Science.gov

Sample records for relativistic dissipative fluid

  1. Kinetic foundations of relativistic dissipative fluid dynamics

    NASA Astrophysics Data System (ADS)

    Denicol, G. S.

    2014-12-01

    In this contribution we discuss in detail the most widespread formalisms employed to derive relativistic dissipative fluid dynamics from the Boltzmann equation: Chapman-Enskog expansion and Israel-Stewart theory. We further point out the drawbacks of each theory and explain possible ways to circumvent them. Recent developments in the derivation of fluid dynamics from the Boltzmann equation are also discussed.

  2. Thermodynamics and flow-frames for dissipative relativistic fluids

    SciTech Connect

    Ván, P.; Biró, T. S.

    2014-01-14

    A general thermodynamic treatment of dissipative relativistic fluids is introduced, where the temperature four vector is not parallel to the velocity field of the fluid. Generic stability and kinetic equilibrium points out a particular thermodynamics, where the temperature vector is parallel to the enthalpy flow vector and the choice of the flow fixes the constitutive functions for viscous stress and heat. The linear stability of the homogeneous equilibrium is proved in a mixed particle-energy flow-frame.

  3. Generic instabilities in first-order dissipative relativistic fluid theories

    NASA Astrophysics Data System (ADS)

    Hiscock, William A.; Lindblom, Lee

    1985-02-01

    We consider the stability of a general class of first-order dissipative relativistic fluid theories which includes the theories of Eckart and of Landau and Lifshitz as special cases. We show that all of these theories are unstable in the sense that small spatially bounded departures from equilibrium at one instant of time will diverge exponentially with time. The time scales for these instabilities are very short; for example, water at room temperature and pressure has an instability with a growth time scale of about 10-34 seconds in these theories. These results provide overwhelming motivation (we believe) for abandoning these theories in favor of the second-order (Israel) theories which are free of these difficulties.

  4. Dissipative Relativistic Fluid Dynamics: A New Way to Derive the Equations of Motion from Kinetic Theory

    SciTech Connect

    Denicol, G. S.; Koide, T.; Rischke, D. H.

    2010-10-15

    We rederive the equations of motion of dissipative relativistic fluid dynamics from kinetic theory. In contrast with the derivation of Israel and Stewart, which considered the second moment of the Boltzmann equation to obtain equations of motion for the dissipative currents, we directly use the latter's definition. Although the equations of motion obtained via the two approaches are formally identical, the coefficients are different. We show that, for the one-dimensional scaling expansion, our method is in better agreement with the solution obtained from the Boltzmann equation.

  5. Causal dissipation and shock profiles in the relativistic fluid dynamics of pure radiation

    PubMed Central

    Freistühler, Heinrich; Temple, Blake

    2014-01-01

    Current theories of dissipation in the relativistic regime suffer from one of two deficits: either their dissipation is not causal or no profiles for strong shock waves exist. This paper proposes a relativistic Navier–Stokes–Fourier-type viscosity and heat conduction tensor such that the resulting second-order system of partial differential equations for the fluid dynamics of pure radiation is symmetric hyperbolic. This system has causal dissipation as well as the property that all shock waves of arbitrary strength have smooth profiles. Entropy production is positive both on gradients near those of solutions to the dissipation-free equations and on gradients of shock profiles. This shows that the new dissipation stress tensor complies to leading order with the principles of thermodynamics. Whether higher order modifications of the ansatz are required to obtain full compatibility with the second law far from the zero-dissipation equilibrium is left to further investigations. The system has exactly three a priori free parameters χ,η,ζ, corresponding physically to heat conductivity, shear viscosity and bulk viscosity. If the bulk viscosity is zero (as is stated in the literature) and the total stress–energy tensor is trace free, the entire viscosity and heat conduction tensor is determined to within a constant factor. PMID:24910526

  6. Experimental Confirmation of a Causal, Covariant, Relativistic Theory of Dissipative Fluid Flow

    NASA Astrophysics Data System (ADS)

    Scofield, Dillon; Huq, Pablo

    2015-11-01

    Using newtonian viscous dissipation stress in covariant, relativistic fluid flow theories leads to a violation of the second law of thermodynamics and to acausality of their predictions. E.g., the Landau & Lifshitz theory, a Lorentz covariant formulation, suffers from these defects. These problems effectively limit such theories to time-independent flow régimes. Thus, these theories are of little fundamental interest to astrophysical, geophysical, or thermonuclear flow modeling. We discuss experimental confirmation of the new geometrodynamical theory of fluids solving these problems. This theory is derived from recent results of geometrodynamics showing current conservation implies gauge field creation; the vortex field lemma.

  7. Bulk viscosity and relaxation time of causal dissipative relativistic fluid dynamics

    NASA Astrophysics Data System (ADS)

    Huang, Xu-Guang; Kodama, Takeshi; Koide, Tomoi; Rischke, Dirk H.

    2011-02-01

    The microscopic formulas of the bulk viscosity ζ and the corresponding relaxation time τΠ in causal dissipative relativistic fluid dynamics are derived by using the projection operator method. In applying these formulas to the pionic fluid, we find that the renormalizable energy-momentum tensor should be employed to obtain consistent results. In the leading-order approximation in the chiral perturbation theory, the relaxation time is enhanced near the QCD phase transition, and τΠ and ζ are related as τΠ=ζ/[β{(1/3-cs2)(ɛ+P)-2(ɛ-3P)/9}], where ɛ, P, and cs are the energy density, pressure, and velocity of sound, respectively. The predicted ζ and τΠ should satisfy the so-called causality condition. We compare our result with the results of the kinetic calculation by Israel and Stewart and the string theory, and confirm that all three approaches are consistent with the causality condition.

  8. Relativistic second-order dissipative fluid dynamics at finite chemical potential

    NASA Astrophysics Data System (ADS)

    Jaiswal, Amaresh; Friman, Bengt; Redlich, Krzysztof

    2016-07-01

    We employ a Chapman-Enskog like expansion for the distribution function close to equilibrium to solve the Boltzmann equation in the relaxation time approximation and subsequently derive second-order evolution equations for dissipative charge currentand shear stress tensor for a system of massless quarks and gluons. We use quantum statistics for the phase space distribution functions to calculate the transport coefficients. We show that, the second-order evolution equations for the dissipative charge current and the shear stress tensor can be decoupled. We find that, for large chemical potential, the charge conductivity is small compared to the shear viscosity. Moreover, we demonstrate that the limiting behaviour of the ratio of heat conductivity to shear viscosity is identicalto that obtained for a strongly coupled conformal plasma.

  9. Relativistic fluid dynamics. Proceedings.

    NASA Astrophysics Data System (ADS)

    Anile, A. M.; Choquet-Bruhat, Y.

    Contents: 1. Covariant theory of conductivity in ideal fluid or solid media (B. Carter). 2. Hamiltonian techniques for relativistic fluid dynamics and stability theory (D. D. Holm). 3. Covariant fluid mechanics and thermodynamics: an introduction (W. Israel). 4. Relativistic plasmas (H. Weitzner). 5. An improved relativistic warm plasma model (A. M. Anile, S. Pennisi). 6. Relativistic extended thermodynamics II (I. Müller). 7. Relativistic extended thermodynamics: general assumptions and mathematical procedure (T. Ruggeri). 8. Relativistic hydrodynamics and heavy ion reactions (D. Strottman). 9. Some problems in relativistic hydrodynamics (C. G. van Weert).

  10. Dissipation in relativistic pair-plasma reconnection

    SciTech Connect

    Hesse, Michael; Zenitani, Seiji

    2007-11-15

    An investigation into the relativistic dissipation in magnetic reconnection is presented. The investigated system consists of an electron-positron plasma. A relativistic generalization of Ohm's law is derived. A set of numerical simulations is analyzed, composed of runs with and without guide magnetic field, and of runs with different species temperatures. The calculations indicate that the thermal inertia-based dissipation process survives in relativistic plasmas. For antiparallel reconnection, it is found that the pressure tensor divergence remains the sole contributor to the reconnection electric field, whereas relativistic guide field reconnection exhibits a similarly important role of the bulk inertia terms.

  11. Dissipation in Relativistic Pair-Plasma Reconnection

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Zenitani, Seiji

    2007-01-01

    We present an investigation of the relativistic dissipation in magnetic reconnection. The investigated system consists of an electron-positron plasma. A relativistic generalization of Ohm's law is derived. We analyze a set of numerical simulations, composed of runs with and without guide magnetic field, and of runs with different species temperatures. The calculations indicate that the thermal inertia-based dissipation process survives in relativistic plasmas. For anti-parallel reconnection, it is found that the pressure tensor divergence remains the sole contributor to the reconnection electric field, whereas relativistic guide field reconnection exhibits a similarly important role of the bulk inertia terms.

  12. Relativistic viscoelastic fluid mechanics

    SciTech Connect

    Fukuma, Masafumi; Sakatani, Yuho

    2011-08-15

    A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.

  13. Relativistic viscoelastic fluid mechanics.

    PubMed

    Fukuma, Masafumi; Sakatani, Yuho

    2011-08-01

    A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.

  14. Weakly dissipative solitons in dense relativistic-degenerate plasma

    NASA Astrophysics Data System (ADS)

    Ahmad, Saeed; Ata-ur-Rahman; Khan, S. A.

    2015-07-01

    We investigate the features of weakly nonlinear waves in a collisional dense plasma consisting of ultra-relativistic degenerate electrons and non-relativistic degenerate ions. In weak dissipation limit, the dynamics of low frequency nonlinear ion (solitary) wave is described by solving a damped Korteweg-deVries equation. The analytical and numerical analysis shows the existence of weakly dissipative solitons evolving with time. The characteristics of soliton evolution with plasma number density and slow ion-neutral collision rate are discussed with some detail. The relevance of the study with degenerate plasmas in ultra-dense astrophysical objects, particularly white dwarf stars is also pointed out.

  15. Relativistic fluid formulation and theory of intense relativistic electron beams

    SciTech Connect

    Siambis, J.G.

    1984-01-01

    A new general relativistic fluid formulation has been obtained for intense relativistic electron beams (IREB) with arbitrarily high relativistic mass factor ..gamma... This theory is valid for confined IREB equilibria such as those found inside high energy accelerators as well as in the pinched and ion-focused regimes of beam propagation in plasma channels. The new relativistic fluid formulation is based on the covariant relativistic fluid formulation of Newcomb with the parameter lambda identical to 1, in order to allow for realistic confined equilibria. The resulting equilibrium constraints require that the beam has a slow rotational velocity around its direction of propagation and that the off-diagonal thermal stress element, associated with these two directions of motion, be nonzero. The effective betatron oscillation frequency of the fluid elements of the beam is modified by the radial gradient and anisotropies in the thermal stress elements of the beam fluid. The wave equation, for sausage, hose and filamentation excitations on the relativistic fluid beam, is found to be formally identical to that obtained from the Vlasov equation approach, hence phase-mixing damping is a generic and self-consistent correlate of the new relativistic fluid formulation.

  16. Relativistic Jets: Acceleration, Dissipation and Interactions with Ambient Gas

    NASA Astrophysics Data System (ADS)

    Giannois, Dimitrios

    Collimated, relativistic outflows, known as relativistic jets, originate from supermassive black holes in active galactic nuclei (AGN), solar-mass compact objects in x-ray binaries (XRBs), and gamma ray bursts (GRBs). Such jets are among the most well observed phenomena in astrophysics, in part because of NASA's continued commitment to funding missions that target compact objects and their outflows. Jets are thought to come from rotating objects (neutron stars, black holes, or accretion disks) that are threaded with strong magnetic fields. Despite recent progress in the field, we still lack a self-consistent model that connects the invisible processes -- jet launching, acceleration and energy dissipation -- to their observational manifestations: emission and interaction with the ambient medium. Our work over the past several years demonstrated that magnetic energy dissipation crucially affects how jets accelerate and radiate. Though still a major challenge, we believe that due to recent developments in theory and numerical simulations, we are now in a unique position, for the first time, to compute jet evolution and determine the locations at which dissipation and radiation takes place from first principles. To achieve this long-sought goal, we propose to carry out relativistic 3D magnetohydrodynamic (MHD) numerical simulations that follow jets from the central compact object out to their interactions with the ambient medium, in a variety of astrophysical contexts ranging from AGN to XRBs to GRBs. Then, using radiative transfer calculations, we will make direct connection to observations. We will complement the numerical work with analytical studies and develop a quantitative description of instabilities in the jet, and their connection to energy dissipation and emission. The MHD and radiative transfer experience of the PI Giannios and Co-I Barniol-Duran, combined with the numerical MHD expertise of the Co-I Tchekhovskoy make achieving the proposed goals realistic

  17. Derivation of anisotropic dissipative fluid dynamics from the Boltzmann equation

    NASA Astrophysics Data System (ADS)

    Molnár, Etele; Niemi, Harri; Rischke, Dirk H.

    2016-06-01

    Fluid-dynamical equations of motion can be derived from the Boltzmann equation in terms of an expansion around a single-particle distribution function which is in local thermodynamical equilibrium, i.e., isotropic in momentum space in the rest frame of a fluid element. However, in situations where the single-particle distribution function is highly anisotropic in momentum space, such as the initial stage of heavy-ion collisions at relativistic energies, such an expansion is bound to break down. Nevertheless, one can still derive a fluid-dynamical theory, called anisotropic dissipative fluid dynamics, in terms of an expansion around a single-particle distribution function, f^0 k, which incorporates (at least parts of) the momentum anisotropy via a suitable parametrization. We construct such an expansion in terms of polynomials in energy and momentum in the direction of the anisotropy and of irreducible tensors in the two-dimensional momentum subspace orthogonal to both the fluid velocity and the direction of the anisotropy. From the Boltzmann equation we then derive the set of equations of motion for the irreducible moments of the deviation of the single-particle distribution function from f^0 k. Truncating this set via the 14-moment approximation, we obtain the equations of motion of anisotropic dissipative fluid dynamics.

  18. Dissipation process of binary gas mixtures in thermally relativistic flow

    NASA Astrophysics Data System (ADS)

    Yano, Ryosuke

    2016-04-01

    In this paper, dissipation process of binary gas mixtures in thermally relativistic flows is discussed with focus on characteristics of diffusion flux. As an analytical object, we consider the relativistic rarefied-shock layer around a triangular prism. Numerical results for the diffusion flux are compared with the Navier–Stokes–Fourier (NSF) order approximation of the diffusion flux, which is calculated using the diffusion and thermal-diffusion coefficients by Kox et al (1976 Physica A 84 165–74). In the case of uniform flow with small Lorentz contraction, the diffusion flux, which is obtained by calculating the relativistic Boltzmann equation, is roughly approximated by the NSF order approximation inside the shock wave, whereas the diffusion flux in the vicinity of a wall is markedly different from the NSF order approximation. The magnitude of the diffusion flux, which is obtained by calculating the relativistic Boltzmann equation, is similar to that of the NSF order approximation inside the shock wave, unlike the pressure deviator, dynamic pressure and heat flux, even when the Lorentz contraction in the uniform flow becomes large, because the diffusion flux does not depend on the generic Knudsen number from its definition in Eckart’s frame. Finally, the author concludes that for accuracy diffusion flux must be calculated using the particle four-flow and averaged four velocity, which are formulated using the four velocity defined by each species of hard spherical particles.

  19. Dissipation process of binary gas mixtures in thermally relativistic flow

    NASA Astrophysics Data System (ADS)

    Yano, Ryosuke

    2016-04-01

    In this paper, dissipation process of binary gas mixtures in thermally relativistic flows is discussed with focus on characteristics of diffusion flux. As an analytical object, we consider the relativistic rarefied-shock layer around a triangular prism. Numerical results for the diffusion flux are compared with the Navier-Stokes-Fourier (NSF) order approximation of the diffusion flux, which is calculated using the diffusion and thermal-diffusion coefficients by Kox et al (1976 Physica A 84 165-74). In the case of uniform flow with small Lorentz contraction, the diffusion flux, which is obtained by calculating the relativistic Boltzmann equation, is roughly approximated by the NSF order approximation inside the shock wave, whereas the diffusion flux in the vicinity of a wall is markedly different from the NSF order approximation. The magnitude of the diffusion flux, which is obtained by calculating the relativistic Boltzmann equation, is similar to that of the NSF order approximation inside the shock wave, unlike the pressure deviator, dynamic pressure and heat flux, even when the Lorentz contraction in the uniform flow becomes large, because the diffusion flux does not depend on the generic Knudsen number from its definition in Eckart’s frame. Finally, the author concludes that for accuracy diffusion flux must be calculated using the particle four-flow and averaged four velocity, which are formulated using the four velocity defined by each species of hard spherical particles.

  20. Highly anisotropic and strongly dissipative hydrodynamics for early stages of relativistic heavy-ion collisions

    SciTech Connect

    Florkowski, Wojciech; Ryblewski, Radoslaw

    2011-03-15

    We introduce a new framework of highly anisotropic hydrodynamics that includes dissipation effects. Dissipation is defined by the form of the entropy source that depends on the pressure anisotropy and vanishes for the isotropic fluid. With a simple ansatz for the entropy source obeying general physical requirements, we are led to a nonlinear equation describing the time evolution of the anisotropy in purely longitudinal boost-invariant systems. Matter that is initially highly anisotropic approaches naturally the regime of the perfect fluid. Thus, the resulting evolution agrees with the expectations about the behavior of matter produced at the early stages of relativistic heavy-ion collisions. The equilibration is identified with the processes of entropy production.

  1. One-Dimensional Relativistic Dissipative System with Constant Force and its Quantization

    NASA Astrophysics Data System (ADS)

    López, G.; López, X. E.; Hernández, H.

    2006-04-01

    For a relativistic particle under a constant force and a linear velocity dissipation force, a constant of motion is found. Problems are shown for getting the Hamiltonian of this system. Thus, the quantization of this system is carried out through the constant of motion and using the quantization on the velocity variable. The dissipative relativistic quantum bouncer is outlined within this quantization approach.

  2. Nuclear Dissipation via Peripheral Collisions with Relativistic Radioactive Actinides Beams

    SciTech Connect

    Schmitt, C.; Heinz, A.; Jurado, B.; Kelic, A.; Schmidt, K.-H.

    2007-05-22

    Peripheral collisions with radioactive actinide beams at relativistic energies are proposed as a relevant approach for the study of dissipation in nuclear matter. The characteristics of the systems resulting from the primary fragmentation of such beams are particularly well suited for probing the controversial existence of a sizeable delay in fission. Thanks to the radioactive beam facility at GSI an unusually large set of data involving about 60 secondary unstable projectiles between At and U has been collected under identical conditions. The properties of the set-up enabled the coincident measurement of the atomic number of both fission fragments, permitting a judicious classification of the data. The width of the fission-fragment charge distribution is shown to establish a thermometer at the saddle point which is directly related to the transient delay caused by the friction force. From a comparison with realistic model calculations, the dissipation strength at small deformation and the transient time are inferred. The present strategy is promoted as a complementary approach that avoids some complex problems inherent to conventional techniques. Combined to the paramount size of the data set, it sheds light on contradictory conclusions that have been published in the past. There is at this point no definite consensus on our understanding of the damping process in fission.

  3. Instabilities in a Relativistic Viscous Fluid

    NASA Astrophysics Data System (ADS)

    Corona-Galindo, M. G.; Klapp, J.; Vazquez, A.

    1990-11-01

    RESUMEN. Las ecuaciones hidrodinamicas de un fluido imperfecto relativista son resueltas, y los modos hidrodinamicos son analizados con el prop6sito de estabiecer correlaciones con las estructuras cosmol6gicas. ABSTRACT The hydrodynamical equations of a relativistic imperfect fluid are solved, and the hydrodynamical modes are analysed with the aim to establish correlations with cosmological structures. Ke, words: COSMOLOGY - HYDRODYNAMICS - RELATIVITY

  4. Fluid dynamical description of relativistic nuclear collisions

    NASA Technical Reports Server (NTRS)

    Nix, J. R.; Strottman, D.

    1982-01-01

    On the basis of both a conventional relativistic nuclear fluid dynamic model and a two fluid generalization that takes into account the interpenetration of the target and projectile upon contact, collisions between heavy nuclei moving at relativistic speeds are calculated. This is done by solving the relevant equations of motion numerically in three spatial dimensions by use of particle in cell finite difference computing techniques. The effect of incorporating a density isomer, or quasistable state, in the nuclear equation of state at three times normal nuclear density, and the effect of doubling the nuclear compressibility coefficient are studied. For the reaction 20Ne + 238U at a laboratory bombarding energy per nucleon of 393 MeV, the calculated distributions in energy and angle of outgoing charged particles are compared with recent experimental data both integrated over all impact parameters and for nearly central collisions.

  5. Kubo formulas for relativistic fluids in strong magnetic fields

    SciTech Connect

    Huang Xuguang; Sedrakian, Armen; Rischke, Dirk H.

    2011-12-15

    Magnetohydrodynamics of strongly magnetized relativistic fluids is derived in the ideal and dissipative cases, taking into account the breaking of spatial symmetries by a quantizing magnetic field. A complete set of transport coefficients, consistent with the Curie and Onsager principles, is derived for thermal conduction, as well as shear and bulk viscosities. It is shown that in the most general case the dissipative function contains five shear viscosities, two bulk viscosities, and three thermal conductivity coefficients. We use Zubarev's non-equilibrium statistical operator method to relate these transport coefficients to correlation functions of the equilibrium theory. The desired relations emerge at linear order in the expansion of the non-equilibrium statistical operator with respect to the gradients of relevant statistical parameters (temperature, chemical potential, and velocity.) The transport coefficients are cast in a form that can be conveniently computed using equilibrium (imaginary-time) infrared Green's functions defined with respect to the equilibrium statistical operator. - Highlights: > Strong magnetic fields can make charged fluids behave anisotropically. > Magnetohydrodynamics for these fluids contains 5 shear, 2 bulk viscosities, and 3 heat conductivities. > We derive Kubo formulas for these transport coefficients.

  6. A two-fluid model for relativistic heat conduction

    SciTech Connect

    López-Monsalvo, César S.

    2014-01-14

    Three years ago it was presented in these proceedings the relativistic dynamics of a multi-fluid system together with various applications to a set of topical problems [1]. In this talk, I will start from such dynamics and present a covariant formulation of relativistic thermodynamics which provides us with a causal constitutive equation for the propagation of heat in a relativistic setting.

  7. Dissipative effects on nonlinear waves in rotating fluids.

    NASA Technical Reports Server (NTRS)

    Leibovich, S.; Randall, J. D.

    1971-01-01

    Modifications to the existing inviscid theory of long-wave propagation in rotating fluids are studied. A modification to the Korteweg-deVries equation is found to describe weak dissipation in long waves in a swirling fluid. General features of solutions are discussed, and a solution for the damping of solitary waves is presented.

  8. Global Regularity for Several Incompressible Fluid Models with Partial Dissipation

    NASA Astrophysics Data System (ADS)

    Wu, Jiahong; Xu, Xiaojing; Ye, Zhuan

    2016-09-01

    This paper examines the global regularity problem on several 2D incompressible fluid models with partial dissipation. They are the surface quasi-geostrophic (SQG) equation, the 2D Euler equation and the 2D Boussinesq equations. These are well-known models in fluid mechanics and geophysics. The fundamental issue of whether or not they are globally well-posed has attracted enormous attention. The corresponding models with partial dissipation may arise in physical circumstances when the dissipation varies in different directions. We show that the SQG equation with either horizontal or vertical dissipation always has global solutions. This is in sharp contrast with the inviscid SQG equation for which the global regularity problem remains outstandingly open. Although the 2D Euler is globally well-posed for sufficiently smooth data, the associated equations with partial dissipation no longer conserve the vorticity and the global regularity is not trivial. We are able to prove the global regularity for two partially dissipated Euler equations. Several global bounds are also obtained for a partially dissipated Boussinesq system.

  9. Particle Acceleration and Magnetic Dissipation in Relativistic Current Sheet of Pair Plasmas

    NASA Astrophysics Data System (ADS)

    Zenitani, S.; Hoshino, M.

    2007-11-01

    We study linear and nonlinear development of relativistic and ultrarelativistic current sheets of pair (e+/-) plasmas with antiparallel magnetic fields. Two types of two-dimensional problems are investigated by particle-in-cell simulations. First, we present the development of relativistic magnetic reconnection, whose outflow speed is on the order of the light speed c. It is demonstrated that particles are strongly accelerated in and around the reconnection region and that most of the magnetic energy is converted into a ``nonthermal'' part of plasma kinetic energy. Second, we present another two-dimensional problem of a current sheet in a cross field plane. In this case, the relativistic drift kink instability (RDKI) occurs. Particle acceleration also takes place, but the RDKI quickly dissipates the magnetic energy into plasma heat. We discuss the mechanism of particle acceleration and the theory of the RDKI in detail. It is important that properties of these two processes are similar in the relativistic regime of T>~mc2, as long as we consider the kinetics. Comparison of the two processes indicates that magnetic dissipation by the RDKI is a more favorable process in the relativistic current sheet. Therefore, the striped pulsar wind scenario should be reconsidered by the RDKI.

  10. Time-dependent closure relations for relativistic collisionless fluid equations

    SciTech Connect

    Bendib-Kalache, K.; Bendib, A.; El Hadj, K. Mohammed

    2010-11-15

    Linear fluid equations for relativistic and collisionless plasmas are derived. Closure relations for the fluid equations are analytically computed from the relativistic Vlasov equation in the Fourier space ({omega},k), where {omega} and k are the conjugate variables of time t and space x variables, respectively. The mathematical method used is based on the projection operator techniques and the continued fraction mathematical tools. The generalized heat flux and stress tensor are calculated for arbitrary parameter {omega}/kc where c is the speed of light, and for arbitrary relativistic parameter z=mc{sup 2}/T, where m is the particle rest mass and T, the plasma temperature in energy units.

  11. Time-dependent closure relations for relativistic collisionless fluid equations.

    PubMed

    Bendib-Kalache, K; Bendib, A; El Hadj, K Mohammed

    2010-11-01

    Linear fluid equations for relativistic and collisionless plasmas are derived. Closure relations for the fluid equations are analytically computed from the relativistic Vlasov equation in the Fourier space (ω,k), where ω and k are the conjugate variables of time t and space x variables, respectively. The mathematical method used is based on the projection operator techniques and the continued fraction mathematical tools. The generalized heat flux and stress tensor are calculated for arbitrary parameter ω/kc where c is the speed of light, and for arbitrary relativistic parameter z=mc²/T , where m is the particle rest mass and T, the plasma temperature in energy units.

  12. Axially symmetric dissipative fluids in the quasi-static approximation

    NASA Astrophysics Data System (ADS)

    Herrera, L.; di Prisco, A.; Ospino, J.; Carot, J.

    2016-01-01

    Using a framework based on the 1 + 3 formalism, we carry out a study on axially and reflection symmetric dissipative fluids, in the quasi-static regime. We first derive a set of invariantly defined “velocities”, which allow for an inambiguous definition of the quasi-static approximation. Next, we rewrite all the relevant equations in this approximation and extract all the possible, physically relevant, consequences ensuing the adoption of such an approximation. In particular, we show how the vorticity, the shear and the dissipative flux, may lead to situations where different kind of “velocities” change their sign within the fluid distribution with respect to their sign on the boundary surface. It is shown that states of gravitational radiation are not a priori incompatible with the quasi-static regime. However, any such state must last for an infinite period of time, thereby diminishing its physical relevance.

  13. Relativistic Fluid Dynamics: Physics for Many Different Scales

    NASA Astrophysics Data System (ADS)

    Andersson, Nils; Comer, Gregory L.

    2007-01-01

    The relativistic fluid is a highly successful model used to describe the dynamics of many-particle, relativistic systems. It takes as input basic physics from microscopic scales and yields as output predictions of bulk, macroscopic motion. By inverting the process, an understanding of bulk features can lead to insight into physics on the microscopic scale. Relativistic fluids have been used to model systems as ``small'' as heavy ions in collisions, and as large as the Universe itself, with ``intermediate'' sized objects like neutron stars being considered along the way. The purpose of this review is to discuss the mathematical and theoretical physics underpinnings of the relativistic (multiple) fluid model. We focus on the variational principle approach championed by Brandon Carter and his collaborators, in which a crucial element is to distinguish the momenta that are conjugate to the particle number density currents. This approach differs from the ``standard'' text-book! derivation of the equations of motion from the divergence of the stress-energy tensor in that one explicitly obtains the relativistic Euler equation as an ``integrability'' condition on the relativistic vorticity. We discuss the conservation laws and the equations of motion in detail, and provide a number of (in our opinion) interesting and relevant applications of the general theory.

  14. General-relativistic rotation laws in rotating fluid bodies

    NASA Astrophysics Data System (ADS)

    Mach, Patryk; Malec, Edward

    2015-06-01

    We formulate new general-relativistic extensions of Newtonian rotation laws for self-gravitating stationary fluids. They have been used to rederive, in the first post-Newtonian approximation, the well-known geometric dragging of frames. We derive two other general-relativistic weak-field effects within rotating tori: the recently discovered dynamic antidragging and a new effect that measures the deviation from the Keplerian motion and/or the contribution of the fluids self-gravity. One can use the rotation laws to study the uniqueness and the convergence of the post-Newtonian approximations as well as the existence of the post-Newtonian limits.

  15. Nonlinear waves and shocks in relativistic two-fluid hydrodynamics

    NASA Astrophysics Data System (ADS)

    Haim, L.; Gedalin, M.; Spitkovsky, A.; Krasnoselskikh, V.; Balikhin, M.

    2012-06-01

    Relativistic shocks are present in a number of objects where violent processes are accompanied by relativistic outflows of plasma. The magnetization parameter σ = B2/4πnmc2 of the ambient medium varies in wide range. Shocks with low σ are expected to substantially enhance the magnetic fields in the shock front. In non-relativistic shocks the magnetic compression is limited by nonlinear effects related to the deceleration of flow. Two-fluid analysis of perpendicular relativistic shocks shows that the nonlinearities are suppressed for σ<<1 and the magnetic field reaches nearly equipartition values when the magnetic energy density is of the order of the ion energy density, Beq2 ~ 4πnmic2γ. A large cross-shock potential eφ/mic2γ0 ~ B2/Beq2 develops across the electron-ion shock front. This potential is responsible for electron energization.

  16. A Causal, Covariant Theory of Dissipative Fluid Flow

    NASA Astrophysics Data System (ADS)

    Scofield, Dillon; Huq, Pablo

    2015-04-01

    The use of newtonian viscous dissipation theory in covariant fluid flow theories is known to lead to predictions that are inconsistent with the second law of thermodynamics and to predictions that are acausal. For instance, these problems effectively limit the covariant form of the Navier-Stokes theory (NST) to time-independent flow regimes. Thus the NST, the work horse of fluid dynamical theory, is limited in its ability to model time-dependent turbulent, stellar or thermonuclear flows. We show how such problems are avoided by a new geometrodynamical theory of fluids. This theory is based on a recent result of geometrodynamics showing current conservation implies gauge field creation, called the vortex field lemma and classification of flows by their Pfaff dimension. Experimental confirmation of the theory is reviewed.

  17. Dissipative spherical collapse of charged anisotropic fluid in gravity

    NASA Astrophysics Data System (ADS)

    Kausar, H. Rizwana; Noureen, Ifra

    2014-02-01

    This manuscript is devoted to the study of the combined effect of a viable model and the electromagnetic field on the instability range of gravitational collapse. We assume the presence of a charged anisotropic fluid that dissipates energy via heat flow and discuss how the electromagnetic field, density inhomogeneity, shear, and phase transition of astrophysical bodies can be incorporated by a locally anisotropic background. The dynamical equations help to investigate the evolution of self-gravitating objects and lead to the conclusion that the adiabatic index depends upon the electromagnetic background, mass, and radius of the spherical objects.

  18. Relativistic elasticity of stationary fluid branes

    NASA Astrophysics Data System (ADS)

    Armas, Jay; Obers, Niels A.

    2013-02-01

    Fluid mechanics can be formulated on dynamical surfaces of arbitrary codimension embedded in a background space-time. This has been the main object of study of the blackfold approach in which the emphasis has primarily been on stationary fluid configurations. Motivated by this approach we show under certain conditions that a given stationary fluid configuration living on a dynamical surface of vanishing thickness and satisfying locally the first law of thermodynamics will behave like an elastic brane when the surface is subject to small deformations. These results, which are independent of the number of space-time dimensions and of the fluid arising from a gravitational dual, reveal the (electro)elastic character of (charged) black branes when considering extrinsic perturbations.

  19. Relativistic fluid model of the resistive hose instability

    SciTech Connect

    Siambis, J.G. )

    1992-10-01

    A systematic analysis of the hose instability using the relativistic fluid formulation is reported. In its basic nature, the hose instability is a macroscopic, low-frequency instability, hence a fluid model should, in principle, give an accurate account of the hose instability. It has been found that for zeroth-order beam displacements, giving rise to rigid beam displacements, the fluid wave equation and resulting dispersion relation are identical to the spread-mass model and the energy-group model results. When first-order fluid displacements are included as well, giving rise to compressible, nonfrozen displacements in the axial direction and beam cross-section distortion in the radial direction, then there is obtained a wave equation similar, but not identical to the multicomponent model. The dispersion relation is solved for numerically. The hose instability growth rate is found to be similar to the multicomponent model result, over part of the beam frame, real hose frequency range.

  20. Relativistic MHD simulations of core-collapse GRB jets: 3D instabilities and magnetic dissipation

    NASA Astrophysics Data System (ADS)

    Bromberg, Omer; Tchekhovskoy, Alexander

    2016-02-01

    Relativistic jets are associated with extreme astrophysical phenomena, like the core collapse of massive stars in gamma-ray bursts (GRBs) and the accretion on to supermassive black holes in active galactic nuclei. It is generally accepted that these jets are powered electromagnetically, by the magnetized rotation of a central compact object (black hole or neutron star). However, how the jets produce the observed emission and survive the propagation for many orders of magnitude in distance without being disrupted by current-driven instabilities is the subject of active debate. We carry out time-dependent 3D relativistic magnetohydrodynamic (MHD) simulations of relativistic, Poynting-flux-dominated jets. The jets are launched self-consistently by the rotation of a strongly magnetized central object. This determines the natural degree of azimuthal magnetic field winding, a crucial factor that controls jet stability. We find that the jets are susceptible to two types of instability: (i) a global, external kink mode that grows on long time-scales. It bodily twists the jet, reducing its propagation velocity. We show analytically that in flat density profiles, like the ones associated with galactic cores, the external mode grows and may stall the jet. In the steep profiles of stellar envelopes the external kink weakens as the jet propagates outward. (ii) a local, internal kink mode that grows over short time-scales and causes small-angle magnetic reconnection and conversion of about half of the jet electromagnetic energy flux into heat. We suggest that internal kink instability is the main dissipation mechanism responsible for powering GRB prompt emission.

  1. Vacuum bubbles in the presence of a relativistic fluid

    NASA Astrophysics Data System (ADS)

    Giblin, John T.; Mertens, James B.

    2013-12-01

    First order phase transitions are characterized by the nucleation and evolution of bubbles. The dynamics of cosmological vacuum bubbles, where the order parameter is independent of other degrees of freedom, are well known; more realistic phase transitions in which the order parameter interacts with the other constituents of the Universe is in its infancy. Here we present high-resolution lattice simulations that explore the dynamics of bubble evolution in which the order parameter is coupled to a relativistic fluid. We use a generic, toy potential, that can mimic physics from the GUT scale to the electroweak scale.

  2. Extremely relativistic fluids in strong-field gravity

    NASA Astrophysics Data System (ADS)

    Neilsen, David Wayne

    This dissertation is primarily concerned with the numerical solution of Einstein-fluid systems, focusing on extremely relativistic fluids at the threshold of black hole formation in critical gravitational collapse. A new computer code is presented for studying critical phenomena in spherical symmetry. The perfect fluid obeys the ultrarelativistic state equation P = (Γ - 1)ρ, where Γ is a constant, 1 < Γ <= 2. The code, using Roe's linearized Riemann solver, is capable of simulating the extremely relativistic flows-Lorentz factors greater than one thousand-encountered in critical collapse. The high performance is achieved through a novel definition of the fluid variables, and care in calculating the fluid variables. The study of perfect fluid critical collapse is restricted to the ultrarelativistic (``kinetic- energy-dominated'', ``scale-free'') limit where black hole formation is anticipated to turn on at infinitesimal black hole mass (Type II behavior). The critical solutions are found by solving the system of ODEs which result from a self-similar ansatz, and by solving the full Einstein-fluid PDEs in spherical symmetry. These latter PDE solutions extend the pioneering work of Evans and Coleman (Γ = 4/3) and verify that the continuously self-similar solutions previously found by Maison and Hara et al. for 1.05<=G<~1.89 are (locally) unique critical solutions. In addition, strong evidence is given that globally regular critical solutions do exist for 1.89<~G<=2, that the sonic point for Gdn⋍1.8896244 is a degenerate node, and that the sonic points for Γ > Γ dn are nodal points, rather than focal points as previously reported. Mass- scaling exponents for all of the critical solutions are calculated by evolving near-critical initial data, with results which confirm and extend previous calculations based on linear perturbation theory. The final chapters describe a new two-dimensional perfect fluid code which uses higher order Godunov methods. The fluid is

  3. Relativistic MHD Simulations of Collision-induced Magnetic Dissipation in Poynting-flux-dominated Jets/outflows

    NASA Astrophysics Data System (ADS)

    Deng, Wei; Li, Hui; Zhang, Bing; Li, Shengtai

    2015-06-01

    We perform 3D relativistic ideal magnetohydrodynamics (MHD) simulations to study the collisions between high-σ (Poynting-flux-dominated (PFD)) blobs which contain both poloidal and toroidal magnetic field components. This is meant to mimic the interactions inside a highly variable PFD jet. We discover a significant electromagnetic field (EMF) energy dissipation with an Alfvénic rate with the efficiency around 35%. Detailed analyses show that this dissipation is mostly facilitated by the collision-induced magnetic reconnection. Additional resolution and parameter studies show a robust result that the relative EMF energy dissipation efficiency is nearly independent of the numerical resolution or most physical parameters in the relevant parameter range. The reconnection outflows in our simulation can potentially form the multi-orientation relativistic mini jets as needed for several analytical models. We also find a linear relationship between the σ values before and after the major EMF energy dissipation process. Our results give support to the proposed astrophysical models that invoke significant magnetic energy dissipation in PFD jets, such as the internal collision-induced magnetic reconnection and turbulence model for gamma-ray bursts, and reconnection triggered mini jets model for active galactic nuclei. The simulation movies are shown in http://www.physics.unlv.edu/∼deng/simulation1.html.

  4. Relativistic MHD simulations of collision-induced magnetic dissipation in poynting-flux-dominated jets/outflows

    DOE PAGES

    Deng, Wei; Li, Hui; Zhang, Bing; Li, Shengtai

    2015-05-29

    We perform 3D relativistic ideal MHD simulations to study the collisions between high-σ (Poynting- ux-dominated) blobs which contain both poloidal and toroidal magnetic field components. This is meant to mimic the interactions inside a highly variable Poynting- ux-dominated jet. We discover a significant electromagnetic field (EMF) energy dissipation with an Alfvenic rate with the efficiency around 35%. Detailed analyses show that this dissipation is mostly facilitated by the collision-induced magnetic reconnection. Additional resolution and parameter studies show a robust result that the relative EMF energy dissipation efficiency is nearly independent of the numerical resolution or most physical parameters in themore » relevant parameter range. The reconnection outflows in our simulation can potentially form the multi-orientation relativistic mini-jets as needed for several analytical models. We also find a linear relationship between the σ values before and after the major EMF energy dissipation process. In conclusion, our results give support to the proposed astrophysical models that invoke signi cant magnetic energy dissipation in Poynting- ux-dominated jets, such as the internal collision-induced magnetic reconnection and turbulence (ICMART) model for GRBs, and reconnection triggered mini-jets model for AGNs.« less

  5. Relativistic MHD simulations of collision-induced magnetic dissipation in poynting-flux-dominated jets/outflows

    SciTech Connect

    Deng, Wei; Li, Hui; Zhang, Bing; Li, Shengtai

    2015-05-29

    We perform 3D relativistic ideal MHD simulations to study the collisions between high-σ (Poynting- ux-dominated) blobs which contain both poloidal and toroidal magnetic field components. This is meant to mimic the interactions inside a highly variable Poynting- ux-dominated jet. We discover a significant electromagnetic field (EMF) energy dissipation with an Alfvenic rate with the efficiency around 35%. Detailed analyses show that this dissipation is mostly facilitated by the collision-induced magnetic reconnection. Additional resolution and parameter studies show a robust result that the relative EMF energy dissipation efficiency is nearly independent of the numerical resolution or most physical parameters in the relevant parameter range. The reconnection outflows in our simulation can potentially form the multi-orientation relativistic mini-jets as needed for several analytical models. We also find a linear relationship between the σ values before and after the major EMF energy dissipation process. In conclusion, our results give support to the proposed astrophysical models that invoke signi cant magnetic energy dissipation in Poynting- ux-dominated jets, such as the internal collision-induced magnetic reconnection and turbulence (ICMART) model for GRBs, and reconnection triggered mini-jets model for AGNs.

  6. Mode-by-mode fluid dynamics for relativistic heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Floerchinger, Stefan; Wiedemann, Urs Achim

    2014-01-01

    We propose to study the fluid dynamic propagation of fluctuations in relativistic heavy ion collisions differentially with respect to their azimuthal, radial and longitudinal wavelength. To this end, we introduce a background-fluctuation splitting and a Bessel-Fourier decomposition of the fluctuating modes. We demonstrate how the fluid dynamic evolution of realistic events can be built up from the propagation of individual modes. We describe the main elements of this mode-by-mode fluid dynamics, and we discuss its use in the fluid dynamic analysis of heavy ion collisions. As a first illustration, we quantify to what extent only fluctuations of sufficiently large radial wave length contribute to harmonic flow coefficients. We find that fluctuations of short wave length are suppressed not only due to larger dissipative effects, but also due to a geometrical averaging over the freeze-out hyper-surface. In this way, our study further substantiates the picture that harmonic flow coefficients give access to a coarse-grained version of the initial conditions for heavy ion collisions, only.

  7. Extrema principles of entrophy production and energy dissipation in fluid mechanics

    NASA Technical Reports Server (NTRS)

    Horne, W. Clifton; Karamcheti, Krishnamurty

    1988-01-01

    A survey is presented of several extrema principles of energy dissipation as applied to problems in fluid mechanics. An exact equation is derived for the dissipation function of a homogeneous, isotropic, Newtonian fluid, with terms associated with irreversible compression or expansion, wave radiation, and the square of the vorticity. By using entropy extrema principles, simple flows such as the incompressible channel flow and the cylindrical vortex are identified as minimal dissipative distributions. The principal notions of stability of parallel shear flows appears to be associated with a maximum dissipation condition. These different conditions are consistent with Prigogine's classification of thermodynamic states into categories of equilibrium, linear nonequilibrium, and nonlinear nonequilibrium thermodynamics; vortices and acoustic waves appear as examples of dissipative structures. The measurements of a typical periodic shear flow, the rectangular wall jet, show that direct measurements of the dissipative terms are possible.

  8. Extrema principles of entropy production and energy dissipation in fluid mechanics

    NASA Technical Reports Server (NTRS)

    Horne, W. Clifton; Karamcheti, Krishnamurty

    1988-01-01

    A survey is presented of several extrema principles of energy dissipation as applied to problems in fluid mechanics. An exact equation is derived for the dissipation function of a homogeneous, isotropic, Newtonian fluid, with terms associated with irreversible compression or expansion, wave radiation, and the square of the vorticity. By using entropy extrema principles, simple flows such as the incompressible channel flow and the cylindrical vortex are identified as minimal dissipative distributions. The principal notions of stability of parallel shear flows appear to be associated with a maximum dissipation condition. These different conditions are consistent with Prigogine's classification of thermodynamic states into categories of equilibrium, linear nonequilibrium, and nonlinear nonequilibrium thermodynamics; vortices and acoustic waves appear as examples of dissipative structures. The measurements of a typical periodic shear flow, the rectangular wall jet, show that direct measurements of the dissipative terms are possible.

  9. Dissipativity analysis of the base isolated benchmark structure with magnetorheological fluid dampers

    NASA Astrophysics Data System (ADS)

    Erkus, Baris; Johnson, Erik A.

    2011-10-01

    This paper investigates the dissipativity and performance characteristics of the semiactive control of the base isolated benchmark structure with magnetorheological (MR) fluid dampers. Previously, the authors introduced the concepts of dissipativity and dissipativity indices in the semiactive control of structures with smart dampers and studied the dissipativity characteristics of simple structures with idealized dampers. To investigate the effects of semiactive controller dissipativity characteristics on the overall performance of the base isolated benchmark building, a clipped optimal control strategy with a linear quadratic Gaussian (LQG) controller and a 20 ton MR fluid damper model is used. A cumulative index is proposed for quantifying the overall dissipativity of a control system with multiple control devices. Two control designs with different dissipativity and performance characteristics are considered as the primary controller in clipped optimal control. Numerical simulations reveal that the dissipativity indices can be classified into two groups that exhibit distinct patterns. It is shown that the dissipativity indices identify primary controllers that are more suitable for application with MR dampers and provide useful information in the semiactive design process that complements other performance indices. The computational efficiency of the proposed dissipativity indices is verified by comparing computation times.

  10. Energy Spectrum in the Dissipation Range of Fluid Turbulence

    NASA Technical Reports Server (NTRS)

    Martinez, D. O.; Chen, S.; Doolen, G. D.; Kraichnan, R. H.; Wang, L.-P.; Zhou, Y.

    1996-01-01

    High resolution, direct numerical simulations of the three-dimensional incompressible Navier-Stokes equations are carried out to study the energy spectrum in the dissipation range. An energy spectrum of the form A(k/k( sub d))(sup alpha) exp[- betak/k(sub d) is confirmed. The possible values of the parameters alpha and beta, as well as their dependence on Revnolds numbers and length scales, are investigated, showing good agreement with recent theoretical predictions. A "bottleneck'-type effect is reported at k/k(sub d) approximately 4, exhibiting a possible transition from near-dissipation to far- dissipation.

  11. Relativistic tearing and drift-kink instabilities in two-fluid simulations

    NASA Astrophysics Data System (ADS)

    Barkov, Maxim V.; Komissarov, Serguei S.

    2016-05-01

    The stability of current sheets in collisionless relativistic pair plasma was studied via two-dimensional two-fluid relativistic magnetohydrodynamic simulations with vanishing internal friction between fluids. In particular, we investigated the linear growth of the tearing and drift-kink modes in the current sheets both with and without the guide field and obtained the growth rates which are very similar to what has been found in the corresponding particle in cell (PIC) simulations. This suggests that the two-fluid simulations can be useful in studying the large-scale dynamics of astrophysical relativistic plasmas in problems involving magnetic reconnection.

  12. Fluid flow and dissipation in intersecting counter-flow pipes

    NASA Astrophysics Data System (ADS)

    Pekkan, Kerem

    2005-11-01

    Intersecting pipe junctions are common in industrial and biomedical flows. For the later application, standard surgical connections of vessel lumens results a ``+'' shaped topology through a side-to-side or end-to-side anastomosis. Our earlier experimental/computational studies have compared different geometries quantifying the hydrodynamic power loss through the junction where dominant coherent structures are identified. In this study we have calculated the contribution of these structures to the total energy dissipation and its spatial distribution in the connection. A large set of idealized models are studied in which the basic geometric configuration is parametrically varied (from side-to-side to end-to-side anastomosis) which quantified the strength of the secondary flows and coherent structures as a function of the geometric configuration. Steady-state, 3D, incompressible computations are performed using the commercial CFD code FIDAP with unstructured tetrahedral grids. Selected cases are compared with the in-house code results (in Cartesian and structured grids). Grid verification and experimental validation with flow-vis and PIV are presented. Identifying the dissipation hot-spots will enable a targeted inverse design of the junction by reducing the degree of optimization with a focused parameter space.

  13. Second-order perturbations of cosmological fluids: Relativistic effects of pressure, multicomponent, curvature, and rotation

    SciTech Connect

    Hwang, Jai-chan; Noh, Hyerim

    2007-11-15

    We present general relativistic correction terms appearing in Newton's gravity to the second-order perturbations of cosmological fluids. In our previous work we have shown that to the second-order perturbations, the density and velocity perturbation equations of general relativistic zero-pressure, irrotational, single-component fluid in a spatially flat background coincide exactly with the ones known in Newton's theory without using the gravitational potential. We also have shown the effect of gravitational waves to the second order, and pure general relativistic correction terms appearing in the third-order perturbations. Here, we present results of second-order perturbations relaxing all the assumptions made in our previous works. We derive the general relativistic correction terms arising due to (i) pressure, (ii) multicomponent, (iii) background spatial curvature, and (iv) rotation. In the case of multicomponent zero-pressure, irrotational fluids under the flat background, we effectively do not have relativistic correction terms, thus the relativistic equations expressed in terms of density and velocity perturbations again coincide with the Newtonian ones. In the other three cases we generally have pure general relativistic correction terms. In the case of pressure, the relativistic corrections appear even in the level of background and linear perturbation equations. In the presence of background spatial curvature, or rotation, pure relativistic correction terms directly appear in the Newtonian equations of motion of density and velocity perturbations to the second order; to the linear order, without using the gravitational potential (or metric perturbations), we have relativistic/Newtonian correspondences for density and velocity perturbations of a single-component fluid including the rotation even in the presence of background spatial curvature. In the small-scale limit (far inside the horizon), to the second-order, relativistic equations of density and

  14. Relativistic MHD simulations of collision-induced magnetic dissipation in Poynting-flux-dominated jets/outflows

    SciTech Connect

    Deng, Wei

    2015-07-21

    The question of the energy composition of the jets/outflows in high-energy astrophysical systems, e.g. GRBs, AGNs, is taken up first: Matter-flux-dominated (MFD), σ < 1, and/or Poynting-flux-dominated (PFD), σ >1? The standard fireball IS model and dissipative photosphere model are MFD, while the ICMART (Internal-Collision-induced MAgnetic Reconnection and Turbulence) model is PFD. Motivated by ICMART model and other relevant problems, such as “jets in a jet” model of AGNs, the author investigates the models from the EMF energy dissipation efficiency, relativistic outflow generation, and σ evolution points of view, and simulates collisions between high-σ blobs to mimic the situation of the interactions inside the PFD jets/outflows by using a 3D SRMHD code which solves the conservative form of the ideal MHD equations. σb,f is calculated from the simulation results (threshold = 1). The efficiency obtained from this hybrid method is similar to the efficiency got from the energy evolution of the simulations (35.2%). Efficiency is nearly σ independent, which is also confirmed by the hybrid method. σb,i - σb,f provides an interesting linear relationship. Results of several parameter studies of EMF energy dissipation efficiency are shown.

  15. Spectral Energy Transfer and Dissipation of Magnetic Energy from Fluid to Kinetic Scales

    SciTech Connect

    Bowers, K.; Li, H.

    2007-01-19

    We investigate the magnetic energy transfer from the fluid to kinetic scales and dissipation processes using three-dimensional fully kinetic particle-in-cell plasma simulations. The nonlinear evolution of a sheet pinch is studied where we show that it exhibits both fluid scale global relaxation and kinetic scale collisionless reconnection at multiple resonant surfaces. The interactions among collisionless tearing modes destroy the original flux surfaces and produce stochastic fields, along with generating sheets and filaments of intensified currents. In addition, the magnetic energy is transferred from the original shear length scale both to the large scales due to the global relaxation and to the smaller, kinetic scales for dissipation. The dissipation is dominated by the thermal or pressure effect in the generalized Ohm's law, and electrons are preferentially accelerated.

  16. Mechanisms of Surface Wave Energy Dissipation over a Fluid Mud Sediment Suspension

    NASA Astrophysics Data System (ADS)

    Traykovski, P.; Trowbridge, J. H.; Kineke, G. C.

    2014-12-01

    Field observations from the spring of 2008 on the Louisiana shelf were used to elucidate the mechanisms of wave energy dissipation over a muddy seafloor. After a period of high discharge from the Atchafalaya River acoustic measurements showed the presence of 20 cm thick mobile fluid mud layers during and after wave events. While total wave energy dissipation (D) was greatest during the high energy periods, these periods had relatively low normalized attenuation rates (Κ = Dissipation/Energy Flux). During declining wave energy conditions, as the fluid mud layer settled, the attenuation process became more efficient with high Κ and low D. The transition from high D and low Κ to high Κ and low D was caused by a transition from turbulent to laminar flow in the fluid mud layer as measured by a Pulse-coherent Doppler profiler. Measurements of the oscillatory boundary layer velocity profile in the fluid mud layer during laminar flow reveal a very thick wave boundary layer with curvature filling the entire fluid mud layer, suggesting a kinematic viscosity two to three orders of magnitude greater than clear water. This high viscosity is also consistent with a high wave attenuation rates measured by across shelf energy flux differences. The transition to turbulence was forced by instabilities on the lutocline, with wavelengths consistent with the dispersion relation for this two layer system. The measurements also provide new insight into the dynamics of wave supported turbidity flows during the transition from a laminar to turbulent fluid mud layer.

  17. The role of turbulent dissipation in planetary fluid interiors driven by tidal and librational forcing

    NASA Astrophysics Data System (ADS)

    Grannan, Alex; Favier, Benjamin; Bills, Bruce; Lemasquerier, Daphne; Le Bars, Michael; Aurnou, Jonathan

    2016-10-01

    The turbulent fluid motions generated in the liquid metal cores and oceans of planetary bodies can have profound effects on energy dissipation and magnetic field generation. An important driver of such fluid motions is mechanical forcing from precession, libration, and tidal forcing. On Earth, the dissipation of energy through tidal forcing occurs primarily in the oceans and may be due, in part, to nonlinear tidally forced resonances. However, the role that such nonlinear resonances play are not generally considered for other planetary bodies also possessing oceans and liquid metal cores.Recent laboratory experimental and numerical studies of Grannan et al. 2014 and Favier et al. 2015 have shown that nonlinear fluid resonances generated by sufficiently strong librational forcing can drive turbulent flows in ellipsoidal containers that mimic gravitational deformations. In Grannan et al. 2016, similar results were found for strong tidal forcing. Thus, a generalized scaling law for the turbulent r.m.s. velocity is derived, U~ɛβE-α, where ɛ is the dimensionless amplitude of the tidal or librational forcing, β is the dimensionless tidal deformation of the body, E is the dimensionless Ekman number characterizing the ratio of viscous to Coriolis forces, and α is a varying exponent.Using planetary values for tidal and librational forcing parameters, the turbulent dissipation is estimated for multiple bodies. For the subsurface oceans of Europa and Enceladus, the amount of nonlinear dissipation is comparable to the dissipation generated from linear resonances of the fluid layer and from upper bounding estimates of the tidal dissipation in the solid icy shell. In addition, our estimates of this turbulent dissipation provide bounds for the stratification in these subsurface oceans. Finally we find that dissipation from these nonlinear resonances in the liquid metal cores of the the early and present Earth, Io, and several exoplanets may help drive the dynamos in these

  18. On the sound attenuation in fluid due to the thermal diffusion and viscous dissipation

    NASA Astrophysics Data System (ADS)

    Hu, Hanping; Wang, Yandong; Wang, Dongdong

    2015-09-01

    We review the sound attenuation in fluid due to the thermal diffusion and viscous dissipation and derive the formula of the sound attenuation coefficient in fluid by solving a fully thermally-mechanically coupled equation set. Problem occurring in Stokes-Kirchhoff relation, the well-known and widely used classical formula for sound attenuation coefficient, is therefore found and pointed out. The reason for its generation is analyzed and verified. An improved formula to replace Stokes-Kirchhoff relation is suggested and the typical case for the error in calculating sound pressure level (SPL) of attenuated sound wave in fluid between the two formulas is also given.

  19. Slow and long-ranged dynamical heterogeneities in dissipative fluids.

    PubMed

    Avila, Karina E; Castillo, Horacio E; Vollmayr-Lee, Katharina; Zippelius, Annette

    2016-06-28

    A two-dimensional bidisperse granular fluid is shown to exhibit pronounced long-ranged dynamical heterogeneities as dynamical arrest is approached. Here we focus on the most direct approach to study these heterogeneities: we identify clusters of slow particles and determine their size, Nc, and their radius of gyration, RG. We show that , providing direct evidence that the most immobile particles arrange in fractal objects with a fractal dimension, df, that is observed to increase with packing fraction ϕ. The cluster size distribution obeys scaling, approaching an algebraic decay in the limit of structural arrest, i.e., ϕ→ϕc. Alternatively, dynamical heterogeneities are analyzed via the four-point structure factor S4(q,t) and the dynamical susceptibility χ4(t). S4(q,t) is shown to obey scaling in the full range of packing fractions, 0.6 ≤ϕ≤ 0.805, and to become increasingly long-ranged as ϕ→ϕc. Finite size scaling of χ4(t) provides a consistency check for the previously analyzed divergences of χ4(t) ∝ (ϕ-ϕc)(-γχ) and the correlation length ξ∝ (ϕ-ϕc)(-γξ). We check the robustness of our results with respect to our definition of mobility. The divergences and the scaling for ϕ→ϕc suggest a non-equilibrium glass transition which seems qualitatively independent of the coefficient of restitution. PMID:27230572

  20. Slow and long-ranged dynamical heterogeneities in dissipative fluids.

    PubMed

    Avila, Karina E; Castillo, Horacio E; Vollmayr-Lee, Katharina; Zippelius, Annette

    2016-06-28

    A two-dimensional bidisperse granular fluid is shown to exhibit pronounced long-ranged dynamical heterogeneities as dynamical arrest is approached. Here we focus on the most direct approach to study these heterogeneities: we identify clusters of slow particles and determine their size, Nc, and their radius of gyration, RG. We show that , providing direct evidence that the most immobile particles arrange in fractal objects with a fractal dimension, df, that is observed to increase with packing fraction ϕ. The cluster size distribution obeys scaling, approaching an algebraic decay in the limit of structural arrest, i.e., ϕ→ϕc. Alternatively, dynamical heterogeneities are analyzed via the four-point structure factor S4(q,t) and the dynamical susceptibility χ4(t). S4(q,t) is shown to obey scaling in the full range of packing fractions, 0.6 ≤ϕ≤ 0.805, and to become increasingly long-ranged as ϕ→ϕc. Finite size scaling of χ4(t) provides a consistency check for the previously analyzed divergences of χ4(t) ∝ (ϕ-ϕc)(-γχ) and the correlation length ξ∝ (ϕ-ϕc)(-γξ). We check the robustness of our results with respect to our definition of mobility. The divergences and the scaling for ϕ→ϕc suggest a non-equilibrium glass transition which seems qualitatively independent of the coefficient of restitution.

  1. Waves in general relativistic two-fluid plasma around a Schwarzschild black hole

    NASA Astrophysics Data System (ADS)

    Rahman, M. Atiqur

    2012-10-01

    Waves propagating in the relativistic electron-positron or ions plasma are investigated in a frame of two-fluid equations using the 3+1 formalism of general relativity developed by Thorne, Price and Macdonald (TPM). The plasma is assumed to be freefalling in the radial direction toward the event horizon due to the strong gravitational field of a Schwarzschild black hole. The local dispersion relations for transverse and longitudinal waves have been derived, in analogy with the special relativistic formulation as explained in an earlier paper, to take account of relativistic effects due to the event horizon using WKB approximation.

  2. “Ripples” on a relativistically expanding fluid

    DOE PAGES

    Shi, Shuzhe; Liao, Jinfeng; Zhuang, Pengfei

    2014-12-29

    Recent studies have shown that fluctuations of various types play important roles in the evolution of the fireball created in relativistic heavy ion collisions and bear many phenomenological consequences for experimental observables. In addition, the bulk dynamics of the fireball is well described by relativistic hydrodynamic expansion and the fluctuations on top of such expanding background can be studied within the linearized hydrodynamic framework. In this paper we present complete and analytic sound wave solutions on top of both Bjorken flow and Hubble flow backgrounds.

  3. The energy-momentum tensor for a dissipative fluid in general relativity

    NASA Astrophysics Data System (ADS)

    Pimentel, Oscar M.; Lora-Clavijo, F. D.; González, Guillermo A.

    2016-10-01

    Considering the growing interest of the astrophysicist community in the study of dissipative fluids with the aim of getting a more realistic description of the universe, we present in this paper a physical analysis of the energy-momentum tensor of a viscous fluid with heat flux. We introduce the general form of this tensor and, using the approximation of small velocity gradients, we relate the stresses of the fluid with the viscosity coefficients, the shear tensor and the expansion factor. Exploiting these relations, we can write the stresses in terms of the extrinsic curvature of the normal surface to the 4-velocity vector of the fluid, and we can also establish a connection between the perfect fluid and the symmetries of the spacetime. On the other hand, we calculate the energy conditions for a dissipative fluid through contractions of the energy-momentum tensor with the 4-velocity vector of an arbitrary observer. This method is interesting because it allows us to compute the conditions in a reasonably easy way and without considering any approximation or restriction on the energy-momentum tensor.

  4. Computing bulk and shear viscosities from simulations of fluids with dissipative and stochastic interactions

    NASA Astrophysics Data System (ADS)

    Jung, Gerhard; Schmid, Friederike

    2016-05-01

    Exact values for bulk and shear viscosity are important to characterize a fluid, and they are a necessary input for a continuum description. Here we present two novel methods to compute bulk viscosities by non-equilibrium molecular dynamics simulations of steady-state systems with periodic boundary conditions — one based on frequent particle displacements and one based on the application of external bulk forces with an inhomogeneous force profile. In equilibrium simulations, viscosities can be determined from the stress tensor fluctuations via Green-Kubo relations; however, the correct incorporation of random and dissipative forces is not obvious. We discuss different expressions proposed in the literature and test them at the example of a dissipative particle dynamics fluid.

  5. Computing bulk and shear viscosities from simulations of fluids with dissipative and stochastic interactions.

    PubMed

    Jung, Gerhard; Schmid, Friederike

    2016-05-28

    Exact values for bulk and shear viscosity are important to characterize a fluid, and they are a necessary input for a continuum description. Here we present two novel methods to compute bulk viscosities by non-equilibrium molecular dynamics simulations of steady-state systems with periodic boundary conditions - one based on frequent particle displacements and one based on the application of external bulk forces with an inhomogeneous force profile. In equilibrium simulations, viscosities can be determined from the stress tensor fluctuations via Green-Kubo relations; however, the correct incorporation of random and dissipative forces is not obvious. We discuss different expressions proposed in the literature and test them at the example of a dissipative particle dynamics fluid. PMID:27250276

  6. INVERSE CASCADE OF NONHELICAL MAGNETIC TURBULENCE IN A RELATIVISTIC FLUID

    SciTech Connect

    Zrake, Jonathan

    2014-10-20

    The free decay of nonhelical relativistic magnetohydrodynamic turbulence is studied numerically, and found to exhibit cascading of magnetic energy toward large scales. Evolution of the magnetic energy spectrum P{sub M} (k, t) is self-similar in time and well modeled by a broken power law with subinertial and inertial range indices very close to 7/2 and –2, respectively. The magnetic coherence scale is found to grow in time as t {sup 2/5}, much too slow to account for optical polarization of gamma-ray burst afterglow emission if magnetic energy is to be supplied only at microphysical length scales. No bursty or explosive energy loss is observed in relativistic MHD turbulence having modest magnetization, which constrains magnetic reconnection models for rapid time variability of GRB prompt emission, blazars, and the Crab nebula.

  7. Dynamics of suspended microchannel resonators conveying opposite internal fluid flow: Stability, frequency shift and energy dissipation

    NASA Astrophysics Data System (ADS)

    Zhang, Wen-Ming; Yan, Han; Jiang, Hui-Ming; Hu, Kai-Ming; Peng, Zhi-Ke; Meng, Guang

    2016-04-01

    In this paper, the dynamics of suspended microchannel resonators which convey internal flows with opposite directions are investigated. The fluid-structure interactions between the laminar fluid flow and oscillating cantilever are analyzed by comprehensively considering the effects of velocity profile, flow viscosity and added flowing particle. A new model is developed to characterize the dynamic behavior of suspended microchannel resonators with the fluid-structure interactions. The stability, frequency shift and energy dissipation of suspended microchannel resonators are analyzed and discussed. The results demonstrate that the frequency shifts induced by the added flowing particle which are obtained from the new model have a good agreement with the experimental data. The steady mean flow can cause the frequency shift and influence the stability of the dynamic system. As the flow velocity reaches the critical value, the coupled-mode flutter occurs via a Hamiltonian Hopf bifurcation. The perturbation flow resulted from the vibration of the microcantilever leads to energy dissipation, while the steady flow does not directly cause the damping which increases with the increasing of the flow velocity predicted by the classical model. It can also be found that the steady flow firstly changes the mode shape of the cantilever and consequently affects the energy dissipation.

  8. Local thermodynamical equilibrium and the frame for a quantum relativistic fluid

    NASA Astrophysics Data System (ADS)

    Becattini, Francesco; Bucciantini, Leda; Grossi, Eduardo; Tinti, Leonardo

    2015-05-01

    We discuss the concept of local thermodynamical equilibrium in relativistic hydrodynamics in flat spacetime in a quantum statistical framework without an underlying kinetic description, suitable for strongly interacting fluids. We show that the appropriate definition of local equilibrium naturally leads to the introduction of a relativistic hydrodynamical frame in which the four-velocity vector is the one of a relativistic thermometer at equilibrium with the fluid, parallel to the inverse temperature four-vector , which then becomes a primary quantity. We show that this frame is the most appropriate for the expansion of the stress-energy tensor from local thermodynamical equilibrium and that therein the local laws of thermodynamics take on their simplest form. We discuss the difference between the frame and Landau frame and present an instance where they differ.

  9. Open/closed string duality and relativistic fluids

    NASA Astrophysics Data System (ADS)

    Niarchos, Vasilis

    2016-07-01

    We propose an open/closed string duality in general backgrounds extending previous ideas about open string completeness by Ashoke Sen. Our proposal sets up a general version of holography that works in gravity as a tomographic principle. We argue, in particular, that previous expectations of a supergravity/Dirac-Born-Infeld (DBI) correspondence are naturally embedded in this conjecture and can be tested in a well-defined manner. As an example, we consider the correspondence between open string field theories on extremal D-brane setups in flat space in the large-N , large 't Hooft limit, and asymptotically flat solutions in ten-dimensional type II supergravity. We focus on a convenient long-wavelength regime, where specific effects of higher-spin open string modes can be traced explicitly in the dual supergravity computation. For instance, in this regime we show how the full Abelian DBI action arises from supergravity as a straightforward reformulation of relativistic hydrodynamics. In the example of a (2 +1 )-dimensional open string theory this reformulation involves an Abelian Hodge duality. We also point out how different deformations of the DBI action, related to higher-derivative corrections and non-Abelian effects, can arise in this context as deformations in corresponding relativistic hydrodynamics.

  10. Probing the rheology of viscous fluids using microcantilevers and the fluctuation-dissipation theorem

    NASA Astrophysics Data System (ADS)

    Robbins, Brian; Radiom, Milad; Walz, John; Ducker, William; Paul, Mark

    2013-11-01

    A microscopic understanding of the rheology of fluids at high frequencies remains an important and open challenge. Current microrheology approaches include the use of micron-scale beads held in optical traps as well as micron-scale cantilevers. Typically, these approaches have been limited in their range of accessible frequencies and dynamic viscosities. In this talk we are interested in the high-frequency regime for very viscous fluids where one must include inertial effects and the frequency dependence of the viscous damping. We present experimental results of the noise spectrum in displacement of the tip of a microcantilever for a variety of fluids that cover a range of viscosities. Using analytical predictions based upon the fluctuation-dissipation theorem, we present an approach to quantify the density and viscosity of the fluid from measurements of the noise spectrum. We are particularly interested in exploring fluids much more viscous than water. We use insights from this study to explore the dynamics of an oscillating elastic object in a power-law fluid to probe the rheology of a non-Newtonian fluid at high frequency. NSF Award CBET-0959228.

  11. Relativistic Hydrodynamics with Sources for Cosmological K-Fluids

    NASA Astrophysics Data System (ADS)

    Diez-Tejedor, Alberto; Feinstein, Alexander

    We consider hydrodynamics with non-conserved number of particles and show that it can be modeled with effective fluid Lagrangians which explicitly depend on the velocity potentials. For such theories, the "shift symmetry" ϕ → ϕ + const leading to the conserved number of fluid particles in conventional hydrodynamics is globally broken and, as a result, the non-conservation of particle number appears as a source term in the continuity equation. The non-conservation of particle number is balanced by the entropy change, with both the entropy and the source term expressed in terms of the fluid velocity potential. Equations of hydrodynamics are derived using a modified version of Schutz's variational principle method. Examples of fluids described by such Lagrangians (tachyon condensate, K-essence) in spatially flat isotropic universe are briefly discussed.

  12. Financial Brownian Particle in the Layered Order-Book Fluid and Fluctuation-Dissipation Relations

    NASA Astrophysics Data System (ADS)

    Yura, Yoshihiro; Takayasu, Hideki; Sornette, Didier; Takayasu, Misako

    2014-03-01

    We introduce a novel description of the dynamics of the order book of financial markets as that of an effective colloidal Brownian particle embedded in fluid particles. The analysis of comprehensive market data enables us to identify all motions of the fluid particles. Correlations between the motions of the Brownian particle and its surrounding fluid particles reflect specific layering interactions; in the inner layer the correlation is strong and with short memory, while in the outer layer it is weaker and with long memory. By interpreting and estimating the contribution from the outer layer as a drag resistance, we demonstrate the validity of the fluctuation-dissipation relation in this nonmaterial Brownian motion process.

  13. Dissipative fluid dynamics for the dilute Fermi gas at unitarity: Free expansion and rotation

    SciTech Connect

    Schaefer, T.

    2010-12-15

    We investigate the expansion dynamics of a dilute Fermi gas at unitarity in the context of dissipative fluid dynamics. Our aim is to quantify the effects of shear viscosity on the time evolution of the system. We compare exact numerical solutions of the equations of viscous hydrodynamics to various approximations that have been proposed in the literature. Our main findings are (i) shear viscosity leads to characteristic features in the expansion dynamics; (ii) a quantitative description of these effects has to include reheating; (iii) dissipative effects are not sensitive to the equation of state P(n,T) as long as the universal relation P=(2/3)E is satisfied; (iv) the expansion dynamics mainly constrains the cloud average of the shear viscosity.

  14. Local equilibrium solutions in simple anisotropic cosmological models, as described by relativistic fluid dynamics

    NASA Astrophysics Data System (ADS)

    Shogin, Dmitry; Amund Amundsen, Per

    2016-10-01

    We test the physical relevance of the full and the truncated versions of the Israel–Stewart (IS) theory of irreversible thermodynamics in a cosmological setting. Using a dynamical systems method, we determine the asymptotic future of plane symmetric Bianchi type I spacetimes with a viscous mathematical fluid, keeping track of the magnitude of the relative dissipative fluxes, which determines the applicability of the IS theory. We consider the situations where the dissipative mechanisms of shear and bulk viscosity are involved separately and simultaneously. It is demonstrated that the only case in the given model when the fluid asymptotically approaches local thermal equilibrium, and the underlying assumptions of the IS theory are therefore not violated, is that of a dissipative fluid with vanishing bulk viscosity. The truncated IS equations for shear viscosity are found to produce solutions which manifest pathological dynamical features and, in addition, to be strongly sensitive to the choice of initial conditions. Since these features are observed already in the case of an oversimplified mathematical fluid model, we have no reason to assume that the truncation of the IS transport equations will produce relevant results for physically more realistic fluids. The possible role of bulk and shear viscosity in cosmological evolution is also discussed.

  15. Simulating the Rayleigh-Taylor instability in polymer fluids with dissipative particle dynamics

    NASA Astrophysics Data System (ADS)

    Li, Yanggui; Geng, Xingguo; Zhuang, Xin; Wang, Lihua; Ouyang, Jie

    2016-04-01

    The Rayleigh-Taylor (RT) instability that occurs in the flow of polymer fluids is numerically investigated with dissipative particle dynamics (DPD) method at the mesoscale particle level. For modeling two-phase flow, the Flory-Huggins parameter is introduced to model binary fluids. And the polymer chains in fluids are described by the modified FENE model that depicts both the elastic tension and the elastic repulsion between the adjacent beads with bond length as the equilibrium length of one segment. Besides, a bead repulsive potential is employed to capture entanglements between polymer chains. Through our model and numerical simulation, we research the dynamics behaviors of the RT instability in polymer fluid medium. Furthermore, we also explore the effects of polymer volume concentration, chain length, and extensibility on the evolution of RT instability. These simulation results show that increasing any of the parameters, concentration, chain length, and extensibility, the saturation length of spikes becomes longer, and the two polymer fluids have less mixture. On the contrary, for the case of low concentration, or short chain, or small extensibility, the spikes easily split and break up, and the RT instability pattern evolves into chaotic structure. These observations indicate that the polymer and its properties drastically modify the RT instability pattern.

  16. Conduction and dissipation in the shearing flow of granular materials modeled as non-Newtonian fluids

    SciTech Connect

    Massoudi, M.C.; Tran, P.X.

    2007-06-15

    After providing a brief review of the constitutive modeling of the stress tensor for granular materials using non-Newtonian fluid models, we study the flow between two horizontal flat plates. It is assumed that the granular media behaves as a non-Newtonian fluid (of the Reiner–Rivlin type); we use the constitutive relation derived by Rajagopal and Massoudi [Rajagopal, K. R. and M. Massoudi, “A Method for measuring material moduli of granular materials: flow in an orthogonal rheometer,” Topical Report, DOE/PETC/TR-90/3, 1990] which can predict the normal stress differences. The lower plate is fixed and heated, and the upper plate (which is at a lower temperature than the lower plate) is set into motion with a constant velocity. The steady fully developed flow and the heat transfer equations are made dimensionless and are solved numerically; the effects of different dimensionless numbers and viscous dissipation are discussed.

  17. Dissipative Particle Dynamics and Other Particle Methods for Multiphase Fluid Flow in Fractured and Porous Media

    SciTech Connect

    Paul Meakin; Zhijie Xu

    2008-06-01

    Particle methods are much less computationally efficient than grid based numerical solution of the Navier Stokes equation, and they have been used much less extensively, particularly for engineering applications. However, they have important advantages for some applications. These advantages include rigorous mast conservation, momentum conservation and isotropy. In addition, there is no need for explicit interface tracking/capturing. Code development effort is relatively low, and it is relatively simple to simulate flows with moving boundaries. In addition, it is often quite easy to include coupling of fluid flow with other physical phenomena such a phase separation. Here we describe the application of three particle methods: molecular dynamics, dissipative particle dynamics and smoothed particle hydrodynamics. While these methods were developed to simulate fluids and other materials on three quite different scales – the molecular, meso and continuum scales, they are very closely related from a computational point of view. The mesoscale (between the molecular and continuum scales) dissipative particle dynamics method can be used to simulate systems that are too large to simulate using molecular dynamics but small enough for thermal fluctuations to play an important role. Important examples include polymer solutions, gels, small particle suspensions and membranes. In these applications inter particle and intra molecular hydrodynamic interactions are automatically included

  18. Mucosal fluid evaporation is not the method of heat dissipation from fourth-degree laryngopharyngeal burns

    PubMed Central

    Wan, Jiang-bo; Zhang, Guo-an; Qiu, Yu-xuan; Wen, Chun-quan; Fu, Tai-ran

    2016-01-01

    This study was designed to explore whether mucosal fluid evaporation represents a method of heat dissipation from thermal air inhalation injury and to assess laryngopharyngeal tissue damage according to heat quantity changes of dry air and vapour. Fifteen adult male beagles were divided into five groups to inhale heated air or vapour for 10 min as follows: control group (ordinary air), group I (91–110 °C heated air), group II (148–175 °C heated air), group III (209–227 °C heated air), and group IV (96 °C saturated vapour). The heat quantity changes of the dry air and vapour were calculated via thermodynamic formulas. The macroscopic and histological features of the laryngopharynxes were examined and assessed by various tissue damage grading systems. Group IV exhibited the most serious laryngopharyngeal damage, including cilia exfoliation, submucosal thrombosis, glandular atrophy, and chondrocyte degeneration, which is indicative of fourth-degree injury. The quality, heat quantity, and proportional reduction of heat quantity of vapour in group IV were all higher than those in the other groups. Furthermore, we found that mucosal fluid evaporation is not the method of heat dissipation from thermal air inhalation injury used by the airways. Laryngopharyngeal tissue damage depends chiefly on the heat quantity of vapour in the air. PMID:27349685

  19. Earliest stages of the nonequilibrium in axially symmetric, self-gravitating, dissipative fluids

    NASA Astrophysics Data System (ADS)

    Herrera, L.; Di Prisco, A.; Ospino, J.; Carot, J.

    2016-09-01

    We report a study on axially and reflection symmetric dissipative fluids, just after its departure from hydrostatic and thermal equilibrium, at the smallest time scale at which the first signs of dynamic evolution appear. Such a time scale is smaller than the thermal relaxation time, the thermal adjustment time, and the hydrostatic time. It is obtained that the onset of nonequilibrium will critically depend on a single function directly related to the time derivative of the vorticity. Among all fluid variables (at the time scale under consideration), only the tetrad component of the anisotropic tensor in the subspace orthogonal to the four-velocity and the Killing vector of axial symmetry, shows signs of dynamic evolution. Also, the first step toward a dissipative regime begins with a nonvanishing time derivative of the heat flux component along the meridional direction. The magnetic part of the Weyl tensor vanishes (not so its time derivative), indicating that the emission of gravitational radiation will occur at later times. Finally, the decreasing of the effective inertial mass density, associated to thermal effects, is clearly illustrated.

  20. Exact relativistic expressions for wave refraction in a generally moving fluid.

    PubMed

    Cavalleri, G; Tonni, E; Barbero, F

    2013-04-01

    The law for the refraction of a wave when the two fluids and the interface are moving with relativistic velocities is given in an exact form, at the same time correcting a first order error in a previous paper [Cavalleri and Tonni, Phys. Rev. E 57, 3478 (1998)]. The treatment is then extended to a generally moving fluid with variable refractive index, ready to be applied to the refraction of acoustic, electromagnetic, or magnetohydrodynamic waves in the atmosphere of rapidly rotating stars. In the particular case of a gas cloud receding because of the universe expansion, our result can be applied to predict observable micro- and mesolensings. The first order approximation of our exact result for the deviation due to refraction of the light coming from a further quasar has a relativistic dependence equal to the one obtained by Einsteins' linearized theory of gravitation. PMID:23679540

  1. Exact relativistic expressions for wave refraction in a generally moving fluid.

    PubMed

    Cavalleri, G; Tonni, E; Barbero, F

    2013-04-01

    The law for the refraction of a wave when the two fluids and the interface are moving with relativistic velocities is given in an exact form, at the same time correcting a first order error in a previous paper [Cavalleri and Tonni, Phys. Rev. E 57, 3478 (1998)]. The treatment is then extended to a generally moving fluid with variable refractive index, ready to be applied to the refraction of acoustic, electromagnetic, or magnetohydrodynamic waves in the atmosphere of rapidly rotating stars. In the particular case of a gas cloud receding because of the universe expansion, our result can be applied to predict observable micro- and mesolensings. The first order approximation of our exact result for the deviation due to refraction of the light coming from a further quasar has a relativistic dependence equal to the one obtained by Einsteins' linearized theory of gravitation.

  2. A Second-order Divergence-constrained Multidimensional Numerical Scheme for Relativistic Two-fluid Electrodynamics

    NASA Astrophysics Data System (ADS)

    Amano, Takanobu

    2016-11-01

    A new multidimensional simulation code for relativistic two-fluid electrodynamics (RTFED) is described. The basic equations consist of the full set of Maxwell’s equations coupled with relativistic hydrodynamic equations for separate two charged fluids, representing the dynamics of either an electron–positron or an electron–proton plasma. It can be recognized as an extension of conventional relativistic magnetohydrodynamics (RMHD). Finite resistivity may be introduced as a friction between the two species, which reduces to resistive RMHD in the long wavelength limit without suffering from a singularity at infinite conductivity. A numerical scheme based on HLL (Harten–Lax–Van Leer) Riemann solver is proposed that exactly preserves the two divergence constraints for Maxwell’s equations simultaneously. Several benchmark problems demonstrate that it is capable of describing RMHD shocks/discontinuities at long wavelength limit, as well as dispersive characteristics due to the two-fluid effect appearing at small scales. This shows that the RTFED model is a promising tool for high energy astrophysics application.

  3. Dynamic and thermodynamic stability of relativistic, perfect fluid stars

    NASA Astrophysics Data System (ADS)

    Green, Stephen R.; Schiffrin, Joshua S.; Wald, Robert M.

    2014-02-01

    We consider perfect fluid bodies (‘stars’) in general relativity, with the local state of the fluid specified by its 4-velocity, ua, its ‘particle number density’, n, and its ‘entropy per particle’, s. A star is said to be in dynamic equilibrium if it is a stationary, axisymmetric solution to the Einstein-fluid equations with circular flow. A star is said to be in thermodynamic equilibrium if it is in dynamic equilibrium and its total entropy, S, is an extremum for all variations of initial data that satisfy the Einstein constraint equations and have fixed total mass, M, particle number, N, and angular momentum, J. We prove that for a star in dynamic equilibrium, the necessary and sufficient condition for thermodynamic equilibrium is constancy of angular velocity, Ω, redshifted temperature, \\widetilde{T}, and redshifted chemical potential, \\widetilde{\\mu }. A star in dynamic equilibrium is said to be linearly dynamically stable if all physical, gauge invariant quantities associated with linear perturbations of the star remain bounded in time; it is said to be mode stable if there are no exponentially growing solutions that are not pure gauge. A star in thermodynamic equilibrium is said to be linearly thermodynamically stable if δ2S < 0 for all variations at fixed M, N, and J; equivalently, a star in thermodynamic equilibrium is linearly thermodynamically stable if \\delta ^2 M - \\widetilde{T} \\delta ^2 S -\\widetilde{\\mu } \\delta ^2 N - \\Omega \\delta ^2 J > 0 for all variations that, to first order, satisfy δM = δN = δJ = 0 (and, hence, δS = 0). Friedman previously identified positivity of canonical energy, {E}, as a criterion for dynamic stability and argued that all rotating stars are dynamically unstable to sufficiently non-axisymmetric perturbations (the CFS instability), so our main focus is on axisymmetric stability (although we develop our formalism and prove many results for non-axisymmetric perturbations as well). We show that

  4. Local Existence of Solutions of Self Gravitating Relativistic Perfect Fluids

    NASA Astrophysics Data System (ADS)

    Brauer, Uwe; Karp, Lavi

    2014-01-01

    This paper deals with the evolution of the Einstein gravitational fields which are coupled to a perfect fluid. We consider the Einstein-Euler system in asymptotically flat spacestimes and therefore use the condition that the energy density might vanish or tend to zero at infinity, and that the pressure is a fractional power of the energy density. In this setting we prove local in time existence, uniqueness and well-posedness of classical solutions. The zero order term of our system contains an expression which might not be a C ∞ function and therefore causes an additional technical difficulty. In order to achieve our goals we use a certain type of weighted Sobolev space of fractional order. In Brauer and Karp (J Diff Eqs 251:1428-1446, 2011) we constructed an initial data set for these of systems in the same type of weighted Sobolev spaces. We obtain the same lower bound for the regularity as Hughes et al. (Arch Ratl Mech Anal 63(3):273-294, 1977) got for the vacuum Einstein equations. However, due to the presence of an equation of state with fractional power, the regularity is bounded from above.

  5. Relativistic model of anisotropic charged fluid sphere in general relativity

    NASA Astrophysics Data System (ADS)

    Pant, Neeraj; Pradhan, N.; Bansal, Rajeev K.

    2016-01-01

    In this present paper, we present a class of static, spherically symmetric charged anisotropic fluid models of super dense stars in isotropic coordinates by considering a particular type of metric potential, a specific choice of electric field intensity E and pressure anisotropy factor Δ which involve parameters K (charge) and α (anisotropy) respectively. The solutions so obtained are utilized to construct the models for super-dense stars like neutron stars and strange quark stars. Our solutions are well behaved within the following ranges of different constant parameters. In the absence of pressure anisotropy and charge present model reduces to the isotropic model Pant et al. (Astrophys. Space Sci. 330:353-359, 2010). Our solution is well behaved in all respects for all values of X lying in the range 0< X ≤ 0.18, α lying in the range 0 ≤ α ≤6.6, K lying in the range 0< K ≤ 6.6 and Schwarzschild compactness parameter "u" lying in the range 0< u ≤ 0.38. Since our solution is well behaved for a wide ranges of the parameters, we can model many different types of ultra-cold compact stars like quark stars and neutron stars. We have shown that corresponding to X=0.088, α=0.6 and K=4.3 for which u=0.2054 and by assuming surface density ρb = 4.6888 × 10^{14} g/cm3 the mass and radius are found to be 1.51 M_{\\varTheta} and 10.90 km respectively. Assuming surface density ρb = 2 × 10^{14} g/cm3 the mass and radius for a neutron star candidate are found to be 2.313 M_{\\varTheta} and 16.690 km respectively. Hence we obtain masses and radii that fall in the range of what is generally expected for quark stars and neutron stars.

  6. Verification of energy dissipation rate scalability in pilot and production scale bioreactors using computational fluid dynamics.

    PubMed

    Johnson, Chris; Natarajan, Venkatesh; Antoniou, Chris

    2014-01-01

    Suspension mammalian cell cultures in aerated stirred tank bioreactors are widely used in the production of monoclonal antibodies. Given that production scale cell culture operations are typically performed in very large bioreactors (≥ 10,000 L), bioreactor scale-down and scale-up become crucial in the development of robust cell-culture processes. For successful scale-up and scale-down of cell culture operations, it is important to understand the scale-dependence of the distribution of the energy dissipation rates in a bioreactor. Computational fluid dynamics (CFD) simulations can provide an additional layer of depth to bioreactor scalability analysis. In this communication, we use CFD analyses of five bioreactor configurations to evaluate energy dissipation rates and Kolmogorov length scale distributions at various scales. The results show that hydrodynamic scalability is achievable as long as major design features (# of baffles, impellers) remain consistent across the scales. Finally, in all configurations, the mean Kolmogorov length scale is substantially higher than the average cell size, indicating that catastrophic cell damage due to mechanical agitation is highly unlikely at all scales.

  7. Relativistic hydrodynamical model in the presence of long-range correlations

    SciTech Connect

    Osada, T.

    2010-02-15

    The effects of dynamical long-range correlations over a fluid cell-size scale on a relativistic fluid are discussed. It is shown that such correlations among the fluid elements introduced into the hydrodynamical model induce some weak dissipation and viscosity into the fluid. The influence of the long-range correlations on the entropy current is also discussed.

  8. Binary-fluid turbulence: Signatures of multifractal droplet dynamics and dissipation reduction

    NASA Astrophysics Data System (ADS)

    Pal, Nairita; Perlekar, Prasad; Gupta, Anupam; Pandit, Rahul

    2016-06-01

    We study the challenging problem of the advection of an active, deformable, finite-size droplet by a turbulent flow via a simulation of the coupled Cahn-Hilliard-Navier-Stokes (CHNS) equations. In these equations, the droplet has a natural two-way coupling to the background fluid. We show that the probability distribution function of the droplet center of mass acceleration components exhibit wide, non-Gaussian tails, which are consistent with the predictions based on pressure spectra. We also show that the droplet deformation displays multifractal dynamics. Our study reveals that the presence of the droplet enhances the energy spectrum E (k ) , when the wave number k is large; this enhancement leads to dissipation reduction.

  9. Binary-fluid turbulence: Signatures of multifractal droplet dynamics and dissipation reduction.

    PubMed

    Pal, Nairita; Perlekar, Prasad; Gupta, Anupam; Pandit, Rahul

    2016-06-01

    We study the challenging problem of the advection of an active, deformable, finite-size droplet by a turbulent flow via a simulation of the coupled Cahn-Hilliard-Navier-Stokes (CHNS) equations. In these equations, the droplet has a natural two-way coupling to the background fluid. We show that the probability distribution function of the droplet center of mass acceleration components exhibit wide, non-Gaussian tails, which are consistent with the predictions based on pressure spectra. We also show that the droplet deformation displays multifractal dynamics. Our study reveals that the presence of the droplet enhances the energy spectrum E(k), when the wave number k is large; this enhancement leads to dissipation reduction. PMID:27415366

  10. Comparison between experimental and analytical results for seesaw energy dissipation systems using fluid viscous dampers

    NASA Astrophysics Data System (ADS)

    Kang, Jae-Do; Tagawa, Hiroshi

    2016-03-01

    This paper presents results of experimental and numerical investigations of a seesaw energy dissipation system (SEDS) using fluid viscous dampers (FVDs). To confirm the characteristics of the FVDs used in the tests, harmonic dynamic loading tests were conducted in advance of the free vibration tests and the shaking table tests. Shaking table tests were conducted to demonstrate the damping capacity of the SEDS under random excitations such as seismic waves, and the results showed SEDSs have sufficient damping capacity for reducing the seismic response of frames. Free vibration tests were conducted to confirm the reliability of simplified analysis. Time history response analyses were also conducted and the results are in close agreement with shaking table test results.

  11. Derivation of electrostatic Korteweg-deVries equation in fully relativistic two-fluid plasmas

    NASA Astrophysics Data System (ADS)

    Lee, Nam C.

    2008-08-01

    A second order Korteweg-deVries (KdV) equation that describes the evolution of nonlinear electrostatic waves in fully relativistic two-fluid plasmas is derived without any assumptions restricting the magnitudes of the flow velocity and the temperatures of each species. In the derivation, the positive and negative species of plasmas are treated with equal footings, not making any species specific assumptions. Thus, the resulting equation, which is expressed in transparent form symmetric in particle species, can be applied to any two-fluid plasmas having arbitrarily large flow velocity and ultrarelativistically high temperatures. The phase velocity of the nonlinear electrostatic waves found in this paper is shown to be related to the flow velocity and the acoustic wave velocity through the Lorentz addition law of velocities, revealing the relativistic nature of the formulation in the present study. The derived KdV equation is applied to some limiting cases, and it is shown that it can be reduced to existing results in nonrelativistic plasmas, while there are some discrepancies from the results in the weak relativistic approximations.

  12. Derivation of electrostatic Korteweg-deVries equation in fully relativistic two-fluid plasmas

    SciTech Connect

    Lee, Nam C.

    2008-08-15

    A second order Korteweg-deVries (KdV) equation that describes the evolution of nonlinear electrostatic waves in fully relativistic two-fluid plasmas is derived without any assumptions restricting the magnitudes of the flow velocity and the temperatures of each species. In the derivation, the positive and negative species of plasmas are treated with equal footings, not making any species specific assumptions. Thus, the resulting equation, which is expressed in transparent form symmetric in particle species, can be applied to any two-fluid plasmas having arbitrarily large flow velocity and ultrarelativistically high temperatures. The phase velocity of the nonlinear electrostatic waves found in this paper is shown to be related to the flow velocity and the acoustic wave velocity through the Lorentz addition law of velocities, revealing the relativistic nature of the formulation in the present study. The derived KdV equation is applied to some limiting cases, and it is shown that it can be reduced to existing results in nonrelativistic plasmas, while there are some discrepancies from the results in the weak relativistic approximations.

  13. Electron inertia effect on small amplitude solitons in a weakly relativistic two-fluid plasma

    SciTech Connect

    Singh, Khushvant; Kumar, Vinod; Malik, Hitendra K.

    2005-05-15

    One-dimensional evolution of solitons in a two-fluid plasma having weakly relativistic streaming ions and electrons is studied through usual Korteweg-de Vries equation under the effect of electron inertia. Although fast and slow ion acoustic modes are possible in such a plasma, only the fast mode corresponds to the soliton propagation for a particular range of velocity difference of ions and electrons. This range depends upon the ratios of mass and temperature of the ions and electrons. The effect of electron inertia on the propagation characteristics of the soliton is studied for typical values of the speed and temperature of the ions and electrons and it is found that this effect is dominant over the relativistic effect and the effect of ion temperature.

  14. Higher order solutions to ion-acoustic solitons in a weakly relativistic two-fluid plasma

    SciTech Connect

    Gill, Tarsem Singh; Bala, Parveen; Kaur, Harvinder

    2008-12-15

    The nonlinear wave structure of small amplitude ion-acoustic solitary waves (IASs) is investigated in a two-fluid plasma consisting of weakly relativistic streaming ions and electrons. Using the reductive perturbation theory, the basic set of governing equations is reduced to the Korteweg-de Vries (KdV) equation for the lowest order perturbation. This analysis is further extended using the renormalization technique for the inclusion of higher order nonlinear and dispersive effects for better accuracy. The effect of higher order correction and various parameters on the soliton characteristics is investigated and also discussed.

  15. Steady shear rheometry of dissipative particle dynamics models of polymer fluids in reverse Poiseuille flow

    PubMed Central

    Fedosov, Dmitry A.; Karniadakis, George Em; Caswell, Bruce

    2010-01-01

    Polymer fluids are modeled with dissipative particle dynamics (DPD) as undiluted bead-spring chains and their solutions. The models are assessed by investigating their steady shear-rate properties. Non-Newtonian viscosity and normal stress coefficients, for shear rates from the lower to the upper Newtonian regimes, are calculated from both plane Couette and plane Poiseuille flows. The latter is realized as reverse Poiseuille flow (RPF) generated from two Poiseuille flows driven by uniform body forces in opposite directions along two-halves of a computational domain. Periodic boundary conditions ensure the RPF wall velocity to be zero without density fluctuations. In overlapping shear-rate regimes the RPF properties are confirmed to be in good agreement with those calculated from plane Couette flow with Lees–Edwards periodic boundary conditions (LECs), the standard virtual rheometer for steady shear-rate properties. The concentration and the temperature dependence of the properties of the model fluids are shown to satisfy the principles of concentration and temperature superposition commonly employed in the empirical correlation of real polymer-fluid properties. The thermodynamic validity of the equation of state is found to be a crucial factor for the achievement of time-temperature superposition. With these models, RPF is demonstrated to be an accurate and convenient virtual rheometer for the acquisition of steady shear-rate rheological properties. It complements, confirms, and extends the results obtained with the standard LEC configuration, and it can be used with the output from other particle-based methods, including molecular dynamics, Brownian dynamics, smooth particle hydrodynamics, and the lattice Boltzmann method. PMID:20405981

  16. Steady shear rheometry of dissipative particle dynamics models of polymer fluids in reverse Poiseuille flow.

    PubMed

    Fedosov, Dmitry A; Karniadakis, George Em; Caswell, Bruce

    2010-04-14

    Polymer fluids are modeled with dissipative particle dynamics (DPD) as undiluted bead-spring chains and their solutions. The models are assessed by investigating their steady shear-rate properties. Non-Newtonian viscosity and normal stress coefficients, for shear rates from the lower to the upper Newtonian regimes, are calculated from both plane Couette and plane Poiseuille flows. The latter is realized as reverse Poiseuille flow (RPF) generated from two Poiseuille flows driven by uniform body forces in opposite directions along two-halves of a computational domain. Periodic boundary conditions ensure the RPF wall velocity to be zero without density fluctuations. In overlapping shear-rate regimes the RPF properties are confirmed to be in good agreement with those calculated from plane Couette flow with Lees-Edwards periodic boundary conditions (LECs), the standard virtual rheometer for steady shear-rate properties. The concentration and the temperature dependence of the properties of the model fluids are shown to satisfy the principles of concentration and temperature superposition commonly employed in the empirical correlation of real polymer-fluid properties. The thermodynamic validity of the equation of state is found to be a crucial factor for the achievement of time-temperature superposition. With these models, RPF is demonstrated to be an accurate and convenient virtual rheometer for the acquisition of steady shear-rate rheological properties. It complements, confirms, and extends the results obtained with the standard LEC configuration, and it can be used with the output from other particle-based methods, including molecular dynamics, Brownian dynamics, smooth particle hydrodynamics, and the lattice Boltzmann method.

  17. Generalized mapping of multi-body dissipative particle dynamics onto fluid compressibility and the Flory-Huggins theory

    NASA Astrophysics Data System (ADS)

    Jamali, Safa; Boromand, Arman; Khani, Shaghayegh; Wagner, Jacob; Yamanoi, Mikio; Maia, Joao

    2015-04-01

    In this work, a generalized relation between the fluid compressibility, the Flory-Huggins interaction parameter (χ), and the simulation parameters in multi-body dissipative particle dynamics (MDPD) is established. This required revisiting the MDPD equation of state previously reported in the literature and developing general relationships between the parameters used in the MDPD model. We derive a relationship to the Flory-Huggins χ parameter for incompressible fluids similar to the work previously done in dissipative particle dynamics by Groot and Warren. The accuracy of this relationship is evaluated using phase separation in small molecules and the solubility of polymers in dilute solvent solutions via monitoring the scaling of the radius of gyration (Rg) for different solvent qualities. Finally, the dynamics of the MDPD fluid is studied with respect to the diffusion coefficient and the zero shear viscosity.

  18. Propagation of an ultra-short, intense laser in a relativistic fluid

    SciTech Connect

    Ritchie, A.B.; Decker, C.D.

    1997-12-31

    A Maxwell-relativistic fluid model is developed to describe the propagation of an ultrashort, intense laser pulse through an underdense plasma. The model makes use of numerically stabilizing fast Fourier transform (FFT) computational methods for both the Maxwell and fluid equations, and it is benchmarked against particle-in-cell (PIC) simulations. Strong fields generated in the wake of the laser are calculated, and the authors observe coherent wake-field radiation generated at harmonics of the plasma frequency due to nonlinearities in the laser-plasma interaction. For a plasma whose density is 10% of critical, the highest members of the plasma harmonic series begin to overlap with the first laser harmonic, suggesting that widely used multiple-scales-theory, by which the laser and plasma frequencies are assumed to be separable, ceases to be a useful approximation.

  19. The ideal relativistic rotating gas as a perfect fluid with spin

    SciTech Connect

    Becattini, F.; Tinti, L.

    2010-08-15

    We show that the ideal relativistic spinning gas at complete thermodynamical equilibrium is a fluid with a non-vanishing spin density tensor {sigma}{sub {mu}{nu}}. After having obtained the expression of the local spin-dependent phase-space density f(x, p){sub {sigma}{tau}} in the Boltzmann approximation, we derive the spin density tensor and show that it is proportional to the acceleration tensor {Omega}{sub {mu}{nu}} constructed with the Frenet-Serret tetrad. We recover the proper generalization of the fundamental thermodynamical relation, involving an additional term -(1/2){Omega}{sub {mu}{nu}{sigma}}{sup {mu}{nu}}. We also show that the spin density tensor has a non-vanishing projection onto the four-velocity field, i.e. t{sup {mu}} = {sigma}{sub {mu}}{nu}u{sup {nu}} {ne} 0, in contrast to the common assumption t{sup {mu}} = 0, known as Frenkel condition, in the thus-far proposed theories of relativistic fluids with spin. We briefly address the viewpoint of the accelerated observer and inertial spin effects.

  20. Toward a relativistic gas dynamics

    SciTech Connect

    Solovev, L.S.

    1982-01-01

    Macroscopic gas dynamics on the basis of general-relativity equations is examined. An additional equation is derived which provides for completeness of the system of relativistic gasdynamic equations. Relativistic equations of two-fluid electromagnetic gas dynamics are obtained. The introduction of appropriate energy-momentum tensors makes it possible to allow for dissipative processes conditioned by viscosity, thermal conductivity, radiative thermal conductivity, ohmic resistance, and ion-electron temperature difference. The problem of generalizing the Friedmann cosmological model in the case of particle production and annihilation is considered. Also, considered are gas equilibrium in a spherically symmetric gravitational field and a two-fluid relativistic stream in an intrinsic electromagnetic field. 16 references.

  1. Flow of a non-linear (density-gradient-dependent) viscous fluid with heat generation, viscous dissipation and radiation

    SciTech Connect

    Massoudi, Mehrdad; Phuoc, Tran X.

    2008-09-25

    In this paper, we study the flow of a compressible (density-gradient-dependent) non-linear fluid down an inclined plane, subject to radiation boundary condition. The convective heat transfer is also considered where a source team, similar to the Arrhenius type reaction, is included. The non-dimensional forms of the equations are solved numerically and the competing effects of conduction, dissipation, heat generation and radiation are discussed.

  2. Flow of a non-linear (density-gradient-dependent) viscous fluid with heat generation, viscous dissipation and radiation

    SciTech Connect

    Massoudi, Mehrdad; Tran, P.X.

    2008-09-22

    In this paper, we study the flow of a compressible (density-gradient-dependent) non-linear fluid down an inclined plane, subject to radiation boundary condition. The convective heat transfer is also considered where a source term, similar to the Arrhenius type reaction, is included. The non-dimensional forms of the equations are solved numerically and the competing effects of conduction, dissipation, heat generation and radiation are discussed

  3. Scale-lengths and instabilities in magnetized classical and relativistic plasma fluid models

    NASA Astrophysics Data System (ADS)

    Diver, D. A.; Laing, E. W.

    2015-02-01

    The validity of the traditional plasma continuum is predicated on a hierarchy of scale-lengths, with the Debye length being considered to be effectively unresolvable in the continuum limit. In this article, we revisit the strong magnetic field case in which the Larmor radius is comparable or smaller than the Debye length in the classical plasma, and also for a relativistic plasma. Fresh insight into the validity of the continuum assumption in each case is offered, including a fluid limit on the Alfvén speed that may impose restrictions on the validity of magnetohydrodynamics (MHD) in some solar and fusion contexts. Additional implications concerning the role of the firehose instability are also explored.

  4. Two-fluid temperature-dependent relativistic waves in magnetized streaming pair plasmas.

    PubMed

    Soto-Chavez, A R; Mahajan, S M; Hazeltine, R D

    2010-02-01

    A relativistic two-fluid temperature-dependent approach for a streaming magnetized pair plasma is considered. Such a scenario corresponds to secondary plasmas created at the polar caps of pulsar magnetospheres. In the model the generalized vorticity rather than the magnetic field is frozen into the fluid. For parallel propagation four transverse modes are found. Two are electromagnetic plasma modes which at high temperature become light waves. The remaining two are Alfvénic modes split into a fast and slow mode. The slow mode is cyclotron two-stream unstable at large wavelengths and is always subluminous. We find that the instability cannot be suppressed by temperature effects in the limit of large (finite) magnetic field. The fast Alfvén mode can be superluminous only at large wavelengths, however it is always subluminous at high temperatures. In this incompressible approximation only the ordinary mode is present for perpendicular propagation. For oblique propagation the dispersion relation is studied for finite and large strong magnetic fields and the results are qualitatively described. PMID:20365661

  5. A statistical model for relativistic quantum fluids interacting with an intense electromagnetic wave

    NASA Astrophysics Data System (ADS)

    Mahajan, Swadesh M.; Asenjo, Felipe A.

    2016-05-01

    A statistical model for relativistic quantum fluids interacting with an arbitrary amplitude circularly polarized electromagnetic wave is developed in two steps. First, the energy spectrum and the wave function for a quantum particle (Klein Gordon and Dirac) embedded in the electromagnetic wave are calculated by solving the appropriate eigenvalue problem. The energy spectrum is anisotropic in the momentum K and reflects the electromagnetic field through the renormalization of the rest mass m to M =√{m2+q2A2 } . Based on this energy spectrum of this quantum particle plus field combination (QPF), a statistical mechanics model of the quantum fluid made up of these weakly interacting QPF is developed. Preliminary investigations of the formalism yield highly interesting results—a new scale for temperature, and fundamental modification of the dispersion relation of the electromagnetic wave. It is expected that this formulation could, inter alia, uniquely advance our understanding of laboratory as well as astrophysical systems where one encounters arbitrarily large electromagnetic fields.

  6. Fluctuation-dissipation relations for motions of center of mass in driven granular fluids under gravity.

    PubMed

    Wakou, Jun'ichi; Isobe, Masaharu

    2012-06-01

    We investigated the validity of fluctuation-dissipation relations in the nonequilibrium stationary state of fluidized granular media under gravity by two independent approaches, based on theory and numerical simulations. A phenomenological Langevin-type theory describing the fluctuation of center of mass height, which was originally constructed for a one-dimensional granular gas on a vibrating bottom plate, was generalized to any dimensionality, even for the case in which the vibrating bottom plate is replaced by a thermal wall. The theory predicts a fluctuation-dissipation relation known to be satisfied at equilibrium, with a modification that replaces the equilibrium temperature by an effective temperature defined by the center of mass kinetic energy. To test the validity of the fluctuation-dissipation relation, we performed extensive and accurate event-driven molecular dynamics simulations for the model system with a thermal wall at the bottom. The power spectrum and response function of the center of mass height were measured and closely compared with theoretical predictions. It is shown that the fluctuation-dissipation relation for the granular system is satisfied, especially in the high-frequency (short time) region, for a wide range of system parameters. Finally, we describe the relationship between systematic deviations in the low-frequency (long time) region and the time scales of the driven granular system.

  7. Fluctuation-dissipation relations for motions of center of mass in driven granular fluids under gravity.

    PubMed

    Wakou, Jun'ichi; Isobe, Masaharu

    2012-06-01

    We investigated the validity of fluctuation-dissipation relations in the nonequilibrium stationary state of fluidized granular media under gravity by two independent approaches, based on theory and numerical simulations. A phenomenological Langevin-type theory describing the fluctuation of center of mass height, which was originally constructed for a one-dimensional granular gas on a vibrating bottom plate, was generalized to any dimensionality, even for the case in which the vibrating bottom plate is replaced by a thermal wall. The theory predicts a fluctuation-dissipation relation known to be satisfied at equilibrium, with a modification that replaces the equilibrium temperature by an effective temperature defined by the center of mass kinetic energy. To test the validity of the fluctuation-dissipation relation, we performed extensive and accurate event-driven molecular dynamics simulations for the model system with a thermal wall at the bottom. The power spectrum and response function of the center of mass height were measured and closely compared with theoretical predictions. It is shown that the fluctuation-dissipation relation for the granular system is satisfied, especially in the high-frequency (short time) region, for a wide range of system parameters. Finally, we describe the relationship between systematic deviations in the low-frequency (long time) region and the time scales of the driven granular system. PMID:23005089

  8. Unsteady dissipative structures in non-Newtonian fluid flow through a porous medium

    SciTech Connect

    Azizov, Kh.F.

    1995-05-01

    The nonuniform space-time pressure and velocity distributions in an initially nonempty stratum with constant initial pressure created by pumping a non-Newtonian fluid through the boundary of the stratum are investigated. The injected fluid and the fluid present in the stratum before injection have identical physical properties. The conditions of formation of traveling fronts and localized structures are analyzed as functions of the nonlinearity of the rheological law of the fluid and the injection regime.

  9. Fluid simulation of relativistic electron beam driven wakefield in a cold plasma

    SciTech Connect

    Bera, Ratan Kumar; Sengupta, Sudip; Das, Amita

    2015-07-15

    Excitation of wakefield in a cold homogeneous plasma, driven by an ultra-relativistic electron beam is studied in one dimension using fluid simulation techniques. For a homogeneous rigid beam having density (n{sub b}) less than or equal to half the plasma density (n{sub 0}), simulation results are found to be in good agreement with the analytical work of Rosenzweig [Phys. Rev. Lett. 58, 555 (1987)]. Here, Rosenzweig's work has been analytically extended to regimes where the ratio of beam density to plasma density is greater than half and results have been verified using simulation. Further in contrast to Rosenzweig's work, if the beam is allowed to evolve in a self-consistent manner, several interesting features are observed in simulation viz. splitting of the beam into beam-lets (for l{sub b} > λ{sub p}) and compression of the beam (for l{sub b} < λ{sub p}), l{sub b} and λ{sub p}, respectively, being the initial beam length and plasma wavelength.

  10. New understanding of the role of cerebrospinal fluid: offsetting of arterial and brain pulsation and self-dissipation of cerebrospinal fluid pulsatile flow energy.

    PubMed

    Min, Kyung Jay; Yoon, Soo Han; Kang, Jae-Kyu

    2011-06-01

    Many theories have been postulated to date regarding the mechanisms involved in the absorption of the intracranial arterial blood flow energy in the intracranial space, but it is as yet nor clearly defined. The blood flow energy that is transmitted from the heart formulates the cerebrospinal fluid (CSF) pulsatile flow, and is known to constitute the major energy of the CSF flow, while the bulk flow carries only small energy. The intracranial space that is enclosed in a solid cranium and is an isolate system as in the Monroe-Kellie doctrine, and the authors propose to re-analyze the Monroe-Kellie doctrine concept in terms of energy transfer and dissipation of the Windkessel effect. We propose that the large blood flow energy that initiates in the heart is transferred in order of precedence to the arteries, arterioles, brain parenchyma, and finally to CSF within the cranium, in which the energy is confined and unable to be transferred, so that the final transfer of energy to the CSF pulsatile flow is self-dissipated in terms of direction and chronology in CSF pulsatile flow. In order for the CSF pulsatile flow that is transferred from arterial blood flow energy to be dissipated in the intracranial space, this cannot be explained with bulk flow energy in any perspective, since the pulsatile flow kinetic energy is greater than the bulk flow kinetic energy by at least a 100-fold. The pulsatile flow energy within the closed intracranial space cannot be transferred and is confined, as postulated by the Monroe-Kellie doctrine, and therefore the authors propound that the pulsatile flow dissipates by itself. The dissipation of the CSF pulsatile flow kinetic energy will be in all directions in a diffuse and random manner, and is offset by the CSF flow energy vector due to the CSF mixing process. Such energy dissipation will lead to maintenance of low CSF flow energy, which will result in maintaining low intracranial pressure (ICP), and sufficient brain perfusion. It is our

  11. On the role of mass diffusion and fluid dynamics in the dissipation of chunk mix

    SciTech Connect

    Cloutman, L D

    1999-03-01

    When numerically simulating multicomponent turbulent flows, subgrid-scale diffusion of chemical species requires closure. This mixing of chemical species at the molecular level dissipates concentration uctuations, which limits possible demixing and affects other pro- cesses such as energy transport and reaction rates at the subgrid level. We discuss some of the physical processes that reduce small chunks of a heavy material in a light gas or plasma to a mixture at the atomic level. Preliminary direct numerical simulations of these processes are presented using the dissipation of small spheres of heavy gas in a light gas as an archetypal process in turbulent micromixing in multicomponent ows, including classical uid instabilities and shock ejecta. We use a detailed approach for the diffusion process, directly solving the Stefan-Maxwell equations for the mass fluxes. We discuss the dissipa- tion of a 24µm sphere of xenon in helium in three different flow regimes, and we present suggestions for future work intended as input to improved subgrid-scale turbulence models.

  12. General Relativistic Elastic Body, Fluid,quasi-rigid Body, Quasi-liquid and Others in Multiple Coordinate Systems

    NASA Astrophysics Data System (ADS)

    Xu, Chongming

    2009-05-01

    The approximation method in multiple coordinate systems at first post Newtonian (1 PN) level has been established by Darmour, Soffel and Xu (Phys. Rev. D(PRD) 43, 3273 (1991);D 45, 1017(1992);D 47, 3124 (1993);D 49, 618 (1994)). Normally, to discuss an astronomical object (e.g. a star in binary systems or the earth in solar system) we need multiple coordinate systems, especially for precise astrometry 1 PN (some time even 2 PN) approximate method is required. As we know up to now the ideas on elastic body, fluid, rigid body and liquid in the framework of Newtonian physics are still very useful for understanding and calculating some practical problems. Although the general relativistic theories of elastic body, general relativistic hydrodynamics and post-Newtonian quasi-rigid body have been discussed by many authors (including our papers (PRD63, 043002(2001); D63, 064001(2001); D68, 064009(2003); D69, 024003(2004); D71,024030 (2005))), but there is no completing discussion on all of these ideas in a unified point view. The applications of these ideas in the general relativity are important in the research fields of astrometry and geophysics, especially in case precise measurements reach so higher level (millimicro arc sec). The extended relativistic versions of these ideas should be revised the Newtonian results. In this paper, we shall give a complete discussion on all of these ideas in 1 PN approximation. We shall clarify the ideas on perfect elastic material, quasi-rigid body, quasi-liquid and so on with some precise mathematical forms. For fluid we show the hydrodynamic equations of a non-perfect fluid in multiple coordinates systems (both local and global).

  13. Self-Gravitating Relativistic Fluids: The Formation of a Free Phase Boundary in the Phase Transition from Hard to Soft

    NASA Astrophysics Data System (ADS)

    Christodoulou, Demetrios; Lisibach, André

    2016-11-01

    In the 1990s Christodoulou introduced an idealized fluid model intended to capture some of the features of the gravitational collapse of a massive star to form a neutron star or a black hole. This was the two-phase model introduced in `Self-gravitating relativistic fluids: a two phase model' (Demeterios, Arch Ration Mech Anal 130:343-400, 1995). The present work deals with the formation of a free phase boundary in the phase transition from hard to soft in this model. In this case the phase boundary has corners at the null points; the points which separate the timelike and spacelike components of the interface between the two phases. We prove the existence and uniqueness of a free phase boundary. Also the local form of the shock near the null point is established.

  14. Self-Gravitating Relativistic Fluids: The Formation of a Free Phase Boundary in the Phase Transition from Hard to Soft

    NASA Astrophysics Data System (ADS)

    Christodoulou, Demetrios; Lisibach, André

    2016-06-01

    In the 1990s Christodoulou introduced an idealized fluid model intended to capture some of the features of the gravitational collapse of a massive star to form a neutron star or a black hole. This was the two-phase model introduced in `Self-gravitating relativistic fluids: a two phase model' (Demeterios, Arch Ration Mech Anal 130:343-400, 1995). The present work deals with the formation of a free phase boundary in the phase transition from hard to soft in this model. In this case the phase boundary has corners at the null points; the points which separate the timelike and spacelike components of the interface between the two phases. We prove the existence and uniqueness of a free phase boundary. Also the local form of the shock near the null point is established.

  15. Formation of Hydro-acoustic Waves in Dissipative Coupled Weakly Compressible Fluids

    NASA Astrophysics Data System (ADS)

    Abdolali, A.; Kirby, J. T., Jr.; Bellotti, G.

    2014-12-01

    Recent advances in deep sea measurement technology provide an increasing opportunity to detect and interpret hydro-acoustic waves as a component in improved Tsunami Early Warning Systems (TEWS). For the idealized case of a homogeneous water column above a moving but otherwise rigid bottom (in terms of assessing acoustic wave interaction), the description of the infinite family of acoustic modes is characterized by local water depth at source area; i.e. the period of the first acoustic mode is given by four times the required time for sound to travel from the seabed to the surface. Spreading off from earthquake zone, the dominant spectrum is filtered and enriched by seamounts and barriers. This study focuses on the characteristics of hydro-acoustic waves generated by sudden sea bottom motion in a weakly compressible fluid coupled with an underlying sedimentary layer, where the added complexity of the sediment layer rheology leads to both the lowering of dominant spectral peaks and wave attenuation across the full spectrum. To overcome the computational difficulties of three-dimensional models, we derive a depth integrated equation valid for varying water depth and sediment thickness. Damping behavior of the two layered system is initially taken into account by introducing the viscosity of fluid-like sedimentary layer. We show that low frequency pressure waves which are precursor components of tsunamis contain information of seafloor motion.

  16. Heavy quark diffusion with relativistic Langevin dynamics in the quark-gluon fluid

    SciTech Connect

    Akamatsu, Yukinao; Hatsuda, Tetsuo; Hirano, Tetsufumi

    2009-05-15

    The relativistic diffusion process of heavy quarks is formulated on the basis of the relativistic Langevin equation in Ito discretization scheme. The drag force inside the quark-gluon plasma (QGP) is parametrized according to the formula for the strongly coupled plasma obtained by the anti-de-Sitter space/conformal field theory (AdS/CFT) correspondence. The diffusion dynamics of charm and bottom quarks in QGP is described by combining the Langevin simulation under the background matter described by the relativistic hydrodynamics. Theoretical calculations of the nuclear modification factor R{sub AA} and the elliptic flow v{sub 2} for the single electrons from the charm and bottom decays are compared with the experimental data from the relativistic heavy-ion collisions. The R{sub AA} for electrons with large transverse momentum (p{sub T}>3 GeV) indicates that the drag force from the QGP is as strong as the AdS/CFT prediction.

  17. Numerical investigation on heat transfer in power-law fluids with variable thermal diffusivity in the presence of viscous dissipation and radiation

    NASA Astrophysics Data System (ADS)

    Li, Botong; Zheng, Liancun; Zhang, Xinxin

    2012-09-01

    This paper presents a numerical investigation on heat transfer in power-law fluids aligned with a semi-infinite plate in the presence of viscous dissipation and radiation. The effects of power-law viscosity on temperature field are taken into account by assuming that the thermal diffusivity varies as a function of velocity gradient. Since the problem is very complex to solve analytically, a similarity transformation based on the least square approximation principle and shooting technique may be a considerable approach. The effects of generalized Prandtl number, viscous dissipation and radiation on the heat transfer are tabulated.

  18. The effect of resolution on viscous dissipation measured with 4D flow MRI in patients with Fontan circulation: Evaluation using computational fluid dynamics.

    PubMed

    Cibis, Merih; Jarvis, Kelly; Markl, Michael; Rose, Michael; Rigsby, Cynthia; Barker, Alex J; Wentzel, Jolanda J

    2015-09-18

    Viscous dissipation inside Fontan circulation, a parameter associated with the exercise intolerance of Fontan patients, can be derived from computational fluid dynamics (CFD) or 4D flow MRI velocities. However, the impact of spatial resolution and measurement noise on the estimation of viscous dissipation is unclear. Our aim was to evaluate the influence of these parameters on viscous dissipation calculation. Six Fontan patients underwent whole heart 4D flow MRI. Subject-specific CFD simulations were performed. The CFD velocities were down-sampled to isotropic spatial resolutions of 0.5mm, 1mm, 2mm and to MRI resolution. Viscous dissipation was compared between (1) high resolution CFD velocities, (2) CFD velocities down-sampled to MRI resolution, (3) down-sampled CFD velocities with MRI mimicked noise levels, and (4) in-vivo 4D flow MRI velocities. Relative viscous dissipation between subjects was also calculated. 4D flow MRI velocities (15.6 ± 3.8 cm/s) were higher, although not significantly different than CFD velocities (13.8 ± 4.7 cm/s, p=0.16), down-sampled CFD velocities (12.3 ± 4.4 cm/s, p=0.06) and the down-sampled CFD velocities with noise (13.2 ± 4.2 cm/s, p=0.06). CFD-based viscous dissipation (0.81 ± 0.55 mW) was significantly higher than those based on down-sampled CFD (0.25 ± 0.19 mW, p=0.03), down-sampled CFD with noise (0.49 ± 0.26 mW, p=0.03) and 4D flow MRI (0.56 ± 0.28 mW, p=0.06). Nevertheless, relative viscous dissipation between different subjects was maintained irrespective of resolution and noise, suggesting that comparison of viscous dissipation between patients is still possible.

  19. Wess-Zumino terms for relativistic fluids, superfluids, solids, and supersolids.

    PubMed

    Delacrétaz, Luca V; Nicolis, Alberto; Penco, Riccardo; Rosen, Rachel A

    2015-03-01

    We use the coset construction of low-energy effective actions to systematically derive Wess-Zumino (WZ) terms for fluid and isotropic solid systems in two, three, and four spacetime dimensions. We recover the known WZ term for fluids in two dimensions as well as the very recently found WZ term for fluids in three dimensions. We find two new WZ terms for supersolids that have not previously appeared in the literature. In addition, by relaxing certain assumptions about the symmetry group of fluids we find a number of new WZ terms for fluids with and without charge, in all dimensions. We find no WZ terms for solids and superfluids.

  20. Electron inertia contribution to soliton evolution in an inhomogeneous weakly relativistic two-fluid plasma

    SciTech Connect

    Singh, Khushvant; Kumar, Vinod; Malik, Hitendra K.

    2005-07-15

    The contribution of electron inertia to the evolution of solitons in weakly and strongly inhomogeneous plasmas having streaming ions and electrons with weak relativistic effect is studied on the basis of a relevant Korteweg-de Vries equation derived with the help of reductive perturbation technique. Three types of modes (fast, medium, and slow) are found to propagate in the plasma. In case of weak (strong) inhomogeneous plasma, only the fast (slow) mode corresponds to the soliton evolution. For the propagation of solitons in strongly inhomogeneous plasma, there is no restriction on the ion and electron velocities but in case of weak inhomogeneity the solitons are possible only for a particular range of velocity difference. This range shows the dependence on the temperature and mass ratios of the ions and electrons. In addition, it is realized that only the rarefactive solitons are possible in the present plasma model. The effect of electron inertia on the phase velocity, peak soliton amplitude, and soliton width is studied together with the effects of plasma density, ion temperature, and speeds (relativistic effects) of ions and electrons.

  1. Exact power series solutions of the structure equations of the general relativistic isotropic fluid stars with linear barotropic and polytropic equations of state

    NASA Astrophysics Data System (ADS)

    Harko, T.; Mak, M. K.

    2016-09-01

    Obtaining exact solutions of the spherically symmetric general relativistic gravitational field equations describing the interior structure of an isotropic fluid sphere is a long standing problem in theoretical and mathematical physics. The usual approach to this problem consists mainly in the numerical investigation of the Tolman-Oppenheimer-Volkoff and of the mass continuity equations, which describes the hydrostatic stability of the dense stars. In the present paper we introduce an alternative approach for the study of the relativistic fluid sphere, based on the relativistic mass equation, obtained by eliminating the energy density in the Tolman-Oppenheimer-Volkoff equation. Despite its apparent complexity, the relativistic mass equation can be solved exactly by using a power series representation for the mass, and the Cauchy convolution for infinite power series. We obtain exact series solutions for general relativistic dense astrophysical objects described by the linear barotropic and the polytropic equations of state, respectively. For the polytropic case we obtain the exact power series solution corresponding to arbitrary values of the polytropic index n. The explicit form of the solution is presented for the polytropic index n=1, and for the indexes n=1/2 and n=1/5, respectively. The case of n=3 is also considered. In each case the exact power series solution is compared with the exact numerical solutions, which are reproduced by the power series solutions truncated to seven terms only. The power series representations of the geometric and physical properties of the linear barotropic and polytropic stars are also obtained.

  2. The effect of resolution on viscous dissipation measured with 4D flow MRI in patients with Fontan circulation: Evaluation using computational fluid dynamics.

    PubMed

    Cibis, Merih; Jarvis, Kelly; Markl, Michael; Rose, Michael; Rigsby, Cynthia; Barker, Alex J; Wentzel, Jolanda J

    2015-09-18

    Viscous dissipation inside Fontan circulation, a parameter associated with the exercise intolerance of Fontan patients, can be derived from computational fluid dynamics (CFD) or 4D flow MRI velocities. However, the impact of spatial resolution and measurement noise on the estimation of viscous dissipation is unclear. Our aim was to evaluate the influence of these parameters on viscous dissipation calculation. Six Fontan patients underwent whole heart 4D flow MRI. Subject-specific CFD simulations were performed. The CFD velocities were down-sampled to isotropic spatial resolutions of 0.5mm, 1mm, 2mm and to MRI resolution. Viscous dissipation was compared between (1) high resolution CFD velocities, (2) CFD velocities down-sampled to MRI resolution, (3) down-sampled CFD velocities with MRI mimicked noise levels, and (4) in-vivo 4D flow MRI velocities. Relative viscous dissipation between subjects was also calculated. 4D flow MRI velocities (15.6 ± 3.8 cm/s) were higher, although not significantly different than CFD velocities (13.8 ± 4.7 cm/s, p=0.16), down-sampled CFD velocities (12.3 ± 4.4 cm/s, p=0.06) and the down-sampled CFD velocities with noise (13.2 ± 4.2 cm/s, p=0.06). CFD-based viscous dissipation (0.81 ± 0.55 mW) was significantly higher than those based on down-sampled CFD (0.25 ± 0.19 mW, p=0.03), down-sampled CFD with noise (0.49 ± 0.26 mW, p=0.03) and 4D flow MRI (0.56 ± 0.28 mW, p=0.06). Nevertheless, relative viscous dissipation between different subjects was maintained irrespective of resolution and noise, suggesting that comparison of viscous dissipation between patients is still possible. PMID:26298492

  3. Numerical study of the general-relativistic gravitational collapse of a perfect fluid

    NASA Astrophysics Data System (ADS)

    Turner, William (Bill) H., IV

    1999-10-01

    In this dissertation I study the critical behavior of a perfect fluid collapsing under its own gravity, with a linear equation of state, by solving the full set of nonlinear partial differential equations resulting from Einstein's theory of general relativity. To solve these equations accurately, I have developed a highly elaborate ``numerical laboratory'' specifically designed to handle the extreme behavior of this problem. The accuracy of my laboratory was examined extensively with two important test models. The results of the current work extend the previous works of M. Choptuik, C. R. Evans and J. S. Coleman, D. Maison, and many others. The first half of my results are derived from studying the precisely-critical behavior of the fluid. Maison's semi- analytical work had suggested that the critical solution for such a collapsing fluid might exhibit continuous self-similarity (CSS) for values of k less than approximately 0.89 [where the equation of state is pressure equals k times energy density]. Above this value, Maison conjectured that CSS solutions do not exist. However, owing to the assumptions of his approach, his results only suggest what may occur in full collapse simulations. In the current work, I have solved the full set of Einstein's equations-which had previously only been done for k = 1/3-to demonstrate the existence of CSS critical solutions for k values ranging from 0.1 to 0.999. My results thus contradict the above conjecture by Maison. The second half of my results are derived from studying the slightly super-critical behavior of a collapsing perfect fluid. Maison extended Evans and Coleman's work by using a semi-analytical perturbation approach to calculate possible critical exponents for k values less than 0.89. In the current work, I solved the full set of Einstein's equations to demonstrate the existence of mass-scaling laws for k values ranging from 0.1 to 0.999. The values of the critical exponents that I determined are in complete

  4. Mass transfer effects on an unsteady MHD free convective flow of an incompressible viscous dissipative fluid past an infinite vertical porous plate

    NASA Astrophysics Data System (ADS)

    Prabhakar Reddy, B.

    2016-02-01

    In this paper, a numerical solution of mass transfer effects on an unsteady free convection flow of an incompressible electrically conducting viscous dissipative fluid past an infinite vertical porous plate under the influence of a uniform magnetic field considered normal to the plate has been obtained. The non-dimensional governing equations for this investigation are solved numerically by using the Ritz finite element method. The effects of flow parameters on the velocity, temperature and concentration fields are presented through the graphs and numerical data for the skin-friction, Nusselt and Sherwood numbers are presented in tables and then discussed.

  5. Two-dimensional s-polarized solitary waves in relativistic plasmas. I. The fluid plasma model

    SciTech Connect

    Sanchez-Arriaga, G.; Lefebvre, E.

    2011-09-15

    The properties of two-dimensional linearly s-polarized solitary waves are investigated by fluid-Maxwell equations and particle-in-cell (PIC) simulations. These self-trapped electromagnetic waves appear during laser-plasma interactions, and they have a dominant electric field component E{sub z}, normal to the plane of the wave, that oscillates at a frequency below the electron plasma frequency {omega}{sub pe}. A set of equations that describe the waves are derived from the plasma fluid model in the case of cold or warm plasma and then solved numerically. The main features, including the maximum value of the vector potential amplitude, the total energy, the width, and the cavitation radius are presented as a function of the frequency. The amplitude of the vector potential increases monotonically as the frequency of the wave decreases, whereas the width reaches a minimum value at a frequency of the order of 0.82 {omega}{sub pe}. The results are compared with a set of PIC simulations where the solitary waves are excited by a high-intensity laser pulse.

  6. MHD dissipative flow and heat transfer of Casson fluids due to metachronal wave propulsion of beating cilia with thermal and velocity slip effects under an oblique magnetic field

    NASA Astrophysics Data System (ADS)

    Akbar, Noreen Sher; Tripathi, D.; Bég, O. Anwar; Khan, Z. H.

    2016-11-01

    A theoretical investigation of magnetohydrodynamic (MHD) flow and heat transfer of electrically-conducting viscoplastic fluids through a channel is conducted. The robust Casson model is implemented to simulate viscoplastic behavior of fluids. The external magnetic field is oblique to the fluid flow direction. Viscous dissipation effects are included. The flow is controlled by the metachronal wave propagation generated by cilia beating on the inner walls of the channel. The mathematical formulation is based on deformation in longitudinal and transverse velocity components induced by the ciliary beating phenomenon with cilia assumed to follow elliptic trajectories. The model also features velocity and thermal slip boundary conditions. Closed-form solutions to the non-dimensional boundary value problem are obtained under physiological limitations of low Reynolds number and large wavelength. The influence of key hydrodynamic and thermo-physical parameters i.e. Hartmann (magnetic) number, Casson (viscoplastic) fluid parameter, thermal slip parameter and velocity slip parameter on flow characteristics are investigated. A comparative study is also made with Newtonian fluids (corresponding to massive values of plastic viscosity). Stream lines are plotted to visualize trapping phenomenon. The computations reveal that velocity increases with increasing the magnitude of Hartmann number near the channel walls whereas in the core flow region (center of the channel) significant deceleration is observed. Temperature is elevated with greater Casson parameter, Hartmann number, velocity slip, eccentricity parameter, thermal slip and also Brinkmann (dissipation) number. Furthermore greater Casson parameter is found to elevate the quantity and size of the trapped bolus. In the pumping region, the pressure rise is reduced with greater Hartmann number, velocity slip, and wave number whereas it is enhanced with greater cilia length.

  7. Vanishing condition for the heat flux of a relativistic fluid in a moving frame

    NASA Astrophysics Data System (ADS)

    Romero-Muñoz, Martín; Dagdug, Leonardo; Chacón-Acosta, Guillermo

    2014-11-01

    It has been asked if is appropriate to introduce the heat flow in the energy- momentum tensor, due to the non-mechanical nature of heat [1]. Although this could be answered by both kinetic and symmetry arguments, we address the problem by checking the validity of the second law of thermodynamics in a fluid that is boosted by a Lorentz transformation to a non comoving frame. In this contribution we found that this only can happen under certain conditions. Indeed, we found that there are a family of reference frames that satisfies these conditions, where Landau-Lifshitz frame is one of those. Additionally we relate such conditions with the null energy condition and the entropy production.

  8. Quantum fluid model of coherent stimulated radiation by a dense relativistic cold electron beam

    SciTech Connect

    Monteiro, L. F.; Serbeto, A.; Tsui, K. H.; Mendonça, J. T.; Galvão, R. M. O.

    2013-07-15

    Using a quantum fluid model, the linear dispersion relation for FEL pumped by a short wavelength laser wiggler is deduced. Subsequently, a new quantum corrected resonance condition is obtained. It is shown that, in the limit of low energy electron beam and low frequency pump, the quantum recoil effect can be neglected, recovering the classical FEL resonance condition, k{sub s}=4k{sub w}γ{sup 2}. On the other hand, for short wavelength and high energy electron beam, the quantum recoil effect becomes strong and the resonance condition turns into k{sub s}=2√(k{sub w}/λ{sub c})γ{sup 3/2}, with λ{sub c} being the reduced Compton wavelength. As a result, a set of nonlinear coupled equations, which describes the quantum FEL dynamics as a three-wave interaction, is obtained. Neglecting wave propagation effects, this set of equations is solved numerically and results are presented.

  9. MHD Effects on Non-Newtonian Power-Law Fluid Past a Continuously Moving Porous Flat Plate with Heat Flux and Viscous Dissipation

    NASA Astrophysics Data System (ADS)

    Kishan, N.; Shashidar Reddy, B.

    2013-06-01

    The problem of a magneto-hydro dynamic flow and heat transfer to a non-Newtonian power-law fluid flow past a continuously moving flat porous plate in the presence of sucion/injection with heat flux by taking into consideration the viscous dissipation is analysed. The non-linear partial differential equations governing the flow and heat transfer are transformed into non-linear ordinary differential equations using appropriate transformations and then solved numerically by an implicit finite difference scheme. The solution is found to be dependent on various governing parameters including the magnetic field parameter M, power-law index n, suction/injection parameter ƒw, Prandtl number Pr and Eckert number Ec. A systematical study is carried out to illustrate the effects of these major parameters on the velocity profiles, temperature profile, skin friction coefficient and rate of heat transfer and the local Nusslet number.

  10. Derivation of nonlinear Schroedinger equation for electrostatic and electromagnetic waves in fully relativistic two-fluid plasmas by the reductive perturbation method

    SciTech Connect

    Lee, Nam C.

    2012-08-15

    The reductive perturbation method is used to derive a generic form of nonlinear Schroedinger equation (NLSE) that describes the nonlinear evolution of electrostatic (ES)/electromagnetic (EM) waves in fully relativistic two-fluid plasmas. The matrix eigenvector analysis shows that there are two mutually exclusive modes of waves, each mode involving only either one of two electric potentials, A and {phi}. The general result is applied to the electromagnetic mode in electron-ion plasmas with relativistically high electron temperature (T{sub e} Much-Greater-Than m{sub e}c{sup 2}). In the limit of high frequency (ck Much-Greater-Than {omega}{sub e}), the NLSE predicts bump type electromagnetic soliton structures having width scaling as {approx}kT{sub e}{sup 5/2}. It is shown that, in electron-positron pair plasmas with high temperature, dip type electromagnetic solitons can exist. The NLSE is also applied to electrostatic (Langmuir) wave and it is shown that dip type solitons can exist if k{lambda}{sub D} Much-Less-Than 1, where {lambda}{sub D} is the electron's Debye length. For the k{lambda}{sub D} Much-Greater-Than 1, however, the solution is of bump type soliton with width scaling as {approx}1/(k{sup 5}T{sub e}). It is also shown that dip type solitons can exist in cold plasmas having relativistically high streaming speed.

  11. Nano-batteries in a carry fluid as power supply: Freeform geometry, superfast refilling, and heat self-dissipation

    NASA Astrophysics Data System (ADS)

    Liu, Guangyu; Powell, Patrick; Lu, Wei

    2014-12-01

    This letter proposes and analyzes a system composed of many micro- or nano-scale batteries. Each battery is a self-contained Li-ion micro-battery enclosed in an insulating shell, and can charge/ discharge wirelessly or through contacts. Thousands of such batteries are carried by an inert fluid to form a power fluid to drive an electric vehicle. This power fluid can be stored in the tank and replaced easily with a fully charged fluid by refilling once its energy is depleted. The system can provide better energy density, higher power density, and extremely fast "charging" within minutes. The architecture eliminates the large over-capacity design in the current battery packs, significantly reducing the weight and cost. It would also enable progressive improvements of vehicle performance by replacing the micro-batteries. The battery system has flexible geometry, and therefore can essentially go into a storage space of any geometry, allowing uniform design of battery configurations for diverse applications.

  12. Comments on ''theory of dissipative density-gradient-driven turbulence in the tokamak edge'' (Phys. Fluids 28, 1419 (1985))

    SciTech Connect

    Krommes, J.A.

    1985-11-01

    The author critiques the model of tokamak edge turbulence by P.W. Terry and P.H. Diamond (Phys. Fluids 28, 1419, 1985). The critique includes a discussion of the physical basis, consistency and quantitative accuracy of the Terry-Diamond model. 19 refs. (WRF)

  13. A high-order relativistic two-fluid electrodynamic scheme with consistent reconstruction of electromagnetic fields and a multidimensional Riemann solver for electromagnetism

    NASA Astrophysics Data System (ADS)

    Balsara, Dinshaw S.; Amano, Takanobu; Garain, Sudip; Kim, Jinho

    2016-08-01

    In various astrophysics settings it is common to have a two-fluid relativistic plasma that interacts with the electromagnetic field. While it is common to ignore the displacement current in the ideal, classical magnetohydrodynamic limit, when the flows become relativistic this approximation is less than absolutely well-justified. In such a situation, it is more natural to consider a positively charged fluid made up of positrons or protons interacting with a negatively charged fluid made up of electrons. The two fluids interact collectively with the full set of Maxwell's equations. As a result, a solution strategy for that coupled system of equations is sought and found here. Our strategy extends to higher orders, providing increasing accuracy. The primary variables in the Maxwell solver are taken to be the facially-collocated components of the electric and magnetic fields. Consistent with such a collocation, three important innovations are reported here. The first two pertain to the Maxwell solver. In our first innovation, the magnetic field within each zone is reconstructed in a divergence-free fashion while the electric field within each zone is reconstructed in a form that is consistent with Gauss' law. In our second innovation, a multidimensionally upwinded strategy is presented which ensures that the magnetic field can be updated via a discrete interpretation of Faraday's law and the electric field can be updated via a discrete interpretation of the generalized Ampere's law. This multidimensional upwinding is achieved via a multidimensional Riemann solver. The multidimensional Riemann solver automatically provides edge-centered electric field components for the Stokes law-based update of the magnetic field. It also provides edge-centered magnetic field components for the Stokes law-based update of the electric field. The update strategy ensures that the electric field is always consistent with Gauss' law and the magnetic field is always divergence-free. This

  14. Influence of Hall Current and Viscous Dissipation on Pressure Driven Flow of Pseudoplastic Fluid with Heat Generation: A Mathematical Study.

    PubMed

    Noreen, Saima; Qasim, Muhammad

    2015-01-01

    In this paper, we study the influence of heat sink (or source) on the peristaltic motion of pseudoplastic fluid in the presence of Hall current, where channel walls are non-conducting in nature. Flow analysis has been carried out under the approximations of a low Reynolds number and long wavelength. Coupled equations are solved using shooting method for numerical solution for the axial velocity function, temperature and pressure gradient distributions. We analyze the influence of various interesting parameters on flow quantities. The present study can be considered as a mathematical presentation of the dynamics of physiological organs with stones.

  15. Influence of Hall Current and Viscous Dissipation on Pressure Driven Flow of Pseudoplastic Fluid with Heat Generation: A Mathematical Study

    PubMed Central

    Noreen, Saima; Qasim, Muhammad

    2015-01-01

    In this paper, we study the influence of heat sink (or source) on the peristaltic motion of pseudoplastic fluid in the presence of Hall current, where channel walls are non-conducting in nature. Flow analysis has been carried out under the approximations of a low Reynolds number and long wavelength. Coupled equations are solved using shooting method for numerical solution for the axial velocity function, temperature and pressure gradient distributions. We analyze the influence of various interesting parameters on flow quantities. The present study can be considered as a mathematical presentation of the dynamics of physiological organs with stones. PMID:26083027

  16. Relativistic effects on plasma expansion

    SciTech Connect

    Benkhelifa, El-Amine; Djebli, Mourad

    2014-07-15

    The expansion of electron-ion plasma is studied through a fully relativistic multi-fluids plasma model which includes thermal pressure, ambipolar electrostatic potential, and internal energy conversion. Numerical investigation, based on quasi-neutral assumption, is performed for three different regimes: nonrelativistic, weakly relativistic, and relativistic. Ions' front in weakly relativistic regime exhibits spiky structure associated with a break-down of quasi-neutrality at the expanding front. In the relativistic regime, ion velocity is found to reach a saturation limit which occurs at earlier stages of the expansion. This limit is enhanced by higher electron velocity.

  17. Weakly relativistic plasma expansion

    SciTech Connect

    Fermous, Rachid Djebli, Mourad

    2015-04-15

    Plasma expansion is an important physical process that takes place in laser interactions with solid targets. Within a self-similar model for the hydrodynamical multi-fluid equations, we investigated the expansion of both dense and under-dense plasmas. The weakly relativistic electrons are produced by ultra-intense laser pulses, while ions are supposed to be in a non-relativistic regime. Numerical investigations have shown that relativistic effects are important for under-dense plasma and are characterized by a finite ion front velocity. Dense plasma expansion is found to be governed mainly by quantum contributions in the fluid equations that originate from the degenerate pressure in addition to the nonlinear contributions from exchange and correlation potentials. The quantum degeneracy parameter profile provides clues to set the limit between under-dense and dense relativistic plasma expansions at a given density and temperature.

  18. A phase-field approach to no-slip boundary conditions in dissipative particle dynamics and other particle models for fluid flow in geometrically complex confined systems.

    PubMed

    Xu, Zhijie; Meakin, Paul

    2009-06-21

    Dissipative particle dynamics (DPD) is an effective mesoscopic particle model with a lower computational cost than molecular dynamics because of the soft potentials that it employs. However, the soft potential is not strong enough to prevent the DPD particles that are used to represent the fluid from penetrating solid boundaries represented by stationary DPD particles. A phase-field variable, phi(x,t), is used to indicate the phase at point x and time t, with a smooth transition from -1 (phase 1) to +1 (phase 2) across the interface. We describe an efficient implementation of no-slip boundary conditions in DPD models that combines solid-liquid particle-particle interactions with reflection at a sharp boundary located with subgrid scale accuracy using the phase field. This approach can be used for arbitrarily complex flow geometries and other similar particle models (such as smoothed particle hydrodynamics), and the validity of the model is demonstrated by DPD simulations of flow in confined systems with various geometries.

  19. Fast lattice Boltzmann solver for relativistic hydrodynamics.

    PubMed

    Mendoza, M; Boghosian, B M; Herrmann, H J; Succi, S

    2010-07-01

    A lattice Boltzmann formulation for relativistic fluids is presented and numerically validated through quantitative comparison with recent hydrodynamic simulations of relativistic fluids. In order to illustrate its capability to handle complex geometries, the scheme is also applied to the case of a three-dimensional relativistic shock wave, generated by a supernova explosion, impacting on a massive interstellar cloud. This formulation opens up the possibility of exporting the proven advantages of lattice Boltzmann methods, namely, computational efficiency and easy handling of complex geometries, to the context of (mildly) relativistic fluid dynamics at large, from quark-gluon plasmas up to supernovae with relativistic outflows.

  20. Fast lattice Boltzmann solver for relativistic hydrodynamics.

    PubMed

    Mendoza, M; Boghosian, B M; Herrmann, H J; Succi, S

    2010-07-01

    A lattice Boltzmann formulation for relativistic fluids is presented and numerically validated through quantitative comparison with recent hydrodynamic simulations of relativistic fluids. In order to illustrate its capability to handle complex geometries, the scheme is also applied to the case of a three-dimensional relativistic shock wave, generated by a supernova explosion, impacting on a massive interstellar cloud. This formulation opens up the possibility of exporting the proven advantages of lattice Boltzmann methods, namely, computational efficiency and easy handling of complex geometries, to the context of (mildly) relativistic fluid dynamics at large, from quark-gluon plasmas up to supernovae with relativistic outflows. PMID:20867451

  1. Spinodal phase separation in relativistic nuclear collisions

    SciTech Connect

    Randrup, Joergen

    2010-09-15

    The spinodal amplification of density fluctuations is treated perturbatively within dissipative fluid dynamics for the purpose of elucidating the prospects for this mechanism to cause a phase separation to occur during a relativistic nuclear collision. The present study includes not only viscosity but also heat conduction (whose effect on the growth rates is of comparable magnitude but opposite), as well as a gradient term in the local pressure, and the corresponding dispersion relation for collective modes in bulk matter is derived from relativistic fluid dynamics. A suitable two-phase equation of state is obtained by interpolation between a hadronic gas and a quark-gluon plasma, while the transport coefficients are approximated by simple parametrizations that are suitable at any degree of net baryon density. We calculate the degree of spinodal amplification occurring along specific dynamical phase trajectories characteristic of nuclear collision at various energies. The results bring out the important fact that the prospects for spinodal phase separation to occur can be greatly enhanced by careful tuning of the collision energy to ensure that the thermodynamic conditions associated with the maximum compression lie inside the region of spinodal instability.

  2. Spatial Localization in Dissipative Systems

    NASA Astrophysics Data System (ADS)

    Knobloch, E.

    2015-03-01

    Spatial localization is a common feature of physical systems, occurring in both conservative and dissipative systems. This article reviews the theoretical foundations of our understanding of spatial localization in forced dissipative systems, from both a mathematical point of view and a physics perspective. It explains the origin of the large multiplicity of simultaneously stable spatially localized states present in a parameter region called the pinning region and its relation to the notion of homoclinic snaking. The localized states are described as bound states of fronts, and the notions of front pinning, self-pinning, and depinning are emphasized. Both one-dimensional and two-dimensional systems are discussed, and the reasons behind the differences in behavior between dissipative systems with conserved and nonconserved dynamics are explained. The insights gained are specific to forced dissipative systems and are illustrated here using examples drawn from fluid mechanics (convection and shear flows) and a simple model of crystallization.

  3. An Extended Magnetohydrodynamics Model for Relativistic Weakly Collisional Plasmas

    NASA Astrophysics Data System (ADS)

    Chandra, Mani; Gammie, Charles F.; Foucart, Francois; Quataert, Eliot

    2015-09-01

    Black holes that accrete far below the Eddington limit are believed to accrete through a geometrically thick, optically thin, rotationally supported plasma that we will refer to as a radiatively inefficient accretion flow (RIAF). RIAFs are typically collisionless in the sense that the Coulomb mean free path is large compared to {GM}/{c}2, and relativistically hot near the event horizon. In this paper we develop a phenomenological model for the plasma in RIAFs, motivated by the application to sources such as Sgr A* and M87. The model is derived using Israel–Stewart theory, which considers deviations up to second order from thermal equilibrium, but modified for a magnetized plasma. This leads to thermal conduction along magnetic field lines and a difference in pressure, parallel and perpendicular to the field lines (which is equivalent to anisotropic viscosity). In the non-relativistic limit, our model reduces to the widely used Braginskii theory of magnetized, weakly collisional plasmas. We compare our model to the existing literature on dissipative relativistic fluids, describe the linear theory of the plasma, and elucidate the physical meaning of the free parameters in the model. We also describe limits of the model when the conduction is saturated and when the viscosity implies a large pressure anisotropy. In future work, the formalism developed in this paper will be used in numerical models of RIAFs to assess the importance of non-ideal processes for the dynamics and radiative properties of slowly accreting black holes.

  4. Dissipative superfluid dynamics from gravity

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Jyotirmoy; Bhattacharyya, Sayantani; Minwalla, Shiraz

    2011-04-01

    Charged asymptotically AdS 5 black branes are sometimes unstable to the condensation of charged scalar fields. For fields of infinite charge and squared mass -4 Herzog was able to analytically determine the phase transition temperature and compute the endpoint of this instability in the neighborhood of the phase transition. We generalize Herzog's construction by perturbing away from infinite charge in an expansion in inverse charge and use the solutions so obtained as input for the fluid gravity map. Our tube wise construction of patched up locally hairy black brane solutions yields a one to one map from the space of solutions of superfluid dynamics to the long wavelength solutions of the Einstein Maxwell system. We obtain explicit expressions for the metric, gauge field and scalar field dual to an arbitrary superfluid flow at first order in the derivative expansion. Our construction allows us to read off the the leading dissipative corrections to the perfect superfluid stress tensor, current and Josephson equations. A general framework for dissipative superfluid dynamics was worked out by Landau and Lifshitz for zero superfluid velocity and generalized to nonzero fluid velocity by Clark and Putterman. Our gravitational results do not fit into the 13 parameter Clark-Putterman framework. Purely within fluid dynamics we present a consistent new generalization of Clark and Putterman's equations to a set of superfluid equations parameterized by 14 dissipative parameters. The results of our gravitational calculation fit perfectly into this enlarged framework. In particular we compute all the dissipative constants for the gravitational superfluid.

  5. Viscous evolution of the rapidity distribution of matter created in relativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Bożek, Piotr

    2008-03-01

    The longitudinal hydrodynamic expansion of the fluid created in relativistic heavy-ion collisions is considered taking into account shear viscosity. We consider the dynamics of a non-boost-invariant energy density of the fluid in 1+1 dimensions, using the proper time and the space-time rapidity. Both a nonvanishing viscosity and a soft equation of state make the final particle distributions in rapidity narrower. The width of the initial Gaussian rapidity distribution and its central energy density are fitted to reproduce the rapidity distributions of pions and kaons as measured by the BRAHMS Collaboration. The presence of viscosity has dramatic consequences on the value of the initial energy density. Dissipative processes and the reduction of the longitudinal work due to the shear viscosity increase the total entropy and the particle multiplicity at central rapidities. Viscous corrections make the longitudinal velocity of the fluid stay close to the Bjorken scaling flow vz=z/t through the evolution.

  6. Energy Dissipation by Tides and Librations in Synchronous Satellites

    NASA Technical Reports Server (NTRS)

    Bills, B. G.; Ray, R. D.

    2000-01-01

    Energy dissipation associated with physical librations of large synchronous satellites may be important for maintaining internal fluid layers. Depending on the depth and viscosity of the fluid layer, viscous heating from librations may exceeed that from tides.

  7. Tidal disruption of dissipative planetesimals

    NASA Astrophysics Data System (ADS)

    Mizuno, H.; Boss, A. P.

    1985-07-01

    A self-consistent numerical model is developed for the tidal disruption of a solid planetesimal. The planetesimal is treated as a highly viscous, slightly compressible fluid whose disturbed parts are an inviscid, pressureless fluid undergoing distortion and disruption. The distortions were constrained to being symmetrical above and below the equatorial plane. The tidal potential is expanded in terms of Legendre polynomials, which eliminates the center of mass acceleration effects, permitting definition of equations of motion in a noninertial frame. Consideration is given to viscous dissipation and to characteristics of the solid-atmosphere boundary. The model is applied to sample cases in one, two and three dimensions.

  8. Relativistic diffusion

    NASA Astrophysics Data System (ADS)

    Haba, Z.

    2009-02-01

    We discuss relativistic diffusion in proper time in the approach of Schay (Ph.D. thesis, Princeton University, Princeton, NJ, 1961) and Dudley [Ark. Mat. 6, 241 (1965)]. We derive (Langevin) stochastic differential equations in various coordinates. We show that in some coordinates the stochastic differential equations become linear. We obtain momentum probability distribution in an explicit form. We discuss a relativistic particle diffusing in an external electromagnetic field. We solve the Langevin equations in the case of parallel electric and magnetic fields. We derive a kinetic equation for the evolution of the probability distribution. We discuss drag terms leading to an equilibrium distribution. The relativistic analog of the Ornstein-Uhlenbeck process is not unique. We show that if the drag comes from a diffusion approximation to the master equation then its form is strongly restricted. The drag leading to the Tsallis equilibrium distribution satisfies this restriction whereas the one of the Jüttner distribution does not. We show that any function of the relativistic energy can be the equilibrium distribution for a particle in a static electric field. A preliminary study of the time evolution with friction is presented. It is shown that the problem is equivalent to quantum mechanics of a particle moving on a hyperboloid with a potential determined by the drag. A relation to diffusions appearing in heavy ion collisions is briefly discussed.

  9. Relativistic diffusion.

    PubMed

    Haba, Z

    2009-02-01

    We discuss relativistic diffusion in proper time in the approach of Schay (Ph.D. thesis, Princeton University, Princeton, NJ, 1961) and Dudley [Ark. Mat. 6, 241 (1965)]. We derive (Langevin) stochastic differential equations in various coordinates. We show that in some coordinates the stochastic differential equations become linear. We obtain momentum probability distribution in an explicit form. We discuss a relativistic particle diffusing in an external electromagnetic field. We solve the Langevin equations in the case of parallel electric and magnetic fields. We derive a kinetic equation for the evolution of the probability distribution. We discuss drag terms leading to an equilibrium distribution. The relativistic analog of the Ornstein-Uhlenbeck process is not unique. We show that if the drag comes from a diffusion approximation to the master equation then its form is strongly restricted. The drag leading to the Tsallis equilibrium distribution satisfies this restriction whereas the one of the Jüttner distribution does not. We show that any function of the relativistic energy can be the equilibrium distribution for a particle in a static electric field. A preliminary study of the time evolution with friction is presented. It is shown that the problem is equivalent to quantum mechanics of a particle moving on a hyperboloid with a potential determined by the drag. A relation to diffusions appearing in heavy ion collisions is briefly discussed.

  10. Modeling relativistic nuclear collisions.

    SciTech Connect

    Anderlik, C.; Magas, V.; Strottman, D.; Csernai, L. P.

    2001-01-01

    Modeling Ultra-Relativistic Heavy Ion Collisioiis at RHIC and LHC energies using a Multi Module Model is presented. The first Module is the Effective String Rope Model for the calculation of the initial stages of the reaction; the output of this module is used as the initial state for the subsequent one-fluid hydrodynainical calculation module. It is shown that such an initial state leads to the creation of the third flow component. The hydrodynamical evolution of the energy density distribution is presented for RHIC energies. The final module describing the Freeze Out; and Hadronization is also discussed.

  11. Relativistic geodesy

    NASA Astrophysics Data System (ADS)

    Flury, J.

    2016-06-01

    Quantum metrology enables new applications in geodesy, including relativistic geodesy. The recent progress in optical atomic clocks and in long-distance frequency transfer by optical fiber together pave the way for using measurements of the gravitational frequency redshift for geodesy. The remote comparison of frequencies generated by calibrated clocks will allow for a purely relativistic determination of differences in gravitational potential and height between stations on Earth surface (chronometric leveling). The long-term perspective is to tie potential and height differences to atomic standards in order to overcome the weaknesses and inhomogeneity of height systems determined by classical spirit leveling. Complementarily, gravity measurements with atom interferometric setups, and satellite gravimetry with space borne laser interferometers allow for new sensitivities in the measurement of the Earth's gravity field.

  12. Relativistic klystrons

    SciTech Connect

    Allen, M.A.; Azuma, O.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fant, K.S.; Fowkes, W.R.; Herrmannsfeldt, W.B.; Hoag, H.A.; Koontz, R.F.

    1989-03-01

    Experimental work is underway by a SLAC-LLNL-LBL collaboration to investigate the feasibility of using relativistic klystrons as a power source for future high gradient accelerators. Two different relativistic klystron configurations have been built and tested to date: a high grain multicavity klystron at 11.4 GHz and a low gain two cavity subharmonic buncher driven at 5.7 GHz. In both configurations power is extracted at 11.4 GHz. In order to understand the basic physics issues involved in extracting RF from a high power beam, we have used both a single resonant cavity and a multi-cell traveling wave structure for energy extraction. We have learned how to overcome our previously reported problem of high power RF pulse shortening, and have achieved peak RF power levels of 170 MW with the RF pulse of the same duration as the beam current pulse. 6 refs., 3 figs., 3 tabs.

  13. Relativistic Astrophysics

    NASA Astrophysics Data System (ADS)

    Jones, Bernard J. T.; Markovic, Dragoljub

    1997-06-01

    Preface; Prologue: Conference overview Bernard Carr; Part I. The Universe At Large and Very Large Redshifts: 2. The size and age of the Universe Gustav A. Tammann; 3. Active galaxies at large redshifts Malcolm S. Longair; 4. Observational cosmology with the cosmic microwave background George F. Smoot; 5. Future prospects in measuring the CMB power spectrum Philip M. Lubin; 6. Inflationary cosmology Michael S. Turner; 7. The signature of the Universe Bernard J. T. Jones; 8. Theory of large-scale structure Sergei F. Shandarin; 9. The origin of matter in the universe Lev A. Kofman; 10. New guises for cold-dark matter suspects Edward W. Kolb; Part II. Physics and Astrophysics Of Relativistic Compact Objects: 11. On the unification of gravitational and inertial forces Donald Lynden-Bell; 12. Internal structure of astrophysical black holes Werner Israel; 13. Black hole entropy: external facade and internal reality Valery Frolov; 14. Accretion disks around black holes Marek A. Abramowicz; 15. Black hole X-ray transients J. Craig Wheeler; 16. X-rays and gamma rays from active galactic nuclei Roland Svensson; 17. Gamma-ray bursts: a challenge to relativistic astrophysics Martin Rees; 18. Probing black holes and other exotic objects with gravitational waves Kip Thorne; Epilogue: the past and future of relativistic astrophysics Igor D. Novikov; I. D. Novikov's scientific papers and books.

  14. Relativistic hydrodynamics on graphic cards

    NASA Astrophysics Data System (ADS)

    Gerhard, Jochen; Lindenstruth, Volker; Bleicher, Marcus

    2013-02-01

    We show how to accelerate relativistic hydrodynamics simulations using graphic cards (graphic processing units, GPUs). These improvements are of highest relevance e.g. to the field of high-energetic nucleus-nucleus collisions at RHIC and LHC where (ideal and dissipative) relativistic hydrodynamics is used to calculate the evolution of hot and dense QCD matter. The results reported here are based on the Sharp And Smooth Transport Algorithm (SHASTA), which is employed in many hydrodynamical models and hybrid simulation packages, e.g. the Ultrarelativistic Quantum Molecular Dynamics model (UrQMD). We have redesigned the SHASTA using the OpenCL computing framework to work on accelerators like graphic processing units (GPUs) as well as on multi-core processors. With the redesign of the algorithm the hydrodynamic calculations have been accelerated by a factor 160 allowing for event-by-event calculations and better statistics in hybrid calculations.

  15. RANKINE-HUGONIOT RELATIONS IN RELATIVISTIC COMBUSTION WAVES

    SciTech Connect

    Gao Yang; Law, Chung K.

    2012-12-01

    As a foundational element describing relativistic reacting waves of relevance to astrophysical phenomena, the Rankine-Hugoniot relations classifying the various propagation modes of detonation and deflagration are analyzed in the relativistic regime, with the results properly degenerating to the non-relativistic and highly relativistic limits. The existence of negative-pressure downstream flows is noted for relativistic shocks, which could be of interest in the understanding of the nature of dark energy. Entropy analysis for relativistic shock waves is also performed for relativistic fluids with different equations of state (EoS), denoting the existence of rarefaction shocks in fluids with adiabatic index {Gamma} < 1 in their EoS. The analysis further shows that weak detonations and strong deflagrations, which are rare phenomena in terrestrial environments, are expected to exist more commonly in astrophysical systems because of the various endothermic reactions present therein. Additional topics of relevance to astrophysical phenomena are also discussed.

  16. Shock waves and double layers in electron degenerate dense plasma with viscous ion fluids

    SciTech Connect

    Mamun, A. A.; Zobaer, M. S.

    2014-02-15

    The properties of ion-acoustic shock waves and double layers propagating in a viscous degenerate dense plasma (containing inertial viscous ion fluid, non-relativistic and ultra-relativistic degenerate electron fluid, and negatively charged stationary heavy element) is investigated. A new nonlinear equation (viz. Gardner equation with additional dissipative term) is derived by the reductive perturbation method. The properties of the ion-acoustic shock waves and double layers are examined by the analysis of the shock and double layer solutions of this new equation (we would like to call it “M-Z equation”). It is found that the properties of these shock and double layer structures obtained from this analysis are significantly different from those obtained from the analysis of standard Gardner or Burgers’ equation. The implications of our results to dense plasmas in astrophysical objects (e.g., non-rotating white dwarf stars) are briefly discussed.

  17. Particle acceleration, magnetization and radiation in relativistic shocks

    NASA Astrophysics Data System (ADS)

    Derishev, Evgeny V.; Piran, Tsvi

    2016-08-01

    The mechanisms of particle acceleration and radiation, as well as magnetic field build-up and decay in relativistic collisionless shocks, are open questions with important implications to various phenomena in high-energy astrophysics. While the Weibel instability is possibly responsible for magnetic field build-up and diffusive shock acceleration is a model for acceleration, both have problems and current particle-in-cell simulations show that particles are accelerated only under special conditions and the magnetic field decays on a very short length-scale. We present here a novel model for the structure and the emission of highly relativistic collisionless shocks. The model takes into account (and is based on) non-local energy and momentum transport across the shock front via emission and absorption of high-energy photons. This leads to a pre-acceleration of the fluid and pre-amplification of the magnetic fields in the upstream region. Both have drastic implications on the shock structure. The model explains the persistence of the shock-generated magnetic field at large distances from the shock front. The dissipation of this magnetic field results in a continuous particle acceleration within the downstream region. A unique feature of the model is the existence of an `attractor', towards which any shock will evolve. The model is applicable to any relativistic shock, but its distinctive features show up only for sufficiently large compactness. We demonstrate that prompt and afterglow gamma-ray bursts' shocks satisfy the relevant conditions, and we compare their observations with the predictions of the model.

  18. Dissipation effects in mechanics and thermodynamics

    NASA Astrophysics Data System (ADS)

    Güémez, J.; Fiolhais, M.

    2016-07-01

    With the discussion of three examples, we aim at clarifying the concept of energy transfer associated with dissipation in mechanics and in thermodynamics. The dissipation effects due to dissipative forces, such as the friction force between solids or the drag force in motions in fluids, lead to an internal energy increase of the system and/or to heat transfer to the surroundings. This heat flow is consistent with the second law, which states that the entropy of the universe should increase when those forces are present because of the irreversibility always associated with their actions. As far as mechanics is concerned, the effects of the dissipative forces are included in Newton’s equations as impulses and pseudo-works.

  19. Dynamics of dissipative gravitational collapse

    SciTech Connect

    Herrera, L.; Santos, N.O.

    2004-10-15

    The Misner and Sharp approach to the study of gravitational collapse is extended to the dissipative case in, both, the streaming out and the diffusion approximations. The role of different terms in the dynamical equation are analyzed in detail. The dynamical equation is then coupled to a causal transport equation in the context of Israel-Stewart theory. The decreasing of the inertial mass density of the fluid, by a factor which depends on its internal thermodynamics state, is reobtained, at any time scale. In accordance with the equivalence principle, the same decreasing factor is obtained for the gravitational force term. Prospective applications of this result to some astrophysical scenarios are discussed.

  20. Viscous dissipative Chaplygin gas dominated homogenous and isotropic cosmological models

    SciTech Connect

    Pun, C. S. J.; Mak, M. K.; Harko, T.; Gergely, L. A.; Kovacs, Z.; Szabo, G. M.

    2008-03-15

    The generalized Chaplygin gas, which interpolates between a high density relativistic era and a nonrelativistic matter phase, is a popular dark energy candidate. We consider a generalization of the Chaplygin gas model, by assuming the presence of a bulk viscous type dissipative term in the effective thermodynamic pressure of the gas. The dissipative effects are described by using the truncated Israel-Stewart model, with the bulk viscosity coefficient and the relaxation time functions of the energy density only. The corresponding cosmological dynamics of the bulk viscous Chaplygin gas dominated universe is considered in detail for a flat homogeneous isotropic Friedmann-Robertson-Walker geometry. For different values of the model parameters we consider the evolution of the cosmological parameters (scale factor, energy density, Hubble function, deceleration parameter, and luminosity distance, respectively), by using both analytical and numerical methods. In the large time limit the model describes an accelerating universe, with the effective negative pressure induced by the Chaplygin gas and the bulk viscous pressure driving the acceleration. The theoretical predictions of the luminosity distance of our model are compared with the observations of the type Ia supernovae. The model fits well the recent supernova data. From the fitting we determine both the equation of state of the Chaplygin gas, and the parameters characterizing the bulk viscosity. The evolution of the scalar field associated to the viscous Chaplygin fluid is also considered, and the corresponding potential is obtained. Hence the viscous Chaplygin gas model offers an effective dynamical possibility for replacing the cosmological constant, and for explaining the recent acceleration of the universe.

  1. On Lorentz invariants in relativistic magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Yang, Shu-Di; Wang, Xiao-Gang

    2016-08-01

    Lorentz invariants whose nonrelativistic correspondences play important roles in magnetic reconnection are discussed in this paper. Particularly, the relativistic invariant of the magnetic reconnection rate is defined and investigated in a covariant two-fluid model. Certain Lorentz covariant representations for energy conversion and magnetic structures in reconnection processes are also investigated. Furthermore, relativistic measures for topological features of reconnection sites, particularly magnetic nulls and separatrices, are analyzed.

  2. Quantum bouncer with dissipation

    NASA Astrophysics Data System (ADS)

    Lopez, Gustavo; Gonzalez, Gabriel

    2004-05-01

    Effects on the spectra of the quantum bouncer due to dissipation are given when a linear or quadratic dissipation is taken into account. Classical constants of motions and Hamiltonians are deduced for these systems and their quantized eigenvalues are estimated through perturbation theory. Differences were found comparing the eigenvalues of these two quantities.

  3. Magnetic dissipation in the Crab nebula

    NASA Astrophysics Data System (ADS)

    Komissarov, Serguei S.

    2013-01-01

    Magnetic dissipation is frequently invoked as a way of powering the observed emission of relativistic flows in Gamma-ray bursts and active galactic nuclei. Pulsar Wind Nebulae provide closer to home cosmic laboratories which can be used to test the hypothesis. To this end, we reanalyze the observational data on the spindown power of the Crab pulsar, energetics of the Crab nebula and its magnetic field. We show that unless the magnetic inclination angle of the Crab pulsar is very close to 90 degrees the overall magnetization of the striped wind after total dissipation of its stripes is significantly higher than that deduced in the Kennel-Coroniti model and recent axisymmetric simulations of Pulsar Wind Nebulae. On the other hand, higher wind magnetization is in conflict with the observed low magnetic field of the Crab nebula, unless it is subject to efficient dissipation inside the nebula as well. For the likely inclination angle of 45 degrees the data require magnetic dissipation on the time-scale of about 80 years, which is short compared to the lifetime of the nebula but long compared to the time-scale of Crab's gamma-ray flares.

  4. Noncommutative fluid dynamics in the Kähler parametrization

    NASA Astrophysics Data System (ADS)

    Holender, L.; Santos, M. A.; Orlando, M. T. D.; Vancea, I. V.

    2011-11-01

    In this paper, we propose a first-order action functional for a large class of systems that generalize the relativistic perfect fluids in the Kähler parametrization to noncommutative spacetimes. The noncommutative action is parametrized by two arbitrary functions K(z,z¯) and f(-j2) that depend on the fluid potentials and represent the generalization of the Kähler potential of the complex surface parametrized by z and z¯, respectively, and the characteristic function of each model. We calculate the equations of motion for the fluid potentials and the energy-momentum tensor in the first order in the noncommutative parameter. The density current does not receive any noncommutative corrections and it is conserved under the action of the commutative generators Pμ but the energy-momentum tensor is not. Therefore, we determine the set of constraints under which the energy-momentum tensor is divergenceless. Another set of constraints on the fluid potentials is obtained from the requirement of the invariance of the action under the generalization of the volume preserving transformations of the noncommutative spacetime. We show that the proposed action describes noncommutative fluid models by casting the energy-momentum tensor in the familiar fluid form and identifying the corresponding energy and momentum densities. In the commutative limit, they are identical to the corresponding quantities of the relativistic perfect fluids. The energy-momentum tensor contains a dissipative term that is due to the noncommutative spacetime and vanishes in the commutative limit. Finally, we particularize the theory to the case when the complex fluid potentials are characterized by a function K(z,z¯) that is a deformation of the complex plane and show that this model has important common features with the commutative fluid such as infinitely many conserved currents and a conserved axial current that in the commutative case is associated to the topologically conserved linking number.

  5. Weakly nonlinear kink-type solitary waves in a fully relativistic plasma

    SciTech Connect

    Tribeche, Mouloud; Boukhalfa, Soufiane; Zerguini, Taha Houssine

    2010-08-15

    A fully and coherent relativistic fluid model derived from the covariant formulation of relativistic fluid equations is used to study small but finite amplitude solitary waves. This approach has the characteristic to be consistent with the relativistic principle and consequently leads to a more general set of equations valid for fully relativistic plasmas with arbitrary Lorentz relativistic factor. A kink-solitary wave solution is outlined. Due to electron relativistic effect, the localized structure may experience either a spreading or a compression. This latter phenomenon (compression) becomes less effective and less noticeable as the relativistic character of the ions becomes important. Our results may be relevant to cosmic relativistic double-layers and relativistic plasma structures that involve energetic plasma flows.

  6. Local equilibrium hypothesis and Taylor’s dissipation law

    NASA Astrophysics Data System (ADS)

    Goto, Susumu; Vassilicos, J. C.

    2016-04-01

    To qualitatively investigate the validity of Kolmogorov local equilibrium hypothesis and the Taylor dissipation law, we conduct direct numerical simulations of the three-dimensional turbulent Kolmogorov flow. Since strong scale-by-scale (i.e. Richardson-type) energy cascade events occur quasi-periodically, the kinetic energy of the turbulence and its dissipation rate evolve quasi-periodically too. In this unsteady turbulence driven by a steady force, instantaneous values of the dissipation rate obey the scaling recently discovered in wind tunnel experiments (Vassilicos 2015 Ann. Rev. Fluid Mech. 47 95-114) instead of the Taylor dissipation law. The Taylor dissipation law does not hold because the local equilibrium hypothesis does not hold in a relatively low wave-number range. The breakdown of this hypothesis is caused by the finite time needed for the energy at such large scales to reach the dissipative scale by the scale-by-scale energy cascade.

  7. GENERAL RELATIVISTIC EFFECTS ON NONLINEAR POWER SPECTRA

    SciTech Connect

    Jeong, Donghui; Gong, Jinn-Ouk; Noh, Hyerim; Hwang, Jai-chan E-mail: jgong@lorentz.leidenuniv.nl E-mail: jchan@knu.ac.kr

    2011-01-20

    The nonlinear nature of Einstein's equation introduces genuine relativistic higher order corrections to the usual Newtonian fluid equations describing the evolution of cosmological perturbations. We study the effect of such novel nonlinearities on the next-to-leading order matter and velocity power spectra for the case of a pressureless, irrotational fluid in a flat Friedmann background. We find that pure general relativistic corrections are negligibly small over all scales. Our result guarantees that, in the current paradigm of standard cosmology, one can safely use Newtonian cosmology even in nonlinear regimes.

  8. Resistive dissipation and magnetic field topology in the stellar corona

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1993-01-01

    Tangential discontinuities, or current sheets, in a magnetic field embedded in a fluid with vanishing resistivity are created by discontinuous fluid motion. Tangential discontinuities are also created when a magnetic field is allowed to relax to magnetostatic equilibrium after mixing by fluid motions (either continuous or discontinuous) into any but the simplest topologies. This paper shows by formal examples that the current sheets arising solely from discontinuous fluid motions do not contribute significantly to the dissipation of magnetic free energy when a small resistivity is introduced. Dissipation that is significant under coronal conditions occurs only by rapid reconnection, which arises when, and only when, the current sheets are required by the field topology. Hence it is topological dissipation that is primarily responsible for heating tenuous coronal gases in astronomical settings, whether the fluid displacements of the field are continuous or discontinuous.

  9. Dissipative Field Theory

    SciTech Connect

    Kheirandish, F.; Amooshahi, M.

    2008-11-18

    Quantum field theory of a damped vibrating string as the simplest dissipative scalar field theory is investigated by introducing a minimal coupling method. The rate of energy flowing between the system and its environment is obtained.

  10. Intrinsic dissipation in atomic force microscopy cantilevers.

    PubMed

    Zypman, Fredy

    2011-07-01

    In this paper we build a practical modification to the standard Euler-Bernoulli equation for flexural modes of cantilever vibrations most relevant for operation of AFM in high vacuum conditions. This is done by the study of a new internal dissipation term into the Euler-Bernoulli equation. This term remains valid in ultra-high vacuum, and becomes particularly relevant when viscous dissipation with the fluid environment becomes negligible. We derive a compact explicit equation for the quality factor versus pressure for all the flexural modes. This expression is used to compare with corresponding extant high vacuum experiments. We demonstrate that a single internal dissipation parameter and a single viscosity parameter provide enough information to reproduce the first three experimental flexural resonances at all pressures. The new term introduced here has a mesoscopic origin in the relative motion between adjacent layers in the cantilever. PMID:21741914

  11. Generalized Ohm's law for relativistic plasmas

    NASA Astrophysics Data System (ADS)

    Kandus, A.; Tsagas, C. G.

    2008-04-01

    We generalize the relativistic expression of Ohm's law by studying a multifluid system of charged species using the 1 + 3 covariant formulation of general relativistic electrodynamics. This is done by providing a fully relativistic, fully non-linear propagation equation for the spatial component of the electric 4-current. Our analysis proceeds along the lines of the non-relativistic studies and extends previous relativistic work on cold plasmas. Exploiting the compactness and transparency of the covariant formalism, we provide a direct comparison with the standard Newtonian versions of Ohm's law and identify the relativistic corrections in an unambiguous way. The generalized expression of Ohm's law is initially given relative to an arbitrary observer and for a multicomponent relativistic charged medium. Then, the law is written with respect to the Eckart frame and for a hot two-fluid plasma with zero total charge. Finally, we apply our analysis to a cold proton-electron plasma and recover the well-known magnetohydrodynamic expressions. In every step, we discuss the approximations made and identify familiar effects, like the Biermann battery and the Hall effect.

  12. Relativistic electron beam generator

    DOEpatents

    Mooney, L.J.; Hyatt, H.M.

    1975-11-11

    A relativistic electron beam generator for laser media excitation is described. The device employs a diode type relativistic electron beam source having a cathode shape which provides a rectangular output beam with uniform current density.

  13. Entropy Splitting and Numerical Dissipation

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Vinokur, M.; Djomehri, M. J.

    1999-01-01

    A rigorous stability estimate for arbitrary order of accuracy of spatial central difference schemes for initial-boundary value problems of nonlinear symmetrizable systems of hyperbolic conservation laws was established recently by Olsson and Oliger (1994) and Olsson (1995) and was applied to the two-dimensional compressible Euler equations for a perfect gas by Gerritsen and Olsson (1996) and Gerritsen (1996). The basic building block in developing the stability estimate is a generalized energy approach based on a special splitting of the flux derivative via a convex entropy function and certain homogeneous properties. Due to some of the unique properties of the compressible Euler equations for a perfect gas, the splitting resulted in the sum of a conservative portion and a non-conservative portion of the flux derivative. hereafter referred to as the "Entropy Splitting." There are several potential desirable attributes and side benefits of the entropy splitting for the compressible Euler equations that were not fully explored in Gerritsen and Olsson. The paper has several objectives. The first is to investigate the choice of the arbitrary parameter that determines the amount of splitting and its dependence on the type of physics of current interest to computational fluid dynamics. The second is to investigate in what manner the splitting affects the nonlinear stability of the central schemes for long time integrations of unsteady flows such as in nonlinear aeroacoustics and turbulence dynamics. If numerical dissipation indeed is needed to stabilize the central scheme, can the splitting help minimize the numerical dissipation compared to its un-split cousin? Extensive numerical study on the vortex preservation capability of the splitting in conjunction with central schemes for long time integrations will be presented. The third is to study the effect of the non-conservative proportion of splitting in obtaining the correct shock location for high speed complex shock

  14. Asymptotic theory of relativistic, magnetized jets

    SciTech Connect

    Lyubarsky, Yuri

    2011-01-15

    The structure of a relativistically hot, strongly magnetized jet is investigated at large distances from the source. Asymptotic equations are derived describing collimation and acceleration of the externally confined jet. Conditions are found for the transformation of the thermal energy into the fluid kinetic energy or into the Poynting flux. Simple scalings are presented for the jet collimation angle and Lorentz factors.

  15. Asymptotic theory of relativistic, magnetized jets.

    PubMed

    Lyubarsky, Yuri

    2011-01-01

    The structure of a relativistically hot, strongly magnetized jet is investigated at large distances from the source. Asymptotic equations are derived describing collimation and acceleration of the externally confined jet. Conditions are found for the transformation of the thermal energy into the fluid kinetic energy or into the Poynting flux. Simple scalings are presented for the jet collimation angle and Lorentz factors. PMID:21405769

  16. Cold pool dissipation

    NASA Astrophysics Data System (ADS)

    Grant, Leah D.; Heever, Susan C.

    2016-02-01

    The mechanisms by which sensible heat fluxes (SHFs) alter cold pool characteristics and dissipation rates are investigated in this study using idealized two-dimensional numerical simulations and an environment representative of daytime, dry, continental conditions. Simulations are performed with no SHFs, SHFs calculated using a bulk formula, and constant SHFs for model resolutions with horizontal (vertical) grid spacings ranging from 50 m (25 m) to 400 m (200 m). In the highest resolution simulations, turbulent entrainment of environmental air into the cold pool is an important mechanism for dissipation in the absence of SHFs. Including SHFs enhances cold pool dissipation rates, but the processes responsible for the enhanced dissipation differ depending on the SHF formulation. The bulk SHFs increase the near-surface cold pool temperatures, but their effects on the overall cold pool characteristics are small, while the constant SHFs influence the near-surface environmental stability and the turbulent entrainment rates into the cold pool. The changes to the entrainment rates are found to be the most significant of the SHF effects on cold pool dissipation. SHFs may also influence the timing of cold pool-induced convective initiation by altering the environmental stability and the cold pool intensity. As the model resolution is coarsened, cold pool dissipation is found to be less sensitive to SHFs. Furthermore, the coarser resolution simulations not only poorly but sometimes wrongly represent the SHF impacts on the cold pools. Recommendations are made regarding simulating the interaction of cold pools with convection and the land surface in cloud-resolving models.

  17. Role of the Kelvin-Helmholtz instability in the evolution of magnetized relativistic sheared plasma flows

    NASA Astrophysics Data System (ADS)

    Hamlin, Nathaniel D.; Newman, William I.

    2013-04-01

    We explore, via analytical and numerical methods, the Kelvin-Helmholtz (KH) instability in relativistic magnetized plasmas, with applications to astrophysical jets. We solve the single-fluid relativistic magnetohydrodynamic (RMHD) equations in conservative form using a scheme which is fourth order in space and time. To recover the primitive RMHD variables, we use a highly accurate, rapidly convergent algorithm which improves upon such schemes as the Newton-Raphson method. Although the exact RMHD equations are marginally stable, numerical discretization renders them unstable. We include numerical viscosity to restore numerical stability. In relativistic flows, diffusion can lead to a mathematical anomaly associated with frame transformations. However, in our KH studies, we remain in the rest frame of the system, and therefore do not encounter this anomaly. We use a two-dimensional slab geometry with periodic boundary conditions in both directions. The initial unperturbed velocity peaks along the central axis and vanishes asymptotically at the transverse boundaries. Remaining unperturbed quantities are uniform, with a flow-aligned unperturbed magnetic field. The early evolution in the nonlinear regime corresponds to the formation of counter-rotating vortices, connected by filaments, which persist in the absence of a magnetic field. A magnetic field inhibits the vortices through a series of stages, namely, field amplification, vortex disruption, turbulent breakdown, and an approach to a flow-aligned equilibrium configuration. Similar stages have been discussed in MHD literature. We examine how and to what extent these stages manifest in RMHD for a set of representative field strengths. To characterize field strength, we define a relativistic extension of the Alfvénic Mach number MA. We observe close complementarity between flow and magnetic field behavior. Weaker fields exhibit more vortex rotation, magnetic reconnection, jet broadening, and intermediate turbulence

  18. A hydrodynamical model for relativistic spin quantum plasmas

    SciTech Connect

    Asenjo, Felipe A.; Munoz, Victor; Valdivia, J. Alejandro; Mahajan, Swadesh M.

    2011-01-15

    Based on the one-body particle-antiparticle Dirac theory of electrons, a set of relativistic quantum fluid equations for a spin half plasma is derived. The particle-antiparticle nature of the relativistic particles is explicit in this fluid theory, which also includes quantum effects such as spin. The nonrelativistic limit is shown to be in agreement with previous attempts to develop a spin plasma theory derived from the Pauli Hamiltonian. Harnessing the formalism to the study of electromagnetic mode propagation, conceptually new phenomena are revealed; the particle-antiparticle effects increase the fluid opacity to these waves, while the spin effects tend to make the fluid more transparent.

  19. Simulations of Dynamic Relativistic Magnetospheres

    NASA Astrophysics Data System (ADS)

    Parfrey, Kyle Patrick

    Neutron stars and black holes are generally surrounded by magnetospheres of highly conducting plasma in which the magnetic flux density is so high that hydrodynamic forces are irrelevant. In this vanishing-inertia—or ultra-relativistic—limit, magnetohydrodynamics becomes force-free electrodynamics, a system of equations comprising only the magnetic and electric fields, and in which the plasma response is effected by a nonlinear current density term. In this dissertation I describe a new pseudospectral simulation code, designed for studying the dynamic magnetospheres of compact objects. A detailed description of the code and several numerical test problems are given. I first apply the code to the aligned rotator problem, in which a star with a dipole magnetic field is set rotating about its magnetic axis. The solution evolves to a steady state, which is nearly ideal and dissipationless everywhere except in a current sheet, or magnetic field discontinuity, at the equator, into which electromagnetic energy flows and is dissipated. Magnetars are believed to have twisted magnetospheres, due to internal magnetic evolution which deforms the crust, dragging the footpoints of external magnetic field lines. This twisting may be able to explain both magnetars' persistent hard X-ray emission and their energetic bursts and flares. Using the new code, I simulate the evolution of relativistic magnetospheres subjected to slow twisting through large angles. The field lines expand outward, forming a strong current layer; eventually the configuration loses equilibrium and a dynamic rearrangement occurs, involving large-scale rapid magnetic reconnection and dissipation of the free energy of the twisted magnetic field. When the star is rotating, the magnetospheric twisting leads to a large increase in the stellar spin-down rate, which may take place on the long twisting timescale or in brief explosive events, depending on where the twisting is applied and the history of the system

  20. Dissipative Work in Thermodynamics

    ERIC Educational Resources Information Center

    Anacleto, Joaquim; Pereira, Mario G.; Ferreira, J. M.

    2011-01-01

    This work explores the concept of dissipative work and shows that such a kind of work is an invariant non-negative quantity. This feature is then used to get a new insight into adiabatic irreversible processes; for instance, why the final temperature in any adiabatic irreversible process is always higher than that attained in a reversible process…

  1. Applying Relativistic Reconnection to Blazar Jets

    NASA Astrophysics Data System (ADS)

    Nalewajko, Krzysztof

    2016-09-01

    Rapid and luminous flares of non-thermal radiation observed in blazars require an efficient mechanism of energy dissipation and particle acceleration in relativistic active galactic nuclei (AGN) jets. Particle acceleration in relativistic magnetic reconnection is being actively studied by kinetic numerical simulations. Relativistic reconnection produces hard power-law electron energy distributions N(gamma) = N_0 gamma^(-p) exp(-gamma/gamma_max) with index p -> 1 and exponential cut-off Lorentz factor gamma_max ~ sigma in the limit of magnetization sigma = B^2/(4 pi w) >> 1 (where w is the relativistic enthalpy density). Reconnection in electron-proton plasma can additionally boost gamma_max by the mass ratio m_p/m_e. Hence, in order to accelerate particles to gamma_max ~ 10^6 in the case of BL Lacs, reconnection should proceed in plasma of very high magnetization sigma_max >~ 10^3. On the other hand, moderate mean jet magnetization values are required for magnetic bulk acceleration of relativistic jets, sigma_mean ~ Gamma_j <~ 20 (where Gamma_j is the jet bulk Lorentz factor). I propose that the systematic dependence of gamma_max on blazar luminosity class -- the blazar sequence -- may result from a systematic trend in sigma_max due to homogeneous loading of leptons by pair creation regulated by the energy density of high-energy external radiation fields. At the same time, relativistic AGN jets should be highly inhomogeneous due to filamentary loading of protons, which should determine the value of sigma_mean roughly independently of the blazar class.

  2. Quantum dissipation in unbounded systems.

    PubMed

    Maddox, Jeremy B; Bittner, Eric R

    2002-02-01

    In recent years trajectory based methodologies have become increasingly popular for evaluating the time evolution of quantum systems. A revival of the de Broglie--Bohm interpretation of quantum mechanics has spawned several such techniques for examining quantum dynamics from a hydrodynamic perspective. Using techniques similar to those found in computational fluid dynamics one can construct the wave function of a quantum system at any time from the trajectories of a discrete ensemble of hydrodynamic fluid elements (Bohm particles) which evolve according to nonclassical equations of motion. Until very recently these schemes have been limited to conservative systems. In this paper, we present our methodology for including the effects of a thermal environment into the hydrodynamic formulation of quantum dynamics. We derive hydrodynamic equations of motion from the Caldeira-Leggett master equation for the reduced density matrix and give a brief overview of our computational scheme that incorporates an adaptive Lagrangian mesh. Our applications focus upon the dissipative dynamics of open unbounded quantum systems. Using both the Wigner phase space representation and the linear entropy, we probe the breakdown of the Markov approximation of the bath dynamics at low temperatures. We suggest a criteria for rationalizing the validity of the Markov approximation in open unbound systems and discuss decoherence, energy relaxation, and quantum/classical correspondence in the context of the Bohmian paths.

  3. A Note on Kinetic Energy, Dissipation and Enstrophy

    NASA Technical Reports Server (NTRS)

    Wu, Jie-Zhi; Zhou, Ye; Fan, Meng

    1998-01-01

    The dissipation rate of a Newtonian fluid with constant shear viscosity can be shown to include three constituents: dilatation, vorticity, and surface strain. The last one is found to make no contributions to the change of kinetic energy. These dissipation constituents arc used to identify typical compact turbulent flow structures at high Reynolds numbers. The incompressible version of the simplified kinetic-energy equation is then cast to a novel form, which is free from the work rate done by surface stresses but in which the full dissipation re-enters.

  4. Relativistic Linear Restoring Force

    ERIC Educational Resources Information Center

    Clark, D.; Franklin, J.; Mann, N.

    2012-01-01

    We consider two different forms for a relativistic version of a linear restoring force. The pair comes from taking Hooke's law to be the force appearing on the right-hand side of the relativistic expressions: d"p"/d"t" or d"p"/d["tau"]. Either formulation recovers Hooke's law in the non-relativistic limit. In addition to these two forces, we…

  5. Relativistic Guiding Center Equations

    SciTech Connect

    White, R. B.; Gobbin, M.

    2014-10-01

    In toroidal fusion devices it is relatively easy that electrons achieve relativistic velocities, so to simulate runaway electrons and other high energy phenomena a nonrelativistic guiding center formalism is not sufficient. Relativistic guiding center equations including flute mode time dependent field perturbations are derived. The same variables as used in a previous nonrelativistic guiding center code are adopted, so that a straightforward modifications of those equations can produce a relativistic version.

  6. Boosting the accuracy of SPH techniques: Newtonian and special-relativistic tests

    NASA Astrophysics Data System (ADS)

    Rosswog, S.

    2015-04-01

    We study the impact of different discretization choices on the accuracy of smoothed particle hydrodynamics (SPH) and we explore them in a large number of Newtonian and special-relativistic benchmark tests. As a first improvement, we explore a gradient prescription that requires the (analytical) inversion of a small matrix. For a regular particle distribution, this improves gradient accuracies by approximately 10 orders of magnitude and the SPH formulations with this gradient outperform the standard approach in all benchmark tests. Secondly, we demonstrate that a simple change of the kernel function can substantially increase the accuracy of an SPH scheme. While the `standard' cubic spline kernel generally performs poorly, the best overall performance is found for a high-order Wendland kernel which allows for only very little velocity noise and enforces a very regular particle distribution, even in highly dynamical tests. Thirdly, we explore new SPH volume elements that enhance the treatment of fluid instabilities and, last, but not least, we design new dissipation triggers. They switch on near shocks and in regions where the flow - without dissipation - starts to become noisy. The resulting new SPH formulation yields excellent results even in challenging tests where standard techniques fail completely.

  7. Pederson Current Dissipation In Emerging Active Regions

    NASA Astrophysics Data System (ADS)

    Leake, James E.; Linton, M. G.

    2011-05-01

    Pederson current dissipation in emerging active regions. Certain regions of the solar atmosphere, such as the photosphere and chromosphere, as well as prominences, contain a significant amount of neutral atoms, and a complete description of the plasma requires including the effects of partial ionization. In the chromosphere the dissipation of Pederson currents is important for the evolution of emerging magnetic fields. Due to the relatively high number density in the chromosphere, the ion-neutral collision time-scale is much smaller than timescales associated with flux emergence. Hence we use a single-fluid approach to model the partially ionized plasma. Looking at both the emergence of large-scale sub-surface structures, and the emergence and reconnection of undulatory fields, we investigate the effect of Pederson current dissipation on the state of the emerging field, on magnetic reconnection and on dissipative heating of the atmosphere. Specifically we examine the effect of motions across fieldlines in the partially ionized regions, and how this can increase the free energy supplied to the corona by flux emergence. We also look at reconnection associated with flux emergence in the partially ionized atmosphere, and how this can account for observed small-scale brightenings (Ellerman Bombs).

  8. Viscosity measurement techniques in Dissipative Particle Dynamics

    NASA Astrophysics Data System (ADS)

    Boromand, Arman; Jamali, Safa; Maia, Joao M.

    2015-11-01

    In this study two main groups of viscosity measurement techniques are used to measure the viscosity of a simple fluid using Dissipative Particle Dynamics, DPD. In the first method, a microscopic definition of the pressure tensor is used in equilibrium and out of equilibrium to measure the zero-shear viscosity and shear viscosity, respectively. In the second method, a periodic Poiseuille flow and start-up transient shear flow is used and the shear viscosity is obtained from the velocity profiles by a numerical fitting procedure. Using the standard Lees-Edward boundary condition for DPD will result in incorrect velocity profiles at high values of the dissipative parameter. Although this issue was partially addressed in Chatterjee (2007), in this work we present further modifications (Lagrangian approach) to the original LE boundary condition (Eulerian approach) that will fix the deviation from the desired shear rate at high values of the dissipative parameter and decrease the noise to signal ratios in stress measurement while increases the accessible low shear rate window. Also, the thermostat effect of the dissipative and random forces is coupled to the dynamic response of the system and affects the transport properties like the viscosity and diffusion coefficient. We investigated thoroughly the dependency of viscosity measured by both Eulerian and Lagrangian methodologies, as well as numerical fitting procedures and found that all the methods are in quantitative agreement.

  9. Dissipative processes in superfluid neutron stars

    SciTech Connect

    Mannarelli, Massimo; Colucci, Giuseppe; Manuel, Cristina

    2011-05-23

    We present some results about a novel damping mechanism of r-mode oscillations in neutron stars due to processes that change the number of protons, neutrons and electrons. Deviations from equilibrium of the number densities of the various species lead to the appearance in the Euler equations of the system of a dissipative mechanism, the so-called rocket effect. The evolution of the r-mode oscillations of a rotating neutron star are influenced by the rocket effect and we present estimates of the corresponding damping timescales. In the description of the system we employ a two-fluid model, with one fluid consisting of all the charged components locked together by the electromagnetic interaction, while the second fluid consists of superfluid neutrons. Both components can oscillate however the rocket effect can only efficiently damp the countermoving r-mode oscillations, with the two fluids oscillating out of phase. In our analysis we include the mutual friction dissipative process between the neutron superfluid and the charged component. We neglect the interaction between the two r-mode oscillations as well as effects related with the crust of the star. Moreover, we use a simplified model of neutron star assuming a uniform mass distribution.

  10. Quantum dissipative Higgs model

    SciTech Connect

    Amooghorban, Ehsan Mahdifar, Ali

    2015-09-15

    By using a continuum of oscillators as a reservoir, we present a classical and a quantum-mechanical treatment for the Higgs model in the presence of dissipation. In this base, a fully canonical approach is used to quantize the damped particle on a spherical surface under the action of a conservative central force, the conjugate momentum is defined and the Hamiltonian is derived. The equations of motion for the canonical variables and in turn the Langevin equation are obtained. It is shown that the dynamics of the dissipative Higgs model is not only determined by a projected susceptibility tensor that obeys the Kramers–Kronig relations and a noise operator but also the curvature of the spherical space. Due to the gnomonic projection from the spherical space to the tangent plane, the projected susceptibility displays anisotropic character in the tangent plane. To illuminate the effect of dissipation on the Higgs model, the transition rate between energy levels of the particle on the sphere is calculated. It is seen that appreciable probabilities for transition are possible only if the transition and reservoir’s oscillators frequencies to be nearly on resonance.

  11. Theoretical Consolidation of Acoustic Dissipation

    NASA Technical Reports Server (NTRS)

    Casiano, M. J.; Zoladz, T. F.

    2012-01-01

    In many engineering problems, the effects of dissipation can be extremely important. Dissipation can be represented by several parameters depending on the context and the models that are used. Some examples of dissipation-related parameters are damping ratio, viscosity, resistance, absorption coefficients, pressure drop, or damping rate. This Technical Memorandum (TM) describes the theoretical consolidation of the classic absorption coefficients with several other dissipation parameters including linearized resistance. The primary goal of this TM is to theoretically consolidate the linearized resistance with the absorption coefficient. As a secondary goal, other dissipation relationships are presented.

  12. Maximum entropy principle and relativistic hydrodynamics

    NASA Astrophysics Data System (ADS)

    van Weert, Ch. G.

    1982-04-01

    A relativistic theory of hydrodynamics applicable beyond the hydrodynamic regime is developed on the basis of the maximum entropy principle. This allows the construction of a unique statistical operator representing the state of the system as specified by the values of the hydrodynamical densities. Special attention is paid to the thermodynamic limit and the virial theorem which leads to an expression for the pressure in terms of the field-theoretic energymomentum tensor of Coleman and Jackiw. It is argued that outside the hydrodynamic regime the notion of a local Gibbs relation, as usually postulated, must be abandoned in general. In the nontext of the linear approximation, the memory-retaining and non-local generalizations of the relativistic Navier-Stokes equations are derived from the underlying Heisenberg equations of motion. The formal similarity to the Zwanzig-Mori description of non-relativistic fluids is expounded.

  13. Relativistic mean field model for entrainment in general relativistic superfluid neutron stars

    NASA Astrophysics Data System (ADS)

    Comer, G. L.; Joynt, R.

    2003-07-01

    General relativistic superfluid neutron stars have a significantly more intricate dynamics than their ordinary fluid counterparts. Superfluidity allows different superfluid (and superconducting) species of particles to have independent fluid flows, a consequence of which is that the fluid equations of motion contain as many fluid element velocities as superfluid species. Whenever the particles of one superfluid interact with those of another, the momentum of each superfluid will be a linear combination of both superfluid velocities. This leads to the so-called entrainment effect whereby the motion of one superfluid will induce a momentum in the other superfluid. We have constructed a fully relativistic model for entrainment between superfluid neutrons and superconducting protons using a relativistic σ-ω mean field model for the nucleons and their interactions. In this context there are two notions of “relativistic”: relativistic motion of the individual nucleons with respect to a local region of the star (i.e. a fluid element containing, say, an Avogadro’s number of particles), and the motion of fluid elements with respect to the rest of the star. While it is the case that the fluid elements will typically maintain average speeds at a fraction of that of light, the supranuclear densities in the core of a neutron star can make the nucleons themselves have quite high average speeds within each fluid element. The formalism is applied to the problem of slowly rotating superfluid neutron star configurations, a distinguishing characteristic being that the neutrons can rotate at a rate different from that of the protons.

  14. Efficient Simulation of Dissipative Dynamics

    NASA Astrophysics Data System (ADS)

    Noh, Kyungjoo; Albert, Victor V.; Shen, Chao; Jiang, Liang

    Open quantum systems with engineered dissipations may have more than one steady states. These steady states may form a non-trivial decoherence free subspace (DFS) that can store quantum information against major decoherences. Besides unitary operations within DFS, it is also useful to have dissipative/cooling operations within the DFS. We investigate the possibility of using Hamiltonian perturbation to the engineered dissipation to induce an effective dissipative dynamics within the DFS in a controlled manner. The major challenge is to simulate all the Lindblad jump operators in the master equation. By designing the dissipation within the subspace complementary to the DFS, we can simply use the Hamiltonian perturbation to the designed dissipation with a single jump operator to produce an effective dissipation with multiple Lindblad jump operators.

  15. The free librations of a dissipative moon

    NASA Astrophysics Data System (ADS)

    Yoder, C. F.

    1981-12-01

    It is noted that dissipation in the moon produces a small offset (approximately 0.23 arcsec) of the moon's rotation axis from the plane defined by the ecliptic and lunar orbit normals. Both solid body tidal friction and viscous fluid friction at a core-mantle interface are thought to be plausible mechanisms. The merits of both are discussed, and it is found that solid friction requires a low lunar tidal Q (approximately 28), whereas turbulent fluid friction requires a core with a radius of approximately 330 km to cause the signature observed by lunar laser ranging. Large (approximately 0.4-8.0 arcsec) free librations of the lunar figure have also been detected through laser ranging. Both a very recent impact on the moon and fluid turbulence in the lunar core are considered plausible mechanisms for generating these librations.

  16. Blast Dynamics in a Dissipative Gas.

    PubMed

    Barbier, M; Villamaina, D; Trizac, E

    2015-11-20

    The blast caused by an intense explosion has been extensively studied in conservative fluids, where the Taylor-von Neumann-Sedov hydrodynamic solution is a prototypical example of self-similarity driven by conservation laws. In dissipative media, however, energy conservation is violated, yet a distinctive self-similar solution appears. It hinges on the decoupling of random and coherent motion permitted by a broad class of dissipative mechanisms. This enforces a peculiar layered structure in the shock, for which we derive the full hydrodynamic solution, validated by a microscopic approach based on molecular dynamics simulations. We predict and evidence a succession of temporal regimes, as well as a long-time corrugation instability, also self-similar, which disrupts the blast boundary. These generic results may apply from astrophysical systems to granular gases, and invite further cross-fertilization between microscopic and hydrodynamic approaches of shock waves.

  17. Magnetoacoustic shock waves in dissipative degenerate plasmas

    SciTech Connect

    Hussain, S.; Mahmood, S.

    2011-11-15

    Quantum magnetoacoustic shock waves are studied in homogenous, magnetized, dissipative dense electron-ion plasma by using two fluid quantum magneto-hydrodynamic (QMHD) model. The weak dissipation effects in the system are taken into account through kinematic viscosity of the ions. The reductive perturbation method is employed to derive Korteweg-de Vries Burgers (KdVB) equation for magnetoacoustic wave propagating in the perpendicular direction to the external magnetic field in dense plasmas. The strength of magnetoacoustic shock is investigated with the variations in plasma density, magnetic field intensity, and ion kinematic viscosity of dense plasma system. The necessary condition for the existence of monotonic and oscillatory shock waves is also discussed. The numerical results are presented for illustration by using the data of astrophysical dense plasma situations such as neutron stars exist in the literature.

  18. Blast Dynamics in a Dissipative Gas.

    PubMed

    Barbier, M; Villamaina, D; Trizac, E

    2015-11-20

    The blast caused by an intense explosion has been extensively studied in conservative fluids, where the Taylor-von Neumann-Sedov hydrodynamic solution is a prototypical example of self-similarity driven by conservation laws. In dissipative media, however, energy conservation is violated, yet a distinctive self-similar solution appears. It hinges on the decoupling of random and coherent motion permitted by a broad class of dissipative mechanisms. This enforces a peculiar layered structure in the shock, for which we derive the full hydrodynamic solution, validated by a microscopic approach based on molecular dynamics simulations. We predict and evidence a succession of temporal regimes, as well as a long-time corrugation instability, also self-similar, which disrupts the blast boundary. These generic results may apply from astrophysical systems to granular gases, and invite further cross-fertilization between microscopic and hydrodynamic approaches of shock waves. PMID:26636851

  19. Relativistic modeling capabilities in PERSEUS extended MHD simulation code for HED plasmas

    NASA Astrophysics Data System (ADS)

    Hamlin, Nathaniel D.; Seyler, Charles E.

    2014-12-01

    We discuss the incorporation of relativistic modeling capabilities into the PERSEUS extended MHD simulation code for high-energy-density (HED) plasmas, and present the latest hybrid X-pinch simulation results. The use of fully relativistic equations enables the model to remain self-consistent in simulations of such relativistic phenomena as X-pinches and laser-plasma interactions. By suitable formulation of the relativistic generalized Ohm's law as an evolution equation, we have reduced the recovery of primitive variables, a major technical challenge in relativistic codes, to a straightforward algebraic computation. Our code recovers expected results in the non-relativistic limit, and reveals new physics in the modeling of electron beam acceleration following an X-pinch. Through the use of a relaxation scheme, relativistic PERSEUS is able to handle nine orders of magnitude in density variation, making it the first fluid code, to our knowledge, that can simulate relativistic HED plasmas.

  20. Relativistic modeling capabilities in PERSEUS extended MHD simulation code for HED plasmas

    SciTech Connect

    Hamlin, Nathaniel D.; Seyler, Charles E.

    2014-12-15

    We discuss the incorporation of relativistic modeling capabilities into the PERSEUS extended MHD simulation code for high-energy-density (HED) plasmas, and present the latest hybrid X-pinch simulation results. The use of fully relativistic equations enables the model to remain self-consistent in simulations of such relativistic phenomena as X-pinches and laser-plasma interactions. By suitable formulation of the relativistic generalized Ohm’s law as an evolution equation, we have reduced the recovery of primitive variables, a major technical challenge in relativistic codes, to a straightforward algebraic computation. Our code recovers expected results in the non-relativistic limit, and reveals new physics in the modeling of electron beam acceleration following an X-pinch. Through the use of a relaxation scheme, relativistic PERSEUS is able to handle nine orders of magnitude in density variation, making it the first fluid code, to our knowledge, that can simulate relativistic HED plasmas.

  1. ENHANCED DISSIPATION RATE OF MAGNETIC FIELD IN STRIPED PULSAR WINDS BY THE EFFECT OF TURBULENCE

    SciTech Connect

    Takamoto, Makoto; Inoue, Tsuyoshi; Inutsuka, Shu-ichiro E-mail: inouety@phys.aoyama.ac.jp

    2012-08-10

    In this paper, we report on turbulent acceleration of the dissipation of the magnetic field in the post-shock region of a Poynting flux-dominated flow, such as the Crab pulsar wind nebula. We have performed two-dimensional resistive relativistic magnetohydrodynamics simulations of subsonic turbulence driven by the Richtmyer-Meshkov instability at the shock fronts of the Poynting flux-dominated flows in pulsar winds. We find that turbulence stretches current sheets which substantially enhances the dissipation of the magnetic field, and that most of the initial magnetic field energy is dissipated within a few eddy-turnover times. We also develop a simple analytical model for turbulent dissipation of the magnetic field that agrees well with our simulations. The analytical model indicates that the dissipation rate does not depend on resistivity even in the small resistivity limit. Our findings can possibly alleviate the {sigma}-problem in the Crab pulsar wind nebulae.

  2. Coupled modes in magnetized dense plasma with relativistic-degenerate electrons

    SciTech Connect

    Khan, S. A.

    2012-01-15

    Low frequency electrostatic and electromagnetic waves are investigated in ultra-dense quantum magnetoplasma with relativistic-degenerate electron and non-degenerate ion fluids. The dispersion relation is derived for mobile as well as immobile ions by employing hydrodynamic equations for such plasma under the influence of electromagnetic forces and pressure gradient of relativistic-degenerate Fermi gas of electrons. The result shows the coexistence of shear Alfven and ion modes with relativistically modified dispersive properties. The relevance of results to the dense degenerate plasmas of astrophysical origin (for instance, white dwarf stars) is pointed out with brief discussion on ultra-relativistic and non-relativistic limits.

  3. Ultra-relativistic geometrical shock dynamics and vorticity

    NASA Astrophysics Data System (ADS)

    Goodman, Jeremy; MacFadyen, Andrew

    Geometrical shock dynamics, also called CCW theory, yields approximate equations for shock propagation in which only the conditions at the shock appear explicitly; the post-shock flow is presumed approximately uniform and enters implicitly via a Riemann invariant. The non-relativistic theory, formulated by G. B. Whitham and others, matches many experimental results surprisingly well. Motivated by astrophysical applications, we adapt the theory to ultra-relativistic shocks advancing into an ideal fluid whose pressure is negligible ahead of the shock, but is one third of its proper energy density behind the shock. Exact results are recovered for some self-similar cylindrical and spherical shocks with power-law pre-shock density profiles. Comparison is made with numerical solutions of the full hydrodynamic equations. We review relativistic vorticity and circulation. In an ultra-relativistic ideal fluid, circulation can be defined so that it changes only at shocks, notwithstanding entropy gradients in smooth parts of the flow.

  4. Sound speed and viscosity of semi-relativistic relic neutrinos

    NASA Astrophysics Data System (ADS)

    Krauss, Lawrence; Long, Andrew J.

    2016-07-01

    Generalized fluid equations, using sound speed ceff2 and viscosity cvis2 as effective parameters, provide a convenient phenomenological formalism for testing the relic neutrino "null hypothesis," i.e. that that neutrinos are relativistic and free-streaming prior to recombination. In this work, we relax the relativistic assumption and ask "to what extent can the generalized fluid equations accommodate finite neutrino mass?" We consider both the mass of active neutrinos, which are largely still relativistic at recombination m2 / T2 ~ 0.2, and the effect of a semi-relativistic sterile component. While there is no one-to-one mapping between mass/mixing parameters and ceff2 and cvis2, we demonstrate that the existence of a neutrino mass could induce a bias to measurements of ceff2 and cvis2 at the level of 0.01 m2 / T2 ~ 10-3.

  5. Sound speed and viscosity of semi-relativistic relic neutrinos

    NASA Astrophysics Data System (ADS)

    Krauss, Lawrence; Long, Andrew J.

    2016-07-01

    Generalized fluid equations, using sound speed ceff2 and viscosity cvis2 as effective parameters, provide a convenient phenomenological formalism for testing the relic neutrino "null hypothesis," i.e. that that neutrinos are relativistic and free-streaming prior to recombination. In this work, we relax the relativistic assumption and ask "to what extent can the generalized fluid equations accommodate finite neutrino mass?" We consider both the mass of active neutrinos, which are largely still relativistic at recombination m2 / T2 ~ 0.2, and the effect of a semi-relativistic sterile component. While there is no one-to-one mapping between mass/mixing parameters and ceff2 and cvis2, we demonstrate that the existence of a neutrino mass could induce a bias to measurements of ceff2 and cvis2 at the level of 0.01 m2 / T2 ~ 10‑3.

  6. Nonlinear magnetosonic waves in dense plasmas with non-relativistic and ultra-relativistic degenerate electrons

    SciTech Connect

    Hussain, S.; Mahmood, S.; Rehman, Aman-ur-

    2014-11-15

    Linear and nonlinear propagation of magnetosonic waves in the perpendicular direction to the ambient magnetic field is studied in dense plasmas for non-relativistic and ultra-relativistic degenerate electrons pressure. The sources of nonlinearities are the divergence of the ions and electrons fluxes, Lorentz forces on ions and electrons fluids and the plasma current density in the system. The Korteweg-de Vries equation for magnetosonic waves propagating in the perpendicular direction of the magnetic field is derived by employing reductive perturbation method for non-relativistic as well as ultra-relativistic degenerate electrons pressure cases in dense plasmas. The plots of the magnetosonic wave solitons are also shown using numerical values of the plasma parameters such a plasma density and magnetic field intensity of the white dwarfs from literature. The dependence of plasma density and magnetic field intensity on the magnetosonic wave propagation is also pointed out in dense plasmas for both non-relativistic and ultra-relativistic degenerate electrons pressure cases.

  7. Hydrodynamics of ultra-relativistic bubble walls

    NASA Astrophysics Data System (ADS)

    Leitao, Leonardo; Mégevand, Ariel

    2016-04-01

    In cosmological first-order phase transitions, gravitational waves are generated by the collisions of bubble walls and by the bulk motions caused in the fluid. A sizeable signal may result from fast-moving walls. In this work we study the hydrodynamics associated to the fastest propagation modes, namely, ultra-relativistic detonations and runaway solutions. We compute the energy injected by the phase transition into the fluid and the energy which accumulates in the bubble walls. We provide analytic approximations and fits as functions of the net force acting on the wall, which can be readily evaluated for specific models. We also study the back-reaction of hydrodynamics on the wall motion, and we discuss the extrapolation of the friction force away from the ultra-relativistic limit. We use these results to estimate the gravitational wave signal from detonations and runaway walls.

  8. The dissipative Budden problem

    NASA Astrophysics Data System (ADS)

    Kaufman, A. N.; Morehead, J. J.; Brizard, A. J.; Tracy, E. R.

    1997-11-01

    The linear conversion of a magnetosonic wave (MW) to an ion-hybrid wave (HW) in a tokamak is a two-step process: first the (low-field) incident MW converts to a low-k HW, which propagates in k-space and then partially converts to an outgoing ``reflected" MW, the remainder being transmitted to become the desired high-k HW. In the absence of dissipation, this process would repeat indefinitely, as the ``reflected" MW returns to the plasma core after a true reflection at the outer edge of the plasma. In the presence of fusion alphas, however, we show that the intermediate (low-k) HW is extinguished by strong gyroresonant damping^. We demonstrate this effect by solving a modified Budden equation for this process with finite k-dependent dissipation which acts only on the HW mode. \\vspace*.2cm ^dagA. N. Kaufman, J. J. Morehead, A. J. Brizard & E. R. Tracy, to appear in the Proceedings of the 12th Topical Conference on RF Power in Plasmas, Savannah, GA (AIP, 1997). \\vspace*.2cm This work was supported by the US DOE.

  9. Dissipation of Tidal Energy

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The moon's gravity imparts tremendous energy to the Earth, raising tides throughout the global oceans. What happens to all this energy? This question has been pondered by scientists for over 200 years, and has consequences ranging from the history of the moon to the mixing of the oceans. Richard Ray at NASA's Goddard Space Flight Center, Greenbelt, Md. and Gary Egbert of the College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Ore. studied six years of altimeter data from the TOPEX/Poseidon satellite to address this question. According to their report in the June 15 issue of Nature, about 1 terawatt, or 25 to 30 percent of the total tidal energy dissipation, occurs in the deep ocean. The remainder occurs in shallow seas, such as on the Patagonian Shelf. 'By measuring sea level with the TOPEX/Poseidon satellite altimeter, our knowledge of the tides in the global ocean has been remarkably improved,' said Richard Ray, a geophysicist at Goddard. The accuracies are now so high that this data can be used to map empirically the tidal energy dissipation. (Red areas, above) The deep-water tidal dissipation occurs generally near rugged bottom topography (seamounts and mid-ocean ridges). 'The observed pattern of deep-ocean dissipation is consistent with topographic scattering of tidal energy into internal motions within the water column, resulting in localized turbulence and mixing', said Gary Egbert an associate professor at OSU. One important implication of this finding concerns the possible energy sources needed to maintain the ocean's large-scale 'conveyor-belt' circulation and to mix upper ocean heat into the abyssal depths. It is thought that 2 terawatts are required for this process. The winds supply about 1 terawatt, and there has been speculation that the tides, by pumping energy into vertical water motions, supply the remainder. However, all current general circulation models of the oceans ignore the tides. 'It is possible that properly

  10. Polarizable water model for Dissipative Particle Dynamics

    NASA Astrophysics Data System (ADS)

    Pivkin, Igor; Peter, Emanuel

    2015-11-01

    Dissipative Particle Dynamics (DPD) is an efficient particle-based method for modeling mesoscopic behavior of fluid systems. DPD forces conserve the momentum resulting in a correct description of hydrodynamic interactions. Polarizability has been introduced into some coarse-grained particle-based simulation methods; however it has not been done with DPD before. We developed a new polarizable coarse-grained water model for DPD, which employs long-range electrostatics and Drude oscillators. In this talk, we will present the model and its applications in simulations of membrane systems, where polarization effects play an essential role.

  11. Floating hydrometer with energy dissipating baffle

    SciTech Connect

    Kownurko, W.A.

    1987-11-24

    This patent describes a floating hydrometer employable for purposes of obtaining measurements of the presence of suspended solids in a fluid substance contained in a receptacle comprising: a. a probe portion operative as an instrument-bearing housing; b. an elongated tubular element having a hollow interior and at least one open end so as to enable the flow into the hollow interior of the elongated tubular element through the open end; and c. energy dissipating baffle means having a first mode of action and a second mode of action and including a member having a hollow interior.

  12. Magnetorotational instability in dissipative dusty plasmas

    SciTech Connect

    Ren Haijun; Wu Zhengwei; Cao Jintao; Chu, Paul K.

    2009-12-15

    The magnetorotational instability (MRI) in differential rotating dusty plasmas with dissipative effects is investigated by using local linear analysis. We assume that the dust grains are heavy enough to be immobile so that the dust effects are contained in our model only by introducing an electric field term in the one-fluid equation of plasma motion. The general local dispersion relation is derived and two limiting cases are discussed with respect to the dust-induced effect. The instability criterions in the different limiting cases are presented and the growth rate of local MRI in the last case is demonstrated.

  13. Relativistic thermodynamics with an invariant energy scale

    SciTech Connect

    Das, Sudipta; Ghosh, Subir; Roychowdhury, Dibakar

    2009-12-15

    A particular framework for quantum gravity is the doubly special relativity (DSR) formalism that introduces a new observer independent scale, the Planck energy. Our aim in this paper is to study the effects of this energy upper bound in relativistic thermodynamics. We have explicitly computed the modified equation of state for an ideal fluid in the DSR framework. In deriving our result we exploited the scheme of treating DSR as a nonlinear representation of the Lorentz group in special relativity.

  14. Relativistic Navigation: A Theoretical Foundation

    NASA Technical Reports Server (NTRS)

    Turyshev, Slava G.

    1996-01-01

    We present a theoretical foundation for relativistic astronomical measurements in curved space-time. In particular, we discuss a new iterative approach for describing the dynamics of an isolated astronomical N-body system in metric theories of gravity. To do this, we generalize the Fock-Chandrasekhar method of the weak-field and slow-motion approximation (WFSMA) and develop a theory of relativistic reference frames (RF's) for a gravitationally bounded many-extended-body problem. In any proper RF constructed in the immediate vicinity of an arbitrary body, the N-body solutions of the gravitational field equations are formally presented as a sum of the Riemann-flat inertial space-time, the gravitational field generated by the body itself, the unperturbed solutions for each body in the system transformed to the coordinates of this proper RF, and the gravitational interaction term. We develop the basic concept of a general WFSMA theory of the celestial RF's applicable to a wide class of metric theories of gravity and an arbitrary model of matter distribution. We apply the proposed method to general relativity. Celestial bodies are described using a perfect fluid model; as such, they possess any number of internal mass and current multipole moments that explicitly characterize their internal structures. The obtained relativistic corrections to the geodetic equations of motion arise because of a coupling of the bodies' multiple moments to the surrounding gravitational field. The resulting relativistic transformations between the different RF's extend the Poincare group to the motion of deformable self-gravitating bodies. Within the present accuracy of astronomical measurements we discuss the properties of the Fermi-normal-like proper RF that is defined in the immediate vicinity of the extended compact bodies. We further generalize the proposed approximation method and include two Eddington parameters (gamma, Beta). This generalized approach was used to derive the

  15. Magnetogenesis through Relativistic Velocity Shear

    NASA Astrophysics Data System (ADS)

    Miller, Evan

    Magnetic fields at all scales are prevalent in our universe. However, current cosmological models predict that initially the universe was bereft of large-scale fields. Standard magnetohydrodynamics (MHD) does not permit magnetogenesis; in the MHD Faraday's law, the change in magnetic field B depends on B itself. Thus if B is initially zero, it will remain zero for all time. A more accurate physical model is needed to explain the origins of the galactic-scale magnetic fields observed today. In this thesis, I explore two velocity-driven mechanisms for magnetogenesis in 2-fluid plasma. The first is a novel kinematic 'battery' arising from convection of vorticity. A coupling between thermal and plasma oscillations, this non-relativistic mechanism can operate in flows that are incompressible, quasi-neutral and barotropic. The second mechanism results from inclusion of thermal effects in relativistic shear flow instabilities. In such flows, parallel perturbations are ubiquitously unstable at small scales, with growth rates of order with the plasma frequency over a defined range of parameter-space. Of these two processes, instabilities seem far more likely to account for galactic magnetic fields. Stable kinematic effects will, at best, be comparable to an ideal Biermann battery, which is suspected to be orders of magnitude too weak to produce the observed galactic fields. On the other hand, instabilities grow until saturation is reached, a topic that has yet to be explored in detail on cosmological scales. In addition to investigating these magnetogenesis sources, I derive a general dispersion relation for three dimensional, warm, two species plasma with discontinuous shear flow. The mathematics of relativistic plasma, sheared-flow instability and the Biermann battery are also discussed.

  16. Magnetogenesis through a Relativistic Biermann Effect

    NASA Astrophysics Data System (ADS)

    Miller, Evan

    2012-10-01

    In a 2010 Physical Review Letter, Mahajan and Yoshida proposed a relativistic correction to the well-known Biermann Battery. The Biermann Battery allows for the generation of magnetic fields in a plasma fluid from orthogonal gradients in temperature and entropy (Bt ∇T x∇σ). The proposed correction would result in an additional term, proportional to the gradient of velocity squared crossed with the gradient of entropy (Bt ∇v^2 x∇σ). This new effect can in some cases provide the dominate source of magnetic field growth, even when the fluid is only mildly relativistic. This could in turn help explain the dynamics of certain relativistic plasmas, including modern laser plasmas and astrophysical jets. It is possible it could even provide a primordial source for the seed fields needed to explain the cosmological magnetic fields that appear to permeate most galaxies. In my poster, I will explain the theory underlying this new correction and present simulations demonstrating magnetic field growth in a variety of test cases, performed using both a particle-in-cell code and a fluid model.

  17. Enceladus' tidal dissipation revisited

    NASA Astrophysics Data System (ADS)

    Tobie, Gabriel; Behounkova, Marie; Choblet, Gael; Cadek, Ondrej; Soucek, Ondrej

    2016-10-01

    A series of chemical and physical evidence indicates that the intense activity at Enceladus' South Pole is related to a subsurface salty water reservoir underneath the tectonically active ice shell. The detection of a significant libration implies that this water reservoir is global and that the average ice shell thickness is about 20-25km (Thomas et al. 2016). The interpretation of gravity and topography data further predicts large variations in ice shell thickness, resulting in a shell potentially thinner than 5 km in the South Polar Terrain (SPT) (Cadek et al. 2016). Such an ice shell structure requires a very strong heat source in the interior, with a focusing mechanism at the SPT. Thermal diffusion through the ice shell implies that at least 25-30 GW is lost into space by passive diffusion, implying a very efficient dissipation mechanism in Enceladus' interior to maintain such an ocean/ice configuration thermally stable.In order to determine in which conditions such a large dissipation power may be generated, we model the tidal response of Enceladus including variable ice shell thickness. For the rock core, we consider a wide range of rheological parameters representative of water-saturated porous rock materials. We demonstrate that the thinning toward the South Pole leads to a strong increase in heat production in the ice shell, with a optimal thickness obtained between 1.5 and 3 km, depending on the assumed ice viscosity. Our results imply that the heat production in the ice shell within the SPT may be sufficient to counterbalance the heat loss by diffusion and to power eruption activity. However, outside the SPT, a strong dissipation in the porous core is required to counterbalance the diffusive heat loss. We show that about 20 GW can be generated in the core, for an effective viscosity of 1012 Pa.s, which is comparable to the effective viscosity estimated in water-saturated glacial tills on Earth. We will discuss the implications of this revisited tidal

  18. Nonlinear r-modes in rapidly rotating relativistic stars.

    PubMed

    Stergioulas, N; Font, J A

    2001-02-12

    The r-mode instability in rotating relativistic stars has been shown recently to have important astrophysical implications, provided that r-modes are not saturated at low amplitudes by nonlinear effects or by dissipative mechanisms. Here, we present the first study of nonlinear r-modes in isentropic, rapidly rotating relativistic stars, via 3D general-relativistic hydrodynamical evolutions. We find that (1) on dynamical time scales, there is no strong nonlinear coupling of r-modes to other modes at amplitudes of order one-the maximum r-mode amplitude is of order unity. (2) r-modes and inertial modes in isentropic stars are predominantly discrete modes. (3) The kinematical drift associated with r-modes appears to be present in our simulations, but confirmation requires more precise initial data.

  19. Relativistic and non-relativistic solitons in plasmas

    NASA Astrophysics Data System (ADS)

    Barman, Satyendra Nath

    This thesis entitled as "Relativistic and Non-relativistic Solitons in Plasmas" is the embodiment of a number of investigations related to the formation of ion-acoustic solitary waves in plasmas under various physical situations. The whole work of the thesis is devoted to the studies of solitary waves in cold and warm collisionless magnetized or unmagnetized plasmas with or without relativistic effect. To analyze the formation of solitary waves in all our models of plasmas, we have employed two established methods namely - reductive perturbation method to deduce the Korteweg-de Vries (KdV) equation, the solutions of which represent the important but near exact characteristic concepts of soliton-physics. Next, the pseudopotential method to deduce the energy integral with total nonlinearity in the coupling process for exact characteristic results of solitons has been incorporated. In Chapter 1, a brief description of plasma in nature and laboratory and its generation are outlined elegantly. The nonlinear differential equations to characterize solitary waves and the relevant but important methods of solutions have been mentioned in this chapter. The formation of solitary waves in unmagnetized and magnetized plasmas, and in relativistic plasmas has been described through mathematical entity. Applications of plasmas in different fields are also put forwarded briefly showing its importance. The study of plasmas as they naturally occur in the universe encompasses number of topics including sun's corona, solar wind, planetary magnetospheres, ionospheres, auroras, cosmic rays and radiation. The study of space weather to understand the universe, communications and the activities of weather satellites are some useful areas of space plasma physics. The surface cleaning, sterilization of food and medical appliances, killing of bacteria on various surfaces, destroying of viruses, fungi, spores and plasma coating in industrial instruments ( like computers) are some of the fields

  20. Relativistic Gravity Research

    NASA Astrophysics Data System (ADS)

    Ehlers, Jürgen; Schäfer, Gerhard

    17 readable articles give a thorough and self-contained overview of recent developments in relativistic gravity research. The subjects covered are: gravitational lensing, the general relativistic n-body problem, observable effects in the solar system, gravitational waves and their interferometric detection, very-long-baseline interferometry, international atomic time, lunar laserranging measurements, measurement of the gravitomagnetic field of the Earth, fermion and boson stars and black holes with hair, rapidly rotating neutron stars, matter wave interferometry, and the laboratory test of Newton's law of gravity. Any scientist interested in experimentally or observatio- nally oriented relativistic gravity will read the book with profit. In addition, it is perfectly suited as a complementary text for courses on general relativity and relativistic astrophysics.

  1. Relativistic spherical plasma waves

    NASA Astrophysics Data System (ADS)

    Bulanov, S. S.; Maksimchuk, A.; Schroeder, C. B.; Zhidkov, A. G.; Esarey, E.; Leemans, W. P.

    2012-02-01

    Tightly focused laser pulses that diverge or converge in underdense plasma can generate wake waves, having local structures that are spherical waves. Here we study theoretically and numerically relativistic spherical wake waves and their properties, including wave breaking.

  2. Inflation with Thermal Dissipation

    NASA Astrophysics Data System (ADS)

    Lee, Wo-Lung

    We study thermally induced density perturbations during inflation. This scenario is characterized by two thermodynamic conditions: (i) the primordial perturbations originate in the epoch when the inflationary universe contains a thermalized heat bath; (ii) the perturbations of the inflationary scalar field are given by the fluctuation-dissipation relation. We show that (1) the power spectrum of the primordial density perturbations follows a tilted power law behavior; (2) the relation between the amplitude and the power index of the spectrum exhibits a ``thermodynamic'' feature-it depends mainly on the thermodynamic variable M, the inflation energy scale; (3) both the adiabatic mode and the isocurvature mode of density perturbations appear during the inflation epoch, and the resultant power spectrum on super-horizon scales is substantially suppressed. These results are found to be very consistent with observations of the temperature fluctuations in the cosmic microwave background if the energy scale of the inflation is about 1015-10 16 GeV.

  3. Relativistic Quantum Scars

    SciTech Connect

    Huang, Liang; Lai Yingcheng; Ferry, David K.; Goodnick, Stephen M.; Akis, Richard

    2009-07-31

    The concentrations of wave functions about classical periodic orbits, or quantum scars, are a fundamental phenomenon in physics. An open question is whether scarring can occur in relativistic quantum systems. To address this question, we investigate confinements made of graphene whose classical dynamics are chaotic and find unequivocal evidence of relativistic quantum scars. The scarred states can lead to strong conductance fluctuations in the corresponding open quantum dots via the mechanism of resonant transmission.

  4. Exact Relativistic `Antigravity' Propulsion

    NASA Astrophysics Data System (ADS)

    Felber, Franklin S.

    2006-01-01

    The Schwarzschild solution is used to find the exact relativistic motion of a payload in the gravitational field of a mass moving with constant velocity. At radial approach or recession speeds faster than 3-1/2 times the speed of light, even a small mass gravitationally repels a payload. At relativistic speeds, a suitable mass can quickly propel a heavy payload from rest nearly to the speed of light with negligible stresses on the payload.

  5. Detonation waves in relativistic hydrodynamics

    SciTech Connect

    Cissoko, M. )

    1992-02-15

    This paper is concerned with an algebraic study of the equations of detonation waves in relativistic hydrodynamics taking into account the pressure and the energy of thermal radiation. A new approach to shock and detonation wavefronts is outlined. The fluid under consideration is assumed to be perfect (nonviscous and nonconducting) and to obey the following equation of state: {ital p}=({gamma}{minus}1){rho} where {ital p}, {rho}, and {gamma} are the pressure, the total energy density, and the adiabatic index, respectively. The solutions of the equations of detonation waves are reduced to the problem of finding physically acceptable roots of a quadratic polynomial {Pi}({ital X}) where {ital X} is the ratio {tau}/{tau}{sub 0} of dynamical volumes behind and ahead of the detonation wave. The existence and the locations of zeros of this polynomial allow it to be shown that if the equation of state of the burnt fluid is known then the variables characterizing the unburnt fluid obey well-defined physical relations.

  6. Relativistic effects in chemistry

    SciTech Connect

    Yatsimirskii, K.B.

    1995-11-01

    Relativistic effects become apparent when the velocity of the electron is arbitrarily close to the speed of light (137 au) without actually attaining it (in heavy atoms of elements at the end of Mendeleev`s Periodic Table). At the orbital level, the relativistic effect is apparent in the radial contraction of penetrating s and p shells, expansion of nonpenetrating d and f shells, and the spin-orbit splitting of p-,d-, and f-shells. The appearance of a relativistic effect is indicated in the variation in the electronic configurations of the atoms in the Periodic Table, the appearance of new types of closed electron shells (6s{sub 1/2}{sup 2}, 6p{sub 1/2}{sup 2}, 7s{sub 1/2}{sup 2}, 5d{sub 3/2}{sup 4}), the stabilization of unstable oxidation states of heavy elements, the characteristic variation in the ionization enthalpies of heavy atoms, their electron affinity, hydration energies, redox potentials, and optical electronegativities. In the spectra of coordination compounds, a relativistic effect is observed when comparing the position of the charge transfer bands in analogous compounds, the parameters characterizing the ligand field strength (10Dq), the interatomic distances and angles in compounds of heavy elements. A relativistic effect is also apparent in the ability of heavy metals to form clusters and superclusters. Relativistic corrections also affect other properties of heavy metal compounds (force constants, dipole moments, biological activity, etc.).

  7. Bivelocity Picture in the Nonrelativistic Limit of Relativistic Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Koide, Tomoi; Ramos, Rudnei O.; Vicente, Gustavo S.

    2015-02-01

    We discuss the nonrelativistic limit of the relativistic Navier-Fourier-Stokes (NFS) theory. The next-to-leading order relativistic corrections to the NFS theory for the Landau-Lifshitz fluid are obtained. While the lowest order truncation of the velocity expansion leads to the usual NFS equations of nonrelativistic fluids, we show that when the next-to-leading order relativistic corrections are included, the equations can be expressed concurrently with two different fluid velocities. One of the fluid velocities is parallel to the conserved charge current (which follows the Eckart definition) and the other one is parallel to the energy current (which follows the Landau-Lifshitz definition). We compare this next-to-leading order relativistic hydrodynamics with bivelocity hydrodynamics, which is one of the generalizations of the NFS theory and is formulated in such a way to include the usual mass velocity and also a new velocity, called the volume velocity. We find that the volume velocity can be identified with the velocity obtained in the Landau-Lifshitz definition. Then, the structure of bivelocity hydrodynamics, which is derived using various nontrivial assumptions, is reproduced in the NFS theory including the next-to-leading order relativistic corrections.

  8. Dynamics of dissipative multifluid neutron star cores

    NASA Astrophysics Data System (ADS)

    Haskell, B.; Andersson, N.; Comer, G. L.

    2012-09-01

    We present a Newtonian multifluid formalism for superfluid neutron star cores, focusing on the additional dissipative terms which arise when one takes into account the individual dynamical degrees of freedom associated with the coupled “fluids.” The problem is of direct astrophysical interest as the nature of the dissipative terms can have significant impact on the damping of the various oscillation modes of the star and the associated gravitational-wave signatures. A particularly interesting application concerns the gravitational-wave driven instability of f- and r-modes. We apply the developed formalism to two specific three-fluid systems: (i) a hyperon core in which both Λ and Σ- hyperons are present and (ii) a core of deconfined quarks in the color-flavor-locked phase in which a population of neutral K0 kaons is present. The formalism is, however, general and can be applied to other problems in neutron-star dynamics (such as the effect of thermal excitations close to the superfluid transition temperature) as well as laboratory multifluid systems.

  9. Derivation of the lattice Boltzmann model for relativistic hydrodynamics

    NASA Astrophysics Data System (ADS)

    Mendoza, M.; Boghosian, B. M.; Herrmann, H. J.; Succi, S.

    2010-11-01

    A detailed derivation of the lattice Boltzmann scheme for relativistic fluids recently proposed in M. Mendoza, B. Boghosian, H. Herrmann, and S. Succi, Phys. Rev. Lett. 105, 014502 (2010)PRLTAO0031-900710.1103/PhysRevLett.105.014502 is presented. The method is numerically validated and applied to the case of two quite different relativistic fluid-dynamic problems, namely, shock-wave propagation in quark-gluon plasmas and the impact of a supernova blast wave on massive interstellar clouds. Close to second-order convergence with the grid resolution, as well as linear dependence of computational time on the number of grid points and time steps, are reported.

  10. Derivation of the lattice Boltzmann model for relativistic hydrodynamics

    SciTech Connect

    Mendoza, M.; Herrmann, H. J.; Boghosian, B. M.; Succi, S.

    2010-11-15

    A detailed derivation of the lattice Boltzmann scheme for relativistic fluids recently proposed in M. Mendoza, B. Boghosian, H. Herrmann, and S. Succi, Phys. Rev. Lett. 105, 014502 (2010) is presented. The method is numerically validated and applied to the case of two quite different relativistic fluid-dynamic problems, namely, shock-wave propagation in quark-gluon plasmas and the impact of a supernova blast wave on massive interstellar clouds. Close to second-order convergence with the grid resolution, as well as linear dependence of computational time on the number of grid points and time steps, are reported.

  11. On the stability and energy dissipation in magnetized radio galaxy jets.

    NASA Astrophysics Data System (ADS)

    Bromberg, Omer; Tchekhovskoy, Alexander

    2016-07-01

    It is commonly accepted that the relativistic jets observed in radio galaxies are launched magnetically and are powered by the rotational energy of the central supermassive black hole. Such jets carry most of their energy in the form of electromagnetic Poynting flux. However by the time the ejecta reach the emission zone most of that energy is transferred to relativistic motions of the jet material with a large fraction given to non-thermal particles, which calls for an efficient dissipation mechanism to work within the jet without compromising its integrity. Understanding the energy dissipation mechanisms and stability of Poynting flux dominated jets is therefore crucial for modeling these astrophysical objects. In this talk I will present the first self consistent 3D simulations of the formation and propagation of highly magnetized (σ ˜25), relativistic jets in a medium. We find that the jets develop two types of instability: i) a local, "internal" kink mode which efficiently dissipates half of the magnetic energy into heat, and ii) a global "external" mode that grows on longer time scales and causes the jets to bend sideways and wobble. Low power jets propagating in media with flat density profiles, such as galaxy cluster cores, are susceptible to the global mode, and develop FRI like morphology. High power jets remain stable as they cross the cores, break out and accelerate to large distances, appearing as FRII jets. Thus magnetic kink instability can account for both the magnetic energy dissipation and the population dichotomy in radio galaxy jets.

  12. Quantifying Numerical Dissipation due to Filtering in Implicit LES

    NASA Astrophysics Data System (ADS)

    Cadieux, Francois; Domaradzki, Julian Andrzej

    2015-11-01

    Numerical dissipation plays an important role in LES and has given rise to the widespread use of implicit LES in the academic community. Recent results demonstrate that even with higher order codes, the use of stabilizing filters can act as a source of numerical dissipation strong enough to compare to an explicit subgrid-scale model (Cadieux et al., JFE 136-6). The amount of numerical dissipation added by such filtering operation in the simulation of a laminar separation bubble is quantified using a new method developed by Schranner et al., Computers & Fluids 114. It is then compared to a case where the filter is turned off, as well as the subgrid-scale dissipation that would be added by the σ model. The sensitivity of the method to the choice of subdomain location and size is explored. The effect of different derivative approximations and integration methods is also scrutinized. The method is shown to be robust and accurate for large subdomains. Results show that without filtering, numerical dissipation in the high order code is negligible, and that the filtering operation at the resolution considered adds substantial numerical dissipation in the same regions and at a similar rate as the σ subgrid-scale model would. NSF grant CBET-1233160.

  13. Relativistic hadrons and the origin of relativistic outflows in active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Contopoulos, John; Kazanas, D.

    1995-01-01

    We examine the hydrodynamic origin of relativistic outflows in active galactic nuclei (AGN). Specifically, we propose that the presence of a population of relativistic hadrons in the AGN 'central engine' and the associated neutron production suffices to produce outflows which under rather general conditions could be relativistic. The main such condition is that the size of the neutron production region be larger than the neutron flight path tau(sub n) approximately 3 x 10(exp 13) cm. This condition guarantees that the mean energy per particle in the proton fluid, resulting from the decay of the neutrons outside their production region, be greater than the proton rest mass. The expansion of this fluid can then lead naturally to a relativistic outflow by conversion of its internal energy to directed motion. We follow the development of such flows by solving the mass, energy as well as the kinetic equation for the proton gas in steady state, taking into account the source terms due to compute accurately the adiabatic index of the expanding gas, and in conjunction with Bernoulli's equation the detailed evolution of the bulk Lorentz factor. We further examine the role of large-scale magnetic fields in confining these outflows to produce the jets observed at larger scales.

  14. Entanglement Created by Dissipation

    SciTech Connect

    Alharbi, Abdullah F.; Ficek, Zbigniew

    2011-10-27

    A technique for entangling closely separated atoms by the process of dissipative spontaneous emission is presented. The system considered is composed of two non-identical two-level atoms separated at the quarter wavelength of a driven standing wave laser field. At this atomic distance, only one of the atoms can be addressed by the laser field. In addition, we arrange the atomic dipole moments to be oriented relative to the inter-atomic axis such that the dipole-dipole interaction between the atoms is zero at this specific distance. It is shown that an entanglement can be created between the atoms on demand by tuning the Rabi frequency of the driving field to the difference between the atomic transition frequencies. The amount of the entanglement created depends on the ratio between the damping rates of the atoms, but is independent of the frequency difference between the atoms. We also find that the transient buildup of an entanglement between the atoms may differ dramatically for different initial atomic conditions.

  15. External Dissipation in Driven Two-Dimensional Turbulence

    NASA Astrophysics Data System (ADS)

    Rivera, Michael; Wu, X. L.

    2000-07-01

    Turbulence in a freely suspended soap film is created by electromagnetic forcing and measured by particle tracking. The velocity fluctuations are shown to be adequately described by the forced Navier-Stokes equation for an incompressible two-dimensional fluid with a linear drag term to model the frictional coupling to the surrounding air. Using this equation, the energy dissipation rates due to air friction and the film's internal viscosity are measured, as is the rate of energy injection from the electromagnetic forcing. Comparison of these rates demonstrates that the air friction is a significant energy dissipation mechanism in the system.

  16. A note on the fluctuation of dissipative scale in turbulence

    NASA Astrophysics Data System (ADS)

    Biferale, L.

    2008-03-01

    We present an application of the multifractal formalism able to predict the whole shape of the probability density function (pdf) of the dissipative scale, η. We discuss both intense velocity fluctuations, leading to dissipative scales smaller than the Kolmogorov scale, where the formalism gives a pdf decaying as a superposition of stretched exponential, and smooth velocity fluctuations, where the formalism predicts a power-law decay. Both trends are found to be in good agreement with recent direct numerical simulations [J. Schumacher, "Sub-Kolmogorov-scale fluctuations in fluid turbulence," Europhys. Lett. 80, 54001 (2007)].

  17. Variational principle for theories with dissipation from analytic continuation

    NASA Astrophysics Data System (ADS)

    Floerchinger, Stefan

    2016-09-01

    The analytic continuation from the Euclidean domain to real space of the one-particle irreducible quantum effective action is discussed in the context of generalized local equilibrium states. Discontinuous terms associated with dissipative behavior are parametrized in terms of a conveniently defined sign operator. A generalized variational principle is then formulated, which allows to obtain causal and real dissipative equations of motion from the analytically continued quantum effective action. Differential equations derived from the implications of general covariance determine the space-time evolution of the temperature and fluid velocity fields and allow for a discussion of entropy production including a local form of the second law of thermodynamics.

  18. SAMPEX Relativistic Microbursts Observation

    NASA Astrophysics Data System (ADS)

    Liang, X.; Comess, M.; Smith, D. M.; Selesnick, R. S.; Sample, J. G.; Millan, R. M.

    2012-12-01

    Relativistic (>1 MeV) electron microburst precipitation is thought to account for significant relativistic electron loss. We present the statistical and spectral analysis of relativistic microbursts observed by the Proton/Electron Telescope (PET) on board the Solar Anomalous Magnetospheric Particle Explorer(SAMPEX) satellite from 1992 to 2004. Spectrally we find that microbursts are well fit by an exponential energy distribution in the 0.5-4 MeV range with a spectral e-folding energy of E0 < 375 keV. We also discuss the comparison of morning microbursts with events at midnight, which were first identified as microbursts by O'Brien et al. (2004). Finally, we compare the loss-rates due to microbursts and non-microburst precipitation during storm times and averaged over all times.

  19. Relativistic Weierstrass random walks.

    PubMed

    Saa, Alberto; Venegeroles, Roberto

    2010-08-01

    The Weierstrass random walk is a paradigmatic Markov chain giving rise to a Lévy-type superdiffusive behavior. It is well known that special relativity prevents the arbitrarily high velocities necessary to establish a superdiffusive behavior in any process occurring in Minkowski spacetime, implying, in particular, that any relativistic Markov chain describing spacetime phenomena must be essentially Gaussian. Here, we introduce a simple relativistic extension of the Weierstrass random walk and show that there must exist a transition time t{c} delimiting two qualitative distinct dynamical regimes: the (nonrelativistic) superdiffusive Lévy flights, for trelativistic) Gaussian diffusion, for t>t{c} . Implications of this crossover between different diffusion regimes are discussed for some explicit examples. The study of such an explicit and simple Markov chain can shed some light on several results obtained in much more involved contexts. PMID:20866862

  20. Relativistic Bursian diode equilibria

    SciTech Connect

    Ender, A. Y.; Kuznetsov, V. I.; Schamel, H.

    2011-03-15

    A comprehensive study of steady-states of a planar vacuum diode driven by a cold relativistic electron beam is presented. The emitter electric field as a characteristic function for their existence is evaluated in dependence of the diode length, the applied potential V, and the relativistic beam factor at injection {gamma}{sub 0}. It is used to classify the different branches of possible solutions, which encompass electron flows that are (i) transmitted through the diode completely, (ii) partially reflected from a virtual cathode (VC) either within the diode region or at the collector side, and (iii) reflected totally. As a byproduct, the V and {gamma}{sub 0} dependences of both bifurcation points of the minimum potential and of the transmitted current are obtained and the ultrarelativistic limit, {gamma}{sub 0}>>1, is performed. In this highly relativistic regime, the density of electrons appears to be constant across the diode region except for a small area around the VC.

  1. Relativistic Weierstrass random walks.

    PubMed

    Saa, Alberto; Venegeroles, Roberto

    2010-08-01

    The Weierstrass random walk is a paradigmatic Markov chain giving rise to a Lévy-type superdiffusive behavior. It is well known that special relativity prevents the arbitrarily high velocities necessary to establish a superdiffusive behavior in any process occurring in Minkowski spacetime, implying, in particular, that any relativistic Markov chain describing spacetime phenomena must be essentially Gaussian. Here, we introduce a simple relativistic extension of the Weierstrass random walk and show that there must exist a transition time t{c} delimiting two qualitative distinct dynamical regimes: the (nonrelativistic) superdiffusive Lévy flights, for trelativistic) Gaussian diffusion, for t>t{c} . Implications of this crossover between different diffusion regimes are discussed for some explicit examples. The study of such an explicit and simple Markov chain can shed some light on several results obtained in much more involved contexts.

  2. Flow around spheres by dissipative particle dynamics

    NASA Astrophysics Data System (ADS)

    Chen, Shuo; Phan-Thien, Nhan; Khoo, Boo Cheong; Fan, Xi Jun

    2006-10-01

    The dissipative particle dynamics (DPD) method is used to study the flow behavior past a sphere. The sphere is represented by frozen DPD particles while the surrounding fluids are modeled by simple DPD particles (representing a Newtonian fluid). For the surface of the sphere, the conventional model without special treatment and the model with specular reflection boundary condition proposed by Revenga et al. [Comput. Phys. Commun. 121-122, 309 (1999)] are compared. Various computational domains, in which the sphere is held stationary at the center, are investigated to gage the effects of periodic conditions and walls for Reynolds number (Re)=0.5 and 50. Two types of flow conditions, uniform flow and shear flow are considered, respectively, to study the drag force and torque acting on the stationary sphere. It is found that the calculated drag force imposed on the sphere based on the model with specular reflection is slightly lower than the conventional model without special treatment. With the conventional model the drag force acting on the sphere is in better agreement with experimental correlation obtained by Brown and Lawler [J. Environ. Eng. 129, 222 (2003)] for the case of larger radius up to Re of about 5. The computed torque also approaches the analytical Stokes value when Re <1. For a force-free and torque-free sphere, its motion in the flow is captured by solving the translational and rotational equations of motion. The effects of different DPD parameters (a, γ, and σ) on the drag force and torque are studied. It shows that the dissipative coefficient (γ) mainly affects the drag force and torque, while random and conservative coefficient have little influence on them. Furthermore the settling of a single sphere in square tube is investigated, in which the wall effect is considered. Good agreement is found with the experiments of Miyamura et al. [Int. J. Multiphase Flow 7, 31 (1981)] and lattice-Boltzmann simulation results of Aidun et al. [J. Fluid Mech

  3. Perspective: relativistic effects.

    PubMed

    Autschbach, Jochen

    2012-04-21

    This perspective article discusses some broadly-known and some less broadly-known consequences of Einstein's special relativity in quantum chemistry, and provides a brief outline of the theoretical methods currently in use, along with a discussion of recent developments and selected applications. The treatment of the electron correlation problem in relativistic quantum chemistry methods, and expanding the reach of the available relativistic methods to calculate all kinds of energy derivative properties, in particular spectroscopic and magnetic properties, requires on-going efforts. PMID:22519307

  4. Relativistic nuclear dynamics

    SciTech Connect

    Coester, F.

    1985-01-01

    A review is presented of three distinct approaches to the construction of relativistic dynamical models: (1) Relativistic canonical quantum mechanics. (The Hilbert space of states is independent of the interactions, which are introduced by modifying the energy operator.) (2) Hilbert spaces of manifestly covariant wave functions. (The interactions modify the metric of the Hilbert space.) (3) Covariant Green functions. In each of the three approaches the focus is on the formulation of the two-body dynamics, and problems in the construction of the corresponding many-body dynamics are discussed briefly. 21 refs.

  5. Perspective: relativistic effects.

    PubMed

    Autschbach, Jochen

    2012-04-21

    This perspective article discusses some broadly-known and some less broadly-known consequences of Einstein's special relativity in quantum chemistry, and provides a brief outline of the theoretical methods currently in use, along with a discussion of recent developments and selected applications. The treatment of the electron correlation problem in relativistic quantum chemistry methods, and expanding the reach of the available relativistic methods to calculate all kinds of energy derivative properties, in particular spectroscopic and magnetic properties, requires on-going efforts.

  6. Dissipative Forces and Quantum Mechanics

    ERIC Educational Resources Information Center

    Eck, John S.; Thompson, W. J.

    1977-01-01

    Shows how to include the dissipative forces of classical mechanics in quantum mechanics by the use of non-Hermetian Hamiltonians. The Ehrenfest theorem for such Hamiltonians is derived, and simple examples which show the classical correspondences are given. (MLH)

  7. Satellite Movie Shows Erika Dissipate

    NASA Video Gallery

    This animation of visible and infrared imagery from NOAA's GOES-West satellite from Aug. 27 to 29 shows Tropical Storm Erika move through the Eastern Caribbean Sea and dissipate near eastern Cuba. ...

  8. Ion-acoustic envelope modes in a degenerate relativistic electron-ion plasma

    NASA Astrophysics Data System (ADS)

    McKerr, M.; Haas, F.; Kourakis, I.

    2016-05-01

    A self-consistent relativistic two-fluid model is proposed for one-dimensional electron-ion plasma dynamics. A multiple scales perturbation technique is employed, leading to an evolution equation for the wave envelope, in the form of a nonlinear Schrödinger type equation (NLSE). The inclusion of relativistic effects is shown to introduce density-dependent factors, not present in the non-relativistic case—in the conditions for modulational instability. The role of relativistic effects on the linear dispersion laws and on envelope soliton solutions of the NLSE is discussed.

  9. Relativistic impulse dynamics.

    PubMed

    Swanson, Stanley M

    2011-08-01

    Classical electrodynamics has some annoying rough edges. The self-energy of charges is infinite without a cutoff. The calculation of relativistic trajectories is difficult because of retardation and an average radiation reaction term. By reconceptuallizing electrodynamics in terms of exchanges of impulses rather than describing it by forces and potentials, we eliminate these problems. A fully relativistic theory using photonlike null impulses is developed. Numerical calculations for a two-body, one-impulse-in-transit model are discussed. A simple relationship between center-of-mass scattering angle and angular momentum was found. It reproduces the Rutherford cross section at low velocities and agrees with the leading term of relativistic distinguishable-particle quantum cross sections (Møller, Mott) when the distance of closest approach is larger than the Compton wavelength of the particle. Magnetism emerges as a consequence of viewing retarded and advanced interactions from the vantage point of an instantaneous radius vector. Radiation reaction becomes the local conservation of energy-momentum between the radiating particle and the emitted impulse. A net action is defined that could be used in developing quantum dynamics without potentials. A reinterpretation of Newton's laws extends them to relativistic motion.

  10. The Relativistic Rocket

    ERIC Educational Resources Information Center

    Antippa, Adel F.

    2009-01-01

    We solve the problem of the relativistic rocket by making use of the relation between Lorentzian and Galilean velocities, as well as the laws of superposition of successive collinear Lorentz boosts in the limit of infinitesimal boosts. The solution is conceptually simple, and technically straightforward, and provides an example of a powerful…

  11. Radiation from Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Mizuno, Y.; Hardee, P.; Sol, H.; Medvedev, M.; Zhang, B.; Nordlund, A.; Frederiksen, J. T.; Fishman, G. J.; Preece, R.

    2008-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., gamma-ray bursts (GRBs), active galactic nuclei (AGNs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations of relativistic electron-ion (electron-positron) jets injected into a stationary medium show that particle acceleration occurs within the downstream jet. In the presence of relativistic jets, instabilities such as the Buneman instability, other two-streaming instability, and the Weibel (filamentation) instability create collisionless shocks, which are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The 'jitter' radiation from deflected electrons in small-scale magnetic fields has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation, a case of diffusive synchrotron radiation, may be important to understand the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  12. Modeling nanoscale hydrodynamics by smoothed dissipative particle dynamics

    NASA Astrophysics Data System (ADS)

    Lei, Huan; Mundy, Christopher J.; Schenter, Gregory K.; Voulgarakis, Nikolaos K.

    2015-05-01

    Thermal fluctuation and hydrophobicity are two hallmarks of fluid hydrodynamics on the nano-scale. It is a challenge to consistently couple the small length and time scale phenomena associated with molecular interaction with larger scale phenomena. The development of this consistency is the essence of mesoscale science. In this study, we use a nanoscale fluid model based on smoothed dissipative particle dynamics that accounts for the phenomena associated with density fluctuations and hydrophobicity. We show consistency in the fluctuation spectrum across scales. In doing so, it is necessary to account for finite fluid particle size. Furthermore, we demonstrate that the present model can capture the void probability and solvation free energy of nonpolar hard particles of different sizes. The present fluid model is well suited for an understanding of emergent phenomena in nano-scale fluid systems.

  13. Modeling nanoscale hydrodynamics by smoothed dissipative particle dynamics

    SciTech Connect

    Lei, Huan; Mundy, Christopher J.; Schenter, Gregory K.; Voulgarakis, Nikolaos

    2015-05-21

    Thermal fluctuation and hydrophobicity are two hallmarks of fluid hydrodynamics on the nano-scale. It is a challenge to consistently couple the small length and time scale phenomena associated with molecular interaction with larger scale phenomena. The development of this consistency is the essence of mesoscale science. In this study, we develop a nanoscale fluid model based on smoothed dissipative particle dynamics that accounts for the phenomena of associated with density fluctuations and hydrophobicity. We show consistency in the fluctuation spectrum across scales. In doing so, it is necessary to account for finite fluid particle size. Furthermore, we demonstrate that the present model can capture of the void probability and solvation free energy of apolar particles of different sizes. The present fluid model is well suited for a understanding emergent phenomena in nano-scale fluid systems.

  14. GENERALIZED RELATIVISTIC MAGNETOHYDRODYNAMIC EQUATIONS FOR PAIR AND ELECTRON-ION PLASMAS

    SciTech Connect

    Koide, Shinji

    2009-05-10

    We derived one-fluid equations based on a relativistic two-fluid approximation of e{sup {+-}} pair plasma and electron-ion plasma to reveal the specific relativistic nature of their behavior. Assuming simple condition on the relativistic one-fluid equations, we propose generalized relativistic magnetohydrodynamic (RMHD) equations which satisfy causality. We show the linear analyses of these equations regarding various plasma waves to show the validity of the generalized RMHD equations derived here and to reveal the distinct properties of the pair plasma and electron-ion plasma. The distinct properties relate to (1) the inertia effect of electric charge, (2) the momentum of electric current, (3) the relativistic Hall effect, (4) the thermal electromotive force, and (5) the thermalized energy exchange between the two fluids. Using the generalized RMHD equations, we also clarify the condition that we can use standard RMHD equations and that we need the distinct RMHD equations of pair and electron-ion plasmas. The standard RMHD is available only when the relative velocity of the two fluids is nonrelativistic, a difference of the enthalpy densities of the two fluids is much smaller than the total enthalpy density, and the above distinct properties of the pair/electron-ion plasma are negligible. We discuss a general relativistic version of the equations applicable to the pair and electron-ion plasmas in black hole magnetospheres. We find the effective resistivity due to the shear of frame dragging around a rotating black hole.

  15. Nonlinear energy dissipation of magnetic nanoparticles in oscillating magnetic fields

    NASA Astrophysics Data System (ADS)

    Soto-Aquino, D.; Rinaldi, C.

    2015-11-01

    The heating of magnetic nanoparticle suspensions subjected to alternating magnetic fields enables a variety of emerging applications such as magnetic fluid hyperthermia and triggered drug release. Rosensweig (2002) [25] obtained a model for the heat dissipation rate of a collection of non-interacting particles. However, the assumptions made in this analysis make it rigorously valid only in the limit of small applied magnetic field amplitude and frequency (i.e., values of the Langevin parameter that are much less than unity and frequencies below the inverse relaxation time). In this contribution we approach the problem from an alternative point of view by solving the phenomenological magnetization relaxation equation exactly for the case of arbitrary magnetic field amplitude and frequency and by solving a more accurate magnetization relaxation equation numerically. We also use rotational Brownian dynamics simulations of non-interacting magnetic nanoparticles subjected to an alternating magnetic field to estimate the rate of energy dissipation and compare the results of the phenomenological theories to the particle-scale simulations. The results are summarized in terms of a normalized energy dissipation rate and show that Rosensweig's expression provides an upper bound on the energy dissipation rate achieved at high field frequency and amplitude. Estimates of the predicted dependence of energy dissipation rate, quantified as specific absorption rate (SAR), on magnetic field amplitude and frequency, and particle core and hydrodynamic diameter, are also given.

  16. Dispersive and dissipative nonlinear structures in degenerate Fermi-Dirac Pauli quantum plasma

    NASA Astrophysics Data System (ADS)

    Sahu, Biswajit; Sinha, Anjana; Roychoudhury, Rajkumar

    2016-09-01

    We study the interplay between dispersion due to the electron degeneracy parameter and dissipation caused by plasma resistivity, in degenerate Fermi-Dirac Pauli quantum plasma. Considering relativistic degeneracy pressure for electrons, we investigate both arbitrary and small amplitude nonlinear structures. The corresponding trajectories are also plotted in the phase plane. The linear analysis for the dispersion relation yields interesting features. The present work is anticipated to be of physical relevance in the study of compact magnetized astrophysical objects like white dwarfs.

  17. Hydrodynamic waves in an anomalous charged fluid

    NASA Astrophysics Data System (ADS)

    Abbasi, Navid; Davody, Ali; Hejazi, Kasra; Rezaei, Zahra

    2016-11-01

    We study the collective excitations in a relativistic fluid with an anomalous U (1) current. In 3 + 1 dimensions at zero chemical potential, in addition to ordinary sound modes we find two propagating modes in presence of an external magnetic field. The first one which is a transverse degenerate mode, propagates with a velocity proportional to the coefficient of gravitational anomaly; this is in fact the Chiral Alfvén wave recently found in [1]. Another one is a wave of density perturbation, namely a chiral magnetic wave (CMW). The velocity dependence of CMW on the chiral anomaly coefficient is well known. We compute the dependence of CMW's velocity on the coefficient of gravitational anomaly as well. We also show that the dissipation splits the degeneracy of CAW. At finite chiral charge density we show that in general there may exist five chiral hydrodynamic waves. Of these five waves, one is the CMW while the other four are mixed Modified Sound-Alfvén waves. It turns out that in propagation transverse to the magnetic field no anomaly effect appears while in parallel to the magnetic field we find sound waves become dispersive due to anomaly.

  18. Polarizable protein model for Dissipative Particle Dynamics

    NASA Astrophysics Data System (ADS)

    Peter, Emanuel; Lykov, Kirill; Pivkin, Igor

    2015-11-01

    In this talk, we present a novel polarizable protein model for the Dissipative Particle Dynamics (DPD) simulation technique, a coarse-grained particle-based method widely used in modeling of fluid systems at the mesoscale. We employ long-range electrostatics and Drude oscillators in combination with a newly developed polarizable water model. The protein in our model is resembled by a polarizable backbone and a simplified representation of the sidechains. We define the model parameters using the experimental structures of 2 proteins: TrpZip2 and TrpCage. We validate the model on folding of five other proteins and demonstrate that it successfully predicts folding of these proteins into their native conformations. As a perspective of this model, we will give a short outlook on simulations of protein aggregation in the bulk and near a model membrane, a relevant process in several Amyloid diseases, e.g. Alzheimer's and Diabetes II.

  19. Transparency parameters from relativistically expanding outflows

    SciTech Connect

    Bégué, D.; Iyyani, S.

    2014-09-01

    In many gamma-ray bursts a distinct blackbody spectral component is present, which is attributed to the emission from the photosphere of a relativistically expanding plasma. The properties of this component (temperature and flux) can be linked to the properties of the outflow and have been presented in the case where there is no sub-photospheric dissipation and the photosphere is in coasting phase. First, we present the derivation of the properties of the outflow for finite winds, including when the photosphere is in the accelerating phase. Second, we study the effect of localized sub-photospheric dissipation on the estimation of the parameters. Finally, we apply our results to GRB 090902B. We find that during the first epoch of this burst the photosphere is most likely to be in the accelerating phase, leading to smaller values of the Lorentz factor than the ones previously estimated. For the second epoch, we find that the photosphere is likely to be in the coasting phase.

  20. DYNAMICS OF STRONGLY TWISTED RELATIVISTIC MAGNETOSPHERES

    SciTech Connect

    Parfrey, Kyle; Beloborodov, Andrei M.; Hui, Lam

    2013-09-10

    Magnetar magnetospheres are believed to be strongly twisted due to shearing of the stellar crust by internal magnetic stresses. We present time-dependent axisymmetric simulations showing in detail the evolution of relativistic force-free magnetospheres subjected to slow twisting through large angles. When the twist amplitude is small, the magnetosphere moves quasi-statically through a sequence of equilibria of increasing free energy. At some twist amplitude the magnetosphere becomes tearing-mode unstable to forming a resistive current sheet, initiating large-scale magnetic reconnection in which a significant fraction of the magnetic free energy can be dissipated. This ''critical'' twist angle is insensitive to the resistive length scale. Rapid shearing temporarily stabilizes the magnetosphere beyond the critical angle, allowing the magnetosphere of a rapidly differentially rotating star to store and dissipate more free energy. In addition to these effects, shearing the surface of a rotating star increases the spindown torque applied to the star. If shearing is much slower than rotation, the resulting spikes in spindown rate can occur on timescales anywhere from the long twisting timescale to the stellar spin period or shorter, depending both on the stellar shear distribution and the existing distribution of magnetospheric twists. A model in which energy is stored in the magnetosphere and released by a magnetospheric instability therefore predicts large changes in the measured spindown rate before soft gamma repeater giant flares.

  1. Analytic solutions of the relativistic Boltzmann equation

    NASA Astrophysics Data System (ADS)

    Hatta, Yoshitaka; Martinez, Mauricio; Xiao, Bo-Wen

    2015-04-01

    We present new analytic solutions to the relativistic Boltzmann equation within the relaxation time approximation. We first obtain spherically expanding solutions which are the kinetic counterparts of the exact solutions of the Israel-Stewart equation in the literature. This allows us to compare the solutions of the kinetic and hydrodynamic equations at an analytical level. We then derive a novel boost-invariant solution of the Boltzmann equation which has an unconventional dependence on the proper time. The existence of such a solution is also suggested in second-order hydrodynamics and fluid-gravity correspondence.

  2. Role of the Kelvin-Helmholtz instability in the evolution of magnetized relativistic sheared plasma flows.

    PubMed

    Hamlin, Nathaniel D; Newman, William I

    2013-04-01

    We explore, via analytical and numerical methods, the Kelvin-Helmholtz (KH) instability in relativistic magnetized plasmas, with applications to astrophysical jets. We solve the single-fluid relativistic magnetohydrodynamic (RMHD) equations in conservative form using a scheme which is fourth order in space and time. To recover the primitive RMHD variables, we use a highly accurate, rapidly convergent algorithm which improves upon such schemes as the Newton-Raphson method. Although the exact RMHD equations are marginally stable, numerical discretization renders them unstable. We include numerical viscosity to restore numerical stability. In relativistic flows, diffusion can lead to a mathematical anomaly associated with frame transformations. However, in our KH studies, we remain in the rest frame of the system, and therefore do not encounter this anomaly. We use a two-dimensional slab geometry with periodic boundary conditions in both directions. The initial unperturbed velocity peaks along the central axis and vanishes asymptotically at the transverse boundaries. Remaining unperturbed quantities are uniform, with a flow-aligned unperturbed magnetic field. The early evolution in the nonlinear regime corresponds to the formation of counter-rotating vortices, connected by filaments, which persist in the absence of a magnetic field. A magnetic field inhibits the vortices through a series of stages, namely, field amplification, vortex disruption, turbulent breakdown, and an approach to a flow-aligned equilibrium configuration. Similar stages have been discussed in MHD literature. We examine how and to what extent these stages manifest in RMHD for a set of representative field strengths. To characterize field strength, we define a relativistic extension of the Alfvénic Mach number M(A). We observe close complementarity between flow and magnetic field behavior. Weaker fields exhibit more vortex rotation, magnetic reconnection, jet broadening, and intermediate turbulence

  3. Dissipative structures and related methods

    SciTech Connect

    Langhorst, Benjamin R; Chu, Henry S

    2013-11-05

    Dissipative structures include at least one panel and a cell structure disposed adjacent to the at least one panel having interconnected cells. A deformable material, which may comprise at least one hydrogel, is disposed within at least one interconnected cell proximate to the at least one panel. Dissipative structures may also include a cell structure having interconnected cells formed by wall elements. The wall elements may include a mesh formed by overlapping fibers having apertures formed therebetween. The apertures may form passageways between the interconnected cells. Methods of dissipating a force include disposing at least one hydrogel in a cell structure proximate to at least one panel, applying a force to the at least one panel, and forcing at least a portion of the at least one hydrogel through apertures formed in the cell structure.

  4. DISSIPATIVE DIVERGENCE OF RESONANT ORBITS

    SciTech Connect

    Batygin, Konstantin; Morbidelli, Alessandro

    2013-01-01

    A considerable fraction of multi-planet systems discovered by the observational surveys of extrasolar planets reside in mild proximity to first-order mean-motion resonances. However, the relative remoteness of such systems from nominal resonant period ratios (e.g., 2:1, 3:2, and 4:3) has been interpreted as evidence for lack of resonant interactions. Here, we show that a slow divergence away from exact commensurability is a natural outcome of dissipative evolution and demonstrate that libration of critical angles can be maintained tens of percent away from nominal resonance. We construct an analytical theory for the long-term dynamical evolution of dissipated resonant planetary pairs and confirm our calculations numerically. Collectively, our results suggest that a significant fraction of the near-commensurate extrasolar planets are in fact resonant and have undergone significant dissipative evolution.

  5. Tracking dissipation in capture reactions

    SciTech Connect

    Materna, T.; Bouchat, V.; Kinnard, V.; Hanappe, F.; Dorvaux, O.; Stuttge, L.; Schmitt, C.; Siwek-Wilczynska, K.; Aritomo, Y.; Bogatchev, A.; Prokhorova, E.; Ohta, M.

    2004-04-12

    Nuclear dissipation in capture reactions is investigated using backtracing. Combining the analysis procedure with dynamical models, the difficult and long-standing problem of competition and mixing of quasi-fission and fusion-fission is solved for the first time. At low excitation energy a new protocol able to handle low statistics data gives access to the precession neutron multiplicity in two different systems 48Ca + 208Pb, Pu. The results are in agreement with a domination of fusion-fission in the case of 256No and an equal mixing of quasi-fission and fusion-fission in the case of Z = 114. The nature of the relevant dissipation is determined as one-body dissipation.

  6. Generating perfect fluid spheres in general relativity

    NASA Astrophysics Data System (ADS)

    Boonserm, Petarpa; Visser, Matt; Weinfurtner, Silke

    2005-06-01

    Ever since Karl Schwarzschild’s 1916 discovery of the spacetime geometry describing the interior of a particular idealized general relativistic star—a static spherically symmetric blob of fluid with position-independent density—the general relativity community has continued to devote considerable time and energy to understanding the general-relativistic static perfect fluid sphere. Over the last 90 years a tangle of specific perfect fluid spheres has been discovered, with most of these specific examples seemingly independent from each other. To bring some order to this collection, in this article we develop several new transformation theorems that map perfect fluid spheres into perfect fluid spheres. These transformation theorems sometimes lead to unexpected connections between previously known perfect fluid spheres, sometimes lead to new previously unknown perfect fluid spheres, and in general can be used to develop a systematic way of classifying the set of all perfect fluid spheres.

  7. Relativistic Pseudospin Symmetry

    SciTech Connect

    Ginocchio, Joseph N.

    2011-05-06

    We show that the pseudospin symmetry that Akito Arima discovered many years ago (with collaborators) is a symmetry of the the Dirac Hamiltonian for which the sum of the scalar and vector potentials are a constant. In this paper we discuss some of the implications of this relativistic symmetry and the experimental data that support these predictions. In his original paper Akito also discussed pseudo-U(3) symmetry. We show that pseudo-U(3) symmetry is a symmetry of the Dirac Hamiltonian for which the sum of harmonic oscillator vector and scalar potentials are equal to a constant, and we give the generators of pseudo-U(3) symmetry. Going beyond the mean field we summarize new results on non relativistic shell model Hamiltonians that have pseudospin symmetry and pseudo-orbital angular momentum symmetry as a dynamical symmetries.

  8. Relativistic multiwave Cerenkov generators

    SciTech Connect

    Bugaev, S.P.; Cherepenin, V.A.; Kanavets, V.I.; Klimov, A.I.; Kopenkin, A.D.; Koshelev, V.I.; Popov, V.A.; Slepkov, A.I. )

    1990-06-01

    A review of research on relativistic multiwave Cherenkov generators (MWCG) is provided. Presented is the linear theory of these devices, allowing a detailed description of multiwave interaction of a relativistic electron beam with an electromagnetic field in an electro-dynamic superdimensional MWCG system. The results of theoretical research on the starting parameters of generation, power flows, and the structure of the radiated field in a MWCG of a 3-cm-wave band are reported. The experiments on obtaining and investigating high-power pulses of microwave radiation in a MWCG of 3-cm- and 8-mm-wavelength bands are described. In particular, the results of research on a MWCG with the power of 15 GW in a 3-cm-wavelength band and the power of 3 GW in a 8-mm-wavelength band are presented. The results of research of spatial and temporal coherence of such generator radiation are reported.

  9. Relativistic shell model calculations

    NASA Astrophysics Data System (ADS)

    Furnstahl, R. J.

    1986-06-01

    Shell model calculations are discussed in the context of a relativistic model of nuclear structure based on renormalizable quantum field theories of mesons and baryons (quantum hadrodynamics). The relativistic Hartree approximation to the full field theory, with parameters determined from bulk properties of nuclear matter, predicts a shell structure in finite nuclei. Particle-hole excitations in finite nuclei are described in an RPA calculation based on this QHD ground state. The particle-hole interaction is prescribed by the Hartree ground state, with no additional parameters. Meson retardation is neglected in deriving the RPA equations, but it is found to have negligible effects on low-lying states. The full Dirac matrix structure is maintained throughout the calculation; no nonrelativistic reductions are made. Despite sensitive cancellations in the ground state calculation, reasonable excitation spectra are obtained for light nuclei. The effects of including charged mesons, problems with heavy nuclei, and prospects for improved and extended calculations are discussed.

  10. Relativistic electrons in space.

    NASA Technical Reports Server (NTRS)

    Simnett, G. M.

    1972-01-01

    This paper reviews the current state of knowledge concerning relativistic electrons, above 0.3 MeV, in interplanetary space, as measured by detectors on board satellites operating beyond the influence of the magnetosphere. The electrons have a galactic component, which at the lower energies is subject both to solar modulation and to spasmodic 'quiet time' increases and a direct solar component correlated with flare activity. The recent measurements have established the form of the differential energy spectrum of solar flare electrons. Electrons have been detected from flares behind the visible solar disk. Relativistic electrons do not appear to leave the sun at the time of the flash phase of the flare, although there are several signatures of electron acceleration at this time. The delay is interpreted as taking place during the transport of the electrons through the lower corona.

  11. Fluid imbalance

    MedlinePlus

    ... fluid imbalance; Hypernatremia - fluid imbalance; Hypokalemia - fluid imbalance; Hyperkalemia - fluid imbalance ... of sodium or potassium is present as well. Medicines can also affect fluid balance. The most common ...

  12. Dielectric cavity relativistic magnetron

    NASA Astrophysics Data System (ADS)

    Hashemi, S. M. A.

    2010-02-01

    An alteration in the structure of the A6 relativistic magnetron is proposed, which introduces an extra degree of freedom to its design and enhances many of its quality factors. This modification involves the partial filling of the cavities of the device with a low-loss dielectric material. The operation of a dielectric-filled A6 is simulated; the results indicate single-mode operation at the desired π mode and a substantially cleaner rf spectrum.

  13. High dissipative nonminimal warm inflation

    NASA Astrophysics Data System (ADS)

    Nozari, Kourosh; Shoukrani, Masoomeh

    2016-09-01

    We study a model of warm inflation in which both inflaton field and its derivatives are coupled nonminimally to curvature. We survey the spectrum of the primordial perturbations in high dissipative regime. By expanding the action up to the third order, the amplitude of the non-Gaussianity is studied both in the equilateral and orthogonal configurations. Finally, by adopting four sort of potentials, we compare our model with the Planck 2015 released observational data and obtain some constraints on the model's parameters space in the high dissipation regime.

  14. Dissipative processes in galaxy formation.

    PubMed Central

    Silk, J

    1993-01-01

    A galaxy commences its life in a diffuse gas cloud that evolves into a predominantly stellar aggregation. Considerable dissipation of gravitational binding energy occurs during this transition. I review here the dissipative processes that determine the critical scales of luminous galaxies and the generation of their morphology. The universal scaling relations for spirals and ellipticals are shown to be sensitive to the history of star formation. Semiphenomenological expressions are given for star-formation rates in protogalaxies and in starbursts. Implications are described for elliptical galaxy formation and for the evolution of disk galaxies. PMID:11607396

  15. Dissipative heavy-ion collisions

    SciTech Connect

    Feldmeier, H.T.

    1985-01-01

    This report is a compilation of lecture notes of a series of lectures held at Argonne National Laboratory in October and November 1984. The lectures are a discussion of dissipative phenomena as observed in collisions of atomic nuclei. The model is based on a system which has initially zero temperature and the initial energy is kinetic and binding energy. Collisions excite the nuclei, and outgoing fragments or the compound system deexcite before they are detected. Brownian motion is used to introduce the concept of dissipation. The master equation and the Fokker-Planck equation are derived. 73 refs., 59 figs. (WRF)

  16. Quantum Dissipation in Nanomechanical Oscillators

    NASA Astrophysics Data System (ADS)

    Zolfagharkhani, G.; Gaidarzhy, A.; Badzey, R. L.; Mohanty, P.

    2004-03-01

    Dissipation or energy relaxation of a resonant mode in a nanomechanical device occurs by its coupling to environment degrees of freedom, which also acquire quantum mechanical correlations at millikelvin temperatures. We report measurements of temperature and magnetic field dependence of dissipation in single crystal silicon nanobeams in MHz up to 1 GHz frequency range. We extend our measurements down to temperatures of 20 millikelvin and up to fields of 16 tesla. The fabrication of our Nano-Electro-Mechanical Systems (NEMS) involves e-beam lithography, as well as various deposition and plasma etching processes. This work is supported by NSF and the Sloan Foundation.

  17. Dissipative nonlinear dynamics in holography

    NASA Astrophysics Data System (ADS)

    Basu, Pallab; Ghosh, Archisman

    2014-02-01

    We look at the response of a nonlinearly coupled scalar field in an asymptotically AdS black brane geometry and find a behavior very similar to that of known dissipative nonlinear systems like the chaotic pendulum. Transition to chaos proceeds through a series of period-doubling bifurcations. The presence of dissipation, crucial to this behavior, arises naturally in a black hole background from the ingoing conditions imposed at the horizon. AdS/CFT translates our solution to a chaotic response of O, the operator dual to the scalar field. Our setup can also be used to study quenchlike behavior in strongly coupled nonlinear systems.

  18. Perfect fluidity of a dissipative system: Analytical solution for the Boltzmann equation in AdS2 Ⓧ S2

    DOE PAGES

    Noronha, Jorge; Denicol, Gabriel S.

    2015-12-30

    In this paper we obtain an analytical solution of the relativistic Boltzmann equation under the relaxation time approximation that describes the out-of-equilibrium dynamics of a radially expanding massless gas. This solution is found by mapping this expanding system in flat spacetime to a static flow in the curved spacetime AdS2 Ⓧ S2. We further derive explicit analytic expressions for the momentum dependence of the single-particle distribution function as well as for the spatial dependence of its moments. We find that this dissipative system has the ability to flow as a perfect fluid even though its entropy density does not matchmore » the equilibrium form. The nonequilibrium contribution to the entropy density is shown to be due to higher-order scalar moments (which possess no hydrodynamical interpretation) of the Boltzmann equation that can remain out of equilibrium but do not couple to the energy-momentum tensor of the system. Furthermore, in this system the slowly moving hydrodynamic degrees of freedom can exhibit true perfect fluidity while being totally decoupled from the fast moving, nonhydrodynamical microscopic degrees of freedom that lead to entropy production.« less

  19. Relativistic tidal disruption events

    NASA Astrophysics Data System (ADS)

    Levan, A.

    2012-12-01

    In March 2011 Swift detected an extremely luminous and long-lived outburst from the nucleus of an otherwise quiescent, low luminosity (LMC-like) galaxy. Named Swift J1644+57, its combination of high-energy luminosity (1048 ergs s-1 at peak), rapid X-ray variability (factors of >100 on timescales of 100 seconds) and luminous, rising radio emission suggested that we were witnessing the birth of a moderately relativistic jet (Γ ˜ 2 - 5), created when a star is tidally disrupted by the supermassive black hole in the centre of the galaxy. A second event, Swift J2058+0516, detected two months later, with broadly similar properties lends further weight to this interpretation. Taken together this suggests that a fraction of tidal disruption events do indeed create relativistic outflows, demonstrates their detectability, and also implies that low mass galaxies can host massive black holes. Here, I briefly outline the observational properties of these relativistic tidal flares observed last year, and their evolution over the first year since their discovery.

  20. ENERGY DISSIPATION PROCESSES IN SOLAR WIND TURBULENCE

    SciTech Connect

    Wang, Y.; Wei, F. S.; Feng, X. S.; Sun, T. R.; Zuo, P. B.; Xu, X. J.; Zhang, J.

    2015-12-15

    Turbulence is a chaotic flow regime filled by irregular flows. The dissipation of turbulence is a fundamental problem in the realm of physics. Theoretically, dissipation ultimately cannot be achieved without collisions, and so how turbulent kinetic energy is dissipated in the nearly collisionless solar wind is a challenging problem. Wave particle interactions and magnetic reconnection (MR) are two possible dissipation mechanisms, but which mechanism dominates is still a controversial topic. Here we analyze the dissipation region scaling around a solar wind MR region. We find that the MR region shows unique multifractal scaling in the dissipation range, while the ambient solar wind turbulence reveals a monofractal dissipation process for most of the time. These results provide the first observational evidences for intermittent multifractal dissipation region scaling around a MR site, and they also have significant implications for the fundamental energy dissipation process.

  1. Dissipative-particle-dynamics model of biofilm growth

    SciTech Connect

    Xu, Zhijie; Meakin, Paul; Tartakovsky, Alexandre M.; Scheibe, Timothy D.

    2011-06-13

    A dissipative particle dynamics (DPD) model for the quantitative simulation of biofilm growth controlled by substrate (nutrient) consumption, advective and diffusive substrate transport, and hydrodynamic interactions with fluid flow (including fragmentation and reattachment) is described. The model was used to simulate biomass growth, decay, and spreading. It predicts how the biofilm morphology depends on flow conditions, biofilm growth kinetics, the rheomechanical properties of the biofilm and adhesion to solid surfaces. The morphology of the model biofilm depends strongly on its rigidity and the magnitude of the body force that drives the fluid over the biofilm.

  2. Point form relativistic quantum mechanics and relativistic SU(6)

    NASA Technical Reports Server (NTRS)

    Klink, W. H.

    1993-01-01

    The point form is used as a framework for formulating a relativistic quantum mechanics, with the mass operator carrying the interactions of underlying constituents. A symplectic Lie algebra of mass operators is introduced from which a relativistic harmonic oscillator mass operator is formed. Mass splittings within the degenerate harmonic oscillator levels arise from relativistically invariant spin-spin, spin-orbit, and tensor mass operators. Internal flavor (and color) symmetries are introduced which make it possible to formulate a relativistic SU(6) model of baryons (and mesons). Careful attention is paid to the permutation symmetry properties of the hadronic wave functions, which are written as polynomials in Bargmann spaces.

  3. Squirming propulsion in viscoelastic fluids

    NASA Astrophysics Data System (ADS)

    de Corato, Marco; Greco, Francesco; Maffettone, Pier Luca

    2015-11-01

    The locomotion of organisms in Newtonian fluids at low-Reynolds numbers displays very different features from that at large Reynolds numbers; indeed, in this regime the viscous forces are dominant over the inertial ones and propulsion is possible only with non-time-reversible swimming strokes. In many situations of biological interest, however, small organisms are propelling themselves through non-Newtonian fluids such as mucus or biofilms, which display highly viscoelastic properties. Fluid viscoelasticity affects in a complex way both the micro-organisms' swimming velocity and dissipated power, possibly affecting their collective behavior. In our work, we employ the so called ``squirmer'' model to study the motion of spherical ciliated organisms in a viscoelastic fluid. We derive analytical formulas for the squirmer swimming velocity and dissipated power that show a complex interplay between the fluid constitutive behavior and the propulsion mechanism.

  4. Duskside relativistic electron precipitation

    NASA Astrophysics Data System (ADS)

    Lorentzen, Kirsten Ruth

    1999-10-01

    On August 20, 1996, a balloon-borne X-ray pinhole camera and a high resolution germanium X-ray spectrometer observed an intense X-ray event near Kiruna, Sweden, at 1835 MLT, on an L-shell of 5.8. This X-ray event consisted of seven bursts spaced 100-200 seconds apart, with smaller 10-20 second variations observed within individual bursts. The energy spectra of these bursts show the presence of X-rays with energies greater than 1 MeV, which are best accounted for by atmospheric bremsstrahlung from mono-energetic 1.7 MeV precipitating electrons. The X-ray imager observed no significant motion or small-scale spatial structure in the event, implying that the bursts were temporal in nature. Ultra- violet images from the Polar satellite and energetic particle data from the Los Alamos geosynchronous satellites show a small magnetospheric substorm onset about 24 minutes before the start of the relativistic precipitation event. Since the balloon was south of the auroral oval and there was no associated increase in relativistic electron flux at geosynchronous altitude, the event must be the result of some mechanism selectively precipitating ambient relativistic electrons from the radiation belts. The balloon X-ray observations are analyzed in a magnetospheric context, in order to determine which of several mechanisms for selective precipitation of relativistic electrons can account for the event. Resonance with electromagnetic ion cyclotron mode waves on the equator is the most likely candidate. The drift of substorm-injected warm protons is calculated using input from the geosynchronous satellites. Wave growth in the model is driven by temperature anisotropies in the warm proton population. A numerical solution of the wave dispersion relation shows that electromagnetic ion cyclotron waves can be excited in high-density duskside regions such as the plasmasphere or detached plasma regions. These waves can selectively precipitate relativistic electrons of energy 1.7 MeV in

  5. The Poisson equation at second order in relativistic cosmology

    SciTech Connect

    Hidalgo, J.C.; Christopherson, Adam J.; Malik, Karim A. E-mail: Adam.Christopherson@nottingham.ac.uk

    2013-08-01

    We calculate the relativistic constraint equation which relates the curvature perturbation to the matter density contrast at second order in cosmological perturbation theory. This relativistic ''second order Poisson equation'' is presented in a gauge where the hydrodynamical inhomogeneities coincide with their Newtonian counterparts exactly for a perfect fluid with constant equation of state. We use this constraint to introduce primordial non-Gaussianity in the density contrast in the framework of General Relativity. We then derive expressions that can be used as the initial conditions of N-body codes for structure formation which probe the observable signature of primordial non-Gaussianity in the statistics of the evolved matter density field.

  6. Relativistic nuclear hydrodynamics and phase transition to the deconfinement state

    SciTech Connect

    Barz, H.W.; Kaempfer, B.; Lukacs, B.

    1987-11-01

    The possible formation of nuclear matter in the phase of a quark--gluon plasma in relativistic heavy-ion collisions is considered in the framework of a hydrodynamic approach. The main results are obtained in a single-fluid model of the formation of a baryon-enriched plasma and relate to nuclear collisions at energies up to 10 GeV/nucleon. At higher energies, a two-fluid model predicts the formation of a plasma in the fragmentation region, but the baryon density is much lower. In all the investigations, including scaling hydrodynamics in the baryon-depleted region of intermediate rapidities, allowance is made for a delayed phase transition to the deconfinement state. A generally covariant formulation of relativistic hydrodynamics is presented as a useful numerical method, together with some extensions of the methods of the standard theory (selection of comoving coordinates, allowance for sink terms, and two-fluid interaction).

  7. Distinct optical properties of relativistically degenerate matter

    SciTech Connect

    Akbari-Moghanjoughi, M.

    2014-06-15

    In this paper, we use the collisional quantum magnetohydrodynamic (CQMHD) model to derive the transverse dielectric function of a relativistically degenerate electron fluid and investigate various optical parameters, such as the complex refractive index, the reflection and absorption coefficients, the skin-depth and optical conductivity. In this model we take into accounts effects of many parameters such as the atomic-number of the constituent ions, the electron exchange, electron diffraction effect and the electron-ion collisions. Study of the optical parameters in the solid-density, the warm-dense-matter, the big-planetary core, and the compact star number-density regimes reveals that there are distinct differences between optical characteristics of the latter and the former cases due to the fundamental effects of the relativistic degeneracy and other quantum mechanisms. It is found that in the relativistic degeneracy plasma regime, such as found in white-dwarfs and neutron star crusts, matter possess a much sharper and well-defined step-like reflection edge beyond the x-ray electromagnetic spectrum, including some part of gamma-ray frequencies. It is also remarked that the magnetic field intensity only significantly affects the plasma reflectivity in the lower number-density regime, rather than the high density limit. Current investigation confirms the profound effect of relativistic degeneracy on optical characteristics of matter and can provide an important plasma diagnostic tool for studying the physical processes within the wide scope of quantum plasma regimes be it the solid-density, inertial-confined, or astrophysical compact stars.

  8. Impacts on Dissipative Sonic Vacuum

    NASA Astrophysics Data System (ADS)

    Xu, Yichao; Nesterenko, Vitali

    We investigate the propagating compression bell shape stress waves generated by the strikers with different masses impacting the sonic vacuum - the discrete dissipative strongly nonlinear metamaterial with zero long wave sound speed. The metamaterial is composed of alternating steel disks and Nitrile O-rings. Being a solid material, it has exceptionally low speed of the investigated stress waves in the range of 50 - 74 m/s, which is a few times smaller than the speed of sound or shock waves in air generated by blast. The shape of propagating stress waves was dramatically changed by the viscous dissipation. It prevented the incoming pulses from splitting into trains of solitary waves, a phenomenon characteristic of the non-dissipative strongly nonlinear discrete systems when the striker mass is larger than the cell mass. Both high-speed camera images and numerical simulations demonstrate the unusual rattling behavior of the top disk between the striker and the rest of the system. The linear momentum and energy from the striker were completely transferred to the metamaterial. This strongly nonlinear dissipative metamaterial can be designed for the optimal attenuation of dynamic loads generated by impact or contact explosion. Author 1 wants to acknowledge the support provided by UCSD.

  9. Relativistic interactions and realistic applications

    SciTech Connect

    Hoch, T.; Madland, D.; Manakos, P.; Mannel, T.; Nikolaus, B.A.; Strottman, D. |

    1992-12-31

    A four-fermion-coupling Lagrangian (relativistic Skyrme-type) interaction has been proposed for relativistic nuclear structure calculations. This interaction, which has the merit of simplicity, is from the outset tailored as an effective interaction for relativistic Hartree-Fock calculations. Various extensions of such a model are discussed and compared with Walecka`s meson-nucleon mean field approach. We also present results of the calculation of nuclear ground state properties with an extended (density dependent) version of the four fermion interaction in a relativistic Hartree-Fock approximation.

  10. RAPID COMMUNICATION: The dissipative effect of thermal radiation loss in high-temperature dense plasmas

    NASA Astrophysics Data System (ADS)

    Li, L. H.; Zhang, H. Q.

    1996-08-01

    A dynamical model based on the two-fluid dynamical equations with energy generation and loss is obtained and used to investigate the self-generated magnetic fields in high-temperature dense plasmas such as the solar core. The self-generation of magnetic fields might be looked at as a self-organization-type behaviour of stochastic thermal radiation fields, as expected for an open dissipative system according to Prigogine's theory of dissipative structures.

  11. Smoothed dissipative particle dynamics with angular momentum conservation

    SciTech Connect

    Müller, Kathrin Fedosov, Dmitry A. Gompper, Gerhard

    2015-01-15

    Smoothed dissipative particle dynamics (SDPD) combines two popular mesoscopic techniques, the smoothed particle hydrodynamics and dissipative particle dynamics (DPD) methods, and can be considered as an improved dissipative particle dynamics approach. Despite several advantages of the SDPD method over the conventional DPD model, the original formulation of SDPD by Español and Revenga (2003) [9], lacks angular momentum conservation, leading to unphysical results for problems where the conservation of angular momentum is essential. To overcome this limitation, we extend the SDPD method by introducing a particle spin variable such that local and global angular momentum conservation is restored. The new SDPD formulation (SDPD+a) is directly derived from the Navier–Stokes equation for fluids with spin, while thermal fluctuations are incorporated similarly to the DPD method. We test the new SDPD method and demonstrate that it properly reproduces fluid transport coefficients. Also, SDPD with angular momentum conservation is validated using two problems: (i) the Taylor–Couette flow with two immiscible fluids and (ii) a tank-treading vesicle in shear flow with a viscosity contrast between inner and outer fluids. For both problems, the new SDPD method leads to simulation predictions in agreement with the corresponding analytical theories, while the original SDPD method fails to capture properly physical characteristics of the systems due to violation of angular momentum conservation. In conclusion, the extended SDPD method with angular momentum conservation provides a new approach to tackle fluid problems such as multiphase flows and vesicle/cell suspensions, where the conservation of angular momentum is essential.

  12. Polarization swings reveal magnetic energy dissipation in blazars

    SciTech Connect

    Zhang, Haocheng; Chen, Xuhui; Böttcher, Markus; Guo, Fan; Li, Hui

    2015-05-01

    The polarization signatures of blazar emissions are known to be highly variable. In addition to small fluctuations of the polarization angle around a mean value, large (≳ 180°) polarization angle swings are observed. We suggest that such phenomena can be interpreted as arising from light-travel-time effects within an underlying axisymmetric emission region. We present the first simultaneous fitting of the multi-wavelength spectrum, variability, and time-dependent polarization features of a correlated optical and gamma-ray flaring event of the prominent blazar 3C279, which was accompanied by a drastic change in its polarization signatures. This unprecedented combination of spectral, variability, and polarization information in a coherent physical model allows us to place stringent constraints on the particle acceleration and magnetic-field topology in the relativistic jet of a blazar, strongly favoring a scenario in which magnetic energy dissipation is the primary driver of the flare event.

  13. Polarization swings reveal magnetic energy dissipation in blazars

    DOE PAGES

    Zhang, Haocheng; Chen, Xuhui; Böttcher, Markus; Guo, Fan; Li, Hui

    2015-05-01

    The polarization signatures of blazar emissions are known to be highly variable. In addition to small fluctuations of the polarization angle around a mean value, large (≳ 180°) polarization angle swings are observed. We suggest that such phenomena can be interpreted as arising from light-travel-time effects within an underlying axisymmetric emission region. We present the first simultaneous fitting of the multi-wavelength spectrum, variability, and time-dependent polarization features of a correlated optical and gamma-ray flaring event of the prominent blazar 3C279, which was accompanied by a drastic change in its polarization signatures. This unprecedented combination of spectral, variability, and polarization informationmore » in a coherent physical model allows us to place stringent constraints on the particle acceleration and magnetic-field topology in the relativistic jet of a blazar, strongly favoring a scenario in which magnetic energy dissipation is the primary driver of the flare event.« less

  14. POLARIZATION SWINGS REVEAL MAGNETIC ENERGY DISSIPATION IN BLAZARS

    SciTech Connect

    Zhang, Haocheng; Böttcher, Markus; Chen, Xuhui; Guo, Fan; Li, Hui

    2015-05-01

    The polarization signatures of blazar emissions are known to be highly variable. In addition to small fluctuations of the polarization angle around a mean value, large (≳180°) polarization angle swings are sometimes observed. We suggest that such phenomena can be interpreted as arising from light travel time effects within an underlying axisymmetric emission region. We present the first simultaneous fitting of the multi-wavelength spectrum, variability, and time-dependent polarization features of a correlated optical and gamma-ray flaring event of the prominent blazar 3C279, which was accompanied by a drastic change in its polarization signatures. This unprecedented combination of spectral, variability, and polarization information in a coherent physical model allows us to place stringent constraints on the particle acceleration and magnetic field topology in the relativistic jet of a blazar, strongly favoring a scenario in which magnetic energy dissipation is the primary driver of the flare event.

  15. The relativist stance.

    PubMed

    Rössler, O E; Matsuno, K

    1998-04-01

    The two mindsets of absolutism and relativism are juxtaposed, and the relational or relativist stance is vindicated. The only 'absolute' entity which undeniably exists, consciousness has the reality of a dream. The escape hatch from this prison is relational, as Descartes and Levinas found out: Unfalsified relational consistency implies exteriority. Exteriority implies infinite power which in turn makes compassion inevitable. Aside from ethics as a royal way to enlightenment, a new technology called 'deep technology' may be accessible. It changes the whole world in a demonstrable fashion by manipulation of the micro frame--that is, the observer-world interface.

  16. Relativistic quantum information

    NASA Astrophysics Data System (ADS)

    Mann, R. B.; Ralph, T. C.

    2012-11-01

    Over the past few years, a new field of high research intensity has emerged that blends together concepts from gravitational physics and quantum computing. Known as relativistic quantum information, or RQI, the field aims to understand the relationship between special and general relativity and quantum information. Since the original discoveries of Hawking radiation and the Unruh effect, it has been known that incorporating the concepts of quantum theory into relativistic settings can produce new and surprising effects. However it is only in recent years that it has become appreciated that the basic concepts involved in quantum information science undergo significant revision in relativistic settings, and that new phenomena arise when quantum entanglement is combined with relativity. A number of examples illustrate that point. Quantum teleportation fidelity is affected between observers in uniform relative acceleration. Entanglement is an observer-dependent property that is degraded from the perspective of accelerated observers moving in flat spacetime. Entanglement can also be extracted from the vacuum of relativistic quantum field theories, and used to distinguish peculiar motion from cosmological expansion. The new quantum information-theoretic framework of quantum channels in terms of completely positive maps and operator algebras now provides powerful tools for studying matters of causality and information flow in quantum field theory in curved spacetimes. This focus issue provides a sample of the state of the art in research in RQI. Some of the articles in this issue review the subject while others provide interesting new results that will stimulate further research. What makes the subject all the more exciting is that it is beginning to enter the stage at which actual experiments can be contemplated, and some of the articles appearing in this issue discuss some of these exciting new developments. The subject of RQI pulls together concepts and ideas from

  17. The relativist stance.

    PubMed

    Rössler, O E; Matsuno, K

    1998-04-01

    The two mindsets of absolutism and relativism are juxtaposed, and the relational or relativist stance is vindicated. The only 'absolute' entity which undeniably exists, consciousness has the reality of a dream. The escape hatch from this prison is relational, as Descartes and Levinas found out: Unfalsified relational consistency implies exteriority. Exteriority implies infinite power which in turn makes compassion inevitable. Aside from ethics as a royal way to enlightenment, a new technology called 'deep technology' may be accessible. It changes the whole world in a demonstrable fashion by manipulation of the micro frame--that is, the observer-world interface. PMID:9648695

  18. Dynamics of Dissipative Temporal Solitons

    NASA Astrophysics Data System (ADS)

    Peschel, U.; Michaelis, D.; Bakonyi, Z.; Onishchukov, G.; Lederer, F.

    The properties and the dynamics of localized structures, frequently termed solitary waves or solitons, define, to a large extent, the behavior of the relevant nonlinear system [1]. Thus, it is a crucial and fundamental issue of nonlinear dynamics to fully characterize these objects in various conservative and dissipative nonlinear environments. Apart from this fundamental point of view, solitons (henceforth we adopt this term, even for localized solutions of non-integrable systems) exhibit a remarkable potential for applications, particularly if optical systems are considered. Regarding the type of localization, one can distinguish between temporal and spatial solitons. Spatial solitons are self-confined beams, which are shape-invariant upon propagation. (For an overview, see [2, 3]). It can be anticipated that they could play a vital role in all-optical processing and logic, since we can use their complex collision behavior [4]. Temporal solitons, on the other hand, represent shapeinvariant (or breathing) pulses. It is now common belief that robust temporal solitons will play a major role as elementary units (bits) of information in future all-optical networks [5, 6]. Until now, the main emphasis has been on temporal and spatial soliton families in conservative systems, where energy is conserved. Recently, another class of solitons, which are characterized by a permanent energy exchange with their environment, has attracted much attention. These solitons are termed dissipative solitons or auto-solitons. They emerge as a result of a balance between linear (delocalization and losses) and nonlinear (self-phase modulation and gain/loss saturation) effects. Except for very few cases [7], they form zero-parameter families and their features are entirely fixed by the underlying optical system. Cavity solitons form a prominent type. They appear as spatially-localized transverse peaks in transmission or reflection, e.g. from a Fabry-Perot cavity. They rely strongly on the

  19. Hydrodynamical scaling laws to explore the physics of tidal dissipation in star-planet systems

    NASA Astrophysics Data System (ADS)

    Auclair-Desrotour, P.; Mathis, S.; Le Poncin-Lafitte, C.

    2015-10-01

    Fluid celestial bodies can be strongly affected by tidal perturbations, which drive the evolution of close planetary systems over long timescales. While the tidal response of solid bodies varies smoothly with the tidal frequency, fluid bodies present a highly frequency-resonant tidal dissipation resulting from the complex hydrodynamical response. In these bodies, tides have the form of a combination of inertial waves restored by the Coriolis acceleration and gravity waves in the case of stably stratified layers, which are restored by the Archimedean force. Because of processes such as viscous friction and thermal diffusion, the energy given by the tidal forcing is dissipated. This directly impact the architecture of planetary systems. In this study, we detail a local analytical model which makes us able to characterize the internal dissipation of fluid bodies as functions of identified control parameters such as the inertial, Brunt-Väisälä and tidal frequencies, and the Ekman and Prandtl numbers.

  20. Dissipative or conservative cosmology with dark energy?

    SciTech Connect

    Szydlowski, Marek Hrycyna, Orest

    2007-12-15

    All evolutional paths for all admissible initial conditions of FRW cosmological models with dissipative dust fluid (described by dark matter, baryonic matter and dark energy) are analyzed using dynamical system approach. With that approach, one is able to see how generic the class of solutions leading to the desired property-acceleration-is. The theory of dynamical systems also offers a possibility of investigating all possible solutions and their stability with tools of Newtonian mechanics of a particle moving in a one-dimensional potential which is parameterized by the cosmological scale factor. We demonstrate that flat cosmology with bulk viscosity can be treated as a conservative system with a potential function of the Chaplygin gas type. We characterize the class of dark energy models that admit late time de Sitter attractor solution in terms of the potential function of corresponding conservative system. We argue that inclusion of dissipation effects makes the model more realistic because of its structural stability. We also confront viscous models with SNIa observations. The best fitted models are obtained by minimizing the {chi}{sup 2} function which is illustrated by residuals and {chi}{sup 2} levels in the space of model independent parameters. The general conclusion is that SNIa data supports the viscous model without the cosmological constant. The obtained values of {chi}{sup 2} statistic are comparable for both the viscous model and {lambda}CDM model. The Bayesian information criteria are used to compare the models with different power-law parameterization of viscous effects. Our result of this analysis shows that SNIa data supports viscous cosmology more than the {lambda}CDM model if the coefficient in viscosity parameterization is fixed. The Bayes factor is also used to obtain the posterior probability of the model.

  1. Relativistic Effects on Chemical Properties.

    ERIC Educational Resources Information Center

    McKelvey, Donald R.

    1983-01-01

    Discusses how anomalous chemical properties may be explained by considering relativistic effects. Traces development of the relativistic wave equation (Dirac equation) starting with the Borh treatment of the hydrogen atom and discusses major consequences of the Dirac equation. Suggests that these topics receive greater attention in the…

  2. A Simple Relativistic Bohr Atom

    ERIC Educational Resources Information Center

    Terzis, Andreas F.

    2008-01-01

    A simple concise relativistic modification of the standard Bohr model for hydrogen-like atoms with circular orbits is presented. As the derivation requires basic knowledge of classical and relativistic mechanics, it can be taught in standard courses in modern physics and introductory quantum mechanics. In addition, it can be shown in a class that…

  3. relline: Relativistic line profiles calculation

    NASA Astrophysics Data System (ADS)

    Dauser, Thomas

    2015-05-01

    relline calculates relativistic line profiles; it is compatible with the common X-ray data analysis software XSPEC (ascl:9910.005) and ISIS (ascl:1302.002). The two basic forms are an additive line model (RELLINE) and a convolution model to calculate relativistic smearing (RELCONV).

  4. Relativistic and nonrelativistic quarkonium models

    SciTech Connect

    Ono, S.

    1982-11-01

    We propose a quarkonium potential for the Klein-Gordon equation. The relativistic effects are small even for uu-bar and dd-bar systems because the introduction of a scalar constant potential in a Klein-Gordon equation allows a minimization of relativistic effects via cancellations in our model.

  5. Dissipation by a crystallization process

    NASA Astrophysics Data System (ADS)

    Dorosz, Sven; Voigtmann, Thomas; Schilling, Tanja

    2016-01-01

    We discuss crystallization as a non-equilibrium process. In a system of hard spheres under compression at a constant rate, we quantify the amount of heat that is dissipated during the crystallization process. We interpret the dissipation as arising from the resistance of the system against phase transformation. An intrinsic compression rate is identified that separates a quasi-static regime from one of rapidly driven crystallization. In the latter regime the system crystallizes more easily, because new relaxation channels are opened, at the cost of forming a higher fraction of non-equilibrium crystal structures. We rationalize the change in the crystallization mechanism by analogy with shear thinning, in terms of a kinetic competition between near-equilibrium relaxation and external driving.

  6. Relativistic Continuum Shell Model

    NASA Astrophysics Data System (ADS)

    Grineviciute, Janina; Halderson, Dean

    2011-04-01

    The R-matrix formalism of Lane and Thomas has been extended to the relativistic case so that the many-coupled channels problem may be solved for systems in which binary breakup channels satisfy a relative Dirac equation. The formalism was previously applied to the relativistic impulse approximation RIA and now we applied it to Quantum Hadrodynamics QHD in the continuum Tamm-Dancoff approximation TDA with the classical meson fields replaced by one-meson exchange potentials. None of the published QHD parameters provide a decent fit to the 15 N + p elastic cross section. The deficiency is also evident in inability of the QHD parameters with the one meson exchange potentials to reproduce the QHD single particle energies. Results with alternate parameters sets are presented. A. M. Lane and R. G. Thomas, R-Matrix Theory of Nuclear Reactions, Reviews of Modern Physics, 30 (1958) 257

  7. Stationary relativistic jets

    NASA Astrophysics Data System (ADS)

    Komissarov, Serguei S.; Porth, Oliver; Lyutikov, Maxim

    2015-11-01

    In this paper we describe a simple numerical approach which allows to study the structure of steady-state axisymmetric relativistic jets using one-dimensional time-dependent simulations. It is based on the fact that for narrow jets with vz≈ c the steady-state equations of relativistic magnetohydrodynamics can be accurately approximated by the one-dimensional time-dependent equations after the substitution z=ct. Since only the time-dependent codes are now publicly available this is a valuable and efficient alternative to the development of a high-specialised code for the time-independent equations. The approach is also much cheaper and more robust compared to the relaxation method. We tested this technique against numerical and analytical solutions found in literature as well as solutions we obtained using the relaxation method and found it sufficiently accurate. In the process, we discovered the reason for the failure of the self-similar analytical model of the jet reconfinement in relatively flat atmospheres and elucidated the nature of radial oscillations of steady-state jets.

  8. A relativistic trolley paradox

    NASA Astrophysics Data System (ADS)

    Matvejev, Vadim N.; Matvejev, Oleg V.; Grøn, Ø.

    2016-06-01

    We present an apparent paradox within the special theory of relativity, involving a trolley with relativistic velocity and its rolling wheels. Two solutions are given, both making clear the physical reality of the Lorentz contraction, and that the distance on the rails between each time a specific point on the rim touches the rail is not equal to 2 π R , where R is the radius of the wheel, but 2 π R / √{ 1 - R 2 Ω 2 / c 2 } , where Ω is the angular velocity of the wheels. In one solution, the wheel radius is constant as the velocity of the trolley increases, and in the other the wheels contract in the radial direction. We also explain two surprising facts. First that the shape of a rolling wheel is elliptical in spite of the fact that the upper part of the wheel moves faster than the lower part, and thus is more Lorentz contracted, and second that a Lorentz contracted wheel with relativistic velocity rolls out a larger distance between two successive touches of a point of the wheel on the rails than the length of a circle with the same radius as the wheels.

  9. Relativistic harmonic oscillator revisited

    SciTech Connect

    Bars, Itzhak

    2009-02-15

    The familiar Fock space commonly used to describe the relativistic harmonic oscillator, for example, as part of string theory, is insufficient to describe all the states of the relativistic oscillator. We find that there are three different vacua leading to three disconnected Fock sectors, all constructed with the same creation-annihilation operators. These have different spacetime geometric properties as well as different algebraic symmetry properties or different quantum numbers. Two of these Fock spaces include negative norm ghosts (as in string theory), while the third one is completely free of ghosts. We discuss a gauge symmetry in a worldline theory approach that supplies appropriate constraints to remove all the ghosts from all Fock sectors of the single oscillator. The resulting ghost-free quantum spectrum in d+1 dimensions is then classified in unitary representations of the Lorentz group SO(d,1). Moreover, all states of the single oscillator put together make up a single infinite dimensional unitary representation of a hidden global symmetry SU(d,1), whose Casimir eigenvalues are computed. Possible applications of these new results in string theory and other areas of physics and mathematics are briefly mentioned.

  10. Relativistic Iron Line Fits

    NASA Astrophysics Data System (ADS)

    Fink, M.; Dauser, T.; Beuchert, T.; Jeffreson, S.; Tawabutr, J.; Wilms, J.; García, J.; Walton, D. J.

    2016-08-01

    The 6.4 keV Iron reflection line possesses strong diagnostic potential for AGN-systems. In the rare case of unobscured AGN, this line receives a contribution from the very center of the accretion flow close to the event horizon that is subject to strong relativistic effects. The shape of this line distortion can be used infer important parameters of the central accretion region, especially the black hole spin parameter a* and the accretion disk inclination i. We analyze several (nine?) bare AGN spectra from the sample of Walton et al. 2012 using high resolution spectra from the XMM and NuStar archives. The relativistic reflection is modeled using the RELXILL code (Dauser 20XX). The newest iteration of the RELXILL model also supports a lamp post geometry for the irradiation of the accretion disk. By combining these detailed models with the wide spectral range of NuStar and XMM/NuStar joint observations we can put tight constraints on the aforementioned parameters and we can constrain the height of the source h in a possible lamp post geometry.

  11. Quantum bouncer with quadratic dissipation

    NASA Astrophysics Data System (ADS)

    González, G.

    2008-02-01

    The energy loss due to a quadratic velocity dependent force on a quantum particle bouncing on a perfectly reflecting surface is obtained for a full cycle of motion. We approach this problem by means of a new effective phenomenological Hamiltonian which corresponds to the actual energy of the system and obtained the correction to the eigenvalues of the energy in first order quantum perturbation theory for the case of weak dissipation.

  12. Charge-Dissipative Electrical Cables

    NASA Technical Reports Server (NTRS)

    Kolasinski, John R.; Wollack, Edward J.

    2004-01-01

    Electrical cables that dissipate spurious static electric charges, in addition to performing their main functions of conducting signals, have been developed. These cables are intended for use in trapped-ion or ionizing-radiation environments, in which electric charges tend to accumulate within, and on the surfaces of, dielectric layers of cables. If the charging rate exceeds the dissipation rate, charges can accumulate in excessive amounts, giving rise to high-current discharges that can damage electronic circuitry and/or systems connected to it. The basic idea of design and operation of charge-dissipative electrical cables is to drain spurious charges to ground by use of lossy (slightly electrically conductive) dielectric layers, possibly in conjunction with drain wires and/or drain shields (see figure). In typical cases, the drain wires and/or drain shields could be electrically grounded via the connector assemblies at the ends of the cables, in any of the conventional techniques for grounding signal conductors and signal shields. In some cases, signal shields could double as drain shields.

  13. Dissipative chaos in semiconductor superlattices

    SciTech Connect

    Alekseev, K.N.; Berman, G.P. ||; Campbell, D.K.; Cannon, E.H.; Cargo, M.C.

    1996-10-01

    We consider the motion of ballistic electrons in a miniband of a semiconductor superlattice (SSL) under the influence of an external, time-periodic electric field. We use a semiclassical, balance-equation approach, which incorporates elastic and inelastic scattering (as dissipation) and the self-consistent field generated by the electron motion. The coupling of electrons in the miniband to the self-consistent field produces a cooperative nonlinear oscillatory mode which, when interacting with the oscillatory external field and the intrinsic Bloch-type oscillatory mode, can lead to complicated dynamics, including dissipative chaos. For a range of values of the dissipation parameters we determine the regions in the amplitude-frequency plane of the external field in which chaos can occur. Our results suggest that for terahertz external fields of the amplitudes achieved by present-day free-electron lasers, chaos may be observable in SSL{close_quote}s. We clarify the nature of this interesting nonlinear dynamics in the superlattice{endash}external-field system by exploring analogies to the Dicke model of an ensemble of two-level atoms coupled with a resonant cavity field, and to Josephson junctions. {copyright} {ital 1996 The American Physical Society.}

  14. Dissipative effects in nonlinear Klein-Gordon dynamics

    NASA Astrophysics Data System (ADS)

    Plastino, A. R.; Tsallis, C.

    2016-03-01

    We consider dissipation in a recently proposed nonlinear Klein-Gordon dynamics that admits exact time-dependent solutions of the power-law form e_qi(kx-wt) , involving the q-exponential function naturally arising within the nonextensive thermostatistics (e_qz \\equiv [1+(1-q)z]1/(1-q) , with e_1^z=ez ). These basic solutions behave like free particles, complying, for all values of q, with the de Broglie-Einstein relations p=\\hbar k , E=\\hbar ω and satisfying a dispersion law corresponding to the relativistic energy-momentum relation E2 = c^2p2 + m^2c4 . The dissipative effects explored here are described by an evolution equation that can be regarded as a nonlinear generalization of the celebrated telegraph equation, unifying within one single theoretical framework the nonlinear Klein-Gordon equation, a nonlinear Schrödinger equation, and the power-law diffusion (porous-media) equation. The associated dynamics exhibits physically appealing traveling solutions of the q-plane wave form with a complex frequency ω and a q-Gaussian square modulus profile.

  15. Coalescence cascade of dissipative solitons in parametrically driven systems.

    PubMed

    Clerc, M G; Coulibaly, S; Gordillo, L; Mujica, N; Navarro, R

    2011-09-01

    Parametrically driven spatially extended systems exhibit uniform oscillations which are modulationally unstable. The resulting periodic state evolves to the creation of a gas of dissipative solitons. Driven by the interaction of dissipative solitons, the multisoliton state undergoes a cascade of coalescence processes, where the average soliton separation distance obeys a temporal self-similar law. Starting from the soliton pair interaction law, we have derived analytically and characterized the law of this multisoliton coarsening process. A comparison of numerical results obtained with different models such as the parametrically driven damped nonlinear Schrödinger equation, a vertically driven chain of pendula, and a parametrically forced magnetic wire, shows remarkable agreement. Both phenomena, the pair interaction law and the coarsening process, are also observed experimentally in a quasi-one-dimensional layer of Newtonian fluid which is oscillated vertically. PMID:22060473

  16. Efficient Schmidt number scaling in dissipative particle dynamics.

    PubMed

    Krafnick, Ryan C; García, Angel E

    2015-12-28

    Dissipative particle dynamics is a widely used mesoscale technique for the simulation of hydrodynamics (as well as immersed particles) utilizing coarse-grained molecular dynamics. While the method is capable of describing any fluid, the typical choice of the friction coefficient γ and dissipative force cutoff rc yields an unacceptably low Schmidt number Sc for the simulation of liquid water at standard temperature and pressure. There are a variety of ways to raise Sc, such as increasing γ and rc, but the relative cost of modifying each parameter (and the concomitant impact on numerical accuracy) has heretofore remained undetermined. We perform a detailed search over the parameter space, identifying the optimal strategy for the efficient and accuracy-preserving scaling of Sc, using both numerical simulations and theoretical predictions. The composite results recommend a parameter choice that leads to a speed improvement of a factor of three versus previously utilized strategies. PMID:26723591

  17. Efficient Schmidt number scaling in dissipative particle dynamics

    NASA Astrophysics Data System (ADS)

    Krafnick, Ryan C.; García, Angel E.

    2015-12-01

    Dissipative particle dynamics is a widely used mesoscale technique for the simulation of hydrodynamics (as well as immersed particles) utilizing coarse-grained molecular dynamics. While the method is capable of describing any fluid, the typical choice of the friction coefficient γ and dissipative force cutoff rc yields an unacceptably low Schmidt number Sc for the simulation of liquid water at standard temperature and pressure. There are a variety of ways to raise Sc, such as increasing γ and rc, but the relative cost of modifying each parameter (and the concomitant impact on numerical accuracy) has heretofore remained undetermined. We perform a detailed search over the parameter space, identifying the optimal strategy for the efficient and accuracy-preserving scaling of Sc, using both numerical simulations and theoretical predictions. The composite results recommend a parameter choice that leads to a speed improvement of a factor of three versus previously utilized strategies.

  18. Direct coronal heating from dissipation of magnetic field

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1983-01-01

    The visible corona of the Sun appears to be heated by direct dissipation of magnetic fields. The magnetic fields in the visible corona are tied at both ends to the photosphere where the active convection continually rotates and shuffles the footpoints in a random pattern. The twisting and wrapping of flux tubes about each other produce magnetic neutral sheets in a state of dynamical nonequilibrium such that the current sheets become increasingly concentrated with the passage of time. Dissipation of the high current densities takes place regardless of the high electrical conductivity of the fluid. The convection on the feet of the lines of force at the surface of the Sun goes directly (within a matter of 10 to 20 hours) into heat in the corona. The rate of doing work seems adequate to supply the necessary 10 to the 7th power ergs/square cm. sec for the active corona.

  19. Bound of dissipation on a plane Couette dynamo

    SciTech Connect

    Alboussiere, Thierry

    2009-06-15

    Variational turbulence is among the few approaches providing rigorous results in turbulence. In addition, it addresses a question of direct practical interest, namely, the rate of energy dissipation. Unfortunately, only an upper bound is obtained as a larger functional space than the space of solutions to the Navier-Stokes equations is searched. Yet, in some cases, this upper bound is in good agreement with experimental results in terms of order of magnitude and power law of the imposed Reynolds number. In this paper, the variational approach to turbulence is extended to the case of dynamo action and an upper bound is obtained for the global dissipation rate (viscous and Ohmic). A simple plane Couette flow is investigated. For low magnetic Prandtl number P{sub m} fluids, the upper bound of energy dissipation is that of classical turbulence (i.e., proportional to the cubic power of the shear velocity) for magnetic Reynolds numbers below P{sub m}{sup -1} and follows a steeper evolution for magnetic Reynolds numbers above P{sub m}{sup -1} (i.e., proportional to the shear velocity to the power of 4) in the case of electrically insulating walls. However, the effect of wall conductance is crucial: for a given value of wall conductance, there is a value for the magnetic Reynolds number above which energy dissipation cannot be bounded. This limiting magnetic Reynolds number is inversely proportional to the square root of the conductance of the wall. Implications in terms of energy dissipation in experimental and natural dynamos are discussed.

  20. Existence and Stability of Relativistic Solitary Waves in Warm Plasmas

    SciTech Connect

    Maza-Palacios, Marco A.; Herrera-Velazquez, J. Julio E.

    2006-12-04

    A variational mehod for one dimensional relativistic solitons is established, within the two fluid model framework, including finite temperature effects. Our starting point is a Lagrangian for a two species fluid plasma, which allows the deduction of the conserved quantities of the system by means of Noether's theorem, as well as the model equations. At a first stage, travelling wave solutions are studied with the usual shape of envelope solitary waves. It is found that bounded travelling waves (bright solitons) exist for most velocities, if both ions and electrons are assumed to be relativistic, except for a window at small values of v/c. In order to study their stability, we obtain the evolution equations of the solitary wave parameters, along those of radiation.

  1. Relativistic perturbations in ΛCDM: Eulerian and Lagrangian approaches

    SciTech Connect

    Villa, Eleonora; Rampf, Cornelius E-mail: cornelius.rampf@port.ac.uk

    2016-01-01

    We study the relativistic dynamics of a pressure-less and irrotational fluid of dark matter (CDM) with a cosmological constant (Λ), up to second order in cosmological perturbation theory. In our analysis we also account for vector and tensor perturbations and include primordial non-Gaussianity. We consider three gauges: the synchronous-comoving gauge, the Poisson gauge and the total matter gauge, where the first is the unique relativistic Lagrangian frame of reference, and the latters are convenient gauge choices for Eulerian frames. Our starting point is the metric and fluid variables in the Poisson gauge up to second order. We then perform the gauge transformations to the synchronous-comoving gauge and subsequently to the total matter gauge. Our expressions for the metrics, densities, velocities, and the gauge generators are novel and coincide with known results in the limit of a vanishing cosmological constant.

  2. Relativistic Quantum Cryptography

    NASA Astrophysics Data System (ADS)

    Jeffrey, Evan; Kwiat, Paul

    2006-03-01

    We present results from a relativistic quantum cryptography system which uses photon storage to avoid bit sifting, in principle doubling the useful key rate. Bob stores the photon he receives from Alice in an optical delay line until she sends him the classical basis information, allowing him to measure every photon in the correct basis. Accounting for loss in our 489-ns storage cavity, we achieve a 66% increase in the BB84 key rate. The same system could be used for even greater gains in either the six-state protocol or cryptography using a larger Hilbert space. We show that the security of this protocol is equivalent to standard BB84: assuming the quantum and classical signals are space-like separated, no eavesdropper bound by special relativity can access both simultaneously.

  3. Electrostatic solitary waves in a quantum plasma with relativistically degenerate electrons

    NASA Astrophysics Data System (ADS)

    Masood, W.; Eliasson, B.

    2011-03-01

    A model for nonlinear ion waves in an unmagnetized plasma with relativistically degenerate electrons and cold fluid ions is presented here. The inertia is given here by the ion mass while the restoring force is provided by the relativistic electron degeneracy pressure, and the dispersion is due to the deviation from charge neutrality. A nonlinear Korteweg-de Vries equation is derived for small but finite amplitude waves and is used to study the properties of localized ion acoustic solitons for parameters relevant for dense astrophysical objects such as white dwarf stars. Different degrees of relativistic electron degeneracy are discussed and compared.

  4. Relativistic Runaway Electrons

    NASA Astrophysics Data System (ADS)

    Breizman, Boris

    2014-10-01

    This talk covers recent developments in the theory of runaway electrons in a tokamak with an emphasis on highly relativistic electrons produced via the avalanche mechanism. The rapidly growing population of runaway electrons can quickly replace a large part of the initial current carried by the bulk plasma electrons. The magnetic energy associated with this current is typically much greater than the particle kinetic energy. The current of a highly relativistic runaway beam is insensitive to the particle energy, which separates the description of the runaway current evolution from the description of the runaway energy spectrum. A strongly anisotropic distribution of fast electrons is generally prone to high-frequency kinetic instabilities that may cause beneficial enhancement of runaway energy losses. The relevant instabilities are in the frequency range of whistler waves and electron plasma waves. The instability thresholds reported in earlier work have been revised considerably to reflect strong dependence of collisional damping on the wave frequency and the role of plasma non-uniformity, including radial trapping of the excited waves in the plasma. The talk also includes a discussion of enhanced scattering of the runaways as well as the combined effect of enhanced scattering and synchrotron radiation. A noteworthy feature of the avalanche-produced runaway current is a self-sustained regime of marginal criticality: the inductive electric field has to be close to its critical value (representing avalanche threshold) at every location where the runaway current density is finite, and the current density should vanish at any point where the electric field drops below its critical value. This nonlinear Ohm's law enables complete description of the evolving current profile. Work supported by the U.S. Department of Energy Contract No. DEFG02-04ER54742 and by ITER contract ITER-CT-12-4300000273. The views and opinions expressed herein do not necessarily reflect those of

  5. Re-examination of Tidal Dissipation in Jupiter

    NASA Astrophysics Data System (ADS)

    Houben, H.

    1996-09-01

    The workings of tidal friction in the Earth-Moon system have been well understood for a century. The Moon raises a tidal bulge on the Earth which is delayed somewhat on average from the time when the Moon is overhead. The phase lag between Moon and bulge results in a tidal torque that accelerates the Moon in its orbit, causing it to spiral outward from the Earth. Of necessity, such orbital evolution can only take place if some of the Earth's rotational energy is dissipated (a process which is thought to take place primarily in shallow seas). A similar interaction between planet and moon is the most likely explanation of many phenomena (like the Laplace resonances) in the giant planet satellite systems. However, a satisfactory source of the required energy dissipation in these largely fluid bodies has not been identified. There are currently three proposed explanations (all with shortcomings) for the tidal dissipation in Jupiter and the other giant planets. One, due to Dermott (Icarus 37, 310, 1979), depends on terrestrial planet-like dissipation in the core (which is however of unknown composition and rheology). The strength of this explanation is that all the giant planets are thought to have similar cores; the weakness is our relative ignorance of the physical properties of those cores. The other two explanations both depend on regions of static stability in the planetary envelopes. Stevenson (J. Geophys. Res. 88, 2445, 1983) would have this stable layer in the region of metallic hydrogen-helium immiscibility (which, depending on Jupiter's atmospheric helium abundance, may only apply to the planet Saturn). Ioannou & Lindzen (Ap. J. 406, 266, 1993) predicted a stable outer envelope for Jupiter. The early report that the Galileo probe entered a region of static stability added interest to the latter prediction and raises the need for further discussion of the tidal dissipation problem. A recalculation of the tidal flow in giant fluid planets is presented. The self

  6. Null fluids: A new viewpoint of Galilean fluids

    NASA Astrophysics Data System (ADS)

    Banerjee, Nabamita; Dutta, Suvankar; Jain, Akash

    2016-05-01

    In this article, we study a Galilean fluid with a conserved U (1 ) current up to anomalies. We construct a relativistic system, which we call a null fluid and show that it is in one-to-one correspondence with a Galilean fluid living in one lower dimension. The correspondence is based on light cone reduction, which is known to reduce the Poincaré symmetry of a theory to Galilean in one lower dimension. We show that the proposed null fluid and the corresponding Galilean fluid have exactly same symmetries, thermodynamics, constitutive relations, and equilibrium partition to all orders in the derivative expansion. We also devise a mechanism to introduce U (1 ) anomaly in even dimensional Galilean theories using light cone reduction, and study its effect on the constitutive relations of a Galilean fluid.

  7. Some problems in relativistic thermodynamics

    SciTech Connect

    Veitsman, E. V.

    2007-11-15

    The relativistic equations of state for ideal and real gases, as well as for various interface regions, have been derived. These dependences help to eliminate some controversies in the relativistic thermodynamics based on the special theory of relativity. It is shown, in particular, that the temperature of system whose velocity tends to the velocity of light in vacuum varies in accordance with the Ott law T = T{sub 0}/{radical}1 - v{sup 2}/c{sup 2}. Relativistic dependences for heat and mass transfer, for Ohm's law, and for a viscous flow of a liquid have also been derived.

  8. Harnessing spin precession with dissipation

    PubMed Central

    Crisan, A. D.; Datta, S.; Viennot, J. J.; Delbecq, M. R.; Cottet, A.; Kontos, T.

    2016-01-01

    Non-collinear spin transport is at the heart of spin or magnetization control in spintronics devices. The use of nanoscale conductors exhibiting quantum effects in transport could provide new paths for that purpose. Here we study non-collinear spin transport in a quantum dot. We use a device made out of a single-wall carbon nanotube connected to orthogonal ferromagnetic electrodes. In the spin transport signals, we observe signatures of out of equilibrium spin precession that are electrically tunable through dissipation. This could provide a new path to harness spin precession in nanoscale conductors. PMID:26816050

  9. Harnessing spin precession with dissipation

    NASA Astrophysics Data System (ADS)

    Crisan, A. D.; Datta, S.; Viennot, J. J.; Delbecq, M. R.; Cottet, A.; Kontos, T.

    2016-01-01

    Non-collinear spin transport is at the heart of spin or magnetization control in spintronics devices. The use of nanoscale conductors exhibiting quantum effects in transport could provide new paths for that purpose. Here we study non-collinear spin transport in a quantum dot. We use a device made out of a single-wall carbon nanotube connected to orthogonal ferromagnetic electrodes. In the spin transport signals, we observe signatures of out of equilibrium spin precession that are electrically tunable through dissipation. This could provide a new path to harness spin precession in nanoscale conductors.

  10. Conservation-dissipation formalism of irreversible thermodynamics

    NASA Astrophysics Data System (ADS)

    Zhu, Yi; Hong, Liu; Yang, Zaibao; Yong, Wen-An

    2015-06-01

    We propose a conservation-dissipation formalism (CDF) for coarse-grained descriptions of irreversible processes. This formalism is based on a stability criterion for non-equilibrium thermodynamics. The criterion ensures that non-equilibrium states tend to equilibrium in long time. As a systematic methodology, CDF provides a feasible procedure in choosing non-equilibrium state variables and determining their evolution equations. The equations derived in CDF have a unified elegant form. They are globally hyperbolic, allow a convenient definition of weak solutions, and are amenable to existing numerics. More importantly, CDF is a genuinely nonlinear formalism and works for systems far away from equilibrium. With this formalism, we formulate novel thermodynamics theories for heat conduction in rigid bodies and non-isothermal compressible Maxwell fluid flows as two typical examples. In these examples, the non-equilibrium variables are exactly the conjugate variables of the heat fluxes or stress tensors. The new theory generalizes Cattaneo's law or Maxwell's law in a regularized and nonlinear fashion.

  11. Finite Element Method for Capturing Ultra-relativistic Shocks

    NASA Technical Reports Server (NTRS)

    Richardson, G. A.; Chung, T. J.

    2003-01-01

    While finite element methods are used extensively by researchers solving computational fluid dynamics in fields other than astrophysics, their use in astrophysical fluid simulations has been predominantly overlooked. Current simulations using other methods such as finite difference and finite volume (based on finite difference) have shown remarkable results, but these methods are limited by their fundamental properties in aspects that are important for simulations with complex geometries and widely varying spatial and temporal scale differences. We have explored the use of finite element methods for astrophysical fluids in order to establish the validity of using such methods in astrophysical environments. We present our numerical technique applied to solving ultra-relativistic (Lorentz Factor Gamma >> 1) shocks which are prevalent in astrophysical studies including relativistic jets and gamma-ray burst studies. We show our finite element formulation applied to simulations where the Lorentz factor ranges up to 2236 and demonstrate its stability in solving ultra-relativistic flows. Our numerical method is based on the Flowfield Dependent Variation (FDV) Method, unique in that numerical diffusion is derived from physical parameters rather than traditional artificial viscosity methods. Numerical instabilities account for most of the difficulties when capturing shocks in this regime. Our method results in stable solutions and accurate results as compared with other methods.

  12. Gamma-ray flares in the Crab Nebula: A case of relativistic reconnection?

    SciTech Connect

    Cerutti, B.; Werner, G. R. Uzdensky, D. A.; Begelman, M. C.

    2014-05-15

    The Crab Nebula was formed after the collapse of a massive star about a thousand years ago, leaving behind a pulsar that inflates a bubble of ultra-relativistic electron-positron pairs permeated with magnetic field. The observation of brief but bright flares of energetic gamma rays suggests that pairs are accelerated to PeV energies within a few days; such rapid acceleration cannot be driven by shocks. Here, it is argued that the flares may be the smoking gun of magnetic dissipation in the Nebula. Using 2D and 3D particle-in-cell simulations, it is shown that the observations are consistent with relativistic magnetic reconnection, where pairs are subject to strong radiative cooling. The Crab flares may highlight the importance of relativistic magnetic reconnection in astrophysical sources.

  13. The Radiation Hydrodynamics of Relativistic Shear Flows

    NASA Astrophysics Data System (ADS)

    Coughlin, Eric R.; Begelman, Mitchell C.

    2016-07-01

    We present a method for analyzing the interaction between radiation and matter in regions of intense, relativistic shear that can arise in many astrophysical situations. We show that there is a simple velocity profile that should be manifested in regions of large shear that have “lost memory” of their boundary conditions, and we use this self-similar velocity profile to construct the surface of last scattering, or the τ ≃ 1 surface, as viewed from any comoving point within the flow. We demonstrate that a simple treatment of scattering from this τ ≃ 1 surface exactly conserves photon number, and we derive the rate at which the radiation field is heated due to the shear present in the flow. The components of the comoving radiation energy–momentum tensor are calculated, and we show that they have relatively simple, approximate forms that interpolate between the viscous (small shear) and streaming (large shear) limits. We put our expression for the energy–momentum tensor in a covariant form that does not depend on the explicit velocity profile within the fluid and, therefore, represents a natural means for analyzing general, radiation-dominated, relativistic shear flows.

  14. Relativistic spectra of bound fermions

    SciTech Connect

    Giachetti, Riccardo; Sorace, Emanuele

    2007-02-27

    A two fermion relativistic invariant wave equation is used for numerical calculations of the hyperfine shifts of the Positronium levels in a Breit interaction scheme. The results agree with known data up to the order {alpha}4.

  15. Simulating relativistic binaries with Whisky

    NASA Astrophysics Data System (ADS)

    Baiotti, L.

    We report about our first tests and results in simulating the last phase of the coalescence and the merger of binary relativistic stars. The simulations were performed using our code Whisky and mesh refinement through the Carpet driver.

  16. Relativistic Transformation of Solid Angle.

    ERIC Educational Resources Information Center

    McKinley, John M.

    1980-01-01

    Rederives the relativistic transformations of light intensity from compact sources (stars) to show where and how the transformation of a solid angle contributes. Discusses astrophysical and other applications of the transformations. (Author/CS)

  17. Conductivity of a relativistic plasma

    SciTech Connect

    Braams, B.J.; Karney, C.F.F.

    1989-03-01

    The collision operator for a relativistic plasma is reformulated in terms of an expansion in spherical harmonics. This formulation is used to calculate the electrical conductivity. 13 refs., 1 fig., 1 tab.

  18. Scattering in Relativistic Particle Mechanics.

    NASA Astrophysics Data System (ADS)

    de Bievre, Stephan

    The problem of direct interaction in relativistic particle mechanics has been extensively studied and a variety of models has been proposed avoiding the conclusions of the so-called no-interaction theorems. In this thesis we study scattering in the relativistic two-body problem. We use our results to analyse gauge invariance in Hamiltonian constraint models and the uniqueness of the symplectic structure in manifestly covariant relativistic particle mechanics. We first present a general geometric framework that underlies approaches to relativistic particle mechanics. This permits a model-independent and geometric definition of the notions of asymptotic completeness and of Moller and scattering operators. Subsequent analysis of these concepts divides into two parts. First, we study the kinematic properties of the scattering transformation, i.e. those properties that arise solely from the invariance of the theory under the Poincare group. We classify all canonical (symplectic) scattering transformations on the relativistic phase space for two free particles in terms of a single function of the two invariants of the theory. We show how this function is determined by the center of mass time delay and scattering angle and vice versa. The second part of our analysis of the relativistic two-body scattering problem is devoted to the dynamical properties of the scattering process. Hence, we turn to two approaches to relativistic particle mechanics: the Hamiltonian constraint models and the manifestly covariant formalism. Using general geometric arguments, we prove "gauge invariance" of the scattering transformation in the Todorov -Komar Hamiltonian constraint model. We conclude that the scattering cross sections of the Todorov-Komar models have the same angular dependence as their non-relativistic counterpart, irrespective of a choice of gauge. This limits the physical relevance of those models. We present a physically non -trivial Hamiltonian constraint model, starting from

  19. Dissipative effects on quantum sticking.

    PubMed

    Zhang, Yanting; Clougherty, Dennis P

    2012-04-27

    Using variational mean-field theory, many-body dissipative effects on the threshold law for quantum sticking and reflection of neutral and charged particles are examined. For the case of an Ohmic bosonic bath, we study the effects of the infrared divergence on the probability of sticking and obtain a nonperturbative expression for the sticking rate. We find that for weak dissipative coupling α, the low-energy threshold laws for quantum sticking are modified by an infrared singularity in the bath. The sticking probability for a neutral particle with incident energy E→0 behaves asymptotically as s~E((1+α)/2(1-α)); for a charged particle, we obtain s~E(α/2(1-α)). Thus, "quantum mirrors"-surfaces that become perfectly reflective to particles with incident energies asymptotically approaching zero-can also exist for charged particles. We provide a numerical example of the effects for electrons sticking to porous silicon via the emission of a Rayleigh phonon. PMID:22680861

  20. Dissipative Effects on Quantum Sticking

    NASA Astrophysics Data System (ADS)

    Zhang, Yanting; Clougherty, Dennis P.

    2012-04-01

    Using variational mean-field theory, many-body dissipative effects on the threshold law for quantum sticking and reflection of neutral and charged particles are examined. For the case of an Ohmic bosonic bath, we study the effects of the infrared divergence on the probability of sticking and obtain a nonperturbative expression for the sticking rate. We find that for weak dissipative coupling α, the low-energy threshold laws for quantum sticking are modified by an infrared singularity in the bath. The sticking probability for a neutral particle with incident energy E→0 behaves asymptotically as s˜E(1+α)/2(1-α); for a charged particle, we obtain s˜Eα/2(1-α). Thus, “quantum mirrors”—surfaces that become perfectly reflective to particles with incident energies asymptotically approaching zero—can also exist for charged particles. We provide a numerical example of the effects for electrons sticking to porous silicon via the emission of a Rayleigh phonon.

  1. Natural approach to quantum dissipation

    NASA Astrophysics Data System (ADS)

    Taj, David; Öttinger, Hans Christian

    2015-12-01

    The dissipative dynamics of a quantum system weakly coupled to one or several reservoirs is usually described in terms of a Lindblad generator. The popularity of this approach is certainly due to the linear character of the latter. However, while such linearity finds justification from an underlying Hamiltonian evolution in some scaling limit, it does not rely on solid physical motivations at small but finite values of the coupling constants, where the generator is typically used for applications. The Markovian quantum master equations we propose are instead supported by very natural thermodynamic arguments. They themselves arise from Markovian master equations for the system and the environment which preserve factorized states and mean energy and generate entropy at a non-negative rate. The dissipative structure is driven by an entropic map, called modular, which introduces nonlinearity. The generated modular dynamical semigroup (MDS) guarantees for the positivity of the time evolved state the correct steady state properties, the positivity of the entropy production, and a positive Onsager matrix with symmetry relations arising from Green-Kubo formulas. We show that the celebrated Davies Lindblad generator, obtained through the Born and the secular approximations, generates a MDS. In doing so we also provide a nonlinear MDS which is supported by a weak coupling argument and is free from the limitations of the Davies generator.

  2. Propagation of electromagnetic waves in resistive pair plasma and causal relativistic magnetohydrodynamics

    SciTech Connect

    Koide, Shinji

    2008-12-15

    We investigate the propagation of electromagnetic waves in resistive e{sup {+-}} pair plasmas using a one-fluid theory derived from the relativistic two-fluid equations. When the resistivity normalized by the electron/positron inertia variable exceeds a critical value, the dispersion relation for electromagnetic waves shows that the group velocity is larger than the light speed in vacuum. However, in such a case, it also is found that the plasma parameter is less than unity: that is, the electron-positron pair medium no longer can be treated as plasma. Thus, the simple two-fluid approximation is invalid. This confirms that superluminal propagation of electromagnetic wave is forbidden in a plasma--a conclusion consistent with the relativistic principle of causality. As an alternative, we propose a new set of equations for ''causal relativistic magnetohydrodynamics,'' which both have nonzero resistivity and yet are consistent with the causality principle.

  3. Electrovacuum static counterrotating relativistic dust disks

    NASA Astrophysics Data System (ADS)

    García R., Gonzalo; González, Guillermo A.

    2004-06-01

    A detailed study is presented of the counterrotating model (CRM) for generic electrovacuum static axially symmetric relativistic thin disks without radial pressure. We find a general constraint over the counterrotating tangential velocities needed to cast the surface energy-momentum tensor of the disk as the superposition of two counterrotating charged dust fluids. We also find explicit expressions for the energy densities, charge densities and velocities of the counterrotating fluids. We then show that this constraint can be satisfied if we take the two counterrotating streams as circulating along electrogeodesics. However, we show that, in general, it is not possible to take the two counterrotating fluids as circulating along electrogeodesics nor take the two counterrotating tangential velocities as equal and opposite. Four simple families of models of counterrotating charged disks based on Chazy-Curzon-type, Zipoy-Voorhees-type, Bonnor-Sackfield-type, and Kerr-type electrovacuum solutions are considered where we obtain some disks with a CRM well behaved. The models are constructed using the well-known “displace, cut and reflect” method extended to solutions of vacuum Einstein-Maxwell equations.

  4. Nonlinear absorption of Alfven wave in dissipative plasma

    SciTech Connect

    Taiurskii, A. A. Gavrikov, M. B.

    2015-10-28

    We propose a method for studying absorption of Alfven wave propagation in a homogeneous non-isothermal plasma along a constant magnetic field, and relaxation of electron and ion temperatures in the A-wave. The absorption of a A-wave by the plasma arises due to dissipative effects - magnetic and hydrodynamic viscosities of electrons and ions and their elastic interaction. The method is based on the exact solution of two-fluid electromagnetic hydrodynamics of the plasma, which for A-wave, as shown in the work, are reduced to a nonlinear system of ordinary differential equations.

  5. Heating of the Solar Corona by Dissipative Alfven Solitons

    SciTech Connect

    Stasiewicz, K.

    2006-05-05

    Solar photospheric convection drives myriads of dissipative Alfven solitons (hereinafter called alfvenons) capable of accelerating electrons and ions to energies of hundreds of keV and producing the x-ray corona. Alfvenons are exact solutions of two-fluid equations for a collisionless plasma and represent natural accelerators for conversion of the electromagnetic energy flux driven by convective flows into kinetic energy of charged particles in space and astrophysical plasmas. Their properties have been experimentally verified in the magnetosphere, where they accelerate auroral electrons to tens of keV.

  6. Magnetized relativistic electron-ion plasma expansion

    NASA Astrophysics Data System (ADS)

    Benkhelifa, El-Amine; Djebli, Mourad

    2016-03-01

    The dynamics of relativistic laser-produced plasma expansion across a transverse magnetic field is investigated. Based on a one dimensional two-fluid model that includes pressure, enthalpy, and rest mass energy, the expansion is studied in the limit of λD (Debye length) ≤RL (Larmor radius) for magnetized electrons and ions. Numerical investigation conducted for a quasi-neutral plasma showed that the σ parameter describing the initial plasma magnetization, and the plasma β parameter, which is the ratio of kinetic to magnetic pressure are the key parameters governing the expansion dynamics. For σ ≪ 1, ion's front shows oscillations associated to the break-down of quasi-neutrality. This is due to the strong constraining effect and confinement of the magnetic field, which acts as a retarding medium slowing the plasma expansion.

  7. Intermittency, nonlinear dynamics and dissipation in the solar wind and astrophysical plasmas.

    PubMed

    Matthaeus, W H; Wan, Minping; Servidio, S; Greco, A; Osman, K T; Oughton, S; Dmitruk, P

    2015-05-13

    An overview is given of important properties of spatial and temporal intermittency, including evidence of its appearance in fluids, magnetofluids and plasmas, and its implications for understanding of heliospheric plasmas. Spatial intermittency is generally associated with formation of sharp gradients and coherent structures. The basic physics of structure generation is ideal, but when dissipation is present it is usually concentrated in regions of strong gradients. This essential feature of spatial intermittency in fluids has been shown recently to carry over to the realm of kinetic plasma, where the dissipation function is not known from first principles. Spatial structures produced in intermittent plasma influence dissipation, heating, and transport and acceleration of charged particles. Temporal intermittency can give rise to very long time correlations or a delayed approach to steady-state conditions, and has been associated with inverse cascade or quasi-inverse cascade systems, with possible implications for heliospheric prediction. PMID:25848085

  8. Intermittency, nonlinear dynamics and dissipation in the solar wind and astrophysical plasmas.

    PubMed

    Matthaeus, W H; Wan, Minping; Servidio, S; Greco, A; Osman, K T; Oughton, S; Dmitruk, P

    2015-05-13

    An overview is given of important properties of spatial and temporal intermittency, including evidence of its appearance in fluids, magnetofluids and plasmas, and its implications for understanding of heliospheric plasmas. Spatial intermittency is generally associated with formation of sharp gradients and coherent structures. The basic physics of structure generation is ideal, but when dissipation is present it is usually concentrated in regions of strong gradients. This essential feature of spatial intermittency in fluids has been shown recently to carry over to the realm of kinetic plasma, where the dissipation function is not known from first principles. Spatial structures produced in intermittent plasma influence dissipation, heating, and transport and acceleration of charged particles. Temporal intermittency can give rise to very long time correlations or a delayed approach to steady-state conditions, and has been associated with inverse cascade or quasi-inverse cascade systems, with possible implications for heliospheric prediction.

  9. Intermittency, nonlinear dynamics and dissipation in the solar wind and astrophysical plasmas

    PubMed Central

    Matthaeus, W. H.; Wan, Minping; Servidio, S.; Greco, A.; Osman, K. T.; Oughton, S.; Dmitruk, P.

    2015-01-01

    An overview is given of important properties of spatial and temporal intermittency, including evidence of its appearance in fluids, magnetofluids and plasmas, and its implications for understanding of heliospheric plasmas. Spatial intermittency is generally associated with formation of sharp gradients and coherent structures. The basic physics of structure generation is ideal, but when dissipation is present it is usually concentrated in regions of strong gradients. This essential feature of spatial intermittency in fluids has been shown recently to carry over to the realm of kinetic plasma, where the dissipation function is not known from first principles. Spatial structures produced in intermittent plasma influence dissipation, heating, and transport and acceleration of charged particles. Temporal intermittency can give rise to very long time correlations or a delayed approach to steady-state conditions, and has been associated with inverse cascade or quasi-inverse cascade systems, with possible implications for heliospheric prediction. PMID:25848085

  10. Spectral wave dissipation over a barrier reef

    NASA Astrophysics Data System (ADS)

    Lowe, Ryan J.; Falter, James L.; Bandet, Marion D.; Pawlak, Geno; Atkinson, Marlin J.; Monismith, Stephen G.; Koseff, Jeffrey R.

    2005-04-01

    A 2 week field experiment was conducted to measure surface wave dissipation on a barrier reef at Kaneohe Bay, Oahu, Hawaii. Wave heights and velocities were measured at several locations on the fore reef and the reef flat, which were used to estimate rates of dissipation by wave breaking and bottom friction. Dissipation on the reef flat was found to be dominated by friction at rates that are significantly larger than those typically observed at sandy beach sites. This is attributed to the rough surface generated by the reef organisms, which makes the reef highly efficient at dissipating energy by bottom friction. Results were compared to a spectral wave friction model, which showed that the variation in frictional dissipation among the different frequency components could be described using a single hydraulic roughness length scale. Surveys of the bottom roughness conducted on the reef flat showed that this hydraulic roughness length was comparable to the physical roughness measured at this site. On the fore reef, dissipation was due to the combined effect of frictional dissipation and wave breaking. However, in this region the magnitude of dissipation by bottom friction was comparable to wave breaking, despite the existence of a well-defined surf zone there. Under typical wave conditions the bulk of the total wave energy incident on Kaneohe Bay is dissipated by bottom friction, not wave breaking, as is often assumed for sandy beach sites and other coral reefs.

  11. Practical Relativistic Bit Commitment.

    PubMed

    Lunghi, T; Kaniewski, J; Bussières, F; Houlmann, R; Tomamichel, M; Wehner, S; Zbinden, H

    2015-07-17

    Bit commitment is a fundamental cryptographic primitive in which Alice wishes to commit a secret bit to Bob. Perfectly secure bit commitment between two mistrustful parties is impossible through an asynchronous exchange of quantum information. Perfect security is, however, possible when Alice and Bob each split into several agents exchanging classical information at times and locations suitably chosen to satisfy specific relativistic constraints. In this Letter we first revisit a previously proposed scheme [C. Crépeau et al., Lect. Notes Comput. Sci. 7073, 407 (2011)] that realizes bit commitment using only classical communication. We prove that the protocol is secure against quantum adversaries for a duration limited by the light-speed communication time between the locations of the agents. We then propose a novel multiround scheme based on finite-field arithmetic that extends the commitment time beyond this limit, and we prove its security against classical attacks. Finally, we present an implementation of these protocols using dedicated hardware and we demonstrate a 2 ms-long bit commitment over a distance of 131 km. By positioning the agents on antipodal points on the surface of Earth, the commitment time could possibly be extended to 212 ms.

  12. Dissipative Structures and Educational Contexts: Transforming Schooling for the 21st Century.

    ERIC Educational Resources Information Center

    Fleener, M. Jayne

    Chaos theory, dissipative structures analysis, and complexity theory have all been used in various branches of the sciences to examine patterns of change in complex systems. This paper considers how educational theory and research can benefit from changes in scientific fields as diverse as quantum mechanics, fluid dynamics, geology, and economics…

  13. Origins of viscoelastic dissipation in self-assembled organic monolayers

    SciTech Connect

    Shinn, N.D.; Michalske, T.A.

    1998-04-01

    Although self-assembled monolayers (SAMs) are promising candidates for interfacial lubricants in micro-electromechanical systems, the relationship between the monolayer structure and its viscoelastic properties is not understood. Using Acoustic Wave Damping (AWD), the authors have measured the complex shear modulus of linear alkane thiol monolayers, HS(CH{sub 2}){sub n{minus}1}CH{sub 3} denoted as C{sub n}, on Au(111)-textured substrates. The AWD technique measures the elastic energy storage and dissipative loss within a SAM adsorbed onto the electrodes of a quartz crystal microbalance. For C{sub 12}, C{sub 14} and C{sub 18} SAMs, the storage modulus increases with alkane chain length, but the loss modulus exhibits no systematic correlation. To investigate the origins of energy dissipation, the authors used a new, high-sensitivity oscillator circuit to simultaneously monitor the adsorption kinetics and acoustic damping during monolayer growth from the gas phase. For both C{sub 9} and C{sub 12} thiols, the dissipation in the growing monolayer can be correlated with distinct two-dimensional fluid phases and the nucleation and growth of condensed-phase islands.

  14. Perfect fluidity of a dissipative system: Analytical solution for the Boltzmann equation in AdS2 Ⓧ S2

    SciTech Connect

    Noronha, Jorge; Denicol, Gabriel S.

    2015-12-30

    In this paper we obtain an analytical solution of the relativistic Boltzmann equation under the relaxation time approximation that describes the out-of-equilibrium dynamics of a radially expanding massless gas. This solution is found by mapping this expanding system in flat spacetime to a static flow in the curved spacetime AdS2 Ⓧ S2. We further derive explicit analytic expressions for the momentum dependence of the single-particle distribution function as well as for the spatial dependence of its moments. We find that this dissipative system has the ability to flow as a perfect fluid even though its entropy density does not match the equilibrium form. The nonequilibrium contribution to the entropy density is shown to be due to higher-order scalar moments (which possess no hydrodynamical interpretation) of the Boltzmann equation that can remain out of equilibrium but do not couple to the energy-momentum tensor of the system. Furthermore, in this system the slowly moving hydrodynamic degrees of freedom can exhibit true perfect fluidity while being totally decoupled from the fast moving, nonhydrodynamical microscopic degrees of freedom that lead to entropy production.

  15. Refining a relativistic, hydrodynamic solver: Admitting ultra-relativistic flows

    NASA Astrophysics Data System (ADS)

    Bernstein, J. P.; Hughes, P. A.

    2009-09-01

    We have undertaken the simulation of hydrodynamic flows with bulk Lorentz factors in the range 102-106. We discuss the application of an existing relativistic, hydrodynamic primitive variable recovery algorithm to a study of pulsar winds, and, in particular, the refinement made to admit such ultra-relativistic flows. We show that an iterative quartic root finder breaks down for Lorentz factors above 102 and employ an analytic root finder as a solution. We find that the former, which is known to be robust for Lorentz factors up to at least 50, offers a 24% speed advantage. We demonstrate the existence of a simple diagnostic allowing for a hybrid primitives recovery algorithm that includes an automatic, real-time toggle between the iterative and analytical methods. We further determine the accuracy of the iterative and hybrid algorithms for a comprehensive selection of input parameters and demonstrate the latter’s capability to elucidate the internal structure of ultra-relativistic plasmas. In particular, we discuss simulations showing that the interaction of a light, ultra-relativistic pulsar wind with a slow, dense ambient medium can give rise to asymmetry reminiscent of the Guitar nebula leading to the formation of a relativistic backflow harboring a series of internal shockwaves. The shockwaves provide thermalized energy that is available for the continued inflation of the PWN bubble. In turn, the bubble enhances the asymmetry, thereby providing positive feedback to the backflow.

  16. Internal dissipation of a polymer.

    PubMed

    Deutsch, J M

    2010-06-01

    The dynamics of flexible polymer molecules are often assumed to be governed by hydrodynamics of the solvent. However there is considerable evidence that internal dissipation of a polymer contributes as well. Here we investigate the dynamics of a single chain in the absence of solvent to characterize the nature of this internal friction. We model the chains as freely hinged but with localized bond angles and threefold symmetric dihedral angles. We show that the damping is close but not identical to Kelvin damping, which depends on the first temporal and second spatial derivative of monomer position. With no internal potential between monomers, the magnitude of the damping is small for long wavelengths and weakly damped oscillatory time dependent behavior is seen for a large range of spatial modes. When the size of the internal potential is increased, such oscillations persist, but the damping becomes larger. However underdamped motion is present even with quite strong dihedral barriers for long enough wavelengths. PMID:20866433

  17. Dissipative Effects on Quantum Sticking

    NASA Astrophysics Data System (ADS)

    Zhang, Yanting; Clougherty, Dennis

    2011-03-01

    Using variational mean-field theory, many-body dissipative effects on the threshold law for quantum sticking and reflection of neutral particles are examined. For the case of an ohmic bosonic bath, we study the effects of the infrared divergence on the probability of sticking and obtain an analytic expression for the rate of sticking as an asymptotic expansion in the incident energy E . The low-energy threshold law for quantum sticking is found to be robust with respect to many-body effects and remains a universal scaling law to leading order in E . Non-universal many-body effects alter the coefficient of the rate law and the exponent of a subdominant term. We gratefully acknowledge support from NSF under DMR-0814377.

  18. Dissipation Bound for Thermodynamic Control.

    PubMed

    Machta, Benjamin B

    2015-12-31

    Biological and engineered systems operate by coupling function to the transfer of heat and/or particles down a thermal or chemical gradient. In idealized deterministically driven systems, thermodynamic control can be exerted reversibly, with no entropy production, as long as the rate of the protocol is made slow compared to the equilibration time of the system. Here we consider fully realizable, entropically driven systems where the control parameters themselves obey rules that are reversible and that acquire directionality in time solely through dissipation. We show that when such a system moves in a directed way through thermodynamic space, it must produce entropy that is on average larger than its generalized displacement as measured by the Fisher information metric. This distance measure is subextensive but cannot be made small by slowing the rate of the protocol. PMID:26764981

  19. Dissipation Bound for Thermodynamic Control

    NASA Astrophysics Data System (ADS)

    Machta, Benjamin B.

    2015-12-01

    Biological and engineered systems operate by coupling function to the transfer of heat and/or particles down a thermal or chemical gradient. In idealized deterministically driven systems, thermodynamic control can be exerted reversibly, with no entropy production, as long as the rate of the protocol is made slow compared to the equilibration time of the system. Here we consider fully realizable, entropically driven systems where the control parameters themselves obey rules that are reversible and that acquire directionality in time solely through dissipation. We show that when such a system moves in a directed way through thermodynamic space, it must produce entropy that is on average larger than its generalized displacement as measured by the Fisher information metric. This distance measure is subextensive but cannot be made small by slowing the rate of the protocol.

  20. Turbulence Dissipation in Non-Linear Diffusive Shock Acceleration with Magnetic Field Amplification

    NASA Astrophysics Data System (ADS)

    Ellison, Donald C.; Vladimirov, A.

    2008-03-01

    High Mach number shocks in young supernova remnants (SNRs) are believed to simultaneously place a large fraction of the supernova explosion energy in relativistic particles and amplify the ambient magnetic field by large factors. Continuing our efforts to model this strongly nonlinear process with a Monte Carlo simulation, we have incorporated the effects of the dissipation of the self-generated turbulence on the shock structure and thermal particle injection rate. We find that the heating of the thermal gas in the upstream shock precursor by the turbulence damping significantly impacts the acceleration process in our thermal pool injection model. This precursor heating may also have observational consequences. In this preliminary work, we parameterize the turbulence damping rate and lay the groundwork for incorporating more realistic physical models of turbulence generation and dissipation in nonlinear DSA. This work was support in part by NASA ATP grant NNX07AG79G.

  1. Relativistic helicity and link in Minkowski space-time

    SciTech Connect

    Yoshida, Z.; Kawazura, Y.; Yokoyama, T.

    2014-04-15

    A relativistic helicity has been formulated in the four-dimensional Minkowski space-time. Whereas the relativistic distortion of space-time violates the conservation of the conventional helicity, the newly defined relativistic helicity conserves in a barotropic fluid or plasma, dictating a fundamental topological constraint. The relation between the helicity and the vortex-line topology has been delineated by analyzing the linking number of vortex filaments which are singular differential forms representing the pure states of Banach algebra. While the dimension of space-time is four, vortex filaments link, because vorticities are primarily 2-forms and the corresponding 2-chains link in four dimension; the relativistic helicity measures the linking number of vortex filaments that are proper-time cross-sections of the vorticity 2-chains. A thermodynamic force yields an additional term in the vorticity, by which the vortex filaments on a reference-time plane are no longer pure states. However, the vortex filaments on a proper-time plane remain to be pure states, if the thermodynamic force is exact (barotropic), thus, the linking number of vortex filaments conserves.

  2. Parallel, grid-adaptive approaches for relativistic hydro and magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Keppens, R.; Meliani, Z.; van Marle, A. J.; Delmont, P.; Vlasis, A.; van der Holst, B.

    2012-02-01

    Relativistic hydro and magnetohydrodynamics provide continuum fluid descriptions for gas and plasma dynamics throughout the visible universe. We present an overview of state-of-the-art modeling in special relativistic regimes, targeting strong shock-dominated flows with speeds approaching the speed of light. Significant progress in its numerical modeling emerged in the last two decades, and we highlight specifically the need for grid-adaptive, shock-capturing treatments found in several contemporary codes in active use and development. Our discussion highlights one such code, MPI-AMRVAC (Message-Passing Interface-Adaptive Mesh Refinement Versatile Advection Code), but includes generic strategies for allowing massively parallel, block-tree adaptive simulations in any dimensionality. We provide implementation details reflecting the underlying data structures as used in MPI-AMRVAC. Parallelization strategies and scaling efficiencies are discussed for representative applications, along with guidelines for data formats suitable for parallel I/O. Refinement strategies available in MPI-AMRVAC are presented, which cover error estimators in use in many modern AMR frameworks. A test suite for relativistic hydro and magnetohydrodynamics is provided, chosen to cover all aspects encountered in high-resolution, shock-governed astrophysical applications. This test suite provides ample examples highlighting the advantages of AMR in relativistic flow problems.

  3. Magnetic Dissipation Effects on the Flows within the Heliosheath

    NASA Astrophysics Data System (ADS)

    Michael, A.; Opher, M.; Provornikova, E.; Toth, G.

    2014-12-01

    We investigate the effect that magnetic dissipation has on the flows within the heliosheath (HS), the subsonic plasma in between the termination shock (TS) and the heliopause (HP). We use a global 3D multi-fluid magnetohydrodynamic (MHD) model of the heliosphere, which has a grid resolution of 0.5 AU within the heliosphere along both Voyager 1 and Voyager 2 trajectories. We describe the solar wind magnetic field as a monopole, to remove the heliospheric current sheet, with the magnetic field aligned with that of the interstellar medium (ISM) to diminish any numerical reconnection at the ISM - solar wind interface. This configuration of the solar wind magnetic field also reduces any numerical magnetic dissipation effects in the HS. We compare our model to the same model describing the solar wind magnetic field as a dipole. In the dipole case, there is an intrinsic loss of magnetic energy near the heliospheric current sheet (HCS) due to reconnection. This reconnection is numerical since we do not include real resistivity in the model. The comparison of the two models will allow for an estimation of the effects of reconnection in the HS since there is no numerical dissipation of the magnetic field in the monopole model. We compare steady state solutions and the role magnetic dissipation has on the global characteristics of the heliosphere. We find that the monopole model of the solar wind magnetic field removes the asymmetry observed in the TS and predicted for the HP. Furthermore, the TS is considerably closer to the Sun in the monopole model due to the build up of magnetic filed at the HP. We also investigate magnetic dissipation effects in the 11-year solar cycle variations of the solar wind in a 3D time-dependent model. This model includes 3D latitudinal and temporal variations of the solar wind density and velocity taken from SOHO/SWAN and IPS data from 1990 to 2012 as described in Provornikova et al. 2014. We additionally include a time varying magnetic field

  4. A Reconnection Switch to Trigger gamma-Ray Burst Jet Dissipation

    SciTech Connect

    McKinney, Jonathan C.; Uzdensky, Dmitri A.

    2012-03-14

    Prompt gamma-ray burst (GRB) emission requires some mechanism to dissipate an ultrarelativistic jet. Internal shocks or some form of electromagnetic dissipation are candidate mechanisms. Any mechanism needs to answer basic questions, such as what is the origin of variability, what radius does dissipation occur at, and how does efficient prompt emission occur. These mechanisms also need to be consistent with how ultrarelativistic jets form and stay baryon pure despite turbulence and electromagnetic reconnection near the compact object and despite stellar entrainment within the collapsar model. We use the latest magnetohydrodynamical models of ultrarelativistic jets to explore some of these questions in the context of electromagnetic dissipation due to the slow collisional and fast collisionless reconnection mechanisms, as often associated with Sweet-Parker and Petschek reconnection, respectively. For a highly magnetized ultrarelativistic jet and typical collapsar parameters, we find that significant electromagnetic dissipation may be avoided until it proceeds catastrophically near the jet photosphere at large radii (r {approx} 10{sup 13}-10{sup 14}cm), by which the jet obtains a high Lorentz factor ({gamma} {approx} 100-1000), has a luminosity of L{sub j} {approx} 10{sup 50}-10{sup 51} erg s{sup -1}, has observer variability timescales of order 1s (ranging from 0.001-10s), achieves {gamma}{theta}{sub j} {approx} 10-20 (for opening half-angle {theta}{sub j}) and so is able to produce jet breaks, and has comparable energy available for both prompt and afterglow emission. A range of model parameters are investigated and simplified scaling laws are derived. This reconnection switch mechanism allows for highly efficient conversion of electromagnetic energy into prompt emission and associates the observed prompt GRB pulse temporal structure with dissipation timescales of some number of reconnecting current sheets embedded in the jet. We hope this work helps motivate the

  5. Shielding of relativistic protons.

    PubMed

    Bertucci, A; Durante, M; Gialanella, G; Grossi, G; Manti, L; Pugliese, M; Scampoli, P; Mancusi, D; Sihver, L; Rusek, A

    2007-06-01

    Protons are the most abundant element in the galactic cosmic radiation, and the energy spectrum peaks around 1 GeV. Shielding of relativistic protons is therefore a key problem in the radiation protection strategy of crewmembers involved in long-term missions in deep space. Hydrogen ions were accelerated up to 1 GeV at the NASA Space Radiation Laboratory, Brookhaven National Laboratory, New York. The proton beam was also shielded with thick (about 20 g/cm2) blocks of lucite (PMMA) or aluminium (Al). We found that the dose rate was increased 40-60% by the shielding and decreased as a function of the distance along the axis. Simulations using the General-Purpose Particle and Heavy-Ion Transport code System (PHITS) show that the dose increase is mostly caused by secondary protons emitted by the target. The modified radiation field after the shield has been characterized for its biological effectiveness by measuring chromosomal aberrations in human peripheral blood lymphocytes exposed just behind the shield block, or to the direct beam, in the dose range 0.5-3 Gy. Notwithstanding the increased dose per incident proton, the fraction of aberrant cells at the same dose in the sample position was not significantly modified by the shield. The PHITS code simulations show that, albeit secondary protons are slower than incident nuclei, the LET spectrum is still contained in the low-LET range (<10 keV/microm), which explains the approximately unitary value measured for the relative biological effectiveness. PMID:17256178

  6. (Studies of target fragmentation in intermediate energy, relativistic and ultra-relativistic nuclear collisions)

    SciTech Connect

    Loveland, W.D.

    1991-08-01

    The work described herein is part of a project involving the study of low energy (< 10 MeV/A), intermediate energy (10--100 MeV/A) and relativistic (> 250 MeV/A) heavy ion reactions. In the low energy regime, we published a monograph on the properties of the heaviest elements and used that publication as a basis for making a set of best'' semi-empirical predictions of heavy element decay properties. The intermediate energy research effort focussed upon the completion of studies already begun and the initiation of a number of new experiments. In our study of a interaction of 21 MeV/nucleon {sup 129}Xe with {sup 197}Au, we compared the characteristics of the observed deep inelastic phenomena with various models of dissipative reactions and found significant discrepancies between observations and predictions. These discrepancies seemed to be caused by an improper treatment of pre-equilibrium in the early stages of the collision. In our study of the relativistic interaction of 400 MeV/nucleon {sup 12}C with {sup 197}Au, we reported the first direct physical measurement of the properties of the spallation residues from a nucleus-nucleus collision. We found the residue energies to be much lower than those predicted by the intranuclear cascade model, indicating some substantial modifications of that model are needed. But, we also found, indications of significant, non-zero values of the residue transverse momentum, a finding that calls into question the interpretation of a number of radiochemical recoil studies of the kinematics of high energy reactions. A program of performing numerical simulations of intermediate and high energy nuclear collisions using the QMD model was initiated.

  7. Dissipation function in a magnetic field (Review)

    NASA Astrophysics Data System (ADS)

    Gurevich, V. L.

    2015-07-01

    The dissipation function is introduced to describe the behavior of the system of harmonic oscillations interacting with the environment (thermostat). This is a quadratic function of generalized velocities, which determines the rate of dissipation of the mechanical energy in the system. It was assumed earlier (Landau, Lifshitz) that the dissipation function can be introduced only in the absence of magnetic field. In the present review based on the author's studies, it has been shown how the dissipation function can be introduced in the presence of a magnetic field B. In a magnetic field, both dissipative and nondissipative responses arise as a response to perturbation and are expressed in terms of kinetic coefficients. The matrix of nondissipative coefficients can be obtained to determine an additional term formally including it into the equations of motion, which still satisfy the energy conservation law. Then, the dissipative part of the matrix can be considered in exactly the same way as without magnetic field, i.e., it defines the dissipation loss. As examples, the propagation and absorption of ultrasound in a metal or a semiconductor in a magnetic field have been considered using two methods: (i) the method based on the phenomenological theory using the equations of the theory of elasticity and (ii) the method based on the microscopic approach by analyzing and solving the kinetic equation. Both examples are used to illustrate the approach with the dissipation function.

  8. Dissipative Solitons that Cannot be Trapped

    SciTech Connect

    Pardo, Rosa; Perez-Garcia, Victor M.

    2006-12-22

    We show that dissipative solitons in systems with high-order nonlinear dissipation cannot survive in the presence of trapping potentials of the rigid wall or asymptotically increasing type. Solitons in such systems can survive in the presence of a weak potential but only with energies out of the interval of existence of linear quantum mechanical stationary states.

  9. Sudden Viscous Dissipation of Compressing Turbulence

    DOE PAGES

    Davidovits, Seth; Fisch, Nathaniel J.

    2016-03-11

    Here we report compression of turbulent plasma can amplify the turbulent kinetic energy, if the compression is fast compared to the viscous dissipation time of the turbulent eddies. A sudden viscous dissipation mechanism is demonstrated, whereby this amplified turbulent kinetic energy is rapidly converted into thermal energy, suggesting a new paradigm for fast ignition inertial fusion.

  10. Excitation energy and nuclear dissipation probed with evaporation-residue cross sections

    SciTech Connect

    Ye, W.

    2011-04-15

    Using a Langevin equation coupled with a statistical decay model, we calculate the excess of evaporation-residue cross sections over its standard statistical-model value as a function of nuclear dissipation strength for {sup 200}Hg compound nuclei (CNs) under two distinct types of initial conditions for populated CNs: (i) high excitation energy but low angular momentum (produced via proton-induced spallation reactions at GeV energies and via peripheral heavy-ion collisions at relativistic energies) and (ii) high angular momentum but low excitation energy (produced through fusion mechanisms). We find that the conditions of case (ii) not only amplify the effect of dissipation on the evaporation residues, but also substantially increase the sensitivity of this excess to nuclear dissipation. These results suggest that, in experiments, to obtain accurate information of presaddle nuclear dissipation strength by measuring evaporation-residue cross sections, it is best to choose the heavy-ion-induced fusion reaction approach to yield excited compound nuclei.

  11. Relativistic breakdown in planetary atmospheres

    SciTech Connect

    Dwyer, J. R.

    2007-04-15

    In 2003, a new electrical breakdown mechanism involving the production of runaway avalanches by positive feedback from runaway positrons and energetic photons was introduced. This mechanism, which shall be referred to as 'relativistic feedback', allows runaway discharges in gases to become self-sustaining, dramatically increasing the flux of runaway electrons, the accompanying high-energy radiation, and resulting ionization. Using detailed Monte Carlo calculations, properties of relativistic feedback are investigated. It is found that once relativistic feedback fully commences, electrical breakdown will occur and the ambient electric field, extending over cubic kilometers, will be discharged in as little as 2x10{sup -5} s. Furthermore, it is found that the flux of energetic electrons and x rays generated by this mechanism can exceed the flux generated by the standard relativistic runaway electron model by a factor of 10{sup 13}, making relativistic feedback a good candidate for explaining terrestrial gamma-ray flashes and other high-energy phenomena observed in the Earth's atmosphere.

  12. Entanglement and dephasing of quantum dissipative systems

    SciTech Connect

    Stauber, T.; Guinea, F.

    2006-04-15

    The von Neumann entropy of various quantum dissipative models is calculated in order to discuss the entanglement properties of these systems. First, integrable quantum dissipative models are discussed, i.e., the quantum Brownian motion and the quantum harmonic oscillator. In the case of the free particle, the related entanglement of formation shows no nonanalyticity. In the case of the dissipative harmonic oscillator, there is a nonanalyticity at the transition of underdamped to overdamped oscillations. We argue that this might be a general property of dissipative systems. We show that similar features arise in the dissipative two-level system and study different regimes using sub-Ohmic, Ohmic, and super-Ohmic baths, within a scaling approach.

  13. Material Systems for Blast-Energy Dissipation

    SciTech Connect

    James Schondel; Henry S. Chu

    2010-10-01

    Lightweight panels have been designed to protect buildings and vehicles from blast pressures by activating energy dissipation mechanisms under the influence of blast loading. Panels were fabricated which featured a variety of granular materials and hydraulic dissipative deformation mechanisms and the test articles were subjected to full-scale blast loading. The force time-histories transmitted by each technology were measured by a novel method that utilized inexpensive custom-designed force sensors. The array of tests revealed that granular materials can effectively dissipate blast energy if they are employed in a way that they easily crush and rearrange. Similarly, hydraulic dissipation can effectively dissipate energy if the panel features a high fraction of porosity and the panel encasement features low compressive stiffness.

  14. One dimensional PIC simulation of relativistic Buneman instability

    NASA Astrophysics Data System (ADS)

    Rajawat, Roopendra Singh; Sengupta, Sudip

    2016-10-01

    Spatio-temporal evolution of the relativistic Buneman instability has been investigated in one dimension using an in-house developed particle-in-cell simulation code. Starting from the excitation of the instability, its evolution has been followed numerically till its quenching and beyond. The simulation results have been quantitatively compared with the fluid theory and are found to be in conformity with the well known fact that the maximum growth rate (γmax) reduces due to relativistic effects and varies with γ e 0 and m/M as γ m a x ˜ /√{ 3 } 2 √{ γ e 0 } ( /m 2 M ) 1 / 3 , where γ e 0 is the Lorentz factor associated with the initial electron drift velocity (v0) and (m/M) is the electron to ion mass ratio. Further it is observed that in contrast to the non-relativistic results [A. Hirose, Plasma Phys. 20, 481 (1978)] at the saturation point, the ratio of electrostatic field energy density ( ∑ k | E k | 2 / 8 π ) to initial drift kinetic energy density (W0) scales with γ e 0 as ˜ 1 / γe 0 2 . This novel result on the scaling of energy densities has been found to be in quantitative agreement with the scalings derived using fluid theory.

  15. Uncontrollable dissipative systems: observability and embeddability

    NASA Astrophysics Data System (ADS)

    Karikalan, Selvaraj; Belur, Madhu N.; Athalye, Chirayu D.; Razak, Rihab Abdul

    2014-01-01

    The theory of dissipativity is well developed for controllable systems. A more appropriate definition of dissipativity in the context of uncontrollable systems is in terms of the existence of a storage function, namely a function such that, along every system trajectory, its rate of change at each time instant is at most the power supplied to the system at that time. However, even when the supplied power is expressible in terms of just the external variables, the dissipativity property for uncontrollable systems crucially hinges on whether or not the storage function depends on variables unobservable/hidden from the external variables: this paper investigates the key aspects of both cases, and also proposes another intuitive definition of dissipativity. These three definitions are compared: we show that drawbacks of one definition are addressed by another. Dealing first with observable storage functions, under the conditions that no two uncontrollable poles add to zero and that dissipativity is strict as frequency tends to infinity, we prove that the dissipativities of a system and its controllable part are equivalent. We use the behavioural approach for formalising key notions: a system behaviour is the set of all system trajectories. We prove that storage functions have to be unobservable for 'lossless' uncontrollable systems. It is known, however, that unobservable storage functions result in certain 'fallacious' examples of lossless systems. We propose an intuitive definition of dissipativity: a system/behaviour is called dissipative if it can be embedded in a controllable dissipative superbehaviour. We prove embeddability results and use them to resolve the fallacy in the example termed 'lossless' due to unobservable storage functions. We next show that, quite unreasonably, the embeddability definition admits behaviours that are both strictly dissipative and strictly antidissipative. Drawbacks of the embeddability definition in the context of RLC circuits are

  16. Steady-state solutions for relativistically strong electromagnetic waves in plasmas.

    NASA Technical Reports Server (NTRS)

    Max, C. E.

    1973-01-01

    New steady-state solutions are derived which describe electromagnetic waves strong enough to make plasma ions and electrons relativistic. A two-fluid model is used throughout. The following solutions are studied: (1) linearly polarized waves with phase velocity much greater than c; (2) arbitrarily polarized waves with phase velocity near c, in a cold uniform plasma; (3) circularly polarized waves in a uniform plasma characterized by a scalar pressure tensor. All of these waves are capable of propagating in normally overdense plasmas, due to nonlinearities introduced by relativistic effects. The propagation of relativistically strong waves in a density gradient is examined, for the example of a circularly polarized wave strong enough to make electrons but not ions relativistic. It is shown that such a wave propagates at constant energy flux despite the nonlinearity of the system.

  17. Polyanalytic relativistic second Bargmann transforms

    SciTech Connect

    Mouayn, Zouhaïr

    2015-05-15

    We construct coherent states through special superpositions of eigenstates of the relativistic isotonic oscillator. In each superposition, the coefficients are chosen to be L{sup 2}-eigenfunctions of a σ-weight Maass Laplacian on the Poincaré disk, which are associated with the eigenvalue 4m(σ−1−m), m∈Z{sub +}∩[0,(σ−1)/2]. For each nonzero m, the associated coherent states transform constitutes the m-true-polyanalytic extension of a relativistic version of the second Bargmann transform, whose integral kernel is expressed in terms of a special Appel-Kampé de Fériet’s hypergeometric function. The obtained results could be used to extend the known semi-classical analysis of quantum dynamics of the relativistic isotonic oscillator.

  18. Fluctuations in relativistic causal hydrodynamics

    NASA Astrophysics Data System (ADS)

    Kumar, Avdhesh; Bhatt, Jitesh R.; Mishra, Ananta P.

    2014-05-01

    Formalism to calculate the hydrodynamic fluctuations by applying the Onsager theory to the relativistic Navier-Stokes equation is already known. In this work, we calculate hydrodynamic fluctuations within the framework of the second order hydrodynamics of Müller, Israel and Stewart and its generalization to the third order. We have also calculated the fluctuations for several other causal hydrodynamical equations. We show that the form for the Onsager-coefficients and form of the correlation functions remain the same as those obtained by the relativistic Navier-Stokes equation and do not depend on any specific model of hydrodynamics. Further we numerically investigate evolution of the correlation function using the one dimensional boost-invariant (Bjorken) flow. We compare the correlation functions obtained using the causal hydrodynamics with the correlation function for the relativistic Navier-Stokes equation. We find that the qualitative behavior of the correlation functions remains the same for all the models of the causal hydrodynamics.

  19. A Relativistic Long-term Precession of the Earth

    NASA Astrophysics Data System (ADS)

    Tang, K.

    2016-05-01

    et al. (2003), they explain how to calculate the relativistic inertial torque, and discuss how to deal with different relativistic reference systems as well as various time scales and relativistic scalings. The geodetic precession and nutation are also taken into account in a natural way. This theory of Earth's rotation is consistent with General Relativity. This approach allows us to obtain the long-term precession of the Earth in a more rigorous relativistic framework. Our goal is to obtain the relativistic Earth's precession from -1 Myr to 1 Myr around J2000.0. The precession of the ecliptic is obtained by numerical integration as in most previous works. The precession of the equator, which is calculated with the relativistic theory of Earth's rotation as mentioned above, is also derived numerically. This part of work starts with a post-Newtonian rigid-multipole formalism that has been published by Klioner et al. (2003). Then the equations are integrated numerically, and the results are modified due to the effect of tidal dissipation. Approximations for the precession are derived and expressed in form of a linear term plus 20--30 periodic terms. Compared with P03, the difference is only several arcseconds in an interval of 2000 years around J2000.0. The results are consistent with other long-term precession theories. Finally, the relativistic effects of precession are analyzed. In this thesis, the models for the relativistic long-term precession of the Earth are given. Chapter 1 briefly introduces some historical background and the aim of our work. Chapters 2 to 5 give the way to calculate the precession in detail. Chapter 2 is about the structure of a quasi symplectic integrator which was developed by ourselves. According to our dynamical model of the solar system, the numerical integrator is based on the symplectic SABA4 scheme, and some tricks are used to treat the problems of tidal dissipation, close encounters, and round-off errors. The first-order post

  20. Low-Dissipation Advection Schemes Designed for Large Eddy Simulations of Hypersonic Propulsion Systems

    NASA Technical Reports Server (NTRS)

    White, Jeffrey A.; Baurle, Robert A.; Fisher, Travis C.; Quinlan, Jesse R.; Black, William S.

    2012-01-01

    The 2nd-order upwind inviscid flux scheme implemented in the multi-block, structured grid, cell centered, finite volume, high-speed reacting flow code VULCAN has been modified to reduce numerical dissipation. This modification was motivated by the desire to improve the codes ability to perform large eddy simulations. The reduction in dissipation was accomplished through a hybridization of non-dissipative and dissipative discontinuity-capturing advection schemes that reduces numerical dissipation while maintaining the ability to capture shocks. A methodology for constructing hybrid-advection schemes that blends nondissipative fluxes consisting of linear combinations of divergence and product rule forms discretized using 4th-order symmetric operators, with dissipative, 3rd or 4th-order reconstruction based upwind flux schemes was developed and implemented. A series of benchmark problems with increasing spatial and fluid dynamical complexity were utilized to examine the ability of the candidate schemes to resolve and propagate structures typical of turbulent flow, their discontinuity capturing capability and their robustness. A realistic geometry typical of a high-speed propulsion system flowpath was computed using the most promising of the examined schemes and was compared with available experimental data to demonstrate simulation fidelity.

  1. Phenomenological Relativistic Energy Density Functionals

    SciTech Connect

    Lalazissis, G. A.; Kartzikos, S.; Niksic, T.; Paar, N.; Vretenar, D.; Ring, P.

    2009-08-26

    The framework of relativistic nuclear energy density functionals is applied to the description of a variety of nuclear structure phenomena, not only in spherical and deformed nuclei along the valley of beta-stability, but also in exotic systems with extreme isospin values and close to the particle drip-lines. Dynamical aspects of exotic nuclear structure is explored using the fully consistent quasiparticle random-phase approximation based on the relativistic Hartree-Bogoliubov model. Recent applications of energy density functionals with explicit density dependence of the meson-nucleon couplings are presented.

  2. Post-Newtonian reference ellipsoid for relativistic geodesy

    NASA Astrophysics Data System (ADS)

    Kopeikin, Sergei; Han, Wenbiao; Mazurova, Elena

    2016-02-01

    We apply general relativity to construct the post-Newtonian background manifold that serves as a reference spacetime in relativistic geodesy for conducting a relativistic calculation of the geoid's undulation and the deflection of the plumb line from the vertical. We chose an axisymmetric ellipsoidal body made up of a perfect homogeneous fluid uniformly rotating around a fixed axis, as a source generating the reference geometry of the background manifold through Einstein's equations. We then reformulate and extend hydrodynamic calculations of rotating fluids done by a number of previous researchers for astrophysical applications to the realm of relativistic geodesy to set up algebraic equations defining the shape of the post-Newtonian reference ellipsoid. To complete this task, we explicitly perform all integrals characterizing gravitational field potentials inside the fluid body and represent them in terms of the elementary functions depending on the eccentricity of the ellipsoid. We fully explore the coordinate (gauge) freedom of the equations describing the post-Newtonian ellipsoid and demonstrate that the fractional deviation of the post-Newtonian level surface from the Maclaurin ellipsoid can be made much smaller than the previously anticipated estimate based on the astrophysical application of the coordinate gauge advocated by Bardeen and Chandrasekhar. We also derive the gauge-invariant relations of the post-Newtonian mass and the constant angular velocity of the rotating fluid with the parameters characterizing the shape of the post-Newtonian ellipsoid including its eccentricity, a semiminor axis, and a semimajor axis. We formulate the post-Newtonian theorems of Pizzetti and Clairaut that are used in geodesy to connect the geometric parameters of the reference ellipsoid to the physically measurable force of gravity at the pole and equator of the ellipsoid. Finally, we expand the post-Newtonian geodetic equations describing the post-Newtonian ellipsoid to

  3. Gaussian-inspired auxiliary non-equilibrium thermostat (GIANT) for Dissipative Particle Dynamics simulations

    NASA Astrophysics Data System (ADS)

    Jamali, Safa; Boromand, Arman; Khani, Shaghayegh; Maia, Joao

    2015-12-01

    We present in this letter an auxiliary thermostat for non-equilibrium simulations in Dissipative Particle Dynamics based on the Gaussian distribution of particle velocities in the fluid. We demonstrate the ability of the thermostat to maintain the temperature under a wide range of shear rates and dissipative parameters, and to extend the shear rate window accessible by DPD significantly. The effect of proposed method on the viscosity of a DPD fluid is studied which is particularly of interest when the rheological behavior of a complex fluids is subject of DPD simulations. Furthermore, performance of the proposed method is compared to the ones from the well-known Lowe-Andersen scheme in regards to temperature and viscosity measurements.

  4. Transition in the Equilibrium Distribution Function of Relativistic Particles

    PubMed Central

    Mendoza, M.; Araújo, N. A. M.; Succi, S.; Herrmann, H. J.

    2012-01-01

    We analyze a transition from single peaked to bimodal velocity distribution in a relativistic fluid under increasing temperature, in contrast with a non-relativistic gas, where only a monotonic broadening of the bell-shaped distribution is observed. Such transition results from the interplay between the raise in thermal energy and the constraint of maximum velocity imposed by the speed of light. We study the Bose-Einstein, the Fermi-Dirac, and the Maxwell-Jüttner distributions, and show that they all exhibit the same qualitative behavior. We characterize the nature of the transition in the framework of critical phenomena and show that it is either continuous or discontinuous, depending on the group velocity. We analyze the transition in one, two, and three dimensions, with special emphasis on twodimensions, for which a possible experiment in graphene, based on the measurement of the Johnson-Nyquist noise, is proposed. PMID:22937220

  5. Relativistic thermal electron scale instabilities in sheared flow plasma

    NASA Astrophysics Data System (ADS)

    Miller, Evan D.; Rogers, Barrett N.

    2016-04-01

    > The linear dispersion relation obeyed by finite-temperature, non-magnetized, relativistic two-fluid plasmas is presented, in the special case of a discontinuous bulk velocity profile and parallel wave vectors. It is found that such flows become universally unstable at the collisionless electron skin-depth scale. Further analyses are performed in the limits of either free-streaming ions or ultra-hot plasmas. In these limits, the system is highly unstable in the parameter regimes associated with either the electron scale Kelvin-Helmholtz instability (ESKHI) or the relativistic electron scale sheared flow instability (RESI) recently highlighted by Gruzinov. Coupling between these modes provides further instability throughout the remaining parameter space, provided both shear flow and temperature are finite. An explicit parameter space bound on the highly unstable region is found.

  6. Bifurcations in dissipative fermionic dynamics

    NASA Astrophysics Data System (ADS)

    Napolitani, Paolo; Colonna, Maria; Di Prima, Mariangela

    2014-05-01

    The Boltzmann-Langevin One-Body model (BLOB), is a novel one-body transport approach, based on the solution of the Boltzmann-Langevin equation in three dimensions; it is used to handle large-amplitude phase-space fluctuations and has a broad applicability for dissipative fermionic dynamics. We study the occurrence of bifurcations in the dynamical trajectories describing heavy-ion collisions at Fermi energies. The model, applied to dilute systems formed in such collisions, reveals to be closer to the observation than previous attempts to include a Langevin term in Boltzmann theories. The onset of bifurcations and bimodal behaviour in dynamical trajectories, determines the fragment-formation mechanism. In particular, in the proximity of a threshold, fluctuations between two energetically favourable mechanisms stand out, so that when evolving from the same entrance channel, a variety of exit channels is accessible. This description gives quantitative indications about two threshold situations which characterise heavy-ion collisions at Fermi energies. First, the fusion-to-multifragmentation threshold in central collisions, where the system either reverts to a compact shape, or splits into several pieces of similar sizes. Second, the transition from binary mechanisms to neck fragmentation (in general, ternary channels), in peripheral collisions.

  7. Dissipative Properties of Quantum Systems

    PubMed Central

    Grecos, A. P.; Prigogine, I.

    1972-01-01

    We consider the dissipative properties of large quantum systems from the point of view of kinetic theory. The existence of a nontrivial collision operator imposes restrictions on the possible collisional invariants of the system. We consider a model in which a discrete level is coupled to a set of quantum states and which, in the limit of a large “volume,” becomes the Friedrichs model. Because of its simplicity this model allows a direct calculation of the collision operator as well as of related operators and the constants of the motion. For a degenerate spectrum the calculations become more involved but the conclusions remain simple. The special role played by the invariants that are functions of the Hamiltonion is shown to be a direct consequence of the existence of a nonvanishing collision operator. For a class of observables we obtain ergodic behavior, and this reformulation of the ergodic problem may be used in statistical mechanics to study the ergodicity of large quantum systems containing a small physical parameter such as the coupling constant or the concentration. PMID:16591994

  8. Relativistic Hydrodynamics for Heavy-Ion Collisions

    ERIC Educational Resources Information Center

    Ollitrault, Jean-Yves

    2008-01-01

    Relativistic hydrodynamics is essential to our current understanding of nucleus-nucleus collisions at ultrarelativistic energies (current experiments at the Relativistic Heavy Ion Collider, forthcoming experiments at the CERN Large Hadron Collider). This is an introduction to relativistic hydrodynamics for graduate students. It includes a detailed…

  9. Relativistic treatment of inertial spin effects

    NASA Astrophysics Data System (ADS)

    Ryder, Lewis

    1998-03-01

    A relativistic spin operator for Dirac particles is identified and it is shown that a coupling of spin to angular velocity arises in the relativistic case, just as Mashhoon had speculated, and Hehl and Ni had demonstrated, in the non-relativistic case.

  10. Ohmic Dissipation in Mini-Neptunes

    NASA Astrophysics Data System (ADS)

    Valencia, Diana; Pu, Michael

    2015-12-01

    In the quest of characterizing low-mass exoplanets, it is important to consider all sources that may contribute to the interpretation of planetary composition given mass and a radius measurements. While it has been firmly established that inferring the composition of super-Earths and mini-Neptunes suffers from the inherent problem of compositional degeneracy, the effect from ohmic dissipation on these planets and its connection to compositional interpretation has not been studied so far. Ohmic dissipation is arguably the leading theory that aims to explain the large radii seen in highly-irradiated exo-Jupiters. In this study, we determine the strength of ohmic dissipation on mini-Neptunes and its effect on their H/He envelope structure as a function of insolation temperature and planetary mass. We find that ohmic dissipation is strong enough to halt the contraction of mini-Neptunes during their thermal evolution and therefore, inflate their radii in comparison to planets that do not suffer dissipation. This means that the radius of highly irradiated of this class of planets may be explained by the presence of volatiles and ohmic dissipation. In other words, there is a trade-off between ohmic dissipation and H/He content for hot mini-Neptunes.

  11. Investigation of particles size effects in Dissipative Particle Dynamics (DPD) modelling of colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Mai-Duy, N.; Phan-Thien, N.; Khoo, B. C.

    2015-04-01

    In the Dissipative Particle Dynamics (DPD) simulation of suspension, the fluid (solvent) and colloidal particles are replaced by a set of DPD particles and therefore their relative sizes (as measured by their exclusion zones) can affect the maximal packing fraction of the colloidal particles. In this study, we investigate roles of the conservative, dissipative and random forces in this relative size ratio (colloidal/solvent). We propose a mechanism of adjusting the DPD parameters to properly model the solvent phase (the solvent here is supposed to have the same isothermal compressibility to that of water).

  12. Energy conserving and potential-enstrophy dissipating schemes for the shallow water equations

    NASA Technical Reports Server (NTRS)

    Arakawa, Akio; Hsu, Yueh-Jiuan G.

    1990-01-01

    To incorporate potential enstrophy dissipation into discrete shallow water equations with no or arbitrarily small energy dissipation, a family of finite-difference schemes have been derived with which potential enstrophy is guaranteed to decrease while energy is conserved (when the mass flux is nondivergent and time is continuous). Among this family of schemes, there is a member that minimizes the spurious impact of infinite potential vorticities associated with infinitesimal fluid depth. The scheme is, therefore, useful for problems in which the free surface may intersect with the lower boundary.

  13. Classification and stability of plasma motion in periodic linearly polarized relativistic waves

    SciTech Connect

    Lehmann, G.; Spatschek, K. H.

    2010-07-15

    Based on a relativistic fluid-Maxwell model, laser-induced plasma dynamics is investigated for relativistic periodic waves. Within a one-dimensional (1D) description, the Akhiezer-Polovin model is applied to the existence of periodic, nonlinearly coupled electromagnetic and electrostatic waves, and the corresponding particle motion. Known existence criteria for periodic solutions are generalized. The corresponding stability behaviors are investigated by 1D integrators of the relativistic fluid-Maxwell model. It is shown that in contrast to the vacuum solution, linearly polarized coupled electromagnetic-electrostatic waves are unstable in plasmas. The magnitudes of the growth rates are investigated in terms of the maximum amplitudes and normalized phase velocities.

  14. Melting of Io by tidal dissipation

    NASA Technical Reports Server (NTRS)

    Peale, S. J.; Cassen, P.; Reynolds, R. T.

    1979-01-01

    The resonant structure of Io leads to forced eccentricities that are considerably larger than the free values. Although still modest by all standards, these forced eccentricities coupled with the enormous tides induced by Jupiter lead to magnitudes of tidal dissipation that are large enough to completely dominate the thermal history of Io. In the present paper, the forced eccentricities are calculated and then substituted into an expression for the total tidal dissipation. The results point to the possibility that the dissipation of tidal energy in Io may have melted a major fraction of Io's mass.

  15. Parametric decays in relativistic magnetized electron-positron plasmas with relativistic temperatures

    SciTech Connect

    Lopez, Rodrigo A.; Munoz, Victor; Asenjo, Felipe A.; Alejandro Valdivia, J.

    2012-08-15

    The nonlinear evolution of a circularly polarized electromagnetic wave in an electron-positron plasma propagating along a constant background magnetic field is considered, by studying its parametric decays. Relativistic effects, of the particle motion in the wave field and of the plasma temperature, are included to obtain the dispersion relation of the decays. The exact dispersion relation of the pump wave has been previously calculated within the context of a relativistic fluid theory and presents two branches: an electromagnetic and an Alfven one. We investigate the parametric decays for the pump wave in these two branches, including the anomalous dispersion zone of the Alfven branch where the group velocity is negative. We solve the nonlinear dispersion relation for different pump wave amplitudes and plasma temperatures, finding various resonant and nonresonant wave couplings. We are able to identify these couplings and study their behavior as we modify the plasma parameters. Some of these couplings are suppressed for larger amplitudes or temperatures. We also find two kinds of modulational instabilities, one involving two sideband daughter waves and another involving a forward-propagating electroacoustic mode and a sideband daughter wave.

  16. Sonic black holes in a one-dimensional relativistic flow

    NASA Astrophysics Data System (ADS)

    Carbonaro, P.

    2015-09-01

    The analogy between sound propagation in a fluid background and light propagation in a curved spacetime, discovered by Unruh in 1981, does not work in general when considering the motion of a fluid which is confined in one spatial dimension being unable in (1+1) dimensions to introduce in a coherent manner an effective acoustic metric, barring some exceptional cases. In this paper a relativistic fluid is considered and the general condition for the existence of an acoustic metric in strictly one-dimensional systems is found. Attention is also paid to the physical meaning of the equations of state characterizing such systems and to the remarkable symmetry of structure taken by the basic equations. Finally the Hawking temperature is calculated in an artificial de Laval nozzle.

  17. Particle-in-cell simulation of two-dimensional electron velocity shear driven instability in relativistic domain

    NASA Astrophysics Data System (ADS)

    Shukla, Chandrasekhar; Das, Amita; Patel, Kartik

    2016-08-01

    We carry out particle-in-cell simulations to study the instabilities associated with a 2-D sheared electron flow configuration against a neutralizing background of ions. Both weak and strong relativistic flow velocities are considered. In the weakly relativistic case, we observe the development of electromagnetic Kelvin-Helmholtz instability with similar characteristics as that predicted by the electron Magnetohydrodynamic (EMHD) model. On the contrary, in a strong relativistic case, the compressibility effects of electron fluid dominate and introduce upper hybrid electrostatic oscillations transverse to the flow which are very distinct from EMHD fluid behavior. In the nonlinear regime, both weak and strong relativistic cases lead to turbulence with broad power law spectrum.

  18. Particle Acceleration in Relativistic Outflows

    NASA Technical Reports Server (NTRS)

    Bykov, Andrei; Gehrels, Neil; Krawczynski, Henric; Lemoine, Martin; Pelletier, Guy; Pohl, Martin

    2012-01-01

    In this review we confront the current theoretical understanding of particle acceleration at relativistic outflows with recent observational results on various source classes thought to involve such outflows, e.g. gamma-ray bursts, active galactic nuclei, and pulsar wind nebulae. We highlight the possible contributions of these sources to ultra-high-energy cosmic rays.

  19. Simplified Relativistic Force Transformation Equation.

    ERIC Educational Resources Information Center

    Stewart, Benjamin U.

    1979-01-01

    A simplified relativistic force transformation equation is derived and then used to obtain the equation for the electromagnetic forces on a charged particle, calculate the electromagnetic fields due to a point charge with constant velocity, transform electromagnetic fields in general, derive the Biot-Savart law, and relate it to Coulomb's law.…

  20. Fluid fertilizers. [Fluids

    SciTech Connect

    Potts, J.M.

    1984-09-01

    The use of fertilizer in the United States has increased spectacularly in the past 20 years. In 1981 plant nutrient use (N + P/sub 2/O/sub 5/ + K/sub 2/O) totaled 23.5 million short tons - compared with only 7.5 million tons in 1960 (table 2). Nutrient use doubled from 1960 to 1970 and tripled from 1960 to 1981. In 1981 fluid nutrient use (mixtures plus nitrogen solutions) totaled 4.1 million tons, more than doubling since 1970 and increasing from 6.3% to 17.5% of the total nutrient use since 1960. Fluid mixtures (NPK) use in 1981 totaled 1.8 million tons of nutrients - about 17% of total mixed fertilizers or 7.5% of total nutrients used. The proportion of total fertilizer nutrients applied in fluid from increases greatly if anhydrous ammonia is included. The 4.6 million tons of nitrogen applied as anhydrous ammonia in 1981 increases total fluid nutrients to 8.1 million tons - 34.5% of the total nutrients applied in the United States. Fluid fertilizer use has grown nearly twice as fast as total fertilizer use, averaging more than 15% per year increase between 1960 and 1970, and an 11% increase between 1960 and 1980. A large part of this increase occurred during the introductory stages of the new product form and was aided by rapid advances in technology.

  1. Weak discontinuity waves in a relativistic mixture of two stiffened gas components

    NASA Astrophysics Data System (ADS)

    Conforto, F.; Giambò, S.

    2010-11-01

    A simple interface-capturing approach is developed in order to deduce the relativistic fluid equations for a two-component mixture, using a stiffened gas equation of state. The two species are assumed to be at thermal equilibrium and the total pressure of the mixture is expressed in terms of the pressures of the two components by Dalton's law. Moreover, weak discontinuity waves compatible with such a fluid are examined.

  2. Relativistic formulation of the Voigt profile

    NASA Astrophysics Data System (ADS)

    Wcisło, P.; Amodio, P.; Ciuryło, R.; Gianfrani, L.

    2015-02-01

    The relativistic formulation of the Voigt profile is reported for the spontaneous emission from an atomic or molecular cloud, in coincidence with a given spectral line. We considered the simultaneous occurrence of homogeneous broadening and thermal broadening, this latter being determined by the relativistic Doppler effect. Our formula for the relativistic Voigt profile reproduces those characterizing the two available limit cases, namely, the relativistic Gaussian profile and the classical Voigt convolution. The relativistic deformation of the Voigt profile was carefully quantified at different temperatures, in the case of the molecular hydrogen spectrum.

  3. Fuel system bubble dissipation device

    SciTech Connect

    Iseman, W.J.

    1987-11-03

    This patent describes a bubble dissipation device for a fuel system wherein fuel is delivered through a fuel line from a fuel tank to a fuel control with the pressure of the fuel being progressively increased by components including at least one pump stage and an ejector in advance of the pump state. The ejector an ejector casing with a wall defining an elongate tubular flow passage which forms a portion of the fuel line to have all of the fuel flow through the tubular flow passage in flowing from the fuel tank to the fuel control, a nozzle positioned entirely within the tubular flow passage and spaced from the wall to permit fuel flow. The nozzle has an inlet and an outlet with the inlet connected to the pump stage to receive fuel under pressure continuously from the pump stage, a bubble accumulation chamber adjoining and at a level above the ejector casing and operatively connected to the fuel line in advance of the ejector casing. The bubble accumulation chamber is of a size to function as a fuel reservoir and hold an air bubble containing vapor above the level of fuel therein and having an outlet adjacent the bottom thereof operatively connected to the tubular flow passage in the ejector casing at an inlet end, a bubble accumulation chamber inlet above the level of the bubble accumulation chamber outlet whereby fuel can flow through the bubble accumulation chamber from the inlet to the outlet thereof with a bubble in the fuel rising above the fuel level in the bubble accumulation chamber.

  4. Standing electromagnetic solitons in hot ultra-relativistic electron-positron plasmas

    SciTech Connect

    Heidari, E.; Aslaninejad, M.; Eshraghi, H.; Rajaee, L.

    2014-03-15

    Using a one-dimensional self-consistent fluid model, we investigate standing relativistic bright solitons in hot electron-positron plasmas. The positron dynamics is taken into account. A set of nonlinear coupled differential equations describing the evolution of electromagnetic waves in fully relativistic two-fluid plasma is derived analytically and solved numerically. As a necessary condition for the existence of standing solitons the system should be relativistic. For the case of ultra-relativistic plasma, we investigate non-drifting bright solitary waves. Detailed discussions of the acceptable solutions are presented. New single hump non-trivial symmetric solutions for the scalar potential were found, and single and multi-nodal symmetric and anti-symmetric solutions for the vector potential are presented. It is shown that for a fixed value of the fluid velocity excited modes with more zeros in the profile of the vector potential show a higher magnitude for the scalar potential. An increase in the plasma fluid velocity also increases the magnitude of the scalar potential. Furthermore, the Hamiltonian and the first integral of the system are given.

  5. Simulations of Relativistic Extragalactic Jets

    NASA Astrophysics Data System (ADS)

    Hughes, P. A.; Duncan, G. C.

    1994-05-01

    We present results for 2-D, axisymmetric simulations of flows with Lorentz factors ~ 5 -- 10, typical of values inferred for superluminal BL Lacs and QSOs. The simulations were performed with a numerical hydrodynamic code that admits relativistic flow speed. We exploit the property that the relativistic Euler equations for mass, momentum and total energy densities in the laboratory frame have the same form as the nonrelativistic equations, to solve for laboratory frame variables using a conventional Godunov-type scheme with approximate Riemann solver: the HLLE method. The relativistic nature of the flow is incorporated by performing a Lorentz transformation at every step, at each cell center or cell boundary where pressure, sound speed or velocity are required. Determination of the velocity in this manner is a robust algebraic procedure within which we can ensure that vrelativistic flows exhibit a less pronounced pattern of incident and reflection shocks on axis. For flows which have propagated to a fixed number of jet radii, the Kelvin-Helmholtz instability at the contact surface is much less evident in the high Lorentz factor cases, supporting the contention that relativistic flows are less prone to such instability. We describe how the morphology of the cocoon and shocked ambient gas change with increasing Lorentz factor. This work was supported by NSF grant AST 9120224 and by the Ohio Supercomputer Center from a Cray Research Software Development Grant.

  6. Electromagnetic fields in the exterior of an oscillating relativistic star - II. Electromagnetic damping

    NASA Astrophysics Data System (ADS)

    Rezzolla, Luciano; Ahmedov, Bobomurat J.

    2016-07-01

    An important issue in the asteroseismology of compact and magnetized stars is the determination of the dissipation mechanism which is most efficient in damping the oscillations when these are produced. In a linear regime and for low-multipolarity modes, these mechanisms are confined to either gravitational-wave or electromagnetic losses. We here consider the latter and compute the energy losses in the form of Poynting fluxes, Joule heating and Ohmic dissipation in a relativistic oscillating spherical star with a dipolar magnetic field in vacuum. While this approach is not particularly realistic for rapidly rotating stars, it has the advantage that it is fully analytic and that it provides expressions for the electric and magnetic fields produced by the most common modes of oscillation both in the vicinity of the star and far away from it. In this way, we revisit and extend to a relativistic context the classical estimates of McDermott et al. Overall, we find that general-relativistic corrections lead to electromagnetic damping time-scales that are at least one order of magnitude smaller than in Newtonian gravity. Furthermore, with the only exception of g (gravity) modes, we find that f (fundamental), p (pressure), i (interface) and s (shear) modes are suppressed more efficiently by gravitational losses than by electromagnetic ones.

  7. Strongly Nonlinear Stress Waves in Dissipative Metamaterials

    NASA Astrophysics Data System (ADS)

    Xu, Yichao; Nesterenko, Vitali

    2015-06-01

    We present the measurements, numerical simulations, and theoretical analysis of stress wave propagation in a one-dimensional strongly nonlinear dissipative metamaterial composed of steel disks and Nitrile O-rings. A stress wave of bell shape is generated by impactor with different masses. A strongly nonlinear double power-law is used to describe the nonlinear viscoelastic force interaction between the disks due to the compression of rubber O-rings. Numerical modeling including a nonlinear dissipative term is developed to predict the wave shape and propagation speed. The shape of generated stress wave can be dramatically changed by the viscous dissipation, which may prevent the pulse from splitting into trains of solitary waves. This strongly nonlinear dissipative metamaterial has a potential for attenuation of dynamic loading and allows an enhanced tunability of signal speed.

  8. The geometric phase in nonlinear dissipative systems

    SciTech Connect

    Ning, C.Z.; Haken, H. )

    1992-10-30

    In this paper, the authors review the recent progress made in generalizing the concept of the geometric phase to nonlinear dissipative systems. The authors first illustrate the usual form of the parallel transport law with an elementary example of the parallel shift of a line on the complex plane. Important results about the non-adiabatical geometric (Aharonov and Anandan or AA) phase [sup 18] for the Schrodinger equations are reviewed in order to make a comparison with results for dissipative systems. The authors show that a geometric phase can be defined for dissipative systems with the cyclic attractors. Systems undergoing the Hopf bifurcation with a continuous symmetry are shown to possess such cyclic attractors. Examples from laser physics are discussed to exhibit the applicability of our formalism and the widespread existence of the geometric phase in dissipative systems.

  9. Open Boundary Conditions for Dissipative MHD

    SciTech Connect

    Meier, E T

    2011-11-10

    In modeling magnetic confinement, astrophysics, and plasma propulsion, representing the entire physical domain is often difficult or impossible, and artificial, or 'open' boundaries are appropriate. A novel open boundary condition (BC) for dissipative MHD, called Lacuna-based open BC (LOBC), is presented. LOBC, based on the idea of lacuna-based truncation originally presented by V.S. Ryaben'kii and S.V. Tsynkov, provide truncation with low numerical noise and minimal reflections. For hyperbolic systems, characteristic-based BC (CBC) exist for separating the solution into outgoing and incoming parts. In the hyperbolic-parabolic dissipative MHD system, such separation is not possible, and CBC are numerically unstable. LOBC are applied in dissipative MHD test problems including a translating FRC, and coaxial-electrode plasma acceleration. Solution quality is compared to solutions using CBC and zero-normal derivative BC. LOBC are a promising new open BC option for dissipative MHD.

  10. Dissipative quantum computing with open quantum walks

    SciTech Connect

    Sinayskiy, Ilya; Petruccione, Francesco

    2014-12-04

    An open quantum walk approach to the implementation of a dissipative quantum computing scheme is presented. The formalism is demonstrated for the example of an open quantum walk implementation of a 3 qubit quantum circuit consisting of 10 gates.

  11. Bound-preserving discontinuous Galerkin methods for relativistic hydrodynamics

    NASA Astrophysics Data System (ADS)

    Qin, Tong; Shu, Chi-Wang; Yang, Yang

    2016-06-01

    In this paper, we develop a discontinuous Galerkin (DG) method to solve the ideal special relativistic hydrodynamics (RHD) and design a bound-preserving (BP) limiter for this scheme by extending the idea in X. Zhang and C.-W. Shu, (2010) [56]. For RHD, the density and pressure are positive and the velocity is bounded by the speed of light. One difficulty in numerically solving the RHD in its conservative form is that the failure of preserving these physical bounds will result in ill-posedness of the problem and blowup of the code, especially in extreme relativistic cases. The standard way in dealing with this difficulty is to add extra numerical dissipation, while in doing so there is no guarantee of maintaining the high order of accuracy. Our BP limiter has the following features. It can theoretically guarantee to preserve the physical bounds for the numerical solution and maintain its designed high order accuracy. The limiter is local to the cell and hence is very easy to implement. Moreover, it renders L1-stability to the numerical scheme. Numerical experiments are performed to demonstrate the good performance of this bound-preserving DG scheme. Even though we only discuss the BP limiter for DG schemes, it can be applied to high order finite volume schemes, such as weighted essentially non-oscillatory (WENO) finite volume schemes as well.

  12. Relativistic ionization fronts in gas jets

    NASA Astrophysics Data System (ADS)

    Lemos, Nuno; Dias, J. M.; Gallacher, J. G.; Issac, R. C.; Fonseca, R. A.; Lopes, N. C.; Silva, L. O.; Mendonça, J. T.; Jaroszynski, D. A.

    2006-10-01

    A high-power ultra-short laser pulse propagating through a gas jet, ionizes the gas by tunnelling ionization, creating a relativistic plasma-gas interface. The relativistic ionization front that is created can be used to frequency up-shift electromagnetic radiation either in co-propagation or in counter-propagation configurations. In the counter-propagation configuration, ionization fronts can act as relativistic mirrors for terahertz radiation, leading to relativistic double Doppler frequency up-shift to the visible range. In this work, we identified and explored, the parameters that optimize the key features of relativistic ionization fronts for terahertz radiation reflection. The relativistic ionization front generated by a high power laser (TOPS) propagating in a supersonic gas jet generated by a Laval nozzle has been fully characterized. We have also performed detailed two-dimensional relativistic particle-in-cell simulations with Osiris 2.0 to analyze the generation and propagation of the ionization fronts.

  13. Dissipation, correlation and lags in heat engines

    NASA Astrophysics Data System (ADS)

    Campisi, Michele; Fazio, Rosario

    2016-08-01

    By modelling heat engines as driven multi-partite system we show that their dissipation can be expressed in terms of the lag (relative entropy) between the perturbed state of each partition and their equilibrium state, and the correlations that build up among the partitions. We show that the non-negativity of the overall dissipation implies Carnot formulation of the second law. We illustrate the rich interplay between correlations and lags with a two-qubit device driven by a quantum gate.

  14. Energy dissipation in multifrequency atomic force microscopy.

    PubMed

    Pukhova, Valentina; Banfi, Francesco; Ferrini, Gabriele

    2014-01-01

    The instantaneous displacement, velocity and acceleration of a cantilever tip impacting onto a graphite surface are reconstructed. The total dissipated energy and the dissipated energy per cycle of each excited flexural mode during the tip interaction is retrieved. The tip dynamics evolution is studied by wavelet analysis techniques that have general relevance for multi-mode atomic force microscopy, in a regime where few cantilever oscillation cycles characterize the tip-sample interaction. PMID:24778976

  15. A Mechanism of Energy Dissipation in Cyanobacteria

    PubMed Central

    Berera, Rudi; van Stokkum, Ivo H.M.; d'Haene, Sandrine; Kennis, John T.M.; van Grondelle, Rienk; Dekker, Jan P.

    2009-01-01

    When grown under a variety of stress conditions, cyanobacteria express the isiA gene, which encodes the IsiA pigment-protein complex. Overexpression of the isiA gene under iron-depletion stress conditions leads to the formation of large IsiA aggregates, which display remarkably short fluorescence lifetimes and thus a strong capacity to dissipate energy. In this work we investigate the underlying molecular mechanism responsible for chlorophyll fluorescence quenching. Femtosecond transient absorption spectroscopy allowed us to follow the process of energy dissipation in real time. The light energy harvested by chlorophyll pigments migrated within the system and eventually reaches a quenching site where the energy is transferred to a carotenoid-excited state, which dissipates it by decaying to the ground state. We compare these findings with those obtained for the main light-harvesting complex in green plants (light-harvesting complex II) and artificial light-harvesting antennas, and conclude that all of these systems show the same mechanism of energy dissipation, i.e., one or more carotenoids act as energy dissipators by accepting energy via low-lying singlet-excited S1 states and dissipating it as heat. PMID:19289052

  16. Experimental characterization of extreme events of inertial dissipation in a turbulent swirling flow

    NASA Astrophysics Data System (ADS)

    Saw, E.-W.; Kuzzay, D.; Faranda, D.; Guittonneau, A.; Daviaud, F.; Wiertel-Gasquet, C.; Padilla, V.; Dubrulle, B.

    2016-08-01

    The three-dimensional incompressible Navier-Stokes equations, which describe the motion of many fluids, are the cornerstones of many physical and engineering sciences. However, it is still unclear whether they are mathematically well posed, that is, whether their solutions remain regular over time or develop singularities. Even though it was shown that singularities, if exist, could only be rare events, they may induce additional energy dissipation by inertial means. Here, using measurements at the dissipative scale of an axisymmetric turbulent flow, we report estimates of such inertial energy dissipation and identify local events of extreme values. We characterize the topology of these extreme events and identify several main types. Most of them appear as fronts separating regions of distinct velocities, whereas events corresponding to focusing spirals, jets and cusps are also found. Our results highlight the non-triviality of turbulent flows at sub-Kolmogorov scales as possible footprints of singularities of the Navier-Stokes equation.

  17. Experimental characterization of extreme events of inertial dissipation in a turbulent swirling flow.

    PubMed

    Saw, E-W; Kuzzay, D; Faranda, D; Guittonneau, A; Daviaud, F; Wiertel-Gasquet, C; Padilla, V; Dubrulle, B

    2016-01-01

    The three-dimensional incompressible Navier-Stokes equations, which describe the motion of many fluids, are the cornerstones of many physical and engineering sciences. However, it is still unclear whether they are mathematically well posed, that is, whether their solutions remain regular over time or develop singularities. Even though it was shown that singularities, if exist, could only be rare events, they may induce additional energy dissipation by inertial means. Here, using measurements at the dissipative scale of an axisymmetric turbulent flow, we report estimates of such inertial energy dissipation and identify local events of extreme values. We characterize the topology of these extreme events and identify several main types. Most of them appear as fronts separating regions of distinct velocities, whereas events corresponding to focusing spirals, jets and cusps are also found. Our results highlight the non-triviality of turbulent flows at sub-Kolmogorov scales as possible footprints of singularities of the Navier-Stokes equation. PMID:27578459

  18. High-Temperature Liquid Metal Infusion Considering Surface Tension-Viscosity Dissipation

    NASA Astrophysics Data System (ADS)

    Kumar, Vinod; Harris, Christopher K.; Bronson, Arturo; Shantha-Kumar, Sanjay; Medina, Arturo

    2016-02-01

    In considering the significant effect of the surface tension-viscosity dissipation driving the fluid flow within a capillary, high-temperature liquid metal infusion was analyzed for titanium, yttrium, hafnium, and zirconium penetrating into a packed bed. A model of the dissipation considers the momentum balance within the capillary to determine the rate of infusion, which is compared with the Semlak-Rhines model developed for liquid metal penetration into a packed bed assumed as a bundle of tubes mimicking the porosity of a packed bed. For liquid Ti, the penetration rate was calculated from 0.2 µs to 1 ms and rose to a maximum of 7 m/s at approximately 1 µs; after which, the rate decreased to 0.7 m/s at 1 ms. Beyond 10 µs, the decreasing trend of the rate of penetration determined by the model of dissipation compared favorably with the Semlak-Rhines equation.

  19. Experimental characterization of extreme events of inertial dissipation in a turbulent swirling flow

    PubMed Central

    Saw, E. -W.; Kuzzay, D.; Faranda, D.; Guittonneau, A.; Daviaud, F.; Wiertel-Gasquet, C.; Padilla, V.; Dubrulle, B.

    2016-01-01

    The three-dimensional incompressible Navier–Stokes equations, which describe the motion of many fluids, are the cornerstones of many physical and engineering sciences. However, it is still unclear whether they are mathematically well posed, that is, whether their solutions remain regular over time or develop singularities. Even though it was shown that singularities, if exist, could only be rare events, they may induce additional energy dissipation by inertial means. Here, using measurements at the dissipative scale of an axisymmetric turbulent flow, we report estimates of such inertial energy dissipation and identify local events of extreme values. We characterize the topology of these extreme events and identify several main types. Most of them appear as fronts separating regions of distinct velocities, whereas events corresponding to focusing spirals, jets and cusps are also found. Our results highlight the non-triviality of turbulent flows at sub-Kolmogorov scales as possible footprints of singularities of the Navier–Stokes equation. PMID:27578459

  20. Dissipation and oscillatory solvation forces in confined liquids studied by small-amplitude atomic force spectroscopy.

    PubMed

    de Beer, Sissi; van den Ende, Dirk; Mugele, Frieder

    2010-08-13

    We determine conservative and dissipative tip-sample interaction forces from the amplitude and phase response of acoustically driven atomic force microscope (AFM) cantilevers using a non-polar model fluid (octamethylcyclotetrasiloxane, which displays strong molecular layering) and atomically flat surfaces of highly ordered pyrolytic graphite. Taking into account the base motion and the frequency-dependent added mass and hydrodynamic damping on the AFM cantilever, we develop a reliable force inversion procedure that allows for extracting tip-sample interaction forces for a wide range of drive frequencies. We systematically eliminate the effect of finite drive amplitudes. Dissipative tip-sample forces are consistent with the bulk viscosity down to a thickness of 2-3 nm. Dissipation measurements far below resonance, which we argue to be the most reliable, indicate the presence of peaks in the damping, corresponding to an enhanced 'effective' viscosity, upon expelling the last and second-last molecular layer. PMID:20639584

  1. Stability and dissipation of laminar vortex flow in superfluid 3He-B.

    PubMed

    Eltsov, V B; de Graaf, R; Heikkinen, P J; Hosio, J J; Hänninen, R; Krusius, M; L'vov, V S

    2010-09-17

    A central question in the dynamics of vortex lines in superfluids is dissipation on approaching the zero temperature limit T→0. From both NMR measurements and vortex filament calculations, we find that vortex flow remains laminar up to large Reynolds numbers Re{α}∼10(3) in a cylinder filled with 3He-B. This is different from viscous fluids and superfluid 4He, where the corresponding responses are turbulent. In 3He-B, laminar vortex flow is possible in the bulk volume even in the presence of sizable perturbations from axial symmetry to below 0.2Tc. The laminar flow displays no excess dissipation beyond mutual friction, which vanishes in the T→0 limit, in contrast with turbulent vortex motion where dissipation has been earlier measured to approach a large T-independent value at T≲0.2Tc.

  2. [The design of heat dissipation of the field low temperature box for storage and transportation].

    PubMed

    Wei, Jiancang; Suin, Jianjun; Wu, Jian

    2013-02-01

    Because of the compact structure of the field low temperature box for storage and transportation, which is due to the same small space where the compressor, the condenser, the control circuit, the battery and the power supply device are all placed in, the design for heat dissipation and ventilation is of critical importance for the stability and reliability of the box. Several design schemes of the heat dissipation design of the box were simulated using the FLOEFD hot fluid analysis software in this study. Different distributions of the temperature field in every design scheme were constructed intimately in the present study. It is well concluded that according to the result of the simulation analysis, the optimal heat dissipation design is decent for the field low temperature box for storage and transportation, and the box can operate smoothly for a long time using the results of the design. PMID:23488142

  3. Relativistic Celestial Mechanics of the Solar System

    NASA Astrophysics Data System (ADS)

    Kopeikin, Sergei; Efroimsky, Michael; Kaplan, George

    2011-09-01

    given by a Newtonian theory of gravity. This prediction has been confirmed with a relative precision about 0.01%. Measurements of light bending by major planets of the solar system allow us to test the dynamical characteristics of spacetime and draw conclusions about the ultimate speed of gravity as well as to explore the so-called gravitomagnetic phenomena. Chapter 8 deals with the theoretical principles and methods of the high-precision gravimetry and geodesy, based on the framework of general relativity. A gravitational field and the properties of geocentric and topocentric reference frames are described by the metric tensor obtained from the Einstein equations with the help of post-Newtonian iterations. Bymatching the asymptotic, post-Newtonian expansions of the metric tensor in geocentric and topocentric coordinates, we derive the relationship between the reference frames, and relativistic corrections to the Earth's force of gravity and its gradient. Two definitions of a relativistic geoid are discussed, and we prove that these geoids coincide under the condition of a constant rigid-body rotation of the Earth.We consider, as a model of the Earth's matter, the notion of the relativistic level surface of a self-gravitating perfect fluid. We discover that, under conditions of constant rigid rotation of the fluid and hydrostatic behavior of tides, the post-Newtonian equation of the level surface is the same as that of the relativistic geoid. In the conclusion of this chapter, a relativistic generaisation of the Clairaut's equation is obtained. Chapter 9 is a practical guide to the relativistic resolutions of the IAU, with enough background information to place these resolutions into the context of the late twentieth century positional astronomy. These resolutions involve the definitions of reference systems, time scales, and Earth rotationmodels; and some of the resolutions are quite detailed. Although the recommended Earth rotation models have not been developed ab

  4. Solutions of conformal Israel-Stewart relativistic viscous fluid dynamics

    NASA Astrophysics Data System (ADS)

    Marrochio, Hugo; Noronha, Jorge; Denicol, Gabriel S.; Luzum, Matthew; Jeon, Sangyong; Gale, Charles

    2015-01-01

    We use symmetry arguments developed by Gubser to construct the first radially expanding explicit solutions of the Israel-Stewart formulation of hydrodynamics. Along with a general semi-analytical solution, an exact analytical solution is given which is valid in the cold plasma limit where viscous effects from shear viscosity and the relaxation time coefficient are important. The radially expanding solutions presented in this paper can be used as nontrivial checks of numerical algorithms employed in hydrodynamic simulations of the quark-gluon plasma formed in ultrarelativistic heavy ion collisions. We show this explicitly by comparing such analytic and semi-analytic solutions with the corresponding numerical solutions obtained using the music viscous hydrodynamics simulation code.

  5. THE INFLUENCE OF DISSIPATION RANGE POWER SPECTRA AND PLASMA-WAVE POLARIZATION ON COSMIC-RAY SCATTERING MEAN FREE PATH

    SciTech Connect

    Schlickeiser, R.; Lazar, M.; Vukcevic, M. E-mail: mlazar@tp4.ruhr-uni-bochum.d

    2010-08-20

    The influence of the polarization state and the dissipation range spectral steepening of slab plasma waves on the scattering mean free path of single-charged cosmic-ray particles is investigated in a turbulence model, where the crucial scattering of cosmic-ray particles with small pitch-angle cosines is caused by resonant cyclotron interactions with slab plasma waves. Analytical expressions for the mean free path of protons, antiprotons, negatrons, and positrons are derived for the case of constant frequency-independent magnetic helicity values {sigma} and different values of the dissipation range spectral index k for characteristic interplanetary and interstellar plasma conditions. The positron mean free path is not affected by the dissipation range spectral index k as these particles can only cyclotron-resonate for rigidity values larger than R {sub 0} = m{sub p}c = 938 MV. Proton and antiproton mean free paths are only slightly affected by the dissipation range spectral index k at small rigidities R < R {sub 0}. The negatron mean free path is severely affected by the dissipation range spectral index k at rigidities smaller than R {sub 0}. At high rigidities R >> R {sub 0}, all particle species approach the same power-law dependence {proportional_to}R {sup 2-s} determined by the inertial range spectral index s = 5/3. The magnetic helicity value {sigma} affects the value of the mean free path. At all rigidities, the ratio of the antiproton to proton mean free paths equals the constant (1 + {sigma})/(1 - {sigma}), which also agrees with the ratio of the negatron to the proton and positron mean free paths at relativistic rigidities. At relativistic rigidities the positron and proton mean free paths agree, as do the negatron and antiproton mean free paths.

  6. Consistent formulation of solid dissipative effects in stability analysis of flow past a deformable solid

    NASA Astrophysics Data System (ADS)

    Giribabu, D.; Shankar, V.

    2016-07-01

    The linear stability of plane Couette flow past a deformable solid is analyzed in the creeping-flow limit with an objective towards elucidating the consequences of employing two widely different formulations for the dissipative stresses in the deformable solid. One of the formulations postulates that the dissipative stress is proportional to the strain-rate tensor based on the left Cauchy-Green tensor, while in the other the dissipative stress in the solid is proportional to the rate-of-deformation tensor. However, it is well known in continuum mechanics that the rate-of-deformation tensor obeys the fundamental principle of material-frame indifference while the strain-rate-tensor formulation does not and hence it is more appropriate to employ the rate-of-deformation tensor in the description of dissipative stresses in deformable solids. In this work we consider the specific context of stability of plane Couette flow past a deformable solid and demonstrate that the results concerning the stability of the system from both models differ drastically. In the rate-of-deformation formulation for the dissipative stress, there is a range of solid-fluid thickness ratios (between 1.21 and 1.46) wherein the system is always stable for nonzero values of solid viscosity, unlike the strain-rate-tensor formulation wherein the system is unstable at all values of solid thickness. Further, for a solid-fluid thickness ratio less than 1, incorporation of dissipative effects in the solid using the rate-of-deformation formulation shows that the flow is more unstable compared to a purely elastic neo-Hookean solid, while for strain-rate-tensor formulation the flow is stabilized with an increase in viscosity of the solid. Using the fundamentally correct dissipative stress formulation, we also address the stability of pressure-driven flow in a deformable channel, wherein previous work carried out for an elastic neo-Hookean solid has shown that only the short-wave instability (driven by the

  7. Relativistic warm plasma theory of nonlinear laser-driven electron plasma waves

    SciTech Connect

    Schroeder, Carl B.; Esarey, Eric

    2010-06-30

    A relativistic, warm fluid model of a nonequilibrium, collisionless plasma is developed and applied to examine nonlinear Langmuir waves excited by relativistically-intense, short-pulse lasers. Closure of the covariant fluid theory is obtained via an asymptotic expansion assuming a non-relativistic plasma temperature. The momentum spread is calculated in the presence of an intense laser field and shown to be intrinsically anisotropic. Coupling between the transverse and longitudinal momentum variances is enabled by the laser field. A generalized dispersion relation is derived for langmuir waves in a thermal plasma in the presence of an intense laser field. Including thermal fluctuations in three velocity-space dimensions, the properties of the nonlinear electron plasma wave, such as the plasma temperature evolution and nonlinear wavelength, are examined, and the maximum amplitude of the nonlinear oscillation is derived. The presence of a relativistically intense laser pulse is shown to strongly influence the maximum plasma wave amplitude for non-relativistic phase velocities owing to the coupling between the longitudinal and transverse momentum variances.

  8. Relativistic Modeling Capabilities in PERSEUS Extended-MHD Simulation Code for HED Plasmas

    NASA Astrophysics Data System (ADS)

    Hamlin, Nathaniel; Seyler, Charles

    2015-11-01

    We discuss the incorporation of relativistic modeling capabilities into the PERSEUS extended MHD simulation code for high-energy-density (HED) plasmas, and present the latest simulation results. The use of fully relativistic equations enables the model to remain self-consistent in simulations of such relativistic phenomena as hybrid X-pinches and laser-plasma interactions. We have overcome a major challenge of a relativistic fluid implementation, namely the recovery of primitive variables (density, velocity, pressure) from conserved quantities at each time step of a simulation. Our code recovers non-relativistic results along with important features of published Particle-In-Cell simulation results for a laser penetrating a super-critical hydrogen gas with Fast Ignition applications. In particular, we recover the penetration of magnetized relativistic electron jets ahead of the laser. Our code also reveals new physics in the modeling of a laser incident on a thin foil. This work is supported by the National Nuclear Security Administration stewardship sciences academic program under Department of Energy cooperative agreements DE-FOA-0001153 and DE-NA0001836.

  9. BOOK REVIEW: Relativistic Figures of Equilibrium

    NASA Astrophysics Data System (ADS)

    Mars, M.

    2009-08-01

    Compact fluid bodies in equilibrium under its own gravitational field are abundant in the Universe and a proper treatment of them can only be carried out using the full theory of General Relativity. The problem is of enormous complexity as it involves two very different regimes, namely the interior and the exterior of the fluid, coupled through the surface of the body. This problem is very challenging both from a purely theoretical point of view, as well as regarding the obtaining of realistic models and the description of their physical properties. It is therefore an excellent piece of news that the book 'Relativistic Figures of Equilibrium' by R Meinel, M Ansorg, A Kleinwächter, G Neugebauer and D Petroff has been recently published. This book approaches the topic in depth and its contents will be of interest to a wide range of scientists working on gravitation, including theoreticians in general relativity, mathematical physicists, astrophysicists and numerical relativists. This is an advanced book that intends to present some of the present-day results on this topic. The most basic results are presented rather succinctly, and without going into the details, of their derivations. Although primarily not intended to serve as a textbook, the presentation is nevertheless self-contained and can therefore be of interest both for experts on the field as well as for anybody wishing to learn more about rotating self-gravitating compact bodies in equilibrium. It should be remarked, however, that this book makes a rather strong selection of topics and concentrates fundamentally on presenting the main results obtained by the authors during their research in this field. The book starts with a chapter where the fundamental aspects of rotating fluids in equilibrium, including its thermodynamic properties, are summarized. Of particular interest are the so-called mass-shedding limit, which is the limit where the body is rotating so fast that it is on the verge of starting

  10. A Critical Review of Dynamic Wetting by Complex Fluids: From Newtonian Fluids to Non-Newtonian Fluids and Nanofluids.

    PubMed

    Lu, Gui; Wang, Xiao-Dong; Duan, Yuan-Yuan

    2016-10-01

    Dynamic wetting is an important interfacial phenomenon in many industrial applications. There have been many excellent reviews of dynamic wetting, especially on super-hydrophobic surfaces with physical or chemical coatings, porous layers, hybrid micro/nano structures and biomimetic structures. This review summarizes recent research on dynamic wetting from the viewpoint of the fluids rather than the solid surfaces. The reviewed fluids range from simple Newtonian fluids to non-Newtonian fluids and complex nanofluids. The fundamental physical concepts and principles involved in dynamic wetting phenomena are also reviewed. This review focus on recent investigations of dynamic wetting by non-Newtonian fluids, including the latest experimental studies with a thorough review of the best dynamic wetting models for non-Newtonian fluids, to illustrate their successes and limitations. This paper also reports on new results on the still fledgling field of nanofluid wetting kinetics. The challenges of research on nanofluid dynamic wetting is not only due to the lack of nanoscale experimental techniques to probe the complex nanoparticle random motion, but also the lack of multiscale experimental techniques or theories to describe the effects of nanoparticle motion at the nanometer scale (10(-9) m) on the dynamic wetting taking place at the macroscopic scale (10(-3) m). This paper describes the various types of nanofluid dynamic wetting behaviors. Two nanoparticle dissipation modes, the bulk dissipation mode and the local dissipation mode, are proposed to resolve the uncertainties related to the various types of dynamic wetting mechanisms reported in the literature.

  11. Relativistic rocket: Dream and reality

    NASA Astrophysics Data System (ADS)

    Semyonov, Oleg G.

    2014-06-01

    The dream of interstellar flights persists since the first pioneers in astronautics and has never died. Many concepts of thruster capable to propel a rocket to the stars have been proposed and the most suitable among them are thought to be photon propulsion and propulsion by the products of proton-antiproton annihilation in magnetic nozzle. This article addresses both concepts allowing for cross-section of annihilation among other issues in order to show their vulnerability and to indicate the problems. The concept of relativistic matter propulsion is substantiated and discussed. The latter is argued to be the most straightforward way to build-up a relativistic rocket firstly because it is based on the existing technology of ion generators and accelerators and secondly because it can be stepped up in efflux power starting from interplanetary spacecrafts powered by nuclear reactors to interstellar starships powered by annihilation reactors. The problems imposed by thermodynamics and heat disposal are accentuated.

  12. The generation and dissipation of solar and galactic magnetic fields.

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1973-01-01

    Turbulent diffusion of magnetic field plays an essential role in the generation of magnetic field in most astrophysical bodies. Review of what can be proved and what can be believed about the turbulent diffusion of magnetic field. Observations indicate the dissipation of magnetic field at rates that can be understood only in terms of turbulent diffusion. Theory shows that a large-scale weak magnetic field diffuses in a turbulent flow in the same way that smoke is mixed throughout the fluid by the turbulence. The small-scale fields (produced from the large-scale field by the turbulence) are limited in their growth by reconnection of field lines at neutral points, so that the turbulent mixing of field and fluid is not halted by them. Altogether, it appears that the mixing of field and fluid in the observed turbulent motions in the sun and in the Galaxy is unavoidable. Turbulent diffusion causes decay of the general solar fields in a decade or so, and of the galactic field in 100 m.y. to 1 b.y. It is concluded that continual dynamo action is implied by the observed existence of the fields.

  13. Energy flow and energy dissipation in a free surface.

    NASA Astrophysics Data System (ADS)

    Goldburg, Walter; Cressman, John

    2005-11-01

    Turbulent flows on a free surface are strongly compressible [1] and do not conserve energy in the absence of viscosity as bulk fluids do. Despite violation of assumptions essential to Kolmogorov's theory of 1941 (K41) [2, 3], surface flows show strong agreement with Kolmogorov scaling, though intermittency is larger there. Steady state turbulence is generated in a tank of water, and the spatially averaged energy flux is measured from the four-fifth's law at each instant of time. Likewise, the energy dissipation rate as measured from velocity gradients is also a random variable in this experiment. The energy flux - dissipation rate cross-correlation is measured to be correlated in incompressible bulk flows, but strongly anti-correlated on the surface. We argue that the reason for this discrepancy between surface and bulk flows is due to compressible effects present on the surface. [1] J. R. Cressman, J. Davoudi, W. I. Goldburg, and J. Schumacher, New Journal of Physics, 6, 53, 2004. [2] U. Frisch. Turbulence: The legacy of A. N. Kolmogorov, Cambridge University Press, Cambridge, 1995. [3] A. N. Kolmogorov, Doklady Akad. Nauk SSSR, 32, 16, 1941.

  14. Turbulence dissipation challenge: particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Roytershteyn, V.; Karimabadi, H.; Omelchenko, Y.; Germaschewski, K.

    2015-12-01

    We discuss application of three particle in cell (PIC) codes to the problems relevant to turbulence dissipation challenge. VPIC is a fully kinetic code extensively used to study a variety of diverse problems ranging from laboratory plasmas to astrophysics. PSC is a flexible fully kinetic code offering a variety of algorithms that can be advantageous to turbulence simulations, including high order particle shapes, dynamic load balancing, and ability to efficiently run on Graphics Processing Units (GPUs). Finally, HYPERS is a novel hybrid (kinetic ions+fluid electrons) code, which utilizes asynchronous time advance and a number of other advanced algorithms. We present examples drawn both from large-scale turbulence simulations and from the test problems outlined by the turbulence dissipation challenge. Special attention is paid to such issues as the small-scale intermittency of inertial range turbulence, mode content of the sub-proton range of scales, the formation of electron-scale current sheets and the role of magnetic reconnection, as well as numerical challenges of applying PIC codes to simulations of astrophysical turbulence.

  15. Curved non-relativistic spacetimes, Newtonian gravitation and massive matter

    SciTech Connect

    Geracie, Michael Prabhu, Kartik Roberts, Matthew M.

    2015-10-15

    There is significant recent work on coupling matter to Newton-Cartan spacetimes with the aim of investigating certain condensed matter phenomena. To this end, one needs to have a completely general spacetime consistent with local non-relativistic symmetries which supports massive matter fields. In particular, one cannot impose a priori restrictions on the geometric data if one wants to analyze matter response to a perturbed geometry. In this paper, we construct such a Bargmann spacetime in complete generality without any prior restrictions on the fields specifying the geometry. The resulting spacetime structure includes the familiar Newton-Cartan structure with an additional gauge field which couples to mass. We illustrate the matter coupling with a few examples. The general spacetime we construct also includes as a special case the covariant description of Newtonian gravity, which has been thoroughly investigated in previous works. We also show how our Bargmann spacetimes arise from a suitable non-relativistic limit of Lorentzian spacetimes. In a companion paper [M. Geracie et al., e-print http://arxiv.org/abs/1503.02680 ], we use this Bargmann spacetime structure to investigate the details of matter couplings, including the Noether-Ward identities, and transport phenomena and thermodynamics of non-relativistic fluids.

  16. Pythagoras Theorem and Relativistic Kinematics

    NASA Astrophysics Data System (ADS)

    Mulaj, Zenun; Dhoqina, Polikron

    2010-01-01

    In two inertial frames that move in a particular direction, may be registered a light signal that propagates in an angle with this direction. Applying Pythagoras theorem and principles of STR in both systems, we can derive all relativistic kinematics relations like the relativity of simultaneity of events, of the time interval, of the length of objects, of the velocity of the material point, Lorentz transformations, Doppler effect and stellar aberration.

  17. Dissipation of Turbulence in the Solar Wind as Measured by Cluster

    NASA Technical Reports Server (NTRS)

    Goldstein, Melvyn

    2012-01-01

    Turbulence in fluids and plasmas is a scale-dependent process that generates fluctuations towards ever-smaller scales until dissipation occurs. Recent Cluster observations in the solar wind demonstrate the existence of a cascade of magnetic energy from the scale of the proton Larmor radius, where kinetic properties of ions invalidate fluid approximations, down to the electron Larmor radius, where electrons become demagnetized. The cascade is quasi-two-dimensional and has been interpreted as consisting of highly oblique kinetic Alfvenic fluctuations that dissipate near at the electron gyroradius scale via proton and electron Landau damping. Here we investigate for the first time the spatial properties of the turbulence at these scales. We report the presence of thin current sheets and discontinuities with spatial sizes greater than or approximately equal to the proton Larmor radius. These isolated structures may be manifestations of intermittency, and such would localize sites of turbulent dissipation. Studying the relationship between turbulent dissipation, reconnection and intermittency is crucial for understanding the dynamics of laboratory and astrophysical plasmas.

  18. Relativistic opacities for astrophysical applications

    DOE PAGES

    Fontes, Christopher John; Fryer, Christopher Lee; Hungerford, Aimee L.; Hakel, Peter; Colgan, James Patrick; Kilcrease, David Parker; Sherrill, Manalo Edgar

    2015-06-29

    Here, we report on the use of the Los Alamos suite of relativistic atomic physics codes to generate radiative opacities for the modeling of astrophysically relevant plasmas under local thermodynamic equilibrium (LTE) conditions. The atomic structure calculations are carried out in fine-structure detail, including full configuration interaction. Three example applications are considered: iron opacities at conditions relevant to the base of the solar convection zone, nickel opacities for the modeling of stellar envelopes, and samarium opacities for the modeling of light curves produced by neutron star mergers. In the first two examples, comparisons are made between opacities that are generatedmore » with the fully and semi-relativistic capabilities in the Los Alamos suite of codes. As expected for these highly charged, iron-peak ions, the two methods produce reasonably similar results, providing confidence that the numerical methods have been correctly implemented. However, discrepancies greater than 10% are observed for nickel and investigated in detail. In the final application, the relativistic capability is used in a preliminary investigation of the complicated absorption spectrum associated with cold lanthanide elements.« less

  19. Relativistic Tennis Using Flying Mirror

    SciTech Connect

    Pirozhkov, A. S.; Kando, M.; Ma, J.; Fukuda, Y.; Chen, L.-M.; Daito, I.; Ogura, K.; Homma, T.; Hayashi, Y.; Kotaki, H.; Sagisaka, A.; Mori, M.; Koga, J. K.; Kawachi, T.; Daido, H.; Kimura, T.; Kato, Y.; Tajima, T.; Esirkepov, T. Zh.; Bulanov, S. V.

    2008-06-24

    Upon reflection from a relativistic mirror, the electromagnetic pulse frequency is upshifted and the duration is shortened by the factor proportional to the relativistic gamma-factor squared due to the double Doppler effect. We present the results of the proof-of-principle experiment for frequency upshifting of the laser pulse reflected from the relativistic 'flying mirror', which is a wake wave near the breaking threshold created by a strong driver pulse propagating in underdense plasma. Experimentally, the wake wave is created by a 2 TW, 76 fs Ti:S laser pulse from the JLITE-X laser system in helium plasma with the electron density of {approx_equal}4-6x10{sup 19} cm{sup -3}. The reflected signal is observed with a grazing-incidence spectrograph in 24 shots. The wavelength of the reflected radiation ranges from 7 to 14 nm, the corresponding frequency upshifting factors are {approx}55-115, and the gamma-factors are y = 4-6. The reflected signal contains at least 3x10{sup 7} photons/sr. This effect can be used to generate coherent high-frequency ultrashort pulses that inherit temporal shape and polarization from the original (low-frequency) ones. Apart from this, the reflected radiation contains important information about the wake wave itself, e.g. location, size, phase velocity, etc.

  20. Relativistic Tennis Using Flying Mirror

    NASA Astrophysics Data System (ADS)

    Pirozhkov, A. S.; Kando, M.; Esirkepov, T. Zh.; Ma, J.; Fukuda, Y.; Chen, L.-M.; Daito, I.; Ogura, K.; Homma, T.; Hayashi, Y.; Kotaki, H.; Sagisaka, A.; Mori, M.; Koga, J. K.; Kawachi, T.; Daido, H.; Bulanov, S. V.; Kimura, T.; Kato, Y.; Tajima, T.

    2008-06-01

    Upon reflection from a relativistic mirror, the electromagnetic pulse frequency is upshifted and the duration is shortened by the factor proportional to the relativistic gamma-factor squared due to the double Doppler effect. We present the results of the proof-of-principle experiment for frequency upshifting of the laser pulse reflected from the relativistic "flying mirror", which is a wake wave near the breaking threshold created by a strong driver pulse propagating in underdense plasma. Experimentally, the wake wave is created by a 2 TW, 76 fs Ti:S laser pulse from the JLITE-X laser system in helium plasma with the electron density of ≈4-6×1019 cm-3. The reflected signal is observed with a grazing-incidence spectrograph in 24 shots. The wavelength of the reflected radiation ranges from 7 to 14 nm, the corresponding frequency upshifting factors are ˜55-115, and the gamma-factors are y = 4-6. The reflected signal contains at least 3×107 photons/sr. This effect can be used to generate coherent high-frequency ultrashort pulses that inherit temporal shape and polarization from the original (low-frequency) ones. Apart from this, the reflected radiation contains important information about the wake wave itself, e.g. location, size, phase velocity, etc.

  1. On the role of the chaotic velocity in relativistic kinetic theory

    SciTech Connect

    Moratto, Valdemar; García-Perciante, A. L.

    2014-01-14

    In this paper we revisit the concept of chaotic velocity within the context of relativistic kinetic theory. Its importance as the key ingredient which allows to clearly distinguish convective and dissipative effects is discussed to some detail. Also, by addressing the case of the two component mixture, the relevance of the barycentric comoving frame is established and thus the convenience for the introduction of peculiar velocities for each species. The fact that the decomposition of molecular velocity in systematic and peculiar components does not alter the covariance of the theory is emphasized. Moreover, we show that within an equivalent decomposition into space-like and time-like tensors, based on a generalization of the relative velocity concept, the Lorentz factor for the chaotic velocity can be expressed explicitly as an invariant quantity. This idea, based on Ellis' theorem, allows to foresee a natural generalization to the general relativistic case.

  2. Friction and particle-hole pairs. [in dissipative quantum phenomena

    NASA Technical Reports Server (NTRS)

    Guinea, F.

    1984-01-01

    The effect induced by dissipation on quantum phenomena has recently been considered, taking into account as a starting point a phenomenological Hamiltonian in which the environment is simulated by an appropriately chosen set of harmonic oscillators. It is found that this approach should be adequate to describe the low-energy behavior of a wide class of environments. The present investigation is concerned with an analysis of the case in which the environment is a gas (or liquid) of fermions, and the relevant low-energy excitations are particle-hole pairs. A study is conducted regarding the extent to which the quantum results obtained for harmonic oscillators are also valid in the considered situation. Linear-response theory is used to derive an effective action which describes the motion of an external particle coupled to a normal Fermi fluid.

  3. Multiscale simulation of ideal mixtures using smoothed dissipative particle dynamics.

    PubMed

    Petsev, Nikolai D; Leal, L Gary; Shell, M Scott

    2016-02-28

    Smoothed dissipative particle dynamics (SDPD) [P. Español and M. Revenga, Phys. Rev. E 67, 026705 (2003)] is a thermodynamically consistent particle-based continuum hydrodynamics solver that features scale-dependent thermal fluctuations. We obtain a new formulation of this stochastic method for ideal two-component mixtures through a discretization of the advection-diffusion equation with thermal noise in the concentration field. The resulting multicomponent approach is consistent with the interpretation of the SDPD particles as moving volumes of fluid and reproduces the correct fluctuations and diffusion dynamics. Subsequently, we provide a general multiscale multicomponent SDPD framework for simulations of molecularly miscible systems spanning length scales from nanometers to the non-fluctuating continuum limit. This approach reproduces appropriate equilibrium properties and is validated with simulation of simple one-dimensional diffusion across multiple length scales. PMID:26931689

  4. Multiscale simulation of ideal mixtures using smoothed dissipative particle dynamics

    NASA Astrophysics Data System (ADS)

    Petsev, Nikolai D.; Leal, L. Gary; Shell, M. Scott

    2016-02-01

    Smoothed dissipative particle dynamics (SDPD) [P. Español and M. Revenga, Phys. Rev. E 67, 026705 (2003)] is a thermodynamically consistent particle-based continuum hydrodynamics solver that features scale-dependent thermal fluctuations. We obtain a new formulation of this stochastic method for ideal two-component mixtures through a discretization of the advection-diffusion equation with thermal noise in the concentration field. The resulting multicomponent approach is consistent with the interpretation of the SDPD particles as moving volumes of fluid and reproduces the correct fluctuations and diffusion dynamics. Subsequently, we provide a general multiscale multicomponent SDPD framework for simulations of molecularly miscible systems spanning length scales from nanometers to the non-fluctuating continuum limit. This approach reproduces appropriate equilibrium properties and is validated with simulation of simple one-dimensional diffusion across multiple length scales.

  5. Shock Structure and Magnetic Fields Generation Associated with Relativistic Jets Unmagnetized Pair Plasma

    NASA Technical Reports Server (NTRS)

    Niemiec, J.; Nishikawa, K.-I.; Hardee, P.; Pohl, M.; Medvedev, M.; Mizuno, Y.; Zhang, B.; Oka, M.; Sol, H.; Hartmann, D.

    2009-01-01

    Using 3D and 2D particle-in-cell simulations we investigate a shock structure, magnetic field generation, and particle acceleration associated with an unmagnetized relativistic electron-positron jet propagating into an unmagnetized pair plasma. The simulations use long computational grids which allow to study the formation and dynamics of the system in a spatial and temporal way. We find for the first time a relativistic shock system comparable to a predicted magnetohydrodynamic shock structure consisting of leading and trailing shocks separated by a contact discontinuity. Strong electromagnetic fields resulting from the Weibel two-stream instability are generated in the trailing shock where jet matter is thermalized and decelerated. We analyze the formation and nonlinear development through saturation and dissipation of those fields and associated particle acceleration. In the AGN context the trailing shock corresponds to the jet shock at the head of a relativistic astrophysical jet. In the GRB context this trailing shock can be identified with the bow shock driven by relativistic ejecta. The strong electromagnetic field region in the trailing shock provides the emission site for the hot spot at the leading edge of AGN jets and for afterglow emission from GRBs.

  6. Nonconventional fluctuation dissipation process in non-Hamiltonian dynamical systems

    NASA Astrophysics Data System (ADS)

    Bianucci, Marco

    2016-08-01

    Here, we introduce a statistical approach derived from dynamics, for the study of the geophysical fluid dynamics phenomena characterized by a weak interaction among the variables of interest and the rest of the system. The approach is reminiscent of the one developed some years ago [M. Bianucci, R. Mannella, P. Grigolini and B. J. West, Phys. Rev. E 51, 3002 (1995)] to derive statistical mechanics of macroscopic variables on interest starting from Hamiltonian microscopic dynamics. However, in the present work, we are interested to generalize this approach beyond the context of the foundation of thermodynamics, in fact, we take into account the cases where the system of interest could be non-Hamiltonian (dissipative) and also the interaction with the irrelevant part can be of a more general type than Hamiltonian. As such example, we will refer to a typical case from geophysical fluid dynamics: the complex ocean-atmosphere interaction that gives rise to the El Niño Southern Oscillation (ENSO). Here, changing all the scales, the role of the “microscopic” system is played by the atmosphere, while the ocean (or some ocean variables) plays the role of the intrinsically dissipative macroscopic system of interest. Thus, the chaotic and divergent features of the fast atmosphere dynamics remains in the decaying properties of the correlation functions and of the response function of the atmosphere variables, while the exponential separation of the perturbed (or close) single trajectories does not play a direct role. In the present paper, we face this problem in the frame of a not formal Langevin approach, limiting our discussion to physically based rather than mathematics arguments. Elsewhere, we obtain these results via a much more formal procedure, using the Zwanzing projection method and some elements from the Lie Algebra field.

  7. Stability of general-relativistic accretion disks

    NASA Astrophysics Data System (ADS)

    Korobkin, Oleg; Abdikamalov, Ernazar B.; Schnetter, Erik; Stergioulas, Nikolaos; Zink, Burkhard

    2011-02-01

    Self-gravitating relativistic disks around black holes can form as transient structures in a number of astrophysical scenarios such as binary neutron star and black hole-neutron star coalescences, as well as the core collapse of massive stars. We explore the stability of such disks against runaway and nonaxisymmetric instabilities using three-dimensional hydrodynamics simulations in full general relativity using the Thor code. We model the disk matter using the ideal fluid approximation with a Γ-law equation of state with Γ=4/3. We explore three disk models around nonrotating black holes with disk-to-black hole mass ratios of 0.24, 0.17, and 0.11. Because of metric blending in our initial data, all of our initial models contain an initial axisymmetric perturbation which induces radial disk oscillations. Despite these oscillations, our models do not develop the runaway instability during the first several orbital periods. Instead, all of the models develop unstable nonaxisymmetric modes on a dynamical time scale. We observe two distinct types of instabilities: the Papaloizou-Pringle and the so-called intermediate type instabilities. The development of the nonaxisymmetric mode with azimuthal number m=1 is accompanied by an outspiraling motion of the black hole, which significantly amplifies the growth rate of the m=1 mode in some cases. Overall, our simulations show that the properties of the unstable nonaxisymmetric modes in our disk models are qualitatively similar to those in the Newtonian theory.

  8. Stability of general-relativistic accretion disks

    SciTech Connect

    Korobkin, Oleg; Abdikamalov, Ernazar B.; Schnetter, Erik; Stergioulas, Nikolaos; Zink, Burkhard

    2011-02-15

    Self-gravitating relativistic disks around black holes can form as transient structures in a number of astrophysical scenarios such as binary neutron star and black hole-neutron star coalescences, as well as the core collapse of massive stars. We explore the stability of such disks against runaway and nonaxisymmetric instabilities using three-dimensional hydrodynamics simulations in full general relativity using the Thor code. We model the disk matter using the ideal fluid approximation with a {Gamma}-law equation of state with {Gamma}=4/3. We explore three disk models around nonrotating black holes with disk-to-black hole mass ratios of 0.24, 0.17, and 0.11. Because of metric blending in our initial data, all of our initial models contain an initial axisymmetric perturbation which induces radial disk oscillations. Despite these oscillations, our models do not develop the runaway instability during the first several orbital periods. Instead, all of the models develop unstable nonaxisymmetric modes on a dynamical time scale. We observe two distinct types of instabilities: the Papaloizou-Pringle and the so-called intermediate type instabilities. The development of the nonaxisymmetric mode with azimuthal number m=1 is accompanied by an outspiraling motion of the black hole, which significantly amplifies the growth rate of the m=1 mode in some cases. Overall, our simulations show that the properties of the unstable nonaxisymmetric modes in our disk models are qualitatively similar to those in the Newtonian theory.

  9. Relativistic high harmonics and (sub-)attosecond pulses: relativistic spikes and relativistic mirror

    NASA Astrophysics Data System (ADS)

    Pukhov, A.; Baeva, T.; An der Brügge, D.; Münster, S.

    2009-11-01

    Using particle-in-cell simulations, we study high harmonic generation from overdense plasmas in the relativistic regime. Different incidence angles as well as different laser polarizations are considered and scalings are recovered. It is shown that the theory of relativistic spikes and the BGP power-law spectra [Phys. Rev. E 74, 046404 (2006)] describes well the normal incidence and s-polarized obliquely incident laser pulses. In the case of p-polarized laser pulses, exceptions from the BGP theory can appear when the quasi-static vector potential build-up at the plasma boundary becomes equal to that of the laser. In this case, the spectrum flattens significantly and has a lower cutoff.

  10. Relativistic electron acceleration during HILDCAA events: are precursor CIR magnetic storms important?

    NASA Astrophysics Data System (ADS)

    Hajra, Rajkumar; Tsurutani, Bruce T.; Echer, Ezequiel; Gonzalez, Walter D.; Brum, Christiano Garnett Marques; Vieira, Luis Eduardo Antunes; Santolik, Ondrej

    2015-07-01

    We present a comparative study of high-intensity long-duration continuous AE activity (HILDCAA) events, both isolated and those occurring in the "recovery phase" of geomagnetic storms induced by corotating interaction regions (CIRs). The aim of this study is to determine the difference, if any, in relativistic electron acceleration and magnetospheric energy deposition. All HILDCAA events in solar cycle 23 (from 1995 through 2008) are used in this study. Isolated HILDCAA events are characterized by enhanced fluxes of relativistic electrons compared to the pre-event flux levels. CIR magnetic storms followed by HILDCAA events show almost the same relativistic electron signatures. Cluster 1 spacecraft showed the presence of intense whistler-mode chorus waves in the outer magnetosphere during all HILDCAA intervals (when Cluster data were available). The storm-related HILDCAA events are characterized by slightly lower solar wind input energy and larger magnetospheric/ionospheric dissipation energy compared with the isolated events. A quantitative assessment shows that the mean ring current dissipation is ~34 % higher for the storm-related events relative to the isolated events, whereas Joule heating and auroral precipitation display no (statistically) distinguishable differences. On the average, the isolated events are found to be comparatively weaker and shorter than the storm-related events, although the geomagnetic characteristics of both classes of events bear no statistically significant difference. It is concluded that the CIR storms preceding the HILDCAAs have little to do with the acceleration of relativistic electrons. Our hypothesis is that ~10-100-keV electrons are sporadically injected into the magnetosphere during HILDCAA events, the anisotropic electrons continuously generate electromagnetic chorus plasma waves, and the chorus then continuously accelerates the high-energy portion of this electron spectrum to MeV energies.

  11. New modified weight function for the dissipative force in the DPD method to increase the Schmidt number

    NASA Astrophysics Data System (ADS)

    Yaghoubi, S.; Shirani, E.; Pishevar, A. R.; Afshar, Y.

    2015-04-01

    To simulate liquid fluid flows with high Schmidt numbers (Sc), one needs to use a modified version of the Dissipative Particle Dynamics (DPD) method. Recently the modifications made by others for the weight function of dissipative forces, enables DPD simulations for Sc, up to 10. In this paper, we introduce a different dissipative force weight function for DPD simulations that allows achieving a solution with higher values of Sc and improving the dynamic characteristics of the simulating fluid. Moreover, by reducing the energy of DPD particles, even higher values of Sc can be achieved. Finally, using the new proposed weight function and kBT =0.2 , the Sc values can reach up to 200.

  12. Lunar Fluid Core and Solid-Body Tides

    NASA Technical Reports Server (NTRS)

    Williams, J. G.; Boggs, D. H.; Ratcliff, J. T.

    2005-01-01

    Variations in rotation and orientation of the Moon are sensitive to solid-body tidal dissipation, dissipation due to relative motion at the fluid-core/solid-mantle boundary, and tidal Love number k2 [1,2]. There is weaker sensitivity to flattening of the core-mantle boundary (CMB) [2-5] and fluid core moment of inertia [1]. Accurate Lunar Laser Ranging (LLR) measurements of the distance from observatories on the Earth to four retroreflector arrays on the Moon are sensitive to lunar rotation and orientation variations and tidal displacements. Past solutions using the LLR data have given results for dissipation due to solid-body tides and fluid core [1] plus Love number [1-5]. Detection of CMB flattening has been improving [3,5] and now seems significant. This strengthens the case for a fluid lunar core.

  13. Loading relativistic Maxwell distributions in particle simulations

    SciTech Connect

    Zenitani, Seiji

    2015-04-15

    Numerical algorithms to load relativistic Maxwell distributions in particle-in-cell (PIC) and Monte-Carlo simulations are presented. For stationary relativistic Maxwellian, the inverse transform method and the Sobol algorithm are reviewed. To boost particles to obtain relativistic shifted-Maxwellian, two rejection methods are proposed in a physically transparent manner. Their acceptance efficiencies are ≈50% for generic cases and 100% for symmetric distributions. They can be combined with arbitrary base algorithms.

  14. Relativistic radiation transport in dispersive media

    SciTech Connect

    Kichenassamy, S.; Krikorian, R.A.

    1985-10-15

    A general-relativistic radiative transfer equation in an isotropic, weakly absorbing, nonmagnetized dispersive medium is derived using the kinetic-theoretical approach and the relativistic Hamiltonian theory of geometrical optics in those media. It yields the generally accepted classical equation in the special-relativistic approximation and in stationary conditions. The influence of the gravitational field and of space-time variations of the refractive index n on the radiation distribution is made explicit in the case of spherical symmetry.

  15. Mesoscopic Superposition States in Relativistic Landau Levels

    SciTech Connect

    Bermudez, A.; Martin-Delgado, M. A.; Solano, E.

    2007-09-21

    We show that a linear superposition of mesoscopic states in relativistic Landau levels can be built when an external magnetic field couples to a relativistic spin 1/2 charged particle. Under suitable initial conditions, the associated Dirac equation produces unitarily superpositions of coherent states involving the particle orbital quanta in a well-defined mesoscopic regime. We demonstrate that these mesoscopic superpositions have a purely relativistic origin and disappear in the nonrelativistic limit.

  16. Dissipation and traversal time in Josephson junctions

    SciTech Connect

    Cacciari, Ilaria; Ranfagni, Anedio; Moretti, Paolo

    2010-05-01

    The various ways of evaluating dissipative effects in macroscopic quantum tunneling are re-examined. The results obtained by using functional integration, while confirming those of previously given treatments, enable a comparison with available experimental results relative to Josephson junctions. A criterion based on the shortening of the semiclassical traversal time tau of the barrier with regard to dissipation can be established, according to which DELTAtau/tau > or approx. N/Q, where Q is the quality factor of the junction and N is a numerical constant of order unity. The best agreement with the experiments is obtained for N=1.11, as it results from a semiempirical analysis based on an increase in the potential barrier caused by dissipative effects.

  17. Bistability in a Driven-Dissipative Superfluid.

    PubMed

    Labouvie, Ralf; Santra, Bodhaditya; Heun, Simon; Ott, Herwig

    2016-06-10

    We experimentally study a driven-dissipative Josephson junction array, realized with a weakly interacting Bose-Einstein condensate residing in a one-dimensional optical lattice. Engineered losses on one site act as a local dissipative process, while tunneling from the neighboring sites constitutes the driving force. We characterize the emerging steady states of this atomtronic device. With increasing dissipation strength γ the system crosses from a superfluid state, characterized by a coherent Josephson current into the lossy site, to a resistive state, characterized by an incoherent hopping transport. For intermediate values of γ, the system exhibits bistability, where a superfluid and an incoherent branch coexist. We also study the relaxation dynamics towards the steady state, where we find a critical slowing down, indicating the presence of a nonequilibrium phase transition. PMID:27341243

  18. Bistability in a Driven-Dissipative Superfluid

    NASA Astrophysics Data System (ADS)

    Labouvie, Ralf; Santra, Bodhaditya; Heun, Simon; Ott, Herwig

    2016-06-01

    We experimentally study a driven-dissipative Josephson junction array, realized with a weakly interacting Bose-Einstein condensate residing in a one-dimensional optical lattice. Engineered losses on one site act as a local dissipative process, while tunneling from the neighboring sites constitutes the driving force. We characterize the emerging steady states of this atomtronic device. With increasing dissipation strength γ the system crosses from a superfluid state, characterized by a coherent Josephson current into the lossy site, to a resistive state, characterized by an incoherent hopping transport. For intermediate values of γ , the system exhibits bistability, where a superfluid and an incoherent branch coexist. We also study the relaxation dynamics towards the steady state, where we find a critical slowing down, indicating the presence of a nonequilibrium phase transition.

  19. Landing Energy Dissipation for Manned Reentry Vehicles

    NASA Technical Reports Server (NTRS)

    1960-01-01

    Landing Energy Dissipation for Manned Reentry Vehicles. The film shows experimental investigations to determine the landing-energy-dissipation characteristics for several types of landing gear for manned reentry vehicles. The landing vehicles are considered in two categories: those having essentially vertical-descent paths, the parachute-supported vehicles, and those having essentially horizontal paths, the lifting vehicles. The energy-dissipation devices include crushable materials such as foamed plastics and honeycomb for internal application in couch-support systems, yielding metal elements as part of the structure of capsules or as alternates for oleos in landing-gear struts, inflatable bags, braking rockets, and shaped surfaces for water impact. [Entire movie available on DVD from CASI as Doc ID 20070030945. Contact help@sti.nasa.gov

  20. Topological protection of multiparticle dissipative transport.

    PubMed

    Loehr, Johannes; Loenne, Michael; Ernst, Adrian; de Las Heras, Daniel; Fischer, Thomas M

    2016-01-01

    Topological protection allows robust transport of localized phenomena such as quantum information, solitons and dislocations. The transport can be either dissipative or non-dissipative. Here, we experimentally demonstrate and theoretically explain the topologically protected dissipative motion of colloidal particles above a periodic hexagonal magnetic pattern. By driving the system with periodic modulation loops of an external and spatially homogeneous magnetic field, we achieve total control over the motion of diamagnetic and paramagnetic colloids. We can transport simultaneously and independently each type of colloid along any of the six crystallographic directions of the pattern via adiabatic or deterministic ratchet motion. Both types of motion are topologically protected. As an application, we implement an automatic topologically protected quality control of a chemical reaction between functionalized colloids. Our results are relevant to other systems with the same symmetry. PMID:27249049

  1. A dissipative network model with neighboring activation

    NASA Astrophysics Data System (ADS)

    Xiong, Fei; Liu, Yun; Zhu, Jiang; Jiang Zhang, Zhen; Chao Zhang, Yan; Zhang, Ying

    2011-11-01

    We propose a network model with dissipative structure taking into consideration the effect of neighboring activation and individual dissipation. Nodes may feel tired of interactions with new nodes step by step, and drop out of the network evolution. However, these dormant nodes can become active again following neighbors. During the whole evolution only active nodes have opportunities to receive new links. We analyze user behavior of a real Internet forum, and the statistical characteristics of this forum are analogous to our model. Under the influence of motivation and dissipation, the degree distribution of our network model decays as a power law with a diversity of tunable power exponents. Furthermore, the network has high clustering, small average path length and positive assortativity coefficients.

  2. Cascaded generation of coherent Raman dissipative solitons.

    PubMed

    Kharenko, Denis S; Bednyakova, Anastasia E; Podivilov, Evgeniy V; Fedoruk, Mikhail P; Apolonski, Alexander; Babin, Sergey A

    2016-01-01

    The cascaded generation of a conventional dissipative soliton (at 1020 nm) together with Raman dissipative solitons of the first (1065 nm) and second (1115 nm) orders inside a common fiber laser cavity is demonstrated experimentally and numerically. With sinusoidal (soft) spectral filtering, the generated solitons are mutually coherent at a high degree and compressible down to 300 fs. Numerical simulation shows that an even higher degree of coherence and shorter pulses could be achieved with step-like (hard) spectral filtering. The approach can be extended toward a high-order coherent Raman dissipative soliton source offering numerous applications such as frequency comb generation, pulse synthesis, biomedical imaging, and the generation of a coherent mid-infrared supercontinuum. PMID:26696187

  3. Topological protection of multiparticle dissipative transport

    NASA Astrophysics Data System (ADS)

    Loehr, Johannes; Loenne, Michael; Ernst, Adrian; de Las Heras, Daniel; Fischer, Thomas M.

    2016-06-01

    Topological protection allows robust transport of localized phenomena such as quantum information, solitons and dislocations. The transport can be either dissipative or non-dissipative. Here, we experimentally demonstrate and theoretically explain the topologically protected dissipative motion of colloidal particles above a periodic hexagonal magnetic pattern. By driving the system with periodic modulation loops of an external and spatially homogeneous magnetic field, we achieve total control over the motion of diamagnetic and paramagnetic colloids. We can transport simultaneously and independently each type of colloid along any of the six crystallographic directions of the pattern via adiabatic or deterministic ratchet motion. Both types of motion are topologically protected. As an application, we implement an automatic topologically protected quality control of a chemical reaction between functionalized colloids. Our results are relevant to other systems with the same symmetry.

  4. Designing Adaptive Low Dissipative High Order Schemes

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sjoegreen, B.; Parks, John W. (Technical Monitor)

    2002-01-01

    Proper control of the numerical dissipation/filter to accurately resolve all relevant multiscales of complex flow problems while still maintaining nonlinear stability and efficiency for long-time numerical integrations poses a great challenge to the design of numerical methods. The required type and amount of numerical dissipation/filter are not only physical problem dependent, but also vary from one flow region to another. This is particularly true for unsteady high-speed shock/shear/boundary-layer/turbulence/acoustics interactions and/or combustion problems since the dynamics of the nonlinear effect of these flows are not well-understood. Even with extensive grid refinement, it is of paramount importance to have proper control on the type and amount of numerical dissipation/filter in regions where it is needed.

  5. Topological protection of multiparticle dissipative transport

    PubMed Central

    Loehr, Johannes; Loenne, Michael; Ernst, Adrian; de las Heras, Daniel; Fischer, Thomas M.

    2016-01-01

    Topological protection allows robust transport of localized phenomena such as quantum information, solitons and dislocations. The transport can be either dissipative or non-dissipative. Here, we experimentally demonstrate and theoretically explain the topologically protected dissipative motion of colloidal particles above a periodic hexagonal magnetic pattern. By driving the system with periodic modulation loops of an external and spatially homogeneous magnetic field, we achieve total control over the motion of diamagnetic and paramagnetic colloids. We can transport simultaneously and independently each type of colloid along any of the six crystallographic directions of the pattern via adiabatic or deterministic ratchet motion. Both types of motion are topologically protected. As an application, we implement an automatic topologically protected quality control of a chemical reaction between functionalized colloids. Our results are relevant to other systems with the same symmetry. PMID:27249049

  6. Relativistic Bernstein waves in a degenerate plasma

    SciTech Connect

    Ali, Muddasir; Hussain, Azhar; Murtaza, G.

    2011-09-15

    Bernstein mode for a relativistic degenerate electron plasma is investigated. Using relativistic Vlasov-Maxwell equations, a general expression for the conductivity tensor is derived and then employing Fermi-Dirac distribution function a generalized dispersion relation for the Bernstein mode is obtained. Two limiting cases, i.e., non-relativistic and ultra-relativistic are discussed. The dispersion relations obtained are also graphically presented for some specific values of the parameters depicting how the propagation characteristics of Bernstein waves as well as the Upper Hybrid oscillations are modified with the increase in plasma number density.

  7. Mechanisms of surface wave energy dissipation over a high-concentration sediment suspension

    NASA Astrophysics Data System (ADS)

    Traykovski, Peter; Trowbridge, John; Kineke, Gail

    2015-03-01

    Field observations from the spring of 2008 on the Louisiana shelf were used to elucidate the mechanisms of wave energy dissipation over a muddy seafloor. After a period of high discharge from the Atchafalaya River, acoustic measurements showed the presence of 20 cm thick mobile fluid-mud layers during and after wave events. While total wave energy dissipation (D) was greatest during the high energy periods, these periods had relatively low normalized attenuation rates (κ = Dissipation/Energy Flux). During declining wave-energy conditions, as the fluid-mud layer settled, the attenuation process became more efficient with high κ and low D. The transition from high D and low κ to high κ and low D was caused by a transition from turbulent to laminar flow in the fluid-mud layer as measured by a Pulse-coherent Doppler profiler. Measurements of the oscillatory boundary layer velocity profile in the fluid-mud layer during laminar flow reveal a very thick wave boundary layer with curvature filling the entire fluid-mud layer, suggesting a kinematic viscosity 2-3 orders of magnitude greater than that of clear water. This high viscosity is also consistent with a high wave-attenuation rates measured by across-shelf energy flux differences. The transition to turbulence was forced by instabilities on the lutocline, with wavelengths consistent with the dispersion relation for this two-layer system. The measurements also provide new insight into the dynamics of wave-supported turbidity flows during the transition from a laminar to turbulent fluid-mud layer.

  8. Dissipative dark matter explains rotation curves

    NASA Astrophysics Data System (ADS)

    Foot, R.

    2015-06-01

    Dissipative dark matter, where dark matter particles interact with a massless (or very light) boson, is studied. Such dark matter can arise in simple hidden sector gauge models, including those featuring an unbroken U (1 )' gauge symmetry, leading to a dark photon. Previous work has shown that such models can not only explain the large scale structure and cosmic microwave background, but potentially also dark matter phenomena on small scales, such as the inferred cored structure of dark matter halos. In this picture, dark matter halos of disk galaxies not only cool via dissipative interactions but are also heated via ordinary supernovae (facilitated by an assumed photon-dark photon kinetic mixing interaction). This interaction between the dark matter halo and ordinary baryons, a very special feature of these types of models, plays a critical role in governing the physical properties of the dark matter halo. Here, we further study the implications of this type of dissipative dark matter for disk galaxies. Building on earlier work, we develop a simple formalism which aims to describe the effects of dissipative dark matter in a fairly model independent way. This formalism is then applied to generic disk galaxies. We also consider specific examples, including NGC 1560 and a sample of dwarf galaxies from the LITTLE THINGS survey. We find that dissipative dark matter, as developed here, does a fairly good job accounting for the rotation curves of the galaxies considered. Not only does dissipative dark matter explain the linear rise of the rotational velocity of dwarf galaxies at small radii, but it can also explain the observed wiggles in rotation curves which are known to be correlated with corresponding features in the disk gas distribution.

  9. Heat dissipation guides activation in signaling proteins

    PubMed Central

    Weber, Jeffrey K.; Shukla, Diwakar; Pande, Vijay S.

    2015-01-01

    Life is fundamentally a nonequilibrium phenomenon. At the expense of dissipated energy, living things perform irreversible processes that allow them to propagate and reproduce. Within cells, evolution has designed nanoscale machines to do meaningful work with energy harnessed from a continuous flux of heat and particles. As dictated by the Second Law of Thermodynamics and its fluctuation theorem corollaries, irreversibility in nonequilibrium processes can be quantified in terms of how much entropy such dynamics produce. In this work, we seek to address a fundamental question linking biology and nonequilibrium physics: can the evolved dissipative pathways that facilitate biomolecular function be identified by their extent of entropy production in general relaxation processes? We here synthesize massive molecular dynamics simulations, Markov state models (MSMs), and nonequilibrium statistical mechanical theory to probe dissipation in two key classes of signaling proteins: kinases and G-protein–coupled receptors (GPCRs). Applying machinery from large deviation theory, we use MSMs constructed from protein simulations to generate dynamics conforming to positive levels of entropy production. We note the emergence of an array of peaks in the dynamical response (transient analogs of phase transitions) that draw the proteins between distinct levels of dissipation, and we see that the binding of ATP and agonist molecules modifies the observed dissipative landscapes. Overall, we find that dissipation is tightly coupled to activation in these signaling systems: dominant entropy-producing trajectories become localized near important barriers along known biological activation pathways. We go on to classify an array of equilibrium and nonequilibrium molecular switches that harmonize to promote functional dynamics. PMID:26240354

  10. Measuring shear viscosity using transverse momentum correlations in relativistic nuclear collisions.

    PubMed

    Gavin, Sean; Abdel-Aziz, Mohamed

    2006-10-20

    Elliptic flow measurements at the Brookhaven National Laboratory Relativistic Heavy Ion Collider suggest that quark-gluon fluid flows with very little viscosity compared to weak-coupling expectations, challenging theorists to explain why this fluid is so nearly "perfect." It is therefore vital to find quantitative experimental information on the viscosity of the fluid. We propose that measurements of transverse momentum fluctuations can be used to determine the shear viscosity. We use current data to estimate the viscosity-to-entropy ratio in the range from 0.08 to 0.3 and discuss how future measurements can reduce this uncertainty.

  11. Measuring Shear Viscosity Using Transverse Momentum Correlations in Relativistic Nuclear Collisions

    SciTech Connect

    Gavin, Sean; Abdel-Aziz, Mohamed

    2006-10-20

    Elliptic flow measurements at the Brookhaven National Laboratory Relativistic Heavy Ion Collider suggest that quark-gluon fluid flows with very little viscosity compared to weak-coupling expectations, challenging theorists to explain why this fluid is so nearly ''perfect.'' It is therefore vital to find quantitative experimental information on the viscosity of the fluid. We propose that measurements of transverse momentum fluctuations can be used to determine the shear viscosity. We use current data to estimate the viscosity-to-entropy ratio in the range from 0.08 to 0.3 and discuss how future measurements can reduce this uncertainty.

  12. Dynamic fission instability of dissipative protoplanets

    NASA Technical Reports Server (NTRS)

    Boss, A. P.; Mizuno, H.

    1985-01-01

    Analytical and numerical approaches are taken to consider if a rapidly rotating, viscous protoearth would have lost mass by a fission process and thereby given birth to the moon. The fast rotation is assumed as the source of the instability in the dissipative liquid protoearth. Governing hydrodynamic equations are defined for the evolution of the protoearth. Account is taken of viscous dissipation, the pressure equation of state for the atmospheric material sent on a ballistic trajectory, and the effective viscosity. The results indicate that dynamic fission was probably not the process by which the protomoon came into existence.

  13. Landing Energy Dissipation for Manned Reentry Vehicles

    NASA Technical Reports Server (NTRS)

    Fisher, Loyd. L.

    1960-01-01

    The film shows experimental investigations to determine the landing-energy-dissipation characteristics for several types of landing gear for manned reentry vehicles. The landing vehicles are considered in two categories: those having essentially vertical-descent paths, the parachute-supported vehicles, and those having essentially horizontal paths, the lifting vehicles. The energy-dissipation devices include crushable materials such as foamed plastics and honeycomb for internal application in couch-support systems, yielding metal elements as part of the structure of capsules or as alternates for oleos in landing-gear struts, inflatable bags, braking rockets, and shaped surfaces for water impact.

  14. Energy dissipation scaling in uniformly sheared turbulence

    NASA Astrophysics Data System (ADS)

    Nedić, Jovan; Tavoularis, Stavros

    2016-03-01

    The rate of turbulent kinetic energy dissipation in spatially developing, uniformly sheared turbulence is examined experimentally. In the far-downstream fully developed region of the flow, we confirm that the dissipation parameter Cɛ is constant. More importantly, however, we find two upstream regions where this parameter could be scaled with the local turbulent Reynolds number as Cɛ=A Reλα ; the exponents in these two regions are, respectively, α =-0.6 and 0.5 . The observed changes in scaling laws are explained by consideration of structural changes in the turbulence.

  15. Evolution of satellite resonances by tidal dissipation.

    NASA Technical Reports Server (NTRS)

    Greenberg, R.

    1973-01-01

    Analysis of a realistic model shows how satellites' gravitational interaction can halt their differential tidal evolution when resonant commensurabilities of their orbital periods are reached. The success of this study lends support to the hypothesis that orbit-orbit resonances among satellites in the solar system, including the Titan-Hyperion case, did evolve as a result of tidal energy dissipation. Consideration of the time scale for this evolution process, possible now that the capture mechanism has been revealed, can offer more sophisticated constraints on the tidal dissipation function, Q, and on past orbital conditions.

  16. ON THE TIDAL DISSIPATION OF OBLIQUITY

    SciTech Connect

    Rogers, T. M.; Lin, D. N. C. E-mail: lin@ucolick.org

    2013-05-20

    We investigate tidal dissipation of obliquity in hot Jupiters. Assuming an initial random orientation of obliquity and parameters relevant to the observed population, the obliquity of hot Jupiters does not evolve to purely aligned systems. In fact, the obliquity evolves to either prograde, retrograde, or 90 Degree-Sign orbits where the torque due to tidal perturbations vanishes. This distribution is incompatible with observations which show that hot Jupiters around cool stars are generally aligned. This calls into question the viability of tidal dissipation as the mechanism for obliquity alignment of hot Jupiters around cool stars.

  17. Space plasma turbulent dissipation - Reality or myth?

    NASA Technical Reports Server (NTRS)

    Coroniti, F. V.

    1985-01-01

    A prevalent approach to understanding magnetospheric dynamics is to combine a hydromagnetic description of the large scale magnetic structure and convection flows with a locally determined anomalous dissipation which develops in boundary layers. Three problems (nose and tail reconnection, auroral field-aligned currents, and diffuse auroral precipitation) are critically examined to test the validity of this theoretical philosophy. Although the expected plasma wave turbulence is observed for each case, the concept of local anomalous dissipation fails to provide an adequate or complete description of the phenomenae.

  18. An introduction to dissipative particle dynamics.

    PubMed

    Lu, Zhong-Yuan; Wang, Yong-Lei

    2013-01-01

    Dissipative particle dynamics (DPD) is a particle-based mesoscopic simulation method, which facilitates the studies of thermodynamic and dynamic properties of soft matter systems at physically interesting length and time scales. In this method, molecule groups are clustered into the dissipative beads, and this coarse-graining procedure is a very important aspect of DPD as it allows significant computational speed-up. In this chapter, we introduce the DPD methodology, including its theoretical foundation and its parameterization. With this simulation technique, we can study complex behaviors of biological systems, such as the formation of vesicles and their fusion and fission processes, and the phase behavior of lipid membranes.

  19. Crises in a dissipative bouncing ball model

    NASA Astrophysics Data System (ADS)

    Livorati, André L. P.; Caldas, Iberê L.; Dettmann, Carl P.; Leonel, Edson D.

    2015-11-01

    The dynamics of a bouncing ball model under the influence of dissipation is investigated by using a two-dimensional nonlinear mapping. When high dissipation is considered, the dynamics evolves to different attractors. The evolution of the basins of the attracting fixed points is characterized, as we vary the control parameters. Crises between the attractors and their boundaries are observed. We found that the multiple attractors are intertwined, and when the boundary crisis between their stable and unstable manifolds occurs, it creates a successive mechanism of destruction for all attractors originated by the sinks. Also, a physical impact crisis is described, an important mechanism in the reduction of the number of attractors.

  20. The effects of nonextensivity on quantum dissipation

    PubMed Central

    Choi, Jeong Ryeol

    2014-01-01

    Nonextensive dynamics for a quantum dissipative system described by a Caldirola-Kanai (CK) Hamiltonian is investigated in SU(1,1) coherent states. To see the effects of nonextensivity, the system is generalized through a modification fulfilled by replacing the ordinary exponential function in the standard CK Hamiltonian with the q-exponential function. We confirmed that the time behavior of the system is somewhat different depending on the value of q which is the degree of nonextensivity. The effects of q on quantum energy dissipation and other parameters are illustrated and discussed in detail. PMID:24468727

  1. Dynamic fission instability of dissipative protoplanets

    NASA Astrophysics Data System (ADS)

    Boss, A. P.; Mizuno, H.

    1985-07-01

    Analytical and numerical approaches are taken to consider if a rapidly rotating, viscous protoearth would have lost mass by a fission process and thereby given birth to the moon. The fast rotation is assumed as the source of the instability in the dissipative liquid protoearth. Governing hydrodynamic equations are defined for the evolution of the protoearth. Account is taken of viscous dissipation, the pressure equation of state for the atmospheric material sent on a ballistic trajectory, and the effective viscosity. The results indicate that dynamic fission was probably not the process by which the protomoon came into existence.

  2. Relativistic Corrections to the Bohr Model of the Atom

    ERIC Educational Resources Information Center

    Kraft, David W.

    1974-01-01

    Presents a simple means for extending the Bohr model to include relativistic corrections using a derivation similar to that for the non-relativistic case, except that the relativistic expressions for mass and kinetic energy are employed. (Author/GS)

  3. Heterogeneous dissipation and size dependencies of dissipative processes in nanoscale interactions.

    PubMed

    Gadelrab, Karim R; Santos, Sergio; Chiesa, Matteo

    2013-02-19

    Here, processes through which the energy stored in an atomic force microscope cantilever dissipates in the tip-sample interaction are first decoupled qualitatively. A formalism is then presented and shown to allow quantification of fundamental aspects of nanoscale dissipation such as deformation, viscosity, and surface energy hysteresis. Accurate quantification of energy dissipation requires precise calibration of the conversion of the oscillation amplitude from volts to nanometers. In this respect, an experimental methodology is presented that allows such calibration with errors of 3% or less. It is shown how simultaneous decoupling and quantification of dissipative processes and in situ tip radius quantification provide the required information to analyze dependencies of dissipative mechanisms on the relative size of the interacting bodies, that is, tip and surface. When there is chemical affinity, atom-atom dissipative interactions approach the energies of chemical bonds. Such atom-atom interactions are found to be independent of cantilever properties and tip geometry thus implying that they are intensive properties of the system; these interactions prevail in the form of surface energy hysteresis. Viscoelastic dissipation on the other hand is shown to depend on the size of the probe and operational parameters. PMID:23336271

  4. Relativistic electromagnetic ion cyclotron instabilities.

    PubMed

    Chen, K R; Huang, R D; Wang, J C; Chen, Y Y

    2005-03-01

    The relativistic instabilities of electromagnetic ion cyclotron waves driven by MeV ions are analytically and numerically studied. As caused by wave magnetic field and in sharp contrast to the electrostatic case, interesting characteristics such as Alfve nic behavior and instability transition are discovered and illuminated in detail. The instabilities are reactive and are raised from the coupling of slow ions' first-order resonance and fast ions' second-order resonance, that is an essential extra mechanism due to relativistic effect. Because of the wave magnetic field, the nonresonant plasma dielectric is usually negative and large, that affects the instability conditions and scaling laws. A negative harmonic cyclotron frequency mismatch between the fast and slow ions is required for driving a cubic (and a coupled quadratic) instability; the cubic (square) root scaling of the peak growth rate makes the relativistic effect more important than classical mechanism, especially for low fast ion density and Lorentz factor being close to unity. For the cubic instability, there is a threshold (ceiling) on the slow ion temperature and density (the external magnetic field and the fast ion energy); the Alfve n velocity is required to be low. This Alfve nic behavior is interesting in physics and important for its applications. The case of fast protons in thermal deuterons is numerically studied and compared with the analytical results. When the slow ion temperature or density (the external magnetic field or the fast ion energy) is increased (reduced) to about twice (half) the threshold (ceiling), the same growth rate peak transits from the cubic instability to the coupled quadratic instability and a different cubic instability branch appears. The instability transition is an interesting new phenomenon for instability. PMID:15903591

  5. Relativistic radiative transfer and relativistic spherical shell flows

    NASA Astrophysics Data System (ADS)

    Fukue, Jun

    2016-06-01

    We examine a radiatively driven spherical flow from a central object, whose thickness is smaller than the radius of the central object, and a plane-parallel approximation can be used-a spherical shell flow. We first solve the relativistic radiative transfer equation iteratively, using a given velocity field, and obtain specific intensities as well as moment quantities. Using the obtained comoving flux, we then solve the relativistic hydrodynamical equation, and obtain a new velocity field. We repeat these double iteration processes until both the intensity and velocity profiles converge. We found that the flow speed v(τ) is roughly approximated as β ≡ v/c = βs(1 - τ/τb), where τ is the optical depth, τb the flow total optical depth, and c the speed of light. We further found that the flow terminal speed vs is roughly expressed as β _s ≡ v_s/c = (Γ hat{F}_0-1)τ_b/dot{m} , where Γ is the central luminosity normalized by the Eddington luminosity, hat{F}_0 the comoving flux normalized by the incident flux, and of the order of unity, and dot{m} the mass-loss rate normalized by the critical mass loss.

  6. Thermodynamics of polarized relativistic matter

    NASA Astrophysics Data System (ADS)

    Kovtun, Pavel

    2016-07-01

    We give the free energy of equilibrium relativistic matter subject to external gravitational and electromagnetic fields, to one-derivative order in the gradients of the external fields. The free energy allows for a straightforward derivation of bound currents and bound momenta in equilibrium. At leading order, the energy-momentum tensor admits a simple expression in terms of the polarization tensor. Beyond the leading order, electric and magnetic polarization vectors are intrinsically ambiguous. The physical effects of polarization, such as the correlation between the magneto-vortically induced surface charge and the electro-vortically induced surface current, are not ambiguous.

  7. Relativistic atomic beam spectroscopy II

    SciTech Connect

    1989-12-31

    The negative ion of H is one of the simplest 3-body atomic systems. The techniques we have developed for experimental study of atoms moving near speed of light have been productive. This proposal request continuing support for experimental studies of the H{sup -} system, principally at the 800 MeV linear accelerator (LAMPF) at Los Alamos. Four experiments are currently planned: photodetachment of H{sup -} near threshold in electric field, interaction of relativistic H{sup -} ions with matter, high excitations and double charge escape in H{sup -}, and multiphoton detachment of electrons from H{sup -}.

  8. Relativistic mean-field theory

    NASA Astrophysics Data System (ADS)

    Meng, Jie; Ring, Peter; Zhao, Pengwei

    In this chapter, the covariant energy density functional is constructed with both the meson-exchange and the point-coupling pictures. Several widely used functionals with either nonlinear or density-dependent effective interactions are introduced. The applications of covariant density functional theory are demonstrated for infinite nuclear matter and finite nuclei with spherical symmetry, axially symmetric quadrupole deformation, and triaxial quadrupole shapes. Finally, a relativistic description of the nuclear landscape has been discussed, which is not only important for nuclear structure, but also important for nuclear astrophysics, where we are facing the problem of a reliable extrapolation to the very neutron-rich nuclei.

  9. Adaptive wavelets and relativistic magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Hirschmann, Eric; Neilsen, David; Anderson, Matthe; Debuhr, Jackson; Zhang, Bo

    2016-03-01

    We present a method for integrating the relativistic magnetohydrodynamics equations using iterated interpolating wavelets. Such provide an adaptive implementation for simulations in multidimensions. A measure of the local approximation error for the solution is provided by the wavelet coefficients. They place collocation points in locations naturally adapted to the flow while providing expected conservation. We present demanding 1D and 2D tests includingthe Kelvin-Helmholtz instability and the Rayleigh-Taylor instability. Finally, we consider an outgoing blast wave that models a GRB outflow.

  10. Relativistic quantum private database queries

    NASA Astrophysics Data System (ADS)

    Sun, Si-Jia; Yang, Yu-Guang; Zhang, Ming-Ou

    2015-04-01

    Recently, Jakobi et al. (Phys Rev A 83, 022301, 2011) suggested the first practical private database query protocol (J-protocol) based on the Scarani et al. (Phys Rev Lett 92, 057901, 2004) quantum key distribution protocol. Unfortunately, the J-protocol is just a cheat-sensitive private database query protocol. In this paper, we present an idealized relativistic quantum private database query protocol based on Minkowski causality and the properties of quantum information. Also, we prove that the protocol is secure in terms of the user security and the database security.

  11. Einstein Toolkit for Relativistic Astrophysics

    NASA Astrophysics Data System (ADS)

    Collaborative Effort

    2011-02-01

    The Einstein Toolkit is a collection of software components and tools for simulating and analyzing general relativistic astrophysical systems. Such systems include gravitational wave space-times, collisions of compact objects such as black holes or neutron stars, accretion onto compact objects, core collapse supernovae and Gamma-Ray Bursts. The Einstein Toolkit builds on numerous software efforts in the numerical relativity community including CactusEinstein, Whisky, and Carpet. The Einstein Toolkit currently uses the Cactus Framework as the underlying computational infrastructure that provides large-scale parallelization, general computational components, and a model for collaborative, portable code development.

  12. Relativistic kinematics and stationary motions

    NASA Astrophysics Data System (ADS)

    Russo, Jorge G.; Townsend, Paul K.

    2009-11-01

    The relativistic jerk, snap and all higher-order kinematical D-vectors are defined for the motion of a massive particle in a D-dimensional Minkowski spacetime. We illustrate the formalism with stationary motions, for which we provide a new, Lorentz covariant, classification. We generalize some cases to branes, explaining the relevance to uniform motion in a heat bath. We also consider some non-stationary motions, including motion with constant proper jerk, and free fall into a black hole as viewed from a GEMS perspective.

  13. Dissipative particle dynamics of diffusion-NMR requires high Schmidt-numbers

    NASA Astrophysics Data System (ADS)

    Azhar, Mueed; Greiner, Andreas; Korvink, Jan G.; Kauzlarić, David

    2016-06-01

    We present an efficient mesoscale model to simulate the diffusion measurement with nuclear magnetic resonance (NMR). On the level of mesoscopic thermal motion of fluid particles, we couple the Bloch equations with dissipative particle dynamics (DPD). Thereby we establish a physically consistent scaling relation between the diffusion constant measured for DPD-particles and the diffusion constant of a real fluid. The latter is based on a splitting into a centre-of-mass contribution represented by DPD, and an internal contribution which is not resolved in the DPD-level of description. As a consequence, simulating the centre-of-mass contribution with DPD requires high Schmidt numbers. After a verification for fundamental pulse sequences, we apply the NMR-DPD method to NMR diffusion measurements of anisotropic fluids, and of fluids restricted by walls of microfluidic channels. For the latter, the free diffusion and the localisation regime are considered.

  14. Dissipative particle dynamics of diffusion-NMR requires high Schmidt-numbers.

    PubMed

    Azhar, Mueed; Greiner, Andreas; Korvink, Jan G; Kauzlarić, David

    2016-06-28

    We present an efficient mesoscale model to simulate the diffusion measurement with nuclear magnetic resonance (NMR). On the level of mesoscopic thermal motion of fluid particles, we couple the Bloch equations with dissipative particle dynamics (DPD). Thereby we establish a physically consistent scaling relation between the diffusion constant measured for DPD-particles and the diffusion constant of a real fluid. The latter is based on a splitting into a centre-of-mass contribution represented by DPD, and an internal contribution which is not resolved in the DPD-level of description. As a consequence, simulating the centre-of-mass contribution with DPD requires high Schmidt numbers. After a verification for fundamental pulse sequences, we apply the NMR-DPD method to NMR diffusion measurements of anisotropic fluids, and of fluids restricted by walls of microfluidic channels. For the latter, the free diffusion and the localisation regime are considered. PMID:27369491

  15. Oblique propagation of ion acoustic shock waves in weakly and highly relativistic plasmas with nonthermal electrons and positrons

    NASA Astrophysics Data System (ADS)

    Hafez, M. G.; Roy, N. C.; Talukder, M. R.; Hossain Ali, M.

    2016-09-01

    This work investigates the oblique nonlinear propagation of ion acoustic (IA) shock waves for both weakly and highly relativistic plasmas composed of nonthermal electrons and positrons with relativistic thermal ions. The KdVB-like equation, involving dispersive, weakly transverse dispersive, nonlinearity and dissipative coefficients, is derived employing the well known reductive perturbation method. The integration of this equation is carried out by the {tanh} method taking the stable shock formation condition into account. The effects of nonthermal electrons and positrons, nonthermal electrons with isothermal positrons, isothermal electrons with nonthermal positrons, and isothermal electrons and positrons on oblique propagation of IA shock waves in weakly relativistic regime are described. Furthermore, the effects of plasma parameters on oblique propagation of IA shock waves in highly relativistic regime are discussed and compared with weakly relativistic case. It is seen that the plasma parameters within certain limits significantly modify the structures of the IA shock waves in both cases. The results may be useful for better understanding of the interactions of charged particles with extra-galactic jets as well as astrophysical compact objects.

  16. Laminated insulators having heat dissipation means

    DOEpatents

    Niemann, R.C.; Mataya, K.F.; Gonczy, J.D.

    1980-04-24

    A laminated body is provided with heat dissipation capabilities. The insulator body is formed by dielectric layers interleaved with heat conductive layers, and bonded by an adhesive to form a composite structure. The heat conductive layers include provision for connection to an external thermal circuit.

  17. Lorentz-covariant dissipative Lagrangian systems

    NASA Technical Reports Server (NTRS)

    Kaufman, A. N.

    1985-01-01

    The concept of dissipative Hamiltonian system is converted to Lorentz-covariant form, with evolution generated jointly by two scalar functionals, the Lagrangian action and the global entropy. A bracket formulation yields the local covariant laws of energy-momentum conservation and of entropy production. The formalism is illustrated by a derivation of the covariant Landau kinetic equation.

  18. Tidal Energy Dissipation from Topex/Poseidon

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.; Egbert, G. D.; Smith, David E. (Technical Monitor)

    2000-01-01

    In a recent paper ({\\it Nature, 405,} 775, 2000) we concluded that 25 to 30\\% of the ocean's tidal energy dissipation, or about 1 terawatt, occurs in the deep ocean, with the remaining 2.6 TW in shallow seas. The physical mechanism for deep-ocean dissipation is apparently scattering of the surface tide into internal modes; Munk and Wunsch have suggested that this mechanism may provide half the power needed for mixing the deep-ocean. This paper builds further evidence for $1\\pm 0.2$ TW of deep-ocean dissipation. The evidence is extracted from tidal elevations deduced from seven years of Topex/Poseidon satellite altimeter data. The dissipation rate Is formed as a balance between the rate of working by tidal forces and the energy flux divergence. While dynamical assumptions are required to compute fluxes, area integrals of the energy balance are, owing to the tight satellite constraints, remarkably insensitive to these assumptions. A large suite of tidal solutions based on a wide range of dynamical assumptions, on perturbations to bathymetric models, and on simulated elevation data are used to assess this sensitivity. These and Monte Carlo error fields from a generalized inverse model are used to establish error uncertainties.

  19. Magnetism and rotation in relativistic field theory

    NASA Astrophysics Data System (ADS)

    Mameda, Kazuya; Yamamoto, Arata

    2016-09-01

    We investigate the analogy between magnetism and rotation in relativistic theory. In nonrelativistic theory, the exact correspondence between magnetism and rotation is established in the presence of an external trapping potential. Based on this, we analyze relativistic rotation under external trapping potentials. A Landau-like quantization is obtained by considering an energy-dependent potential.

  20. Compton Effect with Non-Relativistic Kinematics

    ERIC Educational Resources Information Center

    Shivalingaswamy, T.; Kagali, B. A.

    2011-01-01

    In deducing the change of wavelength of x-rays scattered by atomic electrons, one normally makes use of relativistic kinematics for electrons. However, recoiling energies of the electrons are of the order of a few keV which is less than 0.2% of their rest energies. Hence the authors may ask whether relativistic formulae are really necessary. In…