Science.gov

Sample records for relativistic blast wave

  1. Relativistic blast waves in two dimensions. I - The adiabatic case

    NASA Technical Reports Server (NTRS)

    Shapiro, P. R.

    1979-01-01

    Approximate solutions are presented for the dynamical evolution of strong adiabatic relativistic blast waves which result from a point explosion in an ambient gas in which the density varies both with distance from the explosion center and with polar angle in axisymmetry. Solutions are analytical or quasi-analytical for the extreme relativistic case and numerical for the arbitrarily relativistic case. Some general properties of nonplanar relativistic shocks are also discussed, including the incoherence of spherical ultrarelativistic blast-wave fronts on angular scales greater than the reciprocal of the shock Lorentz factor, as well as the conditions for producing blast-wave acceleration.

  2. Self-similar relativistic blast waves with energy injection

    NASA Astrophysics Data System (ADS)

    van Eerten, Hendrik

    2014-08-01

    A sufficiently powerful astrophysical source with power-law luminosity in time will give rise to a self-similar relativistic blast wave with a reverse shock travelling into the ejecta and a forward shock moving into the surrounding medium. Once energy injection ceases and the last energy is delivered to the shock front, the blast wave will transit into another self-similar stage depending only on the total amount of energy injected. I describe the effect of limited duration energy injection into environments with density depending on radius as a power law, emphasizing optical/X-ray Gamma-ray Burst afterglows as applications. The blast wave during injection is treated analytically, the transition following last energy injection with one-dimensional simulations. Flux equations for synchrotron emission from the forward and reverse shock regions are provided. The reverse shock emission can easily dominate, especially with different magnetizations for both regions. Reverse shock emission is shown to support both the reported X-ray and optical correlations between afterglow plateau duration and end time flux, independently of the luminosity power-law slope. The model is demonstrated by application to bursts 120521A and 090515, and can accommodate their steep post-plateau light-curve slopes.

  3. A SEMI-ANALYTIC FORMULATION FOR RELATIVISTIC BLAST WAVES WITH A LONG-LIVED REVERSE SHOCK

    SciTech Connect

    Uhm, Z. Lucas

    2011-06-01

    This paper performs a semi-analytic study of relativistic blast waves in the context of gamma-ray bursts. Although commonly used in a wide range of analytical and numerical studies, the equation of state (EOS) with a constant adiabatic index is a poor approximation for relativistic hydrodynamics. Adopting a more realistic EOS with a variable adiabatic index, we present a simple form of jump conditions for relativistic hydrodynamical shocks. Then we describe in detail our technique of modeling a very general class of GRB blast waves with a long-lived reverse shock. Our technique admits an arbitrary radial stratification of the ejecta and ambient medium. We use two different methods to find dynamics of the blast wave: (1) customary pressure balance across the blast wave and (2) the 'mechanical model'. Using a simple example model, we demonstrate that the two methods yield significantly different dynamical evolutions of the blast wave. We show that the pressure balance does not satisfy the energy conservation for an adiabatic blast wave while the mechanical model does. We also compare two sets of afterglow light curves obtained with the two different methods.

  4. Relativistic blast-wave model for the rapid flux variations of AO 0235+164 and other compact radio sources

    NASA Technical Reports Server (NTRS)

    Marscher, A. P.

    1978-01-01

    A relativistic blast-wave version of a signal-screen model is developed which can adequately explain the details of the flux-density and structural variations of compact extragalactic radio sources. The relativistic motion implied by flux variations is analyzed with respect to the synchrotron spectrum of the BL Lac object AO 0235+164 observed during outbursts, and a signal-screen model for rapidly expanding shells produced by ultrarelativistic blast waves is examined. The approximate observed structure of the blast wave at three stages in its evolution is illustrated, each stage is described, and the model is applied to the flux density outburst in AO 0235+164 observed in late 1975. The results show that a relativistic blast-wave model can in general reproduce the main features of the observed flux variations in compact sources. Some problems with the proposed model are briefly discussed.

  5. Ultra-high-energy cosmic ray acceleration by relativistic blast waves

    NASA Astrophysics Data System (ADS)

    Gallant, Yves A.; Achterberg, Abraham

    1999-05-01

    We consider the acceleration of charged particles at the ultrarelativistic shocks, with Lorentz factors Gamma_s>>1 relative to the upstream medium, arising in relativistic fireball models of gamma-ray bursts (GRBs). We show that for Fermi-type shock acceleration, particles initially isotropic in the upstream medium can gain a factor of order Gamma_s^2 in energy in the first shock-crossing cycle, but that the energy gain factor for subsequent shock-crossing cycles is only of order 2, because for realistic deflection processes particles do not have time to become isotropic upstream before recrossing the shock. We evaluate the maximum energy attainable and the efficiency of this process, and show that for a GRB fireball expanding into a typical interstellar medium, these exclude the production of ultra-high-energy cosmic rays (UHECRs), with energies in the range 10^18.5-10^20.5 eV, by the blast wave. However, we propose that in the context of neutron-star binaries as the progenitors of GRBs, relativistic ions from the pulsar-wind bubbles produced by these systems could be accelerated by the blast wave. We show that if the known binary pulsars are typical, the maximum energy, efficiency, and spectrum in this case can account for the observed population of UHECRs.

  6. Revisiting the Emission from Relativistic Blast Waves in a Density-jump Medium

    NASA Astrophysics Data System (ADS)

    Geng, J. J.; Wu, X. F.; Li, Liang; Huang, Y. F.; Dai, Z. G.

    2014-09-01

    Re-brightening bumps are frequently observed in gamma-ray burst afterglows. Many scenarios have been proposed to interpret the origin of these bumps, of which a blast wave encountering a density-jump in the circumburst environment has been questioned by recent works. We develop a set of differential equations to calculate the relativistic outflow encountering the density-jump by extending the work of Huang et al. This approach is a semi-analytic method and is very convenient. Our results show that late high-amplitude bumps cannot be produced under common conditions, rather only a short plateau may emerge even when the encounter occurs at an early time (<104 s). In general, our results disfavor the density-jump origin for those observed bumps, which is consistent with the conclusion drawn from full hydrodynamics studies. The bumps thus should be caused by other scenarios.

  7. Revisiting the emission from relativistic blast waves in a density-jump medium

    SciTech Connect

    Geng, J. J.; Huang, Y. F.; Dai, Z. G.; Wu, X. F.; Li, Liang E-mail: dzg@nju.edu.cn

    2014-09-01

    Re-brightening bumps are frequently observed in gamma-ray burst afterglows. Many scenarios have been proposed to interpret the origin of these bumps, of which a blast wave encountering a density-jump in the circumburst environment has been questioned by recent works. We develop a set of differential equations to calculate the relativistic outflow encountering the density-jump by extending the work of Huang et al. This approach is a semi-analytic method and is very convenient. Our results show that late high-amplitude bumps cannot be produced under common conditions, rather only a short plateau may emerge even when the encounter occurs at an early time (<10{sup 4} s). In general, our results disfavor the density-jump origin for those observed bumps, which is consistent with the conclusion drawn from full hydrodynamics studies. The bumps thus should be caused by other scenarios.

  8. Relativistic spherical plasma waves

    NASA Astrophysics Data System (ADS)

    Bulanov, S. S.; Maksimchuk, A.; Schroeder, C. B.; Zhidkov, A. G.; Esarey, E.; Leemans, W. P.

    2012-02-01

    Tightly focused laser pulses that diverge or converge in underdense plasma can generate wake waves, having local structures that are spherical waves. Here we study theoretically and numerically relativistic spherical wake waves and their properties, including wave breaking.

  9. Blast wave energy diagnostic.

    PubMed

    Tierney, Thomas E; Tierney, Heidi E; Idzorek, George C; Watt, Robert G; Peterson, Robert R; Peterson, Darrell L; Fryer, Christopher L; Lopez, Mike R; Jones, Michael C; Sinars, Daniel; Rochau, Gregory A; Bailey, James E

    2008-10-01

    The distance radiation waves that supersonically propagate in optically thick, diffusive media are energy sensitive. A blast wave can form in a material when the initially diffusive, supersonic radiation wave becomes transonic. Under specific conditions, the blast wave is visible with radiography as a density perturbation. [Peterson et al., Phys. Plasmas 13, 056901 (2006)] showed that the time-integrated drive energy can be measured using blast wave positions with uncertainties less than 10% at the Z Facility. In some cases, direct measurements of energy loss through diagnostic holes are not possible with bolometric and x-ray radiometric diagnostics. Thus, radiography of high compression blast waves can serve as a complementary technique that provides time-integrated energy loss through apertures. In this paper, we use blast waves to characterize the energy emerging through a 2.4 mm aperture and show experimental results in comparison to simulations. PMID:19044574

  10. Curved characteristics behind blast waves.

    NASA Technical Reports Server (NTRS)

    Laporte, O.; Chang, T. S.

    1972-01-01

    The behavior of nonisentropic flow behind a propagating blast wave is theoretically studied. Exact solutions, expressed in closed form in terms of elementary functions, are presented for three sets of curved characteristicseind a self-similar, strong blast wave.

  11. Astrophysical blast wave data

    SciTech Connect

    Riley, Nathan; Geissel, Matthias; Lewis, Sean M; Porter, John L.

    2015-03-01

    The data described in this document consist of image files of shadowgraphs of astrophysically relevant laser driven blast waves. Supporting files include Mathematica notebooks containing design calculations, tabulated experimental data and notes, and relevant publications from the open research literature. The data was obtained on the Z-Beamlet laser from July to September 2014. Selected images and calculations will be published as part of a PhD dissertation and in associated publications in the open research literature, with Sandia credited as appropriate. The authors are not aware of any restrictions that could affect the release of the data.

  12. Self-similar Ultrarelativistic Jetted Blast Wave

    NASA Astrophysics Data System (ADS)

    Keshet, Uri; Kogan, Dani

    2015-12-01

    Following a suggestion that a directed relativistic explosion may have a universal intermediate asymptotic, we derive a self-similar solution for an ultrarelativistic jetted blast wave. The solution involves three distinct regions: an approximately paraboloid head where the Lorentz factor γ exceeds ∼ 1/2 of its maximal, nose value; a geometrically self-similar, expanding envelope slightly narrower than a paraboloid; and an axial core in which the (cylindrically, henceforth) radial flow {{u}} converges inward toward the axis. Most (∼80%) of the energy lies well beyond the leading, head region. Here, a radial cross section shows a maximal γ (separating the core and the envelope), a sign reversal in {{u}}, and a minimal γ, at respectively ∼1/6, ∼1/4, and ∼3/4 of the shock radius. The solution is apparently unique, and approximately agrees with previous simulations, of different initial conditions, that resolved the head. This suggests that unlike a spherical relativistic blast wave, our solution is an attractor, and may thus describe directed blast waves such as in the external shock phase of a γ-ray burst.

  13. The Relativistic Wave Vector

    ERIC Educational Resources Information Center

    Houlrik, Jens Madsen

    2009-01-01

    The Lorentz transformation applies directly to the kinematics of moving particles viewed as geometric points. Wave propagation, on the other hand, involves moving planes which are extended objects defined by simultaneity. By treating a plane wave as a geometric object moving at the phase velocity, novel results are obtained that illustrate the…

  14. Blast waves with cosmic rays

    NASA Astrophysics Data System (ADS)

    Arbutina, B.

    2015-04-01

    Blast waves appear in many astrophysical phenomena, such as supernovae. In this paper we discuss blast waves with cosmic rays, i.e., with a component with a power-law number density distribution function N( p) ∝ p -Γ that may be particulary important in describing the evolution of supernova remnants. We confirm some previous findings that a significant amount of cosmic ray energy is deposited towards the center of a remnant.

  15. Blast waves in rotating media.

    NASA Technical Reports Server (NTRS)

    Rossner, L. F.

    1972-01-01

    The model investigated involves a cylindrically symmetric blast wave generated by an infinitely long line explosion in a cold and homogeneous gas rotating rigidly in its self-gravitational field. It is found that within the context of rotation in a gravitational field a blast wave will not adopt the one-zone form familiar from similarity solutions but, rather, a two-zone form. The inner compression zone arises as a response to the presence of the restoring force, which drives a rarefaction wave into the outer compression zone.

  16. Nonlinear, relativistic Langmuir waves in astrophysical magnetospheres

    NASA Technical Reports Server (NTRS)

    Chian, Abraham C.-L.

    1987-01-01

    Large amplitude, electrostatic plasma waves are relevant to physical processes occurring in the astrophysical magnetospheres wherein charged particles are accelerated to relativistic energies by strong waves emitted by pulsars, quasars, or radio galaxies. The nonlinear, relativistic theory of traveling Langmuir waves in a cold plasma is reviewed. The cases of streaming electron plasma, electronic plasma, and two-streams are discussed.

  17. Detonation waves in relativistic hydrodynamics

    SciTech Connect

    Cissoko, M. )

    1992-02-15

    This paper is concerned with an algebraic study of the equations of detonation waves in relativistic hydrodynamics taking into account the pressure and the energy of thermal radiation. A new approach to shock and detonation wavefronts is outlined. The fluid under consideration is assumed to be perfect (nonviscous and nonconducting) and to obey the following equation of state: {ital p}=({gamma}{minus}1){rho} where {ital p}, {rho}, and {gamma} are the pressure, the total energy density, and the adiabatic index, respectively. The solutions of the equations of detonation waves are reduced to the problem of finding physically acceptable roots of a quadratic polynomial {Pi}({ital X}) where {ital X} is the ratio {tau}/{tau}{sub 0} of dynamical volumes behind and ahead of the detonation wave. The existence and the locations of zeros of this polynomial allow it to be shown that if the equation of state of the burnt fluid is known then the variables characterizing the unburnt fluid obey well-defined physical relations.

  18. Laboratory blast wave driven instabilities

    NASA Astrophysics Data System (ADS)

    Kuranz, Carolyn

    2008-11-01

    This presentation discusses experiments involving the evolution of hydrodynamic instabilities in the laboratory under high-energy-density (HED) conditions. These instabilities are driven by blast waves, which occur following a sudden, finite release of energy, and consist of a shock front followed by a rarefaction wave. When a blast wave crosses an interface with a decrease in density, hydrodynamic instabilities will develop. Instabilities evolving under HED conditions are relevant to astrophysics. These experiments include target materials scaled in density to the He/H layer in SN1987A. About 5 kJ of laser energy from the Omega Laser facility irradiates a 150 μm plastic layer that is followed by a low-density foam layer. A blast wave structure similar to those in supernovae is created in the plastic layer. The blast wave crosses an interface having a 2D or 3D sinusoidal structure that serves as a seed perturbation for hydrodynamic instabilities. This produces unstable growth dominated by the Rayleigh-Taylor (RT) instability in the nonlinear regime. We have detected the interface structure under these conditions using x-ray backlighting. Recent advances in our diagnostic techniques have greatly improved the resolution of our x-ray radiographic images. Under certain conditions, the improved images show some mass extending beyond the RT spike and penetrating further than previously observed or predicted by current simulations. The observed effect is potentially of great importance as a source of mass transport to places not anticipated by current theory and simulation. I will discuss the amount of mass in these spike extensions, the associated uncertainties, and hypotheses regarding their origin We also plan to show comparisons of experiments using single mode and multimode as well as 2D and 3D initial conditions. This work is sponsored by DOE/NNSA Research Grants DE-FG52-07NA28058 (Stewardship Sciences Academic Alliances) and DE-FG52-04NA00064 (National Laser User

  19. Simulation of Blast Waves with Headwind

    NASA Technical Reports Server (NTRS)

    Olsen, Michael E.; Lawrence, Scott W.; Klopfer, Goetz H.; Mathias, Dovan; Onufer, Jeff T.

    2005-01-01

    The blast wave resulting from an explosion was simulated to provide guidance for models estimating risks for human spacecraft flight. Simulations included effects of headwind on blast propagation, Blasts were modelled as an initial value problem with a uniform high energy sphere expanding into an ambient field. Both still air and cases with headwind were calculated.

  20. Corrugation of Relativistic Magnetized Shock Waves

    NASA Astrophysics Data System (ADS)

    Lemoine, Martin; Ramos, Oscar; Gremillet, Laurent

    2016-08-01

    As a shock front interacts with turbulence it develops corrugation, which induces outgoing wave modes in the downstream plasma. For a fast shock wave, the incoming wave modes can either be fast magnetosonic waves originating downstream, outrunning the shock, or eigenmodes of the upstream plasma drifting through the shock. Using linear perturbation theory in relativistic MHD, this paper provides a general analysis of the corrugation of relativistic magnetized fast shock waves resulting from their interaction with small amplitude disturbances. Transfer functions characterizing the linear response for each of the outgoing modes are calculated as a function of the magnetization of the upstream medium and as a function of the nature of the incoming wave. Interestingly, if the latter is an eigenmode of the upstream plasma, we find that there exists a resonance at which the (linear) response of the shock becomes large or even diverges. This result may have profound consequences on the phenomenology of astrophysical relativistic magnetized shock waves.

  1. Blast wave parameters at diminished ambient pressure

    NASA Astrophysics Data System (ADS)

    Silnikov, M. V.; Chernyshov, M. V.; Mikhaylin, A. I.

    2015-04-01

    Relation between blast wave parameters resulted from a condensed high explosive (HE) charge detonation and a surrounding gas (air) pressure has been studied. Blast wave pressure and impulse differences at compression and rarefaction phases, which traditionally determine damage explosive effect, has been analyzed. An initial pressure effect on a post-explosion quasi-static component of the blast load has been investigated. The analysis is based on empirical relations between blast parameters and non-dimensional similarity criteria. The results can be directly applied to flying vehicle (aircraft or spacecraft) blast safety analysis.

  2. Relativistic Bernstein waves in a degenerate plasma

    SciTech Connect

    Ali, Muddasir; Hussain, Azhar; Murtaza, G.

    2011-09-15

    Bernstein mode for a relativistic degenerate electron plasma is investigated. Using relativistic Vlasov-Maxwell equations, a general expression for the conductivity tensor is derived and then employing Fermi-Dirac distribution function a generalized dispersion relation for the Bernstein mode is obtained. Two limiting cases, i.e., non-relativistic and ultra-relativistic are discussed. The dispersion relations obtained are also graphically presented for some specific values of the parameters depicting how the propagation characteristics of Bernstein waves as well as the Upper Hybrid oscillations are modified with the increase in plasma number density.

  3. Relativistic electron acceleration by oblique whistler waves

    SciTech Connect

    Yoon, Peter H.; Pandey, Vinay S.; Lee, Dong-Hun

    2013-11-15

    Test-particle simulations of electrons interacting with finite-amplitude, obliquely propagating whistler waves are carried out in order to investigate the acceleration of relativistic electrons by these waves. According to the present findings, an efficient acceleration of relativistic electrons requires a narrow range of oblique propagation angles, close to the whistler resonance cone angle, when the wave amplitude is held constant at relatively low value. For a constant wave propagation angle, it is found that a range of oblique whistler wave amplitudes permits the acceleration of relativistic electrons to O(MeV) energies. An initial distribution of test electrons is shown to form a power-law distribution when plotted in energy space. It is also found that the acceleration is largely uniform in electron pitch-angle space.

  4. Relativistically modulational instability by strong Langmuir waves

    SciTech Connect

    Liu, X. L.; Liu, S. Q.; Li, X. Q.

    2012-09-15

    Based on the set of nonlinear coupling equations, which has considered the relativistic effects of electrons, modulational instability by strong Langmuir waves has been investigated in this paper. Both the characteristic scale and maximum growth rate of the Langmuir field will enhance with the increase in the electron relativistic effect. The numerical results indicate that longitudinal perturbations induce greater instability than transverse perturbations do, which will lead to collapse and formation of the pancake-like structure.

  5. Relativistic helix traveling wave tube amplifiers

    SciTech Connect

    Freund, H.P.; Vanderplaats, N.R.; Kodis, M.A. )

    1992-07-01

    A relativistic field theory of a helix traveling wave tube (TWT) is described for the case in which a thin annular beam propagates through a sheath helix enclosed within a loss-free wall. The theory is applied to the study of a TWT with an intense relativistic electron beam. The analysis implicitly includes beam space-charge effects and is valid for arbitrary azimuthal mode number, and the coupled-wave Pierce theory is recovered in the [ital near]-[ital resonant] limit. The results indicate that impressive gains and efficiencies are possible in this regime. In addition, the interaction is relatively insensitive to the effects of a beam energy spread.

  6. Cygnus Loop Supernova Blast Wave

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This is an image of a small portion of the Cygnus Loop supernova remnant, which marks the edge of a bubble-like, expanding blast wave from a colossal stellar explosion, occurring about 15,000 years ago. The HST image shows the structure behind the shock waves, allowing astronomers for the first time to directly compare the actual structure of the shock with theoretical model calculations. Besides supernova remnants, these shock models are important in understanding a wide range of astrophysical phenomena, from winds in newly-formed stars to cataclysmic stellar outbursts. The supernova blast is slamming into tenuous clouds of insterstellar gas. This collision heats and compresses the gas, causing it to glow. The shock thus acts as a searchlight revealing the structure of the interstellar medium. The detailed HST image shows the blast wave overrunning dense clumps of gas, which despite HST's high resolution, cannot be resolved. This means that the clumps of gas must be small enough to fit inside our solar system, making them relatively small structures by interstellar standards. A bluish ribbon of light stretching left to right across the picture might be a knot of gas ejected by the supernova; this interstellar 'bullet' traveling over three million miles per hour (5 million kilometres) is just catching up with the shock front, which has slowed down by ploughing into interstellar material. The Cygnus Loop appears as a faint ring of glowing gases about three degrees across (six times the diameter of the full Moon), located in the northern constellation, Cygnus the Swan. The supernova remnant is within the plane of our Milky Way galaxy and is 2,600 light-years away. The photo is a combination of separate images taken in three colors, oxygen atoms (blue) emit light at temperatures of 30,000 to 60,000 degrees Celsius (50,000 to 100,000 degrees Farenheit). Hydrogen atoms (green) arise throughout the region of shocked gas. Sulfur atoms (red) form when the gas cools to

  7. On the Propagation and Interaction of Spherical Blast Waves

    NASA Technical Reports Server (NTRS)

    Kandula, Max; Freeman, Robert

    2007-01-01

    The characteristics and the scaling laws of isolated spherical blast waves have been briefly reviewed. Both self-similar solutions and numerical solutions of isolated blast waves are discussed. Blast profiles in the near-field (strong shock region) and the far-field (weak shock region) are examined. Particular attention is directed at the blast overpressure and shock propagating speed. Consideration is also given to the interaction of spherical blast waves. Test data for the propagation and interaction of spherical blast waves emanating from explosives placed in the vicinity of a solid propellant stack are presented. These data are discussed with regard to the scaling laws concerning the decay of blast overpressure.

  8. Relativistic wave equations: an operational approach

    NASA Astrophysics Data System (ADS)

    Dattoli, G.; Sabia, E.; Górska, K.; Horzela, A.; Penson, K. A.

    2015-03-01

    The use of operator methods of an algebraic nature is shown to be a very powerful tool to deal with different forms of relativistic wave equations. The methods provide either exact or approximate solutions for various forms of differential equations, such as relativistic Schrödinger, Klein-Gordon, and Dirac. We discuss the free-particle hypotheses and those relevant to particles subject to non-trivial potentials. In the latter case we will show how the proposed method leads to easily implementable numerical algorithms.

  9. General-relativistic astrophysics. [gravitational wave astronomy

    NASA Technical Reports Server (NTRS)

    Thorne, K. S.

    1978-01-01

    The overall relevance of general relativity to astrophysics is considered, and some of the knowledge about the ways in which general relativity should influence astrophysical systems is reviewed. Attention is focused primarily on finite-sized astrophysical systems, such as stars, globular clusters, galactic nuclei, and primordial black holes. Stages in the evolution of such systems and tools for studying the effects of relativistic gravity in these systems are examined. Gravitational-wave astronomy is discussed in detail, with emphasis placed on estimates of the strongest gravitational waves that bathe earth, present obstacles and future prospects for detection of the predicted waves, the theory of small perturbations of relativistic stars and black holes, and the gravitational waves such objects generate. Characteristics of waves produced by black-hole events in general, pregalactic black-hole events, black-hole events in galactic nuclei and quasars, black-hole events in globular clusters, the collapse of normal stars to form black holes or neutron stars, and corequakes in neutron stars are analyzed. The state of the art in gravitational-wave detection and characteristics of various types of detector are described.

  10. The blast wave mitigation effects of a magnetogasdynamic decelerator

    SciTech Connect

    Baty, Roy S; Lundgren, Ronald G; Tucker, Don H

    2009-01-01

    This work computes shock wave jump functions for viscous blast waves propagating in a magnetogasdynamic decelerator. The decelerator is assumed to be a one-dimensional channel with sides that are perfect conductors. An electric field applied on the walls of the channel produces a magnetogasdynamic pump, which decelerates the flow field induced by a blast wave. The blast wave jump functions computed here are compared to magnetogasdynamic results for steady supersonic channel flow to quantify potential blast mitigation effects. Theoretical shock wave jump functions are also presented for inviscid blast waves propagating in a one-dimensional channel with an electromagnetic field.

  11. Computation of blast wave-obstacle interactions

    NASA Technical Reports Server (NTRS)

    Champney, J. M.; Chaussee, D. S.; Kutler, P.

    1982-01-01

    Numerical simulations of the interaction of a planar blast wave with various obstacles are presented. These obstacles are either ground structures or vehicles flying in the atmosphere. For a structure on the ground, the blast wave encounter is side-on, while for the flying vehicles the encounter is either head-on or oblique. Second-order accurate, finite-difference, and shock-capturing procedures are employed to solve the two-dimensional, axisymmetric, and three-dimensional unsteady Euler equations. Results are presented for the flow field consisting of blast wave striking obstacles that are at rest, moving subsonically and moving supersonically. Comparison of the numerical results with experimental data for a configuration at rest substantiates the validity of this approach and its potential as a flow analysis tool.

  12. Isothermal blast wave model of supernova remnants

    NASA Technical Reports Server (NTRS)

    Solinger, A.; Buff, J.; Rappaport, S.

    1975-01-01

    The validity of the 'adiabatic' assumption in supernova-remnant calculations is examined, and the alternative extreme of an isothermal blast wave is explored. It is concluded that, because of thermal conductivity, the large temperature gradients predicted by the adiabatic model probably are not maintained in nature. Self-similar solutions to the hydrodynamic equations for an isothermal blast wave have been found and studied. These solutions are then used to determine the relationship between X-ray observations and inferred parameters of supernova remnants. A comparison of the present results with those for the adiabatic model indicates differences which are less than present observational uncertainties. It is concluded that most parameters of supernova remnants inferred from X-ray measurements are relatively insensitive to the specifics of the blast-wave model.

  13. Relativistic nonlinear plasma waves in a magnetic field

    NASA Technical Reports Server (NTRS)

    Kennel, C. F.; Pellat, R.

    1975-01-01

    Five relativistic plane nonlinear waves were investigated: circularly polarized waves and electrostatic plasma oscillations propagating parallel to the magnetic field, relativistic Alfven waves, linearly polarized transverse waves propagating in zero magnetic field, and the relativistic analog of the extraordinary mode propagating at an arbitrary angle to the magnetic field. When the ions are driven relativistic, they behave like electrons, and the assumption of an 'electron-positron' plasma leads to equations which have the form of a one-dimensional potential well. The solutions indicate that a large-amplitude superluminous wave determines the average plasma properties.

  14. Blast wave mitigation by dry aqueous foams

    NASA Astrophysics Data System (ADS)

    Del Prete, E.; Chinnayya, A.; Domergue, L.; Hadjadj, A.; Haas, J.-F.

    2013-02-01

    This paper presents results of experiments and numerical modeling on the mitigation of blast waves using dry aqueous foams. The multiphase formalism is used to model the dry aqueous foam as a dense non-equilibrium two-phase medium as well as its interaction with the high explosion detonation products. New experiments have been performed to study the mass scaling effects. The experimental as well as the numerical results, which are in good agreement, show that more than an order of magnitude reduction in the peak overpressure ratio can be achieved. The positive impulse reduction is less marked than the overpressures. The Hopkinson scaling is also found to hold particularly at larger scales for these two blast parameters. Furthermore, momentum and heat transfers, which have the main dominant role in the mitigation process, are shown to modify significantly the classical blast wave profile and thereafter to disperse the energy from the peak overpressure due to the induced relaxation zone. In addition, the velocity of the fireball, which acts as a piston on its environment, is smaller than in air. Moreover, the greater inertia of the liquid phase tends to project the aqueous foam far from the fireball. The created gap tempers the amplitude of the transmitted shock wave to the aqueous foam. As a consequence, this results in a lowering of blast wave parameters of the two-phase spherical decaying shock wave.

  15. Relativistic nonlinear plasma waves in a magnetic field

    NASA Technical Reports Server (NTRS)

    Kennel, C. F.; Pellat, R.

    1976-01-01

    An investigation is conducted of five relativistic plane nonlinear waves, taking into account circularly polarized waves and electrostatic plasma oscillations propagating parallel to the magnetic field, relativistic Alfven waves, linearly polarized transverse waves propagating in zero magnetic field, and the relativistic analog of the extraordinary mode propagating at an arbitrary angle to the magnetic field. It is found that a large-amplitude superluminous wave determines the average plasma properties, and not vice versa. Attention is given to the implications of the obtained results for the acceleration of cosmic rays in pulsar magnetospheres.

  16. Blast waves and how they interact with structures.

    PubMed

    Cullis, I G

    2001-02-01

    The paper defines and describes blast waves, their interaction with a structure and its subsequent response. Explosions generate blast waves, which need not be due to explosives. A blast wave consists of two parts: a shock wave and a blast wind. The paper explains how shock waves are formed and their basic properties. The physics of blast waves is non-linear and therefore non-intuitive. To understand how an explosion generates a blast wave a numerical modelling computer code, called a hydrocode has to be employed. This is briefly explained and the cAst Eulerian hydrocode is used to illustrate the formation and propagation of the blast wave generated by a 1 kg sphere of TNT explosive detonated 1 m above the ground. The paper concludes with a discussion of the response of a structure to a blast wave and shows that this response is governed by the structures natural frequency of vibration compared to the duration of the blast wave. The basic concepts introduced are illustrated in a second simulation that introduces two structures into the blast field of the TNT charge. PMID:11307674

  17. RANKINE-HUGONIOT RELATIONS IN RELATIVISTIC COMBUSTION WAVES

    SciTech Connect

    Gao Yang; Law, Chung K.

    2012-12-01

    As a foundational element describing relativistic reacting waves of relevance to astrophysical phenomena, the Rankine-Hugoniot relations classifying the various propagation modes of detonation and deflagration are analyzed in the relativistic regime, with the results properly degenerating to the non-relativistic and highly relativistic limits. The existence of negative-pressure downstream flows is noted for relativistic shocks, which could be of interest in the understanding of the nature of dark energy. Entropy analysis for relativistic shock waves is also performed for relativistic fluids with different equations of state (EoS), denoting the existence of rarefaction shocks in fluids with adiabatic index {Gamma} < 1 in their EoS. The analysis further shows that weak detonations and strong deflagrations, which are rare phenomena in terrestrial environments, are expected to exist more commonly in astrophysical systems because of the various endothermic reactions present therein. Additional topics of relevance to astrophysical phenomena are also discussed.

  18. Millimeter-wave HF relativistic electron oscillators

    SciTech Connect

    Bratman, V.L.; Denisov, G.G.; Ofitserov, M.M.; Korovin, S.D.; Polevin, S.D.; Rostov, V.V.

    1987-02-01

    A review of the experimental study of single-mode oscillators based on stimulated bremsstrahlung and Cerenkov radiation of high-current relativistic electron beams is given. Three types of Cerenkov oscillators are investigated in detail: orotrons, surface wave oscillators and a flimatron (free electron maser (FEM) based on Smith-Purcell radiation). The bremsstrahlung oscillators studied are gyrotrons with TM modes, a ubitron operating at quasi-critical frequency and cyclotron autoresonance masers. Electrodynamic and electron methods of mode selection provide stable radiation with a reproducible space structure of radiation in all oscillators under study. The radiation power attained 50-100 MW for long and 10-30 MW for short millimeter wavelengths at the efficiency up to 5-10 percent. Various types of oscillators are compared. Promising methods for increasing power and radiation frequency are discussed.

  19. Low-Cost Blast Wave Generator for Studies of Hearing Loss and Brain Injury: Blast Wave Effects in Closed Spaces

    PubMed Central

    Newman, Andrew J.; Hayes, Sarah H.; Rao, Abhiram S.; Allman, Brian L.; Manohar, Senthilvelan; Ding, Dalian; Stolzberg, Daniel; Lobarinas, Edward; Mollendorf, Joseph C.; Salvi, Richard

    2015-01-01

    Background Military personnel and civilians living in areas of armed conflict have increased risk of exposure to blast overpressures that can cause significant hearing loss and/or brain injury. The equipment used to simulate comparable blast overpressures in animal models within laboratory settings is typically very large and prohibitively expensive. New Method To overcome the fiscal and space limitations introduced by previously reported blast wave generators, we developed a compact, low-cost blast wave generator to investigate the effects of blast exposures on the auditory system and brain. Results The blast wave generator was constructed largely from off the shelf components, and reliably produced blasts with peak sound pressures of up to 198 dB SPL (159.3 kPa) that were qualitatively similar to those produced from muzzle blasts or explosions. Exposure of adult rats to 3 blasts of 188 dB peak SPL (50.4 kPa) resulted in significant loss of cochlear hair cells, reduced outer hair cell function and a decrease in neurogenesis in the hippocampus. Comparison to existing methods Existing blast wave generators are typically large, expensive, and are not commercially available. The blast wave generator reported here provides a low-cost method of generating blast waves in a typical laboratory setting. Conclusions This compact blast wave generator provides scientists with a low cost device for investigating the biological mechanisms involved in blast wave injury to the rodent cochlea and brain that may model many of the damaging effects sustained by military personnel and civilians exposed to intense blasts. PMID:25597910

  20. Modeling of aqueous foam blast wave attenuation

    NASA Astrophysics Data System (ADS)

    Del Prete, E.; Chinnayya, A.; Hadjadj, A.; Domergue, L.; Haas, J.-F.; Imbert, B.

    The use of aqueous foams enables the mitigation of blast waves induced by the explosion of energetic materials. The two-phase confinement gives rise to interphase interactions between the gaseous and liquid phases, which role have been emphasized in shock-tube studies with solid foams [1, 2]. Multifluid formalism enables the thermo-mechanical disequilibria between phases to be taken into account. The flow model ensures the correct estimation of the acoustic impedance of the two-phase media. As for the numerical scheme, Riemann solvers are used to describe the microscopic fluid interactions, the summation of which provides the multiphase flux. The role of the different transfer mechanisms is evaluated in the case where the liquid ligaments of the foam matrix have been shattered into droplets by the shock impingement. Characteristics of blast waves in heterogeneous media leads to a decrease of overpressure. The numerical results have been compared favorably to experimental data [3, 4].

  1. Electromagnetic wave equations for relativistically degenerate quantum magnetoplasmas.

    PubMed

    Masood, Waqas; Eliasson, Bengt; Shukla, Padma K

    2010-06-01

    A generalized set of nonlinear electromagnetic quantum hydrodynamic (QHD) equations is derived for a magnetized quantum plasma, including collisional, electron spin- 1/2, and relativistically degenerate electron pressure effects that are relevant for dense astrophysical systems, such as white dwarfs. For illustrative purposes, linear dispersion relations are derived for one-dimensional magnetoacoustic waves for a collisionless nonrelativistic degenerate gas in the presence of the electron spin- 1/2 contribution and for magnetoacoustic waves in a plasma containing relativistically degenerate electrons. It is found that both the spin and relativistic degeneracy at high densities tend to slow down the magnetoacoustic wave due to the Pauli paramagnetic effect and relativistic electron mass increase. The present study outlines the theoretical framework for the investigation of linear and nonlinear behaviors of electromagnetic waves in dense astrophysical systems. The results are applied to calculate the magnetoacoustic speeds for both the nonrelativistic and relativistic electron degeneracy cases typical for white dwarf stars. PMID:20866534

  2. Electromagnetic wave equations for relativistically degenerate quantum magnetoplasmas.

    PubMed

    Masood, Waqas; Eliasson, Bengt; Shukla, Padma K

    2010-06-01

    A generalized set of nonlinear electromagnetic quantum hydrodynamic (QHD) equations is derived for a magnetized quantum plasma, including collisional, electron spin- 1/2, and relativistically degenerate electron pressure effects that are relevant for dense astrophysical systems, such as white dwarfs. For illustrative purposes, linear dispersion relations are derived for one-dimensional magnetoacoustic waves for a collisionless nonrelativistic degenerate gas in the presence of the electron spin- 1/2 contribution and for magnetoacoustic waves in a plasma containing relativistically degenerate electrons. It is found that both the spin and relativistic degeneracy at high densities tend to slow down the magnetoacoustic wave due to the Pauli paramagnetic effect and relativistic electron mass increase. The present study outlines the theoretical framework for the investigation of linear and nonlinear behaviors of electromagnetic waves in dense astrophysical systems. The results are applied to calculate the magnetoacoustic speeds for both the nonrelativistic and relativistic electron degeneracy cases typical for white dwarf stars.

  3. Boundary-layer theory for blast waves

    NASA Technical Reports Server (NTRS)

    Kim, K. B.; Berger, S. A.; Kamel, M. M.; Korobeinikov, V. P.; Oppenheim, A. K.

    1975-01-01

    It is profitable to consider the blast wave as a flow field consisting of two regions: the outer, which retains the properties of the inviscid solution, and the inner, which is governed by flow equations including terms expressing the effects of heat transfer and, concomitantly, viscosity. The latter region thus plays the role of a boundary layer. Reported here is an analytical method developed for the study of such layers, based on the matched asymptotic expansion technique combined with patched solutions.

  4. Biologic response to complex blast waves

    SciTech Connect

    Richmond, D.R.; Yelverton, J.T.; Fletcher, E.R.; Phillips, Y.Y.

    1985-01-01

    Small, bare charges were detonated inside an M59 armored personnel carrier (APC) in an attempt to simulate the complex blast waves generated by the jets from shaped-charge warheads penetrating into armored vehicles. Anesthetized sheep were placed inside the APC at 92- and 122-cm ranges from 57- or 113-g pentolite charges. Pressure-time was measured by pressure transducers either mounted on the animals or free standing at comparable ranges on the opposite side of the vehicle. In general, the waveforms were characterized by an initial shock wave of less than 1-msec duration followed by repeated reflections of decreasing magnitude. No deaths nor lung hemorrhages were observed, but all the animals sustained severe ear injury. Animals subjected to peak overpressures of 1.2 to 2.3 bar from the 113-g explosions also received slight non-auditory blast injuries to the upper respiratory and gastrointestinal tracts; those exposed to peak overpressures of just under 1 bar from the 57-g charges did not. The non-auditory blast injuries inside the APC were more severe than those sustained by sheep at comparable distances from 113-g charges in the open. The results suggested that the biological consequences of a complex wave of the type encountered in this study can be equated approximately to a Friedlander wave with a peak overpressure equal to that of the complex wave and with a total impulse equal to the impulse over the first 2 to 3 msec of the complex wave. 9 refs., 7 figs., 1 tab.

  5. Significance of blast wave studies to propulsion.

    NASA Technical Reports Server (NTRS)

    Oppenheim, A. K.

    1971-01-01

    Brief survey of experimental methods currently used for the study of blast wave phenomena with emphasis on high rate exothermic processes. The experimental techniques have used such devices as divergent test sections in shock or detonation tubes, employment of proper test gases, as in marginal detonations, and a variety of explosion systems from finite source explosion apparatus to devices where virtually point explosions are obtained by local breakdown initiated by means of focused laser irradiation. Other methods used are detonation tubes where pressure waves are generated by accelerating flames or by exothermic reactions developed behind reflected shocks, as well as a variety of converging shock and implosion vessels.

  6. Alfven solitary waves in nonrelativistic, relativistic, and ultra-relativistic degenerate quantum plasma

    SciTech Connect

    Rehman, M. A.; Qureshi, M. N. S.; Shah, H. A.; Masood, W.

    2015-10-15

    Nonlinear circularly polarized Alfvén waves are studied in magnetized nonrelativistic, relativistic, and ultrarelativistic degenerate Fermi plasmas. Using the quantum hydrodynamic model, Zakharov equations are derived and the Sagdeev potential approach is used to investigate the properties of the electromagnetic solitary structures. It is seen that the amplitude increases with the increase of electron density in the relativistic and ultrarelativistic cases but decreases in the nonrelativistic case. Both right and left handed waves are considered, and it is seen that supersonic, subsonic, and super- and sub-Alfvénic solitary structures are obtained for different polarizations and under different relativistic regimes.

  7. Gravitational waves generated by laser accelerated relativistic ions

    NASA Astrophysics Data System (ADS)

    Gelfer, Evgeny G.; Kadlecová, Hedvika; Klimo, Ondřej; Weber, Stefan; Korn, Georg

    2016-09-01

    The generation of gravitational waves by laser accelerated relativistic ions is investigated. The piston and light sail models of laser plasma acceleration are considered, and analytical expressions for space-time metric perturbation are derived. For both models, the dependence of gravitational wave amplitude on the laser and plasma parameters as well as gravitational wave spectrum and angular distribution is examined.

  8. Ion-acoustic solitary waves in relativistic plasmas

    SciTech Connect

    Das, G.C.; Paul, S.N.

    1985-03-01

    This is a sequel to our earlier study on ion-acoustic waves studied through the augmentation to a modified Korteweg--deVries (K--dV) equation. We have derived a K--dV equation in a plasma, taking account of weakly relativistic effects, and the result shows that the solitary wave does exhibit the relativistic effect in the presence of ion streaming.

  9. Relativistic electron beam acceleration by Compton scattering of extraordinary waves

    SciTech Connect

    Sugaya, R.

    2006-05-15

    Relativistic transport equations, which demonstrate that relativistic and nonrelativistic particle acceleration along and across a magnetic field and the generation of an electric field transverse to the magnetic field, are induced by nonlinear wave-particle scattering (nonlinear Landau and cyclotron damping) of almost perpendicularly propagating electromagnetic waves in a relativistic magnetized plasma were derived from the relativistic Vlasov-Maxwell equations. The relativistic transport equations show that electromagnetic waves can accelerate particles in the k{sup ''} direction (k{sup ''}=k-k{sup '}). Simultaneously, an intense cross-field electric field, E{sub 0}=B{sub 0}xv{sub d}/c, is generated via the dynamo effect owing to perpendicular particle drift to satisfy the generalized Ohm's law, which means that this cross-field particle drift is identical to the ExB drift. On the basis of these equations, acceleration and heating of a relativistic electron beam due to nonlinear wave-particle scattering of electromagnetic waves in a magnetized plasma were investigated theoretically and numerically. Two electromagnetic waves interact nonlinearly with the relativistic electron beam, satisfying the resonance condition of {omega}{sub k}-{omega}{sub k{sup '}}-(k{sub perpendicular}-k{sub perpendicula=} r{sup '})v{sub d}-(k{sub parallel}-k{sub parallel}{sup '})v{sub b}{approx_equal}m{omega}{sub ce}, where v{sub b} and v{sub d} are the parallel and perpendicular velocities of the relativistic electron beam, respectively, and {omega}{sub ce} is the relativistic electron cyclotron frequency. The relativistic transport equations using the relativistic drifted Maxwellian momentum distribution function of the relativistic electron beam were derived and analyzed. It was verified numerically that extraordinary waves can accelerate the highly relativistic electron beam efficiently with {beta}m{sub e}c{sup 2} < or approx. 1 GeV, where {beta}=(1-v{sub b}{sup 2}/c{sup 2}){sup -1/2}.

  10. Blast wave mitigation by liquid foam

    NASA Astrophysics Data System (ADS)

    Monloubou, Martin; Dollet, Benjamin; Saint-Jalmes, Arnaud; Cantat, Isabelle; Soft Matter Team

    2014-11-01

    Due to their high apparent viscosity, liquid foams are good systems to absorb energy. This property is for instance used in the military domain to mitigate blast waves or explosions [Britan, 2009; Del Prete, 2013]. However, the underlying dissipation mechanisms are still not well understood. We address this issue by resolving in space and time a shock wave impacting a foam sample. We use a shock tube to send a shock wave on a foam with controlled liquid fraction, bubble size and physico-chemistry. The impacting shock creates an expanding cavity in the foam and propagates through the whole sample. The dynamics is recorded with a high speed camera and pressure signals are simultaneously measured. We show the influence of the bubble size and of the shock amplitude on the velocity and on the attenuation of the pressure signal, and on the foam destruction rate. This work is supported by the DGA.

  11. Computation of viscous blast wave flowfields

    NASA Technical Reports Server (NTRS)

    Atwood, Christopher A.

    1991-01-01

    A method to determine unsteady solutions of the Navier-Stokes equations was developed and applied. The structural finite-volume, approximately factored implicit scheme uses Newton subiterations to obtain the spatially and temporally second-order accurate time history of the interaction of blast-waves with stationary targets. The inviscid flux is evaluated using MacCormack's modified Steger-Warming flux or Roe flux difference splittings with total variation diminishing limiters, while the viscous flux is computed using central differences. The use of implicit boundary conditions in conjunction with a telescoping in time and space method permitted solutions to this strongly unsteady class of problems. Comparisons of numerical, analytical, and experimental results were made in two and three dimensions. These comparisons revealed accurate wave speed resolution with nonoscillatory discontinuity capturing. The purpose of this effort was to address the three-dimensional, viscous blast-wave problem. Test cases were undertaken to reveal these methods' weaknesses in three regimes: (1) viscous-dominated flow; (2) complex unsteady flow; and (3) three-dimensional flow. Comparisons of these computations to analytic and experimental results provided initial validation of the resultant code. Addition details on the numerical method and on the validation can be found in the appendix. Presently, the code is capable of single zone computations with selection of any permutation of solid wall or flow-through boundaries.

  12. Non-equilibrium ionized blast wave

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    1974-01-01

    The structure of a cylindrical blast wave with ionization at non-LTE conditions was calculated using equations previously developed by Wu and Fu (1970). The degree of ionization was predicted by a modified Saha equation. Temperature profiles show that the temperature at non-LTE conditions is lower than at LTE near the shock front. This corresponds to a higher degree of ionization for the non-LTE limit, which indicates that the neutral gas absorption is much more efficient at non-LTE than at the LTE limit. The decaying velocity under non-LTE is approximately 15% less than under LTE.

  13. On the Interaction and Coalescence if Spherical Blast Waves

    NASA Technical Reports Server (NTRS)

    Kandula, Max; Freeman, Robert J.

    2005-01-01

    The scaling and similarity laws concerning the propagation of isolated spherical blast waves are briefly reviewed. Both point source explosions and high pressure gas explosions are considered. Test data on blast overpressure from the interaction and coalescence of spherical blast waves emanating from explosives in the form of shaped charges of different strength placed in the vicinity of a solid propellant stack are presented. These data are discussed with regard to the scaling laws concerning the decay of blast overpressure. The results point out the possibility of detecting source explosions from far-field pressure measurements.

  14. Nonlinear magnetosonic waves in dense plasmas with non-relativistic and ultra-relativistic degenerate electrons

    SciTech Connect

    Hussain, S.; Mahmood, S.; Rehman, Aman-ur-

    2014-11-15

    Linear and nonlinear propagation of magnetosonic waves in the perpendicular direction to the ambient magnetic field is studied in dense plasmas for non-relativistic and ultra-relativistic degenerate electrons pressure. The sources of nonlinearities are the divergence of the ions and electrons fluxes, Lorentz forces on ions and electrons fluids and the plasma current density in the system. The Korteweg-de Vries equation for magnetosonic waves propagating in the perpendicular direction of the magnetic field is derived by employing reductive perturbation method for non-relativistic as well as ultra-relativistic degenerate electrons pressure cases in dense plasmas. The plots of the magnetosonic wave solitons are also shown using numerical values of the plasma parameters such a plasma density and magnetic field intensity of the white dwarfs from literature. The dependence of plasma density and magnetic field intensity on the magnetosonic wave propagation is also pointed out in dense plasmas for both non-relativistic and ultra-relativistic degenerate electrons pressure cases.

  15. Note: Device for underwater laboratory simulation of unconfined blast waves

    NASA Astrophysics Data System (ADS)

    Courtney, Elijah; Courtney, Amy; Courtney, Michael

    2015-06-01

    Shock tubes simulate blast waves to study their effects in air under laboratory conditions; however, few experimental models exist for simulating underwater blast waves that are needed for facilitating experiments in underwater blast transmission, determining injury thresholds in marine animals, validating numerical models, and exploring mitigation strategies for explosive well removals. This method incorporates an oxy-acetylene driven underwater blast simulator which creates peak blast pressures of about 1860 kPa. Shot-to-shot consistency was fair, with an average standard deviation near 150 kPa. Results suggest that peak blast pressures from 460 kPa to 1860 kPa are available by adjusting the distance from the source.

  16. Note: Device for underwater laboratory simulation of unconfined blast waves.

    PubMed

    Courtney, Elijah; Courtney, Amy; Courtney, Michael

    2015-06-01

    Shock tubes simulate blast waves to study their effects in air under laboratory conditions; however, few experimental models exist for simulating underwater blast waves that are needed for facilitating experiments in underwater blast transmission, determining injury thresholds in marine animals, validating numerical models, and exploring mitigation strategies for explosive well removals. This method incorporates an oxy-acetylene driven underwater blast simulator which creates peak blast pressures of about 1860 kPa. Shot-to-shot consistency was fair, with an average standard deviation near 150 kPa. Results suggest that peak blast pressures from 460 kPa to 1860 kPa are available by adjusting the distance from the source. PMID:26133878

  17. NO FLARES FROM GAMMA-RAY BURST AFTERGLOW BLAST WAVES ENCOUNTERING SUDDEN CIRCUMBURST DENSITY CHANGE

    SciTech Connect

    Gat, Ilana; Van Eerten, Hendrik; MacFadyen, Andrew

    2013-08-10

    Afterglows of gamma-ray bursts are observed to produce light curves with the flux following power-law evolution in time. However, recent observations reveal bright flares at times on the order of minutes to days. One proposed explanation for these flares is the interaction of a relativistic blast wave with a circumburst density transition. In this paper, we model this type of interaction computationally in one and two dimensions, using a relativistic hydrodynamics code with adaptive mesh refinement called RAM, and analytically in one dimension. We simulate a blast wave traveling in a stellar wind environment that encounters a sudden change in density, followed by a homogeneous medium, and compute the observed radiation using a synchrotron model. We show that flares are not observable for an encounter with a sudden density increase, such as a wind termination shock, nor for an encounter with a sudden density decrease. Furthermore, by extending our analysis to two dimensions, we are able to resolve the spreading, collimation, and edge effects of the blast wave as it encounters the change in circumburst medium. In all cases considered in this paper, we find that a flare will not be observed for any of the density changes studied.

  18. Relativistic wave-breaking limit of electrostatic waves in cold electron-positron-ion plasmas

    NASA Astrophysics Data System (ADS)

    Karmakar, Mithun; Maity, Chandan; Chakrabarti, Nikhil; Sengupta, Sudip

    2016-06-01

    A one-dimensional nonlinear propagation of relativistically strong electrostatic waves in cold electron-positron-ion (EPI) plasmas has been analyzed. The motion of all the three species, namely, electron, positron, and ion has been treated to be relativistic. The maximum permissible electric field amplitude - so called "wave-breaking limit" of such an electrostatic wave before wave-breaking has been derived, showing its dependence on the relativistic Lorentz factor associated with the phase velocity of the plasma wave, on the electron/positron to ion mass ratio, and on the ratio of equilibrium ion density to equilibrium electron/positron density.

  19. Relativistic electron scattering by magnetosonic waves: Effects of discrete wave emission and high wave amplitudes

    SciTech Connect

    Artemyev, A. V.; Mourenas, D.; Krasnoselskikh, V. V.

    2015-06-15

    In this paper, we study relativistic electron scattering by fast magnetosonic waves. We compare results of test particle simulations and the quasi-linear theory for different spectra of waves to investigate how a fine structure of the wave emission can influence electron resonant scattering. We show that for a realistically wide distribution of wave normal angles θ (i.e., when the dispersion δθ≥0.5{sup °}), relativistic electron scattering is similar for a wide wave spectrum and for a spectrum consisting in well-separated ion cyclotron harmonics. Comparisons of test particle simulations with quasi-linear theory show that for δθ>0.5{sup °}, the quasi-linear approximation describes resonant scattering correctly for a large enough plasma frequency. For a very narrow θ distribution (when δθ∼0.05{sup °}), however, the effect of a fine structure in the wave spectrum becomes important. In this case, quasi-linear theory clearly fails in describing accurately electron scattering by fast magnetosonic waves. We also study the effect of high wave amplitudes on relativistic electron scattering. For typical conditions in the earth's radiation belts, the quasi-linear approximation cannot accurately describe electron scattering for waves with averaged amplitudes >300 pT. We discuss various applications of the obtained results for modeling electron dynamics in the radiation belts and in the Earth's magnetotail.

  20. RELATIVISTIC ELECTRON LOSSES RELATED TO PROTON PRECIPITATION AND EMIC WAVES

    NASA Astrophysics Data System (ADS)

    Soraas, F.; Sandanger, M. I.; Aarsnes, K.; Oksavik, K.; Evans, D. S.

    2009-12-01

    Observations of loss of relativistic electrons to the atmosphere is presented and related to SW parameters. It is shown that the L-region of relativistic electron loss matched the anisotropic proton zone. In this zone the pitch angle distribution of the protons are unstable and can generate/amplify EMIC waves which in turn scatter the electrons into the atmosphere. In spatial limited regions, located close to the plasma pause, there can be enhanced losses of protons (sometime completely filling the loss cone). These regions of proton losses (spikes) are shown to give rise to EMIC waves leading to enhance scattering of the relativistic electrons. In the main phase of the storm the proton spikes are located in the midnight/evening sector, but in the storm recovery phase they are located at all MLTs. The anisotropic proton zone and proton spikes are observed in all storms, but not all storms contain an elevated flux of relativistic electrons.

  1. Investigation of ultrafast laser-driven radiative blast waves.

    PubMed

    Edwards, M J; MacKinnon, A J; Zweiback, J; Shigemori, K; Ryutov, D; Rubenchik, A M; Keilty, K A; Liang, E; Remington, B A; Ditmire, T

    2001-08-20

    We have examined the evolution of cylindrically symmetric blast waves produced by the deposition of femtosecond laser pulses in gas jets. In high- Z gases radiative effects become important. We observe the production of an ionization precursor ahead of the shock front and deceleration parameters below the adiabatic value of 1/2 (for a cylinder), an effect expected when the blast wave loses energy by radiative cooling. Despite significant radiative cooling, the blast waves do not appear to develop thin shell instabilities expected for strongly radiative waves. This is believed to be due to the stabilizing effect of a relatively thick blast wave shell resulting in part from electron thermal conduction effects. PMID:11497951

  2. Relativistic electromagnetic waves in an electron-ion plasma

    NASA Technical Reports Server (NTRS)

    Chian, Abraham C.-L.; Kennel, Charles F.

    1987-01-01

    High power laser beams can drive plasma particles to relativistic energies. An accurate description of strong waves requires the inclusion of ion dynamics in the analysis. The equations governing the propagation of relativistic electromagnetic waves in a cold electron-ion plasma can be reduced to two equations expressing conservation of energy-momentum of the system. The two conservation constants are functions of the plasma stream velocity, the wave velocity, the wave amplitude, and the electron-ion mass ratio. The dynamic parameter, expressing electron-ion momentum conversation in the laboratory frame, can be regarded as an adjustable quantity, a suitable choice of which will yield self-consistent solutions when other plasma parameters were specified. Circularly polarized electromagnetic waves and electrostatic plasma waves are used as illustrations.

  3. Reactive Blast Waves from Composite Charges

    SciTech Connect

    Kuhl, A L; Bell, J B; Beckner, V E

    2009-10-16

    Investigated here is the performance of composite explosives - measured in terms of the blast wave they drive into the surrounding environment. The composite charge configuration studied here was a spherical booster (1/3 charge mass), surrounded by aluminum (Al) powder (2/3 charge mass) at an initial density of {rho}{sub 0} = 0.604 g/cc. The Al powder acts as a fuel but does not detonate - thereby providing an extreme example of a 'non-ideal' explosive (where 2/3 of the charge does not detonate). Detonation of the booster charge creates a blast wave that disperses the Al powder and ignites the ensuing Al-air mixture - thereby forming a two-phase combustion cloud embedded in the explosion. Afterburning of the booster detonation products with air also enhances and promotes the Al-air combustion process. Pressure waves from such reactive blast waves have been measured in bomb calorimeter experiments. Here we describe numerical simulations of those experiments. A Heterogeneous Continuum Model was used to model the dispersion and combustion of the Al particle cloud. It combines the gasdynamic conservation laws for the gas phase with a dilute continuum model for the dispersed phase, as formulated by Nigmatulin. Inter-phase mass, momentum and energy exchange are prescribed by phenomenological models of Khasainov. It incorporates a combustion model based on mass conservation laws for fuel, air and products; source/sink terms are treated in the fast-chemistry limit appropriate for such gasdynamic fields, along with a model for mass transfer from the particle phase to the gas. The model takes into account both the afterburning of the detonation products of the booster with air, and the combustion of the Al particles with air. The model equations were integrated by high-order Godunov schemes for both the gas and particle phases. Adaptive Mesh Refinement (AMR) was used to capture the energy-bearing scales of the turbulent flow on the computational grid, and to track

  4. Percolation of Blast Waves though Sand

    NASA Astrophysics Data System (ADS)

    Proud, William

    2013-06-01

    Previous research has concentrated on the physical processes occurring when samples of sand, of varying moisture content, were shock compressed. In this study quartz sand samples are subjected to blast waves over a range of pressure and duration. Aspects of particle movement are discussed; the global movement of a bed hundreds of particles thick is a fraction of particle width. The main diagnostics used are pressure sensors and high-speed photography. Results are presented for a range of particle sizes, aspect ratio, density and moisture content. While the velocity of the percolation through the bed is primarily controlled by density and porosity the effect of moisture reveals a more complex dependence. The ISP acknowledges the support of the Atomic Weapons Establishment and Imperial College London.

  5. Characterising the acceleration phase of blast wave formation

    SciTech Connect

    Fox, T. E. Pasley, J.; Robinson, A. P. L.; Schmitz, H.

    2014-10-15

    Intensely heated, localised regions in uniform fluids will rapidly expand and generate an outwardly propagating blast wave. The Sedov-Taylor self-similar solution for such blast waves has long been studied and applied to a variety of scenarios. A characteristic time for their formation has also long been identified using dimensional analysis, which by its very nature, can offer several interpretations. We propose that, rather than simply being a characteristic time, it may be interpreted as the definitive time taken for a blast wave resulting from an intense explosion in a uniform media to contain its maximum kinetic energy. A scaling relation for this measure of the acceleration phase, preceding the establishment of the blast wave, is presented and confirmed using a 1D planar hydrodynamic model.

  6. Close-in Blast Waves from Spherical Charges*

    NASA Astrophysics Data System (ADS)

    Howard, William; Kuhl, Allen

    2011-06-01

    We study the close-in blast waves created by the detonation of spherical high explosives (HE) charges, via numerical simulations with our Arbitrary-Lagrange-Eulerian (ALE3D) code. We used a finely-resolved, fixed Eulerian 2-D mesh (200 μm per cell) to capture the detonation of the charge, the blast wave propagation in air, and the reflection of the blast wave from an ideal surface. The thermodynamic properties of the detonation products and air were specified by the Cheetah code. A programmed-burn model was used to detonate the charge at a rate based on measured detonation velocities. The results were analyzed to evaluate the: (i) free air pressure-range curves: Δps (R) , (ii) free air impulse curves, (iii) reflected pressure-range curves, and (iv) reflected impulse-range curves. A variety of explosives were studied. Conclusions are: (i) close-in (R < 10 cm /g 1 / 3) , each explosive had its own (unique) blast wave (e.g., Δps (R , HE) ~ a /Rn , where n is different for each explosive); (ii) these close-in blast waves do not scale with the ``Heat of Detonation'' of the explosive (because close-in, there is not enough time to fully couple the chemical energy to the air via piston work); (iii) instead they are related to the detonation conditions inside the charge. Scaling laws will be proposed for such close-in blast waves.

  7. Relativistic Spherical Wake Wave in Plasma. Relativistic focusing spherical mirror and Schwinger pair production

    NASA Astrophysics Data System (ADS)

    Bulanov, Stepan; Maksimchuk, Anatoly; Zhidkov, Alexei

    2009-11-01

    We report on the analytic and computer simulation study of a relativistic spherical wake wave. Such a wave in the breaking regime, traveling towards the center is able to reflect and focus the incoming radiation and up-shifting its frequency. The reflected and focused electromagnetic pulse can have such high intensity, that it is able to create e^+e^- pairs via Schwinger process.

  8. Existence and Stability of Relativistic Solitary Waves in Warm Plasmas

    SciTech Connect

    Maza-Palacios, Marco A.; Herrera-Velazquez, J. Julio E.

    2006-12-04

    A variational mehod for one dimensional relativistic solitons is established, within the two fluid model framework, including finite temperature effects. Our starting point is a Lagrangian for a two species fluid plasma, which allows the deduction of the conserved quantities of the system by means of Noether's theorem, as well as the model equations. At a first stage, travelling wave solutions are studied with the usual shape of envelope solitary waves. It is found that bounded travelling waves (bright solitons) exist for most velocities, if both ions and electrons are assumed to be relativistic, except for a window at small values of v/c. In order to study their stability, we obtain the evolution equations of the solitary wave parameters, along those of radiation.

  9. Gravitational Wave Science: Challenges for Numerical Relativistic Astrophysics

    NASA Technical Reports Server (NTRS)

    Cenrella, Joan

    2005-01-01

    Gravitational wave detectors on earth and in space will open up a new observational window on the universe. The new information about astrophysics and fundamental physics these observations will bring is expected to pose exciting challenges. This talk will provide an overview of this emerging area of gravitational wave science, with a focus on the challenges it will bring for numerical relativistic astrophysics and a look at some recent results.

  10. Relativistic particle motion in nonuniform electromagnetic waves

    NASA Technical Reports Server (NTRS)

    Schmidt, G.; Wilcox, T.

    1973-01-01

    It is shown that a charged particle moving in a strong nonuniform electromagnetic wave suffers a net acceleration in the direction of the negative intensity gradient of the wave. Electrons will be expelled perpendicularly from narrow laser beams and various instabilities can result.

  11. Relativistic particle motion in nonuniform electromagnetic waves

    NASA Technical Reports Server (NTRS)

    Schmidt, G.; Wilcox, T.

    1973-01-01

    A charged particle moving in a strong nonuniform electromagnetic wave which suffers a net acceleration in the direction of the negative intensity gradient of the wave was investigated. Electrons will be expelled perpendicularly from narrow laser beams and various instabilities result.

  12. Blast wave stability in a non-ideal gas

    NASA Astrophysics Data System (ADS)

    Ktitorov, Vladimir

    1999-06-01

    Problem of stability of a selfsimilar blast wave in a non-ideal gas is considered. Small non-radial blast wave perturbations are expanded to spherical harmonics components of expansion being represented in a selfsimilar form (The perturbation front amplitudes are supposed to be power functions of time with power exponent being complex number). The spherical and cylindrical blast waves are considered in the unified manner. The adiabatic exponent of the non-ideal gas is supposed to be a function of the gas density. The blast wave in that gas is selfsimilar just like that is in the case of the ideal gas. So the selfsimilar approach to the blast wave stability problem is used that was previously used in the case of blast wave in ideal gas (Ref.1-3). We considered gas adiabatic exponent to be a simple one-parameter analytical function of density the value of parameter defining the level of gas non-ideality: from ideal gas to non- compressing liquid. For each level of non-ideality the stability problem is solved both for spherical and cylindrical blast waves. The instability region is determined in the space of parameters of the problem: harmonic number and parameters of gas equation of state. The crytical values of parameters of equation of state are calculated. The results are calculated numerically in the general case of arbitrary gas adiabatic exponent γ and harmonic number n and analytically in some special cases: n=1, n>>1, and (γ-1) << 1. 1. V.Ktitorov, Voprosy Atomnoi Nauki i Tekhniki (Atomic science and techn. issues), Ser.TPF, No2, p.28, (1984); 2. D.Ryu and E.T.Vishniac, Astr.J, 313, p.820 (1987); 3. V.Ktitorov, Khimich. Fizika (Chem Phys Issues) V.14, No 2-3, p.169, (1995);

  13. Ion acoustic shock waves in weakly relativistic multicomponent quantum plasma

    NASA Astrophysics Data System (ADS)

    Gill, T. S.; Bains, A. S.; Bedi, C.

    2010-02-01

    Ion acoustic Shock waves (IASWs) are studied in an collisionless unmagnetized relativistic quantum electron-positron-ion(e-p-i) plasma employing the quantum hydro -dynamic(QHD) model. Korteweg-deVries- Burger equation(KdVB) is derived using small amplitude perturbation expansion method to study the nonlinear propagation of the quantum IASWs. It is found that the coefficients of the KdVB equation are significantely modified by the positron density p, relativistic factor(Ur), temperatures σ, kinematic viscosity η and quantum factor(H).

  14. Resonance of relativistic electrons with electromagnetic ion cyclotron waves

    DOE PAGESBeta

    Denton, R. E.; Jordanova, V. K.; Bortnik, J.

    2015-06-29

    Relativistic electrons have been thought to more easily resonate with electromagnetic ion cyclotron EMIC waves if the total density is large. We show that, for a particular EMIC mode, this dependence is weak due to the dependence of the wave frequency and wave vector on the density. A significant increase in relativistic electron minimum resonant energy might occur for the H band EMIC mode only for small density, but no changes in parameters significantly decrease the minimum resonant energy from a nominal value. The minimum resonant energy depends most strongly on the thermal velocity associated with the field line motionmore » of the hot ring current protons that drive the instability. High density due to a plasmasphere or plasmaspheric plume could possibly lead to lower minimum resonance energy by causing the He band EMIC mode to be dominant. We demonstrate these points using parameters from a ring current simulation.« less

  15. Resonance of relativistic electrons with electromagnetic ion cyclotron waves

    SciTech Connect

    Denton, R. E.; Jordanova, V. K.; Bortnik, J.

    2015-06-29

    Relativistic electrons have been thought to more easily resonate with electromagnetic ion cyclotron EMIC waves if the total density is large. We show that, for a particular EMIC mode, this dependence is weak due to the dependence of the wave frequency and wave vector on the density. A significant increase in relativistic electron minimum resonant energy might occur for the H band EMIC mode only for small density, but no changes in parameters significantly decrease the minimum resonant energy from a nominal value. The minimum resonant energy depends most strongly on the thermal velocity associated with the field line motion of the hot ring current protons that drive the instability. High density due to a plasmasphere or plasmaspheric plume could possibly lead to lower minimum resonance energy by causing the He band EMIC mode to be dominant. We demonstrate these points using parameters from a ring current simulation.

  16. Rarefaction wave in relativistic steady magnetohydrodynamic flows

    SciTech Connect

    Sapountzis, Konstantinos Vlahakis, Nektarios

    2014-07-15

    We construct and analyze a model of the relativistic steady-state magnetohydrodynamic rarefaction that is induced when a planar symmetric flow (with one ignorable Cartesian coordinate) propagates under a steep drop of the external pressure profile. Using the method of self-similarity, we derive a system of ordinary differential equations that describe the flow dynamics. In the specific limit of an initially homogeneous flow, we also provide analytical results and accurate scaling laws. We consider that limit as a generalization of the previous Newtonian and hydrodynamic solutions already present in the literature. The model includes magnetic field and bulk flow speed having all components, whose role is explored with a parametric study.

  17. Measurement of Blast Waves from Bursting Pressureized Frangible Spheres

    NASA Technical Reports Server (NTRS)

    Esparza, E. D.; Baker, W. E.

    1977-01-01

    Small-scale experiments were conducted to obtain data on incident overpressure at various distances from bursting pressurized spheres. Complete time histories of blast overpressure generated by rupturing glass spheres under high internal pressure were obtained using eight side-on pressure transducers. A scaling law is presented, and its nondimensional parameters are used to compare peak overpressures, arrival times, impulses, and durations for different initial conditions and sizes of blast source. The nondimensional data are also compared, whenever possible, with results of theoretical calculations and compiled data for Pentolite high explosive. The scaled data are repeatable and show significant differences from blast waves generated by condensed high-explosives.

  18. Parametric instability of a relativistically strong electromagnetic wave.

    NASA Technical Reports Server (NTRS)

    Max, C. E.

    1973-01-01

    The stability of a circularly polarized electromagnetic wave that is strong enough to make plasma electrons, but not ions, relativistic is studied. Small perturbations are considered which propagate parallel to the large-amplitude driver. A relativistically strong wave can be unstable on time scales as short as twice its own oscillation period, and decays into a forward-going plasma oscillation and either one or two electromagnetic waves. Ion motion introduces an additional instability which can be important at short perturbation wavelengths, where the driver would otherwise be stable. The unstable ion and electron modes both have potential for producing anomalously large acceleration of relativistic particles, as well as significant amounts of backscattered light. These effects may be important in two applications: (1) the use of intense lasers to heat or compress plasma, and (2) the plasma surrounding a pulsar, if the pulsar is losing energy by radiation of electromagnetic waves at its rotation frequency. Instability persists in the nonrelativistic regime, reducing to stimulated Raman scattering as a special case.

  19. Micro-blast waves using detonation transmission tubing

    NASA Astrophysics Data System (ADS)

    Samuelraj, I. Obed; Jagadeesh, G.; Kontis, K.

    2013-07-01

    Micro-blast waves emerging from the open end of a detonation transmission tube were experimentally visualized in this study. A commercially available detonation transmission tube was used (Nonel tube, M/s Dyno Nobel, Sweden), which is a small diameter tube coated with a thin layer of explosive mixture (HMX + traces of Al) on its inner side. The typical explosive loading for this tube is of the order of 18 mg/m of tube length. The blast wave was visualized using a high speed digital camera (frame rate 1 MHz) to acquire time-resolved schlieren images of the resulting flow field. The visualization studies were complemented by computational fluid dynamic simulations. An analysis of the schlieren images showed that although the blast wave appears to be spherical, it propagates faster along the tube axis than along a direction perpendicular to the tube axis. Additionally, CFD analysis revealed the presence of a barrel shock and Mach disc, showing structures that are typical of an underexpanded jet. A theory in use for centered large-scale explosions of intermediate strength (10 < Δ {p}/{p}_0 ≲ 0.02) gave good agreement with the blast trajectory along the tube axis. The energy of these micro-blast waves was found to be 1.25 ± 0.94 J and the average TNT equivalent was found to be 0.3. The repeatability in generating these micro-blast waves using the Nonel tube was very good (± 2 %) and this opens up the possibility of using this device for studying some of the phenomena associated with muzzle blasts in the near future.

  20. Some properties of adiabatic blast waves in preexisting cavities

    NASA Technical Reports Server (NTRS)

    Cox, D. P.; Franco, J.

    1981-01-01

    Cox and Anderson (1982) have conducted an investigation regarding an adiabatic blast wave in a region of uniform density and finite external pressure. In connection with an application of the results of the investigation to a study of interstellar blast waves in the very hot, low-density matrix, it was found that it would be desirable to examine situations with a positive radial density gradient in the ambient medium. Information concerning such situations is needed to learn about the behavior of blast waves occurring within preexisting, presumably supernova-induced cavities in the interstellar mass distribution. The present investigation is concerned with the first steps of a study conducted to obtain the required information. A review is conducted of Sedov's (1959) similarity solutions for the dynamical structure of any explosion in a medium with negligible pressure and power law density dependence on radius.

  1. Rapid miniature fiber optic pressure sensors for blast wave measurements

    NASA Astrophysics Data System (ADS)

    Zou, Xiaotian; Wu, Nan; Tian, Ye; Niezrecki, Christopher; Chen, Julie; Wang, Xingwei

    2013-02-01

    Traumatic brain injury (TBI) is a serious potential threat to soldiers who are exposed to explosions. Since the pathophysiology of TBI associated with a blast wave is not clearly defined, it is crucial to have a sensing system to accurately quantify the blast wave dynamics. This paper presents an ultra-fast fiber optic pressure sensor based on Fabry-Perot (FP) interferometric principle that is capable of measuring the rapid pressure changes in a blast event. The blast event in the experiment was generated by a starter pistol blank firing at close range, which produced a more realistic wave profile compared to using compressed air driven shock tubes. To the authors' knowledge, it is also the first study to utilize fiber optic pressure sensors to measure the ballistics shock wave of a pistol firing. The results illustrated that the fiber optic pressure sensor has a rise time of 200 ns which demonstrated that the sensor has ability to capture the dynamic pressure transient during a blast event. Moreover, the resonant frequency of the sensor was determined to be 4.11 MHz, which agrees well with the specific designed value.

  2. Stress Wave Interaction Between Two Adjacent Blast Holes

    NASA Astrophysics Data System (ADS)

    Yi, Changping; Johansson, Daniel; Nyberg, Ulf; Beyglou, Ali

    2016-05-01

    Rock fragmentation by blasting is determined by the level and state of stress in the rock mass subjected to blasting. With the application of electronic detonators, some researchers stated that it is possible to achieve improved fragmentation through stress wave superposition with very short delay times. This hypothesis was studied through theoretical analysis in the paper. First, the stress in rock mass induced by a single-hole shot was analyzed with the assumptions of infinite velocity of detonation and infinite charge length. Based on the stress analysis of a single-hole shot, the stress history and tensile stress distribution between two adjacent holes were presented for cases of simultaneous initiation and 1 ms delayed initiation via stress superposition. The results indicated that the stress wave interaction is local around the collision point. Then, the tensile stress distribution at the extended line of two adjacent blast holes was analyzed for a case of 2 ms delay. The analytical results showed that the tensile stress on the extended line increases due to the stress wave superposition under the assumption that the influence of neighboring blast hole on the stress wave propagation can be neglected. However, the numerical results indicated that this assumption is unreasonable and yields contrary results. The feasibility of improving fragmentation via stress wave interaction with precise initiation was also discussed. The analysis in this paper does not support that the interaction of stress waves improves the fragmentation.

  3. Langmuir waves in semi-relativistic spinless quantum plasmas

    NASA Astrophysics Data System (ADS)

    Ivanov, A. Yu.; Andreev, P. A.; Kuzmenkov, L. S.

    2015-06-01

    Many-particle quantum hydrodynamics based on the Darwin Hamiltonian (the Hamiltonian corresponding to the Darwin Lagrangian) is considered. A force field appearing in the corresponding Euler equation is considered in detail. Contributions from different terms of the Darwin Hamiltonian in the Euler equation are traced. For example, the relativistic correction to the kinetic energy of particles leads to several terms in the Euler equation; these terms have different form. One of them has a form similar to a term appearing from the Darwin term. Hence, the two different mechanisms give analogous contributions in wave dispersion. A microscopic analog of the Biot-Savart law, called the current-current interaction, describing an interaction of moving charges via the magnetic field, is also included in our description. The semi-relativistic generalization of the quantum Bohm potential is obtained. Contribution of the relativistic effects in the spectrum of plasma collective excitations is considered. The contributions of the spin-spin, spin-current, and spin-orbit interactions in this model are considered. The contribution of the spin evolution in the Langmuir wave spectrum is calculated at the propagation of wave perpendicular to the external magnetic field.

  4. Chaotic Motion of Relativistic Electrons Driven by Whistler Waves

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Telnikhin, A. A.; Kronberg, Tatiana K.

    2007-01-01

    Canonical equations governing an electron motion in electromagnetic field of the whistler mode waves propagating along the direction of an ambient magnetic field are derived. The physical processes on which the equations of motion are based .are identified. It is shown that relativistic electrons interacting with these fields demonstrate chaotic motion, which is accompanied by the particle stochastic heating and significant pitch angle diffusion. Evolution of distribution functions is described by the Fokker-Planck-Kolmogorov equations. It is shown that the whistler mode waves could provide a viable mechanism for stochastic energization of electrons with energies up to 50 MeV in the Jovian magnetosphere.

  5. Generalized relativistic wave equations with intrinsic maximum momentum

    NASA Astrophysics Data System (ADS)

    Ching, Chee Leong; Ng, Wei Khim

    2014-05-01

    We examine the nonperturbative effect of maximum momentum on the relativistic wave equations. In momentum representation, we obtain the exact eigen-energies and wave functions of one-dimensional Klein-Gordon and Dirac equation with linear confining potentials, and the Dirac oscillator. Bound state solutions are only possible when the strength of scalar potential is stronger than vector potential. The energy spectrum of the systems studied is bounded from above, whereby classical characteristics are observed in the uncertainties of position and momentum operators. Also, there is a truncation in the maximum number of bound states that is allowed. Some of these quantum-gravitational features may have future applications.

  6. Blast waves produced by interactions of femtosecond laser pulses with water.

    PubMed

    Li, Y T; Zhang, J; Teng, H; Li, K; Peng, X Y; Jin, Z; Lu, X; Zheng, Z Y; Yu, Q Z

    2003-05-01

    The behaviors of the blast waves produced by femtosecond laser-water interactions, and the blast waves induced by laser self-focusing in air, have been investigated using optical shadowgraphy at a maximum intensity of 1 x 10(16) W/cm(2). The temporal evolution of the blast wave launched by the water plasma can be described by a planar blast wave model including source mass. An aneurismlike structure, due to the quick propagation inside a hollow channel formed by laser self-focusing, is observed. The expansion of the channel in air is found to agree with a cylindrical self-similar blast wave solution. PMID:12786283

  7. Whistler wave generation by non-gyrotropic, relativistic, electron beams

    SciTech Connect

    Skender, M.; Tsiklauri, D.

    2014-04-15

    Particle-in-cell code, EPOCH, is used for studying features of the wave component evident to propagate backwards from the front of the non-gyrotropic, relativistic beam of electrons injected in the Maxwellian, magnetised background plasma with decreasing density profile. According to recent findings presented in Tsiklauri [Phys. Plasmas 18, 052903 (2011)], Schmitz and Tsiklauri [Phys. Plasmas 20, 062903 (2013)], and Pechhacker and Tsiklauri [Phys. Plasmas 19, 112903 (2012)], in a 1.5-dimensional magnetised plasma system, the non-gyrotropic beam generates freely escaping electromagnetic radiation with properties similar to the Type-III solar radio bursts. In this study, the backwards propagating wave component evident in the perpendicular components of the electromagnetic field in such a system is presented for the first time. Background magnetic field strength in the system is varied in order to prove that the backwards propagating wave's frequency, prescribed by the whistler wave dispersion relation, is proportional to the specified magnetic field. Moreover, the identified whistlers are shown to be generated by the normal Doppler-shifted relativistic resonance. Large fraction of the energy of the perpendicular electromagnetic field components is found to be carried away by the whistler waves, while a small but sufficient fraction is going into L- and R-electromagnetic modes.

  8. Whistler wave generation by non-gyrotropic, relativistic, electron beams

    NASA Astrophysics Data System (ADS)

    Skender, M.; Tsiklauri, D.

    2014-04-01

    Particle-in-cell code, EPOCH, is used for studying features of the wave component evident to propagate backwards from the front of the non-gyrotropic, relativistic beam of electrons injected in the Maxwellian, magnetised background plasma with decreasing density profile. According to recent findings presented in Tsiklauri [Phys. Plasmas 18, 052903 (2011)], Schmitz and Tsiklauri [Phys. Plasmas 20, 062903 (2013)], and Pechhacker and Tsiklauri [Phys. Plasmas 19, 112903 (2012)], in a 1.5-dimensional magnetised plasma system, the non-gyrotropic beam generates freely escaping electromagnetic radiation with properties similar to the Type-III solar radio bursts. In this study, the backwards propagating wave component evident in the perpendicular components of the electromagnetic field in such a system is presented for the first time. Background magnetic field strength in the system is varied in order to prove that the backwards propagating wave's frequency, prescribed by the whistler wave dispersion relation, is proportional to the specified magnetic field. Moreover, the identified whistlers are shown to be generated by the normal Doppler-shifted relativistic resonance. Large fraction of the energy of the perpendicular electromagnetic field components is found to be carried away by the whistler waves, while a small but sufficient fraction is going into L- and R-electromagnetic modes.

  9. Weakly nonlinear kink-type solitary waves in a fully relativistic plasma

    SciTech Connect

    Tribeche, Mouloud; Boukhalfa, Soufiane; Zerguini, Taha Houssine

    2010-08-15

    A fully and coherent relativistic fluid model derived from the covariant formulation of relativistic fluid equations is used to study small but finite amplitude solitary waves. This approach has the characteristic to be consistent with the relativistic principle and consequently leads to a more general set of equations valid for fully relativistic plasmas with arbitrary Lorentz relativistic factor. A kink-solitary wave solution is outlined. Due to electron relativistic effect, the localized structure may experience either a spreading or a compression. This latter phenomenon (compression) becomes less effective and less noticeable as the relativistic character of the ions becomes important. Our results may be relevant to cosmic relativistic double-layers and relativistic plasma structures that involve energetic plasma flows.

  10. Explosively-Driven Blast Waves in Small-Diameter Tubes

    NASA Astrophysics Data System (ADS)

    Cooper, M. A.; Marinis, R. T.; Oliver, M. S.

    Studies on blast waves are motivated by the need to understand dynamic pressure loadings in accident scenarios associated with rapid energy release in confined geometries. Explosions from fuel-air mixtures, explosives and industrial accidents often occur within a range of length scales associated with ducts, pipes, corridors, and tunnels [1, 2].

  11. Testing the blast wave model with Swift GRBs

    NASA Astrophysics Data System (ADS)

    Curran, P. A.; Starling, R. L. C.; van der Horst, A. J.; Wijers, R. A. M. J.; de Pasquale, M.; Page, M.

    2011-04-01

    The complex structure of the light curves of Swift GRBs (e.g. superimposed flares and shallow decay) has made their interpretation and that of the blast wave caused by the burst, more difficult than in the pre-Swift era. We aim to constrain the blast wave parameters: electron energy distribution, p, density profile of the circumburst medium, k, and the continued energy injection index, q. We do so by comparing the observed multi-wavelength light curves and X-ray spectra of a Swift sample to the predictions of the blast wave model.We can successfully interpret all of the bursts in our multi-wavelength sample of 10, except two, within the framework of the blast wave model, and we can estimate with confidence the electron energy distribution index for 6 of the sample. Furthermore we identify jet breaks in almost half of the bursts. The values of k suggest that the circumburst density profiles are not drawn from only one of the constant density or wind-like media populations. A statistical analysis of the distribution of p reveals that, even in the most conservative case of least scatter, the values are not consistent with a single, universal value. This is in agreement with our results for a larger sample of X-ray only afterglows which we summarise here.

  12. A systematic exposition of the conservation equations for blast waves.

    NASA Technical Reports Server (NTRS)

    Oppenheim, A. K.; Lundstrom, E. A.; Kuhl, A. L.; Kamel, M. M.

    1971-01-01

    In order to provide a rational background for the analysis of experimental observations of blast wave phenomena, the conservation equations governing their nonsteady flow field are formulated in a general manner, without the usual restrictions imposed by an equation of state, and with proper account taken, by means of source terms, of other effects which, besides the inertial terms that conventionally dominate these equations, can affect the flow. Taking advantage of the fact that a blast wave can be generally considered as a spatially one-dimensional flow field whose nonsteady behavior can be regarded, consequently, as a function of just two independent variables, two generalized blast wave coordinates are introduced, one associated with the front of the blast wave and the other with its flow field. The conservation equations are accordingly transformed into this coordinate system, acquiring thereby a comprehensive character, in that they refer then to any frame of reference, being applicable, in particular, to problems involving either space or time profiles of the gas-dynamic parameters in the Eulerian system, or time profiles in the Lagrangian system.

  13. EFFECT OF INTERACTING RAREFACTION WAVES ON RELATIVISTICALLY HOT JETS

    SciTech Connect

    Matsumoto, Jin; Shibata, Kazunari; Masada, Youhei

    2012-06-01

    The effect of rarefaction acceleration on the propagation dynamics and structure of relativistically hot jets is studied through relativistic hydrodynamic simulations. We emphasize the nonlinear interaction of rarefaction waves excited at the interface between a cylindrical jet and the surrounding medium. From simplified one-dimensional (1D) models with radial jet structure, we find that a decrease in the relativistic pressure due to the interacting rarefaction waves in the central zone of the jet transiently yields a more powerful boost of the bulk jet than that expected from single rarefaction acceleration. This leads to a cyclic in situ energy conversion between thermal and bulk kinetic energies, which induces radial oscillating motion of the jet. The oscillation timescale is characterized by the initial pressure ratio of the jet to the ambient medium and follows a simple scaling relation, {tau}{sub oscillation}{proportional_to}(P{sub jet,0}/P{sub amb,0}){sup 1/2}. Extended two-dimensional simulations confirm that this radial oscillating motion in the 1D system manifests as modulation of the structure of the jet in a more realistic situation where a relativistically hot jet propagates through an ambient medium. We find that when the ambient medium has a power-law pressure distribution, the size of the reconfinement region along the propagation direction of the jet in the modulation structure {lambda} evolves according to a self-similar relation {lambda}{proportional_to}t{sup {alpha}/2}, where {alpha} is the power-law index of the pressure distribution.

  14. Simulation of blast-induced, early-time intracranial wave physics leading to traumatic brain injury.

    SciTech Connect

    Taylor, Paul Allen; Ford, Corey C.

    2008-04-01

    U.S. soldiers are surviving blast and impacts due to effective body armor, trauma evacuation and care. Blast injuries are the leading cause of traumatic brain injury (TBI) in military personnel returning from combat. Understanding of Primary Blast Injury may be needed to develop better means of blast mitigation strategies. The objective of this paper is to investigate the effects of blast direction and strength on the resulting mechanical stress and wave energy distributions generated in the brain.

  15. Using traveling wave structures to extract power from relativistic klystrons

    SciTech Connect

    Ryne, R.D.; Yu, S.S.

    1990-09-19

    The purpose of this note is to analyze the excitation of traveling wave (TW) output structures by an RF current. Such structures are being used in relativistic klystron experiments at Lawrence Livermore National Laboratory. First we will preset a set of difference equations that describes the excitation of the cells of a TW structure. Next we will restrict our attention to structures that have identical cells, except possibly for the first and last cells. Under these circumstances one can obtain difference equations that have constant coefficients, and we will present the general solution of these equations. Lastly we will apply our results to the analysis of a TW output structure. We will show that, by appropriate choice of the quality factors (Qs) and eigenfrequencies of the first and last cells, it is possible to obtain a traveling wave solution for which there is no reflected wave and where the excitation grows linearly with cell number.

  16. Confirmation of EMIC wave-driven relativistic electron precipitation

    NASA Astrophysics Data System (ADS)

    Hendry, Aaron T.; Rodger, Craig J.; Clilverd, Mark A.; Engebretson, Mark J.; Mann, Ian R.; Lessard, Marc R.; Raita, Tero; Milling, David K.

    2016-06-01

    Electromagnetic ion cyclotron (EMIC) waves are believed to be an important source of pitch angle scattering driven relativistic electron loss from the radiation belts. To date, investigations of this precipitation have been largely theoretical in nature, limited to calculations of precipitation characteristics based on wave observations and small-scale studies. Large-scale investigation of EMIC wave-driven electron precipitation has been hindered by a lack of combined wave and precipitation measurements. Analysis of electron flux data from the POES (Polar Orbiting Environmental Satellites) spacecraft has been suggested as a means of investigating EMIC wave-driven electron precipitation characteristics, using a precipitation signature particular to EMIC waves. Until now the lack of supporting wave measurements for these POES-detected precipitation events has resulted in uncertainty regarding the driver of the precipitation. In this paper we complete a statistical study comparing POES precipitation measurements with wave data from several ground-based search coil magnetometers; we further present a case study examining the global nature of this precipitation. We show that a significant proportion of the precipitation events correspond with EMIC wave detections on the ground; for precipitation events that occur directly over the magnetometers, this detection rate can be as high as 90%. Our results demonstrate that the precipitation region is often stationary in magnetic local time, narrow in L, and close to the expected plasmapause position. Predominantly, the precipitation is associated with helium band rising tone Pc1 waves on the ground. The success of this study proves the viability of POES precipitation data for investigating EMIC wave-driven electron precipitation.

  17. Electrostatic rogue-waves in relativistically degenerate plasmas

    SciTech Connect

    Akbari-Moghanjoughi, M.

    2014-10-15

    In this paper, we investigate the modulational instability and the possibility of electrostatic rogue-wave propagations in a completely degenerate plasma with arbitrary degree of degeneracy, i.e., relativistically degenerate plasma, ranging from solid density to the astrophysical compact stars. The hydrodynamic approach along with the perturbation method is used to reduce the governing equations to the nonlinear Schrödinger equation from which the modulational instability, the growth rate of envelope excitations and the occurrence of rogue as well as super-rogue waves in the plasma, is evaluated. It is observed that the modulational instability in a fully degenerate plasma can be quite sensitive to the plasma number-density and the wavenumber of envelop excitations. It is further revealed that the relativistically degeneracy plasmas (R{sub 0} > 1) are almost always modulationally unstable. It is found, however, that the highly energetic sharply localized electrostatic rogue as well as super-rogue waves can exist in the astrophysical compact objects like white dwarfs and neutron star crusts. The later may provide a link to understand many physical processes in such stars and it may lead us to the origin of the random-localized intense short gamma-ray bursts, which “appear from nowhere and disappear without a trace” quite similar to oceanic rogue structures.

  18. Dust acoustic solitary waves in a charge varying relativistic dusty plasma

    SciTech Connect

    Tribeche, Mouloud; Boukhalfa, Soufiane; Zerguini, Taha Houssine

    2010-06-15

    The problem of nonlinear variable charge dust acoustic solitary waves in dusty plasma with relativistic electrons and ions is addressed. The appropriate relativistic charging currents, derived within the theoretical framework of the orbit-limited motion theory, are used. Our results show that in such a plasma, rarefactive spatially localized dust acoustic waves can exist. Their spatial patterns are significantly modified by the relativistic effects. In particular, it may be noted that relativistic effects make the solitary structure spikier. Our results should help to understand the salient features of coherent nonlinear structures that may occur in relativistic space plasmas.

  19. Relationship between orientation to a blast and pressure wave propagation inside the rat brain.

    PubMed

    Chavko, Mikulas; Watanabe, Tomas; Adeeb, Saleena; Lankasky, Jason; Ahlers, Stephen T; McCarron, Richard M

    2011-01-30

    Exposure to a blast wave generated during an explosion may result in brain damage and related neurological impairments. Several mechanisms by which the primary blast wave can damage the brain have been proposed, including: (1) a direct effect of the shock wave on the brain causing tissue damage by skull flexure and propagation of stress and shear forces; and (2) an indirect transfer of kinetic energy from the blast, through large blood vessels and cerebrospinal fluid (CSF), to the central nervous system. To address a basic question related to the mechanisms of blast brain injury, pressure was measured inside the brains of rats exposed to a low level of blast (~35kPa), while positioned in three different orientations with respect to the primary blast wave; head facing blast, right side exposed to blast and head facing away from blast. Data show different patterns and durations of the pressure traces inside the brain, depending on the rat orientation to blast. Frontal exposures (head facing blast) resulted in pressure traces of higher amplitude and longer duration, suggesting direct transmission and reflection of the pressure inside the brain (dynamic pressure transfer). The pattern of the pressure wave inside the brain in the head facing away from blast exposures assumes contribution of the static pressure, similar to hydrodynamic pressure to the pressure wave inside the brain. PMID:21129403

  20. Blast Wave Driven Instabilities In Laboratory Astrophysics Experiments

    NASA Astrophysics Data System (ADS)

    Kuranz, Carolyn; Drake, R.; Grosskopf, M.; Robey, H.; Hansen, J.; Miles, A.; Knauer, J.; Arnett, D.; Plewa, T.; Hearn, N.; Meakin, C.

    2008-05-01

    This presentation discusses experiments well scaled to the blast wave driven instabilities at the He/H interface during the explosion phase of SN1987A. This core-collapse supernova was detected about 50 kpc from Earth making it the first supernova observed so closely to earth in modern times. The progenitor star was a blue supergiant with a mass of 18-20 solar masses. A blast wave occurred following the supernova explosion because there was a sudden, finite release of energy. Blast waves consist of a shock front followed by a rarefaction wave. When a blast wave crosses an interface with a decrease in density, hydrodynamic instabilities will develop. These experiments include target materials scaled in density to the He/H layer in SN1987A. About 5 kJ of laser energy from the Omega Laser facility irradiates a 150 µm plastic layer that is followed by a low-density foam layer. A blast wave structure similar to those in supernovae is created in the plastic layer. The blast wave crosses a three-dimensional interface with a wavelength of 71 µm in two orthogonal directions. This produces unstable growth dominated by the Rayleigh-Taylor (RT) instability. We have detected the interface structure under these conditions, using dual orthogonal radiography, and will show some of the resulting data. Recent advancements in our x-ray backlighting techniques have greatly improved the resolution of our x-ray radiographic images. Under certain conditions, the improved images show some mass extending beyond the RT spike and penetrating further than previously observed. Current simulations do not show this phenomenon. This presentation will discuss the amount of mass in these spike extensions. Recent results from an experiment using more realistic initial conditions based on stellar evolution models will also be shown. This research was sponsored by the Stewardship Science Academic Alliance through DOE Research Grants DE-FG52-07NA28058, DE-FG52-04NA00064.

  1. Relativistic shock waves and the excitation of plerions

    SciTech Connect

    Arons, J. ); Gallant, Y.A. . Dept. of Physics); Hoshino, Masahiro; Max, C.E. . Inst. of Geophysics and Planetary Physics); Langdon, A.B. )

    1991-01-07

    The shock termination of a relativistic magnetohydrodynamic wind from a pulsar is the most interesting and viable model for the excitation of the synchrotron sources observed in plerionic supernova remnants. We have studied the structure of relativistic magnetosonic shock waves in plasmas composed purely of electrons and positrons, as well as those whose composition includes heavy ions as a minority constituent by number. We find that relativistic shocks in symmetric pair plasmas create fully thermalized distributions of particles and fields downstream. Therefore, such shocks are not good candidates for the mechanism which converts rotational energy lost from a pulsar into the nonthermal synchrotron emission observed in plerions. However, when the upstream wind contains heavy ions which are minority constituent by number density, but carry the bulk of the energy density, much of the energy of the shock goes into a downstream, nonthermal power law distribution of positrons with energy distribution N(E)dE {proportional to}E{sup {minus}s}. In a specific model presented in some detail, s = 3. These characteristics are close to those assumed for the pairs in macroscopic MHD wind models of plerion excitation. The essential mechanism is collective synchrotron emission of left-handed extraordinary modes by the ions in the shock front at high harmonics of the ion cyclotron frequency, with the downstream positrons preferentially absorbing almost all of this radiation, mostly at their fundamental (relativistic) cyclotron frequencies. Possible applications to models of plerions and to constraints on theories of energy loss from pulsars are briefly outlines. 27 refs., 5 figs.

  2. Review of methods to attenuate shock/blast waves

    NASA Astrophysics Data System (ADS)

    Igra, O.; Falcovitz, J.; Houas, L.; Jourdan, G.

    2013-04-01

    Quick and reliable shock wave attenuation is the goal of every protection facility and therefore it is not surprising that achieving this has drawn much attention during the past hundred years. Different options have been suggested; their usefulness varying from a reasonable protection to the opposite, a shock enhancement. An example for a suggestion for shock mitigation that turned out to be an enhancement of the impinging shock wave was the idea to cover a protected object with a foam layer. While the pressure behind the reflected shock wave from the foam frontal surface was smaller than that recorded in a similar reflection from a rigid wall [25], the pressure on the “protected” surface, attached to the foam's rear-surface, was significantly higher than that recorded in a similar reflection from a bare, rigid wall [11]. In protecting humans and installations from destructive shock and/or blast waves the prime goal is to reduce the wave amplitude and the rate of pressure increase across the wave front. Both measures result in reducing the wave harmful effects. During the past six decades several approaches for achieving the desired protection have been offered in the open literature. We point out in this review that while some of the suggestions offered are practical, others are impractical. In our discussion we focus on recent schemes for shock/blast wave attenuation, characterized by the availability of reliable measurements (notably pressure and optical diagnostics) as well as high-resolution numerical simulations.

  3. Parametric decay of an extraordinary electromagnetic wave in relativistic plasma

    SciTech Connect

    Dorofeenko, V. G.; Krasovitskiy, V. B.; Turikov, V. A.

    2015-03-15

    Parametric instability of an extraordinary electromagnetic wave in plasma preheated to a relativistic temperature is considered. A set of self-similar nonlinear differential equations taking into account the electron “thermal” mass is derived and investigated. Small perturbations of the parameters of the heated plasma are analyzed in the linear approximation by using the dispersion relation determining the phase velocities of the fast and slow extraordinary waves. In contrast to cold plasma, the evanescence zone in the frequency range above the electron upper hybrid frequency vanishes and the asymptotes of both branches converge. Theoretical analysis of the set of nonlinear equations shows that the growth rate of decay instability increases with increasing initial temperature of plasma electrons. This result is qualitatively confirmed by numerical simulations of plasma heating by a laser pulse injected from vacuum.

  4. A powerful reflector in relativistic backward wave oscillator

    SciTech Connect

    Cao, Yibing Sun, Jun; Teng, Yan; Zhang, Yuchuan; Zhang, Lijun; Shi, Yanchao; Ye, Hu; Chen, Changhua

    2014-09-15

    An improved TM{sub 021} resonant reflector is put forward. Similarly with most of the slow wave structures used in relativistic backward wave oscillator, the section plane of the proposed reflector is designed to be trapezoidal. Compared with the rectangular TM{sub 021} resonant reflector, such a structure can depress RF breakdown more effectively by weakening the localized field convergence and realizing good electrostatic insulation. As shown in the high power microwave (HPM) generation experiments, with almost the same output power obtained by the previous structure, the improved structure can increase the pulse width from 25 ns to over 27 ns and no obvious surface damage is observed even if the generated HPM pulses exceed 1000 shots.

  5. Parametric decay of an extraordinary electromagnetic wave in relativistic plasma

    NASA Astrophysics Data System (ADS)

    Dorofeenko, V. G.; Krasovitskiy, V. B.; Turikov, V. A.

    2015-03-01

    Parametric instability of an extraordinary electromagnetic wave in plasma preheated to a relativistic temperature is considered. A set of self-similar nonlinear differential equations taking into account the electron "thermal" mass is derived and investigated. Small perturbations of the parameters of the heated plasma are analyzed in the linear approximation by using the dispersion relation determining the phase velocities of the fast and slow extraordinary waves. In contrast to cold plasma, the evanescence zone in the frequency range above the electron upper hybrid frequency vanishes and the asymptotes of both branches converge. Theoretical analysis of the set of nonlinear equations shows that the growth rate of decay instability increases with increasing initial temperature of plasma electrons. This result is qualitatively confirmed by numerical simulations of plasma heating by a laser pulse injected from vacuum.

  6. A powerful reflector in relativistic backward wave oscillator

    NASA Astrophysics Data System (ADS)

    Cao, Yibing; Sun, Jun; Teng, Yan; Zhang, Yuchuan; Zhang, Lijun; Shi, Yanchao; Ye, Hu; Chen, Changhua

    2014-09-01

    An improved TM021 resonant reflector is put forward. Similarly with most of the slow wave structures used in relativistic backward wave oscillator, the section plane of the proposed reflector is designed to be trapezoidal. Compared with the rectangular TM021 resonant reflector, such a structure can depress RF breakdown more effectively by weakening the localized field convergence and realizing good electrostatic insulation. As shown in the high power microwave (HPM) generation experiments, with almost the same output power obtained by the previous structure, the improved structure can increase the pulse width from 25 ns to over 27 ns and no obvious surface damage is observed even if the generated HPM pulses exceed 1000 shots.

  7. Relativistic waves raised by explosions in space as sources of ultra-high-energy cosmic rays

    NASA Astrophysics Data System (ADS)

    Kichigin, G. N.

    2013-01-01

    The paper discusses the possibility of particle acceleration up to high energies in relativistic waves generated by various explosive processes in the interstellar medium. We propose to use the surfatron mechanism of acceleration (surfing) of charged particles trapped in the front of relativistic waves as a generator of high-energy cosmic rays (CRs). Conditions under which surfing in the waves under consideration can be made are studied thoroughly. Ultra-high-energy CRs (up to 1020 eV) are shown to be obtained due to the surfing in relativistic plane and spherical waves. Surfing is supposed to take place in nonlinear Langmuir waves excited by powerful electromagnetic radiation or relativistic beams of charged particles, as well as in strong shock waves generated by relativistic jets or spherical formations that expand fast (fireballs).

  8. RESONANT AMPLIFICATION OF TURBULENCE BY THE BLAST WAVES

    SciTech Connect

    Zankovich, A. M.; Kovalenko, I. G.

    2015-02-10

    We discuss the idea of whether spherical blast waves can amplify by a nonlocal resonant hydrodynamic mechanism inhomogeneities formed by turbulence or phase segregation in the interstellar medium. We consider the problem of a blast-wave-turbulence interaction in the Linear Interaction Approximation. Mathematically, this is an eigenvalue problem for finding the structure and amplitude of eigenfunctions describing the response of the shock-wave flow to forced oscillations by external perturbations in the ambient interstellar medium. Linear analysis shows that the blast wave can amplify density and vorticity perturbations for a wide range of length scales with amplification coefficients of up to 20, with increasing amplification the larger the length. There also exist resonant harmonics for which the gain becomes formally infinite in the linear approximation. Their orbital wavenumbers are within the range of macro- (l ∼ 1), meso- (l ∼ 20), and microscopic (l > 200) scales. Since the resonance width is narrow (typically, Δl < 1), resonance should select and amplify discrete isolated harmonics. We speculate on a possible explanation of an observed regular filamentary structure of regularly shaped round supernova remnants such as SNR 1572, 1006, or 0509-67.5. Resonant mesoscales found (l ≈ 18) are surprisingly close to the observed scales (l ≈ 15) of ripples in the shell's surface of SNR 0509-67.5.

  9. Resonant Amplification of Turbulence by the Blast Waves

    NASA Astrophysics Data System (ADS)

    Zankovich, A. M.; Kovalenko, I. G.

    2015-02-01

    We discuss the idea of whether spherical blast waves can amplify by a nonlocal resonant hydrodynamic mechanism inhomogeneities formed by turbulence or phase segregation in the interstellar medium. We consider the problem of a blast-wave-turbulence interaction in the Linear Interaction Approximation. Mathematically, this is an eigenvalue problem for finding the structure and amplitude of eigenfunctions describing the response of the shock-wave flow to forced oscillations by external perturbations in the ambient interstellar medium. Linear analysis shows that the blast wave can amplify density and vorticity perturbations for a wide range of length scales with amplification coefficients of up to 20, with increasing amplification the larger the length. There also exist resonant harmonics for which the gain becomes formally infinite in the linear approximation. Their orbital wavenumbers are within the range of macro- (l ~ 1), meso- (l ~ 20), and microscopic (l > 200) scales. Since the resonance width is narrow (typically, Δl < 1), resonance should select and amplify discrete isolated harmonics. We speculate on a possible explanation of an observed regular filamentary structure of regularly shaped round supernova remnants such as SNR 1572, 1006, or 0509-67.5. Resonant mesoscales found (l ≈ 18) are surprisingly close to the observed scales (l ≈ 15) of ripples in the shell's surface of SNR 0509-67.5.

  10. Impact of complex blast waves on the human head: a computational study.

    PubMed

    Tan, Long Bin; Chew, Fatt Siong; Tse, Kwong Ming; Chye Tan, Vincent Beng; Lee, Heow Pueh

    2014-12-01

    Head injuries due to complex blasts are not well examined because of limited published articles on the subject. Previous studies have analyzed head injuries due to impact from a single planar blast wave. Complex or concomitant blasts refer to impacts usually caused by more than a single blast source, whereby the blast waves may impact the head simultaneously or consecutively, depending on the locations and distances of the blast sources from the subject, their blast intensities, the sequence of detonations, as well as the effect of blast wave reflections from rigid walls. It is expected that such scenarios will result in more serious head injuries as compared to impact from a single blast wave due to the larger effective duration of the blast. In this paper, the utilization of a head-helmet model for blast impact analyses in Abaqus(TM) (Dassault Systemes, Singapore) is demonstrated. The model is validated against studies published in the literature. Results show that the skull is capable of transmitting the blast impact to cause high intracranial pressures (ICPs). In addition, the pressure wave from a frontal blast may enter through the sides of the helmet and wrap around the head to result in a second impact at the rear. This study recommended better protection at the sides and rear of the helmet through the use of foam pads so as to reduce wave entry into the helmet. The consecutive frontal blasts scenario resulted in higher ICPs compared with impact from a single frontal blast. This implied that blast impingement from an immediate subsequent pressure wave would increase severity of brain injury. For the unhelmeted head case, a peak ICP of 330 kPa is registered at the parietal lobe which exceeds the 235 kPa threshold for serious head injuries. The concurrent front and side blasts scenario yielded lower ICPs and skull stresses than the consecutive frontal blasts case. It is also revealed that the additional side blast would only significantly affect ICPs at

  11. Steady-state solutions for relativistically strong electromagnetic waves in plasmas.

    NASA Technical Reports Server (NTRS)

    Max, C. E.

    1973-01-01

    New steady-state solutions are derived which describe electromagnetic waves strong enough to make plasma ions and electrons relativistic. A two-fluid model is used throughout. The following solutions are studied: (1) linearly polarized waves with phase velocity much greater than c; (2) arbitrarily polarized waves with phase velocity near c, in a cold uniform plasma; (3) circularly polarized waves in a uniform plasma characterized by a scalar pressure tensor. All of these waves are capable of propagating in normally overdense plasmas, due to nonlinearities introduced by relativistic effects. The propagation of relativistically strong waves in a density gradient is examined, for the example of a circularly polarized wave strong enough to make electrons but not ions relativistic. It is shown that such a wave propagates at constant energy flux despite the nonlinearity of the system.

  12. Study of high Mach number laser driven blast waves in gases

    SciTech Connect

    Edens, A. D.; Adams, R. G.; Rambo, P.; Ruggles, L.; Smith, I. C.; Porter, J. L.; Ditmire, T.

    2010-11-15

    A series of experiments were performed examining the evolution of blast waves produced by laser irradiation of a target immersed in gas. Blast waves were produced by illumination of wires by 1 kJ, 1 ns laser pulses from the Z-Beamlet laser at Sandia National Laboratories. The blast waves were imaged by probe laser pulses at various times to examine the trajectory, radiative precursor, and induced perturbations on the blast wave front. Well defined perturbations were induced on the blast wave front with arrays of wires placed in the gas and the results of the experiments are compared to the theoretical predictions for the Vishniac overstability. It is found that the experimental results are in general agreement with these theoretical predictions on thin blast wave shells and are in quantitative agreement in the simplest case.

  13. Vorticity deposition, structure generation and the approach to self-similarity in colliding blast wave experiments

    NASA Astrophysics Data System (ADS)

    Robinson, A. P. L.; Schmitz, H.; Fox, T. E.; Pasley, J.; Symes, D. R.

    2015-03-01

    When strong shocks interact with transverse density gradients, it is well known that vorticity deposition occurs. When two non-planar blast waves interact, a strong shock will propagate through the internal structure of each blast wave where the shock encounters such density gradients. There is therefore the potential for the resulting vorticity to produce pronounced density structures long after the passage of these shocks. If the two blast waves have evolved to the self-similar (Sedov) phase this is not a likely prospect, but for blast waves at a relatively early stage of their evolution this remains possible. We show, using 2D numerical simulations, that the interactions of two 'marginally young' blast waves can lead to strong vorticity deposition which leads to the generation of a strong protrusion and vortex ring as mass is driven into the internal structure of the weaker blast wave.

  14. GAMMA-RAY BURST AFTERGLOW SCALING RELATIONS FOR THE FULL BLAST WAVE EVOLUTION

    SciTech Connect

    Van Eerten, Hendrik J.; MacFadyen, Andrew I.

    2012-03-10

    We demonstrate that gamma-ray burst afterglow spectra and light curves can be calculated for arbitrary explosion and radiation parameters by scaling the peak flux and the critical frequencies connecting different spectral regimes. Only one baseline calculation needs to be done for each jet opening angle and observer angle. These calculations are done numerically using high-resolution relativistic hydrodynamical afterglow blast wave simulations which include the two-dimensional dynamical features of expanding and decelerating afterglow blast waves. Any light curve can then be generated by applying scaling relations to the baseline calculations. As a result, it is now possible to fully fit for the shape of the jet break, e.g., at early-time X-ray and optical frequencies. In addition, late-time radio calorimetry can be improved since the general shape of the transition into the Sedov-Taylor regime is now known for arbitrary explosion parameters so the exact moment when the Sedov-Taylor asymptote is reached in the light curve is no longer relevant. When calculating the baselines, we find that the synchrotron critical frequency {nu}{sub m} and the cooling break frequency {nu}{sub c} are strongly affected by the jet break. The {nu}{sub m} temporal slope quickly drops to the steep late-time Sedov-Taylor slope, while the cooling break {nu}{sub c} first steepens and then rises to meet the level of its shallow late-time asymptote.

  15. A thoracic mechanism of mild traumatic brain injury due to blast pressure waves.

    PubMed

    Courtney, A C; Courtney, M W

    2009-01-01

    The mechanisms by which blast pressure waves cause mild-to-moderate traumatic brain injury (mTBI) are an open question. Possibilities include acceleration of the head, direct passage of the blast wave via the cranium, and propagation of the blast wave to the brain via a thoracic mechanism. The hypothesis that the blast pressure wave reaches the brain via a thoracic mechanism is considered in light of ballistic and blast pressure wave research. Ballistic pressure waves, caused by penetrating ballistic projectiles or ballistic impacts to body armor, can only reach the brain via an internal mechanism and have been shown to cause cerebral effects. Similar effects have been documented when a blast pressure wave has been applied to the whole body or focused on the thorax in animal models. While vagotomy reduces apnea and bradycardia due to ballistic or blast pressure waves, it does not eliminate neural damage in the brain, suggesting that the pressure wave directly affects the brain cells via a thoracic mechanism. An experiment is proposed which isolates the thoracic mechanism from cranial mechanisms of mTBI due to blast wave exposure. Results have implications for evaluating risk of mTBI due to blast exposure and for developing effective protection. PMID:18829180

  16. A viscous blast-wave model for high energy heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Jaiswal, Amaresh; Koch, Volker

    2016-07-01

    Employing a viscosity-based survival scale for initial geometrical perturbations formed in relativistic heavy-ion collisions, we model the radial flow velocity at freeze-out. Subsequently, we use the Cooper-Frye freeze-out prescription, with viscous corrections to the distribution function, to extract the transverse momentum dependence of particle yields and flow harmonics. We fit the model parameters for central collisions, by fitting the spectra of identified particles at the Large Hadron Collider (LHC), and estimate them for other centralities using simple hydrodynamic relations. We use the results of Monte Carlo Glauber model for initial eccentricities. We demonstrate that this improved viscous blast-wave model leads to good agreement with transverse momentum distribution of elliptic and triangular flow for all centralities and estimate the shear viscosity to entropy density ratio η/s ≃ 0.24 at the LHC.

  17. Measurement of the decay rate of single-frequency perturbations on blast waves.

    PubMed

    Edens, A D; Ditmire, T; Hansen, J F; Edwards, M J; Adams, R G; Rambo, P K; Ruggles, L; Smith, I C; Porter, J L

    2005-12-01

    To explore the validity of theories forwarded to explain the dynamics of hydrodynamic perturbations on high Mach number blast waves, we have studied the decay rate of perturbations on blast waves traveling through nitrogen gas. In our experiments, 1 kJ pulses from the Z-Beamlet laser at Sandia National Laboratories illuminated solid targets immersed in gas and created blast waves. The polytropic index implied by comparing experiment to theoretical predictions is compared to simulation results. PMID:16384385

  18. Simulation of the Reflected Blast Wave froma C-4 Charge

    SciTech Connect

    Howard, W M; Kuhl, A L; Tringe, J W

    2011-08-01

    The reflection of a blast wave from a C4 charge detonated above a planar surface is simulated with our ALE3D code. We used a finely-resolved, fixed Eulerian 2-D mesh (167 {micro}m per cell) to capture the detonation of the charge, the blast wave propagation in nitrogen, and its reflection from the surface. The thermodynamic properties of the detonation products and nitrogen were specified by the Cheetah code. A programmed-burn model was used to detonate the charge at a rate based on measured detonation velocities. Computed pressure histories are compared with pressures measured by Kistler 603B piezoelectric gauges at 8 ranges (GR = 0, 2, 4, 8, 10, and 12 inches) along the reflecting surface. Computed and measured waveforms and positive-phase impulses were similar, except at close-in ranges (GR < 2 inches), which were dominated by jetting effects.

  19. Towards a fast-running method for blast-wave mitigation by a prismatic blast wall

    NASA Astrophysics Data System (ADS)

    Éveillard, Sébastien; Lardjane, Nicolas; Vinçont, Jean-Yves; Sochet, Isabelle

    A procedure aimed at developing a fast-running method for blast-wave effects characterization behind a protection barrier is presented. Small-scale experiments of a hemispherical gaseous charge (stoichiometric propane-oxygen mixture) without and with a prismatic protective barrier are used to validate the use of an in-house CFD code for gaseous detonation. From numerical experiments, pressure loss of a blast wave at a corner is quantified. These fits, in conjunction with TM5-1300 reflection charts, are used to estimate the maximum overpressure around a protective barrier through geometrical and empirical laws. The results show good agreement with numerical and experimental data from the ANR-BARPPRO research project.

  20. Asymmetric modes decomposition in an overmoded relativistic backward wave oscillator

    SciTech Connect

    Zhang, Dian; Zhang, Jun Zhong, Huihuang; Jin, Zhenxing; Ju, Jinchuan

    2014-09-15

    Most of the investigated overmoded relativistic backward wave oscillators (RBWOs) are azimuthally symmetric; thus, they are designed through two dimensional (2-D) particle-in-cell (PIC) simulations. However, 2-D PIC simulations cannot reveal the effect of asymmetric modes on beam-wave interaction. In order to investigate whether asymmetric mode competition needs to be considered in the design of overmoded RBWOs, a numerical method of determining the composition of both symmetric and asymmetric modes in three dimensional (3-D) PIC simulations is introduced in this paper. The 2-D and 3-D PIC simulation results of an X-band overmoded RBWO are analyzed. Our analysis indicates that the 2-D and 3-D PIC simulation results of our device are quite different due to asymmetric mode competition. In fact, asymmetric surface waves, especially EH{sub 11} mode, can lead to serious mode competition when electron beam propagates near the surface of slow wave structures (SWSs). Therefore, additional method of suppressing asymmetric mode competition, such as adjusting the reflections at both ends of SWSs to decrease the Q-factor of asymmetric modes, needs to be utilized in the design of overmoded RBWOs. Besides, 3-D PIC simulation and modes decomposition are essential for designing overmoded RBWOs.

  1. The effects of reverberant blast waves on the auditory system.

    PubMed

    Ahroon, W A; Hamernik, R P; Lei, S F

    1996-10-01

    Chinchillas were exposed to 1, 10, or 100 reverberant impulses at 150, 155, or 160 dB peak SPL. The impulses were generated by one of two different shock tubes, each producing blast waves having a different spectral composition, with one emphasizing low frequencies (< 0.5 kHz) and the other midfrequencies (2-4 kHz). Impulses were presented at the rate of one per minute. This parametric paradigm yielded 18 exposure conditions with 15 animals/condition. Hearing thresholds were measured using auditory-evoked potentials and the sensory epithelium was evaluated with the surface preparation. In general, trauma increased as the total energy of the exposure, determined by the peak SPL and number of presentations, increased. The dependent variables (permanent threshold shift and sensory cell loss) varied in an orderly fashion across frequency as the peak and number of presentations were increased for both blast wave sources. There were, however, consistent differences between the effects of the low- and high-frequency energy "content" blast waves. Correlations between the dependent variables and the energy of exposure were highest for P- or A-weighted energies [Patterson et al., J. Acoust. Soc. Am. 93, 2860-2869 (1993)]. PMID:8865633

  2. Interactions between Blast Waves and V-Shaped and Cone-Shaped Structures

    NASA Astrophysics Data System (ADS)

    Peng, W.; Zhang, Z. Y.; Gogos, G.; Gazonas, G.

    2011-09-01

    A 2-D numerical model of interactions between a blast wave and a V-shaped or a cone-shaped structure is developed. The model simulates the blast wave reflection from a V-shaped or a cone-shaped structure, the movement of the structure due to the blast impact and the induced shock wave behind the structure. Elliptic grid generation and coordinate transformation are utilized to solve the flow fields in the irregular physical domain. Different types of blast wave reflections, such as normal reflection, oblique reflection and Mach stem reflection, are captured by the numerical model. It is found that the reflected pressure and impulse transmitted to the structure decrease with the increase of incident angle. On the other hand, with the increase of incident angle, the effects of fluid structure interactions (FSI) in reducing the blast loads decreases. The FSI coupled with oblique or Mach stem reflection improves the blast wave mitigation.

  3. Investigation of blast wave characteristics for layered thermobaric charges

    NASA Astrophysics Data System (ADS)

    Trzciński, W. A.; Barcz, K.

    2012-03-01

    The explosion of an annular charge composed of a hexogen core and a layer consisting of a mixture of ammonium nitrate and aluminum particles was studied. X-ray photography was used to trace the curvature of the shock wave in the external layer. The pressure blast characteristics and the light output of the explosion cloud were investigated using bunkers of different sizes and varying levels of the opening (the ratio of the hole surface to the total bunker surface). Overpressure peaks, the impulses of incident waves, and the impulses determined for the specified time duration were analyzed.

  4. Dynamic Modelling of Fault Slip Induced by Stress Waves due to Stope Production Blasts

    NASA Astrophysics Data System (ADS)

    Sainoki, Atsushi; Mitri, Hani S.

    2016-01-01

    Seismic events can take place due to the interaction of stress waves induced by stope production blasts with faults located in close proximity to stopes. The occurrence of such seismic events needs to be controlled to ensure the safety of the mine operators and the underground mine workings. This paper presents the results of a dynamic numerical modelling study of fault slip induced by stress waves resulting from stope production blasts. First, the calibration of a numerical model having a single blast hole is performed using a charge weight scaling law to determine blast pressure and damping coefficient of the rockmass. Subsequently, a numerical model of a typical Canadian metal mine encompassing a fault parallel to a tabular ore deposit is constructed, and the simulation of stope extraction sequence is carried out with static analyses until the fault exhibits slip burst conditions. At that point, the dynamic analysis begins by applying the calibrated blast pressure to the stope wall in the form of velocities generated by the blast holes. It is shown from the results obtained from the dynamic analysis that the stress waves reflected on the fault create a drop of normal stresses acting on the fault, which produces a reduction in shear stresses while resulting in fault slip. The influence of blast sequences on the behaviour of the fault is also examined assuming several types of blast sequences. Comparison of the blast sequence simulation results indicates that performing simultaneous blasts symmetrically induces the same level of seismic events as separate blasts, although seismic energy is more rapidly released when blasts are performed symmetrically. On the other hand when nine blast holes are blasted simultaneously, a large seismic event is induced, compared to the other two blasts. It is concluded that the separate blasts might be employed under the adopted geological conditions. The developed methodology and procedure to arrive at an ideal blast sequence can

  5. A parametric study of self-similar blast waves.

    NASA Technical Reports Server (NTRS)

    Oppenheim, A. K.; Kuhl, A. L.; Lundstrom, E. A.; Kamel, M. M.

    1972-01-01

    Comprehensive examination of self-similar blast waves with respect to two parameters, one describing the front velocity and the other the variation of the ambient density immediately ahead of the front. All possible front trajectories are taken into account, including limiting cases of the exponential and logarithmic form. The structure of the waves is analyzed by means of a phase plane defined in terms of two reduced coordinates. Loci of extrema of the integral curves in the phase plane are traced, and loci of singularities are determined on the basis of their intersections. Boundary conditons are introduced for the case where the medium into which the waves propagate is at rest. Representative solutions, pertaining to all the possible cases of blast waves bounded by shock fronts propagating into an atmosphere of uniform density, are obtained by evaluating the integral curves and determining the corresponding profiles of the gasdynamic parameters. Particular examples of integral curves for waves bounded by detonations are given, and all the degenerate solutions corresponding to cases where the integral curve is reduced to a point are delineated.

  6. Whistler wave generation by non-gyrotropic, relativistic, electron beams

    NASA Astrophysics Data System (ADS)

    Skender, Marina; Tsiklauri, David

    2014-05-01

    ]. In this study [5], for the first time, the backwards propagating wave component evident in the perpendicular components of the electromagnetic field in such a system is presented. Features of the wave component propagating backwards from the front of the non-gyrotropic, relativistic, beam of electrons injected in the Maxwellian, magnetised background plasma with decreasing density profile are studied by using the Particle-In-Cell code EPOCH. Magnetic field in the 1.5-dimensional system is varied in order to prove that the backwards propagating wave is harmonic of the electron cyclotron frequency. The analysis has lead to the identification of the backwards travelling waves as whistlers. Moreover, the whistlers are shown to be generated by the normal and anomalous Doppler resonance. Large fraction of the energy of the perpendicular electromagnetic field components is found to be carried away by the whistler waves. [1] D. Tsiklauri, Phys. Plasmas 18, 052903 (2011). [2] D. Tsiklauri, H. Schmitz, Geophys. Res. Abs. 15, EGU2013-5403 (2013). [3] H. Schmitz, D. Tsiklauri, Phys. Plasmas 20, 062903 (2013). [4] R. Pechhacker, D. Tsiklauri, Phys. Plasmas 19, 112903 (2012). [5] M. Skender, D. Tsiklauri, submitted to Phys. Plasmas (2013): http://astro.qmul.ac.uk/ tsiklauri/

  7. Microscopic origin of self-similarity in granular blast waves

    NASA Astrophysics Data System (ADS)

    Barbier, M.; Villamaina, D.; Trizac, E.

    2016-08-01

    The self-similar expansion of a blast wave, well-studied in air, has peculiar counterparts in dense and dissipative media such as granular gases. Recent results have shown that, while the traditional Taylor-von Neumann-Sedov (TvNS) derivation is not applicable to such granular blasts, they can nevertheless be well understood via a combination of microscopic and hydrodynamic insights. In this article, we provide a detailed analysis of these methods associating molecular dynamics simulations and continuum equations, which successfully predict hydrodynamic profiles, scaling properties, and the instability of the self-similar solution. We also present new results for the energy conserving case, including the particle-level analysis of the classic TvNS solution and its breakdown at higher densities.

  8. Cylindrically converging blast waves in air

    NASA Astrophysics Data System (ADS)

    Matsuo, H.; Nakamura, Y.

    1981-07-01

    Cylindrically converging shock waves are produced by utilizing the detonation of cylindrical explosive shells. The production and the propagation of shock waves are observed by framing and streak camera photographs, and the trajectory of shock propagations is determined by using an electrical ionization probing system. The effect of the quantity of explosives on the stability, or the axial symmetry, of shock fronts and on the strength of shocks produced is investigated. It has been shown that, for practical purposes, the approximation of shock trajectories by Guderley's formulas would be sufficiently acceptable in an unexpectedly wide region near the implosion center, and that the axial symmetry of the shock front is improved by increasing the quantity of explosives, and thus, strong shocks are produced by merely increasing the quantity of explosives. The reflected diverging shock seems to be very stable. Piezoelectric elements have also been used to detect reflected diverging waves.

  9. ELECTRON INJECTION BY WHISTLER WAVES IN NON-RELATIVISTIC SHOCKS

    SciTech Connect

    Riquelme, Mario A.; Spitkovsky, Anatoly E-mail: anatoly@astro.princeton.edu

    2011-05-20

    Electron acceleration to non-thermal, ultra-relativistic energies ({approx}10-100 TeV) is revealed by radio and X-ray observations of shocks in young supernova remnants (SNRs). The diffusive shock acceleration (DSA) mechanism is usually invoked to explain this acceleration, but the way in which electrons are initially energized or 'injected' into this acceleration process starting from thermal energies is an unresolved problem. In this paper we study the initial acceleration of electrons in non-relativistic shocks from first principles, using two- and three-dimensional particle-in-cell (PIC) plasma simulations. We systematically explore the space of shock parameters (the Alfvenic Mach number, M{sub A} , the shock velocity, v{sub sh}, the angle between the upstream magnetic field and the shock normal, {theta}{sub Bn}, and the ion to electron mass ratio, m{sub i} /m{sub e} ). We find that significant non-thermal acceleration occurs due to the growth of oblique whistler waves in the foot of quasi-perpendicular shocks. This acceleration strongly depends on using fairly large numerical mass ratios, m{sub i} /m{sub e} , which may explain why it had not been observed in previous PIC simulations of this problem. The obtained electron energy distributions show power-law tails with spectral indices up to {alpha} {approx} 3-4. The maximum energies of the accelerated particles are consistent with the electron Larmor radii being comparable to that of the ions, indicating potential injection into the subsequent DSA process. This injection mechanism, however, requires the shock waves to have fairly low Alfenic Mach numbers, M{sub A} {approx}< 20, which is consistent with the theoretical conditions for the growth of whistler waves in the shock foot (M{sub A} {approx}< (m{sub i} /m{sub e}){sup 1/2}). Thus, if the whistler mechanism is the only robust electron injection process at work in SNR shocks, then SNRs that display non-thermal emission must have significantly amplified

  10. A repetitive 0.14 THz relativistic surface wave oscillator

    SciTech Connect

    Wang Guangqiang; Tong Changjiang; Li Xiaoze; Wang Xuefeng; Li Shuang; Lu Xicheng; Wang Jianguo

    2013-04-15

    Preliminary experimental results of a repetitive 0.14 THz overmoded relativistic surface wave oscillator (RSWO) are presented in this paper. The repetitive RSWO is developed by using a rectangularly corrugated slow-wave structure with overmoded ratio of 3 and a foilless diode emitting annular electron beam with thickness of 0.5 mm. The high quality electron beams at the repetition rate of 10 are obtained over a wide range of diode voltage (180 kV < U < 240 kV) and current (700 A < I < 1.2 kA). The generation experiments of RSWO are conducted at an axial pulsed magnetic field whose maximum strength and duration can reach about 2.7 T and 1 s, respectively. The experimental results show that the RSWO successfully produces reasonable uniform terahertz pulses at repetition rate of 10, and the pulse duration, frequency, and power of a single pulse are about 1.5 ns, 0.154 THz, and 2.6 MW, respectively, whereas the dominated radiation mode of the RSWO is TM{sub 02}.

  11. Model for small arms fire muzzle blast wave propagation in air

    NASA Astrophysics Data System (ADS)

    Aguilar, Juan R.; Desai, Sachi V.

    2011-11-01

    Accurate modeling of small firearms muzzle blast wave propagation in the far field is critical to predict sound pressure levels, impulse durations and rise times, as functions of propagation distance. Such a task being relevant to a number of military applications including the determination of human response to blast noise, gunfire detection and localization, and gun suppressor design. Herein, a time domain model to predict small arms fire muzzle blast wave propagation is introduced. The model implements a Friedlander wave with finite rise time which diverges spherically from the gun muzzle. Additionally, the effects in blast wave form of thermoviscous and molecular relaxational processes, which are associated with atmospheric absorption of sound were also incorporated in the model. Atmospheric absorption of blast waves is implemented using a time domain recursive formula obtained from numerical integration of corresponding differential equations using a Crank-Nicholson finite difference scheme. Theoretical predictions from our model were compared to previously recorded real world data of muzzle blast wave signatures obtained by shooting a set different sniper weapons of varying calibers. Recordings containing gunfire acoustical signatures were taken at distances between 100 and 600 meters from the gun muzzle. Results shows that predicted blast wave slope and exponential decay agrees well with measured data. Analysis also reveals the persistency of an oscillatory phenomenon after blast overpressure in the recorded wave forms.

  12. Observations Of Particle Acceleration In The Blast Waves Of Gamma-ray Bursts

    NASA Astrophysics Data System (ADS)

    Curran, Peter A.; van der Horst, A. J.; Evans, P. A.

    2010-03-01

    The electron energy distribution index, p, is a fundamental parameter of the process by which electrons are accelerated to relativistic speeds and by which they radiate, via synchrotron emission. This acceleration process is applicable to a myriad of astronomical sources, from jet sources such as AGN, X-ray binaries and gamma-ray bursts, to particle acceleration in the solar wind and supernovae, and the acceleration of cosmic rays. The accurate measurement of the distribution of p is of fundamental importance to differentiate between the possible theories of electron acceleration at any relativistic shock front. There is division as to whether the electron energy distribution index has a universal value or whether it has a distribution, and if so, what that distribution is. In this presentation we examine one such source of synchrotron emission: the blast waves of gamma-ray bursts. Using our unique Monte Carlo method, we examine the constraints placed on the distribution of p by the observed spectral indices of gamma-ray bursts and parametrize the distribution. We find that the observed distribution of spectral indices is inconsistent with a discrete value of p, but consistent with a Gaussian distribution centred at p 2.4 and having a width of 0.6. This finding rules out the theoretical work that argues for a single, universal value of p, but also demonstrates that the width of the distribution is not as wide as has been suggested by some authors.

  13. Computational study of human head response to primary blast waves of five levels from three directions.

    PubMed

    Wang, Chenzhi; Pahk, Jae Bum; Balaban, Carey D; Miller, Mark C; Wood, Adam R; Vipperman, Jeffrey S

    2014-01-01

    Human exposure to blast waves without any fragment impacts can still result in primary blast-induced traumatic brain injury (bTBI). To investigate the mechanical response of human brain to primary blast waves and to identify the injury mechanisms of bTBI, a three-dimensional finite element head model consisting of the scalp, skull, cerebrospinal fluid, nasal cavity, and brain was developed from the imaging data set of a human female. The finite element head model was partially validated and was subjected to the blast waves of five blast intensities from the anterior, right lateral, and posterior directions at a stand-off distance of one meter from the detonation center. Simulation results show that the blast wave directly transmits into the head and causes a pressure wave propagating through the brain tissue. Intracranial pressure (ICP) is predicted to have the highest magnitude from a posterior blast wave in comparison with a blast wave from any of the other two directions with same blast intensity. The brain model predicts higher positive pressure at the site proximal to blast wave than that at the distal site. The intracranial pressure wave invariably travels into the posterior fossa and vertebral column, causing high pressures in these regions. The severities of cerebral contusions at different cerebral locations are estimated using an ICP based injury criterion. Von Mises stress prevails in the cortex with a much higher magnitude than in the internal parenchyma. According to an axonal injury criterion based on von Mises stress, axonal injury is not predicted to be a cause of primary brain injury from blasts. PMID:25409326

  14. Computational study of human head response to primary blast waves of five levels from three directions.

    PubMed

    Wang, Chenzhi; Pahk, Jae Bum; Balaban, Carey D; Miller, Mark C; Wood, Adam R; Vipperman, Jeffrey S

    2014-01-01

    Human exposure to blast waves without any fragment impacts can still result in primary blast-induced traumatic brain injury (bTBI). To investigate the mechanical response of human brain to primary blast waves and to identify the injury mechanisms of bTBI, a three-dimensional finite element head model consisting of the scalp, skull, cerebrospinal fluid, nasal cavity, and brain was developed from the imaging data set of a human female. The finite element head model was partially validated and was subjected to the blast waves of five blast intensities from the anterior, right lateral, and posterior directions at a stand-off distance of one meter from the detonation center. Simulation results show that the blast wave directly transmits into the head and causes a pressure wave propagating through the brain tissue. Intracranial pressure (ICP) is predicted to have the highest magnitude from a posterior blast wave in comparison with a blast wave from any of the other two directions with same blast intensity. The brain model predicts higher positive pressure at the site proximal to blast wave than that at the distal site. The intracranial pressure wave invariably travels into the posterior fossa and vertebral column, causing high pressures in these regions. The severities of cerebral contusions at different cerebral locations are estimated using an ICP based injury criterion. Von Mises stress prevails in the cortex with a much higher magnitude than in the internal parenchyma. According to an axonal injury criterion based on von Mises stress, axonal injury is not predicted to be a cause of primary brain injury from blasts.

  15. Computational Study of Human Head Response to Primary Blast Waves of Five Levels from Three Directions

    PubMed Central

    Wang, Chenzhi; Pahk, Jae Bum; Balaban, Carey D.; Miller, Mark C.; Wood, Adam R.; Vipperman, Jeffrey S.

    2014-01-01

    Human exposure to blast waves without any fragment impacts can still result in primary blast-induced traumatic brain injury (bTBI). To investigate the mechanical response of human brain to primary blast waves and to identify the injury mechanisms of bTBI, a three-dimensional finite element head model consisting of the scalp, skull, cerebrospinal fluid, nasal cavity, and brain was developed from the imaging data set of a human female. The finite element head model was partially validated and was subjected to the blast waves of five blast intensities from the anterior, right lateral, and posterior directions at a stand-off distance of one meter from the detonation center. Simulation results show that the blast wave directly transmits into the head and causes a pressure wave propagating through the brain tissue. Intracranial pressure (ICP) is predicted to have the highest magnitude from a posterior blast wave in comparison with a blast wave from any of the other two directions with same blast intensity. The brain model predicts higher positive pressure at the site proximal to blast wave than that at the distal site. The intracranial pressure wave invariably travels into the posterior fossa and vertebral column, causing high pressures in these regions. The severities of cerebral contusions at different cerebral locations are estimated using an ICP based injury criterion. Von Mises stress prevails in the cortex with a much higher magnitude than in the internal parenchyma. According to an axonal injury criterion based on von Mises stress, axonal injury is not predicted to be a cause of primary brain injury from blasts. PMID:25409326

  16. Numerical Study on Blast Wave Propagation Driven by Unsteady Ionization Plasma

    SciTech Connect

    Ogino, Yousuke; Sawada, Keisuke; Ohnishi, Naofumi

    2008-04-28

    Understanding the dynamics of laser-produced plasma is essential for increasing the available thrust and energy conversion efficiency from a pulsed laser to a blast wave in a gas-driven laser-propulsion system. The performance of a gas-driven laser-propulsion system depends heavily on the laser-driven blast wave dynamics as well as on the ionizing and/or recombining plasma state that sustains the blast wave. In this study, we therefore develop a numerical simulation code for a laser-driven blast wave coupled with time-dependent rate equations to explore the formation of unsteady ionizing plasma produced by laser irradiation. We will also examine the various properties of blast waves and unsteady ionizing plasma for different laser input energies.

  17. Reduction of optically observed artillery blast wave trajectories using low dimensionality models

    NASA Astrophysics Data System (ADS)

    Steward, Bryan J.; Gross, Kevin C.; Perram, Glen P.

    2011-05-01

    Muzzle blast trajectories from firings of a 152 mm caliber gun howitzer were obtained with high-speed optical imagers and used to assess the fidelity with which low dimensionality models can be used for data reduction. Characteristic flow regions were defined for the blast waves. The near-field region was estimated to extend to 0.98 - 1.25 meters from the muzzle and the far-field region was estimated to begin at 2.61 - 3.31 meters. Blast wave geometries and radial trajectories were collected in the near through far-fields with visible imagers operating at 1,600 Hz. Beyond the near-field the blast waves exhibited a near-spherical geometry in which the major axis of the blast lay along the axis of the gun barrel and measured within 95% of the minor axis. Several blast wave propagation models were applied to the mid and far-field data to determine their ability to reduce the blast wave trajectories to fewer parameters while retaining the ability to distinguish amongst three munitions configurations. A total of 147 firings were observed and used to assess within-configuration variability relative to separation between configurations. Results show that all models perform well, and drag and point blast model parameters additionally provide insight into phenomenology of the blast.

  18. Experiments on cylindrically converging blast waves in atmospheric air

    NASA Astrophysics Data System (ADS)

    Matsuo, Hideo; Nakamura, Yuichi

    1980-06-01

    Cylindrically converging blast waves have been produced in normal atmospheric conditions by the detonation of the explosives, pentaerythritoltetranitrate, (PETN), over cylindrical surfaces. The shocks generated in this way are so strong that the fronts propagating through the air become luminous of themselves. The production and the propagation of the shocks have been monitored with a framing camera and a streak camera, and the time-space relations of the shock propagations have been determined using an electrical ionization probing system. The results have shown that the trajectory of the shock fronts near the axis of the cylinder can be approximately represented by the Guderley's formula.

  19. Effect of EMIC Waves on Relativistic and Ultra-Relativistic Electron Populations: Ground-based and Van Allen Probes Observations

    NASA Astrophysics Data System (ADS)

    Usanova, Maria; Drozdov, Alexander; Orlova, Ksenia; Mann, Ian; Shprits, Yuri; Robertson, Matthew; Turner, Drew; Milling, David; Kale, Andy; Baker, Dan; Reeves, Geoff; Spence, Harlan; Kletzing, Craig; Wygant, John

    2014-05-01

    We study the effect of electromagnetic ion cyclotron (EMIC) waves on the loss and pitch-angle scattering of relativistic and ultra-relativistic electrons during the recovery phase of a moderate geomagnetic storm on October 11, 2012. The EMIC wave activity was observed in-situ on the Van Allen Probes and conjugately on the ground across the CARISMA array throughout an extended 18-hour interval. However, neither enhanced precipitation of >0.7 MeV electrons, nor reductions in Van Allen Probe 90o pitch-angle ultra-relativistic electron flux were observed. Computed radiation belt electron pitch-angle diffusion rates demonstrate that rapid pitch-angle diffusion is confined to low pitch angles and cannot reach 90o. For the first time, from both observational and modeling perspectives, we show evidence of EMIC waves triggering ultra-relativistic (~2-8 MeV) electron loss, but which is confined to pitch angles below around 45 degrees and not affecting the core distribution.

  20. Electron Acoustic Solitary Waves in Magnetized Quantum Plasma with Relativistic Degenerated Electrons

    NASA Astrophysics Data System (ADS)

    Zhu, Zhenni; Wu, Zhengwei; Li, Chunhua; Yang, Weihong

    2014-11-01

    A model for the nonlinear properties of obliquely propagating electron acoustic solitary waves in a two-electron populated relativistically quantum magnetized plasma is presented. By using the standard reductive perturbation technique, the Zakharov-Kuznetsov (ZK) equation is derived and this equation gives the solitary wave solution. It is observed that the relativistic effects, the ratio of the cold to hot electron unperturbed number density and the magnetic field normalized by electron cyclotron frequency significantly influence the solitary structures.

  1. Wave-induced loss of ultra-relativistic electrons in the Van Allen radiation belts

    PubMed Central

    Shprits, Yuri Y.; Drozdov, Alexander Y.; Spasojevic, Maria; Kellerman, Adam C.; Usanova, Maria E.; Engebretson, Mark J.; Agapitov, Oleksiy V.; Zhelavskaya, Irina S.; Raita, Tero J.; Spence, Harlan E.; Baker, Daniel N.; Zhu, Hui; Aseev, Nikita A.

    2016-01-01

    The dipole configuration of the Earth's magnetic field allows for the trapping of highly energetic particles, which form the radiation belts. Although significant advances have been made in understanding the acceleration mechanisms in the radiation belts, the loss processes remain poorly understood. Unique observations on 17 January 2013 provide detailed information throughout the belts on the energy spectrum and pitch angle (angle between the velocity of a particle and the magnetic field) distribution of electrons up to ultra-relativistic energies. Here we show that although relativistic electrons are enhanced, ultra-relativistic electrons become depleted and distributions of particles show very clear telltale signatures of electromagnetic ion cyclotron wave-induced loss. Comparisons between observations and modelling of the evolution of the electron flux and pitch angle show that electromagnetic ion cyclotron waves provide the dominant loss mechanism at ultra-relativistic energies and produce a profound dropout of the ultra-relativistic radiation belt fluxes. PMID:27678050

  2. Wave-induced loss of ultra-relativistic electrons in the Van Allen radiation belts

    NASA Astrophysics Data System (ADS)

    Shprits, Yuri Y.; Drozdov, Alexander Y.; Spasojevic, Maria; Kellerman, Adam C.; Usanova, Maria E.; Engebretson, Mark J.; Agapitov, Oleksiy V.; Zhelavskaya, Irina S.; Raita, Tero J.; Spence, Harlan E.; Baker, Daniel N.; Zhu, Hui; Aseev, Nikita A.

    2016-09-01

    The dipole configuration of the Earth's magnetic field allows for the trapping of highly energetic particles, which form the radiation belts. Although significant advances have been made in understanding the acceleration mechanisms in the radiation belts, the loss processes remain poorly understood. Unique observations on 17 January 2013 provide detailed information throughout the belts on the energy spectrum and pitch angle (angle between the velocity of a particle and the magnetic field) distribution of electrons up to ultra-relativistic energies. Here we show that although relativistic electrons are enhanced, ultra-relativistic electrons become depleted and distributions of particles show very clear telltale signatures of electromagnetic ion cyclotron wave-induced loss. Comparisons between observations and modelling of the evolution of the electron flux and pitch angle show that electromagnetic ion cyclotron waves provide the dominant loss mechanism at ultra-relativistic energies and produce a profound dropout of the ultra-relativistic radiation belt fluxes.

  3. Blast Wave Exposure Impairs Memory and Decreases Axon Initial Segment Length

    PubMed Central

    Baalman, Kelli L.; Cotton, R. James; Rasband, S. Neil

    2013-01-01

    Abstract Exposure to a blast wave has been proposed to cause mild traumatic brain injury (mTBI), with symptoms including altered cognition, memory, and behavior. This idea, however, remains controversial, and the mechanisms of blast-induced brain injury remain unknown. To begin to resolve these questions, we constructed a simple compressed air shock tube, placed rats inside the tube, and exposed them to a highly reproducible and controlled blast wave. Consistent with the generation of a mild injury, 2 weeks after exposure to the blast, we found that motor performance was unaffected, and a panel of common injury markers showed little or no significant changes in expression in the cortex, corpus callosum, or hippocampus. Similarly, we were unable to detect elevated spectrin breakdown products in brains collected from blast-exposed rats. Using an object recognition task, however, we found that rats exposed to a blast wave spent significantly less time exploring a novel object when compared with control rats. Intriguingly, we also observed a significant shortening of the axon initial segment (AIS) in both the cortex and hippocampus of blast-exposed rats, suggesting altered neuronal excitability after exposure to a blast. A computational model showed that shortening the AIS increased both threshold and the interspike interval of repetitively firing neurons. These results support the conclusion that exposure to a single blast wave can lead to mTBI with accompanying cognitive impairment and subcellular changes in the molecular organization of neurons. PMID:23025758

  4. Waves in general relativistic two-fluid plasma around a Schwarzschild black hole

    NASA Astrophysics Data System (ADS)

    Rahman, M. Atiqur

    2012-10-01

    Waves propagating in the relativistic electron-positron or ions plasma are investigated in a frame of two-fluid equations using the 3+1 formalism of general relativity developed by Thorne, Price and Macdonald (TPM). The plasma is assumed to be freefalling in the radial direction toward the event horizon due to the strong gravitational field of a Schwarzschild black hole. The local dispersion relations for transverse and longitudinal waves have been derived, in analogy with the special relativistic formulation as explained in an earlier paper, to take account of relativistic effects due to the event horizon using WKB approximation.

  5. Electrostatic solitary waves in a quantum plasma with relativistically degenerate electrons

    NASA Astrophysics Data System (ADS)

    Masood, W.; Eliasson, B.

    2011-03-01

    A model for nonlinear ion waves in an unmagnetized plasma with relativistically degenerate electrons and cold fluid ions is presented here. The inertia is given here by the ion mass while the restoring force is provided by the relativistic electron degeneracy pressure, and the dispersion is due to the deviation from charge neutrality. A nonlinear Korteweg-de Vries equation is derived for small but finite amplitude waves and is used to study the properties of localized ion acoustic solitons for parameters relevant for dense astrophysical objects such as white dwarf stars. Different degrees of relativistic electron degeneracy are discussed and compared.

  6. Spike Penetration in Blast-Wave-Driven Instabilities

    NASA Astrophysics Data System (ADS)

    Drake, R. Paul

    2010-05-01

    Recent experiments by C. Kuranz and collaborators, motivated by structure in supernovae, have studied systems in which planar blast waves encounter interfaces where the density decreases. During the Rayleigh-Taylor (RT) phase of such experiments, they observed greater penetration of the RT spikes than tends to be seen in simulations. Here we seek to employ semi-analytic theory to understand the general nature and regimes of spike penetration for blast-wave-driven instabilities. This problem is not trivial as one must account for the initial vorticity deposition at the interface, for its time-dependent deceleration, for the expansion of the shocked material in time and space, and for the drag on the broadened tips of the spikes. We offer here an improved evaluation of the material expansion in comparison to past work. The goal is to use such models to increase our ability to interpret the behavior of simulations of such systems, in both the laboratory and astrophysics. Supported by the US DOE NNSA under the Predictive Sci. Academic Alliance Program by grant DE-FC52-08NA28616, the Stewardship Sci. Academic Alliances program by grant DE-FG52-04NA00064, and the Nat. Laser User Facility by grant DE-FG03-00SF22021.

  7. Spike penetration in blast-wave-driven instabilities

    NASA Astrophysics Data System (ADS)

    Drake, R. P.

    2009-11-01

    Recent experiments by C. Kuranz and collaborators, motivated by structure in supernovae, have studied systems in which planar blast waves encounter interfaces where the density decreases. During the Rayleigh-Taylor (RT) phase of such experiments, they observed greater penetration of the RT spikes than tends to be seen in simulations. Here we seek to employ semi-analytic theory to understand the general nature and regimes of spike penetration for blast-wave-driven instabilities. This problem is not trivial as one must account for the initial vorticity deposition at the interface, for its time-dependent deceleration, for the expansion of the shocked material in time and space, and for the drag on the broadened tips of the spikes. One can hope that such models will increase our ability to interpret the behavior of simulations of such systems, in both the laboratory and astrophysics. Supported by the US DOE NNSA under the Predictive Sci. Academic Alliance Program by grant DE-FC52-08NA28616, the Stewardship Sci. Academic Alliances program by grant DE-FG52-04NA00064, and the Nat. Laser User Facility by grant DE-FG03--00SF22021.

  8. Self-similar blast waves incorporating deflagrations of variable speed

    NASA Technical Reports Server (NTRS)

    Guirguis, R. H.; Kamel, M. M.; Oppenheim, A. K.

    1983-01-01

    The present investigation is concerned with the development of a systematic approach to the problem of self-similar blast waves incorporating nonsteady flames. The regime covered by the presented solutions is bounded on one side by an adiabatic strong explosion and, on the other, by deflagration propagating at an infinite acceleration. Results for a representative set of accelerations are displayed, taking into account the full range of propagation speeds from zero to velocities corresponding to the Chapman-Jouguet deflagration. It is found that the distribution of stored energy in the undisturbed medium determines the acceleration of the deflagration-shock wave system. The obtained results reveal the existence of a simple relation between the location of the deflagration and its Mach number.

  9. Chest wall velocity as a predictor of nonauditory blast injury in a complex wave environment.

    PubMed

    Axelsson, H; Yelverton, J T

    1996-03-01

    Previous blast injury prediction criteria have been based on exposure to classic Friedlander or ideal blast waves. An ideal waveform is characterized by an instantaneous rise to a peak overpressure that decays exponentially to ambient pressure followed by a negative phase. The prediction criteria did not address injuries resulting from exposure to complex blast waves. It was difficult to establish a simple relationship between the two because complex blast waves typically consist of multiple shocks with variable frequency content and intensity that may be superimposed on a slow rising quasistatic pressure pulse. This paper deals with the application of a single degree of freedom mathematical model, originally developed to measure the response of the thorax to Friedlander waves, to calculate chest wall velocities resulting from various complex blast loads. Experimental results with sheep, exposed to complex blast waves in enclosures, demonstrated that there was a good relationship between the Adjusted Severity of Injury Index (which includes injury to the lungs, upper respiratory tract, gastrointestinal tract and solid intraabdominal organs) and the calculated peak inward chest wall velocity. In addition, there was a good correlation between these results and previously established Friedlander injury prediction curves. The velocity of complex blast waves was nearly the same as that of Friedlander waves for a given degree of injury: 3-4.5 meters/second for threshold injury, 8-12 meters/second for an LD1, and 12-17 meters/second for an LD50. PMID:8606417

  10. Dispersion characteristics of the electromagnetic waves in a relativistic electron beam guided by the ion channel

    SciTech Connect

    Mirzanejhad, Saeed; Sohbatzadeh, Farshad; Ghasemi, Maede; Sedaghat, Zeinab; Mahdian, Zeinab

    2010-05-15

    In this article, the dispersion characteristics of the paraxial (near axis) electromagnetic (EM) waves in a relativistic electron beam guided by the ion channel are investigated. Equilibrium fields such as ion-channel electrostatic field and self-fields of relativistic electron beam are included in this formalism. In accordance with the equilibrium field structure, radial and azimuthal waves are selected as base vectors for EM waves. It is shown that the dispersion of the radially polarized EM and space charge waves are influenced by the equilibrium fields, but azimuthally polarized wave remain unaffected. In some wave number domains, the radially polarized EM and fast space charge waves are coupled. In these regions, instability is analyzed as a function of equilibrium structure. It is shown that the total equilibrium radial force due to the ion channel and electron beam and also relativistic effect play a key role in the coupling of the radially polarized EM wave and space charge wave. Furthermore, some asymptotic behaviors such as weak and strong ion channel, nonrelativistic case and cutoff frequencies are discussed. This instability could be used as an amplification mechanism for radially polarized EM waves in a beam-plasma system where a relativistic electron beam is guided by the ion channel.

  11. Ultra-low-frequency wave-driven diffusion of radiation belt relativistic electrons

    PubMed Central

    Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang; Zong, Q.-G.; Zhou, X.-Z.; Zheng, Huinan; Wang, Yuming; Wang, Shui; Hao, Y.-X.; Gao, Zhonglei; He, Zhaoguo; Baker, D. N.; Spence, H. E.; Reeves, G. D.; Blake, J. B.; Wygant, J. R.

    2015-01-01

    Van Allen radiation belts are typically two zones of energetic particles encircling the Earth separated by the slot region. How the outer radiation belt electrons are accelerated to relativistic energies remains an unanswered question. Recent studies have presented compelling evidence for the local acceleration by very-low-frequency (VLF) chorus waves. However, there has been a competing theory to the local acceleration, radial diffusion by ultra-low-frequency (ULF) waves, whose importance has not yet been determined definitively. Here we report a unique radiation belt event with intense ULF waves but no detectable VLF chorus waves. Our results demonstrate that the ULF waves moved the inner edge of the outer radiation belt earthward 0.3 Earth radii and enhanced the relativistic electron fluxes by up to one order of magnitude near the slot region within about 10 h, providing strong evidence for the radial diffusion of radiation belt relativistic electrons. PMID:26690250

  12. Observation of Relativistic Electron Microbursts in Conjunction with Intense Radiation Belt Whistler-Mode Waves

    NASA Technical Reports Server (NTRS)

    Kersten, K.; Cattell, C. A.; Breneman, A.; Goetz, K.; Kellogg, P. J.; Wygant, J. R.; Wilson, L. B., III; Blake, J. B.; Looper, M. D.; Roth, I.

    2011-01-01

    We present multi-satellite observations of large amplitude radiation belt whistler-mode waves and relativistic electron precipitation. On separate occasions during the Wind petal orbits and STEREO phasing orbits, Wind and STEREO recorded intense whistler-mode waves in the outer nightside equatorial radiation belt with peak-to-peak amplitudes exceeding 300 mV/m. During these intervals of intense wave activity, SAMPEX recorded relativistic electron microbursts in near magnetic conjunction with Wind and STEREO. This evidence of microburst precipitation occurring at the same time and at nearly the same magnetic local time and L-shell with a bursty temporal structure similar to that of the observed large amplitude wave packets suggests a causal connection between the two phenomena. Simulation studies corroborate this idea, showing that nonlinear wave.particle interactions may result in rapid energization and scattering on timescales comparable to those of the impulsive relativistic electron precipitation.

  13. Ultra-low-frequency wave-driven diffusion of radiation belt relativistic electrons.

    PubMed

    Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang; Zong, Q-G; Zhou, X-Z; Zheng, Huinan; Wang, Yuming; Wang, Shui; Hao, Y-X; Gao, Zhonglei; He, Zhaoguo; Baker, D N; Spence, H E; Reeves, G D; Blake, J B; Wygant, J R

    2015-01-01

    Van Allen radiation belts are typically two zones of energetic particles encircling the Earth separated by the slot region. How the outer radiation belt electrons are accelerated to relativistic energies remains an unanswered question. Recent studies have presented compelling evidence for the local acceleration by very-low-frequency (VLF) chorus waves. However, there has been a competing theory to the local acceleration, radial diffusion by ultra-low-frequency (ULF) waves, whose importance has not yet been determined definitively. Here we report a unique radiation belt event with intense ULF waves but no detectable VLF chorus waves. Our results demonstrate that the ULF waves moved the inner edge of the outer radiation belt earthward 0.3 Earth radii and enhanced the relativistic electron fluxes by up to one order of magnitude near the slot region within about 10 h, providing strong evidence for the radial diffusion of radiation belt relativistic electrons. PMID:26690250

  14. Ultra-low-frequency wave-driven diffusion of radiation belt relativistic electrons

    SciTech Connect

    Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang; Zong, Q. -G.; Zhou, X. -Z.; Zheng, Huinan; Wang, Yuming; Wang, Shui; Hao, Y. -X.; Gao, Zhonglei; He, Zhaoguo; Baker, D. N.; Spence, H. E.; Reeves, G. D.; Blake, J. B.; Wygant, J. R.

    2015-12-22

    The Van Allen radiation belts are typically two zones of energetic particles encircling the Earth separated by the slot region. How the outer radiation belt electrons are accelerated to relativistic energies remains an unanswered question. Recent studies have presented compelling evidence for the local acceleration by very-low-frequency (VLF) chorus waves. However, there has been a competing theory to the local acceleration, radial diffusion by ultra-low-frequency (ULF) waves, whose importance has not yet been determined definitively. Here we report a unique radiation belt event with intense ULF waves but no detectable VLF chorus waves. So, our results demonstrate that the ULF waves moved the inner edge of the outer radiation belt earthward 0.3 Earth radii and enhanced the relativistic electron fluxes by up to one order of magnitude near the slot region within about 10 h, providing strong evidence for the radial diffusion of radiation belt relativistic electrons.

  15. Ultra-low-frequency wave-driven diffusion of radiation belt relativistic electrons

    DOE PAGESBeta

    Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang; Zong, Q. -G.; Zhou, X. -Z.; Zheng, Huinan; Wang, Yuming; Wang, Shui; Hao, Y. -X.; Gao, Zhonglei; et al

    2015-12-22

    The Van Allen radiation belts are typically two zones of energetic particles encircling the Earth separated by the slot region. How the outer radiation belt electrons are accelerated to relativistic energies remains an unanswered question. Recent studies have presented compelling evidence for the local acceleration by very-low-frequency (VLF) chorus waves. However, there has been a competing theory to the local acceleration, radial diffusion by ultra-low-frequency (ULF) waves, whose importance has not yet been determined definitively. Here we report a unique radiation belt event with intense ULF waves but no detectable VLF chorus waves. So, our results demonstrate that the ULFmore » waves moved the inner edge of the outer radiation belt earthward 0.3 Earth radii and enhanced the relativistic electron fluxes by up to one order of magnitude near the slot region within about 10 h, providing strong evidence for the radial diffusion of radiation belt relativistic electrons.« less

  16. Ultra-low-frequency wave-driven diffusion of radiation belt relativistic electrons.

    PubMed

    Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang; Zong, Q-G; Zhou, X-Z; Zheng, Huinan; Wang, Yuming; Wang, Shui; Hao, Y-X; Gao, Zhonglei; He, Zhaoguo; Baker, D N; Spence, H E; Reeves, G D; Blake, J B; Wygant, J R

    2015-01-01

    Van Allen radiation belts are typically two zones of energetic particles encircling the Earth separated by the slot region. How the outer radiation belt electrons are accelerated to relativistic energies remains an unanswered question. Recent studies have presented compelling evidence for the local acceleration by very-low-frequency (VLF) chorus waves. However, there has been a competing theory to the local acceleration, radial diffusion by ultra-low-frequency (ULF) waves, whose importance has not yet been determined definitively. Here we report a unique radiation belt event with intense ULF waves but no detectable VLF chorus waves. Our results demonstrate that the ULF waves moved the inner edge of the outer radiation belt earthward 0.3 Earth radii and enhanced the relativistic electron fluxes by up to one order of magnitude near the slot region within about 10 h, providing strong evidence for the radial diffusion of radiation belt relativistic electrons.

  17. Measurement of blast wave by a miniature fiber optic pressure transducer in the rat brain.

    PubMed

    Chavko, Mikulas; Koller, Wayne A; Prusaczyk, W Keith; McCarron, Richard M

    2007-01-30

    Exposure to blast wave that is generated during an explosion may result in brain damage and related neurological impairments. The aim of this study was to investigate pressure changes induced by exposure to blast inside the rat brain. For intracranial pressure measurement we used a miniature optic fiber sensor (o.d. 550 microm) with a computer recording system. The sensor was placed in the third cerebral ventricle of anesthetized rats exposed to 40 kPa blast wave in a pneumatic-pressure driven shock tube. Short pressure waves lasting several ms were detected inside the brain with the magnitude that might result in nervous tissue damage. PMID:16949675

  18. Compression-amplified EMIC waves and their effects on relativistic electrons

    NASA Astrophysics Data System (ADS)

    Li, L. Y.; Yu, J.; Cao, J. B.; Yuan, Z. G.

    2016-06-01

    During enhancement of solar wind dynamic pressure, we observe the periodic emissions of electromagnetic ion cyclotron (EMIC) waves near the nightside geosynchronous orbit (6.6RE). In the hydrogen and helium bands, the different polarized EMIC waves have different influences on relativistic electrons (>0.8 MeV). The flux of relativistic electrons is relatively stable if there are only the linearly polarized EMIC waves, but their flux decreases if the left-hand polarized (L-mode) EMIC waves are sufficiently amplified (power spectral density (PSD) ≥ 1 nT2/Hz). The larger-amplitude L-mode waves can cause more electron losses. In contrast, the R-mode EMIC waves are very weak (PSD < 1 nT2/Hz) during the electron flux dropouts; thus, their influence may be ignored here. During the electron flux dropouts, the relativistic electron precipitation is observed by POES satellite near the foot point (˜850 km) of the wave emission region. The quasi-linear simulation of wave-particle interactions indicates that the L-mode EMIC waves can cause the rapid precipitation loss of relativistic electrons, especially when the initial resonant electrons have a butterfly-like pitch angle distribution.

  19. Radiative precursors driven by converging blast waves in noble gases

    SciTech Connect

    Burdiak, G. C.; Lebedev, S. V.; Harvey-Thompson, A. J.; Swadling, G. F.; Suzuki-Vidal, F.; Hall, G. N.; Khoory, E.; Pickworth, L.; Bland, S. N.; Grouchy, P. de; Skidmore, J.; Suttle, L.; Bennett, M.; Niasse, N. P. L.; Williams, R. J. R.; Blesener, K.; Atoyan, L.; Cahill, A.; Hoyt, C.; Potter, W.; and others

    2014-03-15

    A detailed study of the radiative precursor that develops ahead of converging blast waves in gas-filled cylindrical liner z-pinch experiments is presented. The experiment is capable of magnetically driving 20 km s{sup −1} blast waves through gases of densities of the order 10{sup −5} g cm{sup −3} (see Burdiak et al. [High Energy Density Phys. 9(1), 52–62 (2013)] for a thorough description). Data were collected for Ne, Ar, and Xe gas-fills. The geometry of the setup allows a determination of the plasma parameters both in the precursor and across the shock, along a nominally uniform line of sight that is perpendicular to the propagation of the shock waves. Radiation from the shock was able to excite NeI, ArII, and XeII/XeIII precursor spectral features. It is shown that the combination of interferometry and optical spectroscopy data is inconsistent with upstream plasmas being in LTE. Specifically, electron density gradients do not correspond to any apparent temperature change in the emission spectra. Experimental data are compared to 1D radiation hydrodynamics HELIOS-CR simulations and to PrismSPECT atomic physics calculations to assist in a physical interpretation of the observations. We show that upstream plasma is likely in the process of being radiatively heated and that the emission from a small percentage of ionised atoms within a cool background plasma dominates the emission spectra. Experiments were carried out on the MAGPIE and COBRA pulsed-power facilities at Imperial College London and Cornell University, respectively.

  20. Bubble merger model for the nonlinear Rayleigh-Taylor instability driven by a strong blast wave

    SciTech Connect

    Miles, A R

    2004-03-18

    A bubble merger model is presented for the nonlinear evolution of the Rayleigh-Taylor instability driven by a strong blast wave. Single bubble motion is determined by an extension of previous buoyancy-drag models extended to the blast wave driven case, and a simple bubble merger law in the spirit of the Sharp-Wheeler model allows for the generation of larger scales. The blast wave driven case differs in several respects from the classical case of incompressible fluids in a uniform gravitational field. Because of material decompression in the rarefaction behind the blast front, the asymptotic bubble velocity and the merger time depend on time as well as the transverse scale and the drive. For planar blast waves, this precludes the emergence of a self-similar regime independent of the initial conditions. With higher-dimensional blast waves, divergence restores the properties necessary for the establishment of the self-similar state, but its establishment requires a very high initial characteristic mode number and a high Mach number for the incident blast wave.

  1. Nonlinear waves and shocks in relativistic two-fluid hydrodynamics

    NASA Astrophysics Data System (ADS)

    Haim, L.; Gedalin, M.; Spitkovsky, A.; Krasnoselskikh, V.; Balikhin, M.

    2012-06-01

    Relativistic shocks are present in a number of objects where violent processes are accompanied by relativistic outflows of plasma. The magnetization parameter σ = B2/4πnmc2 of the ambient medium varies in wide range. Shocks with low σ are expected to substantially enhance the magnetic fields in the shock front. In non-relativistic shocks the magnetic compression is limited by nonlinear effects related to the deceleration of flow. Two-fluid analysis of perpendicular relativistic shocks shows that the nonlinearities are suppressed for σ<<1 and the magnetic field reaches nearly equipartition values when the magnetic energy density is of the order of the ion energy density, Beq2 ~ 4πnmic2γ. A large cross-shock potential eφ/mic2γ0 ~ B2/Beq2 develops across the electron-ion shock front. This potential is responsible for electron energization.

  2. Three dimensional electrostatic solitary waves in a dense magnetoplasma with relativistically degenerate electrons

    SciTech Connect

    Ata-ur-Rahman,; Qamar, A.; Masood, W.; Eliasson, B.

    2013-09-15

    In this paper, small but finite amplitude electrostatic solitary waves in a relativistic degenerate magnetoplasma, consisting of relativistically degenerate electrons and non-degenerate cold ions, are investigated. The Zakharov-Kuznetsov equation is derived employing the reductive perturbation technique and its solitary wave solution is analyzed. It is shown that only compressive electrostatic solitary structures can propagate in such a degenerate plasma system. The effects of plasma number density, ion cyclotron frequency, and direction cosines on the profiles of ion acoustic solitary waves are investigated and discussed at length. The relevance of the present investigation vis-a-vis pulsating white dwarfs is also pointed out.

  3. Testing relativistic theories of gravity with spacecraft-Doppler gravity-wave detection

    NASA Technical Reports Server (NTRS)

    Hellings, R. W.

    1978-01-01

    The response of a spacecraft Doppler-tracking system to the passage of a weak plane gravity wave of the most general polarization is calculated. Results show that the simultaneous tracking of several spacecraft could provide an unambiguous determination of the gravity-wave polarization, a much needed result in the continuing experimental testing of relativistic theories of gravity.

  4. Causal Wave Propagation for Relativistic Massive Particles: Physical Asymptotics in Action

    ERIC Educational Resources Information Center

    Berry, M. V.

    2012-01-01

    Wavepackets representing relativistic quantum particles injected into a half-space, from a source that is switched on at a definite time, are represented by superpositions of plane waves that must include negative frequencies. Propagation is causal: it is a consequence of analyticity that at time t no part of the wave has travelled farther than…

  5. The Air Blast Wave from a Nuclear Explosion

    NASA Astrophysics Data System (ADS)

    Reines, Frederick

    The sudden, large scale release of energy in the explosion of a nuclear bomb in air gives rise, in addition to nuclear emanations such as neutrons and gamma rays, to an extremely hot, rapidly expanding mass of air.** The rapidly expanding air mass has an initial temperature in the vicinity of a few hundred thousand degrees and for this reason it glows in its early stages with an intensity of many suns. It is important that the energy density in this initial "ball of fire" is of the order of 3 × 103 times that found in a detonating piece of TNT and hence that the initial stages of the large scale air motion produced by a nuclear explosion has no counterpart in an ordinary. H. E. explosion. Further, the relatively low temperatures ˜2,000°C associated with the initial stages of an H. E. detonation implies that the thermal radiation which it emits is a relatively insignificant fraction of the total energy involves. This point is made more striking when it is remembered that the thermal energy emitted by a hot object varies directly with the temperature in the Rayleigh Jeans region appropriate to the present discussion. The expansion of the air mass heated by the nuclear reaction produces, in qualitatively the same manner as in an H.E. explosion or the bursting of a high pressure balloon, an intense sharp pressure pulse, a shock wave, in the atmosphere. As the pressure pulse spreads outward it weakens due to the combined effects of divergence and the thermodynamically irreversible nature of the shock wave. The air comprising such a pressure pulse or blast wave moves first radially outward and then back towards the center as the blast wave passes. Since a permanent outward displacement of an infinite mass of air would require unlimited energy, the net outward displacement of the air distant from an explosion must approach zero with increasing distance. As the distance from the explosion is diminished the net outward displacement due to irreversible shock heating of

  6. ULF waves and relativistic electron acceleration and losses from the radiation belts: A superposed epoch analysis

    NASA Astrophysics Data System (ADS)

    Georgiou, Marina; Daglis, Ioannis; Zesta, Eftyhia; Katsavrias, Christos; Balasis, Georgios; Mann, Ian; Tsinganos, Kanaris

    2015-04-01

    Geospace magnetic storms are associated with either enhancements or decreases of the fluxes of electrons in the outer radiation belt. We examine the response of relativistic and ultra-relativistic electrons to 39 moderate and intense magnetic storms and compare these with concurrent observations of ULF wave power and of the plasmapause location. Following 27 of the magnetic storms, the ultra-relativistic electron population of the outer radiation belt was enhanced in the 2 - 6 MeV electron fluxes, as observed by SAMPEX. This enhancement was also seen in the electron phase space density derived from electron fluxes observed by the geosynchronous GOES satellites. On the other hand, the remaining 12 magnetic storms were not followed by enhancements in the relativistic electron population. We compare relativistic and ultra-relativistic electrons observations with the concurrent latitudinal and global distribution of wave power enhancements at Pc5 frequencies as detected by the CARISMA and IMAGE magnetometer arrays, as well as by magnetic stations collaborating in SuperMAG. During the main phase of both sets of magnetic storms, there is a marked penetration of Pc5 wave power to L shells as low as 2 -- especially during magnetic storms characterised by enhanced post-storm electron fluxes. Later in the recovery phase, Pc5 wave activity returns to more typical values and radial distribution with a peak at outer L shells. Pc5 wave activity was found to persist longer for the electron-enhanced storms than for those that do not produce such enhancements. We put our Pc5 wave observations in the context of the plasmapause location, as determined by IMAGE EUV observations. Specifically, we discuss the growth and decay characteristics of Pc5 waves in association with the plasmapause location, as a controlling factor for wave power penetration deep into the magnetosphere.

  7. Mitigation of exploding-wire-generated blast-waves by aqueous foam

    NASA Astrophysics Data System (ADS)

    Liverts, M.; Ram, O.; Sadot, O.; Apazidis, N.; Ben-Dor, G.

    2015-07-01

    In this work, we implement an exploding wire technique to generate small-scale cylindrical blast waves in aqueous foam. The exploding wire system offers an easy to operate and effective tool for studying blast-wave/foam interaction related phenomena in real explosion scenarios. The mitigation of blast waves as a function of the thickness of the foam barrier is discussed and quantified. A fluid mixture pseudo-gas based numerical approach with the aid of the point explosion theory is used to separate the mitigation mechanisms into the near- and the far-field related groups and to analyze the contribution of each group to the overall losses of the blast wave energy.

  8. Spatially-resolved X-ray scattering measurements of a planar blast wave

    NASA Astrophysics Data System (ADS)

    Gamboa, E. J.; Keiter, P. A.; Drake, R. P.; Falk, K.; Montgomery, D. S.; Benage, J. F.

    2014-06-01

    We present X-ray scattering measurements characterizing the spatial temperature and ionization profile of a blast wave driven in a near-solid density foam. Several-keV X-rays scattered from a laser-driven blast wave in a carbon foam. We resolved the scattering in high resolution in space and wavelength to extract the plasma conditions along the propagation direction of the blast wave. We infer temperatures of 20-40 eV and ionizations of 2-4 in the shock and rarefaction regions of the blast wave. This range of measured ionization states allows for a detailed comparison between different models for the bound-free scattering. FLYCHK simulations of the temperature-ionization balance generally agree with the experimental values in the shocked region while consistently underestimating the ionization in the rarefaction.

  9. SPIKE PENETRATION IN BLAST-WAVE-DRIVEN INSTABILITIES

    SciTech Connect

    Drake, R. P.

    2012-01-10

    The problem of interest is the unstable growth of structure at density transitions affected by blast waves, which arise in natural environments such as core-collapse supernovae and in laboratory experiments. The resulting spikes of dense material, which penetrate the less dense material, develop broadened tips, but the degree of broadening varies substantially across both experiments and simulations. The variable broadening presumably produces variations in the drag experienced by the spike tips as they penetrate the less dense material. The present work has used semianalytic theory to address the question of how the variation in drag might affect the spike penetration, for cases in which the post-shock interface deceleration can be described by a power law in a normalized time variable. It did so by following the evolution of structure on the interface through the initial shock passage, the subsequent small-amplitude phase of Rayleigh-Taylor instability growth, and the later phase in which the spike growth involves the competition of buoyancy and drag. In all phases, the expansion of the system during its evolution was accounted for and was important. The calculated spike length is strongly affected by the drag attributed to spike tip broadening. One finds from such a calculation that it is not unreasonable for narrow spikes to keep up with the shock front of the blast wave. The implication is that the accuracy of prediction of spike penetration and consequent structure by simulations very likely depends on how accurately they treat the broadening of the spike tips and the associated drag. Experimental validation of spike morphology in simulations would be useful.

  10. Weakly relativistic quantum kinetic theory for electrostatic wave modes in magnetized plasmas

    SciTech Connect

    Hussain, Azhar; Stefan, Martin; Brodin, Gert

    2014-03-15

    We have derived the electrostatic dispersion relation in a magnetized plasma using a recently developed quantum kinetic model based on the Dirac equation. The model contains weakly relativistic spin effects such as Thomas precession, the polarization currents associated with the spin and the spin-orbit coupling. It turns out that for strictly electrostatic perturbations the non-relativistic spin effects vanish, and the modification of the classical dispersion relation is solely associated with the relativistic terms. Several new wave modes appear due the electron spin effects, and an example for astrophysical plasmas are given.

  11. Fully Relativistic Theory of the Ponderomotive Force in an Ultraintense Standing Wave

    SciTech Connect

    Kaplan, A.E.; Pokrovsky, A.L.

    2005-07-29

    A relativistic field-gradient (ponderomotive) force in a laser standing wave ceases to exist in a familiar form; e.g., the adiabatic Hamiltonian is not separable into kinetic and potential energies for electrons moving in the antinode planes. We show that the force in the direction across the initial motion of an electron reverses its sign and makes the high-field areas attractive for electrons, opposite to a regular ponderomotive force. The reversal occurs at a relativistic-scale incident momentum, and represents the only effect known so far that pins down a distinct borderline between relativistic and nonrelativistic motion.

  12. Spike morphology in blast-wave-driven instability experiments

    SciTech Connect

    Kuranz, C. C.; Drake, R. P.; Grosskopf, M. J.; Fryxell, B.; Budde, A.; Hansen, J. F.; Miles, A. R.; Plewa, T.; Hearn, N.; Knauer, J.

    2010-05-15

    The laboratory experiments described in the present paper observe the blast-wave-driven Rayleigh-Taylor instability with three-dimensional (3D) initial conditions. About 5 kJ of energy from the Omega laser creates conditions similar to those of the He-H interface during the explosion phase of a supernova. The experimental target is a 150 {mu}m thick plastic disk followed by a low-density foam. The plastic piece has an embedded, 3D perturbation. The basic structure of the pattern is two orthogonal sine waves where each sine wave has an amplitude of 2.5 {mu}m and a wavelength of 71 {mu}m. In some experiments, an additional wavelength is added to explore the interaction of modes. In experiments with 3D initial conditions the spike morphology differs from what has been observed in other Rayleigh-Taylor experiments and simulations. Under certain conditions, experimental radiographs show some mass extending from the interface to the shock front. Current simulations show neither the spike morphology nor the spike penetration observed in the experiments. The amount of mass reaching the shock front is analyzed and potential causes for the spike morphology and the spikes reaching the shock are discussed. One such hypothesis is that these phenomena may be caused by magnetic pressure, generated by an azimuthal magnetic field produced by the plasma dynamics.

  13. Simulation of blast wave propagation from source to long distance with topography and atmospheric effects

    NASA Astrophysics Data System (ADS)

    Nguyen-Dinh, Maxime; Gainville, Olaf; Lardjane, Nicolas

    2015-10-01

    We present new results for the blast wave propagation from strong shock regime to the weak shock limit. For this purpose, we analyse the blast wave propagation using both Direct Numerical Simulation and an acoustic asymptotic model. This approach allows a full numerical study of a realistic pyrotechnic site taking into account for the main physical effects. We also compare simulation results with first measurements. This study is a part of the french ANR-Prolonge project (ANR-12-ASTR-0026).

  14. The Construction of a 'Relativistic' Wave-Particle: The Soliton.

    ERIC Educational Resources Information Center

    Isenberg, Cyril

    1982-01-01

    Although most waves studied by students satisfy the linear equation, particle physicists have become interested in nonlinear waves--those not satisfying the superposition principle. A mechanical wave system, satisfying the sine-Gordon equation, can be constructed using a modified transverse wave system to demonstrate nonlinear wave-particle…

  15. DYNAMICS AND AFTERGLOW LIGHT CURVES OF GAMMA-RAY BURST BLAST WAVES WITH A LONG-LIVED REVERSE SHOCK

    SciTech Connect

    Uhm, Z. Lucas; Zhang Bing; Hascoeet, Romain; Daigne, Frederic; Mochkovitch, Robert; Park, Il H.

    2012-12-20

    We perform a detailed study on the dynamics of a relativistic blast wave with the presence of a long-lived reverse shock (RS). Although a short-lived RS has been widely considered, the RS is believed to be long-lived as a consequence of a stratification expected on the ejecta Lorentz factors. The existence of a long-lived RS causes the forward shock (FS) dynamics to deviate from a self-similar Blandford-McKee solution. Employing the ''mechanical model'' that correctly incorporates the energy conservation, we present an accurate solution for both the FS and RS dynamics. We conduct a sophisticated calculation of the afterglow emission. Adopting a Lagrangian description of the blast wave, we keep track of an adiabatic evolution of numerous shells between the FS and RS. An evolution of the electron spectrum is also followed individually for every shell. We then find the FS and RS light curves by integrating over the entire FS and RS shocked regions, respectively. Exploring a total of 20 different ejecta stratifications, we explain in detail how a stratified ejecta affects its blast wave dynamics and afterglow light curves. We show that, while the FS light curves are not sensitive to the ejecta stratifications, the RS light curves exhibit much richer features, including steep declines, plateaus, bumps, re-brightenings, and a variety of temporal decay indices. These distinctive RS features may be observable if the RS has higher values of the microphysics parameters than the FS. We discuss possible applications of our results in understanding the gamma-ray burst afterglow data.

  16. Spectral properties of blast-wave models of gamma-ray burst sources

    NASA Technical Reports Server (NTRS)

    Meszaros, P.; Rees, M. J.; Papathanassiou, H.

    1994-01-01

    We calculate the spectrum of blast-wave models of gamma-ray burst sources, for various assumptions about the magnetic field density and the relativistic particle acceleration efficiency. For a range of physically plausible models we find that the radiation efficiency is high and leads to nonthermal spectra with breaks at various energies comparable to those observed in the gamma-ray range. Radiation is also predicted at other wavebands, in particular at X-ray, optical/UV, and GeV/TeV energies. We discuss the spectra as a function of duration for three basic types of models, and for cosmological, halo, and galactic disk distances. We also evaluate the gamma-ray fluences and the spectral characteristics for a range of external densities. Impulsive burst models at cosmological distances can satisfy the conventional X-ray paucity constraint S(sub x)/S(sub gamma)less than a few percent over a wide range of durations, but galactic models can do so only for bursts shorter than a few seconds, unless additional assumptions are made. The emissivity is generally larger for bursts in a denser external environment, with the efficiency increasing up to the point where all the energy input is radiated away.

  17. Comparison of a ULF Wave Index With Dynamics of Geostationary Relativistic Electrons During Space Weather Month

    NASA Astrophysics Data System (ADS)

    Kozyreva, O. V.; Pilipenko, V. A.; Engebretson, M. J.; Yumoto, K.

    2004-05-01

    A new ULF wave index, characterizing the turbulent level of the geomagnetic field, has been calculated and applied for the analysis of relativistic electron enhancements during Space Weather Month (10-30 September 1999). The wave index has been produced from the INTERMAGNET, MACCS and CPMN dense arrays of ULF magnetometers in the Northern hemisphere. During the analyzed period two magnetic storms occurred (on September 12 and 22), and several significant increases of relativistic electron flux at geostationary orbit (up to 2-3 orders of magnitude) were detected by geostationary monitors. However, these electron enhancements were not related to the magnetic storm intervals. Instead, and rather unexpectedly, they correlated well with intervals of elevated ULF wave index, caused by the occurrence of intense Pc5 pulsations in the magnetosphere. This comparison is an additional indication of the possible importance of magnetospheric turbulence in energizing relativistic electrons.

  18. Classification and stability of plasma motion in periodic linearly polarized relativistic waves

    SciTech Connect

    Lehmann, G.; Spatschek, K. H.

    2010-07-15

    Based on a relativistic fluid-Maxwell model, laser-induced plasma dynamics is investigated for relativistic periodic waves. Within a one-dimensional (1D) description, the Akhiezer-Polovin model is applied to the existence of periodic, nonlinearly coupled electromagnetic and electrostatic waves, and the corresponding particle motion. Known existence criteria for periodic solutions are generalized. The corresponding stability behaviors are investigated by 1D integrators of the relativistic fluid-Maxwell model. It is shown that in contrast to the vacuum solution, linearly polarized coupled electromagnetic-electrostatic waves are unstable in plasmas. The magnitudes of the growth rates are investigated in terms of the maximum amplitudes and normalized phase velocities.

  19. Propagation of electromagnetic waves in resistive pair plasma and causal relativistic magnetohydrodynamics

    SciTech Connect

    Koide, Shinji

    2008-12-15

    We investigate the propagation of electromagnetic waves in resistive e{sup {+-}} pair plasmas using a one-fluid theory derived from the relativistic two-fluid equations. When the resistivity normalized by the electron/positron inertia variable exceeds a critical value, the dispersion relation for electromagnetic waves shows that the group velocity is larger than the light speed in vacuum. However, in such a case, it also is found that the plasma parameter is less than unity: that is, the electron-positron pair medium no longer can be treated as plasma. Thus, the simple two-fluid approximation is invalid. This confirms that superluminal propagation of electromagnetic wave is forbidden in a plasma--a conclusion consistent with the relativistic principle of causality. As an alternative, we propose a new set of equations for ''causal relativistic magnetohydrodynamics,'' which both have nonzero resistivity and yet are consistent with the causality principle.

  20. Relativistic warm plasma theory of nonlinear laser-driven electron plasma waves

    SciTech Connect

    Schroeder, Carl B.; Esarey, Eric

    2010-06-30

    A relativistic, warm fluid model of a nonequilibrium, collisionless plasma is developed and applied to examine nonlinear Langmuir waves excited by relativistically-intense, short-pulse lasers. Closure of the covariant fluid theory is obtained via an asymptotic expansion assuming a non-relativistic plasma temperature. The momentum spread is calculated in the presence of an intense laser field and shown to be intrinsically anisotropic. Coupling between the transverse and longitudinal momentum variances is enabled by the laser field. A generalized dispersion relation is derived for langmuir waves in a thermal plasma in the presence of an intense laser field. Including thermal fluctuations in three velocity-space dimensions, the properties of the nonlinear electron plasma wave, such as the plasma temperature evolution and nonlinear wavelength, are examined, and the maximum amplitude of the nonlinear oscillation is derived. The presence of a relativistically intense laser pulse is shown to strongly influence the maximum plasma wave amplitude for non-relativistic phase velocities owing to the coupling between the longitudinal and transverse momentum variances.

  1. Modeling of weak blast wave propagation in the lung.

    PubMed

    D'yachenko, A I; Manyuhina, O V

    2006-01-01

    Blast injuries of the lung are the most life-threatening after an explosion. The choice of physical parameters responsible for trauma is important to understand its mechanism. We developed a one-dimensional linear model of an elastic wave propagation in foam-like pulmonary parenchyma to identify the possible cause of edema due to the impact load. The model demonstrates different injury localizations for free and rigid boundary conditions. The following parameters were considered: strain, velocity, pressure in the medium and stresses in structural elements, energy dissipation, parameter of viscous criterion. Maximum underpressure is the most suitable wave parameter to be the criterion for edema formation in a rabbit lung. We supposed that observed scattering of experimental data on edema severity is induced by the physiological variety of rabbit lungs. The criterion and the model explain this scattering. The model outlines the demands for experimental data to make an unambiguous choice of physical parameters responsible for lung trauma due to impact load.

  2. Full-Trajectory Diagnosis of Laser-Driven Radiative Blast Waves in Search of Thermal Plasma Instabilities

    SciTech Connect

    Moore, A. S.; Gumbrell, E. T.; Lazarus, J.; Hohenberger, M.; Robinson, J. S.; Smith, R. A.; Plant, T. J. A.; Symes, D. R.; Dunne, M.

    2008-02-08

    Experimental investigations into the dynamics of cylindrical, laser-driven, high-Mach-number shocks are used to study the thermal cooling instability predicted to occur in astrophysical radiative blast waves. A streaked Schlieren technique measures the full blast-wave trajectory on a single-shot basis, which is key for observing shock velocity oscillations. Electron density profiles and deceleration parameters associated with radiative blast waves were recorded, enabling the calculation of important blast-wave parameters including the fraction of radiated energy, {epsilon}, as a function of time for comparison with radiation-hydrodynamics simulations.

  3. Full-trajectory diagnosis of laser-driven radiative blast waves in search of thermal plasma instabilities.

    PubMed

    Moore, A S; Gumbrell, E T; Lazarus, J; Hohenberger, M; Robinson, J S; Smith, R A; Plant, T J A; Symes, D R; Dunne, M

    2008-02-01

    Experimental investigations into the dynamics of cylindrical, laser-driven, high-Mach-number shocks are used to study the thermal cooling instability predicted to occur in astrophysical radiative blast waves. A streaked Schlieren technique measures the full blast-wave trajectory on a single-shot basis, which is key for observing shock velocity oscillations. Electron density profiles and deceleration parameters associated with radiative blast waves were recorded, enabling the calculation of important blast-wave parameters including the fraction of radiated energy, epsilon, as a function of time for comparison with radiation-hydrodynamics simulations. PMID:18352379

  4. Challenging Some Contemporary Views of Coronal Mass Ejections. I. The Case for Blast Waves

    NASA Astrophysics Data System (ADS)

    Howard, T. A.; Pizzo, V. J.

    2016-06-01

    Since the closure of the “solar flare myth” debate in the mid-1990s, a specific narrative of the nature of coronal mass ejections (CMEs) has been widely accepted by the solar physics community. This narrative describes structured magnetic flux ropes at the CME core that drive the surrounding field plasma away from the Sun. This narrative replaced the “traditional” view that CMEs were blast waves driven by solar flares. While the flux rope CME narrative is supported by a vast quantity of measurements made over five decades, it does not adequately describe every observation of what have been termed CME-related phenomena. In this paper we present evidence that some large-scale coronal eruptions, particularly those associated with EIT waves, exhibit characteristics that are more consistent with a blast wave originating from a localized region (such as a flare site) rather than a large-scale structure driven by an intrinsic flux rope. We present detailed examples of CMEs that are suspected blast waves and flux ropes, and show that of our small sample of 22 EIT-wave-related CMEs, 91% involve a blast wave as at least part of the eruption, and 50% are probably blast waves exclusively. We conclude with a description of possible signatures to look for in determining the difference between the two types of CMEs and with a discussion on modeling efforts to explore this possibility.

  5. Computation of viscous blast wave solutions with an upwind finite volume method

    NASA Technical Reports Server (NTRS)

    Molvik, Gregory A.

    1987-01-01

    A fully conservative, viscous, implicit, upwind, finite-volume scheme for the thin-layer Navier-Stokes equations is described with application to blast wave flow fields. In this scheme, shocks are captured without the oscillations typical of central differencing techniques and wave speeds are accurately predicted. The finite volume philosophy ensures conservation and since boundary conditions are also treated conservatively, accurate reflections of waves from surfaces are assured. Viscous terms in the governing equations are treated in a manner consistent with the finite volume philosophy, resulting in very accurate prediction of boundary layer quantities. Numerical results are presented for four viscous problems: a steady boundary layer, a shock-induced boundary layer, a blast wave/cylinder interaction and a blast wave/supersonic missile interaction. Comparisons of the results with an established boundary layer code, similarity solution, and experimental data show excellent agreement.

  6. Blast Shock Wave Mitigation Using the Hydraulic Energy Redirection and Release Technology

    PubMed Central

    Chen, Yun; Huang, Wei; Constantini, Shlomi

    2012-01-01

    A hydraulic energy redirection and release technology has been developed for mitigating the effects of blast shock waves on protected objects. The technology employs a liquid-filled plastic tubing as a blast overpressure transformer to transfer kinetic energy of blast shock waves into hydraulic energy in the plastic tubings. The hydraulic energy is redirected through the plastic tubings to the openings at the lower ends, and then is quickly released with the liquid flowing out through the openings. The samples of the specifically designed body armor in which the liquid-filled plastic tubings were installed vertically as the outer layer of the body armor were tested. The blast test results demonstrated that blast overpressure behind the body armor samples was remarkably reduced by 97% in 0.2 msec after the liquid flowed out of its appropriate volume through the openings. The results also suggested that a volumetric liquid surge might be created when kinetic energy of blast shock wave was transferred into hydraulic energy to cause a rapid physical movement or displacement of the liquid. The volumetric liquid surge has a strong destructive power, and can cause a noncontact, remote injury in humans (such as blast-induced traumatic brain injury and post-traumatic stress disorder) if it is created in cardiovascular system. The hydraulic energy redirection and release technology can successfully mitigate blast shock waves from the outer surface of the body armor. It should be further explored as an innovative approach to effectively protect against blast threats to civilian and military personnel. PMID:22745740

  7. Blast shock wave mitigation using the hydraulic energy redirection and release technology.

    PubMed

    Chen, Yun; Huang, Wei; Constantini, Shlomi

    2012-01-01

    A hydraulic energy redirection and release technology has been developed for mitigating the effects of blast shock waves on protected objects. The technology employs a liquid-filled plastic tubing as a blast overpressure transformer to transfer kinetic energy of blast shock waves into hydraulic energy in the plastic tubings. The hydraulic energy is redirected through the plastic tubings to the openings at the lower ends, and then is quickly released with the liquid flowing out through the openings. The samples of the specifically designed body armor in which the liquid-filled plastic tubings were installed vertically as the outer layer of the body armor were tested. The blast test results demonstrated that blast overpressure behind the body armor samples was remarkably reduced by 97% in 0.2 msec after the liquid flowed out of its appropriate volume through the openings. The results also suggested that a volumetric liquid surge might be created when kinetic energy of blast shock wave was transferred into hydraulic energy to cause a rapid physical movement or displacement of the liquid. The volumetric liquid surge has a strong destructive power, and can cause a noncontact, remote injury in humans (such as blast-induced traumatic brain injury and post-traumatic stress disorder) if it is created in cardiovascular system. The hydraulic energy redirection and release technology can successfully mitigate blast shock waves from the outer surface of the body armor. It should be further explored as an innovative approach to effectively protect against blast threats to civilian and military personnel. PMID:22745740

  8. Blast shock wave mitigation using the hydraulic energy redirection and release technology.

    PubMed

    Chen, Yun; Huang, Wei; Constantini, Shlomi

    2012-01-01

    A hydraulic energy redirection and release technology has been developed for mitigating the effects of blast shock waves on protected objects. The technology employs a liquid-filled plastic tubing as a blast overpressure transformer to transfer kinetic energy of blast shock waves into hydraulic energy in the plastic tubings. The hydraulic energy is redirected through the plastic tubings to the openings at the lower ends, and then is quickly released with the liquid flowing out through the openings. The samples of the specifically designed body armor in which the liquid-filled plastic tubings were installed vertically as the outer layer of the body armor were tested. The blast test results demonstrated that blast overpressure behind the body armor samples was remarkably reduced by 97% in 0.2 msec after the liquid flowed out of its appropriate volume through the openings. The results also suggested that a volumetric liquid surge might be created when kinetic energy of blast shock wave was transferred into hydraulic energy to cause a rapid physical movement or displacement of the liquid. The volumetric liquid surge has a strong destructive power, and can cause a noncontact, remote injury in humans (such as blast-induced traumatic brain injury and post-traumatic stress disorder) if it is created in cardiovascular system. The hydraulic energy redirection and release technology can successfully mitigate blast shock waves from the outer surface of the body armor. It should be further explored as an innovative approach to effectively protect against blast threats to civilian and military personnel.

  9. Large-amplitude hydromagnetic waves in collisionless relativistic plasma - Exact solution for the fast-mode magnetoacoustic wave

    NASA Technical Reports Server (NTRS)

    Barnes, A.

    1983-01-01

    An exact nonlinear solution is found to the relativistic kinetic and electrodynamic equations (in their hydromagnetic limit) that describes the large-amplitude fast-mode magnetoacoustic wave propagating normal to the magnetic field in a collisionless, previously uniform plasma. It is pointed out that a wave of this kind will be generated by transverse compression of any collisionless plasma. The solution is in essence independent of the detailed form of the particle momentum distribution functions. The solution is obtained, in part, through the method of characteristics; the wave exhibits the familiar properties of steepening and shock formation. A detailed analysis is given of the ultrarelativistic limit of this wave.

  10. Generation of rectangular optical waves by relativistic clipping

    NASA Astrophysics Data System (ADS)

    Varró, Sándor

    2013-05-01

    Theoretical results are reported for the reflection and transmission of few-cycle laser pulses on a very thin conducting layer, which may represent the surface current density of the massless relativistic charges of graphene. It is shown that the pulse may undergo violent distortions to the extent that the scattered radiation contains rectangular trains, which are approximate physical realizations of Rademacher functions in the optical or terahertz regime.

  11. Nonlinear ion-acoustic cnoidal waves in a dense relativistic degenerate magnetoplasma.

    PubMed

    El-Shamy, E F

    2015-03-01

    The complex pattern and propagation characteristics of nonlinear periodic ion-acoustic waves, namely, ion-acoustic cnoidal waves, in a dense relativistic degenerate magnetoplasma consisting of relativistic degenerate electrons and nondegenerate cold ions are investigated. By means of the reductive perturbation method and appropriate boundary conditions for nonlinear periodic waves, a nonlinear modified Korteweg-de Vries (KdV) equation is derived and its cnoidal wave is analyzed. The various solutions of nonlinear ion-acoustic cnoidal and solitary waves are presented numerically with the Sagdeev potential approach. The analytical solution and numerical simulation of nonlinear ion-acoustic cnoidal waves of the nonlinear modified KdV equation are studied. Clearly, it is found that the features (amplitude and width) of nonlinear ion-acoustic cnoidal waves are proportional to plasma number density, ion cyclotron frequency, and direction cosines. The numerical results are applied to high density astrophysical situations, such as in superdense white dwarfs. This research will be helpful in understanding the properties of compact astrophysical objects containing cold ions with relativistic degenerate electrons. PMID:25871222

  12. Wave-driven butterfly distribution of Van Allen belt relativistic electrons

    PubMed Central

    Xiao, Fuliang; Yang, Chang; Su, Zhenpeng; Zhou, Qinghua; He, Zhaoguo; He, Yihua; Baker, D. N.; Spence, H. E.; Funsten, H. O.; Blake, J. B.

    2015-01-01

    Van Allen radiation belts consist of relativistic electrons trapped by Earth's magnetic field. Trapped electrons often drift azimuthally around Earth and display a butterfly pitch angle distribution of a minimum at 90° further out than geostationary orbit. This is usually attributed to drift shell splitting resulting from day–night asymmetry in Earth's magnetic field. However, direct observation of a butterfly distribution well inside of geostationary orbit and the origin of this phenomenon have not been provided so far. Here we report high-resolution observation that a unusual butterfly pitch angle distribution of relativistic electrons occurred within 5 Earth radii during the 28 June 2013 geomagnetic storm. Simulation results show that combined acceleration by chorus and magnetosonic waves can successfully explain the electron flux evolution both in the energy and butterfly pitch angle distribution. The current provides a great support for the mechanism of wave-driven butterfly distribution of relativistic electrons. PMID:26436770

  13. Wave-driven butterfly distribution of Van Allen belt relativistic electrons

    SciTech Connect

    Xiao, Fuliang; Yang, Chang; Su, Zhenpeng; Zhou, Qinghua; He, Zhaoguo; He, Yihua; Baker, D. N.; Spence, H. E.; Funsten, H. O.; Blake, J. B.

    2015-10-05

    Van Allen radiation belts consist of relativistic electrons trapped by Earth's magnetic field. Trapped electrons often drift azimuthally around Earth and display a butterfly pitch angle distribution of a minimum at 90° further out than geostationary orbit. This is usually attributed to drift shell splitting resulting from day–night asymmetry in Earth’s magnetic field. However, direct observation of a butterfly distribution well inside of geostationary orbit and the origin of this phenomenon have not been provided so far. Here we report high-resolution observation that a unusual butterfly pitch angle distribution of relativistic electrons occurred within 5 Earth radii during the 28 June 2013 geomagnetic storm. In conclusion, simulation results show that combined acceleration by chorus and magnetosonic waves can successfully explain the electron flux evolution both in the energy and butterfly pitch angle distribution. Finally, the current provides a great support for the mechanism of wave-driven butterfly distribution of relativistic electrons.

  14. Wave-driven butterfly distribution of Van Allen belt relativistic electrons.

    PubMed

    Xiao, Fuliang; Yang, Chang; Su, Zhenpeng; Zhou, Qinghua; He, Zhaoguo; He, Yihua; Baker, D N; Spence, H E; Funsten, H O; Blake, J B

    2015-01-01

    Van Allen radiation belts consist of relativistic electrons trapped by Earth's magnetic field. Trapped electrons often drift azimuthally around Earth and display a butterfly pitch angle distribution of a minimum at 90° further out than geostationary orbit. This is usually attributed to drift shell splitting resulting from day-night asymmetry in Earth's magnetic field. However, direct observation of a butterfly distribution well inside of geostationary orbit and the origin of this phenomenon have not been provided so far. Here we report high-resolution observation that a unusual butterfly pitch angle distribution of relativistic electrons occurred within 5 Earth radii during the 28 June 2013 geomagnetic storm. Simulation results show that combined acceleration by chorus and magnetosonic waves can successfully explain the electron flux evolution both in the energy and butterfly pitch angle distribution. The current provides a great support for the mechanism of wave-driven butterfly distribution of relativistic electrons.

  15. Extracting the spectral function of 4He from a relativistic plane-wave treatment

    NASA Astrophysics Data System (ADS)

    Abu-Raddad, L. J.; Piekarewicz, J.

    2001-12-01

    The spectral function of 4He is extracted from a plane-wave approximation to the (e,e'p) reaction using a fully relativistic formalism. We take advantage of both an algebraic ``trick'' and a general relativistic formalism for quasifree processes developed earlier to arrive at transparent, analytical expressions for all quasifree (e,e'p) observables. An observable is identified for the clean and model-independent extraction of the spectral function. Our simple relativistic plane-wave calculations provide baseline predictions for the recently measured, but not yet fully analyzed, momentum distribution of 4He by the A1 Collaboration from Mainz. Yet in spite of its simplicity, our approach predicts momentum distributions for 4He that rival some of the best nonrelativistic calculations to date. Finally, we highlight some of the challenges and opportunities that remain, both theoretically and experimentally, in the extraction of quasifree observables.

  16. Extracting the spectral function of He-4 from a relativistic plane-wave treatment

    NASA Astrophysics Data System (ADS)

    Abu-Raddad, Laith; Piekarewicz, Jorge

    2001-10-01

    The spectral function of He-4 is extracted from a plane-wave approximation to the (e,e'p) reaction using a fully relativistic formalism. We take advantage of both an algebraic ``trick'' and a general relativistic formalism for quasifree processes developed earlier to arrive at transparent, analytical expressions for all quasifree (e,e'p) observables. An observable is identified for the clean and model-independent extraction of the spectral function. Our simple relativistic plane-wave calculations provide baseline predictions for the recently measured, but not yet fully analyzed, momentum distribution of He-4 by the A1-collaboration from Mainz. Yet in spite of its simplicity, our approach predicts momentum distributions for He-4 that rival some of the best nonrelativistic calculations to date. Finally, we highlight some of the challenges and opportunities that remain, both theoretically and experimentally, in the extraction of quasifree observables.

  17. Wave-driven butterfly distribution of Van Allen belt relativistic electrons.

    PubMed

    Xiao, Fuliang; Yang, Chang; Su, Zhenpeng; Zhou, Qinghua; He, Zhaoguo; He, Yihua; Baker, D N; Spence, H E; Funsten, H O; Blake, J B

    2015-01-01

    Van Allen radiation belts consist of relativistic electrons trapped by Earth's magnetic field. Trapped electrons often drift azimuthally around Earth and display a butterfly pitch angle distribution of a minimum at 90° further out than geostationary orbit. This is usually attributed to drift shell splitting resulting from day-night asymmetry in Earth's magnetic field. However, direct observation of a butterfly distribution well inside of geostationary orbit and the origin of this phenomenon have not been provided so far. Here we report high-resolution observation that a unusual butterfly pitch angle distribution of relativistic electrons occurred within 5 Earth radii during the 28 June 2013 geomagnetic storm. Simulation results show that combined acceleration by chorus and magnetosonic waves can successfully explain the electron flux evolution both in the energy and butterfly pitch angle distribution. The current provides a great support for the mechanism of wave-driven butterfly distribution of relativistic electrons. PMID:26436770

  18. Instability of Taylor-Sedov blast waves propagating through a uniform gas

    NASA Astrophysics Data System (ADS)

    Grun, J.; Stamper, J.; Manka, C.; Resnick, J.; Burris, R.

    1991-05-01

    An instability in Taylor-Sedov blast waves was measured as the waves propagated through a uniform gas with a low adiabatic index. The first measurements of the instability are given and compared to theoretical predictions. The classical Taylor-Sedov blast waves resulted from the expansion of ablation plasma into an ambient gas from laser-irradiated foils, and photographs were taken using the dark-field imaging method. Visible emission from the blasts were recorded with a four-frame microchannel-plate intensifier camera. Blast waves formed in nitrogen gas are shown to be stable and smooth, whereas the waves propagating through xenon gas are found to be unstable and wrinkled. A power law is fitted to the experimental data, and the adiabatic indices are theorized to cause the different responses in the two gases. The results generally agree with theoretical predictions in spite of some minor discrepancies, and an explanation of the instability mechanism is developed. When the adiabatic index is sufficiently low, the Taylor-Sedov blast waves in a uniform gas will be unstable, and the perturbed amplitudes will grow as a power of time.

  19. Scattering of relativistic and ultra-relativistic electrons by obliquely propagating Electromagnetic Ion Cyclotron waves

    NASA Astrophysics Data System (ADS)

    Uzbekov, Bogdan; Shprits, Yuri Y.; Orlova, Ksenia

    2016-10-01

    Electromagnetic Ion Cyclotron (EMIC) waves are transverse plasma waves that are generated in the Earth magnetosphere by ring current protons with temperature anisotropy in three different bands: below the H+, He+ and O+ ion gyrofrequencies. EMIC events are enhanced during the main phase of a geomagnetic storm when intensifications in the electric field result in enhanced injections of ions and are usually confined to high-density regions just inside the plasmapause or within drainage plumes. EMIC waves are capable of scattering radiation belt electrons and thus provide an important link between the intensification of the electric field, ion populations, and radiation belt electrons. Bounce-averaged diffusion coefficients computed with the assumption of parallel wave propagation are compared to the results of the code that uses the full cold plasma dispersion relation taking into account oblique propagation of waves and higher-order resonances. We study the sensitivity of the scattering rates to a number of included higher-order resonances, wave spectral distribution parameters, wave normal angle distribution parameters, ambient plasma density, and ion composition. Inaccuracies associated with the neglect of higher-order resonances and oblique propagation of waves are compared to potential errors introduced by uncertainties in the model input parameters.

  20. Meson and glueball masses from a one-parameter potential and a relativistic wave equation

    NASA Astrophysics Data System (ADS)

    Lichtenberg, D. B.; Namgung, W.; Wills, J. G.

    1982-06-01

    A one-parameter quark-antiquark potential has been used in the Todorov relativistic wave equation to calculate the masses of heavy and light vector mesons. The effective quark masses turn out to be intermediate between the usual masses of current and constituent quarks. The same potential, multiplied by an appropriate color factor, is used to calculate a spectrum of glueball masses.

  1. Analysis of reflected blast wave pressure profiles in a confined room

    NASA Astrophysics Data System (ADS)

    Sauvan, P. E.; Sochet, I.; Trélat, S.

    2012-05-01

    To understand the blast effects of confined explosions, it is necessary to study the characteristic parameters of the blast wave in terms of overpressure, impulse and arrival time. In a previous study, experiments were performed using two different scales of a pyrotechnic workshop. The main purpose of these experiments was to compare the TNT equivalent for solid and gaseous explosives in terms of mass to define a TNT equivalent in a reflection field and to validate the similitude between real and small scales. To study the interactions and propagations of the reflected shock waves, the present study was conducted by progressively building a confined volume around the charge. In this way, the influence of each wall and the origins of the reflected shock waves can be determined. The purpose of this paper is to report the blast wave interactions that resulted from the detonation of a stoichiometric propane-oxygen mixture in a confined room.

  2. A blast wave from the 1843 eruption of η Carinae

    NASA Astrophysics Data System (ADS)

    Smith, Nathan

    2008-09-01

    Very massive stars shed much of their mass in violent precursor eruptions as luminous blue variables (LBVs) before reaching their most likely end as supernovae, but the cause of LBV eruptions is unknown. The nineteenth-century eruption of η Carinae, the prototype of these events, ejected about 12 solar masses at speeds of 650kms-1, with a kinetic energy of almost 1050erg (ref. 4). Some faster material with speeds up to 1,000-2,000kms-1 had previously been reported but its full distribution was unknown. Here I report observations of much faster material with speeds up to 3,500-6,000kms-1, reaching farther from the star than the fastest material in previous reports. This fast material roughly doubles the kinetic energy of the nineteenth-century event and suggests that it released a blast wave now propagating ahead of the massive ejecta. As a result, η Carinae's outer shell now mimics a low-energy supernova remnant. The eruption has usually been discussed in terms of an extreme wind driven by the star's luminosity, but the fast material reported here indicates that it may have been powered by a deep-seated explosion rivalling a supernova, perhaps triggered by the pulsational pair instability. This may alter interpretations of similar events seen in other galaxies.

  3. Numerical study of water mitigation effects on blast wave

    NASA Astrophysics Data System (ADS)

    Cheng, M.; Hung, K. C.; Chong, O. Y.

    2005-11-01

    The mitigating effect of a water wall on the generation and propagation of blast waves of a nearby explosive has been investigated using a numerical approach. A multimaterial Eulerian finite element technique is used to study the influence of the design parameters, such as the water-to-explosive weight ratio, the water wall thickness, the air-gap and the cover area ratio of water on the effectiveness of the water mitigation concept. In the computational model, the detonation gases are modelled with the standard Jones Wilkins Lee (JWL) equation of state. Water, on the other hand, is treated as a compressible fluid with the Mie Gruneisen equation of state model. The validity of the computational model is checked against a limited amount of available experimental data, and the influence of mesh sizes on the convergence of results is also discussed. From the results of the extensive numerical experiments, it is deduced that firstly, the presence of an air-gap reduces the effectiveness of the water mitigator. Secondly, the higher the water-to-explosive weight ratio, the more significant is the reduction in peak pressure of the explosion. Typically, water-to-explosive weight ratios in the range of 1 3 are found to be most practical.

  4. Relativistic description of inclusive quasielastic proton-nucleus scattering with relativistic distorted-wave impulse approximation and random-phase approximation

    NASA Astrophysics Data System (ADS)

    van Niekerk, D. D.; van der Ventel, B. I. S.; Titus, N. P.; Hillhouse, G. C.

    2011-04-01

    We present a fully relativistic model for polarized inclusive quasielastic proton-nucleus scattering that includes relativistic distorted waves for the projectile and ejectile (RDWIA), as well as the relativistic random-phase approximation (RPA) applied to the target nucleus. Using a standard relativistic impulse approximation treatment of quasielastic scattering and a two-body Scalar, Pseudoscalar, Vector, Axial vector, Tensor (SPVAT) form of the current operator, it is shown how the behavior of the projectile/ejectile and target can be decoupled. Distortion effects are included via a full partial-wave expansion of the relativistic wave functions. Target correlations are included via the relativistic RPA applied to mean-field theory in quantum hadrodynamics. A number of novel analytical and numerical techniques are employed to aid in this highly nontrivial calculation. A baseline plane-wave calculation is performed for the reaction Ca40(p⃗,p⃗') at an energy of 500 MeV and an angle θc.m.=40°. Here it is found that the effect of isoscalar correlations is a quenching of the cross section that is expected to become more pronounced at lower energies or for higher-density targets. A RDWIA calculation shows additional reduction and if isoscalar target correlations are included this effect is enhanced.

  5. Relativistic description of inclusive quasielastic proton-nucleus scattering with relativistic distorted-wave impulse approximation and random-phase approximation

    SciTech Connect

    Niekerk, D. D. van; Ventel, B. I. S. van der; Titus, N. P.; Hillhouse, G. C.

    2011-04-15

    We present a fully relativistic model for polarized inclusive quasielastic proton-nucleus scattering that includes relativistic distorted waves for the projectile and ejectile (RDWIA), as well as the relativistic random-phase approximation (RPA) applied to the target nucleus. Using a standard relativistic impulse approximation treatment of quasielastic scattering and a two-body Scalar, Pseudoscalar, Vector, Axial vector, Tensor (SPVAT) form of the current operator, it is shown how the behavior of the projectile/ejectile and target can be decoupled. Distortion effects are included via a full partial-wave expansion of the relativistic wave functions. Target correlations are included via the relativistic RPA applied to mean-field theory in quantum hadrodynamics. A number of novel analytical and numerical techniques are employed to aid in this highly nontrivial calculation. A baseline plane-wave calculation is performed for the reaction {sup 40}Ca(p-vector,p-vector{sup '}) at an energy of 500 MeV and an angle {theta}{sub c.m.}=40 deg. Here it is found that the effect of isoscalar correlations is a quenching of the cross section that is expected to become more pronounced at lower energies or for higher-density targets. A RDWIA calculation shows additional reduction and if isoscalar target correlations are included this effect is enhanced.

  6. Prospects for studying how high-intensity compression waves cause damage in human blast injuries

    NASA Astrophysics Data System (ADS)

    Brown, Katherine; Bo, Chiara; Ramaswamy, Arul; Masouros, Spiros; Newell, Nicolas; Hill, Adam; Clasper, Jon; Bull, Anthony; Proud, William

    2011-06-01

    Blast injuries arising from improvised explosive devices are often complex leading to long-term disability in survivors. There is an urgent need to mitigate against the effects of blast that lead to these injuries, and to also improve post-traumatic therapeutic treatments related to problems associated with damage and healing processes and infections. We have initiated multidisciplinary studies to develop experimental facilities and strategies for analyzing the effects blast waves upon the human body, from cellular through to skeletal functions. This work is supported by the Atomic Weapons Establishment and the Defence Science and Technology Laboratory, UK.

  7. Interaction between blast wave and reticulated foam: assessing the potential for auditory protection systems

    NASA Astrophysics Data System (ADS)

    Wilgeroth, J. M.; Nguyen, T.-T. N.; Proud, W. G.

    2014-05-01

    Injuries to the tympanic membrane (ear drum) are particularly common in individuals subjected to blast overpressure such as military personnel engaged in conflict. Here, the interaction between blast wave and reticulated foams of varying density and thickness has been investigated using shock tube apparatus. The degree of mitigation afforded by the foam samples is discussed in relation to an injury threshold which has been suggested by others for the tympanic membrane.

  8. Experimental Investigation of the Interaction of Blast Waves Generated by Exploding Wires using Background Oriented Schlieren

    NASA Astrophysics Data System (ADS)

    Gross, Jonathan; Eliasson, Veronica

    2015-11-01

    Work has been performed to experimentally characterize the interaction of a multiple blast waves. The blast waves were generated using an exploding wire system. This system can store up to 400 J of energy in a high voltage capacitor bank. By discharging the capacitors through wires of a diameter of 150 μm it was possible to produce blast waves with Mach numbers as high as 2.3 at a distance of 40 mm from the center of the blast. A parametric study was performed to measure the behavior of the shocks for a variety of wire thicknesses, voltages, and separation distances. Additionally a background oriented schlieren system was used to quantify the flowfield behind the shocks. The interaction of the shocks featured expected nonlinear phenomena such as the presence of Mach stems, and showed good agreement with results in the shock wave literature. This investigation lays the groundwork for subsequent research that will use exploding wires to experimentally reproduce conditions investigated numerically, in which the effects of multiple converging blast waves on a central target were investigated.

  9. POLYCYCLIC AROMATIC HYDROCARBON PROCESSING IN THE BLAST WAVE OF THE SUPERNOVA REMNANT N132D

    SciTech Connect

    Tappe, A.; Rho, J.; Micelotta, E. R.

    2012-08-01

    We present Spitzer Infrared Spectrograph 14-36 {mu}m mapping observations of the supernova remnant N132D in the Large Magellanic Cloud. This study focuses on the processing of polycyclic aromatic hydrocarbons (PAHs) that we previously identified in the southern blast wave. The mid-infrared spectra show strong continuum emission from shock-heated dust and a unique, nearly featureless plateau in the 15-20 {mu}m region, which we attribute to PAH molecules. The typical PAH emission bands observed in the surrounding interstellar medium ahead of the blast wave disappear, which indicates shock processing of PAH molecules. The PAH plateau appears most strongly at the outer edge of the blast wave and coincides with diffuse X-ray emission that precedes the brightest X-ray and optical filaments. This suggests that PAH molecules in the surrounding medium are swept up and processed in the hot gas of the blast wave shock, where they survive the harsh conditions long enough to be detected. We also observe a broad emission feature at 20 {mu}m appearing with the PAH plateau. We speculate that this feature is either due to FeO dust grains or connected to the processing of PAHs in the supernova blast wave shock.

  10. Quick reproduction of blast-wave flow-field properties of nuclear, TNT, and ANFO explosions

    NASA Astrophysics Data System (ADS)

    Groth, C. P. T.

    1986-04-01

    In many instances, extensive blast-wave flow-field properties are required in gasdynamics research studies of blast-wave loading and structure response, and in evaluating the effects of explosions on their environment. This report provides a very useful computer code, which can be used in conjunction with the DNA Nuclear Blast Standard subroutines and code, to quickly reconstruct complete and fairly accurate blast-wave data for almost any free-air (spherical) and surface-burst (hemispherical) nuclear, trinitrotoluene (TNT), or ammonium nitrate-fuel oil (ANFO) explosion. This code is capable of computing all of the main flow properties as functions of radius and time, as well as providing additional information regarding air viscosity, reflected shock-wave properties, and the initial decay of the flow properties just behind the shock front. Both spatial and temporal distributions of the major blast-wave flow properties are also made readily available. Finally, provisions are also included in the code to provide additional information regarding the peak or shock-front flow properties over a range of radii, for a specific explosion of interest.

  11. Experimental study of a compact P-band coaxial relativistic backward wave oscillator with three periods slow wave structure

    SciTech Connect

    Gao Liang; Qian Baoliang; Ge Xingjun; Zhang Xiaoping; Jin Zhenxing

    2012-08-15

    A compact P-band coaxial relativistic backward wave oscillator with three periods slow wave structure was investigated experimentally. The experimental results show that the frequency of the P-band coaxial relativistic backward wave oscillator is 897 MHz and the microwave power is 1.47 GW with an efficiency of about 32% in the case in which the diode voltage is 572 kV, the beam current is 8.0 kA, and the guide magnetic field is about 0.86 T. In addition, the device can generate a 3.14 GW microwave radiation as the guide magnetic field increases to 1.2 T at the diode voltage of 997 kV and the beam current of 15.3 kA. The experimental results are in good agreement with those obtained earlier by numerical simulations.

  12. Direct evidence for EMIC wave scattering of relativistic electrons in space

    NASA Astrophysics Data System (ADS)

    Zhang, X.-J.; Li, W.; Ma, Q.; Thorne, R. M.; Angelopoulos, V.; Bortnik, J.; Chen, L.; Kletzing, C. A.; Kurth, W. S.; Hospodarsky, G. B.; Baker, D. N.; Reeves, G. D.; Spence, H. E.; Blake, J. B.; Fennell, J. F.

    2016-07-01

    Electromagnetic ion cyclotron (EMIC) waves have been proposed to cause efficient losses of highly relativistic (>1 MeV) electrons via gyroresonant interactions. Simultaneous observations of EMIC waves and equatorial electron pitch angle distributions, which can be used to directly quantify the EMIC wave scattering effect, are still very limited, however. In the present study, we evaluate the effect of EMIC waves on pitch angle scattering of ultrarelativistic (>1 MeV) electrons during the main phase of a geomagnetic storm, when intense EMIC wave activity was observed in situ (in the plasma plume region with high plasma density) on both Van Allen Probes. EMIC waves captured by Time History of Events and Macroscale Interactions during Substorms (THEMIS) probes and on the ground across the Canadian Array for Real-time Investigations of Magnetic Activity (CARISMA) are also used to infer their magnetic local time (MLT) coverage. From the observed EMIC wave spectra and local plasma parameters, we compute wave diffusion rates and model the evolution of electron pitch angle distributions. By comparing model results with local observations of pitch angle distributions, we show direct, quantitative evidence of EMIC wave-driven relativistic electron losses in the Earth's outer radiation belt.

  13. A high efficient relativistic backward wave oscillator with coaxial nonuniform slow-wave structure and depth-tunable extractor

    SciTech Connect

    Ge Xingjun; Zhong Huihuang; Zhang Jun; Qian Baoliang

    2013-02-15

    A high efficient relativistic backward wave oscillator with coaxial nonuniform slow-wave structures (SWSs) and depth-tunable extractor is presented. The physical mechanism to increase the power efficiency is investigated theoretically and experimentally. It is shown that the nonuniform SWSs, the guiding magnetic field distribution, and the coaxial extractor depth play key roles in the enhancement of the beam-wave power conversion efficiency. The experimental results show that a 1.609 GHz, 2.3 GW microwave can be generated when the diode voltage is 890 kV and the beam current is 7.7 kA. The corresponding power efficiency reaches 33.6%.

  14. Energy spectrum analysis of blast waves based on an improved Hilbert-Huang transform

    NASA Astrophysics Data System (ADS)

    Li, L.; Wang, F.; Shang, F.; Jia, Y.; Zhao, C.; Kong, D.

    2016-07-01

    Using the improved Hilbert-Huang transform (HHT), this paper investigates the problems of analysis and interpretation of the energy spectrum of a blast wave. It has been previously established that the energy spectrum is an effective feature by which to characterize a blast wave. In fact, the higher the energy spectra in a frequency band of a blast wave, the greater the damage to a target in the same frequency band. However, most current research focuses on analyzing wave signals in the time domain or frequency domain rather than considering the energy spectrum. We propose here an improved HHT method combined with a wavelet packet to extract the energy spectrum feature of a blast wave. When applying the HHT, the signal is first roughly decomposed into a series of intrinsic mode functions (IMFs) by empirical mode decomposition. The wavelet packet method is then performed on each IMF to eliminate noise on the energy spectrum. Second, a coefficient is introduced to remove unrelated IMFs. The energy of each instantaneous frequency can be derived through the Hilbert transform. The energy spectrum can then be obtained by adding up all the components after the wavelet packet filters and screens them through a coefficient to obtain the effective IMFs. The effectiveness of the proposed method is demonstrated by 12 groups of experimental data, and an energy attenuation model is established based on the experimental data. The improved HHT is a precise method for blast wave signal analysis. For other shock wave signals from blasting experiments, an energy frequency time distribution and energy spectrum can also be obtained through this method, allowing for more practical applications.

  15. Relativistic electron precipitation events driven by electromagnetic ion-cyclotron waves

    SciTech Connect

    Khazanov, G. Sibeck, D.; Tel'nikhin, A.; Kronberg, T.

    2014-08-15

    We adopt a canonical approach to describe the stochastic motion of relativistic belt electrons and their scattering into the loss cone by nonlinear EMIC waves. The estimated rate of scattering is sufficient to account for the rate and intensity of bursty electron precipitation. This interaction is shown to result in particle scattering into the loss cone, forming ∼10 s microbursts of precipitating electrons. These dynamics can account for the statistical correlations between processes of energization, pitch angle scattering, and relativistic electron precipitation events, that are manifested on large temporal scales of the order of the diffusion time ∼tens of minutes.

  16. Propagation of the shock wave generated from excimer laser heating of aluminum targets in comparison with ideal blast wave theory

    NASA Astrophysics Data System (ADS)

    Jeong, S. H.; Greif, R.; Russo, R. E.

    1998-05-01

    Propagation of the shock wave generated during pulsed laser heating of aluminum targets was measured utilizing a probe beam deflection technique. The transit time of the laser-generated shock wave was compared with that predicted from the Sedov-Taylor solution for an ideal spherical blast wave. It was found that the most important parameters for the laser-generated shock wave to be consistent with the theoretically predicted propagation are the ambient pressure and the laser beam spot size. The prediction for laser energy conversion into the laser-induced vapor flow using the Sedov-Taylor solution overestimated the energy coupling efficiency, indicating a difference between a laser-induced gas-dynamic flow and an ideal blast wave.

  17. Magnetohydrodynamic waves with relativistic electrons and positrons in degenerate spin-1/2 astrophysical plasmas

    SciTech Connect

    Maroof, R.; Ali, S.; Mushtaq, A.; Qamar, A.

    2015-11-15

    Linear properties of high and low frequency waves are studied in an electron-positron-ion (e-p-i) dense plasma with spin and relativity effects. In a low frequency regime, the magnetohydrodynamic (MHD) waves, namely, the magnetoacoustic and Alfven waves are presented in a magnetized plasma, in which the inertial ions are taken as spinless and non-degenerate, whereas the electrons and positrons are treated quantum mechanically due to their smaller mass. Quantum corrections associated with the spin magnetization and density correlations for electrons and positrons are re-considered and a generalized dispersion relation for the low frequency MHD waves is derived to account for relativistic degeneracy effects. On the basis of angles of propagation, the dispersion relations of different modes are discussed analytically in a degenerate relativistic plasma. Numerical results reveal that electron and positron relativistic degeneracy effects significantly modify the dispersive properties of MHD waves. Our present analysis should be useful for understanding the collective interactions in dense astrophysical compact objects, like, the white dwarfs and in atmosphere of neutron stars.

  18. Concurrent relativistic electron enhancements and deep penetration of ULF waves into the inner magnetosphere

    NASA Astrophysics Data System (ADS)

    Georgiou, Marina; Mann, Ian; Sibeck, David; Zesta, Eftyhia; Daglis, Ioannis A.; Balasis, Georgios; Katsavrias, Christos; Evangelolpoulos, Panagiotis; Nasi, Afroditi; Tsinganos, Kanaris

    2016-07-01

    Geospace magnetic storms are associated with both enhancements and losses of the outer Van Allen belt electrons. Enhancements of relativistic electrons have been shown to be closely linked to solar wind speed and density increases as well as to prolonged intervals of southward interplanetary magnetic field. Individual case studies have demonstrated that ULF waves deep in the magnetosphere may contribute significantly to outer belt enhancements. In the present study, which is centered around the maximum of solar cycle 24, we use GOES geostationary orbit electron flux observations, along with electron and electromagnetic field data from the Van Allen Probes, to study radiation belt electron acceleration during the course of moderate and intense magnetic storms. We compare relativistic and ultra-relativistic electron observations with the concurrent latitudinal and azimuthal distributions of wave power enhancements at Pc5 frequencies as detected by a global network of ground magnetic stations. During the main phase of magnetic storms, there is a marked penetration of Pc5 wave power to low L shells, especially during storms characterized by increased post-storm electron fluxes as compared to their pre-storm values. VLF waves may also play a role in enhancing the outer belt electron population. We discuss the growth and decay characteristics of waves in association with the interplanetary coronal mass ejections.

  19. Magnetohydrodynamic waves with relativistic electrons and positrons in degenerate spin-1/2 astrophysical plasmas

    NASA Astrophysics Data System (ADS)

    Maroof, R.; Ali, S.; Mushtaq, A.; Qamar, A.

    2015-11-01

    Linear properties of high and low frequency waves are studied in an electron-positron-ion (e-p-i) dense plasma with spin and relativity effects. In a low frequency regime, the magnetohydrodynamic (MHD) waves, namely, the magnetoacoustic and Alfven waves are presented in a magnetized plasma, in which the inertial ions are taken as spinless and non-degenerate, whereas the electrons and positrons are treated quantum mechanically due to their smaller mass. Quantum corrections associated with the spin magnetization and density correlations for electrons and positrons are re-considered and a generalized dispersion relation for the low frequency MHD waves is derived to account for relativistic degeneracy effects. On the basis of angles of propagation, the dispersion relations of different modes are discussed analytically in a degenerate relativistic plasma. Numerical results reveal that electron and positron relativistic degeneracy effects significantly modify the dispersive properties of MHD waves. Our present analysis should be useful for understanding the collective interactions in dense astrophysical compact objects, like, the white dwarfs and in atmosphere of neutron stars.

  20. Rapid optimization of blast wave mitigation strategies using Quiet Direct Simulation and Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Smith, Matthew R.; Kuo, Fang-An; Hsieh, Chih-Wei; Yu, Jen-Perng; Wu, Jong-Shinn; Ferguson, Alex

    2010-06-01

    Presented is a rapid calculation tool for the optimization of blast wave related mitigation strategies. The motion of gas resulting from a blast wave (specified by the user) is solved by the Quiet Direct Simulation (QDS) method - a rapid kinetic theory-based finite volume method. The optimization routine employed is a newly developed Genetic Algorithm (GA) which is demonstrated to be similar to a Differential Evolution (DE) scheme with several modifications. In any Genetic Algorithm, individuals contain genetic information which is passed on to newly created individuals in successive generations. The results from unsteady QDS simulations are used to determine the individual's "genetic fitness" which is employed by the proposed Genetic Algorithm during the reproduction process. The combined QDS/GA algorithm is applied to various test cases and finally the optimization of a non-trivial blast wave mitigation strategy. Both QDS and the proposed GA are demonstrated to perform with minimal computational expense while accurately solving the optimization problems presented.

  1. Blast wave formation of the extended stellar shells surrounding elliptical galaxies

    NASA Technical Reports Server (NTRS)

    Williams, R. E.; Christiansen, W. A.

    1985-01-01

    The existence of stellar shells at large distances from isolated elliptical galaxies is explained in terms of a blast wave associated with an active nucleus phase early in the history of the galaxy. The blast wave sweeps the initial interstellar medium out of the galaxy into an expanding shell which radiatively cools behind its leading shock front. Cooling of the shell following turnoff of the nucleus activity, which keeps the shell photoionized, leads to a brief epoch of star formation which is terminated by heating of the shell from supernovae and UV radiation from massive stars. The stars so formed follow similar, highly radial, bound orbits, moving in phase with each other and spending much of their time near apogalacteum, thus taking on the appearance of a shell. Multiple shells may be produced when conditions allow repeated episodes of shell cooling and supernovae heating to occur in the blast wave.

  2. Near-Field Characterization of Radial and Axial Blast Waves From a Cylindrical Explosive Charge

    NASA Astrophysics Data System (ADS)

    McNesby, Kevin; Homan, Barrie

    This paper uses experiment (high speed imaging) and simulation (ALE-3D) to investigate radial and axial blast waves produced by uncased, cylindrical charges of TNT (trinitrotoluene). Recently there has been work reported on predicting secondary blast waves in the explosive mid-field (approximately 1 meter from charge center of mass) for cylindrical charges of RDX (trimethylenetrinitramine)/binder formulations. The work we will present seeks to provide complementary information in the explosive near-field, including the approach to chemical ``freeze out'', for end-detonated, right circular cylinders of TNT. Additionally, this work attempts to retrieve state variables (temperature, pressure, velocities) from high-definition images of the explosive event. Keywords: cylindrical charges, blast, shock waves

  3. Propagation of solitary waves in relativistic electron-positron-ion plasmas with kappa distributed electrons and positrons

    SciTech Connect

    Shah, Asif; Mahmood, S.; Haque, Q.

    2011-11-15

    Electrostatic ion acoustic solitary waves are studied in a plasma system comprising of relativistic ions, kappa distributed electrons, and positrons. The increase in the relativistic streaming factor and positron and electron kappa parameters cause the soliton amplitude to thrive. However, the soliton amplitude diminishes as the positron concentration is increased in the system. Our results are general and may be helpful, in understanding nonlinear phenomena in the presence of kappa distibuted electrons, positrons, and relativistically streaming ions.

  4. Covariant spectator theory of $np$ scattering:\\\\ Effective range expansions and relativistic deuteron wave functions

    SciTech Connect

    Franz Gross, Alfred Stadler

    2010-09-01

    We present the effective range expansions for the 1S0 and 3S1 scattering phase shifts, and the relativistic deuteron wave functions that accompany our recent high precision fits (with \\chi^2/N{data} \\simeq 1) to the 2007 world np data below 350 MeV. The wave functions are expanded in a series of analytical functions (with the correct asymptotic behavior at both large and small arguments) that can be Fourier-transformed from momentum to coordinate space and are convenient to use in any application. A fortran subroutine to compute these wave functions can be obtained from the authors.

  5. The absence of gravitational waves and the foundations of Relativistic Cosmology

    NASA Astrophysics Data System (ADS)

    Djidjian, Robert

    2015-07-01

    Modern relativistic cosmology is based on Albert Einstein's teaching of general relativity. Observational and experimental impressive verification of general relativity have created among the astrophysicists the conviction that general relativity and relativistic cosmology are absolutely true theories. Unfortunately, the most important conclusion of general relativity is that the necessary existence of gravitational waves has been rejected by all the experiments up to the present time. There is also a kind of direct objection to the conception of expanding Universe: with the expansion of space identically expands the measuring stick, which makes the distances between the galaxies unchanged. So it should be quite reasonable to open discussions regarding the status of both general relativity and relativistic cosmology.

  6. Oxy-acetylene driven laboratory scale shock tubes for studying blast wave effects.

    PubMed

    Courtney, Amy C; Andrusiv, Lubov P; Courtney, Michael W

    2012-04-01

    This paper describes the development and characterization of modular, oxy-acetylene driven laboratory scale shock tubes. Such tools are needed to produce realistic blast waves in a laboratory setting. The pressure-time profiles measured at 1 MHz using high-speed piezoelectric pressure sensors have relevant durations and show a true shock front and exponential decay characteristic of free-field blast waves. Descriptions are included for shock tube diameters of 27-79 mm. A range of peak pressures from 204 kPa to 1187 kPa (with 0.5-5.6% standard error of the mean) were produced by selection of the driver section diameter and distance from the shock tube opening. The peak pressures varied predictably with distance from the shock tube opening while maintaining both a true blast wave profile and relevant pulse duration for distances up to about one diameter from the shock tube opening. This shock tube design provides a more realistic blast profile than current compression-driven shock tubes, and it does not have a large jet effect. In addition, operation does not require specialized personnel or facilities like most blast-driven shock tubes, which reduces operating costs and effort and permits greater throughput and accessibility. It is expected to be useful in assessing the response of various sensors to shock wave loading; assessing the reflection, transmission, and absorption properties of candidate armor materials; assessing material properties at high rates of loading; assessing the response of biological materials to shock wave exposure; and providing a means to validate numerical models of the interaction of shock waves with structures. All of these activities have been difficult to pursue in a laboratory setting due in part to lack of appropriate means to produce a realistic blast loading profile. PMID:22559580

  7. Oxy-acetylene driven laboratory scale shock tubes for studying blast wave effects

    NASA Astrophysics Data System (ADS)

    Courtney, Amy C.; Andrusiv, Lubov P.; Courtney, Michael W.

    2012-04-01

    This paper describes the development and characterization of modular, oxy-acetylene driven laboratory scale shock tubes. Such tools are needed to produce realistic blast waves in a laboratory setting. The pressure-time profiles measured at 1 MHz using high-speed piezoelectric pressure sensors have relevant durations and show a true shock front and exponential decay characteristic of free-field blast waves. Descriptions are included for shock tube diameters of 27-79 mm. A range of peak pressures from 204 kPa to 1187 kPa (with 0.5-5.6% standard error of the mean) were produced by selection of the driver section diameter and distance from the shock tube opening. The peak pressures varied predictably with distance from the shock tube opening while maintaining both a true blast wave profile and relevant pulse duration for distances up to about one diameter from the shock tube opening. This shock tube design provides a more realistic blast profile than current compression-driven shock tubes, and it does not have a large jet effect. In addition, operation does not require specialized personnel or facilities like most blast-driven shock tubes, which reduces operating costs and effort and permits greater throughput and accessibility. It is expected to be useful in assessing the response of various sensors to shock wave loading; assessing the reflection, transmission, and absorption properties of candidate armor materials; assessing material properties at high rates of loading; assessing the response of biological materials to shock wave exposure; and providing a means to validate numerical models of the interaction of shock waves with structures. All of these activities have been difficult to pursue in a laboratory setting due in part to lack of appropriate means to produce a realistic blast loading profile.

  8. Simulation of blast-induced early-time intracranial wave physics leading to traumatic brain injury.

    PubMed

    Taylor, Paul A; Ford, Corey C

    2009-06-01

    The objective of this modeling and simulation study was to establish the role of stress wave interactions in the genesis of traumatic brain injury (TBI) from exposure to explosive blast. A high resolution (1 mm3 voxels) five material model of the human head was created by segmentation of color cryosections from the Visible Human Female data set. Tissue material properties were assigned from literature values. The model was inserted into the shock physics wave code, CTH, and subjected to a simulated blast wave of 1.3 MPa (13 bars) peak pressure from anterior, posterior, and lateral directions. Three-dimensional plots of maximum pressure, volumetric tension, and deviatoric (shear) stress demonstrated significant differences related to the incident blast geometry. In particular, the calculations revealed focal brain regions of elevated pressure and deviatoric stress within the first 2 ms of blast exposure. Calculated maximum levels of 15 KPa deviatoric, 3.3 MPa pressure, and 0.8 MPa volumetric tension were observed before the onset of significant head accelerations. Over a 2 ms time course, the head model moved only 1 mm in response to the blast loading. Doubling the blast strength changed the resulting intracranial stress magnitudes but not their distribution. We conclude that stress localization, due to early-time wave interactions, may contribute to the development of multifocal axonal injury underlying TBI. We propose that a contribution to traumatic brain injury from blast exposure, and most likely blunt impact, can occur on a time scale shorter than previous model predictions and before the onset of linear or rotational accelerations traditionally associated with the development of TBI. PMID:19449961

  9. Effects of internal heat transfer on the structure of self-similar blast waves

    NASA Technical Reports Server (NTRS)

    Ghoniem, A. F.; Berger, S. A.; Oppenheim, A. K.; Kamel, M. M.

    1982-01-01

    An analysis of the problem of self-similar, nonadiabatic blast waves, where both conduction and radiation are allowed to take place, show the problem to be reducible to the integration of a system of six coupled nonlinear ordinary differential equations. Consideration of these equations shows that although radiation tends to produce uniform fields through temperature gradient attenuation, all the energy carried by radiation is deposited on the front and the bounding shock becomes increasingly overdriven. When conduction is taken into account, the distribution of gasdynamic parameters in blast waves in the case of Rosseland diffusion radiation is more uniform than in the case of the Planck emission radiation.

  10. Relativistic warm plasma theory of nonlinear laser-driven electron plasma waves.

    PubMed

    Schroeder, C B; Esarey, E

    2010-05-01

    A relativistic, warm fluid model of a nonequilibrium, collisionless plasma is developed and applied to examine nonlinear Langmuir waves excited by relativistically intense, short-pulse lasers. Closure of the covariant fluid theory is obtained via an asymptotic expansion assuming a nonrelativistic plasma temperature. The momentum spread is calculated in the presence of an intense laser field and shown to be intrinsically anisotropic. Coupling between the transverse and longitudinal momentum variances is enabled by the laser field. A generalized dispersion relation is derived for Langmuir waves in a thermal plasma in the presence of an intense laser field. Including thermal fluctuations in three-velocity-space dimensions, the properties of the nonlinear electron plasma wave, such as the plasma temperature evolution and nonlinear wavelength, are examined and the maximum amplitude of the nonlinear oscillation is derived. The presence of a relativistically intense laser pulse is shown to strongly influence the maximum plasma wave amplitude for nonrelativistic phase velocities owing to the coupling between the longitudinal and transverse momentum variances.

  11. Double shock front formation in cylindrical radiative blast waves produced by laser irradiation of krypton gas

    SciTech Connect

    Kim, I.; Quevedo, H. J.; Feldman, S.; Bang, W.; Serratto, K.; McCormick, M.; Aymond, F.; Dyer, G.; Bernstein, A. C.; Ditmire, T.

    2013-12-15

    Radiative blast waves were created by irradiating a krypton cluster source from a supersonic jet with a high intensity femtosecond laser pulse. It was found that the radiation from the shock surface is absorbed in the optically thick upstream medium creating a radiative heat wave that travels supersonically ahead of the main shock. As the blast wave propagates into the heated medium, it slows and loses energy, and the radiative heat wave also slows down. When the radiative heat wave slows down to the transonic regime, a secondary shock in the ionization precursor is produced. This paper presents experimental data characterizing both the initial and secondary shocks and numerical simulations to analyze the double-shock dynamics.

  12. Relativistic solitary waves with phase modulation embedded in long laser pulses in plasmas

    SciTech Connect

    Sanchez-Arriaga, G.; Siminos, E.; Lefebvre, E.

    2011-08-15

    We investigate the existence of nonlinear phase-modulated relativistic solitary waves embedded in an infinitely long circularly polarized electromagnetic wave propagating through a plasma. These states are exact nonlinear solutions of the 1-dimensional Maxwell-fluid model for a cold plasma composed of electrons and ions. The solitary wave, which consists of an electromagnetic wave trapped in a self-generated Langmuir wave, presents a phase modulation when the group velocity V and the phase velocity V{sub ph} of the long circularly polarized electromagnetic wave do not match the condition VV{sub ph} = c{sup 2}. The main properties of the waves as a function of their group velocities, wavevectors, and frequencies are studied, as well as bifurcations of the dynamical system that describes the waves when the parameter controlling the phase modulation changes from zero to a finite value. Such a transition is illustrated in the limit of small amplitude waves where an analytical solution for a grey solitary wave exists. The solutions are interpreted as the stationary state after the collision of a long laser pulse with an isolated solitary wave.

  13. Exact relativistic expressions for wave refraction in a generally moving fluid.

    PubMed

    Cavalleri, G; Tonni, E; Barbero, F

    2013-04-01

    The law for the refraction of a wave when the two fluids and the interface are moving with relativistic velocities is given in an exact form, at the same time correcting a first order error in a previous paper [Cavalleri and Tonni, Phys. Rev. E 57, 3478 (1998)]. The treatment is then extended to a generally moving fluid with variable refractive index, ready to be applied to the refraction of acoustic, electromagnetic, or magnetohydrodynamic waves in the atmosphere of rapidly rotating stars. In the particular case of a gas cloud receding because of the universe expansion, our result can be applied to predict observable micro- and mesolensings. The first order approximation of our exact result for the deviation due to refraction of the light coming from a further quasar has a relativistic dependence equal to the one obtained by Einsteins' linearized theory of gravitation. PMID:23679540

  14. Exact relativistic expressions for wave refraction in a generally moving fluid.

    PubMed

    Cavalleri, G; Tonni, E; Barbero, F

    2013-04-01

    The law for the refraction of a wave when the two fluids and the interface are moving with relativistic velocities is given in an exact form, at the same time correcting a first order error in a previous paper [Cavalleri and Tonni, Phys. Rev. E 57, 3478 (1998)]. The treatment is then extended to a generally moving fluid with variable refractive index, ready to be applied to the refraction of acoustic, electromagnetic, or magnetohydrodynamic waves in the atmosphere of rapidly rotating stars. In the particular case of a gas cloud receding because of the universe expansion, our result can be applied to predict observable micro- and mesolensings. The first order approximation of our exact result for the deviation due to refraction of the light coming from a further quasar has a relativistic dependence equal to the one obtained by Einsteins' linearized theory of gravitation.

  15. A Ka-band radial relativistic backward wave oscillator with GW-class output power

    NASA Astrophysics Data System (ADS)

    Zhu, Jiaxin; Zhang, Xiaoping; Dang, Fangchao

    2016-07-01

    A novel radial relativistic backward wave oscillator with a reflector is proposed and designed to generate GW-level high power microwaves at Ka-band. The segmented radial slow wave structure and the reflector are matched to enhance interaction efficiency. We choose the volume wave TM01 mode as the working mode due to the volume wave characteristic. The main structural parameters of the novel device are optimized by particle-in-cell simulation. High power microwaves with power of 2 GW and a frequency of 29.4 GHz are generated with 30% efficiency when the electron beam voltage is 383 kV, the beam current is 17 kA, and the guiding magnetic field is only 0.6 T. Simultaneously, the highest electric field in the novel Ka-band device is just about 960 kV/cm in second slow wave structure.

  16. Rigorous coupled wave analysis of acousto-optics with relativistic considerations.

    PubMed

    Xia, Guoqiang; Zheng, Weijian; Lei, Zhenggang; Zhang, Ruolan

    2015-09-01

    A relativistic analysis of acousto-optics is presented, and a rigorous coupled wave analysis is generalized for the diffraction of the acousto-optical effect. An acoustic wave generates a grating with temporally and spatially modulated permittivity, hindering direct applications of the rigorous coupled wave analysis for the acousto-optical effect. In a reference frame which moves with the acoustic wave, the grating is static, the medium moves, and the coupled wave equations for the static grating may be derived. Floquet's theorem is then applied to cast these equations into an eigenproblem. Using a Lorentz transformation, the electromagnetic fields in the grating region are transformed to the lab frame where the medium is at rest, and relativistic Doppler frequency shifts are introduced into various diffraction orders. In the lab frame, the boundary conditions are considered and the diffraction efficiencies of various orders are determined. This method is rigorous and general, and the plane waves in the resulting expansion satisfy the dispersion relation of the medium and are propagation modes. Properties of various Bragg diffractions are results, rather than preconditions, of this method. Simulations of an acousto-optical tunable filter made by paratellurite, TeO(2), are given as examples. PMID:26367426

  17. Rigorous coupled wave analysis of acousto-optics with relativistic considerations.

    PubMed

    Xia, Guoqiang; Zheng, Weijian; Lei, Zhenggang; Zhang, Ruolan

    2015-09-01

    A relativistic analysis of acousto-optics is presented, and a rigorous coupled wave analysis is generalized for the diffraction of the acousto-optical effect. An acoustic wave generates a grating with temporally and spatially modulated permittivity, hindering direct applications of the rigorous coupled wave analysis for the acousto-optical effect. In a reference frame which moves with the acoustic wave, the grating is static, the medium moves, and the coupled wave equations for the static grating may be derived. Floquet's theorem is then applied to cast these equations into an eigenproblem. Using a Lorentz transformation, the electromagnetic fields in the grating region are transformed to the lab frame where the medium is at rest, and relativistic Doppler frequency shifts are introduced into various diffraction orders. In the lab frame, the boundary conditions are considered and the diffraction efficiencies of various orders are determined. This method is rigorous and general, and the plane waves in the resulting expansion satisfy the dispersion relation of the medium and are propagation modes. Properties of various Bragg diffractions are results, rather than preconditions, of this method. Simulations of an acousto-optical tunable filter made by paratellurite, TeO(2), are given as examples.

  18. Method of accelerating photons by a relativistic plasma wave

    DOEpatents

    Dawson, John M.; Wilks, Scott C.

    1990-01-01

    Photons of a laser pulse have their group velocity accelerated in a plasma as they are placed on a downward density gradient of a plasma wave of which the phase velocity nearly matches the group velocity of the photons. This acceleration results in a frequency upshift. If the unperturbed plasma has a slight density gradient in the direction of propagation, the photon frequencies can be continuously upshifted to significantly greater values.

  19. Coherent kilo-electron-volt backscattering from plasma-wave boosted relativistic electron mirrors

    SciTech Connect

    Li, F. Y.; Chen, M. Liu, Y.; Zhang, J.; Sheng, Z. M. E-mail: zmsheng@sjtu.edu.cn; Wu, H. C.; Meyer-ter-Vehn, J.; Mori, W. B.

    2014-10-20

    A different parameter regime of laser wakefield acceleration driven by sub-petawatt femtosecond lasers is proposed, which enables the generation of relativistic electron mirrors further accelerated by the plasma wave. Integrated particle-in-cell simulation, including both the mirror formation and Thomson scattering, demonstrates that efficient coherent backscattering up to keV photon energy can be obtained with moderate driving laser intensities and high density gas targets.

  20. Weak discontinuity waves in a relativistic mixture of two stiffened gas components

    NASA Astrophysics Data System (ADS)

    Conforto, F.; Giambò, S.

    2010-11-01

    A simple interface-capturing approach is developed in order to deduce the relativistic fluid equations for a two-component mixture, using a stiffened gas equation of state. The two species are assumed to be at thermal equilibrium and the total pressure of the mixture is expressed in terms of the pressures of the two components by Dalton's law. Moreover, weak discontinuity waves compatible with such a fluid are examined.

  1. Extended adiabatic blast waves and a model of the soft X-ray background. [interstellar matter

    NASA Technical Reports Server (NTRS)

    Cox, D. P.; Anderson, P. R.

    1981-01-01

    An analytical approximation is generated which follows the development of an adiabatic spherical blast wave in a homogeneous ambient medium of finite pressure. An analytical approximation is also presented for the electron temperature distribution resulting from coulomb collisional heating. The dynamical, thermal, ionization, and spectral structures are calculated for blast waves of energy E sub 0 = 5 x 10 to the 50th power ergs in a hot low-density interstellar environment. A formula is presented for estimating the luminosity evolution of such explosions. The B and C bands of the soft X-ray background, it is shown, are reproduced by such a model explosion if the ambient density is about .000004 cm, the blast radius is roughly 100 pc, and the solar system is located inside the shocked region. Evolution in a pre-existing cavity with a strong density gradient may, it is suggested, remove both the M band and OVI discrepancies.

  2. Frequency-Dependent Attenuation of Blasting Vibration Waves

    NASA Astrophysics Data System (ADS)

    Zhou, Junru; Lu, Wenbo; Yan, Peng; Chen, Ming; Wang, Gaohui

    2016-10-01

    The dominant frequency, in addition to the peak particle velocity, is a critical factor for assessing adverse effects of the blasting vibration on surrounding structures; however, it has not been fully considered in blasting design. Therefore, the dominant frequency-dependent attenuation mechanism of blast-induced vibration is investigated in the present research. Starting with blasting vibration induced by a spherical charge propagating in an infinite viscoelastic medium, a modified expression of the vibration amplitude spectrum was derived to reveal the frequency dependency of attenuation. Then, ground vibration induced by more complex and more commonly used cylindrical charge that propagates in a semi-infinite viscoelastic medium was analyzed by numerical simulation. Results demonstrate that the absorptive property of the medium results in the frequency attenuation versus distance, whereas a rapid drop or fluctuation occurs during the attenuation of ground vibration. Fluctuation usually appears at moderate to far field, and the dominant frequency generally decreases to half the original value when rapid drop occurs. The decay rate discrepancy between different frequency components and the multimodal structure of vibration spectrum lead to the unsmooth frequency-dependent attenuation. The above research is verified by two field experiments. Furthermore, according to frequency-based vibration standards, frequency drop and fluctuation should be considered when evaluating blast safety. An optimized piecewise assessment is proposed for more accurate evaluation: With the frequency drop point as the breakpoint, the assessment is divided into two independent sections along the propagating path.

  3. Wave amplification by a relativistic electron beam in a planar electrostatic system with sinusoidal-ripple boundary

    SciTech Connect

    Zhang Shichang

    2009-09-15

    Primary study is devoted to the amplification mechanism of electromagnetic fast wave by a relativistic electron beam in a planar electrostatic system, where the superplate of two parallel metallic plates is corrugated with sinusoidal ripples and connected to a negative voltage, while the subplate is smooth and grounded. In the system the electrostatic field governs the electrons to move along approximately sinusoidal trajectories and pumps the kinetic energy of electrons to the wave. Under exclusion of the space-charge wave effect and the Smith-Purcell effect, the fast wave gets relativistic Doppler upshift frequency and gain by extracting energy from a sheet electron beam, which is very similar to that in a free-electron laser pumped by a magnetostatic wiggler. Formulas derived and numerical analysis indicate that the amplification mechanism of wave pumped by the planar electrostatic system with sinusoidal ripples is favorable for a mildly relativistic electron beam to generate terahertz wave.

  4. Nonlinear propagation of high-frequency energy from blast waves as it pertains to bat hearing

    NASA Astrophysics Data System (ADS)

    Loubeau, Alexandra

    Close exposure to blast noise from military weapons training can adversely affect the hearing of both humans and wildlife. One concern is the effect of high-frequency noise from Army weapons training on the hearing of endangered bats. Blast wave propagation measurements were conducted to investigate nonlinear effects on the development of blast waveforms as they propagate from the source. Measurements were made at ranges of 25, 50, and 100 m from the blast. Particular emphasis was placed on observation of rise time variation with distance. Resolving the fine shock structure of blast waves requires robust transducers with high-frequency capability beyond 100 kHz, hence the limitations of traditional microphones and the effect of microphone orientation were investigated. Measurements were made with a wide-bandwidth capacitor microphone for comparison with conventional 3.175-mm (⅛-in.) microphones with and without baffles. The 3.175-mm microphone oriented at 90° to the propagation direction did not have sufficient high-frequency response to capture the actual rise times at a range of 50 m. Microphone baffles eliminate diffraction artifacts on the rise portion of the measured waveform and therefore allow for a more accurate measurement of the blast rise time. The wide-band microphone has an extended high-frequency response and can resolve shorter rise times than conventional microphones. For a source of 0.57 kg (1.25 lb) of C-4 plastic explosive, it was observed that nonlinear effects steepened the waveform, thereby decreasing the shock rise time, from 25 to 50 m. At 100m, the rise times had increased slightly. For comparison to the measured blast waveforms, several models of nonlinear propagation are applied to the problem of finite-amplitude blast wave propagation. Shock front models, such as the Johnson and Hammerton model, and full-waveform marching algorithms, such as the Anderson model, are investigated and compared to experimental results. The models

  5. Spatiotemporal dispersion and wave envelopes with relativistic and pseudorelativistic characteristics.

    PubMed

    Christian, J M; McDonald, G S; Hodgkinson, T F; Chamorro-Posada, P

    2012-01-20

    A generic nonparaxial model for pulse envelopes is presented. Classic Schrödinger-type descriptions of wave propagation have their origins in slowly-varying envelopes combined with a Galilean boost to the local time frame. By abandoning these two simplifications, a picture of pulse evolution emerges in which frame-of-reference considerations and space-time transformations take center stage. A wide range of effects, analogous to those in special relativity, then follows for both linear and nonlinear systems. Explicit demonstration is presented through exact bright and dark soliton pulse solutions. PMID:22400744

  6. Spatiotemporal dispersion and wave envelopes with relativistic and pseudorelativistic characteristics.

    PubMed

    Christian, J M; McDonald, G S; Hodgkinson, T F; Chamorro-Posada, P

    2012-01-20

    A generic nonparaxial model for pulse envelopes is presented. Classic Schrödinger-type descriptions of wave propagation have their origins in slowly-varying envelopes combined with a Galilean boost to the local time frame. By abandoning these two simplifications, a picture of pulse evolution emerges in which frame-of-reference considerations and space-time transformations take center stage. A wide range of effects, analogous to those in special relativity, then follows for both linear and nonlinear systems. Explicit demonstration is presented through exact bright and dark soliton pulse solutions.

  7. Relativistic Two-Boson System in Presence of Electromagnetic Plane Wave

    NASA Astrophysics Data System (ADS)

    Droz-Vincent, Ph.

    2016-09-01

    The relativistic two-body problem is considered for spinless particles subject to an external electromagnetic field. When this field is made of the monochromatic superposition of two counter-propagating plane waves (and provided the mutual interaction between particles is known), it is possible to write down explicitly a pair of coupled wave equations (corresponding to a pair of mass-shell constraints) which takes into account also the field contribution. These equations are manifestly covariant; constants of the motion are exhibited, so one ends up with a reduced problem involving five degrees of freedom.

  8. High efficiency coaxial klystron-like relativistic backward wave oscillator with a premodulation cavity

    SciTech Connect

    Xiao Renzhen; Teng Yan; Chen Changhua; Sun Jun

    2011-11-15

    The klystron-like relativistic backward wave oscillator (RBWO) combines the transition radiation with Cerenkov radiation and has demonstrated microwave output of high power and high efficiency. The coaxial slow wave structure device can produce microwave with a lower frequency in a smaller cross section. For the purpose of high efficiency, low frequency, and miniaturization, a coaxial klystron-like RBWO with a premodulation cavity is presented. Particle-in-cell simulations show that a microwave with power of 1.15 GW and frequency of 2.1 GHz is generated with conversion efficiency of 48%, whereas for the device with a reflector, the efficiency is 38%.

  9. Pathophysiology of the inner ear after blast injury caused by laser-induced shock wave

    PubMed Central

    Niwa, Katsuki; Mizutari, Kunio; Matsui, Toshiyasu; Kurioka, Takaomi; Matsunobu, Takeshi; Kawauchi, Satoko; Satoh, Yasushi; Sato, Shunichi; Shiotani, Akihiro; Kobayashi, Yasushi

    2016-01-01

    The ear is the organ that is most sensitive to blast overpressure, and ear damage is most frequently seen after blast exposure. Blast overpressure to the ear results in sensorineural hearing loss, which is untreatable and is often associated with a decline in the quality of life. In this study, we used a rat model to demonstrate the pathophysiological and structural changes in the inner ear that replicate pure sensorineural hearing loss associated with blast injury using laser-induced shock wave (LISW) without any conductive hearing loss. Our results indicate that threshold elevation of the auditory brainstem response (ABR) after blast exposure was primarily caused by outer hair cell dysfunction induced by stereociliary bundle disruption. The bundle disruption pattern was unique; disturbed stereocilia were mostly observed in the outermost row, whereas those in the inner and middle rows stereocilia remained intact. In addition, the ABR examination showed a reduction in wave I amplitude without elevation of the threshold in the lower energy exposure group. This phenomenon was caused by loss of the synaptic ribbon. This type of hearing dysfunction has recently been described as hidden hearing loss caused by cochlear neuropathy, which is associated with tinnitus or hyperacusis. PMID:27531021

  10. Pathophysiology of the inner ear after blast injury caused by laser-induced shock wave.

    PubMed

    Niwa, Katsuki; Mizutari, Kunio; Matsui, Toshiyasu; Kurioka, Takaomi; Matsunobu, Takeshi; Kawauchi, Satoko; Satoh, Yasushi; Sato, Shunichi; Shiotani, Akihiro; Kobayashi, Yasushi

    2016-01-01

    The ear is the organ that is most sensitive to blast overpressure, and ear damage is most frequently seen after blast exposure. Blast overpressure to the ear results in sensorineural hearing loss, which is untreatable and is often associated with a decline in the quality of life. In this study, we used a rat model to demonstrate the pathophysiological and structural changes in the inner ear that replicate pure sensorineural hearing loss associated with blast injury using laser-induced shock wave (LISW) without any conductive hearing loss. Our results indicate that threshold elevation of the auditory brainstem response (ABR) after blast exposure was primarily caused by outer hair cell dysfunction induced by stereociliary bundle disruption. The bundle disruption pattern was unique; disturbed stereocilia were mostly observed in the outermost row, whereas those in the inner and middle rows stereocilia remained intact. In addition, the ABR examination showed a reduction in wave I amplitude without elevation of the threshold in the lower energy exposure group. This phenomenon was caused by loss of the synaptic ribbon. This type of hearing dysfunction has recently been described as hidden hearing loss caused by cochlear neuropathy, which is associated with tinnitus or hyperacusis.

  11. Pathophysiology of the inner ear after blast injury caused by laser-induced shock wave.

    PubMed

    Niwa, Katsuki; Mizutari, Kunio; Matsui, Toshiyasu; Kurioka, Takaomi; Matsunobu, Takeshi; Kawauchi, Satoko; Satoh, Yasushi; Sato, Shunichi; Shiotani, Akihiro; Kobayashi, Yasushi

    2016-01-01

    The ear is the organ that is most sensitive to blast overpressure, and ear damage is most frequently seen after blast exposure. Blast overpressure to the ear results in sensorineural hearing loss, which is untreatable and is often associated with a decline in the quality of life. In this study, we used a rat model to demonstrate the pathophysiological and structural changes in the inner ear that replicate pure sensorineural hearing loss associated with blast injury using laser-induced shock wave (LISW) without any conductive hearing loss. Our results indicate that threshold elevation of the auditory brainstem response (ABR) after blast exposure was primarily caused by outer hair cell dysfunction induced by stereociliary bundle disruption. The bundle disruption pattern was unique; disturbed stereocilia were mostly observed in the outermost row, whereas those in the inner and middle rows stereocilia remained intact. In addition, the ABR examination showed a reduction in wave I amplitude without elevation of the threshold in the lower energy exposure group. This phenomenon was caused by loss of the synaptic ribbon. This type of hearing dysfunction has recently been described as hidden hearing loss caused by cochlear neuropathy, which is associated with tinnitus or hyperacusis. PMID:27531021

  12. Loss of geosynchronous relativistic electrons by EMIC wave scattering under quiet geomagnetic conditions

    NASA Astrophysics Data System (ADS)

    Hyun, K.; Kim, K.-H.; Lee, E.; Kwon, H.-J.; Lee, D.-H.; Jin, H.

    2014-10-01

    We have examined relativistic electron flux losses at geosynchronous orbit under quiet geomagnetic conditions. One 3 day period, from 11 to 13 October 2007, was chosen for analysis because geomagnetic conditions were very quiet (3 day average of Kp< 1), and significant losses of geosynchronous relativistic electrons were observed. During this interval, there was no geomagnetic storm activity. Thus, the loss processes associated with geomagnetic field modulations caused by ring current buildup can be excluded. The >2 MeV electron flux at geosynchronous orbit shows typical diurnal variations with a maximum near noon and a minimum near midnight for each day. The flux level of the daily variation significantly decreased from first day to third day for the 3 day period by a factor of >10. The total magnetic field strength (BT) of the daily variation on the third day, however, is comparable to that on the first day. Unlike electron flux decreases, the flux of protons with energies between 0.8 and 4 MeV adiabatically responses to the daily variation of BT. That is, there is no significant decrease of the proton flux when the electron flux decreases. During the interval of quiet geomagnetic conditions, well-defined electromagnetic ion cyclotron (EMIC) waves were detected at geosynchronous spacecraft. Low-altitude polar-orbiting spacecraft observed the precipitation of energetic protons and relativistic electrons in the interval of EMIC waves enhancement. From these observations, we suggest that the EMIC waves at geosynchronous orbit cause pitch angle scattering and relativistic electron losses to the atmosphere under quiet geomagnetic conditions.

  13. Blast Overpressure Waves Induce Transient Anxiety and Regional Changes in Cerebral Glucose Metabolism and Delayed Hyperarousal in Rats.

    PubMed

    Awwad, Hibah O; Gonzalez, Larry P; Tompkins, Paul; Lerner, Megan; Brackett, Daniel J; Awasthi, Vibhudutta; Standifer, Kelly M

    2015-01-01

    Physiological alterations, anxiety, and cognitive disorders are strongly associated with blast-induced traumatic brain injury (blast TBI), and are common symptoms in service personnel exposed to blasts. Since 2006, 25,000-30,000 new TBI cases are diagnosed annually in U.S. Service members; increasing evidence confirms that primary blast exposure causes diffuse axonal injury and is often accompanied by altered behavioral outcomes. Behavioral and acute metabolic effects resulting from blast to the head in the absence of thoracic contributions from the periphery were examined, following a single blast wave directed to the head of male Sprague-Dawley rats protected by a lead shield over the torso. An 80 psi head blast produced cognitive deficits that were detected in working memory. Blast TBI rats displayed increased anxiety as determined by elevated plus maze at day 9 post-blast compared to sham rats; blast TBI rats spent significantly more time than the sham controls in the closed arms (p < 0.05; n = 8-11). Interestingly, anxiety symptoms were absent at days 22 and 48 post-blast. Instead, blast TBI rats displayed increased rearing behavior at day 48 post-blast compared to sham rats. Blast TBI rats also exhibited suppressed acoustic startle responses, but similar pre-pulse inhibition at day 15 post-blast compared to sham rats. Acute physiological alterations in cerebral glucose metabolism were determined by positron emission tomography 1 and 9 days post-blast using (18)F-fluorodeoxyglucose ((18)F-FDG). Global glucose uptake in blast TBI rat brains increased at day 1 post-blast (p < 0.05; n = 4-6) and returned to sham levels by day 9. Our results indicate a transient increase in cerebral metabolism following a blast injury. Markers for reactive astrogliosis and neuronal damage were noted by immunoblotting motor cortex tissue from day 10 post-blast in blast TBI rats compared to sham controls (p < 0.05; n = 5-6). PMID:26136722

  14. Blast Overpressure Waves Induce Transient Anxiety and Regional Changes in Cerebral Glucose Metabolism and Delayed Hyperarousal in Rats

    PubMed Central

    Awwad, Hibah O.; Gonzalez, Larry P.; Tompkins, Paul; Lerner, Megan; Brackett, Daniel J.; Awasthi, Vibhudutta; Standifer, Kelly M.

    2015-01-01

    Physiological alterations, anxiety, and cognitive disorders are strongly associated with blast-induced traumatic brain injury (blast TBI), and are common symptoms in service personnel exposed to blasts. Since 2006, 25,000–30,000 new TBI cases are diagnosed annually in U.S. Service members; increasing evidence confirms that primary blast exposure causes diffuse axonal injury and is often accompanied by altered behavioral outcomes. Behavioral and acute metabolic effects resulting from blast to the head in the absence of thoracic contributions from the periphery were examined, following a single blast wave directed to the head of male Sprague-Dawley rats protected by a lead shield over the torso. An 80 psi head blast produced cognitive deficits that were detected in working memory. Blast TBI rats displayed increased anxiety as determined by elevated plus maze at day 9 post-blast compared to sham rats; blast TBI rats spent significantly more time than the sham controls in the closed arms (p < 0.05; n = 8–11). Interestingly, anxiety symptoms were absent at days 22 and 48 post-blast. Instead, blast TBI rats displayed increased rearing behavior at day 48 post-blast compared to sham rats. Blast TBI rats also exhibited suppressed acoustic startle responses, but similar pre-pulse inhibition at day 15 post-blast compared to sham rats. Acute physiological alterations in cerebral glucose metabolism were determined by positron emission tomography 1 and 9 days post-blast using 18F-fluorodeoxyglucose (18F-FDG). Global glucose uptake in blast TBI rat brains increased at day 1 post-blast (p < 0.05; n = 4–6) and returned to sham levels by day 9. Our results indicate a transient increase in cerebral metabolism following a blast injury. Markers for reactive astrogliosis and neuronal damage were noted by immunoblotting motor cortex tissue from day 10 post-blast in blast TBI rats compared to sham controls (p < 0.05; n = 5–6). PMID:26136722

  15. Rapid startup in relativistic backward wave oscillator by injecting external backward signal

    SciTech Connect

    Song, W.; Teng, Y.; Zhang, Z. Q.; Li, J. W.; Sun, J.; Chen, C. H.; Zhang, L. J.

    2012-08-15

    Investigation on accelerating the building up of oscillation and achieving a rapid startup in powerful relativistic backward wave oscillator by injecting a weak external backward signal is carried out in this paper. Synchronizing the signal with the backward wave excited by intense electron beam extracting with slow wave structure, the initial noise is greatly reduced and mode competition is restrained. The analysis is demonstrated by high power X-band backward wave oscillator experiment, in which a plasma switch is designed to realize the backward signal injection. The results show that the significant reduction of microwave output delay is attained and the start time of oscillation is ahead of 10 ns with the energy conversion efficiency increases about 62%.

  16. Enhanced frequency agility of high-power relativistic backward wave oscillators

    SciTech Connect

    Moreland, L.D.; Schamiloglu, E.; Lemke, R.W.; Roitman, A.M.; Korovin, S.D.; Rostov, V.V.

    1996-06-01

    This paper describes how finite length effects in high-power backward wave oscillators can be exploited in a controlled manner to achieve enhanced frequency agility. Experiments were performed using a Sinus-6 high-power relativistic repetitively pulsed electron beam accelerator. A uniform slow wave structure was used in these studies and its parameters were fixed. Sections of smooth-walled circular waveguide of varying lengths were inserted both before and after the slow wave structure. Variations in the length of smooth-walled waveguide on the order of a quarter-wavelength of the generated electromagnetic radiation were found to significantly affect both microwave frequency and radiation efficiency in a periodic-like manner. The experimental results were reproduced in TWOQUICK electromagnetic particle-in-cell simulations. A bandwidth of about 500 MHz centered around 9.5 GHz at hundreds of MW power levels has been achieved with constant beam and slow wave structure parameters.

  17. Coherent states, vacuum structure and infinite component relativistic wave equations

    NASA Astrophysics Data System (ADS)

    Cirilo-Lombardo, Diego Julio

    2016-11-01

    It is commonly claimed in the recent literature that certain solutions to wave equations of positive energy of Dirac-type with internal variables are characterized by a non-thermal spectrum. As part of that statement, it was said that the transformations and symmetries involved in equations of such type corresponded to a particular representation of the Lorentz group. In this paper, we give the general solution to this problem emphasizing the interplay between the group structure, the corresponding algebra and the physical spectrum. This analysis is completed with a strong discussion and proving that: (i) the physical states are represented by coherent states; (ii) the solutions in [Yu. P. Stepanovsky, Nucl. Phys. B (Proc. Suppl.) 102 (2001) 407-411; 103 (2001) 407-411] are not general, (iii) the symmetries of the considered physical system in [Yu. P. Stepanovsky, Nucl. Phys. B (Proc. Suppl.) 102 (2001) 407-411; 103 (2001) 407-411] (equations and geometry) do not correspond to the Lorentz group but to the fourth covering: the Metaplectic group Mp(n).

  18. Wave-driven butterfly distribution of Van Allen belt relativistic electrons

    DOE PAGESBeta

    Xiao, Fuliang; Yang, Chang; Su, Zhenpeng; Zhou, Qinghua; He, Zhaoguo; He, Yihua; Baker, D. N.; Spence, H. E.; Funsten, H. O.; Blake, J. B.

    2015-10-05

    Van Allen radiation belts consist of relativistic electrons trapped by Earth's magnetic field. Trapped electrons often drift azimuthally around Earth and display a butterfly pitch angle distribution of a minimum at 90° further out than geostationary orbit. This is usually attributed to drift shell splitting resulting from day–night asymmetry in Earth’s magnetic field. However, direct observation of a butterfly distribution well inside of geostationary orbit and the origin of this phenomenon have not been provided so far. Here we report high-resolution observation that a unusual butterfly pitch angle distribution of relativistic electrons occurred within 5 Earth radii during the 28more » June 2013 geomagnetic storm. In conclusion, simulation results show that combined acceleration by chorus and magnetosonic waves can successfully explain the electron flux evolution both in the energy and butterfly pitch angle distribution. Finally, the current provides a great support for the mechanism of wave-driven butterfly distribution of relativistic electrons.« less

  19. Prospects for studying how high-intensity compression waves cause damage in human blast injuries

    NASA Astrophysics Data System (ADS)

    Brown, Katherine; Bo, Chiara; Masouros, Spyros; Ramasamy, Arul; Newell, Nicolas; Bonner, Timothy; Balzer, Jens; Hill, Adam; Clasper, Jon; Bull, Anthony; Proud, William

    2012-03-01

    Since World War I, explosions have accounted for over 70% of all injuries in conflict. With the development of improved personnel protection of the torso, improved medical care and faster aeromedical evacuation, casualties are surviving with more severe injuries to the extremities. Understanding the processes involved in the transfer of blast-induced shock waves through biological tissues is essential for supporting efforts aimed at mitigating and treating blast injury. Given the inherent heterogeneities in the human body, we argue that studying these processes demands a highly integrated approach requiring expertise in shock physics, biomechanics and fundamental biological processes. This multidisciplinary systems approach enables one to develop the experimental framework for investigating the material properties of human tissues that are subjected to high compression waves in blast conditions and the fundamental cellular processes altered by this type of stimuli. Ultimately, we hope to use the information gained from these studies in translational research aimed at developing improved protection for those at risk and improved clinical outcomes for those who have been injured from a blast wave.

  20. Relativistic electron beam driven longitudinal wake-wave breaking in a cold plasma

    NASA Astrophysics Data System (ADS)

    Bera, Ratan Kumar; Mukherjee, Arghya; Sengupta, Sudip; Das, Amita

    2016-08-01

    Space-time evolution of a relativistic electron beam driven wake-field in a cold, homogeneous plasma is studied using 1D-fluid simulation techniques. It is observed that the wake wave gradually evolves and eventually breaks, exhibiting sharp spikes in the density profile and sawtooth like features in the electric field profile [Bera et al., Phys. Plasmas 22, 073109 (2015)]. It is shown here that the excited wakefield is a longitudinal Akhiezer-Polovin mode [A. I. Akhiezer and R. V. Polovin, Sov. Phys. JETP 3, 696 (1956)] and its steepening (breaking) can be understood in terms of phase mixing of this mode, which arises because of relativistic mass variation effects. Further, the phase mixing time (breaking time) is studied as a function of beam density and beam velocity and is found to follow the well known scaling presented by Mukherjee and Sengupta [Phys. Plasmas 21, 112104 (2014)].

  1. Cylindrical and Spherical Ion-Acoustic Shock Waves in a Relativistic Degenerate Multi-Ion Plasma

    NASA Astrophysics Data System (ADS)

    Hossen, M. R.; Nahar, L.; Mamun, A. A.

    2014-12-01

    A rigorous theoretical investigation has been made to study the existence and basic features of the ion-acoustic (IA) shock structures in an unmagnetized, collisionless multi-ion plasma system (containing degenerate electron fluids, inertial positively as well as negatively charged ions, and arbitrarily charged static heavy ions). This investigation is valid for both non-relativistic and ultra-relativistic limits. The reductive perturbation technique has been employed to derive the modified Burgers equation. The solution of this equation has been numerically examined to study the basic properties of shock structures. The basic features (speed, amplitude, width, etc.) of these electrostatic shock structures have been briefly discussed. The basic properties of the IA shock waves are found to be significantly modified by the effects of arbitrarily charged static heavy ions and the plasma particle number densities. The implications of our results in space and interstellar compact objects like white dwarfs, neutron stars, black holes, and so on have been briefly discussed.

  2. Indoor propagation and assessment of blast waves from weapons using the alternative image theory

    NASA Astrophysics Data System (ADS)

    Kong, B.; Lee, K.; Lee, S.; Jung, S.; Song, K. H.

    2016-03-01

    Blast waves generated from the muzzles of various weapons might have significant effects on the human body, and these effects are recognized as being more severe when weapons are fired indoors. The risk can be assessed by various criteria, such as waveform, exposed energy, and model-based types. This study introduces a prediction model of blast wave propagation for estimating waveform parameters related to damage risk assessment. To simulate indoor multiple reflections in a simple way, the model is based on the alternative image theory and discrete wavefront method. The alternative theory is a kind of modified image theory, but it uses the image space concept from a receiver's perspective, so that it shows improved efficiency for indoor problems. Further, the discrete wavefront method interprets wave propagation as the forward movement of a finite number of wavefronts. Even though the predicted results show slight differences from the measured data, the locations of significant shock waves indicate a high degree of correlation between them. Since the disagreement results not from the proposed techniques but from the assumptions used, it is concluded that the model is appropriate for analysis of blast wave propagation in interior spaces.

  3. Magnetic Fields In Blast-wave-driven Instability Experiments Relevant To Supernova

    NASA Astrophysics Data System (ADS)

    Kuranz, Carolyn; Drake, R.; Grosskopf, M.; Krauland, C.; Marion, D.; Fryxell, B.; Budde, A.; Remington, B.; Robey, H.; Hansen, J.; Miles, A.; Knauer, J.; Arnett, D.; Meakin, C.; Plewa, T.; Hearn, N.

    2009-05-01

    These experiments are scaled to the blast wave driven instabilities at the He/H interface during the explosion phase of SN1987A. This core-collapse supernova was detected about 50 kpc from Earth making it the first supernova observed so closely to earth in modern times. The progenitor star was a blue supergiant with a mass of 18-20 solar masses. A blast wave occurred following the supernova explosion because there was a sudden, finite release of energy. Blast waves consist of a shock front followed by a rarefaction wave. When a blast wave crosses an interface with a decrease in density, hydrodynamic instabilities will develop. These experiments include target materials scaled in density to the He/H layer in SN1987A. About 5 kJ of laser energy from the Omega Laser facility irradiates a 150 µm plastic layer that is followed by a low-density foam layer. A blast wave structure similar to those in supernovae is created in the plastic layer. The blast wave crosses a three-dimensional interface with a wavelength of 71 µm in two orthogonal directions. This produces unstable growth dominated by the Rayleigh-Taylor (RT) instability. We have detected the interface structure under these conditions, using dual orthogonal radiography, and will show some of the resulting data. Recent advancements in our x-ray backlighting techniques have greatly improved the resolution of our x-ray radiographic images. Under certain conditions, the improved images show some mass extending beyond the RT spike and penetrating further than previously observed. Current simulations do not show this phenomenon. It is possible that magnetic pressure generated by orthogonal components of the electron density gradient and the electron temperature gradient cause the spikes to reach the shock front. The amount of mass in the spike extensions is discussed. This research was sponsored by the SSAA through DOE Research Grants DE-FG52-07NA28058, DE-FG52-04NA00064

  4. Relativistic effects in the double S- and P-wave charmonium production in e{sup +}e{sup -} annihilation

    SciTech Connect

    Elekina, E. N.; Martynenko, A. P.

    2010-03-01

    On the basis of perturbative QCD and the relativistic quark model we calculate relativistic and bound state corrections in the pair production of S-wave and P-wave charmonium states. Relativistic factors in the production amplitude connected with the relative motion of heavy quarks and the transformation law of the bound state wave function to the reference frame of the moving S- and P-wave mesons are taken into account. For the gluon and quark propagators entering the production vertex function we use a truncated expansion in the ratio of the relative quark momenta to the center-of-mass energy {radical}(s) up to the second order. The relativistic treatment of the wave functions makes all such second order terms convergent, thus allowing the reliable calculation of their contributions to the production cross section. Relativistic corrections to the quark bound state wave functions in the rest frame are considered by means of the QCD generalization of the standard Breit potential. It turns out that the examined effects change essentially the nonrelativistic results of the cross section for the reaction e{sup +}+e{sup -{yields}}J/{Psi}({eta}{sub c})+{chi}{sub cJ}(h{sub c}) at the center-of-mass energy {radical}(s)=10.6 GeV.

  5. Effects of initially energetic electrons on relativistic laser-driven electron plasma waves

    SciTech Connect

    Yazdanpanah, J. Anvari, A.

    2014-02-15

    In this paper, using kinetic calculations and accurate 1D2V particle-in-cell simulations, we point out the important role of initially energetic electrons of the distribution tail in the behavior of high amplitude electron plasma waves (EPWs). In the presence of these electrons, the conventional warm fluid theory (WFT) breaks at very high wave amplitudes that are still noticeably lower than the wave breaking amplitude (WBA). The fluid breakdown results in electron super-heating with respect to the adiabatic laws. Indeed, a new kinetic regime of the relativistic EPWs appears below the WBA. It is argued that the mentioned super-heating results in WBA values lower than the corresponding WFT prediction.

  6. Planar and nonplanar ion acoustic shock waves in relativistic degenerate astrophysical electron-positron-ion plasmas

    NASA Astrophysics Data System (ADS)

    Ata-ur-Rahman, Ali, S.; Mirza, Arshad M.; Qamar, A.

    2013-04-01

    We have studied the propagation of ion acoustic shock waves involving planar and non-planar geometries in an unmagnetized plasma, whose constituents are non-degenerate ultra-cold ions, relativistically degenerate electrons, and positrons. By using the reductive perturbation technique, Korteweg-deVries Burger and modified Korteweg-deVries Burger equations are derived. It is shown that only compressive shock waves can propagate in such a plasma system. The effects of geometry, the ion kinematic viscosity, and the positron concentration are examined on the ion acoustic shock potential and electric field profiles. It is found that the properties of ion acoustic shock waves in a non-planar geometry significantly differ from those in planar geometry. The present study has relevance to the dense plasmas, produced in laboratory (e.g., super-intense laser-dense matter experiments) and in dense astrophysical objects.

  7. Planar and nonplanar ion acoustic shock waves in relativistic degenerate astrophysical electron-positron-ion plasmas

    SciTech Connect

    Ata-ur-Rahman,; Qamar, A.; Ali, S.; Mirza, Arshad M.

    2013-04-15

    We have studied the propagation of ion acoustic shock waves involving planar and non-planar geometries in an unmagnetized plasma, whose constituents are non-degenerate ultra-cold ions, relativistically degenerate electrons, and positrons. By using the reductive perturbation technique, Korteweg-deVries Burger and modified Korteweg-deVries Burger equations are derived. It is shown that only compressive shock waves can propagate in such a plasma system. The effects of geometry, the ion kinematic viscosity, and the positron concentration are examined on the ion acoustic shock potential and electric field profiles. It is found that the properties of ion acoustic shock waves in a non-planar geometry significantly differ from those in planar geometry. The present study has relevance to the dense plasmas, produced in laboratory (e.g., super-intense laser-dense matter experiments) and in dense astrophysical objects.

  8. An optimization method of relativistic backward wave oscillator using particle simulation and genetic algorithms

    SciTech Connect

    Chen, Zaigao; Wang, Jianguo; Wang, Yue; Qiao, Hailiang; Zhang, Dianhui; Guo, Weijie

    2013-11-15

    Optimal design method of high-power microwave source using particle simulation and parallel genetic algorithms is presented in this paper. The output power, simulated by the fully electromagnetic particle simulation code UNIPIC, of the high-power microwave device is given as the fitness function, and the float-encoding genetic algorithms are used to optimize the high-power microwave devices. Using this method, we encode the heights of non-uniform slow wave structure in the relativistic backward wave oscillators (RBWO), and optimize the parameters on massively parallel processors. Simulation results demonstrate that we can obtain the optimal parameters of non-uniform slow wave structure in the RBWO, and the output microwave power enhances 52.6% after the device is optimized.

  9. Covariant spectator theory of np scattering: Effective range expansions and relativistic deuteron wave functions

    SciTech Connect

    Gross, Franz; Stadler, Alfred

    2010-09-15

    We present the effective range expansions for the {sup 1}S{sub 0} and {sup 3}S{sub 1} scattering phase shifts, and the relativistic deuteron wave functions that accompany our recent high precision fits (with {chi}{sup 2}/N{sub data{approx_equal}}1) to the 2007 world np data below 350 MeV. The wave functions are expanded in a series of analytical functions (with the correct asymptotic behavior at both large and small arguments) that can be Fourier-transformed from momentum to coordinate space and are convenient to use in any application. A fortran subroutine to compute these wave functions can be obtained from the authors.

  10. THE EARLY BLAST WAVE OF THE 2010 EXPLOSION OF U SCORPII

    SciTech Connect

    Drake, J. J.; Orlando, S.

    2010-09-10

    Three-dimensional hydrodynamic simulations exploring the first 18 hr of the 2010 January 28 outburst of the recurrent nova U Scorpii have been performed. Special emphasis was placed on capturing the enormous range in spatial scales in the blast. The pre-explosion system conditions included the secondary star and a flared accretion disk. These conditions can have a profound influence on the evolving blast wave. The blast itself is shadowed by the secondary star, which itself gives rise to a low-temperature bow shock. The accretion disk is completely destroyed in the explosion. A model with a disk gas density of 10{sup 15} cm{sup -3} produced a blast wave that is collimated and with clear bipolar structures, including a bipolar X-ray emitting shell. The degree of collimation depends on the initial mass of ejecta, energy of explosion, and circumstellar gas density distribution. It is most pronounced for a model with the lowest explosion energy (10{sup 43} erg) and mass of ejecta (10{sup -8} M {sub sun}). The X-ray luminosities of three of six models computed are close to, but consistent with, an upper limit to the early blast X-ray emission obtained by the Swift satellite, the X-ray luminosity being larger for higher circumstellar gas density and higher ejecta mass. The latter consideration, together with estimates of the blast energy from previous outbursts, suggests that the mass of ejecta in the 2010 outburst was not larger than 10{sup -7} M {sub sun}.

  11. Phase and frequency structure of superradiance pulses generated by relativistic Ka-band backward-wave oscillator

    NASA Astrophysics Data System (ADS)

    Rostov, V. V.; Romanchenko, I. V.; Elchaninov, A. A.; Sharypov, K. A.; Shunailov, S. A.; Ul'masculov, M. R.; Yalandin, M. I.

    2016-08-01

    Phase and frequency stability of electromagnetic oscillations in sub-gigawatt superradiance (SR) pulses generated by an extensive slow-wave structure of a relativistic Ka-band backward-wave oscillator were experimentally investigated. Data on the frequency tuning and radiation phase stability of SR pulses with a variation of the energy and current of electron beam were obtained.

  12. Experimental determination of blast-wave pressure loading, thermal radiation protection, and electrical transmission loss for parabolic antenna models in simulated nuclear blast environments

    SciTech Connect

    George, J.H.

    1991-01-01

    A twelve-inch-diameter parabolic antenna model instrumented with eleven differential pressure sensors was tested at the Ballistics Research Laboratory, Aberdeen Proving Ground, Maryland. Transient pressure loading was determined for 37 different antenna model angular positions with respect to the direction of the blast wave at a peak overpressure of 3.0 pounds per square inch; limited data at 4.5 and 6.0 pounds per square inch were also investigated. The first millisecond of shock-wave interaction with the antenna features the most prominent fully reversed triangular pressure pulse. A blast function, F, was developed that accurately approximates the transient behavior of the blast wave resultant force and moment loading on the antenna model. The resultant blast force on the antenna model is minimized when the axis of the paraboloid of the model is rotated 82{degree} with respect to the direction of the blast wave. Four different thermal protective coatings were tested to evaluate the effects of coating color and thickness. Transmission-loss measurements were completed on eight different quartz-polyimide antenna models coated with Caapcoat and Ocean 477 thermal protective coatings.

  13. Effect of non-uniform slow wave structure in a relativistic backward wave oscillator with a resonant reflector

    SciTech Connect

    Chen, Changhua; Xiao, Renzhen; Sun, Jun; Song, Zhimin; Huo, Shaofei; Bai, Xianchen; Shi, Yanchao; Liu, Guozhi

    2013-11-15

    This paper provides a fresh insight into the effect of non-uniform slow wave structure (SWS) used in a relativistic backward wave oscillator (RBWO) with a resonant reflector. Compared with the uniform SWS, the reflection coefficient of the non-uniform SWS is higher, leading to a lower modulating electric field in the resonant reflector and a larger distance to maximize the modulation current. Moreover, for both types of RBWOs, stronger standing-wave field takes place at the rear part of the SWS. In addition, besides Cerenkov effects, the energy conversion process in the RBWO strongly depends on transit time effects. Thus, the matching condition between the distributions of harmonic current and standing wave field provides a profound influence on the beam-wave interaction. In the non-uniform RBWO, the region with a stronger standing wave field corresponds to a higher fundamental harmonic current distribution. Particle-in-cell simulations show that with a diode voltage of 1.02 MV and beam current of 13.2 kA, a microwave power of 4 GW has been obtained, compared to that of 3 GW in the uniform RBWO.

  14. Loss of Geosynchronous Relativistic Electrons By Emic Wave Scattering Under Quiet Geomagnetic Conditions

    NASA Astrophysics Data System (ADS)

    Kim, K. H.; Hyun, K.; Lee, E.; Lee, D. H.

    2014-12-01

    We have examined relativistic electron flux losses at geosynchronous orbit under quiet geomagnetic conditions. One 3-day period, from 11 to 13 October 2007, was chosen for analysis because geomagnetic conditions were very quiet (3-day average of Kp < 1), and significant losses of geosynchronous relativistic electrons were observed. During this interval, there was no geomagnetic storm activity. Thus, the loss processes associated with geomagnetic field modulations caused by ring current buildup can be excluded. The >2 MeV electron flux at geosynchronous orbit shows typical diurnal variations with a maximum near noon and a minimum near midnight for each day. The flux level of the daily variation significantly decreased from first day to third day for the 3-day period by a factor of >10. The total magnetic field strength (BT) of the daily variation on the third day, however, is comparable to that on the first day. Unlike electron flux decreases, the flux of protons with energies between 0.8 and 4 MeV adiabatically responses to the daily variation of BT. That is, there is no significant decrease of the proton flux when the electron flux decreases. During the interval of quiet geomagnetic conditions, well-defined electromagnetic ion cyclotron (EMIC) waves were detected at geosynchronous spacecraft. Low-altitude polar orbiting spacecraft observed the precipitation of energetic protons and relativistic electrons in the interval of EMIC waves enhancement. From these observations, we suggest that the EMIC waves at geosynchronous orbit cause pitch-angle scattering and electron loss to the atmosphere under quiet geomagnetic conditions.

  15. Dynamics and afterglow light curves of gamma-ray burst blast waves encountering a density bump or void

    SciTech Connect

    Uhm, Z. Lucas; Zhang, Bing E-mail: zhang@physics.unlv.edu

    2014-07-01

    We investigate the dynamics and afterglow light curves of gamma-ray burst blast waves that encounter various density structures (such as bumps, voids, or steps) in the surrounding ambient medium. We present and explain the characteristic response features that each type of density structure in the medium leaves on the forward shock (FS) and reverse shock (RS) dynamics for blast waves with either a long-lived or short-lived RS. We show that when the ambient medium density drops, the blast waves exhibit in some cases a period of an actual acceleration (even during their deceleration stage) due to adiabatic cooling of blast waves. Comparing numerical examples that have different shapes of bumps or voids, we propose a number of consistency tests that must be satisfied by correct modeling of blast waves. Our model results successfully pass these tests. Employing a Lagrangian description of blast waves, we perform a sophisticated calculation of afterglow emission. We show that as a response to density structures in the ambient medium, the RS light curves produce more significant variations than the FS light curves. Some observed features (such as rebrightenings, dips, or slow wiggles) can be more easily explained within the RS model. We also discuss the origin of these different features imprinted on the FS and RS light curves.

  16. Dynamics and Afterglow Light Curves of Gamma-Ray Burst Blast Waves Encountering a Density Bump or Void

    NASA Astrophysics Data System (ADS)

    Uhm, Z. Lucas; Zhang, Bing

    2014-07-01

    We investigate the dynamics and afterglow light curves of gamma-ray burst blast waves that encounter various density structures (such as bumps, voids, or steps) in the surrounding ambient medium. We present and explain the characteristic response features that each type of density structure in the medium leaves on the forward shock (FS) and reverse shock (RS) dynamics for blast waves with either a long-lived or short-lived RS. We show that when the ambient medium density drops, the blast waves exhibit in some cases a period of an actual acceleration (even during their deceleration stage) due to adiabatic cooling of blast waves. Comparing numerical examples that have different shapes of bumps or voids, we propose a number of consistency tests that must be satisfied by correct modeling of blast waves. Our model results successfully pass these tests. Employing a Lagrangian description of blast waves, we perform a sophisticated calculation of afterglow emission. We show that as a response to density structures in the ambient medium, the RS light curves produce more significant variations than the FS light curves. Some observed features (such as rebrightenings, dips, or slow wiggles) can be more easily explained within the RS model. We also discuss the origin of these different features imprinted on the FS and RS light curves.

  17. Blast wave loading pathways in heterogeneous material systems-experimental and numerical approaches.

    PubMed

    Selvan, Veera; Ganpule, Shailesh; Kleinschmit, Nick; Chandra, Namas

    2013-06-01

    Blast waves generated in the field explosions impinge on the head-brain complex and induce mechanical pressure pulses in the brain resulting in traumatic brain injury. Severity of the brain injury (mild to moderate to severe) is dependent upon the magnitude and duration of the pressure pulse, which in turn depends on the intensity and duration of the oncoming blast wave. A fluid-filled cylinder is idealized to represent the head-brain complex in its simplest form; the cylinder is experimentally subjected to an air blast of Friedlander type, and the temporal variations of cylinder surface pressures and strains and fluid pressures are measured. Based on these measured data and results from computational simulations, the mechanical loading pathways from the external blast to the pressure field in the fluid are identified; it is hypothesized that the net loading at a given material point in the fluid comprises direct transmissive loads and deflection-induced indirect loads. Parametric studies show that the acoustic impedance mismatches between the cylinder and the contained fluid as well as the flexural rigidity of the cylinder determine the shape/intensity of pressure pulses in the fluid. PMID:23699714

  18. Effect of Oblique Electromagnetic Ion Cyclotron Waves on Relativistic Electron Scattering: CRRES Based Calculation

    NASA Technical Reports Server (NTRS)

    Gamayunov, K. V.; Khazanov, G. V.

    2007-01-01

    We consider the effect of oblique EMIC waves on relativistic electron scattering in the outer radiation belt using simultaneous observations of plasma and wave parameters from CRRES. The main findings can be s ummarized as follows: 1. In 1comparison with field-aligned waves, int ermediate and highly oblique distributions decrease the range of pitc h-angles subject to diffusion, and reduce the local scattering rate b y an order of magnitude at pitch-angles where the principle absolute value of n = 1 resonances operate. Oblique waves allow the absolute va lue of n > 1 resonances to operate, extending the range of local pitc h-angle diffusion down to the loss cone, and increasing the diffusion at lower pitch angles by orders of magnitude; 2. The local diffusion coefficients derived from CRRES data are qualitatively similar to the local results obtained for prescribed plasma/wave parameters. Conseq uently, it is likely that the bounce-averaged diffusion coefficients, if estimated from concurrent data, will exhibit the dependencies similar to those we found for model calculations; 3. In comparison with f ield-aligned waves, intermediate and highly oblique waves decrease th e bounce-averaged scattering rate near the edge of the equatorial lo ss cone by orders of magnitude if the electron energy does not excee d a threshold (approximately equal to 2 - 5 MeV) depending on specified plasma and/or wave parameters; 4. For greater electron energies_ ob lique waves operating the absolute value of n > 1 resonances are more effective and provide the same bounce_averaged diffusion rate near the loss cone as fiel_aligned waves do.

  19. The physical properties of the blast wave produced by a stoichiometric propane/oxygen explosion

    NASA Astrophysics Data System (ADS)

    Dewey, M. C.; Dewey, J. M.

    2014-07-01

    The trajectory of the primary shock produced by the explosion of a nominal 18.14 t (20 tn) hemispherical propane/oxygen charge was analysed previously to provide the physical properties immediately behind the shock, but gave no information about the time-resolved properties throughout the blast wave. The present study maps all the physical properties of the wave throughout and beyond the positive durations for a range of distances from about 1.6-18 m scaled to a 1 kg charge at NTP. The physical properties were calculated using a hydro-code to simulate the flow field produced by a spherical piston moving with a specific trajectory. This technique has been used extensively to determine the physical properties of blast waves from a variety of sources for which the piston path was determined by high-speed photography of smoke tracers established close to the charges immediately before detonation. In the case of the propane/oxygen explosion, smoke tracer data were not available to determine the trajectory of the spherical piston. An arbitrary piston path was used and its trajectory iteratively adjusted until it produced a blast wave with a primary shock whose trajectory exactly matched the measured trajectory from the propane/oxygen explosion. Throughout the studied flow field the time histories of hydrostatic pressure, density and particle velocity are well described by fits to the modified Friedlander equation. The properties are presented as functions of scaled radius and are compared with the properties of the blast wave from a 1 kg TNT surface burst explosion, and with other measurements of the same explosion.

  20. The physical properties of the blast wave produced by a stoichiometric propane/oxygen explosion

    NASA Astrophysics Data System (ADS)

    Dewey, M. C.; Dewey, J. M.

    2014-11-01

    The trajectory of the primary shock produced by the explosion of a nominal 18.14 t (20 tn) hemispherical propane/oxygen charge was analysed previously to provide the physical properties immediately behind the shock, but gave no information about the time-resolved properties throughout the blast wave. The present study maps all the physical properties of the wave throughout and beyond the positive durations for a range of distances from about 1.6-18 m scaled to a 1 kg charge at NTP. The physical properties were calculated using a hydro-code to simulate the flow field produced by a spherical piston moving with a specific trajectory. This technique has been used extensively to determine the physical properties of blast waves from a variety of sources for which the piston path was determined by high-speed photography of smoke tracers established close to the charges immediately before detonation. In the case of the propane/oxygen explosion, smoke tracer data were not available to determine the trajectory of the spherical piston. An arbitrary piston path was used and its trajectory iteratively adjusted until it produced a blast wave with a primary shock whose trajectory exactly matched the measured trajectory from the propane/oxygen explosion. Throughout the studied flow field the time histories of hydrostatic pressure, density and particle velocity are well described by fits to the modified Friedlander equation. The properties are presented as functions of scaled radius and are compared with the properties of the blast wave from a 1 kg TNT surface burst explosion, and with other measurements of the same explosion.

  1. Electromagnetic interactions and the relativistic infinite-component wave equation for hydrogen

    SciTech Connect

    Gerry, C.C.; Inomata, A.

    1981-01-15

    We examine the problem of incorporating external electromagnetic interactions into the theory of the relativistic infinite-component SO(4,2) wave equation for the hydrogen atom proposed by Barut. We introduce the simplest set of covariant interaction terms modeled after the nonrelativistic SO(4,2) theory as an alternative to the complicated array of terms obtained from the formal replacement P/sub ..mu../..-->..P/sub ..mu../-eA/sub ..mu../. Using a covariant perturbation theory, we calculate the electric and magnetic polarizabilities of the ground state of the hydrogen atom in uniform fields and show that they have the correct nonrelativistic reductions.

  2. Hadron Mass Spectra and Decay Rates in a Potential Model with Relativistic Wave Equations.

    NASA Astrophysics Data System (ADS)

    Namgung, Wuk

    Hadron properties of mass spectra and decay rates are calculated in a quark potential model. Wave equations based on the Klein-Gordon and Todorov equations both of which incorporate the feature of relativistic two-body kinematics are used. The wave equations are modified to contain potentials which transform either like a Lorentz scalar or like a time-component of a four-vector. Potentials based on the Fogleman-Lichtenberg-Wills potential which has the properties suggested by QCD of both confinement and asymptotic freedom are used. The potentials, motivated by QCD but otherwise phenomenological, are further generalized to forms which can apply to any color representation. To break the degeneracy between vector and pseudoscalar mesons or between spin-3/2 and spin-1/2 baryons, the essential feature of spin dependence is included in the potentials. The masses of vector and pseudoscalar mesons are calculated with only a small number of adjustable parameters, and good qualitative agreement with experiment is obtained for both heavy and light mesons. Baryons are treated in this framework by making use of a quark-diquark two-body model of baryons. First, diquark properties are calculated without any additional parameters. The g-factors of diquarks and spin-flavor configuration of baryons, which are necessary for the calculation of baryons, are given. Then baryon masses are calculated also without additional parameters. The results of the masses of ground-state baryons are in good qualitative agreement with experiment. Also effective constituent quark masses are obtained using current quark masses as input. The calculated effective constituent quark masses are in the right range of the values that most theoretical estimates have given. The general qualitative features of hadron spectra are similar with the two relativistic wave equations, although there are differences in detail. The Van Royen-Weisskopf formula for electromagnetic decay widths of vector mesons into lepton

  3. Interaction of relativistically strong electromagnetic waves with a layer of overdense plasma

    SciTech Connect

    Korzhimanov, A. V.; Eremin, V. I. Kim, A. V.; Tushentsov, M. R.

    2007-10-15

    Plasma-field structures that arise under the interaction between a relativistically strong electromagnetic wave and a layer of overdense plasma are considered within a quasistationary approximation. It is shown that, together with known solutions, which are nonlinear generalizations of skin-layer solutions, multilayer structures containing cavitation regions with completely removed electrons (ion layers) can be excited when the amplitude of the incident field exceeds a certain threshold value. Under symmetric irradiation, these cavitation regions, which play the role of self-consistent resonators, may amplify the field and accumulate electromagnetic energy.

  4. Gravitational waves from relativistic neutron-star mergers with microphysical equations of state.

    PubMed

    Oechslin, R; Janka, H-T

    2007-09-21

    The gravitational wave (GW) emission from a set of relativistic neutron-star (NS) merger simulations is analyzed and characteristic signal features are identified. The distinct peak in the GW energy spectrum that is associated with the formation of a hypermassive merger remnant has a frequency that depends strongly on the properties of the nuclear equation of state (EOS) and on the total mass of the binary system, whereas the mass ratio and the NS spins have a weak influence. If the total mass can be determined from the inspiral chirp signal, the peak frequency of the post-merger signal is a sensitive indicator of the EOS.

  5. Effect of EMIC Wave Normal Angle Distribution on Relativistic Electron Scattering in Outer RB

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.

    2007-01-01

    We present the equatorial and bounce average pitch angle diffusion coefficients for scattering of relativistic electrons by the H+ mode of EMIC waves. Both the model (prescribed) and self consistent distributions over the wave normal angle are considered. The main results of our calculation can be summarized as follows: First, in comparison with field aligned waves, the intermediate and highly oblique waves reduce the pitch angle range subject to diffusion, and strongly suppress the scattering rate for low energy electrons (E less than 2 MeV). Second, for electron energies greater than 5 MeV, the |n| = 1 resonances operate only in a narrow region at large pitch-angles, and despite their greatest contribution in case of field aligned waves, cannot cause electron diffusion into the loss cone. For those energies, oblique waves at |n| greater than 1 resonances are more effective, extending the range of pitch angle diffusion down to the loss cone boundary, and increasing diffusion at small pitch angles by orders of magnitude.

  6. RELATIVISTIC JET DYNAMICS AND CALORIMETRY OF GAMMA-RAY BURSTS

    SciTech Connect

    Wygoda, N.; Waxman, E.; Frail, D. A.

    2011-09-10

    We present numerical solutions of the two-dimensional relativistic hydrodynamics equations describing the deceleration and expansion of highly relativistic conical jets, of opening angles 0.05 {<=} {theta}{sub 0} {<=} 0.2, propagating into a medium of uniform density. Jet evolution is followed from a collimated relativistic outflow to the quasi-spherical non-relativistic phase. We show that relativistic sideways expansion becomes significant beyond the radius r{sub {theta}} at which the expansion Lorentz factor drops to {theta}{sup -1}{sub 0}. This is consistent with simple analytic estimates, which predict faster sideways expansion than has been claimed based on earlier numerical modeling. For t > t{sub s} = r{sub {theta}}/c the emission of radiation from the jet blast wave is similar to that of a spherical blast wave carrying the same energy (significant deviations at t {approx} t{sub s} occur only for well off-axis observers, {theta}{sub obs} {approx} 1 >> {theta}{sub 0}). Thus, the total (calorimetric) energy of gamma-ray burst blast waves may be estimated with only a small fractional error based on t > t{sub s} observations.

  7. Relativistic Jet Dynamics and Calorimetry of Gamma-ray Bursts

    NASA Astrophysics Data System (ADS)

    Wygoda, N.; Waxman, E.; Frail, D. A.

    2011-09-01

    We present numerical solutions of the two-dimensional relativistic hydrodynamics equations describing the deceleration and expansion of highly relativistic conical jets, of opening angles 0.05 <= θ0 <= 0.2, propagating into a medium of uniform density. Jet evolution is followed from a collimated relativistic outflow to the quasi-spherical non-relativistic phase. We show that relativistic sideways expansion becomes significant beyond the radius r θ at which the expansion Lorentz factor drops to θ-1 0. This is consistent with simple analytic estimates, which predict faster sideways expansion than has been claimed based on earlier numerical modeling. For t > ts = r θ/c the emission of radiation from the jet blast wave is similar to that of a spherical blast wave carrying the same energy (significant deviations at t ~ ts occur only for well off-axis observers, θobs ~ 1 Gt θ0). Thus, the total (calorimetric) energy of gamma-ray burst blast waves may be estimated with only a small fractional error based on t > ts observations.

  8. Impulsive dispersion of a granular layer by a weak blast wave

    NASA Astrophysics Data System (ADS)

    Rodriguez, V.; Saurel, R.; Jourdan, G.; Houas, L.

    2016-04-01

    The dispersion of particles by blast or shock waves induces the formation of coherent structures taking the shape of particle jets. In the present study, a blast wave, issued from an open shock tube, is generated at the center of a granular ring initially confined in a Hele-Shaw cell. With the present experimental setup, solid particle jet formation is clearly observed in a quasi-two-dimensional configuration. In all instances, the jets are initially generated inside the particle ring and thereafter expelled outward. Furthermore, thanks to the two-dimensional experimental configuration, a general study of the main parameters involved in these types of flows can be performed. Among them, the particle diameter, the density of the particles, the initial size of the ring, the shape of the overpressure generated and the surface friction of the Hele-Shaw cell are investigated. Empirical relationships are deduced from experimental results.

  9. Nonlinear growth of dynamical overstabilities in blast waves. [effects on supernova remnants

    NASA Technical Reports Server (NTRS)

    Mac Low, Mordecai-Mark; Norman, Michael L.

    1993-01-01

    The numerical gasdynamics code ZEUS-2D is used to directly model the dynamical overstabilities in blast waves. The linear analysis is confirmed by perturbing a blast wave with a low-amplitude eigenfunction of the overstability. The amplitude of the perturbations is increased in order to determine the nonlinear behavior of the overstabilities. The overstability is found to saturate due to weak transverse shocks in the shell. Transverse velocities in the dense shell reach the postshock sound speed, and high-density regions with sizes of the order of the shell thickness form. Transverse oscillations continue even after saturation. This confirms and explains the damping of the overstability experimentally discovered by Grun et al. (1991).

  10. On self-similar blast waves headed by the Chapman-Jouguet detonation.

    NASA Technical Reports Server (NTRS)

    Oppenheim, A. K.; Kuhl, A. L.; Kamel, M. M.

    1972-01-01

    Consideration of the whole class of self-similar solutions for blast waves bounded by Chapman-Jouguet detonations that propagate into a uniform, quiescent, zero counterpressure atmosphere of a perfect gas with constant specific heats. Since such conditions can be approached quite closely by some actual chemical systems at NTP, this raises the interesting possibility of the existence of Chapman-Jouguet detonations of variable velocity. The principal virtue of the results presented is, however, more of theoretical significance. They represent the limiting case for all the self-similar blast waves headed by gasdynamic discontinuities associated with a deposition of finite amounts of energy, and they exhibit some unique features owing to the singular nature of the Chapman-Jouguet condition.

  11. Simulation of the reflected blast wave from a C-4 charge

    NASA Astrophysics Data System (ADS)

    Howard, W. Michael; Kuhl, Allen L.; Tringe, Joseph

    2012-03-01

    The reflection of a blast wave from a C4 charge detonated above a planar surface is simulated with our ALE3D code. We used a finely-resolved, fixed Eulerian 2-D mesh (167 μm per cell) to capture the detonation of the charge, the blast wave propagation in nitrogen, and its reflection from the surface. The thermodynamic properties of the detonation products and nitrogen were specified by the Cheetah code. A programmed-burn model was used to detonate the charge at a rate based on measured detonation velocities. Computed pressure histories are compared with pressures measured by Kistler 603B piezoelectric gauges at 7 ranges (GR = 0, 5.08, 10.16, 15.24, 20.32, 25.4, and 30.48 cm) along the reflecting surface. Computed and measured waveforms and positive-phase impulses were similar, except at close-in ranges (GR < 5 cm), which were dominated by jetting effects.

  12. PARTICLE ACCELERATION IN THE EXPANDING BLAST WAVE OF {eta} CARINA'S GREAT ERUPTION OF 1843

    SciTech Connect

    Ohm, S.; Domainko, W.; Hinton, J. A. E-mail: wilfried.domainko@mpi-hd.mpg.d

    2010-08-01

    Non-thermal hard X-ray and high-energy (HE; 1 MeV {<=} E {<=} 100 GeV) {gamma}-ray emission in the direction of {eta} Carina has been recently detected using the INTEGRAL, AGILE, and Fermi satellites. So far this emission has been interpreted in the framework of particle acceleration in the colliding wind region between the two massive stars. However, the existence of a very fast moving blast wave which originates in the historical 1843 'Great Eruption' provides an alternative particle acceleration site in this system. Here, we explore an alternate scenario and find that inverse Compton emission from electrons accelerated in the blast wave can naturally explain both the flux and spectral shape of the measured hard X-ray and HE {gamma}-ray emission. This scenario is further supported by the lack of significant variability in the INTEGRAL and Fermi measured fluxes.

  13. The time development of a blast wave with shock heated electrons

    NASA Technical Reports Server (NTRS)

    Edgar, R. J.; Cox, D. P.

    1983-01-01

    Accurate approximations are presented for the time development of both edge conditions and internal structures of a blast wave with shock heated electrons, and equal ion and electron temperatures at the shock. The cases considered evolve in cavities with power law ambient densities (including the uniform ambient density case) and have negligible external pressure. Account is taken of possible saturation of the thermal conduction flux. The structures evolve smoothly to the adiabatic structures.

  14. Calculation of wing response to gusts and blast waves with vortex lift effect

    NASA Technical Reports Server (NTRS)

    Chao, D. C.; Lan, C. E.

    1983-01-01

    A numerical study of the response of aircraft wings to atmospheric gusts and to nuclear explosions when flying at subsonic speeds is presented. The method is based upon unsteady quasi-vortex-lattice method, unsteady suction analogy, and Pade approximate. The calculated results, showing vortex lag effect, yield reasonable agreement with experimental data for incremental lift on wings in gust penetration and due to nuclear blast waves.

  15. Calculation of wing response to gusts and blast waves with vortex lift effect

    NASA Technical Reports Server (NTRS)

    Chao, D. C.; Lan, C. E.

    1983-01-01

    A numerical study of the response of aircraft wings to atmospheric gusts and to nuclear explosions when flying at subsonic speeds is presented. The method is based upon unsteady quasi-vortex lattice method, unsteady suction analogy and Pade approximant. The calculated results, showing vortex lag effect, yield reasonable agreement with experimental data for incremental lift on wings in gust penetration and due to nuclear blast waves.

  16. The time development of a blast wave with shock-heated electrons

    NASA Technical Reports Server (NTRS)

    Edgar, R. J.; Cox, D. P.

    1984-01-01

    Accurate approximations are presented for the time development of both edge conditions and internal structures of a blast wave with shock heated electrons, and equal ion and electron temperatures at the shock. The cases considered evolve in cavities with power law ambient densities (including the uniform ambient density case) and have negligible external pressure. Account is taken of possible saturation of the thermal conduction flux. The structures evolve smoothly to the adiabatic structures.

  17. Supernova blast waves in wind-blown bubbles, turbulent, and power-law ambient media

    NASA Astrophysics Data System (ADS)

    Haid, S.; Walch, S.; Naab, T.; Seifried, D.; Mackey, J.; Gatto, A.

    2016-08-01

    Supernova (SN) blast waves inject energy and momentum into the interstellar medium (ISM), control its turbulent multiphase structure and the launching of galactic outflows. Accurate modelling of the blast wave evolution is therefore essential for ISM and galaxy formation simulations. We present an efficient method to compute the input of momentum, thermal energy, and the velocity distribution of the shock-accelerated gas for ambient media (densities of 0.1 ≥ n0 [cm- 3] ≥ 100) with uniform (and with stellar wind blown bubbles), power-law, and turbulent (Mach numbers M from 1to100) density distributions. Assuming solar metallicity cooling, the blast wave evolution is followed to the beginning of the momentum conserving snowplough phase. The model recovers previous results for uniform ambient media. The momentum injection in wind-blown bubbles depend on the swept-up mass and the efficiency of cooling, when the blast wave hits the wind shell. For power-law density distributions with n(r) ˜ r-2 (for n(r) > nfloor) the amount of momentum injection is solely regulated by the background density nfloor and compares to nuni = nfloor. However, in turbulent ambient media with lognormal density distributions the momentum input can increase by a factor of 2 (compared to the homogeneous case) for high Mach numbers. The average momentum boost can be approximated as p_{turb}/{p_{{0}}} =23.07 (n_{{0,turb}}/1 cm^{-3})^{-0.12} + 0.82 (ln (1+b2{M}2))^{1.49}(n_{{0,turb}}/1 cm^{-3})^{-1.6}. The velocity distributions are broad as gas can be accelerated to high velocities in low-density channels. The model values agree with results from recent, computationally expensive, three-dimensional simulations of SN explosions in turbulent media.

  18. Calculation of wing response to gusts and blast waves with vortex lift effect

    SciTech Connect

    Chao, D.C.; Lan, C.E.

    1983-04-01

    A numerical study of the response of aircraft wings to atmospheric gusts and to nuclear explosions when flying at subsonic speeds is presented. The method is based upon unsteady quasi-vortex lattice method, unsteady suction analogy and Pade approximant. The calculated results, showing vortex lag effect, yield reasonable agreement with experimental data for incremental lift on wings in gust penetration and due to nuclear blast waves.

  19. Oblique propagation of ion acoustic shock waves in weakly and highly relativistic plasmas with nonthermal electrons and positrons

    NASA Astrophysics Data System (ADS)

    Hafez, M. G.; Roy, N. C.; Talukder, M. R.; Hossain Ali, M.

    2016-09-01

    This work investigates the oblique nonlinear propagation of ion acoustic (IA) shock waves for both weakly and highly relativistic plasmas composed of nonthermal electrons and positrons with relativistic thermal ions. The KdVB-like equation, involving dispersive, weakly transverse dispersive, nonlinearity and dissipative coefficients, is derived employing the well known reductive perturbation method. The integration of this equation is carried out by the {tanh} method taking the stable shock formation condition into account. The effects of nonthermal electrons and positrons, nonthermal electrons with isothermal positrons, isothermal electrons with nonthermal positrons, and isothermal electrons and positrons on oblique propagation of IA shock waves in weakly relativistic regime are described. Furthermore, the effects of plasma parameters on oblique propagation of IA shock waves in highly relativistic regime are discussed and compared with weakly relativistic case. It is seen that the plasma parameters within certain limits significantly modify the structures of the IA shock waves in both cases. The results may be useful for better understanding of the interactions of charged particles with extra-galactic jets as well as astrophysical compact objects.

  20. Extended adiabatic blast waves and a model of the soft X-ray background

    NASA Technical Reports Server (NTRS)

    Cox, D. P.; Anderson, P. R.

    1982-01-01

    The suggestion has been made that much of the soft X-ray background observed in X-ray astronomy might arise from being inside a very large supernova blast wave propagating in the hot, low-density component of the interstellar (ISM) medium. An investigation is conducted to study this possibility. An analytic approximation is presented for the nonsimilar time evolution of the dynamic structure of an adiabatic blast wave generated by a point explosion in a homogeneous ambient medium. A scheme is provided for evaluating the electron-temperature distribution for the evolving structure, and a procedure is presented for following the state of a given fluid element through the evolving dynamical and thermal structures. The results of the investigation show that, if the solar system were located within a blast wave, the Wisconsin soft X-ray rocket payload would measure the B and C band count rates that it does measure, provided conditions correspond to the values calculated in the investigation.

  1. Influence of ambient air pressure on the energy conversion of laser-breakdown induced blast waves

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Komurasaki, Kimiya; Arakawa, Yoshihiro

    2013-09-01

    Influence of ambient pressure on energy conversion efficiency from a Nd : glass laser pulse (λ = 1.053 µm) to a laser-induced blast wave was investigated at reduced pressure. Temporal incident and transmission power histories were measured using sets of energy meters and photodetectors. A half-shadowgraph half-self-emission method was applied to visualize laser absorption waves. Results show that the blast energy conversion efficiency ηbw decreased monotonically with the decrease in ambient pressure. The decrease was small, from 40% to 38%, for the pressure change from 101 kPa to 50 kPa, but the decrease was considerable, to 24%, when the pressure was reduced to 30 kPa. Compared with a TEA-CO2-laser-induced blast wave (λ = 10.6 µm), higher fraction absorption in the laser supported detonation regime ηLSD of 90% was observed, which is influenced slightly by the reduction of ambient pressure. The conversion fraction ηbw/ηLSD≈90% was achieved at pressure >50 kPa, which is significantly higher than that in a CO2 laser case.

  2. Phase mixing of relativistically intense longitudinal wave packets in a cold plasma

    NASA Astrophysics Data System (ADS)

    Mukherjee, Arghya; Sengupta, Sudip

    2016-09-01

    Phase mixing of relativistically intense longitudinal wave packets in a cold homogeneous unmagnetized plasma has been studied analytically and numerically using the Dawson Sheet Model. A general expression for phase mixing time ( ω p t m i x ) as a function of amplitude of the wave packet (δ) and width of the spectrum ( Δ k / k ) has been derived. It is found that the phase mixing time crucially depends on the relative magnitude of amplitude "δ" and the spectral width " Δ k / k ". For Δ k / k ≤ 2 ωp 2 δ 2 / c 2 k 2 , ω p t m i x scales with δ as ˜ 1 / δ 5 , whereas for Δ k / k > 2 ωp 2 δ 2 / c 2 k 2 , ω p t m i x scales with δ as ˜ 1 / δ 3 , where ωp is the non-relativistic plasma frequency and c is the speed of light in vacuum. We have also verified the above theoretical scalings using numerical simulations based on the Dawson Sheet Model.

  3. Electron acceleration by young supernova remnant blast waves

    NASA Technical Reports Server (NTRS)

    Blandford, R. D.

    1992-01-01

    Some general considerations regarding relativistic particle acceleration by young supernova remnants are reviewed. Recent radio observations of supernova remnants apparently locate the bounding shock and exhibit large electron density gradients which verify the presence of strong particle scattering. The radio 'rim' in Tycho's remnant has been found to contain a predominantly radial magnetic field. This may be attributable to an instability of the shock surface and a progress report on an investigation of the stability of strong shocks in partially ionized media is presented.

  4. Optimization of relativistic backward wave oscillator with non-uniform slow wave structure and a resonant reflector

    SciTech Connect

    Chen, Zaigao; Wang, Jianguo; Wang, Yue

    2015-01-15

    This letter optimizes synchronously 18 parameters of a relativistic backward wave oscillator with non-uniform slow wave structure (SWS) and a resonant reflector by using the parallel genetic algorithms and particle-in-cell simulation. The optimization results show that the generation efficiency of microwave from the electron beam has increased 32% compared to that of the original device. After optimization, the electromagnetic mode propagating in the resonant changes from the original TM{sub 020} mode of reflector to higher-order TM{sub 021} mode, which has a high reflection coefficient in a broader frequency range than that of the former. The modulation of current inside the optimized device is much deeper than that in the original one. The product of the electric field and current is defined. Observing this product, it is found that the interaction of the electron beam with the electromagnetic wave in the optimized device is much stronger than that in the original device, and at the rear part of SWS of the optimized device, the electron beam dominantly gives out the energy to the electromagnetic wave, leading to the higher generation efficiency of microwave than that of the original device.

  5. A Parametric Approach to Shape Field-Relevant Blast Wave Profiles in Compressed-Gas-Driven Shock Tube

    PubMed Central

    Sundaramurthy, Aravind; Chandra, Namas

    2014-01-01

    Detonation of a high-explosive produces shock-blast wave, shrapnel, and gaseous products. While direct exposure to blast is a concern near the epicenter, shock-blast can affect subjects, even at farther distances. When a pure shock-blast wave encounters the subject, in the absence of shrapnels, fall, or gaseous products the loading is termed as primary blast loading and is the subject of this paper. The wave profile is characterized by blast overpressure, positive time duration, and impulse and called herein as shock-blast wave parameters (SWPs). These parameters in turn are uniquely determined by the strength of high explosive and the distance of the human subjects from the epicenter. The shape and magnitude of the profile determine the severity of injury to the subjects. As shown in some of our recent works (1–3), the profile not only determines the survival of the subjects (e.g., animals) but also the acute and chronic biomechanical injuries along with the following bio-chemical sequelae. It is extremely important to carefully design and operate the shock tube to produce field-relevant SWPs. Furthermore, it is vital to identify and eliminate the artifacts that are inadvertently introduced in the shock-blast profile that may affect the results. In this work, we examine the relationship between shock tube adjustable parameters (SAPs) and SWPs that can be used to control the blast profile; the results can be easily applied to many of the laboratory shock tubes. Further, replication of shock profile (magnitude and shape) can be related to field explosions and can be a standard in comparing results across different laboratories. Forty experiments are carried out by judiciously varying SAPs such as membrane thickness, breech length (66.68–1209.68 mm), measurement location, and type of driver gas (nitrogen, helium). The effects SAPs have on the resulting shock-blast profiles are shown. Also, the shock-blast profiles of a TNT explosion from ConWep software is

  6. A parametric approach to shape field-relevant blast wave profiles in compressed-gas-driven shock tube.

    PubMed

    Sundaramurthy, Aravind; Chandra, Namas

    2014-01-01

    Detonation of a high-explosive produces shock-blast wave, shrapnel, and gaseous products. While direct exposure to blast is a concern near the epicenter, shock-blast can affect subjects, even at farther distances. When a pure shock-blast wave encounters the subject, in the absence of shrapnels, fall, or gaseous products the loading is termed as primary blast loading and is the subject of this paper. The wave profile is characterized by blast overpressure, positive time duration, and impulse and called herein as shock-blast wave parameters (SWPs). These parameters in turn are uniquely determined by the strength of high explosive and the distance of the human subjects from the epicenter. The shape and magnitude of the profile determine the severity of injury to the subjects. As shown in some of our recent works (1-3), the profile not only determines the survival of the subjects (e.g., animals) but also the acute and chronic biomechanical injuries along with the following bio-chemical sequelae. It is extremely important to carefully design and operate the shock tube to produce field-relevant SWPs. Furthermore, it is vital to identify and eliminate the artifacts that are inadvertently introduced in the shock-blast profile that may affect the results. In this work, we examine the relationship between shock tube adjustable parameters (SAPs) and SWPs that can be used to control the blast profile; the results can be easily applied to many of the laboratory shock tubes. Further, replication of shock profile (magnitude and shape) can be related to field explosions and can be a standard in comparing results across different laboratories. Forty experiments are carried out by judiciously varying SAPs such as membrane thickness, breech length (66.68-1209.68 mm), measurement location, and type of driver gas (nitrogen, helium). The effects SAPs have on the resulting shock-blast profiles are shown. Also, the shock-blast profiles of a TNT explosion from ConWep software is compared

  7. Electromagnetic properties of open and closed overmoded slow-wave resonators for interaction with relativistic electron beams

    SciTech Connect

    Main, W. ); Carmel, Y.; Weaver, J. . Inst. for Plasma Research)

    1994-10-01

    Specific slow wave structures are needed in order to produce coherent Cherenkov radiation in overmoded relativistic generators. The electromagnetic characteristics of such slow wave, resonant, finite length structures commonly used in relativistic backward wave oscillators have been studied both experimentally and theoretically. In experiments, perturbation techniques were used to study both the fundamental and higher order symmetric transverse magnetic (TM) modes. Finite length effects lead to end reflections and quantization of the wave number. The effects of end reflections in open slow wave structures were found from the spectral broadening of the discrete resonances of the different axial modes. The measured axial and radial field distributions are in excellent agreement with the results of a 2-D code developed for the calculation of the fields in these structures.

  8. In search of a new ULF wave index: Comparison of Pc5 power with dynamics of geostationary relativistic electrons

    NASA Astrophysics Data System (ADS)

    Kozyreva, O.; Pilipenko, V.; Engebretson, M. J.; Yumoto, K.; Watermann, J.; Romanova, N.

    2007-04-01

    A new ULF wave index, characterizing the turbulent level of the geomagnetic field, has been calculated and applied to the analysis of relativistic electron enhancements during space weather events in March-May 1994 and September 1999. This global wave index has been produced from the INTERMAGNET, MACCS, CPMN, and Greenland dense magnetometer arrays in the northern hemisphere. A similar ULF wave index has been calculated using magnetometer data from geostationary (GOES) and interplanetary (Wind, ACE) satellites. During the periods analyzed several magnetic storms occurred, and several significant increases of relativistic electron flux up to 2-3 orders of magnitude were detected by geostationary monitors. However, these electron enhancements were not directly related to the intensity of magnetic storms. Instead, they correlated well with intervals of elevated ULF wave index, caused by the occurrence of intense Pc5 pulsations in the magnetosphere. This comparison confirmed earlier results showing the importance of magnetospheric ULF turbulence in energizing relativistic electrons. In addition to relativistic electron energization, a wide range of space physics and geophysics studies will benefit from the introduction of the ULF wave index. The ULF index database is freely available via anonymous FTP for all interested researchers for further validation and statistical studies.

  9. Head-on collision of two dust ion acoustic solitary waves in a weakly relativistic multicomponent superthermal plasma

    NASA Astrophysics Data System (ADS)

    Saini, N. S.; Singh, Kuldeep

    2016-10-01

    A head-on collision between two dust ion acoustic solitary waves (DIASWs) travelling in the opposite direction in a weakly relativistic plasma composed of four distinct particle populations, namely, weakly relativistic ion fluid, superthermal electrons as well as positrons, and immobile dust, is investigated. By employing extended Poincaré-Lighthill-Kuo method, two Korteweg-de Vries (KdV) equations are derived. The analytical phase shift after a head-on collision of two dust ion acoustic (DIA) solitary waves is also obtained. The combined effects of relativistic factor (β), electron to positron temperature ratio (α), ion to electron temperature ratio (σ), positron to electron density ratio (P), dust density ratio (d), and superthermality of electrons as well as positrons (via κ) on the phase shifts are numerically studied. All these physical parameters have also changed the potential amplitude and the width of colliding solitary waves. It is found that the presence of superthermal electrons as well as positrons and dust grains has emphatic influence on the phase shifts and potential pulse profiles of compressive DIA solitons. Our results are general and may be helpful in understanding a head-on collision between two DIASWs in astrophysical and laboratory plasmas, especially the interaction of pulsar relativistic winds with supernova ejecta that produces the superthermal particles and relativistic ions.

  10. Influence of voltage rise time on microwave generation in relativistic backward wave oscillator

    SciTech Connect

    Wu, Ping; Deng, Yuqun; Sun, Jun; Teng, Yan; Shi, Yanchao; Chen, Changhua

    2015-10-15

    In relativistic backward wave oscillators (RBWOs), although the slow wave structure (SWS) and electron beam determine the main characteristics of beam-wave interaction, many other factors can also significantly affect the microwave generation process. This paper investigates the influence of voltage rise time on beam-wave interaction in RBWOs. Preliminary analysis and PIC simulations demonstrate if the voltage rise time is moderately long, the microwave frequency will gradually increase during the startup process until the voltage reaches its amplitude, which can be explained by the dispersion relation. However, if the voltage rise time is long enough, the longitudinal resonance of the finitely-long SWS will force the RBWO to work with unwanted longitudinal modes for a while and then gradually hop to the wanted longitudinal mode, and this will lead to an impure microwave frequency spectrum. Besides, a longer voltage rise time will delay the startup process and thus lead to a longer microwave saturation time. And if unwanted longitudinal modes are excited due to long voltage rise time, the microwave saturation time will be further lengthened. Therefore, the voltage rise time of accelerators adopted in high power microwave technology should not be too long in case unwanted longitudinal modes are excited.

  11. Effect of end reflections on conversion efficiency of coaxial relativistic backward wave oscillator

    NASA Astrophysics Data System (ADS)

    Teng, Yan; Chen, Changhua; Sun, Jun; Shi, Yanchao; Ye, Hu; Wu, Ping; Li, Shuang; Xiong, Xiaolong

    2015-11-01

    This paper theoretically investigates the effect of end reflections on the operation of the coaxial relativistic backward wave oscillator (CRBWO). It is found that the considerable enhancement of the end reflection at one end increases the conversion efficiency, but excessively large end reflections at both ends weaken the asynchronous wave-beam interaction and thus reduce the conversion efficiency. Perfect reflection at the post end significantly improves the interaction between the electron beam and the asynchronous harmonic so that the conversion efficiency is notably increased. Based on the theoretical research, the diffraction-CRBWO with the generated microwave diffracted and output through the front end of the coaxial slow wave structure cavity is proposed. The post end is conductively closed to provide the perfect reflection. This promotes the amplitude and uniformity of the longitudinal electric field on the beam transmission line and improves the asynchronous wave-beam interaction. In numerical simulations under the diode voltage and current of 450 kV and 5.84 kA, microwave generation with the power of 1.45 GW and the conversion efficiency of 55% are obtained at the frequency of 7.45 GHz.

  12. Effect of end reflections on conversion efficiency of coaxial relativistic backward wave oscillator

    SciTech Connect

    Teng, Yan; Chen, Changhua; Sun, Jun; Shi, Yanchao; Ye, Hu; Wu, Ping; Li, Shuang; Xiong, Xiaolong

    2015-11-07

    This paper theoretically investigates the effect of end reflections on the operation of the coaxial relativistic backward wave oscillator (CRBWO). It is found that the considerable enhancement of the end reflection at one end increases the conversion efficiency, but excessively large end reflections at both ends weaken the asynchronous wave-beam interaction and thus reduce the conversion efficiency. Perfect reflection at the post end significantly improves the interaction between the electron beam and the asynchronous harmonic so that the conversion efficiency is notably increased. Based on the theoretical research, the diffraction-CRBWO with the generated microwave diffracted and output through the front end of the coaxial slow wave structure cavity is proposed. The post end is conductively closed to provide the perfect reflection. This promotes the amplitude and uniformity of the longitudinal electric field on the beam transmission line and improves the asynchronous wave-beam interaction. In numerical simulations under the diode voltage and current of 450 kV and 5.84 kA, microwave generation with the power of 1.45 GW and the conversion efficiency of 55% are obtained at the frequency of 7.45 GHz.

  13. A statistical model for relativistic quantum fluids interacting with an intense electromagnetic wave

    NASA Astrophysics Data System (ADS)

    Mahajan, Swadesh M.; Asenjo, Felipe A.

    2016-05-01

    A statistical model for relativistic quantum fluids interacting with an arbitrary amplitude circularly polarized electromagnetic wave is developed in two steps. First, the energy spectrum and the wave function for a quantum particle (Klein Gordon and Dirac) embedded in the electromagnetic wave are calculated by solving the appropriate eigenvalue problem. The energy spectrum is anisotropic in the momentum K and reflects the electromagnetic field through the renormalization of the rest mass m to M =√{m2+q2A2 } . Based on this energy spectrum of this quantum particle plus field combination (QPF), a statistical mechanics model of the quantum fluid made up of these weakly interacting QPF is developed. Preliminary investigations of the formalism yield highly interesting results—a new scale for temperature, and fundamental modification of the dispersion relation of the electromagnetic wave. It is expected that this formulation could, inter alia, uniquely advance our understanding of laboratory as well as astrophysical systems where one encounters arbitrarily large electromagnetic fields.

  14. Axial motion of collector plasma in a relativistic backward wave oscillator

    NASA Astrophysics Data System (ADS)

    Xiao, Renzhen; Chen, Changhua; Deng, Yuqun; Cao, Yibing; Sun, Jun; Li, Jiawei

    2016-06-01

    In this paper, it is proposed that plasma formed at the collector may drift back to the cathode and cause pulse shortening of the relativistic backward wave oscillator. Theoretical analysis shows that the axial drift velocity of plasma ions can be up to 5 mm/ns due to the presence of space charge potential provided by an intense relativistic electron beam. Particle-in-cell simulations indicate that the plasma electrons are initially trapped around the collector surface. With the accumulation of the plasma ions, a large electrostatic field forms and drives the plasma electrons to overcome the space charge potential and enter the beam-wave interaction region along the magnetic field lines. As a result, the beam current modulation is disturbed and the output microwave power falls rapidly. The plasma ions move in the beam-wave interaction region with an average axial velocity of 5-8 mm/ns. After the plasma ions reach the diode region, the emitted current at the cathode rises due to the charge neutralizations by the ions. The impedance collapse leads to further decrease of the microwave power. In experiments, when the diode voltage and beam current were 850 kV and 9.2 kA, and the collector radius was 2.15 cm, the output microwave power was 2.4 GW with a pulse width of less than 20 ns. The ion drift velocity was estimated to be about 5 mm/ns. After an improved collector with 3.35 cm radius was adopted, the pulse width was prolonged to more than 30 ns.

  15. Macro-mechanical modelling of blast wave mitigation in foams. Part I: review of available experiments and models

    NASA Astrophysics Data System (ADS)

    Britan, A.; Shapiro, H.; Liverts, M.; Ben-Dor, G.; Chinnayya, A.; Hadjadj, A.

    2013-02-01

    Multiphase flows, which involve compressible or incompressible fluids with linear or nonlinear dynamics, are found in all areas of technology at all length scales and flow regimes. In this contribution, we discuss application of aqueous-foam barriers against blast wave impact. The first experiments demonstrating this behaviour were conducted in the early 1980s in free-field tests. Based on structural requirements, various foams with different blast energy contents were tested with the aim of characterizing the time history of the blast pressure reduction. A number of consistent methodologies for calculating this pressure reduction in foam are based on the effective gas flow model. For estimating the uncertainties of these methodologies, we briefly demonstrate their comparison with existing experimental data. Thereafter, we present various modifications of modelling approaches and their comparison with new results of blast wave experiments.

  16. Application of blast wave theory to explosive propulsion. [system performance analysis

    NASA Technical Reports Server (NTRS)

    Back, L. H.

    1975-01-01

    An analysis was carried out by using blast wave theory to delineate the important aspects of detonating explosives in nozzles, such as flow and wave phenomena, characteristic length and time scales, and the parameters on which the specific impulse is dependent. The propulsive system utilizes the momentum of the ambient gas set into motion in the nozzle by the explosion. A somewhat simplified model was considered for the situation where the mass of ambient gas in the nozzle is much greater than the mass of gas produced in the explosion, a condition of interest for dense atmospheres, e.g., near the surface of Venus. Instantaneous detonation and energy release was presumed to occur at the apex of a conical nozzle, and the shock wave generated by the explosion was taken to propagate as a spherical wave, thereby setting the ambient gas in the nozzle into one-dimensional radially outward motion.

  17. Spatially and temporally resolved temperature and shock-speed measurements behind a laser-induced blast wave of energetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Roy, Sukesh; Jiang, Naibo; Stauffer, Hans U.; Schmidt, Jacob B.; Kulatilaka, Waruna D.; Meyer, Terrence R.; Bunker, Christopher E.; Gord, James R.

    2013-05-01

    Spatially and temporally resolved temperature measurements behind an expanding blast wave are made using picosecond (ps) N2 coherent anti-Stokes Raman scattering (CARS) following laser flash heating of mixtures containing aluminum nanoparticles embedded in ammonium-nitrate oxidant. Production-front ps-CARS temperatures as high as 3600 ± 180 K—obtained for 50-nm-diameter commercially produced aluminum-nanoparticle samples—are observed. Time-resolved shadowgraph images of the evolving blast waves are also obtained to determine the shock-wave position and corresponding velocity. These results are compared with near-field blast-wave theory to extract relative rates of energy release for various particle diameters and passivating-layer compositions.

  18. Kinetics of blast waves in one-dimensional conservative and dissipative gases

    NASA Astrophysics Data System (ADS)

    Barbier, Matthieu

    2015-11-01

    Blast waves caused by a localized release of energy in a gas have become a textbook hydrodynamics problem since the seminal works of Taylor, von Neumann and Sedov. However, the topic has received very little attention at the kinetic level, which can provide a complementary range of insights: notably, transient regimes and the microscopic structure of the shock front, reduced to a singular boundary in continuum equations. As a first step, we study blast waves in a one-dimensional gas of hard particles. This simple limit helps develop important intuitions pertaining to any type of blast, and it is amenable to kinetic analysis—even with the addition of energy dissipation leading to ‘snowplow’ dynamics, or an inhomogeneous mass repartition (as found in astrophysical systems and granular materials). Furthermore, the conservative case proves to be of remarkable interest in demonstrating subtle aspects of dimensional analysis and their resolution through microscopic insights. We show that it can effectively behave like a zero-dimensional system, reduced to the shock front, depending on whether a length scale appears in the initial mass distribution.

  19. A 0.14 THz relativistic coaxial overmoded surface wave oscillator with metamaterial slow wave structure

    SciTech Connect

    Guo, Weijie; Wang, Jianguo Chen, Zaigao; Cai, Libing; Wang, Yue; Wang, Guangqiang; Qiao, Hailiang

    2014-12-15

    This paper presents a new kind of device for generating the high power terahertz wave by using a coaxial overmoded surface wave oscillator with metamaterial slow wave structure (SWS). A metallic metamaterial SWS is used to avoid the damage of the device driven by a high-voltage electron beam pulse. The overmoded structure is adopted to make it much easy to fabricate and assemble the whole device. The coaxial structure is used to suppress the mode competition in the overmoded device. Parameters of an electron beam and geometric structure are provided. Particle-in-cell simulation results show that the high power terahertz wave at the frequency of 0.14 THz is generated with the output power 255 MW and conversion efficiency about 21.3%.

  20. Biological effects of weak blast waves and safety limits for internal organ injury in the human body.

    PubMed

    Yang, Z; Wang, Z; Tang, C; Ying, Y

    1996-03-01

    One hundred and seventeen adult sheep of both sexes, each weighing 15.2-42.4 kg, were used for this study. The purpose of this study was to investigate the relationship of the physical parameters of the waves to internal organ injury by exposing sheep to weak blast waves in TNT (trinitrotoluene) explosions, biological shock tube, and gun muzzle blasts. The results showed that the organ most sensitive to the TNT explosion was the lungs, whereas the upper respiratory tract was most sensitive to muzzle blast waves. The injury thresholds of overpressure were 29.0, 29.5, and 41.2 kPa for upper respiratory tract, lungs, and gastrointestinal tract respectively at a single exposure. Repeated exposure to 60 blasts reduced the injury threshold of the internal organs. The injury thresholds for upper respiratory tract, lungs, and gastrointestinal tract were 21.0, 18.0, and 40.4 kPa, respectively. The duration of overpressure of weak blast waves was 2.4-4.2 milliseconds, which did not significantly affect the severity of injury. The safety limits of weak blast waves to internal organ injury of human body were as follows: Ps = 37-3Ln.Tc.N/4(Tc.N < or = 1000) and Ps = 20.4(Tc.N > 1000). The results suggest that repeated exposures decrease the injury threshold of the internal organs. The safety limits proposed could protect 90% of the exposed population against internal organ injury caused by weak blast waves. PMID:8606431

  1. Examination of the protective roles of helmet/faceshield and directionality for human head under blast waves.

    PubMed

    Sarvghad-Moghaddam, Hesam; Jazi, Mehdi Salimi; Rezaei, Asghar; Karami, Ghodrat; Ziejewski, Mariusz

    2015-01-01

    A parametric study was conducted to delineate the efficacy of personal protective equipment (PPE), such as ballistic faceshields and advanced combat helmets, in the case of a blast. The propagations of blast waves and their interactions with an unprotected head, a helmeted one, and a fully protected finite element head model (FEHM) were modeled. The biomechanical parameters of the brain were recorded when the FEHM was exposed to shockwaves from the front, back, top, and bottom. The directional dependent tissue response of the brain and the variable efficiency of PPE with respect to the blast orientation were two major results of this study. PMID:25413615

  2. Derivation of the lattice Boltzmann model for relativistic hydrodynamics

    NASA Astrophysics Data System (ADS)

    Mendoza, M.; Boghosian, B. M.; Herrmann, H. J.; Succi, S.

    2010-11-01

    A detailed derivation of the lattice Boltzmann scheme for relativistic fluids recently proposed in M. Mendoza, B. Boghosian, H. Herrmann, and S. Succi, Phys. Rev. Lett. 105, 014502 (2010)PRLTAO0031-900710.1103/PhysRevLett.105.014502 is presented. The method is numerically validated and applied to the case of two quite different relativistic fluid-dynamic problems, namely, shock-wave propagation in quark-gluon plasmas and the impact of a supernova blast wave on massive interstellar clouds. Close to second-order convergence with the grid resolution, as well as linear dependence of computational time on the number of grid points and time steps, are reported.

  3. Derivation of the lattice Boltzmann model for relativistic hydrodynamics

    SciTech Connect

    Mendoza, M.; Herrmann, H. J.; Boghosian, B. M.; Succi, S.

    2010-11-15

    A detailed derivation of the lattice Boltzmann scheme for relativistic fluids recently proposed in M. Mendoza, B. Boghosian, H. Herrmann, and S. Succi, Phys. Rev. Lett. 105, 014502 (2010) is presented. The method is numerically validated and applied to the case of two quite different relativistic fluid-dynamic problems, namely, shock-wave propagation in quark-gluon plasmas and the impact of a supernova blast wave on massive interstellar clouds. Close to second-order convergence with the grid resolution, as well as linear dependence of computational time on the number of grid points and time steps, are reported.

  4. A millimeter wave relativistic backward wave oscillator operating in TM{sub 03} mode with low guiding magnetic field

    SciTech Connect

    Ye, Hu; Wu, Ping; Teng, Yan; Chen, Changhua; Ning, Hui; Song, Zhimin; Cao, Yibing

    2015-06-15

    A V-band overmoded relativistic backward wave oscillator (RBWO) guided by low magnetic field and operating on a TM{sub 03} mode is presented to increase both the power handling capacity and the wave-beam interaction conversion efficiency. Trapezoidal slow wave structures (SWSs) with shallow corrugations and long periods are adopted to make the group velocity of TM{sub 03} mode at the intersection point close to zero. The coupling impedance and diffraction Q-factor of the RBWO increase, while the starting current decreases owing to the reduction of the group velocity of TM{sub 03} mode. In addition, the TM{sub 03} mode dominates over the other modes in the startup of the oscillation. Via numerical simulation, the generation of the microwave pulse with an output power of 425 MW and a conversion efficiency of 32% are achieved at 60.5 GHz with an external magnetic field of 1.25 T. This RBWO can provide greater power handling capacity when operating on the TM{sub 03} mode than on the TM{sub 01} mode.

  5. Adaptive wavelets and relativistic magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Hirschmann, Eric; Neilsen, David; Anderson, Matthe; Debuhr, Jackson; Zhang, Bo

    2016-03-01

    We present a method for integrating the relativistic magnetohydrodynamics equations using iterated interpolating wavelets. Such provide an adaptive implementation for simulations in multidimensions. A measure of the local approximation error for the solution is provided by the wavelet coefficients. They place collocation points in locations naturally adapted to the flow while providing expected conservation. We present demanding 1D and 2D tests includingthe Kelvin-Helmholtz instability and the Rayleigh-Taylor instability. Finally, we consider an outgoing blast wave that models a GRB outflow.

  6. Low-cost rapid miniature optical pressure sensors for blast wave measurements.

    PubMed

    Wu, Nan; Wang, Wenhui; Tian, Ye; Zou, Xiaotian; Maffeo, Michael; Niezrecki, Christopher; Chen, Julie; Wang, Xingwei

    2011-05-23

    This paper presents an optical pressure sensor based on a Fabry-Perot (FP) interferometer formed by a 45° angle polished single mode fiber and an external silicon nitride diaphragm. The sensor is comprised of two V-shape grooves with different widths on a silicon chip, a silicon nitride diaphragm released on the surface of the wider V-groove, and a 45° angle polished single mode fiber. The sensor is especially suitable for blast wave measurements: its compact structure ensures a high spatial resolution; its thin diaphragm based design and the optical demodulation scheme allow a fast response to the rapid changing signals experienced during blast events. The sensor shows linearity with the correlation coefficient of 0.9999 as well as a hysteresis of less than 0.3%. The shock tube test demonstrated that the sensor has a rise time of less than 2 µs from 0 kPa to 140 kPa. PMID:21643336

  7. Rapid relativistic distorted-wave approach for calculating cross sections for ionization of highly charged ions

    NASA Astrophysics Data System (ADS)

    Zhang, Hong Lin; Sampson, Douglas H.

    1990-11-01

    The rapid relativistic distorted-wave method of Zhang, Sampson, and Mohanty [Phys. Rev. A 40, 616 (1989)] for excitation, which uses the atomic-structure data of Sampson et al. [Phys. Rev. A 40, 604 (1989)], has been extended to ionization. In this approach the same Dirac-Fock-Slater potential evaluated using a single mean configuration is used in calculating the orbitals of all electrons bound and free. Values for the cross sections Q for ionization of various ions have been calculated, and generally good agreement is obtained with other recent relativistic calculations. When results are expressed in terms of the reduced ionization cross section QR, which is proportional to I2Q, they are close to the nonrelativistic Coulomb-Born-exchange values of Moores, Golden, and Sampson [J. Phys. B 13, 385 (1980)] for hydrogenic ions except for high Z and/or high energies. This suggests that fits of the QR to simple functions of the impact electron energy in threshold units with coefficients that are quite slowly varying functions of an effective Z can probably be made. This would be convenient for plasma-modeling applications.

  8. A Numerical Study on the Screening of Blast-Induced Waves for Reducing Ground Vibration

    NASA Astrophysics Data System (ADS)

    Park, Dohyun; Jeon, Byungkyu; Jeon, Seokwon

    2009-06-01

    Blasting is often a necessary part of mining and construction operations, and is the most cost-effective way to break rock, but blasting generates both noise and ground vibration. In urban areas, noise and vibration have an environmental impact, and cause structural damage to nearby structures. Various wave-screening methods have been used for many years to reduce blast-induced ground vibration. However, these methods have not been quantitatively studied for their reduction effect of ground vibration. The present study focused on the quantitative assessment of the effectiveness in vibration reduction of line-drilling as a screening method using a numerical method. Two numerical methods were used to analyze the reduction effect toward ground vibration, namely, the “distinct element method” and the “non-linear hydrocode.” The distinct element method, by particle flow code in two dimensions (PFC 2D), was used for two-dimensional parametric analyses, and some cases of two-dimensional analyses were analyzed three-dimensionally using AUTODYN 3D, the program of the non-linear hydrocode. To analyze the screening effectiveness of line-drilling, parametric analyses were carried out under various conditions, with the spacing, diameter of drill holes, distance between the blasthole and line-drilling, and the number of rows of drill holes, including their arrangement, used as parameters. The screening effectiveness was assessed via a comparison of the vibration amplitude between cases both with and without screening. Also, the frequency distribution of ground motion of the two cases was investigated through fast Fourier transform (FFT), with the differences also examined. From our study, it was concluded that line-drilling as a screening method of blast-induced waves was considerably effective under certain design conditions. The design details for field application have also been proposed.

  9. Blast-Associated Shock Waves Result in Increased Brain Vascular Leakage and Elevated ROS Levels in a Rat Model of Traumatic Brain Injury

    PubMed Central

    Petro, Marianne; Dudzinski, Dave; Stewart, Desiree; Courtney, Amy; Courtney, Michael; Labhasetwar, Vinod

    2015-01-01

    Blast-associated shock wave-induced traumatic brain injury (bTBI) remains a persistent risk for armed forces worldwide, yet its detailed pathophysiology remains to be fully investigated. In this study, we have designed and characterized a laboratory-scale shock tube to develop a rodent model of bTBI. Our blast tube, driven by a mixture of oxygen and acetylene, effectively generates blast overpressures of 20–130 psi, with pressure-time profiles similar to those of free-field blast waves. We tested our shock tube for brain injury response to various blast wave conditions in rats. The results show that blast waves cause diffuse vascular brain damage, as determined using a sensitive optical imaging method based on the fluorescence signal of Evans Blue dye extravasation developed in our laboratory. Vascular leakage increased with increasing blast overpressures and mapping of the brain slices for optical signal intensity indicated nonhomogeneous damage to the cerebral vasculature. We confirmed vascular leakage due to disruption in the blood-brain barrier (BBB) integrity following blast exposure. Reactive oxygen species (ROS) levels in the brain also increased with increasing blast pressures and with time post-blast wave exposure. Immunohistochemical analysis of the brain sections analyzed at different time points post blast exposure demonstrated astrocytosis and cell apoptosis, confirming sustained neuronal injury response. The main advantages of our shock-tube design are minimal jet effect and no requirement for specialized equipment or facilities, and effectively generate blast-associated shock waves that are relevant to battle-field conditions. Overall data suggest that increased oxidative stress and BBB disruption could be the crucial factors in the propagation and spread of neuronal degeneration following blast injury. Further studies are required to determine the interplay between increased ROS activity and BBB disruption to develop effective therapeutic

  10. Blast-Associated Shock Waves Result in Increased Brain Vascular Leakage and Elevated ROS Levels in a Rat Model of Traumatic Brain Injury.

    PubMed

    Kabu, Shushi; Jaffer, Hayder; Petro, Marianne; Dudzinski, Dave; Stewart, Desiree; Courtney, Amy; Courtney, Michael; Labhasetwar, Vinod

    2015-01-01

    Blast-associated shock wave-induced traumatic brain injury (bTBI) remains a persistent risk for armed forces worldwide, yet its detailed pathophysiology remains to be fully investigated. In this study, we have designed and characterized a laboratory-scale shock tube to develop a rodent model of bTBI. Our blast tube, driven by a mixture of oxygen and acetylene, effectively generates blast overpressures of 20-130 psi, with pressure-time profiles similar to those of free-field blast waves. We tested our shock tube for brain injury response to various blast wave conditions in rats. The results show that blast waves cause diffuse vascular brain damage, as determined using a sensitive optical imaging method based on the fluorescence signal of Evans Blue dye extravasation developed in our laboratory. Vascular leakage increased with increasing blast overpressures and mapping of the brain slices for optical signal intensity indicated nonhomogeneous damage to the cerebral vasculature. We confirmed vascular leakage due to disruption in the blood-brain barrier (BBB) integrity following blast exposure. Reactive oxygen species (ROS) levels in the brain also increased with increasing blast pressures and with time post-blast wave exposure. Immunohistochemical analysis of the brain sections analyzed at different time points post blast exposure demonstrated astrocytosis and cell apoptosis, confirming sustained neuronal injury response. The main advantages of our shock-tube design are minimal jet effect and no requirement for specialized equipment or facilities, and effectively generate blast-associated shock waves that are relevant to battle-field conditions. Overall data suggest that increased oxidative stress and BBB disruption could be the crucial factors in the propagation and spread of neuronal degeneration following blast injury. Further studies are required to determine the interplay between increased ROS activity and BBB disruption to develop effective therapeutic strategies

  11. Electron acceleration in relativistic plasma waves generated by a single frequency short-pulse laser

    SciTech Connect

    Coverdale, C.A.; Darrow, C.B.; Decker, C.D.; Mori, W.B.; Tzeng, K.C., Clayton, C.E.; Marsh, K.A.; Joshi, C.

    1995-04-27

    Experimental evidence for the acceleration of electrons in a relativistic plasma wave generated by Raman forward scattering (SRS-F) of a single-frequency short pulse laser are presented. A 1.053 {mu}m, 600 fsec, 5 TW laser was focused into a gas jet with a peak intensity of 8{times}10{sup 17} W/cm{sup 2}. At a plasma density of 2{times}10{sup 19} cm{sup {minus}3}, 2 MeV electrons were detected and their appearance was correlated with the anti-Stokes laser sideband generated by SRS-F. The results are in good agreement with 2-D PIC simulations. The use of short pulse lasers for making ultra-high gradient accelerators is explored.

  12. An X-band phase-locked relativistic backward wave oscillator

    SciTech Connect

    Wu, Y.; Li, Z. H.; Xu, Z.; Jin, X.; Ma, Q. S.

    2015-08-15

    For the purpose of coherent high power microwave combining at high frequency band, an X-band phase-locked relativistic backward wave oscillator is presented and investigated. The phase-locking of the oscillator is accomplished by modulation of the electron beam before it reaches the oscillator. To produce a bunched beam with an acceptable injected RF power requirement, an overmoded input cavity is employed to provide initial density modulation. And a buncher cavity is introduced to further increase the modulation depth. When the beam enters the oscillator, the modulation depth is enough to lock the frequency and phase of the output microwave generated by the oscillator. Particle-in-cell simulation shows that an input power of 90 kW is sufficient to lock the frequency and phase of 1.5 GW output microwave with locking bandwidth of 60 MHz.

  13. Experimental study of an X-band phase-locked relativistic backward wave oscillator

    SciTech Connect

    Wu, Y.; Li, Z. H.; Xu, Z.

    2015-11-15

    To achieve high power microwave combined with high frequency band, an X-band phase-locked relativistic backward wave oscillator (RBWO) is proposed and investigated theoretically and experimentally using a modulated electron beam. In the device, an overmoded input cavity and a buncher cavity are employed to premodulate the electron beam. Particle-in-cell simulation shows that an input power of 90 kW is sufficient to lock the frequency and phase of 1.5 GW output microwave with the locking bandwidth of 60 MHz. Moreover, phase and frequency locking of an RBWO has been accomplished experimentally with an output power of 1.5 GW. The fluctuation of the relative phase difference between output microwave and input RF signal is less than ±20° with the locking duration of about 50 ns. The input RF power required to lock the oscillator is only 90 kW.

  14. A Ka-band TM02 mode relativistic backward wave oscillator with cascaded resonators

    NASA Astrophysics Data System (ADS)

    Teng, Yan; Cao, Yinbin; Song, Zhimin; Ye, Hu; Shi, Yanchao; Chen, Changhua; Sun, Jun

    2014-12-01

    By combining the Cerenkov-type generator with the cascaded resonators, this paper proposes a Ka-band relativistic backward wave oscillator operating under the guide magnetic field 1.0 T with high power handling capability and high conversion efficiency. It is found that TM02 can be selected as the operation mode in order to increase the power handling capability and provide sufficient coupling with the electron beam. In slow wave structure (SWS), ripples composed of semicircle on top of the rectangle enhance the wave-beam interaction and decrease the intensity of the electric field on the metallic surface. Taking advantage of the resonator cascades, the output power and the conversion efficiency are promoted greatly. The front cascaded resonators efficiently prevent the power generated in SWS from leaking into the diode region, and quicken the startup of the oscillation due to the premodulation of the beam. However, the post cascade slightly postpones the startup because of the further energy extraction from the electron beam. The numerical simulation shows that generation with power 514 MW and efficiency 41% is obtained under the diode voltage 520 kV and current 2.4 kA. And the microwave with the pure frequency spectrum of 29.35 GHz radiates in the pure TM01 mode.

  15. Investigation of an improved relativistic backward wave oscillator in efficiency and power capacity

    SciTech Connect

    Song, W.; Chen, C. H.; Sun, J.; Zhang, X. W.; Shao, H.; Song, Z. M.; Huo, S. F.; Shi, Y. C.; Li, X. Z.

    2012-10-15

    Investigation of relativistic backward wave oscillator with high efficiency and power capacity is presented in this paper. To obtain high power and high efficiency, a TM{sub 021} mode resonant reflector is used to reduce the pulse shortening and increase power capacity to about 1.7 times. Meanwhile, an extraction cavity at the end of slow wave structure is employed to improve the efficiency from less than 30% to over 40%, through the beam-wave interaction intensification and better energy conversion from modulated electron beam to the electromagnetic field. Consistent with the numerical results, microwave with a power of 3.2 GW, a frequency of 9.75 GHz, and a pulse width of 27 ns was obtained in the high power microwave generation experiment, where the electron beam energy was configured to be {approx}910 kV and its current to be {approx}8.6 kA. The efficiency of the RBWO exceeds 40% at a voltage range of 870 kV-1000 kV.

  16. A Ka-band TM{sub 02} mode relativistic backward wave oscillator with cascaded resonators

    SciTech Connect

    Teng, Yan; Cao, Yinbin; Song, Zhimin; Ye, Hu; Shi, Yanchao; Chen, Changhua; Sun, Jun

    2014-12-15

    By combining the Cerenkov-type generator with the cascaded resonators, this paper proposes a Ka-band relativistic backward wave oscillator operating under the guide magnetic field 1.0 T with high power handling capability and high conversion efficiency. It is found that TM{sub 02} can be selected as the operation mode in order to increase the power handling capability and provide sufficient coupling with the electron beam. In slow wave structure (SWS), ripples composed of semicircle on top of the rectangle enhance the wave-beam interaction and decrease the intensity of the electric field on the metallic surface. Taking advantage of the resonator cascades, the output power and the conversion efficiency are promoted greatly. The front cascaded resonators efficiently prevent the power generated in SWS from leaking into the diode region, and quicken the startup of the oscillation due to the premodulation of the beam. However, the post cascade slightly postpones the startup because of the further energy extraction from the electron beam. The numerical simulation shows that generation with power 514 MW and efficiency 41% is obtained under the diode voltage 520 kV and current 2.4 kA. And the microwave with the pure frequency spectrum of 29.35 GHz radiates in the pure TM{sub 01} mode.

  17. Propagation and Generation of Electromagnetic Waves at Proton Gyrofrequencies in a Relativistic Electron-Positron Plasma. II. Excitation of Electromagnetic Waves

    NASA Astrophysics Data System (ADS)

    Zheleznyakov, V. V.; Bespalov, P. A.

    2016-04-01

    In part I of this work [1], we study the dispersion characteristics of low-frequency waves in a relativistic electron-positron plasma. In part II, we examine the electromagnetic wave instability in this plasma caused by an admixture of nonrelativistic protons with energy comparable with the energy of relativistic low-mass particles. The instability occurs in the frequency band between the fundamental harmonic of proton gyrofrequency and the fundamental harmonic of relativistic electron gyrofrequency. The results can be used for the interpretation of known observations of the pulsar emissions obtained with a high time and frequency resolution. The considered instability can probably be the initial stage of the microwave radio emission nanoshots typical of the pulsar in the Crab Nebula.

  18. The soft X-ray background as a supernova blast wave viewed from inside: Solar abundance models

    NASA Technical Reports Server (NTRS)

    Edgar, R. J.

    1984-01-01

    A model of the soft X-ray background is presented in which the Sun is assumed to be inside an active supernova blast wave. The blast wave evolves in a preexisting cavity. The broad band surface brightnesses is explained by such a blast wave with an explosion energy of E sub approx. 5 x 10 to the 50th power ergs and radius 80 to 100 pc, using solar abundances. An approach to treating the problem of large anisotropies in the ambient medium is also explored, accommodating the observed anticorrelation between the soft X-ray surface brightness and the 21 cm column density. It is found that only for post shock temperatures below 10 6 K a shock propagating into a density enhancement will be dimmer than a similar shock in a lower density region.

  19. The soft X-ray background as a supernova blast wave viewed from inside - Solar abundance models

    NASA Technical Reports Server (NTRS)

    Edgar, R. J.

    1986-01-01

    A model of the soft X-ray background is presented in which the sun is assumed to be inside an active supernova blast wave. The blast wave evolves in a preexisting cavity. The broad band surface brightnesses is explained by such a blast wave with an explosion energy of E sub approximately 5 x 10 to the 50th power ergs and radius 80 to 100 pc, using solar abundances. An approach to treating the problem of large anisotropies in the ambient medium is also explored, accommodating the observed anticorrelation between the soft X-ray surface brightness and the 21 cm column density. It is found that only for post shock temperatures below 10 to the 6 power K a shock propagating into a density enhancement will be dimmer than a similar shock in a lower density region.

  20. Collimation and Asymmetry of the Hot Blast Wave from the Recurrent Nova V745 Sco

    NASA Astrophysics Data System (ADS)

    Drake, Jeremy J.; Delgado, Laura; Laming, J. Martin; Starrfield, Sumner; Kashyap, Vinay; Orlando, Salvatore; Page, Kim L.; Hernanz, M.; Ness, J.-U.; Gehrz, R. D.; van Rossum, Daan; Woodward, Charles E.

    2016-07-01

    The recurrent symbiotic nova V745 Sco exploded on 2014 February 6 and was observed on February 22 and 23 by the Chandra X-ray Observatory Transmission Grating Spectrometers. By that time the supersoft source phase had already ended, and Chandra spectra are consistent with emission from a hot, shock-heated circumstellar medium with temperatures exceeding 107 K. X-ray line profiles are more sharply peaked than expected for a spherically symmetric blast wave, with a full width at zero intensity of approximately 2400 km s-1, an FWHM of 1200 ± 30 km s-1, and an average net blueshift of 165 ± 10 km s-1. The red wings of lines are increasingly absorbed toward longer wavelengths by material within the remnant. We conclude that the blast wave was sculpted by an aspherical circumstellar medium in which an equatorial density enhancement plays a role, as in earlier symbiotic nova explosions. Expansion of the dominant X-ray-emitting material is aligned close to the plane of the sky and is most consistent with an orbit seen close to face-on. Comparison of an analytical blast wave model with the X-ray spectra, Swift observations, and near-infrared line widths indicates that the explosion energy was approximately 1043 erg and confirms an ejected mass of approximately 10-7 M ⊙. The total mass lost is an order of magnitude lower than the accreted mass required to have initiated the explosion, indicating that the white dwarf is gaining mass and is a Type Ia supernova progenitor candidate.

  1. Collimation and Asymmetry of the Hot Blast Wave from the Recurrent Nova V745 Sco

    NASA Astrophysics Data System (ADS)

    Drake, Jeremy J.; Delgado, Laura; Laming, J. Martin; Starrfield, Sumner; Kashyap, Vinay; Orlando, Salvatore; Page, Kim L.; Hernanz, M.; Ness, J.-U.; Gehrz, R. D.; van Rossum, Daan; Woodward, Charles E.

    2016-07-01

    The recurrent symbiotic nova V745 Sco exploded on 2014 February 6 and was observed on February 22 and 23 by the Chandra X-ray Observatory Transmission Grating Spectrometers. By that time the supersoft source phase had already ended, and Chandra spectra are consistent with emission from a hot, shock-heated circumstellar medium with temperatures exceeding 107 K. X-ray line profiles are more sharply peaked than expected for a spherically symmetric blast wave, with a full width at zero intensity of approximately 2400 km s‑1, an FWHM of 1200 ± 30 km s‑1, and an average net blueshift of 165 ± 10 km s‑1. The red wings of lines are increasingly absorbed toward longer wavelengths by material within the remnant. We conclude that the blast wave was sculpted by an aspherical circumstellar medium in which an equatorial density enhancement plays a role, as in earlier symbiotic nova explosions. Expansion of the dominant X-ray-emitting material is aligned close to the plane of the sky and is most consistent with an orbit seen close to face-on. Comparison of an analytical blast wave model with the X-ray spectra, Swift observations, and near-infrared line widths indicates that the explosion energy was approximately 1043 erg and confirms an ejected mass of approximately 10‑7 M ⊙. The total mass lost is an order of magnitude lower than the accreted mass required to have initiated the explosion, indicating that the white dwarf is gaining mass and is a Type Ia supernova progenitor candidate.

  2. The Blast-Wave-Driven Instability as a Vehicle for Understanding Supernova Explosion Structure

    SciTech Connect

    Miles, A R

    2008-05-27

    Blast-wave-driven instabilities play a rich and varied role throughout the evolution of supernovae from explosion to remnant, but interpreting their role is difficult due to the enormous complexity of the stellar systems. We consider the simpler and fundamental hydrodynamic instability problem of a material interface between two constant-density fluids perturbed from spherical and driven by a divergent central Taylor-Sedov blast wave. The existence of unified solutions at high Mach number and small density ratio suggests that general conclusions can be drawn about the likely asymptotic structure of the mixing zone. To this end we apply buoyancy-drag and bubble merger models modified to include the effects of divergence and radial velocity gradients. In general, these effects preclude the true self-similar evolution of classical Raleigh-Taylor, but can be incorporated into a quasi-self-similar growth picture. Loss of memory of initial conditions can occur in the quasi-self-similar model, but requires initial mode numbers higher than those predicted for pre-explosion interfaces in Type II SNe, suggesting that their late-time structure is likely strongly influenced by details of the initial perturbations. Where low-modes are dominant, as in the Type Ia Tycho remnant, they result from initial perturbations rather than generation from smaller scales. Therefore, structure observed now contains direct information about the explosion process. When large-amplitude modes are present in the initial conditions, the contribution to the perturbation growth from the Richtmyer-Meshkov instability is significant or dominant compared to Rayleigh-Taylor. Such Richtmyer-Meshkov growth can yield proximity of the forward shock to the growing spikes and structure that strongly resembles that observed in the Tycho. Laser-driven high-energy-density laboratory experiments offer a promising avenue for testing model and simulation descriptions of blast-wave-driven instabilities and making

  3. On the multistream approach of relativistic Weibel instability. II. Bernstein-Greene-Kruskal-type waves in magnetic trapping

    SciTech Connect

    Ghizzo, A.

    2013-08-15

    The stationary state with magnetically trapped particles is investigated at the saturation of the relativistic Weibel instability, within the “multiring” model in a Hamiltonian framework. The multistream model and its multiring extension have been developed in Paper I, under the assumption that the generalized canonical momentum is conserved in the perpendicular direction. One dimensional relativistic Bernstein-Greene-Kruskal waves with deeply trapped particles are addressed using similar mathematical formalism developed by Lontano et al.[Phys. Plasmas 9, 2562 (2002); Phys. Plasmas 10, 639 (2003)] using several streams and in the presence of both electrostatic and magnetic trapping mechanisms.

  4. Modeling and simulation of blast-induced, early-time intracranial wave physics leading to traumatic brain injury.

    SciTech Connect

    Ford, Corey C.; Taylor, Paul Allen

    2008-02-01

    The objective of this modeling and simulation study was to establish the role of stress wave interactions in the genesis of traumatic brain injury (TBI) from exposure to explosive blast. A high resolution (1 mm{sup 3} voxels), 5 material model of the human head was created by segmentation of color cryosections from the Visible Human Female dataset. Tissue material properties were assigned from literature values. The model was inserted into the shock physics wave code, CTH, and subjected to a simulated blast wave of 1.3 MPa (13 bars) peak pressure from anterior, posterior and lateral directions. Three dimensional plots of maximum pressure, volumetric tension, and deviatoric (shear) stress demonstrated significant differences related to the incident blast geometry. In particular, the calculations revealed focal brain regions of elevated pressure and deviatoric (shear) stress within the first 2 milliseconds of blast exposure. Calculated maximum levels of 15 KPa deviatoric, 3.3 MPa pressure, and 0.8 MPa volumetric tension were observed before the onset of significant head accelerations. Over a 2 msec time course, the head model moved only 1 mm in response to the blast loading. Doubling the blast strength changed the resulting intracranial stress magnitudes but not their distribution. We conclude that stress localization, due to early time wave interactions, may contribute to the development of multifocal axonal injury underlying TBI. We propose that a contribution to traumatic brain injury from blast exposure, and most likely blunt impact, can occur on a time scale shorter than previous model predictions and before the onset of linear or rotational accelerations traditionally associated with the development of TBI.

  5. Biomechanical assessment of brain dynamic responses due to blast pressure waves.

    PubMed

    Chafi, M S; Karami, G; Ziejewski, M

    2010-02-01

    A mechanized and integrated computational scheme is introduced to determine the human brain responses in an environment where the human head is exposed to explosions from trinitrotoluene (TNT), or other high-yield explosives, in military applications. The procedure is based on a three-dimensional (3-D) non-linear finite element method (FEM) that implements a simultaneous conduction of explosive detonation, shock wave propagation, blast-head interactions, and the confronting human head. The processes of blast propagation in the air and blast interaction with the head are modeled by an Arbitrary Lagrangian-Eulerian (ALE) multi-material FEM formulation, together with a penalty-based fluid/structure interaction (FSI) algorithm. Such a model has already been successfully validated against experimental data regarding air-free blast and plate-blast interactions. The human head model is a 3-D geometrically realistic configuration that has been previously validated against the brain intracranial pressure (ICP), as well as shear and principal strains under different impact loadings of cadaveric experimental tests of Hardy et al. [Hardy W. N., C. Foster, M. Mason, S. Chirag, J. Bishop, M. Bey, W. Anderst, and S. Tashman. A study of the response of the human cadaver head to impact. Proc. 51 ( st ) Stapp. Car Crash J. 17-80, 2007]. Different scenarios have been assumed to capture an appropriate picture of the brain response at a constant stand-off distance of nearly 80 cm from the core of the explosion, but exposed to different amounts of a highly explosive (HE) material such as TNT. The over-pressures at the vicinity of the head are in the range of about 2.4-8.7 atmosphere (atm), considering the reflected pressure from the head. The methodology provides brain ICP, maximum shear stresses and maximum principal strain within the milli-scale time frame of this highly dynamic phenomenon. While focusing on the two mechanical parameters of pressure, and also on the maximum shear

  6. Mathematical theory of cylindrical isothermal blast waves in a magnetic field. [with application to supernova remnant evolution

    NASA Technical Reports Server (NTRS)

    Lerche, I.

    1981-01-01

    An analysis is conducted regarding the properties of cylindrically symmetric self-similar blast waves propagating away from a line source into a medium whose density and magnetic field (with components in both the phi and z directions) both vary as r to the -(omega) power (with omega less than 1) ahead of the blast wave. The main results of the analysis can be divided into two classes, related to a zero azimuthal field and a zero longitudinal field. In the case of the zero longitudinal field it is found that there are no physically acceptable solutions with continuous postshock variations of flow speed and gas density.

  7. Evanescent waves propagation along a periodically corrugated surface and their amplification by relativistic electron beam (quasi-optical theory)

    SciTech Connect

    Ginzburg, N. S.; Malkin, A. M.; Zheleznov, I. V.; Sergeev, A. S.

    2013-06-15

    By using a quasi-optical approach, we study propagation of evanescent waves along a periodically corrugated surface and their excitation by relativistic electron beams. Under assumption of a shallow (in the scale of period) corrugation, the dispersion equation for normal waves is derived and two particular cases are studied. In the first case, the wave frequency is far from the Bragg resonance; therefore, the evanescent wave propagation can be described by using the impedance approximation with deceleration of the zeroth spatial harmonic. The second case takes place at the frequencies close to the Bragg resonance. There, the field can be represented as two counter-propagating quasi-optical wave beams, which are coupled on the corrugated surface and form an evanescent normal wave. With regard to the interaction with an electron beam, the first case corresponds to the convective instability that can be used for amplification of radiation, while the second case corresponds to the absolute instability used in surface-wave oscillators. This paper is focused on studying main features of amplifier schemes, such as the increments, electron efficiency, and formation of a self-consistent spatial structure of the radiated field. For practical applications, the feasibility of realization of relativistic surface-wave amplifiers in the submillimeter wavelength range is estimated.

  8. A tunable relativistic backward wave oscillator based on changing concentration of the filling dielectric

    SciTech Connect

    Zhou, Hongyu; Liu, Lie; Zhao, Xuelong; Cai, Dan

    2015-04-15

    The tunable capability expands the application fields of backward wave oscillator (BWO), especially for large range modulation. This paper presents analysis, PIC simulation, and preliminary design of a novel relativistic BWO which achieves the purpose of modulation among three or more frequencies within two bands. A new dielectric slow-wave structure (SWS) with hollow section was designed in the novel BWO instead of the conventional SWS with fixed solid conductors. The wide range of adjustment of propagation constant and output frequency could be easily achieved by modulating the concentration (permittivity) of the dielectric filled in the hollow section. The results of PIC simulation show the output has three stable situations at two bands with a magnetic field of 3T: 6.9 GHz, 0.9 GW; 7.3 GHz, 1.1 GW; and 10.0 GHz, 1 GW. The specific permittivities of the corresponding SWSs are 15.7, 34.3, and 42.0, respectively.

  9. Factors influencing the microwave pulse duration in a klystron-like relativistic backward wave oscillator

    SciTech Connect

    Xiao Renzhen; Zhang Xiaowei; Zhang Ligang; Li Xiaoze; Zhang Lijun

    2012-07-15

    In this paper, we analyze the factors that affect the microwave pulse duration in a klystron-like relativistic backward wave oscillator (RBWO), including the diode voltage, the guiding magnetic field, the electron beam collector, the extraction cavity, and the gap between the electron beam and the slow wave structure (SWS). The results show that the microwave pulse duration increases with the diode voltage until breakdown occurs on the surface of the extraction cavity. The pulse duration at low guiding magnetic field is generally 5-10 ns smaller than that at high magnetic field due to the asymmetric electron emission and the larger energy spread of the electron beam. The electron beam collector can affect the microwave pulse duration significantly because of the anode plasma generated by bombardment of the electron beam on the collector surface. The introduction of the extraction cavity only slightly changes the pulse duration. The decrease of the gap between the electron beam and the SWS can increase the microwave pulse duration greatly.

  10. On plane-wave relativistic electrodynamics in plasmas and in vacuum

    NASA Astrophysics Data System (ADS)

    Fiore, Gaetano

    2014-06-01

    We revisit the exact microscopic equations (in differential, and equivalent integral form) ruling a relativistic cold plasma after the plane-wave Ansatz, without customary approximations. We show that in the Eulerian description the motion of a very diluted plasma initially at rest and excited by an arbitrary transverse plane electromagnetic travelling-wave has a very simple and explicit dependence on the transverse electromagnetic potential; for a non-zero density plasma the above motion is a good approximation of the real one as long as the back-reaction of the charges on the electromagnetic field can be neglected, i.e. for a time lapse decreasing with the plasma density, and can be used as initial step in an iterative resolution scheme. As one of many possible applications, we use these results to describe how the ponderomotive force of a very intense and short plane laser pulse hitting normally the surface of a plasma boosts the surface electrons into the ion background. In response to this penetration, the electrons are pulled back by the electric force exerted by the ions and the other displaced electrons and may leave the plasma with high energy in the direction opposite to that of propagation of the pulse ‘slingshot effect’ (Fiore G et al 2013 arXiv:1309.1400).

  11. Design of a high efficiency relativistic backward wave oscillator with low guiding magnetic field

    NASA Astrophysics Data System (ADS)

    Li, Xiaoze; Song, Wei; Tan, Weibing; Zhang, Ligang; Su, Jiancang; Zhu, Xiaoxin; Hu, Xianggang; Shen, Zhiyuan; Liang, Xu; Ning, Qi

    2016-07-01

    A high efficiency relativistic backward wave oscillator working at a low guiding magnetic field is designed and simulated. A trapezoidal resonant reflector is used to reduce the modulation field in the resonant reflector to avoid overmodulation of the electron beam which will lead to a large momentum spread and then low conversion efficiency. The envelope of the inner radius of the slow wave structure (SWS) increases stepwise to keep conformal to the trajectory of the electron beam which will alleviate the bombardment of the electron on the surface of the SWS. The length of period of the SWS is reduced gradually to make a better match between phase velocity and electron beam, which decelerates continually and improves the RF current distribution. Meanwhile the modulation field is reduced by the introduction of nonuniform SWS also. The particle in cell simulation results reveal that a microwave with a power of 1.8 GW and a frequency of 14.7 GHz is generated with an efficiency of 47% when the diode voltage is 620 kV, the beam current 6.1 kA, and the guiding magnetic field 0.95 T.

  12. Influence of wall plasma on microwave frequency and power in relativistic backward wave oscillator

    SciTech Connect

    Sun, Jun; Cao, Yibing; Teng, Yan; Zhang, Yuchuan; Chen, Changhua; Wu, Ping

    2015-07-15

    The RF breakdown of the slow wave structure (SWS), which will lead to the generation of the wall plasma, is an important cause for pulse shortening in relativistic backward wave oscillators. Although many researchers have performed profitable studies about this issue, the influence mechanism of this factor on the microwave generation still remains not-so-clear. This paper simplifies the wall plasma with an “effective” permittivity and researches its influence on the microwave frequency and power. The dispersion relation of the SWS demonstrates that the introduction of the wall plasma will move the dispersion curves upward to some extent, which is confirmed by particle-in-cell (PIC) simulations and experiments. The plasma density and volume mainly affect the dispersion relation at the upper and lower frequency limits of each mode, respectively. Meanwhile, PIC simulations show that even though no direct power absorption exists since the wall plasma is assumed to be static, the introduction of the wall plasma may also lead to the decrease in microwave power by changing the electrodynamic property of the SWS.

  13. Purification of the output modes of overmoded relativistic backward wave oscillators

    SciTech Connect

    Zhang, Dian; Zhang, Jun; Zhong, Huihuang; Jin, Zhenxing; Yuan, Yuzhang

    2014-02-15

    Successful suppression of mode competition in the beam-wave interaction process of overmoded relativistic backward wave oscillators (RBWOs) cannot ensure the output modes purity. Optimizing the magnitude and the phase of the mode conversion coefficients in the devices is significant for purifying the output modes. A universal method of purifying the TM{sub 01} and TM{sub 02} mixed modes output by overmoded RBWOs without decreasing the total output power is presented in this paper. With this method, we purify the TM{sub 01} and TM{sub 02} mixed modes generated in an X-band overmoded RBWO (D/λ ≈ 2.6) operated at the constant diode voltage of 730 kV. Dependence of modes purification effect on the variation of diode voltage is also analyzed in particle-in-cell simulation. Our analysis indicates that when the diode voltage is in the range of (730 ± 60) kV, the percentage of output power carried by TM{sub 01} mode will be higher than 95%.

  14. Design of Terahertz-Wave Spectrophotometry by Compton Backscattering Using Relativistic Electron Bunches and their Coherent Synchrotron Radiations

    NASA Astrophysics Data System (ADS)

    Sei, Norihiro; Kuroda, Ryunosuke; Ogawa, Hiroshi

    2008-08-01

    We propose a new terahertz-wave spectrophotometry by Compton backscattering using relativistic electron bunches and coherent radiations generated by them. The terahertz-wave spectrophotometry can be realized simultaneously with Compton backscattering, where the characteristics in the terahertz-wave region are converted to those in the visible and ultraviolet regions. The number of Compton backscattered photons is estimated to be more than 100 counts per second with a wavelength divergence of 5% in the visible and ultraviolet regions using the compact S-band linac at National Institute of Advanced Industrial Science and Technology. This spectrophotometry becomes significant in energy recovery linacs.

  15. A high-efficiency overmoded klystron-like relativistic backward wave oscillator with low guiding magnetic field

    SciTech Connect

    Xiao Renzhen; Tan Weibing; Li Xiaoze; Song Zhimin; Sun Jun; Chen Changhua

    2012-09-15

    A klystron-like relativistic backward wave oscillator with a ratio of transverse dimension to free-space wavelength being about four is presented. In the beam-wave interaction region, the electron beam interacts with surface wave and volume wave simultaneously. The cathode holder plays an important role in the reflection of backward waves. A guard electrode, an electron collector ring, and a reflection ring are used to optimize the beam-wave interaction. The particle in cell simulation results reveal that microwaves with a power of 2 GW and a frequency of 12.3 GHz are generated with an efficiency of 42% when the diode voltage is 400 kV, the beam current 12 kA, and the magnetic field 0.48 T.

  16. A high-efficiency overmoded klystron-like relativistic backward wave oscillator with low guiding magnetic field

    NASA Astrophysics Data System (ADS)

    Xiao, Renzhen; Tan, Weibing; Li, Xiaoze; Song, Zhimin; Sun, Jun; Chen, Changhua

    2012-09-01

    A klystron-like relativistic backward wave oscillator with a ratio of transverse dimension to free-space wavelength being about four is presented. In the beam-wave interaction region, the electron beam interacts with surface wave and volume wave simultaneously. The cathode holder plays an important role in the reflection of backward waves. A guard electrode, an electron collector ring, and a reflection ring are used to optimize the beam-wave interaction. The particle in cell simulation results reveal that microwaves with a power of 2 GW and a frequency of 12.3 GHz are generated with an efficiency of 42% when the diode voltage is 400 kV, the beam current 12 kA, and the magnetic field 0.48 T.

  17. Blast wave in a nozzle for propulsive applications

    NASA Technical Reports Server (NTRS)

    Varsi, G.; Back, L. H.; Kim, K.

    1976-01-01

    The reported investigation has been conducted in connection with studies concerning the development of a propulsion system based on the use of a detonating fluid propellant. Measurements have been made of the pressure and shock wave velocity in a conical nozzle at various ambient pressures and at an ambient temperature of 25 C. In the experiments a small amount of explosive was placed at the end wall of a conical aluminum nozzle and detonated by a microdetonator inside the nozzle. Differences regarding the characteristics of conventional chemical propulsion and detonation propulsion are illustrated with the aid of a graph. One- and two-dimensional numerical flow calculations were performed and compared with the experimental data.

  18. Laboratory observation of secondary shock formation ahead of a strongly radiative blast wave

    SciTech Connect

    Hansen, J F; Edwards, M J; Froula, D H; Gregori, G; Edens, A; Ditmire, T

    2005-11-16

    High Mach number blast waves were created by focusing a laser pulse on a solid pin, surrounded by nitrogen or xenon gas. In xenon, the initial shock is strongly radiative, sending out a supersonic radiative heat wave far ahead of itself. The shock propagates into the heated gas, diminishing in strength as it goes. The radiative heat wave also slows, and when its Mach number drops to 2 with respect to the downstream plasma, the heat wave drives a second shock ahead of itself to satisfy mass and momentum conservation in the heat wave reference frame; the heat wave becomes subsonic behind the second shock. For some time both shocks are observed simultaneously. Eventually the initial shock dimimishes in strength so much that it can longer be observed, but the second shock continues to propagate long after this time. This sequence of events is a new phenomenon that has not previously been discussed in literature. Numerical simulation clarifies the origin of the second shock, and its position is consistent with an analytical estimate.

  19. Acceleration of relativistic electrons due to resonant interaction with oblique monochromatic whistler-mode waves generated in the ionosphere.

    NASA Astrophysics Data System (ADS)

    Kuzichev, Ilya; Shklyar, David

    2016-04-01

    One of the most challenging problems of the radiation belt studies is the problem of particles energization. Being related to the process of particle precipitation and posing a threat to scientific instruments on satellites, the problem of highly energetic particles in the radiation belts turns out to be very important. A lot of progress has been made in this field, but still some aspects of the energization process remain open. The main mechanism of particle energization in the radiation belts is the resonant interaction with different waves, mainly, in whistler frequency range. The problem of special interest is the resonant wave-particle interaction of the electrons of relativistic energies. Relativistic resonance condition provides some important features such as the so-called relativistic turning acceleration discovered by Omura et al. [1, 2]. This process appears to be a very efficient mechanism of acceleration in the case of interaction with the whistler-mode waves propagating along geomagnetic field lines. But some whistler-mode waves propagate obliquely to the magnetic field lines, and the efficiency of relativistic turning acceleration in this case is to be studied. In this report, we present the Hamiltonian theory of the resonant interaction of relativistic electrons with oblique monochromatic whistler-mode waves. We have shown that the presence of turning point requires a special treatment when one aims to derive the resonant Hamiltonian, and we have obtained two different resonant Hamiltonians: one to be applied far enough from the turning point, while another is valid in the vicinity of the turning point. We have performed numerical simulation of relativistic electron interaction with whistler-mode waves generated in the ionosphere by a monochromatic source. It could be, for example, a low-frequency transmitter. The wave-field distribution along unperturbed particle trajectory is calculated by means of geometrical optics. We show that the obliquity of

  20. Dual-band relativistic backward wave oscillators based on a single beam and dual beams

    NASA Astrophysics Data System (ADS)

    Ting, Wang; Jian-de, Zhang; Bao-liang, Qian; Xiao-ping, Zhang

    2010-04-01

    Two types of relativistic backward wave oscillators (RBWOs) used to produce dual-band microwaves are proposed and investigated by use of the particle-in-cell (PIC) simulation code KARAT [V. P. Tarakanov, User's Manual for Code Karat (Berkeley Research Associates, Springfield, VA, 1992)]. The first type of RBWO, for generation of C-band and X-band microwaves, is designed based on a single beam and a sectioned structure. With an electron beam of 650 keV and 5.0 kA guided by a magnetic field of 2.0 T, an average power of 380 MW with a total power conversion efficiency of 11.7% is obtained and the frequencies are 5.48 and 9.60 GHz, respectively. By changing the distance between the two sections, single-band oscillations are realized with higher power conversion efficiency than that of the dual-band oscillation. The second type, based on a coaxial structure and dual parallel annular beams, is a dual-band RBWO designed with separated beam-wave interaction regions for generation of C-band and X-band microwaves. With a dual beam of 650 keV and 11.8 kA (the outer beam current is 6.4 kA and inner beam current is 5.4 kA) guided by a magnetic field of 2.0 T, an output power of 1400 MW with a total power conversion efficiency of 18.3% is generated and the frequencies are 4.60 and 8.40 GHz, respectively. PIC simulations demonstrate that the two beam-wave interaction regions operate independently. The two types of dual-band RBWO are also compared and analyzed.

  1. Self-generated Magnetic Fields in Blast-wave Driven Rayleigh-Taylor Experiments

    NASA Astrophysics Data System (ADS)

    Flaig, Markus; Plewa, Tomasz

    2014-10-01

    We study the generation of magnetic fields via the Biermann battery effect in blast-wave driven Rayleigh-Taylor experiments. Previous estimates have shown that in a typical experiment, one should expect fields in the MG range to be generated, with the potential to influence the Rayleigh-Taylor morphology. We perform two- and three-dimensional numerical simulations, where we solve the extended set of MHD equations known as the Braginskii equations. The simulation parameters reflect the physical conditions in past experiments performed on the OMEGA laser and potential future experiments on the NIF laser facility. When neglecting the friction force between electrons and ions in the simulations, magnetic fields of the order of a few 0.1 MG (with a plasma smaller than 1000) are generated, and are found to be dynamically significant. However, it turns out that once the friction force is included, the magnetic fields become much smaller (with a plasma beta greater than 100000) which have negligible influence on the dynamics of the system. Our results therefore indicate that, contrary to previous speculations, it is highly unlikely that self-generated magnetic fields can influence the morphology of a typical blast-wave driven Rayleigh-Taylor experiment. M.F. and T.P. were supported by the DOE Grant DE-FG52- 09NA29548 and the NSF Grant AST-1109113. This research used resources of the National Energy Re.

  2. Interaction and coalescence of multiple simultaneous and non-simultaneous blast waves

    NASA Astrophysics Data System (ADS)

    Qiu, S.; Eliasson, V.

    2016-05-01

    Interaction of multiple blast waves can be used to direct energy toward a target while simultaneously reducing collateral damage away from the target area. In this paper, simulations of multiple point source explosives were performed and the resulting shock interaction and coalescence behavior were explored. Three to ten munitions were placed concentrically around the target, and conditions at the target area were monitored and compared to those obtained using a single munition. For each simulation, the energy summed over all munitions was kept constant, while the radial distances between target and munitions and the munition initiation times were varied. Each munition was modeled as a point source explosion. The resulting blast wave propagation and shock front coalescence were solved using the inviscid Euler equations of gas dynamics on overlapping grids employing a finite difference scheme. Results show that multiple munitions can be beneficial for creating extreme conditions at the intended target area; over 20 times higher peak pressure is obtained for ten simultaneous munitions compared to a single munition. Moreover, peak pressure at a point away from the target area is reduced by more than a factor of three.

  3. Three-dimensional simulations of solar granulation and blast wave using ZEUS-MP code

    NASA Astrophysics Data System (ADS)

    Nurzaman, M. Z.; Herdiwijaya, D.

    2015-09-01

    Sun is nearest and the only star that can be observed in full disk mode. Meanwhile other stars simply can be observed as dot and cannot be seen in full disk like the Sun. Due to this condition, detail events in the Sun can possibly observable. For example, flare, prominence, granulation and other features can be seen easily compared to other stars. In other word the observational data can be obtained easily. And for better understanding, computational simulation is needed too. In this paper we use ZEUS-MP, a numerical code for the simulation of fluid dynamical flows in astrophysics, to study granulation and blast wave in the Sun. ZEUS-MP allows users to use hydrodynamic (HD) or magneto hydrodynamic (MHD) simulations singly or in concert, in one, two, or three space dimensions. For granulation case, we assume that there is no influence from magnetic field. So, it's enough to just use HD simulations. Physical parameters were analyzed for this case is velocity and density. The result shows that velocity as time function indicated more complex pattern than density. For blast wave case, we use it to study one of the Sun energetic event namely Coronal Mass Ejections (CMEs). In this case, we cannot ignore influence from magnetic field. So we use MHD simulations. Physical parameters were analyzed for this case is velocity and energy. The result shows more complex pattern for both parameters. It is shown too as if they have opposite pattern. When energy is high, velocity is not too fast, conversely.

  4. Accelerated dynamics of blast wave driven Rayleigh-Taylor instabilities in high energy density plasmas

    NASA Astrophysics Data System (ADS)

    Swisher, N.; Kuranz, C.; Drake, R. P.; Abarzhi, S. I.

    2014-10-01

    We report the systematic analysis of experimental data describing the late time evolution of the high Mach number and high Reynolds number Rayleigh-Taylor instability which is driven by a blast wave. The parameter regime is relevant to high energy density plasmas and astrophysics. The experiments have been conducted at the Omega laser facility. By processing the experimental x-ray images, we quantified the delicate features of RT dynamics, including the measurements of the curvature of the transmitted shock and the interface envelopes, the positions of RT bubbles and spikes, and the quantification of statistics of RT mixing. The measurements were performed at four time steps and for three different initial perturbations of the target (single mode and two two-mode). We found that within the noise level the curvatures of the shock and interface envelope evolve steadily and are an imprint of laser imperfections. At late times, the bubble merge does not occur, and the flow keeps significant degree of order. Yet, the blast-wave-driven RT spikes do accelerate with the power-law exponent smaller than that in case of sustained acceleration. We compared the experimental results with the momentum model of RT mixing and stochastic model achieving good agreement. The work is supported by the US National Science Foundation.

  5. VISAR Unfold Analysis of MagLIF Laser Blast Wave Experiments

    NASA Astrophysics Data System (ADS)

    Hess, Mark; Peterson, Kyle; Harvey-Thompson, Adam

    2015-06-01

    MagLIF (Magnetized Liner Inertial Fusion) is a fusion energy scheme, which utilizes a short laser pulse to preheat a fuel, and a magnetically driven cylindrical liner to compress the fuel to high energy density plasma conditions. Recently, a set of successful experiments have been performed to evaluate the effectiveness of our preheat process in MagLIF using the Z-Beamlet laser at Sandia. The fuel is preheated in the liner, with no compression from the Z-machine, and a VISAR diagnostic was fielded on the outer surface of the liner to measure velocity of the liner due to the pressure of the laser blast wave on the inner surface of the liner. In support of this program, we developed a fast unfold method of the VISAR data using semi-analytical techniques/numerical methods. The method incorporates appropriate boundary conditions at both edges of the VISAR foil, realistic EOS tables, and an additional pressure pulse time-delay feature for accurately unfolding the time-dependent pressure from the VISAR data. Our fully automated method can produce high-quality unfolds of the laser blast wave in under a minute. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's NNSA under Contract DE-AC04-94AL85000.

  6. The Half Wave Plate Rotator for the BLAST-TNG Balloon-Borne Telescope

    NASA Astrophysics Data System (ADS)

    Setiawan, Hananiel; Ashton, Peter; Novak, Giles; Angilè, Francesco E.; Devlin, Mark J.; Galitzki, Nicholas; Ade, Peter; Doyle, Simon; Pascale, Enzo; Pisano, Giampaolo; Tucker, Carole E.

    2016-01-01

    The Next Generation Balloon-borne Large Aperture Submillimeter Telescope (BLAST-TNG) is an experiment designed to map magnetic fields in molecular clouds in order to study their role in the star formation process. The telescope will be launched aboard a high-altitude balloon in December 2016 for a 4-week flight from McMurdo station in Antarctica. BLAST-TNG will measure the polarization of submillimeter thermal emission from magnetically aligned interstellar dust grains, using large format arrays of kinetic inductance detectors operating in three bands centered at 250, 350, and 500 microns, with sub-arcminute angular resolution. The optical system includes an achromatic Half Wave Plate (HWP), mounted in a Half Wave Plate rotator (HWPr). The HWP and HWPr will operate at 4 K temperature to reduce thermal noise in our measurements, so it was crucial to account for the effects of thermal contraction at low temperature in the HWPr design. It was also equally important for the design to meet torque requirements while minimizing the power from friction and conduction dissipated at the 4 K stage. We also discuss our plan for cold testing the HWPr using a repurposed cryostat with a Silicon Diode thermometer read out by an EDAS-CE Ethernet data acquisition system.

  7. Spatially-resolved x-ray scattering measurements of a planar blast wave

    NASA Astrophysics Data System (ADS)

    Gamboa, E. J.; Montgomery, D. S.; Benage, J. F.; Falk, K.; Kuranz, C. C.; Keiter, P. A.; Drake, R. P.

    2012-10-01

    In many laboratory astrophysics experiments, intense laser irradiation creates novel material conditions with large, one-dimensional gradients in the temperature, density, and ionization state. X-ray Thomson scattering is a powerful technique for measuring these plasma parameters. However, the scattered signal is typically measured with little or no spatial resolution, which limits the ability to diagnose inhomogeneous plasmas. We report on the development of a new imaging x-ray Thomson spectrometer (IXTS) for the Omega laser facility. The diffraction of x-rays from a toroidally curved crystal creates high-resolution images that are spatially resolved along a one-dimensional profile while spectrally dispersing the radiation. An experiment is described in which we used the IXTS to measure the spatial temperature profile of a novel system. A low-density carbon foam was irradiated with intensities on the order of 10^15 W/cm^2, launching a planar blast wave. After a delay of several nanoseconds, x-rays created from irradiation of a nickel foil, scattered at 90 and were recorded by the IXTS. The resulting spatially resolved scattering spectra were analyzed to extract the temperature profile across the blast wave.

  8. Untangling the Effect of Head Acceleration on Brain Responses to Blast Waves.

    PubMed

    Mao, Haojie; Unnikrishnan, Ginu; Rakesh, Vineet; Reifman, Jaques

    2015-12-01

    Multiple injury-causing mechanisms, such as wave propagation, skull flexure, cavitation, and head acceleration, have been proposed to explain blast-induced traumatic brain injury (bTBI). An accurate, quantitative description of the individual contribution of each of these mechanisms may be necessary to develop preventive strategies against bTBI. However, to date, despite numerous experimental and computational studies of bTBI, this question remains elusive. In this study, using a two-dimensional (2D) rat head model, we quantified the contribution of head acceleration to the biomechanical response of brain tissues when exposed to blast waves in a shock tube. We compared brain pressure at the coup, middle, and contre-coup regions between a 2D rat head model capable of simulating all mechanisms (i.e., the all-effects model) and an acceleration-only model. From our simulations, we determined that head acceleration contributed 36-45% of the maximum brain pressure at the coup region, had a negligible effect on the pressure at the middle region, and was responsible for the low pressure at the contre-coup region. Our findings also demonstrate that the current practice of measuring rat brain pressures close to the center of the brain would record only two-thirds of the maximum pressure observed at the coup region. Therefore, to accurately capture the effects of acceleration in experiments, we recommend placing a pressure sensor near the coup region, especially when investigating the acceleration mechanism using different experimental setups.

  9. Combined scattering loss of radiation belt relativistic electrons by simultaneous three-band EMIC waves: A case study

    NASA Astrophysics Data System (ADS)

    He, Fengming; Cao, Xing; Ni, Binbin; Xiang, Zheng; Zhou, Chen; Gu, Xudong; Zhao, Zhengyu; Shi, Run; Wang, Qi

    2016-05-01

    Multiband electromagnetic ion cyclotron (EMIC) waves can drive efficient scattering loss of radiation belt relativistic electrons. However, it is statistically uncommon to capture the three bands of EMIC waves concurrently. Utilizing data from the Electric and Magnetic Field Instrument Suite and Integrated Science magnetometer onboard Van Allen Probe A, we report the simultaneous presence of three (H+, He+, and O+) emission bands in an EMIC wave event, which provides an opportunity to look into the combined scattering effect of all EMIC emissions and the relative roles of each band in diffusing radiation belt relativistic electrons under realistic circumstances. Our quantitative results, obtained by quasi-linear diffusion rate computations and 1-D pure pitch angle diffusion simulations, demonstrate that the combined resonant scattering by the simultaneous three-band EMIC waves is overall dominated by He+ band wave diffusion, mainly due to its dominance over the wave power (the mean wave amplitudes are approximately 0.4 nT, 1.6 nT, and 0.15 nT for H+, He+, and O+ bands, respectively). Near the loss cone, while 2-3 MeV electrons undergo pitch angle scattering at a rate of the order of 10-6-10-5 s-1, 5-10 MeV electrons can be diffused more efficiently at a rate of the order of 10-3-10-2 s-1, which approaches the strong diffusion level and results in a moderately or heavily filled loss cone for the atmospheric loss. The corresponding electron loss timescales (i.e., lifetimes) vary from several days at the energies of ~2 MeV to less than 1 h at ~10 MeV. This case study indicates the leading contribution of He+ band waves to radiation belt relativistic electron losses during the coexistence of three EMIC wave bands and suggests that the roles of different EMIC wave bands in the relativistic electron dynamics should be carefully incorporated in future modeling efforts.

  10. Multiwavelength Observations of an Eruptive Flare: Evidence for Blast Waves and Break-Out

    NASA Astrophysics Data System (ADS)

    Kumar, Pankaj; Innes, D. E.

    2013-11-01

    Images of an east-limb flare on 3 November 2010 taken in the 131 Å channel of the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory provide a convincing example of a long current sheet below an erupting plasmoid, as predicted by the standard magnetic reconnection model of eruptive flares. However, the 171 Å and 193 Å channel images hint at an alternative scenario. These images reveal that large-scale waves with velocity greater than 1000 km s-1 propagated alongside and ahead of the erupting plasmoid. Just south of the plasmoid, the waves coincided with type-II radio emission, and to the north, where the waves propagated along plume-like structures, there was increased decimetric emission. Initially, the cavity around the hot plasmoid expanded. Later, when the erupting plasmoid reached the height of an overlying arcade system, the plasmoid structure changed, and the lower parts of the cavity collapsed inwards. Hot loops appeared alongside and below the erupting plasmoid. We consider a scenario in which the fast waves and the type-II emission were a consequence of a flare blast wave, and the cavity collapse and the hot loops resulted from the break-out of the flux rope through an overlying coronal arcade.

  11. Relativistic backward wave oscillator with a Gaussian radiation pattern and related technologies

    NASA Astrophysics Data System (ADS)

    Elfrgani, Ahmed

    Short pulse high power microwave (HPM) devices with Gaussian radiation pattern are attractive for many applications. The importance of the Gaussian microwave beam is that its maximum energy density is concentrated on axis. The purpose of this study is to use a backward wave oscillator (BWO), which is typically known to radiate in the TM01 mode, to produce an HPM Gaussian wave beam. A BWO generates an electromagnetic wave with negative group velocity where the wave is traveling in the direction opposite to the electron beam. Thus, to extract the microwave signal axially, a cavity resonator reflector or cutoff waveguide section are widely used to reflect the TM01 mode backward wave to a TM01 mode forward wave. To provide a HPM Gaussian-like TE11 wave beam, an X-band relativistic BWO (RBWO) is proposed that uses a Bragg reflector instead of a cavity resonator reflector. Therefore, the device of interest is a RBWO consisting of two periodic slow wave structures (SWSs). In the original design, the inner radii of both SWSs were the same. For a uniform electron beam, a Bragg structure that is placed at the cathode (upstream) end, unfavorably perturbed the electron beam. Thus, two designs were proposed to minimize the interaction between the electron beam and the Bragg reflector structure. First, a uniform magnetic field was used with increased radial gap between the electron beam and the structure by optimizing the Bragg structure dimensions. This configuration generated a single frequency at X-band. The second design used a nonuniform magnetic field to control the gap between the electron beam and the SWSs, and to optimize the electron beam-Bragg structure interaction for C-band radiation generation. This is a dual-band RBWO operation with a possibility of generating a TE11-mode with linear polarization at single or dual frequencies (X- and C-bands). The radiation at C-band was generated in the Bragg structure as an asymmetric mode. The only known way to extract such a

  12. Coherent quantum states of a relativistic particle in an electromagnetic plane wave and a parallel magnetic field

    SciTech Connect

    Colavita, E.; Hacyan, S.

    2014-03-15

    We analyze the solutions of the Klein–Gordon and Dirac equations describing a charged particle in an electromagnetic plane wave combined with a magnetic field parallel to the direction of propagation of the wave. It is shown that the Klein–Gordon equation admits coherent states as solutions, while the corresponding solutions of the Dirac equation are superpositions of coherent and displaced-number states. Particular attention is paid to the resonant case in which the motion of the particle is unbounded. -- Highlights: •We study a relativistic electron in a particular electromagnetic field configuration. •New exact solutions of the Klein–Gordon and Dirac equations are obtained. •Coherent and displaced number states can describe a relativistic particle.

  13. Effects of ion mobility and positron fraction on solitary waves in weak relativistic electron-positron-ion plasma.

    PubMed

    Lu, Ding; Li, Zi-Liang; Xie, Bai-Song

    2013-09-01

    The effects of ion mobility and positron fraction on the solitary waves of the laser field envelope and the potential of the electrostatic field in weak relativistic electron-positron-ion plasma are investigated. The parameter region for the existence of solitary waves is obtained analytically, and a reasonable choice of parameters is clarified. Both cases of mobile and immobile ions are considered. It is found that the amplitudes of solitary waves in the former case are larger compared to the latter case. For small plasma density, the localized solitary wave solutions in terms of the approximate perturbation analytical method are very consistent with those by exact numerical calculations. However, as the plasma density increases the analytical method loses its validity more and more. The influence of the positron fraction on the amplitudes of solitary waves shows a monotonous increasing relation. The implications of our results to particle acceleration are also discussed briefly. PMID:24125373

  14. Fluid/Structure Interaction Computational Investigation of Blast-Wave Mitigation Efficacy of the Advanced Combat Helmet

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Bell, W. C.; Pandurangan, B.; Glomski, P. S.

    2011-08-01

    To combat the problem of traumatic brain injury (TBI), a signature injury of the current military conflicts, there is an urgent need to design head protection systems with superior blast/ballistic impact mitigation capabilities. Toward that end, the blast impact mitigation performance of an advanced combat helmet (ACH) head protection system equipped with polyurea suspension pads and subjected to two different blast peak pressure loadings has been investigated computationally. A fairly detailed (Lagrangian) finite-element model of a helmet/skull/brain assembly is first constructed and placed into an Eulerian air domain through which a single planar blast wave propagates. A combined Eulerian/Lagrangian transient nonlinear dynamics computational fluid/solid interaction analysis is next conducted in order to assess the extent of reduction in intra-cranial shock-wave ingress (responsible for TBI). This was done by comparing temporal evolutions of intra-cranial normal and shear stresses for the cases of an unprotected head and the helmet-protected head and by correlating these quantities with the three most common types of mild traumatic brain injury (mTBI), i.e., axonal damage, contusion, and subdural hemorrhage. The results obtained show that the ACH provides some level of protection against all investigated types of mTBI and that the level of protection increases somewhat with an increase in blast peak pressure. In order to rationalize the aforementioned findings, a shockwave propagation/reflection analysis is carried out for the unprotected head and helmet-protected head cases. The analysis qualitatively corroborated the results pertaining to the blast-mitigation efficacy of an ACH, but also suggested that there are additional shockwave energy dissipation phenomena which play an important role in the mechanical response of the unprotected/protected head to blast impact.

  15. Two-fluid temperature-dependent relativistic waves in magnetized streaming pair plasmas.

    PubMed

    Soto-Chavez, A R; Mahajan, S M; Hazeltine, R D

    2010-02-01

    A relativistic two-fluid temperature-dependent approach for a streaming magnetized pair plasma is considered. Such a scenario corresponds to secondary plasmas created at the polar caps of pulsar magnetospheres. In the model the generalized vorticity rather than the magnetic field is frozen into the fluid. For parallel propagation four transverse modes are found. Two are electromagnetic plasma modes which at high temperature become light waves. The remaining two are Alfvénic modes split into a fast and slow mode. The slow mode is cyclotron two-stream unstable at large wavelengths and is always subluminous. We find that the instability cannot be suppressed by temperature effects in the limit of large (finite) magnetic field. The fast Alfvén mode can be superluminous only at large wavelengths, however it is always subluminous at high temperatures. In this incompressible approximation only the ordinary mode is present for perpendicular propagation. For oblique propagation the dispersion relation is studied for finite and large strong magnetic fields and the results are qualitatively described. PMID:20365661

  16. Preliminary experimental investigation of a dual-band relativistic backward wave oscillator with dual beams

    SciTech Connect

    Wang Ting; Qian Baoliang; Zhang Jiande; Zhang Xiaoping; Cao Yibing; Zhang Qiang

    2011-01-15

    A dual-band relativistic backward wave oscillator with dual electron beams generating C-band and X-band microwaves is investigated experimentally. The frequencies, powers, and radiation patterns of the dual-band microwaves are measured. With the diode voltage of 657 kV and the total beam current of 14 kA guided by a magnetic field of about 1.7 T, the dual-band microwaves are generated with dominant frequencies of 4.58 and 8.30 GHz close to the results from the particle-in-cell simulation. The powers of the C-band and X-band microwaves are 520 and 113 MW, respectively. The effects of variations in the guiding magnetic field and diode voltage on the powers of the dual-band microwaves are presented and discussed. The radiation patterns of the dual-band microwaves from the radiating antenna are tested both corresponding to a TM{sub 01} mode and the independency of the operation processes of them is discussed.

  17. The role of Pc5 waves in relativistic electron losses through the magnetopause

    NASA Astrophysics Data System (ADS)

    Katsavrias, Christos; Daglis, Ioannis; Turner, Drew; Georgiou, Marina; Papadimitriou, Constantinos; Sandberg, Ingmar; Balasis, George

    2015-04-01

    We have investigated the response of the outer Van Allen belt electrons to the arrival of different ICMEs (Interplanetary Coronal Mass Ejections), which trigger - or not - geospace magnetic storms and magnetospheric substorms of various intensities. To do that, we examine direct observations of equatorial electron phase space density (PSD) by using differential flux data from the Magnetospheric Electron Ion Spectrometers (MagEIS) on-board the Van Allen Probes, the Solid State Telescope (SST) of THEMIS (A, D and E), the EPIC Radiation Monitor of XMM and the MAGnetospheric Electron Detector (MAGED) of GOES 13 and 15. Observations show that losses due to magnetopause shadowing are accompanied by outward diffusion driven by Pc5 ULF waves. In addition, there is a 300 MeV/G threshold in energy that separates the source of relativistic electrons inside the outer belt even after the arrival of a prominent pressure pulse. The study is complemented by in-situ and ground-based data of the solar wind parameters and the geomagnetic indices. This work has received support from the European Union's Seventh Framework Programme (FP7-SPACE-2011-1) under grant agreement no. 284520 for the MAARBLE (Monitoring, Analysing and Assessing Radiation Belt Energization and Loss) collaborative research project.

  18. The mechanism and realization of a band-agile coaxial relativistic backward-wave oscillator

    SciTech Connect

    Ge, Xingjun; Zhang, Jun; Zhong, Huihuang; Qian, Baoliang; Wang, Haitao

    2014-11-03

    The mechanism and realization of a band-agile coaxial relativistic backward-wave oscillator (RBWO) are presented. The operation frequency tuning can be easily achieved by merely altering the inner-conductor length. The key effects of the inner-conductor length contributing to the mechanical frequency tunability are investigated theoretically and experimentally. There is a specific inner-conductor length where the operation frequency can jump from one mode to another mode, which belongs to a different operation band. In addition, the operation frequency is tunable within each operation band. During simulation, the L-band microwave with a frequency of 1.61 GHz is radiated when the inner-conductor length is 39 cm. Meanwhile, the S-band microwave with a frequency of 2.32 GHz is radiated when the inner-conductor length is 5 cm. The frequency adjustment bandwidths of L-band and S-band are about 8.5% and 2%, respectively. Moreover, the online mechanical tunability process is described in detail. In the initial experiment, the generated microwave frequencies remain approximately 1.59 GHz and 2.35 GHz when the inner-conductor lengths are 39 cm and 5 cm. In brief, this technical route of the band-agile coaxial RBWO is feasible and provides a guide to design other types of band-agile high power microwaves sources.

  19. Lifetime experimental study of graphite cathode for relativistic backward wave oscillator

    NASA Astrophysics Data System (ADS)

    Wu, Ping; Sun, Jun; Chen, Changhua

    2016-07-01

    Graphite cathodes are widely used due to their good emission properties, especially their long lifetime. Some previous papers have researched their lifetime under certain conditions and uncovered some important phenomena. This paper is dedicated to research the lifetime of the graphite cathode under higher power. In the lifetime test, the voltage and current amplitudes are about 970 kV and 9.7 kA, respectively. The repetition rate is 20 Hz. An X-band relativistic backward wave oscillator is used to generate high power microwave by utilizing the electron beam energy. The experimental results demonstrate that the emission property of the graphite cathode remains quite stable during 105 pulses, despite some slight deteriorations regarding the beam and microwave parameters. The macroscopic morphology change of the cathode blade due to material evaporation is observed by a laser microscope. The mass loss of the graphite cathode is about 60 μg/C. Meanwhile, the observation by a scanning electron microscope uncovers that the original numerous flaky micro-structures are totally replaced by a relatively smooth surface at the mid region of the cathode blade and a large number of new micro-protrusions at the blade edges during the lifetime test.

  20. Localization of small arms fire using acoustic measurements of muzzle blast and/or ballistic shock wave arrivals.

    PubMed

    Lo, Kam W; Ferguson, Brian G

    2012-11-01

    The accurate localization of small arms fire using fixed acoustic sensors is considered. First, the conventional wavefront-curvature passive ranging method, which requires only differential time-of-arrival (DTOA) measurements of the muzzle blast wave to estimate the source position, is modified to account for sensor positions that are not strictly collinear (bowed array). Second, an existing single-sensor-node ballistic model-based localization method, which requires both DTOA and differential angle-of-arrival (DAOA) measurements of the muzzle blast wave and ballistic shock wave, is improved by replacing the basic external ballistics model (which describes the bullet's deceleration along its trajectory) with a more rigorous model and replacing the look-up table ranging procedure with a nonlinear (or polynomial) equation-based ranging procedure. Third, a new multiple-sensor-node ballistic model-based localization method, which requires only DTOA measurements of the ballistic shock wave to localize the point of fire, is formulated. The first method is applicable to situations when only the muzzle blast wave is received, whereas the third method applies when only the ballistic shock wave is received. The effectiveness of each of these methods is verified using an extensive set of real data recorded during a 7 day field experiment. PMID:23145587

  1. Localization of small arms fire using acoustic measurements of muzzle blast and/or ballistic shock wave arrivals.

    PubMed

    Lo, Kam W; Ferguson, Brian G

    2012-11-01

    The accurate localization of small arms fire using fixed acoustic sensors is considered. First, the conventional wavefront-curvature passive ranging method, which requires only differential time-of-arrival (DTOA) measurements of the muzzle blast wave to estimate the source position, is modified to account for sensor positions that are not strictly collinear (bowed array). Second, an existing single-sensor-node ballistic model-based localization method, which requires both DTOA and differential angle-of-arrival (DAOA) measurements of the muzzle blast wave and ballistic shock wave, is improved by replacing the basic external ballistics model (which describes the bullet's deceleration along its trajectory) with a more rigorous model and replacing the look-up table ranging procedure with a nonlinear (or polynomial) equation-based ranging procedure. Third, a new multiple-sensor-node ballistic model-based localization method, which requires only DTOA measurements of the ballistic shock wave to localize the point of fire, is formulated. The first method is applicable to situations when only the muzzle blast wave is received, whereas the third method applies when only the ballistic shock wave is received. The effectiveness of each of these methods is verified using an extensive set of real data recorded during a 7 day field experiment.

  2. Dual-cavity mode converter for a fundamental mode output in an over-moded relativistic backward-wave oscillator

    NASA Astrophysics Data System (ADS)

    Li, Jiawei; Xiao, Renzhen; Bai, Xianchen; Zhang, Yuchuan; Zhang, Xiaowei; Zhu, Qi; Shao, Hao; Chen, Changhua; Huang, Wenhua

    2015-03-01

    A dual-cavity TM02-TM01 mode converter is designed for a dual-mode operation over-moded relativistic backward-wave oscillator. With the converter, the fundamental mode output is achieved. Particle-in-cell simulation shows that the efficiency of beam-wave conversion was over 46% and a pureTM01 mode output was obtained. Effects of end reflection provided by the mode converter were studied. Adequate TM01 mode feedback provided by the converter enhances conversion efficiency. The distance between the mode converter and extraction cavity critically affect the generation of microwaves depending on the reflection phase of TM01 mode feedback.

  3. Numerical simulation of the fluid-structure interaction between air blast waves and soil structure

    NASA Astrophysics Data System (ADS)

    Umar, S.; Risby, M. S.; Albert, A. Luthfi; Norazman, M.; Ariffin, I.; Alias, Y. Muhamad

    2014-03-01

    Normally, an explosion threat on free field especially from high explosives is very dangerous due to the ground shocks generated that have high impulsive load. Nowadays, explosion threats do not only occur in the battlefield, but also in industries and urban areas. In industries such as oil and gas, explosion threats may occur on logistic transportation, maintenance, production, and distribution pipeline that are located underground to supply crude oil. Therefore, the appropriate blast resistances are a priority requirement that can be obtained through an assessment on the structural response, material strength and impact pattern of material due to ground shock. A highly impulsive load from ground shocks is a dynamic load due to its loading time which is faster than ground response time. Of late, almost all blast studies consider and analyze the ground shock in the fluid-structure interaction (FSI) because of its influence on the propagation and interaction of ground shock. Furthermore, analysis in the FSI integrates action of ground shock and reaction of ground on calculations of velocity, pressure and force. Therefore, this integration of the FSI has the capability to deliver the ground shock analysis on simulation to be closer to experimental investigation results. In this study, the FSI was implemented on AUTODYN computer code by using Euler-Godunov and the arbitrary Lagrangian-Eulerian (ALE). Euler-Godunov has the capability to deliver a structural computation on a 3D analysis, while ALE delivers an arbitrary calculation that is appropriate for a FSI analysis. In addition, ALE scheme delivers fine approach on little deformation analysis with an arbitrary motion, while the Euler-Godunov scheme delivers fine approach on a large deformation analysis. An integrated scheme based on Euler-Godunov and the arbitrary Lagrangian-Eulerian allows us to analyze the blast propagation waves and structural interaction simultaneously.

  4. Brain Response to Primary Blast Wave Using Validated Finite Element Models of Human Head and Advanced Combat Helmet

    PubMed Central

    Zhang, Liying; Makwana, Rahul; Sharma, Sumit

    2013-01-01

    Blast-induced traumatic brain injury has emerged as a “signature injury” in combat casualty care. Present combat helmets are designed primarily to protect against ballistic and blunt impacts, but the current issue with helmets is protection concerning blasts. In order to delineate the blast wave attenuating capability of the Advanced Combat Helmet (ACH), a finite element (FE) study was undertaken to evaluate the head response against blast loadings with and without helmet using a partially validated FE model of the human head and ACH. Four levels of overpressures (0.27–0.66 MPa) from the Bowen’s lung iso-damage threshold curves were used to simulate blast insults. Effectiveness of the helmet with respect to head orientation was also investigated. The resulting biomechanical responses of the brain to blast threats were compared for human head with and without the helmet. For all Bowen’s cases, the peak intracranial pressures (ICP) in the head ranged from 0.68 to 1.8 MPa in the coup cortical region. ACH was found to mitigate ICP in the head by 10–35%. Helmeted head resulted in 30% lower average peak brain strains and product of strain and strain rate. Among three blast loading directions with ACH, highest reduction in peak ICP (44%) was due to backward blasts whereas the lowest reduction in peak ICP and brain strains was due to forward blast (27%). The biomechanical responses of a human head to primary blast insult exhibited directional sensitivity owing to the different geometry contours and coverage of the helmet construction and asymmetric anatomy of the head. Thus, direction-specific tolerances are needed in helmet design in order to offer omni-directional protection for the human head. The blasts of varying peak overpressures and durations that are believed to produce the same level of lung injury produce different levels of mechanical responses in the brain, and hence “iso-damage” curves for brain injury are likely different than the Bowen

  5. Slow-time-scale magnetic fields driven by fast-time-scale waves in an underdense relativistic Vlasov plasma

    NASA Astrophysics Data System (ADS)

    Zhu, Shao-ping; He, X. T.; Zheng, C. Y.

    2001-01-01

    Slow-time-scale magnetic fields driven by fast-time-scale electromagnetic waves or plasma waves are examined from the perspective of the Vlasov-Maxwell equations for a relativistic Vlasov plasma. An equation for slow-time-scale magnetic field is obtained. The field proposed in the present paper is a result of wave-wave beating which drives a solenoidal current. The magnitude of the slow-time-scale magnetic field proposed here can be as high as 20 MG at the critical surface for a laser intensity I=1018W/cm2 at wavelength λ0=1.05 μm. The predicted magnetic field is observed in two-dimensional particle simulations presented here.

  6. Mechanism of Traumatic Brain Injury at Distant Locations After Exposure to Blast Waves: Preliminary Results from Animal and Phantom Experiments.

    PubMed

    Nakagawa, Atsuhiro; Ohtani, Kiyonobu; Goda, Keisuke; Kudo, Daisuke; Arafune, Tatsuhiko; Washio, Toshikatsu; Tominaga, Teiji

    2016-01-01

    Purpose Primary blast-induced traumatic brain injury (bTBI) is the least understood of the four phases of blast injury. Distant injury induced by the blast wave, on the opposite side from the wave entry, is not well understood. This study investigated the mechanism of distant injury in bTBI. Materials and Methods Eight 8-week-old male Sprague-Dawley rats were divided into two groups: group 1 served as the control group and did not receive any shock wave (SW) exposure; group 2 was exposed to SWs (12.5 ± 2.5 MPa). Propagation of SWs within a brain phantom was evaluated by visualization, pressure measurement, and numerical simulation. Results Intracerebral hemorrhage near the ignition site and elongation of the distant nucleus were observed, despite no apparent damage between the two locations in the animal experiment. Visualization, pressure measurement, and numerical simulation indicated the presence of complex wave dynamics accompanying a sudden increase in pressure, followed by negative pressure in the phantom experiment. Conclusion A local increase in pressure above the threshold caused by interference of reflection and rarefaction waves in the vicinity of the brain-skull surface may cause distant injury in bTBI. PMID:27165867

  7. Study of radiative blast waves generated on the Z-beamlet laser.

    SciTech Connect

    Edens, Aaron D.; Schwarz, Jens

    2012-02-01

    This document describes the original goals of the project to study the Vishniac Overstability on blast waves produced using the Z-Beamlet laser facility as well as the actual results. The proposed work was to build on earlier work on the facility and result in the best characterized set of data for such phenomena in the laboratory. To accomplish the goals it was necessary to modify the existing probe laser at the facility so that it could take multiple images over the course of 1-2 microseconds. Troubles with modifying the probe laser are detailed as well as the work that went into said modifications. The probe laser modification ended up taking the entire length of the project and were the major accomplishment of the research.

  8. Supernovae and Their Expanding Blast Waves during the Early Evolution of Galactic Globular Clusters

    NASA Astrophysics Data System (ADS)

    Tenorio-Tagle, Guillermo; Muñoz-Tuñón, Casiana; Silich, Sergiy; Cassisi, Santi

    2015-11-01

    Our arguments deal with the early evolution of Galactic globular clusters and show why only a few of the supernovae (SNe) products were retained within globular clusters and only in the most massive cases (M ≥ 106 M⊙), while less massive clusters were not contaminated at all by SNe. Here, we show that SN blast waves evolving in a steep density gradient undergo blowout and end up discharging their energy and metals into the medium surrounding the clusters. This inhibits the dispersal and the contamination of the gas left over from a first stellar generation. Only the ejecta from well-centered SNe that evolve into a high-density medium available for a second stellar generation (2SG) in the most massive clusters would be retained. These are likely to mix their products with the remaining gas, eventually leading in these cases to an Fe-contaminated 2SG.

  9. Self-generated magnetic fields in blast-wave driven Rayleigh-Taylor experiments

    NASA Astrophysics Data System (ADS)

    Flaig, Markus; Plewa, Tomasz

    2015-12-01

    We study the effect of self-generated magnetic fields in two-dimensional computer models of blast-wave driven high-energy density Rayleigh-Taylor instability (RTI) experiments. Previous works [1,2] suggested that such fields have the potential to influence the RTI morphology and mixing. When neglecting the friction force between electrons and ions, we do indeed find that dynamically important (β≲103) magnetic fields are generated. However, in the more realistic case where the friction force is accounted for, the resulting fields are much weaker, β≳105 , and can no longer influence the dynamics of the system. Although we find no evidence for dynamically important magnetic fields being created in the two-dimensional case studied here, the situation might be different in a three-dimensional setup, which will be addressed in a future study.

  10. Simulations of Magnetic Field Generation in Laser-Produced Blast Waves

    NASA Astrophysics Data System (ADS)

    Lamb, D.; Fatenejad, M.; Gregori, G.; Miniati, F.; Park, H.-S.; Remington, B.; Ravasio, A.; Koenig, M.; Murphy, C. D.

    2011-10-01

    Magnetic fields are ubiquitous in the Universe. The origin of these fields and process by which they are amplified are not fully understood, although amplification is thought to involve turbulence. Experiments being conducted at medium-scale laser facilities (such as the LULI laser the Janus laser) can investigate the self-generation of magnetic fields under conditions that resemble astrophysical shocks. In these experiments, two 527 nm, 1.5 ns long laser beams are focused onto a 500 μm diameter graphite rod producing an explosion and asymmetric blast wave into a Helium filled chamber. A variety of diagnostics measure the velocity, electron density, and show that a large scale magnetic field is produced. We report preliminary hydrodynamic and MHD simulations using FLASH of a simplified version of the experiment. The results provide insights into the origin and generation of the magnetic field. This work was partially supported by the US DOE, the European Research Council, and Laserlab Europe.

  11. SUPERNOVAE AND THEIR EXPANDING BLAST WAVES DURING THE EARLY EVOLUTION OF GALACTIC GLOBULAR CLUSTERS

    SciTech Connect

    Tenorio-Tagle, Guillermo; Silich, Sergiy; Muñoz-Tuñón, Casiana; Cassisi, Santi E-mail: cmt@iac.es

    2015-11-20

    Our arguments deal with the early evolution of Galactic globular clusters and show why only a few of the supernovae (SNe) products were retained within globular clusters and only in the most massive cases (M ≥ 10{sup 6} M{sub ⊙}), while less massive clusters were not contaminated at all by SNe. Here, we show that SN blast waves evolving in a steep density gradient undergo blowout and end up discharging their energy and metals into the medium surrounding the clusters. This inhibits the dispersal and the contamination of the gas left over from a first stellar generation. Only the ejecta from well-centered SNe that evolve into a high-density medium available for a second stellar generation (2SG) in the most massive clusters would be retained. These are likely to mix their products with the remaining gas, eventually leading in these cases to an Fe-contaminated 2SG.

  12. ON THE AMPLIFICATION OF MAGNETIC FIELD BY A SUPERNOVA BLAST SHOCK WAVE IN A TURBULENT MEDIUM

    SciTech Connect

    Guo Fan; Li Shengtai; Li Hui; Li, David; Giacalone, Joe; Jokipii, J. R.

    2012-03-10

    We have performed extensive two-dimensional magnetohydrodynamic simulations to study the amplification of magnetic fields when a supernova blast wave propagates into a turbulent interstellar plasma. The blast wave is driven by injecting high pressure in the simulation domain. The interstellar magnetic field can be amplified by two different processes, occurring in different regions. One is facilitated by the fluid vorticity generated by the 'rippled' shock front interacting with the background turbulence. The resulting turbulent flow keeps amplifying the magnetic field, consistent with earlier work. The other process is facilitated by the growth of the Rayleigh-Taylor instability at the contact discontinuity between the ejecta and the shocked medium. This can efficiently amplify the magnetic field and tends to produce the highest magnetic field. We investigate the dependence of the amplification on numerical parameters such as grid-cell size and on various physical parameters. We show that the magnetic field has a characteristic radial profile such that the downstream magnetic field gets progressively stronger away from the shock. This is because the downstream magnetic field needs a finite time to reach the efficient amplification, and will get further amplified in the Rayleigh-Taylor region. In our simulation, we do not observe a systematic strong magnetic field within a small distance to the shock. This indicates that if the magnetic-field amplification in supernova remnants indeed occurs near the shock front, other processes such as three-dimensional instabilities, plasma kinetics, and/or cosmic ray effect may need to be considered to explain the strong magnetic field in supernova remnants.

  13. Untangling the Effect of Head Acceleration on Brain Responses to Blast Waves.

    PubMed

    Mao, Haojie; Unnikrishnan, Ginu; Rakesh, Vineet; Reifman, Jaques

    2015-12-01

    Multiple injury-causing mechanisms, such as wave propagation, skull flexure, cavitation, and head acceleration, have been proposed to explain blast-induced traumatic brain injury (bTBI). An accurate, quantitative description of the individual contribution of each of these mechanisms may be necessary to develop preventive strategies against bTBI. However, to date, despite numerous experimental and computational studies of bTBI, this question remains elusive. In this study, using a two-dimensional (2D) rat head model, we quantified the contribution of head acceleration to the biomechanical response of brain tissues when exposed to blast waves in a shock tube. We compared brain pressure at the coup, middle, and contre-coup regions between a 2D rat head model capable of simulating all mechanisms (i.e., the all-effects model) and an acceleration-only model. From our simulations, we determined that head acceleration contributed 36-45% of the maximum brain pressure at the coup region, had a negligible effect on the pressure at the middle region, and was responsible for the low pressure at the contre-coup region. Our findings also demonstrate that the current practice of measuring rat brain pressures close to the center of the brain would record only two-thirds of the maximum pressure observed at the coup region. Therefore, to accurately capture the effects of acceleration in experiments, we recommend placing a pressure sensor near the coup region, especially when investigating the acceleration mechanism using different experimental setups. PMID:26458125

  14. Comparison of weak-shock reflection factors for wedges, cylinders and blast waves

    SciTech Connect

    Reichenbach, H.; Kuhl, A.L.

    1992-07-01

    Ernst Mach (1838--1916) was the first to discover an irregular reflection phenomenon of shock waves, as is well known in our community. In fact, this occurred in 1875 -- three years earlier than usually assumed in the literature. A facsimile of the paper in which he mentioned a special shock wave behavior is shown in a figure. However, it is correct that Mach gave the physical interpretation of this phenomenon in 1878. Since Mach`s discovery of an irregular shock reflection pattern 117 years ago, new shock configurations have been discovered -- one of the most recent examples is the so-called {open_quotes}von Neumann reflection{close_quotes} for weak shocks as reported by Colella and Henderson in 1990. Due to active research efforts related to shock reflection, especially in the last two decades, we now have a relatively detailed understanding of reflection phenomena and of transition conditions from one reflection configuration to another. The purpose of this paper is to compare reflection factors for weak shocks from various surfaces, and to focus attention on some unsolved questions. Three different cases are considered: (1) square-wave planar shock reflection from wedges, (2) square-wave planar shock reflection from cylinders and (3) spherical blast wave reflection from a planar surface. The authors restrict themselves to weak shocks. Following Henderson`s definition, shocks with a Mach number of M{sub 0} < 1.56 in air or with an overpressure of {Delta}p{sub I} < 25 psi (1.66 bar) under normal ambient conditions are called weak.

  15. Comparison of weak-shock reflection factors for wedges, cylinders and blast waves

    SciTech Connect

    Reichenbach, H. , Freiburg im Breisgau ); Kuhl, A.L. )

    1992-07-01

    Ernst Mach (1838--1916) was the first to discover an irregular reflection phenomenon of shock waves, as is well known in our community. In fact, this occurred in 1875 -- three years earlier than usually assumed in the literature. A facsimile of the paper in which he mentioned a special shock wave behavior is shown in a figure. However, it is correct that Mach gave the physical interpretation of this phenomenon in 1878. Since Mach's discovery of an irregular shock reflection pattern 117 years ago, new shock configurations have been discovered -- one of the most recent examples is the so-called [open quotes]von Neumann reflection[close quotes] for weak shocks as reported by Colella and Henderson in 1990. Due to active research efforts related to shock reflection, especially in the last two decades, we now have a relatively detailed understanding of reflection phenomena and of transition conditions from one reflection configuration to another. The purpose of this paper is to compare reflection factors for weak shocks from various surfaces, and to focus attention on some unsolved questions. Three different cases are considered: (1) square-wave planar shock reflection from wedges, (2) square-wave planar shock reflection from cylinders and (3) spherical blast wave reflection from a planar surface. The authors restrict themselves to weak shocks. Following Henderson's definition, shocks with a Mach number of M[sub 0] < 1.56 in air or with an overpressure of [Delta]p[sub I] < 25 psi (1.66 bar) under normal ambient conditions are called weak.

  16. Exposure of the Thorax to a Sublethal Blast Wave Causes a Hydrodynamic Pulse That Leads to Perivenular Inflammation in the Brain

    PubMed Central

    Pampori, Adam; Keledjian, Kaspar; Tosun, Cigdem; Schwartzbauer, Gary; Ivanova, Svetlana; Gerzanich, Volodymyr

    2014-01-01

    Abstract Traumatic brain injury (TBI) caused by an explosive blast (blast-TBI) is postulated to result, in part, from transvascular transmission to the brain of a hydrodynamic pulse (a.k.a., volumetric blood surge, ballistic pressure wave, hydrostatic shock, or hydraulic shock) induced in major intrathoracic blood vessels. This mechanism of blast-TBI has not been demonstrated directly. We tested the hypothesis that a blast wave impacting the thorax would induce a hydrodynamic pulse that would cause pathological changes in the brain. We constructed a Thorax-Only Blast Injury Apparatus (TOBIA) and a Jugular-Only Blast Injury Apparatus (JOBIA). TOBIA delivered a collimated blast wave to the right lateral thorax of a rat, precluding direct impact on the cranium. JOBIA delivered a blast wave to the fluid-filled port of an extracorporeal intravenous infusion device whose catheter was inserted retrograde into the jugular vein, precluding lung injury. Long Evans rats were subjected to sublethal injury by TOBIA or JOBIA. Blast injury induced by TOBIA was characterized by apnea and diffuse bilateral hemorrhagic injury to the lungs associated with a transient reduction in pulse oximetry signals. Immunolabeling 24 h after injury by TOBIA showed up-regulation of tumor necrosis factor alpha, ED-1, sulfonylurea receptor 1 (Sur1), and glial fibrillary acidic protein in veins or perivenular tissues and microvessels throughout the brain. The perivenular inflammatory effects induced by TOBIA were prevented by ligating the jugular vein and were reproduced using JOBIA. We conclude that blast injury to the thorax leads to perivenular inflammation, Sur1 up-regulation, and reactive astrocytosis resulting from the induction of a hydrodynamic pulse in the vasculature. PMID:24673157

  17. Particle-in-cell simulation for parametric decays of a circularly polarized Alfvén wave in relativistic thermal electron-positron plasma

    SciTech Connect

    López, Rodrigo A. Muñoz, Víctor; Viñas, Adolfo F.; Alejandro Valdivia, J.

    2014-03-15

    Parametric decays of a left-handed circularly polarized Alfvén wave propagating along a constant background magnetic field in a relativistic thermal electron-positron plasma are studied by means of a one dimensional relativistic particle-in-cell simulation. Relativistic effects are included in the Lorentz equation for the momentum of the particles and in their thermal motion, by considering a Maxwell-Jüttner velocity distribution function for the initial condition. In the linear stage of the simulation, we find many instabilities that match the predictions of relativistic fluid theory. In general, the growth rates of the instabilities increase as the pump wave amplitude is increased, and decrease with a raise in the plasma temperatures. We have confirmed that for very high temperatures the Alfvén branch is suppressed, consistent with analytical calculations.

  18. Modeling blast waves, gas and particles dispersion in urban and hilly ground areas.

    PubMed

    Hank, S; Saurel, R; Le Métayer, O; Lapébie, E

    2014-09-15

    The numerical simulation of shock and blast waves as well as particles dispersion in highly heterogeneous media such as cities, urban places, industrial plants and part of countries is addressed. Examples of phenomena under study are chemical gas products dispersion from damaged vessels, gas dispersion in urban places under explosion conditions, shock wave propagation in urban environment. A three-dimensional simulation multiphase flow code (HI2LO) is developed in this aim. To simplify the consideration of complex geometries, a heterogeneous discrete formulation is developed. When dealing with large scale domains, such as countries, the topography is considered with the help of elevation data. Meteorological conditions are also considered, in particular regarding complex temperature and wind profiles. Heat and mass transfers on sub-scale objects, such as buildings, trees and other obstacles are considered as well. Particles motion is addressed through a new turbulence model involving a single parameter to describe accurately plumes. Validations against experiments in basic situations are presented as well as examples of industrial and environmental computations. PMID:25199503

  19. Nonlinear quantum theory of stimulated Cherenkov radiation of transverse electromagnetic waves from a low-density relativistic electron beam in a dielectric medium

    SciTech Connect

    Bobylev, Yu. B.; Kuzelev, M. V.

    2012-06-15

    A nonlinear quantum theory of stimulated Cherenkov radiation of transverse electromagnetic waves from a low-density relativistic electron beam in an isotropic dielectric medium is presented. A quantum model based on the Klein-Gordon equation is used. The growth rates of beam instabilities caused by the effect of stimulated Cherenkov radiation have been determined in the linear approximation. Mechanisms of the nonlinear saturation of relativistic quantum Cherenkov beam instabilities have been analyzed and the corresponding analytical solutions have been obtained.

  20. Common analysis of the relativistic klystron and the standing-wave free-electron laser two-beam accelerator

    SciTech Connect

    Wurtele, J.S.; Whittum, D.H.; Sessler, A.M.

    1992-07-01

    This paper summarizes a new formalism which makes the analysis and understanding of both the relativistic klystron (RK) and the standing-wave free-electron laser (SWFEL) two-beam accelerator (TBA) available to a wide audience of accelerator physicists. A ``coupling impedance`` for both the RK and SWFEL is introduced, which can include realistic cavity features, such as beam and vacuum ports, in a simple manner. The RK and SWFEL macroparticle equations, which govern the energy and phase evolution of successive bunches in the beam, are of identical form, differing only by multiplicative factors. The analysis allows, for the first time, a relative comparison of the RF and SWFEL TBAs.

  1. Another self-similar blast wave: Early time asymptote with shock heated electrons and high thermal conductivity

    NASA Technical Reports Server (NTRS)

    Cox, D. P.; Edgar, R. J.

    1982-01-01

    Accurate approximations are presented for the self-similar structures of nonradiating blast waves with adiabatic ions, isothermal electrons, and equation ion and electron temperatures at the shock. The cases considered evolve in cavities with power law ambient densities (including the uniform density case) and have negligible external pressure. The results provide the early time asymptote for systems with shock heating of electrons and strong thermal conduction. In addition, they provide analytical results against which two fluid numerical hydrodynamic codes can be checked.

  2. Numerical reconstruction of part of an actual blast-wave flow field to agree with available experimental data

    NASA Astrophysics Data System (ADS)

    Lau, S. C. M.; Gottlieb, J. J.

    1983-11-01

    A method of solution is presented and validated for the numerical reconstruction of a certain part of an actual blast-wave flow field of interest for planar, cylindrical and spherical explosions, away from the explosion source where the blast-wave has become sufficiently weak that real-gas effects are unimportant. This method involves, essentially, a trial-and-error process of constructing the best possible path of a fluid particle or equivalent piston at the upstream side of the flow field of interest such that the resulting flow field constructed numerically in front of the equivalent moving piston agrees as well as possible with all available although limited experimental data. The relatively new random-choice method was suitably modified to easily handle the numerical computations of the nonstationary flow in front of the moving piston. Finally, the present method is used to reconstruct the flow field for past TNT and ANFO explosions, for which the blast-wave amplitudes are less than about 1 MPa. These results are presented in convenient graphical and tabular form, scaled for the case of a 1-kg TNT surface explosion or its equivalent in a standard atmosphere, so that they can be utilized readily for different sized explosions at the same or other atmospheric conditions.

  3. Subjective loudness of simulated quarry blast waves, with implications for the transition from impulsive to continuous sound.

    PubMed

    Niedzwiecki, A; Ribner, H S

    1979-05-01

    The tradeoff between amplitude and duration for equal loudness was explored for idealized quarry blast waves. An extended low-frequency response loudspeaker-driven simulation booth was employed with computer-generated imput test signals. In place of actual irregular blast waves, the simulated signatures were composed of sequences of identical shock-decay impulses of 25 ms duration and 0.2 ms rise time. Sequences of 1--16 impulses yielded overall durations of 25--400 ms. At the short durations the loudness was found to increase 2 dB for each doubling of duration; above 100 ms the increase was progressively lower, approaching as an asymptote the level for continuous sound. The results were compared with theoretical predictions: for this purpose the spectral method of Johnson and Robinson, well varified in our earlier studies of sonic boom impulses, was used. The shorter quarry blast judgments (T less than or equal to 100 ms) were found to be in very good agreement in terms of relative loudness levels. With an ad hoc--but physically plausible--modification (including adjustment of the critical integration time of the ear) the predictive method was extended to encompass the long duration signals as well. Thus the applicability of the method has been demonstrated for other types of transient sounds than the N wave; and the extension of the method tentatively appears to bridge the range between impulsive and continuous sounds of similar spectral content. PMID:458043

  4. Subjective loudness of simulated quarry blast waves, with implications for the transition from impulsive to continuous sound.

    PubMed

    Niedzwiecki, A; Ribner, H S

    1979-05-01

    The tradeoff between amplitude and duration for equal loudness was explored for idealized quarry blast waves. An extended low-frequency response loudspeaker-driven simulation booth was employed with computer-generated imput test signals. In place of actual irregular blast waves, the simulated signatures were composed of sequences of identical shock-decay impulses of 25 ms duration and 0.2 ms rise time. Sequences of 1--16 impulses yielded overall durations of 25--400 ms. At the short durations the loudness was found to increase 2 dB for each doubling of duration; above 100 ms the increase was progressively lower, approaching as an asymptote the level for continuous sound. The results were compared with theoretical predictions: for this purpose the spectral method of Johnson and Robinson, well varified in our earlier studies of sonic boom impulses, was used. The shorter quarry blast judgments (T less than or equal to 100 ms) were found to be in very good agreement in terms of relative loudness levels. With an ad hoc--but physically plausible--modification (including adjustment of the critical integration time of the ear) the predictive method was extended to encompass the long duration signals as well. Thus the applicability of the method has been demonstrated for other types of transient sounds than the N wave; and the extension of the method tentatively appears to bridge the range between impulsive and continuous sounds of similar spectral content.

  5. Analytical study of whistler mode waves in presence of parallel DC electric field for relativistic plasma in the magnetosphere of Uranus

    NASA Astrophysics Data System (ADS)

    Pandey, R. S.; Kaur, Rajbir

    2016-10-01

    In present paper, field aligned whistler mode waves are analyzed, in the presence of DC field in background plasma having relativistic distribution function in the magnetosphere of Uranus. The work has been examined for relativistic Maxwellian and loss-cone distribution function. In both the cases, we have studied the effect of various plasma parameters on the growth rate of waves by using the method of characteristics and discussed using data provided by Voyager 2. Growth rate has increased by increasing the magnitude of electric field, temperature anisotropy, energy density and number density of particles for Maxwellian and loss-cone background. However, when relativistic factor (λ =√{ 1 -v2 /c2 }) increases, growth rate decreases. The significant increase in real frequency of whistler waves can be observed. The results can be used for comparative study of planetary magnetospheres. The derivation can also be adapted to study various other instabilities in magnetosphere of Uranus.

  6. Blast-wave-sphere interaction using a laser-produced plasma: an experiment motivated by supernova 1987A.

    PubMed

    Kang, Y G; Nishihara, K; Nishimura, H; Takabe, H; Sunahara, A; Norimatsu, T; Nagai, K; Kim, H; Nakatsuka, M; Kong, H J; Zabusky, N J

    2001-10-01

    We present x-ray shadowgraphs from a high Mach number ( approximately 20) laboratory environment that simulate outward flowing ejecta matter from supernovae that interact with ambient cloud matter. Using a laser-plastic foil interaction, we generate a "complex" blast wave (a supersonic flow containing forward and reverse shock waves and a contact discontinuity between them) that interacts with a high-density (100 times ambient) sphere. The experimental results, including vorticity localization, compare favorably with two-dimensional axisymmetric hydrodynamic simulations. PMID:11690182

  7. A nonlinear solid shell element formulation for analysis of composite panels under blast wave pressure loading

    NASA Astrophysics Data System (ADS)

    Park, Hun

    A comprehensive methodology to accurately predict the dynamic response of composite panels under blast wave pressure loading has been successfully developed for the first time. It includes the modeling of geometrically nonlinear dynamic effect, progressive failure and strain-rate effect on constitutive equation and strength. For dynamic analysis, a nonlinear solid shell element formulation is combined with the trapezoidal rule for numerical integration in time. The progressive damage incorporates the effect of the material failure, such as fiber failure, matrix cracking and fiber-matrix shearing failure on the stiffness and strength. Material degradation models based on the rule of mixtures are proposed for each failure mode. To implement the strain-rate effect on the constitutive equation of the material, a viscoplastic model is adopted. In this model, three material parameters are determined by conducting uniaxial tension tests on off-axis specimen. The effect of strain rates on material strength is implemented via the linear least square fit of the test data. A key ingredient of the analysis is a geometrically nonlinear solid shell element based on the assumed strain formulation to alleviate element locking. In this approach, the composite shell is treated as a three-dimensional solid. Accordingly, the change of shell thickness is allowed and the kinematics of deformation is described by six vector components at a point on the shell midsurface. The mass matrix always remains constant during the analysis. Example problems under static and dynamic loadings are solved to investigate the behavior of composite panels undergoing large deformation while experiencing material damage. The analysis results are compared with the test data available. Results of the numerical analysis show that the effect of the progressive failure and strain-rates on structural responses are considerable. For a composite plate under static pressure loadings, maximum displacement and

  8. Observation and modeling of mixing-layer development in HED blast-wave-driven shear flow

    NASA Astrophysics Data System (ADS)

    di Stefano, Carlos

    2013-10-01

    This talk describes work exploring the sensitivity to initial conditions of hydrodynamic mixing-layer growth due to shear flow in the high-energy-density regime. This work features an approach in two parts, experimental and theoretical. First, an experiment, conducted at the OMEGA-60 laser facility, seeks to measure the development of such a mixing layer. This is accomplished by placing a layer of low-density (initially of either 0.05 or 0.1 g/cm3, to vary the system's Atwood number) carbon foam against a layer of higher-density (initially 1.4 g/cm3) polyamide-imide that has been machined to a nominally-flat surface at its interface with the foam. Inherent roughness of this surface's finish is precisely measured and varied from piece to piece. Ten simultaneous OMEGA beams, comprising a 4.5 kJ, 1-ns pulse focused to a roughly 1-mm-diameter spot, irradiate a thin polycarbonate ablator, driving a blast wave into the foam, parallel to its interface with the polyamide-imide. The ablator is framed by a gold washer, such that the blast wave is driven only into the foam, and not into the polyamide-imide. The subsequent forward motion of the shocked foam creates the desired shear effect, and the system is imaged by X-ray radiography 35 ns after the beginning of the driving laser pulse. Second, a simulation is performed, intending to replicate the flow observed in the experiment as closely as possible. Using the resulting simulated flow parameters, an analytical model can be used to predict the evolution of the mixing layer, as well as track the motion of the fluid in the experiment prior to the snapshot seen in the radiograph. The ability of the model to predict growth of the mixing layer under the various conditions observed in the experiment is then examined. This work is funded by the Predictive Sciences Academic Alliances Program in NNSA-ASC via grant DEFC52- 08NA28616, by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, grant number DE

  9. Quasi-optical theory of relativistic surface-wave oscillators with one-dimensional and two-dimensional periodic planar structures

    SciTech Connect

    Ginzburg, N. S.; Zaslavsky, V. Yu.; Malkin, A. M.; Sergeev, A. S.

    2013-11-15

    Within the framework of a quasi-optical approach, we develop 2D and 3D self-consistent theory of relativistic surface-wave oscillators. Presenting the radiation field as a sum of two counter-propagating wavebeams coupled on a shallow corrugated surface, we describe formation of an evanescent slow wave. Dispersion characteristics of the evanescent wave following from this method are in good compliance with those found from the direct cst simulations. Considering excitation of the slow wave by a sheet electron beam, we simulate linear and nonlinear stages of interaction, which allows us to determine oscillation threshold conditions, electron efficiency, and output coupling. The transition from the model of surface-wave oscillator operating in the π-mode regime to the canonical model of relativistic backward wave oscillator is considered. We also described a modified scheme of planar relativistic surface-wave oscillators exploiting two-dimensional periodic gratings. Additional transverse propagating waves emerging on these gratings synchronize the emission from a wide sheet rectilinear electron beam allowing realization of a Cherenkov millimeter-wave oscillators with subgigawatt output power level.

  10. Analysis of the hot-cavity mode composition of an X-band overmoded relativistic backward wave oscillators

    NASA Astrophysics Data System (ADS)

    Yuan, Yuzhang; Zhang, Jun; Zhong, Huihuang; Zhang, Dian

    2016-07-01

    Overmoded RBWO (Relativistic Backward Wave Oscillators) is utilized more and more often for its high power capacity. However, both sides of SWS (Slow Wave Structure) of overmoded RBWO consist multi TM0n modes; in order to achieve the design of reflector, it is essential to make clear of the mode composition of TM0n. NUDT (National University of Defence Technology) had done research of the output mode composition in overmoded O-type Cerenkov HPM (High Power Microwave) Oscillators in detail, but in the area where the electron beam exists, the influence of electron beam must be taken into account. Hot-cavity dispersion equation is figured out in this article first, and then analyzes the hot-cavity mode composition of an X-band overmoded RBWO tentatively. The results show that in collimating hole, the hot-cavity mode analysis is more accurate.

  11. Relativistically intense plane electromagnetic waves in electron-positron plasmas: Nonlinear self-modulation and harmonics generation regimes

    SciTech Connect

    Shiryaev, O. B.

    2006-11-15

    A fully nonlinear one-dimensional problem describing the interactions of relativistically intense plane electromagnetic waves and cold locally non-neutral electron-positron plasmas is derived from Maxwell and fluid dynamics equations. Numerical and asymptotic solutions to this problem for phase velocities close to the speed of light are presented. Depending on the magnitude of the plasma longitudinal electric-field potential, the system considered is found to support two distinct regimes of plane electromagnetic wave propagation: a nonlinear self-modulation one with the coupling of a fast transversely polarized electromagnetic field to a slow longitudinal plasma field, and a harmonics generation one with both of these fields oscillating with comparable frequencies. In the former case, a splitting of the electromagnetic field spectrum into a series of closely located bands occurs, whereas in the latter one the propagating field spectrum is a set of radiation harmonics.

  12. Dual-cavity mode converter for a fundamental mode output in an over-moded relativistic backward-wave oscillator

    SciTech Connect

    Li, Jiawei; Huang, Wenhua; Xiao, Renzhen; Bai, Xianchen; Zhang, Yuchuan; Zhang, Xiaowei; Shao, Hao; Chen, Changhua; Zhu, Qi

    2015-03-16

    A dual-cavity TM{sub 02}–TM{sub 01} mode converter is designed for a dual-mode operation over-moded relativistic backward-wave oscillator. With the converter, the fundamental mode output is achieved. Particle-in-cell simulation shows that the efficiency of beam-wave conversion was over 46% and a pureTM{sub 01} mode output was obtained. Effects of end reflection provided by the mode converter were studied. Adequate TM{sub 01} mode feedback provided by the converter enhances conversion efficiency. The distance between the mode converter and extraction cavity critically affect the generation of microwaves depending on the reflection phase of TM{sub 01} mode feedback.

  13. Symmetry properties of the S matrix in a fully relativistic distorted-wave treatment of electron-impact ionization

    SciTech Connect

    Pyper, N. C.; Kampp, Marco; Whelan, Colm T.

    2005-05-15

    The symmetry properties of the S matrix in a fully relativistic distorted-wave treatment of electron-impact ionization are investigated. It is shown that the square modulus of the scattering matrix element in which the spin states of all four electrons are determined is not invariant under the reversal of the direction of alignment of all spins. The largest of two contributions to this noninvariance originates from the relativistic modifications of the continuum wave functions induced by the distorting potential of the target atom. A second smaller contribution is manifested on reducing the eight-dimensional matrix elements of the QED covariant propagator to purely spatial two-electron integrals. The triple differential cross section (TDCS) exhibits a spin asymmetry unless the entire scattering process occurs in a single plane. There will be a difference in the TDCS between an (e,2e) event in which the initial beam is polarized parallel or antiparallel with respect to the beam direction even if the target is unpolarized and the final spin states are not determined. The TDCS will remain unchanged if, in addition to reversal of the direction of spin alignment, one appropriate momentum component of one of the two outgoing electrons is reversed.

  14. Time-dependent and radiation field effects on collisional-radiative simulations of radiative properties of blast waves launched in clusters of xenon

    NASA Astrophysics Data System (ADS)

    Rodriguez, R.; Espinosa, G.; Gil, J. M.; Rubiano, J. G.; Mendoza, M. A.; Martel, P.; Minguez, E.; Symes, D. R.; Hohenberger, M.; Smith, R. A.

    2015-12-01

    Radiative shock waves are ubiquitous throughout the universe and play a crucial role in the transport of energy into the interstellar medium. This fact has led to many efforts to scale the astrophysical phenomena to accessible conditions. In some laboratory experiments radiative blast waves are launched in clusters of gases by means of the direct deposition of the laser energy. In this work, by using a collisional-radiative model, we perform an analysis of the plasma level populations and radiative properties of a blast wave launched in a xenon cluster. In particular, for both the shocked and unshocked material, we study the influence of different effects such as LTE, steady-state or time-dependent NLTE simulations, plasma self-absorption or external radiation field in the determination of those properties and also in the diagnosis of the electron temperature of the blast wave.

  15. Numerical simulation of long-duration blast wave evolution in confined facilities

    NASA Astrophysics Data System (ADS)

    Togashi, F.; Baum, J. D.; Mestreau, E.; Löhner, R.; Sunshine, D.

    2010-10-01

    The objective of this research effort was to investigate the quasi-steady flow field produced by explosives in confined facilities. In this effort we modeled tests in which a high explosive (HE) cylindrical charge was hung in the center of a room and detonated. The HEs used for the tests were C-4 and AFX 757. While C-4 is just slightly under-oxidized and is typically modeled as an ideal explosive, AFX 757 includes a significant percentage of aluminum particles, so long-time afterburning and energy release must be considered. The Lawrence Livermore National Laboratory (LLNL)-produced thermo-chemical equilibrium algorithm, “Cheetah”, was used to estimate the remaining burnable detonation products. From these remaining species, the afterburning energy was computed and added to the flow field. Computations of the detonation and afterburn of two HEs in the confined multi-room facility were performed. The results demonstrate excellent agreement with available experimental data in terms of blast wave time of arrival, peak shock amplitude, reverberation, and total impulse (and hence, total energy release, via either the detonation or afterburn processes.

  16. Moving shocks through metallic grids: their interaction and potential for blast wave mitigation

    NASA Astrophysics Data System (ADS)

    Andreopoulos, Y.; Xanthos, S.; Subramaniam, K.

    2007-07-01

    Numerical simulations and laboratory measurements have been used to illuminate the interaction of a moving shock wave impacting on metallic grids at various shock strengths and grid solidities. The experimental work was carried out in a large scale shock tube facility while computational work simulated the flow field with a time-dependent inviscid and a time-dependent viscous model. The pressure drop measured across the grids is a result of two phenomena which are associated with the impact of the shock on the metallic grids. First are the reflection and refraction of the incoming shock on the grid itself. This appears to be the main inviscid mechanism associated with the reduction of the strength of the transmitted shock. Second, viscous phenomena are present during the reflection and refraction of the wave as well as during the passage of the induced flow of the air through the grid. The experimental data of pressure drop across the grid obtained in the present investigation are compared with those obtained from computations. The numerical results slightly overpredict the experimental data of relative pressure drop which increases substantially with grid solidity at fixed flow Mach numbers. The processes of shock reflection and refraction are continuous and they can be extended in duration by using thicker grids that will result in lower compression rates of the structural loading and increase the viscous losses associated with these phenomena which will further attenuate the impacting shock. Preliminary theoretical analysis suggests that the use of a graded porosity/solidity material will result in higher pressure drop than a constant porosity/solidity material and thus provide effective blast mitigation.

  17. CAFE: A New Relativistic MHD Code

    NASA Astrophysics Data System (ADS)

    Lora-Clavijo, F. D.; Cruz-Osorio, A.; Guzmán, F. S.

    2015-06-01

    We introduce CAFE, a new independent code designed to solve the equations of relativistic ideal magnetohydrodynamics (RMHD) in three dimensions. We present the standard tests for an RMHD code and for the relativistic hydrodynamics regime because we have not reported them before. The tests include the one-dimensional Riemann problems related to blast waves, head-on collisions of streams, and states with transverse velocities, with and without magnetic field, which is aligned or transverse, constant or discontinuous across the initial discontinuity. Among the two-dimensional (2D) and 3D tests without magnetic field, we include the 2D Riemann problem, a one-dimensional shock tube along a diagonal, the high-speed Emery wind tunnel, the Kelvin-Helmholtz (KH) instability, a set of jets, and a 3D spherical blast wave, whereas in the presence of a magnetic field we show the magnetic rotor, the cylindrical explosion, a case of Kelvin-Helmholtz instability, and a 3D magnetic field advection loop. The code uses high-resolution shock-capturing methods, and we present the error analysis for a combination that uses the Harten, Lax, van Leer, and Einfeldt (HLLE) flux formula combined with a linear, piecewise parabolic method and fifth-order weighted essentially nonoscillatory reconstructors. We use the flux-constrained transport and the divergence cleaning methods to control the divergence-free magnetic field constraint.

  18. CAFE: A NEW RELATIVISTIC MHD CODE

    SciTech Connect

    Lora-Clavijo, F. D.; Cruz-Osorio, A.; Guzmán, F. S. E-mail: aosorio@astro.unam.mx

    2015-06-22

    We introduce CAFE, a new independent code designed to solve the equations of relativistic ideal magnetohydrodynamics (RMHD) in three dimensions. We present the standard tests for an RMHD code and for the relativistic hydrodynamics regime because we have not reported them before. The tests include the one-dimensional Riemann problems related to blast waves, head-on collisions of streams, and states with transverse velocities, with and without magnetic field, which is aligned or transverse, constant or discontinuous across the initial discontinuity. Among the two-dimensional (2D) and 3D tests without magnetic field, we include the 2D Riemann problem, a one-dimensional shock tube along a diagonal, the high-speed Emery wind tunnel, the Kelvin–Helmholtz (KH) instability, a set of jets, and a 3D spherical blast wave, whereas in the presence of a magnetic field we show the magnetic rotor, the cylindrical explosion, a case of Kelvin–Helmholtz instability, and a 3D magnetic field advection loop. The code uses high-resolution shock-capturing methods, and we present the error analysis for a combination that uses the Harten, Lax, van Leer, and Einfeldt (HLLE) flux formula combined with a linear, piecewise parabolic method and fifth-order weighted essentially nonoscillatory reconstructors. We use the flux-constrained transport and the divergence cleaning methods to control the divergence-free magnetic field constraint.

  19. Subshell fitting of relativistic atomic core electron densities for use in QTAIM analyses of ECP-based wave functions.

    PubMed

    Keith, Todd A; Frisch, Michael J

    2011-11-17

    Scalar-relativistic, all-electron density functional theory (DFT) calculations were done for free, neutral atoms of all elements of the periodic table using the universal Gaussian basis set. Each core, closed-subshell contribution to a total atomic electron density distribution was separately fitted to a spherical electron density function: a linear combination of s-type Gaussian functions. The resulting core subshell electron densities are useful for systematically and compactly approximating total core electron densities of atoms in molecules, for any atomic core defined in terms of closed subshells. When used to augment the electron density from a wave function based on a calculation using effective core potentials (ECPs) in the Hamiltonian, the atomic core electron densities are sufficient to restore the otherwise-absent electron density maxima at the nuclear positions and eliminate spurious critical points in the neighborhood of the atom, thus enabling quantum theory of atoms in molecules (QTAIM) analyses to be done in the neighborhoods of atoms for which ECPs were used. Comparison of results from QTAIM analyses with all-electron, relativistic and nonrelativistic molecular wave functions validates the use of the atomic core electron densities for augmenting electron densities from ECP-based wave functions. For an atom in a molecule for which a small-core or medium-core ECPs is used, simply representing the core using a simplistic, tightly localized electron density function is actually sufficient to obtain a correct electron density topology and perform QTAIM analyses to obtain at least semiquantitatively meaningful results, but this is often not true when a large-core ECP is used. Comparison of QTAIM results from augmenting ECP-based molecular wave functions with the realistic atomic core electron densities presented here versus augmenting with the limiting case of tight core densities may be useful for diagnosing the reliability of large-core ECP models in

  20. Investigation of EMIC wave scattering as the cause for the BARREL 17 January 2013 relativistic electron precipitation event: A quantitative comparison of simulation with observations

    DOE PAGESBeta

    Li, Zan; Millan, Robyn M.; Hudson, Mary K.; Woodger, Leslie A.; Smith, David M.; Chen, Yue; Friedel, Reiner; Rodriguez, Juan V.; Engebretson, Mark J.; Goldstein, Jerry; et al

    2014-12-23

    Electromagnetic ion cyclotron (EMIC) waves were observed at multiple observatory locations for several hours on 17 January 2013. During the wave activity period, a duskside relativistic electron precipitation (REP) event was observed by one of the Balloon Array for Radiation belt Relativistic Electron Losses (BARREL) balloons and was magnetically mapped close to Geostationary Operational Environmental Satellite (GOES) 13. We simulate the relativistic electron pitch angle diffusion caused by gyroresonant interactions with EMIC waves using wave and particle data measured by multiple instruments on board GOES 13 and the Van Allen Probes. We show that the count rate, the energy distribution,more » and the time variation of the simulated precipitation all agree very well with the balloon observations, suggesting that EMIC wave scattering was likely the cause for the precipitation event. The event reported here is the first balloon REP event with closely conjugate EMIC wave observations, and our study employs the most detailed quantitative analysis on the link of EMIC waves with observed REP to date.« less

  1. Investigation of EMIC wave scattering as the cause for the BARREL 17 January 2013 relativistic electron precipitation event: A quantitative comparison of simulation with observations

    SciTech Connect

    Li, Zan; Millan, Robyn M.; Hudson, Mary K.; Woodger, Leslie A.; Smith, David M.; Chen, Yue; Friedel, Reiner; Rodriguez, Juan V.; Engebretson, Mark J.; Goldstein, Jerry; Fennell, Joseph F.; Spence, Harlan E.

    2014-12-23

    Electromagnetic ion cyclotron (EMIC) waves were observed at multiple observatory locations for several hours on 17 January 2013. During the wave activity period, a duskside relativistic electron precipitation (REP) event was observed by one of the Balloon Array for Radiation belt Relativistic Electron Losses (BARREL) balloons and was magnetically mapped close to Geostationary Operational Environmental Satellite (GOES) 13. We simulate the relativistic electron pitch angle diffusion caused by gyroresonant interactions with EMIC waves using wave and particle data measured by multiple instruments on board GOES 13 and the Van Allen Probes. We show that the count rate, the energy distribution, and the time variation of the simulated precipitation all agree very well with the balloon observations, suggesting that EMIC wave scattering was likely the cause for the precipitation event. The event reported here is the first balloon REP event with closely conjugate EMIC wave observations, and our study employs the most detailed quantitative analysis on the link of EMIC waves with observed REP to date.

  2. Long range correlations and the soft ridge in relativistic nuclear collisions

    SciTech Connect

    Gavin, Sean; Moschelli, George; McLerran, Larry

    2009-05-15

    Relativistic Heavy Ion Collider experiments exhibit correlations peaked in relative azimuthal angle and extended in rapidity. Called the ridge, this peak occurs both with and without a jet trigger. We argue that the untriggered ridge arises when particles formed by flux tubes in an early Glasma stage later manifest transverse flow. Combining a blast wave model of flow fixed by single-particle spectra with a simple description of the Glasma, we find excellent agreement with current data.

  3. Long range correlations and the soft ridge in relativistic nuclear collisions

    SciTech Connect

    McLerran, L.; Gavin, S., Moschelli, G.

    2009-05-19

    Relativistic Heavy Ion Collider experiments exhibit correlations peaked in relative azimuthal angle and extended in rapidity. Called the ridge, this peak occurs both with and without a jet trigger. We argue that the untriggered ridge arises when particles formed by flux tubes in an early Glasma stage later manifest transverse flow. Combining a blast wave model of flow fixed by single-particle spectra with a simple description of the Glasma, we find excellent agreement with current data.

  4. Blast Wave Exposure to the Extremities Causes Endothelial Activation and Damage.

    PubMed

    Spear, Abigail M; Davies, Emma M; Taylor, Christopher; Whiting, Rachel; Macildowie, Sara; Kirkman, Emrys; Midwinter, Mark; Watts, Sarah A

    2015-11-01

    Extremity injury is a significant burden to those injured in explosive incidents and local ischaemia can result in poor functionality in salvaged limbs. This study examined whether blast injury to a limb resulted in a change in endothelial phenotype leading to changes to the surrounding tissue.The hind limbs of terminally anaesthetized rabbits were subjected to one of four blast exposures (high, medium, low, or no blast). Blood samples were analyzed for circulating endothelial cells pre-injury and at 1, 6, and 11 h postinjury as well as analysis for endothelial activation pre-injury and at 1, 6, and 12  h postinjury. Post-mortem tissue (12  h post-injury) was analysed for both protein and mRNA expression and also for histopathology. The high blast group had significantly elevated levels of circulating endothelial cells 6  h postinjury. This group also had significantly elevated tissue mRNA expression of IL-6, E-selection, TNF-α, HIF-1, thrombomodulin, and PDGF. There was a significant correlation between blast dose and the degree of tissue pathology (hemorrhage, neutrophil infiltrate, and oedema) with the worst scores in the high blast group. This study has demonstrated that blast injury can activate the endothelium and in some cases cause damage that in turn leads to pathological changes in the surrounding tissue. For the casualty injured by an explosion the damaging effects of hemorrhage and shock could be exacerbated by blast injury and vice versa so that even low levels of blast become damaging, all of which could affect tissue functionality and long-term outcomes.

  5. Blast Wave Exposure to the Extremities Causes Endothelial Activation and Damage

    PubMed Central

    Spear, Abigail M.; Davies, Emma M.; Taylor, Christopher; Whiting, Rachel; Macildowie, Sara; Kirkman, Emrys; Midwinter, Mark; Watts, Sarah A.

    2015-01-01

    ABSTRACT Extremity injury is a significant burden to those injured in explosive incidents and local ischaemia can result in poor functionality in salvaged limbs. This study examined whether blast injury to a limb resulted in a change in endothelial phenotype leading to changes to the surrounding tissue. The hind limbs of terminally anaesthetized rabbits were subjected to one of four blast exposures (high, medium, low, or no blast). Blood samples were analyzed for circulating endothelial cells pre-injury and at 1, 6, and 11 h postinjury as well as analysis for endothelial activation pre-injury and at 1, 6, and 12 h postinjury. Post-mortem tissue (12 h post-injury) was analysed for both protein and mRNA expression and also for histopathology. The high blast group had significantly elevated levels of circulating endothelial cells 6 h postinjury. This group also had significantly elevated tissue mRNA expression of IL-6, E-selectin, TNF-α, HIF-1, thrombomodulin, and PDGF. There was a significant correlation between blast dose and the degree of tissue pathology (hemorrhage, neutrophil infiltrate, and oedema) with the worst scores in the high blast group. This study has demonstrated that blast injury can activate the endothelium and in some cases cause damage that in turn leads to pathological changes in the surrounding tissue. For the casualty injured by an explosion the damaging effects of hemorrhage and shock could be exacerbated by blast injury and vice versa so that even low levels of blast become damaging, all of which could affect tissue functionality and long-term outcomes. PMID:26418548

  6. Understanding the light curves of the HST-1 knot in M87 with internal relativistic shock waves along its jet

    NASA Astrophysics Data System (ADS)

    Coronado, Y.; López-Corona, O.; Mendoza, S.

    2016-10-01

    Knots or blobs observed in astrophysical jets are commonly interpreted as shock waves moving along them. Long-time observations of the HST-1 knot inside the jet of the galaxy M87 have produced detailed multiwavelength light curves. In this paper, we model these light curves using the semi-analytical approach developed by Mendoza et al. This model was developed to account for the light curves produced by working surfaces (blobs) moving along relativistic jets. These working surfaces are generated by periodic oscillations of the injected flow velocity and mass ejection rates at the base of the jet. Using genetic algorithms to fit the parameters of the model, we are able to explain the outbursts observed in the light curves of the HST-1 knot with an accuracy greater than a 2σ statistical confidence level.

  7. The Effect of Initial Conditions on the Nonlinear Evolution of Perturbed Interfaces Driven by Strong Blast Waves

    SciTech Connect

    Miles, Aaron R.

    2004-01-01

    In core-collapse supernovae, strong blast waves drive interfaces susceptible to Rayleigh-Taylor (RT), Richtmyer-Meshkov (RM), and Kelvin-Helmholtz (KH) instabilities. In addition, perturbation growth can result from material expansion in large-scale velocity gradients behind the shock front. Laser-driven experiments are designed to produce a strongly shocked interface whose evolution is a scaled version of the unstable hydrogen-helium interface in core-collapse supernovae such as SN 1987A. The ultimate goal of this research is to develop an understanding of the effect of hydrodynamic instabilities and the resulting transition to turbulence on supernovae observables that remain as yet unexplained. In this dissertation, we present a computational study of unstable systems driven by high Mach number shock and blast waves. Using multi-physics radiation hydrodynamics codes and theoretical models, we consider the late nonlinear instability evolution of single mode, few mode, and multimode interfaces. We rely primarily on 2D calculations but present recent 3D results as well. For planar multimode systems, we show that compressibility effects preclude the emergence of a regime of self-similar instability growth independent of the initial conditions (IC's) by allowing for memory of the initial conditions to be retained in the mix-width at all times. The loss of transverse spectral information is demonstrated, however, along with the existence of a quasi-self-similar regime over short time intervals. Aspects of the IC's are shown to have a strong effect on the time to transition to the quasi-self-similar regime. With higher-dimensional blast waves, divergence restores the properties necessary for establishment of the self-similar state, but achieving it requires very high initial characteristic mode number and high Mach number for the incident blast wave. We point to recent stellar calculations that predict IC's we find incompatible with self-similarity, and emphasize the

  8. The Relativistic Transformation for an Electromagnetic Plane Wave with General Time Dependence

    ERIC Educational Resources Information Center

    Smith, Glenn S.

    2012-01-01

    In special relativity, the transformation between inertial frames for an electromagnetic plane wave is usually derived for the time-harmonic case (the field is a sinusoid of infinite duration), even though all practical waves are of finite duration and may not even contain a dominant sinusoid. This paper presents an alternative derivation in which…

  9. Phase dependent loading of Bloch bands and quantum simulation of relativistic wave equation predictions with ultracold atoms in variably shaped optical lattice potentials

    NASA Astrophysics Data System (ADS)

    Grossert, Christopher; Leder, Martin; Weitz, Martin

    2016-10-01

    The dispersion relation of ultracold atoms in variably shaped optical lattices can be tuned to resemble that of a relativistic particle, i.e. be linear instead of the usual nonrelativistic quadratic dispersion relation of a free atom. Cold atoms in such a lattice can be used to carry out quantum simulations of relativistic wave equation predictions. We begin this article by describing a Raman technique that allows to selectively load atoms into a desired Bloch band of the lattice near a band crossing. Subsequently, we review two recent experiments with quasirelativistic rubidium atoms in a bichromatic lattice, demonstrating the analogues of Klein tunnelling and Veselago lensing with ultracold atoms, respectively.

  10. A ceramic damage model for analyses of multi-layered ceramic-core sandwich panels under blast wave pressure loading

    NASA Astrophysics Data System (ADS)

    Lee, Keejoo

    2005-11-01

    A damage model for ceramic materials is developed and incorporated into the geometrically nonlinear solid shell element formulation for dynamic analyses of multi-layered ceramic armor panels under blast wave pressure loading. The damage model takes into account material behaviors observed from multi-axial dynamic tests on Aluminum Nitride (AlN) ceramic. The ceramic fails in a brittle or gradual fashion, depending upon the hydrostatic pressure and applied strain-rate. In the model, the gradual failure is represented by two states: the initial and final failure states. These states are described by two separate failure surfaces that are pressure-dependent and strain-rate-dependent. A scalar damage parameter is defined via using the two failure surfaces, based on the assumption that the local stress state determines material damage and its level. In addition, the damage model accounts for the effect of existing material damage on the new damage. The multi-layered armor panel of interest is comprised of an AlN-core sandwich with unidirectional composite skins and a woven composite back-plate. To accommodate the material damage effect of composite layers, a composite failure model in the open literature is adopted and modified into two separate failure models to address different failure mechanisms of the unidirectional and woven composites. In addition, the effect of strain-rates on the material strengths is incorporated into the composite failure models. For finite element modeling, multiple eighteen-node elements are used in the thickness direction to properly describe mechanics of the multi-layered panel. Dynamic analyses of a multi-layered armor panel are conducted under blast wave pressure loadings. The resulting dynamic responses of the panel demonstrate that dynamic analyses that do not take into account material damage and failure significantly under-predict the peak displacement. The under-prediction becomes more pronounced as the blast load level increases

  11. Spatial Localization and Ducting of EMIC Waves: Effect on Ultra-Relativistic Electron Populations using Ground-based and Van Allen Probes Observations

    NASA Astrophysics Data System (ADS)

    Mann, Ian; Shprits, Yuri; Murphy, Kyle; Baker, Daniel N.; Usanova, Maria; Wygant, John; Orlova, Ksenia; Reeves, Geoffrey; Turner, Drew; Kletzing, Craig; Raita, Tero; Spence, Harlan; Milling, D. K.; Drozdov, Alexander; Robertson, Matthew; Kale, Andy; Thaller, Scott

    We study the effect of electromagnetic ion cyclotron (EMIC) waves on the loss and pitch-angle scattering of relativistic and ultra-relativistic electrons during the recovery phase of a moderate geomagnetic storm on October 11, 2012. The EMIC wave activity was observed in-situ on the Van Allen Probes confined to very narrow (DeltaL 0.1-0.4) left-hand polarized emission in regions of mass density gradient at the outer edge of the plasmasphere at L 4. Conversely, conjugate on the ground, EMIC wave were seen across the CARISMA array throughout an extended 18 hour interval. The waves have complex polarization patterns on the ground, in good agreement with model results from Woodroffe and Lysak [2012] and consistent with Earth’s rotation sweeping magnetometer stations across multiple polarization reversals in the fields in the Earth-ionosphere duct. Despite the extended interval of EMIC waves, reductions in Van Allen Probe 90o pitch-angle ultra-relativistic electron flux were not observed, but loss was seen at lower pitch angles. Computed radiation belt electron pitch-angle diffusion rates demonstrate that rapid pitch-angle diffusion is confined to low pitch angles and cannot reach 90o. For the first time, from both observational and modeling perspectives, we show evidence of EMIC waves triggering ultra-relativistic ( 2-8 MeV) electron loss, but which is confined to pitch angles below around 45 degrees and not affecting the core distribution. This work has received funding from the European Union under the Seventh Framework Programme (FP7-Space) under grant agreement n 284520 for the MAARBLE (Monitoring, Analyzing and Assessing Radiation Belt Energization and Loss) collaborative research project.

  12. MM-wave emission by magnetized plasma during sub-relativistic electron beam relaxation

    SciTech Connect

    Ivanov, I. A. Arzhannikov, A. V.; Burmasov, V. S.; Popov, S. S.; Postupaev, V. V.; Sklyarov, V. F.; Vyacheslavov, L. N.; Burdakov, A. V.; Sorokina, N. V.; Gavrilenko, D. E.; Kasatov, A. A.; Kandaurov, I. V.; Mekler, K. I.; Rovenskikh, A. F.; Trunev, Yu. A.; Kurkuchekov, V. V.; Kuznetsov, S. A.; Polosatkin, S. V.

    2015-12-15

    There are described electromagnetic spectra of radiation emitted by magnetized plasma during sub-relativistic electron beam in a double plasma frequency band. Experimental studies were performed at the multiple-mirror trap GOL-3. The electron beam had the following parameters: 70–110 keV for the electron energy, 1–10 MW for the beam power and 30–300 μs for its duration. The spectrum was measured in 75–230 GHz frequency band. The frequency of the emission follows variations in electron plasma density and magnetic field strength. The specific emission power on the length of the plasma column is estimated on the level 0.75 kW/cm.

  13. Spinless relativistic particle in energy-dependent potential and normalization of the wave function

    NASA Astrophysics Data System (ADS)

    Benchikha, Amar; Chetouani, Lyazid

    2014-06-01

    The problem of normalization related to a Klein-Gordon particle subjected to vector plus scalar energy-dependent potentials is clarified in the context of the path integral approach. In addition the correction relating to the normalizing constant of wave functions is exactly determined. As examples, the energy dependent linear and Coulomb potentials are considered. The wave functions obtained via spectral decomposition, were found exactly normalized.

  14. Precipitation of trapped relativistic electrons by amplified whistler waves in the magnetosphere

    SciTech Connect

    Kuo, S. P.; Kuo, Steven S.; Huynh, James T.; Kossey, Paul

    2007-06-15

    Numerical study of a loss-cone negative mass instability to amplify whistler waves by energetic electrons in the radiation belts is presented. The results show that a very low intensity whistler wave can be amplified by 50 keV electrons more than 25 dB, consistent with the Siple experimental result [Helliwell et al., J. Geophys. Res. 85, 3360 (1980)]. The dependencies of the amplification factor on the energetic electron density and on the initial wave intensity are evaluated. It is shown that the amplification factor decreases as the initial wave intensity increases. However, this gain can still exceed 15 dB for a 30 dB increase of the initial wave intensity, which is needed for the purpose of precipitating MeV electrons in the radiation belts. We then show that there exists a double resonance situation, by which, as an example, a wave is simultaneously in cyclotron resonance with 50 keV electrons as well as with 1.5 MeV electrons; the wave is first amplified by 50 keV electrons and then precipitates 1.5 MeV electrons. With the aid of the cyclotron resonance, the threshold field for the commencement of chaos in the electron trajectories is reduced considerably from that for a general case. Pitch angle scattering of 1.5 MeV electrons is demonstrated. The results show that a whistler wave with magnetic field amplitude of 0.08% of the background magnetic field can scatter electrons from an initial pitch angle of 86.5 deg. to a pitch angle <50 deg.

  15. Two-dimensional s-polarized solitary waves in relativistic plasmas. I. The fluid plasma model

    SciTech Connect

    Sanchez-Arriaga, G.; Lefebvre, E.

    2011-09-15

    The properties of two-dimensional linearly s-polarized solitary waves are investigated by fluid-Maxwell equations and particle-in-cell (PIC) simulations. These self-trapped electromagnetic waves appear during laser-plasma interactions, and they have a dominant electric field component E{sub z}, normal to the plane of the wave, that oscillates at a frequency below the electron plasma frequency {omega}{sub pe}. A set of equations that describe the waves are derived from the plasma fluid model in the case of cold or warm plasma and then solved numerically. The main features, including the maximum value of the vector potential amplitude, the total energy, the width, and the cavitation radius are presented as a function of the frequency. The amplitude of the vector potential increases monotonically as the frequency of the wave decreases, whereas the width reaches a minimum value at a frequency of the order of 0.82 {omega}{sub pe}. The results are compared with a set of PIC simulations where the solitary waves are excited by a high-intensity laser pulse.

  16. Plasma expansion and impedance collapse in a foil-less diode for a klystronlike relativistic backward wave oscillator

    SciTech Connect

    Xiao Renzhen; Sun Jun; Huo Shaofei; Li Xiaoze; Zhang Ligang; Zhang Xiaowei; Zhang Lijun

    2010-12-15

    Klystronlike relativistic backward wave oscillator (RBWO) can produce microwave power exceeding 5 GW with a high efficiency larger than 40%. In the experiment of klystronlike RBWO, for about 1 MV peak diode voltages, increasing magnetic field from 1.43 to 1.89 T slowed the impedance collapse until it was suppressed completely. The introduction of a stainless steel obstructing ring aggravated the impedance collapse, whereas replacing the stainless steel obstructing ring with a flat stainless steel provided a more stable impedance variation during the pulse duration. These impedance collapses did not affect microwave generation seriously and may be attributed to the radial expansion of cathode plasma initialing from the cathode shank so that part of reverse currents were collected at the anode wall, contributing to the measured diode current. On the other hand, it was found that microwave generation shot-to-shot reproducibility was closely related to the diode impedance variation. When there was no or very low microwave measured, diode impedance collapse appeared at the latter of the pulse. The microwave generation shot-to-shot reproducibility was improved greatly after the electron collector was enlarged on radius with 1 mm. A possible explanation is that the anode plasma produced from electron collector expands axially and enters the diode region at a very high velocity of several mm/ns. The movement of the anode plasma in the beam-wave interaction region affects the microwave generation, which reduces the microwave power during the whole pulse duration significantly.

  17. Tunability over three frequency bands induced by mode transition in relativistic backward wave oscillator with strong end reflections

    SciTech Connect

    Wu, Ping; Deng, Yuqun; Fan, Juping; Teng, Yan; Shi, Yanchao; Sun, Jun

    2014-10-15

    This paper presents an efficient approach to realizing the frequency tunability of a relativistic backward wave oscillator (RBWO) over three frequency bands by mode transition without changing the slow wave structure (SWS). It is figured out that the transition of the operation mode in the RBWO can be efficiently achieved by using the strong end reflection of the SWS. This mode transition results in the tunability of the RBWO over three frequency bands at high power and high efficiency without changing the SWS. In numerical simulation, the output frequency of the RBWO can jump over 7.9 GHz in C-band, 9.9 GHz in X-band, and 12.4 GHz in Ku-band with output power exceeding 3.0 GW and conversion efficiency higher than 35% by just reasonably transforming the structures of the front and post resonant reflectors which provide the strong end reflection for the SWS.

  18. Microsecond evolution of laser driven blast waves, the influence of shock asymmetries and the resulting development of magnetic fields

    NASA Astrophysics Data System (ADS)

    Tubman, Eleanor; Crowston, R.; Lam, G.; Dimoline, G.; Alraddadi, R.; Doyle, H.; Meinecke, J.; Cross, J.; Bolis, R.; Lamb, D.; Tzeferacos, P.; Doria, D.; Reville, B.; Ahmed, H.; Borghesi, M.; Gregori, G.; Woolsey, N.

    2015-11-01

    The ability to recreate scaled conditions of a supernova remnant within a laboratory environment is of great interest for informing the understanding of the evolution of galactic magnetic fields. The experiments rely on a near point explosion driven by one sided laser illumination producing a plasma, surrounded by a background gas. The subsequent shock and blast waves emerge following an initial ballistic phase into a self-similar expansion. Studies have been undertaken into the evolution of shock asymmetries which lead to magnetic field generation via the Biermann battery mechanism. Here we use the Vulcan laser facility, with targets such as carbon rods and plastic spheres placed in ambient gases of argon, helium or hydrogen, to produce the blast waves. These conditions allow us to study the asymmetries of the shocks using multi-frame imaging cameras, interferometry, and spectroscopy, while measuring the resulting magnetic fields with B-dot probes. The velocity of the shock and the temporal resolution of the asymmetries can be acquired on a single shot by the multi-framing cameras, and comparison with the measured B-dot fields allow for detailed inferences to be made.

  19. Configuration mixing of angular-momentum-projected triaxial relativistic mean-field wave functions. II. Microscopic analysis of low-lying states in magnesium isotopes

    SciTech Connect

    Yao, J. M.; Mei, H.; Chen, H.; Meng, J.; Ring, P.; Vretenar, D.

    2011-01-15

    The recently developed structure model that uses the generator coordinate method to perform configuration mixing of angular-momentum projected wave functions, generated by constrained self-consistent relativistic mean-field calculations for triaxial shapes (3DAMP+GCM), is applied in a systematic study of ground states and low-energy collective states in the even-even magnesium isotopes {sup 20-40}Mg. Results obtained using a relativistic point-coupling nucleon-nucleon effective interaction in the particle-hole channel and a density-independent {delta} interaction in the pairing channel are compared to data and with previous axial 1DAMP+GCM calculations, both with a relativistic density functional and the nonrelativistic Gogny force. The effects of the inclusion of triaxial degrees of freedom on the low-energy spectra and E2 transitions of magnesium isotopes are examined.

  20. Macro-mechanical modeling of blast-wave mitigation in foams. Part III: verification of the models

    NASA Astrophysics Data System (ADS)

    Britan, A.; Shapiro, H.; Liverts, M.; Ben-Dor, G.

    2014-05-01

    Three different approaches to macro-mechanical modeling of blast-wave mitigation in foam namely: the single-phase effective gas flow model, the two-phase mixture model and the single bubble/shock wave interaction model are critically reviewed. The nature and extent of the approximations inherent in the formulation of the first two models were examined in Part I of this study. In this part, the applicability of the aforementioned approaches is verified based on a comparison of experimental pressure records obtained in shock tube tests with the results of numerical predictions that used the models under consideration. Deficiencies and inconsistencies that are found during this comparison are clarified and possible improvements are suggested. It is emphasized that both the single-phase and the two-phase approaches predict well the refraction of the incident shock at the air/foam interface while they do not uniquely determine the relaxation process and the shape of the transmitted shock wave front. Various flexibilities that are exploited to better describe the inter-phase interactions do not improve the results significantly. The single bubble model is examined with particular attention paid to the manner in which it predicts the shape of the shock wave front. Connections between the flow viscosity and the transient dynamics of the bubble compression that occur at scales of the shock wave front thickness are explored.

  1. Relativistic klystrons

    SciTech Connect

    Allen, M.A.; Azuma, O.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fant, K.S.; Fowkes, W.R.; Herrmannsfeldt, W.B.; Hoag, H.A.; Koontz, R.F.

    1989-03-01

    Experimental work is underway by a SLAC-LLNL-LBL collaboration to investigate the feasibility of using relativistic klystrons as a power source for future high gradient accelerators. Two different relativistic klystron configurations have been built and tested to date: a high grain multicavity klystron at 11.4 GHz and a low gain two cavity subharmonic buncher driven at 5.7 GHz. In both configurations power is extracted at 11.4 GHz. In order to understand the basic physics issues involved in extracting RF from a high power beam, we have used both a single resonant cavity and a multi-cell traveling wave structure for energy extraction. We have learned how to overcome our previously reported problem of high power RF pulse shortening, and have achieved peak RF power levels of 170 MW with the RF pulse of the same duration as the beam current pulse. 6 refs., 3 figs., 3 tabs.

  2. Accidental head explosion: an unusual blast wave injury as a result of self-made fireworks.

    PubMed

    Kunz, S N; Zinka, B; Peschel, O; Fieseler, S

    2011-07-15

    A 33-year old hobby pyrotechnician sustained a lethal craniofacial trauma secondary to a salute fireworks blast. He was examining a misfire of a self-constructed salute gun, when it detonated, causing an explosively rupture of his forehead, which led to his immediate death. An autopsy was performed to achieve knowledge of the injury and to be able to reconstruct the events that lead to it. The pressure effect of the explosion caused a shredded rupture of the forehead with a regional spread of brain tissue and small polygonal skull fragments up to 30m from the detonation site. Furthermore multiple cinderlike fragments of black powder were embedded in the skin of the face and the anterior aspect of the neck (s.c. blast tattoo). The complete destruction of the forehead in combination with the multiple blast tattooing suggested that the explosion detonated while he was leaning over the device.

  3. Biomechanical modeling for the response of human thorax to blast waves

    NASA Astrophysics Data System (ADS)

    Zhou, Jie; Tao, Gang

    2015-08-01

    A simplified finite element model of a human thorax had been developed for probing into the mechanical response in simple and complex blast environments. The human thorax model was first created by CT images with blast loading applied via a coupled arbitrary Lagrangian-Eulerian method, allowing for a variety of loads to be considered. The goal is to analyze the maximum stress distributions of lung tissue and peak inward thorax wall velocity and to know the possible regions and levels of lung injury. In parallel, a mathematical model has been modified from the Lobdell model to investigate the detailed percentage of lung injury at each level. The blast loadings around the human thorax were obtained from the finite element model, and were then applied in the mathematical model as the boundary conditions to predict the normalized work of the human thorax lung. The present results are found in agreement with the modified Bowen curves and the results predicted by Axelsson's model.

  4. Skull flexure from blast waves: a mechanism for brain injury with implications for helmet design

    SciTech Connect

    Moss, W C; King, M J; Blackman, E G

    2009-04-14

    Traumatic brain injury [TBI] has become a signature injury of current military conflicts. The debilitating effects of TBI are long-lasting and costly. Although the mechanisms by which impacts cause TBI have been well researched, the mechanisms by which blasts cause TBI are not understood. Various possibilities have been investigated, but blast-induced deformation of the skull has been neglected. From numerical hydrodynamic simulations, we have discovered that nonlethal blasts can induce sufficient flexure of the skull to generate potentially damaging loads in the brain, even if no impact occurs. The possibility that this mechanism may contribute to TBI has implications for the diagnosis of soldiers and the design of protective equipment such as helmets.

  5. Accidental head explosion: an unusual blast wave injury as a result of self-made fireworks.

    PubMed

    Kunz, S N; Zinka, B; Peschel, O; Fieseler, S

    2011-07-15

    A 33-year old hobby pyrotechnician sustained a lethal craniofacial trauma secondary to a salute fireworks blast. He was examining a misfire of a self-constructed salute gun, when it detonated, causing an explosively rupture of his forehead, which led to his immediate death. An autopsy was performed to achieve knowledge of the injury and to be able to reconstruct the events that lead to it. The pressure effect of the explosion caused a shredded rupture of the forehead with a regional spread of brain tissue and small polygonal skull fragments up to 30m from the detonation site. Furthermore multiple cinderlike fragments of black powder were embedded in the skin of the face and the anterior aspect of the neck (s.c. blast tattoo). The complete destruction of the forehead in combination with the multiple blast tattooing suggested that the explosion detonated while he was leaning over the device. PMID:21570222

  6. Dispersive characteristics and longitudinal resonance properties in a relativistic backward wave oscillator with the coaxial arbitrary-profile slow-wave structure

    SciTech Connect

    Ge Xingjun; Zhong Huihuang; Qian Baoliang; Zhang Jun; Fan Yuwei; Shu Ting; Liu Jinliang

    2009-11-15

    The method for calculating the dispersion relations of the slow-wave structures (SWSs) with arbitrary geometrical structures is studied in detail by using the Fourier series expansion. In addition, dispersive characteristics and longitudinal resonance properties of the SWSs with the cosinusoidal, trapezoidal, and rectangular corrugations are analyzed by numerical calculation. Based on the above discussion, a comparison on an L-band coaxial relativistic backward wave oscillator (BWO) and an L-band coaxial BWO with a coaxial extractor is investigated in detail with particle-in-cell KARAT code (V. P. Tarakanov, Berkeley Research Associates, Inc., 1992). Furthermore, experiments are carried out at the TORCH-01 accelerator under the low guiding magnetic field. At diode voltage of 647 kV, beam current of 9.3 kA, and guiding magnetic field strength of 0.75 T, the microwave is generated with power of 1.07 GW, mode of TM{sub 01}, and frequency of 1.61 GHz. That is the first experimental report of the L-band BWO.

  7. Skull Flexure from Blast Waves: A Mechanism for Brain Injury with Implications for Helmet Design

    NASA Astrophysics Data System (ADS)

    Moss, William C.; King, Michael J.; Blackman, Eric G.

    2009-09-01

    Traumatic brain injury (TBI) has become a signature injury of current military conflicts, with debilitating, costly, and long-lasting effects. Although mechanisms by which head impacts cause TBI have been well researched, the mechanisms by which blasts cause TBI are not understood. From numerical hydrodynamic simulations, we have discovered that nonlethal blasts can induce sufficient skull flexure to generate potentially damaging loads in the brain, even without a head impact. The possibility that this mechanism may contribute to TBI has implications for injury diagnosis and armor design.

  8. Skull flexure from blast waves: a mechanism for brain injury with implications for helmet design.

    PubMed

    Moss, William C; King, Michael J; Blackman, Eric G

    2009-09-01

    Traumatic brain injury (TBI) has become a signature injury of current military conflicts, with debilitating, costly, and long-lasting effects. Although mechanisms by which head impacts cause TBI have been well researched, the mechanisms by which blasts cause TBI are not understood. From numerical hydrodynamic simulations, we have discovered that nonlethal blasts can induce sufficient skull flexure to generate potentially damaging loads in the brain, even without a head impact. The possibility that this mechanism may contribute to TBI has implications for injury diagnosis and armor design. PMID:19792349

  9. Skull Flexure from Blast Waves: A Mechanism for Brain Injury with Implications for Helmet Design

    SciTech Connect

    Moss, W C; King, M J; Blackman, E G

    2009-04-30

    Traumatic brain injury [TBI] has become a signature injury of current military conflicts, with debilitating, costly, and long-lasting effects. Although mechanisms by which head impacts cause TBI have been well-researched, the mechanisms by which blasts cause TBI are not understood. From numerical hydrodynamic simulations, we have discovered that non-lethal blasts can induce sufficient skull flexure to generate potentially damaging loads in the brain, even without a head impact. The possibility that this mechanism may contribute to TBI has implications for injury diagnosis and armor design.

  10. PHYSICAL BASIS OF QUANTUM ELECTRONICS: Stimulated scattering of electromagnetic waves by a relativistic electron beam in a three-dimensional geometry

    NASA Astrophysics Data System (ADS)

    Karimov, A. R.; Poponin, V. P.; Rukhadze, Anri A.; Shcheglov, V. A.

    1999-05-01

    The properties of stimulated coherent scattering of an electromagnetic wave by a relativistic electron beam were studied in the framework of a three-wave approximation for a noncollinear geometry, when the incident and the scattered waves can propagate at arbitrary angles relative to the electron beam direction. The dispersion equation was obtained, making it possible to investigate the modes of collective (Raman) and single-particle (Compton) scattering from a unified viewpoint and to include the effect of an external longitudinal magnetic field on the electron motion in the field of a combination wave. Formulas were obtained for the amplitude increments of the scattered and the combination waves for those scattering modes, which can be used to make estimates when selecting the optimal scheme of a free-electron laser with a noncollinear scattering geometry.

  11. Versatile gas gun target assembly for studying blast wave mitigation in materials

    NASA Astrophysics Data System (ADS)

    Bartyczak, S.; Mock, W., Jr.

    2012-03-01

    Traumatic brain injury (TBI) has become a serious problem for military personnel returning from recent conflicts. This has increased interest in investigating blast mitigating materials for use in helmets. In this paper we describe a new versatile target assembly that is used with an existing gas gun for studying these materials.

  12. Planar channelling of relativistic electrons in half-wave silicon crystal and corresponding radiation

    NASA Astrophysics Data System (ADS)

    Takabayashi, Y.; Bagrov, V. G.; Bogdanov, O. V.; Pivovarov, Yu L.; Tukhfatullin, T. A.

    2016-07-01

    New experimental data on planar channeling of 255 MeV electrons in a 0.74 µm Si Half-Wave Crystal (HWC) obtained at SAGA-LS facility are presented. The computer simulation showed that the angular distribution of electrons after penetration through the HWC revealed the number of unknown before peculiarities is connected with specific electron trajectories in HWC. These specific trajectories lead to specific radiation, the properties of which are analyzed.

  13. Gravitational-wave observations as a tool for testing relativistic gravity

    NASA Technical Reports Server (NTRS)

    Eardley, D. M.; Lee, D. L.; Lightman, A. P.

    1973-01-01

    Gravitational radiation in the far field was examined using a formalism that encompassed all metric theories of gravity. There are six possible modes of polarization, which can be completely resolved by feasible experiments. A theoretical framework is set forth for classification of waves and theories, based on the Lorentz transformation properties of the six modes. Also shown in detail is how the six modes may be experimentally identified and to what extent such information limits the correct theory of gravity.

  14. The role of stress waves in thoracic visceral injury from blast loading: modification of stress transmission by foams and high-density materials.

    PubMed

    Cooper, G J; Townend, D J; Cater, S R; Pearce, B P

    1991-01-01

    Materials have been applied to the thoracic wall of anaesthetised experimental animals exposed to blast overpressure to investigate the coupling of direct stress waves into the thorax and the relative contribution of compressive stress waves and gross thoracic compression to lung injury. The ultimate purpose of the work is to develop effective personal protection from the primary effects of blast overpressure--efficient protection can only be achieved if the injury mechanism is identified and characterized. Foam materials acted as acoustic couplers and resulted in a significant augmentation of the visceral injury; decoupling and elimination of injury were achieved by application of a high acoustic impedance layer on top of the foam. In vitro experiments studying stress wave transmission from air through various layers into an anechoic water chamber showed a significant increase in power transmitted by the foams, principally at high frequencies. Material such as copper or resin bonded Kevlar incorporated as a facing upon the foam achieved substantial decoupling at high frequencies--low frequency transmission was largely unaffected. An acoustic transmission model replicated the coupling of the blast waves into the anechoic water chamber. The studies suggest that direct transmission of stress waves plays a dominant role in lung parenchymal injury from blast loading and that gross thoracic compression is not the primary injury mechanism. Acoustic decoupling principles may therefore be employed to reduce the direct stress coupled into the body and thus reduce the severity of lung injury--the most simple decoupler is a high acoustic impedance material as a facing upon a foam, but decoupling layers may be optimized using acoustic transmission models. Conventional impacts producing high body wall velocities will also lead to stress wave generation and transmission--stress wave effects may dominate the visceral response to the impact with direct compression and shear

  15. Derivation of nonlinear Schroedinger equation for electrostatic and electromagnetic waves in fully relativistic two-fluid plasmas by the reductive perturbation method

    SciTech Connect

    Lee, Nam C.

    2012-08-15

    The reductive perturbation method is used to derive a generic form of nonlinear Schroedinger equation (NLSE) that describes the nonlinear evolution of electrostatic (ES)/electromagnetic (EM) waves in fully relativistic two-fluid plasmas. The matrix eigenvector analysis shows that there are two mutually exclusive modes of waves, each mode involving only either one of two electric potentials, A and {phi}. The general result is applied to the electromagnetic mode in electron-ion plasmas with relativistically high electron temperature (T{sub e} Much-Greater-Than m{sub e}c{sup 2}). In the limit of high frequency (ck Much-Greater-Than {omega}{sub e}), the NLSE predicts bump type electromagnetic soliton structures having width scaling as {approx}kT{sub e}{sup 5/2}. It is shown that, in electron-positron pair plasmas with high temperature, dip type electromagnetic solitons can exist. The NLSE is also applied to electrostatic (Langmuir) wave and it is shown that dip type solitons can exist if k{lambda}{sub D} Much-Less-Than 1, where {lambda}{sub D} is the electron's Debye length. For the k{lambda}{sub D} Much-Greater-Than 1, however, the solution is of bump type soliton with width scaling as {approx}1/(k{sup 5}T{sub e}). It is also shown that dip type solitons can exist in cold plasmas having relativistically high streaming speed.

  16. Mechanism of phase control in a klystron-like relativistic backward wave oscillator by an input signal

    SciTech Connect

    Xiao, Renzhen; Song, Zhimin; Deng, Yuqun; Chen, Changhua

    2014-09-15

    Theoretical analyses and particle-in-cell (PIC) simulations are carried out to understand the mechanism of microwave phase control realized by the external RF signal in a klystron-like relativistic backward wave oscillator (RBWO). Theoretical calculations show that a modulated electron beam can lead the microwave field with an arbitrary initial phase to the same equilibrium phase, which is determined by the phase factor of the modulated current, and the difference between them is fixed. Furthermore, PIC simulations demonstrate that the phase of input signal has a close relation to that of modulated current, which initiates the phase of the irregularly microwave during the build-up of oscillation. Since the microwave field is weak during the early time of starting oscillation, it is easy to be induced, and a small input signal is sufficient to control the phase of output microwave. For the klystron-like RBWO with two pre-modulation cavities and a reentrant input cavity, an input signal with 100 kW power and 4.21 GHz frequency can control the phase of 5 GW output microwave with relative phase difference less than 6% when the diode voltage is 760 kV, and beam current is 9.8 kA, corresponding to a power ratio of output microwave to input signal of 47 dB.

  17. Relativistic Astrophysics

    NASA Astrophysics Data System (ADS)

    Jones, Bernard J. T.; Markovic, Dragoljub

    1997-06-01

    Preface; Prologue: Conference overview Bernard Carr; Part I. The Universe At Large and Very Large Redshifts: 2. The size and age of the Universe Gustav A. Tammann; 3. Active galaxies at large redshifts Malcolm S. Longair; 4. Observational cosmology with the cosmic microwave background George F. Smoot; 5. Future prospects in measuring the CMB power spectrum Philip M. Lubin; 6. Inflationary cosmology Michael S. Turner; 7. The signature of the Universe Bernard J. T. Jones; 8. Theory of large-scale structure Sergei F. Shandarin; 9. The origin of matter in the universe Lev A. Kofman; 10. New guises for cold-dark matter suspects Edward W. Kolb; Part II. Physics and Astrophysics Of Relativistic Compact Objects: 11. On the unification of gravitational and inertial forces Donald Lynden-Bell; 12. Internal structure of astrophysical black holes Werner Israel; 13. Black hole entropy: external facade and internal reality Valery Frolov; 14. Accretion disks around black holes Marek A. Abramowicz; 15. Black hole X-ray transients J. Craig Wheeler; 16. X-rays and gamma rays from active galactic nuclei Roland Svensson; 17. Gamma-ray bursts: a challenge to relativistic astrophysics Martin Rees; 18. Probing black holes and other exotic objects with gravitational waves Kip Thorne; Epilogue: the past and future of relativistic astrophysics Igor D. Novikov; I. D. Novikov's scientific papers and books.

  18. Infrared and X-Ray Evidence for Circumstellar Grain Destruction by the Blast Wave of Supernova 1987A

    NASA Technical Reports Server (NTRS)

    Dwek, Eliahu; Arendt, Richard G.; Bouchet, Patrice; Burrows, David N.; Challis, Peter; Danziger, John; DeBuizer James M.; Gehrz, Robert D.; Kirshner, Robert P.; McCray, Richard; Park, Sangwok; Polomski, Elisha; Woodward, Charles

    2007-01-01

    Multiwavelength observations of supernova remnant (SNR) 1987A show that its morphology and luminosity are rapidly changing at X-ray, optical, infrared, and radio wavelengths as the blast wave from the explosion expands into the circumstellar equatorial ring, produced by mass loss from the progenitor star. The observed infrared (IR) radiation arises from the interaction of dust grains that formed in mass outflow with the soft X-ray emitting plasma component of the shocked gas. Spitzer IRS spectra at 5 - 30 microns taken on day 6190 since the explosion show that the emission arises from approx. 1.1 x 10(exp -6) solar mass of silicate grains radiating at a temperature of approx. 180+/-(15-20) K. Subsequent observations on day 7137 show that the IR flux had increased by a factor of 2 while maintaining an almost identical spectral shape. The observed IR-to-X-ray flux ratio (IRX) is consistent with that of a dusty plasma with standard LMC dust abundances. This flux ratio has decreased by a factor of approx. 2 between days 6190 and 7137, providing the first direct observation of the ongoing destruction of dust in an expanding SN blast wave on dynamic time scales. Detailed models consistent with the observed dust temperature, the ionization fluence of the soft X-ray emission component, and the evolution of IRX suggest that the radiating si1icate grains are immersed in a 3.5 x 10(exp 6) K plasma with a density of (0.3 - 1) x 10(exp 4)/cu cm, and have a size distribution that is confined to a narrow range of radii between 0.02 and 0.2 microns. Smaller grains may have been evaporated by the initial UV flash from the supernova.

  19. Measurements of blast waves from bursting frangible spheres pressurized with flash-evaporation vapor or liquid

    NASA Technical Reports Server (NTRS)

    Esparaza, E. D.; Baker, W. E.

    1977-01-01

    Incident overpressure data from frangible spheres pressurized with a flash-evaporating fluid in liquid and vapor form were obtained in laboratory experiments. Glass spheres under higher than ambient internal pressure of Freon-12 were purposely burst to obtain time histories of overpressure. Nondimensional peak pressures, arrival and duration times, and impulses are presented, and whenever possible plotted and compared with compiled data for Pentolite high-explosive. The data are generally quite repeatable and show differences from blast data produced by condensed high-explosives.

  20. Concerning isothermal self-similar blast waves. I - One-dimensional flow and its stability. II - Two-dimensional flow and its stability. [in stellar atmosphere

    NASA Technical Reports Server (NTRS)

    Lerche, I.

    1978-01-01

    One-dimensional self-similar isothermal flow behind a blast wave propagating in a medium whose density varies with distance is investigated for the cases of one-dimensional and two-dimensional flow. The isothermal flow model is adopted as an alternative to adiabatic models of self-similar flow, which neglect heat flux. The topology of the one-dimensional flow solutions, the singularities, and the influence of boundary conditions are discussed; the instability of the isothermal blast waves against nonself-similar perturbations is also considered. The number of critical points in the two-dimensional solutions is found to vary from the number in the one-dimensional problem.

  1. Relativistic Gravity Research

    NASA Astrophysics Data System (ADS)

    Ehlers, Jürgen; Schäfer, Gerhard

    17 readable articles give a thorough and self-contained overview of recent developments in relativistic gravity research. The subjects covered are: gravitational lensing, the general relativistic n-body problem, observable effects in the solar system, gravitational waves and their interferometric detection, very-long-baseline interferometry, international atomic time, lunar laserranging measurements, measurement of the gravitomagnetic field of the Earth, fermion and boson stars and black holes with hair, rapidly rotating neutron stars, matter wave interferometry, and the laboratory test of Newton's law of gravity. Any scientist interested in experimentally or observatio- nally oriented relativistic gravity will read the book with profit. In addition, it is perfectly suited as a complementary text for courses on general relativity and relativistic astrophysics.

  2. Relativistic Quantum Scars

    SciTech Connect

    Huang, Liang; Lai Yingcheng; Ferry, David K.; Goodnick, Stephen M.; Akis, Richard

    2009-07-31

    The concentrations of wave functions about classical periodic orbits, or quantum scars, are a fundamental phenomenon in physics. An open question is whether scarring can occur in relativistic quantum systems. To address this question, we investigate confinements made of graphene whose classical dynamics are chaotic and find unequivocal evidence of relativistic quantum scars. The scarred states can lead to strong conductance fluctuations in the corresponding open quantum dots via the mechanism of resonant transmission.

  3. Gamma-Ray Burst Afterglows as Probes of Environment and Blast Wave Physics. II. The Distribution of rho and Structure of the Circumburst Medium

    NASA Technical Reports Server (NTRS)

    Starling, R. L. C.; vanderHorst, A. J.; Rol, E.; Wijers, R. A. M. J.; Kouveliotou, C.; Wiersema, K.; Curran, P. A.; Weltervrede, P.

    2008-01-01

    We constrain blast wave parameters and the circumburst media ofa subsample of 10 BeppoSAX gamma-ray bursts (GRBs). For this sample we derive the values of the injected electron energy distribution index, p, and the density structure index of the circumburst medium, k, from simultaneous spectral fits to their X-ray, optical, and NIR afterglow data. The spectral fits have been done in count space and include the effects ofmetallicity, and are compared with the previously reported optical and X-ray temporal behavior. Using the blast wave model and some assumptions which include on-axis viewing and standard jet structure, constant blast wave energy, and no evolution of the microphysical parameters, we find a mean value ofp for the sample as a whole of 9.... oa -0.003.0" 2 a_ statistical analysis of the distribution demonstrates that the p-values in this sample are inconsistent with a single universal value forp at the 3 _ level or greater, which has significant implications for particle acceleration models. This approach provides us with a measured distribution ofcircumburst density structures rather than considering only the cases of k ----0 (homogeneous) and k - 2 (windlike). We find five GRBs for which k can be well constrained, and in four of these cases the circumburst medium is clearly windlike. The fifth source has a value of 0 < k < 1, consistent with a homogeneous circumburst medium.

  4. Role of helmet in the mechanics of shock wave propagation under blast loading conditions.

    PubMed

    Ganpule, S; Gu, L; Alai, A; Chandra, N

    2012-01-01

    The effectiveness of helmets in extenuating the primary shock waves generated by the explosions of improvised explosive devices is not clearly understood. In this work, the role of helmet on the overpressurisation and impulse experienced by the head were examined. The shock wave-head interactions were studied under three different cases: (i) unprotected head, (ii) head with helmet but with varying head-helmet gaps and (iii) head covered with helmet and tightly fitting foam pads. The intensification effect was discussed by examining the shock wave flow pattern and verified with experiments. A helmet with a better protection against shock wave is suggested. PMID:21806412

  5. Generation of 3 GW microwave pulses in X-band from a combination of a relativistic backward-wave oscillator and a helical-waveguide compressor

    SciTech Connect

    Bratman, V. L.; Denisov, G. G.; Kolganov, N. G.; Mishakin, S. V.; Samsonov, S. V.; Cross, A. W.; He, W.; Zhang, L.; McStravick, M.; Whyte, C. G.; Young, A. R.; Ronald, K.; Robertson, C. W.; Phelps, A. D. R.

    2010-11-15

    The phenomenon of passive compression of frequency-modulated (FM) pulses in a dispersive media (DM) was used to increase the peak microwave power up to the multigigawatt level. A helically corrugated waveguide was used as the DM, while a relativistic X-band backward-wave oscillator (RBWO) with a descending-during-the-pulse accelerating voltage served as a source of FM pulses. Compression of pulses down to a halfwidth of 2.2 ns accompanied by a 4.5-fold power increase up to a value of about 3.2 GW has been demonstrated.

  6. Quantum theory of stimulated Cherenkov emission and stimulated compton scattering of electromagnetic waves by a low-density relativistic electron beam

    SciTech Connect

    Kuzelev, M. V.

    2010-07-15

    A quantum theory of instabilities of a relativistic electron beam due to the stimulated Cherenkov effect in a dielectric and the stimulated Compton effect in vacuum is presented. The instability growth rates are found in a linear approximation and are shown to go over to the familiar growth rates in the classical approximation. A nonlinear theory of instabilities in the quantum case is developed. Analytic solutions are obtained that describe the nonlinear saturation of the amplitudes of the electromagnetic waves emitted by the beam.

  7. Electron acceleration and emission in a field of a plane and converging dipole wave of relativistic amplitudes with the radiation reaction force taken into account

    SciTech Connect

    Bashinov, Aleksei V; Gonoskov, Arkady A; Kim, A V; Marklund, Mattias; Mourou, G; Sergeev, Aleksandr M

    2013-04-30

    A comparative analysis is performed of the electron emission characteristics as the electrons move in laser fields with ultra-relativistic intensity and different configurations corresponding to a plane or tightly focused wave. For a plane travelling wave, analytical expressions are derived for the emission characteristics, and it is shown that the angular distribution of the radiation intensity changes qualitatively even when the wave intensity is much less than that in the case of the radiation-dominated regime. An important conclusion is drawn that the electrons in a travelling wave tend to synchronised motion under the radiation reaction force. The characteristic features of the motion of electrons are found in a converging dipole wave, associated with the curvature of the phase front and nonuniformity of the field distribution. The values of the maximum achievable longitudinal momenta of electrons accelerated to the centre, as well as their distribution function are determined. The existence of quasi-periodic trajectories near the focal region of the dipole wave is shown, and the characteristics of the emission of both accelerated and oscillating electrons are analysed. (extreme light fields and their applications)

  8. Acceleration of Magnetospheric Relativistic Electrons by Ultra-Low Frequency Waves: A Comparison between Two Cases Observed by Cluster and LANL Satellites

    NASA Technical Reports Server (NTRS)

    Shao, X.; Fung, S. F.; Tan, L. C.; Sharma, A. S.

    2010-01-01

    Understanding the origin and acceleration of magnetospheric relativistic electrons (MREs) in the Earth's radiation belt during geomagnetic storms is an important subject and yet one of outstanding questions in space physics. It has been statistically suggested that during geomagnetic storms, ultra-low-frequency (ULF) Pc-5 wave activities in the magnetosphere are correlated with order of magnitude increase of MRE fluxes in the outer radiation belt. Yet, physical and observational understandings of resonant interactions between ULF waves and MREs remain minimum. In this paper, we show two events during storms on September 25, 2001 and November 25, 2001, the solar wind speeds in both cases were > 500 km/s while Cluster observations indicate presence of strong ULF waves in the magnetosphere at noon and dusk, respectively, during a approx. 3-hour period. MRE observations by the Los Alamos (LANL) spacecraft show a quadrupling of 1.1-1.5 MeV electron fluxes in the September 25, 2001 event, but only a negligible increase in the November 2.5, 2001 event. We present a detailed comparison between these two events. Our results suggest that the effectiveness of MRE acceleration during the September 25, 2001 event can be attributed to the compressional wave mode with strong ULF wave activities and the physical origin of MRE acceleration depends more on the distribution of toroidal and poloidal ULF waves in the outer radiation belt.

  9. Cosmos++: Relativistic Magnetohydrodynamics on Unstructured Grids with Local Adaptive Refinement

    SciTech Connect

    Anninos, P; Fragile, P C; Salmonson, J D

    2005-05-06

    A new code and methodology are introduced for solving the fully general relativistic magnetohydrodynamic (GRMHD) equations using time-explicit, finite-volume discretization. The code has options for solving the GRMHD equations using traditional artificial-viscosity (AV) or non-oscillatory central difference (NOCD) methods, or a new extended AV (eAV) scheme using artificial-viscosity together with a dual energy-flux-conserving formulation. The dual energy approach allows for accurate modeling of highly relativistic flows at boost factors well beyond what has been achieved to date by standard artificial viscosity methods. it provides the benefit of Godunov methods in capturing high Lorentz boosted flows but without complicated Riemann solvers, and the advantages of traditional artificial viscosity methods in their speed and flexibility. Additionally, the GRMHD equations are solved on an unstructured grid that supports local adaptive mesh refinement using a fully threated oct-tree (in three dimensions) network to traverse the grid hierarchy across levels and immediate neighbors. A number of tests are presented to demonstrate robustness of the numerical algorithms and adaptive mesh framework over a wide spectrum of problems, boosts, and astrophysical applications, including relativistic shock tubes, shock collisions, magnetosonic shocks, Alfven wave propagation, blast waves, magnetized Bondi flow, and the magneto-rotational instability in Kerr black hole spacetimes.

  10. Why galactic gamma-ray bursts might depend on environment: Blast waves around neutron stars

    NASA Technical Reports Server (NTRS)

    Rees, Martin J.; Meszaros, Peter; Begelman, Mitchell C.

    1994-01-01

    Although galactic models for gamma-ray bursts are hard to reconcile with the isotropy data, the issue is still sufficiently open that both options should be explored. The most likely 'triggers' for bursts in our Galaxy would be violent disturbances in the magnetospheres of neutron stars. Any event of this kind is likely to expel magnetic flux and plasma at relativistic speed. Such ejecta would be braked by the interstellar medium (ISM), and a gamma-ray flash may result from this interaction. The radiative efficiency, of this mechanism would depend on the density of the circumstellar ISM. Therefore, even if neutron stars were uniformly distributed in space (at least within 1-2 kpc of the Sun), the observed locations of bursts would correlate with regions of above-average ISM density.

  11. Magnetic field generation and diffusion by a laser-produced blast wave propagating in non-homogenous plasma

    NASA Astrophysics Data System (ADS)

    Marocchino, A.; Atzeni, S.; Schiavi, A.

    2015-04-01

    In this paper we discuss the magnetic field self generation, via the so-called Biermann battery effect, and its diffusion for a blast wave (BW) expanding in a perturbed background medium. A series of simulations verify the bi-linear behavior of the Biermann battery source term both in amplitude and in wavenumber. Such a behavior is valid in the limit of no diffusivity. When diffusivity is also considered, we observe an inverse proportionality with the wavenumber: for large wavenumber perturbation magnetic diffusivity plays a key role. Writing the induction equation in a dimensionless form we discuss how, in terms of magnetic properties, the BW can be subdivided into three main regions: the remnant where the frozen-in-flow approximation holds, the thin shell where the magnetic field is in fact generated but at the same time begins to diffuse, and the shock front where the magnetic field diffuses away. A possible experimental scenario that could induce magnetic fields of about 100 gauss is finally investigated. Simulations have been performed with the code DUED.

  12. Observation and modeling of mixing-layer development in high-energy-density, blast-wave-driven shear flow

    SciTech Connect

    Di Stefano, C. A. Kuranz, C. C.; Klein, S. R.; Drake, R. P.; Malamud, G.; Henry de Frahan, M. T.; Johnsen, E.; Shimony, A.; Shvarts, D.; Smalyuk, V. A.; Martinez, D.

    2014-05-15

    In this work, we examine the hydrodynamics of high-energy-density (HED) shear flows. Experiments, consisting of two materials of differing density, use the OMEGA-60 laser to drive a blast wave at a pressure of ∼50 Mbar into one of the media, creating a shear flow in the resulting shocked system. The interface between the two materials is Kelvin-Helmholtz unstable, and a mixing layer of growing width develops due to the shear. To theoretically analyze the instability's behavior, we rely on two sources of information. First, the interface spectrum is well-characterized, which allows us to identify how the shock front and the subsequent shear in the post-shock flow interact with the interface. These observations provide direct evidence that vortex merger dominates the evolution of the interface structure. Second, simulations calibrated to the experiment allow us to estimate the time-dependent evolution of the deposition of vorticity at the interface. The overall result is that we are able to choose a hydrodynamic model for the system, and consequently examine how well the flow in this HED system corresponds to a classical hydrodynamic description.

  13. Diffusion of cosmic rays in a multiphase interstellar medium swept-up by a supernova remnant blast wave

    NASA Astrophysics Data System (ADS)

    Roh, Soonyoung; Inutsuka, Shu-ichiro; Inoue, Tsuyoshi

    2016-01-01

    Supernova remnants (SNRs) are one of the most energetic astrophysical events and are thought to be the dominant source of Galactic cosmic rays (CRs). A recent report on observations from the Fermi satellite has shown a signature of pion decay in the gamma-ray spectra of SNRs. This provides strong evidence that high-energy protons are accelerated in SNRs. The actual gamma-ray emission from pion decay should depend on the diffusion of CRs in the interstellar medium. In order to quantitatively analyse the diffusion of high-energy CRs from acceleration sites, we have performed test particle numerical simulations of CR protons using a three-dimensional magnetohydrodynamics (MHD) simulation of an interstellar medium swept-up by a blast wave. We analyse the diffusion of CRs at a length scale of order a few pc in our simulated SNR, and find the diffusion of CRs is precisely described by a Bohm diffusion, which is required for efficient acceleration at least for particles with energies above 30 TeV for a realistic interstellar medium. Although we find the possibility of a superdiffusive process (travel distance ∝ t0.75) in our simulations, its effect on CR diffusion at the length scale of the turbulence in the SNR is limited.

  14. Transition to Turbulence and Effect of Initial Conditions on 3D Compressible Mixing in Planar Blast-wave-driven Systems

    SciTech Connect

    Miles, A R; Edwards, M J; Greenough, J A

    2004-11-08

    Perturbations on an interface driven by a strong blast wave grow in time due to a combination of Rayleigh-Taylor, Richtmyer-Meshkov, and decompression effects. In this paper, results from three-dimensional numerical simulations of such a system under drive conditions to be attainable on the National Ignition Facility [E. M. Campbell, Laser Part. Beams, 9(2), 209 (1991)] are presented. Using the multi-physics, adaptive mesh refinement, higher order Godunov Eulerian hydrocode, Raptor [L. H. Howell and J.A. Greenough, J. Comp. Phys. 184, 53 (2003)], the late nonlinear instability evolution, including transition to turbulence, is considered for various multimode perturbation spectra. The 3D post-transition state differs from the 2D result, but the process of transition proceeds similarly in both 2D and 3D. The turbulent mixing transition results in a reduction in the growth rate of the mixing layer relative to its pre-transition value and, in the case of the bubble front, relative to the 2D result. The post-transition spike front velocity is approximately the same in 2D and 3D. Implications for hydrodynamic mixing in core-collapse supernova are discussed.

  15. Relativistic electron acceleration by compressional-mode ULF waves: Evidence from correlated Cluster, Los Alamos National Laboratory spacecraft, and ground-based magnetometer measurements

    NASA Astrophysics Data System (ADS)

    Tan, Lun C.; Shao, X.; Sharma, A. S.; Fung, Shing F.

    2011-07-01

    Simultaneous observations by Cluster and Los Alamos National Laboratory (LANL) spacecraft and Canadian Array for Real-Time Investigations of Magnetic Activity and International Monitor for Auroral Geomagnetic Effects magnetometer arrays during a sudden storm commencement on 25 September 2001 show evidence of relativistic electron acceleration by compressional-mode ULF waves. The waves are driven by the quasiperiodic solar wind dynamical pressure fluctuations that continuously buffet the magnetosphere for ˜3 h. The compressional-mode ULF waves are identified by comparing the power of magnetic field magnitude fluctuations with the total magnetic field power. The radial distribution and azimuthal propagation of both toroidal and poloidal-mode ULF waves are derived from ground-based magnetometer data. The energetic electron fluxes measured by LANL show modulation of low-energy electrons and acceleration of high-energy electrons by the compressional poloidal-mode electric field oscillations. The energy threshold of accelerated electrons at the geosynchronous orbit is ˜0.4 MeV, which is roughly consistent with drift-resonant interaction of magnetospheric electrons with compressional-mode ULF waves.

  16. Blood brain barrier dysfunction and delayed neurological deficits in mild traumatic brain injury induced by blast shock waves

    PubMed Central

    Shetty, Ashok K.; Mishra, Vikas; Kodali, Maheedhar; Hattiangady, Bharathi

    2014-01-01

    Mild traumatic brain injury (mTBI) resulting from exposure to blast shock waves (BSWs) is one of the most predominant causes of illnesses among veterans who served in the recent Iraq and Afghanistan wars. Such mTBI can also happen to civilians if exposed to shock waves of bomb attacks by terrorists. While cognitive problems, memory dysfunction, depression, anxiety and diffuse white matter injury have been observed at both early and/or delayed time-points, an initial brain pathology resulting from exposure to BSWs appears to be the dysfunction or disruption of the blood-brain barrier (BBB). Studies in animal models suggest that exposure to relatively milder BSWs (123 kPa) initially induces free radical generating enzymes in and around brain capillaries, which enhances oxidative stress resulting in loss of tight junction (TJ) proteins, edema formation, and leakiness of BBB with disruption or loss of its components pericytes and astrocyte end-feet. On the other hand, exposure to more intense BSWs (145–323 kPa) causes acute disruption of the BBB with vascular lesions in the brain. Both of these scenarios lead to apoptosis of endothelial and neural cells and neuroinflammation in and around capillaries, which may progress into chronic traumatic encephalopathy (CTE) and/or a variety of neurological impairments, depending on brain regions that are afflicted with such lesions. This review discusses studies that examined alterations in the brain milieu causing dysfunction or disruption of the BBB and neuroinflammation following exposure to different intensities of BSWs. Furthermore, potential of early intervention strategies capable of easing oxidative stress, repairing the BBB or blocking inflammation for minimizing delayed neurological deficits resulting from exposure to BSWs is conferred. PMID:25165433

  17. Blood brain barrier dysfunction and delayed neurological deficits in mild traumatic brain injury induced by blast shock waves.

    PubMed

    Shetty, Ashok K; Mishra, Vikas; Kodali, Maheedhar; Hattiangady, Bharathi

    2014-01-01

    Mild traumatic brain injury (mTBI) resulting from exposure to blast shock waves (BSWs) is one of the most predominant causes of illnesses among veterans who served in the recent Iraq and Afghanistan wars. Such mTBI can also happen to civilians if exposed to shock waves of bomb attacks by terrorists. While cognitive problems, memory dysfunction, depression, anxiety and diffuse white matter injury have been observed at both early and/or delayed time-points, an initial brain pathology resulting from exposure to BSWs appears to be the dysfunction or disruption of the blood-brain barrier (BBB). Studies in animal models suggest that exposure to relatively milder BSWs (123 kPa) initially induces free radical generating enzymes in and around brain capillaries, which enhances oxidative stress resulting in loss of tight junction (TJ) proteins, edema formation, and leakiness of BBB with disruption or loss of its components pericytes and astrocyte end-feet. On the other hand, exposure to more intense BSWs (145-323 kPa) causes acute disruption of the BBB with vascular lesions in the brain. Both of these scenarios lead to apoptosis of endothelial and neural cells and neuroinflammation in and around capillaries, which may progress into chronic traumatic encephalopathy (CTE) and/or a variety of neurological impairments, depending on brain regions that are afflicted with such lesions. This review discusses studies that examined alterations in the brain milieu causing dysfunction or disruption of the BBB and neuroinflammation following exposure to different intensities of BSWs. Furthermore, potential of early intervention strategies capable of easing oxidative stress, repairing the BBB or blocking inflammation for minimizing delayed neurological deficits resulting from exposure to BSWs is conferred. PMID:25165433

  18. Relativistic Effects on Chemical Properties.

    ERIC Educational Resources Information Center

    McKelvey, Donald R.

    1983-01-01

    Discusses how anomalous chemical properties may be explained by considering relativistic effects. Traces development of the relativistic wave equation (Dirac equation) starting with the Borh treatment of the hydrogen atom and discusses major consequences of the Dirac equation. Suggests that these topics receive greater attention in the…

  19. Point form relativistic quantum mechanics and relativistic SU(6)

    NASA Technical Reports Server (NTRS)

    Klink, W. H.

    1993-01-01

    The point form is used as a framework for formulating a relativistic quantum mechanics, with the mass operator carrying the interactions of underlying constituents. A symplectic Lie algebra of mass operators is introduced from which a relativistic harmonic oscillator mass operator is formed. Mass splittings within the degenerate harmonic oscillator levels arise from relativistically invariant spin-spin, spin-orbit, and tensor mass operators. Internal flavor (and color) symmetries are introduced which make it possible to formulate a relativistic SU(6) model of baryons (and mesons). Careful attention is paid to the permutation symmetry properties of the hadronic wave functions, which are written as polynomials in Bargmann spaces.

  20. A study on characteristics of radial transport of relativistic electrons by ULF Pc5 waves in the inner magnetosphere based on the GEMSIS-RC and RB models

    NASA Astrophysics Data System (ADS)

    Seki, K.; Amano, T.; Saito, S.; Miyoshi, Y.; Matsumoto, Y.; Umeda, T.; Keika, K.; Miyashita, Y.

    2014-12-01

    Mechanism to cause drastic variation of the Earth's outer radiation belt is one of outstanding problems of the magnetospheric researches. While the radial diffusion of the electrons driven by ULF waves in Pc5 frequency range has been considered as one of the candidate mechanisms, it is pointed out that the radial transport of relativistic electrons by ULF waves is not necessarily reach the radial diffusion limit and collective motion of the outer belt electrons can exhibit large deviations from the radial diffusion [Ukhorskiy et al., JATSP, 2008]. Thus it is important to understand the form of radial transport of electrons under realistic ULF distribution in the inner magnetosphere. We have developed a physics-based model for the global dynamics of the ring current (GEMSIS-RC model). The GEMSIS-RC model is a self-consistent numerical simulation code solving the five-dimensional collisionless drift-kinetic equation for the ring-current ions in the inner-magnetosphere coupled with Maxwell equations [Amano et al., JGR, 2011]. We applied the GEMSIS-RC model for simulation of global distribution of ULF Pc5 waves. Comparison between runs with/without ring current ions show that the existence of hot ring current ions can deform the original sinusoidal waveforms. The deformation causes the energy cascade to higher frequency range (Pc4 and Pc3 ranges). The cascade is more pronounced in the high beta case. It is also shown that the existence of plasmapause strengthens ULFs outside the plasmapause and widens the MLT region where the E_r (toroidal) component is excited from initially-given E_phi (poloidal) component. In order to investigate the characteristics of radial transport of relativistic electrons, we then use the global magnetic and electric fields variation obtained by the GEMNIS-RC model as input field models for the test particle simulations of radiation belt electrons (GEMSIS-RB) [Saito et al., JGR, 2010]. The combination of GEMSIS-RC and RB models reproduced

  1. Underwater blast wave pressure sensor based on polymer film fiber Fabry-Perot cavity.

    PubMed

    Wang, Junjie; Wang, Meng; Xu, Jian; Peng, Li; Yang, Minghong; Xia, Minghe; Jiang, Desheng

    2014-10-01

    This paper describes the theoretical and experimental aspects of an optical underwater shock wave sensor based on a polymer film optical fiber Fabry-Perot cavity manufactured by vacuum deposition technology. The transduction mechanism of the sensor involves a normally incident acoustic stress wave that changes the thickness of the polymer film, thereby giving rise to a phase shift. This transient interferometric phase is interrogated by a three-phase-step algorithm. Theoretically, the sensor-acoustic-field interaction principle is analyzed, and the phase modulation sensitivity based on the theory of waves in the layered media is calculated. Experimentally, a static calibration test and a dynamic calibration test are conducted using a piston-type pressure calibration machine and a focusing-type electromagnetic shock wave. Results indicate that the repeatability, hysteresis, nonlinearity, and the overall measurement accuracy of the sensor within the full pressure range of 55 MPa are 1.82%, 0.86%, 1.81%, and 4.49%, respectively. The dynamic response time is less than 0.767 μs. Finally, three aspects that need further study for practical use are pointed out.

  2. Underwater blast wave pressure sensor based on polymer film fiber Fabry-Perot cavity.

    PubMed

    Wang, Junjie; Wang, Meng; Xu, Jian; Peng, Li; Yang, Minghong; Xia, Minghe; Jiang, Desheng

    2014-10-01

    This paper describes the theoretical and experimental aspects of an optical underwater shock wave sensor based on a polymer film optical fiber Fabry-Perot cavity manufactured by vacuum deposition technology. The transduction mechanism of the sensor involves a normally incident acoustic stress wave that changes the thickness of the polymer film, thereby giving rise to a phase shift. This transient interferometric phase is interrogated by a three-phase-step algorithm. Theoretically, the sensor-acoustic-field interaction principle is analyzed, and the phase modulation sensitivity based on the theory of waves in the layered media is calculated. Experimentally, a static calibration test and a dynamic calibration test are conducted using a piston-type pressure calibration machine and a focusing-type electromagnetic shock wave. Results indicate that the repeatability, hysteresis, nonlinearity, and the overall measurement accuracy of the sensor within the full pressure range of 55 MPa are 1.82%, 0.86%, 1.81%, and 4.49%, respectively. The dynamic response time is less than 0.767 μs. Finally, three aspects that need further study for practical use are pointed out. PMID:25322237

  3. Relativistic spectra of bound fermions

    SciTech Connect

    Giachetti, Riccardo; Sorace, Emanuele

    2007-02-27

    A two fermion relativistic invariant wave equation is used for numerical calculations of the hyperfine shifts of the Positronium levels in a Breit interaction scheme. The results agree with known data up to the order {alpha}4.

  4. Reflection and Diffraction Phenomena of Blast Wave Propagation in Nuclear Fuel Cycle Facility

    NASA Astrophysics Data System (ADS)

    Miura, Akihiko; Matsuo, Akiko; Mizukaki, Toshiharu; Shiraishi, Takuya; Utsunomiya, Go; Takayama, Kazuyoshi; Nojiri, Ichiro

    This paper presents the results of an optical experiment which is carried out to measure the pressure and to observe the wave propagations when an explosion occurs in a model of a nuclear facility for preventing and mitigating the serious damage of nuclear facility. Numerical simulation is also performed to compare the phenomena in a model of nuclear facility. Nuclear facility is simulated as the several closed rooms in these experiments and simulations, because the nuclear facility is composed of many closed rooms. As a result, typical tendencies of pressure history are obtained, and it is confirmed that the explosion which occurs in a closed space is reflected in the complexity at the walls and interfered mutually with progressing waves. Finally, experimental results are compared with a numerical simulation. It is confirmed that the results of a numerical simulation show a good agreement with experimental results.

  5. Laboratory observation of secondary shock formation ahead of a strongly radiative blast wave

    SciTech Connect

    Hansen, J F; Edwards, M J; Froula, D H; Edens, A D; Gregori, G; Ditmire, T R

    2006-04-20

    We have previously reported the experimental discovery of a second shock forming ahead of a radiative shock propagating in Xe. The initial shock is spherical, radiative, with a high Mach number, and it sends a supersonic radiative heat far ahead of itself. The heat wave rapidly slows to a transonic regime and when its Mach number drops to two with respect to the downstream plasma, the heat wave drives a second shock ahead of itself to satisfy mass and momentum conservation in the heat wave reference frame. We now show experimental data from a range of mixtures of Xe and N{sub 2}, gradually changing the properties of the initial shock and the environment into which the shock moves and radiates (the radiative conductivity and the heat capacity). We have successfully observed second shock formation over the entire range from 100% Xe mass fraction to 100% N{sub 2}. The formation radius of the second shock as a function of Xe mass fraction is consistent with an analytical estimate.

  6. Translational Research for Blast-Induced Traumatic Brain Injury: Injury Mechanism to Development of Medical Instruments

    NASA Astrophysics Data System (ADS)

    Nakagawa, A.; Ohtani, K.; Arafune, T.; Washio, T.; Iwasaki, M.; Endo, T.; Ogawa, Y.; Kumabe, T.; Takayama, K.; Tominaga, T.

    1. Investigation of shock wave-induced phenomenon: blast-induced traumatic brain injury Blast wave (BW) is generated by explosion and is comprised of lead shock wave (SE) followed by subsequent supersonic flow.

  7. Tailoring the Blast Exposure Conditions in the Shock Tube for Generating Pure, Primary Shock Waves: The End Plate Facilitates Elimination of Secondary Loading of the Specimen.

    PubMed

    Kuriakose, Matthew; Skotak, Maciej; Misistia, Anthony; Kahali, Sudeepto; Sundaramurthy, Aravind; Chandra, Namas

    2016-01-01

    The end plate mounted at the mouth of the shock tube is a versatile and effective implement to control and mitigate the end effects. We have performed a series of measurements of incident shock wave velocities and overpressures followed by quantification of impulse values (integral of pressure in time domain) for four different end plate configurations (0.625, 2, 4 inches, and an open end). Shock wave characteristics were monitored by high response rate pressure sensors allocated in six positions along the length of 6 meters long 229 mm square cross section shock tube. Tests were performed at three shock wave intensities, which was controlled by varying the Mylar membrane thickness (0.02, 0.04 and 0.06 inch). The end reflector plate installed at the exit of the shock tube allows precise control over the intensity of reflected waves penetrating into the shock tube. At the optimized distance of the tube to end plate gap the secondary waves were entirely eliminated from the test section, which was confirmed by pressure sensor at T4 location. This is pronounced finding for implementation of pure primary blast wave animal model. These data also suggest only deep in the shock tube experimental conditions allow exposure to a single shock wave free of artifacts. Our results provide detailed insight into spatiotemporal dynamics of shock waves with Friedlander waveform generated using helium as a driver gas and propagating in the air inside medium sized tube. Diffusion of driver gas (helium) inside the shock tube was responsible for velocity increase of reflected shock waves. Numerical simulations combined with experimental data suggest the shock wave attenuation mechanism is simply the expansion of the internal pressure. In the absence of any other postulated shock wave decay mechanisms, which were not implemented in the model the agreement between theory and experimental data is excellent. PMID:27603017

  8. Tailoring the Blast Exposure Conditions in the Shock Tube for Generating Pure, Primary Shock Waves: The End Plate Facilitates Elimination of Secondary Loading of the Specimen

    PubMed Central

    Misistia, Anthony; Kahali, Sudeepto; Sundaramurthy, Aravind; Chandra, Namas

    2016-01-01

    The end plate mounted at the mouth of the shock tube is a versatile and effective implement to control and mitigate the end effects. We have performed a series of measurements of incident shock wave velocities and overpressures followed by quantification of impulse values (integral of pressure in time domain) for four different end plate configurations (0.625, 2, 4 inches, and an open end). Shock wave characteristics were monitored by high response rate pressure sensors allocated in six positions along the length of 6 meters long 229 mm square cross section shock tube. Tests were performed at three shock wave intensities, which was controlled by varying the Mylar membrane thickness (0.02, 0.04 and 0.06 inch). The end reflector plate installed at the exit of the shock tube allows precise control over the intensity of reflected waves penetrating into the shock tube. At the optimized distance of the tube to end plate gap the secondary waves were entirely eliminated from the test section, which was confirmed by pressure sensor at T4 location. This is pronounced finding for implementation of pure primary blast wave animal model. These data also suggest only deep in the shock tube experimental conditions allow exposure to a single shock wave free of artifacts. Our results provide detailed insight into spatiotemporal dynamics of shock waves with Friedlander waveform generated using helium as a driver gas and propagating in the air inside medium sized tube. Diffusion of driver gas (helium) inside the shock tube was responsible for velocity increase of reflected shock waves. Numerical simulations combined with experimental data suggest the shock wave attenuation mechanism is simply the expansion of the internal pressure. In the absence of any other postulated shock wave decay mechanisms, which were not implemented in the model the agreement between theory and experimental data is excellent. PMID:27603017

  9. Tailoring the Blast Exposure Conditions in the Shock Tube for Generating Pure, Primary Shock Waves: The End Plate Facilitates Elimination of Secondary Loading of the Specimen.

    PubMed

    Kuriakose, Matthew; Skotak, Maciej; Misistia, Anthony; Kahali, Sudeepto; Sundaramurthy, Aravind; Chandra, Namas

    2016-01-01

    The end plate mounted at the mouth of the shock tube is a versatile and effective implement to control and mitigate the end effects. We have performed a series of measurements of incident shock wave velocities and overpressures followed by quantification of impulse values (integral of pressure in time domain) for four different end plate configurations (0.625, 2, 4 inches, and an open end). Shock wave characteristics were monitored by high response rate pressure sensors allocated in six positions along the length of 6 meters long 229 mm square cross section shock tube. Tests were performed at three shock wave intensities, which was controlled by varying the Mylar membrane thickness (0.02, 0.04 and 0.06 inch). The end reflector plate installed at the exit of the shock tube allows precise control over the intensity of reflected waves penetrating into the shock tube. At the optimized distance of the tube to end plate gap the secondary waves were entirely eliminated from the test section, which was confirmed by pressure sensor at T4 location. This is pronounced finding for implementation of pure primary blast wave animal model. These data also suggest only deep in the shock tube experimental conditions allow exposure to a single shock wave free of artifacts. Our results provide detailed insight into spatiotemporal dynamics of shock waves with Friedlander waveform generated using helium as a driver gas and propagating in the air inside medium sized tube. Diffusion of driver gas (helium) inside the shock tube was responsible for velocity increase of reflected shock waves. Numerical simulations combined with experimental data suggest the shock wave attenuation mechanism is simply the expansion of the internal pressure. In the absence of any other postulated shock wave decay mechanisms, which were not implemented in the model the agreement between theory and experimental data is excellent.

  10. Interaction of a strong blast wave with a free surface. [at ocean surface

    NASA Technical Reports Server (NTRS)

    Falade, A.; Holt, M.

    1978-01-01

    When a point source explosion is initiated at the ocean surface, the shock propagated into the water is reflected at the surface as a centered expansion wave. The solution in the neighborhood of the interaction point is obtained by writing the equations of motion in the appropriate similarity variables and then changing the independent variables to polar coordinates based at the interaction point. From the zero-order solution of the resulting equations the slopes of boundaries at the interaction point are obtained. A first-order perturbation of this solution provides more accurate representation of the flow variables and the curvature of the shock surface near the interaction point.

  11. Relativistic viscoelastic fluid mechanics

    SciTech Connect

    Fukuma, Masafumi; Sakatani, Yuho

    2011-08-15

    A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.

  12. Relativistic viscoelastic fluid mechanics.

    PubMed

    Fukuma, Masafumi; Sakatani, Yuho

    2011-08-01

    A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.

  13. Initial decay of flow properties of planar, cylindrical and spherical blast waves

    NASA Astrophysics Data System (ADS)

    Sadek, H. S. I.; Gottlieb, J. J.

    1983-10-01

    Analytical expressions are presented for the initial decay of all major flow properties just behind planar, cylindrical, and spherical shock wave fronts whose trajectories are known as a function of either distance versus time or shock overpressure versus distance. These expressions give the time and/or distance derivatives of the flow properties not only along constant time and distance lines but also along positive and negative characteristic lines and a fluid-particle path. Conventional continuity, momentum and energy equations for the nonstationary motion of an inviscid, non-heat conducting, compressible gas are used in their derivation, along with the equation of state of a perfect gas. All analytical expressions are validated by comparing the results to those obtained indirectly from known self-similar solutions for planar, cylindrical and spherical shock-wave flows generated both by a sudden energy release and by a moving piston. Futhermore, time derivatives of pressure and flow velocity are compared to experimental data from trinitrotoluene (TNT), pentolite, ammonium nitrate-fuel oil (ANFO) and propane-oxygen explosions, and good agreement is obtained.

  14. Quasilinear theory of terahertz free-electron lasers based on Compton scattering of incoherent pump wave by intense relativistic electron beam

    NASA Astrophysics Data System (ADS)

    Ginzburg, N. S.; Kocharovskaya, E. R.

    2016-08-01

    The use of incoherent broadband pump radiation for improving the electron efficiency in the free-electron lasers (FEL) based on stimulated backscattering is considered. On the basis of a quasilinear approach, it is shown that the efficiency increases in proportion to the width of the pump spectrum. The effect is owing to a broadening of the spectrum of synchronous combination waves and realization of a mechanism of stochastic particle deceleration. The injection of a monochromatic seed signal in a single pass FEL amplifier or the implementation of a selective high-Q resonator in an FEL oscillator makes the high-frequency scattered radiation be monochromatic in spite of an incoherent pumping. In the regime of stochastic particle deceleration, the efficiency only slightly depends on the spread of the beam parameters, which is beneficial for a terahertz FEL powered by intense relativistic electron beams.

  15. Probability of relativistic electron trapping by parallel and oblique whistler-mode waves in Earth's radiation belts

    SciTech Connect

    Artemyev, A. V. Vasiliev, A. A.; Neishtadt, A. I.; Mourenas, D.; Krasnoselskikh, V.

    2015-11-15

    We investigate electron trapping by high-amplitude whistler-mode waves propagating at small as well as large angles relative to geomagnetic field lines. The inhomogeneity of the background magnetic field can result in an effective acceleration of trapped particles. Here, we derive useful analytical expressions for the probability of electron trapping by both parallel and oblique waves, paving the way for a full analytical description of trapping effects on the particle distribution. Numerical integrations of particle trajectories allow to demonstrate the accuracy of the derived analytical estimates. For realistic wave amplitudes, the levels of probabilities of trapping are generally comparable for oblique and parallel waves, but they turn out to be most efficient over complementary energy ranges. Trapping acceleration of <100 keV electrons is mainly provided by oblique waves, while parallel waves are responsible for the trapping acceleration of >100 keV electrons.

  16. On the design of experiments for the study of extreme field limits in the ultra-relativistic interaction of electromagnetic waves with plasmas

    NASA Astrophysics Data System (ADS)

    Bulanov, Sergei V.; Esirkepov, Timur Z.; Hayashi, Yukio; Kando, Masaki; Kiriyama, Hiromitsu; Koga, James K.; Kondo, Kiminori; Kotaki, Hideyuki; Pirozhkov, Alexander S.; Bulanov, Stepan S.; Zhidkov, Alexei G.; Chen, Pisin; Neely, David; Kato, Yoshiaki; Narozhny, Nikolay B.; Korn, Georg

    2011-06-01

    The critical electric field of quantum electrodynamics, called also the Schwinger field, is so strong that it produces electron-positron pairs from vacuum, converting the energy of light into matter. Since the dawn of quantum electrodynamics, there has been a dream on how to reach it on Earth. With the rise of laser technology this field has become feasible through the construction of extremely high power lasers or/and with the sophisticated use of nonlinear processes in relativistic plasmas. This is one of the most attractive motivations for extremely high power laser development, i.e. producing matter from vacuum by pure light in fundamental process of quantum electrodynamics in the nonperturbative regime. Recently it has been realized that a laser with intensity well below the Schwinger limit can create an avalanche of electron-positron pairs similar to a discharge before attaining the Schwinger field. It has also been realized that the Schwinger limit can be reached using an appropriate configuration of laser beams. In experiments on the collision of laser light and high intensity electromagnetic pulses generated by relativistic flying mirrors, with electron bunches produced by a conventional accelerator and with laser wake field accelerated electrons the studying of extreme field limits in the nonlinear interaction of electromagnetic waves is proposed. The regimes of dominant radiation reaction, which completely changes the electromagnetic wave-matter interaction, will be revealed. This will result in a new powerful source of high brightness gamma-rays. A possibility of the demonstration of the electronpositron pair creation in vacuum via multi-photon processes can be realized. This will allow modeling under terrestrial laboratory conditions neutron star magnetospheres, cosmological gamma ray bursts and the Leptonic Era of the Universe.

  17. The laboratory simulation of unmagnetized supernova remnants Absence of a blast wave

    NASA Technical Reports Server (NTRS)

    Borovsky, J. E.; Pongratz, M. B.; Roussel-Dupre, R. A.; Tan, T.-H.

    1984-01-01

    Supernova remnants are experimentally simulated by irradiating spherical targets with eight-beam carbon dioxide laser in a chamber containing finite amounts of neutral gas, the gas being ionized by radiation from the hot target. The expansion velocities of the target plasmas are approximately the same as the expansion velocities of supernova ejecta and the experiment is successfully scaled to the case of a supernova remnant in an unmagnetized, low-density, interstellar medium. No sweep-up of the ambient plasma is detected, indicating that no hydrodynamic shock wave is formed to couple the target ejecta to the ambient gas. The experiment implies that if supernova ejecta couple to the interstellar medium, magnetic-field effects may be crucial to the physical description.

  18. Relativistic nuclear dynamics

    SciTech Connect

    Coester, F.

    1985-01-01

    A review is presented of three distinct approaches to the construction of relativistic dynamical models: (1) Relativistic canonical quantum mechanics. (The Hilbert space of states is independent of the interactions, which are introduced by modifying the energy operator.) (2) Hilbert spaces of manifestly covariant wave functions. (The interactions modify the metric of the Hilbert space.) (3) Covariant Green functions. In each of the three approaches the focus is on the formulation of the two-body dynamics, and problems in the construction of the corresponding many-body dynamics are discussed briefly. 21 refs.

  19. [Blast injuries of the ear].

    PubMed

    Haralampiev, K; Ristić, B

    1991-01-01

    Blast injury of the ear is the actual military medical problem. The ear, due to its anatomo-physiologic characteristics, is more sensitive to effects of blast waves than other organs and systems. The anatomic and functional ear damages, their symptoms, etiology and clinical course are described. The diagnosis and treatment have been pointed out. PMID:1807053

  20. Analysis of the effectiveness of ground-based VLF wave observations for predicting or nowcasting relativistic electron flux at geostationary orbit

    NASA Astrophysics Data System (ADS)

    Simms, Laura E.; Engebretson, Mark J.; Smith, A. J.; Clilverd, Mark; Pilipenko, Viacheslav; Reeves, Geoffrey D.

    2015-03-01

    Poststorm relativistic electron flux enhancement at geosynchronous orbit has shown correlation with very low frequency (VLF) waves measured by satellite in situ. However, our previous study found little correlation between electron flux and VLF measured by a ground-based instrument at Halley, Antarctica. Here we explore several possible explanations for this low correlation. Using 220 storms (1992-2002), our previous work developed a predictive model of the poststorm flux at geosynchronous orbit based on explanatory variables measured a day or two before the flux increase. In a nowcast model, we use averages of variables from the time period when flux is rising during the recovery phase of geomagnetic storms and limit the VLF (1.0 kHz) measure to the dawn period at Halley (09:00-12:00 UT). This improves the simple correlation of VLF wave intensity with flux, although the VLF effect in an overall multiple regression is still much less than that of other factors. When analyses are performed separately for season and interplanetary magnetic field (IMF) Bz orientation, VLF outweighs the influence of other factors only during winter months when IMF Bz is in an average northward orientation.