Sample records for relativistic dissipative fluid

  1. From Lattice Boltzmann to hydrodynamics in dissipative relativistic fluids

    NASA Astrophysics Data System (ADS)

    Gabbana, Alessandro; Mendoza, Miller; Succi, Sauro; Tripiccione, Raffaele

    2017-11-01

    Relativistic fluid dynamics is currently applied to several fields of modern physics, covering many physical scales, from astrophysics, to atomic scales (e.g. in the study of effective 2D systems such as graphene) and further down to subnuclear scales (e.g. quark-gluon plasmas). This talk focuses on recent progress in the largely debated connection between kinetic transport coefficients and macroscopic hydrodynamic parameters in dissipative relativistic fluid dynamics. We use a new relativistic Lattice Boltzmann method (RLBM), able to handle from ultra-relativistic to almost non-relativistic flows, and obtain strong evidence that the Chapman-Enskog expansion provides the correct pathway from kinetic theory to hydrodynamics. This analysis confirms recently obtained theoretical results, which can be used to obtain accurate calibrations for RLBM methods applied to realistic physics systems in the relativistic regime. Using this calibration methodology, RLBM methods are able to deliver improved physical accuracy in the simulation of the physical systems described above. European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 642069.

  2. Cascades and Dissipative Anomalies in Relativistic Fluid Turbulence

    NASA Astrophysics Data System (ADS)

    Eyink, Gregory L.; Drivas, Theodore D.

    2018-02-01

    We develop a first-principles theory of relativistic fluid turbulence at high Reynolds and Péclet numbers. We follow an exact approach pioneered by Onsager, which we explain as a nonperturbative application of the principle of renormalization-group invariance. We obtain results very similar to those for nonrelativistic turbulence, with hydrodynamic fields in the inertial range described as distributional or "coarse-grained" solutions of the relativistic Euler equations. These solutions do not, however, satisfy the naive conservation laws of smooth Euler solutions but are afflicted with dissipative anomalies in the balance equations of internal energy and entropy. The anomalies are shown to be possible by exactly two mechanisms, local cascade and pressure-work defect. We derive "4 /5 th-law" type expressions for the anomalies, which allow us to characterize the singularities (structure-function scaling exponents) required for their not vanishing. We also investigate the Lorentz covariance of the inertial-range fluxes, which we find to be broken by our coarse-graining regularization but which is restored in the limit where the regularization is removed, similar to relativistic lattice quantum field theory. In the formal limit as speed of light goes to infinity, we recover the results of previous nonrelativistic theory. In particular, anomalous heat input to relativistic internal energy coincides in that limit with anomalous dissipation of nonrelativistic kinetic energy.

  3. Causal dissipation and shock profiles in the relativistic fluid dynamics of pure radiation.

    PubMed

    Freistühler, Heinrich; Temple, Blake

    2014-06-08

    CURRENT THEORIES OF DISSIPATION IN THE RELATIVISTIC REGIME SUFFER FROM ONE OF TWO DEFICITS: either their dissipation is not causal or no profiles for strong shock waves exist. This paper proposes a relativistic Navier-Stokes-Fourier-type viscosity and heat conduction tensor such that the resulting second-order system of partial differential equations for the fluid dynamics of pure radiation is symmetric hyperbolic. This system has causal dissipation as well as the property that all shock waves of arbitrary strength have smooth profiles. Entropy production is positive both on gradients near those of solutions to the dissipation-free equations and on gradients of shock profiles. This shows that the new dissipation stress tensor complies to leading order with the principles of thermodynamics. Whether higher order modifications of the ansatz are required to obtain full compatibility with the second law far from the zero-dissipation equilibrium is left to further investigations. The system has exactly three a priori free parameters χ , η , ζ , corresponding physically to heat conductivity, shear viscosity and bulk viscosity. If the bulk viscosity is zero (as is stated in the literature) and the total stress-energy tensor is trace free, the entire viscosity and heat conduction tensor is determined to within a constant factor.

  4. Causal dissipation and shock profiles in the relativistic fluid dynamics of pure radiation

    PubMed Central

    Freistühler, Heinrich; Temple, Blake

    2014-01-01

    Current theories of dissipation in the relativistic regime suffer from one of two deficits: either their dissipation is not causal or no profiles for strong shock waves exist. This paper proposes a relativistic Navier–Stokes–Fourier-type viscosity and heat conduction tensor such that the resulting second-order system of partial differential equations for the fluid dynamics of pure radiation is symmetric hyperbolic. This system has causal dissipation as well as the property that all shock waves of arbitrary strength have smooth profiles. Entropy production is positive both on gradients near those of solutions to the dissipation-free equations and on gradients of shock profiles. This shows that the new dissipation stress tensor complies to leading order with the principles of thermodynamics. Whether higher order modifications of the ansatz are required to obtain full compatibility with the second law far from the zero-dissipation equilibrium is left to further investigations. The system has exactly three a priori free parameters χ,η,ζ, corresponding physically to heat conductivity, shear viscosity and bulk viscosity. If the bulk viscosity is zero (as is stated in the literature) and the total stress–energy tensor is trace free, the entire viscosity and heat conduction tensor is determined to within a constant factor. PMID:24910526

  5. Kinetic approach to relativistic dissipation

    NASA Astrophysics Data System (ADS)

    Gabbana, A.; Mendoza, M.; Succi, S.; Tripiccione, R.

    2017-08-01

    Despite a long record of intense effort, the basic mechanisms by which dissipation emerges from the microscopic dynamics of a relativistic fluid still elude complete understanding. In particular, several details must still be finalized in the pathway from kinetic theory to hydrodynamics mainly in the derivation of the values of the transport coefficients. In this paper, we approach the problem by matching data from lattice-kinetic simulations with analytical predictions. Our numerical results provide neat evidence in favor of the Chapman-Enskog [The Mathematical Theory of Non-Uniform Gases, 3rd ed. (Cambridge University Press, Cambridge, U.K., 1970)] procedure as suggested by recent theoretical analyses along with qualitative hints at the basic reasons why the Chapman-Enskog expansion might be better suited than Grad's method [Commun. Pure Appl. Math. 2, 331 (1949), 10.1002/cpa.3160020403] to capture the emergence of dissipative effects in relativistic fluids.

  6. Dissipative Relativistic Fluid Dynamics: A New Way to Derive the Equations of Motion from Kinetic Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denicol, G. S.; Koide, T.; Rischke, D. H.

    2010-10-15

    We rederive the equations of motion of dissipative relativistic fluid dynamics from kinetic theory. In contrast with the derivation of Israel and Stewart, which considered the second moment of the Boltzmann equation to obtain equations of motion for the dissipative currents, we directly use the latter's definition. Although the equations of motion obtained via the two approaches are formally identical, the coefficients are different. We show that, for the one-dimensional scaling expansion, our method is in better agreement with the solution obtained from the Boltzmann equation.

  7. Causal dissipation for the relativistic dynamics of ideal gases

    NASA Astrophysics Data System (ADS)

    Freistühler, Heinrich; Temple, Blake

    2017-05-01

    We derive a general class of relativistic dissipation tensors by requiring that, combined with the relativistic Euler equations, they form a second-order system of partial differential equations which is symmetric hyperbolic in a second-order sense when written in the natural Godunov variables that make the Euler equations symmetric hyperbolic in the first-order sense. We show that this class contains a unique element representing a causal formulation of relativistic dissipative fluid dynamics which (i) is equivalent to the classical descriptions by Eckart and Landau to first order in the coefficients of viscosity and heat conduction and (ii) has its signal speeds bounded sharply by the speed of light. Based on these properties, we propose this system as a natural candidate for the relativistic counterpart of the classical Navier-Stokes equations.

  8. Causal dissipation for the relativistic dynamics of ideal gases

    PubMed Central

    2017-01-01

    We derive a general class of relativistic dissipation tensors by requiring that, combined with the relativistic Euler equations, they form a second-order system of partial differential equations which is symmetric hyperbolic in a second-order sense when written in the natural Godunov variables that make the Euler equations symmetric hyperbolic in the first-order sense. We show that this class contains a unique element representing a causal formulation of relativistic dissipative fluid dynamics which (i) is equivalent to the classical descriptions by Eckart and Landau to first order in the coefficients of viscosity and heat conduction and (ii) has its signal speeds bounded sharply by the speed of light. Based on these properties, we propose this system as a natural candidate for the relativistic counterpart of the classical Navier–Stokes equations. PMID:28588397

  9. Causal dissipation for the relativistic dynamics of ideal gases.

    PubMed

    Freistühler, Heinrich; Temple, Blake

    2017-05-01

    We derive a general class of relativistic dissipation tensors by requiring that, combined with the relativistic Euler equations, they form a second-order system of partial differential equations which is symmetric hyperbolic in a second-order sense when written in the natural Godunov variables that make the Euler equations symmetric hyperbolic in the first-order sense. We show that this class contains a unique element representing a causal formulation of relativistic dissipative fluid dynamics which (i) is equivalent to the classical descriptions by Eckart and Landau to first order in the coefficients of viscosity and heat conduction and (ii) has its signal speeds bounded sharply by the speed of light. Based on these properties, we propose this system as a natural candidate for the relativistic counterpart of the classical Navier-Stokes equations.

  10. Bulk viscosity and relaxation time of causal dissipative relativistic fluid dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang Xuguang; Rischke, Dirk H.; Institut fuer Theoretische Physik, J.W. Goethe-Universitaet, D-60438 Frankfurt am Main

    2011-02-15

    The microscopic formulas of the bulk viscosity {zeta} and the corresponding relaxation time {tau}{sub {Pi}} in causal dissipative relativistic fluid dynamics are derived by using the projection operator method. In applying these formulas to the pionic fluid, we find that the renormalizable energy-momentum tensor should be employed to obtain consistent results. In the leading-order approximation in the chiral perturbation theory, the relaxation time is enhanced near the QCD phase transition, and {tau}{sub {Pi}} and {zeta} are related as {tau}{sub {Pi}={zeta}}/[{beta}{l_brace}(1/3-c{sub s}{sup 2})({epsilon}+P)-2({epsilon}-3P)/9{r_brace}], where {epsilon}, P, and c{sub s} are the energy density, pressure, and velocity of sound, respectively. The predictedmore » {zeta} and {tau}{sub {Pi}} should satisfy the so-called causality condition. We compare our result with the results of the kinetic calculation by Israel and Stewart and the string theory, and confirm that all three approaches are consistent with the causality condition.« less

  11. A fast numerical scheme for causal relativistic hydrodynamics with dissipation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takamoto, Makoto, E-mail: takamoto@tap.scphys.kyoto-u.ac.jp; Inutsuka, Shu-ichiro

    2011-08-01

    Highlights: {yields} We have developed a new multi-dimensional numerical scheme for causal relativistic hydrodynamics with dissipation. {yields} Our new scheme can calculate the evolution of dissipative relativistic hydrodynamics faster and more effectively than existing schemes. {yields} Since we use the Riemann solver for solving the advection steps, our method can capture shocks very accurately. - Abstract: In this paper, we develop a stable and fast numerical scheme for relativistic dissipative hydrodynamics based on Israel-Stewart theory. Israel-Stewart theory is a stable and causal description of dissipation in relativistic hydrodynamics although it includes relaxation process with the timescale for collision of constituentmore » particles, which introduces stiff equations and makes practical numerical calculation difficult. In our new scheme, we use Strang's splitting method, and use the piecewise exact solutions for solving the extremely short timescale problem. In addition, since we split the calculations into inviscid step and dissipative step, Riemann solver can be used for obtaining numerical flux for the inviscid step. The use of Riemann solver enables us to capture shocks very accurately. Simple numerical examples are shown. The present scheme can be applied to various high energy phenomena of astrophysics and nuclear physics.« less

  12. Investigation of shock waves in the relativistic Riemann problem: A comparison of viscous fluid dynamics to kinetic theory

    NASA Astrophysics Data System (ADS)

    Bouras, I.; Molnár, E.; Niemi, H.; Xu, Z.; El, A.; Fochler, O.; Greiner, C.; Rischke, D. H.

    2010-08-01

    We solve the relativistic Riemann problem in viscous matter using the relativistic Boltzmann equation and the relativistic causal dissipative fluid-dynamical approach of Israel and Stewart. Comparisons between these two approaches clarify and point out the regime of validity of second-order fluid dynamics in relativistic shock phenomena. The transition from ideal to viscous shocks is demonstrated by varying the shear viscosity to entropy density ratio η/s. We also find that a good agreement between these two approaches requires a Knudsen number Kn<1/2.

  13. Investigation of shock waves in the relativistic Riemann problem: A comparison of viscous fluid dynamics to kinetic theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouras, I.; El, A.; Fochler, O.

    2010-08-15

    We solve the relativistic Riemann problem in viscous matter using the relativistic Boltzmann equation and the relativistic causal dissipative fluid-dynamical approach of Israel and Stewart. Comparisons between these two approaches clarify and point out the regime of validity of second-order fluid dynamics in relativistic shock phenomena. The transition from ideal to viscous shocks is demonstrated by varying the shear viscosity to entropy density ratio {eta}/s. We also find that a good agreement between these two approaches requires a Knudsen number Kn<1/2.

  14. Massively parallel simulations of relativistic fluid dynamics on graphics processing units with CUDA

    NASA Astrophysics Data System (ADS)

    Bazow, Dennis; Heinz, Ulrich; Strickland, Michael

    2018-04-01

    Relativistic fluid dynamics is a major component in dynamical simulations of the quark-gluon plasma created in relativistic heavy-ion collisions. Simulations of the full three-dimensional dissipative dynamics of the quark-gluon plasma with fluctuating initial conditions are computationally expensive and typically require some degree of parallelization. In this paper, we present a GPU implementation of the Kurganov-Tadmor algorithm which solves the 3 + 1d relativistic viscous hydrodynamics equations including the effects of both bulk and shear viscosities. We demonstrate that the resulting CUDA-based GPU code is approximately two orders of magnitude faster than the corresponding serial implementation of the Kurganov-Tadmor algorithm. We validate the code using (semi-)analytic tests such as the relativistic shock-tube and Gubser flow.

  15. Relativistic viscoelastic fluid mechanics.

    PubMed

    Fukuma, Masafumi; Sakatani, Yuho

    2011-08-01

    A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.

  16. Relativistic viscoelastic fluid mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukuma, Masafumi; Sakatani, Yuho

    2011-08-15

    A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for themore » propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.« less

  17. Relativistic MHD simulations of collision-induced magnetic dissipation in poynting-flux-dominated jets/outflows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Wei; Li, Hui; Zhang, Bing

    We perform 3D relativistic ideal MHD simulations to study the collisions between high-σ (Poynting- ux-dominated) blobs which contain both poloidal and toroidal magnetic field components. This is meant to mimic the interactions inside a highly variable Poynting- ux-dominated jet. We discover a significant electromagnetic field (EMF) energy dissipation with an Alfvenic rate with the efficiency around 35%. Detailed analyses show that this dissipation is mostly facilitated by the collision-induced magnetic reconnection. Additional resolution and parameter studies show a robust result that the relative EMF energy dissipation efficiency is nearly independent of the numerical resolution or most physical parameters in themore » relevant parameter range. The reconnection outflows in our simulation can potentially form the multi-orientation relativistic mini-jets as needed for several analytical models. We also find a linear relationship between the σ values before and after the major EMF energy dissipation process. In conclusion, our results give support to the proposed astrophysical models that invoke signi cant magnetic energy dissipation in Poynting- ux-dominated jets, such as the internal collision-induced magnetic reconnection and turbulence (ICMART) model for GRBs, and reconnection triggered mini-jets model for AGNs.« less

  18. Relativistic MHD simulations of collision-induced magnetic dissipation in poynting-flux-dominated jets/outflows

    DOE PAGES

    Deng, Wei; Li, Hui; Zhang, Bing; ...

    2015-05-29

    We perform 3D relativistic ideal MHD simulations to study the collisions between high-σ (Poynting- ux-dominated) blobs which contain both poloidal and toroidal magnetic field components. This is meant to mimic the interactions inside a highly variable Poynting- ux-dominated jet. We discover a significant electromagnetic field (EMF) energy dissipation with an Alfvenic rate with the efficiency around 35%. Detailed analyses show that this dissipation is mostly facilitated by the collision-induced magnetic reconnection. Additional resolution and parameter studies show a robust result that the relative EMF energy dissipation efficiency is nearly independent of the numerical resolution or most physical parameters in themore » relevant parameter range. The reconnection outflows in our simulation can potentially form the multi-orientation relativistic mini-jets as needed for several analytical models. We also find a linear relationship between the σ values before and after the major EMF energy dissipation process. In conclusion, our results give support to the proposed astrophysical models that invoke signi cant magnetic energy dissipation in Poynting- ux-dominated jets, such as the internal collision-induced magnetic reconnection and turbulence (ICMART) model for GRBs, and reconnection triggered mini-jets model for AGNs.« less

  19. Applicability of causal dissipative hydrodynamics to relativistic heavy ion collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huovinen, Pasi; Molnar, Denes; Physics Department, Purdue University, West Lafayette, Indiana 47907, USA and RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973

    2009-01-15

    We utilize nonequilibrium covariant transport theory to determine the region of validity of causal Israel-Stewart (IS) dissipative hydrodynamics and Navier-Stokes (NS) theory for relativistic heavy ion physics applications. A massless ideal gas with 2{yields}2 interactions is considered in a Bjorken scenario in 0 + 1 dimension (D) appropriate for the early longitudinal expansion stage of the collision. In the scale-invariant case of a constant shear viscosity to entropy density ratio {eta}/s{approx_equal}const, we find that IS theory is accurate within 10% in calculating dissipative effects if initially the expansion time scale exceeds half the transport mean free path {tau}{sub 0}/{lambda}{sub tr,0}more » > or approx. 2. The same accuracy with NS requires three times larger {tau}{sub 0}/{lambda}{sub tr,0} > or approx. 6. For dynamics driven by a constant cross section, on the other hand, about 50% larger {tau}{sub 0}/{lambda}{sub tr,0} > or approx. 3 (IS) and 9 (NS) are needed. For typical applications at energies currently available at the BNL Relativistic Heavy Ion Collider (RHIC), i.e., {radical}(s{sub NN}){approx}100-200 GeV, these limits imply that even the IS approach becomes marginal when {eta}/s > or approx. 0.15. In addition, we find that the 'naive' approximation to IS theory, which neglects products of gradients and dissipative quantities, has an even smaller range of applicability than Navier-Stokes. We also obtain analytic IS and NS solutions in 0 + 1D, and present further tests for numerical dissipative hydrodynamics codes in 1 + 1, 2 + 1, and 3 + 1D based on generalized conservation laws.« less

  20. RELATIVISTIC MHD SIMULATIONS OF COLLISION-INDUCED MAGNETIC DISSIPATION IN POYNTING-FLUX-DOMINATED JETS/OUTFLOWS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Wei; Zhang, Bing; Li, Hui

    We perform 3D relativistic ideal magnetohydrodynamics (MHD) simulations to study the collisions between high-σ (Poynting-flux-dominated (PFD)) blobs which contain both poloidal and toroidal magnetic field components. This is meant to mimic the interactions inside a highly variable PFD jet. We discover a significant electromagnetic field (EMF) energy dissipation with an Alfvénic rate with the efficiency around 35%. Detailed analyses show that this dissipation is mostly facilitated by the collision-induced magnetic reconnection. Additional resolution and parameter studies show a robust result that the relative EMF energy dissipation efficiency is nearly independent of the numerical resolution or most physical parameters in themore » relevant parameter range. The reconnection outflows in our simulation can potentially form the multi-orientation relativistic mini jets as needed for several analytical models. We also find a linear relationship between the σ values before and after the major EMF energy dissipation process. Our results give support to the proposed astrophysical models that invoke significant magnetic energy dissipation in PFD jets, such as the internal collision-induced magnetic reconnection and turbulence model for gamma-ray bursts, and reconnection triggered mini jets model for active galactic nuclei. The simulation movies are shown in http://www.physics.unlv.edu/∼deng/simulation1.html.« less

  1. Kinetic analysis of thermally relativistic flow with dissipation. II. Relativistic Boltzmann equation versus its kinetic models

    NASA Astrophysics Data System (ADS)

    Yano, Ryosuke; Matsumoto, Jun; Suzuki, Kojiro

    2011-06-01

    Thermally relativistic flow with dissipation was analyzed by solving the rarefied supersonic flow of thermally relativistic matter around a triangle prism by Yano and Suzuki [Phys. Rev. DPRVDAQ1550-7998 83, 023517 (2011)10.1103/PhysRevD.83.023517], where the Anderson-Witting (AW) model was used as a solver. In this paper, we solve the same problem, which was analyzed by Yano and Suzuki, using the relativistic Boltzmann equation (RBE). To solve the RBE, the conventional direct simulation Monte Carlo method for the nonrelativistic Boltzmann equation is extended to a new direct simulation Monte Carlo method for the RBE. Additionally, we solve the modified Marle (MM) model proposed by Yano-Suzuki-Kuroda for comparisons. The solution of the thermally relativistic shock layer around the triangle prism obtained using the relativistic Boltzmann equation is considered by focusing on profiles of macroscopic quantities, such as the density, velocity, temperature, heat flux and dynamic pressure along the stagnation streamline (SSL). Differences among profiles of the number density, velocity and temperature along the SSL obtained using the RBE, the AW and MM. models are described in the framework of the relativistic Navier-Stokes-Fourier law. Finally, distribution functions on the SSL obtained using the RBE are compared with those obtained using the AW and MM models. The distribution function inside the shock wave obtained using the RBE does not indicate a bimodal form, which is obtained using the AW and MM models, but a smooth deceleration of thermally relativistic matter inside a shock wave.

  2. Global Regularity for Several Incompressible Fluid Models with Partial Dissipation

    NASA Astrophysics Data System (ADS)

    Wu, Jiahong; Xu, Xiaojing; Ye, Zhuan

    2017-09-01

    This paper examines the global regularity problem on several 2D incompressible fluid models with partial dissipation. They are the surface quasi-geostrophic (SQG) equation, the 2D Euler equation and the 2D Boussinesq equations. These are well-known models in fluid mechanics and geophysics. The fundamental issue of whether or not they are globally well-posed has attracted enormous attention. The corresponding models with partial dissipation may arise in physical circumstances when the dissipation varies in different directions. We show that the SQG equation with either horizontal or vertical dissipation always has global solutions. This is in sharp contrast with the inviscid SQG equation for which the global regularity problem remains outstandingly open. Although the 2D Euler is globally well-posed for sufficiently smooth data, the associated equations with partial dissipation no longer conserve the vorticity and the global regularity is not trivial. We are able to prove the global regularity for two partially dissipated Euler equations. Several global bounds are also obtained for a partially dissipated Boussinesq system.

  3. Extrema principles of entrophy production and energy dissipation in fluid mechanics

    NASA Technical Reports Server (NTRS)

    Horne, W. Clifton; Karamcheti, Krishnamurty

    1988-01-01

    A survey is presented of several extrema principles of energy dissipation as applied to problems in fluid mechanics. An exact equation is derived for the dissipation function of a homogeneous, isotropic, Newtonian fluid, with terms associated with irreversible compression or expansion, wave radiation, and the square of the vorticity. By using entropy extrema principles, simple flows such as the incompressible channel flow and the cylindrical vortex are identified as minimal dissipative distributions. The principal notions of stability of parallel shear flows appears to be associated with a maximum dissipation condition. These different conditions are consistent with Prigogine's classification of thermodynamic states into categories of equilibrium, linear nonequilibrium, and nonlinear nonequilibrium thermodynamics; vortices and acoustic waves appear as examples of dissipative structures. The measurements of a typical periodic shear flow, the rectangular wall jet, show that direct measurements of the dissipative terms are possible.

  4. Tidal dissipation in rotating fluid bodies: the presence of a magnetic field

    NASA Astrophysics Data System (ADS)

    Lin, Yufeng; Ogilvie, Gordon I.

    2018-02-01

    We investigate effects of the presence of a magnetic field on tidal dissipation in rotating fluid bodies. We consider a simplified model consisting of a rigid core and a fluid envelope, permeated by a background magnetic field (either a dipolar field or a uniform axial field). The wave-like tidal responses in the fluid layer are in the form of magnetic Coriolis waves, which are restored by both the Coriolis force and the Lorentz force. Energy dissipation occurs through viscous damping and Ohmic damping of these waves. Our numerical results show that the tidal dissipation can be dominated by Ohmic damping even with a weak magnetic field. The presence of a magnetic field smooths out the complicated frequency dependence of the dissipation rate, and broadens the frequency spectrum of the dissipation rate, depending on the strength of the background magnetic field. However, the frequency-averaged dissipation is independent of the strength and structure of the magnetic field, and of the dissipative parameters in the approximation that the wave-like response is driven only by the Coriolis force acting on the non-wavelike tidal flow. Indeed, the frequency-averaged dissipation quantity is in good agreement with previous analytical results in the absence of magnetic fields. Our results suggest that the frequency-averaged tidal dissipation of the wave-like perturbations is insensitive to detailed damping mechanisms and dissipative properties.

  5. Damped Kadomtsev-Petviashvili Equation for Weakly Dissipative Solitons in Dense Relativistic Degenerate Plasmas

    NASA Astrophysics Data System (ADS)

    Ahmad, S.; Ata-ur-Rahman; Khan, S. A.; Hadi, F.

    2017-12-01

    We have investigated the properties of three-dimensional electrostatic ion solitary structures in highly dense collisional plasma composed of ultra-relativistically degenerate electrons and non-relativistic degenerate ions. In the limit of low ion-neutral collision rate, we have derived a damped Kadomtsev-Petviashvili (KP) equation using perturbation analysis. Supplemented by vanishing boundary conditions, the time varying solution of damped KP equation leads to a weakly dissipative compressive soliton. The real frequency behavior and linear damping of solitary pulse due to ion-neutral collisions is discussed. In the presence of weak transverse perturbations, soliton evolution with damping parameter and plasma density is delineated pointing out the extent of propagation using typical parameters of dense plasma in the interior of white dwarfs.

  6. Fluid dynamical description of relativistic nuclear collisions

    NASA Technical Reports Server (NTRS)

    Nix, J. R.; Strottman, D.

    1982-01-01

    On the basis of both a conventional relativistic nuclear fluid dynamic model and a two fluid generalization that takes into account the interpenetration of the target and projectile upon contact, collisions between heavy nuclei moving at relativistic speeds are calculated. This is done by solving the relevant equations of motion numerically in three spatial dimensions by use of particle in cell finite difference computing techniques. The effect of incorporating a density isomer, or quasistable state, in the nuclear equation of state at three times normal nuclear density, and the effect of doubling the nuclear compressibility coefficient are studied. For the reaction 20Ne + 238U at a laboratory bombarding energy per nucleon of 393 MeV, the calculated distributions in energy and angle of outgoing charged particles are compared with recent experimental data both integrated over all impact parameters and for nearly central collisions.

  7. Molecular dynamics approach to dissipative relativistic hydrodynamics: Propagation of fluctuations

    NASA Astrophysics Data System (ADS)

    Shahsavar, Leila; Ghodrat, Malihe; Montakhab, Afshin

    2016-12-01

    Relativistic generalization of hydrodynamic theory has attracted much attention from a theoretical point of view. However, it has many important practical applications in high energy as well as astrophysical contexts. Despite various attempts to formulate relativistic hydrodynamics, no definitive consensus has been achieved. In this work, we propose to test the predictions of four types of first-order hydrodynamic theories for nonperfect fluids in the light of numerically exact molecular dynamics simulations of a fully relativistic particle system in the low density regime. In this regard, we study the propagation of density, velocity, and heat fluctuations in a wide range of temperatures using extensive simulations and compare them to the corresponding analytic expressions we obtain for each of the proposed theories. As expected, in the low temperature classical regime all theories give the same results, consistent with the numerics. In the high temperature extremely relativistic regime, not all considered theories are distinguishable from one another. However, in the intermediate regime, a meaningful distinction exists in the predictions of various theories considered here. We find that the predictions of the recent formulation due to Tsumura, Kunihiro, and Ohnishi are more consistent with our numerical results than the traditional theories: the Meixner, modified Eckart, and modified Marle-Stewart theories.

  8. Instabilities in a Relativistic Viscous Fluid

    NASA Astrophysics Data System (ADS)

    Corona-Galindo, M. G.; Klapp, J.; Vazquez, A.

    1990-11-01

    RESUMEN. Las ecuaciones hidrodinamicas de un fluido imperfecto relativista son resueltas, y los modos hidrodinamicos son analizados con el prop6sito de estabiecer correlaciones con las estructuras cosmol6gicas. ABSTRACT The hydrodynamical equations of a relativistic imperfect fluid are solved, and the hydrodynamical modes are analysed with the aim to establish correlations with cosmological structures. Ke, words: COSMOLOGY - HYDRODYNAMICS - RELATIVITY

  9. Relativistic analogue of the Newtonian fluid energy equation with nucleosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardall, Christian Y.

    In Newtonian fluid dynamics simulations in which composition has been tracked by a nuclear reaction network, energy generation due to composition changes has generally been handled as a separate source term in the energy equation. Here, a relativistic equation in conservative form for total fluid energy, obtained from the spacetime divergence of the stress-energy tensor, in principle encompasses such energy generation; but it is not explicitly manifest. An alternative relativistic energy equation in conservative form—in which the nuclear energy generation appears explicitly, and that reduces directly to the Newtonian internal+kinetic energy in the appropriate limit—emerges naturally and self-consistently from themore » difference of the equation for total fluid energy and the equation for baryon number conservation multiplied by the average baryon mass m, when m is expressed in terms of contributions from the nuclear species in the fluid, and allowed to be mutable.« less

  10. Relativistic analogue of the Newtonian fluid energy equation with nucleosynthesis

    DOE PAGES

    Cardall, Christian Y.

    2017-12-15

    In Newtonian fluid dynamics simulations in which composition has been tracked by a nuclear reaction network, energy generation due to composition changes has generally been handled as a separate source term in the energy equation. Here, a relativistic equation in conservative form for total fluid energy, obtained from the spacetime divergence of the stress-energy tensor, in principle encompasses such energy generation; but it is not explicitly manifest. An alternative relativistic energy equation in conservative form—in which the nuclear energy generation appears explicitly, and that reduces directly to the Newtonian internal+kinetic energy in the appropriate limit—emerges naturally and self-consistently from themore » difference of the equation for total fluid energy and the equation for baryon number conservation multiplied by the average baryon mass m, when m is expressed in terms of contributions from the nuclear species in the fluid, and allowed to be mutable.« less

  11. Energy dissipation in a finite volume of magnetic fluid

    NASA Astrophysics Data System (ADS)

    Bashtovoi, V.; Motsar, A.; Reks, A.

    2017-06-01

    This study is devoted to investigation of energy dissipation processes which happen in a magnetic fluid drop with compound magnet during its motion in cylindrical non magnetic container. The possibility of energy dissipation control by means of electromagnetic field is examined. It's found that a change of magnetic field of compound magnet can lead to both increase and decrease of oscillation decay time and relative damping factor can be varied in a range of ±35%.

  12. Effective field theory of dissipative fluids

    DOE PAGES

    Crossley, Michael; Glorioso, Paolo; Liu, Hong

    2017-09-20

    We develop an effctive fi eld theory for dissipative fluids which governs the dynamics of long-lived gapless modes associated with conserved quantities. The resulting theory gives a path integral formulation of fluctuating hydrodynamics which systematically incorporates nonlinear interactions of noises. The dynamical variables are mappings between a "fluid spacetime" and the physical spacetime and an essential aspect of our formulation is to identify the appropriate symmetries in the fluid spacetime. The theory applies to nonlinear disturbances around a general density matrix. For a thermal density matrix, we require an additional Z2 symmetry, to which we refer as the local KMSmore » condition. This leads to the standard constraints of hydrodynamics, as well as a nonlinear generalization of the Onsager relations. It also leads to an emergent supersymmetry in the classical statistical regime, and a higher derivative deformation of supersymmetry in the full quantum regime.« less

  13. Effective field theory of dissipative fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crossley, Michael; Glorioso, Paolo; Liu, Hong

    We develop an effctive fi eld theory for dissipative fluids which governs the dynamics of long-lived gapless modes associated with conserved quantities. The resulting theory gives a path integral formulation of fluctuating hydrodynamics which systematically incorporates nonlinear interactions of noises. The dynamical variables are mappings between a "fluid spacetime" and the physical spacetime and an essential aspect of our formulation is to identify the appropriate symmetries in the fluid spacetime. The theory applies to nonlinear disturbances around a general density matrix. For a thermal density matrix, we require an additional Z2 symmetry, to which we refer as the local KMSmore » condition. This leads to the standard constraints of hydrodynamics, as well as a nonlinear generalization of the Onsager relations. It also leads to an emergent supersymmetry in the classical statistical regime, and a higher derivative deformation of supersymmetry in the full quantum regime.« less

  14. Generalized Boussinesq-Scriven surface fluid model with curvature dissipation for liquid surfaces and membranes.

    PubMed

    Aguilar Gutierrez, Oscar F; Herrera Valencia, Edtson E; Rey, Alejandro D

    2017-10-01

    Curvature dissipation is relevant in synthetic and biological processes, from fluctuations in semi-flexible polymer solutions, to buckling of liquid columns, tomembrane cell wall functioning. We present a micromechanical model of curvature dissipation relevant to fluid membranes and liquid surfaces based on a parallel surface parameterization and a stress constitutive equation appropriate for anisotropic fluids and fluid membranes.The derived model, aimed at high curvature and high rate of change of curvature in liquid surfaces and membranes, introduces additional viscous modes not included in the widely used 2D Boussinesq-Scriven rheological constitutive equation for surface fluids.The kinematic tensors that emerge from theparallel surface parameterization are the interfacial rate of deformation and the surface co-rotational Zaremba-Jaumann derivative of the curvature, which are used to classify all possibledissipative planar and non-planar modes. The curvature dissipation function that accounts for bending, torsion and twist rates is derived and analyzed under several constraints, including the important inextensional bending mode.A representative application of the curvature dissipation model to the periodic oscillation in nano-wrinkled outer hair cells show how and why curvature dissipation decreases with frequency, and why the 100kHz frequency range is selected. These results contribute to characterize curvature dissipation in membranes and liquid surfaces. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Nonlinear waves and shocks in relativistic two-fluid hydrodynamics

    NASA Astrophysics Data System (ADS)

    Haim, L.; Gedalin, M.; Spitkovsky, A.; Krasnoselskikh, V.; Balikhin, M.

    2012-06-01

    Relativistic shocks are present in a number of objects where violent processes are accompanied by relativistic outflows of plasma. The magnetization parameter σ = B2/4πnmc2 of the ambient medium varies in wide range. Shocks with low σ are expected to substantially enhance the magnetic fields in the shock front. In non-relativistic shocks the magnetic compression is limited by nonlinear effects related to the deceleration of flow. Two-fluid analysis of perpendicular relativistic shocks shows that the nonlinearities are suppressed for σ<<1 and the magnetic field reaches nearly equipartition values when the magnetic energy density is of the order of the ion energy density, Beq2 ~ 4πnmic2γ. A large cross-shock potential eφ/mic2γ0 ~ B2/Beq2 develops across the electron-ion shock front. This potential is responsible for electron energization.

  16. Relativistic shock waves and Mach cones in viscous gluon matter

    NASA Astrophysics Data System (ADS)

    Bouras, Ioannis; Molnár, Etele; Niemi, Harri; Xu, Zhe; El, Andrej; Fochler, Oliver; Lauciello, Francesco; Greiner, Carsten; Rischke, Dirk H.

    2010-06-01

    To investigate the formation and the propagation of relativistic shock waves in viscous gluon matter we solve the relativistic Riemann problem using a microscopic parton cascade. We demonstrate the transition from ideal to viscous shock waves by varying the shear viscosity to entropy density ratio η/s. Furthermore we compare our results with those obtained by solving the relativistic causal dissipative fluid equations of Israel and Stewart (IS), in order to show the validity of the IS hydrodynamics. Employing the parton cascade we also investigate the formation of Mach shocks induced by a high-energy gluon traversing viscous gluon matter. For η/s = 0.08 a Mach cone structure is observed, whereas the signal smears out for η/s >= 0.32.

  17. Relativistic MHD simulations of collision-induced magnetic dissipation in Poynting-flux-dominated jets/outflows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Wei

    2015-07-21

    The question of the energy composition of the jets/outflows in high-energy astrophysical systems, e.g. GRBs, AGNs, is taken up first: Matter-flux-dominated (MFD), σ < 1, and/or Poynting-flux-dominated (PFD), σ >1? The standard fireball IS model and dissipative photosphere model are MFD, while the ICMART (Internal-Collision-induced MAgnetic Reconnection and Turbulence) model is PFD. Motivated by ICMART model and other relevant problems, such as “jets in a jet” model of AGNs, the author investigates the models from the EMF energy dissipation efficiency, relativistic outflow generation, and σ evolution points of view, and simulates collisions between high-σ blobs to mimic the situation ofmore » the interactions inside the PFD jets/outflows by using a 3D SRMHD code which solves the conservative form of the ideal MHD equations. σ b,f is calculated from the simulation results (threshold = 1). The efficiency obtained from this hybrid method is similar to the efficiency got from the energy evolution of the simulations (35.2%). Efficiency is nearly σ independent, which is also confirmed by the hybrid method. σ b,i - σ b,f provides an interesting linear relationship. Results of several parameter studies of EMF energy dissipation efficiency are shown.« less

  18. A SECOND-ORDER DIVERGENCE-CONSTRAINED MULTIDIMENSIONAL NUMERICAL SCHEME FOR RELATIVISTIC TWO-FLUID ELECTRODYNAMICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amano, Takanobu, E-mail: amano@eps.s.u-tokyo.ac.jp

    A new multidimensional simulation code for relativistic two-fluid electrodynamics (RTFED) is described. The basic equations consist of the full set of Maxwell’s equations coupled with relativistic hydrodynamic equations for separate two charged fluids, representing the dynamics of either an electron–positron or an electron–proton plasma. It can be recognized as an extension of conventional relativistic magnetohydrodynamics (RMHD). Finite resistivity may be introduced as a friction between the two species, which reduces to resistive RMHD in the long wavelength limit without suffering from a singularity at infinite conductivity. A numerical scheme based on HLL (Harten–Lax–Van Leer) Riemann solver is proposed that exactlymore » preserves the two divergence constraints for Maxwell’s equations simultaneously. Several benchmark problems demonstrate that it is capable of describing RMHD shocks/discontinuities at long wavelength limit, as well as dispersive characteristics due to the two-fluid effect appearing at small scales. This shows that the RTFED model is a promising tool for high energy astrophysics application.« less

  19. A relativistic dissipative hydrodynamic description for systems including particle number changing processes

    NASA Astrophysics Data System (ADS)

    El, Andrej; Muronga, Azwinndini; Xu, Zhe; Greiner, Carsten

    2010-12-01

    Relativistic dissipative hydrodynamic equations are extended by taking into account particle number changing processes in a gluon system, which expands in one dimension boost-invariantly. Chemical equilibration is treated by a rate equation for the particle number density based on Boltzmann equation and Grad's ansatz for the off-equilibrium particle phase space distribution. We find that not only the particle production, but also the temperature and the momentum spectra of the gluon system, obtained from the hydrodynamic calculations, are sensitive to the rates of particle number changing processes. Comparisons of the hydrodynamic calculations with the transport ones employing the parton cascade BAMPS show the inaccuracy of the rate equation at large shear viscosity to entropy density ratio. To improve the rate equation, Grad's ansatz has to be modified beyond the second moments in momentum.

  20. The Stabilizing Effect of Spacetime Expansion on Relativistic Fluids With Sharp Results for the Radiation Equation of State

    NASA Astrophysics Data System (ADS)

    Speck, Jared

    2013-07-01

    In this article, we study the 1 + 3-dimensional relativistic Euler equations on a pre-specified conformally flat expanding spacetime background with spatial slices that are diffeomorphic to {R}^3. We assume that the fluid verifies the equation of state {p = c2s ρ,} where {0 ≤ cs ≤ √{1/3}} is the speed of sound. We also assume that the reciprocal of the scale factor associated with the expanding spacetime metric verifies a c s -dependent time-integrability condition. Under these assumptions, we use the vector field energy method to prove that an explicit family of physically motivated, spatially homogeneous, and spatially isotropic fluid solutions are globally future-stable under small perturbations of their initial conditions. The explicit solutions corresponding to each scale factor are analogs of the well-known spatially flat Friedmann-Lemaître-Robertson-Walker family. Our nonlinear analysis, which exploits dissipative terms generated by the expansion, shows that the perturbed solutions exist for all future times and remain close to the explicit solutions. This work is an extension of previous results, which showed that an analogous stability result holds when the spacetime is exponentially expanding. In the case of the radiation equation of state p = (1/3)ρ, we also show that if the time-integrability condition for the reciprocal of the scale factor fails to hold, then the explicit fluid solutions are unstable. More precisely, we show the existence of an open family of initial data such that (i) it contains arbitrarily small smooth perturbations of the explicit solutions' data and (ii) the corresponding perturbed solutions necessarily form shocks in finite time. The shock formation proof is based on the conformal invariance of the relativistic Euler equations when {c2s = 1/3,} which allows for a reduction to a well-known result of Christodoulou.

  1. Exact relativistic expressions for wave refraction in a generally moving fluid.

    PubMed

    Cavalleri, G; Tonni, E; Barbero, F

    2013-04-01

    The law for the refraction of a wave when the two fluids and the interface are moving with relativistic velocities is given in an exact form, at the same time correcting a first order error in a previous paper [Cavalleri and Tonni, Phys. Rev. E 57, 3478 (1998)]. The treatment is then extended to a generally moving fluid with variable refractive index, ready to be applied to the refraction of acoustic, electromagnetic, or magnetohydrodynamic waves in the atmosphere of rapidly rotating stars. In the particular case of a gas cloud receding because of the universe expansion, our result can be applied to predict observable micro- and mesolensings. The first order approximation of our exact result for the deviation due to refraction of the light coming from a further quasar has a relativistic dependence equal to the one obtained by Einsteins' linearized theory of gravitation.

  2. Generalized global symmetries and dissipative magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Grozdanov, Sašo; Hofman, Diego M.; Iqbal, Nabil

    2017-05-01

    The conserved magnetic flux of U (1 ) electrodynamics coupled to matter in four dimensions is associated with a generalized global symmetry. We study the realization of such a symmetry at finite temperature and develop the hydrodynamic theory describing fluctuations of a conserved 2-form current around thermal equilibrium. This can be thought of as a systematic derivation of relativistic magnetohydrodynamics, constrained only by symmetries and effective field theory. We construct the entropy current and show that at first order in derivatives, there are seven dissipative transport coefficients. We present a universal definition of resistivity in a theory of dynamical electromagnetism and derive a direct Kubo formula for the resistivity in terms of correlation functions of the electric field operator. We also study fluctuations and collective modes, deriving novel expressions for the dissipative widths of magnetosonic and Alfvén modes. Finally, we demonstrate that a nontrivial truncation of the theory can be performed at low temperatures compared to the magnetic field: this theory has an emergent Lorentz invariance along magnetic field lines, and hydrodynamic fluctuations are now parametrized by a fluid tensor rather than a fluid velocity. Throughout, no assumption is made of weak electromagnetic coupling. Thus, our theory may have phenomenological relevance for dense electromagnetic plasmas.

  3. Local equilibrium solutions in simple anisotropic cosmological models, as described by relativistic fluid dynamics

    NASA Astrophysics Data System (ADS)

    Shogin, Dmitry; Amund Amundsen, Per

    2016-10-01

    We test the physical relevance of the full and the truncated versions of the Israel-Stewart (IS) theory of irreversible thermodynamics in a cosmological setting. Using a dynamical systems method, we determine the asymptotic future of plane symmetric Bianchi type I spacetimes with a viscous mathematical fluid, keeping track of the magnitude of the relative dissipative fluxes, which determines the applicability of the IS theory. We consider the situations where the dissipative mechanisms of shear and bulk viscosity are involved separately and simultaneously. It is demonstrated that the only case in the given model when the fluid asymptotically approaches local thermal equilibrium, and the underlying assumptions of the IS theory are therefore not violated, is that of a dissipative fluid with vanishing bulk viscosity. The truncated IS equations for shear viscosity are found to produce solutions which manifest pathological dynamical features and, in addition, to be strongly sensitive to the choice of initial conditions. Since these features are observed already in the case of an oversimplified mathematical fluid model, we have no reason to assume that the truncation of the IS transport equations will produce relevant results for physically more realistic fluids. The possible role of bulk and shear viscosity in cosmological evolution is also discussed.

  4. Precollisional velocity correlations in a hard-disk fluid with dissipative collisions.

    PubMed

    Soto, R; Piasecki, J; Mareschal, M

    2001-09-01

    Velocity correlations are studied in granular fluids, modeled by the inelastic hard sphere gas. Making a density expansion of the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy for the evolution of the reduced distributions, we predict the presence of precollisional velocity correlations. They are created by the propagation through correlated sequences of collisions (ring events) of the velocity correlations generated after dissipative collisions. The correlations have their origin in the dissipative character of collisions, being always present in granular fluids. The correlations, that manifest microscopically as an alignment of the velocities of a colliding pair produce modifications of collisional averages, in particular, the virial pressure. The pressure shows a reduction with respect to the elastic case as a consequence of the velocity alignment. Good qualitative agreement is obtained for the comparison of the numerical evaluations of the obtained analytical expressions and molecular dynamics results that showed evidence of precollisional velocity correlations [R. Soto and M. Mareschal, Phys. Rev. E 63, 041303 (2001)].

  5. Scrutinization of thermal radiation, viscous dissipation and Joule heating effects on Marangoni convective two-phase flow of Casson fluid with fluid-particle suspension

    NASA Astrophysics Data System (ADS)

    Mahanthesh, B.; Gireesha, B. J.

    2018-03-01

    The impact of Marangoni convection on dusty Casson fluid boundary layer flow with Joule heating and viscous dissipation aspects is addressed. The surface tension is assumed to vary linearly with temperature. Physical aspects of magnetohydrodynamics and thermal radiation are also accounted. The governing problem is modelled under boundary layer approximations for fluid phase and dust particle phase and then Runge-Kutta-Fehlberg method based numeric solutions are established. The momentum and heat transport mechanisms are focused on the result of distinct governing parameters. The Nusselt number is also calculated. It is established that the rate of heat transfer can be enhanced by suspending dust particles in the base fluid. The temperature field of fluid phase and temperature of dust phase are quite reverse for thermal dust parameter. The radiative heat, viscous dissipation and Joule heating aspects are constructive for thermal fields of fluid and dust phases. The velocity of dusty Casson fluid dominates the velocity of dusty fluid while this trend is opposite in the case of temperature. Moreover qualitative behaviour of fluid phase and dust phase temperature/velocity are similar.

  6. The onset of fluid-dynamical behavior in relativistic kinetic theory

    NASA Astrophysics Data System (ADS)

    Noronha, Jorge; Denicol, Gabriel S.

    2017-11-01

    In this proceedings we discuss recent findings regarding the large order behavior of the Chapman-Enskog expansion in relativistic kinetic theory. It is shown that this series in powers of the Knudsen number has zero radius of convergence in the case of a Bjorken expanding fluid described by the Boltzmann equation in the relaxation time approximation. This divergence stems from the presence of non-hydrodynamic modes, which give non-perturbative contributions to the Knudsen series.

  7. On a viable first-order formulation of relativistic viscous fluids and its applications to cosmology

    NASA Astrophysics Data System (ADS)

    Disconzi, Marcelo M.; Kephart, Thomas W.; Scherrer, Robert J.

    We consider a first-order formulation of relativistic fluids with bulk viscosity based on a stress-energy tensor introduced by Lichnerowicz. Choosing a barotropic equation-of-state, we show that this theory satisfies basic physical requirements and, under the further assumption of vanishing vorticity, that the equations of motion are causal, both in the case of a fixed background and when the equations are coupled to Einstein's equations. Furthermore, Lichnerowicz's proposal does not fit into the general framework of first-order theories studied by Hiscock and Lindblom, and hence their instability results do not apply. These conclusions apply to the full-fledged nonlinear theory, without any equilibrium or near equilibrium assumptions. Similarities and differences between the approach explored here and other theories of relativistic viscosity, including the Mueller-Israel-Stewart formulation, are addressed. Cosmological models based on the Lichnerowicz stress-energy tensor are studied. As the topic of (relativistic) viscous fluids is also of interest outside the general relativity and cosmology communities, such as, for instance, in applications involving heavy-ion collisions, we make our presentation largely self-contained.

  8. Nonlocal dynamics of dissipative phononic fluids

    NASA Astrophysics Data System (ADS)

    Nemati, Navid; Lee, Yoonkyung E.; Lafarge, Denis; Duclos, Aroune; Fang, Nicholas

    2017-06-01

    We describe the nonlocal effective properties of a two-dimensional dissipative phononic crystal made by periodic arrays of rigid and motionless cylinders embedded in a viscothermal fluid such as air. The description is based on a nonlocal theory of sound propagation in stationary random fluid/rigid media that was proposed by Lafarge and Nemati [Wave Motion 50, 1016 (2013), 10.1016/j.wavemoti.2013.04.007]. This scheme arises from a deep analogy with electromagnetism and a set of physics-based postulates including, particularly, the action-response procedures, whereby the effective density and bulk modulus are determined. Here, we revisit this approach, and clarify further its founding physical principles through presenting it in a unified formulation together with the two-scale asymptotic homogenization theory that is interpreted as the local limit. Strong evidence is provided to show that the validity of the principles and postulates within the nonlocal theory extends to high-frequency bands, well beyond the long-wavelength regime. In particular, we demonstrate that up to the third Brillouin zone including the Bragg scattering, the complex and dispersive phase velocity of the least-attenuated wave in the phononic crystal which is generated by our nonlocal scheme agrees exactly with that reproduced by a direct approach based on the Bloch theorem and multiple scattering method. In high frequencies, the effective wave and its associated parameters are analyzed by treating the phononic crystal as a random medium.

  9. Financial Brownian Particle in the Layered Order-Book Fluid and Fluctuation-Dissipation Relations

    NASA Astrophysics Data System (ADS)

    Yura, Yoshihiro; Takayasu, Hideki; Sornette, Didier; Takayasu, Misako

    2014-03-01

    We introduce a novel description of the dynamics of the order book of financial markets as that of an effective colloidal Brownian particle embedded in fluid particles. The analysis of comprehensive market data enables us to identify all motions of the fluid particles. Correlations between the motions of the Brownian particle and its surrounding fluid particles reflect specific layering interactions; in the inner layer the correlation is strong and with short memory, while in the outer layer it is weaker and with long memory. By interpreting and estimating the contribution from the outer layer as a drag resistance, we demonstrate the validity of the fluctuation-dissipation relation in this nonmaterial Brownian motion process.

  10. Financial Brownian particle in the layered order-book fluid and fluctuation-dissipation relations.

    PubMed

    Yura, Yoshihiro; Takayasu, Hideki; Sornette, Didier; Takayasu, Misako

    2014-03-07

    We introduce a novel description of the dynamics of the order book of financial markets as that of an effective colloidal Brownian particle embedded in fluid particles. The analysis of comprehensive market data enables us to identify all motions of the fluid particles. Correlations between the motions of the Brownian particle and its surrounding fluid particles reflect specific layering interactions; in the inner layer the correlation is strong and with short memory, while in the outer layer it is weaker and with long memory. By interpreting and estimating the contribution from the outer layer as a drag resistance, we demonstrate the validity of the fluctuation-dissipation relation in this nonmaterial Brownian motion process.

  11. Cascades and Dissipative Anomalies in Compressible Fluid Turbulence

    NASA Astrophysics Data System (ADS)

    Eyink, Gregory L.; Drivas, Theodore D.

    2018-02-01

    We investigate dissipative anomalies in a turbulent fluid governed by the compressible Navier-Stokes equation. We follow an exact approach pioneered by Onsager, which we explain as a nonperturbative application of the principle of renormalization-group invariance. In the limit of high Reynolds and Péclet numbers, the flow realizations are found to be described as distributional or "coarse-grained" solutions of the compressible Euler equations, with standard conservation laws broken by turbulent anomalies. The anomalous dissipation of kinetic energy is shown to be due not only to local cascade but also to a distinct mechanism called pressure-work defect. Irreversible heating in stationary, planar shocks with an ideal-gas equation of state exemplifies the second mechanism. Entropy conservation anomalies are also found to occur via two mechanisms: an anomalous input of negative entropy (negentropy) by pressure work and a cascade of negentropy to small scales. We derive "4 /5 th-law"-type expressions for the anomalies, which allow us to characterize the singularities (structure-function scaling exponents) required to sustain the cascades. We compare our approach with alternative theories and empirical evidence. It is argued that the "Big Power Law in the Sky" observed in electron density scintillations in the interstellar medium is a manifestation of a forward negentropy cascade or an inverse cascade of usual thermodynamic entropy.

  12. A dissipative random velocity field for fully developed fluid turbulence

    NASA Astrophysics Data System (ADS)

    Chevillard, Laurent; Pereira, Rodrigo; Garban, Christophe

    2016-11-01

    We investigate the statistical properties, based on numerical simulations and analytical calculations, of a recently proposed stochastic model for the velocity field of an incompressible, homogeneous, isotropic and fully developed turbulent flow. A key step in the construction of this model is the introduction of some aspects of the vorticity stretching mechanism that governs the dynamics of fluid particles along their trajectory. An additional further phenomenological step aimed at including the long range correlated nature of turbulence makes this model depending on a single free parameter that can be estimated from experimental measurements. We confirm the realism of the model regarding the geometry of the velocity gradient tensor, the power-law behaviour of the moments of velocity increments, including the intermittent corrections, and the existence of energy transfers across scales. We quantify the dependence of these basic properties of turbulent flows on the free parameter and derive analytically the spectrum of exponents of the structure functions in a simplified non dissipative case. A perturbative expansion shows that energy transfers indeed take place, justifying the dissipative nature of this random field.

  13. Magnetoresistance in relativistic hydrodynamics without anomalies

    DOE PAGES

    Baumgartner, Andrew; Karch, Andreas; Lucas, Andrew

    2017-06-12

    We present expressions for the magnetoconductivity and the magnetoresistance of a strongly interacting metal in 3 + 1 dimensions, derivable from relativistic hydrodynamics. Such an approach is suitable for ultraclean metals with emergent Lorentz invariance. When this relativistic fluid contains chiral anomalies, it is known to exhibit longitudinal negative magnetoresistance. We show that similar effects can arise in non-anomalous relativistic fluids due to the distinctive gradient expansion. In contrast with a Galilean-invariant fluid, the resistivity tensor of a dirty relativistic fluid exhibits similar angular dependence to negative magnetoresistance, even when the constitutive relations and momentum relaxation rate are isotropic. Wemore » further account for the effect of magnetic field-dependent corrections to the gradient expansion and the effects of long-wavelength impurities on magnetoresistance. We note that the holographic D3/D7 system exhibits negative magnetoresistance.« less

  14. Magnetoresistance in relativistic hydrodynamics without anomalies

    NASA Astrophysics Data System (ADS)

    Baumgartner, Andrew; Karch, Andreas; Lucas, Andrew

    2017-06-01

    We present expressions for the magnetoconductivity and the magnetoresistance of a strongly interacting metal in 3 + 1 dimensions, derivable from relativistic hydrodynamics. Such an approach is suitable for ultraclean metals with emergent Lorentz invariance. When this relativistic fluid contains chiral anomalies, it is known to exhibit longitudinal negative magnetoresistance. We show that similar effects can arise in non-anomalous relativistic fluids due to the distinctive gradient expansion. In contrast with a Galilean-invariant fluid, the resistivity tensor of a dirty relativistic fluid exhibits similar angular dependence to negative magnetoresistance, even when the constitutive relations and momentum relaxation rate are isotropic. We further account for the effect of magnetic field-dependent corrections to the gradient expansion and the effects of long-wavelength impurities on magnetoresistance. We note that the holographic D3/D7 system exhibits negative magnetoresistance.

  15. Current flow instability and nonlinear structures in dissipative two-fluid plasmas

    NASA Astrophysics Data System (ADS)

    Koshkarov, O.; Smolyakov, A. I.; Romadanov, I. V.; Chapurin, O.; Umansky, M. V.; Raitses, Y.; Kaganovich, I. D.

    2018-01-01

    The current flow in two-fluid plasma is inherently unstable if plasma components (e.g., electrons and ions) are in different collisionality regimes. A typical example is a partially magnetized E ×B plasma discharge supported by the energy released from the dissipation of the current in the direction of the applied electric field (perpendicular to the magnetic field). Ions are not magnetized so they respond to the fluctuations of the electric field ballistically on the inertial time scale. In contrast, the electron current in the direction of the applied electric field is dissipatively supported either by classical collisions or anomalous processes. The instability occurs due to a positive feedback between the electron and ion current coupled by the quasi-neutrality condition. The theory of this instability is further developed taking into account the electron inertia, finite Larmor radius and nonlinear effects. It is shown that this instability results in highly nonlinear quasi-coherent structures resembling breathing mode oscillations in Hall thrusters.

  16. Dissipative closures for statistical moments, fluid moments, and subgrid scales in plasma turbulence

    NASA Astrophysics Data System (ADS)

    Smith, Stephen Andrew

    1997-11-01

    Closures are necessary in the study physical systems with large numbers of degrees of freedom when it is only possible to compute a small number of modes. The modes that are to be computed, the resolved modes, are coupled to unresolved modes that must be estimated. This thesis focuses on dissipative closures models for two problems that arises in the study of plasma turbulence: the fluid moment closure problem and the subgrid scale closure problem. The fluid moment closures of Hammett and Perkins (1990) were originally applied to a one-dimensional kinetic equation, the Vlasov equation. These closures are generalized in this thesis and applied to the stochastic oscillator problem, a standard paradigm problem for statistical closures. The linear theory of the Hammett- Perkins closures is shown to converge with increasing numbers of moments. A novel parameterized hyperviscosity is proposed for two- dimensional drift-wave turbulence. The magnitude and exponent of the hyperviscosity are expressed as functions of the large scale advection velocity. Traditionally hyperviscosities are applied to simulations with a fixed exponent that must be arbitrarily chosen. Expressing the exponent as a function of the simulation parameters eliminates this ambiguity. These functions are parameterized by comparing the hyperviscous dissipation to the subgrid dissipation calculated from direct numerical simulations. Tests of the parameterization demonstrate that it performs better than using no additional damping term or than using a standard hyperviscosity. Heuristic arguments are presented to extend this hyperviscosity model to three-dimensional (3D) drift-wave turbulence where eddies are highly elongated along the field line. Preliminary results indicate that this generalized 3D hyperviscosity is capable of reducing the resolution requirements for 3D gyrofluid turbulence simulations.

  17. Propagation of an ultra-short, intense laser in a relativistic fluid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ritchie, A.B.; Decker, C.D.

    1997-12-31

    A Maxwell-relativistic fluid model is developed to describe the propagation of an ultrashort, intense laser pulse through an underdense plasma. The model makes use of numerically stabilizing fast Fourier transform (FFT) computational methods for both the Maxwell and fluid equations, and it is benchmarked against particle-in-cell (PIC) simulations. Strong fields generated in the wake of the laser are calculated, and the authors observe coherent wake-field radiation generated at harmonics of the plasma frequency due to nonlinearities in the laser-plasma interaction. For a plasma whose density is 10% of critical, the highest members of the plasma harmonic series begin to overlapmore » with the first laser harmonic, suggesting that widely used multiple-scales-theory, by which the laser and plasma frequencies are assumed to be separable, ceases to be a useful approximation.« less

  18. Dissipative nonlinear waves in a gravitating quantum fluid

    NASA Astrophysics Data System (ADS)

    Sahu, Biswajit; Sinha, Anjana; Roychoudhury, Rajkumar

    2018-02-01

    Nonlinear wave propagation is studied in a dissipative, self-gravitating Bose-Einstein condensate, starting from the Gross-Pitaevskii equation. In the absence of an exact analytical result, approximate methods like the linear analysis and perturbative approach are applied. The linear dispersion relation puts a restriction on the permissible range of the dissipation parameter. The waves get damped due to dissipation. The small amplitude analysis using reductive perturbation technique is found to yield a modified form of KdV equation, which is solved both analytically as well as numerically. Interestingly, the analytical and numerical plots match excellently with each other, in the realm of weak dissipation.

  19. Geothermal Conceptual Model in Earthquake Swarm Area: Constrains from Physical Properties of Supercritical Fluids and Dissipative Theory

    NASA Astrophysics Data System (ADS)

    Wang, S. C.; Lee, C. S.

    2016-12-01

    In recent five years, geothermal energy became one of the most prosperous renewable energy in the world, but produces only 0.5% of the global electricity. Why this great potential of green energy cannot replace the fuel and nuclear energy? The necessity of complicated exploration procedures and precious experts in geothermal field is similar to that of the oil and gas industry. The Yilan Plain (NE Taiwan) is one of the hot area for geothermal development and research in the second phase of National Energy Program (NEP-II). The geological and geophysical studies of the area indicate that the Yilan Plain is an extension of the Okinawa Trough back arc rifting which provide the geothermal resource. Based on the new constrains from properties of supercritical fluids and dissipative structure theory, the geophysical evidence give confident clues on how the geothermal system evolved at depth. The geothermal conceptual model in NEP-II indicates that the volcanic intrusion under the complicate fault system is possibly beneath the Yilan Plain. However, the bottom temperature of first deep drilling and geochemical evidence in NEP-II imply no volcanic intrusion. In contrast, our results show that seismic activities in geothermal field observed self-organization, and are consistent with the brittle-ductile / brittle-plastic transition, which indicates that supercritical fluids triggered earthquake swarms. The geothermal gradient and geochemical anomalies in Yilan Plain indicate an open system far from equilibrium. Mantle and crust exchange energy and materials through supercritical fluids to generate a dissipative structure in geothermal fields and promote water-rock interactions and fractures. Our initial studies have suggested a dissipative structure of geothermal system that could be identified by geochemical and geophysical data. The key factor is the tectonic setting that triggered supercritical fluids upwelling from deep (possibly from the mantle or the upper crust). Our

  20. Behaviour of charged collapsing fluids after hydrostatic equilibrium in R^n gravity

    NASA Astrophysics Data System (ADS)

    Kausar, Hafiza Rizwana

    2017-06-01

    The purpose of this paper is to study the transport equation and its coupling with the Maxwell equation in the framework of R^n gravity. Using Müller-Israel-Stewart theory for the conduction of dissipative fluids, we analyze the temperature, heat flux, viscosity and thermal conductivity in the scenario of relaxation time. All these thermodynamical variables appear in the form of a single factor whose influence is discussed on the evolution of relativistic model for the heat conducting collapsing star.

  1. Influence of Dissipation on Heat Transfer During Flow of a Non-Newtonian Fluid in a Porous Channel

    NASA Astrophysics Data System (ADS)

    Baranov, A. V.; Yunitskii, S. A.

    2017-07-01

    A study is made of flow and heat transfer during the motion of a non-Newtonian (power-law) fluid in a plane channel filled with porous material. The Brinkman equation is used as the equation of state, and a one-temperature model, in representing the energy equation. Account us taken of dissipative heat releases. The problem is solved for temperature boundary conditions of the first kind. The authors show the influence of dissipation on the development of the temperature profile, and also on the distributions of the local Nusselt number and the mass-mean temperature along the channel.

  2. Relativistic theory of radiofrequency current drive

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balescu, R.; Metens, T.

    1991-05-01

    A fully relativistic kinetic theory of rf current drive in a tokamak is developed for both the lower hybrid and the electron cyclotron mechanisms. The problem is treated as a generalization of the classical transport equations, in which the thermodynamic forces are modified by the addition of a rf-source term. In the limit of weak rf amplitude and neglecting toroidal effects (such as particle trapping), explicit analytical expressions are obtained for the rf-generated current, the dissipated power, and the current drive efficiency. These expressions are fully relativistic and are valid over the whole admissible range of frequencies and for allmore » electron temperatures. The relation between efficiency and parallel relativistic transport coefficients is exhibited. The most important relativistic effect is a dramatic broadening of the frequency range over which the rf-generated current is significantly different from zero.« less

  3. Statistical and dynamical properties of a dissipative kicked rotator

    NASA Astrophysics Data System (ADS)

    Oliveira, Diego F. M.; Leonel, Edson D.

    2014-11-01

    Some dynamical and statistical properties for a conservative as well as the dissipative problem of relativistic particles in a waveguide are considered. For the first time, two different types of dissipation namely: (i) due to viscosity and; (ii) due to inelastic collision (upon the kick) are considered individually and acting together. For the first case, and contrary to what is expected for the original Zaslavsky’s relativistic model, we show there is a critical parameter where a transition from local to global chaos occurs. On the other hand, after considering the introduction of dissipation also on the kick, the structure of the phase space changes in the sense that chaotic and periodic attractors appear. We study also the chaotic sea by using scaling arguments and we proposed an analytical argument to reinforce the validity of the scaling exponents obtained numerically. In principle such an approach can be extended to any two-dimensional map. Finally, based on the Lyapunov exponent, we show that the parameter space exhibits infinite families of self-similar shrimp-shape structures, corresponding to periodic attractors, embedded in a large region corresponding to chaotic attractors.

  4. Architected squirt-flow materials for energy dissipation

    NASA Astrophysics Data System (ADS)

    Cohen, Tal; Kurzeja, Patrick; Bertoldi, Katia

    2017-12-01

    In the present study we explore material architectures that lead to enhanced dissipation properties by taking advantage of squirt-flow - a local flow mechanism triggered by heterogeneities at the pore level. While squirt-flow is a known dominant source of dissipation and seismic attenuation in fluid saturated geological materials, we study its untapped potential to be incorporated in highly deformable elastic materials with embedded fluid-filled cavities for future engineering applications. An analytical investigation, that isolates the squirt-flow mechanism from other potential dissipation mechanisms and considers an idealized setting, predicts high theoretical levels of dissipation achievable by squirt-flow and establishes a set of guidelines for optimal dissipation design. Particular architectures are then investigated via numerical simulations showing that a careful design of the internal voids can lead to an increase of dissipation levels by an order of magnitude, compared with equivalent homogeneous void distributions. Therefore, we suggest squirt-flow as a promising mechanism to be incorporated in future architected materials to effectively and reversibly dissipate energy.

  5. Lagrangian formulation of the general relativistic Poynting-Robertson effect

    NASA Astrophysics Data System (ADS)

    De Falco, Vittorio; Battista, Emmanuele; Falanga, Maurizio

    2018-04-01

    We propose the Lagrangian formulation for describing the motion of a test particle in a general relativistic, stationary, and axially symmetric spacetime. The test particle is also affected by a radiation field, modeled as a coherent flux of photons traveling along the null geodesics of the background spacetime, including the general relativistic Poynting-Robertson effect. The innovative part of this work is to prove the existence of the potential linked to the dissipative action caused by the Poynting-Robertson effect in general relativity through the help of an integrating factor, depending on the energy of the system. Generally, such kinds of inverse problems involving dissipative effects might not admit a Lagrangian formulation; especially, in general relativity, there are no examples of such attempts in the literature so far. We reduce this general relativistic Lagrangian formulation to the classic case in the weak-field limit. This approach facilitates further studies in improving the treatment of the radiation field, and it contains, for example, some implications for a deeper comprehension of the gravitational waves.

  6. “Ripples” on a relativistically expanding fluid

    DOE PAGES

    Shi, Shuzhe; Liao, Jinfeng; Zhuang, Pengfei

    2014-12-29

    Recent studies have shown that fluctuations of various types play important roles in the evolution of the fireball created in relativistic heavy ion collisions and bear many phenomenological consequences for experimental observables. In addition, the bulk dynamics of the fireball is well described by relativistic hydrodynamic expansion and the fluctuations on top of such expanding background can be studied within the linearized hydrodynamic framework. In this paper we present complete and analytic sound wave solutions on top of both Bjorken flow and Hubble flow backgrounds.

  7. Bivelocity Picture in the Nonrelativistic Limit of Relativistic Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Koide, Tomoi; Ramos, Rudnei O.; Vicente, Gustavo S.

    2015-02-01

    We discuss the nonrelativistic limit of the relativistic Navier-Fourier-Stokes (NFS) theory. The next-to-leading order relativistic corrections to the NFS theory for the Landau-Lifshitz fluid are obtained. While the lowest order truncation of the velocity expansion leads to the usual NFS equations of nonrelativistic fluids, we show that when the next-to-leading order relativistic corrections are included, the equations can be expressed concurrently with two different fluid velocities. One of the fluid velocities is parallel to the conserved charge current (which follows the Eckart definition) and the other one is parallel to the energy current (which follows the Landau-Lifshitz definition). We compare this next-to-leading order relativistic hydrodynamics with bivelocity hydrodynamics, which is one of the generalizations of the NFS theory and is formulated in such a way to include the usual mass velocity and also a new velocity, called the volume velocity. We find that the volume velocity can be identified with the velocity obtained in the Landau-Lifshitz definition. Then, the structure of bivelocity hydrodynamics, which is derived using various nontrivial assumptions, is reproduced in the NFS theory including the next-to-leading order relativistic corrections.

  8. Variational principles for relativistic smoothed particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Monaghan, J. J.; Price, D. J.

    2001-12-01

    In this paper we show how the equations of motion for the smoothed particle hydrodynamics (SPH) method may be derived from a variational principle for both non-relativistic and relativistic motion when there is no dissipation. Because the SPH density is a function of the coordinates the derivation of the equations of motion through variational principles is simpler than in the continuum case where the density is defined through the continuity equation. In particular, the derivation of the general relativistic equations is more direct and simpler than that of Fock. The symmetry properties of the Lagrangian lead immediately to the familiar additive conservation laws of linear and angular momentum and energy. In addition, we show that there is an approximately conserved quantity which, in the continuum limit, is the circulation.

  9. Energy Spectrum in the Dissipation Range of Fluid Turbulence

    NASA Technical Reports Server (NTRS)

    Martinez, D. O.; Chen, S.; Doolen, G. D.; Kraichnan, R. H.; Wang, L.-P.; Zhou, Y.

    1996-01-01

    High resolution, direct numerical simulations of the three-dimensional incompressible Navier-Stokes equations are carried out to study the energy spectrum in the dissipation range. An energy spectrum of the form A(k/k( sub d))(sup alpha) exp[- betak/k(sub d) is confirmed. The possible values of the parameters alpha and beta, as well as their dependence on Revnolds numbers and length scales, are investigated, showing good agreement with recent theoretical predictions. A "bottleneck'-type effect is reported at k/k(sub d) approximately 4, exhibiting a possible transition from near-dissipation to far- dissipation.

  10. Resistive dissipation and magnetic field topology in the stellar corona

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1993-01-01

    Tangential discontinuities, or current sheets, in a magnetic field embedded in a fluid with vanishing resistivity are created by discontinuous fluid motion. Tangential discontinuities are also created when a magnetic field is allowed to relax to magnetostatic equilibrium after mixing by fluid motions (either continuous or discontinuous) into any but the simplest topologies. This paper shows by formal examples that the current sheets arising solely from discontinuous fluid motions do not contribute significantly to the dissipation of magnetic free energy when a small resistivity is introduced. Dissipation that is significant under coronal conditions occurs only by rapid reconnection, which arises when, and only when, the current sheets are required by the field topology. Hence it is topological dissipation that is primarily responsible for heating tenuous coronal gases in astronomical settings, whether the fluid displacements of the field are continuous or discontinuous.

  11. Fluid particles only separate exponentially in the dissipation range of turbulence after extremely long times

    NASA Astrophysics Data System (ADS)

    Dhariwal, Rohit; Bragg, Andrew D.

    2018-03-01

    In this paper, we consider how the statistical moments of the separation between two fluid particles grow with time when their separation lies in the dissipation range of turbulence. In this range, the fluid velocity field varies smoothly and the relative velocity of two fluid particles depends linearly upon their separation. While this may suggest that the rate at which fluid particles separate is exponential in time, this is not guaranteed because the strain rate governing their separation is a strongly fluctuating quantity in turbulence. Indeed, Afik and Steinberg [Nat. Commun. 8, 468 (2017), 10.1038/s41467-017-00389-8] argue that there is no convincing evidence that the moments of the separation between fluid particles grow exponentially with time in the dissipation range of turbulence. Motivated by this, we use direct numerical simulations (DNS) to compute the moments of particle separation over very long periods of time in a statistically stationary, isotropic turbulent flow to see if we ever observe evidence for exponential separation. Our results show that if the initial separation between the particles is infinitesimal, the moments of the particle separation first grow as power laws in time, but we then observe convincing evidence that at sufficiently long times the moments do grow exponentially. However, this exponential growth is only observed after extremely long times ≳200 τη , where τη is the Kolmogorov time scale. This is due to fluctuations in the strain rate about its mean value measured along the particle trajectories, the effect of which on the moments of the particle separation persists for very long times. We also consider the backward-in-time (BIT) moments of the article separation, and observe that they too grow exponentially in the long-time regime. However, a dramatic consequence of the exponential separation is that at long times the difference between the rate of the particle separation forward in time (FIT) and BIT grows

  12. Standing electromagnetic solitons in hot ultra-relativistic electron-positron plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heidari, E., E-mail: ehphys75@iaubushehr.ac.ir; Aslaninejad, M.; Eshraghi, H.

    2014-03-15

    Using a one-dimensional self-consistent fluid model, we investigate standing relativistic bright solitons in hot electron-positron plasmas. The positron dynamics is taken into account. A set of nonlinear coupled differential equations describing the evolution of electromagnetic waves in fully relativistic two-fluid plasma is derived analytically and solved numerically. As a necessary condition for the existence of standing solitons the system should be relativistic. For the case of ultra-relativistic plasma, we investigate non-drifting bright solitary waves. Detailed discussions of the acceptable solutions are presented. New single hump non-trivial symmetric solutions for the scalar potential were found, and single and multi-nodal symmetric andmore » anti-symmetric solutions for the vector potential are presented. It is shown that for a fixed value of the fluid velocity excited modes with more zeros in the profile of the vector potential show a higher magnitude for the scalar potential. An increase in the plasma fluid velocity also increases the magnitude of the scalar potential. Furthermore, the Hamiltonian and the first integral of the system are given.« less

  13. Effect of viscous dissipation and radiation in an annular cone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, N. J. Salman; Kamangar, Sarfaraz; Khan, T. M. Yunus, E-mail: yunus.tatagar@gmail.com

    The viscous dissipation is an effect due to which heat is generated inside the medium. The presence of radiation further complicates the heat transfer behavior inside porous medium. The present paper discusses the combined effect of viscous dissipation and radiation inside a porous medium confined in an annular cone with inner radius r{sub i}. The viscous dissipation and radiation terms are included in the energy equation thereby solving the coupled momentum and energy equations with the help of finite element method. The results are presented in terms of isothermal and streamline indicating the thermal and fluid flow behavior of porousmore » medium. It is found that the combination of viscous dissipation and radiation parameter and the cone angle has significant effect on the heat transfer and fluid flow behavior inside the porous medium. The fluid velocity is found to increase with the increase in Raleigh number.« less

  14. A high-order relativistic two-fluid electrodynamic scheme with consistent reconstruction of electromagnetic fields and a multidimensional Riemann solver for electromagnetism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balsara, Dinshaw S., E-mail: dbalsara@nd.edu; Amano, Takanobu, E-mail: amano@eps.s.u-tokyo.ac.jp; Garain, Sudip, E-mail: sgarain@nd.edu

    In various astrophysics settings it is common to have a two-fluid relativistic plasma that interacts with the electromagnetic field. While it is common to ignore the displacement current in the ideal, classical magnetohydrodynamic limit, when the flows become relativistic this approximation is less than absolutely well-justified. In such a situation, it is more natural to consider a positively charged fluid made up of positrons or protons interacting with a negatively charged fluid made up of electrons. The two fluids interact collectively with the full set of Maxwell's equations. As a result, a solution strategy for that coupled system of equationsmore » is sought and found here. Our strategy extends to higher orders, providing increasing accuracy. The primary variables in the Maxwell solver are taken to be the facially-collocated components of the electric and magnetic fields. Consistent with such a collocation, three important innovations are reported here. The first two pertain to the Maxwell solver. In our first innovation, the magnetic field within each zone is reconstructed in a divergence-free fashion while the electric field within each zone is reconstructed in a form that is consistent with Gauss' law. In our second innovation, a multidimensionally upwinded strategy is presented which ensures that the magnetic field can be updated via a discrete interpretation of Faraday's law and the electric field can be updated via a discrete interpretation of the generalized Ampere's law. This multidimensional upwinding is achieved via a multidimensional Riemann solver. The multidimensional Riemann solver automatically provides edge-centered electric field components for the Stokes law-based update of the magnetic field. It also provides edge-centered magnetic field components for the Stokes law-based update of the electric field. The update strategy ensures that the electric field is always consistent with Gauss' law and the magnetic field is always divergence

  15. A high-order relativistic two-fluid electrodynamic scheme with consistent reconstruction of electromagnetic fields and a multidimensional Riemann solver for electromagnetism

    NASA Astrophysics Data System (ADS)

    Balsara, Dinshaw S.; Amano, Takanobu; Garain, Sudip; Kim, Jinho

    2016-08-01

    In various astrophysics settings it is common to have a two-fluid relativistic plasma that interacts with the electromagnetic field. While it is common to ignore the displacement current in the ideal, classical magnetohydrodynamic limit, when the flows become relativistic this approximation is less than absolutely well-justified. In such a situation, it is more natural to consider a positively charged fluid made up of positrons or protons interacting with a negatively charged fluid made up of electrons. The two fluids interact collectively with the full set of Maxwell's equations. As a result, a solution strategy for that coupled system of equations is sought and found here. Our strategy extends to higher orders, providing increasing accuracy. The primary variables in the Maxwell solver are taken to be the facially-collocated components of the electric and magnetic fields. Consistent with such a collocation, three important innovations are reported here. The first two pertain to the Maxwell solver. In our first innovation, the magnetic field within each zone is reconstructed in a divergence-free fashion while the electric field within each zone is reconstructed in a form that is consistent with Gauss' law. In our second innovation, a multidimensionally upwinded strategy is presented which ensures that the magnetic field can be updated via a discrete interpretation of Faraday's law and the electric field can be updated via a discrete interpretation of the generalized Ampere's law. This multidimensional upwinding is achieved via a multidimensional Riemann solver. The multidimensional Riemann solver automatically provides edge-centered electric field components for the Stokes law-based update of the magnetic field. It also provides edge-centered magnetic field components for the Stokes law-based update of the electric field. The update strategy ensures that the electric field is always consistent with Gauss' law and the magnetic field is always divergence-free. This

  16. Second-order dissipative hydrodynamics for plasma with chiral asymmetry and vorticity

    NASA Astrophysics Data System (ADS)

    Gorbar, E. V.; Rybalka, D. O.; Shovkovy, I. A.

    2017-05-01

    By making use of the chiral kinetic theory in the relaxation-time approximation, we derive an Israel-Stewart type formulation of the hydrodynamic equations for a chiral relativistic plasma made of neutral particles (e.g., neutrinos). The effects of chiral asymmetry are captured by including an additional continuity equation for the axial charge, as well as the leading-order quantum corrections due to the spin of particles. In a formulation of the chiral kinetic theory used, we introduce a symmetric form of the energy-momentum tensor that is suitable for the description of a weakly nonuniform chiral plasma. By construction, the energy and momentum are conserved to the same leading order in the Planck constant as the kinetic equation itself. By making use of such a chiral kinetic theory and the Chapman-Enskog approach, we obtain a set of second-order dissipative hydrodynamic equations. The effects of the fluid vorticity and velocity fluctuations on the dispersion relations of chiral vortical waves are analyzed.

  17. Dissipation effects in mechanics and thermodynamics

    NASA Astrophysics Data System (ADS)

    Güémez, J.; Fiolhais, M.

    2016-07-01

    With the discussion of three examples, we aim at clarifying the concept of energy transfer associated with dissipation in mechanics and in thermodynamics. The dissipation effects due to dissipative forces, such as the friction force between solids or the drag force in motions in fluids, lead to an internal energy increase of the system and/or to heat transfer to the surroundings. This heat flow is consistent with the second law, which states that the entropy of the universe should increase when those forces are present because of the irreversibility always associated with their actions. As far as mechanics is concerned, the effects of the dissipative forces are included in Newton’s equations as impulses and pseudo-works.

  18. Viscous dissipation impact on MHD free convection radiating fluid flow past a vertical porous plate

    NASA Astrophysics Data System (ADS)

    Raju, R. Srinivasa; Reddy, G. Jithender; Kumar, M. Anil

    2018-05-01

    An attempt has been made to study the radiation effects on unsteady MHD free convective flow of an incompressible fluid past an infinite vertical porous plate in the presence of viscous dissipation. The governing partial differential equations are solved numerically by using Galerkin finite element method. Computations were performed for a wide range of governing flow parameters viz., Magnetic Parameter, Schmidt number, Thermal radiation, Prandtl number, Eckert number and Permeability parameter. The effects of these flow parameters on velocity, temperature are shown graphically. In addition the local values of the Skin friction coefficient are shown in tabular form.

  19. 2D Relativistic MHD simulations of the Kruskal-Schwarzschild instability in a relativistic striped wind

    NASA Astrophysics Data System (ADS)

    Gill, Ramandeep; Granot, Jonathan; Lyubarsky, Yuri

    2018-03-01

    We study the linear and non-linear development of the Kruskal-Schwarzchild instability in a relativisitically expanding striped wind. This instability is the generalization of Rayleigh-Taylor instability in the presence of a magnetic field. It has been suggested to produce a self-sustained acceleration mechanism in strongly magnetized outflows found in active galactic nuclei, gamma-ray bursts, and micro-quasars. The instability leads to magnetic reconnection, but in contrast with steady-state Sweet-Parker reconnection, the dissipation rate is not limited by the current layer's small aspect ratio. We performed two-dimensional (2D) relativistic magnetohydrodynamic (RMHD) simulations featuring two cold and highly magnetized (1 ≤ σ ≤ 103) plasma layers with an anti-parallel magnetic field separated by a thin layer of relativistically hot plasma with a local effective gravity induced by the outflow's acceleration. Our simulations show how the heavier relativistically hot plasma in the reconnecting layer drips out and allows oppositely oriented magnetic field lines to reconnect. The instability's growth rate in the linear regime matches the predictions of linear stability analysis. We find turbulence rather than an ordered bulk flow near the reconnection region, with turbulent velocities up to ˜0.1c, largely independent of model parameters. However, the magnetic energy dissipation rate is found to be much slower, corresponding to an effective ordered bulk velocity inflow into the reconnection region vin = βinc of 10-3 ≲ βin ≲ 5 × 10-3. This occurs due to the slow evacuation of hot plasma from the current layer, largely because of the Kelvin-Helmholtz instability experienced by the dripping plasma. 3D RMHD simulations are needed to further investigate the non-linear regime.

  20. Numerical analysis of fractional MHD Maxwell fluid with the effects of convection heat transfer condition and viscous dissipation

    NASA Astrophysics Data System (ADS)

    Bai, Yu; Jiang, Yuehua; Liu, Fawang; Zhang, Yan

    2017-12-01

    This paper investigates the incompressible fractional MHD Maxwell fluid due to a power function accelerating plate with the first order slip, and the numerical analysis on the flow and heat transfer of fractional Maxwell fluid has been done. Moreover the deformation motion of fluid micelle is simply analyzed. Nonlinear velocity equation are formulated with multi-term time fractional derivatives in the boundary layer governing equations, and convective heat transfer boundary condition and viscous dissipation are both taken into consideration. A newly finite difference scheme with L1-algorithm of governing equations are constructed, whose convergence is confirmed by the comparison with analytical solution. Numerical solutions for velocity and temperature show the effects of pertinent parameters on flow and heat transfer of fractional Maxwell fluid. It reveals that the fractional derivative weakens the effects of motion and heat conduction. The larger the Nusselt number is, the greater the heat transfer capacity of fluid becomes, and the temperature gradient at the wall becomes more significantly. The lower Reynolds number enhances the viscosity of the fluid because it is the ratio of the viscous force and the inertia force, which resists the flow and heat transfer.

  1. Realization of a Tunable Dissipation Scale in a Turbulent Cascade using a Quantum Gas

    NASA Astrophysics Data System (ADS)

    Navon, Nir; Eigen, Christoph; Zhang, Jinyi; Lopes, Raphael; Smith, Robert; Hadzibabic, Zoran

    2017-04-01

    Many turbulent flows form so-called cascades, where excitations injected at large length scales, are transported to gradually smaller scales until they reach a dissipation scale. We initiate a turbulent cascade in a dilute Bose fluid by pumping energy at the container scale of an optical box trap using an oscillating magnetic force. In contrast to classical fluids where the dissipation scale is set by the viscosity of the fluid, the turbulent cascade of our quantum gas finishes when the particles kinetic energy exceeds the laser-trap depth. This mechanism thus allows us to effectively tune the dissipation scale where particles (and energy) are lost, and measure the particle flux in the cascade at the dissipation scale. We observe a unit power-law decay of the particle-dissipation rate with trap depth, which confirms the surprising prediction that in a wave-turbulent direct energy cascade, the particle flux vanishes in the ideal limit where the dissipation length scale tends to zero.

  2. Anelastic tidal dissipation in multi-layer planets

    NASA Astrophysics Data System (ADS)

    Remus, F.; Mathis, S.; Zahn, J.-P.; Lainey, V.

    2012-09-01

    Earth-like planets have anelastic mantles, whereas giant planets may have anelastic cores. As for the fluid parts of a body, the tidal dissipation of such solid regions, gravitationally perturbed by a companion body, highly depends on its internal friction, and thus on its internal structure. Therefore, modelling this kind of interaction presents a high interest to provide constraints on planets interiors, whose properties are still quite uncertain. Here, we examine the equilibrium tide in the solid part of a planet, taking into account the presence of a fluid envelope. We derive the different Love numbers that describe its deformation and discuss the dependence of the quality factor Q on the chosen anelastic model and the size of the core. Taking plausible values for the anelastic parameters, and discussing the frequency-dependence of the solid dissipation, we show how this mechanism may compete with the dissipation in fluid layers, when applied to Jupiter- and Saturn-like planets. We also discuss the case of the icy giants Uranus and Neptune. Finally, we present the way to implement the results in the equations that describe the dynamical evolution of planetary systems.

  3. Coupled modes in magnetized dense plasma with relativistic-degenerate electrons

    NASA Astrophysics Data System (ADS)

    Khan, S. A.

    2012-01-01

    Low frequency electrostatic and electromagnetic waves are investigated in ultra-dense quantum magnetoplasma with relativistic-degenerate electron and non-degenerate ion fluids. The dispersion relation is derived for mobile as well as immobile ions by employing hydrodynamic equations for such plasma under the influence of electromagnetic forces and pressure gradient of relativistic-degenerate Fermi gas of electrons. The result shows the coexistence of shear Alfven and ion modes with relativistically modified dispersive properties. The relevance of results to the dense degenerate plasmas of astrophysical origin (for instance, white dwarf stars) is pointed out with brief discussion on ultra-relativistic and non-relativistic limits.

  4. Spatial Localization in Dissipative Systems

    NASA Astrophysics Data System (ADS)

    Knobloch, E.

    2015-03-01

    Spatial localization is a common feature of physical systems, occurring in both conservative and dissipative systems. This article reviews the theoretical foundations of our understanding of spatial localization in forced dissipative systems, from both a mathematical point of view and a physics perspective. It explains the origin of the large multiplicity of simultaneously stable spatially localized states present in a parameter region called the pinning region and its relation to the notion of homoclinic snaking. The localized states are described as bound states of fronts, and the notions of front pinning, self-pinning, and depinning are emphasized. Both one-dimensional and two-dimensional systems are discussed, and the reasons behind the differences in behavior between dissipative systems with conserved and nonconserved dynamics are explained. The insights gained are specific to forced dissipative systems and are illustrated here using examples drawn from fluid mechanics (convection and shear flows) and a simple model of crystallization.

  5. A family of solutions to the Einstein-Maxwell system of equations describing relativistic charged fluid spheres

    NASA Astrophysics Data System (ADS)

    Komathiraj, K.; Sharma, Ranjan

    2018-05-01

    In this paper, we present a formalism to generate a family of interior solutions to the Einstein-Maxwell system of equations for a spherically symmetric relativistic charged fluid sphere matched to the exterior Reissner-Nordström space-time. By reducing the Einstein-Maxwell system to a recurrence relation with variable rational coefficients, we show that it is possible to obtain closed-form solutions for a specific range of model parameters. A large class of solutions obtained previously are shown to be contained in our general class of solutions. We also analyse the physical viability of our new class of solutions.

  6. Relativistic Dynamos in Magnetospheres of Rotating Compact Objects

    NASA Astrophysics Data System (ADS)

    Tomimatsu, Akira

    2000-01-01

    The kinematic evolution of axisymmetric magnetic fields in rotating magnetospheres of relativistic compact objects is analytically studied, based on relativistic Ohm's law in stationary axisymmetric geometry. By neglecting the poloidal flows of plasma in simplified magnetospheric models, we discuss a self-excited dynamo due to the frame-dragging effect (originally pointed out by Khanna & Camenzind) and propose alternative processes to generate axisymmetric magnetic fields against ohmic dissipation. The first process (which may be called ``induced excitation'') is caused by the help of a background uniform magnetic field in addition to the dragging of inertial frames. It is shown that excited multipolar components of poloidal and azimuthal fields are sustained as stationary modes, and outgoing Poynting flux converges toward the rotation axis. The second process is a self-excited dynamo through azimuthal convection current, which is found to be effective if plasma rotation becomes highly relativistic with a sharp gradient in the angular velocity. In this case, no frame-dragging effect is needed, and the coupling between charge separation and plasma rotation becomes important. We discuss briefly the results in relation to active phenomena in the relativistic magnetospheres.

  7. A Note on Kinetic Energy, Dissipation and Enstrophy

    NASA Technical Reports Server (NTRS)

    Wu, Jie-Zhi; Zhou, Ye; Fan, Meng

    1998-01-01

    The dissipation rate of a Newtonian fluid with constant shear viscosity can be shown to include three constituents: dilatation, vorticity, and surface strain. The last one is found to make no contributions to the change of kinetic energy. These dissipation constituents arc used to identify typical compact turbulent flow structures at high Reynolds numbers. The incompressible version of the simplified kinetic-energy equation is then cast to a novel form, which is free from the work rate done by surface stresses but in which the full dissipation re-enters.

  8. Relativistic hydrodynamics from quantum field theory on the basis of the generalized Gibbs ensemble method

    NASA Astrophysics Data System (ADS)

    Hayata, Tomoya; Hidaka, Yoshimasa; Noumi, Toshifumi; Hongo, Masaru

    2015-09-01

    We derive relativistic hydrodynamics from quantum field theories by assuming that the density operator is given by a local Gibbs distribution at initial time. We decompose the energy-momentum tensor and particle current into nondissipative and dissipative parts, and analyze their time evolution in detail. Performing the path-integral formulation of the local Gibbs distribution, we microscopically derive the generating functional for the nondissipative hydrodynamics. We also construct a basis to study dissipative corrections. In particular, we derive the first-order dissipative hydrodynamic equations without a choice of frame such as the Landau-Lifshitz or Eckart frame.

  9. Sound speed and viscosity of semi-relativistic relic neutrinos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krauss, Lawrence; Long, Andrew J., E-mail: krauss@asu.edu, E-mail: andrewjlong@kicp.uchicago.edu

    2016-07-01

    Generalized fluid equations, using sound speed c {sub eff}{sup 2} and viscosity c {sub vis}{sup 2} as effective parameters, provide a convenient phenomenological formalism for testing the relic neutrino 'null hypothesis,' i.e. that that neutrinos are relativistic and free-streaming prior to recombination. In this work, we relax the relativistic assumption and ask 'to what extent can the generalized fluid equations accommodate finite neutrino mass?' We consider both the mass of active neutrinos, which are largely still relativistic at recombination m {sup 2} / T {sup 2} ∼ 0.2, and the effect of a semi-relativistic sterile component. While there is nomore » one-to-one mapping between mass/mixing parameters and c {sub eff}{sup 2} and c {sub vis}{sup 2}, we demonstrate that the existence of a neutrino mass could induce a bias to measurements of c {sub eff}{sup 2} and c {sub vis}{sup 2} at the level of 0.01 m {sup 2} / T {sup 2} ∼ 10{sup -3}.« less

  10. Dissipation of post-disruption runaway electron plateaus by shattered pellet injection in DIII-D

    NASA Astrophysics Data System (ADS)

    Shiraki, D.; Commaux, N.; Baylor, L. R.; Cooper, C. M.; Eidietis, N. W.; Hollmann, E. M.; Paz-Soldan, C.; Combs, S. K.; Meitner, S. J.

    2018-05-01

    We report on the first demonstration of dissipation of fully avalanched post-disruption runaway electron (RE) beams by shattered pellet injection in the DIII-D tokamak. Variation of the injected species shows that dissipation depends strongly on the species mixture, while comparisons with massive gas injection do not show a significant difference between dissipation by pellets or by gas, suggesting that the shattered pellet is rapidly ablated by the relativistic electrons before significant radial penetration into the runaway beam can occur. Pure or dominantly neon injection increases the RE current dissipation through pitch-angle scattering due to collisions with impurity ions. Deuterium injection is observed to have the opposite effect from neon, reducing the high-Z impurity content and thus decreasing the dissipation, and causing the background thermal plasma to completely recombine. When injecting mixtures of the two species, deuterium levels as low as  ∼10% of the total injected atoms are observed to adversely affect the resulting dissipation, suggesting that complete elimination of deuterium from the injection may be important for optimizing RE mitigation schemes.

  11. Dissipation of post-disruption runaway electron plateaus by shattered pellet injection in DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiraki, D.; Commaux, N.; Baylor, L. R.

    Here, we report on the first demonstration of dissipation of fully avalanched post-disruption runaway electron (RE) beams by shattered pellet injection in the DIII-D tokamak. Variation of the injected species shows that dissipation depends strongly on the species mixture, while comparisons with massive gas injection do not show a significant difference between dissipation by pellets or by gas, suggesting that the shattered pellet is rapidly ablated by the relativistic electrons before significant radial penetration into the runaway beam can occur. Pure or dominantly neon injection increases the RE current dissipation through pitch-angle scattering due to collisions with impurity ions. Deuteriummore » injection is observed to have the opposite effect from neon, causing the background thermal plasma to completely recombine, reducing the high-Z impurity content and thus decreasing the dissipation. When injecting mixtures of the two species, deuterium levels as low as ~10% of the total injected atoms are observed to adversely affect the resulting dissipation, suggesting that complete elimination of deuterium from the injection may be important for optimizing RE mitigation schemes.« less

  12. Dissipation of post-disruption runaway electron plateaus by shattered pellet injection in DIII-D

    DOE PAGES

    Shiraki, D.; Commaux, N.; Baylor, L. R.; ...

    2018-03-07

    Here, we report on the first demonstration of dissipation of fully avalanched post-disruption runaway electron (RE) beams by shattered pellet injection in the DIII-D tokamak. Variation of the injected species shows that dissipation depends strongly on the species mixture, while comparisons with massive gas injection do not show a significant difference between dissipation by pellets or by gas, suggesting that the shattered pellet is rapidly ablated by the relativistic electrons before significant radial penetration into the runaway beam can occur. Pure or dominantly neon injection increases the RE current dissipation through pitch-angle scattering due to collisions with impurity ions. Deuteriummore » injection is observed to have the opposite effect from neon, causing the background thermal plasma to completely recombine, reducing the high-Z impurity content and thus decreasing the dissipation. When injecting mixtures of the two species, deuterium levels as low as ~10% of the total injected atoms are observed to adversely affect the resulting dissipation, suggesting that complete elimination of deuterium from the injection may be important for optimizing RE mitigation schemes.« less

  13. Smoothed dissipative particle dynamics with angular momentum conservation

    NASA Astrophysics Data System (ADS)

    Müller, Kathrin; Fedosov, Dmitry A.; Gompper, Gerhard

    2015-01-01

    Smoothed dissipative particle dynamics (SDPD) combines two popular mesoscopic techniques, the smoothed particle hydrodynamics and dissipative particle dynamics (DPD) methods, and can be considered as an improved dissipative particle dynamics approach. Despite several advantages of the SDPD method over the conventional DPD model, the original formulation of SDPD by Español and Revenga (2003) [9], lacks angular momentum conservation, leading to unphysical results for problems where the conservation of angular momentum is essential. To overcome this limitation, we extend the SDPD method by introducing a particle spin variable such that local and global angular momentum conservation is restored. The new SDPD formulation (SDPD+a) is directly derived from the Navier-Stokes equation for fluids with spin, while thermal fluctuations are incorporated similarly to the DPD method. We test the new SDPD method and demonstrate that it properly reproduces fluid transport coefficients. Also, SDPD with angular momentum conservation is validated using two problems: (i) the Taylor-Couette flow with two immiscible fluids and (ii) a tank-treading vesicle in shear flow with a viscosity contrast between inner and outer fluids. For both problems, the new SDPD method leads to simulation predictions in agreement with the corresponding analytical theories, while the original SDPD method fails to capture properly physical characteristics of the systems due to violation of angular momentum conservation. In conclusion, the extended SDPD method with angular momentum conservation provides a new approach to tackle fluid problems such as multiphase flows and vesicle/cell suspensions, where the conservation of angular momentum is essential.

  14. Formation of Relativistic Jets : Magnetohydrodynamics and Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Porth, Oliver J. G.

    2011-11-01

    force, such that we obtain an increased stability of relativistic flows. Accordingly, the non-axisymmetric modes applied to the field-line foot-points saturate quickly, with no signs of enhanced dissipation or disruption near the jet launching site.

  15. On relativistic generalization of Perelman's W-entropy and thermodynamic description of gravitational fields and cosmology

    NASA Astrophysics Data System (ADS)

    Ruchin, Vyacheslav; Vacaru, Olivia; Vacaru, Sergiu I.

    2017-03-01

    Using double 2+2 and 3+1 nonholonomic fibrations on Lorentz manifolds, we extend the concept of W-entropy for gravitational fields in general relativity (GR). Such F- and W-functionals were introduced in the Ricci flow theory of three dimensional (3-d) Riemannian metrics by Perelman (the entropy formula for the Ricci flow and its geometric applications. arXiv:math.DG/0211159). Non-relativistic 3-d Ricci flows are characterized by associated statistical thermodynamical values determined by W-entropy. Generalizations for geometric flows of 4-d pseudo-Riemannian metrics are considered for models with local thermodynamical equilibrium and separation of dissipative and non-dissipative processes in relativistic hydrodynamics. The approach is elaborated in the framework of classical field theories (relativistic continuum and hydrodynamic models) without an underlying kinetic description, which will be elaborated in other work. The 3+1 splitting allows us to provide a general relativistic definition of gravitational entropy in the Lyapunov-Perelman sense. It increases monotonically as structure forms in the Universe. We can formulate a thermodynamic description of exact solutions in GR depending, in general, on all spacetime coordinates. A corresponding 2+2 splitting with nonholonomic deformation of linear connection and frame structures is necessary for generating in very general form various classes of exact solutions of the Einstein and general relativistic geometric flow equations. Finally, we speculate on physical macrostates and microstate interpretations of the W-entropy in GR, geometric flow theories and possible connections to string theory (a second unsolved problem also contained in Perelman's work) in Polyakov's approach.

  16. A mesoscopic bridging scale method for fluids and coupling dissipative particle dynamics with continuum finite element method

    PubMed Central

    Kojic, Milos; Filipovic, Nenad; Tsuda, Akira

    2012-01-01

    A multiscale procedure to couple a mesoscale discrete particle model and a macroscale continuum model of incompressible fluid flow is proposed in this study. We call this procedure the mesoscopic bridging scale (MBS) method since it is developed on the basis of the bridging scale method for coupling molecular dynamics and finite element models [G.J. Wagner, W.K. Liu, Coupling of atomistic and continuum simulations using a bridging scale decomposition, J. Comput. Phys. 190 (2003) 249–274]. We derive the governing equations of the MBS method and show that the differential equations of motion of the mesoscale discrete particle model and finite element (FE) model are only coupled through the force terms. Based on this coupling, we express the finite element equations which rely on the Navier–Stokes and continuity equations, in a way that the internal nodal FE forces are evaluated using viscous stresses from the mesoscale model. The dissipative particle dynamics (DPD) method for the discrete particle mesoscale model is employed. The entire fluid domain is divided into a local domain and a global domain. Fluid flow in the local domain is modeled with both DPD and FE method, while fluid flow in the global domain is modeled by the FE method only. The MBS method is suitable for modeling complex (colloidal) fluid flows, where continuum methods are sufficiently accurate only in the large fluid domain, while small, local regions of particular interest require detailed modeling by mesoscopic discrete particles. Solved examples – simple Poiseuille and driven cavity flows illustrate the applicability of the proposed MBS method. PMID:23814322

  17. Open/closed string duality and relativistic fluids

    NASA Astrophysics Data System (ADS)

    Niarchos, Vasilis

    2016-07-01

    We propose an open/closed string duality in general backgrounds extending previous ideas about open string completeness by Ashoke Sen. Our proposal sets up a general version of holography that works in gravity as a tomographic principle. We argue, in particular, that previous expectations of a supergravity/Dirac-Born-Infeld (DBI) correspondence are naturally embedded in this conjecture and can be tested in a well-defined manner. As an example, we consider the correspondence between open string field theories on extremal D-brane setups in flat space in the large-N , large 't Hooft limit, and asymptotically flat solutions in ten-dimensional type II supergravity. We focus on a convenient long-wavelength regime, where specific effects of higher-spin open string modes can be traced explicitly in the dual supergravity computation. For instance, in this regime we show how the full Abelian DBI action arises from supergravity as a straightforward reformulation of relativistic hydrodynamics. In the example of a (2 +1 )-dimensional open string theory this reformulation involves an Abelian Hodge duality. We also point out how different deformations of the DBI action, related to higher-derivative corrections and non-Abelian effects, can arise in this context as deformations in corresponding relativistic hydrodynamics.

  18. Self-consistent conversion of a viscous fluid to particles

    NASA Astrophysics Data System (ADS)

    Molnar, Denes; Wolff, Zack

    2017-02-01

    Comparison of hydrodynamic and "hybrid" hydrodynamics+transport calculations with heavy-ion data inevitably requires the conversion of the fluid to particles. For dissipative fluids the conversion is ambiguous without additional theory input complementing hydrodynamics. We obtain self-consistent shear viscous phase-space corrections from linearized Boltzmann transport theory for a gas of hadrons. These corrections depend on the particle species, and incorporating them in Cooper-Frye freeze-out affects identified particle observables. For example, with additive quark model cross sections, proton elliptic flow is larger than pion elliptic flow at moderately high pT in Au+Au collisions at the BNL Relativistic Heavy Ion Collider. This is in contrast to Cooper-Frye freeze-out with the commonly used "democratic Grad" ansatz that assumes no species dependence. Various analytic and numerical results are also presented for massless and massive two-component mixtures to better elucidate how species dependence arises. For convenient inclusion in pure hydrodynamic and hybrid calculations, Appendix G contains self-consistent viscous corrections for each species both in tabulated and parametrized form.

  19. The effect of resolution on viscous dissipation measured with 4D flow MRI in patients with Fontan circulation: Evaluation using computational fluid dynamics

    PubMed Central

    Cibis, Merih; Jarvis, Kelly; Markl, Michael; Rose, Michael; Rigsby, Cynthia; Barker, Alex J.; Wentzel, Jolanda J.

    2016-01-01

    Viscous dissipation inside Fontan circulation, a parameter associated with the exercise intolerance of Fontan patients, can be derived from computational fluid dynamics (CFD) or 4D flow MRI velocities. However, the impact of spatial resolution and measurement noise on the estimation of viscous dissipation is unclear. Our aim was to evaluate the influence of these parameters on viscous dissipation calculation. Six Fontan patients underwent whole heart 4D flow MRI. Subject-specific CFD simulations were performed. The CFD velocities were down-sampled to isotropic spatial resolutions of 0.5 mm, 1 mm, 2 mm and to MRI resolution. Viscous dissipation was compared between (1) high resolution CFD velocities, (2) CFD velocities down-sampled to MRI resolution, (3) down-sampled CFD velocities with MRI mimicked noise levels, and (4) in-vivo 4D flow MRI velocities. Relative viscous dissipation between subjects was also calculated. 4D flow MRI velocities (15.6±3.8 cm/s) were higher, although not significantly different than CFD velocities (13.8±4.7 cm/s, p=0.16), down-sampled CFD velocities (12.3±4.4 cm/s, p=0.06) and the down-sampled CFD velocities with noise (13.2±4.2 cm/s, p=0.06). CFD-based viscous dissipation (0.81±0.55 mW) was significantly higher than those based on down-sampled CFD (0.25±0.19 mW, p=0.03), down-sampled CFD with noise (0.49±0.26 mW, p=0.03) and 4D flow MRI (0.56±0.28 mW, p=0.06). Nevertheless, relative viscous dissipation between different subjects was maintained irrespective of resolution and noise, suggesting that comparison of viscous dissipation between patients is still possible. PMID:26298492

  20. Probing dissipation mechanisms in BL Lac jets through X-ray polarimetry

    NASA Astrophysics Data System (ADS)

    Tavecchio, F.; Landoni, M.; Sironi, L.; Coppi, P.

    2018-06-01

    The dissipation of energy flux in blazar jets plays a key role in the acceleration of relativistic particles. Two possibilities are commonly considered for the dissipation processes, magnetic reconnection - possibly triggered by instabilities in magnetically-dominated jets - , or shocks - for weakly magnetized flows. We consider the polarimetric features expected for the two scenarios analyzing the results of state-of-the-art simulations. For the magnetic reconnection scenario we conclude, using results from global relativistic MHD simulations, that the emission likely occurs in turbulent regions with unstructured magnetic fields, although the simulations do not allow us to draw firm conclusions. On the other hand, with local particle-in-cell simulations we show that, for shocks with a magnetic field geometry suitable for particle acceleration, the self-generated magnetic field at the shock front is predominantly orthogonal to the shock normal and becomes quasi-parallel downstream. Based on this result we develop a simplified model to calculate the frequency-dependent degree of polarization, assuming that high-energy particles are injected at the shock and cool downstream. We apply our results to HBLs, blazars with the maximum of their synchrotron output at UV-soft X-ray energies. While in the optical band the predicted degree of polarization is low, in the X-ray emission it can ideally reach 50%, especially during active/flaring states. The comparison between measurements in the optical and in the X-ray band made during active states (feasible with the planned IXPE satellite) are expected to provide valuable constraints on the dissipation and acceleration processes.

  1. Non-convex dissipation potentials in multiscale non-equilibrium thermodynamics

    NASA Astrophysics Data System (ADS)

    Janečka, Adam; Pavelka, Michal

    2018-04-01

    Reformulating constitutive relation in terms of gradient dynamics (being derivative of a dissipation potential) brings additional information on stability, metastability and instability of the dynamics with respect to perturbations of the constitutive relation, called CR-stability. CR-instability is connected to the loss of convexity of the dissipation potential, which makes the Legendre-conjugate dissipation potential multivalued and causes dissipative phase transitions that are not induced by non-convexity of free energy, but by non-convexity of the dissipation potential. CR-stability of the constitutive relation with respect to perturbations is then manifested by constructing evolution equations for the perturbations in a thermodynamically sound way (CR-extension). As a result, interesting experimental observations of behavior of complex fluids under shear flow and supercritical boiling curve can be explained.

  2. Relativistic elasticity of stationary fluid branes

    NASA Astrophysics Data System (ADS)

    Armas, Jay; Obers, Niels A.

    2013-02-01

    Fluid mechanics can be formulated on dynamical surfaces of arbitrary codimension embedded in a background space-time. This has been the main object of study of the blackfold approach in which the emphasis has primarily been on stationary fluid configurations. Motivated by this approach we show under certain conditions that a given stationary fluid configuration living on a dynamical surface of vanishing thickness and satisfying locally the first law of thermodynamics will behave like an elastic brane when the surface is subject to small deformations. These results, which are independent of the number of space-time dimensions and of the fluid arising from a gravitational dual, reveal the (electro)elastic character of (charged) black branes when considering extrinsic perturbations.

  3. A long time span relativistic precession model of the Earth

    NASA Astrophysics Data System (ADS)

    Tang, Kai; Soffel, Michael H.; Tao, Jin-He; Han, Wen-Biao; Tang, Zheng-Hong

    2015-04-01

    A numerical solution to the Earth's precession in a relativistic framework for a long time span is presented here. We obtain the motion of the solar system in the Barycentric Celestial Reference System by numerical integration with a symplectic integrator. Special Newtonian corrections accounting for tidal dissipation are included in the force model. The part representing Earth's rotation is calculated in the Geocentric Celestial Reference System by integrating the post-Newtonian equations of motion published by Klioner et al. All the main relativistic effects are included following Klioner et al. In particular, we consider several relativistic reference systems with corresponding time scales, scaled constants and parameters. Approximate expressions for Earth's precession in the interval ±1 Myr around J2000.0 are provided. In the interval ±2000 years around J2000.0, the difference compared to the P03 precession theory is only several arcseconds and the results are consistent with other long-term precession theories. Supported by the National Natural Science Foundation of China.

  4. Fluid simulations of nonlocal dissipative drift-wave turbulence

    NASA Astrophysics Data System (ADS)

    Xu, X. Q.; Cohen, R. H.; Crotinger, J. A.; Shestakov, A. I.

    1995-03-01

    A two-dimensional [2d(x,y)] fluid code has been developed to explore nonlocal dissipative drift-wave turbulence and anomalous transport. In order to obtain steady-state turbulence, the y-averaged fluctuating density has been forced to be zero in simulations, thus the difficulty of choosing proper sources and sinks in turbulence simulation codes has been avoided. If Ln≫Lc or Lαlc≫Lc, where Ln is the density gradient scale length, Lc the turbulence correlation length Lc, and Lαlc the adiabaticity-layer width, it has been shown that ``local'' turbulence simulations give reasonable results. However, for Ln˜Lc, or Lαlc˜Lc ``local'' turbulence codes are found to overestimate the flux. For a family of hyperbolic tangent background density profiles, n0(x)=nm-n1 tanh[(2x-Lx)/2Δn] with n1<0.5nm, it has been demonstrated that the nonlocality of the turbulence leads to a transition from local gyro-Bohm (Dlocal≂7.6(Te/eB)[ρs/Ln(x)] [αlc(x)/0.01]-1/3), where αlc(x)=α(x)/κ(x)<1, to nonlocal gyro-Bohm transport scaling [Dnonlocal≂7.6(Te/eB)(n1ρs/nmΔn) (αnlc/0.01)-1/3(Δn/40ρs)2/5 for αnlc(x)=α/κmax<1, κ(x)=ρs/Ln(x) and α=k2∥χe]. For the case Φ0(x)=-n0(x) with the model hyperbolic tangent density profiles n0(x), velocity shear increases the turbulence flux by 230% and the root-mean-square (RMS) fluctuating density by 36%. Otherwise, for Φ0(x)=n0(x), the turbulence flux is reduced by 71% and the RMS value of fluctuating density is decreased by 31% by velocity shear effects.

  5. Transparency Parameters from Relativistically Expanding Outflows

    NASA Astrophysics Data System (ADS)

    Bégué, D.; Iyyani, S.

    2014-09-01

    In many gamma-ray bursts a distinct blackbody spectral component is present, which is attributed to the emission from the photosphere of a relativistically expanding plasma. The properties of this component (temperature and flux) can be linked to the properties of the outflow and have been presented in the case where there is no sub-photospheric dissipation and the photosphere is in coasting phase. First, we present the derivation of the properties of the outflow for finite winds, including when the photosphere is in the accelerating phase. Second, we study the effect of localized sub-photospheric dissipation on the estimation of the parameters. Finally, we apply our results to GRB 090902B. We find that during the first epoch of this burst the photosphere is most likely to be in the accelerating phase, leading to smaller values of the Lorentz factor than the ones previously estimated. For the second epoch, we find that the photosphere is likely to be in the coasting phase.

  6. Fluid simulation of relativistic electron beam driven wakefield in a cold plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bera, Ratan Kumar; Sengupta, Sudip; Das, Amita

    Excitation of wakefield in a cold homogeneous plasma, driven by an ultra-relativistic electron beam is studied in one dimension using fluid simulation techniques. For a homogeneous rigid beam having density (n{sub b}) less than or equal to half the plasma density (n{sub 0}), simulation results are found to be in good agreement with the analytical work of Rosenzweig [Phys. Rev. Lett. 58, 555 (1987)]. Here, Rosenzweig's work has been analytically extended to regimes where the ratio of beam density to plasma density is greater than half and results have been verified using simulation. Further in contrast to Rosenzweig's work, ifmore » the beam is allowed to evolve in a self-consistent manner, several interesting features are observed in simulation viz. splitting of the beam into beam-lets (for l{sub b} > λ{sub p}) and compression of the beam (for l{sub b} < λ{sub p}), l{sub b} and λ{sub p}, respectively, being the initial beam length and plasma wavelength.« less

  7. SCALING LAW OF RELATIVISTIC SWEET-PARKER-TYPE MAGNETIC RECONNECTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Hiroyuki R.; Kudoh, Takahiro; Masada, Youhei

    2011-10-01

    Relativistic Sweet-Parker-type magnetic reconnection is investigated by relativistic resistive magnetohydrodynamic (RRMHD) simulations. As an initial setting, we assume anti-parallel magnetic fields and a spatially uniform resistivity. A perturbation imposed on the magnetic fields triggers magnetic reconnection around a current sheet, and the plasma inflows into the reconnection region. The inflows are then heated due to ohmic dissipation in the diffusion region and finally become relativistically hot outflows. The outflows are not accelerated to ultrarelativistic speeds (i.e., Lorentz factor {approx_equal} 1), even when the magnetic energy dominates the thermal and rest mass energies in the inflow region. Most of the magneticmore » energy in the inflow region is converted into the thermal energy of the outflow during the reconnection process. The energy conversion from magnetic to thermal energy in the diffusion region results in an increase in the plasma inertia. This prevents the outflows from being accelerated to ultrarelativistic speeds. We find that the reconnection rate R obeys the scaling relation R{approx_equal}S{sup -0.5}, where S is the Lundquist number. This feature is the same as that of non-relativistic reconnection. Our results are consistent with the theoretical predictions of Lyubarsky for Sweet-Parker-type magnetic reconnection.« less

  8. Dissipation of Turbulence in the Solar Wind as Measured by Cluster

    NASA Technical Reports Server (NTRS)

    Goldstein, Melvyn

    2012-01-01

    Turbulence in fluids and plasmas is a scale-dependent process that generates fluctuations towards ever-smaller scales until dissipation occurs. Recent Cluster observations in the solar wind demonstrate the existence of a cascade of magnetic energy from the scale of the proton Larmor radius, where kinetic properties of ions invalidate fluid approximations, down to the electron Larmor radius, where electrons become demagnetized. The cascade is quasi-two-dimensional and has been interpreted as consisting of highly oblique kinetic Alfvenic fluctuations that dissipate near at the electron gyroradius scale via proton and electron Landau damping. Here we investigate for the first time the spatial properties of the turbulence at these scales. We report the presence of thin current sheets and discontinuities with spatial sizes greater than or approximately equal to the proton Larmor radius. These isolated structures may be manifestations of intermittency, and such would localize sites of turbulent dissipation. Studying the relationship between turbulent dissipation, reconnection and intermittency is crucial for understanding the dynamics of laboratory and astrophysical plasmas.

  9. Lunar Fluid Core and Solid-Body Tides

    NASA Technical Reports Server (NTRS)

    Williams, J. G.; Boggs, D. H.; Ratcliff, J. T.

    2005-01-01

    Variations in rotation and orientation of the Moon are sensitive to solid-body tidal dissipation, dissipation due to relative motion at the fluid-core/solid-mantle boundary, and tidal Love number k2 [1,2]. There is weaker sensitivity to flattening of the core-mantle boundary (CMB) [2-5] and fluid core moment of inertia [1]. Accurate Lunar Laser Ranging (LLR) measurements of the distance from observatories on the Earth to four retroreflector arrays on the Moon are sensitive to lunar rotation and orientation variations and tidal displacements. Past solutions using the LLR data have given results for dissipation due to solid-body tides and fluid core [1] plus Love number [1-5]. Detection of CMB flattening has been improving [3,5] and now seems significant. This strengthens the case for a fluid lunar core.

  10. Intermittency, coherent structures and dissipation in plasma turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, M.; Matthaeus, W. H.; Parashar, T. N.

    Collisionless dissipation in turbulent plasmas such as the solar wind and the solar corona has been an intensively studied subject recently, with new insights often emerging from numerical simulation. Here we report results from high resolution, fully kinetic simulations of plasma turbulence in both two (2D) and three (3D) dimensions, studying the relationship between intermittency and dissipation. The simulations show development of turbulent coherent structures, characterized by sheet-like current density structures spanning a range of scales. An approximate dissipation measure is employed, based on work done by the electromagnetic field in the local electron fluid frame. This surrogate dissipation measuremore » is highly concentrated in small subvolumes in both 2D and 3D simulations. Fully kinetic simulations are also compared with magnetohydrodynamics (MHD) simulations in terms of coherent structures and dissipation. The interesting result emerges that the conditional averages of dissipation measure scale very similarly with normalized current density J in 2D and 3D particle-in-cell and in MHD. To the extent that the surrogate dissipation measure is accurate, this result implies that on average dissipation scales as ∼J{sup 2} in turbulent kinetic plasma. Multifractal intermittency is seen in the inertial range in both 2D and 3D, but at scales ∼ion inertial length, the scaling is closer to monofractal.« less

  11. Generating perfect fluid spheres in general relativity

    NASA Astrophysics Data System (ADS)

    Boonserm, Petarpa; Visser, Matt; Weinfurtner, Silke

    2005-06-01

    Ever since Karl Schwarzschild’s 1916 discovery of the spacetime geometry describing the interior of a particular idealized general relativistic star—a static spherically symmetric blob of fluid with position-independent density—the general relativity community has continued to devote considerable time and energy to understanding the general-relativistic static perfect fluid sphere. Over the last 90 years a tangle of specific perfect fluid spheres has been discovered, with most of these specific examples seemingly independent from each other. To bring some order to this collection, in this article we develop several new transformation theorems that map perfect fluid spheres into perfect fluid spheres. These transformation theorems sometimes lead to unexpected connections between previously known perfect fluid spheres, sometimes lead to new previously unknown perfect fluid spheres, and in general can be used to develop a systematic way of classifying the set of all perfect fluid spheres.

  12. Relativistic fluid dynamics with spin

    NASA Astrophysics Data System (ADS)

    Florkowski, Wojciech; Friman, Bengt; Jaiswal, Amaresh; Speranza, Enrico

    2018-04-01

    Using the conservation laws for charge, energy, momentum, and angular momentum, we derive hydrodynamic equations for the charge density, local temperature, and fluid velocity, as well as for the polarization tensor, starting from local equilibrium distribution functions for particles and antiparticles with spin 1/2. The resulting set of differential equations extends the standard picture of perfect-fluid hydrodynamics with a conserved entropy current in a minimal way. This framework can be used in space-time analyses of the evolution of spin and polarization in various physical systems including high-energy nuclear collisions. We demonstrate that a stationary vortex, which exhibits vorticity-spin alignment, corresponds to a special solution of the spin-hydrodynamical equations.

  13. Unique Outcomes of Internal Heat Generation and Thermal Deposition on Viscous Dissipative Transport of Viscoplastic Fluid over a Riga-Plate

    NASA Astrophysics Data System (ADS)

    Iqbal, Z.; Azhar, Ehtsham; Mehmood, Zaffar; Maraj, E. N.

    2018-01-01

    Boundary layer stagnation point flow of Casson fluid over a Riga plate of variable thickness is investigated in present article. Riga plate is an electromagnetic actuator consists of enduring magnets and gyrated aligned array of alternating electrodes mounted on a plane surface. Physical problem is modeled and simplified under appropriate transformations. Effects of thermal radiation and viscous dissipation are incorporated. These differential equations are solved by Keller Box Scheme using MATLAB. Comparison is given with shooting techniques along with Range-Kutta Fehlberg method of order 5. Graphical and tabulated analysis is drawn. The results reveal that Eckert number, radiation and fluid parameters enhance temperature whereas they contribute in lowering rate of heat transfer. The numerical outcomes of present analysis depicts that Keller Box Method is capable and consistent to solve proposed nonlinear problem with high accuracy.

  14. Mixed convection boundary layer flow over a moving vertical flat plate in an external fluid flow with viscous dissipation effect.

    PubMed

    Bachok, Norfifah; Ishak, Anuar; Pop, Ioan

    2013-01-01

    The steady boundary layer flow of a viscous and incompressible fluid over a moving vertical flat plate in an external moving fluid with viscous dissipation is theoretically investigated. Using appropriate similarity variables, the governing system of partial differential equations is transformed into a system of ordinary (similarity) differential equations, which is then solved numerically using a Maple software. Results for the skin friction or shear stress coefficient, local Nusselt number, velocity and temperature profiles are presented for different values of the governing parameters. It is found that the set of the similarity equations has unique solutions, dual solutions or no solutions, depending on the values of the mixed convection parameter, the velocity ratio parameter and the Eckert number. The Eckert number significantly affects the surface shear stress as well as the heat transfer rate at the surface.

  15. Relativistic centrifugal instability

    NASA Astrophysics Data System (ADS)

    Gourgouliatos, Konstantinos N.; Komissarov, Serguei S.

    2018-03-01

    Near the central engine, many astrophysical jets are expected to rotate about their axis. Further out they are expected to go through the processes of reconfinement and recollimation. In both these cases, the flow streams along a concave surface and hence, it is subject to the centrifugal force. It is well known that such flows may experience the centrifugal instability (CFI), to which there are many laboratory examples. The recent computer simulations of relativistic jets from active galactic nuclei undergoing the process of reconfinement show that in such jets CFI may dominate over the Kelvin-Helmholtz instability associated with velocity shear (Gourgouliatos & Komissarov). In this letter, we generalize the Rayleigh criterion for CFI in rotating fluids to relativistic flows using a heuristic analysis. We also present the results of computer simulations which support our analytic criterion for the case of an interface separating two uniformly rotating cylindrical flows. We discuss the difference between CFI and the Rayleigh-Taylor instability in flows with curved streamlines.

  16. Dissipative hidden sector dark matter

    NASA Astrophysics Data System (ADS)

    Foot, R.; Vagnozzi, S.

    2015-01-01

    A simple way of explaining dark matter without modifying known Standard Model physics is to require the existence of a hidden (dark) sector, which interacts with the visible one predominantly via gravity. We consider a hidden sector containing two stable particles charged under an unbroken U (1 )' gauge symmetry, hence featuring dissipative interactions. The massless gauge field associated with this symmetry, the dark photon, can interact via kinetic mixing with the ordinary photon. In fact, such an interaction of strength ε ˜10-9 appears to be necessary in order to explain galactic structure. We calculate the effect of this new physics on big bang nucleosynthesis and its contribution to the relativistic energy density at hydrogen recombination. We then examine the process of dark recombination, during which neutral dark states are formed, which is important for large-scale structure formation. Galactic structure is considered next, focusing on spiral and irregular galaxies. For these galaxies we modeled the dark matter halo (at the current epoch) as a dissipative plasma of dark matter particles, where the energy lost due to dissipation is compensated by the energy produced from ordinary supernovae (the core-collapse energy is transferred to the hidden sector via kinetic mixing induced processes in the supernova core). We find that such a dynamical halo model can reproduce several observed features of disk galaxies, including the cored density profile and the Tully-Fisher relation. We also discuss how elliptical and dwarf spheroidal galaxies could fit into this picture. Finally, these analyses are combined to set bounds on the parameter space of our model, which can serve as a guideline for future experimental searches.

  17. Tidal disruption of dissipative planetesimals

    NASA Technical Reports Server (NTRS)

    Mizuno, H.; Boss, A. P.

    1985-01-01

    A self-consistent numerical model is developed for the tidal disruption of a solid planetesimal. The planetesimal is treated as a highly viscous, slightly compressible fluid whose disturbed parts are an inviscid, pressureless fluid undergoing distortion and disruption. The distortions were constrained to being symmetrical above and below the equatorial plane. The tidal potential is expanded in terms of Legendre polynomials, which eliminates the center of mass acceleration effects, permitting definition of equations of motion in a noninertial frame. Consideration is given to viscous dissipation and to characteristics of the solid-atmosphere boundary. The model is applied to sample cases in one, two and three dimensions.

  18. Studies of Entanglement Entropy, and Relativistic Fluids for Thermal Field Theories

    NASA Astrophysics Data System (ADS)

    Spillane, Michael

    In this dissertation we consider physical consequences of adding a finite temperature to quantum field theories. At small length scales entanglement is a critically important feature. It is therefore unsurprising that entanglement entropy and Renyi entropy are useful tools in studying quantum phase transition, and quantum information. In this thesis we consider the corrections to entanglement and Renyi entropies due to addition of a finite temperature. More specifically, we investigate the entanglement entropy of a massive scalar field in 1+1 dimensions at nonzero temperature. In the small mass ( m) and temperature (T) limit, we put upper and lower bounds on the two largest eigenvalues of the covariance matrix used to compute the entanglement entropy. We argue that the entanglement entropy has e-m/T scaling in the limit T << m.. Additionally, we calculate thermal corrections to Renyi entropies for free massless fermions on R x S d-1. By expanding the density matrix in a Boltzmann sum, the problem of finding the Renyi entropies can be mapped to the problem of calculating a two point function on an n-sheeted cover of the sphere. We map the problem on the sphere to a conical region in Euclidean space. By using the method of images, we calculate the two point function and recover the Renyi entropies. At large length scales hydrodynamics is a useful way to study quantum field theories. We review recent interest in the Riemann problem as a method for generating a non-equilibrium steady state. The initial conditions consist of a planar interface between two halves of a system held at different temperatures in a hydrodynamic regime. The resulting fluid flow contains a fixed temperature region with a nonzero flux. We briefly discuss the effects of a conserved charge. Next we discuss deforming the relativistic equations with a nonlinear term and how that deformation affects the temperature and velocity in the region connecting the asymptotic fluids. Finally, we study

  19. THE INFLUENCE OF DISSIPATION RANGE POWER SPECTRA AND PLASMA-WAVE POLARIZATION ON COSMIC-RAY SCATTERING MEAN FREE PATH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlickeiser, R.; Lazar, M.; Vukcevic, M., E-mail: rsch@tp4.rub.d, E-mail: mlazar@tp4.ruhr-uni-bochum.d, E-mail: vuk.mira@gmail.co

    2010-08-20

    The influence of the polarization state and the dissipation range spectral steepening of slab plasma waves on the scattering mean free path of single-charged cosmic-ray particles is investigated in a turbulence model, where the crucial scattering of cosmic-ray particles with small pitch-angle cosines is caused by resonant cyclotron interactions with slab plasma waves. Analytical expressions for the mean free path of protons, antiprotons, negatrons, and positrons are derived for the case of constant frequency-independent magnetic helicity values {sigma} and different values of the dissipation range spectral index k for characteristic interplanetary and interstellar plasma conditions. The positron mean free pathmore » is not affected by the dissipation range spectral index k as these particles can only cyclotron-resonate for rigidity values larger than R {sub 0} = m{sub p}c = 938 MV. Proton and antiproton mean free paths are only slightly affected by the dissipation range spectral index k at small rigidities R < R {sub 0}. The negatron mean free path is severely affected by the dissipation range spectral index k at rigidities smaller than R {sub 0}. At high rigidities R >> R {sub 0}, all particle species approach the same power-law dependence {proportional_to}R {sup 2-s} determined by the inertial range spectral index s = 5/3. The magnetic helicity value {sigma} affects the value of the mean free path. At all rigidities, the ratio of the antiproton to proton mean free paths equals the constant (1 + {sigma})/(1 - {sigma}), which also agrees with the ratio of the negatron to the proton and positron mean free paths at relativistic rigidities. At relativistic rigidities the positron and proton mean free paths agree, as do the negatron and antiproton mean free paths.« less

  20. Intermittency, nonlinear dynamics and dissipation in the solar wind and astrophysical plasmas

    PubMed Central

    Matthaeus, W. H.; Wan, Minping; Servidio, S.; Greco, A.; Osman, K. T.; Oughton, S.; Dmitruk, P.

    2015-01-01

    An overview is given of important properties of spatial and temporal intermittency, including evidence of its appearance in fluids, magnetofluids and plasmas, and its implications for understanding of heliospheric plasmas. Spatial intermittency is generally associated with formation of sharp gradients and coherent structures. The basic physics of structure generation is ideal, but when dissipation is present it is usually concentrated in regions of strong gradients. This essential feature of spatial intermittency in fluids has been shown recently to carry over to the realm of kinetic plasma, where the dissipation function is not known from first principles. Spatial structures produced in intermittent plasma influence dissipation, heating, and transport and acceleration of charged particles. Temporal intermittency can give rise to very long time correlations or a delayed approach to steady-state conditions, and has been associated with inverse cascade or quasi-inverse cascade systems, with possible implications for heliospheric prediction. PMID:25848085

  1. Relativistic magnetic reconnection driven by a moderately intense laser interacting with a micro-plasma-slab

    NASA Astrophysics Data System (ADS)

    Yi, Longqing; Shen, Baifei; Pukhov, Alexander; Fülöp, Tünde

    2017-10-01

    Magnetic reconnection (MR) in the relativistic regime is generally thought to be responsible for powering rapid bursts of non-thermal radiation in astrophysical events. It is therefore of significant importance to study how the field energy is transferred to the plasma to power the observed emission. However, due to the difficulty in making direct measurements in astrophysical systems or achieving relativistic MR in laboratory environments, the particle acceleration is usually studied using fully kinetic PIC simulations. Here we present a numerical study of a readily available (TW-mJ-class) laser interacting with a micro-scale plasma slab. The simulations show when the electron beams excited on both sides of the slab approach the end of the plasma structure, ultrafast relativistic MR occurs. As the field topology changes, the explosive release of magnetic energy results in emission of relativistic electron jets with cut-off energy 12 MeV. The proposed novel scenario can be straightforwardly implemented in experiments, and might significantly improve the understanding of fundamental questions such as field dissipation and particle acceleration in relativistic MR. This work is supported by the Knut and Alice Wallenberg Foundation and the European Research Council (ERC-2014-CoG Grant 64712).

  2. Relativistic Fluid Dynamics Far From Local Equilibrium

    NASA Astrophysics Data System (ADS)

    Romatschke, Paul

    2018-01-01

    Fluid dynamics is traditionally thought to apply only to systems near local equilibrium. In this case, the effective theory of fluid dynamics can be constructed as a gradient series. Recent applications of resurgence suggest that this gradient series diverges, but can be Borel resummed, giving rise to a hydrodynamic attractor solution which is well defined even for large gradients. Arbitrary initial data quickly approaches this attractor via nonhydrodynamic mode decay. This suggests the existence of a new theory of far-from-equilibrium fluid dynamics. In this Letter, the framework of fluid dynamics far from local equilibrium for a conformal system is introduced, and the hydrodynamic attractor solutions for resummed Baier-Romatschke-Son-Starinets-Stephanov theory, kinetic theory in the relaxation time approximation, and strongly coupled N =4 super Yang-Mills theory are identified for a system undergoing Bjorken flow.

  3. Dissipative-particle-dynamics model of biofilm growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Zhijie; Meakin, Paul; Tartakovsky, Alexandre M.

    2011-06-13

    A dissipative particle dynamics (DPD) model for the quantitative simulation of biofilm growth controlled by substrate (nutrient) consumption, advective and diffusive substrate transport, and hydrodynamic interactions with fluid flow (including fragmentation and reattachment) is described. The model was used to simulate biomass growth, decay, and spreading. It predicts how the biofilm morphology depends on flow conditions, biofilm growth kinetics, the rheomechanical properties of the biofilm and adhesion to solid surfaces. The morphology of the model biofilm depends strongly on its rigidity and the magnitude of the body force that drives the fluid over the biofilm.

  4. Viscous dissipation in a flow with power law, temperature-dependent rheology: Application to channeled lava flows

    NASA Astrophysics Data System (ADS)

    Filippucci, Marilena; Tallarico, Andrea; Dragoni, Michele

    2017-05-01

    The cooling and the dynamics of a lava flowing down an inclined channel under the effect of the gravity force is studied through the finite volume method, taking into account the effect of viscous dissipation in the heat equation. The considered rheology is shear thinning and temperature dependent. The numerical solution is tested in order to verify the independence from the mesh. The dynamic and heat problems are addressed obtaining both the stationary and the transient solution. Results indicate that, considering viscous dissipation in the heat equation, a fluid with temperature-dependent nonlinear viscosity is faster and hotter with respect to the case in which viscous dissipation is neglected. The most important effect of viscous dissipation is on the solid boundaries where the fluid warms up, and the use of a variable Reynolds number allowed us to conclude that areas in which the flow is in the laminar regime and areas in which the flow is in the turbulent regime can coexist inside the fluid. This behavior seems independent of the channel shape and can explain the observed warming back after the initial cooling in the lava flow lobes emplacement on Kilauea Volcano.

  5. Dynamic analysis of submerged microscale plates: the effects of acoustic radiation and viscous dissipation

    PubMed Central

    Ma, Xianghong

    2016-01-01

    The aim of this paper is to study the dynamic characteristics of micromechanical rectangular plates used as sensing elements in a viscous compressible fluid. A novel modelling procedure for the plate–fluid interaction problem is developed on the basis of linearized Navier–Stokes equations and no-slip conditions. Analytical expression for the fluid-loading impedance is obtained using a double Fourier transform approach. This modelling work provides us an analytical means to study the effects of inertial loading, acoustic radiation and viscous dissipation of the fluid acting on the vibration of microplates. The numerical simulation is conducted on microplates with different boundary conditions and fluids with different viscosities. The simulation results reveal that the acoustic radiation dominates the damping mechanism of the submerged microplates. It is also proved that microplates offer better sensitivities (Q-factors) than the conventional beam type microcantilevers being mass sensing platforms in a viscous fluid environment. The frequency response features of microplates under highly viscous fluid loading are studied using the present model. The dynamics of the microplates with all edges clamped are less influenced by the highly viscous dissipation of the fluid than the microplates with other types of boundary conditions. PMID:27118914

  6. Dynamic analysis of submerged microscale plates: the effects of acoustic radiation and viscous dissipation.

    PubMed

    Wu, Zhangming; Ma, Xianghong

    2016-03-01

    The aim of this paper is to study the dynamic characteristics of micromechanical rectangular plates used as sensing elements in a viscous compressible fluid. A novel modelling procedure for the plate-fluid interaction problem is developed on the basis of linearized Navier-Stokes equations and no-slip conditions. Analytical expression for the fluid-loading impedance is obtained using a double Fourier transform approach. This modelling work provides us an analytical means to study the effects of inertial loading, acoustic radiation and viscous dissipation of the fluid acting on the vibration of microplates. The numerical simulation is conducted on microplates with different boundary conditions and fluids with different viscosities. The simulation results reveal that the acoustic radiation dominates the damping mechanism of the submerged microplates. It is also proved that microplates offer better sensitivities (Q-factors) than the conventional beam type microcantilevers being mass sensing platforms in a viscous fluid environment. The frequency response features of microplates under highly viscous fluid loading are studied using the present model. The dynamics of the microplates with all edges clamped are less influenced by the highly viscous dissipation of the fluid than the microplates with other types of boundary conditions.

  7. Dynamics of charged viscous dissipative cylindrical collapse with full causal approach

    NASA Astrophysics Data System (ADS)

    Shah, S. M.; Abbas, G.

    2017-11-01

    The aim of this paper is to investigate the dynamical aspects of a charged viscous cylindrical source by using the Misner approach. To this end, we have considered the more general charged dissipative fluid enclosed by the cylindrical symmetric spacetime. The dissipative nature of the source is due to the presence of dissipative variables in the stress-energy tensor. The dynamical equations resulting from such charged cylindrical dissipative source have been coupled with the causal transport equations for heat flux, shear and bulk viscosity, in the context of the Israel-Steward theory. In this case, we have the considered Israel-Steward transportation equations without excluding the thermodynamics viscous/heat coupling coefficients. The results are compared with the previous works in which such coefficients were excluded and viscosity variables do not satisfy the casual transportation equations.

  8. Magnetorheological rotational flow with viscous dissipation

    NASA Astrophysics Data System (ADS)

    Ashrafi, Nariman

    2017-11-01

    Effects of a magnetic field and fluid nonlinearity are investigated for the rotational flow of the Carreau-type fluid while viscous dissipation is taken into account. The governing motion and energy balance equations are coupled, adding complexity to the already highly correlated set of differential equations. The numerical solution is obtained for the narrow-gap limit and steady-state base flow. Magnetic field effect on local entropy generation due to steady two-dimensional laminar forced convection flow was investigated. This study was focused on the entropy generation characteristics and its dependency on various dimensionless parameters. The effects of the Hartmann number, the Brinkman number, and the Deborah number on the stability of the flow were investigated. The introduction of the magnetic field induces a resistive force acting in the opposite direction of the flow, thus causing its deceleration. Moreover, the study shows that the presence of magnetic field tends to slow down the fluid motion. It, however, increases the fluid temperature. Moreover, the total entropy generation number decreases as the Hartmann number and fluid elasticity increase and increases with increasing Brinkman number.

  9. Thermal noise in a boost-invariant matter expansion in relativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Chandrodoy; Bhalerao, Rajeev S.; Pal, Subrata

    2018-05-01

    We formulate a general theory of thermal fluctuations within causal second-order viscous hydrodynamic evolution of matter formed in relativistic heavy-ion collisions. The fluctuation is treated perturbatively on top of a boost-invariant longitudinal expansion. Numerical simulation of thermal noise is performed for a lattice quantum chromodynamics equation of state and for various second-order dissipative evolution equations. Phenomenological effects of thermal fluctuations on the two-particle rapidity correlations are studied.

  10. Relativistic jets without large-scale magnetic fields

    NASA Astrophysics Data System (ADS)

    Parfrey, K.; Giannios, D.; Beloborodov, A.

    2014-07-01

    The canonical model of relativistic jets from black holes requires a large-scale ordered magnetic field to provide a significant magnetic flux through the ergosphere--in the Blandford-Znajek process, the jet power scales with the square of the magnetic flux. In many jet systems the presence of the required flux in the environment of the central engine is questionable. I will describe an alternative scenario, in which jets are produced by the continuous sequential accretion of small magnetic loops. The magnetic energy stored in these coronal flux systems is amplified by the differential rotation of the accretion disc and by the rotating spacetime of the black hole, leading to runaway field line inflation, magnetic reconnection in thin current layers, and the ejection of discrete bubbles of Poynting-flux-dominated plasma. For illustration I will show the results of general-relativistic force-free electrodynamic simulations of rotating black hole coronae, performed using a new resistivity model. The dissipation of magnetic energy by coronal reconnection events, as demonstrated in these simulations, is a potential source of the observed high-energy emission from accreting compact objects.

  11. Imposition of physical parameters in dissipative particle dynamics

    NASA Astrophysics Data System (ADS)

    Mai-Duy, N.; Phan-Thien, N.; Tran-Cong, T.

    2017-12-01

    In the mesoscale simulations by the dissipative particle dynamics (DPD), the motion of a fluid is modelled by a set of particles interacting in a pairwise manner, and it has been shown to be governed by the Navier-Stokes equation, with its physical properties, such as viscosity, Schmidt number, isothermal compressibility, relaxation and inertia time scales, in fact its whole rheology resulted from the choice of the DPD model parameters. In this work, we will explore the response of a DPD fluid with respect to its parameter space, where the model input parameters can be chosen in advance so that (i) the ratio between the relaxation and inertia time scales is fixed; (ii) the isothermal compressibility of water at room temperature is enforced; and (iii) the viscosity and Schmidt number can be specified as inputs. These impositions are possible with some extra degrees of freedom in the weighting functions for the conservative and dissipative forces. Numerical experiments show an improvement in the solution quality over conventional DPD parameters/weighting functions, particularly for the number density distribution and computed stresses.

  12. Energy dissipation in flows through curved spaces.

    PubMed

    Debus, J-D; Mendoza, M; Succi, S; Herrmann, H J

    2017-02-14

    Fluid dynamics in intrinsically curved geometries is encountered in many physical systems in nature, ranging from microscopic bio-membranes all the way up to general relativity at cosmological scales. Despite the diversity of applications, all of these systems share a common feature: the free motion of particles is affected by inertial forces originating from the curvature of the embedding space. Here we reveal a fundamental process underlying fluid dynamics in curved spaces: the free motion of fluids, in the complete absence of solid walls or obstacles, exhibits loss of energy due exclusively to the intrinsic curvature of space. We find that local sources of curvature generate viscous stresses as a result of the inertial forces. The curvature- induced viscous forces are shown to cause hitherto unnoticed and yet appreciable energy dissipation, which might play a significant role for a variety of physical systems involving fluid dynamics in curved spaces.

  13. A Reconnection Switch to Trigger gamma-Ray Burst Jet Dissipation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKinney, Jonathan C.; Uzdensky, Dmitri A.

    2012-03-14

    Prompt gamma-ray burst (GRB) emission requires some mechanism to dissipate an ultrarelativistic jet. Internal shocks or some form of electromagnetic dissipation are candidate mechanisms. Any mechanism needs to answer basic questions, such as what is the origin of variability, what radius does dissipation occur at, and how does efficient prompt emission occur. These mechanisms also need to be consistent with how ultrarelativistic jets form and stay baryon pure despite turbulence and electromagnetic reconnection near the compact object and despite stellar entrainment within the collapsar model. We use the latest magnetohydrodynamical models of ultrarelativistic jets to explore some of these questionsmore » in the context of electromagnetic dissipation due to the slow collisional and fast collisionless reconnection mechanisms, as often associated with Sweet-Parker and Petschek reconnection, respectively. For a highly magnetized ultrarelativistic jet and typical collapsar parameters, we find that significant electromagnetic dissipation may be avoided until it proceeds catastrophically near the jet photosphere at large radii (r {approx} 10{sup 13}-10{sup 14}cm), by which the jet obtains a high Lorentz factor ({gamma} {approx} 100-1000), has a luminosity of L{sub j} {approx} 10{sup 50}-10{sup 51} erg s{sup -1}, has observer variability timescales of order 1s (ranging from 0.001-10s), achieves {gamma}{theta}{sub j} {approx} 10-20 (for opening half-angle {theta}{sub j}) and so is able to produce jet breaks, and has comparable energy available for both prompt and afterglow emission. A range of model parameters are investigated and simplified scaling laws are derived. This reconnection switch mechanism allows for highly efficient conversion of electromagnetic energy into prompt emission and associates the observed prompt GRB pulse temporal structure with dissipation timescales of some number of reconnecting current sheets embedded in the jet. We hope this work helps

  14. A Lattice-Boltzmann model to simulate diffractive nonlinear ultrasound beam propagation in a dissipative fluid medium

    NASA Astrophysics Data System (ADS)

    Abdi, Mohamad; Hajihasani, Mojtaba; Gharibzadeh, Shahriar; Tavakkoli, Jahan

    2012-12-01

    Ultrasound waves have been widely used in diagnostic and therapeutic medical applications. Accurate and effective simulation of ultrasound beam propagation and its interaction with tissue has been proved to be important. The nonlinear nature of the ultrasound beam propagation, especially in the therapeutic regime, plays an important role in the mechanisms of interaction with tissue. There are three main approaches in current computational fluid dynamics (CFD) methods to model and simulate nonlinear ultrasound beams: macroscopic, mesoscopic and microscopic approaches. In this work, a mesoscopic CFD method based on the Lattice-Boltzmann model (LBM) was investigated. In the developed method, the Boltzmann equation is evolved to simulate the flow of a Newtonian fluid with the collision model instead of solving the Navier-Stokes, continuity and state equations which are used in conventional CFD methods. The LBM has some prominent advantages over conventional CFD methods, including: (1) its parallel computational nature; (2) taking microscopic boundaries into account; and (3) capability of simulating in porous and inhomogeneous media. In our proposed method, the propagating medium is discretized with a square grid in 2 dimensions with 9 velocity vectors for each node. Using the developed model, the nonlinear distortion and shock front development of a finiteamplitude diffractive ultrasonic beam in a dissipative fluid medium was computed and validated against the published data. The results confirm that the LBM is an accurate and effective approach to model and simulate nonlinearity in finite-amplitude ultrasound beams with Mach numbers of up to 0.01 which, among others, falls within the range of therapeutic ultrasound regime such as high intensity focused ultrasound (HIFU) beams. A comparison between the HIFU nonlinear beam simulations using the proposed model and pseudospectral methods in a 2D geometry is presented.

  15. Quadratic dissipation effect on the moonpool resonance

    NASA Astrophysics Data System (ADS)

    Liu, Heng-xu; Chen, Hai-long; Zhang, Liang; Zhang, Wan-chao; Liu, Ming

    2017-12-01

    This paper adopted a semi-analytical method based on eigenfunction matching to solve the problem of sharp resonance of cylindrical structures with a moonpool that has a restricted entrance. To eliminate the sharp resonance and to measure the viscous effect, a quadratic dissipation is introduced by assuming an additional dissipative disk at the moonpool entrance. The fluid domain is divided into five cylindrical subdomains, and the velocity potential in each subdomain is obtained by meeting the Laplace equation as well as the boundary conditions. The free-surface elevation at the center of the moonpool, along with the pressure and velocity at the restricted entrance for first-order wave are evaluated. By choosing appropriate dissipation coefficients, the free-surface elevation calculated at the center of the moonpool is in coincidence with the measurements in model tests both at the peak period and amplitude at resonance. It is shown that the sharp resonance in the potential flow theory can be eliminated and the viscous effect can be estimated with a simple method in some provided hydrodynamic models.

  16. Radiatively driven relativistic jets in Schwarzschild space-time

    NASA Astrophysics Data System (ADS)

    Vyas, Mukesh K.; Chattopadhyay, Indranil

    2018-06-01

    Context. Aims: We carry out a general relativistic study of radiatively driven conical fluid jets around non-rotating black holes and investigate the effects and significance of radiative acceleration, as well as radiation drag. Methods: We apply relativistic equations of motion in curved space-time around a Schwarzschild black hole for axis-symmetric one-dimensional jet in steady state, plying through the radiation field of the accretion disc. Radiative moments are computed using information of curved space-time. Slopes of physical variables at the sonic points are found using L'Hôpital's rule and employing Runge-Kutta's fourth order method to solve equations of motion. The analysis is carried out using the relativistic equation of state of the jet fluid. Results: The terminal speed of the jet depends on how much thermal energy is converted into jet momentum and how much radiation momentum is deposited onto the jet. Many classes of jet solutions with single sonic points, multiple sonic points, as well as those having radiation driven internal shocks are obtained. Variation of all flow variables along the jet-axis has been studied. Highly energetic electron-proton jets can be accelerated by intense radiation to terminal Lorentz factors γT 3. Moderate terminal speed vT 0.5 is obtained for moderately luminous discs. Lepton dominated jets may achieve γT 10. Conclusions: Thermal driving of the jet itself and radiation driving by accretion disc photons produce a wide-ranging jet solutions starting from moderately strong jets to the relativistic ones. Interplay of intensity, the nature of the radiation field, and the energetics of the jet result in a variety of jet solutions. We show that radiation field is able to induce steady shocks in jets, one of the criteria to explain high-energy power-law emission observed in spectra of some of the astrophysical objects.

  17. Power dissipation in the subtectorial space of the mammalian cochlea is modulated by inner hair cell stereocilia.

    PubMed

    Prodanovic, Srdjan; Gracewski, Sheryl; Nam, Jong-Hoon

    2015-02-03

    The stereocilia bundle is the mechano-transduction apparatus of the inner ear. In the mammalian cochlea, the stereocilia bundles are situated in the subtectorial space (STS)--a micrometer-thick space between two flat surfaces vibrating relative to each other. Because microstructures vibrating in fluid are subject to high-viscous friction, previous studies considered the STS as the primary place of energy dissipation in the cochlea. Although there have been extensive studies on how metabolic energy is used to compensate the dissipation, much less attention has been paid to the mechanism of energy dissipation. Using a computational model, we investigated the power dissipation in the STS. The model simulates fluid flow around the inner hair cell (IHC) stereocilia bundle. The power dissipation in the STS because of the presence IHC stereocilia increased as the stimulating frequency decreased. Along the axis of the stimulating frequency, there were two asymptotic values of power dissipation. At high frequencies, the power dissipation was determined by the shear friction between the two flat surfaces of the STS. At low frequencies, the power dissipation was dominated by the viscous friction around the IHC stereocilia bundle--the IHC stereocilia increased the STS power dissipation by 50- to 100-fold. There exists a characteristic frequency for STS power dissipation, CFSTS, defined as the frequency where power dissipation drops to one-half of the low frequency value. The IHC stereocilia stiffness and the gap size between the IHC stereocilia and the tectorial membrane determine the characteristic frequency. In addition to the generally assumed shear flow, nonshear STS flow patterns were simulated. Different flow patterns have little effect on the CFSTS. When the mechano-transduction of the IHC was tuned near the vibrating frequency, the active motility of the IHC stereocilia bundle reduced the power dissipation in the STS. Copyright © 2015 Biophysical Society. Published by

  18. Energy Dissipation and Phase-Space Dynamics in Eulerian Vlasov-Maxwell Turbulence

    NASA Astrophysics Data System (ADS)

    Tenbarge, Jason; Juno, James; Hakim, Ammar

    2017-10-01

    Turbulence in a magnetized plasma is a primary mechanism responsible for transforming energy at large injection scales into small-scale motions, which are ultimately dissipated as heat in systems such as the solar corona, wind, and other astrophysical objects. At large scales, the turbulence is well described by fluid models of the plasma; however, understanding the processes responsible for heating a weakly collisional plasma such as the solar wind requires a kinetic description. We present a fully kinetic Eulerian Vlasov-Maxwell study of turbulence using the Gkeyll simulation framework, including studies of the cascade of energy in phase space and formation and dissipation of coherent structures. We also leverage the recently developed field-particle correlations to diagnose the dominant sources of dissipation and compare the results of the field-particle correlation to other dissipation measures. NSF SHINE AGS-1622306 and DOE DE-AC02-09CH11466.

  19. Dissipative instability in a partially ionised prominence plasma slab

    NASA Astrophysics Data System (ADS)

    Ballai, I.; Pintér, B.; Oliver, R.; Alexandrou, M.

    2017-07-01

    Aims: We aim to investigate the nature of dissipative instability appearing in a prominence planar thread filled with partially ionised plasma in the incompressible limit. The importance of partial ionisation is investigated in terms of the ionisation factor and the wavelength of sausage and kink waves propagating in the slab. Methods: In order to highlight the role of partial ionisation, we have constructed models describing various situations we can meet in solar prominence fine structure. Matching the solutions for the transversal component of the velocity and total pressure at the interfaces between the prominence slab and surrounding plasmas, we derived a dispersion relation whose imaginary part describes the evolution of the instability. Results were obtained in the limit of weak dissipation. We have investigated the appearance of instabilities in prominence dark plumes using single and two-fluid approximations. Results: Using simple analytical methods, we show that dissipative instabilities appear for flow speeds that are less than the Kelvin-Helmholtz instability threshold. The onset of instability is determined by the equilibrium flow strength, the ionisation factor of the plasma, the wavelength of waves and the ion-neutral collisional rate. For a given wavelength and for ionisation degrees closer to a neutral gas, the propagating waves become unstable for a narrow band of flow speeds, meaning that neutrals have a stabilising effect. Our results show that the partially ionised plasma describing prominence dark plumes becomes unstable only in a two-fluid (charged particles-neutrals) model, that is for periods that are smaller than the ion-neutral collision time. Conclusions: The present study improves our understanding of the complexity of dynamical processes and stability of solar prominences and the role partial ionisation in destabilising the plasma. We showed the necessity of two-fluid approximation when discussing the nature of instabilities: waves in

  20. The cosmic-ray shock structure problem for relativistic shocks

    NASA Technical Reports Server (NTRS)

    Webb, G. M.

    1985-01-01

    The time asymptotic behaviour of a relativistic (parallel) shock wave significantly modified by the diffusive acceleration of cosmic-rays is investigated by means of relativistic hydrodynamical equations for both the cosmic-rays and thermal gas. The form of the shock structure equation and the dispersion relation for both long and short wavelength waves in the system are obtained. The dependence of the shock acceleration efficiency on the upstream fluid spped, long wavelength Mach number and the ratio N = P sub co/cP sub co+P sub go)(Psub co and P sub go are the upstream cosmic-ray and thermal gas pressures respectively) are studied.

  1. A History of Precession Dissipation Energy

    NASA Astrophysics Data System (ADS)

    Vanyo, J. P.

    2006-05-01

    I am not an historian, but here are a few of my remembrances of my 78 years. Precession theory and application had its formal beginning by Euler in 1758 to define rotation of rigid objects. A short burst of interest, theory, and application for precession and planetary motion and gyroscopes started around the1800s. Precession theory blossomed in the 1960s by the Soviet-American contest for space exploration and the contest for a geodynamo model. Precession interest then followed separate paths. Aerospace research introduced precession dissipation energy by America's 1958 satellite (Explorer I) where an instability was seen. Its antennae dissipated energy by material hysteresis. Liquid dissipation in precessing satellites became a major difficulty for designers, and physical experiments became the prime solution. Precession dissipation energy rates are difficult and expensive to measure, see Vanyo, "Rotating Fluids", 1993 Butterworth-Heinemann (2001 Dover), p.318. Geophysical research introduced nutation and precession by luni-solar forces. Luni-solar precession dissipation energy had become the criteria for adequacy for a geodynamo. Roberts and Busse both examined viscous models, but an attempt by Malkus (1968) for a viscous and magnetic model did not success. A precession model by Vanyo-Likins (1972) derived an aerospace application for dissipation energy. Rochester et al (1975) and Loper (1975) claimed that precession energy was inadequate for a geodynamo, but formal criteria were never published. The 1975 papers by Rochester et al and Loper were in error. Their estimate for precession energy rate is off by 4 magnitudes. New research now supports energetic precession geodynamo models, e.g., articles for precession experiments that have adequate geodynamo energy rates, articles for core-mantle motions that show geomagnetic CMB patterns, articles for viscous-electromagnetic analyses that show precession core-mantle coupling, and articles for computer simulations

  2. The lifespan of 3D radial solutions to the non-isentropic relativistic Euler equations

    NASA Astrophysics Data System (ADS)

    Wei, Changhua

    2017-10-01

    This paper investigates the lower bound of the lifespan of three-dimensional spherically symmetric solutions to the non-isentropic relativistic Euler equations, when the initial data are prescribed as a small perturbation with compact support to a constant state. Based on the structure of the hyperbolic system, we show the almost global existence of the smooth solutions to Eulerian flows (polytropic gases and generalized Chaplygin gases) with genuinely nonlinear characteristics. While for the Eulerian flows (Chaplygin gas and stiff matter) with mild linearly degenerate characteristics, we show the global existence of the radial solutions, moreover, for the non-strictly hyperbolic system (pressureless perfect fluid) satisfying the mild linearly degenerate condition, we prove the blowup phenomenon of the radial solutions and show that the lifespan of the solutions is of order O(ɛ ^{-1}), where ɛ denotes the width of the perturbation. This work can be seen as a complement of our work (Lei and Wei in Math Ann 367:1363-1401, 2017) for relativistic Chaplygin gas and can also be seen as a generalization of the classical Eulerian fluids (Godin in Arch Ration Mech Anal 177:497-511, 2005, J Math Pures Appl 87:91-117, 2007) to the relativistic Eulerian fluids.

  3. Bound of dissipation on a plane Couette dynamo

    NASA Astrophysics Data System (ADS)

    Alboussière, Thierry

    2009-06-01

    Variational turbulence is among the few approaches providing rigorous results in turbulence. In addition, it addresses a question of direct practical interest, namely, the rate of energy dissipation. Unfortunately, only an upper bound is obtained as a larger functional space than the space of solutions to the Navier-Stokes equations is searched. Yet, in some cases, this upper bound is in good agreement with experimental results in terms of order of magnitude and power law of the imposed Reynolds number. In this paper, the variational approach to turbulence is extended to the case of dynamo action and an upper bound is obtained for the global dissipation rate (viscous and Ohmic). A simple plane Couette flow is investigated. For low magnetic Prandtl number Pm fluids, the upper bound of energy dissipation is that of classical turbulence (i.e., proportional to the cubic power of the shear velocity) for magnetic Reynolds numbers below Pm-1 and follows a steeper evolution for magnetic Reynolds numbers above Pm-1 (i.e., proportional to the shear velocity to the power of 4) in the case of electrically insulating walls. However, the effect of wall conductance is crucial: for a given value of wall conductance, there is a value for the magnetic Reynolds number above which energy dissipation cannot be bounded. This limiting magnetic Reynolds number is inversely proportional to the square root of the conductance of the wall. Implications in terms of energy dissipation in experimental and natural dynamos are discussed.

  4. Dissipative dark matter halos: The steady state solution

    NASA Astrophysics Data System (ADS)

    Foot, R.

    2018-02-01

    Dissipative dark matter, where dark matter particle properties closely resemble familiar baryonic matter, is considered. Mirror dark matter, which arises from an isomorphic hidden sector, is a specific and theoretically constrained scenario. Other possibilities include models with more generic hidden sectors that contain massless dark photons [unbroken U (1 ) gauge interactions]. Such dark matter not only features dissipative cooling processes but also is assumed to have nontrivial heating sourced by ordinary supernovae (facilitated by the kinetic mixing interaction). The dynamics of dissipative dark matter halos around rotationally supported galaxies, influenced by heating as well as cooling processes, can be modeled by fluid equations. For a sufficiently isolated galaxy with a stable star formation rate, the dissipative dark matter halos are expected to evolve to a steady state configuration which is in hydrostatic equilibrium and where heating and cooling rates locally balance. Here, we take into account the major cooling and heating processes, and numerically solve for the steady state solution under the assumptions of spherical symmetry, negligible dark magnetic fields, and that supernova sourced energy is transported to the halo via dark radiation. For the parameters considered, and assumptions made, we were unable to find a physically realistic solution for the constrained case of mirror dark matter halos. Halo cooling generally exceeds heating at realistic halo mass densities. This problem can be rectified in more generic dissipative dark matter models, and we discuss a specific example in some detail.

  5. Conservative, special-relativistic smoothed particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Rosswog, Stephan

    2010-11-01

    We present and test a new, special-relativistic formulation of smoothed particle hydrodynamics (SPH). Our approach benefits from several improvements with respect to earlier relativistic SPH formulations. It is self-consistently derived from the Lagrangian of an ideal fluid and accounts for the terms that stem from non-constant smoothing lengths, usually called “grad-h terms”. In our approach, we evolve the canonical momentum and the canonical energy per baryon and thus circumvent some of the problems that have plagued earlier formulations of relativistic SPH. We further use a much improved artificial viscosity prescription which uses the extreme local eigenvalues of the Euler equations and triggers selectively on (a) shocks and (b) velocity noise. The shock trigger accurately monitors the relative density slope and uses it to fine-tune the amount of artificial viscosity that is applied. This procedure substantially sharpens shock fronts while still avoiding post-shock noise. If not triggered, the viscosity parameter of each particle decays to zero. None of these viscosity triggers is specific to special relativity, both could also be applied in Newtonian SPH.The performance of the new scheme is explored in a large variety of benchmark tests where it delivers excellent results. Generally, the grad-h terms deliver minor, though worthwhile, improvements. As expected for a Lagrangian method, it performs close to perfect in supersonic advection tests, but also in strong relativistic shocks, usually considered a particular challenge for SPH, the method yields convincing results. For example, due to its perfect conservation properties, it is able to handle Lorentz factors as large as γ = 50,000 in the so-called wall shock test. Moreover, we find convincing results in a rarely shown, but challenging test that involves so-called relativistic simple waves and also in multi-dimensional shock tube tests.

  6. Effect of nonthermal electrons on the propagation characteristics and stability of two-dimensional nonlinear electrostatic coherent structures in relativistic electron positron ion plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masood, W.; National Centre for Physics; Rizvi, H.

    2011-06-15

    Two-dimensional propagation of nonlinear ion acoustic shock and solitary waves in an unmagnetized plasma consisting of nonthermal electrons, Boltzmannian positrons, and singly charged hot ions streaming with relativistic velocities are investigated. The system of fluid equations is reduced to Kadomtsev-Petviashvili-Burgers and Kadomtsev-Petviashvili (KP) equations in the limit of small amplitude perturbation. The dependence of the ion acoustic shock and solitary waves on various plasma parameters are explored in detail. Interestingly, it is observed that increasing the nonthermal electron population increases the wave dispersion which enervates the strength of the ion acoustic shock wave; however, the same effect leads to anmore » enhancement of the soliton amplitude due to the absence of dissipation in the KP equation. The present investigation may be useful to understand the two-dimensional propagation characteristics of small but finite amplitude localized shock and solitary structures in planetary magnetospheres and auroral plasmas where nonthermal populations of electrons have been observed by several satellite missions.« less

  7. Covariant Structure of Models of Geophysical Fluid Motion

    NASA Astrophysics Data System (ADS)

    Dubos, Thomas

    2018-01-01

    Geophysical models approximate classical fluid motion in rotating frames. Even accurate approximations can have profound consequences, such as the loss of inertial frames. If geophysical fluid dynamics are not strictly equivalent to Newtonian hydrodynamics observed in a rotating frame, what kind of dynamics are they? We aim to clarify fundamental similarities and differences between relativistic, Newtonian, and geophysical hydrodynamics, using variational and covariant formulations as tools to shed the necessary light. A space-time variational principle for the motion of a perfect fluid is introduced. The geophysical action is interpreted as a synchronous limit of the relativistic action. The relativistic Levi-Civita connection also has a finite synchronous limit, which provides a connection with which to endow geophysical space-time, generalizing Cartan (1923). A covariant mass-momentum budget is obtained using covariance of the action and metric-preserving properties of the connection. Ultimately, geophysical models are found to differ from the standard compressible Euler model only by a specific choice of a metric-Coriolis-geopotential tensor akin to the relativistic space-time metric. Once this choice is made, the same covariant mass-momentum budget applies to Newtonian and all geophysical hydrodynamics, including those models lacking an inertial frame. Hence, it is argued that this mass-momentum budget provides an appropriate, common fundamental principle of dynamics. The postulate that Euclidean, inertial frames exist can then be regarded as part of the Newtonian theory of gravitation, which some models of geophysical hydrodynamics slightly violate.

  8. Relativistic low angular momentum accretion: long time evolution of hydrodynamical inviscid flows

    NASA Astrophysics Data System (ADS)

    Mach, Patryk; Piróg, Michał; Font, José A.

    2018-05-01

    We investigate relativistic low angular momentum accretion of inviscid perfect fluid onto a Schwarzschild black hole. The simulations are performed with a general-relativistic, high-resolution (second-order), shock-capturing, hydrodynamical numerical code. We use horizon-penetrating Eddington–Finkelstein coordinates to remove inaccuracies in regions of strong gravity near the black hole horizon and show the expected convergence of the code with the Michel solution and stationary Fishbone–Moncrief toroids. We recover, in the framework of relativistic hydrodynamics, the qualitative behavior known from previous Newtonian studies that used a Bondi background flow in a pseudo-relativistic gravitational potential with a latitude-dependent angular momentum at the outer boundary. Our models exhibit characteristic ‘turbulent’ behavior and the attained accretion rates are lower than those of the Bondi–Michel radial flow. For sufficiently low values of the asymptotic sound speed, geometrically thick tori form in the equatorial plane surrounding the black hole horizon while accretion takes place mainly through the poles.

  9. Fluctuation-dissipation relations for motions of center of mass in driven granular fluids under gravity.

    PubMed

    Wakou, Jun'ichi; Isobe, Masaharu

    2012-06-01

    We investigated the validity of fluctuation-dissipation relations in the nonequilibrium stationary state of fluidized granular media under gravity by two independent approaches, based on theory and numerical simulations. A phenomenological Langevin-type theory describing the fluctuation of center of mass height, which was originally constructed for a one-dimensional granular gas on a vibrating bottom plate, was generalized to any dimensionality, even for the case in which the vibrating bottom plate is replaced by a thermal wall. The theory predicts a fluctuation-dissipation relation known to be satisfied at equilibrium, with a modification that replaces the equilibrium temperature by an effective temperature defined by the center of mass kinetic energy. To test the validity of the fluctuation-dissipation relation, we performed extensive and accurate event-driven molecular dynamics simulations for the model system with a thermal wall at the bottom. The power spectrum and response function of the center of mass height were measured and closely compared with theoretical predictions. It is shown that the fluctuation-dissipation relation for the granular system is satisfied, especially in the high-frequency (short time) region, for a wide range of system parameters. Finally, we describe the relationship between systematic deviations in the low-frequency (long time) region and the time scales of the driven granular system.

  10. Kinetic Modeling of Radiative Turbulence in Relativistic Astrophysical Plasmas: Particle Acceleration and High-Energy Flares

    NASA Astrophysics Data System (ADS)

    Uzdensky, Dmitri

    radiation reaction effects. In addition to measuring the general fluid-level statistical properties of kinetic turbulence (e.g., the turbulent spectrum in the inertial and sub-inertial range), as well as the overall energy dissipation and particle acceleration, the proposed study will also investigate their intermittency and time variability, resulting in direction- and time-resolved emitted photon spectra and direction- and energy-resolved light curves, which can then be compared with observations. To gain deeper physical insight into the intermittent particle acceleration processes in turbulent astrophysical environments, the project will also identify and analyze statistically the current sheets, shocks, and other relevant localized particle-acceleration structures found in the simulations. In particular, it will assess whether relativistic kinetic turbulence in PWN can self-consistently generate such structures that are long and strong enough to accelerate large numbers of particles to the PeV energies required to explain the Crab gamma-ray flares, and where and under what conditions such acceleration can occur. The results of this research will also advance our understanding the origin of ultra-rapid TeV flares in blazar jets and will have important implications for GRB prompt emission, as well as AGN radio-lobes and radiatively-inefficient accretion flows, such as the flow onto the supermassive black hole at our Galactic Center.

  11. Polarization of Gamma-Ray Bursts in the Dissipative Photosphere Model

    NASA Astrophysics Data System (ADS)

    Lundman, Christoffer; Vurm, Indrek; Beloborodov, Andrei M.

    2018-04-01

    The MeV spectral peak of gamma-ray bursts (GRBs) is best explained as photospheric emission from a dissipative relativistic jet. The observed non-blackbody spectrum shows that sub-photospheric dissipation involves both thermal plasma heating and injection of nonthermal particles, which quickly cool through inverse Compton scattering and emission of synchrotron radiation. Synchrotron photons emitted around and above the photosphere are predicted to dominate the low-energy part of the GRB spectrum, starting from roughly a decade in energy below the MeV peak. We show that this leads to a unique polarization signature: a rise in GRB polarization toward lower energies. We compute the polarization degree of GRB radiation as a function of photon energy for a generic jet model, and show the predictions for GRBs 990123, 090902B, and 110721A. The expected polarization is significant in the X-ray band, in particular for bursts similar to GRB 090902B. The model predicts that radiation in the MeV peak (and at higher energies) is unpolarized as long as the jet is approximately uniform on angular scales δθ ≳ Γ‑1 where Γ is the bulk Lorentz factor of the jet.

  12. Magnetic Field Generation, Particle Energization and Radiation at Relativistic Shear Boundary Layers

    NASA Astrophysics Data System (ADS)

    Liang, Edison; Fu, Wen; Spisak, Jake; Boettcher, Markus

    2015-11-01

    Recent large scale Particle-in-Cell (PIC) simulations have demonstrated that in unmagnetized relativistic shear flows, strong transverse d.c. magnetic fields are generated and sustained by ion-dominated currents on the opposite sides of the shear interface. Instead of dissipating the shear flow free energy via turbulence formation and mixing as it is usually found in MHD simulations, the kinetic results show that the relativistic boundary layer stabilizes itself via the formation of a robust vacuum gap supported by a strong magnetic field, which effectively separates the opposing shear flows, as in a maglev train. Our new PIC simulations have extended the runs to many tens of light crossing times of the simulation box. Both the vacuum gap and supporting magnetic field remain intact. The electrons are energized to reach energy equipartition with the ions, with 10% of the total energy in electromagnetic fields. The dominant radiation mechanism is similar to that of a wiggler, due to oscillating electron orbits around the boundary layer.

  13. Fully nonlinear heavy ion-acoustic solitary waves in astrophysical degenerate relativistic quantum plasmas

    NASA Astrophysics Data System (ADS)

    Sultana, S.; Schlickeiser, R.

    2018-05-01

    Fully nonlinear features of heavy ion-acoustic solitary waves (HIASWs) have been investigated in an astrophysical degenerate relativistic quantum plasma (ADRQP) containing relativistically degenerate electrons and non-relativistically degenerate light ion species, and non-degenerate heavy ion species. The pseudo-energy balance equation is derived from the fluid dynamical equations by adopting the well-known Sagdeev-potential approach, and the properties of arbitrary amplitude HIASWs are examined. The small amplitude limit for the propagation of HIASWs is also recovered. The basic features (width, amplitude, polarity, critical Mach number, speed, etc.) of HIASWs are found to be significantly modified by the relativistic effect of the electron species, and also by the variation of the number density of electron, light ion, and heavy ion species. The basic properties of HIASWs, that may propagated in some realistic astrophysical plasma systems (e.g., in white dwarfs), are briefly discussed.

  14. Numerical investigation of kinetic turbulence in relativistic pair plasmas - I. Turbulence statistics

    NASA Astrophysics Data System (ADS)

    Zhdankin, Vladimir; Uzdensky, Dmitri A.; Werner, Gregory R.; Begelman, Mitchell C.

    2018-02-01

    We describe results from particle-in-cell simulations of driven turbulence in collisionless, magnetized, relativistic pair plasma. This physical regime provides a simple setting for investigating the basic properties of kinetic turbulence and is relevant for high-energy astrophysical systems such as pulsar wind nebulae and astrophysical jets. In this paper, we investigate the statistics of turbulent fluctuations in simulations on lattices of up to 10243 cells and containing up to 2 × 1011 particles. Due to the absence of a cooling mechanism in our simulations, turbulent energy dissipation reduces the magnetization parameter to order unity within a few dynamical times, causing turbulent motions to become sub-relativistic. In the developed stage, our results agree with predictions from magnetohydrodynamic turbulence phenomenology at inertial-range scales, including a power-law magnetic energy spectrum with index near -5/3, scale-dependent anisotropy of fluctuations described by critical balance, lognormal distributions for particle density and internal energy density (related by a 4/3 adiabatic index, as predicted for an ultra-relativistic ideal gas), and the presence of intermittency. We also present possible signatures of a kinetic cascade by measuring power-law spectra for the magnetic, electric and density fluctuations at sub-Larmor scales.

  15. Particle acceleration in relativistic magnetic flux-merging events

    NASA Astrophysics Data System (ADS)

    Lyutikov, Maxim; Sironi, Lorenzo; Komissarov, Serguei S.; Porth, Oliver

    2017-12-01

    Using analytical and numerical methods (fluid and particle-in-cell simulations) we study a number of model problems involving merger of magnetic flux tubes in relativistic magnetically dominated plasma. Mergers of current-carrying flux tubes (exemplified by the two-dimensional `ABC' structures) and zero-total-current magnetic flux tubes are considered. In all cases regimes of spontaneous and driven evolution are investigated. We identify two stages of particle acceleration during flux mergers: (i) fast explosive prompt X-point collapse and (ii) ensuing island merger. The fastest acceleration occurs during the initial catastrophic X-point collapse, with the reconnection electric field of the order of the magnetic field. During the X-point collapse, particles are accelerated by charge-starved electric fields, which can reach (and even exceed) values of the local magnetic field. The explosive stage of reconnection produces non-thermal power-law tails with slopes that depend on the average magnetization . For plasma magnetization 2$ the spectrum power-law index is 2$ ; in this case the maximal energy depends linearly on the size of the reconnecting islands. For higher magnetization, 2$ , the spectra are hard, , yet the maximal energy \\text{max}$ can still exceed the average magnetic energy per particle, , by orders of magnitude (if is not too close to unity). The X-point collapse stage is followed by magnetic island merger that dissipates a large fraction of the initial magnetic energy in a regime of forced magnetic reconnection, further accelerating the particles, but proceeds at a slower reconnection rate.

  16. Relativistic polytropic spheres with electric charge: Compact stars, compactness and mass bounds, and quasiblack hole configurations

    NASA Astrophysics Data System (ADS)

    Arbañil, José D. V.; Zanchin, Vilson T.

    2018-05-01

    We study the static equilibrium configurations of uncharged and charged spheres composed by a relativistic polytropic fluid, and we compare with those of spheres composed by a nonrelativistic polytropic fluid, the later case being already studied in a previous work [J. D. Arbañil, P. S. Lemos, and V. T. Zanchin, Phys. Rev. D 88, 084023 (2013), 10.1103/PhysRevD.88.084023]. An equation of state connecting the pressure p and the energy density ρ is assumed. In the nonrelativistic fluid case, the connection is through a nonrelativistic polytropic equation of state, p =ω ργ , with ω and γ being respectively the polytropic constant and the polytropic exponent. In the relativistic fluid case, the connection is through a relativistic polytropic equation of state, p =ω δγ, with δ =ρ -p /(γ -1 ), and δ being the rest-mass density of the fluid. For the electric charge distribution, we assume that the charge density ρe is proportional to the energy density ρ , ρe=α ρ , with α being a constant such that 0 ≤|α |≤1 . The study is developed by integrating numerically the hydrostatic equilibrium equation. Some properties of the charged spheres such as the gravitational mass, the total electric charge, the radius, the surface redshift, and the speed of sound are analyzed by varying the central rest-mass density, the charge fraction, and the polytropic exponent. In addition, some limits that arise in general relativity, such as the Chandrasekhar limit, the Oppenheimer-Volkoff limit, the Buchdahl bound, and the Buchdahl-Andréasson bound are studied. It is confirmed that charged relativistic polytropic spheres with γ →∞ and α →1 saturate the Buchdahl-Andréasson bound, thus indicating that it reaches the quasiblack hole configuration. We show by means of numerical analysis that, as expected, the major differences between the two cases appear in the high energy density region.

  17. Low-Dissipation Advection Schemes Designed for Large Eddy Simulations of Hypersonic Propulsion Systems

    NASA Technical Reports Server (NTRS)

    White, Jeffrey A.; Baurle, Robert A.; Fisher, Travis C.; Quinlan, Jesse R.; Black, William S.

    2012-01-01

    The 2nd-order upwind inviscid flux scheme implemented in the multi-block, structured grid, cell centered, finite volume, high-speed reacting flow code VULCAN has been modified to reduce numerical dissipation. This modification was motivated by the desire to improve the codes ability to perform large eddy simulations. The reduction in dissipation was accomplished through a hybridization of non-dissipative and dissipative discontinuity-capturing advection schemes that reduces numerical dissipation while maintaining the ability to capture shocks. A methodology for constructing hybrid-advection schemes that blends nondissipative fluxes consisting of linear combinations of divergence and product rule forms discretized using 4th-order symmetric operators, with dissipative, 3rd or 4th-order reconstruction based upwind flux schemes was developed and implemented. A series of benchmark problems with increasing spatial and fluid dynamical complexity were utilized to examine the ability of the candidate schemes to resolve and propagate structures typical of turbulent flow, their discontinuity capturing capability and their robustness. A realistic geometry typical of a high-speed propulsion system flowpath was computed using the most promising of the examined schemes and was compared with available experimental data to demonstrate simulation fidelity.

  18. Recent results in relativistic heavy ion collisions: from 'a new state of matter' to 'the perfect fluid'

    NASA Astrophysics Data System (ADS)

    Tannenbaum, M. J.

    2006-07-01

    Experimental physics with relativistic heavy ions dates from 1992 when a beam of 197Au of energy greater than 10 A GeV/c first became available at the Alternating Gradient Synchrotron at Brookhaven National Laboratory (BNL) soon followed in 1994 by a 208Pb beam of 158A GeV/c at the Super Proton Synchrotron at CERN (European Center for Nuclear Research). Previous pioneering measurements at the Berkeley Bevalac (Gutbrod et al 1989 Rep. Prog. Phys. 52 1267-132) in the late 1970s and early 1980s were at much lower bombarding energies (<~1A GeV/c) where nuclear breakup rather than particle production is the dominant inelastic process in A+A collisions. More recently, starting in 2000, the relativistic heavy ion collider at BNL has produced head-on collisions of two 100 A GeV beams of fully stripped Au ions, corresponding to nucleon-nucleon centre-of-mass (cm) energy, \\sqrt{s_NN}=200\\,GeV , total cm energy 200 A GeV. The objective of this research program is to produce nuclear matter with extreme density and temperature, possibly resulting in a state of matter where the quarks and gluons normally confined inside individual nucleons (r < 1 fm) are free to act over distances an order of magnitude larger. Progress from the period 1992 to the present will be reviewed, with reference to previous results from light ion and proton-proton collisions where appropriate. Emphasis will be placed on the measurements which formed the basis for the announcements by the two major laboratories: 'A new state of matter', by CERN on Febraury 10 2000 and 'The perfect fluid' by BNL on April 19 2005.

  19. Perfect fluidity of a dissipative system: Analytical solution for the Boltzmann equation in AdS 2 Ⓧ S 2

    DOE PAGES

    Noronha, Jorge; Denicol, Gabriel S.

    2015-12-30

    In this paper we obtain an analytical solution of the relativistic Boltzmann equation under the relaxation time approximation that describes the out-of-equilibrium dynamics of a radially expanding massless gas. This solution is found by mapping this expanding system in flat spacetime to a static flow in the curved spacetime AdS 2 Ⓧ S 2. We further derive explicit analytic expressions for the momentum dependence of the single-particle distribution function as well as for the spatial dependence of its moments. We find that this dissipative system has the ability to flow as a perfect fluid even though its entropy density doesmore » not match the equilibrium form. The nonequilibrium contribution to the entropy density is shown to be due to higher-order scalar moments (which possess no hydrodynamical interpretation) of the Boltzmann equation that can remain out of equilibrium but do not couple to the energy-momentum tensor of the system. Furthermore, in this system the slowly moving hydrodynamic degrees of freedom can exhibit true perfect fluidity while being totally decoupled from the fast moving, nonhydrodynamical microscopic degrees of freedom that lead to entropy production.« less

  20. Sonic black holes in a one-dimensional relativistic flow

    NASA Astrophysics Data System (ADS)

    Carbonaro, P.

    2015-09-01

    The analogy between sound propagation in a fluid background and light propagation in a curved spacetime, discovered by Unruh in 1981, does not work in general when considering the motion of a fluid which is confined in one spatial dimension being unable in (1+1) dimensions to introduce in a coherent manner an effective acoustic metric, barring some exceptional cases. In this paper a relativistic fluid is considered and the general condition for the existence of an acoustic metric in strictly one-dimensional systems is found. Attention is also paid to the physical meaning of the equations of state characterizing such systems and to the remarkable symmetry of structure taken by the basic equations. Finally the Hawking temperature is calculated in an artificial de Laval nozzle.

  1. Investigation of dissipation elements in a fully developed turbulent channel flow by tomographic particle-image velocimetry

    NASA Astrophysics Data System (ADS)

    Schäfer, L.; Dierksheide, U.; Klaas, M.; Schröder, W.

    2011-03-01

    A new method to describe statistical information from passive scalar fields has been proposed by Wang and Peters ["The length-scale distribution function of the distance between extremal points in passive scalar turbulence," J. Fluid Mech. 554, 457 (2006)]. They used direct numerical simulations (DNS) of homogeneous shear flow to introduce the innovative concept. This novel method determines the local minimum and maximum points of the fluctuating scalar field via gradient trajectories, starting from every grid point in the direction of the steepest ascending and descending scalar gradients. Relying on gradient trajectories, a dissipation element is defined as the region of all the grid points, the trajectories of which share the same pair of maximum and minimum points. The procedure has also been successfully applied to various DNS fields of homogeneous shear turbulence using the three velocity components and the kinetic energy as scalar fields [L. Wang and N. Peters, "Length-scale distribution functions and conditional means for various fields in turbulence," J. Fluid Mech. 608, 113 (2008)]. In this spirit, dissipation elements are, for the first time, determined from experimental data of a fully developed turbulent channel flow. The dissipation elements are deduced from the gradients of the instantaneous fluctuation of the three velocity components u', v', and w' and the instantaneous kinetic energy k', respectively. The measurements are conducted at a Reynolds number of 1.7×104 based on the channel half-height δ and the bulk velocity U. The required three-dimensional velocity data are obtained investigating a 17.75×17.75×6 mm3 (0.355δ×0.355δ×0.12δ) test volume using tomographic particle-image velocimetry. Detection and analysis of dissipation elements from the experimental velocity data are discussed in detail. The statistical results are compared to the DNS data from Wang and Peters ["The length-scale distribution function of the distance between

  2. On the origin of the energy dissipation anomaly in (Hall) magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Galtier, Sébastien

    2018-05-01

    Incompressible Hall magnetohydrodynamics (MHD) may be the subject of energy dissipation anomaly which stems from the lack of smoothness of the velocity and magnetic fields. I derive the exact expression of which appears to be closely connected with the well-known 4/3 exact law of Hall MHD turbulence theory. This remarkable similitude suggests a deeper mathematical property of the fluid equations. In the MHD limit, the expression of differs from the one derived by Gao et al (2013 Acta Math. Sci. 33 865–71) which presents miscalculations. The energy dissipation anomaly can be used to better estimate the local heating in space plasmas where in situ measurements are accessible.

  3. Towards a better understanding of tidal dissipation at corotation layers in differentially rotating stars and planets

    NASA Astrophysics Data System (ADS)

    Astoul, A.; Mathis, S.; Baruteau, C.; André, Q.

    2017-12-01

    Star-planet tidal interactions play a significant role in the dynamical evolution of close-in planetary systems. We investigate the propagation and dissipation of tidal inertial waves in a stellar/planetary convective region. We take into account a latitudinal differential rotation for the background flow, similar to what is observed in the envelope of low-mass stars like the Sun. Previous works have shown that differential rotation significantly alters the propagation and dissipation properties of inertial waves. In particular, when the Doppler-shifted tidal frequency vanishes in the fluid, a critical layer forms where tidal dissipation can be greatly enhanced. Our present work develops a local analytic model to better understand the propagation and dissipation properties of tidally forced inertial waves at critical layers.

  4. Relativistic Navigation: A Theoretical Foundation

    NASA Technical Reports Server (NTRS)

    Turyshev, Slava G.

    1996-01-01

    We present a theoretical foundation for relativistic astronomical measurements in curved space-time. In particular, we discuss a new iterative approach for describing the dynamics of an isolated astronomical N-body system in metric theories of gravity. To do this, we generalize the Fock-Chandrasekhar method of the weak-field and slow-motion approximation (WFSMA) and develop a theory of relativistic reference frames (RF's) for a gravitationally bounded many-extended-body problem. In any proper RF constructed in the immediate vicinity of an arbitrary body, the N-body solutions of the gravitational field equations are formally presented as a sum of the Riemann-flat inertial space-time, the gravitational field generated by the body itself, the unperturbed solutions for each body in the system transformed to the coordinates of this proper RF, and the gravitational interaction term. We develop the basic concept of a general WFSMA theory of the celestial RF's applicable to a wide class of metric theories of gravity and an arbitrary model of matter distribution. We apply the proposed method to general relativity. Celestial bodies are described using a perfect fluid model; as such, they possess any number of internal mass and current multipole moments that explicitly characterize their internal structures. The obtained relativistic corrections to the geodetic equations of motion arise because of a coupling of the bodies' multiple moments to the surrounding gravitational field. The resulting relativistic transformations between the different RF's extend the Poincare group to the motion of deformable self-gravitating bodies. Within the present accuracy of astronomical measurements we discuss the properties of the Fermi-normal-like proper RF that is defined in the immediate vicinity of the extended compact bodies. We further generalize the proposed approximation method and include two Eddington parameters (gamma, Beta). This generalized approach was used to derive the

  5. Variations in the expansion and shear scalars for dissipative fluids

    NASA Astrophysics Data System (ADS)

    Akram, A.; Ahmad, S.; Jami, A. Rehman; Sufyan, M.; Zahid, U.

    2018-04-01

    This work is devoted to the study of some dynamical features of spherical relativistic locally anisotropic stellar geometry in f(R) gravity. In this paper, a specific configuration of tanh f(R) cosmic model has been taken into account. The mass function through technique introduced by Misner-Sharp has been formulated and with the help of it, various fruitful relations are derived. After orthogonal decomposition of the Riemann tensor, the tanh modified structure scalars are calculated. The role of these tanh modified structure scalars (MSS) has been discussed through shear, expansion as well as Weyl scalar differential equations. The inhomogeneity factor has also been explored for the case of radiating viscous locally anisotropic spherical system and spherical dust cloud with and without constant Ricci scalar corrections.

  6. Point form relativistic quantum mechanics and relativistic SU(6)

    NASA Technical Reports Server (NTRS)

    Klink, W. H.

    1993-01-01

    The point form is used as a framework for formulating a relativistic quantum mechanics, with the mass operator carrying the interactions of underlying constituents. A symplectic Lie algebra of mass operators is introduced from which a relativistic harmonic oscillator mass operator is formed. Mass splittings within the degenerate harmonic oscillator levels arise from relativistically invariant spin-spin, spin-orbit, and tensor mass operators. Internal flavor (and color) symmetries are introduced which make it possible to formulate a relativistic SU(6) model of baryons (and mesons). Careful attention is paid to the permutation symmetry properties of the hadronic wave functions, which are written as polynomials in Bargmann spaces.

  7. Relativistic thermal electron scale instabilities in sheared flow plasma

    NASA Astrophysics Data System (ADS)

    Miller, Evan D.; Rogers, Barrett N.

    2016-04-01

    > The linear dispersion relation obeyed by finite-temperature, non-magnetized, relativistic two-fluid plasmas is presented, in the special case of a discontinuous bulk velocity profile and parallel wave vectors. It is found that such flows become universally unstable at the collisionless electron skin-depth scale. Further analyses are performed in the limits of either free-streaming ions or ultra-hot plasmas. In these limits, the system is highly unstable in the parameter regimes associated with either the electron scale Kelvin-Helmholtz instability (ESKHI) or the relativistic electron scale sheared flow instability (RESI) recently highlighted by Gruzinov. Coupling between these modes provides further instability throughout the remaining parameter space, provided both shear flow and temperature are finite. An explicit parameter space bound on the highly unstable region is found.

  8. Efficient Schmidt number scaling in dissipative particle dynamics

    NASA Astrophysics Data System (ADS)

    Krafnick, Ryan C.; García, Angel E.

    2015-12-01

    Dissipative particle dynamics is a widely used mesoscale technique for the simulation of hydrodynamics (as well as immersed particles) utilizing coarse-grained molecular dynamics. While the method is capable of describing any fluid, the typical choice of the friction coefficient γ and dissipative force cutoff rc yields an unacceptably low Schmidt number Sc for the simulation of liquid water at standard temperature and pressure. There are a variety of ways to raise Sc, such as increasing γ and rc, but the relative cost of modifying each parameter (and the concomitant impact on numerical accuracy) has heretofore remained undetermined. We perform a detailed search over the parameter space, identifying the optimal strategy for the efficient and accuracy-preserving scaling of Sc, using both numerical simulations and theoretical predictions. The composite results recommend a parameter choice that leads to a speed improvement of a factor of three versus previously utilized strategies.

  9. Tidal disruptions by rotating black holes: relativistic hydrodynamics with Newtonian codes

    NASA Astrophysics Data System (ADS)

    Tejeda, Emilio; Gafton, Emanuel; Rosswog, Stephan; Miller, John C.

    2017-08-01

    We propose an approximate approach for studying the relativistic regime of stellar tidal disruptions by rotating massive black holes. It combines an exact relativistic description of the hydrodynamical evolution of a test fluid in a fixed curved space-time with a Newtonian treatment of the fluid's self-gravity. Explicit expressions for the equations of motion are derived for Kerr space-time using two different coordinate systems. We implement the new methodology within an existing Newtonian smoothed particle hydrodynamics code and show that including the additional physics involves very little extra computational cost. We carefully explore the validity of the novel approach by first testing its ability to recover geodesic motion, and then by comparing the outcome of tidal disruption simulations against previous relativistic studies. We further compare simulations in Boyer-Lindquist and Kerr-Schild coordinates and conclude that our approach allows accurate simulation even of tidal disruption events where the star penetrates deeply inside the tidal radius of a rotating black hole. Finally, we use the new method to study the effect of the black hole spin on the morphology and fallback rate of the debris streams resulting from tidal disruptions, finding that while the spin has little effect on the fallback rate, it does imprint heavily on the stream morphology, and can even be a determining factor in the survival or disruption of the star itself. Our methodology is discussed in detail as a reference for future astrophysical applications.

  10. Dissipative particle dynamics of diffusion-NMR requires high Schmidt-numbers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azhar, Mueed; Greiner, Andreas; Korvink, Jan G., E-mail: jan.korvink@kit.edu, E-mail: david.kauzlaric@imtek.uni-freiburg.de

    We present an efficient mesoscale model to simulate the diffusion measurement with nuclear magnetic resonance (NMR). On the level of mesoscopic thermal motion of fluid particles, we couple the Bloch equations with dissipative particle dynamics (DPD). Thereby we establish a physically consistent scaling relation between the diffusion constant measured for DPD-particles and the diffusion constant of a real fluid. The latter is based on a splitting into a centre-of-mass contribution represented by DPD, and an internal contribution which is not resolved in the DPD-level of description. As a consequence, simulating the centre-of-mass contribution with DPD requires high Schmidt numbers. Aftermore » a verification for fundamental pulse sequences, we apply the NMR-DPD method to NMR diffusion measurements of anisotropic fluids, and of fluids restricted by walls of microfluidic channels. For the latter, the free diffusion and the localisation regime are considered.« less

  11. On the relativistic micro-canonical ensemble and relativistic kinetic theory for N relativistic particles in inertial and non-inertial rest frames

    NASA Astrophysics Data System (ADS)

    Alba, David; Crater, Horace W.; Lusanna, Luca

    2015-03-01

    A new formulation of relativistic classical mechanics allows a reconsideration of old unsolved problems in relativistic kinetic theory and in relativistic statistical mechanics. In particular a definition of the relativistic micro-canonical partition function is given strictly in terms of the Poincaré generators of an interacting N-particle system both in the inertial and non-inertial rest frames. The non-relativistic limit allows a definition of both the inertial and non-inertial micro-canonical ensemble in terms of the Galilei generators.

  12. Exact Dissipative Moment Closures for Simulation of Magnetospheric Plasmas

    NASA Astrophysics Data System (ADS)

    Newman, D. L.; Sen, N.; Goldman, M. V.

    2004-11-01

    Dissipative fluid closures produce a kinetic-like plasma response in simulations based on the evolution of moments of the Vlasov equation. Such methods were previously shown to approximate the kinetic susceptibility of a Maxwellian plasma.(G. W. Hammett and F. W. Perkins Phys. Rev. Lett.) 64, 3019 (1990). We show here that dissipative closures can yield the exact linear response for kappa velocity distributions (i.e., f(v)∝(v^2+w^2)^-κ in 1-D, where w∝ v_th), provided κ is an integer and κ+1 moments are retained in the closure. This finding is particularly relevant to the simulation of collisionless space plasmas, which frequently exhibit power-law tails characteristic of kappa distributions. Such dissipative algorithms can be made energy conserving by evolving the thermal parameter w. Dominant nonlinearities (e.g., ponderomotive effects) can also be incorporated into the algorithm. These methods have proven especially valuable in the context of reduced 2-D Vlasov simulations,(N. Sen, et al., Reduced 2-D Vlasov Simulationsldots), this meeting. where they have been used to model perpendicular ion dynamics in the evolution of nonlinear structures (e.g., double layers) in the auroral ionosphere.

  13. One-dimensional pore pressure diffusion of different grain-fluid mixtures

    NASA Astrophysics Data System (ADS)

    von der Thannen, Magdalena; Kaitna, Roland

    2015-04-01

    During the release and the flow of fully saturated debris, non-hydrostatic fluid pressure can build up and probably dissipate during the event. This excess fluid pressure has a strong influence on the flow and deposition behaviour of debris flows. Therefore, we investigate the influence of mixture composition on the dissipation of non-hydrostatic fluid pressures. For this we use a cylindrical pipe of acrylic glass with installed pore water pressure sensors in different heights and measure the evolution of the pore water pressure over time. Several mixtures with variable content of fine sediment (silt and clay) and variable content of coarse sediment (with fixed relative fractions of grains between 2 and 32 mm) are tested. For the fines two types of clay (smectite and kaolinite) and loam (Stoober Lehm) are used. The analysis is based on the one-dimensional consolidation theory which uses a diffusion coefficient D to model the decay of excess fluid pressure over time. Starting from artificially induced super-hydrostatic fluid pressures, we find dissipation coefficients ranging from 10-5 m²/s for liquid mixtures to 10-8 m²/s for viscous mixtures. The results for kaolinite and smectite are quite similar. For our limited number of mixtures the effect of fines content is more pronounced than the effect of different amounts of coarse particles.

  14. Heating of the Interstellar Diffuse Ionized Gas via the Dissipation of Turbulence

    NASA Astrophysics Data System (ADS)

    Minter, Anthony H.; Spangler, Steven R.

    1997-08-01

    We have recently published observations that specify most of the turbulent and mean plasma characteristics for a region of the sky containing the interstellar diffuse ionized gas (DIG). These observations have provided virtually all of the information necessary to calculate the heating rate from dissipation of turbulence. We have calculated the turbulent dissipation heating rate employing two models for the interstellar turbulence. The first is a customary modeling as a superposition of magnetohydrodynamic waves. The second is a fluid-turbulence-like model based on the ideas of Higdon. This represents the first time that such calculations have been carried out with full and specific interstellar turbulence parameters. The wave model of interstellar turbulence encounters the severe difficulty that plausible estimates of heating by Landau damping exceed the radiative cooling capacity of the interstellar DIG by 3-4 orders of magnitude. Clearly interstellar turbulence does not behave like an ensemble of obliquely propagating fast magnetosonic waves. The heating rate due to two other wave dissipation mechanisms, ion-neutral collisional damping and the parametric decay instability, are comparable to the cooling capacity of the diffuse ionized medium. We find that the fluid-like turbulence model is an acceptable and realistic model of the turbulence in the interstellar medium once the effects of ion-neutral collisions are included in the model. This statement is contingent on an assumption that the dissipation of such turbulence because of Landau damping is several orders of magnitude less than that from an ensemble of obliquely propagating magnetosonic waves with the same energy density. Arguments as to why this may be the case are made in the paper. Rough parity between the turbulent heating rate and the radiative cooling rate in the DIG also depends on the hydrogen ionization fraction being in excess of 90% or on a model-dependent lower limit to the heating rate being

  15. Electrostatic shock structures in dissipative multi-ion dusty plasmas

    NASA Astrophysics Data System (ADS)

    Elkamash, I. S.; Kourakis, I.

    2018-06-01

    A comprehensive analytical model is introduced for shock excitations in dusty bi-ion plasma mixtures, taking into account collisionality and kinematic (fluid) viscosity. A multicomponent plasma configuration is considered, consisting of positive ions, negative ions, electrons, and a massive charged component in the background (dust). The ionic dynamical scale is focused upon; thus, electrons are assumed to be thermalized, while the dust is stationary. A dissipative hybrid Korteweg-de Vries/Burgers equation is derived. An analytical solution is obtained, in the form of a shock structure (a step-shaped function for the electrostatic potential, or an electric field pulse) whose maximum amplitude in the far downstream region decays in time. The effect of relevant plasma configuration parameters, in addition to dissipation, is investigated. Our work extends earlier studies of ion-acoustic type shock waves in pure (two-component) bi-ion plasma mixtures.

  16. Relativistic kicked rotor.

    PubMed

    Matrasulov, D U; Milibaeva, G M; Salomov, U R; Sundaram, Bala

    2005-07-01

    Transport properties in the relativistic analog of the periodically kicked rotor are contrasted under classically and quantum mechanical dynamics. The quantum rotor is treated by solving the Dirac equation in the presence of the time-periodic delta-function potential resulting in a relativistic quantum mapping describing the evolution of the wave function. The transition from the quantum suppression behavior seen in the nonrelativistic limit to agreement between quantum and classical analyses in the relativistic regime is discussed. The absence of quantum resonances in the relativistic case is also addressed.

  17. Hydrodynamics of the Dirac fluid in graphene

    NASA Astrophysics Data System (ADS)

    Lucas, Andrew

    Recent advances in materials physics have allowed us to observe hydrodynamic electron flow in multiple materials. A uniquely interesting possibility is the emergence of a quasi-relativistic plasma of electrons and holes appearing in Dirac semimetals such as graphene. I will briefly review the unique features of the hydrodynamics of the Dirac fluid, and then discuss the theroetical signatures for the Dirac fluid, and its observation in experiment.

  18. Polarization swings reveal magnetic energy dissipation in blazars

    DOE PAGES

    Zhang, Haocheng; Chen, Xuhui; Böttcher, Markus; ...

    2015-05-01

    The polarization signatures of blazar emissions are known to be highly variable. In addition to small fluctuations of the polarization angle around a mean value, large (≳ 180°) polarization angle swings are observed. We suggest that such phenomena can be interpreted as arising from light-travel-time effects within an underlying axisymmetric emission region. We present the first simultaneous fitting of the multi-wavelength spectrum, variability, and time-dependent polarization features of a correlated optical and gamma-ray flaring event of the prominent blazar 3C279, which was accompanied by a drastic change in its polarization signatures. This unprecedented combination of spectral, variability, and polarization informationmore » in a coherent physical model allows us to place stringent constraints on the particle acceleration and magnetic-field topology in the relativistic jet of a blazar, strongly favoring a scenario in which magnetic energy dissipation is the primary driver of the flare event.« less

  19. Turbulence dissipation challenge: particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Roytershteyn, V.; Karimabadi, H.; Omelchenko, Y.; Germaschewski, K.

    2015-12-01

    We discuss application of three particle in cell (PIC) codes to the problems relevant to turbulence dissipation challenge. VPIC is a fully kinetic code extensively used to study a variety of diverse problems ranging from laboratory plasmas to astrophysics. PSC is a flexible fully kinetic code offering a variety of algorithms that can be advantageous to turbulence simulations, including high order particle shapes, dynamic load balancing, and ability to efficiently run on Graphics Processing Units (GPUs). Finally, HYPERS is a novel hybrid (kinetic ions+fluid electrons) code, which utilizes asynchronous time advance and a number of other advanced algorithms. We present examples drawn both from large-scale turbulence simulations and from the test problems outlined by the turbulence dissipation challenge. Special attention is paid to such issues as the small-scale intermittency of inertial range turbulence, mode content of the sub-proton range of scales, the formation of electron-scale current sheets and the role of magnetic reconnection, as well as numerical challenges of applying PIC codes to simulations of astrophysical turbulence.

  20. Dissipative universe-inflation with soft singularity

    NASA Astrophysics Data System (ADS)

    Brevik, Iver; Timoshkin, Alexander V.

    We investigate the early-time accelerated universe after the Big Bang. We pay attention to the dissipative properties of the inflationary universe in the presence of a soft type singularity, making use of the parameters of the generalized equation of state of the fluid. Flat Friedmann-Robertson-Walker metric is being used. We consider cosmological models leading to the so-called type IV singular inflation. Our obtained theoretical results are compared with observational data from the Planck satellite. The theoretical predictions for the spectral index turn out to be in agreement with the data, while for the scalar-to-tensor ratio, there are minor deviations.

  1. Nonlinear Korteweg-de Vries-Burger equation for ion acoustic shock waves in a weakly relativistic electron-positron-ion plasma with thermal ions

    NASA Astrophysics Data System (ADS)

    Saeed, R.; Shah, Asif

    2010-03-01

    The nonlinear propagation of ion acoustic waves in electron-positron-ion plasma comprising of Boltzmannian electrons, positrons, and relativistic thermal ions has been examined. The Korteweg-de Vries-Burger equation has been derived by reductive perturbation technique, and its shock like solution is determined analytically through tangent hyperbolic method. The effect of various plasma parameters on strength and structure of shock wave is investigated. The pert graphical view of the results has been presented for illustration. It is observed that strength and steepness of the shock wave enervate with an increase in the ion temperature, relativistic streaming factor, positron concentrations, electron temperature and they accrue with an increase in coefficient of kinematic viscosity. The convective, dispersive, and dissipative properties of the plasma are also discussed. It is determined that the electron temperature has remarkable influence on the propagation and structure of nonlinear wave in such relativistic plasmas. The numerical analysis has been done based on the typical numerical data from a pulsar magnetosphere.

  2. Propagation of an ultrashort, intense laser pulse in a relativistic plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ritchie, B.; Decker, C.D.

    1997-12-31

    A Maxwell-relativistic fluid model is developed for the propagation of an ultrashort, intense laser pulse through an underdense plasma. The separability of plasma and optical frequencies ({omega}{sub p} and {omega} respectively) for small {omega}{sub p}/{omega} is not assumed; thus the validity of multiple-scales theory (MST) can be tested. The theory is valid when {omega}{sub p}/{omega} is of order unity or for cases in which {omega}{sub p}/{omega} {much_lt} 1 but strongly relativistic motion causes higher-order plasma harmonics to be generated which overlap the region of the first-order laser harmonic, such that MST would not expected to be valid although its principalmore » validity criterion {omega}{sub p}/{omega} {much_lt} 1 holds.« less

  3. Relativistic distribution function for particles with spin at local thermodynamical equilibrium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becattini, F., E-mail: becattini@fi.infn.it; INFN Sezione di Firenze, Florence; Universität Frankfurt, Frankfurt am Main

    2013-11-15

    We present an extension of relativistic single-particle distribution function for weakly interacting particles at local thermodynamical equilibrium including spin degrees of freedom, for massive spin 1/2 particles. We infer, on the basis of the global equilibrium case, that at local thermodynamical equilibrium particles acquire a net polarization proportional to the vorticity of the inverse temperature four-vector field. The obtained formula for polarization also implies that a steady gradient of temperature entails a polarization orthogonal to particle momentum. The single-particle distribution function in momentum space extends the so-called Cooper–Frye formula to particles with spin 1/2 and allows us to predict theirmore » polarization in relativistic heavy ion collisions at the freeze-out. -- Highlights: •Single-particle distribution function in local thermodynamical equilibrium with spin. •Polarization of spin 1/2 particles in a fluid at local thermodynamical equilibrium. •Prediction of a new effect: a steady gradient of temperature induces a polarization. •Application to the calculation of polarization in relativistic heavy ion collisions.« less

  4. Entropy Splitting and Numerical Dissipation

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Vinokur, M.; Djomehri, M. J.

    1999-01-01

    A rigorous stability estimate for arbitrary order of accuracy of spatial central difference schemes for initial-boundary value problems of nonlinear symmetrizable systems of hyperbolic conservation laws was established recently by Olsson and Oliger (1994) and Olsson (1995) and was applied to the two-dimensional compressible Euler equations for a perfect gas by Gerritsen and Olsson (1996) and Gerritsen (1996). The basic building block in developing the stability estimate is a generalized energy approach based on a special splitting of the flux derivative via a convex entropy function and certain homogeneous properties. Due to some of the unique properties of the compressible Euler equations for a perfect gas, the splitting resulted in the sum of a conservative portion and a non-conservative portion of the flux derivative. hereafter referred to as the "Entropy Splitting." There are several potential desirable attributes and side benefits of the entropy splitting for the compressible Euler equations that were not fully explored in Gerritsen and Olsson. The paper has several objectives. The first is to investigate the choice of the arbitrary parameter that determines the amount of splitting and its dependence on the type of physics of current interest to computational fluid dynamics. The second is to investigate in what manner the splitting affects the nonlinear stability of the central schemes for long time integrations of unsteady flows such as in nonlinear aeroacoustics and turbulence dynamics. If numerical dissipation indeed is needed to stabilize the central scheme, can the splitting help minimize the numerical dissipation compared to its un-split cousin? Extensive numerical study on the vortex preservation capability of the splitting in conjunction with central schemes for long time integrations will be presented. The third is to study the effect of the non-conservative proportion of splitting in obtaining the correct shock location for high speed complex shock

  5. Static and dynamic properties of smoothed dissipative particle dynamics

    NASA Astrophysics Data System (ADS)

    Alizadehrad, Davod; Fedosov, Dmitry A.

    2018-03-01

    In this paper, static and dynamic properties of the smoothed dissipative particle dynamics (SDPD) method are investigated. We study the effect of method parameters on SDPD fluid properties, such as structure, speed of sound, and transport coefficients, and show that a proper choice of parameters leads to a well-behaved and accurate fluid model. In particular, the speed of sound, the radial distribution function (RDF), shear-thinning of viscosity, the mean-squared displacement (〈R2 〉 ∝ t), and the Schmidt number (Sc ∼ O (103) - O (104)) can be controlled, such that the model exhibits a fluid-like behavior for a wide range of temperatures in simulations. Furthermore, in addition to the consideration of fluid density variations for fluid compressibility, a more challenging test of incompressibility is performed by considering the Poisson ratio and divergence of velocity field in an elongational flow. Finally, as an example of complex-fluid flow, we present the applicability and validity of the SDPD method with an appropriate choice of parameters for the simulation of cellular blood flow in irregular geometries. In conclusion, the results demonstrate that the SDPD method is able to approximate well a nearly incompressible fluid behavior, which includes hydrodynamic interactions and consistent thermal fluctuations, thereby providing, a powerful approach for simulations of complex mesoscopic systems.

  6. Radiatively driven relativistic spherical winds under relativistic radiative transfer

    NASA Astrophysics Data System (ADS)

    Fukue, J.

    2018-05-01

    We numerically investigate radiatively driven relativistic spherical winds from the central luminous object with mass M and luminosity L* under Newtonian gravity, special relativity, and relativistic radiative transfer. We solve both the relativistic radiative transfer equation and the relativistic hydrodynamical equations for spherically symmetric flows under the double-iteration processes, to obtain the intensity and velocity fields simultaneously. We found that the momentum-driven winds with scattering are quickly accelerated near the central object to reach the terminal speed. The results of numerical solutions are roughly fitted by a relation of \\dot{m}=0.7(Γ _*-1)\\tau _* β _* β _out^{-2.6}, where \\dot{m} is the mass-loss rate normalized by the critical one, Γ* the central luminosity normalized by the critical one, τ* the typical optical depth, β* the initial flow speed at the central core of radius R*, and βout the terminal speed normalized by the speed of light. This relation is close to the non-relativistic analytical solution, \\dot{m} = 2(Γ _*-1)\\tau _* β _* β _out^{-2}, which can be re-expressed as β _out^2/2 = (Γ _*-1)GM/c^2 R_*. That is, the present solution with small optical depth is similar to that of the radiatively driven free outflow. Furthermore, we found that the normalized luminosity (Eddington parameter) must be larger than unity for the relativistic spherical wind to blow off with intermediate or small optical depth, i.e. Γ _* ≳ \\sqrt{(1+β _out)^3/(1-β _out)}. We briefly investigate and discuss an isothermal wind.

  7. Transition in the equilibrium distribution function of relativistic particles.

    PubMed

    Mendoza, M; Araújo, N A M; Succi, S; Herrmann, H J

    2012-01-01

    We analyze a transition from single peaked to bimodal velocity distribution in a relativistic fluid under increasing temperature, in contrast with a non-relativistic gas, where only a monotonic broadening of the bell-shaped distribution is observed. Such transition results from the interplay between the raise in thermal energy and the constraint of maximum velocity imposed by the speed of light. We study the Bose-Einstein, the Fermi-Dirac, and the Maxwell-Jüttner distributions, and show that they all exhibit the same qualitative behavior. We characterize the nature of the transition in the framework of critical phenomena and show that it is either continuous or discontinuous, depending on the group velocity. We analyze the transition in one, two, and three dimensions, with special emphasis on twodimensions, for which a possible experiment in graphene, based on the measurement of the Johnson-Nyquist noise, is proposed.

  8. Transition in the Equilibrium Distribution Function of Relativistic Particles

    PubMed Central

    Mendoza, M.; Araújo, N. A. M.; Succi, S.; Herrmann, H. J.

    2012-01-01

    We analyze a transition from single peaked to bimodal velocity distribution in a relativistic fluid under increasing temperature, in contrast with a non-relativistic gas, where only a monotonic broadening of the bell-shaped distribution is observed. Such transition results from the interplay between the raise in thermal energy and the constraint of maximum velocity imposed by the speed of light. We study the Bose-Einstein, the Fermi-Dirac, and the Maxwell-Jüttner distributions, and show that they all exhibit the same qualitative behavior. We characterize the nature of the transition in the framework of critical phenomena and show that it is either continuous or discontinuous, depending on the group velocity. We analyze the transition in one, two, and three dimensions, with special emphasis on twodimensions, for which a possible experiment in graphene, based on the measurement of the Johnson-Nyquist noise, is proposed. PMID:22937220

  9. Momentum and charge transport in non-relativistic holographic fluids from Hořava gravity

    NASA Astrophysics Data System (ADS)

    Davison, Richard A.; Grozdanov, Sašo; Janiszewski, Stefan; Kaminski, Matthias

    2016-11-01

    We study the linearized transport of transverse momentum and charge in a conjectured field theory dual to a black brane solution of Hořava gravity with Lifshitz exponent z = 1. As expected from general hydrodynamic reasoning, we find that both of these quantities are diffusive over distance and time scales larger than the inverse temperature. We compute the diffusion constants and conductivities of transverse momentum and charge, as well the ratio of shear viscosity to entropy density, and find that they differ from their relativistic counterparts. To derive these results, we propose how the holographic dictionary should be modified to deal with the multiple horizons and differing propagation speeds of bulk excitations in Hořava gravity. When possible, as a check on our methods and results, we use the covariant Einstein-Aether formulation of Hořava gravity, along with field redefinitions, to re-derive our results from a relativistic bulk theory.

  10. TESS: A RELATIVISTIC HYDRODYNAMICS CODE ON A MOVING VORONOI MESH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duffell, Paul C.; MacFadyen, Andrew I., E-mail: pcd233@nyu.edu, E-mail: macfadyen@nyu.edu

    2011-12-01

    We have generalized a method for the numerical solution of hyperbolic systems of equations using a dynamic Voronoi tessellation of the computational domain. The Voronoi tessellation is used to generate moving computational meshes for the solution of multidimensional systems of conservation laws in finite-volume form. The mesh-generating points are free to move with arbitrary velocity, with the choice of zero velocity resulting in an Eulerian formulation. Moving the points at the local fluid velocity makes the formulation effectively Lagrangian. We have written the TESS code to solve the equations of compressible hydrodynamics and magnetohydrodynamics for both relativistic and non-relativistic fluidsmore » on a dynamic Voronoi mesh. When run in Lagrangian mode, TESS is significantly less diffusive than fixed mesh codes and thus preserves contact discontinuities to high precision while also accurately capturing strong shock waves. TESS is written for Cartesian, spherical, and cylindrical coordinates and is modular so that auxiliary physics solvers are readily integrated into the TESS framework and so that this can be readily adapted to solve general systems of equations. We present results from a series of test problems to demonstrate the performance of TESS and to highlight some of the advantages of the dynamic tessellation method for solving challenging problems in astrophysical fluid dynamics.« less

  11. Relativistic turbulence with strong synchrotron and synchrotron self-Compton cooling

    NASA Astrophysics Data System (ADS)

    Uzdensky, D. A.

    2018-07-01

    Many relativistic plasma environments in high-energy astrophysics, including pulsar wind nebulae (PWN), hot accretion flows on to black holes, relativistic jets in active galactic nuclei and gamma-ray bursts, and giant radio lobes, are naturally turbulent. The plasma in these environments is often so hot that synchrotron and inverse-Compton (IC) radiative cooling becomes important. In this paper, we investigate the general thermodynamic and radiative properties (and hence the observational appearance) of an optically thin relativistically hot plasma stirred by driven magnetohydrodynamic (MHD) turbulence and cooled by radiation. We find that if the system reaches a statistical equilibrium where turbulent heating is balanced by radiative cooling, the effective electron temperature tends to attain a universal value θ = kT_e/m_e c^2 ˜ 1/√{τ _T}, where τT = neσTL ≪ 1 is the system's Thomson optical depth, essentially independent of the strength of turbulent driving and hence of the magnetic field. This is because both MHD turbulent dissipation and synchrotron cooling are proportional to the magnetic energy density. We also find that synchrotron self-Compton (SSC) cooling and perhaps a few higher order IC components are automatically comparable to synchrotron in this regime. The overall broad-band radiation spectrum then consists of several distinct components (synchrotron, SSC, etc.), well separated in photon energy (by a factor ˜ τ_T^{-1}) and roughly equal in power. The number of IC peaks is checked by Klein-Nishina effects and depends logarithmically on τT and the magnetic field. We also examine the limitations due to synchrotron self-absorption, explore applications to Crab PWN and blazar jets, and discuss links to radiative magnetic reconnection.

  12. Pathways of fluid transport and reabsorption across the peritoneal membrane.

    PubMed

    Asghar, R B; Davies, S J

    2008-05-01

    The three-pore model of peritoneal fluid transport predicts that once the osmotic gradient has dissipated, fluid reabsorption will be due to a combination of small-pore reabsorption driven by the intravascular oncotic pressure, and an underlying disappearance of fluid from the cavity by lymphatic drainage. Our study measured fluid transport by these pathways in the presence and absence of an osmotic gradient. Paired hypertonic and standard glucose-dwell studies were performed using radio-iodinated serum albumin as an intraperitoneal volume marker and changes in intraperitoneal sodium mass to determine small-pore versus transcellular fluid transport. Disappearance of iodinated albumin was considered to indicate lymphatic drainage. Variability in transcellular ultrafiltration was largely explained by the rate of small-solute transport across the membrane. In the absence of an osmotic gradient, fluid reabsorption occurred via the small-pore pathway, the rate being proportional to the small-solute transport characteristics of the membrane. In most cases, fluid removal from the peritoneal cavity by this pathway was faster than by lymphatic drainage. Our study shows that the three-pore model describes the pathways of peritoneal fluid transport well. In the presence of high solute transport, poor transcellular ultrafiltration was due to loss of the osmotic gradient and an enhanced small-pore reabsorption rate after this gradient dissipated.

  13. Curved non-relativistic spacetimes, Newtonian gravitation and massive matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geracie, Michael, E-mail: mgeracie@uchicago.edu; Prabhu, Kartik, E-mail: kartikp@uchicago.edu; Roberts, Matthew M., E-mail: matthewroberts@uchicago.edu

    2015-10-15

    There is significant recent work on coupling matter to Newton-Cartan spacetimes with the aim of investigating certain condensed matter phenomena. To this end, one needs to have a completely general spacetime consistent with local non-relativistic symmetries which supports massive matter fields. In particular, one cannot impose a priori restrictions on the geometric data if one wants to analyze matter response to a perturbed geometry. In this paper, we construct such a Bargmann spacetime in complete generality without any prior restrictions on the fields specifying the geometry. The resulting spacetime structure includes the familiar Newton-Cartan structure with an additional gauge fieldmore » which couples to mass. We illustrate the matter coupling with a few examples. The general spacetime we construct also includes as a special case the covariant description of Newtonian gravity, which has been thoroughly investigated in previous works. We also show how our Bargmann spacetimes arise from a suitable non-relativistic limit of Lorentzian spacetimes. In a companion paper [M. Geracie et al., e-print http://arxiv.org/abs/1503.02680 ], we use this Bargmann spacetime structure to investigate the details of matter couplings, including the Noether-Ward identities, and transport phenomena and thermodynamics of non-relativistic fluids.« less

  14. Influence of Lorentz force, Cattaneo-Christov heat flux and viscous dissipation on the flow of micropolar fluid past a nonlinear convective stretching vertical surface

    NASA Astrophysics Data System (ADS)

    Gnaneswara Reddy, Machireddy

    2017-12-01

    The problem of micropolar fluid flow over a nonlinear stretching convective vertical surface in the presence of Lorentz force and viscous dissipation is investigated. Due to the nature of heat transfer in the flow past vertical surface, Cattaneo-Christov heat flux model effect is properly accommodated in the energy equation. The governing partial differential equations for the flow and heat transfer are converted into a set of ordinary differential equations by employing the acceptable similarity transformations. Runge-Kutta and Newton's methods are utilized to resolve the altered governing nonlinear equations. Obtained numerical results are compared with the available literature and found to be an excellent agreement. The impacts of dimensionless governing flow pertinent parameters on velocity, micropolar velocity and temperature profiles are presented graphically for two cases (linear and nonlinear) and analyzed in detail. Further, the variations of skin friction coefficient and local Nusselt number are reported with the aid of plots for the sundry flow parameters. The temperature and the related boundary enhances enhances with the boosting values of M. It is found that fluid temperature declines for larger thermal relaxation parameter. Also, it is revealed that the Nusselt number declines for the hike values of Bi.

  15. Experimental characterization of extreme events of inertial dissipation in a turbulent swirling flow

    PubMed Central

    Saw, E. -W.; Kuzzay, D.; Faranda, D.; Guittonneau, A.; Daviaud, F.; Wiertel-Gasquet, C.; Padilla, V.; Dubrulle, B.

    2016-01-01

    The three-dimensional incompressible Navier–Stokes equations, which describe the motion of many fluids, are the cornerstones of many physical and engineering sciences. However, it is still unclear whether they are mathematically well posed, that is, whether their solutions remain regular over time or develop singularities. Even though it was shown that singularities, if exist, could only be rare events, they may induce additional energy dissipation by inertial means. Here, using measurements at the dissipative scale of an axisymmetric turbulent flow, we report estimates of such inertial energy dissipation and identify local events of extreme values. We characterize the topology of these extreme events and identify several main types. Most of them appear as fronts separating regions of distinct velocities, whereas events corresponding to focusing spirals, jets and cusps are also found. Our results highlight the non-triviality of turbulent flows at sub-Kolmogorov scales as possible footprints of singularities of the Navier–Stokes equation. PMID:27578459

  16. Numerical algorithms for cold-relativistic plasma models in the presence of discontinuties

    NASA Astrophysics Data System (ADS)

    Hakim, Ammar; Cary, John; Bruhwiler, David; Geddes, Cameron; Leemans, Wim; Esarey, Eric

    2006-10-01

    A numerical algorithm is presented to solve cold-relativistic electron fluid equations in the presence of sharp gradients and discontinuities. The intended application is to laser wake-field accelerator simulations in which the laser induces accelerating fields thousands of times those achievable in conventional RF accelerators. The relativistic cold-fluid equations are formulated as non-classical system of hyperbolic balance laws. It is shown that the flux Jacobian for this system can not be diagonalized which causes numerical difficulties when developing shock-capturing algorithms. Further, the system is shown to admit generalized delta-shock solutions, first discovered in the context of sticky-particle dynamics (Bouchut, Ser. Adv. Math App. Sci., 22 (1994) pp. 171--190). A new approach, based on relaxation schemes proposed by Jin and Xin (Comm. Pure Appl. Math. 48 (1995) pp. 235--276) and LeVeque and Pelanti (J. Comput. Phys. 172 (2001) pp. 572--591) is developed to solve this system of equations. The method consists of finding an exact solution to a Riemann problem at each cell interface and coupling these to advance the solution in time. Applications to an intense laser propagating in an under-dense plasma are presented.

  17. Fluid oscillation in the Drop Tower

    NASA Technical Reports Server (NTRS)

    Kaukler, William F.

    1988-01-01

    An interfluid meniscus oscillates within a cylindrical container when suddenly released from earth's gravity and taken into a microgravity environment. Oscillations damp out from energy dissipative mechanisms such as viscosity and interfacial friction. Damping out of the oscillations by the latter mechanism is affected by the nature of the interfacial junction between the fluid-fluid interface and the container wall. Perfluoromethylcyclohexane and isopropanol in glass were the materials used for the experiment. The wetting condition of the fluids against the wall changes at the critical wetting transition temperature. This change in wetting causes a change in the damping characteristics.

  18. Rapid Quantification of Energy Absorption and Dissipation Metrics for PPE Padding Materials

    DTIC Science & Technology

    2010-01-22

    dampers ,   i.e.,  Hooke’s  Law  springs  and   viscous ...absorbing/dissipating materials. Input forces caused by blast pressures, determined from computational fluid dynamics (CFD) analysis and simulation...simple  lumped-­‐ parameter  elements   –  spring,  k  (energy  storage)   –  damper ,  b  (energy  dissipa/on   Rapid

  19. General-relativistic rotation: Self-gravitating fluid tori in motion around black holes

    NASA Astrophysics Data System (ADS)

    Karkowski, Janusz; Kulczycki, Wojciech; Mach, Patryk; Malec, Edward; Odrzywołek, Andrzej; Piróg, Michał

    2018-05-01

    We obtain from the first principles a general-relativistic Keplerian rotation law for self-gravitating disks around spinning black holes. This is an extension of a former rotation law that was designed mainly for toroids around spinless black holes. We integrate numerically axial stationary Einstein equations with self-gravitating disks around spinless or spinning black holes; that includes the first ever integration of the Keplerian selfgravitating tori. This construction can be used for the description of tight black hole-torus systems produced during coalescences of two neutron stars or modelling of compact active galactic nuclei.

  20. Accelerated and decelerated expansion in a causal dissipative cosmology

    NASA Astrophysics Data System (ADS)

    Cruz, Miguel; Cruz, Norman; Lepe, Samuel

    2017-12-01

    In this work we explore a new cosmological solution for an universe filled with one dissipative fluid, described by a barotropic equation of state (EoS) p =ω ρ , in the framework of the full Israel-Stewart theory. The form of the bulk viscosity has been assumed of the form ξ =ξ0ρ1 /2. The relaxation time is taken to be a function of the EoS, the bulk viscosity and the speed of bulk viscous perturbations, cb. The solution presents an initial singularity, where the curvature scalar diverges as the scale factor goes to zero. Depending on the values for ω , ξ0, cb accelerated and decelerated cosmic expansion can be obtained. In the case of accelerated expansion, the viscosity drives the effective EoS to be of quintessence type, for the single fluid with positive pressure. Nevertheless, we show that only the solution with decelerated expansion satisfies the thermodynamics conditions d S /d t >0 (growth of the entropy) and d2S /d t2<0 (convexity condition). We show that an exact stiff matter EoS is not allowed in the framework of the full causal thermodynamic approach; and in the case of a EoS very close to the stiff matter regime, we found that dissipative effects becomes negligible so the entropy remains constant. Finally, we show numerically that the solution is stable under small perturbations.

  1. Low-cost viscometer based on energy dissipation in viscous liquids

    NASA Astrophysics Data System (ADS)

    Hashimoto, C.; Cristobal, G.; Nicolas, A.; Panizza, P.; Rouch, J.; Ushiki, H.

    2001-04-01

    We describe a new type of low-cost easy-to-use viscometer based on the temperature elevation in a liquid under shear flow. After calibration, this instrument can be used to measure the apparent steady state viscosity for both Newtonian and non-Newtonian liquids with no yield stress. We compute the rise in temperature due to viscous dissipation in a Couette cell and compare it to experimental results for different fluids. We show that the variation of the temperature with shear rate can be used to characterize the rheological behaviour of viscous fluids and to evaluate their viscosity in a large domain, from typically a few cP up to more than 10 P, with an accuracy of about ±5%. In contrast to simple viscometers, non-Newtonian fluids can be studied with this apparatus. We give experimental results for Newtonian and non-Newtonian liquids and show that they are very similar to those given in the literature by using much more sophisticated instruments.

  2. Relativistic theory of particles in a scattering flow I: basic equations, diffusion and drift.

    NASA Astrophysics Data System (ADS)

    Achterberg, A.; Norman, C. A.

    2018-06-01

    We reconsider the theory of particle transport in a scattering medium, allowing for relativistic flow velocities. The theory uses a mixed set of variables, with position and time measured in the Laboratory Frame, and particle energy and momentum measured in the Fluid Rest Frame, the reference frame where scattering is assumed to be elastic. We give a new derivation for the fictitious force terms in the equation of motion that are present if the Fluid Rest Frame is not an inertial frame. By using a 3+1 notation we discuss the physical interpretation of the different terms in the fictitious force. It is shown that different approaches to the problem of particle propagation in a magnetized medium due to Skilling (1975) and Kulsrud (1983) are largely equivalent. We extend known results for non-relativistic flows to include the effects of cross-field diffusion for cosmic rays in a magnetized plasma. We also carefully consider the correct form of the diffusion approximation for scattering, and show that the resulting equations can be cast in conservation form.

  3. Relativistic Kinetic Theory

    NASA Astrophysics Data System (ADS)

    Vereshchagin, Gregory V.; Aksenov, Alexey G.

    2017-02-01

    Preface; Acknowledgements; Acronyms and definitions; Introduction; Part I. Theoretical Foundations: 1. Basic concepts; 2. Kinetic equation; 3. Averaging; 4. Conservation laws and equilibrium; 5. Relativistic BBGKY hierarchy; 6. Basic parameters in gases and plasmas; Part II. Numerical Methods: 7. The basics of computational physics; 8. Direct integration of Boltzmann equations; 9. Multidimensional hydrodynamics; Part III. Applications: 10. Wave dispersion in relativistic plasma; 11. Thermalization in relativistic plasma; 12. Kinetics of particles in strong fields; 13. Compton scattering in astrophysics and cosmology; 14. Self-gravitating systems; 15. Neutrinos, gravitational collapse and supernovae; Appendices; Bibliography; Index.

  4. Collision-Driven Negative-Energy Waves and the Weibel Instability of a Relativistic Electron Beam in a Quasineutral Plasma

    NASA Astrophysics Data System (ADS)

    Karmakar, Anupam; Kumar, Naveen; Shvets, Gennady; Polomarov, Oleg; Pukhov, Alexander

    2008-12-01

    A new model describing the Weibel instability of a relativistic electron beam propagating through a resistive plasma is developed. For finite-temperature beams, a new class of negative-energy magnetosound waves is identified, whose growth due to collisional dissipation destabilizes the beam-plasma system even for high beam temperatures. We perform 2D and 3D particle-in-cell simulations and show that in 3D geometry the Weibel instability persists even for collisionless background plasma. The anomalous plasma resistivity in 3D is caused by the two-stream instability.

  5. The development and investigation of a strongly non-equilibrium model of heat transfer in fluid with allowance for the spatial and temporal non-locality and energy dissipation

    NASA Astrophysics Data System (ADS)

    Kudinov, V. A.; Eremin, A. V.; Kudinov, I. V.

    2017-11-01

    The differential equation of heat transfer with allowance for energy dissipation and spatial and temporal nonlocality has been derived by the relaxation of heat flux and temperature gradient in the Fourier law formula for the heat flux at the use of the heat balance equation. An investigation of the numerical solution of the heat-transfer problem at a laminar fluid flow in a plane duct has shown the impossibility of an instantaneous acceptance of the boundary condition of the first kind — the process of its settling at small values of relaxation coefficients takes a finite time interval the duration of which is determined by the thermophysical and relaxation properties of the fluid. At large values of relaxation coefficients, the use of the boundary condition of the first kind is possible only at Fo → ∞. The friction heat consideration leads to the alteration of temperature profiles, which is due to the rise of the intervals of elevated temperatures in the zone of the maximal velocity gradients. With increasing relaxation coefficients, the smoothing of temperature profiles occurs, and at their certain high values, the fluid cooling occurs at a gradientless temperature variation along the transverse spatial variable and, consequently, the temperature proves to be dependent only on time and on longitudinal coordinate.

  6. Dissipative inertial transport patterns near coherent Lagrangian eddies in the ocean.

    PubMed

    Beron-Vera, Francisco J; Olascoaga, María J; Haller, George; Farazmand, Mohammad; Triñanes, Joaquín; Wang, Yan

    2015-08-01

    Recent developments in dynamical systems theory have revealed long-lived and coherent Lagrangian (i.e., material) eddies in incompressible, satellite-derived surface ocean velocity fields. Paradoxically, observed drifting buoys and floating matter tend to create dissipative-looking patterns near oceanic eddies, which appear to be inconsistent with the conservative fluid particle patterns created by coherent Lagrangian eddies. Here, we show that inclusion of inertial effects (i.e., those produced by the buoyancy and size finiteness of an object) in a rotating two-dimensional incompressible flow context resolves this paradox. Specifically, we obtain that anticyclonic coherent Lagrangian eddies attract (repel) negatively (positively) buoyant finite-size particles, while cyclonic coherent Lagrangian eddies attract (repel) positively (negatively) buoyant finite-size particles. We show how these results explain dissipative-looking satellite-tracked surface drifter and subsurface float trajectories, as well as satellite-derived Sargassum distributions.

  7. Relativistic Linear Restoring Force

    ERIC Educational Resources Information Center

    Clark, D.; Franklin, J.; Mann, N.

    2012-01-01

    We consider two different forms for a relativistic version of a linear restoring force. The pair comes from taking Hooke's law to be the force appearing on the right-hand side of the relativistic expressions: d"p"/d"t" or d"p"/d["tau"]. Either formulation recovers Hooke's law in the non-relativistic limit. In addition to these two forces, we…

  8. Nonlinear multimodal model for TLD of irregular tank geometry and small fluid depth

    NASA Astrophysics Data System (ADS)

    Love, J. S.; Tait, M. J.

    2013-11-01

    Tuned liquid dampers (TLDs) utilize sloshing fluid to absorb and dissipate structural vibrational energy. TLDs of irregular or complex tank geometry may be required in practice to avoid tank interference with fixed structural or mechanical components. The literature offers few analytical models to predict the response of this type of TLD, particularly when the fluid depth is small. In this paper, a multimodal model is developed utilizing a Boussinesq-type modal theory which is valid for small TLD fluid depths. The Bateman-Luke variational principle is employed to develop a system of coupled nonlinear ordinary differential equations which describe the fluid response when the tank is subjected to base excitation. Energy dissipation is incorporated into the model from the inclusion of damping screens. The fluid model is used to describe the response of a 2D structure-TLD system when the structure is subjected to external loading and the TLD tank geometry is irregular.

  9. Analytical attractor and the divergence of the slow-roll expansion in relativistic hydrodynamics

    NASA Astrophysics Data System (ADS)

    Denicol, Gabriel S.; Noronha, Jorge

    2018-03-01

    We find the general analytical solution of the viscous relativistic hydrodynamic equations (in the absence of bulk viscosity and chemical potential) for a Bjorken expanding fluid with an ideal gas equation of state and a constant shear viscosity relaxation time. We analytically determine the hydrodynamic attractor of this fluid and discuss its properties. We show for the first time that the slow-roll expansion, a commonly used approach to characterize the attractor, diverges. This is shown to hold also in a conformal plasma. The gradient expansion is found to converge in an example where causality and stability are violated.

  10. Influence of Dissipative Particle Dynamics parameters and wall models on planar micro-channel flows

    NASA Astrophysics Data System (ADS)

    Wang, Yuyi; She, Jiangwei; Zhou, Zhe-Wei; microflow Group Team

    2017-11-01

    Dissipative Particle Dynamics (DPD) is a very effective approach in simulating mesoscale hydrodynamics. The influence of solid boundaries and DPD parameters are typically very strong in DPD simulations. The present work studies a micro-channel Poisseuille flow. Taking the neutron scattering experiment and molecular dynamics simulation result as bench mark, the DPD results of density distribution and velocity profile are systematically studied. The influence of different levels of coarse-graining, the number densities of wall and fluid, conservative force coefficients, random and dissipative force coefficients, different wall model and reflective boundary conditions are discussed. Some mechanisms behind such influences are discussed and the artifacts in the simulation are identified with the bench mark. Chinese natural science foundation (A020405).

  11. Dissipation of Energy in a Concentric ER Clutch and its Refined Quasi-Static Model

    NASA Astrophysics Data System (ADS)

    Oravský, Vladimír

    A concentric electrorheological clutch (ERC) constituting the central part of a broader system: electro-hydro-aggregate (EHA) with an electrodrive (ED) on one side and a loading machine (brake B) on the other side is considered. The corresponding quasi-static model (at constant load and speed) is investigated and refined by insertion of power absorbed by electrorheological fluid (ERF). This increases the number of nondimensional parameters of the model from 8 to 12. Classification of several kinds of dissipation of energy in ERC is presented. Description and analysis of dissipation of the first kind are given more in detail and illustrated by synoptical diagrams. Also two definitions of efficiency of ERC are introduced and discussed.

  12. Energy dissipation in substorms

    NASA Technical Reports Server (NTRS)

    Weiss, Loretta A.; Reiff, P. H.; Moses, J. J.; Heelis, R. A.; Moore, B. D.

    1992-01-01

    The energy dissipated by substorms manifested in several ways is discussed: the Joule dissipation in the ionosphere; the energization of the ring current by the injection of plasma sheet particles; auroral election and ion acceleration; plasmoid ejection; and plasma sheet ion heating during the recovery phase. For each of these energy dissipation mechanisms, a 'rule of thumb' formula is given, and a typical dissipation rate and total energy expenditure is estimated. The total energy dissipated as Joule heat (approximately) 2 x 10(exp 15) is found about twice the ring current injection term, and may be even larger if small scale effects are included. The energy expended in auroral electron precipitation, on the other hand, is smaller than the Joule heating by a factor of five. The energy expended in refilling and heating the plasma sheets is estimated to be approximately 5 x 10(exp 14)J, while the energy lost due to plasmoid ejection is between (approximately) (10 exp 13)(exp 14)J.

  13. [The design of heat dissipation of the field low temperature box for storage and transportation].

    PubMed

    Wei, Jiancang; Suin, Jianjun; Wu, Jian

    2013-02-01

    Because of the compact structure of the field low temperature box for storage and transportation, which is due to the same small space where the compressor, the condenser, the control circuit, the battery and the power supply device are all placed in, the design for heat dissipation and ventilation is of critical importance for the stability and reliability of the box. Several design schemes of the heat dissipation design of the box were simulated using the FLOEFD hot fluid analysis software in this study. Different distributions of the temperature field in every design scheme were constructed intimately in the present study. It is well concluded that according to the result of the simulation analysis, the optimal heat dissipation design is decent for the field low temperature box for storage and transportation, and the box can operate smoothly for a long time using the results of the design.

  14. Numerical analysis of scalar dissipation length-scales and their scaling properties

    NASA Astrophysics Data System (ADS)

    Vaishnavi, Pankaj; Kronenburg, Andreas

    2006-11-01

    Scalar dissipation rate, χ, is fundamental to the description of scalar-mixing in turbulent non-premixed combustion. Most contributions to the statistics for χ come from the finest turbulent mixing-scales and thus its adequate characterisation requires good resolution. Reliable χ-measurement is complicated by the trade-off between higher resolution and greater signal-to-noise ratio. Thus, the present numerical study utilises the error-free mixture fraction, Z, and fluid mechanical data from the turbulent reacting jet DNS of Pantano (2004). The aim is to quantify the resolution requirements for χ-measurement in terms of easily measurable properties of the flow like the integral-scale Reynolds number, Reδ, using spectral and spatial-filtering [cf. Barlow and Karpetis (2005)] analyses. Analysis of the 1-D cross-stream dissipation spectra enables the estimation of the dissipation length scales. It is shown that these spectrally-computed scales follow the expected Kolmogorov scaling with Reδ-0.75 . The work also involves local smoothening of the instantaneous χ-field over a non-overlapping spatial-interval (filter-width, wf), to study the smoothened χ-value as a function of wf, as wf is extrapolated to the smallest scale of interest. The dissipation length-scales thus captured show a stringent Reδ-1 scaling, compared to the usual Kolmogorov-type. This concurs with the criterion of 'resolution adequacy' of the DNS, as set out by Sreenivasan (2004) using the theory of multi-fractals.

  15. Phase-Controlled Bistability of a Dark Soliton Train in a Polariton Fluid.

    PubMed

    Goblot, V; Nguyen, H S; Carusotto, I; Galopin, E; Lemaître, A; Sagnes, I; Amo, A; Bloch, J

    2016-11-18

    We use a one-dimensional polariton fluid in a semiconductor microcavity to explore the nonlinear dynamics of counterpropagating interacting Bose fluids. The intrinsically driven-dissipative nature of the polariton fluid allows us to use resonant pumping to impose a phase twist across the fluid. When the polariton-polariton interaction energy becomes comparable to the kinetic energy, linear interference fringes transform into a train of solitons. A novel type of bistable behavior controlled by the phase twist across the fluid is experimentally evidenced.

  16. Spatial nonlinear absorption of Alfven waves by dissipative plasma taking account bremsstrahlung

    NASA Astrophysics Data System (ADS)

    Taiurskii, A. A.; Gavrikov, M. B.

    2016-10-01

    We study numerically the nonlinear absorption of a plane Alfven wave falling on the stationary boundary of dissipative plasma. This absorption is caused by such factors as the magnetic viscosity, hydrodynamic viscosity, and thermal conductivity of electrons and ions, bremsstrahlung and energy exchange between plasma components. The relevance of this investigation is due to some works, published in 2011, with regard to the heating mechanism of the solar corona and solar wind generation as a result of the absorption of plasma Alfven waves generated in the lower significantly colder layers of the Sun. Numerical analysis shows that the absorption of Alfven waves occurs at wavelengths of the order of skin depth, in which case the classical MHD equations are inapplicable. Therefore, our research is based on equations of two-fluid magnetohydrodynamics that take into account the inertia of the electrons. The implicit difference scheme proposed here for calculating plane-parallel flows of two-fluid plasma reveals a number of important patterns of absorption and thus allows us to study the dependence of the absorption on the Alfven wave frequency and the electron thermal conductivity and viscosity, as well as to evaluate the depth and the velocity of plasma heating during the penetration of Alfven waves interacting with dissipative plasma.

  17. Process viscometry in flows of non-Newtonian fluids using an anchor agitator

    NASA Astrophysics Data System (ADS)

    Jo, Hae Jin; Jang, Hye Kyeong; Kim, Young Ju; Hwang, Wook Ryol

    2017-11-01

    In this work, we present a viscosity measurement technique for inelastic non-Newtonian fluids directly in flows of anchor agitators that are commonly used in highly viscous fluid mixing particularly with yield stress. A two-blade anchor impeller is chosen as a model flow system and Carbopol 940 solutions and Xanthan gum solutions with various concentrations are investigated as test materials. Following the Metzner-Otto correlation, the effective shear rate constant and the energy dissipation rate constant have been estimated experimentally by establishing (i) the relationship between the power number and the Reynolds number using a reference Newtonian fluid and (ii) the proportionality between the effective shear rate and the impeller speed with a reference non-Newtonian fluid. The effective viscosity that reproduces the same amount of the energy dissipation rate, corresponding to that of Newtonian fluid, has been obtained by measuring torques for various impeller speeds and the accuracy in the viscosity prediction as a function of the shear rate has been compared with the rheological measurement. We report that the process viscometry with the anchor impeller yields viscosity estimation within the relative error of 20% with highly shear-thinning fluids.

  18. A dissipative particle dynamics method for arbitrarily complex geometries

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Bian, Xin; Tang, Yu-Hang; Karniadakis, George Em

    2018-02-01

    Dissipative particle dynamics (DPD) is an effective Lagrangian method for modeling complex fluids in the mesoscale regime but so far it has been limited to relatively simple geometries. Here, we formulate a local detection method for DPD involving arbitrarily shaped geometric three-dimensional domains. By introducing an indicator variable of boundary volume fraction (BVF) for each fluid particle, the boundary of arbitrary-shape objects is detected on-the-fly for the moving fluid particles using only the local particle configuration. Therefore, this approach eliminates the need of an analytical description of the boundary and geometry of objects in DPD simulations and makes it possible to load the geometry of a system directly from experimental images or computer-aided designs/drawings. More specifically, the BVF of a fluid particle is defined by the weighted summation over its neighboring particles within a cutoff distance. Wall penetration is inferred from the value of the BVF and prevented by a predictor-corrector algorithm. The no-slip boundary condition is achieved by employing effective dissipative coefficients for liquid-solid interactions. Quantitative evaluations of the new method are performed for the plane Poiseuille flow, the plane Couette flow and the Wannier flow in a cylindrical domain and compared with their corresponding analytical solutions and (high-order) spectral element solution of the Navier-Stokes equations. We verify that the proposed method yields correct no-slip boundary conditions for velocity and generates negligible fluctuations of density and temperature in the vicinity of the wall surface. Moreover, we construct a very complex 3D geometry - the "Brown Pacman" microfluidic device - to explicitly demonstrate how to construct a DPD system with complex geometry directly from loading a graphical image. Subsequently, we simulate the flow of a surfactant solution through this complex microfluidic device using the new method. Its

  19. General-relativistic pulsar magnetospheric emission

    NASA Astrophysics Data System (ADS)

    Pétri, J.

    2018-06-01

    Most current pulsar emission models assume photon production and emission within the magnetosphere. Low-frequency radiation is preferentially produced in the vicinity of the polar caps, whereas the high-energy tail is shifted to regions closer but still inside the light cylinder. We conducted a systematic study of the merit of several popular radiation sites like the polar cap, the outer gap, and the slot gap. We computed sky maps emanating from each emission site according to a prescribed distribution function for the emitting particles made of an electron/positron mixture. Calculations are performed using a three-dimensional integration of the plasma emissivity in the vacuum electromagnetic field of a rotating and centred general-relativistic dipole. We compare Newtonian electromagnetic fields to their general-relativistic counterpart. In the latter case, light bending is also taken into account. As a typical example, light curves and sky maps are plotted for several power-law indices of the particle distribution function. The detailed pulse profiles strongly depend on the underlying assumption about the fluid motion subject to strong electromagnetic fields. This electromagnetic topology enforces the photon propagation direction directly, or indirectly, from aberration effects. We also discuss the implication of a net stellar electric charge on to sky maps. Taking into account, the electric field strongly affects the light curves originating close to the light cylinder, where the electric field strength becomes comparable to the magnetic field strength.

  20. Inferring energy dissipation from violation of the fluctuation-dissipation theorem

    NASA Astrophysics Data System (ADS)

    Wang, Shou-Wen

    2018-05-01

    The Harada-Sasa equality elegantly connects the energy dissipation rate of a moving object with its measurable violation of the Fluctuation-Dissipation Theorem (FDT). Although proven for Langevin processes, its validity remains unclear for discrete Markov systems whose forward and backward transition rates respond asymmetrically to external perturbation. A typical example is a motor protein called kinesin. Here we show generally that the FDT violation persists surprisingly in the high-frequency limit due to the asymmetry, resulting in a divergent FDT violation integral and thus a complete breakdown of the Harada-Sasa equality. A renormalized FDT violation integral still well predicts the dissipation rate when each discrete transition produces a small entropy in the environment. Our study also suggests a way to infer this perturbation asymmetry based on the measurable high-frequency-limit FDT violation.

  1. Impact of synovial fluid flow on temperature regulation in knee cartilage.

    PubMed

    Moghadam, Mohamadreza Nassajian; Abdel-Sayed, Philippe; Camine, Valérie Malfroy; Pioletti, Dominique P

    2015-01-21

    Several studies have reported an increase of temperature in cartilage submitted to cyclic sinusoidal loading. The temperature increase is in part due to the viscous behavior of this tissue, which partially dissipates the input mechanical energy into heat. While the synovial fluid flow within the intra-articular gap and inside the porous cartilage is supposed to play an important role in the regulation of the cartilage temperature, no specific study has evaluated this aspect. In the present numerical study, a poroelastic model of the knee cartilage is developed to evaluate first the temperature increase in the cartilage due to dissipation and second the impact of the synovial fluid flow in the cartilage heat transfer phenomenon. Our results showed that, the local temperature is effectively increased in knee cartilage due to its viscous behavior. The synovial fluid flow cannot significantly preventing this phenomenon. We explain this result by the low permeability of cartilage and the moderate fluid exchange at the surface of cartilage under deformation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. A Universal Scaling for the Energetics of Relativistic Jets From Black Hole Systems

    NASA Technical Reports Server (NTRS)

    Nemmen, R. S.; Georganopoulos, M.; Guiriec, S.; Meyer, E. T.; Gehrels, N.; Sambruna, R. M.

    2013-01-01

    Black holes generate collimated, relativistic jets which have been observed in gamma-ray bursts (GRBs), microquasars, and at the center of some galaxies (active galactic nuclei; AGN). How jet physics scales from stellar black holes in GRBs to the supermassive ones in AGNs is still unknown. Here we show that jets produced by AGNs and GRBs exhibit the same correlation between the kinetic power carried by accelerated particles and the gamma-ray luminosity, with AGNs and GRBs lying at the low and high-luminosity ends, respectively, of the correlation. This result implies that the efficiency of energy dissipation in jets produced in black hole systems is similar over 10 orders of magnitude in jet power, establishing a physical analogy between AGN and GRBs.

  3. A universal scaling for the energetics of relativistic jets from black hole systems.

    PubMed

    Nemmen, R S; Georganopoulos, M; Guiriec, S; Meyer, E T; Gehrels, N; Sambruna, R M

    2012-12-14

    Black holes generate collimated, relativistic jets, which have been observed in gamma-ray bursts (GRBs), microquasars, and at the center of some galaxies [active galactic nuclei (AGN)]. How jet physics scales from stellar black holes in GRBs to the supermassive ones in AGN is still unknown. Here, we show that jets produced by AGN and GRBs exhibit the same correlation between the kinetic power carried by accelerated particles and the gamma-ray luminosity, with AGN and GRBs lying at the low- and high-luminosity ends, respectively, of the correlation. This result implies that the efficiency of energy dissipation in jets produced in black hole systems is similar over 10 orders of magnitude in jet power, establishing a physical analogy between AGN and GRBs.

  4. Possible signatures of dissipation from time-series analysis techniques using a turbulent laboratory magnetohydrodynamic plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaffner, D. A.; Brown, M. R.; Rock, A. B.

    The frequency spectrum of magnetic fluctuations as measured on the Swarthmore Spheromak Experiment is broadband and exhibits a nearly Kolmogorov 5/3 scaling. It features a steepening region which is indicative of dissipation of magnetic fluctuation energy similar to that observed in fluid and magnetohydrodynamic turbulence systems. Two non-spectrum based time-series analysis techniques are implemented on this data set in order to seek other possible signatures of turbulent dissipation beyond just the steepening of fluctuation spectra. Presented here are results for the flatness, permutation entropy, and statistical complexity, each of which exhibits a particular character at spectral steepening scales which canmore » then be compared to the behavior of the frequency spectrum.« less

  5. Explosive X-point collapse in relativistic magnetically dominated plasma

    NASA Astrophysics Data System (ADS)

    Lyutikov, Maxim; Sironi, Lorenzo; Komissarov, Serguei S.; Porth, Oliver

    2017-12-01

    The extreme properties of the gamma-ray flares in the Crab nebula present a clear challenge to our ideas on the nature of particle acceleration in relativistic astrophysical plasma. It seems highly unlikely that standard mechanisms of stochastic type are at work here and hence the attention of theorists has switched to linear acceleration in magnetic reconnection events. In this series of papers, we attempt to develop a theory of explosive magnetic reconnection in highly magnetized relativistic plasma which can explain the extreme parameters of the Crab flares. In the first paper, we focus on the properties of the X-point collapse. Using analytical and numerical methods (fluid and particle-in-cell simulations) we extend Syrovatsky's classical model of such collapse to the relativistic regime. We find that the collapse can lead to the reconnection rate approaching the speed of light on macroscopic scales. During the collapse, the plasma particles are accelerated by charge-starved electric fields, which can reach (and even exceed) values of the local magnetic field. The explosive stage of reconnection produces non-thermal power-law tails with slopes that depend on the average magnetization . For sufficiently high magnetizations and vanishing guide field, the non-thermal particle spectrum consists of two components: a low-energy population with soft spectrum that dominates the number census; and a high-energy population with hard spectrum that possesses all the properties needed to explain the Crab flares.

  6. Relativistic runaway ionization fronts.

    PubMed

    Luque, A

    2014-01-31

    We investigate the first example of self-consistent impact ionization fronts propagating at relativistic speeds and involving interacting, high-energy electrons. These fronts, which we name relativistic runaway ionization fronts, show remarkable features such as a bulk speed within less than one percent of the speed of light and the stochastic selection of high-energy electrons for further acceleration, which leads to a power-law distribution of particle energies. A simplified model explains this selection in terms of the overrun of Coulomb-scattered electrons. Appearing as the electromagnetic interaction between electrons saturates the exponential growth of a relativistic runaway electron avalanche, relativistic runaway ionization fronts may occur in conjunction with terrestrial gamma-ray flashes and thus explain recent observations of long, power-law tails in the terrestrial gamma-ray flash energy spectrum.

  7. Chameleon scalar fields in relativistic gravitational backgrounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsujikawa, Shinji; Tamaki, Takashi; Tavakol, Reza, E-mail: shinji@rs.kagu.tus.ac.jp, E-mail: tamaki@gravity.phys.waseda.ac.jp, E-mail: r.tavakol@qmul.ac.uk

    2009-05-15

    We study the field profile of a scalar field {phi} that couples to a matter fluid (dubbed a chameleon field) in the relativistic gravitational background of a spherically symmetric spacetime. Employing a linear expansion in terms of the gravitational potential {Phi}{sub c} at the surface of a compact object with a constant density, we derive the thin-shell field profile both inside and outside the object, as well as the resulting effective coupling with matter, analytically. We also carry out numerical simulations for the class of inverse power-law potentials V({phi}) = M{sup 4+n}{phi}{sup -n} by employing the information provided by ourmore » analytical solutions to set the boundary conditions around the centre of the object and show that thin-shell solutions in fact exist if the gravitational potential {Phi}{sub c} is smaller than 0.3, which marginally covers the case of neutron stars. Thus the chameleon mechanism is present in the relativistic gravitational backgrounds, capable of reducing the effective coupling. Since thin-shell solutions are sensitive to the choice of boundary conditions, our analytic field profile is very helpful to provide appropriate boundary conditions for {Phi}{sub c}{approx}« less

  8. Relativistic electron beam generator

    DOEpatents

    Mooney, L.J.; Hyatt, H.M.

    1975-11-11

    A relativistic electron beam generator for laser media excitation is described. The device employs a diode type relativistic electron beam source having a cathode shape which provides a rectangular output beam with uniform current density.

  9. The fluid dynamics of atmospheric clouds

    NASA Astrophysics Data System (ADS)

    Randall, David A.

    2017-11-01

    Clouds of many types are of leading-order importance for Earth's weather and climate. This importance is most often discussed in terms of the effects of clouds on radiative transfer, but the fluid dynamics of clouds are at least equally significant. Some very small-scale cloud fluid-dynamical processes have significant consequences on the global scale. These include viscous dissipation near falling rain drops, and ``buoyancy reversal'' associated with the evaporation of liquid water. Major medium-scale cloud fluid-dynamical processes include cumulus convection and convective aggregation. Planetary-scale processes that depend in an essential way on cloud fluid dynamics include the Madden-Julian Oscillation, which is one of the largest and most consequential weather systems on Earth. I will attempt to give a coherent introductory overview of this broad range of phenomena.

  10. ENERGY DISSIPATION PROCESSES IN SOLAR WIND TURBULENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Y.; Wei, F. S.; Feng, X. S.

    Turbulence is a chaotic flow regime filled by irregular flows. The dissipation of turbulence is a fundamental problem in the realm of physics. Theoretically, dissipation ultimately cannot be achieved without collisions, and so how turbulent kinetic energy is dissipated in the nearly collisionless solar wind is a challenging problem. Wave particle interactions and magnetic reconnection (MR) are two possible dissipation mechanisms, but which mechanism dominates is still a controversial topic. Here we analyze the dissipation region scaling around a solar wind MR region. We find that the MR region shows unique multifractal scaling in the dissipation range, while the ambientmore » solar wind turbulence reveals a monofractal dissipation process for most of the time. These results provide the first observational evidences for intermittent multifractal dissipation region scaling around a MR site, and they also have significant implications for the fundamental energy dissipation process.« less

  11. Viscous dissipation and Joule heating effects in MHD 3D flow with heat and mass fluxes

    NASA Astrophysics Data System (ADS)

    Muhammad, Taseer; Hayat, Tasawar; Shehzad, Sabir Ali; Alsaedi, Ahmed

    2018-03-01

    The present research explores the three-dimensional stretched flow of viscous fluid in the presence of prescribed heat (PHF) and concentration (PCF) fluxes. Mathematical formulation is developed in the presence of chemical reaction, viscous dissipation and Joule heating effects. Fluid is electrically conducting in the presence of an applied magnetic field. Appropriate transformations yield the nonlinear ordinary differential systems. The resulting nonlinear system has been solved. Graphs are plotted to examine the impacts of physical parameters on the temperature and concentration distributions. Skin friction coefficients and local Nusselt and Sherwood numbers are computed and analyzed.

  12. Rheology of Active Fluids

    NASA Astrophysics Data System (ADS)

    Saintillan, David

    2018-01-01

    An active fluid denotes a viscous suspension of particles, cells, or macromolecules able to convert chemical energy into mechanical work by generating stresses on the microscale. By virtue of this internal energy conversion, these systems display unusual macroscopic rheological signatures, including a curious transition to an apparent superfluid-like state where internal activity exactly compensates viscous dissipation. These behaviors are unlike those of classical complex fluids and result from the coupling of particle configurations with both externally applied flows and internally generated fluid disturbances. Focusing on the well-studied example of a suspension of microswimmers, this review summarizes recent experiments, models, and simulations in this area and highlights the critical role played by the rheological response of these active materials in a multitude of phenomena, from the enhanced transport of passive suspended objects to the emergence of spontaneous flows and collective motion.

  13. Relativistic GLONASS and geodesy

    NASA Astrophysics Data System (ADS)

    Mazurova, E. M.; Kopeikin, S. M.; Karpik, A. P.

    2016-12-01

    GNSS technology is playing a major role in applications to civil, industrial and scientific areas. Nowadays, there are two fully functional GNSS: American GPS and Russian GLONASS. Their data processing algorithms have been historically based on the Newtonian theory of space and time with only a few relativistic effects taken into account as small corrections preventing the system from degradation on a fairly long time. Continuously growing accuracy of geodetic measurements and atomic clocks suggests reconsidering the overall approach to the GNSS theoretical model based on the Einstein theory of general relativity. This is essentially more challenging but fundamentally consistent theoretical approach to relativistic space geodesy. In this paper, we overview the basic principles of the relativistic GNSS model and explain the advantages of such a system for GLONASS and other positioning systems. Keywords: relativistic GLONASS, Einstein theory of general relativity.

  14. Testing the role of molecular physics in dissipative divertor operations through helium plasmas at DIII-D

    DOE PAGES

    Canik, John M.; Briesemeister, Alexis R.; McLean, Adam G.; ...

    2017-05-10

    Recent experiments in DIII-D helium plasmas are examined to resolve the role of atomic and molecular physics in major discrepancies between experiment and modeling of dissipative divertor operation. Helium operation removes the complicated molecular processes of deuterium plasmas that are a prime candidate for the inability of standard fluid models to reproduce dissipative divertor operation, primarily the consistent under-prediction of radiated power. Modeling of these experiments shows that the full divertor radiation can be accounted for, but only if measures are taken to ensure that the model reproduces the measured divertor density. Relying on upstream measurements instead results in amore » lower divertor density and radiation than is measured, indicating a need for improved modeling of the connection between the diverter and the upstream scrape-off layer. Furthermore, these results show that fluid models are able to quantitatively describe the divertor-region plasma, including radiative losses, and indicate that efforts to improve the fidelity of the molecular deuterium models are likely to help resolve the discrepancy in radiation for deuterium plasmas.« less

  15. Relativistic Coulomb Fission

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    1992-01-01

    Nuclear fission reactions induced by the electromagnetic field of relativistic nuclei are studied for energies relevant to present and future relativistic heavy ion accelerators. Cross sections are calculated for U-238 and Pu-239 fission induced by C-12, Si-28, Au-197, and U-238 projectiles. It is found that some of the cross sections can exceed 10 b.

  16. Effect of fluid-colloid interactions on the mobility of a thermophoretic microswimmer in non-ideal fluids.

    PubMed

    Fedosov, Dmitry A; Sengupta, Ankush; Gompper, Gerhard

    2015-09-07

    Janus colloids propelled by light, e.g., thermophoretic particles, offer promising prospects as artificial microswimmers. However, their swimming behavior and its dependence on fluid properties and fluid-colloid interactions remain poorly understood. Here, we investigate the behavior of a thermophoretic Janus colloid in its own temperature gradient using numerical simulations. The dissipative particle dynamics method with energy conservation is used to investigate the behavior in non-ideal and ideal-gas like fluids for different fluid-colloid interactions, boundary conditions, and temperature-controlling strategies. The fluid-colloid interactions appear to have a strong effect on the colloid behavior, since they directly affect heat exchange between the colloid surface and the fluid. The simulation results show that a reduction of the heat exchange at the fluid-colloid interface leads to an enhancement of colloid's thermophoretic mobility. The colloid behavior is found to be different in non-ideal and ideal fluids, suggesting that fluid compressibility plays a significant role. The flow field around the colloid surface is found to be dominated by a source-dipole, in agreement with the recent theoretical and simulation predictions. Finally, different temperature-control strategies do not appear to have a strong effect on the colloid's swimming velocity.

  17. The formation of relativistic plasma structures and their potential role in the generation of cosmic ray electrons

    NASA Astrophysics Data System (ADS)

    Dieckmann, M. E.

    2008-11-01

    Recent particle-in-cell (PIC) simulation studies have addressed particle acceleration and magnetic field generation in relativistic astrophysical flows by plasma phase space structures. We discuss the astrophysical environments such as the jets of compact objects, and we give an overview of the global PIC simulations of shocks. These reveal several types of phase space structures, which are relevant for the energy dissipation. These structures are typically coupled in shocks, but we choose to consider them here in an isolated form. Three structures are reviewed. (1) Simulations of interpenetrating or colliding plasma clouds can trigger filamentation instabilities, while simulations of thermally anisotropic plasmas observe the Weibel instability. Both transform a spatially uniform plasma into current filaments. These filament structures cause the growth of the magnetic fields. (2) The development of a modified two-stream instability is discussed. It saturates first by the formation of electron phase space holes. The relativistic electron clouds modulate the ion beam and a secondary, spatially localized electrostatic instability grows, which saturates by forming a relativistic ion phase space hole. It accelerates electrons to ultra-relativistic speeds. (3) A simulation is also revised, in which two clouds of an electron-ion plasma collide at the speed 0.9c. The inequal densities of both clouds and a magnetic field that is oblique to the collision velocity vector result in waves with a mixed electrostatic and electromagnetic polarity. The waves give rise to growing corkscrew distributions in the electrons and ions that establish an equipartition between the electron, the ion and the magnetic energy. The filament-, phase space hole- and corkscrew structures are discussed with respect to electron acceleration and magnetic field generation.

  18. Relativistic impulse dynamics.

    PubMed

    Swanson, Stanley M

    2011-08-01

    Classical electrodynamics has some annoying rough edges. The self-energy of charges is infinite without a cutoff. The calculation of relativistic trajectories is difficult because of retardation and an average radiation reaction term. By reconceptuallizing electrodynamics in terms of exchanges of impulses rather than describing it by forces and potentials, we eliminate these problems. A fully relativistic theory using photonlike null impulses is developed. Numerical calculations for a two-body, one-impulse-in-transit model are discussed. A simple relationship between center-of-mass scattering angle and angular momentum was found. It reproduces the Rutherford cross section at low velocities and agrees with the leading term of relativistic distinguishable-particle quantum cross sections (Møller, Mott) when the distance of closest approach is larger than the Compton wavelength of the particle. Magnetism emerges as a consequence of viewing retarded and advanced interactions from the vantage point of an instantaneous radius vector. Radiation reaction becomes the local conservation of energy-momentum between the radiating particle and the emitted impulse. A net action is defined that could be used in developing quantum dynamics without potentials. A reinterpretation of Newton's laws extends them to relativistic motion.

  19. Heat transfer within hydrodissection fluids: An analysis of thermal conduction and convection using liquid and gel materials.

    PubMed

    Johnson, Alexander; Brace, Christopher

    2015-01-01

    Interventional oncology procedures such as thermal ablation are becoming widely used for many tumours in the liver, kidney and lung. Thermal ablation refers to the focal destruction of tissue by generating cytotoxic temperatures in the treatment zone. Hydrodissection - separating tissues with fluids - protects healthy tissues adjacent to the ablation treatment zone to improve procedural safety, and facilitate more aggressive power application or applicator placement. However, fluids such as normal saline and 5% dextrose in water (D5W) can migrate into the peritoneum, reducing their protective efficacy. As an alternative, a thermo-gelable poloxamer 407 (P407) solution has been recently developed to facilitate hydrodissection procedures. We hypothesise that the P407 gel material does not provide convective heat dissipation from the ablation site, and therefore may alter the heat transfer dynamics compared to liquid materials during hydrodissection-assisted thermal ablation. The purpose of this study was to investigate the heat dissipation mechanics within D5W, liquid P407 and gel P407 hydrodissection barriers. Overall it was shown that the gel P407 dissipated heat primarily through conduction, whereas the liquid P407 and D5W dissipated heat through convection. Furthermore, the rate of temperature change within the gel P407 was greater than liquid P407 and D5W. Testing to evaluate the in vivo efficacy of the fluids with different modes of heat dissipation seems warranted for further study.

  20. Dissipative structures in magnetorotational turbulence

    NASA Astrophysics Data System (ADS)

    Ross, Johnathan; Latter, Henrik N.

    2018-07-01

    Via the process of accretion, magnetorotational turbulence removes energy from a disc's orbital motion and transforms it into heat. Turbulent heating is far from uniform and is usually concentrated in small regions of intense dissipation, characterized by abrupt magnetic reconnection and higher temperatures. These regions are of interest because they might generate non-thermal emission, in the form of flares and energetic particles, or thermally process solids in protoplanetary discs. Moreover, the nature of the dissipation bears on the fundamental dynamics of the magnetorotational instability (MRI) itself: local simulations indicate that the large-scale properties of the turbulence (e.g. saturation levels and the stress-pressure relationship) depend on the short dissipative scales. In this paper we undertake a numerical study of how the MRI dissipates and the small-scale dissipative structures it employs to do so. We use the Godunov code RAMSES and unstratified compressible shearing boxes. Our simulations reveal that dissipation is concentrated in ribbons of strong magnetic reconnection that are significantly elongated in azimuth, up to a scale height. Dissipative structures are hence meso-scale objects, and potentially provide a route by which large scales and small scales interact. We go on to show how these ribbons evolve over time - forming, merging, breaking apart, and disappearing. Finally, we reveal important couplings between the large-scale density waves generated by the MRI and the small-scale structures, which may illuminate the stress-pressure relationship in MRI turbulence.

  1. Temperature uniformity of the bulk medium produced in relativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Ray, Lanny

    2006-10-01

    The success of hydrodynamic models of elliptic flow in relativistic heavy ion collisions is often touted as evidence for rapid thermal equilibration. However, large momentum scale two-particle correlations indicate that a significant fraction of the final-state hadrons retain jet-like correlation structure associated with early stage, non-equilibrated low-Q^2 partons [1]. In addition, correlations on transverse momentum (pt1xpt2) suggest that low-Q^2 parton momentum is partially dissipated causing fluctuations in the effective temperature (thermal and/or collective motion) of the bulk medium[2]. We first show that both global and local temperature fluctuation models describe the available (pt1xpt2) correlation data equally well. Results of an analytical model are then presented which tests the sensitivity of (pt1xpt2) correlations to the first few lower-order cumulants of the two-point temperature distribution for the event ensemble. Unique signatures in the predicted (pt1xpt2) correlations are observed for each cumulant term studied. The prospects for direct measurement of the absolute temperature distribution in the bulk medium produced in relativistic heavy-ion collisions using (pt1xpt2) and other correlation measures are discussed. [1] J. Adams et al., Phys. Rev. C 73, 064907 (2006); J. Phys.G. 32, L37 (2006). [2]J. Adams et al., nucl-ex/0408012.

  2. Relativistic Hydrodynamics for Heavy-Ion Collisions

    ERIC Educational Resources Information Center

    Ollitrault, Jean-Yves

    2008-01-01

    Relativistic hydrodynamics is essential to our current understanding of nucleus-nucleus collisions at ultrarelativistic energies (current experiments at the Relativistic Heavy Ion Collider, forthcoming experiments at the CERN Large Hadron Collider). This is an introduction to relativistic hydrodynamics for graduate students. It includes a detailed…

  3. Effects of local extinction on mixture fraction and scalar dissipation statistics in turbulent nonpremixed flames

    NASA Astrophysics Data System (ADS)

    Attili, Antonio; Bisetti, Fabrizio

    2015-11-01

    Passive scalar and scalar dissipation statistics are investigated in a set of flames achieving a Taylor's scale Reynolds number in the range 100 <=Reλ <= 150 [Attili et al. Comb. Flame 161, 2014; Attili et al. Proc. Comb. Inst. 35, 2015]. The three flames simulated show an increasing level of extinction due to the decrease of the Damköhler number. In the case of negligible extinction, the non-dimensional scalar dissipation is expected to be the same in the three cases. In the present case, the deviations from the aforementioned self-similarity manifests itself as a decrease of the non-dimensional scalar dissipation for increasing level of local extinction, in agreement with recent experiments [Karpetis and Barlow Proc. Comb. Inst. 30, 2005; Sutton and Driscoll Combust. Flame 160, 2013 ]. This is caused by the decrease of molecular diffusion due to the lower temperature in the low Damköhler number cases. Probability density functions of the scalar dissipation χ show rather strong deviations from the log-normal distribution. The left tail of the pdf scales as χ 1 / 2 while the right tail scales as e-cχα, in agreement with results for incompressible turbulence [Schumacher et al. J. Fluid Mech. 531, 2005].

  4. Energy flow and energy dissipation in a free surface.

    NASA Astrophysics Data System (ADS)

    Goldburg, Walter; Cressman, John

    2005-11-01

    Turbulent flows on a free surface are strongly compressible [1] and do not conserve energy in the absence of viscosity as bulk fluids do. Despite violation of assumptions essential to Kolmogorov's theory of 1941 (K41) [2, 3], surface flows show strong agreement with Kolmogorov scaling, though intermittency is larger there. Steady state turbulence is generated in a tank of water, and the spatially averaged energy flux is measured from the four-fifth's law at each instant of time. Likewise, the energy dissipation rate as measured from velocity gradients is also a random variable in this experiment. The energy flux - dissipation rate cross-correlation is measured to be correlated in incompressible bulk flows, but strongly anti-correlated on the surface. We argue that the reason for this discrepancy between surface and bulk flows is due to compressible effects present on the surface. [1] J. R. Cressman, J. Davoudi, W. I. Goldburg, and J. Schumacher, New Journal of Physics, 6, 53, 2004. [2] U. Frisch. Turbulence: The legacy of A. N. Kolmogorov, Cambridge University Press, Cambridge, 1995. [3] A. N. Kolmogorov, Doklady Akad. Nauk SSSR, 32, 16, 1941.

  5. Relativistic Length Agony Continued

    NASA Astrophysics Data System (ADS)

    Redzic, D. V.

    2014-06-01

    We made an attempt to remedy recent confusing treatments of some basic relativistic concepts and results. Following the argument presented in an earlier paper (Redzic 2008b), we discussed the misconceptions that are recurrent points in the literature devoted to teaching relativity such as: there is no change in the object in Special Relativity, illusory character of relativistic length contraction, stresses and strains induced by Lorentz contraction, and related issues. We gave several examples of the traps of everyday language that lurk in Special Relativity. To remove a possible conceptual and terminological muddle, we made a distinction between the relativistic length reduction and relativistic FitzGerald-Lorentz contraction, corresponding to a passive and an active aspect of length contraction, respectively; we pointed out that both aspects have fundamental dynamical contents. As an illustration of our considerations, we discussed briefly the Dewan-Beran-Bell spaceship paradox and the 'pole in a barn' paradox.

  6. Swimming of a sphere in a viscous incompressible fluid with inertia

    NASA Astrophysics Data System (ADS)

    Felderhof, B. U.; Jones, R. B.

    2017-08-01

    The swimming of a sphere immersed in a viscous incompressible fluid with inertia is studied for surface modulations of small amplitude on the basis of the Navier-Stokes equations. The mean swimming velocity and the mean rate of dissipation are expressed as quadratic forms in term of the surface displacements. With a choice of a basis set of modes the quadratic forms correspond to two Hermitian matrices. Optimization of the mean swimming velocity for given rate of dissipation requires the solution of a generalized eigenvalue problem involving the two matrices. It is found for surface modulations of low multipole order that the optimal swimming efficiency depends in intricate fashion on a dimensionless scale number involving the radius of the sphere, the period of the cycle, and the kinematic viscosity of the fluid.

  7. Leading order relativistic chiral nucleon-nucleon interaction

    NASA Astrophysics Data System (ADS)

    Ren, Xiu-Lei; Li, Kai-Wen; Geng, Li-Sheng; Long, Bingwei; Ring, Peter; Meng, Jie

    2018-01-01

    Motivated by the successes of relativistic theories in studies of atomic/molecular and nuclear systems and the need for a relativistic chiral force in relativistic nuclear structure studies, we explore a new relativistic scheme to construct the nucleon-nucleon interaction in the framework of covariant chiral effective field theory. The chiral interaction is formulated up to leading order with covariant power counting and a Lorentz invariant chiral Lagrangian. We find that the relativistic scheme induces all six spin operators needed to describe the nuclear force. A detailed investigation of the partial wave potentials shows a better description of the {}1S0 and {}3P0 phase shifts than the leading order Weinberg approach, and similar to that of the next-to-leading order Weinberg approach. For the other partial waves with angular momenta J≥slant 1, the relativistic results are almost the same as their leading order non-relativistic counterparts. )

  8. Relativistic Coulomb Excitation within the Time Dependent Superfluid Local Density Approximation

    NASA Astrophysics Data System (ADS)

    Stetcu, I.; Bertulani, C. A.; Bulgac, A.; Magierski, P.; Roche, K. J.

    2015-01-01

    Within the framework of the unrestricted time-dependent density functional theory, we present for the first time an analysis of the relativistic Coulomb excitation of the heavy deformed open shell nucleus 238U. The approach is based on the superfluid local density approximation formulated on a spatial lattice that can take into account coupling to the continuum, enabling self-consistent studies of superfluid dynamics of any nuclear shape. We compute the energy deposited in the target nucleus as a function of the impact parameter, finding it to be significantly larger than the estimate using the Goldhaber-Teller model. The isovector giant dipole resonance, the dipole pygmy resonance, and giant quadrupole modes are excited during the process. The one-body dissipation of collective dipole modes is shown to lead a damping width Γ↓≈0.4 MeV and the number of preequilibrium neutrons emitted has been quantified.

  9. Flow harmonics from self-consistent particlization of a viscous fluid

    NASA Astrophysics Data System (ADS)

    Wolff, Zack; Molnar, Denes

    2017-10-01

    The quantitative extraction of quark-gluon plasma (QGP) properties from heavy-ion data, such as its specific shear viscosity η /s , typically requires comparison to viscous hydrodynamic or "hybrid" hydrodynamics + transport simulations. In either case, one has to convert the fluid to hadrons, yet without additional theory input the conversion is ambiguous for dissipative fluids. Here, shear viscous phase-space corrections calculated using linearized transport theory are applied in Cooper-Frye freeze-out to quantify the effects on anisotropic flow coefficients vn(pT) at the energies available at both the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron Collider. Expanding upon our previous flow harmonics studies [D. Molnar and Z. Wolff, Phys. Rev. C 95, 024903 (2017), 10.1103/PhysRevC.95.024903; Z. Wolff and D. Molnar, J. Phys.: Conf. Ser. 535, 012020 (2014), 10.1088/1742-6596/535/1/012020], we calculate pion and proton v2(pT) , v4(pT) , and v6(pT) , but here we incorporate a hadron gas that is chemically frozen below a temperature of 175 MeV and use hypersurfaces from realistic viscous hydrodynamic simulations. For additive quark model cross sections and relative phase-space corrections with p3 /2 momentum dependence rather than the quadratic Grad form, we find at moderately high transverse momentum noticeably higher v4(pT) and v6(pT) for protons than for pions. In addition, the value of η /s deduced from elliptic flow data differs by nearly 50% from the value extracted using the naive "democratic Grad" form of freeze-out distributions. To facilitate the use of the self-consistent viscous corrections calculated here in hydrodynamic and hybrid calculations, we also present convenient parametrizations of the corrections for the various hadron species.

  10. BOOK REVIEW: Relativistic Figures of Equilibrium

    NASA Astrophysics Data System (ADS)

    Mars, M.

    2009-08-01

    Compact fluid bodies in equilibrium under its own gravitational field are abundant in the Universe and a proper treatment of them can only be carried out using the full theory of General Relativity. The problem is of enormous complexity as it involves two very different regimes, namely the interior and the exterior of the fluid, coupled through the surface of the body. This problem is very challenging both from a purely theoretical point of view, as well as regarding the obtaining of realistic models and the description of their physical properties. It is therefore an excellent piece of news that the book 'Relativistic Figures of Equilibrium' by R Meinel, M Ansorg, A Kleinwächter, G Neugebauer and D Petroff has been recently published. This book approaches the topic in depth and its contents will be of interest to a wide range of scientists working on gravitation, including theoreticians in general relativity, mathematical physicists, astrophysicists and numerical relativists. This is an advanced book that intends to present some of the present-day results on this topic. The most basic results are presented rather succinctly, and without going into the details, of their derivations. Although primarily not intended to serve as a textbook, the presentation is nevertheless self-contained and can therefore be of interest both for experts on the field as well as for anybody wishing to learn more about rotating self-gravitating compact bodies in equilibrium. It should be remarked, however, that this book makes a rather strong selection of topics and concentrates fundamentally on presenting the main results obtained by the authors during their research in this field. The book starts with a chapter where the fundamental aspects of rotating fluids in equilibrium, including its thermodynamic properties, are summarized. Of particular interest are the so-called mass-shedding limit, which is the limit where the body is rotating so fast that it is on the verge of starting

  11. The generation and dissipation of solar and galactic magnetic fields.

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1973-01-01

    Turbulent diffusion of magnetic field plays an essential role in the generation of magnetic field in most astrophysical bodies. Review of what can be proved and what can be believed about the turbulent diffusion of magnetic field. Observations indicate the dissipation of magnetic field at rates that can be understood only in terms of turbulent diffusion. Theory shows that a large-scale weak magnetic field diffuses in a turbulent flow in the same way that smoke is mixed throughout the fluid by the turbulence. The small-scale fields (produced from the large-scale field by the turbulence) are limited in their growth by reconnection of field lines at neutral points, so that the turbulent mixing of field and fluid is not halted by them. Altogether, it appears that the mixing of field and fluid in the observed turbulent motions in the sun and in the Galaxy is unavoidable. Turbulent diffusion causes decay of the general solar fields in a decade or so, and of the galactic field in 100 m.y. to 1 b.y. It is concluded that continual dynamo action is implied by the observed existence of the fields.

  12. Time-dependent and outflow boundary conditions for Dissipative Particle Dynamics

    PubMed Central

    Lei, Huan; Fedosov, Dmitry A.; Karniadakis, George Em

    2011-01-01

    We propose a simple method to impose both no-slip boundary conditions at fluid-wall interfaces and at outflow boundaries in fully developed regions for Dissipative Particle Dynamics (DPD) fluid systems. The procedure to enforce the no-slip condition is based on a velocity-dependent shear force, which is a generalized force to represent the presence of the solid-wall particles and to maintain locally thermodynamic consistency. We show that this method can be implemented in both steady and time-dependent fluid systems and compare the DPD results with the continuum limit (Navier-Stokes) results. We also develop a force-adaptive method to impose the outflow boundary conditions for fully developed flow with unspecified outflow velocity profile or pressure value. We study flows over the backward-facing step and in idealized arterial bifurcations using a combination of the two new boundary methods with different flow rates. Finally, we explore the applicability of the outflow method in time-dependent flow systems. The outflow boundary method works well for systems with Womersley number of O(1), i.e., when the pressure and flowrate at the outflow are approximately in-phase. PMID:21499548

  13. Emergence of multi-scaling in fluid turbulence

    NASA Astrophysics Data System (ADS)

    Donzis, Diego; Yakhot, Victor

    2017-11-01

    We present new theoretical and numerical results on the transition to strong turbulence in an infinite fluid stirred by a Gaussian random force. The transition is defined as a first appearance of anomalous scaling of normalized moments of velocity derivatives (or dissipation rates) emerging from the low-Reynolds-number Gaussian background. It is shown that due to multi-scaling, strongly intermittent rare events can be quantitatively described in terms of an infinite number of different ``Reynolds numbers'' reflecting a multitude of anomalous scaling exponents. We found that anomalous scaling for high order moments emerges at very low Reynolds numbers implying that intense dissipative-range fluctuations are established at even lower Reynolds number than that required for an inertial range. Thus, our results suggest that information about inertial range dynamics can be obtained from dissipative scales even when the former does not exit. We discuss our further prediction that transition to fully anomalous turbulence disappears at Rλ < 3 . Support from NSF is acknowledged.

  14. Exact relativistic models of conformastatic charged dust thick disks

    NASA Astrophysics Data System (ADS)

    García-Reyes, Gonzalo

    2018-04-01

    We construct relativistic models of charged dust thick disks for a particular conformastatic spacetime through a Miyamoto-Nagai transformation used in Newtonian gravity to model disk like galaxies. Two simple families of thick disk models and a family of thick annular disks based on the field of an extreme Reissner-Nordström black hole and a Morgan-Morgan-like metric are considered. The electrogeodesic motion of test particles around the structures are analyzed. Also the stability of the particles against radial perturbation is studied using an extension of the Rayleigh criteria of stability of a fluid in rest in a gravitational field. The models built satisfy all the energy conditions.

  15. EDITORIAL: Focus on Quantum Dissipation in Unconventional Environments FOCUS ON QUANTUM DISSIPATION IN UNCONVENTIONAL ENVIRONMENTS

    NASA Astrophysics Data System (ADS)

    Grifoni, Milena; Paladino, Elisabetta

    2008-11-01

    Quantum dissipation has been the object of study within the physics and chemistry communities for many years. Despite this, the field is in constant evolution, largely due to the fact that novel systems where the understanding of dissipation and dephasing processes is of crucial importance have become experimentally accessible in recent years. Among the ongoing research themes, we mention the defeat of decoherence in solid state-based quantum bits (qubits) (e.g. superconducting qubits or quantum dot based qubits), or dissipation due to non-equilibrium Fermi reservoirs, as is the case for quantum transport through meso- and nanoscale structures. A close inspection of dissipation in such systems reveals that one has to deal with 'unconventional' environments, where common assumptions of, for example, linearity of the bath and/or equilibrium reservoir have to be abandoned. Even for linear baths at equilibrium it might occur that the bath presents some internal structure, due, for example, to the presence of localized bath modes. A large part of this focus issue is devoted to topics related to the rapidly developing fields of quantum computation and information with solid state nanodevices. In these implementations, single and two-qubit gates as well as quantum information transmission takes place in the presence of broadband noise that is typically non-Markovian and nonlinear. On both the experimental and theory side, understanding and defeating such noise sources has become a crucial step towards the implementation of efficient nanodevices. On a more fundamental level, electron and spin transport through quantum dot nanostructures may suffer from 'unconventional' dissipation mechanisms such as the simultaneous presence of spin relaxation and fermionic dissipation, or may represent themselves out of equilibrium baths for nearby mesoscopic systems. Finally, although not expected from the outset, the present collection of articles has revealed that different

  16. Two-fluid description of wave-particle interactions in strong Buneman turbulence

    NASA Astrophysics Data System (ADS)

    Che, H.

    2014-06-01

    To understand the nature of anomalous resistivity in magnetic reconnection, we investigate turbulence-induced momentum transport and energy dissipation while a plasma is unstable to the Buneman instability in force-free current sheets. Using 3D particle-in-cell simulations, we find that the macroscopic effects generated by wave-particle interactions in Buneman instability can be approximately described by a set of electron fluid equations. We show that both energy dissipation and momentum transport along electric current in the current layer are locally quasi-static, but globally dynamic and irreversible. Turbulent drag dissipates both the streaming energy of the current sheet and the associated magnetic energy. The net loss of streaming energy is converted into the electron component heat conduction parallel to the magnetic field and increases the electron Boltzmann entropy. The growth of self-sustained Buneman waves satisfies a Bernoulli-like equation that relates the turbulence-induced convective momentum transport and thermal momentum transport. Electron trapping and de-trapping drive local momentum transports, while phase mixing converts convective momentum into thermal momentum. The drag acts like a micro-macro link in the anomalous heating processes. The decrease of magnetic field maintains an inductive electric field that re-accelerates electrons, but most of the magnetic energy is dissipated and converted into the component heat of electrons perpendicular to the magnetic field. This heating process is decoupled from the heating of Buneman instability in the current sheets. Ion heating is weak but ions play an important role in assisting energy exchanges between waves and electrons. Cold ion fluid equations together with our electron fluid equations form a complete set of equations that describes the occurrence, growth, saturation and decay of the Buneman instability.

  17. Decay of Kadomtsev-Petviashvili lumps in dissipative media

    NASA Astrophysics Data System (ADS)

    Clarke, S.; Gorshkov, K.; Grimshaw, R.; Stepanyants, Y.

    2018-03-01

    The decay of Kadomtsev-Petviashvili lumps is considered for a few typical dissipations-Rayleigh dissipation, Reynolds dissipation, Landau damping, Chezy bottom friction, viscous dissipation in the laminar boundary layer, and radiative losses caused by large-scale dispersion. It is shown that the straight-line motion of lumps is unstable under the influence of dissipation. The lump trajectories are calculated for two most typical models of dissipation-the Rayleigh and Reynolds dissipations. A comparison of analytical results obtained within the framework of asymptotic theory with the direct numerical calculations of the Kadomtsev-Petviashvili equation is presented. Good agreement between the theoretical and numerical results is obtained.

  18. The Wigner function in the relativistic quantum mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kowalski, K., E-mail: kowalski@uni.lodz.pl; Rembieliński, J.

    2016-12-15

    A detailed study is presented of the relativistic Wigner function for a quantum spinless particle evolving in time according to the Salpeter equation. - Highlights: • We study the Wigner function for a quantum spinless relativistic particle. • We discuss the relativistic Wigner function introduced by Zavialov and Malokostov. • We introduce relativistic Wigner function based on the standard definition. • We find analytic expressions for relativistic Wigner functions.

  19. Radiation from Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Mizuno, Y.; Hardee, P.; Sol, H.; Medvedev, M.; Zhang, B.; Nordlund, A.; Frederiksen, J. T.; Fishman, G. J.; Preece, R.

    2008-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., gamma-ray bursts (GRBs), active galactic nuclei (AGNs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations of relativistic electron-ion (electron-positron) jets injected into a stationary medium show that particle acceleration occurs within the downstream jet. In the presence of relativistic jets, instabilities such as the Buneman instability, other two-streaming instability, and the Weibel (filamentation) instability create collisionless shocks, which are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The 'jitter' radiation from deflected electrons in small-scale magnetic fields has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation, a case of diffusive synchrotron radiation, may be important to understand the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  20. Wave turbulence in a two-layer fluid: Coupling between free surface and interface waves

    NASA Astrophysics Data System (ADS)

    Falcon, Eric; Issenmann, Bruno; Laroche, Claude

    2017-11-01

    We experimentally study gravity-capillary wave turbulence on the interface between two immiscible fluids of close density with free upper surface. We locally measure the wave height at the interface between both fluids by means of a highly sensitive laser Doppler vibrometer. We show that the inertial range of the capillary wave turbulence regime is significantly extended when the upper fluid depth is increased: The crossover frequency between the gravity and capillary wave turbulence regimes is found to decrease whereas the dissipative cut-off frequency of the spectrum is found to increase. We explain these observations by the progressive decoupling between waves propagating at the interface and the ones at the free surface, using the full dispersion relation of gravity-capillary waves in a two-layer fluid of finite depths. The cut-off evolution is due to the disappearance of parasitic capillaries responsible for the main wave dissipation for a single fluid. B. Issenmann, C. Laroche & E. Falcon, EPL 116, 64005 (2016) published online 16 feb. 2017. This work has been partially supported by CNRS (1-year postdoctoral funding), ANR Turbulon 12-BS04-0005, and ANR Dysturb 2017.

  1. Energy/dissipation-preserving Birkhoffian multi-symplectic methods for Maxwell's equations with dissipation terms

    DOE PAGES

    Su, Hongling; Li, Shengtai

    2016-02-03

    In this study, we propose two new energy/dissipation-preserving Birkhoffian multi-symplectic methods (Birkhoffian and Birkhoffian box) for Maxwell's equations with dissipation terms. After investigating the non-autonomous and autonomous Birkhoffian formalism for Maxwell's equations with dissipation terms, we first apply a novel generating functional theory to the non-autonomous Birkhoffian formalism to propose our Birkhoffian scheme, and then implement a central box method to the autonomous Birkhoffian formalism to derive the Birkhoffian box scheme. We have obtained four formal local conservation laws and three formal energy global conservation laws. We have also proved that both of our derived schemes preserve the discrete versionmore » of the global/local conservation laws. Furthermore, the stability, dissipation and dispersion relations are also investigated for the schemes. Theoretical analysis shows that the schemes are unconditionally stable, dissipation-preserving for Maxwell's equations in a perfectly matched layer (PML) medium and have second order accuracy in both time and space. Numerical experiments for problems with exact theoretical results are given to demonstrate that the Birkhoffian multi-symplectic schemes are much more accurate in preserving energy than both the exponential finite-difference time-domain (FDTD) method and traditional Hamiltonian scheme. Finally, we also solve the electromagnetic pulse (EMP) propagation problem and the numerical results show that the Birkhoffian scheme recovers the magnitude of the current source and reaction history very well even after long time propagation.« less

  2. Energy/dissipation-preserving Birkhoffian multi-symplectic methods for Maxwell's equations with dissipation terms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Hongling; Li, Shengtai

    In this study, we propose two new energy/dissipation-preserving Birkhoffian multi-symplectic methods (Birkhoffian and Birkhoffian box) for Maxwell's equations with dissipation terms. After investigating the non-autonomous and autonomous Birkhoffian formalism for Maxwell's equations with dissipation terms, we first apply a novel generating functional theory to the non-autonomous Birkhoffian formalism to propose our Birkhoffian scheme, and then implement a central box method to the autonomous Birkhoffian formalism to derive the Birkhoffian box scheme. We have obtained four formal local conservation laws and three formal energy global conservation laws. We have also proved that both of our derived schemes preserve the discrete versionmore » of the global/local conservation laws. Furthermore, the stability, dissipation and dispersion relations are also investigated for the schemes. Theoretical analysis shows that the schemes are unconditionally stable, dissipation-preserving for Maxwell's equations in a perfectly matched layer (PML) medium and have second order accuracy in both time and space. Numerical experiments for problems with exact theoretical results are given to demonstrate that the Birkhoffian multi-symplectic schemes are much more accurate in preserving energy than both the exponential finite-difference time-domain (FDTD) method and traditional Hamiltonian scheme. Finally, we also solve the electromagnetic pulse (EMP) propagation problem and the numerical results show that the Birkhoffian scheme recovers the magnitude of the current source and reaction history very well even after long time propagation.« less

  3. Multiscale modeling of particle in suspension with smoothed dissipative particle dynamics

    NASA Astrophysics Data System (ADS)

    Bian, Xin; Litvinov, Sergey; Qian, Rui; Ellero, Marco; Adams, Nikolaus A.

    2012-01-01

    We apply smoothed dissipative particle dynamics (SDPD) [Español and Revenga, Phys. Rev. E 67, 026705 (2003)] to model solid particles in suspension. SDPD is a thermodynamically consistent version of smoothed particle hydrodynamics (SPH) and can be interpreted as a multiscale particle framework linking the macroscopic SPH to the mesoscopic dissipative particle dynamics (DPD) method. Rigid structures of arbitrary shape embedded in the fluid are modeled by frozen particles on which artificial velocities are assigned in order to satisfy exactly the no-slip boundary condition on the solid-liquid interface. The dynamics of the rigid structures is decoupled from the solvent by solving extra equations for the rigid body translational/angular velocities derived from the total drag/torque exerted by the surrounding liquid. The correct scaling of the SDPD thermal fluctuations with the fluid-particle size allows us to describe the behavior of the particle suspension on spatial scales ranging continuously from the diffusion-dominated regime typical of sub-micron-sized objects towards the non-Brownian regime characterizing macro-continuum flow conditions. Extensive tests of the method are performed for the case of two/three dimensional bulk particle-system both in Brownian/ non-Brownian environment showing numerical convergence and excellent agreement with analytical theories. Finally, to illustrate the ability of the model to couple with external boundary geometries, the effect of confinement on the diffusional properties of a single sphere within a micro-channel is considered, and the dependence of the diffusion coefficient on the wall-separation distance is evaluated and compared with available analytical results.

  4. The relativistic Black-Scholes model

    NASA Astrophysics Data System (ADS)

    Trzetrzelewski, Maciej

    2017-02-01

    The Black-Scholes equation, after a certain coordinate transformation, is equivalent to the heat equation. On the other hand the relativistic extension of the latter, the telegraphers equation, can be derived from the Euclidean version of the Dirac equation. Therefore, the relativistic extension of the Black-Scholes model follows from relativistic quantum mechanics quite naturally. We investigate this particular model for the case of European vanilla options. Due to the notion of locality incorporated in this way, one finds that the volatility frown-like effect appears when comparing to the original Black-Scholes model.

  5. Radiatively-driven general relativistic jets

    NASA Astrophysics Data System (ADS)

    Vyas, Mukesh K.; Chattopadhyay, Indranil

    2018-02-01

    We use moment formalism of relativistic radiation hydrodynamics to obtain equations of motion of radial jets and solve them using polytropic equation of state of the relativistic gas. We consider curved space-time around black holes and obtain jets with moderately relativistic terminal speeds. In addition, the radiation field from the accretion disc, is able to induce internal shocks in the jet close to the horizon. Under combined effect of thermal as well as radiative driving, terminal speeds up to 0.75 (units of light speed) are obtained.

  6. Uncoupled poroelastic and intrinsic viscoelastic dissipation in cartilage.

    PubMed

    Han, Guebum; Hess, Cole; Eriten, Melih; Henak, Corinne R

    2018-04-26

    This paper studies uncoupled poroelastic (flow-dependent) and intrinsic viscoelastic (flow-independent) energy dissipation mechanisms via their dependence on characteristic lengths to understand the root of cartilage's broadband dissipation behavior. Phase shift and dynamic modulus were measured from dynamic microindentation tests conducted on hydrated cartilage at different contact radii, as well as on dehydrated cartilage. Cartilage weight and thickness were recorded during dehydration. Phase shifts revealed poroelastic- and viscoelastic-dominant dissipation regimes in hydrated cartilage. Specifically, phase shift at a relatively small radius was governed by poroviscoelasticity, while phase shift at a relatively large radius was dominantly governed by intrinsic viscoelasticity. The uncoupled dissipation mechanisms demonstrated that intrinsic viscoelastic dissipation provided sustained broadband dissipation for all length scales, and additional poroelastic dissipation increased total dissipation at small length scales. Dehydration decreased intrinsic viscoelastic dissipation of cartilage. The findings demonstrated a possibility to measure poroelastic and intrinsic viscoelastic properties of cartilage at similar microscale lengths. Also they encouraged development of broadband cartilage like-dampers and provided important design parameters to maximize their performance. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Numerical study of Free Convective Viscous Dissipative flow along Vertical Cone with Influence of Radiation using Network Simulation method

    NASA Astrophysics Data System (ADS)

    Kannan, R. M.; Pullepu, Bapuji; Immanuel, Y.

    2018-04-01

    A two dimensional mathematical model is formulated for the transient laminar free convective flow with heat transfer over an incompressible viscous fluid past a vertical cone with uniform surface heat flux with combined effects of viscous dissipation and radiation. The dimensionless boundary layer equations of the flow which are transient, coupled and nonlinear Partial differential equations are solved using the Network Simulation Method (NSM), a powerful numerical technique which demonstrates high efficiency and accuracy by employing the network simulator computer code Pspice. The velocity and temperature profiles have been investigated for various factors, namely viscous dissipation parameter ε, Prandtl number Pr and radiation Rd are analyzed graphically.

  8. On the energy dissipation rate at the inner edge of circumbinary discs

    NASA Astrophysics Data System (ADS)

    Terquem, Caroline; Papaloizou, John C. B.

    2017-01-01

    We study, by means of numerical simulations and analysis, the details of the accretion process from a disc on to a binary system. We show that energy is dissipated at the edge of a circumbinary disc and this is associated with the tidal torque that maintains the cavity: angular momentum is transferred from the binary to the disc through the action of compressional shocks and viscous friction. These shocks can be viewed as being produced by fluid elements that drift into the cavity and, before being accreted, are accelerated on to trajectories that send them back to impact the disc. The rate of energy dissipation is approximately equal to the product of potential energy per unit mass at the disc's inner edge and the accretion rate, estimated from the disc parameters just beyond the cavity edge, that would occur without the binary. For very thin discs, the actual accretion rate on to the binary may be significantly less. We calculate the energy emitted by a circumbinary disc taking into account energy dissipation at the inner edge and also irradiation arising there from reprocessing of light from the stars. We find that, for tight PMS binaries, the SED is dominated by emission from the inner edge at wavelengths between 1-4 and 10 μm. This may apply to systems like CoRoT 223992193 and V1481 Ori.

  9. Geometric Integration of Weakly Dissipative Systems

    NASA Astrophysics Data System (ADS)

    Modin, K.; Führer, C.; Soöderlind, G.

    2009-09-01

    Some problems in mechanics, e.g. in bearing simulation, contain subsystems that are conservative as well as weakly dissipative subsystems. Our experience is that geometric integration methods are often superior for such systems, as long as the dissipation is weak. Here we develop adaptive methods for dissipative perturbations of Hamiltonian systems. The methods are "geometric" in the sense that the form of the dissipative perturbation is preserved. The methods are linearly explicit, i.e., they require the solution of a linear subsystem. We sketch an analysis in terms of backward error analysis and numerical comparisons with a conventional RK method of the same order is given.

  10. Multidimensional electron beam-plasma instabilities in the relativistic regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bret, A.; Gremillet, L.; Dieckmann, M. E.

    2010-12-15

    The interest in relativistic beam-plasma instabilities has been greatly rejuvenated over the past two decades by novel concepts in laboratory and space plasmas. Recent advances in this long-standing field are here reviewed from both theoretical and numerical points of view. The primary focus is on the two-dimensional spectrum of unstable electromagnetic waves growing within relativistic, unmagnetized, and uniform electron beam-plasma systems. Although the goal is to provide a unified picture of all instability classes at play, emphasis is put on the potentially dominant waves propagating obliquely to the beam direction, which have received little attention over the years. First, themore » basic derivation of the general dielectric function of a kinetic relativistic plasma is recalled. Next, an overview of two-dimensional unstable spectra associated with various beam-plasma distribution functions is given. Both cold-fluid and kinetic linear theory results are reported, the latter being based on waterbag and Maxwell-Juettner model distributions. The main properties of the competing modes (developing parallel, transverse, and oblique to the beam) are given, and their respective region of dominance in the system parameter space is explained. Later sections address particle-in-cell numerical simulations and the nonlinear evolution of multidimensional beam-plasma systems. The elementary structures generated by the various instability classes are first discussed in the case of reduced-geometry systems. Validation of linear theory is then illustrated in detail for large-scale systems, as is the multistaged character of the nonlinear phase. Finally, a collection of closely related beam-plasma problems involving additional physical effects is presented, and worthwhile directions of future research are outlined.« less

  11. Relativistic Coulomb excitation within the time dependent superfluid local density approximation

    DOE PAGES

    Stetcu, I.; Bertulani, C. A.; Bulgac, A.; ...

    2015-01-06

    Within the framework of the unrestricted time-dependent density functional theory, we present for the first time an analysis of the relativistic Coulomb excitation of the heavy deformed open shell nucleus 238U. The approach is based on the superfluid local density approximation formulated on a spatial lattice that can take into account coupling to the continuum, enabling self-consistent studies of superfluid dynamics of any nuclear shape. We compute the energy deposited in the target nucleus as a function of the impact parameter, finding it to be significantly larger than the estimate using the Goldhaber-Teller model. The isovector giant dipole resonance, themore » dipole pygmy resonance, and giant quadrupole modes are excited during the process. As a result, the one-body dissipation of collective dipole modes is shown to lead a damping width Γ↓≈0.4 MeV and the number of preequilibrium neutrons emitted has been quantified.« less

  12. Loading relativistic Maxwell distributions in particle simulations

    NASA Astrophysics Data System (ADS)

    Zenitani, S.

    2015-12-01

    In order to study energetic plasma phenomena by using particle-in-cell (PIC) and Monte-Carlo simulations, we need to deal with relativistic velocity distributions in these simulations. However, numerical algorithms to deal with relativistic distributions are not well known. In this contribution, we overview basic algorithms to load relativistic Maxwell distributions in PIC and Monte-Carlo simulations. For stationary relativistic Maxwellian, the inverse transform method and the Sobol algorithm are reviewed. To boost particles to obtain relativistic shifted-Maxwellian, two rejection methods are newly proposed in a physically transparent manner. Their acceptance efficiencies are 􏰅50% for generic cases and 100% for symmetric distributions. They can be combined with arbitrary base algorithms.

  13. On axial temperature gradients due to large pressure drops in dense fluid chromatography.

    PubMed

    Colgate, Sam O; Berger, Terry A

    2015-03-13

    The effect of energy degradation (Degradation is the creation of net entropy resulting from irreversibility.) accompanying pressure drops across chromatographic columns is examined with regard to explaining axial temperature gradients in both high performance liquid chromatography (HPLC) and supercritical fluid chromatography (SFC). The observed effects of warming and cooling can be explained equally well in the language of thermodynamics or fluid dynamics. The necessary equivalence of these treatments is reviewed here to show the legitimacy of using whichever one supports the simpler determination of features of interest. The determination of temperature profiles in columns by direct application of the laws of thermodynamics is somewhat simpler than applying them indirectly by solving the Navier-Stokes (NS) equations. Both disciplines show that the preferred strategy for minimizing the reduction in peak quality caused by temperature gradients is to operate columns as nearly adiabatically as possible (i.e. as Joule-Thomson expansions). This useful fact, however, is not widely familiar or appreciated in the chromatography community due to some misunderstanding of the meaning of certain terms and expressions used in these disciplines. In fluid dynamics, the terms "resistive heating" or "frictional heating" have been widely used as synonyms for the dissipation function, Φ, in the NS energy equation. These terms have been widely used by chromatographers as well, but often misinterpreted as due to friction between the mobile phase and the column packing, when in fact Φ describes the increase in entropy of the system (dissipation, ∫TdSuniv>0) due to the irreversible decompression of the mobile phase. Two distinctly different contributions to the irreversibility are identified; (1) ΔSext, viscous dissipation of work done by the external surroundings driving the flow (the pump) contributing to its warming, and (2) ΔSint, entropy change accompanying decompression of

  14. From Hartree Dynamics to the Relativistic Vlasov Equation

    NASA Astrophysics Data System (ADS)

    Dietler, Elia; Rademacher, Simone; Schlein, Benjamin

    2018-02-01

    We derive the relativistic Vlasov equation from quantum Hartree dynamics for fermions with relativistic dispersion in the mean-field scaling, which is naturally linked with an effective semiclassic limit. Similar results in the non-relativistic setting have been recently obtained in Benedikter et al. (Arch Rat Mech Anal 221(1): 273-334, 2016). The new challenge that we have to face here, in the relativistic setting, consists in controlling the difference between the quantum kinetic energy and the relativistic transport term appearing in the Vlasov equation.

  15. Relativistic Quantum Transport in Graphene Systems

    DTIC Science & Technology

    2015-07-09

    which is desirable in the development of nanoscale devices such as graphene-based resonant- tunneling diodes . Details of this work can be found in • L... tunneling , etc. The AFOSR support helped create a new field of interdisciplinary research: Relativistic Quantum Chaos, which studies the relativistic quantum...Objectives 2 2 List of Publications 2 3 Accomplishments and New Findings 3 3.1 Solutions of Dirac equation, relativistic quantum tunneling and

  16. Dissipative rendering and neural network control system design

    NASA Technical Reports Server (NTRS)

    Gonzalez, Oscar R.

    1995-01-01

    Model-based control system designs are limited by the accuracy of the models of the plant, plant uncertainty, and exogenous signals. Although better models can be obtained with system identification, the models and control designs still have limitations. One approach to reduce the dependency on particular models is to design a set of compensators that will guarantee robust stability to a set of plants. Optimization over the compensator parameters can then be used to get the desired performance. Conservativeness of this approach can be reduced by integrating fundamental properties of the plant models. This is the approach of dissipative control design. Dissipative control designs are based on several variations of the Passivity Theorem, which have been proven for nonlinear/linear and continuous-time/discrete-time systems. These theorems depend not on a specific model of a plant, but on its general dissipative properties. Dissipative control design has found wide applicability in flexible space structures and robotic systems that can be configured to be dissipative. Currently, there is ongoing research to improve the performance of dissipative control designs. For aircraft systems that are not dissipative active control may be used to make them dissipative and then a dissipative control design technique can be used. It is also possible that rendering a system dissipative and dissipative control design may be combined into one step. Furthermore, the transformation of a non-dissipative system to dissipative can be done robustly. One sequential design procedure for finite dimensional linear time-invariant systems has been developed. For nonlinear plants that cannot be controlled adequately with a single linear controller, model-based techniques have additional problems. Nonlinear system identification is still a research topic. Lacking analytical models for model-based design, artificial neural network algorithms have recently received considerable attention. Using

  17. RELATIVISTIC CYCLOTRON INSTABILITY IN ANISOTROPIC PLASMAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    López, Rodrigo A.; Moya, Pablo S.; Muñoz, Víctor

    2016-11-20

    A sufficiently large temperature anisotropy can sometimes drive various types of electromagnetic plasma micro-instabilities, which can play an important role in the dynamics of relativistic pair plasmas in space, astrophysics, and laboratory environments. Here, we provide a detailed description of the cyclotron instability of parallel propagating electromagnetic waves in relativistic pair plasmas on the basis of a relativistic anisotropic distribution function. Using plasma kinetic theory and particle-in-cell simulations, we study the influence of the relativistic temperature and the temperature anisotropy on the collective and noncollective modes of these plasmas. Growth rates and dispersion curves from the linear theory show amore » good agreement with simulations results.« less

  18. A statistical formulation of one-dimensional electron fluid turbulence

    NASA Technical Reports Server (NTRS)

    Fyfe, D.; Montgomery, D.

    1977-01-01

    A one-dimensional electron fluid model is investigated using the mathematical methods of modern fluid turbulence theory. Non-dissipative equilibrium canonical distributions are determined in a phase space whose co-ordinates are the real and imaginary parts of the Fourier coefficients for the field variables. Spectral densities are calculated, yielding a wavenumber electric field energy spectrum proportional to k to the negative second power for large wavenumbers. The equations of motion are numerically integrated and the resulting spectra are found to compare well with the theoretical predictions.

  19. Relativistic effects on x-ray structure factors

    NASA Astrophysics Data System (ADS)

    Batke, Kilian; Eickerling, Georg

    2016-04-01

    Today, combined experimental and theoretical charge density studies based on quantum chemical calculations and x-ray diffraction experiments allow for the investigation of the topology of the electron density at subatomic resolution. When studying compounds containing transition metal elements, relativistic effects need to be adequately taken into account not only in quantum chemical calculations of the total electron density ρ ({r}), but also for the atomic scattering factors employed to extract ρ ({r}) from experimental x-ray diffraction data. In the present study, we investigate the magnitude of relativistic effects on x-ray structure factors and for this purpose {F}({{r}}*) have been calculated for the model systems M(C2H2) (M = Ni, Pd, Pt) from four-component molecular wave functions. Relativistic effects are then discussed by a comparison to structure factors obtained from a non-relativistic reference and different quasi-relativistic approximations. We show, that the overall effects of relativity on the structure factors on average amount to 0.81%, 1.51% and 2.78% for the three model systems under investigation, but that for individual reflections or reflection series the effects can be orders of magnitude larger. Employing the quasi-relativistic Douglas-Kroll-Hess second order or the zeroth order regular approximation Hamiltonian takes these effects into account to a large extend, reducing the differences between the (quasi-)relativistic and the non-relativistic result by one order of magnitude. In order to further determine the experimental significance of the results, the magnitude of the relativistic effects is compared to the changes of the model structure factor data when charge transfer and chemical bonding is taken into account by a multipolar expansion of {F}({{r}}*).

  20. Conservative 3 + 1 general relativistic variable Eddington tensor radiation transport equations

    DOE PAGES

    Cardall, Christian Y.; Endeve, Eirik; Mezzacappa, Anthony

    2013-05-07

    We present conservative 3+1 general relativistic variable Eddington tensor radiation transport equations, including greater elaboration of the momentum space divergence (that is, the energy derivative term) than in previous work. These equations are intended for use in simulations involving numerical relativity, particularly in the absence of spherical symmetry. The independent variables are the lab frame coordinate basis spacetime position coordinates and the particle energy measured in the comoving frame. With an eye towards astrophysical applications—such as core-collapse supernovae and compact object mergers—in which the fluid includes nuclei and/or nuclear matter at finite temperature, and in which the transported particles aremore » neutrinos, we pay special attention to the consistency of four-momentum and lepton number exchange between neutrinos and the fluid, showing the term-by-term cancellations that must occur for this consistency to be achieved.« less

  1. Simulation of Sound Waves Using the Lattice Boltzmann Method for Fluid Flow: Benchmark Cases for Outdoor Sound Propagation

    PubMed Central

    Salomons, Erik M.; Lohman, Walter J. A.; Zhou, Han

    2016-01-01

    Propagation of sound waves in air can be considered as a special case of fluid dynamics. Consequently, the lattice Boltzmann method (LBM) for fluid flow can be used for simulating sound propagation. In this article application of the LBM to sound propagation is illustrated for various cases: free-field propagation, propagation over porous and non-porous ground, propagation over a noise barrier, and propagation in an atmosphere with wind. LBM results are compared with solutions of the equations of acoustics. It is found that the LBM works well for sound waves, but dissipation of sound waves with the LBM is generally much larger than real dissipation of sound waves in air. To circumvent this problem it is proposed here to use the LBM for assessing the excess sound level, i.e. the difference between the sound level and the free-field sound level. The effect of dissipation on the excess sound level is much smaller than the effect on the sound level, so the LBM can be used to estimate the excess sound level for a non-dissipative atmosphere, which is a useful quantity in atmospheric acoustics. To reduce dissipation in an LBM simulation two approaches are considered: i) reduction of the kinematic viscosity and ii) reduction of the lattice spacing. PMID:26789631

  2. Simulation of Sound Waves Using the Lattice Boltzmann Method for Fluid Flow: Benchmark Cases for Outdoor Sound Propagation.

    PubMed

    Salomons, Erik M; Lohman, Walter J A; Zhou, Han

    2016-01-01

    Propagation of sound waves in air can be considered as a special case of fluid dynamics. Consequently, the lattice Boltzmann method (LBM) for fluid flow can be used for simulating sound propagation. In this article application of the LBM to sound propagation is illustrated for various cases: free-field propagation, propagation over porous and non-porous ground, propagation over a noise barrier, and propagation in an atmosphere with wind. LBM results are compared with solutions of the equations of acoustics. It is found that the LBM works well for sound waves, but dissipation of sound waves with the LBM is generally much larger than real dissipation of sound waves in air. To circumvent this problem it is proposed here to use the LBM for assessing the excess sound level, i.e. the difference between the sound level and the free-field sound level. The effect of dissipation on the excess sound level is much smaller than the effect on the sound level, so the LBM can be used to estimate the excess sound level for a non-dissipative atmosphere, which is a useful quantity in atmospheric acoustics. To reduce dissipation in an LBM simulation two approaches are considered: i) reduction of the kinematic viscosity and ii) reduction of the lattice spacing.

  3. Onset of nanoscale dissipation in superfluid 4He at zero temperature: Role of vortex shedding and cavitation

    NASA Astrophysics Data System (ADS)

    Ancilotto, Francesco; Barranco, Manuel; Eloranta, Jussi; Pi, Martí

    2017-08-01

    Two-dimensional flow past an infinitely long cylinder of nanoscopic radius in superfluid 4He at zero temperature is studied using time-dependent density-functional theory. The calculations reveal two distinct critical phenomena for the onset of dissipation: (i) vortex-antivortex pair shedding from the periphery of the moving cylinder, and (ii) the appearance of cavitation in the wake, which possesses similar geometry to that observed experimentally for fast-moving micrometer-scale particles in superfluid 4He. The formation of cavitation bubbles behind the cylinder is accompanied by a sudden jump in the drag exerted on the moving cylinder by the fluid. Vortex pairs with the same circulation are occasionally emitted in the form of dimers, which constitute the building blocks for the Benard-von Karman vortex street structure observed in classical turbulent fluids and Bose-Einstein condensates. The cavitation-induced dissipation mechanism should be common to all superfluids that are self-bound and have a finite surface tension, which include the recently discovered self-bound droplets in ultracold Bose gases. These systems would provide an ideal testing ground for further exploration of this mechanism experimentally.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandra, Mani; Gammie, Charles F.; Foucart, Francois, E-mail: manic@illinois.edu, E-mail: gammie@illinois.edu, E-mail: fvfoucart@lbl.gov

    Hot, diffuse, relativistic plasmas such as sub-Eddington black-hole accretion flows are expected to be collisionless, yet are commonly modeled as a fluid using ideal general relativistic magnetohydrodynamics (GRMHD). Dissipative effects such as heat conduction and viscosity can be important in a collisionless plasma and will potentially alter the dynamics and radiative properties of the flow from that in ideal fluid models; we refer to models that include these processes as Extended GRMHD. Here we describe a new conservative code, grim, that enables all of the above and additional physics to be efficiently incorporated. grim combines time evolution and primitive variablemore » inversion needed for conservative schemes into a single step using an algorithm that only requires the residuals of the governing equations as inputs. This algorithm enables the code to be physics agnostic as well as flexibility regarding time-stepping schemes. grim runs on CPUs, as well as on GPUs, using the same code. We formulate a performance model and use it to show that our implementation runs optimally on both architectures. grim correctly captures classical GRMHD test problems as well as a new suite of linear and nonlinear test problems with anisotropic conduction and viscosity in special and general relativity. As tests and example applications, we resolve the shock substructure due to the presence of dissipation, and report on relativistic versions of the magneto-thermal instability and heat flux driven buoyancy instability, which arise due to anisotropic heat conduction, and of the firehose instability, which occurs due to anisotropic pressure (i.e., viscosity). Finally, we show an example integration of an accretion flow around a Kerr black hole, using Extended GRMHD.« less

  5. Isospin flip as a relativistic effect: NN interactions

    NASA Technical Reports Server (NTRS)

    Buck, W. W.

    1993-01-01

    Results are presented of an analytic relativistic calculation of a OBE nucleon-nucleon (NN) interaction employing the Gross equation. The calculation consists of a non-relativistic reduction that keeps the negative energy states. The result is compared to purely non-relativistic OBEP results and the relativistic effects are separated out. One finds that the resulting relativistic effects are expressable as a power series in (tau(sub 1))(tau(sub 2)) that agrees, qualitatively, with NN scattering. Upon G-parity transforming this NN potential, one obtains, qualitatively, a short range NN spectroscopy in which the S-states are the lowest states.

  6. Small-Scale Dissipation in Binary-Species Transitional Mixing Layers

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Okong'o, Nora

    2011-01-01

    Motivated by large eddy simulation (LES) modeling of supercritical turbulent flows, transitional states of databases obtained from direct numerical simulations (DNS) of binary-species supercritical temporal mixing layers were examined to understand the subgrid-scale dissipation, and its variation with filter size. Examination of the DSN-scale domain- averaged dissipation confirms previous findings that, out of the three modes of viscous, temperature and species-mass dissipation, the species-mass dissipation is the main contributor to the total dissipation. The results revealed that the percentage of species-mass by total dissipation is nearly invariant across species systems and initial conditions. This dominance of the species-mass dissipation is due to high-density-gradient magnitude (HDGM) regions populating the flow under the supercritical conditions of the simulations; such regions have also been observed in fully turbulent supercritical flows. The domain average being the result of both the local values and the extent of the HDGM regions, the expectations were that the response to filtering would vary with these flow characteristics. All filtering here is performed in the dissipation range of the Kolmogorov spectrum, at filter sizes from 4 to 16 times the DNS grid spacing. The small-scale (subgrid scale, SGS) dissipation was found by subtracting the filtered-field dissipation from the DNS-field dissipation. In contrast to the DNS dissipation, the SGS dissipation is not necessarily positive; negative values indicate backscatter. Backscatter was shown to be spatially widespread in all modes of dissipation and in the total dissipation (25 to 60 percent of the domain). The maximum magnitude of the negative subgrid- scale dissipation was as much as 17 percent of the maximum positive subgrid- scale dissipation, indicating that, not only is backscatter spatially widespread in these flows, but it is considerable in magnitude and cannot be ignored for the purposes of

  7. Hydrodynamic instabilities in miscible fluids

    NASA Astrophysics Data System (ADS)

    Truzzolillo, Domenico; Cipelletti, Luca

    2018-01-01

    Hydrodynamic instabilities in miscible fluids are ubiquitous, from natural phenomena up to geological scales, to industrial and technological applications, where they represent the only way to control and promote mixing at low Reynolds numbers, well below the transition from laminar to turbulent flow. As for immiscible fluids, the onset of hydrodynamic instabilities in miscible fluids is directly related to the physics of their interfaces. The focus of this review is therefore on the general mechanisms driving the growth of disturbances at the boundary between miscible fluids, under a variety of forcing conditions. In the absence of a regularizing mechanism, these disturbances would grow indefinitely. For immiscible fluids, interfacial tension provides such a regularizing mechanism, because of the energy cost associated to the creation of new interface by a growing disturbance. For miscible fluids, however, the very existence of interfacial stresses that mimic an effective surface tension is debated. Other mechanisms, however, may also be relevant, such as viscous dissipation. We shall review the stabilizing mechanisms that control the most common hydrodynamic instabilities, highlighting those cases for which the lack of an effective interfacial tension poses deep conceptual problems in the mathematical formulation of a linear stability analysis. Finally, we provide a short overview on the ongoing research on the effective, out of equilibrium interfacial tension between miscible fluids.

  8. Synchronizability of nonidentical weakly dissipative systems

    NASA Astrophysics Data System (ADS)

    Sendiña-Nadal, Irene; Letellier, Christophe

    2017-10-01

    Synchronization is a very generic process commonly observed in a large variety of dynamical systems which, however, has been rarely addressed in systems with low dissipation. Using the Rössler, the Lorenz 84, and the Sprott A systems as paradigmatic examples of strongly, weakly, and non-dissipative chaotic systems, respectively, we show that a parameter or frequency mismatch between two coupled such systems does not affect the synchronizability and the underlying structure of the joint attractor in the same way. By computing the Shannon entropy associated with the corresponding recurrence plots, we were able to characterize how two coupled nonidentical chaotic oscillators organize their dynamics in different dissipation regimes. While for strongly dissipative systems, the resulting dynamics exhibits a Shannon entropy value compatible with the one having an average parameter mismatch, for weak dissipation synchronization dynamics corresponds to a more complex behavior with higher values of the Shannon entropy. In comparison, conservative dynamics leads to a less rich picture, providing either similar chaotic dynamics or oversimplified periodic ones.

  9. THREE-DIMENSIONAL SIMULATIONS OF MAGNETOHYDRODYNAMIC TURBULENCE BEHIND RELATIVISTIC SHOCK WAVES AND THEIR IMPLICATIONS FOR GAMMA-RAY BURSTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inoue, Tsuyoshi; Asano, Katsuaki; Ioka, Kunihito, E-mail: inouety@phys.aoyama.ac.jp

    2011-06-20

    turbulence with relativistic velocity dispersion. We find that relativistic turbulence begins to decay much more quickly than one eddy-turnover time because of rapid shock dissipation, which does not support the relativistic turbulence model by Narayan and Kumar.« less

  10. Simulating Fiber Ordering and Aggregation In Shear Flow Using Dissipative Particle Dynamics

    NASA Astrophysics Data System (ADS)

    Stimatze, Justin T.

    We have developed a mesoscale simulation of fiber aggregation in shear flow using LAMMPS and its implementation of dissipative particle dynamics. Understanding fiber aggregation in shear flow and flow-induced microstructural fiber networks is critical to our interest in high-performance composite materials. Dissipative particle dynamics enables the consideration of hydrodynamic interactions between fibers through the coarse-grained simulation of the matrix fluid. Correctly simulating hydrodynamic interactions and accounting for fluid forces on the microstructure is required to correctly model the shear-induced aggregation process. We are able to determine stresses, viscosity, and fiber forces while simulating the evolution of a model fiber system undergoing shear flow. Fiber-fiber contact interactions are approximated by combinations of common pairwise forces, allowing the exploration of interaction-influenced fiber behaviors such as aggregation and bundling. We are then able to quantify aggregate structure and effective volume fraction for a range of relevant system and fiber-fiber interaction parameters. Our simulations have demonstrated several aggregate types dependent on system parameters such as shear rate, short-range attractive forces, and a resistance to relative rotation while in contact. A resistance to relative rotation at fiber-fiber contact points has been found to strongly contribute to an increased angle between neighboring aggregated fibers and therefore an increase in average aggregate volume fraction. This increase in aggregate volume fraction is strongly correlated with a significant enhancement of system viscosity, leading us to hypothesize that controlling the resistance to relative rotation during manufacturing processes is important when optimizing for desired composite material characteristics.

  11. Relativistic Astrophysics

    NASA Astrophysics Data System (ADS)

    Jones, Bernard J. T.; Markovic, Dragoljub

    1997-06-01

    Preface; Prologue: Conference overview Bernard Carr; Part I. The Universe At Large and Very Large Redshifts: 2. The size and age of the Universe Gustav A. Tammann; 3. Active galaxies at large redshifts Malcolm S. Longair; 4. Observational cosmology with the cosmic microwave background George F. Smoot; 5. Future prospects in measuring the CMB power spectrum Philip M. Lubin; 6. Inflationary cosmology Michael S. Turner; 7. The signature of the Universe Bernard J. T. Jones; 8. Theory of large-scale structure Sergei F. Shandarin; 9. The origin of matter in the universe Lev A. Kofman; 10. New guises for cold-dark matter suspects Edward W. Kolb; Part II. Physics and Astrophysics Of Relativistic Compact Objects: 11. On the unification of gravitational and inertial forces Donald Lynden-Bell; 12. Internal structure of astrophysical black holes Werner Israel; 13. Black hole entropy: external facade and internal reality Valery Frolov; 14. Accretion disks around black holes Marek A. Abramowicz; 15. Black hole X-ray transients J. Craig Wheeler; 16. X-rays and gamma rays from active galactic nuclei Roland Svensson; 17. Gamma-ray bursts: a challenge to relativistic astrophysics Martin Rees; 18. Probing black holes and other exotic objects with gravitational waves Kip Thorne; Epilogue: the past and future of relativistic astrophysics Igor D. Novikov; I. D. Novikov's scientific papers and books.

  12. Graphene heat dissipating structure

    DOEpatents

    Washburn, Cody M.; Lambert, Timothy N.; Wheeler, David R.; Rodenbeck, Christopher T.; Railkar, Tarak A.

    2017-08-01

    Various technologies presented herein relate to forming one or more heat dissipating structures (e.g., heat spreaders and/or heat sinks) on a substrate, wherein the substrate forms part of an electronic component. The heat dissipating structures are formed from graphene, with advantage being taken of the high thermal conductivity of graphene. The graphene (e.g., in flake form) is attached to a diazonium molecule, and further, the diazonium molecule is utilized to attach the graphene to material forming the substrate. A surface of the substrate is treated to comprise oxide-containing regions and also oxide-free regions having underlying silicon exposed. The diazonium molecule attaches to the oxide-free regions, wherein the diazonium molecule bonds (e.g., covalently) to the exposed silicon. Attachment of the diazonium plus graphene molecule is optionally repeated to enable formation of a heat dissipating structure of a required height.

  13. Relativistic collective diffusion in one-dimensional systems

    NASA Astrophysics Data System (ADS)

    Lin, Gui-Wu; Lam, Yu-Yiu; Zheng, Dong-Qin; Zhong, Wei-Rong

    2018-05-01

    The relativistic collective diffusion in one-dimensional molecular system is investigated through nonequilibrium molecular dynamics with Monte Carlo methods. We have proposed the relationship among the speed, the temperature, the density distribution and the collective diffusion coefficient of particles in a relativistic moving system. It is found that the relativistic speed of the system has no effect on the temperature, but the collective diffusion coefficient decreases to zero as the velocity of the system approaches to the speed of light. The collective diffusion coefficient is modified as D‧ = D(1 ‑w2 c2 )3 2 for satisfying the relativistic circumstances. The present results may contribute to the understanding of the behavior of the particles transport diffusion in a high speed system, as well as enlighten the study of biological metabolism at relativistic high speed situation.

  14. Exact Relativistic `Antigravity' Propulsion

    NASA Astrophysics Data System (ADS)

    Felber, Franklin S.

    2006-01-01

    The Schwarzschild solution is used to find the exact relativistic motion of a payload in the gravitational field of a mass moving with constant velocity. At radial approach or recession speeds faster than 3-1/2 times the speed of light, even a small mass gravitationally repels a payload. At relativistic speeds, a suitable mass can quickly propel a heavy payload from rest nearly to the speed of light with negligible stresses on the payload.

  15. Propagation of localized structures in relativistic magnetized electron-positron plasmas using particle-in-cell simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    López, Rodrigo A.; Muñoz, Víctor; Viñas, Adolfo F.

    2015-09-15

    We use a particle-in-cell simulation to study the propagation of localized structures in a magnetized electron-positron plasma with relativistic finite temperature. We use as initial condition for the simulation an envelope soliton solution of the nonlinear Schrödinger equation, derived from the relativistic two fluid equations in the strongly magnetized limit. This envelope soliton turns out not to be a stable solution for the simulation and splits in two localized structures propagating in opposite directions. However, these two localized structures exhibit a soliton-like behavior, as they keep their profile after they collide with each other due to the periodic boundary conditions.more » We also observe the formation of localized structures in the evolution of a spatially uniform circularly polarized Alfvén wave. In both cases, the localized structures propagate with an amplitude independent velocity.« less

  16. Energy dissipation of slot-type flip buckets

    NASA Astrophysics Data System (ADS)

    Wu, Jian-hua; Li, Shu-fang; Ma, Fei

    2018-03-01

    The energy dissipation is a key index in the evaluation of energy dissipation elements. In the present work, a flip bucket with a slot, called the slot-type flip bucket, is theoretically and experimentally investigated by the method of estimating the energy dissipation. The theoretical analysis shows that, in order to have the energy dissipation, it is necessary to determine the sequent flow depth h 1 and the flow speed V 1 at the corresponding position through the flow depth h 2 after the hydraulic jump. The relative flow depth h 2 / h 。 is a function of the approach flow Froude number Fr 。, the relative slot width b/B 。, and the relative slot angle θ/β. The expression for estimating the energy dissipation is developed, and the maximum error is not larger than 9.21%.

  17. Energy dissipation of slot-type flip buckets

    NASA Astrophysics Data System (ADS)

    Wu, Jian-hua; Li, Shu-fang; Ma, Fei

    2018-04-01

    The energy dissipation is a key index in the evaluation of energy dissipation elements. In the present work, a flip bucket with a slot, called the slot-type flip bucket, is theoretically and experimentally investigated by the method of estimating the energy dissipation. The theoretical analysis shows that, in order to have the energy dissipation, it is necessary to determine the sequent flow depth h 1 and the flow speed V 1 at the corresponding position through the flow depth h 2 after the hydraulic jump. The relative flow depth h 2 / h o is a function of the approach flow Froude number Fr o, the relative slot width b/ B o, and the relative slot angle θ/ β. The expression for estimating the energy dissipation is developed, and the maximum error is not larger than 9.21%.

  18. A Simple Relativistic Bohr Atom

    ERIC Educational Resources Information Center

    Terzis, Andreas F.

    2008-01-01

    A simple concise relativistic modification of the standard Bohr model for hydrogen-like atoms with circular orbits is presented. As the derivation requires basic knowledge of classical and relativistic mechanics, it can be taught in standard courses in modern physics and introductory quantum mechanics. In addition, it can be shown in a class that…

  19. Relativistic theory of surficial Love numbers

    NASA Astrophysics Data System (ADS)

    Landry, Philippe; Poisson, Eric

    2014-06-01

    A relativistic theory of surficial Love numbers, which characterize the surface deformation of a body subjected to tidal forces, was initiated by Damour and Nagar. We revisit this effort in order to extend it, clarify some of its aspects, and simplify its computational implementation. First, we refine the definition of surficial Love numbers proposed by Damour and Nagar and formulate it directly in terms of the deformed curvature of the body's surface, a meaningful geometrical quantity. Second, we develop a unified theory of surficial Love numbers that applies equally well to material bodies and black holes. Third, we derive a compactness-dependent relation between the surficial and (electric-type) gravitational Love numbers of a perfect-fluid body and show that it reduces to the familiar Newtonian relation when the compactness is small. And fourth, we simplify the tasks associated with the practical computation of the surficial and gravitational Love numbers for a material body.

  20. Apparent Paradoxes in Classical Electrodynamics: A Fluid Medium in an Electromagnetic Field

    ERIC Educational Resources Information Center

    Kholmetskii, A. L.; Yarman, T.

    2008-01-01

    In this paper we analyse a number of teaching paradoxes of classical electrodynamics, dealing with the relativistic transformation of energy and momentum for a fluid medium in an external electromagnetic field. In particular, we consider a moving parallel plate charged capacitor, where the electric attraction of its plates is balanced by the…

  1. Microscopic Processes in Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Hardee, P.; Mizuno, Y.; Medvedev, M.; Zhang, B.; Nordlund, A.; Fredricksen, J.; Sol, H.; Niemiec, J.; Lyubarsky, Y.; hide

    2008-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., gamma-ray bursts (GRBs), active galactic nuclei (AGNs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations of relativistic electron-ion (electro-positron) jets injected into a stationary medium show that particle acceleration occurs within the downstream jet. In the collisionless relativistic shock particle acceleration is due to plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel (filamentation) instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The 'jitter' radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  2. A Comprehensive Comparison of Relativistic Particle Integrators

    NASA Astrophysics Data System (ADS)

    Ripperda, B.; Bacchini, F.; Teunissen, J.; Xia, C.; Porth, O.; Sironi, L.; Lapenta, G.; Keppens, R.

    2018-03-01

    We compare relativistic particle integrators commonly used in plasma physics, showing several test cases relevant for astrophysics. Three explicit particle pushers are considered, namely, the Boris, Vay, and Higuera–Cary schemes. We also present a new relativistic fully implicit particle integrator that is energy conserving. Furthermore, a method based on the relativistic guiding center approximation is included. The algorithms are described such that they can be readily implemented in magnetohydrodynamics codes or Particle-in-Cell codes. Our comparison focuses on the strengths and key features of the particle integrators. We test the conservation of invariants of motion and the accuracy of particle drift dynamics in highly relativistic, mildly relativistic, and non-relativistic settings. The methods are compared in idealized test cases, i.e., without considering feedback onto the electrodynamic fields, collisions, pair creation, or radiation. The test cases include uniform electric and magnetic fields, {\\boldsymbol{E}}× {\\boldsymbol{B}} fields, force-free fields, and setups relevant for high-energy astrophysics, e.g., a magnetic mirror, a magnetic dipole, and a magnetic null. These tests have direct relevance for particle acceleration in shocks and in magnetic reconnection.

  3. Modeling of acoustic wave dissipation in gas hydrate-bearing sediments

    NASA Astrophysics Data System (ADS)

    Guerin, Gilles; Goldberg, David

    2005-07-01

    Recent sonic and seismic data in gas hydrate-bearing sediments have indicated strong waveform attenuation associated with a velocity increase, in apparent contradiction with conventional wave propagation theory. Understanding the reasons for such energy dissipation could help constrain the distribution and the amounts of gas hydrate worldwide from the identification of low amplitudes in seismic surveys. A review of existing models for wave propagation in frozen porous media, all based on Biot's theory, shows that previous formulations fail to predict any significant attenuation with increasing hydrate content. By adding physically based components to these models, such as cementation by elastic shear coupling, friction between the solid phases, and squirt flow, we are able to predict an attenuation increase associated with gas hydrate formation. The results of the model agree well with the sonic logging data recorded in the Mallik 5L-38 Gas Hydrate Research Well. Cementation between gas hydrate and the sediment grains is responsible for the increase in shear velocity. The primary mode of energy dissipation is found to be friction between gas hydrate and the sediment matrix, combined with an absence of inertial coupling between gas hydrate and the pore fluid. These results predict similar attenuation increase in hydrate-bearing formations over most of the sonic and seismic frequency range.

  4. Energy dynamics and current sheet structure in fluid and kinetic simulations of decaying magnetohydrodynamic turbulence

    DOE PAGES

    Makwana, K. D.; Zhdankin, V.; Li, H.; ...

    2015-04-10

    We performed simulations of decaying magnetohydrodynamic (MHD) turbulence with a fluid and a kinetic code. The initial condition is an ensemble of long-wavelength, counter-propagating, shear-Alfvén waves, which interact and rapidly generate strong MHD turbulence. The total energy is conserved and the rate of turbulent energy decay is very similar in both codes, although the fluid code has numerical dissipation, whereas the kinetic code has kinetic dissipation. The inertial range power spectrum index is similar in both the codes. The fluid code shows a perpendicular wavenumber spectral slope of k-1.3⊥k⊥-1.3. The kinetic code shows a spectral slope of k-1.5⊥k⊥-1.5 for smallermore » simulation domain, and k-1.3⊥k⊥-1.3 for larger domain. We then estimate that collisionless damping mechanisms in the kinetic code can account for the dissipation of the observed nonlinear energy cascade. Current sheets are geometrically characterized. Their lengths and widths are in good agreement between the two codes. The length scales linearly with the driving scale of the turbulence. In the fluid code, their thickness is determined by the grid resolution as there is no explicit diffusivity. In the kinetic code, their thickness is very close to the skin-depth, irrespective of the grid resolution. Finally, this work shows that kinetic codes can reproduce the MHD inertial range dynamics at large scales, while at the same time capturing important kinetic physics at small scales.« less

  5. Energy dynamics and current sheet structure in fluid and kinetic simulations of decaying magnetohydrodynamic turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makwana, K. D., E-mail: kirit.makwana@gmx.com; Cattaneo, F.; Zhdankin, V.

    Simulations of decaying magnetohydrodynamic (MHD) turbulence are performed with a fluid and a kinetic code. The initial condition is an ensemble of long-wavelength, counter-propagating, shear-Alfvén waves, which interact and rapidly generate strong MHD turbulence. The total energy is conserved and the rate of turbulent energy decay is very similar in both codes, although the fluid code has numerical dissipation, whereas the kinetic code has kinetic dissipation. The inertial range power spectrum index is similar in both the codes. The fluid code shows a perpendicular wavenumber spectral slope of k{sub ⊥}{sup −1.3}. The kinetic code shows a spectral slope of k{submore » ⊥}{sup −1.5} for smaller simulation domain, and k{sub ⊥}{sup −1.3} for larger domain. We estimate that collisionless damping mechanisms in the kinetic code can account for the dissipation of the observed nonlinear energy cascade. Current sheets are geometrically characterized. Their lengths and widths are in good agreement between the two codes. The length scales linearly with the driving scale of the turbulence. In the fluid code, their thickness is determined by the grid resolution as there is no explicit diffusivity. In the kinetic code, their thickness is very close to the skin-depth, irrespective of the grid resolution. This work shows that kinetic codes can reproduce the MHD inertial range dynamics at large scales, while at the same time capturing important kinetic physics at small scales.« less

  6. Energy dynamics and current sheet structure in fluid and kinetic simulations of decaying magnetohydrodynamic turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makwana, K. D.; Zhdankin, V.; Li, H.

    We performed simulations of decaying magnetohydrodynamic (MHD) turbulence with a fluid and a kinetic code. The initial condition is an ensemble of long-wavelength, counter-propagating, shear-Alfvén waves, which interact and rapidly generate strong MHD turbulence. The total energy is conserved and the rate of turbulent energy decay is very similar in both codes, although the fluid code has numerical dissipation, whereas the kinetic code has kinetic dissipation. The inertial range power spectrum index is similar in both the codes. The fluid code shows a perpendicular wavenumber spectral slope of k-1.3⊥k⊥-1.3. The kinetic code shows a spectral slope of k-1.5⊥k⊥-1.5 for smallermore » simulation domain, and k-1.3⊥k⊥-1.3 for larger domain. We then estimate that collisionless damping mechanisms in the kinetic code can account for the dissipation of the observed nonlinear energy cascade. Current sheets are geometrically characterized. Their lengths and widths are in good agreement between the two codes. The length scales linearly with the driving scale of the turbulence. In the fluid code, their thickness is determined by the grid resolution as there is no explicit diffusivity. In the kinetic code, their thickness is very close to the skin-depth, irrespective of the grid resolution. Finally, this work shows that kinetic codes can reproduce the MHD inertial range dynamics at large scales, while at the same time capturing important kinetic physics at small scales.« less

  7. Coherent states for the relativistic harmonic oscillator

    NASA Technical Reports Server (NTRS)

    Aldaya, Victor; Guerrero, J.

    1995-01-01

    Recently we have obtained, on the basis of a group approach to quantization, a Bargmann-Fock-like realization of the Relativistic Harmonic Oscillator as well as a generalized Bargmann transform relating fock wave functions and a set of relativistic Hermite polynomials. Nevertheless, the relativistic creation and annihilation operators satisfy typical relativistic commutation relations of the Lie product (vector-z, vector-z(sup dagger)) approximately equals Energy (an SL(2,R) algebra). Here we find higher-order polarization operators on the SL(2,R) group, providing canonical creation and annihilation operators satisfying the Lie product (vector-a, vector-a(sup dagger)) = identity vector 1, the eigenstates of which are 'true' coherent states.

  8. The Dissipation Range of Interstellar Turbulence

    NASA Astrophysics Data System (ADS)

    Spangler, Steven R.; Buffo, J. J.

    2013-06-01

    Turbulence may play an important role in a number of interstellar processes. One of these is heating of the interstellar gas, as the turbulent energy is dissipated and changed into thermal energy of the gas, or at least other forms of energy. There have been very promising recent results on the mechanism for dissipation of turbulence in the Solar Wind (Howes et al, Phys. Plasm. 18, 102305, 2011). In the Solar Wind, the dissipation arises because small-scale irregularities develop properties of kinetic Alfven waves, and apparently damp like kinetic Alfven waves. A property of kinetic Alfven waves is that they become significantly compressive on size scales of order the ion Larmor radius. Much is known about the plasma properties of ionized components of interstellar medium such as HII regions and the Diffuse Ionized Gas (DIG) phase, including information on the turbulence in these media. The technique of radio wave scintillations can yield properties of HII region and DIG turbulence on scales of order the ion Larmor radius, which we refer to as the dissipation scale. In this paper, we collect results from a number of published radio scattering measurements of interstellar turbulence on the dissipation scale. These studies show evidence for a spectral break on the dissipation scale, but no evidence for enhanced compressibility of the fluctuations. The simplest explanation of our result is that turbulence in the ionized interstellar medium does not possess properties of kinetic Alfven waves. This could point to an important difference with Solar Wind turbulence. New observations, particularly with the Very Long Baseline Array (VLBA) could yield much better measurements of the power spectrum of interstellar turbulence in the dissipation range. This research was supported at the University of Iowa by grants AST09-07911 and ATM09-56901 from the National Science Foundation.

  9. Non-Darcy Forchheimer flow of ferromagnetic second grade fluid

    NASA Astrophysics Data System (ADS)

    Hayat, T.; Ahmad, Salman; Khan, M. Ijaz; Alsaedi, A.

    This article discusses impacts of thermal radiation, viscous dissipation and magnetic dipole in flow of second grade fluid saturating porous medium. Porous medium is characterized by nonlinear Darcy-Forchheimer relation. Relevant nonlinear ordinary differential systems after using appropriate transformations are solved numerically. Shooting technique is implemented for the numerical treatment. Temperature, velocity, skin fraction and Nusselt number are analyzed.

  10. Dissipative dark matter halos: The steady state solution. II.

    NASA Astrophysics Data System (ADS)

    Foot, R.

    2018-05-01

    Within the mirror dark matter model and dissipative dark matter models in general, halos around galaxies with active star formation (including spirals and gas-rich dwarfs) are dynamical: they expand and contract in response to heating and cooling processes. Ordinary type II supernovae (SNe) can provide the dominant heat source, which is possible if kinetic mixing interaction exists with strength ɛ ˜10-9- 10-10 . Dissipative dark matter halos can be modeled as a fluid governed by Euler's equations. Around sufficiently isolated and unperturbed galaxies the halo can relax to a steady state configuration, where heating and cooling rates locally balance and hydrostatic equilibrium prevails. These steady state conditions can be solved to derive the physical properties, including the halo density and temperature profiles, for model galaxies. Here, we consider idealized spherically symmetric galaxies within the mirror dark particle model, as in our earlier paper [Phys. Rev. D 97, 043012 (2018), 10.1103/PhysRevD.97.043012], but we assume that the local halo heating in the SN vicinity dominates over radiative sources. With this assumption, physically interesting steady state solutions arise which we compute for a representative range of model galaxies. The end result is a rather simple description of the dark matter halo around idealized spherically symmetric systems, characterized in principle by only one parameter, with physical properties that closely resemble the empirical properties of disk galaxies.

  11. Time Operator in Relativistic Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Khorasani, Sina

    2017-07-01

    It is first shown that the Dirac’s equation in a relativistic frame could be modified to allow discrete time, in agreement to a recently published upper bound. Next, an exact self-adjoint 4 × 4 relativistic time operator for spin-1/2 particles is found and the time eigenstates for the non-relativistic case are obtained and discussed. Results confirm the quantum mechanical speculation that particles can indeed occupy negative energy levels with vanishingly small but non-zero probablity, contrary to the general expectation from classical physics. Hence, Wolfgang Pauli’s objection regarding the existence of a self-adjoint time operator is fully resolved. It is shown that using the time operator, a bosonic field referred here to as energons may be created, whose number state representations in non-relativistic momentum space can be explicitly found.

  12. Light-cone reduction vs. TsT transformations: a fluid dynamics perspective

    NASA Astrophysics Data System (ADS)

    Dutta, Suvankar; Krishna, Hare

    2018-05-01

    We compute constitutive relations for a charged (2+1) dimensional Schrödinger fluid up to first order in derivative expansion, using holographic techniques. Starting with a locally boosted, asymptotically AdS, 4 + 1 dimensional charged black brane geometry, we uplift that to ten dimensions and perform TsT transformations to obtain an effective five dimensional local black brane solution with asymptotically Schrödinger isometries. By suitably implementing the holographic techniques, we compute the constitutive relations for the effective fluid living on the boundary of this space-time and extract first order transport coefficients from these relations. Schrödinger fluid can also be obtained by reducing a charged relativistic conformal fluid over light-cone. It turns out that both the approaches result the same system at the end. Fluid obtained by light-cone reduction satisfies a restricted class of thermodynamics. Here, we see that the charged fluid obtained holographically also belongs to the same restricted class.

  13. Stationary phase method and delay times for relativistic and non-relativistic tunneling particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernardini, A.E.

    2009-06-15

    The stationary phase method is frequently adopted for calculating tunneling phase times of analytically-continuous Gaussian or infinite-bandwidth step pulses which collide with a potential barrier. This report deals with the basic concepts on deducing transit times for quantum scattering: the stationary phase method and its relation with delay times for relativistic and non-relativistic tunneling particles. After reexamining the above-barrier diffusion problem, we notice that the applicability of this method is constrained by several subtleties in deriving the phase time that describes the localization of scattered wave packets. Using a recently developed procedure - multiple wave packet decomposition - for somemore » specifical colliding configurations, we demonstrate that the analytical difficulties arising when the stationary phase method is applied for obtaining phase (traversal) times are all overcome. In this case, we also investigate the general relation between phase times and dwell times for quantum tunneling/scattering. Considering a symmetrical collision of two identical wave packets with an one-dimensional barrier, we demonstrate that these two distinct transit time definitions are explicitly connected. The traversal times are obtained for a symmetrized (two identical bosons) and an antisymmetrized (two identical fermions) quantum colliding configuration. Multiple wave packet decomposition shows us that the phase time (group delay) describes the exact position of the scattered particles and, in addition to the exact relation with the dwell time, leads to correct conceptual understanding of both transit time definitions. At last, we extend the non-relativistic formalism to the solutions for the tunneling zone of a one-dimensional electrostatic potential in the relativistic (Dirac to Klein-Gordon) wave equation where the incoming wave packet exhibits the possibility of being almost totally transmitted through the potential barrier. The conditions for

  14. Smoothed dissipative particle dynamics model for mesoscopic multiphase flows in the presence of thermal fluctuations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lei, Huan; Baker, Nathan A.; Wu, Lei

    2016-08-05

    Thermal fluctuations cause perturbations of fluid-fluid interfaces and highly nonlinear hydrodynamics in multiphase flows. In this work, we develop a novel multiphase smoothed dissipative particle dynamics model. This model accounts for both bulk hydrodynamics and interfacial fluctuations. Interfacial surface tension is modeled by imposing a pairwise force between SDPD particles. We show that the relationship between the model parameters and surface tension, previously derived under the assumption of zero thermal fluctuation, is accurate for fluid systems at low temperature but overestimates the surface tension for intermediate and large thermal fluctuations. To analyze the effect of thermal fluctuations on surface tension,more » we construct a coarse-grained Euler lattice model based on the mean field theory and derive a semi-analytical formula to directly relate the surface tension to model parameters for a wide range of temperatures and model resolutions. We demonstrate that the present method correctly models the dynamic processes, such as bubble coalescence and capillary spectra across the interface.« less

  15. Mechanisms underlying rhythmic locomotion: body–fluid interaction in undulatory swimming

    PubMed Central

    Chen, J.; Friesen, W. O.; Iwasaki, T.

    2011-01-01

    Swimming of fish and other animals results from interactions of rhythmic body movements with the surrounding fluid. This paper develops a model for the body–fluid interaction in undulatory swimming of leeches, where the body is represented by a chain of rigid links and the hydrodynamic force model is based on resistive and reactive force theories. The drag and added-mass coefficients for the fluid force model were determined from experimental data of kinematic variables during intact swimming, measured through video recording and image processing. Parameter optimizations to minimize errors in simulated model behaviors revealed that the resistive force is dominant, and a simple static function of relative velocity captures the essence of hydrodynamic forces acting on the body. The model thus developed, together with the experimental kinematic data, allows us to investigate temporal and spatial (along the body) distributions of muscle actuation, body curvature, hydrodynamic thrust and drag, muscle power supply and energy dissipation into the fluid. We have found that: (1) thrust is generated continuously along the body with increasing magnitude toward the tail, (2) drag is nearly constant along the body, (3) muscle actuation waves travel two or three times faster than the body curvature waves and (4) energy for swimming is supplied primarily by the mid-body muscles, transmitted through the body in the form of elastic energy, and dissipated into the water near the tail. PMID:21270304

  16. Minimal position-velocity uncertainty wave packets in relativistic and non-relativistic quantum mechanics

    NASA Astrophysics Data System (ADS)

    Al-Hashimi, M. H.; Wiese, U.-J.

    2009-12-01

    We consider wave packets of free particles with a general energy-momentum dispersion relation E(p). The spreading of the wave packet is determined by the velocity v=∂pE. The position-velocity uncertainty relation ΔxΔv⩾12|<∂p2E>| is saturated by minimal uncertainty wave packets Φ(p)=Aexp(-αE(p)+βp). In addition to the standard minimal Gaussian wave packets corresponding to the non-relativistic dispersion relation E(p)=p2/2m, analytic calculations are presented for the spreading of wave packets with minimal position-velocity uncertainty product for the lattice dispersion relation E(p)=-cos(pa)/ma2 as well as for the relativistic dispersion relation E(p)=p2+m2. The boost properties of moving relativistic wave packets as well as the propagation of wave packets in an expanding Universe are also discussed.

  17. Thermodynamic laws and equipartition theorem in relativistic Brownian motion.

    PubMed

    Koide, T; Kodama, T

    2011-06-01

    We extend the stochastic energetics to a relativistic system. The thermodynamic laws and equipartition theorem are discussed for a relativistic Brownian particle and the first and the second law of thermodynamics in this formalism are derived. The relation between the relativistic equipartition relation and the rate of heat transfer is discussed in the relativistic case together with the nature of the noise term.

  18. EXACT RELATIVISTIC NEWTONIAN REPRESENTATION OF GRAVITATIONAL STATIC SPACETIME GEOMETRIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Shubhrangshu; Sarkar, Tamal; Bhadra, Arunava, E-mail: sghosh@jcbose.ac.in, E-mail: ta.sa.nbu@hotmail.com, E-mail: aru_bhadra@yahoo.com

    2016-09-01

    We construct a self-consistent relativistic Newtonian analogue corresponding to gravitational static spherical symmetric spacetime geometries, starting directly from a generalized scalar relativistic gravitational action in a Newtonian framework, which gives geodesic equations of motion identical to those of the parent metric. Consequently, the derived velocity-dependent relativistic scalar potential, which is a relativistic generalization of the Newtonian gravitational potential, exactly reproduces the relativistic gravitational features corresponding to any static spherical symmetric spacetime geometry in its entirety, including all the experimentally tested gravitational effects in the weak field up to the present. This relativistic analogous potential is expected to be quite usefulmore » in studying a wide range of astrophysical phenomena, especially in strong field gravity.« less

  19. Generalized charge-screening in relativistic Thomas–Fermi model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akbari-Moghanjoughi, M.

    In this paper, we study the charge shielding within the relativistic Thomas-Fermi model for a wide range of electron number-densities and the atomic-number of screened ions. A generalized energy-density relation is obtained using the force-balance equation and taking into account the Chandrasekhar's relativistic electron degeneracy pressure. By numerically solving a second-order nonlinear differential equation, the Thomas-Fermi screening length is investigated, and the results are compared for three distinct regimes of the solid-density, warm-dense-matter, and white-dwarfs (WDs). It is revealed that our nonlinear screening theory is compatible with the exponentially decaying Thomas-Fermi-type shielding predicted by the linear response theory. Moreover, themore » variation of relative Thomas-Fermi screening length shows that extremely dense quantum electron fluids are relatively poor charge shielders. Calculation of the total number of screening electrons around a nucleus shows that there is a position of maximum number of screening localized electrons around the screened nucleus, which moves closer to the point-like nucleus by increase in the plasma number density but is unaffected due to increase in the atomic-number value. It is discovered that the total number of screening electrons, (N{sub s}∝r{sub TF}{sup 3}/r{sub d}{sup 3} where r{sub TF} and r{sub d} are the Thomas-Fermi and interparticle distance, respectively) has a distinct limit for extremely dense plasmas such as WD-cores and neutron star crusts, which is unique for all given values of the atomic-number. This is equal to saying that in an ultrarelativistic degeneracy limit of electron-ion plasma, the screening length couples with the system dimensionality and the plasma becomes spherically self-similar. Current analysis can provide useful information on the effects of relativistic correction to the charge screening for a wide range of plasma density, such as the inertial-confined plasmas and compact

  20. Modeling quasar central engine as a relativistic radiating star

    NASA Astrophysics Data System (ADS)

    Singh, Ksh. Newton; Pant, Neeraj

    2015-01-01

    Long ago Hoyle & Fowler attempted to model the central engine of quasars as hot super-massive stars supported by radiation pressure. Whereas the model of Hoyle & Fowler was Newtonian, here we make a toy model of quasar central engines as ultra relativistic ultrahot plasma or as a ball of radiation. Accordingly, we consider general relativistic gravitational collapse including emission of radiation. More specifically, we discuss a new class of radiating fluid ball exact solution in conformally-flat metric which is quasi-static and contracting at negligible rate. The problem is solved by assuming that the metric potential is separable in to radial and time dependent parts. It is found the gravitational mass of the radiating ball M→0 as comoving time t→∞ in conformity of the idea of an "Eternally Collapsing Object" (ECO) which has been claimed to be the true nature of the so-called "Black Holes". In particular, we consider here a quasi-static radiation ball having M≈9.507×107 M ⊙, a radius of ≈2×1014 km, and a luminosity L ∞≈9.1×1046 erg/s. Prima-facie, such an ECO solution is compatible with the central compact object of a quasar having comoving lifetime of ≈107 yr and a distantly observed lifetime ( u) which could be higher by many orders of magnitude.

  1. K-P-Burgers equation in negative ion-rich relativistic dusty plasma including the effect of kinematic viscosity

    NASA Astrophysics Data System (ADS)

    Dev, A. N.; Deka, M. K.; Sarma, J.; Saikia, D.; Adhikary, N. C.

    2016-10-01

    The stationary solution is obtained for the K-P-Burgers equation that describes the nonlinear propagations of dust ion acoustic waves in a multi-component, collisionless, un-magnetized relativistic dusty plasma consisting of electrons, positive and negative ions in the presence of charged massive dust grains. Here, the Kadomtsev-Petviashvili (K-P) equation, three-dimensional (3D) Burgers equation, and K-P-Burgers equations are derived by using the reductive perturbation method including the effects of viscosity of plasma fluid, thermal energy, ion density, and ion temperature on the structure of a dust ion acoustic shock wave (DIASW). The K-P equation predictes the existences of stationary small amplitude solitary wave, whereas the K-P-Burgers equation in the weakly relativistic regime describes the evolution of shock-like structures in such a multi-ion dusty plasma.

  2. Dissipative quantum trajectories in complex space: Damped harmonic oscillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, Chia-Chun, E-mail: ccchou@mx.nthu.edu.tw

    Dissipative quantum trajectories in complex space are investigated in the framework of the logarithmic nonlinear Schrödinger equation. The logarithmic nonlinear Schrödinger equation provides a phenomenological description for dissipative quantum systems. Substituting the wave function expressed in terms of the complex action into the complex-extended logarithmic nonlinear Schrödinger equation, we derive the complex quantum Hamilton–Jacobi equation including the dissipative potential. It is shown that dissipative quantum trajectories satisfy a quantum Newtonian equation of motion in complex space with a friction force. Exact dissipative complex quantum trajectories are analyzed for the wave and solitonlike solutions to the logarithmic nonlinear Schrödinger equation formore » the damped harmonic oscillator. These trajectories converge to the equilibrium position as time evolves. It is indicated that dissipative complex quantum trajectories for the wave and solitonlike solutions are identical to dissipative complex classical trajectories for the damped harmonic oscillator. This study develops a theoretical framework for dissipative quantum trajectories in complex space.« less

  3. Structure of relativistic shocks in pulsar winds: A model of the wisps in the Crab Nebula

    NASA Technical Reports Server (NTRS)

    Gallant, Yves A.; Arons, Jonathan

    1994-01-01

    We propose a model of a optical 'wisps' of the Crab Nebula, features observed in the nebular synchrotron surface brightness near the central pulsar, as manifestations of the internal structure of the shock terminating the pulsar wind. We assume that this wind is composed of ions and a much denser plasma of electrons and positrons, frozen together to a toroidal magnetic field and flowing relativistically. We construct a form of solitary wave model of the shock structure in which we self-consistently solve for the ion orbits and the dynamics of the relativistically hot, magnetized e(+/-) background flow. We ignore dispersion in the ion energies, and we treat the pairs as an adiabatic fluid. The synchrotron emission enhancements, observed as the wisps, are then explained as the regions where reflection of the ions in the self-consistent magnetic field causes compressions of the e(+/-).

  4. Relativistically induced transparency acceleration of light ions by an ultrashort laser pulse interacting with a heavy-ion-plasma density gradient.

    PubMed

    Sahai, Aakash A; Tsung, Frank S; Tableman, Adam R; Mori, Warren B; Katsouleas, Thomas C

    2013-10-01

    The relativistically induced transparency acceleration (RITA) scheme of proton and ion acceleration using laser-plasma interactions is introduced, modeled, and compared to the existing schemes. Protons are accelerated with femtosecond relativistic pulses to produce quasimonoenergetic bunches with controllable peak energy. The RITA scheme works by a relativistic laser inducing transparency [Akhiezer and Polovin, Zh. Eksp. Teor. Fiz 30, 915 (1956); Kaw and Dawson, Phys. Fluids 13, 472 (1970); Max and Perkins, Phys. Rev. Lett. 27, 1342 (1971)] to densities higher than the cold-electron critical density, while the background heavy ions are stationary. The rising laser pulse creates a traveling acceleration structure at the relativistic critical density by ponderomotively [Lindl and Kaw, Phys. Fluids 14, 371 (1971); Silva et al., Phys. Rev. E 59, 2273 (1999)] driving a local electron density inflation, creating an electron snowplow and a co-propagating electrostatic potential. The snowplow advances with a velocity determined by the rate of the rise of the laser's intensity envelope and the heavy-ion-plasma density gradient scale length. The rising laser is incrementally rendered transparent to higher densities such that the relativistic-electron plasma frequency is resonant with the laser frequency. In the snowplow frame, trace density protons reflect off the electrostatic potential and get snowplowed, while the heavier background ions are relatively unperturbed. Quasimonoenergetic bunches of velocity equal to twice the snowplow velocity can be obtained and tuned by controlling the snowplow velocity using laser-plasma parameters. An analytical model for the proton energy as a function of laser intensity, rise time, and plasma density gradient is developed and compared to 1D and 2D PIC OSIRIS [Fonseca et al., Lect. Note Comput. Sci. 2331, 342 (2002)] simulations. We model the acceleration of protons to GeV energies with tens-of-femtoseconds laser pulses of a few

  5. Relativistic nonlinear plasma waves in a magnetic field

    NASA Technical Reports Server (NTRS)

    Kennel, C. F.; Pellat, R.

    1975-01-01

    Five relativistic plane nonlinear waves were investigated: circularly polarized waves and electrostatic plasma oscillations propagating parallel to the magnetic field, relativistic Alfven waves, linearly polarized transverse waves propagating in zero magnetic field, and the relativistic analog of the extraordinary mode propagating at an arbitrary angle to the magnetic field. When the ions are driven relativistic, they behave like electrons, and the assumption of an 'electron-positron' plasma leads to equations which have the form of a one-dimensional potential well. The solutions indicate that a large-amplitude superluminous wave determines the average plasma properties.

  6. Loading relativistic Maxwell distributions in particle simulations

    NASA Astrophysics Data System (ADS)

    Zenitani, Seiji

    2015-04-01

    Numerical algorithms to load relativistic Maxwell distributions in particle-in-cell (PIC) and Monte-Carlo simulations are presented. For stationary relativistic Maxwellian, the inverse transform method and the Sobol algorithm are reviewed. To boost particles to obtain relativistic shifted-Maxwellian, two rejection methods are proposed in a physically transparent manner. Their acceptance efficiencies are ≈50 % for generic cases and 100% for symmetric distributions. They can be combined with arbitrary base algorithms.

  7. Reference Frames in Relativistic Space-Time

    NASA Astrophysics Data System (ADS)

    Soffel, M.; Herold, H.; Ruder, H.; Schneider, M.

    Three fundamental concepts of reference frames in relativistic space-time are confronted: 1. the gravitation compass, 2. the stellar compass and 3. the inertial compass. It is argued that under certain conditions asymptotically fixed (stellar) reference frames can be introduced with the same rigour as local Fermi frames, thereby eliminating one possible psychological reason why the importance of Fermi frames frequently has been overestimated in the past. As applications of these three concepts the authors discuss: 1. a relativistic definition of the geoid, 2. a relativistic astrometric problem and 3. the post-Newtonian theory of a laser gyroscope fixed to the Earth's surface.

  8. Dissipative structures and related methods

    DOEpatents

    Langhorst, Benjamin R; Chu, Henry S

    2013-11-05

    Dissipative structures include at least one panel and a cell structure disposed adjacent to the at least one panel having interconnected cells. A deformable material, which may comprise at least one hydrogel, is disposed within at least one interconnected cell proximate to the at least one panel. Dissipative structures may also include a cell structure having interconnected cells formed by wall elements. The wall elements may include a mesh formed by overlapping fibers having apertures formed therebetween. The apertures may form passageways between the interconnected cells. Methods of dissipating a force include disposing at least one hydrogel in a cell structure proximate to at least one panel, applying a force to the at least one panel, and forcing at least a portion of the at least one hydrogel through apertures formed in the cell structure.

  9. Fluid Flow through Pipes--Another Look at Fire Hoses and Garden Hoses.

    ERIC Educational Resources Information Center

    Brouwer, W.; Paranjape, B. V.

    1991-01-01

    The forward force of water on a hose is calculated using only the pressure gradient, the radius and length of the hose. The misconception about recoil on the nozzle is discussed. Dissipation energy and the consequent heat generation in a fluid flow are also described. (KR)

  10. Relativistic coupled cluster theory based on the no-pair Dirac-Coulomb-Breit Hamiltonian: Relativistic pair correlation energies of the Xe atom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eliav, E.; Kaldor, U.; Ishikawa, Y.

    1994-12-31

    Relativistic pair correlation energies of Xe were computed by employing a recently developed relativistic coupled cluster theory based on the no-pair Dirac-Coulomb-Breit Hamiltonian. The matrix Dirac-Fock-Breit SCF and relativistic coupled cluster calculations were performed by means of expansion in basis sets of well-tempered Gaussian spinors. A detailed study of the pair correlation energies in Xe is performed, in order to investigate the effects of the low-frequency Breit interaction on the correlation energies of Xe. Nonadditivity of correlation and relativistic (particularly Breit) effects is discussed.

  11. Dissipation models for central difference schemes

    NASA Astrophysics Data System (ADS)

    Eliasson, Peter

    1992-12-01

    In this paper different flux limiters are used to construct dissipation models. The flux limiters are usually of Total Variation Diminishing (TVD type and are applied to the characteristic variables for the hyperbolic Euler equations in one, two or three dimensions. A number of simplified dissipation models with a reduced number of limiters are considered to reduce the computational effort. The most simplified methods use only one limiter, the dissipation model by Jameson belongs to this class since the Jameson pressure switch is considered as a limiter, not TVD though. Other one-limiter models with TVD limiters are also investigated. Models in between the most simplified one-limiter models and the full model with limiters on all the different characteristics are considered where different dissipation models are applied to the linear and non-linear characteristcs. In this paper the theory by Yee is extended to a general explicit Runge-Kutta type of schemes.

  12. Smoothed-particle-hydrodynamics modeling of dissipation mechanisms in gravity waves.

    PubMed

    Colagrossi, Andrea; Souto-Iglesias, Antonio; Antuono, Matteo; Marrone, Salvatore

    2013-02-01

    The smoothed-particle-hydrodynamics (SPH) method has been used to study the evolution of free-surface Newtonian viscous flows specifically focusing on dissipation mechanisms in gravity waves. The numerical results have been compared with an analytical solution of the linearized Navier-Stokes equations for Reynolds numbers in the range 50-5000. We found that a correct choice of the number of neighboring particles is of fundamental importance in order to obtain convergence towards the analytical solution. This number has to increase with higher Reynolds numbers in order to prevent the onset of spurious vorticity inside the bulk of the fluid, leading to an unphysical overdamping of the wave amplitude. This generation of spurious vorticity strongly depends on the specific kernel function used in the SPH model.

  13. Spatial Inhomogeneity of Kinetic and Magnetic Dissipations in Thermal Convection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hotta, H.

    We investigate the inhomogeneity of kinetic and magnetic dissipations in thermal convection using high-resolution calculations. In statistically steady turbulence, the injected and dissipated energies are balanced. This means that a large amount of energy is continuously converted into internal energy via dissipation. As in thermal convection, downflows are colder than upflows and the inhomogeneity of the dissipation potentially changes the convection structure. Our investigation of the inhomogeneity of the dissipation shows the following. (1) More dissipation is seen around the bottom of the calculation domain, and this tendency is promoted with the magnetic field. (2) The dissipation in the downflowmore » is much larger than that in the upflow. The dissipation in the downflow is more than 80% of the total at maximum. This tendency is also promoted with the magnetic field. (3) Although 2D probability density functions of the kinetic and magnetic dissipations versus the vertical velocity are similar, the kinetic and magnetic dissipations are not well correlated. Our result suggests that the spatial inhomogeneity of the dissipation is significant and should be considered when modeling a small-scale strong magnetic field generated with an efficient small-scale dynamo for low-resolution calculations.« less

  14. On some transonic aspects of general relativistic spherical accretion on to Schwarzschild black holes

    NASA Astrophysics Data System (ADS)

    Das, Tapas K.

    2002-03-01

    The equations governing general relativistic, spherically symmetric, hydrodynamic accretion of polytropic fluid on to black holes are solved in the Schwarzschild metric to investigate some of the transonic properties of the flow. Only stationary solutions are discussed. For such accretion, it has been shown that real physical sonic points may form even for flow with γ<4/3or γ>5/3. The behaviour of some flow variables in the close vicinity of the event horizon is studied as a function of specific energy and the polytropic index of the flow.

  15. Tunneling dynamics in relativistic and nonrelativistic wave equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delgado, F.; Muga, J. G.; Ruschhaupt, A.

    2003-09-01

    We obtain the solution of a relativistic wave equation and compare it with the solution of the Schroedinger equation for a source with a sharp onset and excitation frequencies below cutoff. A scaling of position and time reduces to a single case all the (below cutoff) nonrelativistic solutions, but no such simplification holds for the relativistic equation, so that qualitatively different ''shallow'' and ''deep'' tunneling regimes may be identified relativistically. The nonrelativistic forerunner at a position beyond the penetration length of the asymptotic stationary wave does not tunnel; nevertheless, it arrives at the traversal (semiclassical or Buettiker-Landauer) time {tau}. Themore » corresponding relativistic forerunner is more complex: it oscillates due to the interference between two saddle-point contributions and may be characterized by two times for the arrival of the maxima of lower and upper envelopes. There is in addition an earlier relativistic forerunner, right after the causal front, which does tunnel. Within the penetration length, tunneling is more robust for the precursors of the relativistic equation.« less

  16. Relativistic Gas Drag on Dust Grains and Implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoang, Thiem, E-mail: thiemhoang@kasi.re.kr; Korea University of Science and Technology, Daejeon, 34113

    We study the drag force on grains moving at relativistic velocities through interstellar gas and explore its application. First, we derive a new analytical formula of the drag force at high energies and find that it is significantly reduced compared to the classical model. Second, we apply the obtained drag force to calculate the terminal velocities of interstellar grains by strong radiation sources such as supernovae and active galactic nuclei (AGNs). We find that grains can be accelerated to relativistic velocities by very luminous AGNs. We then quantify the deceleration of relativistic spacecraft proposed by the Breakthrough Starshot initiative duemore » to gas drag on a relativistic lightsail. We find that the spacecraft’s decrease in speed is negligible because of the suppression of gas drag at relativistic velocities, suggesting that the lightsail may be open for communication during its journey to α Centauri without causing a considerable delay. Finally, we show that the damage to relativistic thin lightsails by interstellar dust is a minor effect.« less

  17. Charge-Dissipative Electrical Cables

    NASA Technical Reports Server (NTRS)

    Kolasinski, John R.; Wollack, Edward J.

    2004-01-01

    Electrical cables that dissipate spurious static electric charges, in addition to performing their main functions of conducting signals, have been developed. These cables are intended for use in trapped-ion or ionizing-radiation environments, in which electric charges tend to accumulate within, and on the surfaces of, dielectric layers of cables. If the charging rate exceeds the dissipation rate, charges can accumulate in excessive amounts, giving rise to high-current discharges that can damage electronic circuitry and/or systems connected to it. The basic idea of design and operation of charge-dissipative electrical cables is to drain spurious charges to ground by use of lossy (slightly electrically conductive) dielectric layers, possibly in conjunction with drain wires and/or drain shields (see figure). In typical cases, the drain wires and/or drain shields could be electrically grounded via the connector assemblies at the ends of the cables, in any of the conventional techniques for grounding signal conductors and signal shields. In some cases, signal shields could double as drain shields.

  18. Empirical Foundations of the Relativistic Gravity

    NASA Astrophysics Data System (ADS)

    Ni, Wei-Tou

    In 1859, Le Verrier discovered the mercury perihelion advance anomaly. This anomaly turned out to be the first relativistic-gravity effect observed. During the 141 years to 2000, the precisions of laboratory and space experiments, and astrophysical and cosmological observations on relativistic gravity have been improved by 3 orders of magnitude. In 1999, we envisaged a 3-6 order improvement in the next 30 years in all directions of tests of relativistic gravity. In 2000, the interferometric gravitational wave detectors began their runs to accumulate data. In 2003, the measurement of relativistic Shapiro time-delay of the Cassini spacecraft determined the relativistic-gravity parameter γ to be 1.000021 ± 0.000023 of general relativity — a 1.5-order improvement. In October 2004, Ciufolini and Pavlis reported a measurement of the Lense-Thirring effect on the LAGEOS and LAGEOS2 satellites to be 0.99 ± 0.10 of the value predicted by general relativity. In April 2004, Gravity Probe B (Stanford relativity gyroscope experiment to measure the Lense-Thirring effect to 1%) was launched and has been accumulating science data for more than 170 days now. μSCOPE (MICROSCOPE: MICRO-Satellite à trainée Compensée pour l'Observation du Principle d'Équivalence) is on its way for a 2008 launch to test Galileo equivalence principle to 10-15. LISA Pathfinder (SMART2), the technological demonstrator for the LISA (Laser Interferometer Space Antenna) mission is well on its way for a 2009 launch. STEP (Satellite Test of Equivalence Principle), and ASTROD (Astrodynamical Space Test of Relativity using Optical Devices) are in good planning stage. Various astrophysical tests and cosmological tests of relativistic gravity will reach precision and ultra-precision stages. Clock tests and atomic interferometry tests of relativistic gravity will reach an ever-increasing precision. These will give revived interest and development both in experimental and theoretical aspects of gravity, and

  19. Quantified Energy Dissipation Rates in the Terrestrial Bow Shock. 2; Waves and Dissipation

    NASA Technical Reports Server (NTRS)

    Wilson, L. B., III; Sibeck, D. G.; Breneman, A. W.; Le Contel, O.; Cully, C.; Turner, D. L.; Angelopoulos, V.; Malaspina, D. M.

    2014-01-01

    We present the first quantified measure of the energy dissipation rates, due to wave-particle interactions, in the transition region of the Earth's collision-less bow shock using data from the Time History of Events and Macro-Scale Interactions during Sub-Storms spacecraft. Our results show that wave-particle interactions can regulate the global structure and dominate the energy dissipation of collision-less shocks. In every bow shock crossing examined, we observed both low-frequency (less than 10 hertz) and high-frequency (approximately or greater than10 hertz) electromagnetic waves throughout the entire transition region and into the magnetosheath. The low-frequency waves were consistent with magnetosonic-whistler waves. The high-frequency waves were combinations of ion-acoustic waves, electron cyclotron drift instability driven waves, electrostatic solitary waves, and whistler mode waves. The high-frequency waves had the following: (1) peak amplitudes exceeding delta B approximately equal to 10 nanoteslas and delta E approximately equal to 300 millivolts per meter, though more typical values were delta B approximately equal to 0.1-1.0 nanoteslas and delta E approximately equal to 10-50 millivolts per meter (2) Poynting fluxes in excess of 2000 microWm(sup -2) (micro-waves per square meter) (typical values were approximately 1-10 microWm(sup -2) (micro-waves per square meter); (3) resistivities greater than 9000 omega meters; and (4) associated energy dissipation rates greater than 10 microWm(sup -3) (micro-waves per cubic meter). The dissipation rates due to wave-particle interactions exceeded rates necessary to explain the increase in entropy across the shock ramps for approximately 90 percent of the wave burst durations. For approximately 22 percent of these times, the wave-particle interactions needed to only be less than or equal to 0.1 percent efficient to balance the nonlinear wave steepening that produced the shock waves. These results show that wave

  20. PHOTOSPHERE EMISSION FROM A HYBRID RELATIVISTIC OUTFLOW WITH ARBITRARY DIMENSIONLESS ENTROPY AND MAGNETIZATION IN GRBs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, He; Zhang, Bing, E-mail: gaohe@physics.unlv.edu, E-mail: zhang@physics.unlv.edu, E-mail: hug18@psu.edu

    2015-03-10

    In view of the recent Fermi observations of gamma-ray burst (GRB) prompt emission spectra, we develop a theory of photosphere emission of a hybrid relativistic outflow with a hot fireball component (defined by dimensionless entropy η) and a cold Poynting-flux component (defined by magnetization σ{sub 0} at the central engine). We consider the scenarios both without and with sub-photospheric magnetic dissipations. Based on a simplified toy model of jet dynamics, we develop two approaches: a 'bottom-up' approach to predict the temperature (for a non-dissipative photosphere) and luminosity of the photosphere emission and its relative brightness for a given pair ofmore » (η, σ{sub 0}); and a 'top-down' approach to diagnose central engine parameters (η and σ{sub 0}) based on the observed quasi-thermal photosphere emission properties. We show that a variety of observed GRB prompt emission spectra with different degrees of photosphere thermal emission can be reproduced by varying η and σ{sub 0} within the non-dissipative photosphere scenario. In order to reproduce the observed spectra, the outflows of most GRBs need to have a significant σ, both at the central engine and at the photosphere. The σ value at 10{sup 15} cm from the central engine (a possible non-thermal emission site) is usually also greater than unity, so that internal-collision-induced magnetic reconnection and turbulence (ICMART) may be the mechanism to power the non-thermal emission. We apply our top-down approach to GRB 110721A and find that the temporal evolution behavior of its blackbody component can be well interpreted with a time-varying (η, σ{sub 0}) at the central engine, instead of invoking a varying engine base size r {sub 0} as proposed by previous authors.« less

  1. Minimum-dissipation scalar transport model for large-eddy simulation of turbulent flows

    NASA Astrophysics Data System (ADS)

    Abkar, Mahdi; Bae, Hyun J.; Moin, Parviz

    2016-08-01

    Minimum-dissipation models are a simple alternative to the Smagorinsky-type approaches to parametrize the subfilter turbulent fluxes in large-eddy simulation. A recently derived model of this type for subfilter stress tensor is the anisotropic minimum-dissipation (AMD) model [Rozema et al., Phys. Fluids 27, 085107 (2015), 10.1063/1.4928700], which has many desirable properties. It is more cost effective than the dynamic Smagorinsky model, it appropriately switches off in laminar and transitional flows, and it is consistent with the exact subfilter stress tensor on both isotropic and anisotropic grids. In this study, an extension of this approach to modeling the subfilter scalar flux is proposed. The performance of the AMD model is tested in the simulation of a high-Reynolds-number rough-wall boundary-layer flow with a constant and uniform surface scalar flux. The simulation results obtained from the AMD model show good agreement with well-established empirical correlations and theoretical predictions of the resolved flow statistics. In particular, the AMD model is capable of accurately predicting the expected surface-layer similarity profiles and power spectra for both velocity and scalar concentration.

  2. Magnetohydrodynamic Jump Conditions for Oblique Relativistic Shocks with Gyrotropic Pressure

    NASA Technical Reports Server (NTRS)

    Double, Glen P.; Baring, Matthew G.; Jones, Frank C.; Ellison, Donald C.

    2003-01-01

    Shock jump conditions, i.e., the specification of the downstream parameters of the gas in terms of the upstream parameters, are obtained for steady-state, plane shocks with oblique magnetic fields and arbitrary flow speeds. This is done by combining the continuity of particle number flux and the electromagnetic boundary conditions at the shock with the magnetohydrodynamic conservation laws derived from the stress-energy tensor. For ultrarelativistic and nonrelativistic shocks, the jump conditions may be solved analytically. For mildly relativistic shocks, analytic solutions are obtained for isotropic pressure using an approximation for the adiabatic index that is valid in high sonic Mach number cases. Examples assuming isotropic pressure illustrate how the shock compression ratio depends on the shock speed and obliquity. In the more general case of gyrotropic pressure, the jump conditions cannot be solved analytically with- out additional assumptions, and the effects of gyrotropic pressure are investigated by parameterizing the distribution of pressure parallel and perpendicular to the magnetic field. Our numerical solutions reveal that relatively small departures from isotropy (e.g., approximately 20%) produce significant changes in the shock compression ratio, r , at all shock Lorentz factors, including ultrarelativistic ones, where an analytic solution with gyrotropic pressure is obtained. In particular, either dynamically important fields or significant pressure anisotropies can incur marked departures from the canonical gas dynamic value of r = 3 for a shocked ultrarelativistic flow and this may impact models of particle acceleration in gamma-ray bursts and other environments where relativistic shocks are inferred. The jump conditions presented apply directly to test-particle acceleration, and will facilitate future self-consistent numerical modeling of particle acceleration at oblique, relativistic shocks; such models include the modification of the fluid

  3. Progress in the Development of a Class of Efficient Low Dissipative High Order Shock-capturing Methods

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sjogreen, B.; Sandham, N. D.; Hadjadj, A.; Kwak, Dochan (Technical Monitor)

    2000-01-01

    In a series of papers, Olsson (1994, 1995), Olsson & Oliger (1994), Strand (1994), Gerritsen Olsson (1996), Yee et al. (1999a,b, 2000) and Sandham & Yee (2000), the issue of nonlinear stability of the compressible Euler and Navier-Stokes Equations, including physical boundaries, and the corresponding development of the discrete analogue of nonlinear stable high order schemes, including boundary schemes, were developed, extended and evaluated for various fluid flows. High order here refers to spatial schemes that are essentially fourth-order or higher away from shock and shear regions. The objective of this paper is to give an overview of the progress of the low dissipative high order shock-capturing schemes proposed by Yee et al. (1999a,b, 2000). This class of schemes consists of simple non-dissipative high order compact or non-compact central spatial differencings and adaptive nonlinear numerical dissipation operators to minimize the use of numerical dissipation. The amount of numerical dissipation is further minimized by applying the scheme to the entropy splitting form of the inviscid flux derivatives, and by rewriting the viscous terms to minimize odd-even decoupling before the application of the central scheme (Sandham & Yee). The efficiency and accuracy of these scheme are compared with spectral, TVD and fifth- order WENO schemes. A new approach of Sjogreen & Yee (2000) utilizing non-orthogonal multi-resolution wavelet basis functions as sensors to dynamically determine the appropriate amount of numerical dissipation to be added to the non-dissipative high order spatial scheme at each grid point will be discussed. Numerical experiments of long time integration of smooth flows, shock-turbulence interactions, direct numerical simulations of a 3-D compressible turbulent plane channel flow, and various mixing layer problems indicate that these schemes are especially suitable for practical complex problems in nonlinear aeroacoustics, rotorcraft dynamics, direct

  4. Relativistic anisotropic hydrodynamics

    NASA Astrophysics Data System (ADS)

    Alqahtani, Mubarak; Nopoush, Mohammad; Strickland, Michael

    2018-07-01

    In this paper we review recent progress in relativistic anisotropic hydrodynamics. We begin with a pedagogical introduction to the topic which takes into account the advances in our understanding of this topic since its inception. We consider both conformal and non-conformal systems and demonstrate how one can implement a realistic equation of state using a quasiparticle approach. We then consider the inclusion of non-spheroidal (non-ellipsoidal) corrections to leading-order anisotropic hydrodynamics and present the findings of the resulting second-order viscous anisotropic hydrodynamics framework. We compare the results obtained in both the conformal and non-conformal cases with exact solutions to the Boltzmann equation and demonstrate that, in all known cases, anisotropic hydrodynamics best reproduces the exact solutions. Based on this success, we then discuss the phenomenological application of anisotropic hydrodynamics. Along these lines, we review techniques which can be used to convert a momentum-space anisotropic fluid into hadronic degrees of freedom by generalizing the original idea of Cooper-Frye freeze-out to momentum-space anisotropic systems. And, finally, we present phenomenological results of 3 + 1 d quasiparticle anisotropic hydrodynamic simulations and compare them to experimental data produced in 2.76 TeV Pb-Pb collisions at the LHC. Our results indicate that anisotropic hydrodynamics provides a promising framework for describing the dynamics of the momentum-space anisotropic QGP created in heavy-ion collisions.

  5. Relativistic Corrections to the Bohr Model of the Atom

    ERIC Educational Resources Information Center

    Kraft, David W.

    1974-01-01

    Presents a simple means for extending the Bohr model to include relativistic corrections using a derivation similar to that for the non-relativistic case, except that the relativistic expressions for mass and kinetic energy are employed. (Author/GS)

  6. General Relativistic Radiative Transfer and General Relativistic MHD Simulations of Accretion and Outflows of Black Holes

    NASA Technical Reports Server (NTRS)

    Fuerst, Steven V.; Mizuno, Yosuke; Nishikawa, Ken-Ichi; Wu, Kinwah

    2007-01-01

    We have calculated the emission from relativistic flows in black hole systems using a fully general relativistic radiative transfer, with flow structures obtained by general relativistic magnetohydrodynamic simulations. We consider thermal free-free emission and thermal synchrotron emission. Bright filament-like features are found protruding (visually) from the accretion disk surface, which are enhancements of synchrotron emission when the magnetic field is roughly aligned with the line-of-sight in the co-moving frame. The features move back and forth as the accretion flow evolves, but their visibility and morphology are robust. We propose that variations and location drifts of the features are responsible for certain X-ray quasi-periodic oscillations (QPOs) observed in black-hole X-ray binaries.

  7. General Relativistic Radiative Transfer and GeneralRelativistic MHD Simulations of Accretion and Outflows of Black Holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuerst, Steven V.; /KIPAC, Menlo Park; Mizuno, Yosuke

    2007-01-05

    We calculate the emission from relativistic flows in black hole systems using a fully general relativistic radiative transfer formulation, with flow structures obtained by general relativistic magneto-hydrodynamic simulations. We consider thermal free-free emission and thermal synchrotron emission. Bright filament-like features protrude (visually) from the accretion disk surface, which are enhancements of synchrotron emission where the magnetic field roughly aligns with the line-of-sight in the co-moving frame. The features move back and forth as the accretion flow evolves, but their visibility and morphology are robust. We propose that variations and drifts of the features produce certain X-ray quasi-periodic oscillations (QPOs) observedmore » in black-hole X-ray binaries.« less

  8. Numerical solution of special ultra-relativistic Euler equations using central upwind scheme

    NASA Astrophysics Data System (ADS)

    Ghaffar, Tayabia; Yousaf, Muhammad; Qamar, Shamsul

    2018-06-01

    This article is concerned with the numerical approximation of one and two-dimensional special ultra-relativistic Euler equations. The governing equations are coupled first-order nonlinear hyperbolic partial differential equations. These equations describe perfect fluid flow in terms of the particle density, the four-velocity and the pressure. A high-resolution shock-capturing central upwind scheme is employed to solve the model equations. To avoid excessive numerical diffusion, the considered scheme avails the specific information of local propagation speeds. By using Runge-Kutta time stepping method and MUSCL-type initial reconstruction, we have obtained 2nd order accuracy of the proposed scheme. After discussing the model equations and the numerical technique, several 1D and 2D test problems are investigated. For all the numerical test cases, our proposed scheme demonstrates very good agreement with the results obtained by well-established algorithms, even in the case of highly relativistic 2D test problems. For validation and comparison, the staggered central scheme and the kinetic flux-vector splitting (KFVS) method are also implemented to the same model. The robustness and efficiency of central upwind scheme is demonstrated by the numerical results.

  9. Coefficient of performance for a low-dissipation Carnot-like refrigerator with nonadiabatic dissipation

    NASA Astrophysics Data System (ADS)

    Hu, Yong; Wu, Feifei; Ma, Yongli; He, Jizhou; Wang, Jianhui; Hernández, A. Calvo; Roco, J. M. M.

    2013-12-01

    We study the coefficient of performance (COP) and its bounds for a Carnot-like refrigerator working between two heat reservoirs at constant temperatures Th and Tc, under two optimization criteria χ and Ω. In view of the fact that an “adiabatic” process usually takes finite time and is nonisentropic, the nonadiabatic dissipation and the finite time required for the adiabatic processes are taken into account by assuming low dissipation. For given optimization criteria, we find that the lower and upper bounds of the COP are the same as the corresponding ones obtained from the previous idealized models where any adiabatic process is undergone instantaneously with constant entropy. To describe some particular models with very fast adiabatic transitions, we also consider the influence of the nonadiabatic dissipation on the bounds of the COP, under the assumption that the irreversible entropy production in the adiabatic process is constant and independent of time. Our theoretical predictions match the observed COPs of real refrigerators more closely than the ones derived in the previous models, providing a strong argument in favor of our approach.

  10. Whispering gallery effect in relativistic optics

    NASA Astrophysics Data System (ADS)

    Abe, Y.; Law, K. F. F.; Korneev, Ph.; Fujioka, S.; Kojima, S.; Lee, S.-H.; Sakata, S.; Matsuo, K.; Oshima, A.; Morace, A.; Arikawa, Y.; Yogo, A.; Nakai, M.; Norimatsu, T.; d'Humières, E.; Santos, J. J.; Kondo, K.; Sunahara, A.; Gus'kov, S.; Tikhonchuk, V.

    2018-03-01

    relativistic laser pulse, confined in a cylindrical-like target, under specific conditions may perform multiple scattering along the internal target surface. This results in the confinement of the laser light, leading to a very efficient interaction. The demonstrated propagation of the laser pulse along the curved surface is just yet another example of the "whispering gallery" effect, although nonideal due to laser-plasma coupling. In the relativistic domain its important feature is a gradual intensity decrease, leading to changes in the interaction conditions. The proccess may pronounce itself in plenty of physical phenomena, including very efficient electron acceleration and generation of relativistic magnetized plasma structures.

  11. Formation of Hydro-acoustic Waves in Dissipative Coupled Weakly Compressible Fluids

    NASA Astrophysics Data System (ADS)

    Abdolali, A.; Kirby, J. T., Jr.; Bellotti, G.

    2014-12-01

    Recent advances in deep sea measurement technology provide an increasing opportunity to detect and interpret hydro-acoustic waves as a component in improved Tsunami Early Warning Systems (TEWS). For the idealized case of a homogeneous water column above a moving but otherwise rigid bottom (in terms of assessing acoustic wave interaction), the description of the infinite family of acoustic modes is characterized by local water depth at source area; i.e. the period of the first acoustic mode is given by four times the required time for sound to travel from the seabed to the surface. Spreading off from earthquake zone, the dominant spectrum is filtered and enriched by seamounts and barriers. This study focuses on the characteristics of hydro-acoustic waves generated by sudden sea bottom motion in a weakly compressible fluid coupled with an underlying sedimentary layer, where the added complexity of the sediment layer rheology leads to both the lowering of dominant spectral peaks and wave attenuation across the full spectrum. To overcome the computational difficulties of three-dimensional models, we derive a depth integrated equation valid for varying water depth and sediment thickness. Damping behavior of the two layered system is initially taken into account by introducing the viscosity of fluid-like sedimentary layer. We show that low frequency pressure waves which are precursor components of tsunamis contain information of seafloor motion.

  12. Quantum probability assignment limited by relativistic causality.

    PubMed

    Han, Yeong Deok; Choi, Taeseung

    2016-03-14

    Quantum theory has nonlocal correlations, which bothered Einstein, but found to satisfy relativistic causality. Correlation for a shared quantum state manifests itself, in the standard quantum framework, by joint probability distributions that can be obtained by applying state reduction and probability assignment that is called Born rule. Quantum correlations, which show nonlocality when the shared state has an entanglement, can be changed if we apply different probability assignment rule. As a result, the amount of nonlocality in quantum correlation will be changed. The issue is whether the change of the rule of quantum probability assignment breaks relativistic causality. We have shown that Born rule on quantum measurement is derived by requiring relativistic causality condition. This shows how the relativistic causality limits the upper bound of quantum nonlocality through quantum probability assignment.

  13. Mechanical energy dissipation in natural ceramic composites.

    PubMed

    Mayer, George

    2017-12-01

    Ceramics and glasses, in their monolithic forms, typically exhibit low fracture toughness values, but rigid natural marine ceramic and glass composites have shown remarkable resistance to mechanical failure. This has been observed in load-extension behavior by recognizing that the total area under the curve, notably the part beyond the yield point, often conveys substantial capacity to carry mechanical load. The mechanisms underlying the latter observations are proposed as defining factors for toughness that provide resistance to failure, or capability to dissipate energy, rather than fracture toughness. Such behavior is exhibited in the spicules of glass sponges and in mollusk shells. There are a number of similarities in the manner in which energy dissipation takes place in both sponges and mollusks. It was observed that crack diversion, a new form of crack bridging, creation of new surface area, and other important energy-dissipating mechanisms occur and aid in "toughening". Crack tolerance, key to energy dissipation in these natural composite materials, is assisted by promoting energy distribution over large volumes of loaded specimens by minor components of organic constituents that also serve important roles as adhesives. Viscoelastic deformation was a notable characteristic of the organic component. Some of these energy-dissipating modes and characteristics were found to be quite different from the toughening mechanisms that are utilized for more conventional structural composites. Complementary to those mechanisms found in rigid natural ceramic/organic composites, layered architectures and very thin organic layers played major roles in energy dissipation in these structures. It has been demonstrated in rigid natural marine composites that not only architecture, but also the mechanical behavior of the individual constituents, the nature of the interfaces, and interfacial bonding play important roles in energy dissipation. Additionally, the controlling

  14. A relativistic gravity train

    NASA Astrophysics Data System (ADS)

    Parker, Edward

    2017-08-01

    A nonrelativistic particle released from rest at the edge of a ball of uniform charge density or mass density oscillates with simple harmonic motion. We consider the relativistic generalizations of these situations where the particle can attain speeds arbitrarily close to the speed of light; generalizing the electrostatic and gravitational cases requires special and general relativity, respectively. We find exact closed-form relations between the position, proper time, and coordinate time in both cases, and find that they are no longer harmonic, with oscillation periods that depend on the amplitude. In the highly relativistic limit of both cases, the particle spends almost all of its proper time near the turning points, but almost all of the coordinate time moving through the bulk of the ball. Buchdahl's theorem imposes nontrivial constraints on the general-relativistic case, as a ball of given density can only attain a finite maximum radius before collapsing into a black hole. This article is intended to be pedagogical, and should be accessible to those who have taken an undergraduate course in general relativity.

  15. Elastic properties of a magnetic fluid with an air cavity retained by levitation forces

    NASA Astrophysics Data System (ADS)

    Polunin, V. M.; Boev, M. L.; Tan, Myo Min; Karpova, G. V.; Roslyakova, L. I.

    2013-01-01

    The paper describes the process of an air cavity rising in a magnetic fluid filling a tube with a bottom, transport, and retention of the cavity by magnetic levitation forces. The elastic and dissipative properties of a vibratory system with an inertial element that is a column of a magnetic fluid over an air cavity are considered. The possibility of using a transported air cavity as a movable reflector for a sound wave is evaluated.

  16. The effect of the polymer relaxation time on the nonlinear energy cas- cade and dissipation of statistically steady and decaying homogeneous isotropic turbulence

    NASA Astrophysics Data System (ADS)

    Valente, Pedro C.; da Silva, Carlos B.; Pinho, Fernando T.

    2013-11-01

    We report a numerical study of statistically steady and decaying turbulence of FENE-P fluids for varying polymer relaxation times ranging from the Kolmogorov dissipation time-scale to the eddy turnover time. The total turbulent kinetic energy dissipation is shown to increase with the polymer relaxation time in both steady and decaying turbulence, implying a ``drag increase.'' If the total power input in the statistically steady case is kept equal in the Newtonian and the viscoelastic simulations the increase in the turbulence-polymer energy transfer naturally lead to the previously reported depletion of the Newtonian, but not the overall, kinetic energy dissipation. The modifications to the nonlinear energy cascade with varying Deborah/Weissenberg numbers are quantified and their origins investigated. The authors acknowledge the financial support from Fundação para a Ciência e a Tecnologia under grant PTDC/EME-MFE/113589/2009.

  17. Relativistic corrections to a generalized sum rule

    NASA Astrophysics Data System (ADS)

    Sinky, H.; Leung, P. T.

    2006-09-01

    Relativistic corrections to a previously established generalized sum rule are obtained using the Foldy-Wouthysen transformation. This sum rule derived previously by Wang [Phys. Rev. A 60, 262 (1999)] for a nonrelativistic system contains both the well-known Thomas-Reiche-Kuhn and Bethe sum rules, for which relativistic corrections have been obtained in the literature. Our results for the generalized formula will be applied to recover several results obtained previously in the literature, as well as to another sum rule whose relativistic corrections will be obtained.

  18. Stable two-dimensional solitary pulses in linearly coupled dissipative Kadomtsev-Petviashvili equations.

    PubMed

    Feng, Bao-Feng; Malomed, Boris A; Kawahara, Takuji

    2002-11-01

    We present a two-dimensional (2D) generalization of the stabilized Kuramoto-Sivashinsky system, based on the Kadomtsev-Petviashvili (KP) equation including dissipation of the generic [Newell-Whitehead-Segel (NWS)] type and gain. The system directly applies to the description of gravity-capillary waves on the surface of a liquid layer flowing down an inclined plane, with a surfactant diffusing along the layer's surface. Actually, the model is quite general, offering a simple way to stabilize nonlinear media, combining the weakly 2D dispersion of the KP type with gain and NWS dissipation. Other applications are internal waves in multilayer fluids flowing down an inclined plane, double-front flames in gaseous mixtures, etc. Parallel to this weakly 2D model, we also introduce and study a semiphenomenological one, whose dissipative terms are isotropic, rather than of the NWS type, in order to check if qualitative results are sensitive to the exact form of the lossy terms. The models include an additional linear equation of the advection-diffusion type, linearly coupled to the main KP-NWS equation. The extra equation provides for stability of the zero background in the system, thus opening a way for the existence of stable localized pulses. We focus on the most interesting case, when the dispersive part of the system is of the KP-I type, which corresponds, e.g., to capillary waves, and makes the existence of completely localized 2D pulses possible. Treating the losses and gain as small perturbations and making use of the balance equation for the field momentum, we find that the equilibrium between the gain and losses may select two steady-state solitons from their continuous family existing in the absence of the dissipative terms (the latter family is found in an exact analytical form, and is numerically demonstrated to be stable). The selected soliton with the larger amplitude is expected to be stable. Direct simulations completely corroborate the analytical predictions

  19. Theory of relativistic Brownian motion: the (1+3) -dimensional case.

    PubMed

    Dunkel, Jörn; Hänggi, Peter

    2005-09-01

    A theory for (1+3) -dimensional relativistic Brownian motion under the influence of external force fields is put forward. Starting out from a set of relativistically covariant, but multiplicative Langevin equations we describe the relativistic stochastic dynamics of a forced Brownian particle. The corresponding Fokker-Planck equations are studied in the laboratory frame coordinates. In particular, the stochastic integration prescription--i.e., the discretization rule dilemma--is elucidated (prepoint discretization rule versus midpoint discretization rule versus postpoint discretization rule). Remarkably, within our relativistic scheme we find that the postpoint rule (or the transport form) yields the only Fokker-Planck dynamics from which the relativistic Maxwell-Boltzmann statistics is recovered as the stationary solution. The relativistic velocity effects become distinctly more pronounced by going from one to three spatial dimensions. Moreover, we present numerical results for the asymptotic mean-square displacement of a free relativistic Brownian particle moving in 1+3 dimensions.

  20. HYDRODYNAMICAL INTERACTION OF MILDLY RELATIVISTIC EJECTA WITH AN AMBIENT MEDIUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Akihiro; Maeda, Keiichi; Shigeyama, Toshikazu

    2017-01-01

    The hydrodynamical interaction of spherical ejecta freely expanding at mildly relativistic speeds into an ambient cold medium is studied in semianalytical and numerical ways to investigate how ejecta produced in energetic stellar explosions dissipate their kinetic energy through the interaction with the surrounding medium. We especially focus on the case in which the circumstellar medium (CSM) is well represented by a steady wind at a constant mass-loss rate, having been ejected from the stellar surface prior to the explosion. As a result of the hydrodynamical interaction, the ejecta and CSM are swept by the reverse and forward shocks, leading tomore » the formation of a geometrically thin shell. We present a semianalytical model describing the dynamical evolution of the shell and compare the results with numerical simulations. The shell can give rise to bright emission as it gradually becomes transparent to photons. We develop an emission model for the expected emission from the optically thick shell, in which photons in the shell gradually diffuse out to the interstellar space. Then we investigate the possibility that radiation powered by the hydrodynamical interaction is the origin of an underluminous class of gamma-ray bursts.« less

  1. Hydromagnetic flow of a Cu-water nanofluid past a moving wedge with viscous dissipation

    NASA Astrophysics Data System (ADS)

    M. Salem, A.; Galal, Ismail; Rania, Fathy

    2014-04-01

    A numerical study is performed to investigate the flow and heat transfer at the surface of a permeable wedge immersed in a copper (Cu)-water-based nanofluid in the presence of magnetic field and viscous dissipation using a nanofluid model proposed by Tiwari and Das (Tiwari I K and Das M K 2007 Int. J. Heat Mass Transfer 50 2002). A similarity solution for the transformed governing equation is obtained, and those equations are solved by employing a numerical shooting technique with a fourth-order Runge-Kutta integration scheme. A comparison with previously published work is carried out and shows that they are in good agreement with each other. The effects of velocity ratio parameter λ, solid volume fraction φ, magnetic field M, viscous dissipation Ec, and suction parameter Fw on the fluid flow and heat transfer characteristics are discussed. The unique and dual solutions for self-similar equations of the flow and heat transfer are analyzed numerically. Moreover, the range of the velocity ratio parameter for which the solution exists increases in the presence of magnetic field and suction parameter.

  2. Intertwining operator realization of non-relativistic holography

    NASA Astrophysics Data System (ADS)

    Aizawa, N.; Dobrev, V. K.

    2010-04-01

    We give a group-theoretic interpretation of non-relativistic holography as equivalence between representations of the Schrödinger algebra describing bulk fields and boundary fields. Our main result is the explicit construction of the boundary-to-bulk operators in the framework of representation theory (without specifying any action). Further we show that these operators and the bulk-to-boundary operators are intertwining operators. In analogy to the relativistic case, we show that each bulk field has two boundary fields with conjugated conformal weights. These fields are related by another intertwining operator given by a two-point function on the boundary. Analogously to the relativistic result of Klebanov-Witten we give the conditions when both boundary fields are physical. Finally, we recover in our formalism earlier non-relativistic results for scalar fields by Son and others.

  3. Relativistic quantum chaos-An emergent interdisciplinary field.

    PubMed

    Lai, Ying-Cheng; Xu, Hong-Ya; Huang, Liang; Grebogi, Celso

    2018-05-01

    Quantum chaos is referred to as the study of quantum manifestations or fingerprints of classical chaos. A vast majority of the studies were for nonrelativistic quantum systems described by the Schrödinger equation. Recent years have witnessed a rapid development of Dirac materials such as graphene and topological insulators, which are described by the Dirac equation in relativistic quantum mechanics. A new field has thus emerged: relativistic quantum chaos. This Tutorial aims to introduce this field to the scientific community. Topics covered include scarring, chaotic scattering and transport, chaos regularized resonant tunneling, superpersistent currents, and energy level statistics-all in the relativistic quantum regime. As Dirac materials have the potential to revolutionize solid-state electronic and spintronic devices, a good understanding of the interplay between chaos and relativistic quantum mechanics may lead to novel design principles and methodologies to enhance device performance.

  4. Relativistic quantum chaos—An emergent interdisciplinary field

    NASA Astrophysics Data System (ADS)

    Lai, Ying-Cheng; Xu, Hong-Ya; Huang, Liang; Grebogi, Celso

    2018-05-01

    Quantum chaos is referred to as the study of quantum manifestations or fingerprints of classical chaos. A vast majority of the studies were for nonrelativistic quantum systems described by the Schrödinger equation. Recent years have witnessed a rapid development of Dirac materials such as graphene and topological insulators, which are described by the Dirac equation in relativistic quantum mechanics. A new field has thus emerged: relativistic quantum chaos. This Tutorial aims to introduce this field to the scientific community. Topics covered include scarring, chaotic scattering and transport, chaos regularized resonant tunneling, superpersistent currents, and energy level statistics—all in the relativistic quantum regime. As Dirac materials have the potential to revolutionize solid-state electronic and spintronic devices, a good understanding of the interplay between chaos and relativistic quantum mechanics may lead to novel design principles and methodologies to enhance device performance.

  5. Relativistic Spacecraft Propelled by Directed Energy

    NASA Astrophysics Data System (ADS)

    Kulkarni, Neeraj; Lubin, Philip; Zhang, Qicheng

    2018-04-01

    Achieving relativistic flight to enable extrasolar exploration is one of the dreams of humanity and the long-term goal of our NASA Starlight program. We derive a relativistic solution for the motion of a spacecraft propelled by radiation pressure from a directed energy (DE) system. Depending on the system parameters, low-mass spacecraft can achieve relativistic speeds, thus enabling interstellar exploration. The diffraction of the DE system plays an important role and limits the maximum speed of the spacecraft. We consider “photon recycling” as a possible method to achieving higher speeds. We also discuss recent claims that our previous work on this topic is incorrect and show that these claims arise from an improper treatment of causality.

  6. Relativistic neutrons in active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Sikora, Marek; Begelman, Mitchell C.; Rudak, Bronislaw

    1989-01-01

    The acceleration of protons to relativistic energies in active galactic nuclei leads to the creation of relativistic neutrons which escape from the central engine. The neutrons decay at distances of up to 1-100 pc, depositing their energies and momenta in situ. Energy deposition by decaying neutrons may inhibit spherical accretion and drive a wind, which could be responsible for the velocity fields in emission-line regions and the outflow of broad absorption line systems. Enhanced pressure in the neutron decay region may also help to confine emission line clouds. A fraction of the relativistic proton energy is radiated in gamma-rays with energies which may be as large as about 100,000 GeV.

  7. Sudden Viscous Dissipation of Compressing Turbulence

    DOE PAGES

    Davidovits, Seth; Fisch, Nathaniel J.

    2016-03-11

    Here we report compression of turbulent plasma can amplify the turbulent kinetic energy, if the compression is fast compared to the viscous dissipation time of the turbulent eddies. A sudden viscous dissipation mechanism is demonstrated, whereby this amplified turbulent kinetic energy is rapidly converted into thermal energy, suggesting a new paradigm for fast ignition inertial fusion.

  8. Nanoscale thermal imaging of dissipation in quantum systems

    NASA Astrophysics Data System (ADS)

    Halbertal, D.; Cuppens, J.; Shalom, M. Ben; Embon, L.; Shadmi, N.; Anahory, Y.; Naren, H. R.; Sarkar, J.; Uri, A.; Ronen, Y.; Myasoedov, Y.; Levitov, L. S.; Joselevich, E.; Geim, A. K.; Zeldov, E.

    2016-11-01

    Energy dissipation is a fundamental process governing the dynamics of physical, chemical and biological systems. It is also one of the main characteristics that distinguish quantum from classical phenomena. In particular, in condensed matter physics, scattering mechanisms, loss of quantum information or breakdown of topological protection are deeply rooted in the intricate details of how and where the dissipation occurs. Yet the microscopic behaviour of a system is usually not formulated in terms of dissipation because energy dissipation is not a readily measurable quantity on the micrometre scale. Although nanoscale thermometry has gained much recent interest, existing thermal imaging methods are not sensitive enough for the study of quantum systems and are also unsuitable for the low-temperature operation that is required. Here we report a nano-thermometer based on a superconducting quantum interference device with a diameter of less than 50 nanometres that resides at the apex of a sharp pipette: it provides scanning cryogenic thermal sensing that is four orders of magnitude more sensitive than previous devices—below 1 μK Hz-1/2. This non-contact, non-invasive thermometry allows thermal imaging of very low intensity, nanoscale energy dissipation down to the fundamental Landauer limit of 40 femtowatts for continuous readout of a single qubit at one gigahertz at 4.2 kelvin. These advances enable the observation of changes in dissipation due to single-electron charging of individual quantum dots in carbon nanotubes. They also reveal a dissipation mechanism attributable to resonant localized states in graphene encapsulated within hexagonal boron nitride, opening the door to direct thermal imaging of nanoscale dissipation processes in quantum matter.

  9. Hierarchical collapse of regular islands via dissipation

    NASA Astrophysics Data System (ADS)

    Jousseph, C. A. C.; Abdulack, S. A.; Manchein, C.; Beims, M. W.

    2018-03-01

    In this work we investigate how regular islands localized in a mixed phase-space of generic area-preserving Hamiltonian systems are affected by a small amount of dissipation. Mainly we search for a universality (hierarchy) in the convergence of higher-order resonances and their periods when dissipation increases. One very simple scenario is already known: when subjected to small dissipation, stable periodic points become sinks attracting almost all the surrounding orbits, destroying all invariant curves which divide the phase-space in chaotic and regular domains. However, performing numerical experiments with the paradigmatic Chirikov-Taylor standard mapping we show that this presumably simple scenario can be rather complicated. The first, not trivial, scenario is what happens to chaotic trajectories, since they can be attracted by the sinks or by chaotic attractors, in cases when they exist. We show that this depends very much on how basins of attraction are formed as dissipation increases. In addition, we demonstrate that higher-order resonances are usually first affected by small dissipation when compared to lower-order resonances from the conservative case. Nevertheless, this is not a generic behaviour. We show that a local hierarchical collapse of resonances, as dissipation increases, is related to the area of the islands from the conservative case surrounding the periodic orbits. All observed resonance destructions occur via the bifurcation phenomena and are quantified here by determining the largest finite-time Lyapunov exponent.

  10. Relativistic scattered wave calculations on UF6

    NASA Technical Reports Server (NTRS)

    Case, D. A.; Yang, C. Y.

    1980-01-01

    Self-consistent Dirac-Slater multiple scattering calculations are presented for UF6. The results are compared critically to other relativistic calculations, showing that the results of all molecular orbital calculations are in qualitative agreement, as measured by energy levels, population analyses, and spin-orbit splittings. A detailed comparison is made to the relativistic X alpha(RX alpha) method of Wood and Boring, which also uses multiple scattering theory, but incorporates relativistic effects in a more approximate fashion. For the most part, the RX alpha results are in agreement with the present results.

  11. The relativistic theory of the chemical shift

    NASA Astrophysics Data System (ADS)

    Pyper, N. C.

    1983-04-01

    A relativistic theory of the NMR chemical shift for a closed-shell system is presented. The final expression for the shielding, derived by, applying two Gordon decompositions to the Dirac current operator, closely parallels the Ramsey non-relativistic result.

  12. Dissipative structures, machines, and organisms: A perspective

    NASA Astrophysics Data System (ADS)

    Kondepudi, Dilip; Kay, Bruce; Dixon, James

    2017-10-01

    Self-organization in nonequilibrium systems resulting in the formation of dissipative structures has been studied in a variety of systems, most prominently in chemical systems. We present a study of a voltage-driven dissipative structure consisting of conducting beads immersed in a viscous medium of oil. In this simple system, we observed remarkably complex organism-like behavior. The dissipative structure consists of a tree structure that spontaneously forms and moves like a worm and exhibits many features characteristic of living organisms. The complex motion of the beads driven by the applied field, the dipole-dipole interaction between the beads, and the hydrodynamic flow of the viscous medium result in a time evolution of the tree structure towards states of lower resistance or higher dissipation and thus higher rates of entropy production. The resulting end-directed evolution manifests as the tree moving to locations seeking higher current, the current that sustains its structure and dynamics. The study of end-directed evolution in the dissipative structure gives us a means to distinguish the fundamental difference between machines and organisms and opens a path for the formulation of physics of organisms.

  13. TIME-DEPENDENT MULTI-GROUP MULTI-DIMENSIONAL RELATIVISTIC RADIATIVE TRANSFER CODE BASED ON SPHERICAL HARMONIC DISCRETE ORDINATE METHOD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tominaga, Nozomu; Shibata, Sanshiro; Blinnikov, Sergei I., E-mail: tominaga@konan-u.ac.jp, E-mail: sshibata@post.kek.jp, E-mail: Sergei.Blinnikov@itep.ru

    We develop a time-dependent, multi-group, multi-dimensional relativistic radiative transfer code, which is required to numerically investigate radiation from relativistic fluids that are involved in, e.g., gamma-ray bursts and active galactic nuclei. The code is based on the spherical harmonic discrete ordinate method (SHDOM) which evaluates a source function including anisotropic scattering in spherical harmonics and implicitly solves the static radiative transfer equation with ray tracing in discrete ordinates. We implement treatments of time dependence, multi-frequency bins, Lorentz transformation, and elastic Thomson and inelastic Compton scattering to the publicly available SHDOM code. Our code adopts a mixed-frame approach; the source functionmore » is evaluated in the comoving frame, whereas the radiative transfer equation is solved in the laboratory frame. This implementation is validated using various test problems and comparisons with the results from a relativistic Monte Carlo code. These validations confirm that the code correctly calculates the intensity and its evolution in the computational domain. The code enables us to obtain an Eddington tensor that relates the first and third moments of intensity (energy density and radiation pressure) and is frequently used as a closure relation in radiation hydrodynamics calculations.« less

  14. Einstein Never Approved of Relativistic Mass

    ERIC Educational Resources Information Center

    Hecht, Eugene

    2009-01-01

    During much of the 20th century it was widely believed that one of the significant insights of special relativity was "relativistic mass." Today there are two schools on that issue: the traditional view that embraces speed-dependent "relativistic mass," and the more modern position that rejects it, maintaining that there is only one mass and it's…

  15. Compton Effect with Non-Relativistic Kinematics

    ERIC Educational Resources Information Center

    Shivalingaswamy, T.; Kagali, B. A.

    2011-01-01

    In deducing the change of wavelength of x-rays scattered by atomic electrons, one normally makes use of relativistic kinematics for electrons. However, recoiling energies of the electrons are of the order of a few keV which is less than 0.2% of their rest energies. Hence the authors may ask whether relativistic formulae are really necessary. In…

  16. A Primer to Relativistic MOND Theory

    NASA Astrophysics Data System (ADS)

    Bekenstein, J. D.; Sanders, R. H.

    We first review the nonrelativistic Lagrangian theory as a framework for the MOND equation. Obstructions to a relativistic version of it are discussed leading up to TeVeS, a relativistic tensor-vector-scalar field theory which displays both MOND and Newtonian limits. The whys for its particular structure are discussed and its achievements so far are summarized.

  17. Complexity of viscous dissipation in turbulent thermal convection

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Shashwat; Pandey, Ambrish; Kumar, Abhishek; Verma, Mahendra K.

    2018-03-01

    Using direct numerical simulations of turbulent thermal convection for the Rayleigh number between 106 and 108 and unit Prandtl number, we derive scaling relations for viscous dissipation in the bulk and in the boundary layers. We show that contrary to the general belief, the total viscous dissipation in the bulk is larger, albeit marginally, than that in the boundary layers. The bulk dissipation rate is similar to that in hydrodynamic turbulence with log-normal distribution, but it differs from (U3/d) by a factor of Ra-0.18. Viscous dissipation in the boundary layers is rarer but more intense with a stretched-exponential distribution.

  18. Dissipation Assisted Quantum Memory with Coupled Spin Systems

    NASA Astrophysics Data System (ADS)

    Jiang, Liang; Verstraete, Frank; Cirac, Ignacio; Lukin, Mikhail

    2009-05-01

    Dissipative dynamics often destroys quantum coherences. However, one can use dissipation to suppress decoherence. A well-known example is the so-called quantum Zeno effect, in which one can freeze the evolution using dissipative processes (e.g., frequently projecting the system to its initial state). Similarly, the undesired decoherence of quantum bits can also be suppressed using controlled dissipation. We propose and analyze the use of this generalization of quantum Zeno effect for protecting the quantum information encoded in the coupled spin systems. This new approach may potentially enhance the performance of quantum memories, in systems such as nitrogen-vacancy color-centers in diamond.

  19. Axisymmetric modes of rotating relativistic stars in the Cowling approximation

    NASA Astrophysics Data System (ADS)

    Font, José A.; Dimmelmeier, Harald; Gupta, Anshu; Stergioulas, Nikolaos

    2001-08-01

    Axisymmetric pulsations of rotating neutron stars can be excited in several scenarios, such as core collapse, crust- and core-quakes or binary mergers, and could become detectable in either gravitational waves or high-energy radiation. Here, we present a comprehensive study of all low-order axisymmetric modes of uniformly and rapidly rotating relativistic stars. Initial stationary configurations are appropriately perturbed and are numerically evolved using an axisymmetric, non-linear relativistic hydrodynamics code, assuming time-independence of the gravitational field (Cowling approximation). The simulations are performed using a high-resolution shock-capturing finite-difference scheme accurate enough to maintain the initial rotation law for a large number of rotational periods, even for stars at the mass-shedding limit. Through Fourier transforms of the time evolution of selected fluid variables, we compute the frequencies of quasi-radial and non-radial modes with spherical harmonic indices l=0, 1, 2 and 3, for a sequence of rotating stars from the non-rotating limit to the mass-shedding limit. The frequencies of the axisymmetric modes are affected significantly by rotation only when the rotation rate exceeds about 50 per cent of the maximum allowed. As expected, at large rotation rates, apparent mode crossings between different modes appear. In addition to the above modes, several axisymmetric inertial modes are also excited in our numerical evolutions.

  20. Tidal dissipation in the subsurface ocean of Enceladus

    NASA Astrophysics Data System (ADS)

    Matsuyama, I.; Hay, H.; Nimmo, F.; Kamata, S.

    2017-12-01

    Icy satellites of the outer solar system have emerged as potential habitable worlds due to the presence of subsurface oceans. As a long-term energy source, tidal heating in these oceans can influence the survivability of subsurface oceans, and the thermal, rotational, and orbital evolution of these satellites. Additionally, the spatial and temporal variation of tidal heating has implications for the interior structure and spacecraft observations. Previous models for dissipation in thin oceans are not generally applicable to icy satellites because either they ignore the presence of an overlying solid shell or use a thin shell membrane approximation. We present a new theoretical treatment for tidal dissipation in thin oceans with overlying shells of arbitrary thickness and apply it to Enceladus. The shell's resistance to ocean tides increases with shell thickness, reducing tidal dissipation as expected. Both the magnitude of energy dissipation and the resonant ocean thicknesses decrease as the overlying shell thickness increases, as previously shown using a membrane approximation. In contrast to previous work based on the traditional definition of the tidal quality factor, Q, our new definition is consistent with higher energy dissipation for smaller Q, and introduces a lower limit on Q. The dissipated power and tides are not in phase with the forcing tidal potential due to the delayed ocean response. The phase lag depends on the Rayleigh friction coefficient and ocean and shell thicknesses, which implies that phase lag observations can be used to constrain these parameters. Eccentricity heating produces higher dissipation near the poles, while obliquity heating produces higher dissipation near the equator, in contrast to the dissipation patterns in the shell. The time-averaged surface distribution of tidal heating can generate lateral shell thickness variations, providing an additional constraint on the Rayleigh friction coefficient. Explaining the endogenic power

  1. Cosmological QCD phase transition in steady non-equilibrium dissipative Hořava–Lifshitz early universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khodadi, M., E-mail: M.Khodadi@sbu.ac.ir; Sepangi, H.R., E-mail: hr-sepangi@sbu.ac.ir

    We study the phase transition from quark–gluon plasma to hadrons in the early universe in the context of non-equilibrium thermodynamics. According to the standard model of cosmology, a phase transition associated with chiral symmetry breaking after the electro-weak transition has occurred when the universe was about 1–10 μs old. We focus attention on such a phase transition in the presence of a viscous relativistic cosmological background fluid in the framework of non-detailed balance Hořava–Lifshitz cosmology within an effective model of QCD. We consider a flat Friedmann–Robertson–Walker universe filled with a non-causal and a causal bulk viscous cosmological fluid respectively and investigatemore » the effects of the running coupling constants of Hořava–Lifshitz gravity, λ, on the evolution of the physical quantities relevant to a description of the early universe, namely, the temperature T, scale factor a, deceleration parameter q and dimensionless ratio of the bulk viscosity coefficient to entropy density (ξ)/s . We assume that the bulk viscosity cosmological background fluid obeys the evolution equation of the steady truncated (Eckart) and full version of the Israel–Stewart fluid, respectively. -- Highlights: •In this paper we have studied quark–hadron phase transition in the early universe in the context of the Hořava–Lifshitz model. •We use a flat FRW universe with the bulk viscosity cosmological background fluid obeying the evolution equation of the steady truncated (Eckart) and full version of the Israel–Stewart fluid, respectively.« less

  2. Transport of a Bose gas in 1D disordered lattices at the fluid-insulator transition.

    PubMed

    Tanzi, Luca; Lucioni, Eleonora; Chaudhuri, Saptarishi; Gori, Lorenzo; Kumar, Avinash; D'Errico, Chiara; Inguscio, Massimo; Modugno, Giovanni

    2013-09-13

    We investigate the momentum-dependent transport of 1D quasicondensates in quasiperiodic optical lattices. We observe a sharp crossover from a weakly dissipative regime to a strongly unstable one at a disorder-dependent critical momentum. In the limit of nondisordered lattices the observations suggest a contribution of quantum phase slips to the dissipation. We identify a set of critical disorder and interaction strengths for which such critical momentum vanishes, separating a fluid regime from an insulating one. We relate our observation to the predicted zero-temperature superfluid-Bose glass transition.

  3. Robust Stabilization of Uncertain Systems Based on Energy Dissipation Concepts

    NASA Technical Reports Server (NTRS)

    Gupta, Sandeep

    1996-01-01

    Robust stability conditions obtained through generalization of the notion of energy dissipation in physical systems are discussed in this report. Linear time-invariant (LTI) systems which dissipate energy corresponding to quadratic power functions are characterized in the time-domain and the frequency-domain, in terms of linear matrix inequalities (LMls) and algebraic Riccati equations (ARE's). A novel characterization of strictly dissipative LTI systems is introduced in this report. Sufficient conditions in terms of dissipativity and strict dissipativity are presented for (1) stability of the feedback interconnection of dissipative LTI systems, (2) stability of dissipative LTI systems with memoryless feedback nonlinearities, and (3) quadratic stability of uncertain linear systems. It is demonstrated that the framework of dissipative LTI systems investigated in this report unifies and extends small gain, passivity, and sector conditions for stability. Techniques for selecting power functions for characterization of uncertain plants and robust controller synthesis based on these stability results are introduced. A spring-mass-damper example is used to illustrate the application of these methods for robust controller synthesis.

  4. Least-squares finite element method for fluid dynamics

    NASA Technical Reports Server (NTRS)

    Jiang, Bo-Nan; Povinelli, Louis A.

    1989-01-01

    An overview is given of new developments of the least squares finite element method (LSFEM) in fluid dynamics. Special emphasis is placed on the universality of LSFEM; the symmetry and positiveness of the algebraic systems obtained from LSFEM; the accommodation of LSFEM to equal order interpolations for incompressible viscous flows; and the natural numerical dissipation of LSFEM for convective transport problems and high speed compressible flows. The performance of LSFEM is illustrated by numerical examples.

  5. Dissipation-Induced Anomalous Multicritical Phenomena

    NASA Astrophysics Data System (ADS)

    Soriente, M.; Donner, T.; Chitra, R.; Zilberberg, O.

    2018-05-01

    We explore the influence of dissipation on a paradigmatic driven-dissipative model where a collection of two level atoms interact with both quadratures of a quantum cavity mode. The closed system exhibits multiple phase transitions involving discrete and continuous symmetries breaking and all phases culminate in a multicritical point. In the open system, we show that infinitesimal dissipation erases the phase with broken continuous symmetry and radically alters the model's phase diagram. The multicritical point now becomes brittle and splits into two tricritical points where first- and second-order symmetry-breaking transitions meet. A quantum fluctuations analysis shows that, surprisingly, the tricritical points exhibit anomalous finite fluctuations, as opposed to standard tricritical points arising in He 3 -He 4 mixtures. Our work has direct implications for a variety of fields, including cold atoms and ions in optical cavities, circuit-quantum electrodynamics as well as optomechanical systems.

  6. Designing energy dissipation properties via thermal spray coatings

    DOE PAGES

    Brake, Matthew R. W.; Hall, Aaron Christopher; Madison, Jonathan D.

    2016-12-14

    The coefficient of restitution is a measure of energy dissipation in a system across impact events. Often, the dissipative qualities of a pair of impacting components are neglected during the design phase. This research looks at the effect of applying a thin layer of metallic coating, using thermal spray technologies, to significantly alter the dissipative properties of a system. We studied the dissipative properties across multiple impacts in order to assess the effects of work hardening, the change in microstructure, and the change in surface topography. The results of the experiments indicate that any work hardening-like effects are likely attributablemore » to the crushing of asperities, and the permanent changes in the dissipative properties of the system, as measured by the coefficient of restitution, are attributable to the microstructure formed by the thermal spray coating. Furthermore, the microstructure appears to be robust across impact events of moderate energy levels, exhibiting negligible changes across multiple impact events.« less

  7. Temporal intermittency of energy dissipation in magnetohydrodynamic turbulence.

    PubMed

    Zhdankin, Vladimir; Uzdensky, Dmitri A; Boldyrev, Stanislav

    2015-02-13

    Energy dissipation in magnetohydrodynamic (MHD) turbulence is known to be highly intermittent in space, being concentrated in sheetlike coherent structures. Much less is known about intermittency in time, another fundamental aspect of turbulence which has great importance for observations of solar flares and other space or astrophysical phenomena. In this Letter, we investigate the temporal intermittency of energy dissipation in numerical simulations of MHD turbulence. We consider four-dimensional spatiotemporal structures, "flare events," responsible for a large fraction of the energy dissipation. We find that although the flare events are often highly complex, they exhibit robust power-law distributions and scaling relations. We find that the probability distribution of dissipated energy has a power-law index close to α≈1.75, similar to observations of solar flares, indicating that intense dissipative events dominate the heating of the system. We also discuss the temporal asymmetry of flare events as a signature of the turbulent cascade.

  8. Designing energy dissipation properties via thermal spray coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brake, Matthew R. W.; Hall, Aaron Christopher; Madison, Jonathan D.

    The coefficient of restitution is a measure of energy dissipation in a system across impact events. Often, the dissipative qualities of a pair of impacting components are neglected during the design phase. This research looks at the effect of applying a thin layer of metallic coating, using thermal spray technologies, to significantly alter the dissipative properties of a system. We studied the dissipative properties across multiple impacts in order to assess the effects of work hardening, the change in microstructure, and the change in surface topography. The results of the experiments indicate that any work hardening-like effects are likely attributablemore » to the crushing of asperities, and the permanent changes in the dissipative properties of the system, as measured by the coefficient of restitution, are attributable to the microstructure formed by the thermal spray coating. Furthermore, the microstructure appears to be robust across impact events of moderate energy levels, exhibiting negligible changes across multiple impact events.« less

  9. Do inertial wave interactions control the rate of energy dissipation of rotating turbulence?

    NASA Astrophysics Data System (ADS)

    Cortet, Pierre-Philippe; Campagne, Antoine; Machicoane, Nathanael; Gallet, Basile; Moisy, Frederic

    2015-11-01

    The scaling law of the energy dissipation rate, ɛ ~U3 / L (with U and L the characteristic velocity and lengthscale), is one of the most robust features of fully developed turbulence. How this scaling is affected by a background rotation is still a controversial issue with importance for geo and astrophysical flows. At asymptotically small Rossby numbers Ro = U / ΩL , i.e. in the weakly nonlinear limit, wave-turbulence arguments suggest that ɛ should be reduced by a factor Ro . Such scaling has however never been evidenced directly, neither experimentally nor numerically. We report here direct measurements of the injected power, and therefore of ɛ, in an experiment where a propeller is rotating at a constant rate in a large volume of fluid rotating at Ω. In co-rotation, we find a transition between the wave-turbulence scaling at small Ro and the classical Kolmogorov law at large Ro . The transition between these two regimes is characterized from experiments varying the propeller and tank dimensions. In counter-rotation, the scenario is much richer with the observation of an additional peak of dissipation, similar to the one found in Taylor-Couette experiments.

  10. The effects of dissipation on topological mechanical systems

    NASA Astrophysics Data System (ADS)

    Xiong, Ye; Wang, Tianxiang; Tong, Peiqing

    2016-09-01

    We theoretically study the effects of isotropic dissipation in a topological mechanical system which is an analogue of Chern insulator in mechanical vibrational lattice. The global gauge invariance is still conserved in this system albeit it is destroyed by the dissipation in the quantum counterpart. The chiral edge states in this system are therefore robust against strong dissipation. The dissipation also causes a dispersion of damping for the eigenstates. It will modify the equation of motion of a wave packet by an extra effective force. After taking into account the Berry curvature in the wave vector space, the trace of a free wave packet in the real space should be curved, feinting to break the Newton’s first law.

  11. Gravitationally confined relativistic neutrinos

    NASA Astrophysics Data System (ADS)

    Vayenas, C. G.; Fokas, A. S.; Grigoriou, D.

    2017-09-01

    Combining special relativity, the equivalence principle, and Newton’s universal gravitational law with gravitational rather than rest masses, one finds that gravitational interactions between relativistic neutrinos with kinetic energies above 50 MeV are very strong and can lead to the formation of gravitationally confined composite structures with the mass and other properties of hadrons. One may model such structures by considering three neutrinos moving symmetrically on a circular orbit under the influence of their gravitational attraction, and by assuming quantization of their angular momentum, as in the Bohr model of the H atom. The model contains no adjustable parameters and its solution, using a neutrino rest mass of 0.05 eV/c2, leads to composite state radii close to 1 fm and composite state masses close to 1 GeV/c2. Similar models of relativistic rotating electron - neutrino pairs give a mass of 81 GeV/c2, close to that of W bosons. This novel mechanism of generating mass suggests that the Higgs mass generation mechanism can be modeled as a latent gravitational field which gets activated by relativistic neutrinos.

  12. Heat dissipation guides activation in signaling proteins.

    PubMed

    Weber, Jeffrey K; Shukla, Diwakar; Pande, Vijay S

    2015-08-18

    Life is fundamentally a nonequilibrium phenomenon. At the expense of dissipated energy, living things perform irreversible processes that allow them to propagate and reproduce. Within cells, evolution has designed nanoscale machines to do meaningful work with energy harnessed from a continuous flux of heat and particles. As dictated by the Second Law of Thermodynamics and its fluctuation theorem corollaries, irreversibility in nonequilibrium processes can be quantified in terms of how much entropy such dynamics produce. In this work, we seek to address a fundamental question linking biology and nonequilibrium physics: can the evolved dissipative pathways that facilitate biomolecular function be identified by their extent of entropy production in general relaxation processes? We here synthesize massive molecular dynamics simulations, Markov state models (MSMs), and nonequilibrium statistical mechanical theory to probe dissipation in two key classes of signaling proteins: kinases and G-protein-coupled receptors (GPCRs). Applying machinery from large deviation theory, we use MSMs constructed from protein simulations to generate dynamics conforming to positive levels of entropy production. We note the emergence of an array of peaks in the dynamical response (transient analogs of phase transitions) that draw the proteins between distinct levels of dissipation, and we see that the binding of ATP and agonist molecules modifies the observed dissipative landscapes. Overall, we find that dissipation is tightly coupled to activation in these signaling systems: dominant entropy-producing trajectories become localized near important barriers along known biological activation pathways. We go on to classify an array of equilibrium and nonequilibrium molecular switches that harmonize to promote functional dynamics.

  13. Scalar dissipation rates in non-conservative transport systems

    PubMed Central

    Engdahl, Nicholas B.; Ginn, Timothy R.; Fogg, Graham E.

    2014-01-01

    This work considers how the inferred mixing state of diffusive and advective-diffusive systems will vary over time when the solute masses are not constant over time. We develop a number of tools that allow the scalar dissipation rate to be used as a mixing measure in these systems without calculating local concentration gradients. The behavior of dissipation rates are investigated for single and multi-component kinetic reactions and a commonly studied equilibrium reaction. The scalar dissipation rate of a tracer experiencing first order decay can be determined exactly from the decay constant and the dissipation rate of a passive tracer, and the mixing rate of a conservative component is not the superposition of the solute specific mixing rates. We then show how the behavior of the scalar dissipation rate can be determined from a limited subset of an infinite domain. Corrections are derived for constant and time dependent limits of integration the latter is used to approximate dissipation rates in advective-diffusive systems. Several of the corrections exhibit similarities to the previous work on mixing, including non-Fickian mixing. This illustrates the importance of accounting for the effects that reaction systems or limited monitoring areas may have on the inferred mixing state. PMID:23584457

  14. Reversibility and energy dissipation in adiabatic superconductor logic.

    PubMed

    Takeuchi, Naoki; Yamanashi, Yuki; Yoshikawa, Nobuyuki

    2017-03-06

    Reversible computing is considered to be a key technology to achieve an extremely high energy efficiency in future computers. In this study, we investigated the relationship between reversibility and energy dissipation in adiabatic superconductor logic. We analyzed the evolution of phase differences of Josephson junctions in the reversible quantum-flux-parametron (RQFP) gate and confirmed that the phase differences can change time reversibly, which indicates that the RQFP gate is physically, as well as logically, reversible. We calculated energy dissipation required for the RQFP gate to perform a logic operation and numerically demonstrated that the energy dissipation can fall below the thermal limit, or the Landauer bound, by lowering operation frequencies. We also investigated the 1-bit-erasure gate as a logically irreversible gate and the quasi-RQFP gate as a physically irreversible gate. We calculated the energy dissipation of these irreversible gates and showed that the energy dissipation of these gate is dominated by non-adiabatic state changes, which are induced by unwanted interactions between gates due to logical or physical irreversibility. Our results show that, in reversible computing using adiabatic superconductor logic, logical and physical reversibility are required to achieve energy dissipation smaller than the Landauer bound without non-adiabatic processes caused by gate interactions.

  15. General relativistic corrections in density-shear correlations

    NASA Astrophysics Data System (ADS)

    Ghosh, Basundhara; Durrer, Ruth; Sellentin, Elena

    2018-06-01

    We investigate the corrections which relativistic light-cone computations induce on the correlation of the tangential shear with galaxy number counts, also known as galaxy-galaxy lensing. The standard-approach to galaxy-galaxy lensing treats the number density of sources in a foreground bin as observable, whereas it is in reality unobservable due to the presence of relativistic corrections. We find that already in the redshift range covered by the DES first year data, these currently neglected relativistic terms lead to a systematic correction of up to 50% in the density-shear correlation function for the highest redshift bins. This correction is dominated by the fact that a redshift bin of number counts does not only lens sources in a background bin, but is itself again lensed by all masses between the observer and the counted source population. Relativistic corrections are currently ignored in the standard galaxy-galaxy analyses, and the additional lensing of a counted source populations is only included in the error budget (via the covariance matrix). At increasingly higher redshifts and larger scales, these relativistic and lensing corrections become however increasingly more important, and we here argue that it is then more efficient, and also cleaner, to account for these corrections in the density-shear correlations.

  16. Application of a relativistic accretion disc model to X-ray spectra of LMC X-1 and GRO J1655-40

    NASA Astrophysics Data System (ADS)

    Gierliński, Marek; Maciołek-Niedźwiecki, Andrzej; Ebisawa, Ken

    2001-08-01

    We present a general relativistic accretion disc model and its application to the soft-state X-ray spectra of black hole binaries. The model assumes a flat, optically thick disc around a rotating Kerr black hole. The disc locally radiates away the dissipated energy as a blackbody. Special and general relativistic effects influencing photons emitted by the disc are taken into account. The emerging spectrum, as seen by a distant observer, is parametrized by the black hole mass and spin, the accretion rate, the disc inclination angle and the inner disc radius. We fit the ASCA soft-state X-ray spectra of LMC X-1 and GRO J1655-40 by this model. We find that, having additional limits on the black hole mass and inclination angle from optical/UV observations, we can constrain the black hole spin from X-ray data. In LMC X-1 the constraint is weak, and we can only rule out the maximally rotating black hole. In GRO J1655-40 we can limit the spin much better, and we find 0.68<=a<=0.88. Accretion discs in both sources are radiation-pressure dominated. We do not find Compton reflection features in the spectra of any of these objects.

  17. Formulation of the relativistic quantum Hall effect and parity anomaly

    NASA Astrophysics Data System (ADS)

    Yonaga, Kouki; Hasebe, Kazuki; Shibata, Naokazu

    2016-06-01

    We present a relativistic formulation of the quantum Hall effect on Haldane sphere. An explicit form of the pseudopotential is derived for the relativistic quantum Hall effect with/without mass term. We clarify particular features of the relativistic quantum Hall states with the use of the exact diagonalization study of the pseudopotential Hamiltonian. Physical effects of the mass term to the relativistic quantum Hall states are investigated in detail. The mass term acts as an interpolating parameter between the relativistic and nonrelativistic quantum Hall effects. It is pointed out that the mass term unevenly affects the many-body physics of the positive and negative Landau levels as a manifestation of the "parity anomaly." In particular, we explicitly demonstrate the instability of the Laughlin state of the positive first relativistic Landau level with the reduction of the charge gap.

  18. Torsional oscillations of magnetized relativistic stars

    NASA Astrophysics Data System (ADS)

    Messios, Neophytos; Papadopoulos, Demetrios B.; Stergioulas, Nikolaos

    2001-12-01

    Strong magnetic fields in relativistic stars can be a cause of crust fracturing, resulting in the excitation of global torsional oscillations. Such oscillations could become observable in gravitational waves or in high-energy radiation, thus becoming a tool for probing the equation of state of relativistic stars. As the eigenfrequency of torsional oscillation modes is affected by the presence of a strong magnetic field, we study torsional modes in magnetized relativistic stars. We derive the linearized perturbation equations that govern torsional oscillations coupled to the oscillations of a magnetic field, when variations in the metric are neglected (Cowling approximation). The oscillations are described by a single two-dimensional wave equation, which can be solved as a boundary-value problem to obtain eigenfrequencies. We find that, in the non-magnetized case, typical oscillation periods of the fundamental l=2 torsional modes can be nearly a factor of 2 larger for relativistic stars than previously computed in the Newtonian limit. For magnetized stars, we show that the influence of the magnetic field is highly dependent on the assumed magnetic field configuration, and simple estimates obtained previously in the literature cannot be used for identifying normal modes observationally.

  19. Nonlinear dissipative and dispersive electrostatic structures in unmagnetized relativistic electron-ion plasma with warm ions and trapped electrons

    NASA Astrophysics Data System (ADS)

    Masood, W.; Hamid, Naira; Ilyas, Iffat; Siddiq, M.

    2017-06-01

    In this paper, we have investigated electrostatic solitary and shock waves in an unmagnetized relativistic electron-ion (ei) plasma in the presence of warm ions and trapped electrons. In this regard, we have derived the trapped Korteweg-de Vries Burgers (TKdVB) equation using the small amplitude approximation method, which to the best of our knowledge has not been investigated in plasmas. Since the TKdVB equation involves fractional nonlinearity on account of trapped electrons, we have employed a smartly crafted extension of the tangent hyperbolic method and presented the solution of the TKdVB equation in this paper. The limiting cases of the TKdVB equation yield trapped Burgers (TB) and trapped Korteweg-de Vries (TKdV) equations. We have also presented the solutions of TB and TKdV equations. We have also explored how the plasma parameters affect the propagation characteristics of the nonlinear structures obtained for these modified nonlinear partial differential equations. We hope that the present work will open new vistas of research in the nonlinear plasma theory both in classical and quantum plasmas.

  20. Isolating relativistic effects in large-scale structure

    NASA Astrophysics Data System (ADS)

    Bonvin, Camille

    2014-12-01

    We present a fully relativistic calculation of the observed galaxy number counts in the linear regime. We show that besides the density fluctuations and redshift-space distortions, various relativistic effects contribute to observations at large scales. These effects all have the same physical origin: they result from the fact that our coordinate system, namely the galaxy redshift and the incoming photons’ direction, is distorted by inhomogeneities in our Universe. We then discuss the impact of the relativistic effects on the angular power spectrum and on the two-point correlation function in configuration space. We show that the latter is very well adapted to isolate the relativistic effects since it naturally makes use of the symmetries of the different contributions. In particular, we discuss how the Doppler effect and the gravitational redshift distortions can be isolated by looking for a dipole in the cross-correlation function between a bright and a faint population of galaxies.

  1. Topological protection of multiparticle dissipative transport

    NASA Astrophysics Data System (ADS)

    Loehr, Johannes; Loenne, Michael; Ernst, Adrian; de Las Heras, Daniel; Fischer, Thomas M.

    2016-06-01

    Topological protection allows robust transport of localized phenomena such as quantum information, solitons and dislocations. The transport can be either dissipative or non-dissipative. Here, we experimentally demonstrate and theoretically explain the topologically protected dissipative motion of colloidal particles above a periodic hexagonal magnetic pattern. By driving the system with periodic modulation loops of an external and spatially homogeneous magnetic field, we achieve total control over the motion of diamagnetic and paramagnetic colloids. We can transport simultaneously and independently each type of colloid along any of the six crystallographic directions of the pattern via adiabatic or deterministic ratchet motion. Both types of motion are topologically protected. As an application, we implement an automatic topologically protected quality control of a chemical reaction between functionalized colloids. Our results are relevant to other systems with the same symmetry.

  2. A dissipative self-sustained optomechanical resonator on a silicon chip

    NASA Astrophysics Data System (ADS)

    Huang, J. G.; Li, Y.; Chin, L. K.; Cai, H.; Gu, Y. D.; Karim, M. F.; Wu, J. H.; Chen, T. N.; Yang, Z. C.; Hao, Y. L.; Qiu, C. W.; Liu, A. Q.

    2018-01-01

    In this letter, we report the experimental demonstration of a dissipative self-sustained optomechanical resonator on a silicon chip by introducing dissipative optomechanical coupling between a vertically offset bus waveguide and a racetrack optical cavity. Different from conventional blue-detuning limited self-oscillation, the dissipative optomechanical resonator exhibits self-oscillation in the resonance and red detuning regime. The anti-damping effects of dissipative optomechanical coupling are validated by both numerical simulation and experimental results. The demonstration of the dissipative self-sustained optomechanical resonator with an extended working range has potential applications in optomechanical oscillation for on-chip signal modulation and processing.

  3. Influence of the geometric configuration of accretion flow on the black hole spin dependence of relativistic acoustic geometry

    NASA Astrophysics Data System (ADS)

    Tarafdar, Pratik; Das, Tapas K.

    Linear perturbation of general relativistic accretion of low angular momentum hydrodynamic fluid onto a Kerr black hole leads to the formation of curved acoustic geometry embedded within the background flow. Characteristic features of such sonic geometry depend on the black hole spin. Such dependence can be probed by studying the correlation of the acoustic surface gravity κ with the Kerr parameter a. The κ-a relationship further gets influenced by the geometric configuration of the accretion flow structure. In this work, such influence has been studied for multitransonic shocked accretion where linear perturbation of general relativistic flow profile leads to the formation of two analogue black hole-type horizons formed at the sonic points and one analogue white hole-type horizon which is formed at the shock location producing divergent acoustic surface gravity. Dependence of the κ-a relationship on the geometric configuration has also been studied for monotransonic accretion, over the entire span of the Kerr parameter including retrograde flow. For accreting astrophysical black holes, the present work thus investigates how the salient features of the embedded relativistic sonic geometry may be determined not only by the background spacetime, but also by the flow configuration of the embedding matter.

  4. The effects of dissipation on topological mechanical systems

    PubMed Central

    Xiong, Ye; Wang, Tianxiang; Tong, Peiqing

    2016-01-01

    We theoretically study the effects of isotropic dissipation in a topological mechanical system which is an analogue of Chern insulator in mechanical vibrational lattice. The global gauge invariance is still conserved in this system albeit it is destroyed by the dissipation in the quantum counterpart. The chiral edge states in this system are therefore robust against strong dissipation. The dissipation also causes a dispersion of damping for the eigenstates. It will modify the equation of motion of a wave packet by an extra effective force. After taking into account the Berry curvature in the wave vector space, the trace of a free wave packet in the real space should be curved, feinting to break the Newton’s first law. PMID:27605247

  5. Postseismic rebound in fault step-overs caused by pore fluid flow

    USGS Publications Warehouse

    Peltzer, G.; Rosen, P.; Rogez, F.; Hudnut, K.

    1996-01-01

    Near-field strain induced by large crustal earthquakes results in changes in pore fluid pressure that dissipate with time and produce surface deformation. Synthetic aperture radar (SAR) interferometry revealed several centimeters of postseismic uplift in pull-apart structures and subsidence in a compressive jog along the Landers, California, 1992 earthquake surface rupture, with a relaxation time of 270 ?? 45 days. Such a postseismic rebound may be explained by the transition of the Poisson's ratio of the deformed volumes of rock from undrained to drained conditions as pore fluid flow allows pore pressure to return to hydrostatic equilibrium.

  6. Study of the O-mode in a relativistic degenerate electron plasma

    NASA Astrophysics Data System (ADS)

    Azra, Kalsoom; Ali, Muddasir; Hussain, Azhar

    2017-03-01

    Using the linearized relativistic Vlasov-Maxwell equations, a generalized expression for the plasma conductivity tensor is derived. The dispersion relation for the O-mode in a relativistic degenerate electron plasma is investigated by employing the Fermi-Dirac distribution function. The propagation characteristics of the O-mode (cut offs, resonances, propagation regimes, harmonic structure) are examined by using specific values of the density and the magnetic field that correspond to different relativistic dense environments. Further, it is observed that due to the relativistic effects the cut off and the resonance points are shifted to low frequency values, as a result the propagation regime is reduced. The dispersion relations for the non-relativistic and the ultra-relativistic limits are also presented.

  7. Anisotropic metamaterial waveguide driven by a cold and relativistic electron beam

    NASA Astrophysics Data System (ADS)

    Torabi, Mahmoud; Shokri, Babak

    2018-03-01

    We study the interaction of a cold and relativistic electron beam with a cylindrical waveguide loaded by an anisotropic and dispersive metamaterial layer. The general dispersion relation for the transverse magnetic (TM) mode, through the linear fluid model and Maxwell equations decomposition method, is derived. The effects of some metamaterial parameters on dispersion relation are presented. A qualitative discussion shows the possibility of monomodal propagation band widening and obtaining more control on dispersion relation behavior. Especially for epsilon negative near zero metamaterials, these effects are considerable. Finally, the anisotropy and metamaterial layer thickness impacts on wave growth rate for different metamaterials are considered. The results demonstrate that we can control both wave growth rate and voltage of saturation peak by metamaterial parameters.

  8. Relativistic Collisions of Highly-Charged Ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ionescu, Dorin; Belkacem, Ali

    1998-11-19

    The physics of elementary atomic processes in relativistic collisions between highly-charged ions and atoms or other ions is briefly discussed, and some recent theoretical and experimental results in this field are summarized. They include excitation, capture, ionization, and electron-positron pair creation. The numerical solution of the two-center Dirac equation in momentum space is shown to be a powerful nonperturbative method for describing atomic processes in relativistic collisions involving heavy and highly-charged ions. By propagating negative-energy wave packets in time the evolution of the QED vacuum around heavy ions in relativistic motion is investigated. Recent results obtained from numerical calculations usingmore » massively parallel processing on the Cray-T3E supercomputer of the National Energy Research Scientific Computer Center (NERSC) at Berkeley National Laboratory are presented.« less

  9. HERO - A 3D general relativistic radiative post-processor for accretion discs around black holes

    NASA Astrophysics Data System (ADS)

    Zhu, Yucong; Narayan, Ramesh; Sadowski, Aleksander; Psaltis, Dimitrios

    2015-08-01

    HERO (Hybrid Evaluator for Radiative Objects) is a 3D general relativistic radiative transfer code which has been tailored to the problem of analysing radiation from simulations of relativistic accretion discs around black holes. HERO is designed to be used as a post-processor. Given some fixed fluid structure for the disc (i.e. density and velocity as a function of position from a hydrodynamic or magnetohydrodynamic simulation), the code obtains a self-consistent solution for the radiation field and for the gas temperatures using the condition of radiative equilibrium. The novel aspect of HERO is that it combines two techniques: (1) a short-characteristics (SC) solver that quickly converges to a self-consistent disc temperature and radiation field, with (2) a long-characteristics (LC) solver that provides a more accurate solution for the radiation near the photosphere and in the optically thin regions. By combining these two techniques, we gain both the computational speed of SC and the high accuracy of LC. We present tests of HERO on a range of 1D, 2D, and 3D problems in flat space and show that the results agree well with both analytical and benchmark solutions. We also test the ability of the code to handle relativistic problems in curved space. Finally, we discuss the important topic of ray defects, a major limitation of the SC method, and describe our strategy for minimizing the induced error.

  10. Numerical Simulation in Steady Flow of Newtonian and Shear Thickening Fluids in Pipes With Circular Cross-Section

    NASA Astrophysics Data System (ADS)

    Galindo-Rosales, F. J.; Rubio-Hernández, F. J.

    2008-07-01

    Process engineering deals with the processing of large quantities of materials and they must be transported from one unit operation to another within the processing environment. This is commonly made through pipelines, where occurs a dissipation of energy due essentially to frictional losses against the inside wall of the pipe and changes in the internal energy. Then it is needed an energy source to keep the fluid moving, commonly a pump. Due to differences in the internal structure, dissipations of energy must be different from Newtonian fluids to shear thickening fluids. Moreover, because of the inherent structure that is exhibited by shear thickening fluids, laminar motion of these fluids is encountered far more commonly than with Newtonian fluids. Rheological experiments confirm that suspensions of Aerosil®R816 in Polypropylene glycol (PPG) of low molecular weights (400 and 2000 g/mol) exhibit reversible shear thickening behaviour. Cross model fits properly their viscosity curve in the region of shear thickening behaviour. Thus the constitutive equations obtained experimentally have been incorporated into the momentum conservation equation in order to study the reference case of the steady laminar flow in a pipe of circular cross-section, providing us with relevant information including the fully-developed velocity profiles, the friction factor and the entrance length, depending on the rheological properties of each suspension. Our results could be applied to the optimal design and layout of flow networks, which may represent a significant fraction of the total plant cost.

  11. Magnetic energy dissipation in force-free jets

    NASA Technical Reports Server (NTRS)

    Choudhuri, Arnab Rai; Konigl, Arieh

    1986-01-01

    It is shown that a magnetic pressure-dominated, supersonic jet which expands or contracts in response to variations in the confining external pressure can dissipate magnetic energy through field-line reconnection as it relaxes to a minimum-energy configuration. In order for a continuous dissipation to occur, the effective reconnection time must be a fraction of the expansion time. The dissipation rate for the axisymmetric minimum-energy field configuration is analytically derived. The results indicate that the field relaxation process could be a viable mechanism for powering the synchrotron emission in extragalactic jets if the reconnection time is substantially shorter than the nominal resistive tearing time in the jet.

  12. Riemann Solvers in Relativistic Hydrodynamics: Basics and Astrophysical Applications

    NASA Astrophysics Data System (ADS)

    Ibanez, Jose M.

    2001-12-01

    My contribution to these proceedings summarizes a general overview on t High Resolution Shock Capturing methods (HRSC) in the field of relativistic hydrodynamics with special emphasis on Riemann solvers. HRSC techniques achieve highly accurate numerical approximations (formally second order or better) in smooth regions of the flow, and capture the motion of unresolved steep gradients without creating spurious oscillations. In the first part I will show how these techniques have been extended to relativistic hydrodynamics, making it possible to explore some challenging astrophysical scenarios. I will review recent literature concerning the main properties of different special relativistic Riemann solvers, and discuss several 1D and 2D test problems which are commonly used to evaluate the performance of numerical methods in relativistic hydrodynamics. In the second part I will illustrate the use of HRSC methods in several astrophysical applications where special and general relativistic hydrodynamical processes play a crucial role.

  13. Well behaved parametric class of relativistic charged fluid ball in general relativity

    NASA Astrophysics Data System (ADS)

    Pant, Neeraj

    2011-04-01

    The paper presents a class of interior solutions of Einstein-Maxwell field equations of general relativity for a static, spherically symmetric distribution of the charged fluid. This class of solutions describes well behaved charged fluid balls. The class of solutions gives us wide range of parameter K (0≤ K≤42) for which the solution is well behaved hence, suitable for modeling of super dense star. For this solution the mass of a star is maximized with all degree of suitability and by assuming the surface density ρ b =2×1014 g/cm3. Corresponding to K=2 and X=0.30, the maximum mass of the star comes out to be 4.96 M Θ with linear dimension 34.16 km and central redshift and surface redshift 2.1033 and 0.683 respectively. In absence of the charge we are left behind with the well behaved fourth model of Durgapal (J. Phys., A, Math. Gen. 15:2637, 1982).

  14. Non-Dissipative Structural Evolutions in Granular Materials

    NASA Astrophysics Data System (ADS)

    Pouragha, Mehdi; Wan, Richard

    2017-06-01

    The structure of the contact network in granular assemblies can evolve due to either dissipative mechanisms such as sliding at contact points, or non-dissipative mechanisms through the phenomenon of contact gain and loss. Being associated with negligible deformations, non-dissipative mechanisms is actually active even in the small strain range of 10-3, especially in the case of densely packed assemblies. Hence, from a constitutive modelling point of view, it is crucial to be able to estimate such non-dissipative evolutions since both elastic and plastic properties of granular assemblies highly depend on contact network characteristics. The current study proposes an analytical scheme that allows us to estimate the non-dissipative contact gain/loss regime in terms of directional changes in the average contact force. The probability distribution of contact forces is used to compute the number of lost contact for each direction. Similarly, the number of newly formed contacts is estimated by considering the probability distribution of the gap between neighbouring particles. Based on the directional contact gain/loss computed, the changes in coordination number and fabric anisotropy can be found which, together with statistical treatments of Love-Weber stress expression, form a complete system of equations describing the evolution of other controlling microvariables. Finally, the results of the calculations have been compared with DEM simulations which verify the accuracy of the proposed scheme.

  15. Entanglement from dissipation and holographic interpretation

    NASA Astrophysics Data System (ADS)

    Cantcheff, M. Botta; Gadelha, Alexandre L.; Marchioro, Dáfni F. Z.; Nedel, Daniel Luiz

    2018-02-01

    In this work we study a dissipative field theory where the dissipation process is manifestly related to dynamical entanglement and put it in the holographic context. Such endeavour is realized by further development of a canonical approach to study quantum dissipation, which consists of doubling the degrees of freedom of the original system by defining an auxiliary one. A time dependent entanglement entropy for the vacumm state is calculated and a geometrical interpretation of the auxiliary system and the entropy is given in the context of the AdS/CFT correspondence using the Ryu-Takayanagi formula. We show that the dissipative dynamics is controlled by the entanglement entropy and there are two distinct stages: in the early times the holographic interpretation requires some deviation from classical General Relativity; in the later times the quantum system is described as a wormhole, a solution of the Einstein's equations near to a maximally extended black hole with two asymptotically AdS boundaries. We focus our holographic analysis in this regime, and suggest a mechanism similar to teleportation protocol to exchange (quantum) information between the two CFTs on the boundaries (see Maldacena et al. in Fortschr Phys 65(5):1700034, arXiv:1704.05333 [hep-th], 2017).

  16. On a relativistic particle and a relativistic position-dependent mass particle subject to the Klein–Gordon oscillator and the Coulomb potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vitória, R.L.L.; Furtado, C., E-mail: furtado@fisica.ufpb.br; Bakke, K., E-mail: kbakke@fisica.ufpb.br

    2016-07-15

    The relativistic quantum dynamics of an electrically charged particle subject to the Klein–Gordon oscillator and the Coulomb potential is investigated. By searching for relativistic bound states, a particular quantum effect can be observed: a dependence of the angular frequency of the Klein–Gordon oscillator on the quantum numbers of the system. The meaning of this behaviour of the angular frequency is that only some specific values of the angular frequency of the Klein–Gordon oscillator are permitted in order to obtain bound state solutions. As an example, we obtain both the angular frequency and the energy level associated with the ground statemore » of the relativistic system. Further, we analyse the behaviour of a relativistic position-dependent mass particle subject to the Klein–Gordon oscillator and the Coulomb potential.« less

  17. Relativistic transport theory for a two-temperature magnetized plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metens, T.; Balescu, R.

    1990-09-01

    The relativistic kinetic theory of linear transport is worked out within the framework of a new moment method. A complete analytical study of the transport in a two-temperature inhomogeneous magnetized fusion plasma is given. The transport relations and coefficients are derived from the kinetic equation with the full relativistic Beliaev--Budker collision operator and the impact of relativistic effects on the confinement are investigated.

  18. Relativistic Corrections to the Properties of the Alkali Fluorides

    NASA Technical Reports Server (NTRS)

    Dyall, Kenneth G.; Partridge, Harry

    1993-01-01

    Relativistic corrections to the bond lengths, dissociation energies and harmonic frequencies of KF, RbF and CsF have been obtained at the self-consistent field level by dissociating to ions. The relativistic corrections to the bond lengths, harmonic frequencies and dissociation energies to the ions are very small, due to the ionic nature of these molecules and the similarity of the relativistic and nonrelativistic ionic radii.

  19. Peristalsis of nonconstant viscosity Jeffrey fluid with nanoparticles

    NASA Astrophysics Data System (ADS)

    Alvi, N.; Latif, T.; Hussain, Q.; Asghar, S.

    Mixed convective peristaltic activity of variable viscosity nanofluids is addressed. Unlike the conventional consideration of constant viscosity; the viscosity is taken as temperature dependent. Constitutive relations for linear viscoelastic Jeffrey fluid are employed and uniform magnetic field is applied in the transverse direction. For nanofluids, the formulation is completed in presence of Brownian motion, thermophoresis, viscous dissipation and Joule heating. Consideration of temperature dependence of viscosity is not a choice but the realistic requirement of the wall temperature and the heat generated due to the viscous dissipation. Well established large wavelength and small Reynolds number approximations are invoked. Non-linear coupled system is analytically solved for the convergent series solutions identifying the interval of convergence explicitly. A comparative study between analytical and numerical solution is made for certainty. Influence of the parameters undertaken for the description of the problem is pointed out and its physics explained.

  20. On a class of nonlinear dispersive-dissipative interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenau, P.

    1997-07-29

    The authors study the prototypical, genuinely nonlinear, equation; u{sub t} + a(u{sup m}){sub x} + (u{sup n}){sub xxx} = {mu}(u{sup k}){sub xx}, a, {mu} = consts., which encompasses a wide variety of dissipative-dispersive interactions. The parametric surface k = (m + n)/2 separates diffusion dominated from dissipation dominated phenomena. On this surface dissipative and dispersive effects are in detailed balance for all amplitudes. In particular, the m = n + 2 = k + 1 subclass can be transformed into a form free of convection and dissipation making it accessible to theoretical studies. Both bounded and unbounded oscillations are foundmore » and certain exact solutions are presented. When a = (2{mu}3/){sup 2} the map yields a linear equation; rational, periodic and aperiodic solutions are constructed.« less

  1. On hydrodynamic phase field models for binary fluid mixtures

    NASA Astrophysics Data System (ADS)

    Yang, Xiaogang; Gong, Yuezheng; Li, Jun; Zhao, Jia; Wang, Qi

    2018-05-01

    Two classes of thermodynamically consistent hydrodynamic phase field models have been developed for binary fluid mixtures of incompressible viscous fluids of possibly different densities and viscosities. One is quasi-incompressible, while the other is incompressible. For the same binary fluid mixture of two incompressible viscous fluid components, which one is more appropriate? To answer this question, we conduct a comparative study in this paper. First, we visit their derivation, conservation and energy dissipation properties and show that the quasi-incompressible model conserves both mass and linear momentum, while the incompressible one does not. We then show that the quasi-incompressible model is sensitive to the density deviation of the fluid components, while the incompressible model is not in a linear stability analysis. Second, we conduct a numerical investigation on coarsening or coalescent dynamics of protuberances using the two models. We find that they can predict quite different transient dynamics depending on the initial conditions and the density difference although they predict essentially the same quasi-steady results in some cases. This study thus cast a doubt on the applicability of the incompressible model to describe dynamics of binary mixtures of two incompressible viscous fluids especially when the two fluid components have a large density deviation.

  2. RF priming of a long pulse relativistic magnetron

    NASA Astrophysics Data System (ADS)

    White, William Michael

    Rapid startup, increased pulsewidth and mode locking of magnetrons have been demonstrated experimentally on a relativistic magnetron by radio frequency (RF) priming. Experiments utilize a -300 kV, 2-8 kA, 300-500 ns electron beam to drive a Titan 6-vane relativistic magnetron (˜100 MW output power). The RF priming source is a 100 kW pulsed magnetron operating at 1.27-1.32 GHz. Tuning stubs were utilized in the Titan structure to adjust the operating frequency of the relativistic magnetron pi-mode upward by 30%. The tuning was guided by simulation in the MAGIC 3D code and experimental cold tests including a mapping of the azimuthal electric field inside the relativistic magnetron structure. The most successful tuning geometry was that of a standard anode resonant structure, but RF priming experiments were performed on a rising-sun structure as well. The Time Frequency Analysis (TFA) program was used to directly observe the effects of RF priming on the relativistic magnetron. RF priming was successful in decreasing mode competition by suppressing the generation of the 2pi/3-mode power by 41%. RF priming experiments were also successful in increasing microwave pulsewidth by 12% and decreasing microwave output delay by 22%. These improvements were observed while operating in a priming regime not satisfying Adler's Relation. Overall, the improvements made to the performance of the relativistic magnetron were modest because of the low priming power available (50-250 kW).

  3. RELATIVISTIC DOPPLER BEAMING AND MISALIGNMENTS IN AGN JETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singal, Ashok K., E-mail: asingal@prl.res.in

    Radio maps of active galactic nuclei often show linear features, called jets, on both parsec and kiloparsec scales. These jets supposedly possess relativistic motion and are oriented close to the line of sight of the observer, and accordingly the relativistic Doppler beaming makes them look much brighter than they really are in their respective rest frames. The flux boosting due to the relativistic beaming is a very sensitive function of the jet orientation angle, as seen by the observer. Sometimes, large bends are seen in these jets, with misalignments being 90° or more, which might imply a change in themore » orientation angle that should cause a large change in the relativistic beaming factor. Hence, if relativistic beaming does play an important role in these jets such large bends should usually show high contrast in the brightness of the jets before and after the bend. It needs to be kept in mind that sometimes a small intrinsic change in the jet angle might appear as a much larger misalignment due to the effects of geometrical projection, especially when seen close to the line of sight. What really matters are the initial and final orientation angles of the jet with respect to the observer’s line of sight. Taking the geometrical projection effects properly into account, we calculate the consequences of the presumed relativistic beaming and demonstrate that there ought to be large brightness ratios in jets before and after the observed misalignments.« less

  4. Relativistic Doppler Beaming and Misalignments in AGN Jets

    NASA Astrophysics Data System (ADS)

    Singal, Ashok K.

    2016-08-01

    Radio maps of active galactic nuclei often show linear features, called jets, on both parsec and kiloparsec scales. These jets supposedly possess relativistic motion and are oriented close to the line of sight of the observer, and accordingly the relativistic Doppler beaming makes them look much brighter than they really are in their respective rest frames. The flux boosting due to the relativistic beaming is a very sensitive function of the jet orientation angle, as seen by the observer. Sometimes, large bends are seen in these jets, with misalignments being 90° or more, which might imply a change in the orientation angle that should cause a large change in the relativistic beaming factor. Hence, if relativistic beaming does play an important role in these jets such large bends should usually show high contrast in the brightness of the jets before and after the bend. It needs to be kept in mind that sometimes a small intrinsic change in the jet angle might appear as a much larger misalignment due to the effects of geometrical projection, especially when seen close to the line of sight. What really matters are the initial and final orientation angles of the jet with respect to the observer’s line of sight. Taking the geometrical projection effects properly into account, we calculate the consequences of the presumed relativistic beaming and demonstrate that there ought to be large brightness ratios in jets before and after the observed misalignments.

  5. Enhanced relativistic harmonics by electron nanobunching

    NASA Astrophysics Data System (ADS)

    an der Brügge, D.; Pukhov, A.

    2010-03-01

    It is shown that when a few-cycle, relativistically intense, p-polarized laser pulse is obliquely incident on overdense plasma, the surface electrons may form ultrathin, highly compressed layers with a width of a few nanometers. These electron "nanobunches" emit synchrotron radiation coherently. We calculate the one-dimensional synchrotron spectrum analytically and obtain a slowly decaying power law with an exponent of 4/3 or 6/5. This is much flatter than the 8/3 power of the Baeva-Gordienko-Pukhov spectrum, produced by a relativistically oscillating bulk skin layer. The synchrotron spectrum cutoff frequency is defined either by the electron relativistic γ-factor or by the thickness of the emitting layer. In the numerically demonstrated, locally optimal case, the radiation is emitted in the form of a single attosecond pulse, which contains almost the entire energy of the full optical cycle.

  6. Skyrmionic spin Seebeck effect via dissipative thermomagnonic torques

    NASA Astrophysics Data System (ADS)

    Kovalev, Alexey A.

    2014-06-01

    We derive thermomagnonic torque and its "β-type" dissipative correction from the stochastic Landau-Lifshitz-Gilbert equation. The β-type dissipative correction describes viscous coupling between magnetic dynamics and magnonic current and it stems from spin mistracking of the magnetic order. We show that thermomagnonic torque is important for describing temperature gradient induced motion of skyrmions in helical magnets while dissipative correction plays an essential role in generating transverse Magnus force. We propose to detect such skyrmionic motion by employing the transverse spin Seebeck effect geometry.

  7. Portable radiography system using a relativistic electron beam

    DOEpatents

    Hoeberling, Robert F.

    1990-01-01

    A portable radiographic generator is provided with an explosive magnetic flux compression generator producing the high voltage necessary to generate a relativistic electron beam. The relativistic electron beam is provided with target materials which generates the desired radiographic pulse. The magnetic flux compression generator may require at least two conventional explosively driven generators in series to obtain a desired output voltage of at least 1 MV. The cathode and anode configuration of the diode are selected to provide a switching action wherein a high impedance load is presented to the magnetic flux compression generator when the high voltage is being generated, and thereafter switching to a low impedance load to generate the relativistic electron beam. Magnetic flux compression generators can be explosively driven and provided in a relatively compact, portable form for use with the relativistic x-ray equipment.

  8. Portable radiography system using a relativistic electron beam

    DOEpatents

    Hoeberling, R.F.

    1987-09-22

    A portable radiographic generator is provided with an explosive magnetic flux compression generator producing the high voltage necessary to generate a relativistic electron beam. The relativistic electron beam is provided with target materials which generates the desired radiographic pulse. The magnetic flux compression generator may require at least two conventional explosively driven generators in series to obtain a desired output voltage of at least 1 MV. The cathode and anode configuration of the diode are selected to provide a switching action wherein a high impedance load is presented to the magnetic flux compression generator when the high voltage is being generated, and thereafter switching to a low impedance load to generate the relativistic electron beam. Magnetic flux compression generators can be explosively driven and provided in a relatively compact, portable form for use with the relativistic x-ray equipment. 8 figs.

  9. RELATIVISTIC MAGNETOHYDRODYNAMICS: RENORMALIZED EIGENVECTORS AND FULL WAVE DECOMPOSITION RIEMANN SOLVER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anton, Luis; MartI, Jose M; Ibanez, Jose M

    2010-05-01

    We obtain renormalized sets of right and left eigenvectors of the flux vector Jacobians of the relativistic MHD equations, which are regular and span a complete basis in any physical state including degenerate ones. The renormalization procedure relies on the characterization of the degeneracy types in terms of the normal and tangential components of the magnetic field to the wave front in the fluid rest frame. Proper expressions of the renormalized eigenvectors in conserved variables are obtained through the corresponding matrix transformations. Our work completes previous analysis that present different sets of right eigenvectors for non-degenerate and degenerate states, andmore » can be seen as a relativistic generalization of earlier work performed in classical MHD. Based on the full wave decomposition (FWD) provided by the renormalized set of eigenvectors in conserved variables, we have also developed a linearized (Roe-type) Riemann solver. Extensive testing against one- and two-dimensional standard numerical problems allows us to conclude that our solver is very robust. When compared with a family of simpler solvers that avoid the knowledge of the full characteristic structure of the equations in the computation of the numerical fluxes, our solver turns out to be less diffusive than HLL and HLLC, and comparable in accuracy to the HLLD solver. The amount of operations needed by the FWD solver makes it less efficient computationally than those of the HLL family in one-dimensional problems. However, its relative efficiency increases in multidimensional simulations.« less

  10. Relativistic laser channeling in plasmas for fast ignition

    NASA Astrophysics Data System (ADS)

    Lei, A. L.; Pukhov, A.; Kodama, R.; Yabuuchi, T.; Adumi, K.; Endo, K.; Freeman, R. R.; Habara, H.; Kitagawa, Y.; Kondo, K.; Kumar, G. R.; Matsuoka, T.; Mima, K.; Nagatomo, H.; Norimatsu, T.; Shorokhov, O.; Snavely, R.; Yang, X. Q.; Zheng, J.; Tanaka, K. A.

    2007-12-01

    We report an experimental observation suggesting plasma channel formation by focusing a relativistic laser pulse into a long-scale-length preformed plasma. The channel direction coincides with the laser axis. Laser light transmittance measurement indicates laser channeling into the high-density plasma with relativistic self-focusing. A three-dimensional particle-in-cell simulation reproduces the plasma channel and reveals that the collimated hot-electron beam is generated along the laser axis in the laser channeling. These findings hold the promising possibility of fast heating a dense fuel plasma with a relativistic laser pulse.

  11. Relativistic covariance of Ohm's law

    NASA Astrophysics Data System (ADS)

    Starke, R.; Schober, G. A. H.

    2016-04-01

    The derivation of Lorentz-covariant generalizations of Ohm's law has been a long-term issue in theoretical physics with deep implications for the study of relativistic effects in optical and atomic physics. In this article, we propose an alternative route to this problem, which is motivated by the tremendous progress in first-principles materials physics in general and ab initio electronic structure theory in particular. We start from the most general, Lorentz-covariant first-order response law, which is written in terms of the fundamental response tensor χμ ν relating induced four-currents to external four-potentials. By showing the equivalence of this description to Ohm's law, we prove the validity of Ohm's law in every inertial frame. We further use the universal relation between χμ ν and the microscopic conductivity tensor σkℓ to derive a fully relativistic transformation law for the latter, which includes all effects of anisotropy and relativistic retardation. In the special case of a constant, scalar conductivity, this transformation law can be used to rederive a standard textbook generalization of Ohm's law.

  12. Relativistic opacities for astrophysical applications

    DOE PAGES

    Fontes, Christopher John; Fryer, Christopher Lee; Hungerford, Aimee L.; ...

    2015-06-29

    Here, we report on the use of the Los Alamos suite of relativistic atomic physics codes to generate radiative opacities for the modeling of astrophysically relevant plasmas under local thermodynamic equilibrium (LTE) conditions. The atomic structure calculations are carried out in fine-structure detail, including full configuration interaction. Three example applications are considered: iron opacities at conditions relevant to the base of the solar convection zone, nickel opacities for the modeling of stellar envelopes, and samarium opacities for the modeling of light curves produced by neutron star mergers. In the first two examples, comparisons are made between opacities that are generatedmore » with the fully and semi-relativistic capabilities in the Los Alamos suite of codes. As expected for these highly charged, iron-peak ions, the two methods produce reasonably similar results, providing confidence that the numerical methods have been correctly implemented. However, discrepancies greater than 10% are observed for nickel and investigated in detail. In the final application, the relativistic capability is used in a preliminary investigation of the complicated absorption spectrum associated with cold lanthanide elements.« less

  13. Limits and signatures of relativistic spaceflight

    NASA Astrophysics Data System (ADS)

    Yurtsever, Ulvi; Wilkinson, Steven

    2018-01-01

    While special relativity imposes an absolute speed limit at the speed of light, our Universe is not empty Minkowski spacetime. The constituents that fill the interstellar/intergalactic vacuum, including the cosmic microwave background photons, impose a lower speed limit on any object travelling at relativistic velocities. Scattering of cosmic microwave photons from an ultra-relativistic object may create radiation with a characteristic signature allowing the detection of such objects at large distances.

  14. Quasiblack holes with pressure: Relativistic charged spheres as the frozen stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemos, Jose P. S.; Zanchin, Vilson T.; Centro de Ciencias Naturais e Humanas, Universidade Federal do ABC, Rua Santa Adelia 166, 09210-170 Santo Andre, SP, Brazil and Coordenadoria de Astronomia e Astrofisica, Observatorio Nacional-MCT, Rua General Jose Cristino 77, 20921-400 Rio de Janeiro

    2010-06-15

    In general relativity coupled to Maxwell's electromagnetism and charged matter, when the gravitational potential W{sup 2} and the electric potential field {phi} obey a relation of the form W{sup 2}=a(-{epsilon}{phi}+b){sup 2}+c, where a, b, and c are arbitrary constants, and {epsilon}={+-}1 (the speed of light c and Newton's constant G are put to one), a class of very interesting electrically charged systems with pressure arises. We call the relation above between W and {phi}, the Weyl-Guilfoyle relation, and it generalizes the usual Weyl relation, for which a=1. For both, Weyl and Weyl-Guilfoyle relations, the electrically charged fluid, if present, maymore » have nonzero pressure. Fluids obeying the Weyl-Guilfoyle relation are called Weyl-Guilfoyle fluids. These fluids, under the assumption of spherical symmetry, exhibit solutions which can be matched to the electrovacuum Reissner-Nordstroem spacetime to yield global asymptotically flat cold charged stars. We show that a particular spherically symmetric class of stars found by Guilfoyle has a well-behaved limit which corresponds to an extremal Reissner-Nordstroem quasiblack hole with pressure, i.e., in which the fluid inside the quasihorizon has electric charge and pressure, and the geometry outside the quasihorizon is given by the extremal Reissner-Nordstroem metric. The main physical properties of such charged stars and quasiblack holes with pressure are analyzed. An important development provided by these stars and quasiblack holes is that without pressure the solutions, Majumdar-Papapetrou solutions, are unstable to kinetic perturbations. Solutions with pressure may avoid this instability. If stable, these cold quasiblack holes with pressure, i.e., these compact relativistic charged spheres, are really frozen stars.« less

  15. On turbulence decay of a shear-thinning fluid

    NASA Astrophysics Data System (ADS)

    Rahgozar, S.; Rival, D. E.

    2017-12-01

    An experimental investigation of turbulent flow in a shear-thinning fluid is presented. The experimental flow is a boundary-free, uniformly sheared flow at a relatively high Reynolds number (i.e., Re λmax=275 ), which decays in time. As just one example of decaying turbulence, the experiment can be thought of as a simple model of bulk turbulence in large arteries. The dimensionless parameters used are Reynolds, Strouhal, and Womersley numbers, which have been adapted according to the characteristics of the present experiment. The working fluid is a solution of aqueous 35 ppm xanthan gum, a well-known shear-thinning fluid. The velocity fields are acquired via time-resolved particle image velocimetry in the streamwise/cross-stream and streamwise/spanwise planes. The results show that the presence of xanthan gum not only modifies the turbulent kinetic energy and the dissipation rate but also significantly alters the characteristics of the large-scale eddies.

  16. Entropy model of dissipative structure on corporate social responsibility

    NASA Astrophysics Data System (ADS)

    Li, Zuozhi; Jiang, Jie

    2017-06-01

    Enterprise is prompted to fulfill the social responsibility requirement by the internal and external environment. In this complex system, some studies suggest that firms have an orderly or chaotic entropy exchange behavior. Based on the theory of dissipative structure, this paper constructs the entropy index system of corporate social responsibility(CSR) and explores the dissipative structure of CSR through Brusselator model criterion. Picking up listed companies of the equipment manufacturing, the research shows that CSR has positive incentive to negative entropy and promotes the stability of dissipative structure. In short, the dissipative structure of CSR has a positive impact on the interests of stakeholders and corporate social images.

  17. The effects of radiation drag on radial, relativistic hydromagnetic winds

    NASA Technical Reports Server (NTRS)

    Li, Zhi-Yun; Begelman, Mitchell C.; Chiueh, Tzihong

    1992-01-01

    The effects of drag on an idealized relativistic MHD wind of radial geometry are studied. The astrophysical motivation is to understand the effects of radiation drag on the dynamics of a jet or wind passing through the intense radiation field of an accreting compact object. From a critical point analysis, it is found that a slow magnetosonic point can appear in a dragged flow even in the absence of gravitational force, as a result of a balance between the drag force and the combination of thermal pressure and centrifugal forces. As in the undragged case, the Alfven point does not impose any constraints on the flow. Although it is formally possible for a dragged flow to possess more than one fast magnetosonic point, it is shown that this is unlikely in practice. In the limit of a 'cold', centrifugally driven flow, it is shown that the fast magnetosonic point moves to infinite radius, just as in the drag-free case. For a given mass flux, the total energy output carried to infinity, and the final partition between the kinetic energy and the Poynting flux, are the same for the dragged and the drag-free flows. The main effects of radiation drag are to increase the amount of energy and angular momentum extracted from the source and to redistribute the regions where acceleration occurs in the flow. This is accomplished through the storage and release of magnetic energy, as a result of additional winding and compression of the field caused by the action of the drag. For a relativistic wind, the dissipated energy can exceed the final kinetic energy of the flow and may be comparable to the total flow energy (which is dominated by Poynting flux). The energy lost to radiation drag will appear as a Doppler-boosted beam of scattered radiation, which could dominate the background radiation if the flow is well-collimated.

  18. Modeling and Bio molecular Self-assembly via Molecular Dynamics and Dissipative Particle Dynamics

    NASA Astrophysics Data System (ADS)

    Rakesh, L.

    2009-09-01

    Surfactants like materials can be used to increase the solubility of poorly soluble drugs in water and to increase drug bioavailability. A typical case study will be demonstrated using DPD simulation to model the distribution of anti-inflammatory drug molecules. Computer simulation is a convenient approach to understand drug distribution and solubility concepts without much wastage and costly experiments in the laboratory. Often in molecular dynamics (MD) the atoms are represented explicitly and the equation of motion as described by Newtonian dynamics is integrated explicitly. MD has been used to study spontaneous formation of micelles by hydrophobic molecules with amphiphilic head groups in bulk water, as well as stability of pre-configured micelles and membranes. DPD is a state-of the- art mesoscale simulation, it is a more recent molecular dynamics technique, originally developed for simulating complex fluids but lately also applied to membrane dynamics, hemodynamic in biomedical applications. Such fluids pervade industrial research from paints to pharmaceuticals and from cosmetics to the controlled release of drugs. Dissipative particle dynamics (DPD) can provide structural and dynamic properties of fluids in equilibrium, under shear or confined to narrow cavities, at length- and time-scales beyond the scope of traditional atomistic molecular dynamics simulation methods. Mesoscopic particles are used to represent clusters of molecules. The interaction conserves mass and momentum and as a consequence the dynamics is consistent with Navier-Stokes equations. In addition to the conservative forces, stochastic drive and dissipation is introduced to represent internal degrees of freedom in the mesoscopic particles. In this research, an initial study is being conducted using the aqueous solubilization of the nonsteroidal, anti-inflammatory drug is studied theoretically in micellar solution of nonionic (dodecyl hexa(ethylene oxide), C12E6) surfactants possessing the

  19. Thermal energy dissipation and xanthophyll cycles beyond the Arabidopsis model.

    PubMed

    García-Plazaola, José Ignacio; Esteban, Raquel; Fernández-Marín, Beatriz; Kranner, Ilse; Porcar-Castell, Albert

    2012-09-01

    Thermal dissipation of excitation energy is a fundamental photoprotection mechanism in plants. Thermal energy dissipation is frequently estimated using the quenching of the chlorophyll fluorescence signal, termed non-photochemical quenching. Over the last two decades, great progress has been made in the understanding of the mechanism of thermal energy dissipation through the use of a few model plants, mainly Arabidopsis. Nonetheless, an emerging number of studies suggest that this model represents only one strategy among several different solutions for the environmental adjustment of thermal energy dissipation that have evolved among photosynthetic organisms in the course of evolution. In this review, a detailed analysis of three examples highlights the need to use models other than Arabidopsis: first, overwintering evergreens that develop a sustained form of thermal energy dissipation; second, desiccation tolerant plants that induce rapid thermal energy dissipation; and third, understorey plants in which a complementary lutein epoxide cycle modulates thermal energy dissipation. The three examples have in common a shift from a photosynthetically efficient state to a dissipative conformation, a strategy widely distributed among stress-tolerant evergreen perennials. Likewise, they show a distinct operation of the xanthophyll cycle. Expanding the list of model species beyond Arabidopsis will enhance our knowledge of these mechanisms and increase the synergy of the current studies now dispersed over a wide number of species.

  20. Relativistic plasma control for single attosecond x-ray burst generation

    NASA Astrophysics Data System (ADS)

    Baeva, T.; Gordienko, S.; Pukhov, A.

    2006-12-01

    We show that managing time-dependent polarization of the relativistically intense laser pulse incident on a plasma surface allows us to gate a single (sub)attosecond x-ray burst even when a multicycle driver is used. The single x-ray burst is emitted when the tangential component of the vector potential at the plasma surface vanishes. This relativistic plasma control is based on the theory of relativistic spikes [T. Baeva, S. Gordienko, and A. Pukhov, Phys. Rev. E 74, 046404 (2006)]. The relativistic plasma control is demonstrated here numerically by particle-in-cell simulations.

  1. Simulating the frontal instability of lock-exchange density currents with dissipative particle dynamics

    NASA Astrophysics Data System (ADS)

    Li, Yanggui; Geng, Xingguo; Wang, Heping; Zhuang, Xin; Ouyang, Jie

    2016-06-01

    The frontal instability of lock-exchange density currents is numerically investigated using dissipative particle dynamics (DPD) at the mesoscopic particle level. For modeling two-phase flow, the “color” repulsion model is adopted to describe binary fluids according to Rothman-Keller method. The present DPD simulation can reproduce the flow phenomena of lock-exchange density currents, including the lobe-and-cleft instability that appears at the head, as well as the formation of coherent billow structures at the interface behind the head due to the growth of Kelvin-Helmholtz instability. Furthermore, through the DPD simulation, some small-scale characteristics can be observed, which are difficult to be captured in macroscopic simulation and experiment.

  2. Relativistic Kinetics from the Bondi "K"-Calculus

    ERIC Educational Resources Information Center

    Dasgupta, Ananda

    2007-01-01

    The Bondi K-calculus is a delightful method that has been used to provide rich insights into relativistic kinematics. In this paper, we will try to show how several important results of relativistic kinetics can be derived simply by using this approach. In addition, we will also indicate how the K-calculus can be used to simplify certain…

  3. Point sources from dissipative dark matter

    NASA Astrophysics Data System (ADS)

    Agrawal, Prateek; Randall, Lisa

    2017-12-01

    If a component of dark matter has dissipative interactions, it can cool to form compact astrophysical objects with higher density than that of conventional cold dark matter (sub)haloes. Dark matter annihilations might then appear as point sources, leading to novel morphology for indirect detection. We explore dissipative models where interaction with the Standard Model might provide visible signals, and show how such objects might give rise to the observed excess in gamma rays arising from the galactic center.

  4. Entanglement distillation by dissipation and continuous quantum repeaters.

    PubMed

    Vollbrecht, Karl Gerd H; Muschik, Christine A; Cirac, J Ignacio

    2011-09-16

    Even though entanglement is very vulnerable to interactions with the environment, it can be created by purely dissipative processes. Yet, the attainable degree of entanglement is profoundly limited in the presence of noise sources. We show that distillation can also be realized dissipatively, such that a highly entangled steady state is obtained. The schemes put forward here display counterintuitive phenomena, such as improved performance if noise is added to the system. We also show how dissipative distillation can be employed in a continuous quantum repeater architecture, in which the resources scale polynomially with the distance.

  5. Multifluid cosmology: An illustration of fundamental principles

    NASA Astrophysics Data System (ADS)

    Comer, G. L.; Peter, Patrick; Andersson, N.

    2012-05-01

    Our current understanding of the Universe depends on the interplay of several distinct matter components, which interact mainly through gravity, and electromagnetic radiation. The nature of the different components, and possible interactions, tends to be based on the notion of coupled perfect fluids (or scalar fields). This approach is somewhat naive, especially if one wants to be able to consider issues involving heat flow, dissipative mechanisms, or Bose-Einstein condensation of dark matter. We argue that a more natural starting point would be the multipurpose variational relativistic multifluid system that has so far mainly been applied to neutron star astrophysics. As an illustration of the fundamental principles involved, we develop the formalism for determining the nonlinear cosmological solutions to the Einstein equations for a general relativistic two-fluid model for a coupled system of matter (nonzero rest mass) and radiation (zero rest mass). The two fluids are allowed to interpenetrate and exhibit a relative flow with respect to each other, implying, in general, an anisotropic Universe. We use initial conditions such that the massless fluid flux dominates early on so that the situation is effectively that of a single-fluid and one has the usual Friedmann-Lemaître-Robertson-Walker spacetime. We find that there is a Bianchi I transition epoch out of which the matter flux dominates. The situation is then effectively that of a single fluid and the spacetime evolves towards the Friedmann-Lemaître-Robertson-Walker form. Such a transition opens up the possibility of imprinting observable consequences at the specific scale corresponding to the transition time.

  6. Relativistic causality

    NASA Astrophysics Data System (ADS)

    Valente, Giovanni; Owen Weatherall, James

    2014-11-01

    Relativity theory is often taken to include, or to imply, a prohibition on superluminal propagation of causal processes. Yet, what exactly the prohibition on superluminal propagation amounts to and how one should deal with its possible violation have remained open philosophical problems, both in the context of the metaphysics of causation and the foundations of physics. In particular, recent work in philosophy of physics has focused on the causal structure of spacetime in relativity theory and on how this causal structure manifests itself in our most fundamental theories of matter. These topics were the subject of a workshop on "Relativistic Causality in Quantum Field Theory and General Relativity" that we organized (along with John Earman) at the Center for Philosophy of Science in Pittsburgh on April 5-7, 2013. The present Special Issue comprises contributions by speakers in that workshop as well as several other experts exploring different aspects of relativistic causality. We are grateful to the journal for hosting this Special Issue, to the journal's managing editor, Femke Kuiling, for her help and support in putting the issue together, and to the authors and the referees for their excellent work.

  7. Relativistic particle in a box: Klein-Gordon versus Dirac equations

    NASA Astrophysics Data System (ADS)

    Alberto, Pedro; Das, Saurya; Vagenas, Elias C.

    2018-03-01

    The problem of a particle in a box is probably the simplest problem in quantum mechanics which allows for significant insight into the nature of quantum systems and thus is a cornerstone in the teaching of quantum mechanics. In relativistic quantum mechanics this problem allows also to highlight the implications of special relativity for quantum physics, namely the effect that spin has on the quantised energy spectra. To illustrate this point, we solve the problem of a spin zero relativistic particle in a one- and three-dimensional box using the Klein-Gordon equation in the Feshbach-Villars formalism. We compare the solutions and the energy spectra obtained with the corresponding ones from the Dirac equation for a spin one-half relativistic particle. We note the similarities and differences, in particular the spin effects in the relativistic energy spectrum. As expected, the non-relativistic limit is the same for both kinds of particles, since, for a particle in a box, the spin contribution to the energy is a relativistic effect.

  8. Tidal dissipation in a viscoelastic planet

    NASA Technical Reports Server (NTRS)

    Ross, M.; Schubert, G.

    1986-01-01

    Tidal dissipation is examined using Maxwell standard liner solid (SLS), and Kelvin-Voigt models, and viscosity parameters are derived from the models that yield the amount of dissipation previously calculated for a moon model with QW = 100 in a hypothetical orbit closer to the earth. The relevance of these models is then assessed for simulating planetary tidal responses. Viscosities of 10 exp 14 and 10 ex 18 Pa s for the Kelvin-Voigt and Maxwell rheologies, respectively, are needed to match the dissipation rate calculated using the Q approach with a quality factor = 100. The SLS model requires a short time viscosity of 3 x 10 exp 17 Pa s to match the Q = 100 dissipation rate independent of the model's relaxation strength. Since Q = 100 is considered a representative value for the interiors of terrestrial planets, it is proposed that derived viscosities should characterize planetary materials. However, it is shown that neither the Kelvin-Voigt nor the SLS models simulate the behavior of real planetary materials on long time scales. The Maxwell model, by contrast, behaves realistically on both long and short time scales. The inferred Maxwell viscosity, corresponding to the time scale of days, is several times smaller than the longer time scale (greater than or equal to 10 exp 14 years) viscosity of the earth's mantle.

  9. Relativistic stars in vector-tensor theories

    NASA Astrophysics Data System (ADS)

    Kase, Ryotaro; Minamitsuji, Masato; Tsujikawa, Shinji

    2018-04-01

    We study relativistic star solutions in second-order generalized Proca theories characterized by a U (1 )-breaking vector field with derivative couplings. In the models with cubic and quartic derivative coupling, the mass and radius of stars become larger than those in general relativity for negative derivative coupling constants. This phenomenon is mostly attributed to the increase of star radius induced by a slower decrease of the matter pressure compared to general relativity. There is a tendency that the relativistic star with a smaller mass is not gravitationally bound for a low central density and hence is dynamically unstable, but that with a larger mass is gravitationally bound. On the other hand, we show that the intrinsic vector-mode couplings give rise to general relativistic solutions with a trivial field profile, so the mass and radius are not modified from those in general relativity.

  10. Analysis of fluid-structure interaction in a frame pipe undergoing plastic deformations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khamlichi, A.; Jezequel, L.; Jacques, Y.

    1995-11-01

    Water hammer pressure waves of sufficiently large magnitude can cause plastic flexural deformations in a frame pipe. In this study, the authors propose a modelization of this problem based on plane wave approximation for the fluid equations and approximation of the structure motion by a single-degree-of-freedom elastic-plastic oscillator. Direct analytical integration of elastic-plastic equations through pipe sections, then over the pipe length is performed in order to identify the oscillator parameters. Comparison of the global load-displacement relationship obtained with the finite element solution was considered and has shown good agreement. Fluid-structure coupling is achieved by assuming elbows to act likemore » plane monopole sources, where localized jumps of fluid velocity occur and where net pressure forces are exerted on the structure. The authors have applied this method to analyze the fluid-structure interaction in this range of deformations. Energy exchange between the fluid and the structure and energy dissipation are quantified.« less

  11. Advanced relativistic VLBI model for geodesy

    NASA Astrophysics Data System (ADS)

    Soffel, Michael; Kopeikin, Sergei; Han, Wen-Biao

    2017-07-01

    Our present relativistic part of the geodetic VLBI model for Earthbound antennas is a consensus model which is considered as a standard for processing high-precision VLBI observations. It was created as a compromise between a variety of relativistic VLBI models proposed by different authors as documented in the IERS Conventions 2010. The accuracy of the consensus model is in the picosecond range for the group delay but this is not sufficient for current geodetic purposes. This paper provides a fully documented derivation of a new relativistic model having an accuracy substantially higher than one picosecond and based upon a well accepted formalism of relativistic celestial mechanics, astrometry and geodesy. Our new model fully confirms the consensus model at the picosecond level and in several respects goes to a great extent beyond it. More specifically, terms related to the acceleration of the geocenter are considered and kept in the model, the gravitational time-delay due to a massive body (planet, Sun, etc.) with arbitrary mass and spin-multipole moments is derived taking into account the motion of the body, and a new formalism for the time-delay problem of radio sources located at finite distance from VLBI stations is presented. Thus, the paper presents a substantially elaborated theoretical justification of the consensus model and its significant extension that allows researchers to make concrete estimates of the magnitude of residual terms of this model for any conceivable configuration of the source of light, massive bodies, and VLBI stations. The largest terms in the relativistic time delay which can affect the current VLBI observations are from the quadrupole and the angular momentum of the gravitating bodies that are known from the literature. These terms should be included in the new geodetic VLBI model for improving its consistency.

  12. Efficiency at maximum power of low-dissipation Carnot engines.

    PubMed

    Esposito, Massimiliano; Kawai, Ryoichi; Lindenberg, Katja; Van den Broeck, Christian

    2010-10-08

    We study the efficiency at maximum power, η*, of engines performing finite-time Carnot cycles between a hot and a cold reservoir at temperatures Th and Tc, respectively. For engines reaching Carnot efficiency ηC=1-Tc/Th in the reversible limit (long cycle time, zero dissipation), we find in the limit of low dissipation that η* is bounded from above by ηC/(2-ηC) and from below by ηC/2. These bounds are reached when the ratio of the dissipation during the cold and hot isothermal phases tend, respectively, to zero or infinity. For symmetric dissipation (ratio one) the Curzon-Ahlborn efficiency ηCA=1-√Tc/Th] is recovered.

  13. Energy Dissipation-Based Method for Fatigue Life Prediction of Rock Salt

    NASA Astrophysics Data System (ADS)

    He, Mingming; Huang, Bingqian; Zhu, Caihui; Chen, Yunsheng; Li, Ning

    2018-05-01

    The fatigue test for rock salt is conducted under different stress amplitudes, loading frequencies, confining pressures and loading rates, from which the evaluation rule of the dissipated energy is revealed and analysed. The evolution of energy dissipation under fatigue loading is divided into three stages: the initial stage, the second stage and the acceleration stage. In the second stage, the energy dissipation per cycle remains stable and shows an exponential relation with the stress amplitude; the failure dissipated energy only depends on the mechanical behaviour of the rock salt and confining pressure, but it is immune to the loading conditions. The energy dissipation of fatigued rock salt is discussed, and a novel model for fatigue life prediction is proposed on the basis of energy dissipation. A simple model for evolution of the accumulative dissipated energy is established. Its prediction results are compared with the test results, and the proposed model is validated.

  14. Simulation of breaking waves using the high-order spectral method with laboratory experiments: wave-breaking energy dissipation

    NASA Astrophysics Data System (ADS)

    Seiffert, Betsy R.; Ducrozet, Guillaume

    2018-01-01

    We examine the implementation of a wave-breaking mechanism into a nonlinear potential flow solver. The success of the mechanism will be studied by implementing it into the numerical model HOS-NWT, which is a computationally efficient, open source code that solves for the free surface in a numerical wave tank using the high-order spectral (HOS) method. Once the breaking mechanism is validated, it can be implemented into other nonlinear potential flow models. To solve for wave-breaking, first a wave-breaking onset parameter is identified, and then a method for computing wave-breaking associated energy loss is determined. Wave-breaking onset is calculated using a breaking criteria introduced by Barthelemy et al. (J Fluid Mech https://arxiv.org/pdf/1508.06002.pdf, submitted) and validated with the experiments of Saket et al. (J Fluid Mech 811:642-658, 2017). Wave-breaking energy dissipation is calculated by adding a viscous diffusion term computed using an eddy viscosity parameter introduced by Tian et al. (Phys Fluids 20(6): 066,604, 2008, Phys Fluids 24(3), 2012), which is estimated based on the pre-breaking wave geometry. A set of two-dimensional experiments is conducted to validate the implemented wave breaking mechanism at a large scale. Breaking waves are generated by using traditional methods of evolution of focused waves and modulational instability, as well as irregular breaking waves with a range of primary frequencies, providing a wide range of breaking conditions to validate the solver. Furthermore, adjustments are made to the method of application and coefficient of the viscous diffusion term with negligible difference, supporting the robustness of the eddy viscosity parameter. The model is able to accurately predict surface elevation and corresponding frequency/amplitude spectrum, as well as energy dissipation when compared with the experimental measurements. This suggests the model is capable of calculating wave-breaking onset and energy dissipation

  15. How tendons buffer energy dissipation by muscle

    PubMed Central

    Roberts, Thomas J.; Konow, Nicolai

    2013-01-01

    To decelerate the body and limbs, muscles actively lengthen to dissipate energy. During rapid energy-dissipating events, tendons buffer the work done on muscle by temporarily storing elastic energy, then releasing this energy to do work on the muscle. This elastic mechanism may reduce the risk of muscle damage by reducing peak forces and lengthening rates of active muscle. PMID:23873133

  16. Rotating black hole solutions in relativistic analogue gravity

    NASA Astrophysics Data System (ADS)

    Giacomelli, Luca; Liberati, Stefano

    2017-09-01

    Simulation and experimental realization of acoustic black holes in analogue gravity systems have lead to a novel understanding of relevant phenomena such as Hawking radiation or superradiance. We explore here the possibility of using relativistic systems for simulating rotating black hole solutions and possibly get an acoustic analogue of a Kerr black hole. In doing so, we demonstrate a precise relation between nonrelativistic and relativistic solutions and provide a new class of vortex solutions for relativistic systems. Such solutions might be used in the future as a test bed in numerical simulations as well as concrete experiments.

  17. Increasing the thermal conductivity of silicone based fluids using carbon nanofibers

    NASA Astrophysics Data System (ADS)

    Vales-Pinzon, C.; Vega-Flick, A.; Pech-May, N. W.; Alvarado-Gil, J. J.; Medina-Esquivel, R. A.; Zambrano-Arjona, M. A.; Mendez-Gamboa, J. A.

    2016-11-01

    Heat transfer in silicone fluids loaded with high thermal conductivity carbon nanofibers was studied using photoacoustics and thermal wave resonator cavity. It is shown that heat transport depends strongly on volume fraction of carbon nanofibers; in particular, a low loading percentage is enough to obtain significant changes in thermal conductivity. Theoretical models were used to determine how heat transfer is affected by structural formations in the composite, such as packing fraction and aspect ratio (form factor) of carbon nanofiber agglomerates in the high viscosity fluid matrix. Our results may find practical applications in systems, in which the carbon nanofibers can facilitate heat dissipation in the electronic devices.

  18. Nonlinear, relativistic Langmuir waves in astrophysical magnetospheres

    NASA Technical Reports Server (NTRS)

    Chian, Abraham C.-L.

    1987-01-01

    Large amplitude, electrostatic plasma waves are relevant to physical processes occurring in the astrophysical magnetospheres wherein charged particles are accelerated to relativistic energies by strong waves emitted by pulsars, quasars, or radio galaxies. The nonlinear, relativistic theory of traveling Langmuir waves in a cold plasma is reviewed. The cases of streaming electron plasma, electronic plasma, and two-streams are discussed.

  19. Dissipation and traversal time in Josephson junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cacciari, Ilaria; Ranfagni, Anedio; Moretti, Paolo

    2010-05-01

    The various ways of evaluating dissipative effects in macroscopic quantum tunneling are re-examined. The results obtained by using functional integration, while confirming those of previously given treatments, enable a comparison with available experimental results relative to Josephson junctions. A criterion based on the shortening of the semiclassical traversal time tau of the barrier with regard to dissipation can be established, according to which DELTAtau/tau > or approx. N/Q, where Q is the quality factor of the junction and N is a numerical constant of order unity. The best agreement with the experiments is obtained for N=1.11, as it results frommore » a semiempirical analysis based on an increase in the potential barrier caused by dissipative effects.« less

  20. Microscopic Nanomechanical Dissipation in Gallium Arsenide Resonators.

    PubMed

    Hamoumi, M; Allain, P E; Hease, W; Gil-Santos, E; Morgenroth, L; Gérard, B; Lemaître, A; Leo, G; Favero, I

    2018-06-01

    We report on a systematic study of nanomechanical dissipation in high-frequency (≈300  MHz) gallium arsenide optomechanical disk resonators, in conditions where clamping and fluidic losses are negligible. Phonon-phonon interactions are shown to contribute with a loss background fading away at cryogenic temperatures (3 K). Atomic layer deposition of alumina at the surface modifies the quality factor of resonators, pointing towards the importance of surface dissipation. The temperature evolution is accurately fitted by two-level systems models, showing that nanomechanical dissipation in gallium arsenide resonators directly connects to their microscopic properties. Two-level systems, notably at surfaces, appear to rule the damping and fluctuations of such high-quality crystalline nanomechanical devices, at all temperatures from 3 to 300 K.

  1. Microscopic Nanomechanical Dissipation in Gallium Arsenide Resonators

    NASA Astrophysics Data System (ADS)

    Hamoumi, M.; Allain, P. E.; Hease, W.; Gil-Santos, E.; Morgenroth, L.; Gérard, B.; Lemaître, A.; Leo, G.; Favero, I.

    2018-06-01

    We report on a systematic study of nanomechanical dissipation in high-frequency (≈300 MHz ) gallium arsenide optomechanical disk resonators, in conditions where clamping and fluidic losses are negligible. Phonon-phonon interactions are shown to contribute with a loss background fading away at cryogenic temperatures (3 K). Atomic layer deposition of alumina at the surface modifies the quality factor of resonators, pointing towards the importance of surface dissipation. The temperature evolution is accurately fitted by two-level systems models, showing that nanomechanical dissipation in gallium arsenide resonators directly connects to their microscopic properties. Two-level systems, notably at surfaces, appear to rule the damping and fluctuations of such high-quality crystalline nanomechanical devices, at all temperatures from 3 to 300 K.

  2. Designing Adaptive Low Dissipative High Order Schemes

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sjoegreen, B.; Parks, John W. (Technical Monitor)

    2002-01-01

    Proper control of the numerical dissipation/filter to accurately resolve all relevant multiscales of complex flow problems while still maintaining nonlinear stability and efficiency for long-time numerical integrations poses a great challenge to the design of numerical methods. The required type and amount of numerical dissipation/filter are not only physical problem dependent, but also vary from one flow region to another. This is particularly true for unsteady high-speed shock/shear/boundary-layer/turbulence/acoustics interactions and/or combustion problems since the dynamics of the nonlinear effect of these flows are not well-understood. Even with extensive grid refinement, it is of paramount importance to have proper control on the type and amount of numerical dissipation/filter in regions where it is needed.

  3. An explicit scheme for ohmic dissipation with smoothed particle magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Tsukamoto, Yusuke; Iwasaki, Kazunari; Inutsuka, Shu-ichiro

    2013-09-01

    In this paper, we present an explicit scheme for Ohmic dissipation with smoothed particle magnetohydrodynamics (SPMHD). We propose an SPH discretization of Ohmic dissipation and solve Ohmic dissipation part of induction equation with the super-time-stepping method (STS) which allows us to take a longer time step than Courant-Friedrich-Levy stability condition. Our scheme is second-order accurate in space and first-order accurate in time. Our numerical experiments show that optimal choice of the parameters of STS for Ohmic dissipation of SPMHD is νsts ˜ 0.01 and Nsts ˜ 5.

  4. On the dispersion characteristics of extraordinary mode in a relativistic fully degenerate electron plasma

    NASA Astrophysics Data System (ADS)

    Noureen, S.; Abbas, G.; Sarfraz, M.

    2018-01-01

    The study of relativistic degenerate plasmas is important in many astrophysical and laboratory environments. Using linearized relativistic Vlasov-Maxwell equations, a generalized expression for the plasma conductivity tensor is derived. Employing Fermi-Dirac distribution at zero temperature, the dispersion relation of the extraordinary mode in a relativistic degenerate electron plasma is investigated. The propagation characteristics are examined in different relativistic density ranges. The shifting of cutoff points due to relativistic effects is observed analytically and graphically. Non-relativistic and ultra-relativistic limiting cases are also presented.

  5. Dissipative properties of hot and dense hadronic matter in an excluded-volume hadron resonance gas model

    NASA Astrophysics Data System (ADS)

    Kadam, Guru Prakash; Mishra, Hiranmaya

    2015-09-01

    We estimate dissipative properties, viz., shear and bulk viscosities of hadronic matter using relativistic Boltzmann equation in relaxation time approximation within the framework of excluded-volume hadron resonance gas (EHRG) model. We find that at zero baryon chemical potential the shear viscosity to entropy ratio (η /s ) decreases with temperature while at finite baryon chemical potential this ratio shows the same behavior as a function of temperature but reaches close to the Kovtun-Son-Starinets (KSS) bound. Further along the chemical freezeout curve, ratio η /s is almost constant apart from small initial monotonic rise. This observation may have some relevance to the experimental finding that the differential elliptic flow of charged hadrons does not change considerably at lower center-of-mass energy. We further find that bulk viscosity to entropy density (ζ /s ) decreases with temperature while this ratio has higher value at finite baryon chemical potential at higher temperature. Along the freezeout curve ζ /s decreases monotonically at lower center-of-mass energy and then saturates.

  6. Temperature Effects of Dielectric Properties of ER Fluids

    NASA Astrophysics Data System (ADS)

    Qiu, Z. Y.; Hu, L.; Liu, M. W.; Bao, H. X.; Jiang, Y. G.; Zhou, L. W.; Tang, Y.; Gao, Z.; Sun, M.; Korobko, E. V.

    Under the consideration of the role that energy transfer and dissipation play in ER effect, an improved theory frame for ER effects, polarization-dissipation-structure-rheology, is suggested. The theory frame is substantiated by the basic physical laws and certain critical experimental facts. The dielectric response of a diatomite ER fluid to temperature is measured in the temperature range of 140 K to 400 K. By comparison of the DC conductivity with the AC effective conductivity of the sample, we found that the AC dielectric loss consists of two parts. One part comes from the DC conductivity, the other from the response of the bound charges in scope of particle to AC field. It is suggested that the response of bound charges is very important to ER effects. Besides, the effect of temperature on shear stress is measured, and interpreted based on the dielectric measurements. The source of two loss peaks in the curve of the dielectric loss versus temperature is not clear.

  7. General Relativistic Effects and QPOs in X-Ray Binaries

    NASA Astrophysics Data System (ADS)

    Markovic, D.; Lamb, F. K.

    We have investigated whether general relativistic effects may be responsible for some of the quasi-periodic X-ray brightness oscillations (QPOs) observed in low-mass binary systems containing accreting neutron stars and black hole candidates. In particular, we have computed the motions of accreting gas in the strong gravitational fields near such objects and have explored possible mechanisms for producing X-ray flux oscillations. We have discovered a family of weakly damped global gravitomagnetic (Lense-Thirring) warping modes of the inner (viscous) accretion disk that have precession frequencies ranging up to the single-particle gravitomagnetic precession frequency at the inner edge of the disk, which is about 30 Hz if the disk extends inward to the innermost stable circular orbit around a compact object of solar mass with dimensionless angular momentum cJ/GM2 ~ 0.2. Precession of regions of enhanced viscous dissipation or modulation of the accretion flow by the precession may produce observable periodic variation of the X-ray flux. Detectable effects might also be produced if the gas in the inner disk breaks up into a collection of distinct clumps. We have analyzed the dynamics of such clumps as well as the conditions required for their formation and survival on time scales long enough to produce QPOs with the coherence observed in low-mass X-ray binaries.

  8. Effects of causality on the fluidity and viscous horizon of quark-gluon plasma

    NASA Astrophysics Data System (ADS)

    Rahaman, Mahfuzur; Alam, Jan-e.

    2018-05-01

    The second-order Israel-Stewart-M u ̈ller relativistic hydrodynamics was applied to study the effects of causality on the acoustic oscillation in relativistic fluid. Causal dispersion relations have been derived with nonvanishing shear viscosity, bulk viscosity, and thermal conductivity at nonzero temperature and baryonic chemical potential. These relations have been used to investigate the fluidity of quark-gluon plasma (QGP) at finite temperature (T ). Results of the first-order dissipative hydrodynamics have been obtained as a limiting case of the second-order theory. The effects of the causality on the fluidity near the transition point and on the viscous horizon are found to be significant. We observe that the inclusion of causality increases the value of fluidity measure of QGP near Tc and hence makes the flow strenuous. It was also shown that the inclusion of the large magnetic field in the causal hydrodynamics alters the fluidity of QGP.

  9. Quantum-relativistic velocities in nano-transport

    NASA Astrophysics Data System (ADS)

    Di Sia, Paolo

    2018-07-01

    In this paper I present an interesting analysis focused on the hypothesis of relativistic velocities and quantum aspects inside a nanostructure. A new analytical model is considered, able to well describe the conductors in nanostructured form. Considering appropriate scattering times, it is possible to mimic the infrared properties of oxides and semiconductors in the nano-form. The new presented result concerns the analytical form of the quantum-relativistic velocities correlation function, and how it works with experimental data of carbon nanotube films.

  10. Relativistic strings - From soap films to a grand unified theory

    NASA Astrophysics Data System (ADS)

    Nesterenko, V. V.

    1986-11-01

    The concept of relativistic strings is considered in connection with the theory of minimal surfaces (e.g., soap films stretched onto closed wire contours). The role of relativistic strings in hadron physics is discussed. Attention is then given to the creation of a grand unified theory on the basis of the superstring concept. Finally, the role of relativistic strings in cosmology is examined.

  11. Relativistic diffusion processes and random walk models

    NASA Astrophysics Data System (ADS)

    Dunkel, Jörn; Talkner, Peter; Hänggi, Peter

    2007-02-01

    The nonrelativistic standard model for a continuous, one-parameter diffusion process in position space is the Wiener process. As is well known, the Gaussian transition probability density function (PDF) of this process is in conflict with special relativity, as it permits particles to propagate faster than the speed of light. A frequently considered alternative is provided by the telegraph equation, whose solutions avoid superluminal propagation speeds but suffer from singular (noncontinuous) diffusion fronts on the light cone, which are unlikely to exist for massive particles. It is therefore advisable to explore other alternatives as well. In this paper, a generalized Wiener process is proposed that is continuous, avoids superluminal propagation, and reduces to the standard Wiener process in the nonrelativistic limit. The corresponding relativistic diffusion propagator is obtained directly from the nonrelativistic Wiener propagator, by rewriting the latter in terms of an integral over actions. The resulting relativistic process is non-Markovian, in accordance with the known fact that nontrivial continuous, relativistic Markov processes in position space cannot exist. Hence, the proposed process defines a consistent relativistic diffusion model for massive particles and provides a viable alternative to the solutions of the telegraph equation.

  12. Noise and Dissipation on Coadjoint Orbits

    NASA Astrophysics Data System (ADS)

    Arnaudon, Alexis; De Castro, Alex L.; Holm, Darryl D.

    2018-02-01

    We derive and study stochastic dissipative dynamics on coadjoint orbits by incorporating noise and dissipation into mechanical systems arising from the theory of reduction by symmetry, including a semidirect product extension. Random attractors are found for this general class of systems when the Lie algebra is semi-simple, provided the top Lyapunov exponent is positive. We study in details two canonical examples, the free rigid body and the heavy top, whose stochastic integrable reductions are found and numerical simulations of their random attractors are shown.

  13. Estimates of the dissipative heat and axial torque generated by ocean tides on icy satellites in the outer solar system.

    NASA Astrophysics Data System (ADS)

    Tyler, R.

    2012-09-01

    The tidal flow response generated in a satellite ocean depends strongly on the ocean configuration parameters as these parameters control the form and frequencies of the ocean's natural modes of oscillation; if there is a near match between the form and frequency of one of these natural modes and that of one of the available tidal forcing constituents, the ocean can be resonantly excited, producing a strong tidal response. The fundamental elements of the response are described by the tidal flow and surface fluctuations. Derivative elements of the response include the associated dissipative heat, stress, and forces/torques. The dissipative heat has received much previous attention as it may be important in explaining the heat budget on several of the satellites in the Outer Solar System. While these estimates will be reviewed and compared with the tidal dissipation estimates compiled in Hussman et al. (2010), the primary goal in this presentation is to extend the analysis to consider the tidally generated axial torque on the satellites and the potential consquences for rotation. Interestingly, even a synchronously rotating satellite will, if a global fluid layer is included, experience a complex set of opportunities for torques in both the prograde and retrograde sense. The amplitude and sense of the torque sensitively depends on the ocean parameters controlling the tidal response. This sensitivity, combined with expected feedbacks whereby the tides affect the orbital parameters, suggests that the evolution of the satellite system will experience phases of both prograde and retrograde tidal torques during its evolution. A related point is that parameters of the ocean might be inferred from inferences or observations of torque or rotational deviations. In the panels to the right we show the nondimensional tidal torques associated with obliquity (top) and eccentricity (bottom). The parameters described in the labeling are the fluid density ρ, surface gravity g, ocean

  14. Current-induced dissipation in spectral wave models

    NASA Astrophysics Data System (ADS)

    Rapizo, H.; Babanin, A. V.; Provis, D.; Rogers, W. E.

    2017-03-01

    Despite many recent developments of the parameterization for wave dissipation in spectral models, it is evident that when waves propagate onto strong adverse currents the rate of energy dissipation is not properly estimated. The issue of current-induced dissipation is studied through a comprehensive data set in the tidal inlet of Port Phillip Heads, Australia. The wave parameters analyzed are significantly modulated by the tidal currents. Wave height in conditions of opposing currents (ebb tide) can reach twice the offshore value, whereas during coflowing currents (flood), it can be reduced to half. The wind-wave model SWAN is able to reproduce the tide-induced modulation of waves and the results show that the variation of currents is the dominant factor in modifying the wave field. In stationary simulations, the model provides an accurate representation of wave height for slack and flood tides. During ebb tides, wave energy is highly overestimated over the opposing current jet. None of the four parameterizations for wave dissipation tested performs satisfactorily. A modification to enhance dissipation as a function of the local currents is proposed. It consists of the addition of a factor that represents current-induced wave steepening and it is scaled by the ratio of spectral energy to the threshold breaking level. The new term asymptotes to the original form as the current in the wave direction tends to zero. The proposed modification considerably improves wave height and mean period in conditions of adverse currents, whereas the good model performance in coflowing currents is unaltered.

  15. Relativistically induced transparency acceleration of light ions by an ultrashort laser pulse interacting with a heavy-ion-plasma density gradient

    NASA Astrophysics Data System (ADS)

    Sahai, Aakash A.; Tsung, Frank S.; Tableman, Adam R.; Mori, Warren B.; Katsouleas, Thomas C.

    2013-10-01

    The relativistically induced transparency acceleration (RITA) scheme of proton and ion acceleration using laser-plasma interactions is introduced, modeled, and compared to the existing schemes. Protons are accelerated with femtosecond relativistic pulses to produce quasimonoenergetic bunches with controllable peak energy. The RITA scheme works by a relativistic laser inducing transparency [Akhiezer and Polovin, Zh. Eksp. Teor. Fiz 30, 915 (1956); Kaw and Dawson, Phys. FluidsPFLDAS0031-917110.1063/1.1692942 13, 472 (1970); Max and Perkins, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.27.1342 27, 1342 (1971)] to densities higher than the cold-electron critical density, while the background heavy ions are stationary. The rising laser pulse creates a traveling acceleration structure at the relativistic critical density by ponderomotively [Lindl and Kaw, Phys. FluidsPFLDAS0031-917110.1063/1.1693437 14, 371 (1971); Silva , Phys. Rev. E1063-651X10.1103/PhysRevE.59.2273 59, 2273 (1999)] driving a local electron density inflation, creating an electron snowplow and a co-propagating electrostatic potential. The snowplow advances with a velocity determined by the rate of the rise of the laser's intensity envelope and the heavy-ion-plasma density gradient scale length. The rising laser is incrementally rendered transparent to higher densities such that the relativistic-electron plasma frequency is resonant with the laser frequency. In the snowplow frame, trace density protons reflect off the electrostatic potential and get snowplowed, while the heavier background ions are relatively unperturbed. Quasimonoenergetic bunches of velocity equal to twice the snowplow velocity can be obtained and tuned by controlling the snowplow velocity using laser-plasma parameters. An analytical model for the proton energy as a function of laser intensity, rise time, and plasma density gradient is developed and compared to 1D and 2D PIC OSIRIS [Fonseca , Lect. Note Comput. Sci.9783

  16. Particle Acceleration and Radiative Losses at Relativistic Shocks

    NASA Astrophysics Data System (ADS)

    Dempsey, P.; Duffy, P.

    A semi-analytic approach to the relativistic transport equation with isotropic diffusion and consistent radiative losses is presented. It is based on the eigenvalue method first introduced in Kirk & Schneider [5]and Heavens & Drury [3]. We demonstrate the pitch-angle dependence of the cut-off in relativistic shocks.

  17. Dissipation of turbulence in the wake of a wind turbine

    NASA Astrophysics Data System (ADS)

    Lundquist, J. K.; Bariteau, L.

    2013-12-01

    The wake of a wind turbine is characterized by increased turbulence and decreased wind speed. Turbines are generally deployed in large groups in wind farms, and so the behavior of an individual wake as it merges with other wakes and propagates downwind is of great importance in assessing wind farm power production as well as impacts of wind energy deployment on local and regional environments. The rate of turbulence dissipation in the wake quantifies the wake behavior as it propagates. In situ field measurements of turbulence dissipation rate in the wake of wind turbines have not been previously collected although correct modeling of dissipation rate is required for accurate simulations of wake evolution. In Fall 2012, we collected in situ measurements of winds and turbulence dissipation from the wake region of a multi-MW turbine, using the University of Colorado at Boulder's Tethered Lifting System (TLS). The TLS is a unique state-of-the-art tethersonde, proven in numerous boundary-layer field experiments to be able to measure turbulence kinetic energy dissipation rates. Ambient flow measurements were provided from sonic anemometers on a meteorological tower located upwind of the turbine, from a profiling lidar upwind, and from a scanning lidar measuring both inflow to and wake from the turbine. Measurements collected within the wake indicate that dissipation rates are higher in the turbine wake than in the ambient flow. Profiles of dissipation and turbulence throughout the rotor disk suggest that dissipation peaks near the hub height of the turbine. Suggestions for incorporating this information into wind turbine modeling approaches will be provided.

  18. Simple and accurate sum rules for highly relativistic systems

    NASA Astrophysics Data System (ADS)

    Cohen, Scott M.

    2005-03-01

    In this paper, I consider the Bethe and Thomas-Reiche-Kuhn sum rules, which together form the foundation of Bethe's theory of energy loss from fast charged particles to matter. For nonrelativistic target systems, the use of closure leads directly to simple expressions for these quantities. In the case of relativistic systems, on the other hand, the calculation of sum rules is fraught with difficulties. Various perturbative approaches have been used over the years to obtain relativistic corrections, but these methods fail badly when the system in question is very strongly bound. Here, I present an approach that leads to relatively simple expressions yielding accurate sums, even for highly relativistic many-electron systems. I also offer an explanation for the difference between relativistic and nonrelativistic sum rules in terms of the Zitterbewegung of the electrons.

  19. Relativistic quantum information

    NASA Astrophysics Data System (ADS)

    Mann, R. B.; Ralph, T. C.

    2012-11-01

    Over the past few years, a new field of high research intensity has emerged that blends together concepts from gravitational physics and quantum computing. Known as relativistic quantum information, or RQI, the field aims to understand the relationship between special and general relativity and quantum information. Since the original discoveries of Hawking radiation and the Unruh effect, it has been known that incorporating the concepts of quantum theory into relativistic settings can produce new and surprising effects. However it is only in recent years that it has become appreciated that the basic concepts involved in quantum information science undergo significant revision in relativistic settings, and that new phenomena arise when quantum entanglement is combined with relativity. A number of examples illustrate that point. Quantum teleportation fidelity is affected between observers in uniform relative acceleration. Entanglement is an observer-dependent property that is degraded from the perspective of accelerated observers moving in flat spacetime. Entanglement can also be extracted from the vacuum of relativistic quantum field theories, and used to distinguish peculiar motion from cosmological expansion. The new quantum information-theoretic framework of quantum channels in terms of completely positive maps and operator algebras now provides powerful tools for studying matters of causality and information flow in quantum field theory in curved spacetimes. This focus issue provides a sample of the state of the art in research in RQI. Some of the articles in this issue review the subject while others provide interesting new results that will stimulate further research. What makes the subject all the more exciting is that it is beginning to enter the stage at which actual experiments can be contemplated, and some of the articles appearing in this issue discuss some of these exciting new developments. The subject of RQI pulls together concepts and ideas from

  20. Fluids and vortex from constrained fluctuations around C-metric black holes

    NASA Astrophysics Data System (ADS)

    Hao, Xin; Wu, Bin; Zhao, Liu

    2017-08-01

    By foliating the four-dimensional C-metric black hole spacetime, we consider a kind of initial-value-like formulation of the vacuum Einstein's equation, the holographic initial data is a double consisting of the induced metric and the Brown-York energy momentum tensor on an arbitrary initial hypersurface. Then by perturbing the initial data that generates the background spacetime, it is shown that, in an appropriate limit, the fluctuation modes are governed by the continuity equation and the compressible Navier-Stokes equation which describe the momentum transport in non-relativistic viscous fluid on a flat Newtonian space. It turns out that the flat space fluid behaves as a pure vortex and the viscosity to entropy ratio is subjected to the black hole acceleration.

  1. Pivotal issues on relativistic electrons in ITER

    NASA Astrophysics Data System (ADS)

    Boozer, Allen H.

    2018-03-01

    The transfer of the plasma current from thermal to relativistic electrons is a threat to ITER achieving its mission. This danger is significantly greater in the nuclear than in the non-nuclear phase of ITER operations. Two issues are pivotal. The first is the extent and duration of magnetic surface breaking in conjunction with the thermal quenches. The second is the exponential sensitivity of the current transfer to three quantities: (1) the poloidal flux change required to e-fold the number of relativistic electrons, (2) the time τa after the beginning of the thermal quench before the accelerating electric field exceeds the Connor-Hastie field for runaway, and (3) the duration of the period τ_op in which magnetic surfaces remain open. Adequate knowledge does not exist to devise a reliable strategy for the protection of ITER. Uncertainties are sufficiently large that a transfer of neither a negligible nor the full plasma current to relativistic electrons can be ruled out during the non-nuclear phase of ITER. Tritium decay can provide a sufficiently strong seed for a dangerous relativistic-electron current even if τa and τ_op are sufficiently long to avoid relativistic electrons during non-nuclear operations. The breakup of magnetic surfaces that is associated with thermal quenches occurs on a time scale associated with fast magnetic reconnection, which means reconnection at an Alfvénic rather than a resistive rate. Alfvénic reconnection is well beyond the capabilities of existing computational tools for tokamaks, but its effects can be studied using its property of conserving magnetic helicity. Although the dangers to ITER from relativistic electrons have been known for twenty years, the critical issues have not been defined with sufficient precision to formulate an effective research program. Studies are particularly needed on plasma behavior in existing tokamaks during thermal quenches, behavior which could be clarified using methods developed here.

  2. Flame thickness and conditional scalar dissipation rate in a premixed temporal turbulent reacting jet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaudhuri, Swetaprovo; Kolla, Hemanth; Dave, Himanshu L.

    The flame structure corresponding to lean hydrogen–air premixed flames in intense sheared turbulence in the thin reaction zone regime is quantified from flame thickness and conditional scalar dissipation rate statistics, obtained from recent direct numerical simulation data of premixed temporally-evolving turbulent slot jet flames. It is found that, on average, these sheared turbulent flames are thinner than their corresponding planar laminar flames. Extensive analysis is performed to identify the reason for this counter-intuitive thinning effect. The factors controlling the flame thickness are analyzed through two different routes i.e., the kinematic route, and the transport and chemical kinetics route. The kinematicmore » route is examined by comparing the statistics of the normal strain rate due to fluid motion with the statistics of the normal strain rate due to varying flame displacement speed or self-propagation. It is found that while the fluid normal straining is positive and tends to separate iso-scalar surfaces, the dominating normal strain rate due to self-propagation is negative and tends to bring the iso-scalar surfaces closer resulting in overall thinning of the flame. The transport and chemical kinetics route is examined by studying the non-unity Lewis number effect on the premixed flames. The effects from the kinematic route are found to couple with the transport and chemical kinetics route. In addition, the intermittency of the conditional scalar dissipation rate is also examined. It is found to exhibit a unique non-monotonicity of the exponent of the stretched exponential function, conventionally used to describe probability density function tails of such variables. As a result, the non-monotonicity is attributed to the detailed chemical structure of hydrogen-air flames in which heat release occurs close to the unburnt reactants at near free-stream temperatures.« less

  3. Flame thickness and conditional scalar dissipation rate in a premixed temporal turbulent reacting jet

    DOE PAGES

    Chaudhuri, Swetaprovo; Kolla, Hemanth; Dave, Himanshu L.; ...

    2017-07-07

    The flame structure corresponding to lean hydrogen–air premixed flames in intense sheared turbulence in the thin reaction zone regime is quantified from flame thickness and conditional scalar dissipation rate statistics, obtained from recent direct numerical simulation data of premixed temporally-evolving turbulent slot jet flames. It is found that, on average, these sheared turbulent flames are thinner than their corresponding planar laminar flames. Extensive analysis is performed to identify the reason for this counter-intuitive thinning effect. The factors controlling the flame thickness are analyzed through two different routes i.e., the kinematic route, and the transport and chemical kinetics route. The kinematicmore » route is examined by comparing the statistics of the normal strain rate due to fluid motion with the statistics of the normal strain rate due to varying flame displacement speed or self-propagation. It is found that while the fluid normal straining is positive and tends to separate iso-scalar surfaces, the dominating normal strain rate due to self-propagation is negative and tends to bring the iso-scalar surfaces closer resulting in overall thinning of the flame. The transport and chemical kinetics route is examined by studying the non-unity Lewis number effect on the premixed flames. The effects from the kinematic route are found to couple with the transport and chemical kinetics route. In addition, the intermittency of the conditional scalar dissipation rate is also examined. It is found to exhibit a unique non-monotonicity of the exponent of the stretched exponential function, conventionally used to describe probability density function tails of such variables. As a result, the non-monotonicity is attributed to the detailed chemical structure of hydrogen-air flames in which heat release occurs close to the unburnt reactants at near free-stream temperatures.« less

  4. Quantum phase transition with dissipative frustration

    NASA Astrophysics Data System (ADS)

    Maile, D.; Andergassen, S.; Belzig, W.; Rastelli, G.

    2018-04-01

    We study the quantum phase transition of the one-dimensional phase model in the presence of dissipative frustration, provided by an interaction of the system with the environment through two noncommuting operators. Such a model can be realized in Josephson junction chains with shunt resistances and resistances between the chain and the ground. Using a self-consistent harmonic approximation, we determine the phase diagram at zero temperature which exhibits a quantum phase transition between an ordered phase, corresponding to the superconducting state, and a disordered phase, corresponding to the insulating state with localized superconducting charge. Interestingly, we find that the critical line separating the two phases has a nonmonotonic behavior as a function of the dissipative coupling strength. This result is a consequence of the frustration between (i) one dissipative coupling that quenches the quantum phase fluctuations favoring the ordered phase and (ii) one that quenches the quantum momentum (charge) fluctuations leading to a vanishing phase coherence. Moreover, within the self-consistent harmonic approximation, we analyze the dissipation induced crossover between a first and second order phase transition, showing that quantum frustration increases the range in which the phase transition is second order. The nonmonotonic behavior is reflected also in the purity of the system that quantifies the degree of correlation between the system and the environment, and in the logarithmic negativity as an entanglement measure that encodes the internal quantum correlations in the chain.

  5. Relativistic spin precession in the double pulsar.

    PubMed

    Breton, Rene P; Kaspi, Victoria M; Kramer, Michael; McLaughlin, Maura A; Lyutikov, Maxim; Ransom, Scott M; Stairs, Ingrid H; Ferdman, Robert D; Camilo, Fernando; Possenti, Andrea

    2008-07-04

    The double pulsar PSR J0737-3039A/B consists of two neutron stars in a highly relativistic orbit that displays a roughly 30-second eclipse when pulsar A passes behind pulsar B. Describing this eclipse of pulsar A as due to absorption occurring in the magnetosphere of pulsar B, we successfully used a simple geometric model to characterize the observed changing eclipse morphology and to measure the relativistic precession of pulsar B's spin axis around the total orbital angular momentum. This provides a test of general relativity and alternative theories of gravity in the strong-field regime. Our measured relativistic spin precession rate of 4.77 degrees (-0 degrees .65)(+0 degrees .66) per year (68% confidence level) is consistent with that predicted by general relativity within an uncertainty of 13%.

  6. Relativistic mirrors in laser plasmas (analytical methods)

    NASA Astrophysics Data System (ADS)

    Bulanov, S. V.; Esirkepov, T. Zh; Kando, M.; Koga, J.

    2016-10-01

    Relativistic flying mirrors in plasmas are realized as thin dense electron (or electron-ion) layers accelerated by high-intensity electromagnetic waves to velocities close to the speed of light in vacuum. The reflection of an electromagnetic wave from the relativistic mirror results in its energy and frequency changing. In a counter-propagation configuration, the frequency of the reflected wave is multiplied by the factor proportional to the Lorentz factor squared. This scientific area promises the development of sources of ultrashort x-ray pulses in the attosecond range. The expected intensity will reach the level at which the effects predicted by nonlinear quantum electrodynamics start to play a key role. We present an overview of theoretical methods used to describe relativistic flying, accelerating, oscillating mirrors emerging in intense laser-plasma interactions.

  7. Rotating and binary relativistic stars with magnetic field

    NASA Astrophysics Data System (ADS)

    Markakis, Charalampos

    We develop a geometrical treatment of general relativistic magnetohydrodynamics for perfectly conducting fluids in Einstein--Maxwell--Euler spacetimes. The theory is applied to describe a neutron star that is rotating or is orbiting a black hole or another neutron star. Under the hypotheses of stationarity and axisymmetry, we obtain the equations governing magnetohydrodynamic equilibria of rotating neutron stars with poloidal, toroidal or mixed magnetic fields. Under the hypothesis of an approximate helical symmetry, we obtain the first law of thermodynamics governing magnetized equilibria of double neutron star or black hole - neutron star systems in close circular orbits. The first law is written as a relation between the change in the asymptotic Noether charge deltaQ and the changes in the area and electric charge of black holes, and in the vorticity, baryon rest mass, entropy, charge and magnetic flux of the magnetofluid. In an attempt to provide a better theoretical understanding of the methods used to construct models of isolated rotating stars and corotating or irrotational binaries and their unexplained convergence properties, we analytically examine the behavior of different iterative schemes near a static solution. We find the spectrum of the linearized iteration operator and show for self-consistent field methods that iterative instability corresponds to unstable modes of this operator. On the other hand, we show that the success of iteratively stable methods is due to (quasi-)nilpotency of this operator. Finally, we examine the integrability of motion of test particles in a stationary axisymmetric gravitational field. We use a direct approach to seek nontrivial constants of motion polynomial in the momenta---in addition to energy and angular momentum about the symmetry axis. We establish the existence and uniqueness of quadratic constants and the nonexistence of quartic constants for stationary axisymmetric Newtonian potentials with equatorial symmetry

  8. Micro-power dissipation device described

    NASA Astrophysics Data System (ADS)

    Mao, X.; Zhou, L.; Zhou, J.

    1985-11-01

    The common-emitter current gain beta of a common two-pole transistor is generally below 250. They are referred to as high-beta or high gain transistors when the beta of such transistors exceeds 300. When the beta of a transistor is higher than 1,000, it is called a super-beta transistor (SBT) or supergain transistor. The micropower dissipation type has the widest applications among the high-beta. Micropower dissipation high-beta means that there is a high gain or a superhigh gain under a microcurrent. The device is widely used in small signal-detection systems and stereo audio equipment because of their characteristics of high gain, low frequency and low noise under small signals.

  9. Modeling terrestrial gamma ray flashes produced by relativistic feedback discharges

    NASA Astrophysics Data System (ADS)

    Liu, Ningyu; Dwyer, Joseph R.

    2013-05-01

    This paper reports a modeling study of terrestrial gamma ray flashes (TGFs) produced by relativistic feedback discharges. Terrestrial gamma ray flashes are intense energetic radiation originating from the Earth's atmosphere that has been observed by spacecraft. They are produced by bremsstrahlung interactions of energetic electrons, known as runaway electrons, with air atoms. An efficient physical mechanism for producing large fluxes of the runaway electrons to make the TGFs is the relativistic feedback discharge, where seed runaway electrons are generated by positrons and X-rays, products of the discharge itself. Once the relativistic feedback discharge becomes self-sustaining, an exponentially increasing number of relativistic electron avalanches propagate through the same high-field region inside the thundercloud until the electric field is partially discharged by the ionization created by the discharge. The modeling results indicate that the durations of the TGF pulses produced by the relativistic feedback discharge vary from tens of microseconds to several milliseconds, encompassing all durations of the TGFs observed so far. In addition, when a sufficiently large potential difference is available in thunderclouds, a self-propagating discharge known as the relativistic feedback streamer can be formed, which propagates like a conventional positive streamer. For the relativistic feedback streamer, the positive feedback mechanism of runaway electron production by the positrons and X-rays plays a similar role as the photoionization for the conventional positive streamer. The simulation results of the relativistic feedback streamer show that a sequence of TGF pulses with varying durations can be produced by the streamer. The relativistic streamer may initially propagate with a pulsed manner and turn into a continuous propagation mode at a later stage. Milliseconds long TGF pulses can be produced by the feedback streamer during its continuous propagation. However

  10. ON THE TIDAL DISSIPATION OF OBLIQUITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, T. M.; Lin, D. N. C., E-mail: tami@lpl.arizona.edu, E-mail: lin@ucolick.org

    2013-05-20

    We investigate tidal dissipation of obliquity in hot Jupiters. Assuming an initial random orientation of obliquity and parameters relevant to the observed population, the obliquity of hot Jupiters does not evolve to purely aligned systems. In fact, the obliquity evolves to either prograde, retrograde, or 90 Degree-Sign orbits where the torque due to tidal perturbations vanishes. This distribution is incompatible with observations which show that hot Jupiters around cool stars are generally aligned. This calls into question the viability of tidal dissipation as the mechanism for obliquity alignment of hot Jupiters around cool stars.

  11. Pattern palette for complex fluid flows

    NASA Astrophysics Data System (ADS)

    Sandnes, B.

    2012-04-01

    From landslides to oil and gas recovery to the squeeze of a toothpaste tube, flowing complex fluids are everywhere around us in nature and engineering. That is not to say, though, that they are always well understood. The dissipative interactions, through friction and inelastic collisions, often give rise to nonlinear dynamics and complexity manifested in pattern formation on large scales. The images displayed on this poster illustrate the diverse morphologies found in multiphase flows involving wet granular material: Air is injected into a generic mixture of granular material and fluid contained in a 500 µm gap between two parallel glass plates. At low injection rates, friction between the grains - glass beads averaging 100 µm in diameter - dominates the rheology, producing "stick-slip bubbles" and labyrinthine frictional fingering. A transition to various other morphologies, including "corals" and viscous fingers, emerges for increasing injection rate. At sufficiently high granular packing fractions, the material behaves like a deformable, porous solid, and the air rips through in sudden fractures.

  12. Hybrid molecular-continuum simulations using smoothed dissipative particle dynamics

    PubMed Central

    Petsev, Nikolai D.; Leal, L. Gary; Shell, M. Scott

    2015-01-01

    We present a new multiscale simulation methodology for coupling a region with atomistic detail simulated via molecular dynamics (MD) to a numerical solution of the fluctuating Navier-Stokes equations obtained from smoothed dissipative particle dynamics (SDPD). In this approach, chemical potential gradients emerge due to differences in resolution within the total system and are reduced by introducing a pairwise thermodynamic force inside the buffer region between the two domains where particles change from MD to SDPD types. When combined with a multi-resolution SDPD approach, such as the one proposed by Kulkarni et al. [J. Chem. Phys. 138, 234105 (2013)], this method makes it possible to systematically couple atomistic models to arbitrarily coarse continuum domains modeled as SDPD fluids with varying resolution. We test this technique by showing that it correctly reproduces thermodynamic properties across the entire simulation domain for a simple Lennard-Jones fluid. Furthermore, we demonstrate that this approach is also suitable for non-equilibrium problems by applying it to simulations of the start up of shear flow. The robustness of the method is illustrated with two different flow scenarios in which shear forces act in directions parallel and perpendicular to the interface separating the continuum and atomistic domains. In both cases, we obtain the correct transient velocity profile. We also perform a triple-scale shear flow simulation where we include two SDPD regions with different resolutions in addition to a MD domain, illustrating the feasibility of a three-scale coupling. PMID:25637963

  13. Integrated circuit with dissipative layer for photogenerated carriers

    DOEpatents

    Myers, D.R.

    1988-04-20

    The sensitivity of an integrated circuit to single-event upsets is decreased by providing a dissipative layer of silicon nitride between a silicon substrate and the active device. Free carriers generated in the substrate are dissipated by the layer before they can build up charge on the active device. 1 fig.

  14. The Relativistic Rocket

    ERIC Educational Resources Information Center

    Antippa, Adel F.

    2009-01-01

    We solve the problem of the relativistic rocket by making use of the relation between Lorentzian and Galilean velocities, as well as the laws of superposition of successive collinear Lorentz boosts in the limit of infinitesimal boosts. The solution is conceptually simple, and technically straightforward, and provides an example of a powerful…

  15. Computational Relativistic Astrophysics Using the Flow Field-Dependent Variation Theory

    NASA Technical Reports Server (NTRS)

    Richardson, G. A.; Chung, T. J.

    2002-01-01

    We present our method for solving general relativistic nonideal hydrodynamics. Relativistic effects become pronounced in such cases as jet formation from black hole magnetized accretion disks which may lead to the study of gamma-ray bursts. Nonideal flows are present where radiation, magnetic forces, viscosities, and turbulence play an important role. Our concern in this paper is to reexamine existing numerical simulation tools as to the accuracy and efficiency of computations and introduce a new approach known as the flow field-dependent variation (FDV) method. The main feature of the FDV method consists of accommodating discontinuities of shock waves and high gradients of flow variables such as occur in turbulence and unstable motions. In this paper, the physics involved in the solution of relativistic hydrodynamics and solution strategies of the FDV theory are elaborated. The general relativistic astrophysical flow and shock solver (GRAFSS) is introduced, and some simple example problems for computational relativistic astrophysics (CRA) are demonstrated.

  16. Dynamo action in dissipative, forced, rotating MHD turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shebalin, John V.

    2016-06-15

    Magnetohydrodynamic (MHD) turbulence is an inherent feature of large-scale, energetic astrophysical and geophysical magnetofluids. In general, these are rotating and are energized through buoyancy and shear, while viscosity and resistivity provide a means of dissipation of kinetic and magnetic energy. Studies of unforced, rotating, ideal (i.e., non-dissipative) MHD turbulence have produced interesting results, but it is important to determine how these results are affected by dissipation and forcing. Here, we extend our previous work and examine dissipative, forced, and rotating MHD turbulence. Incompressibility is assumed, and finite Fourier series represent turbulent velocity and magnetic field on a 64{sup 3} grid.more » Forcing occurs at an intermediate wave number by a method that keeps total energy relatively constant and allows for injection of kinetic and magnetic helicity. We find that 3-D energy spectra are asymmetric when forcing is present. We also find that dynamo action occurs when forcing has either kinetic or magnetic helicity, with magnetic helicity injection being more important. In forced, dissipative MHD turbulence, the dynamo manifests itself as a large-scale coherent structure that is similar to that seen in the ideal case. These results imply that MHD turbulence, per se, may play a fundamental role in the creation and maintenance of large-scale (i.e., dipolar) stellar and planetary magnetic fields.« less

  17. Modelling the normal bouncing dynamics of spheres in a viscous fluid

    NASA Astrophysics Data System (ADS)

    Izard, Edouard; Lacaze, Laurent; Bonometti, Thomas

    2017-06-01

    Bouncing motions of spheres in a viscous fluid are numerically investigated by an immersed boundary method to resolve the fluid flow around solids which is combined to a discrete element method for the particles motion and contact resolution. Two well-known configurations of bouncing are considered: the normal bouncing of a sphere on a wall in a viscous fluid and a normal particle-particle bouncing in a fluid. Previous experiments have shown the effective restitution coefficient to be a function of a single parameter, namely the Stokes number which compares the inertia of the solid particle with the fluid viscous dissipation. The present simulations show a good agreement with experimental observations for the whole range of investigated parameters. However, a new definition of the coefficient of restitution presented here shows a dependence on the Stokes number as in previous works but, in addition, on the fluid to particle density ratio. It allows to identify the viscous, inertial and dry regimes as found in experiments of immersed granular avalanches of Courrech du Pont et al. Phys. Rev. Lett. 90, 044301 (2003), e.g. in a multi-particle configuration.

  18. Relativistic differential-difference momentum operators and noncommutative differential calculus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mir-Kasimov, R. M., E-mail: mirkr@theor.jinr.ru

    2013-09-15

    The relativistic kinetic momentum operators are introduced in the framework of the Quantum Mechanics (QM) in the Relativistic Configuration Space (RCS). These operators correspond to the half of the non-Euclidean distance in the Lobachevsky momentum space. In terms of kinetic momentum operators the relativistic kinetic energy is separated as the independent term of the total Hamiltonian. This relativistic kinetic energy term is not distinguishing in form from its nonrelativistic counterpart. The role of the plane wave (wave function of the motion with definite value of momentum and energy) plays the generating function for the matrix elements of the unitary irrepsmore » of Lorentz group (generalized Jacobi polynomials). The kinetic momentum operators are the interior derivatives in the framework of the noncommutative differential calculus over the commutative algebra generated by the coordinate functions over the RCS.« less

  19. Scaling of Magnetic Reconnection in Relativistic Collisionless Pair Plasmas

    NASA Technical Reports Server (NTRS)

    Liu, Yi-Hsin; Guo, Fan; Daughton, William; Li, Hui; Hesse, Michael

    2015-01-01

    Using fully kinetic simulations, we study the scaling of the inflow speed of collisionless magnetic reconnection in electron-positron plasmas from the non-relativistic to ultra-relativistic limit. In the anti-parallel configuration, the inflow speed increases with the upstream magnetization parameter sigma and approaches the speed of light when sigma is greater than O(100), leading to an enhanced reconnection rate. In all regimes, the divergence of the pressure tensor is the dominant term responsible for breaking the frozen-in condition at the x-line. The observed scaling agrees well with a simple model that accounts for the Lorentz contraction of the plasma passing through the diffusion region. The results demonstrate that the aspect ratio of the diffusion region, modified by the compression factor of proper density, remains approximately 0.1 in both the non-relativistic and relativistic limits.

  20. Modeling viscous dissipation during vocal fold contact: the influence of tissue viscosity and thickness with implications for hydration.

    PubMed

    Erath, Byron D; Zañartu, Matías; Peterson, Sean D

    2017-06-01

    The mechanics of vocal fold contact during phonation is known to play a crucial role in both normal and pathological speech production, though the underlying physics is not well understood. Herein, a viscoelastic model of the stresses during vocal fold contact is developed. This model assumes the cover to be a poroelastic structure wherein interstitial fluid translocates in response to mechanical squeezing. The maximum interstitial fluid pressure is found to generally increase with decreasing viscous dissipation and/or decreasing tissue elasticity. A global minimum in the total contact stress, comprising interstitial fluid pressure and elastic stress in the tissue, is observed over the studied dimensionless parameter range. Interestingly, physiologically reasonable estimates for the governing parameters fall within this global minimum region. The model is validated against prior experimental and computational work, wherein the predicted contact stress magnitude and impact duration agree well with published results. Lastly, observations of the potential relationship between vocal fold hydration and increased risk of tissue damage are discussed based upon model predictions of stress as functions of cover layer thickness and viscosity.