einstein equation are emphasized, and their origin is pointed out. For the 1+2 Einstein equation, new equations describing diagonal metrics are derived and their compatibility is proven. Different gravitational waves are studied that naturally extend the class of Bondi-Pirani-Robinson waves. It is further shown that the Bondi-Pirani-Robinson waves are stable with respect to perturbations of the spacetime. Their stability is closely related to the stability of the Schwarzschild black hole and the relation between the two allows to conjecture about the stability of a wide range of gravitational phenomena. Lastly, a new set of equations that describe weak gravitational waves is derived. This new system of equations is closely and fundamentally connected with the nonlinear Schrodinger equation and can be properly called the nonlinear Schrodinger-Einstein equations. A few preliminary solutions are constructed.

  1. High-precision metrology of highly charged ions via relativistic resonance fluorescence.

    PubMed

    Postavaru, O; Harman, Z; Keitel, C H

    2011-01-21

    Resonance fluorescence of laser-driven highly charged ions is investigated with regard to precisely measuring atomic properties. For this purpose an ab initio approach based on the Dirac equation is employed that allows for studying relativistic ions. These systems provide a sensitive means to test correlated relativistic dynamics, quantum electrodynamic phenomena and nuclear effects by applying x-ray lasers. We show how the narrowing of sidebands in the x-ray fluorescence spectrum by interference due to an additional optical driving can be exploited to determine atomic dipole or multipole moments to unprecedented accuracy.

  2. Relativistic breakdown in planetary atmospheres

    SciTech Connect

    Dwyer, J. R.

    2007-04-15

    In 2003, a new electrical breakdown mechanism involving the production of runaway avalanches by positive feedback from runaway positrons and energetic photons was introduced. This mechanism, which shall be referred to as 'relativistic feedback', allows runaway discharges in gases to become self-sustaining, dramatically increasing the flux of runaway electrons, the accompanying high-energy radiation, and resulting ionization. Using detailed Monte Carlo calculations, properties of relativistic feedback are investigated. It is found that once relativistic feedback fully commences, electrical breakdown will occur and the ambient electric field, extending over cubic kilometers, will be discharged in as little as 2x10{sup -5} s. Furthermore, it is found that the flux of energetic electrons and x rays generated by this mechanism can exceed the flux generated by the standard relativistic runaway electron model by a factor of 10{sup 13}, making relativistic feedback a good candidate for explaining terrestrial gamma-ray flashes and other high-energy phenomena observed in the Earth's atmosphere.

  3. Particle Acceleration at Relativistic and Ultra-Relativistic Shock Waves

    NASA Astrophysics Data System (ADS)

    Meli, A.

    We perform Monte Carlo simulations using diffusive shock acceleration at relativistic and ultra-relativistic shock waves. High upstream flow gamma factors are used, Γ=(1-uup2/c2)-0.5, which are relevant to models of ultra-relativistic particle shock acceleration in the central engines and relativistic jets of Active Galactic Nuclei (AGN) and in Gamma-Ray Burst (GRB) fireballs. Numerical investigations are carried out on acceleration properties in the relativistic and ultra-relativistic flow regime (Γ ˜ 10-1000) concerning angular distributions, acceleration time scales, particle energy gain versus number of crossings and spectral shapes. We perform calculations for both parallel and oblique sub-luminal and super-luminal shocks. For parallel and oblique sub-luminal shocks, the spectra depend on whether or not the scattering is represented by pitch angle diffusion or by large angle scattering. The large angle case exhibits a distinctive structure in the basic power-law spectrum not nearly so obvious for small angle scattering. However, both cases yield a significant 'speed-up' of acceleration rate when compared with the conventional, non-relativistic expression, tacc=[c/(uup-udown)] (λup/uup+λdown/udown). An energization by a factor Γ2 for the first crossing cycle and a large energy gains for subsequent crossings as well as the high 'speed-up' factors found, are important in supporting past works, especially the models developed by Vietri and Waxman on ultra-high energy cosmic ray, neutrino and gamma-ray production in GRB. For oblique super-luminal shocks, we calculate the energy gain and spectral shape for a number of different inclinations. For this case the acceleration of particles is 'pictured' by a shock drift mechanism. We use high gamma flows with Lorentz factors in the range 10-40 which are relevant to ultra-relativistic shocks in AGN accretion disks and jets. In all investigations we closely follow the particle's trajectory along the magnetic field

  4. Modeling terrestrial gamma ray flashes produced by relativistic feedback discharges

    NASA Astrophysics Data System (ADS)

    Liu, Ningyu; Dwyer, Joseph R.

    2013-05-01

    This paper reports a modeling study of terrestrial gamma ray flashes (TGFs) produced by relativistic feedback discharges. Terrestrial gamma ray flashes are intense energetic radiation originating from the Earth's atmosphere that has been observed by spacecraft. They are produced by bremsstrahlung interactions of energetic electrons, known as runaway electrons, with air atoms. An efficient physical mechanism for producing large fluxes of the runaway electrons to make the TGFs is the relativistic feedback discharge, where seed runaway electrons are generated by positrons and X-rays, products of the discharge itself. Once the relativistic feedback discharge becomes self-sustaining, an exponentially increasing number of relativistic electron avalanches propagate through the same high-field region inside the thundercloud until the electric field is partially discharged by the ionization created by the discharge. The modeling results indicate that the durations of the TGF pulses produced by the relativistic feedback discharge vary from tens of microseconds to several milliseconds, encompassing all durations of the TGFs observed so far. In addition, when a sufficiently large potential difference is available in thunderclouds, a self-propagating discharge known as the relativistic feedback streamer can be formed, which propagates like a conventional positive streamer. For the relativistic feedback streamer, the positive feedback mechanism of runaway electron production by the positrons and X-rays plays a similar role as the photoionization for the conventional positive streamer. The simulation results of the relativistic feedback streamer show that a sequence of TGF pulses with varying durations can be produced by the streamer. The relativistic streamer may initially propagate with a pulsed manner and turn into a continuous propagation mode at a later stage. Milliseconds long TGF pulses can be produced by the feedback streamer during its continuous propagation. However

  5. Generations of non-relativistic and relativistic average M shell fluorescence yield (ϖM) (computer code AMSFYLD)

    NASA Astrophysics Data System (ADS)

    Kaur, Gurpreet; Mittal, Raj

    2014-11-01

    Average M shell fluorescence yield (ϖM) have been calculated from non-relativistic data of McGuire (Phys Rev A 1972;5:1043-47) in the region Z=60-90 and relativistic data of Chen, Crasemann and Mark (Phys Rev A 1980;21:449-53) and (Phys Rev A 1983;27:2989-94) in the region Z=70-90 on M sub-shell fluorescence yield (ωMi, i=1-5) and Coster-Kronig yield (fMij, i=1-4, j=2-5) procured from our earlier work (a computer software code MFCKYLD) using Scofield's data (Lawrence Livermore Laboratory Report UCRL 51326; 1973) on M sub-shell photo-ionization cross-sections. Subsequently, a computer software code AMSFYLD was developed to generate the yield values on computer terminal or in file for both non-relativistic and relativistic data just by entering the atomic number Z of the element through keyboard or file. The values were compared with available theoretical and experimental values in the literature. The agreement between the present data and the other supports the present values.

  6. Polyanalytic relativistic second Bargmann transforms

    SciTech Connect

    Mouayn, Zouhaïr

    2015-05-15

    We construct coherent states through special superpositions of eigenstates of the relativistic isotonic oscillator. In each superposition, the coefficients are chosen to be L{sup 2}-eigenfunctions of a σ-weight Maass Laplacian on the Poincaré disk, which are associated with the eigenvalue 4m(σ−1−m), m∈Z{sub +}∩[0,(σ−1)/2]. For each nonzero m, the associated coherent states transform constitutes the m-true-polyanalytic extension of a relativistic version of the second Bargmann transform, whose integral kernel is expressed in terms of a special Appel-Kampé de Fériet’s hypergeometric function. The obtained results could be used to extend the known semi-classical analysis of quantum dynamics of the relativistic isotonic oscillator.

  7. Relativistic Calculation on Pion Condensation

    NASA Astrophysics Data System (ADS)

    Nakano, Masahiro; Tatsumi, Toshitaka; Liu, Liang-Gang; Matsuura, Hiroyuki; Iwasaki, Yoshitaka; Sakamoto, Katsuaki; Kouno, Hiroaki; Hasegawa, Akira

    2001-04-01

    The critical density of neutral pion condensation is investigated by using a new set of Landau-Migdal parameters, which are derived from a recent experimental data on the quenching factor of Gamow-Teller giant resonance. The particle-hole and delta-hole polarizations of the pion selfenergy are calculated based on the relativistic framework and compared with several nonrelativistic formulae. It is shown that the relativistic calculation gives higher critical densities than those of the nonrelativistic calculations. It is confirmed in the relativistic calculation that "universality assumption" leads to so-called "wall" in the critical density and the wall disappears in the present calculation based on the findings of the experiment of Wakasa et al. on the quenching of the Gamow Teller strength.

  8. Large amplitude relativistic plasma waves

    SciTech Connect

    Coffey, Timothy

    2010-05-15

    Relativistic, longitudinal plasma oscillations are studied for the case of a simple water bag distribution of electrons having cylindrical symmetry in momentum space with the axis of the cylinder parallel to the velocity of wave propagation. The plasma is required to obey the relativistic Vlasov-Poisson equations, and solutions are sought in the wave frame. An exact solution for the plasma density as a function of the electrostatic field is derived. The maximum electric field is presented in terms of an integral over the known density. It is shown that when the perpendicular momentum is neglected, the maximum electric field approaches infinity as the wave phase velocity approaches the speed of light. It is also shown that for any nonzero perpendicular momentum, the maximum electric field will remain finite as the wave phase velocity approaches the speed of light. The relationship to previously published solutions is discussed as is some recent controversy regarding the proper modeling of large amplitude relativistic plasma waves.

  9. Non-Relativistic Superstring Theories

    SciTech Connect

    Kim, Bom Soo

    2007-12-14

    We construct a supersymmetric version of the 'critical' non-relativistic bosonic string theory [1] with its manifest global symmetry. We introduce the anticommuting bc CFT which is the super partner of the {beta}{gamma} CFT. The conformal weights of the b and c fields are both 1/2. The action of the fermionic sector can be transformed into that of the relativistic superstring theory. We explicitly quantize the theory with manifest SO(8) symmetry and find that the spectrum is similar to that of Type IIB superstring theory. There is one notable difference: the fermions are non-chiral. We further consider 'noncritical' generalizations of the supersymmetric theory using the superspace formulation. There is an infinite range of possible string theories similar to the supercritical string theories. We comment on the connection between the critical non-relativistic string theory and the lightlike Linear Dilaton theory.

  10. Magnetic multipole induced zero-rotation frequency bounce-resonant loss in a Penning-Malmberg trap used for antihydrogen trapping

    NASA Astrophysics Data System (ADS)

    Andresen, G. B.; Bertsche, W.; Bray, C. C.; Butler, E.; Cesar, C. L.; Chapman, S.; Charlton, M.; Fajans, J.; Fujiwara, M. C.; Gill, D. R.; Hardy, W. N.; Hayano, R. S.; Hayden, M. E.; Humphries, A. J.; Hydomako, R.; Jørgensen, L. V.; Kerrigan, S. J.; Keller, J.; Kurchaninov, L.; Lambo, R.; Madsen, N.; Nolan, P.; Olchanski, K.; Olin, A.; Povilus, A.; Pusa, P.; Robicheaux, F.; Sarid, E.; El Nasr, S. Seif; Silveira, D. M.; Storey, J. W.; Thompson, R. I.; van der Werf, D. P.; Wurtele, J. S.; Yamazaki, Y.

    2009-10-01

    In many antihydrogen trapping schemes, antiprotons held in a short-well Penning-Malmberg trap are released into a longer well. This process necessarily causes the bounce-averaged rotation frequency Ω¯r of the antiprotons around the trap axis to pass through zero. In the presence of a transverse magnetic multipole, experiments and simulations show that many antiprotons (over 30% in some cases) can be lost to a hitherto unidentified bounce-resonant process when Ω¯r is close to zero.

  11. Magnetic multipole induced zero-rotation frequency bounce-resonant loss in a Penning-Malmberg trap used for antihydrogen trapping

    SciTech Connect

    Andresen, G. B.; Bertsche, W.; Butler, E.; Charlton, M.; Humphries, A. J.; Joergensen, L. V.; Kerrigan, S. J.; Madsen, N.; Werf, D. P. van der; Bray, C. C.; Chapman, S.; Fajans, J.; Keller, J.; Povilus, A.; Wurtele, J. S.; Cesar, C. L.; Lambo, R.; Fujiwara, M. C.; Gill, D. R.; Kurchaninov, L.

    2009-10-15

    In many antihydrogen trapping schemes, antiprotons held in a short-well Penning-Malmberg trap are released into a longer well. This process necessarily causes the bounce-averaged rotation frequency {omega}{sub r} of the antiprotons around the trap axis to pass through zero. In the presence of a transverse magnetic multipole, experiments and simulations show that many antiprotons (over 30% in some cases) can be lost to a hitherto unidentified bounce-resonant process when {omega}{sub r} is close to zero.

  12. Quantum Tunneling Time: Relativistic Extensions

    NASA Astrophysics Data System (ADS)

    Xu, Dai-Yu; Wang, Towe; Xue, Xun

    2013-11-01

    Several years ago, in quantum mechanics, Davies proposed a method to calculate particle's traveling time with the phase difference of wave function. The method is convenient for calculating the sojourn time inside a potential step and the tunneling time through a potential hill. We extend Davies' non-relativistic calculation to relativistic quantum mechanics, with and without particle-antiparticle creation, using Klein-Gordon equation and Dirac Equation, for different forms of energy-momentum relation. The extension is successful only when the particle and antiparticle creation/annihilation effect is negligible.

  13. Relativistic solutions to directed energy

    NASA Astrophysics Data System (ADS)

    Kulkarni, Neeraj; Lubin, Philip M.; Zhang, Qicheng

    2016-09-01

    This paper analyses the nature and feasibility of using directed energy to propel probes through space at relativistic speeds. Possible mission scenarios are considered by varying the spacecraft mass, thickness of the sail and power of the directed energy array. We calculate that gram-scaled probes are capable of achieving relativistic speeds and reaching Alpha Centauri well within a human lifetime. A major drawback is the diffraction of the beam which reduces the incident power on the sail resulting in a terminal velocity for the probes. Various notions of efficiency are discussed and we conclude that directed energy propulsion provides a viable direction for future space exploration.

  14. Phenomenological Relativistic Energy Density Functionals

    SciTech Connect

    Lalazissis, G. A.; Kartzikos, S.; Niksic, T.; Paar, N.; Vretenar, D.; Ring, P.

    2009-08-26

    The framework of relativistic nuclear energy density functionals is applied to the description of a variety of nuclear structure phenomena, not only in spherical and deformed nuclei along the valley of beta-stability, but also in exotic systems with extreme isospin values and close to the particle drip-lines. Dynamical aspects of exotic nuclear structure is explored using the fully consistent quasiparticle random-phase approximation based on the relativistic Hartree-Bogoliubov model. Recent applications of energy density functionals with explicit density dependence of the meson-nucleon couplings are presented.

  15. Special Relativistic Hydrodynamics with Gravitation

    NASA Astrophysics Data System (ADS)

    Hwang, Jai-chan; Noh, Hyerim

    2016-12-01

    Special relativistic hydrodynamics with weak gravity has hitherto been unknown in the literature. Whether such an asymmetric combination is possible has been unclear. Here, the hydrodynamic equations with Poisson-type gravity, considering fully relativistic velocity and pressure under the weak gravity and the action-at-a-distance limit, are consistently derived from Einstein’s theory of general relativity. An analysis is made in the maximal slicing, where the Poisson’s equation becomes much simpler than our previous study in the zero-shear gauge. Also presented is the hydrodynamic equations in the first post-Newtonian approximation, now under the general hypersurface condition. Our formulation includes the anisotropic stress.

  16. The effect of direct electron-positron pair production on relativistic feedback rates

    NASA Astrophysics Data System (ADS)

    Vodopiyanov, I. B.; Dwyer, J. R.; Cramer, E. S.; Lucia, R. J.; Rassoul, H. K.

    2015-01-01

    Runaway electron avalanches developing in thunderclouds in high electric field become self-sustaining due to relativistic feedback via the production of backward propagating positrons and backscattered X-rays. To date, only positrons created from pair production by gamma rays interacting with the air have been considered. In contrast, direct electron-positron pair production, also known as "trident process," occurs from the interaction of energetic runaway electrons with atomic nuclei, and so it does not require the generation of a gamma ray mediator. The positrons produced in this process contribute to relativistic feedback and become especially important when the feedback factor value approaches unity. Then the steady state flux of runaway electrons increases significantly. In certain cases, when the strong electrostatic field forms in a narrow area, the direct positrons become one of processes dominating relativistic feedback. Calculations of the direct positron production contribution to relativistic feedback are presented for different electric field configurations.

  17. Relativistic Hydrodynamics for Heavy-Ion Collisions

    ERIC Educational Resources Information Center

    Ollitrault, Jean-Yves

    2008-01-01

    Relativistic hydrodynamics is essential to our current understanding of nucleus-nucleus collisions at ultrarelativistic energies (current experiments at the Relativistic Heavy Ion Collider, forthcoming experiments at the CERN Large Hadron Collider). This is an introduction to relativistic hydrodynamics for graduate students. It includes a detailed…

  18. Relativistic Hydrodynamics for Heavy-Ion Collisions

    ERIC Educational Resources Information Center

    Ollitrault, Jean-Yves

    2008-01-01

    Relativistic hydrodynamics is essential to our current understanding of nucleus-nucleus collisions at ultrarelativistic energies (current experiments at the Relativistic Heavy Ion Collider, forthcoming experiments at the CERN Large Hadron Collider). This is an introduction to relativistic hydrodynamics for graduate students. It includes a detailed…

  19. Ultracold plasmas and guiding center drift atoms

    NASA Astrophysics Data System (ADS)

    Kuzmin, Stanislav Gennadyevich

    This thesis discusses theory questions suggested by recent experiments with ultracold plasmas. In one class of experiments, ultracold plasmas are produced by abruptly photoionizing small clouds of laser cooled atoms, adjusting the photon energy to barely exceed the ionization energy of the cooled atoms. The thesis presents molecular dynamics simulation for the early time evolution of such plasmas. Contrary to earlier speculation, no evidence of strong electron-electron correlations is observed in the simulations even if the initial value of the coupling parameter (Gammae = e2/akTe) is much larger than unity. As electron-electron correlations begin to develop, the correlation energy is released to heat the electrons, raising the electron temperature to the point where Gammae ˜ 1 and limiting further development of correlation. Further heating of the electrons occurs as a by-product of three-body recombination. When a model of laser cooling is added to the simulation, the formation of strong ion-ion correlation is observed. Contrary to earlier suggestion, the rate of three-body recombination is observed to be in reasonable agreement with the traditional formula, R = 3.9 x 10-9 sec-1[ n (cm-3)]2 [Te(° K)]-9/2, but care must be taken to use the correct temporally evolving temperature, Te. Also, the thesis describes the novel dynamics of "guiding center drift atoms". The weakly bound and strongly magnetized antihydrogen atoms recently produced in ultracold plasmas at CERN are examples of such atoms. The atoms are quasi-classical, and the dynamics of the positron is well described by guiding center drift theory. Because of a frequency ordering, the dynamics is integrable, and the thesis characterizes the possible motions of the weakly bound positron-antiproton pair as a function of constants of the motion. Quantum numbers are assigned using the Bohr-Sommerfeld prescription. The thesis also discusses the center of mass motion of the atoms in an electric and magnetic

  20. Exact two-component relativistic energy band theory and application

    SciTech Connect

    Zhao, Rundong; Zhang, Yong; Xiao, Yunlong; Liu, Wenjian

    2016-01-28

    An exact two-component (X2C) relativistic density functional theory in terms of atom-centered basis functions is proposed for relativistic calculations of band structures and structural properties of periodic systems containing heavy elements. Due to finite radial extensions of the local basis functions, the periodic calculation is very much the same as a molecular calculation, except only for an Ewald summation for the Coulomb potential of fluctuating periodic monopoles. For comparison, the nonrelativistic and spin-free X2C counterparts are also implemented in parallel. As a first and pilot application, the band gaps, lattice constants, cohesive energies, and bulk moduli of AgX (X = Cl, Br, I) are calculated to compare with other theoretical results.

  1. Frontiers in Relativistic Celestial Mechanics, Vol. 2, Applications and Experiments

    NASA Astrophysics Data System (ADS)

    Kopeikin, Sergei

    2014-08-01

    Relativistic celestial mechanics - investigating the motion celestial bodies under the influence of general relativity - is a major tool of modern experimental gravitational physics. With a wide range of prominent authors from the field, this two-volume series consists of reviews on a multitude of advanced topics in the area of relativistic celestial mechanics - starting from more classical topics such as the regime of asymptotically-flat spacetime, light propagation and celestial ephemerides, but also including its role in cosmology and alternative theories of gravity as well as modern experiments in this area. This second volume of a two-volume series covers applications of the theory as well as experimental verifications. From tools to determine light travel times in curved space-time to laser ranging between earth and moon and between satellites, and impacts on the definition of time scales and clock comparison techniques, a variety of effects is discussed. On the occasion of his 80-th birthday, these two volumes honor V. A. Brumberg - one of the pioneers in modern relativistic celestial mechanics. Contributions include: J. Simon, A. Fienga: Victor Brumberg and the French school of analytical celestial mechanics T. Fukushima: Elliptic functions and elliptic integrals for celestial mechanics and dynamical astronomy P. Teyssandier: New tools for determining the light travel time in static, spherically symmetric spacetimes beyond the order G2 J. Müller, L. Biskupek, F. Hofmann and E. Mai: Lunar laser ranging and relativity N. Wex: Testing relativistic celestial mechanics with radio pulsars I. Ciufolini et al.: Dragging of inertial frames, fundamental physics, and satellite laser ranging G. Petit, P. Wolf, P. Delva: Atomic time, clocks, and clock comparisons in relativistic spacetime: a review

  2. Microscopic Processes in Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Hardee, P.; Mizuno, Y.; Medvedev, M.; Zhang, B.; Nordlund, A.; Fredricksen, J.; Sol, H.; Niemiec, J.; Lyubarsky, Y.; Hartmann, D. H.; Fishman, G. J.

    2008-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., gamma-ray bursts (GRBs), active galactic nuclei (AGNs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations of relativistic electron-ion (electro-positron) jets injected into a stationary medium show that particle acceleration occurs within the downstream jet. In the collisionless relativistic shock particle acceleration is due to plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel (filamentation) instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The 'jitter' radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  3. Proper-time relativistic dynamics

    NASA Technical Reports Server (NTRS)

    Gill, Tepper L.; Zachary, W. W.; Lindesay, James

    1993-01-01

    Proper-time relativistic single-particle classical Hamiltonian mechanics is formulated using a transformation from observer time to system proper time which is a canonical contact transformation on extended phase space. It is shown that interaction induces a change in the symmetry structure of the system which can be analyzed in terms of a Lie-isotopic deformation of the algebra of observables.

  4. Relativistic resonance and decay phenomena

    NASA Astrophysics Data System (ADS)

    Bui, Hai V.

    2015-04-01

    The exact relation τ = ℏ/Γ between the width Γ of a resonance and the lifetime τ for the decay of this resonance could not be obtained in standard quantum theory based on the Hilbert space or Schwartz space axiom in non-relativistic physics as well as in the relativistic regime. In order to obtain the exact relation, one has to modify the Hilbert space axiom or the Schwartz space axiom and choose new boundary conditions based on the Hardy space axioms in which the space of the states and the space of the observables are described by two different Hardy spaces. As consequences of the new Hardy space axioms, one obtains, instead of the symmetric time evolution for the states and the observables, asymmetrical time evolutions for the states and observables which are described by two semi-groups. A relativistic resonance obeying the exponential time evolution can be described by a relativistic Gamow vector, which is defined as superposition of the exact out-plane wave states with a Breit-Wigner energy distribution of the width Γ.

  5. Manipulating relativistic electrons with lasers

    NASA Astrophysics Data System (ADS)

    Malka, Victor

    2016-09-01

    The motion control of relativistic electrons with lasers allows for an efficient and elegant way to map the space with ultra-intense electric-field components, which, in turn, permits a unique improvement of the electron beam parameters. This perspective addresses the recent laser plasma accelerator experiments related to the phase space engineering of electron beams in a plasma medium performed at LOA.

  6. Action Principle for Relativistic Magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    D'Avignon, Eric; Morrison, Philip; Pegoraro, Francesco

    2015-11-01

    A covariant action principle for ideal relativistic magnetohydrodynamics in terms of natural Eulerian field variables is given. This is done by generalizing the covariant Poisson bracket theory of Marsden et al., which uses a noncanonical bracket to implement constrained variations of an action functional. Various implications and extensions of this action principle are also discussed.

  7. Particle Acceleration in Relativistic Outflows

    NASA Technical Reports Server (NTRS)

    Bykov, Andrei; Gehrels, Neil; Krawczynski, Henric; Lemoine, Martin; Pelletier, Guy; Pohl, Martin

    2012-01-01

    In this review we confront the current theoretical understanding of particle acceleration at relativistic outflows with recent observational results on various source classes thought to involve such outflows, e.g. gamma-ray bursts, active galactic nuclei, and pulsar wind nebulae. We highlight the possible contributions of these sources to ultra-high-energy cosmic rays.

  8. Microscopic Processes in Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Hardee, P.; Mizuno, Y.; Medvedev, M.; Zhang, B.; Nordlund, A.; Fredricksen, J.; Sol, H.; Niemiec, J.; Lyubarsky, Y.; hide

    2008-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., gamma-ray bursts (GRBs), active galactic nuclei (AGNs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations of relativistic electron-ion (electro-positron) jets injected into a stationary medium show that particle acceleration occurs within the downstream jet. In the collisionless relativistic shock particle acceleration is due to plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel (filamentation) instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The 'jitter' radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  9. Relativistic Optimized Link by KLT

    NASA Astrophysics Data System (ADS)

    Maccone, C.

    The KLT is a way of optimizing the signal processing of a given noisy signal by projecting the noisy signal itself onto the set of orthonormal basis functions spanned by the eigenfunctions of the autocorrelation of the noisy signal. Thus, the key problem in computing the KLT of a noisy signal is the computation of the eigenvalues and eigenfunctions of the autocorrelation of the noisy signal. For the special case of the Brownian motion (i.e. the basic Gaussian noisy signal) it can be proved that the KLT eigenfunctions are just sines, i.e. the KLT is the same as the FT. Let us now bring relativity into the KLT picture (this paper is confined to special relativity; general relativity can be KLT-studied also, but the calculations are, of course, even more difficult). Also, only rectilinear motions will be considered here. So, if one considers a source in relativistic motion, then the noisy signal undergoes a time-rescaling that depends on the type of relativistic motion. In past work this author has demostrated that the eigenfunctions of the time-rescaled, relativistic Brownian motion are Bessel functions of the first kind, and their eigenvalues are the zeros of such Bessel functions. In addition, it is stated (without proofs) that explicit formulae for the KLT signal processing can be found for the particularly important cases of the noisy signals received on Earth from a relativistic spacecraft whose motion is either: 1) uniform; or 2) uniformly accelerated.

  10. Relativistic effects on the nuclear magnetic shielding in the MF (M=Cu, Ag, Au) series

    SciTech Connect

    David, Jorge; Restrepo, Albeiro

    2007-11-15

    Relativistic effects on the nuclear magnetic shielding {sigma}(M) of the series of diatomics MF (M=Cu, Ag, Au) are calculated and analyzed using the Dirac-Hartree-Fock (DHF) method in the random phase approximation (RPA). Significant differences due to relativistic effects on the shielding constant {sigma}(M) are found in this series of atoms. The high electronegativity of the fluorine atom works in conjunction with the spin-orbit coupling to increase the calculated value for {sigma}(Au). An unusually large diamagnetic contribution to the shielding constant is observed. Nonrelativistic nuclear magnetic shielding [{sigma}{sup NR}(M)] shows very good linear correlation with the nuclear charge (Z) of the metal, while the relativistic shielding [{sigma}{sup rel}(M)] varies as Z{sup 2.26}.

  11. Fast Lattice Boltzmann Solver for Relativistic Hydrodynamics

    SciTech Connect

    Mendoza, M.; Herrmann, H. J.; Boghosian, B. M.; Succi, S.

    2010-07-02

    A lattice Boltzmann formulation for relativistic fluids is presented and numerically validated through quantitative comparison with recent hydrodynamic simulations of relativistic fluids. In order to illustrate its capability to handle complex geometries, the scheme is also applied to the case of a three-dimensional relativistic shock wave, generated by a supernova explosion, impacting on a massive interstellar cloud. This formulation opens up the possibility of exporting the proven advantages of lattice Boltzmann methods, namely, computational efficiency and easy handling of complex geometries, to the context of (mildly) relativistic fluid dynamics at large, from quark-gluon plasmas up to supernovae with relativistic outflows.

  12. Atomic Structure Calculations Useful for Fusion and Astrophysics

    NASA Astrophysics Data System (ADS)

    Mohan, Man; Singh, Jagjit; Aggarwal, Sunny; Verma, Nupur

    In this work, we have reviewed the present status of atomic structure calculations for multi-electrons atoms and ions using different international computer codes. Direction is given for dealing with heavy atoms and ions where relativistic effects become as important as correlation effects. Separate paragraphs are devoted on the application of atomic data in the fields of Astrophysics & Fusion plasma including future International Thermonuclear Experimental Reactor (ITER) for harnessing fusion power.

  13. Visual phenomena induced by relativistic carbon ions with and without Cerenkov radiation

    NASA Technical Reports Server (NTRS)

    Mcnulty, P. J.; Pease, V. P.; Bond, V. P.

    1978-01-01

    Exposing the human eye to individual carbon ions moving at relativistic speeds results in visual phenomena that include point flashes, streaks, and larger diffuse flashes. The diffuse flashes have previously been observed by astronauts in space but not in laboratory experiments with particles of high atomic number and energy. They are observed only when the nucleus moves fast enough to generate Cerenkov radiation.

  14. The Auger (Autoionization) Decay of Excited States in Spectra of Multicharged Ions: Relativistic Theory

    NASA Astrophysics Data System (ADS)

    Svinarenko, A. A.; Nikola, L. V.; Prepelitsa, G. P.; Tkach, T.; Mischenko, E.

    2010-10-01

    Relativistic method of calculating the characteristics of the Auger decay in the atomic spectra, based on the S-matrix Gell-Mann and Low formalism, is used for estimating the transition energies and autoionization probabilities in spectra of the Fe ion with one vacancy above the core 1s22s22p63s23p6.

  15. Electronic excitation in transmission of relativistic H{sup {minus}} ions through thin foils

    SciTech Connect

    Reinhold, C.O.; Kuerpick, P.; Burgdoerfer, J.; Yoshida, S. |; Gervais, B.

    1998-05-07

    The authors describe a theoretical model to study the transmission of relativistic H{sup {minus}} ions through thin carbon foils. The approach is based on a Monte Carlo solution of the Langevin equation describing electronic excitations of the atoms during the transport through the foil. Calculations for the subshell populations of outgoing hydrogen atoms are found to be in good agreement with recent experimental data on an absolute scale and show that there exists a propensity for populating extreme Stark states.

  16. Relativistic rocket: Dream and reality

    NASA Astrophysics Data System (ADS)

    Semyonov, Oleg G.

    2014-06-01

    The dream of interstellar flights persists since the first pioneers in astronautics and has never died. Many concepts of thruster capable to propel a rocket to the stars have been proposed and the most suitable among them are thought to be photon propulsion and propulsion by the products of proton-antiproton annihilation in magnetic nozzle. This article addresses both concepts allowing for cross-section of annihilation among other issues in order to show their vulnerability and to indicate the problems. The concept of relativistic matter propulsion is substantiated and discussed. The latter is argued to be the most straightforward way to build-up a relativistic rocket firstly because it is based on the existing technology of ion generators and accelerators and secondly because it can be stepped up in efflux power starting from interplanetary spacecrafts powered by nuclear reactors to interstellar starships powered by annihilation reactors. The problems imposed by thermodynamics and heat disposal are accentuated.

  17. Kinetic approach to relativistic dissipation

    NASA Astrophysics Data System (ADS)

    Gabbana, A.; Mendoza, M.; Succi, S.; Tripiccione, R.

    2017-08-01

    Despite a long record of intense effort, the basic mechanisms by which dissipation emerges from the microscopic dynamics of a relativistic fluid still elude complete understanding. In particular, several details must still be finalized in the pathway from kinetic theory to hydrodynamics mainly in the derivation of the values of the transport coefficients. In this paper, we approach the problem by matching data from lattice-kinetic simulations with analytical predictions. Our numerical results provide neat evidence in favor of the Chapman-Enskog [The Mathematical Theory of Non-Uniform Gases, 3rd ed. (Cambridge University Press, Cambridge, U.K., 1970)] procedure as suggested by recent theoretical analyses along with qualitative hints at the basic reasons why the Chapman-Enskog expansion might be better suited than Grad's method [Commun. Pure Appl. Math. 2, 331 (1949), 10.1002/cpa.3160020403] to capture the emergence of dissipative effects in relativistic fluids.

  18. Volatility smile as relativistic effect

    NASA Astrophysics Data System (ADS)

    Kakushadze, Zura

    2017-06-01

    We give an explicit formula for the probability distribution based on a relativistic extension of Brownian motion. The distribution (1) is properly normalized and (2) obeys the tower law (semigroup property), so we can construct martingales and self-financing hedging strategies and price claims (options). This model is a 1-constant-parameter extension of the Black-Scholes-Merton model. The new parameter is the analog of the speed of light in Special Relativity. However, in the financial context there is no ;speed limit; and the new parameter has the meaning of a characteristic diffusion speed at which relativistic effects become important and lead to a much softer asymptotic behavior, i.e., fat tails, giving rise to volatility smiles. We argue that a nonlocal stochastic description of such (Lévy) processes is inadequate and discuss a local description from physics. The presentation is intended to be pedagogical.

  19. Orientation dependence of relativistic-positron annihilation in single crystals

    SciTech Connect

    Kalashnikov, N. P.; Mazur, E. A. Olchak, A. S.

    2016-05-15

    An effect of the orientation dependence of the cross section for the single-photon annihilation of relativistic positrons with atomic electrons in a crystal is predicted. It is shown that the probability for the single-photon annihilation of a channeled positron in a crystal may be either suppressed in a crystal in relation to a homogeneous medium or, on the contrary, enhanced. The reason is that, depending on their incidence angle, the positrons may be either in the vicinity of ion planes of the crystal, where the electron density is higher, or far away from them, where the electron density is lower.

  20. Many-Body Atomic Physics

    NASA Astrophysics Data System (ADS)

    Boyle, J. J.; Pindzola, M. S.

    1998-09-01

    Preface; Contributors; Introduction; Part I. Atomic Structure: 1. Development of atomic many-body theory Ingvar Lindgren; 2. Relativistic MBPT for highly charged ions W. R. Johnson; 3. Parity nonconservation in atoms S. A. Blundell, W. R. Johnson, and J. Sapirstein; Part II. Photoionization of Atoms: 4. Single photoionization processes J. J. Boyle, and M. D. Kutzner; 5. Photoionization dominated by double excitation T. N. Chang; 6. Direct double photoionization in atoms Z. W. Liu; 7. Photoelectron angular distributions Steven T. Manson; Part III. A. Atomic Scattering - General Considerations: 8. The many-body approach to electron-atom collisions M. Ya Amusia; 9. Theoretical aspects of electron impact ionization P. L. Altick; Part III. B. Atomic Scattering - Low-Order Applications: 10. Perturbation series methods D. H. Madison; 11. Target dependence of the triply differential cross section Cheng Pan and Anthony F. Starace; 12. Overview of Thomas processes for fast mass transfer J. H. McGuire, Jack C. Straton and T. Ishihara; Part III. C. Atomic Scattering - All-Order Applications: 13. R-matrix Theory: Some Recent Applications Philip G. Burke: 14. Electron scattering: application of Dirac R-matrix theory Wasantha Wijesundera, Ian Grant and Patrick Norrington; 15. Close coupling and distorted-wave theory D. C. Griffin and M. S. Pindzola; Appendix: Units and notation; References; Index.

  1. Many-Body Atomic Physics

    NASA Astrophysics Data System (ADS)

    Boyle, J. J.; Pindzola, M. S.

    2005-11-01

    Preface; Contributors; Introduction; Part I. Atomic Structure: 1. Development of atomic many-body theory Ingvar Lindgren; 2. Relativistic MBPT for highly charged ions W. R. Johnson; 3. Parity nonconservation in atoms S. A. Blundell, W. R. Johnson, and J. Sapirstein; Part II. Photoionization of Atoms: 4. Single photoionization processes J. J. Boyle, and M. D. Kutzner; 5. Photoionization dominated by double excitation T. N. Chang; 6. Direct double photoionization in atoms Z. W. Liu; 7. Photoelectron angular distributions Steven T. Manson; Part III. A. Atomic Scattering - General Considerations: 8. The many-body approach to electron-atom collisions M. Ya Amusia; 9. Theoretical aspects of electron impact ionization P. L. Altick; Part III. B. Atomic Scattering - Low-Order Applications: 10. Perturbation series methods D. H. Madison; 11. Target dependence of the triply differential cross section Cheng Pan and Anthony F. Starace; 12. Overview of Thomas processes for fast mass transfer J. H. McGuire, Jack C. Straton and T. Ishihara; Part III. C. Atomic Scattering - All-Order Applications: 13. R-matrix Theory: Some Recent Applications Philip G. Burke: 14. Electron scattering: application of Dirac R-matrix theory Wasantha Wijesundera, Ian Grant and Patrick Norrington; 15. Close coupling and distorted-wave theory D. C. Griffin and M. S. Pindzola; Appendix: Units and notation; References; Index.

  2. Nonrelativistic and Relativistic Quantum Theory Applied to Problems in Molecular Physics

    NASA Astrophysics Data System (ADS)

    Park, Changyok

    1995-01-01

    To describe molecules properly we need to use quantum theory. Nonrelativistic quantum mechanics can be used in such studies. For this, we need to solve the Schrodinger equation with a given proper Hamiltonian. As an application of nonrelativistic quantum mechanics, the ferrocene molecule has been studied. The metal-ligand distance in ferrocene has been calculated with several different electronic structure methods. The only treatment able to reproduce the experimental value is the MCPF (Modified Coupled Pair Functional) approach with all 66 valence electrons correlated. Large basis sets are necessary to account for the dispersion interaction between the rings. The speed of electron in the innermost shells of heavy atoms is close to the speed of light. Therefore, we need to include relativistic effect in the study of molecules composed of heavy atoms (e.g. Au or Pt). We can derive a proper electronic Hamiltonian for the study of relativistic effects from Bethe-Salpeter Hamiltonian. As an application of the relativistic quantum mechanics two-electron relativistic effects in molecules has been studied. A computationally efficient method to account for such effects in a spin free no-pair Hamiltonian has been investigated. The approach amounts to a modification of integrals familiar from non-relativistic theory, and is therefore compatible with a variety of different correlation treatments. We have applied the method in Hartree-Fock and MP2 calculations on dimers and hydrides of Ag, Au and Pt.

  3. Project Physics Tests 5, Models of the Atom.

    ERIC Educational Resources Information Center

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    Test items relating to Project Physics Unit 5 are presented in this booklet. Included are 70 multiple-choice and 23 problem-and-essay questions. Concepts of atomic model are examined on aspects of relativistic corrections, electron emission, photoelectric effects, Compton effect, quantum theories, electrolysis experiments, atomic number and mass,…

  4. De-Excitation of Guiding-Center Atoms.

    NASA Astrophysics Data System (ADS)

    Bass, E.; Dubin, D.

    2004-11-01

    The rate ν at which guiding-center antihydrogen atoms relax to the ground state is determined through theory and simulation. The rate is found to be slow compared to the rate atoms leave the trap in current antimatter recombination experiments.(G. Gabrielse et al.), Phys. Rev. Lett. 89, 213401 (2002); M. Amoretti et al., Nature (London) 419, 456 (2002). These experiments operate in the strongly magnetized regime where guiding-center atoms(M.E. Glinsky and T.M. O'Neil, Phys. Fluids B 3), 1279 (1991). are expected, defined by \\chi = rc / b ≪ 1, with rc the positron cyclotron radius and b = e^2 / kT the classical distance of closest approach. The atoms evolve to deeper binding through two distinct collisional processes: drag on the positron orbit from large impact parameter collisions, and positron replacement from small impact parameter collisions. The rate of energy loss from drag, previously predicted to increase monotonically with binding energy,(L.I. Men'shikov and P.O. Fedichev, JETP 81), 78 (1995). is actually marked by an adiabatic cutoff,(E.M. Bass and D.H.E. Dubin, Phys. Plasmas 11), 1240 (2004). making rare close collisions the dominant relaxation process at deep binding. A Monte-Carlo simulation confirms this result.

  5. Thermodynamic and relativistic uncertainty relations

    NASA Astrophysics Data System (ADS)

    Artamonov, A. A.; Plotnikov, E. M.

    2017-01-01

    Thermodynamic uncertainty relation (UR) was verified experimentally. The experiments have shown the validity of the quantum analogue of the zeroth law of stochastic thermodynamics in the form of the saturated Schrödinger UR. We have also proposed a new type of UR for the relativistic mechanics. These relations allow us to consider macroscopic phenomena within the limits of the ratio of the uncertainty relations for different physical quantities.

  6. Relativistic tunneling through opaque barriers

    SciTech Connect

    De Leo, Stefano; Leonardi, Vinicius

    2011-02-15

    We propose an analytical study of relativistic tunneling through opaque barriers. We obtain a closed formula for the phase time. This formula is in excellent agreement with the numerical simulations and corrects the standard formula obtained by the stationary phase method. An important result is found when the upper limit of the incoming energy distribution coincides with the upper limit of the tunneling zone. In this case, the phase time is proportional to the barrier width.

  7. Relativistic optics of nondispersive media

    SciTech Connect

    Miron, R.; Zet, G.

    1995-09-01

    The relativistic optics of the nondispersive media endowed with the metric g{sub ij}(x) and with a nonlinear connection is studied. The d-connection relates the conformal and projective properties of the space-time. A post-Newtonian estimation for the metric g{sub ij} is also given. It is shown that the solar system tests impose a constraint on a combination of the post-Newtonian parameters describing the model.

  8. Relativistic Binaries in Globular Clusters.

    PubMed

    Benacquista, Matthew J; Downing, Jonathan M B

    2013-01-01

    Galactic globular clusters are old, dense star systems typically containing 10(4)-10(6) stars. As an old population of stars, globular clusters contain many collapsed and degenerate objects. As a dense population of stars, globular clusters are the scene of many interesting close dynamical interactions between stars. These dynamical interactions can alter the evolution of individual stars and can produce tight binary systems containing one or two compact objects. In this review, we discuss theoretical models of globular cluster evolution and binary evolution, techniques for simulating this evolution that leads to relativistic binaries, and current and possible future observational evidence for this population. Our discussion of globular cluster evolution will focus on the processes that boost the production of tight binary systems and the subsequent interaction of these binaries that can alter the properties of both bodies and can lead to exotic objects. Direct N-body integrations and Fokker-Planck simulations of the evolution of globular clusters that incorporate tidal interactions and lead to predictions of relativistic binary populations are also discussed. We discuss the current observational evidence for cataclysmic variables, millisecond pulsars, and low-mass X-ray binaries as well as possible future detection of relativistic binaries with gravitational radiation.

  9. Double-sided Relativistic Magnetron

    NASA Astrophysics Data System (ADS)

    Agafonov, A. V.; Krastelev, E. G.

    1997-05-01

    A new scheme of a symmetricaly powered relativistic magnetron and several methods of localised electron flow forming in an interaction region are proposed to increase an efficiency of relativistic magnetrons. As will be shown, a very important reason is the effect of nonsymmetric feeding of power from one side of a magnetron, which is typical for experiments. One-sided powering leads to the axial drift of electrons, to the transformation of transverse velocities of electrons to longitudinal one and to the generation of a parasitic e-beam which does not take part in energy exchange between electrons and waves at all. A special driver was designed for double-sided powering of relativistic magnetrons. The proposed system is compact, rigid and capable of reliable operation at high repetition rates, which is advantageous for many applications. Several smooth-bore magnetrons were tested by means of computer simulations using PIC code KARAT. The results showed a dramatical difference between the dynamics of electron flow for one- and two-sided power feeding of a structure under test. Design of a driver and computer simulation results are presented.

  10. Relativistic Tennis Using Flying Mirror

    SciTech Connect

    Pirozhkov, A. S.; Kando, M.; Ma, J.; Fukuda, Y.; Chen, L.-M.; Daito, I.; Ogura, K.; Homma, T.; Hayashi, Y.; Kotaki, H.; Sagisaka, A.; Mori, M.; Koga, J. K.; Kawachi, T.; Daido, H.; Kimura, T.; Kato, Y.; Tajima, T.; Esirkepov, T. Zh.; Bulanov, S. V.

    2008-06-24

    Upon reflection from a relativistic mirror, the electromagnetic pulse frequency is upshifted and the duration is shortened by the factor proportional to the relativistic gamma-factor squared due to the double Doppler effect. We present the results of the proof-of-principle experiment for frequency upshifting of the laser pulse reflected from the relativistic 'flying mirror', which is a wake wave near the breaking threshold created by a strong driver pulse propagating in underdense plasma. Experimentally, the wake wave is created by a 2 TW, 76 fs Ti:S laser pulse from the JLITE-X laser system in helium plasma with the electron density of {approx_equal}4-6x10{sup 19} cm{sup -3}. The reflected signal is observed with a grazing-incidence spectrograph in 24 shots. The wavelength of the reflected radiation ranges from 7 to 14 nm, the corresponding frequency upshifting factors are {approx}55-115, and the gamma-factors are y = 4-6. The reflected signal contains at least 3x10{sup 7} photons/sr. This effect can be used to generate coherent high-frequency ultrashort pulses that inherit temporal shape and polarization from the original (low-frequency) ones. Apart from this, the reflected radiation contains important information about the wake wave itself, e.g. location, size, phase velocity, etc.

  11. Relativistic Celestial Mechanics of the Solar System

    NASA Astrophysics Data System (ADS)

    Kopeikin, Sergei; Efroimsky, Michael; Kaplan, George

    2011-09-01

    The general theory of relativity was developed by Einstein a century ago. Since then, it has become the standard theory of gravity, especially important to the fields of fundamental astronomy, astrophysics, cosmology, and experimental gravitational physics. Today, the application of general relativity is also essential for many practical purposes involving astrometry, navigation, geodesy, and time synchronization. Numerous experiments have successfully tested general relativity to a remarkable level of precision. Exploring relativistic gravity in the solar system now involves a variety of high-accuracy techniques, for example, very long baseline radio interferometry, pulsar timing, spacecraft Doppler tracking, planetary radio ranging, lunar laser ranging, the global positioning system (GPS), torsion balances and atomic clocks. Over the last few decades, various groups within the International Astronomical Union have been active in exploring the application of the general theory of relativity to the modeling and interpretation of high-accuracy astronomical observations in the solar system and beyond. A Working Group on Relativity in Celestial Mechanics and Astrometry was formed in 1994 to define and implement a relativistic theory of reference frames and time scales. This task was successfully completed with the adoption of a series of resolutions on astronomical reference systems, time scales, and Earth rotation models by the 24th General Assembly of the IAU, held in Manchester, UK, in 2000. However, these resolutions only form a framework for the practical application of relativity theory, and there have been continuing questions on the details of the proper application of relativity theory to many common astronomical problems. To ensure that these questions are properly addressed, the 26th General Assembly of the IAU, held in Prague in August 2006, established the IAU Commission 52, "Relativity in Fundamental Astronomy". The general scientific goals of the new

  12. Range of validity for perturbative treatments of relativistic sum rules

    NASA Astrophysics Data System (ADS)

    Cohen, Scott M.

    2003-10-01

    The range of validity of perturbative calculations of relativistic sum rules is investigated by calculating the second-order relativistic corrections to the Bethe sum rule and its small momentum limit, the Thomas-Reiche-Kuhn (TRK) sum rule. For the TRK sum rule and atomic systems, the second-order correction is found to be less than 0.5% up to about Z=70. The total relativistic corrections should then be accurate at least through this range of Z, and probably beyond this range if the second-order terms are included. For Rn (Z=86), however, the second-order corrections are nearly 1%. The total corrections to the Bethe sum rule are largest at small momentum, never being significantly larger than the corresponding corrections to the TRK sum rule. The first-order corrections to the Bethe sum rule also give better than 0.5% accuracy for Z<70, and inclusion of the second-order corrections should extend this range, as well.

  13. MHD Equation of State with Relativistic Electrons

    NASA Astrophysics Data System (ADS)

    Gong, Zhigang; Däppen, Werner; Zejda, Ladislav

    2001-01-01

    The Mihalas-Däppen-Hummer (MHD) equation of state does not include the effect of relativistic partially degenerate electrons, although nonrelativistic partial degeneracy is taken into account. The discovery of a relativistic correction in helioseismology forces us to perform an appropriate upgrade of the MHD equation of state. We have adopted the method of J. M. Aparicio to evaluate the relativistic Fermi-Dirac functions. Our calculations confirm the validity of the approximation used, which works well for the weakly relativistic electrons under solar-center conditions. However, our results will also provide reliable thermodynamic quantities in the stronger relativistic regime as found in more massive stars. Since a particular feature of the original MHD papers was an explicit list of the adopted free energy and its first- and second-order analytical derivatives, we give the corresponding relativistic quantities in the Appendix.

  14. Relativistic high harmonics and (sub-)attosecond pulses: relativistic spikes and relativistic mirror

    NASA Astrophysics Data System (ADS)

    Pukhov, A.; Baeva, T.; An der Brügge, D.; Münster, S.

    2009-11-01

    Using particle-in-cell simulations, we study high harmonic generation from overdense plasmas in the relativistic regime. Different incidence angles as well as different laser polarizations are considered and scalings are recovered. It is shown that the theory of relativistic spikes and the BGP power-law spectra [Phys. Rev. E 74, 046404 (2006)] describes well the normal incidence and s-polarized obliquely incident laser pulses. In the case of p-polarized laser pulses, exceptions from the BGP theory can appear when the quasi-static vector potential build-up at the plasma boundary becomes equal to that of the laser. In this case, the spectrum flattens significantly and has a lower cutoff.

  15. Relativistic Navigation: A Theoretical Foundation

    NASA Technical Reports Server (NTRS)

    Turyshev, Slava G.

    1996-01-01

    We present a theoretical foundation for relativistic astronomical measurements in curved space-time. In particular, we discuss a new iterative approach for describing the dynamics of an isolated astronomical N-body system in metric theories of gravity. To do this, we generalize the Fock-Chandrasekhar method of the weak-field and slow-motion approximation (WFSMA) and develop a theory of relativistic reference frames (RF's) for a gravitationally bounded many-extended-body problem. In any proper RF constructed in the immediate vicinity of an arbitrary body, the N-body solutions of the gravitational field equations are formally presented as a sum of the Riemann-flat inertial space-time, the gravitational field generated by the body itself, the unperturbed solutions for each body in the system transformed to the coordinates of this proper RF, and the gravitational interaction term. We develop the basic concept of a general WFSMA theory of the celestial RF's applicable to a wide class of metric theories of gravity and an arbitrary model of matter distribution. We apply the proposed method to general relativity. Celestial bodies are described using a perfect fluid model; as such, they possess any number of internal mass and current multipole moments that explicitly characterize their internal structures. The obtained relativistic corrections to the geodetic equations of motion arise because of a coupling of the bodies' multiple moments to the surrounding gravitational field. The resulting relativistic transformations between the different RF's extend the Poincare group to the motion of deformable self-gravitating bodies. Within the present accuracy of astronomical measurements we discuss the properties of the Fermi-normal-like proper RF that is defined in the immediate vicinity of the extended compact bodies. We further generalize the proposed approximation method and include two Eddington parameters (gamma, Beta). This generalized approach was used to derive the

  16. A relativistic correction to semiclassical charmonium

    NASA Astrophysics Data System (ADS)

    Weiss, J.

    1995-09-01

    It is shown that the relativistic linear potentials, introduced by the author within the particle à la Wheeler-Feynman direct-interaction (AAD) theory, applied to the semiclassically quantized charmonium, yield energy spectrum comparable to that of some known models. Using the expansion of the relativistic linear AAD potentials in powers ofc -1, the charmonium spectrum, given as a rule by Bohr-Sommerfeld quantization of circular orbits, is extended up to the second order of relativistic corrections.

  17. Relativistic Electron Wave Packets Carrying Angular Momentum

    NASA Astrophysics Data System (ADS)

    Bialynicki-Birula, Iwo; Bialynicka-Birula, Zofia

    2017-03-01

    There are important differences between the nonrelativistic and relativistic description of electron beams. In the relativistic case the orbital angular momentum quantum number cannot be used to specify the wave functions and the structure of vortex lines in these two descriptions is completely different. We introduce analytic solutions of the Dirac equation in the form of exponential wave packets and we argue that they properly describe relativistic electron beams carrying angular momentum.

  18. Relativistic radiation transport in dispersive media

    SciTech Connect

    Kichenassamy, S.; Krikorian, R.A.

    1985-10-15

    A general-relativistic radiative transfer equation in an isotropic, weakly absorbing, nonmagnetized dispersive medium is derived using the kinetic-theoretical approach and the relativistic Hamiltonian theory of geometrical optics in those media. It yields the generally accepted classical equation in the special-relativistic approximation and in stationary conditions. The influence of the gravitational field and of space-time variations of the refractive index n on the radiation distribution is made explicit in the case of spherical symmetry.

  19. Mesoscopic Superposition States in Relativistic Landau Levels

    SciTech Connect

    Bermudez, A.; Martin-Delgado, M. A.; Solano, E.

    2007-09-21

    We show that a linear superposition of mesoscopic states in relativistic Landau levels can be built when an external magnetic field couples to a relativistic spin 1/2 charged particle. Under suitable initial conditions, the associated Dirac equation produces unitarily superpositions of coherent states involving the particle orbital quanta in a well-defined mesoscopic regime. We demonstrate that these mesoscopic superpositions have a purely relativistic origin and disappear in the nonrelativistic limit.

  20. Relativistic Electron Wave Packets Carrying Angular Momentum.

    PubMed

    Bialynicki-Birula, Iwo; Bialynicka-Birula, Zofia

    2017-03-17

    There are important differences between the nonrelativistic and relativistic description of electron beams. In the relativistic case the orbital angular momentum quantum number cannot be used to specify the wave functions and the structure of vortex lines in these two descriptions is completely different. We introduce analytic solutions of the Dirac equation in the form of exponential wave packets and we argue that they properly describe relativistic electron beams carrying angular momentum.

  1. Effect of Chaos on Relativistic Quantum Tunneling

    DTIC Science & Technology

    2012-06-01

    Effect of chaos on relativistic quantum tunneling This article has been downloaded from IOPscience. Please scroll down to see the full text article...of chaos on relativistic quantum tunneling 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e...tunneling dynamics even in the relativistic quantum regime. Similar phenomena have been observed in graphene. A physical theory is developed to

  2. Loading relativistic Maxwell distributions in particle simulations

    SciTech Connect

    Zenitani, Seiji

    2015-04-15

    Numerical algorithms to load relativistic Maxwell distributions in particle-in-cell (PIC) and Monte-Carlo simulations are presented. For stationary relativistic Maxwellian, the inverse transform method and the Sobol algorithm are reviewed. To boost particles to obtain relativistic shifted-Maxwellian, two rejection methods are proposed in a physically transparent manner. Their acceptance efficiencies are ≈50% for generic cases and 100% for symmetric distributions. They can be combined with arbitrary base algorithms.

  3. Relativistic soliton-like collisionless ionization wave

    NASA Astrophysics Data System (ADS)

    Arefiev, Alexey; McCormick, Matthew; Quevedo, Hernan; Bengtson, Roger; Ditmire, Todd

    2014-10-01

    It has been observed in recent experiments with laser-irradiated gas jets that a plasma filament produced by the laser and containing energetic electrons can launch a relativistic ionization wave into ambient gas. Here we present a self-consistent theory that explains how a collisionless ionization wave can propagate in a self-sustaining regime. A population of hot electrons necessarily generates a sheath electric field at the plasma boundary. This field penetrates the ambient gas, ionizing the gas atoms and thus causing the plasma boundary to expand. We show that the motion of the newly generated electrons can form a potential well adjacent to the plasma boundary. The outwards motion of the well causes a bunch of energetic electrons to become trapped, while allowing the newly generated electrons to escape into the plasma without retaining much energy. The resulting soliton-like ionizing field structure propagates outwards with a bunch of hot electrons that maintain a strong sheath field despite significant plasma expansion. We also present 1D and 2D particle-in-cell simulations that illustrate the described mechanism. The simulations were performed using HPC resources provided by the Texas Advanced Computing Center. This work was supported by NNSA Contract No. DE-FC52-08NA28512 and U.S. DOE Contract No. DE-FG02-04ER54742.

  4. Ab initio non-relativistic spin dynamics

    SciTech Connect

    Ding, Feizhi; Goings, Joshua J.; Li, Xiaosong; Frisch, Michael J.

    2014-12-07

    Many magnetic materials do not conform to the (anti-)ferromagnetic paradigm where all electronic spins are aligned to a global magnetization axis. Unfortunately, most electronic structure methods cannot describe such materials with noncollinear electron spin on account of formally requiring spin alignment. To overcome this limitation, it is necessary to generalize electronic structure methods and allow each electron spin to rotate freely. Here, we report the development of an ab initio time-dependent non-relativistic two-component spinor (TDN2C), which is a generalization of the time-dependent Hartree-Fock equations. Propagating the TDN2C equations in the time domain allows for the first-principles description of spin dynamics. A numerical tool based on the Hirshfeld partitioning scheme is developed to analyze the time-dependent spin magnetization. In this work, we also introduce the coupling between electron spin and a homogenous magnetic field into the TDN2C framework to simulate the response of the electronic spin degrees of freedom to an external magnetic field. This is illustrated for several model systems, including the spin-frustrated Li{sub 3} molecule. Exact agreement is found between numerical and analytic results for Larmor precession of hydrogen and lithium atoms. The TDN2C method paves the way for the ab initio description of molecular spin transport and spintronics in the time domain.

  5. Relativistic effects of the rotation of the earth on remote clock synchronization

    NASA Technical Reports Server (NTRS)

    Reinhardt, V.

    1974-01-01

    A treatment is given of relativistic clock synchronization effects due to the rotation of the earth. Unlike other approaches, the point of view of an earth fixed coordinate system is used which offers insight to many problems. An attempt is made to give the reader an intuitive grasp of the subject as well as to provide formulae for his use. Specific applications to global timekeeping, navigation, VLBI, relativistic clock experiments, and satellite clock synchronization are discussed. The question of whether atomic clocks are ideal clocks is also treated.

  6. Relativistic electronic dressing in laser-assisted electron-hydrogen elastic collisions

    SciTech Connect

    Attaourti, Y.; Manaut, B.; Makhoute, A.

    2004-06-01

    We study the effects of the relativistic electronic dressing in laser-assisted electron-hydrogen atom elastic collisions. We begin by considering the case when no radiation is present. This is necessary in order to check the consistency of our calculations and we then carry out the calculations using the relativistic Dirac-Volkov states. It turns out that a simple formal analogy links the analytical expressions of the unpolarized differential cross section without laser and the unpolarized differential cross section in the presence of a laser field.

  7. An infinite-order two-component relativistic Hamiltonian by a simple one-step transformation.

    PubMed

    Ilias, Miroslav; Saue, Trond

    2007-02-14

    The authors report the implementation of a simple one-step method for obtaining an infinite-order two-component (IOTC) relativistic Hamiltonian using matrix algebra. They apply the IOTC Hamiltonian to calculations of excitation and ionization energies as well as electric and magnetic properties of the radon atom. The results are compared to corresponding calculations using identical basis sets and based on the four-component Dirac-Coulomb Hamiltonian as well as Douglas-Kroll-Hess and zeroth-order regular approximation Hamiltonians, all implemented in the DIRAC program package, thus allowing a comprehensive comparison of relativistic Hamiltonians within the finite basis approximation.

  8. Do non-relativistic neutrinos oscillate?

    NASA Astrophysics Data System (ADS)

    Akhmedov, Evgeny

    2017-07-01

    We study the question of whether oscillations between non-relativistic neutrinos or between relativistic and non-relativistic neutrinos are possible. The issues of neutrino production and propagation coherence and their impact on the above question are discussed in detail. It is demonstrated that no neutrino oscillations can occur when neutrinos that are non-relativistic in the laboratory frame are involved, except in a strongly mass-degenerate case. We also discuss how this analysis depends on the choice of the Lorentz frame. Our results are for the most part in agreement with Hinchliffe's rule.

  9. Dissipation in relativistic pair-plasma reconnection

    SciTech Connect

    Hesse, Michael; Zenitani, Seiji

    2007-11-15

    An investigation into the relativistic dissipation in magnetic reconnection is presented. The investigated system consists of an electron-positron plasma. A relativistic generalization of Ohm's law is derived. A set of numerical simulations is analyzed, composed of runs with and without guide magnetic field, and of runs with different species temperatures. The calculations indicate that the thermal inertia-based dissipation process survives in relativistic plasmas. For antiparallel reconnection, it is found that the pressure tensor divergence remains the sole contributor to the reconnection electric field, whereas relativistic guide field reconnection exhibits a similarly important role of the bulk inertia terms.

  10. Dissipation in Relativistic Pair-Plasma Reconnection

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Zenitani, Seiji

    2007-01-01

    We present an investigation of the relativistic dissipation in magnetic reconnection. The investigated system consists of an electron-positron plasma. A relativistic generalization of Ohm's law is derived. We analyze a set of numerical simulations, composed of runs with and without guide magnetic field, and of runs with different species temperatures. The calculations indicate that the thermal inertia-based dissipation process survives in relativistic plasmas. For anti-parallel reconnection, it is found that the pressure tensor divergence remains the sole contributor to the reconnection electric field, whereas relativistic guide field reconnection exhibits a similarly important role of the bulk inertia terms.

  11. Relativistic Bernstein waves in a degenerate plasma

    SciTech Connect

    Ali, Muddasir; Hussain, Azhar; Murtaza, G.

    2011-09-15

    Bernstein mode for a relativistic degenerate electron plasma is investigated. Using relativistic Vlasov-Maxwell equations, a general expression for the conductivity tensor is derived and then employing Fermi-Dirac distribution function a generalized dispersion relation for the Bernstein mode is obtained. Two limiting cases, i.e., non-relativistic and ultra-relativistic are discussed. The dispersion relations obtained are also graphically presented for some specific values of the parameters depicting how the propagation characteristics of Bernstein waves as well as the Upper Hybrid oscillations are modified with the increase in plasma number density.

  12. What is the relativistic spin operator?

    NASA Astrophysics Data System (ADS)

    Bauke, Heiko; Ahrens, Sven; Keitel, Christoph H.; Grobe, Rainer

    2014-04-01

    Although the spin is regarded as a fundamental property of the electron, there is no universally accepted spin operator within the framework of relativistic quantum mechanics. We investigate the properties of different proposals for a relativistic spin operator. It is shown that most candidates are lacking essential features of proper angular momentum operators, leading to spurious zitterbewegung (quivering motion) or violation of the angular momentum algebra. Only the Foldy-Wouthuysen operator and the Pryce operator qualify as proper relativistic spin operators. We demonstrate that ground states of highly charged hydrogen-like ions can be utilized to identify a legitimate relativistic spin operator experimentally.

  13. Relabeling symmetry in relativistic fluids and plasmas

    NASA Astrophysics Data System (ADS)

    Kawazura, Yohei; Yoshida, Zensho; Fukumoto, Yasuhide

    2014-10-01

    The conservation of the recently formulated relativistic canonical helicity is derived from Noether's theorem with the fluid elements' relabeling symmetry. Upon Eulerianizing the Noether current, the purely spatial volume integral on the Lagrangian coordinates is mapped to a space-time mixed three-dimensional integral on the four-dimensional Eulerian coordinates. The relativistic conservation law in the Eulerian coordinates is no longer represented by any divergence-free current. We have also formulated a relativistic action principle of MHD on the Lagrangian coordinates, and have derived the relativistic MHD cross helicity. Work supported by Grant-in-Aid for JSPS Fellows 241010.

  14. Relativistic and non-relativistic solitons in plasmas

    NASA Astrophysics Data System (ADS)

    Barman, Satyendra Nath

    This thesis entitled as "Relativistic and Non-relativistic Solitons in Plasmas" is the embodiment of a number of investigations related to the formation of ion-acoustic solitary waves in plasmas under various physical situations. The whole work of the thesis is devoted to the studies of solitary waves in cold and warm collisionless magnetized or unmagnetized plasmas with or without relativistic effect. To analyze the formation of solitary waves in all our models of plasmas, we have employed two established methods namely - reductive perturbation method to deduce the Korteweg-de Vries (KdV) equation, the solutions of which represent the important but near exact characteristic concepts of soliton-physics. Next, the pseudopotential method to deduce the energy integral with total nonlinearity in the coupling process for exact characteristic results of solitons has been incorporated. In Chapter 1, a brief description of plasma in nature and laboratory and its generation are outlined elegantly. The nonlinear differential equations to characterize solitary waves and the relevant but important methods of solutions have been mentioned in this chapter. The formation of solitary waves in unmagnetized and magnetized plasmas, and in relativistic plasmas has been described through mathematical entity. Applications of plasmas in different fields are also put forwarded briefly showing its importance. The study of plasmas as they naturally occur in the universe encompasses number of topics including sun's corona, solar wind, planetary magnetospheres, ionospheres, auroras, cosmic rays and radiation. The study of space weather to understand the universe, communications and the activities of weather satellites are some useful areas of space plasma physics. The surface cleaning, sterilization of food and medical appliances, killing of bacteria on various surfaces, destroying of viruses, fungi, spores and plasma coating in industrial instruments ( like computers) are some of the fields

  15. Relativistic Plasma Polarizer: Impact of Temperature Anisotropy on Relativistic Transparency.

    PubMed

    Stark, David J; Bhattacharjee, Chinmoy; Arefiev, Alexey V; Toncian, Toma; Hazeltine, R D; Mahajan, S M

    2015-07-10

    3D particle-in-cell simulations demonstrate that the enhanced transparency of a relativistically hot plasma is sensitive to how the energy is partitioned between different degrees of freedom. For an anisotropic electron distribution, propagation characteristics, like the critical density, will depend on the polarization of the electromagnetic wave. Despite the onset of the Weibel instability in such plasmas, the anisotropy can persist long enough to affect laser propagation. This plasma can then function as a polarizer or a wave plate to dramatically alter the pulse polarization.

  16. Ab initio relativistic effective potentials with spin--orbit operators. IV. Cs through Rn

    SciTech Connect

    Ross, R.B.; Powers, J.M.; Atashroo, T.; Ermler, W.C. ); LaJohn, L.A.; Christiansen, P.A. )

    1990-11-01

    {ital Ab} {ital initio} averaged relativistic effective core potentials (AREP) and spin--orbit (SO) operators are reported for the elements Cs through Rn. Two sets have been calculated for certain elements to provide AREPs with varying core/valence space definitions thereby permitting the treatment of core--valence correlation interactions. The AREPs and SO operators are tabulated as expansions in Gaussian-type functions (GTF). GTF valence basis sets for the lowest energy state of each atom are tabulated. The reliability of the AREPs and SO operators is gauged by comparing calculated atomic excitation energies and SO splitting energies with all-electron relativistic values. Calculated atomic excitation energies are found to agree to 0.12 eV and SO energies to 3.4%.

  17. Ab initio relativistic effective potentials with spin--orbit operators. III. Rb through Xe

    SciTech Connect

    LaJohn, L.A.; Christiansen, P.A.; Ross, R.B.; Atashroo, T.; Ermler, W.C.

    1987-09-01

    A refined version of the ''shape consistent'' effective potential procedure of Christiansen, Lee, and Pitzer was used to compute averaged relativistic effective potentials (AREP) and spin--orbit operators for the elements Rb through Xe. Particular attention was given to the partitioning of the core and valence space and, where appropriate, more than one set of potentials is provided. These are tabulated in analytic form. Gaussian basis sets with contraction coefficients for the lowest energy state of each atom are given. The reliability of the transition metal AREPs was examined by comparing computed atomic excitation energies with accurate all-electron relativistic values. The spin--orbit operators were tested in calculations on selected atoms.

  18. Open quantum dots in graphene: Scaling relativistic pointer states

    NASA Astrophysics Data System (ADS)

    Ferry, D. K.; Huang, L.; Yang, R.; Lai, Y.-C.; Akis, R.

    2010-04-01

    Open quantum dots provide a window into the connection between quantum and classical physics, particularly through the decoherence theory, in which an important set of quantum states are not "washed out" through interaction with the environment-the pointer states provide connection to trapped classical orbits which remain stable in the dots. Graphene is a recently discovered material with highly unusual properties. This single layer, one atom thick, sheet of carbon has a unique bandstructure, governed by the Dirac equation, in which charge carriers imitate relativistic particles with zero rest mass. Here, an atomic orbital-based recursive Green's function method is used for studying the quantum transport. We study quantum fluctuations in graphene and bilayer graphene quantum dots with this recursive Green's function method. Finally, we examine the scaling of the domiant fluctuation frequency with dot size.

  19. Relativistic calculations of excited states of molecular iodine

    NASA Astrophysics Data System (ADS)

    Teichteil, C.; Pelissier, M.

    1994-02-01

    An ab initio relativistic atomic pseudopotential method is used for the calculation of the 23 valence excited states of the I 2 molecule which dissociate into the 2Pj+ 2Pj' ( J, J' = 3/2, 1/2) atomic states. The vertical transition energies are in very good agreement with experimental results, and the deficiency of the dissociation energy is discussed. The potential energy curves are given without and with spin-orbit coupling, and a semi-empirical improvement is proposed. In this way, we obtain for the first time very reliable potential energy curves for these excited states. The quality of these curves is tested by a careful comparison with all the available experimental data.

  20. Excitation of heavy hydrogenlike ions in relativistic collisions

    SciTech Connect

    Voitkiv, A. B.; Najjari, B.; Ullrich, J.

    2007-06-15

    We study the excitation of heavy hydrogenlike ions occurring in high-energy collisions with many-electron atoms by considering three theoretical approaches. In all of them the initial and final undistorted states of the electron in the ion are described by relativistic Coulomb-Dirac wave functions. In two of these approaches the interaction between the electron of the ion and the atom is described within the first order perturbation theory. In the first approach the presence of the atomic electrons is neglected whereas the second approach takes them into account. The comparison of results of these two approaches allows one to establish the range of collision energies where the effect of the electrons of the atom on the excitation process is weak and can be neglected. At these energies, however, the interaction between the electron of the ion and the nucleus of the atom may become too strong for the first order theory to be a good approximation. In order to deal with this point we present the third approach which is based on the symmetric eikonal approximation. Theoretical results are compared with available experimental data.

  1. Relativistic Plasma Polarizer: Impact of Temperature Anisotropy on Relativistic Transparency

    NASA Astrophysics Data System (ADS)

    Hazeltine, R. D.; Stark, David J.; Bhattacharjee, Chinmoy; Arefiev, Alexey V.; Toncian, Toma; Mahajan, S. M.

    2015-11-01

    3D particle-in-cell simulations demonstrate that the enhanced transparency of a relativistically hot plasma is sensitive to how the energy is partitioned between different degrees of freedom. We consider here the simplest problem: the propagation of a low amplitude pulse through a preformed relativistically hot anisotropic electron plasma to explore its intrinsic dielectric properties. We find that: 1) the critical density for propagation depends strongly on the pulse polarization, 2) two plasmas with the same density and average energy per electron can exhibit profoundly different responses to electromagnetic pulses, 3) the anisotropy-driven Weibel instability develops as expected; the timescales of the growth and back reaction (on anisotropy), however, are long enough that sufficient anisotropy persists for the entire duration of the simulation. This plasma can then function as a polarizer or a wave plate to dramatically alter the pulse polarization. This work was supported by the U.S. DOE Contract Nos. DE-FG02-04ER54742 and DE-AC05-06OR23100 (D. J. S.) and NNSA Contract No. DE-FC52-08NA28512.

  2. Relativistic Sommerfeld Low Temperature Expansion

    NASA Astrophysics Data System (ADS)

    Lourenço, O.; Dutra, M.; Delfino, A.; Sá Martins, J. S.

    We derive a relativistic Sommerfeld expansion for thermodynamic quantities in many-body fermionic systems. The expansion is used to generate the equation of state of the Walecka model and its isotherms. We find that these results are in good agreement with numerical calculations, even when the expansion is truncated at its lowest order, in the low temperature regime, defined by T/xf ≪ 1. Although the interesting region near the liquid-gas phase transition is excluded by this criterion, the expansion may still find usefulness in the study of very cold nuclear matter systems, such as neutron stars.

  3. Relativistic shock spectra: A prediction

    NASA Technical Reports Server (NTRS)

    Katz, J. I.

    1994-01-01

    I argue that particles heated by relativistic shocks should assume an equilibrium energy distribution. This leads to a synchrotron spectrum F(sub nu) varies as nu(sup 1/3) up to approximately the critical frequency nu(sub 0) of an electron with the mean electron energy. Application to gamma ray bursts (GRB's) implies that a burst with 10(exp -5) erg/(sq cm s) of soft gamma-rays and h(nu(sub 0)) = 300 KeV should be about 18th magnitude in visible light and a few micro-Jy at 1 GHz (less if self-absorbed).

  4. A relativistically covariant random walk

    NASA Astrophysics Data System (ADS)

    Almaguer, J.; Larralde, H.

    2007-08-01

    In this work we present and analyze an extremely simple relativistically covariant random walk model. In our approach, the probability density and the flow of probability arise naturally as the components of a four-vector and they are related to one another via a tensorial constitutive equation. We show that the system can be described in terms of an underlying invariant space time random walk parameterized by the number of sojourns. Finally, we obtain explicit expressions for the moments of the covariant random walk as well as for the underlying invariant random walk.

  5. Action principle for relativistic magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    D'Avignon, Eric; Morrison, P. J.; Pegoraro, F.

    2015-04-01

    A covariant action principle for ideal relativistic magnetohydrodynamics in terms of natural Eulerian field variables is given. This is done by generalizing the covariant Poisson bracket theory of Marsden et al. [Ann. Phys. 169, 29 (1986)], which uses a noncanonical bracket to effect constrained variations of an action functional. Various implications and extensions of this action principle are also discussed. Two significant byproducts of this formalism are the introduction of a new divergence-free 4-vector variable for the magnetic field, and a new Lie-dragged form for the theory.

  6. Einstein Toolkit for Relativistic Astrophysics

    NASA Astrophysics Data System (ADS)

    Collaborative Effort

    2011-02-01

    The Einstein Toolkit is a collection of software components and tools for simulating and analyzing general relativistic astrophysical systems. Such systems include gravitational wave space-times, collisions of compact objects such as black holes or neutron stars, accretion onto compact objects, core collapse supernovae and Gamma-Ray Bursts. The Einstein Toolkit builds on numerous software efforts in the numerical relativity community including CactusEinstein, Whisky, and Carpet. The Einstein Toolkit currently uses the Cactus Framework as the underlying computational infrastructure that provides large-scale parallelization, general computational components, and a model for collaborative, portable code development.

  7. Relativistic quantum private database queries

    NASA Astrophysics Data System (ADS)

    Sun, Si-Jia; Yang, Yu-Guang; Zhang, Ming-Ou

    2015-04-01

    Recently, Jakobi et al. (Phys Rev A 83, 022301, 2011) suggested the first practical private database query protocol (J-protocol) based on the Scarani et al. (Phys Rev Lett 92, 057901, 2004) quantum key distribution protocol. Unfortunately, the J-protocol is just a cheat-sensitive private database query protocol. In this paper, we present an idealized relativistic quantum private database query protocol based on Minkowski causality and the properties of quantum information. Also, we prove that the protocol is secure in terms of the user security and the database security.

  8. On the relativistic anisotropic configurations

    NASA Astrophysics Data System (ADS)

    Shojai, F.; Kohandel, M.; Stepanian, A.

    2016-06-01

    In this paper we study anisotropic spherical polytropes within the framework of general relativity. Using the anisotropic Tolman-Oppenheimer-Volkov equations, we explore the relativistic anisotropic Lane-Emden equations. We find how the anisotropic pressure affects the boundary conditions of these equations. Also we argue that the behavior of physical quantities near the center of star changes in the presence of anisotropy. For constant density, a class of exact solution is derived with the aid of a new ansatz and its physical properties are discussed.

  9. Relativistic heavy ion facilities: worldwide

    SciTech Connect

    Schroeder, L.S.

    1986-05-01

    A review of relativistic heavy ion facilities which exist, are in a construction phase, or are on the drawing boards as proposals is presented. These facilities span the energy range from fixed target machines in the 1 to 2 GeV/nucleon regime, up to heavy ion colliders of 100 GeV/nucleon on 100 GeV/nucleon. In addition to specifying the general features of such machines, an outline of the central physics themes to be carried out at these facilities is given, along with a sampling of the detectors which will be used to extract the physics. 22 refs., 17 figs., 3 tabs.

  10. Simple waves in relativistic fluids.

    PubMed

    Lyutikov, Maxim

    2010-11-01

    We consider the Riemann problem for relativistic flows of polytropic fluids and find relations for the flow characteristics. Evolution of physical quantities takes especially simple form for the case of cold magnetized plasmas. We find exact explicit analytical solutions for one-dimensional expansion of magnetized plasma into vacuum, valid for arbitrary magnetization. We also consider expansion into cold unmagnetized external medium both for stationary initial conditions and for initially moving plasma, as well as reflection of rarefaction wave from a wall. We also find self-similar structure of three-dimensional magnetized outflows into vacuum, valid close to the plasma-vacuum interface.

  11. Thermodynamics of polarized relativistic matter

    NASA Astrophysics Data System (ADS)

    Kovtun, Pavel

    2016-07-01

    We give the free energy of equilibrium relativistic matter subject to external gravitational and electromagnetic fields, to one-derivative order in the gradients of the external fields. The free energy allows for a straightforward derivation of bound currents and bound momenta in equilibrium. At leading order, the energy-momentum tensor admits a simple expression in terms of the polarization tensor. Beyond the leading order, electric and magnetic polarization vectors are intrinsically ambiguous. The physical effects of polarization, such as the correlation between the magneto-vortically induced surface charge and the electro-vortically induced surface current, are not ambiguous.

  12. Relativistic hydrodynamics of cosmological sheets

    SciTech Connect

    Anninos, P. ); McKinney, J. )

    1999-09-01

    We have extended previous numerical calculations of Newtonian cosmological sheets to include self-consistent interactions with the background metric by solving the complete Einstein field equations together with the relativistic perfect fluid hydrodynamics equations. The initial data are parametrized and constructed using the gauge invariant perturbation formalism to specify the free conformal variables for the constraints. Numerical evolutions of initially horizon scale fluctuations are compared with results from perturbation theory and the Zel[close quote]dovich solution for a range of gravitational field strengths, and we discuss the nonlinear hydrodynamic, optical, and geometric characteristics of the sheet structures. [copyright] [ital 1999] [ital The American Physical Society

  13. Apparatus to measure relativistic mass increase

    NASA Astrophysics Data System (ADS)

    Luetzelschwab, John W.

    2003-09-01

    An apparatus that uses readily available material to measure the relativistic mass increase of beta particles from a radioactive 204Tl source is described. Although the most accurate analysis uses curve fitting or a Kurie plot, students may just use the raw data and a simple calculation to verify the relativistic mass increase.

  14. Einstein Never Approved of Relativistic Mass

    ERIC Educational Resources Information Center

    Hecht, Eugene

    2009-01-01

    During much of the 20th century it was widely believed that one of the significant insights of special relativity was "relativistic mass." Today there are two schools on that issue: the traditional view that embraces speed-dependent "relativistic mass," and the more modern position that rejects it, maintaining that there is only one mass and it's…

  15. Einstein Never Approved of Relativistic Mass

    ERIC Educational Resources Information Center

    Hecht, Eugene

    2009-01-01

    During much of the 20th century it was widely believed that one of the significant insights of special relativity was "relativistic mass." Today there are two schools on that issue: the traditional view that embraces speed-dependent "relativistic mass," and the more modern position that rejects it, maintaining that there is only one mass and it's…

  16. Nonlinear, relativistic Langmuir waves in astrophysical magnetospheres

    NASA Technical Reports Server (NTRS)

    Chian, Abraham C.-L.

    1987-01-01

    Large amplitude, electrostatic plasma waves are relevant to physical processes occurring in the astrophysical magnetospheres wherein charged particles are accelerated to relativistic energies by strong waves emitted by pulsars, quasars, or radio galaxies. The nonlinear, relativistic theory of traveling Langmuir waves in a cold plasma is reviewed. The cases of streaming electron plasma, electronic plasma, and two-streams are discussed.

  17. 24-Hour Relativistic Bit Commitment

    NASA Astrophysics Data System (ADS)

    Verbanis, Ephanielle; Martin, Anthony; Houlmann, Raphaël; Boso, Gianluca; Bussières, Félix; Zbinden, Hugo

    2016-09-01

    Bit commitment is a fundamental cryptographic primitive in which a party wishes to commit a secret bit to another party. Perfect security between mistrustful parties is unfortunately impossible to achieve through the asynchronous exchange of classical and quantum messages. Perfect security can nonetheless be achieved if each party splits into two agents exchanging classical information at times and locations satisfying strict relativistic constraints. A relativistic multiround protocol to achieve this was previously proposed and used to implement a 2-millisecond commitment time. Much longer durations were initially thought to be insecure, but recent theoretical progress showed that this is not so. In this Letter, we report on the implementation of a 24-hour bit commitment solely based on timed high-speed optical communication and fast data processing, with all agents located within the city of Geneva. This duration is more than 6 orders of magnitude longer than before, and we argue that it could be extended to one year and allow much more flexibility on the locations of the agents. Our implementation offers a practical and viable solution for use in applications such as digital signatures, secure voting and honesty-preserving auctions.

  18. Are relativistic jets monoparametric engines?

    NASA Astrophysics Data System (ADS)

    Georganopoulos, M.; Meyer, E. T.; Fossati, G.; Lister, M. L.

    We adopt as a working hypothesis that relativistic jets are essentially mono-parametric entities, and that their physical properties are a function of a single physical parameter, the same way the physical properties of main sequence stars are mainly a function of the star mass. We propose that the physical parameter is the jet kinetic power, and we use as a proxy for this quantity the low frequency extended radio luminosity (LFERL), an orientation insensitive quantity. We discuss the consequences of this hypothesis for the collective properties of relativistic jets and we show that a blazar sequence should spontaneously emerge on the peak frequency vs luminosity plot as the locus of those sources that are well aligned to the observer's line of sight. We also show that the sources of the same LFERL should form tracks that start from a location on the blazar sequence and move to lower luminosities and peak frequencies in a way that encodes information about the emitting plasma energetics and kinematics and velocity gradients, as well as about the inverse Compton (IC) emission seed photons. We are currently working on collecting the observations that will allow us to put this idea to the test.

  19. Ultra-relativistic double explosions

    NASA Astrophysics Data System (ADS)

    Lyutikov, Maxim

    2017-04-01

    We consider fluid dynamics of relativistic double explosion—when a point explosion with energy E1 is followed by a second explosion with energy E2 after time td (the second explosion could be in a form of a long lasting wind). The primary explosion creates a self-similar relativistic blast wave propagating with Lorentz factor Γ1(t ) . A sufficiently strong second explosion, with total energy E2≥10-2E1 , creates a fast second shock in the external fluid previously shocked by the primary shock. At times longer than the interval between the explosions td, yet short compared with the time when the second shock catches up the primary shock at ˜tdΓ12 , the structure of the second shock is approximately self-similar. The self-similar structure of the second shock exists for the case of constant external density (in this case Γ2∝t-7 /3 ), but not for the wind environment. At early times, the Lorentz factor of the second shock may exceed that of the primary shock and may boost the synchrotron emission of locally accelerated electrons into the Fermi Large Area Telescope range.

  20. Single electron relativistic clock interferometer

    NASA Astrophysics Data System (ADS)

    Bushev, P. A.; Cole, J. H.; Sholokhov, D.; Kukharchyk, N.; Zych, M.

    2016-09-01

    Although time is one of the fundamental notions in physics, it does not have a unique description. In quantum theory time is a parameter ordering the succession of the probability amplitudes of a quantum system, while according to relativity theory each system experiences in general a different proper time, depending on the system's world line, due to time dilation. It is therefore of fundamental interest to test the notion of time in the regime where both quantum and relativistic effects play a role, for example, when different amplitudes of a single quantum clock experience different magnitudes of time dilation. Here we propose a realization of such an experiment with a single electron in a Penning trap. The clock can be implemented in the electronic spin precession and its time dilation then depends on the radial (cyclotron) state of the electron. We show that coherent manipulation and detection of the electron can be achieved already with present day technology. A single electron in a Penning trap is a technologically ready platform where the notion of time can be probed in a hitherto untested regime, where it requires a relativistic as well as quantum description.

  1. Electron Correlation in 4-Component Relativistic Calculations

    NASA Technical Reports Server (NTRS)

    Visscher, Luuk; Arnold, James O. (Technical Monitor)

    1994-01-01

    The full 4-component Dirac-Coulomb equation can nowadays be used in molecular calculations, The first step in solving this relativistic many-electron equation usually consists of solving the closed or open-shell Diarc-Fock equations. Like in non-relativistic calculations the outcome does not account for the effects of electron correlation. This can in principle be remedied by developing relativistic variants of electron correlation methods like Configuration Interaction or Coupled Cluster. In this talk the differences and similarities of such relativistic approaches as compared to non-relativistic methods will be reviewed. Results of Configuration Interaction calculations on the PtH molecule and on the MeF(sub 6, sup 2-) (Me= Co, Rh, Ir) complexes will be presented to give an impression of the kind of results that currently can be obtained.

  2. Electron Correlation in 4-Component Relativistic Calculations

    NASA Technical Reports Server (NTRS)

    Visscher, Luuk; Arnold, James O. (Technical Monitor)

    1994-01-01

    The full 4-component Dirac-Coulomb equation can nowadays be used in molecular calculations, The first step in solving this relativistic many-electron equation usually consists of solving the closed or open-shell Diarc-Fock equations. Like in non-relativistic calculations the outcome does not account for the effects of electron correlation. This can in principle be remedied by developing relativistic variants of electron correlation methods like Configuration Interaction or Coupled Cluster. In this talk the differences and similarities of such relativistic approaches as compared to non-relativistic methods will be reviewed. Results of Configuration Interaction calculations on the PtH molecule and on the MeF(sub 6, sup 2-) (Me= Co, Rh, Ir) complexes will be presented to give an impression of the kind of results that currently can be obtained.

  3. Loading relativistic Maxwell distributions in particle simulations

    NASA Astrophysics Data System (ADS)

    Zenitani, S.

    2015-12-01

    In order to study energetic plasma phenomena by using particle-in-cell (PIC) and Monte-Carlo simulations, we need to deal with relativistic velocity distributions in these simulations. However, numerical algorithms to deal with relativistic distributions are not well known. In this contribution, we overview basic algorithms to load relativistic Maxwell distributions in PIC and Monte-Carlo simulations. For stationary relativistic Maxwellian, the inverse transform method and the Sobol algorithm are reviewed. To boost particles to obtain relativistic shifted-Maxwellian, two rejection methods are newly proposed in a physically transparent manner. Their acceptance efficiencies are 􏰅50% for generic cases and 100% for symmetric distributions. They can be combined with arbitrary base algorithms.

  4. Toward an absolute NMR shielding scale using the spin-rotation tensor within a relativistic framework.

    PubMed

    Aucar, I Agustín; Gomez, Sergio S; Giribet, Claudia G; Aucar, Gustavo A

    2016-08-24

    One of the most influential articles showing the best way to get the absolute values of NMR magnetic shieldings, σ (non-measurables) from both accurate measurements and theoretical calculations, was published a long time ago by Flygare. His model was shown to break down when heavy atoms are involved. This fact motivated the development of new theories of nuclear spin-rotation (SR) tensors, which consider electronic relativistic effects. One was published recently by some of us. In this article we take another step further and propose three different models that generalize Flygare's model. All of them are written using four-component relativistic expressions, though the two-component relativistic SO-S term also appears in one. The first clues for these developments were built from the relationship among σ and the SR tensors within the two-component relativistic LRESC model. Besides, we had to introduce a few other well defined assumptions: (i) relativistic corrections must be included in a way to best reproduce the relationship among the (e-e) term (called "paramagnetic" within the non-relativistic domain) of σ and its equivalent part of the SR tensor, (ii) as happens in Flygare's rule, the shielding of free atoms shall be included to improve accuracy. In the highest accurate model, a new term known as Spin-orbit due to spin, SO-S (in this mechanism the spin-Zeeman Hamiltonian replaces the orbital-Zeeman Hamiltonian), is included. We show the results of the application of those models to halogen containing linear molecules.

  5. Relativistic contributions to single and double core electron ionization energies of noble gases.

    PubMed

    Niskanen, J; Norman, P; Aksela, H; Agren, H

    2011-08-07

    We have performed relativistic calculations of single and double core 1s hole states of the noble gas atoms in order to explore the relativistic corrections and their additivity to the ionization potentials. Our study unravels the interplay of progression of relaxation, dominating in the single and double ionization potentials of the light elements, versus relativistic one-electron effects and quantum electrodynamic effects, which dominate toward the heavy end. The degree of direct relative additivity of the relativistic corrections for the single electron ionization potentials to the double electron ionization potentials is found to gradually improve toward the heavy elements. The Dirac-Coulomb Hamiltonian is found to predict a scaling ratio of ∼4 for the relaxation induced relativistic energies between double and single ionization. Z-scaling of the computed quantities were obtained by fitting to power law. The effects of nuclear size and form were also investigated and found to be small. The results indicate that accurate predictions of double core hole ionization potentials can now be made for elements across the full periodic table.

  6. Relativistic contributions to single and double core electron ionization energies of noble gases

    SciTech Connect

    Niskanen, J.; Norman, P.; Aksela, H.; Aagren, H.

    2011-08-07

    We have performed relativistic calculations of single and double core 1s hole states of the noble gas atoms in order to explore the relativistic corrections and their additivity to the ionization potentials. Our study unravels the interplay of progression of relaxation, dominating in the single and double ionization potentials of the light elements, versus relativistic one-electron effects and quantum electrodynamic effects, which dominate toward the heavy end. The degree of direct relative additivity of the relativistic corrections for the single electron ionization potentials to the double electron ionization potentials is found to gradually improve toward the heavy elements. The Dirac-Coulomb Hamiltonian is found to predict a scaling ratio of {approx}4 for the relaxation induced relativistic energies between double and single ionization. Z-scaling of the computed quantities were obtained by fitting to power law. The effects of nuclear size and form were also investigated and found to be small. The results indicate that accurate predictions of double core hole ionization potentials can now be made for elements across the full periodic table.

  7. Implications of Relativistic Configurations and Band Structures in the Physics of Bio-Molecules and Solids

    NASA Astrophysics Data System (ADS)

    Islam, M. Fhokrul; Bohr, Henrik G.; Malik, F. B.

    2009-12-01

    Beyond the second row of elements in the Mendeleev periodic table, the consideration of the relativistic effect is important in determining proper configurations of atoms and ions, in many cases. Many important quantities of interest in determining physical and chemical properties of matter, such as the effective charge, root mean square radii, and higher moments of radii used in many calculations, e.g. in the determinations of legend stabilization bond energies depend on whether the treatment is relativistic or not. In general, these quantities for a given l-orbital having two different j-values, e.g. d2/3 and d5/2, differ from each other, hence, making it necessary to treat them as separate orbitals. This also necessitates characterizing bands with their j-values in many instants and not l-values, particularly for "d" and f-orbitals. For example, in Au, 5d3/2 and 5d5/2 are to be dealt with as two distinct bands. The observed enhancement of laser induced field emission in W, which is not understood in terms of non-relativistic band-structures, can be explained in terms of the expected relativistic band structure. Spin-orbit coupling, which is the manifestation of the relativistic effect, is a prime factor in facilitating intersystem crossing in bio-molecules.

  8. Implications of Relativistic Configurations and Band Structures in the Physics of Bio-Molecules and Solids

    NASA Astrophysics Data System (ADS)

    Fhokrul Islam, M.; Bohr, Henrik G.; Malik, F. B.

    Beyond the second row of elements in the Mendeleev periodic table, the consideration of the relativistic effect is important in determining proper configurations of atoms and ions, in many cases. Many important quantities of interest in determining physical and chemical properties of matter, such as the effective charge, root mean square radii, and higher moments of radii used in many calculations, e.g. in the determinations of legend stabilization bond energies depend on whether the treatment is relativistic or not. In general, these quantities for a given l-orbital having two different j-values, e.g. d3/2 and d5/2, differ from each other, hence, making it necessary to treat them as separate orbitals. This also necessitates characterizing bands with their j-values in many instants and not l-values, particularly for "d" and f-orbitals. For example, in Au, 5d3/2 and 5d5/2 are to be dealt with as two distinct bands. The observed enhancement of laser induced field emission in W, which is not understood in terms of non-relativistic band-structures, can be explained in terms of the expected relativistic band structure. Spin-orbit coupling, which is the manifestation of the relativistic effect, is a prime factor in facilitating intersystem crossing in bio-molecules.

  9. Simulations of Dynamic Relativistic Magnetospheres

    NASA Astrophysics Data System (ADS)

    Parfrey, Kyle Patrick

    Neutron stars and black holes are generally surrounded by magnetospheres of highly conducting plasma in which the magnetic flux density is so high that hydrodynamic forces are irrelevant. In this vanishing-inertia—or ultra-relativistic—limit, magnetohydrodynamics becomes force-free electrodynamics, a system of equations comprising only the magnetic and electric fields, and in which the plasma response is effected by a nonlinear current density term. In this dissertation I describe a new pseudospectral simulation code, designed for studying the dynamic magnetospheres of compact objects. A detailed description of the code and several numerical test problems are given. I first apply the code to the aligned rotator problem, in which a star with a dipole magnetic field is set rotating about its magnetic axis. The solution evolves to a steady state, which is nearly ideal and dissipationless everywhere except in a current sheet, or magnetic field discontinuity, at the equator, into which electromagnetic energy flows and is dissipated. Magnetars are believed to have twisted magnetospheres, due to internal magnetic evolution which deforms the crust, dragging the footpoints of external magnetic field lines. This twisting may be able to explain both magnetars' persistent hard X-ray emission and their energetic bursts and flares. Using the new code, I simulate the evolution of relativistic magnetospheres subjected to slow twisting through large angles. The field lines expand outward, forming a strong current layer; eventually the configuration loses equilibrium and a dynamic rearrangement occurs, involving large-scale rapid magnetic reconnection and dissipation of the free energy of the twisted magnetic field. When the star is rotating, the magnetospheric twisting leads to a large increase in the stellar spin-down rate, which may take place on the long twisting timescale or in brief explosive events, depending on where the twisting is applied and the history of the system

  10. Efficient treatment of the Hartree interaction in the relativistic Kohn-Sham problem

    NASA Astrophysics Data System (ADS)

    Matveev, Alexei V.; Majumder, Sonjoy; Rösch, Notker

    2005-10-01

    We elaborate the two-component Douglas-Kroll reduction of the Dirac-Kohn-Sham problem of relativistic density-functional theory as introduced by Matveev and Rösch [J. Chem. Phys. 118, 3997 (2003)]. That method retains corrections to the Coulomb self-interaction (or Hartree) term of the energy functional that are due to the picture change. Using analytic expressions for the matrix elements, one is able to abandon the resolution of the identity approach for a crucial step of the relativistic transformation. Thus, a major source of uncertainties of the method is eliminated because basis sets no longer have to be extended by functions of higher angular momentum, previously required to ensure kinetic balance. This approach also relies on the electron charge-density fitting scheme via an auxiliary basis set. An efficient approximate implementation results if one restricts the relativistic transformation to the spherically symmetric atom-centered auxiliary functions. It provides accurate results while simplifying greatly the expressions for the matrix elements of the relativistically transformed operators and significantly reducing the computational effort. We demonstrate the performance of the method for the fine structure of one-electron levels of the Hg atom, the g-tensor shifts of NO2, and the properties of the diatomic molecules Bi2, Pb2, PbO, and TlH.

  11. Leading-order relativistic effects on nuclear magnetic resonance shielding tensors.

    PubMed

    Manninen, Pekka; Ruud, Kenneth; Lantto, Perttu; Vaara, Juha

    2005-03-15

    We present perturbational ab initio calculations of the nuclear-spin-dependent relativistic corrections to the nuclear magnetic resonance shielding tensors that constitute, together with the other relativistic terms reported by us earlier, the full leading-order perturbational set of results for the one-electron relativistic contributions to this observable, based on the (Breit-)Pauli Hamiltonian. These contributions are considered for the H(2)X (X = O,S,Se,Te,Po) and HX (X = F,Cl,Br,I,At) molecules, as well as the noble gas (Ne, Ar, Kr, Xe, Rn) atoms. The corrections are evaluated using the relativistic and magnetic operators as perturbations on an equal footing, calculated using analytical linear and quadratic response theory applied on top of a nonrelativistic reference state provided by self-consistent field calculations. The (1)H and heavy-atom nuclear magnetic shielding tensors are compared with four component, nearly basis-set-limit Dirac-Hartree-Fock calculations that include positronic excitations, as well as available literature data. Besides the easy interpretability of the different contributions in terms of familiar nonrelativistic concepts, the accuracy of the present perturbational scheme is striking for the isotropic part of the shielding tensor, for systems including elements up to Xe.

  12. Dynamical localization of coupled relativistic kicked rotors

    NASA Astrophysics Data System (ADS)

    Rozenbaum, Efim B.; Galitski, Victor

    2017-02-01

    A periodically driven rotor is a prototypical model that exhibits a transition to chaos in the classical regime and dynamical localization (related to Anderson localization) in the quantum regime. In a recent work [Phys. Rev. B 94, 085120 (2016), 10.1103/PhysRevB.94.085120], A. C. Keser et al. considered a many-body generalization of coupled quantum kicked rotors, and showed that in the special integrable linear case, dynamical localization survives interactions. By analogy with many-body localization, the phenomenon was dubbed dynamical many-body localization. In the present work, we study nonintegrable models of single and coupled quantum relativistic kicked rotors (QRKRs) that bridge the gap between the conventional quadratic rotors and the integrable linear models. For a single QRKR, we supplement the recent analysis of the angular-momentum-space dynamics with a study of the spin dynamics. Our analysis of two and three coupled QRKRs along with the proved localization in the many-body linear model indicate that dynamical localization exists in few-body systems. Moreover, the relation between QRKR and linear rotor models implies that dynamical many-body localization can exist in generic, nonintegrable many-body systems. And localization can generally result from a complicated interplay between Anderson mechanism and limiting integrability, since the many-body linear model is a high-angular-momentum limit of many-body QRKRs. We also analyze the dynamics of two coupled QRKRs in the highly unusual superballistic regime and find that the resonance conditions are relaxed due to interactions. Finally, we propose experimental realizations of the QRKR model in cold atoms in optical lattices.

  13. Relativistic effects in Lyman-α forest

    SciTech Connect

    Iršič, Vid; Dio, Enea Di; Viel, Matteo E-mail: enea.didio@oats.inaf.it

    2016-02-01

    We present the calculation of the Lyman-alpha (Lyman-α) transmitted flux fluctuations with full relativistic corrections to the first order. Even though several studies exist on relativistic effects in galaxy clustering, this is the first study to extend the formalism to a different tracer of underlying matter at unique redshift range (z=2−5). Furthermore, we show a comprehensive application of our calculations to the Quasar-Lyman-α cross-correlation function. Our results indicate that the signal of relativistic effects are sizeable at Baryonic Acoustic Oscillation (BAO) scale mainly due to the large differences in density bias factors of our tracers. We construct an observable, the anti-symmetric part of the cross-correlation function, that is dominated by the relativistic signal and offers a new way to measure the relativistic terms at relatively small scales. The analysis shows that relativistic effects are important when considering cross-correlations between tracers with very different biases, and should be included in the data analysis of the current and future surveys. Moreover, the idea presented in this paper is highly complementary to other techniques and observables trying to isolate the effect of the relativistic corrections and thus test the validity of the theory of gravity beyond the Newtonian regime.

  14. Diagnosing particle acceleration in relativistic jets

    NASA Astrophysics Data System (ADS)

    Böttcher, Markus; Baring, Matthew G.; Liang, Edison P.; Summerlin, Errol J.; Fu, Wen; Smith, Ian A.; Roustazadeh, Parisa

    2015-03-01

    The high-energy emission from blazars and other relativistic jet sources indicates that electrons are accelerated to ultra-relativistic (GeV - TeV) energies in these systems. This paper summarizes recent results from numerical studies of two fundamentally different particle acceleration mechanisms potentially at work in relativistic jets: Magnetic-field generation and relativistic particle acceleration in relativistic shear layers, which are likely to be present in relativistic jets, is studied via Particle-in-Cell (PIC) simulations. Diffusive shock acceleration at relativistic shocks is investigated using Monte-Carlo simulations. The resulting magnetic-field configurations and thermal + non-thermal particle distributions are then used to predict multi-wavelength radiative (synchrotron + Compton) signatures of both acceleration scenarios. In particular, we address how anisotropic shear-layer acceleration may be able to circumvent the well-known Lorentz-factor crisis, and how the self-consistent evaluation of thermal + non-thermal particle populations in diffusive shock acceleration simulations provides tests of the bulk Comptonization model for the Big Blue Bump observed in the SEDs of several blazars.

  15. Generalized Ohm's law for relativistic plasmas

    NASA Astrophysics Data System (ADS)

    Kandus, A.; Tsagas, C. G.

    2008-04-01

    We generalize the relativistic expression of Ohm's law by studying a multifluid system of charged species using the 1 + 3 covariant formulation of general relativistic electrodynamics. This is done by providing a fully relativistic, fully non-linear propagation equation for the spatial component of the electric 4-current. Our analysis proceeds along the lines of the non-relativistic studies and extends previous relativistic work on cold plasmas. Exploiting the compactness and transparency of the covariant formalism, we provide a direct comparison with the standard Newtonian versions of Ohm's law and identify the relativistic corrections in an unambiguous way. The generalized expression of Ohm's law is initially given relative to an arbitrary observer and for a multicomponent relativistic charged medium. Then, the law is written with respect to the Eckart frame and for a hot two-fluid plasma with zero total charge. Finally, we apply our analysis to a cold proton-electron plasma and recover the well-known magnetohydrodynamic expressions. In every step, we discuss the approximations made and identify familiar effects, like the Biermann battery and the Hall effect.

  16. Antiprotons and Cold Antihydrogen

    DTIC Science & Technology

    2001-01-01

    bibliographic citations for 10 publications and 36 lectures that were produced during 2004 under this contract. The author also was the recipient of the George Ledlie Prize at Harvard University in 2004.

  17. Magnetohydrodynamic production of relativistic jets.

    PubMed

    Meier, D L; Koide, S; Uchida, Y

    2001-01-05

    A number of astronomical systems have been discovered that generate collimated flows of plasma with velocities close to the speed of light. In all cases, the central object is probably a neutron star or black hole and is either accreting material from other stars or is in the initial violent stages of formation. Supercomputer simulations of the production of relativistic jets have been based on a magnetohydrodynamic model, in which differential rotation in the system creates a magnetic coil that simultaneously expels and pinches some of the infalling material. The model may explain the basic features of observed jets, including their speed and amount of collimation, and some of the details in the behavior and statistics of different jet-producing sources.

  18. GRIM: General Relativistic Implicit Magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Chandra, Mani; Foucart, Francois; Gammie, Charles F.

    2017-02-01

    GRIM (General Relativistic Implicit Magnetohydrodynamics) evolves a covariant extended magnetohydrodynamics model derived by treating non-ideal effects as a perturbation of ideal magnetohydrodynamics. Non-ideal effects are modeled through heat conduction along magnetic field lines and a difference between the pressure parallel and perpendicular to the field lines. The model relies on an effective collisionality in the disc from wave-particle scattering and velocity-space (mirror and firehose) instabilities. GRIM, which runs on CPUs as well as on GPUs, combines time evolution and primitive variable inversion needed for conservative schemes into a single step using only the residuals of the governing equations as inputs. This enables the code to be physics agnostic as well as flexible regarding time-stepping schemes.

  19. Relativistic entanglement and Bell's inequality

    SciTech Connect

    Ahn, Doyeol; Moon, Young Hoon; Lee, Hyuk-jae; Hwang, Sung Woo

    2003-01-01

    In this paper, the Lorentz transformation of entangled Bell states seen by a moving observer is studied. The calculated Bell observable for four joint measurements turns out to give a universal value, ++-=(2/{radical}(2-{beta}{sup 2}))(1+{radical}(1-{beta}{sup 2})), where a,b are the relativistic spin observables derived from the Pauli-Lubanski pseudovector and {beta}=(v/c). We found that the degree of violation of the Bell's inequality is decreasing with increasing velocity of the observer and Bell's inequality is satisfied in the ultrarelativistic limit where the boost speed reaches the speed of light.

  20. General relativistic ? orthonormal frame approach

    NASA Astrophysics Data System (ADS)

    van Elst, Henk; Uggla, Claes

    1997-09-01

    The dynamical equations of an extended 1 + 3 orthonormal frame approach to the relativistic description of spacetime geometries are explicitly presented and discussed in detail. In particular, the Bianchi identities for the Weyl curvature tensor occur in a fully expanded form, as they are given a central role in the extended formalism. It is shown how one can naturally introduce local coordinates, both in the 1 + 3 threading and the ADM 3 + 1 slicing context. By specializing the general 1 + 3 dynamical equations it is demonstrated how a number of problems of interest can be obtained. In particular, the simplest choices of spatial frames for spatially homogeneous cosmological models, locally rotationally symmetric spacetime geometries, cosmological models with an Abelian isometry group 0264-9381/14/9/021/img6 and `silent' dust cosmological models are discussed.