Science.gov

Sample records for relativistic hadron gas

  1. Caloric curve for nuclear liquid-gas phase transition in relativistic mean-field hadronic model

    NASA Astrophysics Data System (ADS)

    Parvan, A. S.

    2012-08-01

    The main thermodynamical properties of the first order phase transition of the relativistic mean-field (RMF) hadronic model were explored in the isobaric, the canonical and the grand canonical ensembles on the basis of the method of the thermodynamical potentials and their first derivatives. It was proved that the first order phase transition of the RMF model is the liquid-gas type one associated with the Gibbs free energy G. The thermodynamical potential G is the piecewise smooth function and its first order partial derivatives with respect to variables of state are the piecewise continuous functions. We have found that the energy in the caloric curve is discontinuous in the isobaric and the grand canonical ensembles at fixed values of the pressure and the chemical potential, respectively, and it is continuous, i.e. it has no plateau, in the canonical and microcanonical ensembles at fixed values of baryon density, while the baryon density in the isotherms is discontinuous in the isobaric and the canonical ensembles at fixed values of the temperature. The general criterion for the nuclear liquid-gas phase transition in the canonical ensemble was identified.

  2. Sudden Hadronization in Relativistic Nuclear Collisions

    SciTech Connect

    Rafelski, Johann; Letessier, Jean

    2000-11-27

    We formulate and study a mechanical instability criterion for sudden hadronization of dense matter fireballs formed in 158A GeV Pb-Pb collisions. Considering properties of quark-gluon matter and hadron gas we obtain the phase boundary between these two phases and demonstrate that the required deep quark-gluon-plasma supercooling prior to sudden hadronization has occurred.

  3. Relativistic Few-Body Hadronic Physics Calculations

    SciTech Connect

    Polyzou, Wayne

    2016-06-20

    The goal of this research proposal was to use ``few-body'' methods to understand the structure and reactions of systems of interacting hadrons (neutrons, protons, mesons, quarks) over a broad range of energy scales. Realistic mathematical models of few-hadron systems have the advantage that they are sufficiently simple that they can be solved with mathematically controlled errors. These systems are also simple enough that it is possible to perform complete accurate experimental measurements on these systems. Comparison between theory and experiment puts strong constraints on the structure of the models. Even though these systems are ``simple'', both the experiments and computations push the limits of technology. The important property of ``few-body'' systems is that the ``cluster property'' implies that the interactions that appear in few-body systems are identical to the interactions that appear in complicated many-body systems. Of particular interest are models that correctly describe physics at distance scales that are sensitive to the internal structure of the individual nucleons. The Heisenberg uncertainty principle implies that in order to be sensitive to physics on distance scales that are a fraction of the proton or neutron radius, a relativistic treatment of quantum mechanics is necessary. The research supported by this grant involved 30 years of effort devoted to studying all aspects of interacting two and three-body systems. Realistic interactions were used to compute bound states of two- and three-nucleon, and two- and three-quark systems. Scattering observables for these systems were computed for a broad range of energies - from zero energy scattering to few GeV scattering, where experimental evidence of sub-nucleon degrees of freedom is beginning to appear. Benchmark calculations were produced, which when compared with calculations of other groups provided an essential check on these complicated calculations. In addition to computing bound state

  4. Relativistic hadrons and the origin of relativistic outflows in active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Contopoulos, John; Kazanas, D.

    1995-01-01

    We examine the hydrodynamic origin of relativistic outflows in active galactic nuclei (AGN). Specifically, we propose that the presence of a population of relativistic hadrons in the AGN 'central engine' and the associated neutron production suffices to produce outflows which under rather general conditions could be relativistic. The main such condition is that the size of the neutron production region be larger than the neutron flight path tau(sub n) approximately 3 x 10(exp 13) cm. This condition guarantees that the mean energy per particle in the proton fluid, resulting from the decay of the neutrons outside their production region, be greater than the proton rest mass. The expansion of this fluid can then lead naturally to a relativistic outflow by conversion of its internal energy to directed motion. We follow the development of such flows by solving the mass, energy as well as the kinetic equation for the proton gas in steady state, taking into account the source terms due to compute accurately the adiabatic index of the expanding gas, and in conjunction with Bernoulli's equation the detailed evolution of the bulk Lorentz factor. We further examine the role of large-scale magnetic fields in confining these outflows to produce the jets observed at larger scales.

  5. Relativistic hadrons and the origin of relativistic outflows in active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Contopoulos, John; Kazanas, D.

    1995-01-01

    We examine the hydrodynamic origin of relativistic outflows in active galactic nuclei (AGN). Specifically, we propose that the presence of a population of relativistic hadrons in the AGN 'central engine' and the associated neutron production suffices to produce outflows which under rather general conditions could be relativistic. The main such condition is that the size of the neutron production region be larger than the neutron flight path tau(sub n) approximately 3 x 10(exp 13) cm. This condition guarantees that the mean energy per particle in the proton fluid, resulting from the decay of the neutrons outside their production region, be greater than the proton rest mass. The expansion of this fluid can then lead naturally to a relativistic outflow by conversion of its internal energy to directed motion. We follow the development of such flows by solving the mass, energy as well as the kinetic equation for the proton gas in steady state, taking into account the source terms due to compute accurately the adiabatic index of the expanding gas, and in conjunction with Bernoulli's equation the detailed evolution of the bulk Lorentz factor. We further examine the role of large-scale magnetic fields in confining these outflows to produce the jets observed at larger scales.

  6. Hadron thermodynamics in relativistic nuclear collisions

    NASA Technical Reports Server (NTRS)

    Ammiraju, P.

    1985-01-01

    Various phenomenological models based on statistical thermodynamical considerations were used to fit the experimental data at high P sub T to a two temperature distribution. Whether this implies that the two temperatures belong to two different reaction mechanisms, or consequences of Lorentz-contraction factor, or related in a fundamental way to the intrinsic thermodynamics of Space-Time can only be revealed by further theoretical and experimental investigations of high P sub T phenomena in extremely energetic hadron-hadron collisions.

  7. Fast Dynamical Evolution of Hadron Resonance Gas via Hagedorn States

    NASA Astrophysics Data System (ADS)

    Beitel, M.; Gallmeister, K.; Greiner, C.

    2017-01-01

    Hagedorn states (HS) are a tool to model the hadronization process which occurs in the phase transition region between the quark gluon plasma (QGP) and the hadron resonance gas (HRG). These states are believed to appear near the Hagedorn temperature TH which in our understanding equals the critical temperature Tc . A covariantly formulated bootstrap equation is solved to generate the zoo of these particles characterized baryon number B, strangeness S and electric charge Q. These hadron-like resonances are characterized by being very massive and by not being limited to quantum numbers of known hadrons. All hadronic properties like masses, spectral functions etc. are taken from the hadronic transport model Ultra Relativistic Quantum Molecular Dynamics (UrQMD). Decay chains of single Hagedorn states provide a well description of experimentally observed multiplicity ratios of strange and multi-strange particles as the Ξ0- and the Ω--baryon. In addition, the final energy spectra of resulting hadrons show a thermal-like distribution with the characteristic Hagedorn temperature TH . Box calculations including these Hagedorn states are performed. Indeed, the time scales leading to equilibration of the system are drastically reduced down to 2. . . 5 fm/c.

  8. Di-Hadron Angular Correlation Dependence on Leading Hadron Identity in Relativistic Heavy Ion Collisions

    NASA Astrophysics Data System (ADS)

    Kauder, Kolja

    A unique state of matter is created in ultra-relativistic heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC), the Quark Gluon Plasma (QGP). It displays the properties of a near-perfect liquid of quarks and gluons (partons) interacting collectively via the strong force. Properties of this medium can be explored using high-energy probes created in the form of back-to-back pairs (jets) in hard scatterings. A distinct feature of the QGP is jet quenching, which describes the large energy loss of such probes observed in measurements of hadron distributions in head-on heavy ion collisions. A more differential measurement of jet quenching is achieved using di-hadron correlations, where relative angular distributions are studied with respect to a leading (high energy) "trigger" hadron. Two striking features found in di-hadron correlations are the emergence of a long-range plateau on the near-side (at small relative azimuth), the so-called "ridge", and a broadening and deformation of the away-side, back to back with the trigger. Using 200 GeV central gold-gold and minimum bias deuteron-gold collision data collected by the STAR detector at RHIC, a systematic study of the dependence of di-hadron correlation structures on the identity of the trigger particle is carried out in this work by statistically separating pion from non-pion (i.e. proton and kaon) triggers, offering new insights into the hadronization mechanisms in the QGP. The jet-like yield at small relative angles is found enhanced for leading pions in Au+Au data with respect to the d+Au reference, while leading non-pions (protons and kaons) do not elicit such an enhancement. These findings are discussed within the context of quark recombination. At large angles, the correlated yield is significantly higher for leading non-pions than pions. Parameters extracted from two-dimensional model fits are used to test consistency with the constituent quark scaling assumptions

  9. Viscosity of hadron matter within relativistic mean-field-based model with scaled hadron masses and couplings

    SciTech Connect

    Khvorostukhin, A. S. Toneev, V. D.; Voskresensky, D. N.

    2011-04-15

    The shear ({eta}) and bulk ({zeta}) viscosities are calculated in a quasiparticle relaxation-time approximation for a hadron matter described within the relativistic mean-field-based model with scaled hadron masses and couplings. Comparison with results of other models is presented. We demonstrate that a small value of the shear viscosity to entropy density ratio required for explaining a large elliptic flow observed at RHIC may be reached in the hadron phase. Relatively large values of the bulk viscosity are noted in the case of a baryon-enriched matter.

  10. Relativistic mean-field hadronic models under nuclear matter constraints

    NASA Astrophysics Data System (ADS)

    Dutra, M.; Lourenço, O.; Avancini, S. S.; Carlson, B. V.; Delfino, A.; Menezes, D. P.; Providência, C.; Typel, S.; Stone, J. R.

    2014-11-01

    Background: The microscopic composition and properties of infinite hadronic matter at a wide range of densities and temperatures have been subjects of intense investigation for decades. The equation of state (EoS) relating pressure, energy density, and temperature at a given particle number density is essential for modeling compact astrophysical objects such as neutron stars, core-collapse supernovae, and related phenomena, including the creation of chemical elements in the universe. The EoS depends not only on the particles present in the matter, but, more importantly, also on the forces acting among them. Because a realistic and quantitative description of infinite hadronic matter and nuclei from first principles in not available at present, a large variety of phenomenological models has been developed in the past several decades, but the scarcity of experimental and observational data does not allow a unique determination of the adjustable parameters. Purpose: It is essential for further development of the field to determine the most realistic parameter sets and to use them consistently. Recently, a set of constraints on properties of nuclear matter was formed and the performance of 240 nonrelativistic Skyrme parametrizations was assessed [M. Dutra et al., Phys. Rev. C 85, 035201 (2012), 10.1103/PhysRevC.85.035201] in describing nuclear matter up to about three times nuclear saturation density. In the present work we examine 263 relativistic-mean-field (RMF) models in a comparable approach. These models have been widely used because of several important aspects not always present in nonrelativistic models, such as intrinsic Lorentz covariance, automatic inclusion of spin, appropriate saturation mechanism for nuclear matter, causality, and, therefore, no problems related to superluminal speed of sound in medium. Method: Three different sets of constraints related to symmetric nuclear matter, pure neutron matter, symmetry energy, and its derivatives were used. The

  11. Longitudinal and Transverse Parton Momentum Distributions for Hadrons within Relativistic Constituent Quark Models

    SciTech Connect

    Frederico, T.; Pace, E.; Pasquini, B.; Salme, G.

    2010-08-05

    Longitudinal and transverse parton distributions for pion and nucleon are calculated from hadron vertexes obtained by a study of form factors within relativistic quark models. The relevance of the one-gluon-exchange dominance at short range for the behavior of the form factors at large momentum transfer and of the parton distributions at the end points is stressed.

  12. Relativistic Harmonic Oscillators and Hadronic Structures in the Quantum-Mechanics Curriculum

    ERIC Educational Resources Information Center

    Kim, Y. S.; Noz, Marilyn E.

    1978-01-01

    A relativistic harmonic-oscillator formalism which is mathematically simple as the nonrelativistic harmonic oscillator is given. In view of its effectiveness in describing Lorentz-deformed hadrons, the inclusion of this formalism in a first-year graduate course will make the results of high-energy experiments more understandable. (BB)

  13. Electron-deuteron scattering in a relativistic theory of hadrons

    SciTech Connect

    Phillips, D.

    1998-11-01

    The author reviews a three-dimensional formalism that provides a systematic way to include relativistic effects including relativistic kinematics, the effects of negative-energy states, and the boosts of the two-body system in calculations of two-body bound-states. He then explains how to construct a conserved current within this relativistic three-dimensional approach. This general theoretical framework is specifically applied to electron-deuteron scattering both in impulse approximation and when the {rho}{pi}{gamma} meson-exchange current is included. The experimentally-measured quantities A, B, and T{sub 20} are calculated over the kinematic range that is probed in Jefferson Lab experiments. The role of both negative-energy states and meson retardation appears to be small in the region of interest.

  14. Hadronization conditions in relativistic nuclear collisions and the QCD pseudo-critical line

    NASA Astrophysics Data System (ADS)

    Becattini, Francesco; Steinheimer, Jan; Stock, Reinhard; Bleicher, Marcus

    2017-01-01

    We compare the reconstructed hadronization conditions in relativistic nuclear collisions in the nucleon-nucleon centre-of-mass energy range 4.7-2760 GeV in terms of temperature and baryon-chemical potential with lattice QCD calculations, by using hadronic multiplicities. We obtain hadronization temperatures and baryon chemical potentials with a fit to measured multiplicities by correcting for the effect of post-hadronization rescattering. The post-hadronization modification factors are calculated by means of a coupled hydrodynamical-transport model simulation under the same conditions of approximate isothermal and isochemical decoupling as assumed in the statistical hadronization model fits to the data. The fit quality is considerably better than without rescattering corrections, as already found in previous work. The curvature of the obtained "true" hadronization pseudo-critical line κ is found to be 0.0048 ± 0.0026, in agreement with lattice QCD estimates; the pseudo-critical temperature at vanishing μB is found to be 164.3 ± 1.8 MeV.

  15. Dynamics of strange, charm and high momentum hadrons in relativistic nucleus-nucleus collisions

    NASA Astrophysics Data System (ADS)

    Cassing, W.; Gallmeister, K.; Bratkovskaya, E. L.; Greiner, C.; Stöcker, H.

    2004-07-01

    We investigate hadron production and attenuation of hadrons with strange and charm quarks (or antiquarks) as well as high transverse momentum hadrons in relativistic nucleus-nucleus collisions from 2 A GeV to 21.3 A TeV within two independent transport approaches (UrQMD and HSD). Both transport models are based on quark, diquark, string and hadronic degrees of freedom, but do not include any explicit phase transition to a quark-gluon plasma. From our dynamical calculations we find that both models do not describe the maximum in the K+/ π+ ratio at 20-30 A GeV in central Au+Au collisions found experimentally, though the excitation functions of strange mesons are reproduced well in HSD and UrQMD. Furthermore, the transport calculations show that the charmonium recreation by D+ D¯→J/Ψ+ meson reactions is comparable to the dissociation by ‘comoving’ mesons at RHIC energies contrary to SPS energies. This leads to the final result that the total J/ Ψ suppression as a function of centrality at RHIC should be less than the suppression seen at SPS energies where the ‘comover’ dissociation is substantial and the backward channels play no role. Furthermore, our transport calculations-in comparison to experimental data on transverse momentum spectra from pp, d+Au and Au+Au reactions-show that pre-hadronic effects are responsible for both the hardening of the hadron spectra for low transverse momenta (Cronin effect) as well as the suppression of high pT hadrons. The mutual interactions of formed hadrons are found to be negligible in central Au+Au collisions at s=200 GeV for p T≥6 GeV/c and the sizeable suppression seen experimentally is attributed to a large extent to the interactions of ‘leading’ pre-hadrons with the dense environment.

  16. Test of Relativistic Gravity for Propulsion at the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Felber, Franklin

    2010-01-01

    A design is presented of a laboratory experiment that could test the suitability of relativistic gravity for propulsion of spacecraft to relativistic speeds. An exact time-dependent solution of Einstein's gravitational field equation confirms that even the weak field of a mass moving at relativistic speeds could serve as a driver to accelerate a much lighter payload from rest to a good fraction of the speed of light. The time-dependent field of ultrarelativistic particles in a collider ring is calculated. An experiment is proposed as the first test of the predictions of general relativity in the ultrarelativistic limit by measuring the repulsive gravitational field of bunches of protons in the Large Hadron Collider (LHC). The estimated `antigravity beam' signal strength at a resonant detector of each proton bunch is 3 nm/s2 for 2 ns during each revolution of the LHC. This experiment can be performed off-line, without interfering with the normal operations of the LHC.

  17. Higher moments of multiplicity fluctuations in a hadron-resonance gas with exact conservation laws

    NASA Astrophysics Data System (ADS)

    Fu, Jing-Hua

    2017-09-01

    Higher moments of multiplicity fluctuations of hadrons produced in central nucleus-nucleus collisions are studied within the hadron-resonance gas model in the canonical ensemble. Exact conservation of three charges, baryon number, electric charge, and strangeness is enforced in the large volume limit. Moments up to the fourth order of various particles are calculated at CERN Super Proton Synchrotron, BNL Relativistic Heavy Ion Collider (RHIC), and CERN Large Hadron Collider energies. The asymptotic fluctuations within a simplified model with only one conserved charge in the canonical ensemble are discussed where simple analytical expressions for moments of multiplicity distributions can be obtained. Moments products of net-proton, net-kaon, and net-charge distributions in Au + Au collisions at RHIC energies are calculated. The pseudorapidity coverage dependence of net-charge fluctuation is discussed.

  18. Hadronic matter at finite temperature and density within an effective relativistic mean-field model

    NASA Astrophysics Data System (ADS)

    Lavagno, A.

    2012-10-01

    We study hot and dense hadronic matter by means of an effective relativistic mean-field model with the inclusion of the full octet of baryons, the Δ-isobar degrees of freedom and the lightest pseudoscalar and vector mesons. These last particles are considered by taking into account an effective chemical potential and an effective mass depending on the self-consistent interaction between baryons. The analysis is performed by requiring the Gibbs conditions on the global conservation of baryon number, electric charge fraction and zero net strangeness.

  19. Relativistic extended thermodynamics of rarefied polyatomic gas

    NASA Astrophysics Data System (ADS)

    Pennisi, Sebastiano; Ruggeri, Tommaso

    2017-02-01

    The goal of the present paper is to construct a relativistic extended thermodynamics (ET) theory of rarefied polyatomic gases. This is achieved by adopting the closure procedure for the 14 generalized moments of a distribution function that, as in the classical case, depends on an additional continuous variable representing the energy of the internal modes of a molecule. This permits the theory to take into account the energy exchange between translational modes and internal modes of a molecule in binary collisions. The theory includes the ET theory of monatomic gases as a singular limit and converges to the corresponding ET theory of polyatomic gases in the classical limit. In contrast to a monatomic gas in which the order of magnitude of the dynamical pressure is O(1 /c2) , the dynamical pressure in a polyatomic gas is not small due to the internal motion of molecules as is the case in the classical limit. Therefore the present theory might result particularly useful in cosmology to describe some aspects of the post-recombination era.

  20. Analysis of hadron yield data within hadron resonance gas model with multi-component eigenvolume corrections

    NASA Astrophysics Data System (ADS)

    Vovchenko, Volodymyr; Stoecker, Horst

    2017-01-01

    We analyze the sensitivity of thermal fits to heavy-ion hadron yield data of ALICE and NA49 collaborations to the systematic uncertainties in the hadron resonance gas (HRG) model related to the modeling of the eigenvolume interactions. We find a surprisingly large sensitivity in extraction of chemical freeze-out parameters to the assumptions regarding eigenvolumes of different hadrons. We additionally study the effect of including yields of light nuclei into the thermal fits to LHC data and find even larger sensitivity to the modeling of their eigenvolumes. The inclusion of light nuclei yields, thus, may lead to further destabilization of thermal fits. Our results show that modeling of eigenvolume interactions plays a crucial role in thermodynamics of HRG and that conclusions based on a non-interacting HRG are inconclusive.

  1. Comparing Tsallis and Boltzmann temperatures from relativistic heavy ion collider and large hadron collider heavy-ion data

    NASA Astrophysics Data System (ADS)

    Gao, Y.-Q.; Liu, F.-H.

    2016-03-01

    The transverse momentum spectra of charged particles produced in Au + Au collisions at the relativistic heavy ion collider and in Pb + Pb collisions at the large hadron collider with different centrality intervals are described by the multisource thermal model which is based on different statistic distributions for a singular source. Each source in the present work is described by the Tsallis distribution and the Boltzmann distribution, respectively. Then, the interacting system is described by the (two-component) Tsallis distribution and the (two-component) Boltzmann distribution, respectively. The results calculated by the two distributions are in agreement with the experimental data of the Solenoidal Tracker At Relativistic heavy ion collider, Pioneering High Energy Nuclear Interaction eXperiment, and A Large Ion Collider Experiment Collaborations. The effective temperature parameters extracted from the two distributions on the descriptions of heavy-ion data at the relativistic heavy ion collider and large hadron collider are obtained to show a linear correlation.

  2. Strange quark suppression and strange hadron production in pp collisions at energies available at the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron Collider

    SciTech Connect

    Long Haiyan; Feng Shengqin; Zhou Daimei; Yan Yuliang; Ma Hailiang; Sa Benhao

    2011-09-15

    The parton and hadron cascade model PACIAE based on PYTHIA is utilized to systematically investigate strange particle production in pp collisions at energies available at the BNL Relativistic Heavy Ion Collider (RHIC) and the CERN Large Hadron Collider (LHC). Globally speaking, the PACIAE results of the strange particle rapidity density at midrapidity and the transverse momentum distribution are better than those of PYTHIA (default) in comparison with STAR and ALICE experimental data. This may represent the importance of the parton and hadron rescatterings, as well as the reduction mechanism of strange quark suppression, added in the PACIAE model. The K/{pi} ratios as a function of reaction energy in pp collisions from CERN Super Proton Synchrotron (SPS) to LHC energies are also analyzed in this paper.

  3. Light-front Holography - A New Approach to Relativistic Hadron Dynamics and Nonperturbative QCD

    SciTech Connect

    de Teramond, Guy F.; Brodsky, Stanley J.

    2012-06-20

    The holographic mapping of gravity in AdS space to QCD, quantized at fixed light-front time, provides a precise relation between the bound-state amplitudes in the fifth dimension of AdS space and the boost-invariant light-front wavefunctions describing the internal structure of hadrons in physical space-time. In particular, the elastic and transition form factors of the pion and the nucleons are well described in this framework. The light-front AdS/QCD holographic approach thus gives a frame-independent first approximation of the color-confining dynamics, spectroscopy, and excitation spectra of relativistic light-quark bound states in QCD. More generally, we show that the valence Fock-state wavefunctions of the eigensolutions of the light-front QCD Hamiltonian satisfy a single-variable relativistic equation of motion, analogous to the nonrelativistic radial Schroedinger equation, with an effective confining potential which systematically incorporates the effects of higher quark and gluon Fock states. The proposed method to compute the effective interaction thus resembles the two-particle-irreducible functional techniques used in quantum field theory.

  4. Relativistic Gas Drag on Dust Grains and Implications

    NASA Astrophysics Data System (ADS)

    Hoang, Thiem

    2017-09-01

    We study the drag force on grains moving at relativistic velocities through interstellar gas and explore its application. First, we derive a new analytical formula of the drag force at high energies and find that it is significantly reduced compared to the classical model. Second, we apply the obtained drag force to calculate the terminal velocities of interstellar grains by strong radiation sources such as supernovae and active galactic nuclei (AGNs). We find that grains can be accelerated to relativistic velocities by very luminous AGNs. We then quantify the deceleration of relativistic spacecraft proposed by the Breakthrough Starshot initiative due to gas drag on a relativistic lightsail. We find that the spacecraft’s decrease in speed is negligible because of the suppression of gas drag at relativistic velocities, suggesting that the lightsail may be open for communication during its journey to α Centauri without causing a considerable delay. Finally, we show that the damage to relativistic thin lightsails by interstellar dust is a minor effect.

  5. Heat Flux for a Relativistic Dilute Bidimensional Gas

    NASA Astrophysics Data System (ADS)

    García-Perciante, A. L.; Méndez, A. R.; Escobar-Aguilar, E.

    2017-02-01

    Relativistic kinetic theory predicts substantial modifications to the dissipation mechanisms of a dilute gas. For the heat flux, these include (in the absence of external forces) a correction to the thermal conductivity and the appearance of a new, purely relativistic, term proportional to the density gradient. In this work we obtain such constitutive equation for the particular case of a bidimensional gas. The calculation is based on the Chapman-Enskog solution to the relativistic Boltzmann equation and yields analytical expressions for the corresponding transport coefficients, which are evaluated for the particular case of hard disks. These results will be useful for numerical simulations and may be applied to bidimensional non-dense materials.

  6. Heat Flux for a Relativistic Dilute Bidimensional Gas

    NASA Astrophysics Data System (ADS)

    García-Perciante, A. L.; Méndez, A. R.; Escobar-Aguilar, E.

    2017-04-01

    Relativistic kinetic theory predicts substantial modifications to the dissipation mechanisms of a dilute gas. For the heat flux, these include (in the absence of external forces) a correction to the thermal conductivity and the appearance of a new, purely relativistic, term proportional to the density gradient. In this work we obtain such constitutive equation for the particular case of a bidimensional gas. The calculation is based on the Chapman-Enskog solution to the relativistic Boltzmann equation and yields analytical expressions for the corresponding transport coefficients, which are evaluated for the particular case of hard disks. These results will be useful for numerical simulations and may be applied to bidimensional non-dense materials.

  7. In-medium viscous coefficients of a hot hadronic gas mixture

    NASA Astrophysics Data System (ADS)

    Gangopadhyaya, Utsab; Ghosh, Snigdha; Sarkar, Sourav; Mitra, Sukanya

    2016-10-01

    We estimate the shear and the bulk viscous coefficients for a hot hadronic gas mixture made of pions and nucleons. The viscosities are evaluated in the relativistic kinetic theory approach by solving the transport equation in the relaxation time approximation for binary collisions (π π ,π N , and N N ). Instead of the vacuum cross sections usually used in the literature we employ in-medium scattering amplitudes in the estimation of the relaxation times. The modified cross sections for π π and π N scattering are obtained using one-loop modified thermal propagators for ρ ,σ , and Δ in the scattering amplitudes which are calculated using effective interactions. The resulting suppression of the cross sections at finite temperature and baryon density is observed to significantly affect the T and μN dependence of the viscosities of the system.

  8. Probing transverse momentum broadening via dihadron and hadron-jet angular correlations in relativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Chen, Lin; Qin, Guang-You; Wei, Shu-Yi; Xiao, Bo-Wen; Zhang, Han-Zhong

    2017-10-01

    Dijet, dihadron, hadron-jet angular correlations have been reckoned as important probes of the transverse momentum broadening effects in relativistic nuclear collisions. When a pair of high-energy jets created in hard collisions traverse the quark-gluon plasma produced in heavy-ion collisions, they become de-correlated due to the vacuum soft gluon radiation associated with the Sudakov logarithms and the medium-induced transverse momentum broadening. For the first time, we employ the systematical resummation formalism and establish a baseline calculation to describe the dihadron and hadron-jet angular correlation data in pp and peripheral AA collisions where the medium effect is negligible. We demonstrate that the medium-induced broadening 〈 p⊥2 〉 and the so-called jet quenching parameter q ˆ can be extracted from the angular de-correlations observed in AA collisions. A global χ2 analysis of dihadron and hadron-jet angular correlation data renders 〈p⊥ 2 〉 ∼13-4+5 GeV2 for a quark jet at RHIC top energy. Further experimental and theoretical efforts along the direction of this work shall significantly advance the quantitative understanding of transverse momentum broadening and help us acquire unprecedented knowledge of jet quenching parameter in relativistic heavy-ion collisions.

  9. Chemical Relaxation Times in a Hadron Gas at Finite Temperature

    SciTech Connect

    Goity, Jose

    1993-07-01

    The relaxation time of particle numbers in hot hadronic matter with vanishing baryon number are estimated using the ideal gas approximation and taking into account resonance decays and annihilation processes as the only sources of particle number fluctuations.Near the QCD critical temperature the longest relaxation times turn out to be of the order of 10 fm and grow roughly exponentially to become of the order of 10^3 fm at temperatures around 100 MeV.As a consequence of such long relaxation times, a clear departure from chemical equilibrium must be observed in the momentum distribution of secondary particles produced in high energy nuclear collisions.

  10. Statistical thermodynamics of a two-dimensional relativistic gas.

    PubMed

    Montakhab, Afshin; Ghodrat, Malihe; Barati, Mahmood

    2009-03-01

    In this paper we study a fully relativistic model of a two-dimensional hard-disk gas. This model avoids the general problems associated with relativistic particle collisions and is therefore an ideal system to study relativistic effects in statistical thermodynamics. We study this model using molecular-dynamics simulation, concentrating on the velocity distribution functions. We obtain results for x and y components of velocity in the rest frame (Gamma) as well as the moving frame (Gamma;{'}) . Our results confirm that Jüttner distribution is the correct generalization of Maxwell-Boltzmann distribution. We obtain the same "temperature" parameter beta for both frames consistent with a recent study of a limited one-dimensional model. We also address the controversial topic of temperature transformation. We show that while local thermal equilibrium holds in the moving frame, relying on statistical methods such as distribution functions or equipartition theorem are ultimately inconclusive in deciding on a correct temperature transformation law (if any).

  11. The effect of inclusion of Δ resonances in relativistic mean-field model with scaled hadron masses and coupling constants

    NASA Astrophysics Data System (ADS)

    Maslov, K. A.; Kolomeitsev, E. E.; Voskresensky, D. N.

    2017-01-01

    Knowledge of the equation of state of the baryon matter plays a decisive role in the description of neutron stars. With an increase of the baryon density the filling of Fermi seas of hyperons and Δ isobars becomes possible. Their inclusion into standard relativistic mean-field models results in a strong softening of the equation of state and a lowering of the maximum neutron star mass below the measured values. We extend a relativistic mean-field model with scaled hadron masses and coupling constants developed in our previous works and take into account now not only hyperons but also the Δ isobars. We analyze available empirical information to put constraints on coupling constants of Δs to mesonic mean fields. We show that the resulting equation of state satisfies majority of presently known experimental constraints.

  12. Bose-Einstein Condensation in the Relativistic Ideal Bose Gas

    SciTech Connect

    Grether, M.; Llano, M. de; Baker, George A. Jr.

    2007-11-16

    The Bose-Einstein condensation (BEC) critical temperature in a relativistic ideal Bose gas of identical bosons, with and without the antibosons expected to be pair-produced abundantly at sufficiently hot temperatures, is exactly calculated for all boson number densities, all boson point rest masses, and all temperatures. The Helmholtz free energy at the critical BEC temperature is lower with antibosons, thus implying that omitting antibosons always leads to the computation of a metastable state.

  13. Bose-Einstein condensation in the relativistic ideal Bose gas.

    PubMed

    Grether, M; de Llano, M; Baker, George A

    2007-11-16

    The Bose-Einstein condensation (BEC) critical temperature in a relativistic ideal Bose gas of identical bosons, with and without the antibosons expected to be pair-produced abundantly at sufficiently hot temperatures, is exactly calculated for all boson number densities, all boson point rest masses, and all temperatures. The Helmholtz free energy at the critical BEC temperature is lower with antibosons, thus implying that omitting antibosons always leads to the computation of a metastable state.

  14. Dissipation process of binary gas mixtures in thermally relativistic flow

    NASA Astrophysics Data System (ADS)

    Yano, Ryosuke

    2016-04-01

    In this paper, dissipation process of binary gas mixtures in thermally relativistic flows is discussed with focus on characteristics of diffusion flux. As an analytical object, we consider the relativistic rarefied-shock layer around a triangular prism. Numerical results for the diffusion flux are compared with the Navier-Stokes-Fourier (NSF) order approximation of the diffusion flux, which is calculated using the diffusion and thermal-diffusion coefficients by Kox et al (1976 Physica A 84 165-74). In the case of uniform flow with small Lorentz contraction, the diffusion flux, which is obtained by calculating the relativistic Boltzmann equation, is roughly approximated by the NSF order approximation inside the shock wave, whereas the diffusion flux in the vicinity of a wall is markedly different from the NSF order approximation. The magnitude of the diffusion flux, which is obtained by calculating the relativistic Boltzmann equation, is similar to that of the NSF order approximation inside the shock wave, unlike the pressure deviator, dynamic pressure and heat flux, even when the Lorentz contraction in the uniform flow becomes large, because the diffusion flux does not depend on the generic Knudsen number from its definition in Eckart’s frame. Finally, the author concludes that for accuracy diffusion flux must be calculated using the particle four-flow and averaged four velocity, which are formulated using the four velocity defined by each species of hard spherical particles.

  15. Thermodynamics of the relativistic Fermi gas in D dimensions

    NASA Astrophysics Data System (ADS)

    Sevilla, Francisco J.; Piña, Omar

    2017-09-01

    The influence of spatial dimensionality and particle-antiparticle pair production on the thermodynamic properties of the relativistic Fermi gas, at finite chemical potential, is studied. Resembling a ;phase transition;, qualitatively different behaviors of the thermodynamic susceptibilities, namely the isothermal compressibility and the specific heat, are markedly observed at different temperature regimes as function of the system dimensionality and of the rest mass of the particles. A minimum in the temperature dependence of the isothermal compressibility marks a characteristic temperature, in the range of tenths of the Fermi temperature, at which the system transit from a ;normal; phase, to a phase where the gas compressibility grows as a power law of the temperature.

  16. Chiral electric field in relativistic heavy-ion collisions at energies available at the BNL Relativistic Heavy Ion Collider and at the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Zhong, Yang; Yang, Chun-Bin; Cai, Xu; Feng, Sheng-Qin

    2016-08-01

    It has been proposed that electric fields may lead to chiral separation in quark-gluon plasma (QGP). This is called the chiral electric separation effect. The strong electromagnetic field and the QCD vacuum can both be completely produced in off-central nuclear-nuclear collision. We use the Woods-Saxon nucleon distribution to calculate the electric field distributions of off-central collisions. The chiral electric field spatial distribution at Relativistic Heavy-Ion Collider (RHIC) and Large Hadron Collider (LHC) energy regions are systematically studied in this paper. The dependence of the electric field produced by the thermal quark in the central position with different impact parameters on the proper time with different collision energies in the RHIC and LHC energy regions are studied in this paper. Supported by National Natural Science Foundation of China (11375069, 11435054, 11075061, 11221504) and Key Laboratory Foundation of Quark and Lepton Physics (Hua-Zhong Normal University)(QLPL2014P01)

  17. Acceleration in Perpendicular Relativistic Shocks for Plasmas Consisting of Leptons and Hadrons

    NASA Astrophysics Data System (ADS)

    Stockem, A.; Fiúza, F.; Fonseca, R. A.; Silva, L. O.

    2012-08-01

    We investigate the acceleration of light particles in perpendicular shocks for plasmas consisting of a mixture of leptonic and hadronic particles. Starting from the full set of conservation equations for the mixed plasma constituents, we generalize the magnetohydrodynamical jump conditions for a multi-component plasma, including information about the specific adiabatic constants for the different species. The impact of deviations from the standard model of an ideal gas is compared in theory and particle-in-cell simulations, showing that the standard MHD model is a good approximation. The simulations of shocks in electron-positron-ion plasmas are for the first time multi-dimensional, transverse effects are small in this configuration, and one-dimensional (1D) simulations are a good representation if the initial magnetization is chosen high. 1D runs with a mass ratio of 1836 are performed, which identify the Larmor frequency ω ci as the dominant frequency that determines the shock physics in mixed component plasmas. The maximum energy in the non-thermal tail of the particle spectra evolves in time according to a power law vpropt α with α in the range 1/3 < α < 1, depending on the initial parameters. A connection is made with transport theoretical models by Drury and Gargaté & Spitkovsky, which predict an acceleration time vpropγ and the theory for small wavelength scattering by Kirk & Reville, which predicts a behavior rather as vpropγ2. Furthermore, we compare different magnetic field orientations with B 0 inside and out of the plane, observing qualitatively different particle spectra than in pure electron-ion shocks.

  18. ACCELERATION IN PERPENDICULAR RELATIVISTIC SHOCKS FOR PLASMAS CONSISTING OF LEPTONS AND HADRONS

    SciTech Connect

    Stockem, A.; Fiuza, F.; Fonseca, R. A.; Silva, L. O.

    2012-08-10

    We investigate the acceleration of light particles in perpendicular shocks for plasmas consisting of a mixture of leptonic and hadronic particles. Starting from the full set of conservation equations for the mixed plasma constituents, we generalize the magnetohydrodynamical jump conditions for a multi-component plasma, including information about the specific adiabatic constants for the different species. The impact of deviations from the standard model of an ideal gas is compared in theory and particle-in-cell simulations, showing that the standard MHD model is a good approximation. The simulations of shocks in electron-positron-ion plasmas are for the first time multi-dimensional, transverse effects are small in this configuration, and one-dimensional (1D) simulations are a good representation if the initial magnetization is chosen high. 1D runs with a mass ratio of 1836 are performed, which identify the Larmor frequency {omega}{sub ci} as the dominant frequency that determines the shock physics in mixed component plasmas. The maximum energy in the non-thermal tail of the particle spectra evolves in time according to a power law {proportional_to}t{sup {alpha}} with {alpha} in the range 1/3 < {alpha} < 1, depending on the initial parameters. A connection is made with transport theoretical models by Drury and Gargate and Spitkovsky, which predict an acceleration time {proportional_to}{gamma} and the theory for small wavelength scattering by Kirk and Reville, which predicts a behavior rather as {proportional_to}{gamma}{sup 2}. Furthermore, we compare different magnetic field orientations with B{sub 0} inside and out of the plane, observing qualitatively different particle spectra than in pure electron-ion shocks.

  19. Measurement of q ˆ in Relativistic Heavy Ion Collisions using di-hadron correlations

    NASA Astrophysics Data System (ADS)

    Tannenbaum, M. J.

    2017-08-01

    The propagation of partons from hard scattering through the Quark Gluon Plasma produced in A+A collisions at RHIC and the LHC is represented in theoretical analyses by the transport coefficient q ˆ and predicted to cause both energy loss of the outgoing partons, observed as suppression of particles or jets with large transverse momentum pT, and broadening of the azimuthal correlations of the outgoing di-jets or di-hadrons from the outgoing parton-pair, which has not been observed. The widths of azimuthal correlations of di-hadrons with the same trigger particle pTt and associated pTa transverse momenta in p+p and Au+Au are so-far statistically indistinguishable as shown in recent as well as older di-hadron measurements and also with jet-hadron and hadron-jet measurements. The azimuthal width of the di-hadron correlations in p+p collisions, beyond the fragmentation transverse momentum, jT, is dominated by kT, the so-called intrinsic transverse momentum of a parton in a nucleon, which can be measured. The broadening should produce a larger kT in A+A than in p+p collisions. The present work introduces the observation that the kT measured in p+p collisions for di-hadrons with pTt and pTa must be reduced to compensate for the energy loss of both the trigger and away parent partons when comparing to the kT measured with the same di-hadron pTt and pTa in Au+Au collisions. This idea is applied to a recent STAR di-hadron measurement, with result < q ˆ L > = 2.1 ± 0.6 GeV2. This is more precise but in agreement with a theoretical calculation of < q ˆ L > =14-14+42 GeV2 using the same data. Assuming a length < L > ≈ 7 fm for central Au+Au collisions the present result gives q ˆ ≈ 0.30 ± 0.09 GeV2/fm, in fair agreement with the JET collaboration result from single hadron suppression of q ˆ ≈ 1.2 ± 0.3 GeV2/fm at an initial time τ0 = 0.6 fm/c in Au+Au collisions at √{sNN} = 200 GeV.

  20. The production spectrum of a relativistic Maxwell-Boltzmann gas

    NASA Technical Reports Server (NTRS)

    Dermer, C. D.

    1984-01-01

    A formula is derived for use in the calculation of the spectrum of particles or photons produced through particle collisions in a Maxwell-Boltzmann gas. The result is valid for all temperatures and for the general case when the gas contains different mass particles. It is written in terms of a double integral over the cross section differential in the energy of the produced particles (or photons) in the center-of-momentum system of two colliding particles. Analytic expressions for the reaction rate and luminosity are also derived and reproduce the findings of previous work. Application to the problem of the annihilation spectrum from a relativistic Maxwell-Boltzmann electron-positron gas is made. Agreement is found between the present work and previous numerical and analytical studies.

  1. Hadrons from coalescence plus fragmentation in A A collisions at energies available at the BNL Relativistic Heavy Ion Collider to the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Minissale, Vincenzo; Scardina, Francesco; Greco, Vincenzo

    2015-11-01

    In a coalescence plus independent fragmentation approach we calculate the pT spectra of the main hadrons: π ,K ,p ,p ¯,Λ ,ϕ in a wide range of transverse momentum from low pT up to about 10 GeV. The approach in its main features was developed several years ago at Relativistic Heavy Ion Collider (RHIC) energy. Augmenting the model with the inclusion of some more main resonance decays, we show that the approach correctly predicts the evolution of the pT spectra from RHIC to LHC (Large Hadron Collider) energy and in particular the baryon-to-meson ratios p /π ,p ¯/π ,Λ /K that reach a value of the order of unit at pT˜3 GeV . This is achieved without any change of the coalescence parameters. The more recent availability of experimental data up to pT˜10 GeV for Λ spectrum as well as for p /π and Λ /K shows some lack of yield in a limited pT range around 6 GeV. This indicates that the baryons pT spectra from Albino-Kniehl-Kramer fragmentation functions are too flat at pT≲8 GeV . We also show that in a coalescence plus fragmentation approach one predicts a nearly pT independent p /ϕ ratio up to pT˜4 GeV followed by a significant decrease at higher pT. Such a behavior is driven by a similar radial flow effect at pT<2 GeV and the dominance of fragmentation for ϕ at larger pT.

  2. Fast Equilibration of Hadrons in an Expanding Fireball

    SciTech Connect

    Noronha-Hostler, J.; Greiner, C.; Shovkovy, I. A.

    2008-06-27

    Because of long chemical equilibration times for standard hadronic reactions in a hadron gas in relativistic heavy ion collisions, it was suggested that hadrons are born into equilibrium after the quark gluon plasma is formed. We develop a dynamical scheme, using master equations, in which Hagedorn states contribute to fast chemical equilibration times of baryons and kaons, just below the critical temperature, estimates of which are derived analytically. The hadrons quickly equilibrate for an initial over- or underpopulation of Hagedorn states. Our particle ratios compared to BNL Relativistic Heavy Ion Collider show a close match.

  3. Investigation of Dense Gas Towards Relativistic Outflow Sources

    NASA Astrophysics Data System (ADS)

    Hawkes, J.; Rowell, G.; Dawson, B.; Aharonian, F.; Burton, M.; Fukui, Y.; Furukawa, N.; Hayakawa, T.; Kawamura, A.; Maxted, N.; de Oña-Wilhelmi, E.; de Wilt, P.; Walsh, A.

    2014-03-01

    We probe the interstellar medium towards the objects Circinus X-1, a low-mass X-ray binary with relativistic jets; and the highly energetic Westerlund 2 stellar cluster, which is located towards TeV gamma-ray emission and interesting arc- and jet-like features seen in Nanten 12CO data. We have mapped both regions with the Mopra radio telescope, in 7 mm and 12 mm wavebands, looking for evidence of disrupted/dense gas caused by the interaction between high energy outflows and the ISM. Towards Westerlund 2, peaks in CS(J=1-0) emission indicate high density gas towards the middle of the arc and the endpoint of the jet; and radio recombination line emission is seen overlapping the coincident HII region RCW49. Towards Circinus X-1, 12CO(J = 1-0) Nanten data reveals three molecular clouds that lie in the region of Cir X-1. Gas parameters for each cloud are presented here.

  4. Indications of conical emission of charged hadrons at the BNL relativistic heavy ion collider.

    PubMed

    Abelev, B I; Aggarwal, M M; Ahammed, Z; Anderson, B D; Arkhipkin, D; Averichev, G S; Bai, Y; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Baumgart, S; Beavis, D R; Bellwied, R; Benedosso, F; Betts, R R; Bhardwaj, S; Bhasin, A; Bhati, A K; Bichsel, H; Bielcik, J; Bielcikova, J; Biritz, B; Bland, L C; Bombara, M; Bonner, B E; Botje, M; Bouchet, J; Braidot, E; Brandin, A V; Bruna, E; Bueltmann, S; Burton, T P; Bystersky, M; Cai, X Z; Caines, H; Calderón de la Barca Sánchez, M; Callner, J; Catu, O; Cebra, D; Cendejas, R; Cervantes, M C; Chajecki, Z; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, J Y; Cheng, J; Cherney, M; Chikanian, A; Choi, K E; Christie, W; Chung, S U; Clarke, R F; Codrington, M J M; Coffin, J P; Cormier, T M; Cosentino, M R; Cramer, J G; Crawford, H J; Das, D; Dash, S; Daugherity, M; De Silva, C; de Moura, M M; Dedovich, T G; Dephillips, M; Derevschikov, A A; de Souza, R Derradi; Didenko, L; Djawotho, P; Dogra, S M; Dong, X; Drachenberg, J L; Draper, J E; Du, F; Dunlop, J C; Dutta Mazumdar, M R; Edwards, W R; Efimov, L G; Elhalhuli, E; Elnimr, M; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Eun, L; Fachini, P; Fatemi, R; Fedorisin, J; Feng, A; Filip, P; Finch, E; Fine, V; Fisyak, Y; Gagliardi, C A; Gaillard, L; Gangadharan, D R; Ganti, M S; Garcia-Solis, E; Ghazikhanian, V; Ghosh, P; Gorbunov, Y N; Gordon, A; Grebenyuk, O; Grosnick, D; Grube, B; Guertin, S M; Guimaraes, K S F F; Gupta, A; Gupta, N; Guryn, W; Haag, B; Hallman, T J; Hamed, A; Harris, J W; He, W; Heinz, M; Heppelmann, S; Hippolyte, B; Hirsch, A; Hjort, E; Hoffman, A M; Hoffmann, G W; Hofman, D J; Hollis, R S; Huang, H Z; Humanic, T J; Igo, G; Iordanova, A; Jacobs, P; Jacobs, W W; Jakl, P; Jin, F; Jones, P G; Joseph, J; Judd, E G; Kabana, S; Kajimoto, K; Kang, K; Kapitan, J; Kaplan, M; Keane, D; Kechechyan, A; Kettler, D; Khodyrev, V Yu; Kiryluk, J; Kisiel, A; Klein, S R; Knospe, A G; Kocoloski, A; Koetke, D D; Kopytine, M; Kotchenda, L; Kouchpil, V; Kravtsov, P; Kravtsov, V I; Krueger, K; Krus, M; Kuhn, C; Kumar, L; Kurnadi, P; Lamont, M A C; Landgraf, J M; Lapointe, S; Lauret, J; Lebedev, A; Lednicky, R; Lee, C-H; Levine, M J; Li, C; Li, Y; Lin, G; Lin, X; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, H; Liu, J; Liu, L; Ljubicic, T; Llope, W J; Longacre, R S; Love, W A; Lu, Y; Ludlam, T; Lynn, D; Ma, G L; Ma, Y G; Mahapatra, D P; Majka, R; Mall, O I; Mangotra, L K; Manweiler, R; Margetis, S; Markert, C; Matis, H S; Matulenko, Yu A; McShane, T S; Meschanin, A; Millane, J; Miller, M L; Minaev, N G; Mioduszewski, S; Mischke, A; Mitchell, J; Mohanty, B; Molnar, L; Morozov, D A; Munhoz, M G; Nandi, B K; Nattrass, C; Nayak, T K; Nelson, J M; Nepali, C; Netrakanti, P K; Ng, M J; Nogach, L V; Nurushev, S B; Odyniec, G; Ogawa, A; Okada, H; Okorokov, V; Olson, D; Pachr, M; Page, B S; Pal, S K; Pandit, Y; Panebratsev, Y; Pawlak, T; Peitzmann, T; Perevoztchikov, V; Perkins, C; Peryt, W; Phatak, S C; Planinic, M; Pluta, J; Poljak, N; Poskanzer, A M; Potukuchi, B V K S; Prindle, D; Pruneau, C; Pruthi, N K; Putschke, J; Raniwala, R; Raniwala, S; Ray, R L; Reed, R; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Rose, A; Roy, C; Ruan, L; Russcher, M J; Rykov, V; Sahoo, R; Sakrejda, I; Sakuma, T; Salur, S; Sandweiss, J; Sarsour, M; Schambach, J; Scharenberg, R P; Schmitz, N; Seger, J; Selyuzhenkov, I; Seyboth, P; Shabetai, A; Shahaliev, E; Shao, M; Sharma, M; Shi, S S; Shi, X-H; Sichtermann, E P; Simon, F; Singaraju, R N; Skoby, M J; Smirnov, N; Snellings, R; Sorensen, P; Sowinski, J; Spinka, H M; Srivastava, B; Stadnik, A; Stanislaus, T D S; Staszak, D; Strikhanov, M; Stringfellow, B; Suaide, A A P; Suarez, M C; Subba, N L; Sumbera, M; Sun, X M; Sun, Y; Sun, Z; Surrow, B; Symons, T J M; Szanto de Toledo, A; Takahashi, J; Tang, A H; Tang, Z; Tarnowsky, T; Thein, D; Thomas, J H; Tian, J; Timmins, A R; Timoshenko, S; Tlusty, D; Tokarev, M; Trainor, T A; Tram, V N; Trattner, A L; Trentalange, S; Tribble, R E; Tsai, O D; Ulery, J; Ullrich, T; Underwood, D G; Van Buren, G; van Leeuwen, M; Vander Molen, A M; Vanfossen, J A; Varma, R; Vasconcelos, G M S; Vasilevski, I M; Vasiliev, A N; Videbaek, F; Vigdor, S E; Viyogi, Y P; Vokal, S; Voloshin, S A; Wada, M; Waggoner, W T; Wang, F; Wang, G; Wang, J S; Wang, Q; Wang, X; Wang, X L; Wang, Y; Webb, J C; Westfall, G D; Whitten, C; Wieman, H; Wissink, S W; Witt, R; Wu, Y; Xu, N; Xu, Q H; Xu, Y; Xu, Z; Yepes, P; Yoo, I-K; Yue, Q; Zawisza, M; Zbroszczyk, H; Zhan, W; Zhang, H; Zhang, S; Zhang, W M; Zhang, Y; Zhang, Z P; Zhao, Y; Zhong, C; Zhou, J; Zoulkarneev, R; Zoulkarneeva, Y; Zuo, J X

    2009-02-06

    Three-particle azimuthal correlation measurements with a high transverse momentum trigger particle are reported for pp, d+Au, and Au+Au collisions at sqrt[s_{NN}]=200 GeV by the STAR experiment. Dijet structures are observed in pp, d+Au and peripheral Au+Au collisions. An additional structure is observed in central Au+Au data, signaling conical emission of correlated charged hadrons. The conical emission angle is found to be theta=1.37+/-0.02(stat)-0.07+0.06(syst), independent of p_{ perpendicular}.

  5. Indications of Conical Emission of Charged Hadrons at the BNL Relativistic HeavyIon Collider

    SciTech Connect

    STAR Coll

    2009-02-09

    Three-particle azimuthal correlation measurements with a high transverse momentum trigger particle are reported for pp, d + Au, and Au + Au collisions at {radical}s{sub NN} = 200 GeV by the STAR experiment. Dijet structures are observed in pp, d + Au and peripheral Au + Au collisions. An additional structure is observed in central Au + Au data, signaling conical emission of correlated charged hadrons. The conical emission angle is found to be {theta} = 1.37 {+-} 0.02(stat){sub -0.07}{sup +0.06}(syst), independent of p{sub {perpendicular}}.

  6. Indications of conical emission of charged hadrons at the BNL relativistic heavy ion collider.

    SciTech Connect

    Abelev, B. I.; Aggarwal, M. M.; Ahammed, Z.; Anderson, B. D.; Arkhipkin, D.; Krueger, K.; Spinka, H. M.; Underwood, D. G.; High Energy Physics; Univ. of Illinois; Panjab Univ.; Variable Energy Cyclotron Centre; Kent State Univ.; Particle Physic Lab.; STAR Collaboration

    2009-01-01

    Three-particle azimuthal correlation measurements with a high transverse momentum trigger particle are reported for pp, d+Au, and Au+Au collisions at {radical}s{sub NN} = 200 GeV by the STAR experiment. Dijet structures are observed in pp, d+Au and peripheral Au+Au collisions. An additional structure is observed in central Au+Au data, signaling conical emission of correlated charged hadrons. The conical emission angle is found to be {theta} = 1.37 {+-} 0.02(stat){sub -0.07}{sup +0.06} (syst), independent of p.

  7. A covariant Fokker-Planck equation for a simple gas from relativistic kinetic theory

    SciTech Connect

    Chacon-Acosta, Guillermo; Dagdug, Leonardo; Morales-Tecotl, Hugo A.

    2010-12-14

    A manifestly covariant Fokker-Planck differential equation is derived for the case of a relativistic simple gas by taking a small momentum transfer approximation within the collision integral of the relativistic Boltzmann equation. We follow closely previous work, with the main difference that we keep manifest covariance at every stage of the analysis. In addition, we use the covariant Juettner distribution function to find a relativistic generalization of the Einstein's fluctuation-dissipation relation.

  8. Equation of state of the relativistic free electron gas at arbitrary degeneracy

    NASA Astrophysics Data System (ADS)

    Faussurier, Gérald

    2016-12-01

    We study the problem of the relativistic free electron gas at arbitrary degeneracy. The specific heat at constant volume and particle number CV and the specific heat at constant pressure and particle number CP are calculated. The question of equation of state is also studied. Non degenerate and degenerate limits are considered. We generalize the formulas obtained in the non-relativistic and ultra-relativistic regimes.

  9. Color-singlet relativistic correction to inclusive J/ψ production associated with light hadrons at B factories

    NASA Astrophysics Data System (ADS)

    Jia, Yu

    2010-08-01

    We study the first-order relativistic correction to the associated production of J/ψ with light hadrons at B factory experiments at s=10.58GeV, in the context of nonrelativistic QCD (NRQCD) factorization. We employ a strategy for NRQCD expansion that slightly deviates from the orthodox doctrine, in that the matching coefficients are not truly of a “short-distance” nature, but explicitly depend upon physical kinematic variables rather than partonic ones. Our matching method, with validity guaranteed by the Gremm-Kapustin relation, is particularly suited for the inclusive quarkonium production and decay processes with involved kinematics, exemplified by the process e+e-→J/ψ+gg considered in this work. Despite some intrinsic ambiguity affiliated with the order-v2 NRQCD matrix element, if we choose its value as what has been extracted from a recent Cornell-potential-model-based analysis, including the relative order-v2 effect is found to increase the lowest-order prediction for the integrated J/ψ cross section by about 30%, and exert a modest impact on J/ψ energy, angular and polarization distributions except near the very upper end of the J/ψ energy. The order-v2 contribution to the energy spectrum becomes logarithmically divergent at the maximum of J/ψ energy. A consistent analysis may require that these large end-point logarithms be resummed to all orders in αs.

  10. Hadron production in relativistic heavy ion interactions and the search for the quark-gluon plasma

    SciTech Connect

    Tannenbaum, M.J.

    1989-12-01

    The course starts with an introduction, from the experimentalist's point of view, of the challenge of measuring Relativistic Heavy Ion interactions. A review of some theoretical predictions for the expected signatures of the quark gluon plasma will be made, with a purpose to understand how they relate to quantities which may be experimentally measured. A short exposition of experimental techniques and details is given including charged particles in matter, momentum resolution, kinematics and Lorentz Transformations, calorimetry. Principles of particle identification including magnetic spectrometers, time of flight measurement. Illustrations using the E802 spectrometer and other measured results. Resolution smearing of spectra, and binning effects. Parent to daughter effects in decay, with {pi}{sup 0} {yields} {gamma} {gamma} as an example. The experimental situation from the known data in p -- p collisions and proton-nucleus reactions is reviewed and used as a basis for further discussions. The Cronin Effect'' and the Seagull Effect'' being two arcana worth noting. Then, selected experiments from the BNL and CERN heavy ion programs are discussed in detail. 118 refs., 45 figs.

  11. Fluctuation theorem for entropy production during effusion of a relativistic ideal gas.

    PubMed

    Cleuren, B; Willaert, K; Engel, A; Van den Broeck, C

    2008-02-01

    The probability distribution of the entropy production for the effusion of a relativistic ideal gas is calculated explicitly. This result is then extended to include particle and antiparticle pair production and annihilation. In both cases, the fluctuation theorem is verified.

  12. Productions of hadrons, pentaquarks {theta}{sup +} and {theta}{sup *++}, and di-baryon ({omega}{omega}){sub 0{sup +}} in relativistic heavy ion collisions by a quark combination model

    SciTech Connect

    Shao Fengian; Xie Qubing; Wang Qun

    2005-04-01

    The hadron production in relativistic heavy ion collisions is well described by the quark combination model. The mixed ratios for various hadrons and the transverse momentum spectra for long-life hadrons are predicted and agree with recent Relativistic Heavy Ion Collider data. The production rates for the pentaquarks {theta}{sup +} and {theta}{sup *++} and the di-baryon ({omega}{omega}){sub 0{sup +}} are estimated, neglecting the effect from the transition amplitude for constituent quarks to form an exotic state.

  13. Determining transport coefficients for a microscopic simulation of a hadron gas

    NASA Astrophysics Data System (ADS)

    Pratt, Scott; Baez, Alexander; Kim, Jane

    2017-02-01

    Quark-gluon plasmas produced in relativistic heavy-ion collisions quickly expand and cool, entering a phase consisting of multiple interacting hadronic resonances just below the QCD deconfinement temperature, T ˜155 MeV. Numerical microscopic simulations have emerged as the principal method for modeling the behavior of the hadronic stage of heavy-ion collisions, but the transport properties that characterize these simulations are not well understood. Methods are presented here for extracting the shear viscosity and two transport parameters that emerge in Israel-Stewart hydrodynamics. The analysis is based on studying how the stress-energy tensor responds to velocity gradients. Results are consistent with Kubo relations if viscous relaxation times are twice the collision time.

  14. New Hadron Monitor By Using A Gas-Filled RF Resonator

    SciTech Connect

    Yonehara, Katsuya; Fasce, Giorgio; Flanagan, Gene; Johnson, Rolland; Tollestrup, Alvin; Zwaska, Robert

    2015-05-01

    It is trend to build an intense neutrino beam facility for the fundamental physics research, e.g. LBNF at Fermilab, T2K at KEK, and CNGS at CERN. They have investigated a hadron monitor to diagnose the primary/secondary beam quality. The existing hadron monitor based on an ionization chamber is not robust in the high-radiation environment vicinity of MW-class secondary particle production targets. We propose a gas-filled RF resonator to use as the hadron monitor since it is simple and hence radiation robust in this environment. When charged particles pass through the resonator they produce ionized plasma via the Coulomb interaction with the inert gas. The beam-induced plasma changes the permittivity of inert gas. As a result, a resonant frequency in the resonator shifts with the amount of ionized electrons. The radiation sensitivity is adjustable by the inert gas pressure and the RF amplitude. The hadron profile will be reconstructed with a tomography technique in the hodoscope which consists of X, Y, and theta layers by using a strip-shaped gas resonator. The sensitivity and possible system design will be shown in this presentation.

  15. From chiral quark dynamics with Polyakov loop to the hadron resonance gas model

    SciTech Connect

    Arriola, E. R.; Salcedo, L. L.; Megias, E.

    2013-03-25

    Chiral quark models with Polyakov loop at finite temperature have been often used to describe the phase transition. We show how the transition to a hadron resonance gas is realized based on the quantum and local nature of the Polyakov loop.

  16. (Pion interferometry search for a phase change in hadronic matter in relativistic heavy ion collisions and its application to RHIC: Progress report)

    SciTech Connect

    Cherney, M.

    1992-01-01

    The purpose of this research is to assist in the investigation of the behavior of hadronic matter under extreme conditions. Specifically, this project intends to actively involve Creighton students and faculty in the search for indications of a phase transition from hadronic to quark matter. It is believed that the conditions necessary for the formation of this quark-gluon plasma include large energy densities over extended volumes. The technique of boson interferometry may prove to be the effective tool in verifying the existence of a quark-gluon plasma. This project continues active collaboration with Department of Energy research centers working on the NA36, NA44, and STAR experiments. It involves the effective development of the hardware, software and analytical skills required for a large relativistic heavy ion facility at Brookhaven National Laboratory (RHIC). Integral to this endeavor are educational opportunities for students at Creighton University.

  17. [Pion interferometry search for a phase change in hadronic matter in relativistic heavy ion collisions and its application to RHIC: Progress report

    SciTech Connect

    Cherney, M.

    1992-05-01

    The purpose of this research is to assist in the investigation of the behavior of hadronic matter under extreme conditions. Specifically, this project intends to actively involve Creighton students and faculty in the search for indications of a phase transition from hadronic to quark matter. It is believed that the conditions necessary for the formation of this quark-gluon plasma include large energy densities over extended volumes. The technique of boson interferometry may prove to be the effective tool in verifying the existence of a quark-gluon plasma. This project continues active collaboration with Department of Energy research centers working on the NA36, NA44, and STAR experiments. It involves the effective development of the hardware, software and analytical skills required for a large relativistic heavy ion facility at Brookhaven National Laboratory (RHIC). Integral to this endeavor are educational opportunities for students at Creighton University.

  18. Fluctuations and correlations of conserved charges in an excluded-volume hadron resonance gas model

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Abhijit; Das, Supriya; Ghosh, Sanjay K.; Ray, Rajarshi; Samanta, Subhasis

    2014-09-01

    We present temperature and baryonic chemical potential dependence of higher-order fluctuations and the correlation between conserved charges in an excluded-volume hadron resonance gas model. Products of moments, such as the ratio of variance to mean, product of skewness and standard deviation, product of kurtosis and variance, for the net proton, net kaon, and net charge have been evaluated on the phenomenologically determined freeze-out curve. Further, products of moments for net proton and net charge have been compared with the experimental data measured by the STAR experiment. The dependence of the model result on the hadronic radius parameter has also been discussed.

  19. New scenarios for hard-core interactions in a hadron resonance gas

    NASA Astrophysics Data System (ADS)

    Satarov, L. M.; Vovchenko, V.; Alba, P.; Gorenstein, M. I.; Stoecker, H.

    2017-02-01

    The equation of state of baryon-symmetric hadronic matter with hard-sphere interactions is studied. It is assumed that mesons M are pointlike, but baryons B and antibaryons B ¯ have the same hard-core radius rB. Three possibilities are considered: (1) the B B and B B ¯ interactions are the same; (2) baryons do not interact with antibaryons; (3) the B B ¯ , M B , and M B ¯ interactions are negligible. By choosing the parameter rB=0.3 -0.6 fm, we calculate the nucleon to pion ratio as a function of temperature and perform the fit of hadron yields measured in central Pb+Pb collisions at √{sN N}=2.76 TeV . New nontrivial effects in the interacting hadron resonance gas at temperatures 150 -200 MeV are found.

  20. Approximate Analytical Solutions to the Relativistic Isothermal Gas Spheres

    NASA Astrophysics Data System (ADS)

    Saad, A. S.; Nouh, M. I.; Shaker, A. A.; Kamel, T. M.

    2017-10-01

    In this paper we introduce a novel analytical solution to Tolman-Oppenheimer-Volkoff (TOV) equation, which is ultimately a hydrostatic equilibrium equation derived from general relativity in the framework of relativistic isothermal spheres. To improve the convergence radii of the obtained series solutions, a combination of an Euler-Abel transformation and a Padé approximation has been done. The solutions are given in the ξ-θ and ξ-ν phase planes taking into account the general relativistic effects σ=0.1, 0.2 and 0.3. A comparison between the results obtained by the suggested approach and the numerical one indicates a good agreement, with a maximum relative error of order 10-3, which establishes the validity and accuracy of the method. The proposed procedure accelerated the power series solution about ten times that of the traditional one. An application to a neutron star is presented.

  1. Transport coefficients for relativistic gas mixtures of hard-sphere particles

    NASA Astrophysics Data System (ADS)

    Kremer, Gilberto M.; Moratto, Valdemar

    2017-04-01

    In the present work, we calculate the transport coefficients for a relativistic binary mixture of diluted gases of hard-sphere particles. The gas mixture under consideration is studied within the relativistic Boltzmann equation in the presence of a gravitational field described by the isotropic Schwarzschild metric. We obtain the linear constitutive equations for the thermodynamic fluxes. The driving forces for the fluxes of particles and heat will appear with terms proportional to the gradient of gravitational potential. We discuss the consequences of the gravitational dependence on the driving forces. We obtain general integral expressions for the transport coefficients and evaluate them by assuming a hard-sphere interaction amongst the particles when they collide and not very disparate masses and diameters of the particles of each species. The obtained results are expressed in terms of their temperature dependence through the relativistic parameter which gives the ratio of the rest energy of the particles and the thermal energy of the gas mixture. Plots are given to analyze the behavior of the transport coefficients with respect to the temperature when small variations in masses and diameters of the particles of the species are present. We also analyze for each coefficient the corresponding limits to a single gas so the non-relativistic and ultra-relativistic limiting cases are recovered as well. Furthermore, we show that the transport coefficients have a dependence on the gravitational field.

  2. van der Waals Interactions in Hadron Resonance Gas: From Nuclear Matter to Lattice QCD

    NASA Astrophysics Data System (ADS)

    Vovchenko, Volodymyr; Gorenstein, Mark I.; Stoecker, Horst

    2017-05-01

    An extension of the ideal hadron resonance gas (HRG) model is constructed which includes the attractive and repulsive van der Waals (VDW) interactions between baryons. This VDW-HRG model yields the nuclear liquid-gas transition at low temperatures and high baryon densities. The VDW parameters a and b are fixed by the ground state properties of nuclear matter, and the temperature dependence of various thermodynamic observables at zero chemical potential are calculated within the VDW-HRG model. Compared to the ideal HRG model, the inclusion of VDW interactions between baryons leads to a qualitatively different behavior of second and higher moments of fluctuations of conserved charges, in particular in the so-called crossover region T ˜140 - 190 MeV . For many observables this behavior resembles closely the results obtained from lattice QCD simulations. This hadronic model also predicts nontrivial behavior of net-baryon fluctuations in the region of phase diagram probed by heavy-ion collision experiments. These results imply that VDW interactions play a crucial role in the thermodynamics of hadron gas. Thus, the commonly performed comparisons of the ideal HRG model with the lattice and heavy-ion data may lead to misconceptions and misleading conclusions.

  3. van der Waals Interactions in Hadron Resonance Gas: From Nuclear Matter to Lattice QCD.

    PubMed

    Vovchenko, Volodymyr; Gorenstein, Mark I; Stoecker, Horst

    2017-05-05

    An extension of the ideal hadron resonance gas (HRG) model is constructed which includes the attractive and repulsive van der Waals (VDW) interactions between baryons. This VDW-HRG model yields the nuclear liquid-gas transition at low temperatures and high baryon densities. The VDW parameters a and b are fixed by the ground state properties of nuclear matter, and the temperature dependence of various thermodynamic observables at zero chemical potential are calculated within the VDW-HRG model. Compared to the ideal HRG model, the inclusion of VDW interactions between baryons leads to a qualitatively different behavior of second and higher moments of fluctuations of conserved charges, in particular in the so-called crossover region T∼140-190  MeV. For many observables this behavior resembles closely the results obtained from lattice QCD simulations. This hadronic model also predicts nontrivial behavior of net-baryon fluctuations in the region of phase diagram probed by heavy-ion collision experiments. These results imply that VDW interactions play a crucial role in the thermodynamics of hadron gas. Thus, the commonly performed comparisons of the ideal HRG model with the lattice and heavy-ion data may lead to misconceptions and misleading conclusions.

  4. Bulk viscosity for pion and nucleon thermal fluctuation in the hadron resonance gas model

    NASA Astrophysics Data System (ADS)

    Ghosh, Sabyasachi; Chatterjee, Sandeep; Mohanty, Bedangadas

    2016-10-01

    We have calculated microscopically bulk viscosity of hadronic matter, where equilibrium thermodynamics for all hadrons in medium are described by the hadron resonance gas (HRG) model. Considering pions and nucleons as abundant medium constituents, we have calculated their thermal widths, which inversely control the strength of bulk viscosities for respective components and represent their in-medium scattering probabilities with other mesonic and baryonic resonances, present in the medium. Our calculations show that bulk viscosity increases with both temperature and baryon chemical potential, whereas viscosity to entropy density ratio decreases with temperature and with baryon chemical potential, the ratio increases first and then decreases. The decreasing nature of the ratio with temperature has been observed in most of the earlier investigations with few exceptions. We find that the temperature dependence of bulk viscosity crucially depends on the structure of the relaxation time. Along the chemical freeze-out line in nucleus-nucleus collisions with increasing collision energy, bulk viscosity as well as the bulk viscosity to entropy density ratio decreases, which also agrees with earlier references. Our results indicate the picture of a strongly coupled hadronic medium.

  5. Flue Gas Treatment by Intense Pulsed Relativistic Electron Beam

    NASA Astrophysics Data System (ADS)

    Ikegaki, Takuro; Seino, Satoshi; Oda, Yasuyuki; Matsuda, Takuya; Imada, Go; Jiang, Weihua; Yatsui, Kiyoshi

    2001-02-01

    Removal of NOX has been studied using an intense pulsed relativistic electron beam (IREB). The chamber is 20 cm long, and is irradiated by the IREB of 2 MV or 8 MV with the pulse width of 50 ns (full width at half maximum: FWHM). With the initial NO concentration of 100 ppm and pressure of 120 kPa, ˜50% of NO is removed by firing of 10 shots of IREB, yielding 5 ppm/shot. The NOX removal amount in one shot does not depend on the initial NO concentration and electron energy.

  6. Freeze-out conditions in proton-proton collisions at the highest energies available at the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Das, Sabita; Mishra, Debadeepti; Chatterjee, Sandeep; Mohanty, Bedangadas

    2017-01-01

    The freeze-out conditions in proton-proton collisions at √{sNN}=200 , 900, and 7000 GeV have been extracted by fits to the mean hadron yields at midrapidity within the framework of the statistical model of an ideal gas of hadrons and resonances in the grand canonical ensemble. The variation of the extracted freeze-out thermal parameters and the goodness of the fits with √{sN N} are discussed. We find the extracted temperature and baryon chemical potential of the freeze-out surface to be similar in p +p and heavy-ion collisions. On the other hand, the thermal behavior of the strange hadrons is qualitatively different in p +p as compared to A +A collisions. We find an additional parameter accounting for nonequilibrium strangeness production is essential for describing the p +p data. This is in contrast to A +A where the nonequilibrium framework could be successfully replaced by a sequential and complete equilibrium model with an early freeze-out of the strange hadrons.

  7. Charge-multiplicity and collision-energy dependence of pt spectra from p-p collisions at the relativistic heavy-ion collider and large hadron collider

    NASA Astrophysics Data System (ADS)

    Trainor, Thomas A.

    2017-07-01

    A two-component (soft + hard) model (TCM) of hadron production in yields and spectra derived from the charge-multiplicity dependence of 200 GeV p-p collisions at the relativistic heavy ion collider is extended to describe p-p spectrum data from the large hadron collider (LHC) up to 13 TeV. The LHC data include spectrum ratios that provide only partial information on the TCM. The LHC ratio method is applied to well-understood 200 GeV spectrum data to derive an algebraic link between spectrum ratios and the full TCM. Some aspects of the form of the hard component on transverse momentum are found to be n ch dependent. LHC spectrum ratios are then analyzed to obtain n ch and collision-energy (over three orders of magnitude) dependence of isolated soft and hard TCM spectrum components. The energy dependence of the spectrum soft component is a new result suggesting a relation to Gribov diffusion. The spectrum hard component varies simply and smoothly with n ch suggesting bias of the underlying jet spectrum and linearly with QCD parameter {log}(s/{s}0), its properties consistent with minimum-bias reconstructed-jet spectrum measurements.

  8. Direct photon elliptic flow at energies available at the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Kim, Young-Min; Lee, Chang-Hwan; Teaney, Derek; Zahed, Ismail

    2017-07-01

    We use an event-by-event hydrodynamical description of the heavy-ion collision process with Glauber initial conditions to calculate the thermal emission of photons. The photon rates in the hadronic phase follow from a spectral function approach and a density expansion, while in the partonic phase they follow from the Arnold-Moore-Yaffe (AMY) perturbative rates. The calculated photon elliptic flows are lower than those reported recently by both the ALICE and PHENIX collaborations.

  9. Gas Filled RF Resonator Hadron Beam Monitor for Intense Neutrino Beam Experiments

    SciTech Connect

    Yonehara, Katsuya; Abrams, Robert; Dinkel, Holly; Freemire, Ben; Johnson, Rolland; Kazakevich, Grigory; Tollestrup, Alvin; Zwaska, Robert

    2016-06-01

    MW-class beam facilities are being considered all over the world to produce an intense neutrino beam for fundamental particle physics experiments. A radiation-robust beam monitor system is required to diagnose the primary and secondary beam qualities in high-radiation environments. We have proposed a novel gas-filled RF-resonator hadron beam monitor in which charged particles passing through the resonator produce ionized plasma that changes the permittivity of the gas. The sensitivity of the monitor has been evaluated in numerical simulation. A signal manipulation algorithm has been designed. A prototype system will be constructed and tested by using a proton beam at the MuCool Test Area at Fermilab.

  10. Accretion of a relativistic, collisionless kinetic gas into a Schwarzschild black hole

    NASA Astrophysics Data System (ADS)

    Rioseco, Paola; Sarbach, Olivier

    2017-05-01

    We provide a systematic study for the accretion of a collisionless, relativistic kinetic gas into a nonrotating black hole. To this end, we first solve the relativistic Liouville equation on a Schwarzschild background spacetime. The most general solution for the distribution function is given in terms of appropriate symplectic coordinates on the cotangent bundle, and the associated observables, including the particle current density and stress energy-momentum tensor, are determined. Next, we explore the case where the flow is steady-state and spherically symmetric. Assuming that in the asymptotic region the gas is described by an equilibrium distribution function, we determine the relevant parameters of the accretion flow as a function of the particle density and the temperature of the gas at infinity. In particular, we find that in the low temperature limit the tangential pressure at the horizon is about an order of magnitude larger than the radial one, showing explicitly that a collisionless gas, despite exerting kinetic pressure, behaves very differently than an isotropic perfect fluid, and providing a partial explanation for the known fact that the accretion rate is much lower than in the hydrodynamic case of Bondi-Michel accretion. Finally, we establish the asymptotic stability of the steady-state spherical flows by proving pointwise convergence results which show that a large class of (possibly nonstationary and nonspherical) initial conditions for the distribution function lead to solutions of the Liouville equation which relax in time to a steady-state, spherically symmetric configuration.

  11. Correlations of conserved-number mixed susceptibilities in a hadron resonance gas model

    NASA Astrophysics Data System (ADS)

    Mishra, D. K.; Netrakanti, P. K.; Mohanty, Bedangadas

    2016-11-01

    The ratios of off-diagonal and diagonal susceptibilities of conserved charges are studied using a hadron resonance gas (HRG) model with an emphasis towards providing a proper baseline for comparison to the corresponding future experimental measurements. We have studied the effect of kinematic acceptances, transverse momentum (pT), and pseudorapidity (η ), and different charged states on the ratios of the calculated susceptibilities. We find that the effect of pT and η acceptance on the ratio of the susceptibilities is small relative to their dependence on the beam energy or the charged states of the used particles. We also present a HRG based calculation for various combinations of cumulant ratios of protons and pions, recently proposed as robust observables (with no theoretical uncertainties) for critical point search in the experiments. These results which increase as a function of collision energy will provide a better baseline for noncritical point physics compared to Poisson expectation.

  12. Constituent Quarks and Gluons, Polyakov loop and the Hadron Resonance Gas Model ***

    NASA Astrophysics Data System (ADS)

    Megías, E.; Ruiz Arriola, E.; Salcedo, L. L.

    2014-03-01

    Based on first principle QCD arguments, it has been argued in [1] that the vacuum expectation value of the Polyakov loop can be represented in the hadron resonance gas model. We study this within the Polyakov-constituent quark model by implementing the quantum and local nature of the Polyakov loop [2, 3]. The existence of exotic states in the spectrum is discussed. Presented by E. Megías at the International Nuclear Physics Conference INPC 2013, 2-7 June 2013, Firenze, Italy.Supported by Plan Nacional de Altas Energías (FPA2011-25948), DGI (FIS2011-24149), Junta de Andalucía grant FQM-225, Spanish Consolider-Ingenio 2010 Programme CPAN (CSD2007-00042), Spanish MINECO's Centro de Excelencia Severo Ochoa Program grant SEV-2012-0234, and the Juan de la Cierva Program.

  13. Hadronic resonance production in d+au collisions at {radical}{ovr s}{sub NN} =200 GeV measured at the BNL relativistic heavy ion collider.

    SciTech Connect

    Abelev, B. I.; Aggarwal, M. M.; Ahammed, Z.; Anderson, B. D.; Arkhipkin, D.; Krueger, K.; Spinka, H. M.; Underwood, D. G.; STAR Collaboration; High Energy Physics; Univ. of Illinois; Panjab Univ.; Variable Energy Cyclotron Centre; Kent State Univ.; Particle Physic Lab.

    2008-01-01

    We present the first measurements of the {rho}(770){sup 0},K*(892), {Delta}(1232){sup ++}, {sigma}(1385), and {Lambda}(1520) resonances in d+Au collisions at {radical}s{sub NN} = 200 GeV, reconstructed via their hadronic decay channels using the STAR detector (the solenoidal tracker at the BNL Relativistic Heavy Ion Collider). The masses and widths of these resonances are studied as a function of transverse momentum p{sub T}. We observe that the resonance spectra follow a generalized scaling law with the transverse mass m{sub T}. The of resonances in minimum bias collisions are compared with the of {pi},K and {bar p}. The {rho}{sup 0}/{pi}{sup -}, K{sup +}/K{sup -}, {Delta}{sup ++}/p, {Sigma}(1385)/{Lambda}, and {Lambda}(1520)/{Lambda} ratios in d+Au collisions are compared with the measurements in minimum bias p+p interactions, where we observe that both measurements are comparable. The nuclear modification factors (R{sub dAu}) of the {rho}{sup 0},K{sup +}, and {Sigma}{sup +} scale with the number of binary collisions (N{sub bin}) for p{sub T} > 1.2 GeV/c.

  14. dynamical evolution of an ultra-relativistic fireball colliding with a freely expanding gas

    SciTech Connect

    Suzuki, Akihiro; Shigeyama, Toshikazu

    2014-11-20

    We investigate the hydrodynamical evolution of an ultra-relativistic fireball colliding with a freely expanding gas. The hydrodynamical interaction of the fireball and the gas results in the formation of a geometrically thin shell. We study the dynamical evolution of the shell analytically and perform a numerical simulation equipped with adaptive mesh refinement to investigate the internal structure of the shell. The shocked gas can give rise to bright emission in the X-ray and gamma-ray energy range. We propose that the breakout emission from the forward shock and the photospheric emission from the reverse-shocked fireball contribute to early gamma-ray emission from gamma-ray bursts.

  15. Relativistic coupled-cluster calculations of transition properties in highly charged inert-gas ions

    NASA Astrophysics Data System (ADS)

    Nandy, D. K.

    2016-11-01

    We have carried out an extensive investigation of various spectroscopic properties of highly charged inert-gas ions using a relativistic coupled-cluster method through a one-electron detachment procedure. In particular, we have calculated the atomic states 2 s22 p53/2 2P, 2 s22 p51/2 2P, and 2 s 2 p61/2 2S in F-like inert-gas ions; 3 s23 p53/2 2P, 3 s23 p51/2 2P, and 3 s 3 p61/2 2S states in Cl-like Kr, Xe, and Rn; and 4 s24 p53/2 2P, 4 s24 p51/2 2P, and 4 s 4 p61/2 2S states in Br-like Xe and Rn. Starting from a single-reference Dirac-Hartree-Fock wave function, we construct our exact atomic states by including the dynamic correlation effects in an all-order perturbative fashion. Employing this method, we estimate the ionization potential energies of three low-lying orbitals present in their respective closed-shell configurations. Since the considered highly charged inert-gas ions exhibit huge relativistic effects, we have taken into account the corrections due to Breit interaction as well as from the dominant quantum electrodynamic correction such as vacuum polarization and self-energy effects in these systems. Using our calculated relativistic atomic wave functions and energies, we accurately determine various transition properties such as wavelengths, line strengths, oscillator strengths, transition probabilities, and lifetimes of the excited states.

  16. Hadron spectroscopy

    SciTech Connect

    Cooper, S.

    1985-10-01

    Heavy quark systems and glueball candidates, the particles which are relevant to testing QCD, are discussed. The review begins with the heaviest spectroscopically observed quarks, the b anti-b bound states, including the chi state masses, spins, and hadronic widths and the non-relativistic potential models. Also, P states of c anti-c are mentioned. Other heavy states are also discussed in which heavy quarks combine with lighter ones. The gluonium candidates iota(1460), theta(1700), and g/sub T/(2200) are then covered. The very lightest mesons, pi-neutral and eta, are discussed. 133 refs., 24 figs., 16 tabs. (LEW)

  17. X-ray diagnostic for current density profiling relativistic electron beams in vacuum and gas

    SciTech Connect

    Slaughter, D.; Koppel, L.; Smith, J.

    1986-02-15

    An x-ray imaging technique has been studied for the purpose of observing the current density profile in a high-current relativistic electron beam (50 MeV, 10 kA). Calculations and measurements of energy spectra and intensities are in good agreement. Results indicate sufficient photon yield for pinhole imaging when the beam deposits a small part of its energy in high-Z gas or a thin high-Z foil. Characteristic L and K x-ray emission is not found not be a reliable technique due to strong L and K shell fluorescence in the presence of intense bremsstrahlung radiation. It is also found that at pressures on the order of one atmosphere, the density of energy deposition in a gas cell is too small to generate sufficient photon yield for time-resolved measurements.

  18. Centrality dependence of chemical freeze-out parameters from net-proton and net-charge fluctuations using a hadron resonance gas model

    NASA Astrophysics Data System (ADS)

    Adak, Rama Prasad; Das, Supriya; Ghosh, Sanjay K.; Ray, Rajarshi; Samanta, Subhasis

    2017-07-01

    We estimate chemical freeze-out parameters in Hadron Resonance Gas (HRG) and Excluded Volume HRG (EVHRG) models by fitting the experimental information of net-proton and net-charge fluctuations measured in Au + Au collisions by the STAR Collaboration at the BNL Relativistic Heavy Ion Collider (RHIC). We observe that chemical freeze-out parameters obtained from lower and higher order fluctuations are almost the same for √{sNN}>27 GeV, but tend to deviate from each other at lower √{sNN}. Moreover, these separations increase with decrease of √{sNN}, and for a fixed √{sNN} increase towards central collisions. Furthermore, we observe an approximate scaling behavior of (μB/T ) /(μB/T)central with (Npart) /(Npart)central for the parameters estimated from lower order fluctuations for 11.5 ≤√{sNN}≤200 GeV. Scaling is violated for the parameters estimated from higher order fluctuations for √{sNN}=11.5 and 19.6 GeV. It is observed that the chemical freeze-out parameter, which can describe σ2/M of net protons very well in all energies and centralities, cannot describe the s σ equally well, and vice versa.

  19. Exotic hadron bound state production at hadron colliders

    NASA Astrophysics Data System (ADS)

    Jin, Yi; Li, Shi-Yuan; Liu, Yan-Rui; Meng, Lu; Si, Zong-Guo; Zhang, Xiao-Feng

    2017-08-01

    The non-relativistic wave function framework is applied to study the production and decay of exotic hadrons, which can be effectively described as bound states of other hadrons. Employing the factorized formulation, with the help of event generators, we investigate the production of exotic hadrons in multiproduction processes at high energy hadron colliders. This study provides crucial information for the measurements of the relevant exotic hadrons. Supported by Natural Science Foundation of Shandong Province (ZR2014AM016, ZR2016AM16) and National Natural Science Foundation of China (11275115, 11325525, 11635009)

  20. Description of hot and dense hadron-gas properties in a new excluded-volume model

    NASA Astrophysics Data System (ADS)

    Tiwari, S. K.; Srivastava, P. K.; Singh, C. P.

    2012-01-01

    A new equation of state for a hot and dense hadron gas (HG) is obtained where the finite hard-core size of baryons has been incorporated into a thermodynamically consistent formulation of excluded volume correction. Our model differs from other existing approaches on the following points. We assign a hard-core volume only to each baryon and mesons, which, although they possess a small volume, can fuse and interpenetrate into one another. Use of the full quantum statistics is made to obtain the grand canonical partition function, where excluded-volume correction has been incorporated by explicitly integrating over volume. We thus find that the new model works even for cases of extreme temperatures and/or densities where most other approaches fail. The numerical calculation indicates that the causality is respected by our prescription even at extreme densities. The temperature and density dependences of various thermodynamical quantities, e.g., pressure, baryon density, entropy and energy density, compare well with the results of other microscopic HG models. After suitable parametrization of the center-of-mass energy in terms of temperature and baryon chemical potential, we explore some new freeze-out criteria which exhibit full independence of the collision energy and of the structures of the colliding nuclei. We further demonstrate the suitability of our model for explaining the various experimental results of the multiplicity ratios of various particles and their antiparticles. Finally, we use our excluded-volume model to obtain the transport behavior of a hot and/or dense HG, such as shear viscosity- to-entropy ratio and speed of sound, and compare the results with earlier calculations.

  1. Black hole thermodynamics as seen through a microscopic model of a relativistic Bose gas

    NASA Astrophysics Data System (ADS)

    Skákala, Jozef; Shankaranarayanan, S.

    2016-02-01

    Equations of gravity when projected on spacetime horizons resemble Navier-Stokes equation of a fluid with a specific equation of state [T. Damour, Surface effects of black hole physics, in Proc. M. Grossman Meeting (North Holland, 1982), p. 587, T. Padmanabhan, Phys. Rev. D 83 (2011) 044048, arXiv:gr-qc/1012.0119, S. Kolekar and T. Padmanabhan, Phys. Rev. D 85 (2011) 024004, arXiv:gr-qc/1012.5421]. We show that this equation of state describes massless ideal relativistic gas. We use these results, and build an explicit and simple molecular model of the fluid living on the Schwarzschild and Reissner-Nordström black hole horizons. For the spin zero Bose gas, our model makes two predictions: (i) The horizon area/entropy is quantized as given by Bekenstein’s quantization rule, (ii) The model explains the correct type of proportionality between horizon area and entropy. However, for the physically relevant range of parameters, the proportionality constant is never equal to 1/4.

  2. Relativistic ultrafast electron diffraction from molecules in the gas phase (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Guehr, Markus; Vecchione, Theodore; Robinson, Matthew S.; Li, Renkai; Hartmann, Nick; Shen, Xiaozhe; Centurion, Martin; Wang, Xijie

    2016-10-01

    Ultrafast electron diffraction (UED) is a powerful technique that can be used to resolve structural changes of gas molecules during a photochemical reaction. However, the temporal resolution in pump-probe experiments has been limited to the few-ps level by the space-charge effect that broadens the electron pulse duration and by velocity mismatch between the pump laser pulses and the probe electron pulses, making only long-lived intermediate states accessible. Taking advantage of relativistic effects, Mega-electron-volt (MeV) electrons can be used to suppress both the space-charge effect and the velocity mismatch, and hence to achieve a temporal resolution that is fast enough to follow coherent nuclear motion in the target molecules. In this presentation, we show the first MeV UED experiments on gas phase targets. These experiments not only demonstrate that femtosecond temporal resolution is achieved, but also show that the spatial resolution is not compromised. This unprecedented combination of spatiotemporal resolution is sufficient to image coherent nuclear motions, and opens the door to a new class of experiments where the structural changes can be followed simultaneously in both space and time.

  3. Computation of masses and binding energies of some hadrons and bosons according to the rotating lepton model and the relativistic Newton equation

    NASA Astrophysics Data System (ADS)

    Vayenas, C. G.; Fokas, A. S.; Grigoriou, D.

    2016-08-01

    We compute analytically the masses, binding energies and hamiltonians of gravitationally bound Bohr-type states via the rotating relativistic lepton model which utilizes the de Broglie wavelength equation in conjunction with special relativity and Newton's relativistic gravitational law. The latter uses the inertial-gravitational masses, rather than the rest masses, of the rotating particles. The model also accounts for the electrostatic charge- induced dipole interactions between a central charged lepton, which is usually a positron, with the rotating relativistic lepton ring. We use three rotating relativistic neutrinos to model baryons, two rotating relativistic neutrinos to model mesons, and a rotating relativistic electron neutrino - positron (or electron) pair to model the W± bosons. It is found that gravitationally bound ground states comprising three relativistic neutrinos have masses in the baryon mass range (∼⃒ 0.9 to 1 GeV/c2), while ground states comprising two neutrinos have masses in the meson mass range (∼⃒ 0.4 to 0.8 GeV/c2). It is also found that the rest mass values of quarks are in good agreement with the heaviest neutrino mass value of 0.05 eV/c2 and that the mass of W± bosons (∼⃒ 81 GeV/c2) corresponds to the mass of a rotating gravitationally confined e± — ve pair. A generalized expression is also derived for the gravitational potential energy of such relativistic Bohr-type structures.

  4. The response of relativistic outflowing gas to the inner accretion disk of a black hole

    NASA Astrophysics Data System (ADS)

    Parker, Michael L.; Pinto, Ciro; Fabian, Andrew C.; Lohfink, Anne; Buisson, Douglas J. K.; Alston, William N.; Kara, Erin; Cackett, Edward M.; Chiang, Chia-Ying; Dauser, Thomas; De Marco, Barbara; Gallo, Luigi C.; Garcia, Javier; Harrison, Fiona A.; King, Ashley L.; Middleton, Matthew J.; Miller, Jon M.; Miniutti, Giovanni; Reynolds, Christopher S.; Uttley, Phil; Vasudevan, Ranjan; Walton, Dominic J.; Wilkins, Daniel R.; Zoghbi, Abderahmen

    2017-03-01

    The brightness of an active galactic nucleus is set by the gas falling onto it from the galaxy, and the gas infall rate is regulated by the brightness of the active galactic nucleus; this feedback loop is the process by which supermassive black holes in the centres of galaxies may moderate the growth of their hosts. Gas outflows (in the form of disk winds) release huge quantities of energy into the interstellar medium, potentially clearing the surrounding gas. The most extreme (in terms of speed and energy) of these—the ultrafast outflows—are the subset of X-ray-detected outflows with velocities higher than 10,000 kilometres per second, believed to originate in relativistic (that is, near the speed of light) disk winds a few hundred gravitational radii from the black hole. The absorption features produced by these outflows are variable, but no clear link has been found between the behaviour of the X-ray continuum and the velocity or optical depth of the outflows, owing to the long timescales of quasar variability. Here we report the observation of multiple absorption lines from an extreme ultrafast gas flow in the X-ray spectrum of the active galactic nucleus IRAS 13224‑3809, at 0.236 ± 0.006 times the speed of light (71,000 kilometres per second), where the absorption is strongly anti-correlated with the emission of X-rays from the inner regions of the accretion disk. If the gas flow is identified as a genuine outflow then it is in the fastest five per cent of such winds, and its variability is hundreds of times faster than in other variable winds, allowing us to observe in hours what would take months in a quasar. We find X-ray spectral signatures of the wind simultaneously in both low- and high-energy detectors, suggesting a single ionized outflow, linking the low- and high-energy absorption lines. That this disk wind is responding to the emission from the inner accretion disk demonstrates a connection between accretion processes occurring on very

  5. The response of relativistic outflowing gas to the inner accretion disk of a black hole.

    PubMed

    Parker, Michael L; Pinto, Ciro; Fabian, Andrew C; Lohfink, Anne; Buisson, Douglas J K; Alston, William N; Kara, Erin; Cackett, Edward M; Chiang, Chia-Ying; Dauser, Thomas; De Marco, Barbara; Gallo, Luigi C; Garcia, Javier; Harrison, Fiona A; King, Ashley L; Middleton, Matthew J; Miller, Jon M; Miniutti, Giovanni; Reynolds, Christopher S; Uttley, Phil; Vasudevan, Ranjan; Walton, Dominic J; Wilkins, Daniel R; Zoghbi, Abderahmen

    2017-03-01

    The brightness of an active galactic nucleus is set by the gas falling onto it from the galaxy, and the gas infall rate is regulated by the brightness of the active galactic nucleus; this feedback loop is the process by which supermassive black holes in the centres of galaxies may moderate the growth of their hosts. Gas outflows (in the form of disk winds) release huge quantities of energy into the interstellar medium, potentially clearing the surrounding gas. The most extreme (in terms of speed and energy) of these-the ultrafast outflows-are the subset of X-ray-detected outflows with velocities higher than 10,000 kilometres per second, believed to originate in relativistic (that is, near the speed of light) disk winds a few hundred gravitational radii from the black hole. The absorption features produced by these outflows are variable, but no clear link has been found between the behaviour of the X-ray continuum and the velocity or optical depth of the outflows, owing to the long timescales of quasar variability. Here we report the observation of multiple absorption lines from an extreme ultrafast gas flow in the X-ray spectrum of the active galactic nucleus IRAS 13224-3809, at 0.236 ± 0.006 times the speed of light (71,000 kilometres per second), where the absorption is strongly anti-correlated with the emission of X-rays from the inner regions of the accretion disk. If the gas flow is identified as a genuine outflow then it is in the fastest five per cent of such winds, and its variability is hundreds of times faster than in other variable winds, allowing us to observe in hours what would take months in a quasar. We find X-ray spectral signatures of the wind simultaneously in both low- and high-energy detectors, suggesting a single ionized outflow, linking the low- and high-energy absorption lines. That this disk wind is responding to the emission from the inner accretion disk demonstrates a connection between accretion processes occurring on very different

  6. Quark-hadron phase transition and strangeness conservation constraints

    NASA Astrophysics Data System (ADS)

    Saeed-Uddin

    1999-01-01

    The implications of the strangeness conservation in a hadronic resonance gas (HRG) on the expected phase transition to the quark gluon plasma (QGP) are investigated. It is assumed that under favourable conditions a first order hadron-quark matter phase transition may occur in the hot hadronic matter such as those produced in the ultra-relativistic heavy-ion collisions at CERN and BNL. It is however shown that the criteria of strict strangeness conservation in the HRG may not permit the occurrence of a strict first order equilibrium quark-hadron phase transition unlike a previous study. This emerges as a consequence of the application of a realistic equation of state (EOS) for the HRG and QGP phases, which account for the finite-size effect arising from the short range hard-core hadronic repulsion in the HRG phase and the perturbative QCD interactions in the QGP phase. For a first order hadron-quark matter phase transition to occur one will therefore require large fluctuations in the critical thermal parameters, which might arise due to superheating, supercooling or other nonequlibrium effects. We also discuss a scenario proposed earlier, leading to a possible strangeness separation process during hadronization.

  7. Equilibration of hadrons in HICs via Hagedorn States

    NASA Astrophysics Data System (ADS)

    Beitel, M.; Gallmeister, K.; Greiner, C.

    2016-08-01

    Hagedorn states (HS) are a tool to model the hadronization process which occurs in the phase transition region between the quark gluon plasma (QGP) and the hadron resonance gas (HRG). These states are believed to appear near the Hagedorn temperature TH which in our understanding equals the critical temperature Tc. A covariantly formulated bootstrap equation is solved to generate the zoo of these particles characterized baryon number B, strangeness S and electric charge Q. These hadron-like resonances are characterized by being very massive and by not being limited to quantum numbers of known hadrons. All hadronic properties like masses, spectral functions etc. are taken from the hadronic transport model Ultra Relativistic Quantum Molecular Dynamics (UrQMD). Decay chains of single Hagedorn states provide a well description of experimentally observed multiplicity ratios of strange and multi-strange particles. In addition, the final energy spectra of resulting hadrons show a thermal-like distribution with the characteristic Hagedorn temperature TH. Box calculations including these Hagedorn states are performed. Indeed, the time scales leading to equilibration of the system are drastically reduced down to 2... 5fm/c.

  8. Equilibration of hadrons in HICs via Hagedorn States

    NASA Astrophysics Data System (ADS)

    Beitel, M.; Gallmeister, K.; Greiner, C.

    2016-01-01

    Hagedorn states (HS) are a tool to model the hadronization process which occurs in the phase transition region between the quark gluon plasma (QGP) and the hadron resonance gas (HRG). These states are believed to appear near the Hagedorn temperature TH which in our understanding equals the critical temperature Tc. A covariantly formulated bootstrap equation is solved to generate the zoo of these particles characterized baryon number B, strangeness S and electric charge Q. These hadron-like resonances are characterized by being very massive and by not being limited to quantum numbers of known hadrons. All hadronic properties like masses, spectral functions etc. are taken from the hadronic transport model Ultra Relativistic Quantum Molecular Dynamics (UrQMD). Decay chains of single Hagedorn states provide a well description of experimentally observed multiplicity ratios of strange and multi-strange particles. In addition, the final energy spectra of resulting hadrons show a thermal-like distribution with the characteristic Hagedorn temperature TH. Box calculations including these Hagedorn states are performed. Indeed, the time scales leading to equilibration of the system are drastically reduced down to 2…5fm/c.

  9. THE SHOENBERG EFFECT IN A RELATIVISTIC DEGENERATE ELECTRON GAS AND OBSERVATIONAL EVIDENCE IN MAGNETARS

    SciTech Connect

    Wang Zhaojun; Lue Guoliang; Zhu Chunhua; Huo Wensheng E-mail: guolianglv@gmail.com

    2013-08-20

    The electron gas inside a neutron star is highly degenerate and relativistic. Due to electron-electron magnetic interactions, the differential susceptibility can equal or exceed one, which causes the magnetic system of the neutron star to become metastable or unstable. The Fermi liquid of nucleons under the crust can be in a metastable state, while the crust is unstable to the formation of layers of alternating magnetization. The change of the magnetic stress acting on adjacent domains can result in a series of shifts or fractures in the crust. The release of magnetic free energy and elastic energy in the crust can cause the bursts observed in magnetars. Simultaneously, a series of shifts or fractures in the deep crust that is close to the Fermi liquid of nucleons can trigger a phase transition of the Fermi liquid of nucleons from a metastable state to a stable state. The magnetic free energy released in the Fermi liquid of nucleons corresponds to the giant flares observed in some magnetars.

  10. Equilibrium and non-equilibrium properties of a relativistic gas at the transition temperature

    NASA Astrophysics Data System (ADS)

    Chacón-Acosta, Guillermo

    2016-11-01

    The Jüttner distribution function for equilibrium relativistic fluids has two well-known limits, the non-relativistic limit at low temperatures and ultra-relativistic limit for high temperatures. Recently, the description of this transition in velocity space in the system, from a gaussian to a bimodal distribution was made by Mendoza et al. Physically, it is a transition between a regime where the relativistic energy is dominated by kinetic to another where the rest energy dominates. It has been found that the critical temperature at which the relativistic corrections becomes relevant, depends just on the dimension of the system, this allowed a description in terms of the theory of critical points (Montakhab et al.). In this contribution a review of the thermodynamic quantities that are only dependent on the ratio between temperature and critical temperature, and the dimension is made. We will also analyze the effects of critical temperature on dissipative processes in simple special relativistic fluids. Particularly, purely relativistic terms that are usually proportional to the number density gradient are studied. The transport coefficients can be written in terms of the transition temperature, this will allow us to identify the lower order relativistic effects just in terms of the dimension of the system.

  11. Relativistic Hydrodynamics for Heavy-Ion Collisions

    ERIC Educational Resources Information Center

    Ollitrault, Jean-Yves

    2008-01-01

    Relativistic hydrodynamics is essential to our current understanding of nucleus-nucleus collisions at ultrarelativistic energies (current experiments at the Relativistic Heavy Ion Collider, forthcoming experiments at the CERN Large Hadron Collider). This is an introduction to relativistic hydrodynamics for graduate students. It includes a detailed…

  12. Relativistic Hydrodynamics for Heavy-Ion Collisions

    ERIC Educational Resources Information Center

    Ollitrault, Jean-Yves

    2008-01-01

    Relativistic hydrodynamics is essential to our current understanding of nucleus-nucleus collisions at ultrarelativistic energies (current experiments at the Relativistic Heavy Ion Collider, forthcoming experiments at the CERN Large Hadron Collider). This is an introduction to relativistic hydrodynamics for graduate students. It includes a detailed…

  13. Role of net baryon density on rapidity width of identified particles from the lowest energies available at the CERN Super Proton Synchrotron to those at the BNL Relativistic Heavy Ion Collider and at the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Hussain, Nur; Bhattacharjee, Buddhadeb

    2017-08-01

    Widths of the rapidity distributions of various identified hadrons generated with the UrQMD-3.4 event generator at all the Super Proton Synchrotron (SPS) energies have been presented and compared with the existing experimental results. An increase in the width of the rapidity distribution of Λ could be seen with both Monte Carlo (MC) and experimental data for the studied energies. Using MC data, the study has been extended to Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC) energies. A similar jump, as observed in the plot of rapidity width versus rest mass at Alternating Gradient Synchrotron (AGS) and all SPS energies, persists even at RHIC and LHC energies, confirming its universal nature from AGS to the highest LHC energies. Such observation indicates that pair production may not be the only mechanism of particle production at the highest LHC energies. However, with MC data, the separate mass scaling for mesons and baryons is found to exist even at the top LHC energy.

  14. Preliminary results of the Gas Electron Multiplier (GEM) as real-time beam monitor in hadron therapy

    NASA Astrophysics Data System (ADS)

    Aza, E.; Ciocca, M.; Murtas, F.; Puddu, S.; Pullia, M.; Silari, M.

    2017-01-01

    The use of proton and carbon ion beams in cancer therapy (also known as hadron therapy) is progressively growing worldwide due to their improved dose distributions, sparing of healthy tissues and (for carbon ions) increased radiobiological effectiveness especially for radio-resistant tumours. Strict Quality Assurance (QA) protocols need to be followed for guaranteeing the clinical beam specifications. The aim of this study was to assess the performance of a gaseous detector based on the Gas Electron Multiplier (GEM) technology for measuring the beam spot dimensions and the homogeneity of the scanned irradiation field, which are daily QA tasks commonly performed using radiochromic films. Measurements performed at the National Centre for Oncological Hadron Therapy (CNAO) in Pavia (Italy) showed that the detector is able to monitor the 2D beam image on-line with a pad granularity of 2 mm and a response proportional to the number of delivered particles. The dose homogeneity was measured with low deviation from the results obtained with radiochromic films.

  15. Identifying Multiquark Hadrons from Heavy Ion Collisions

    SciTech Connect

    Cho, Sungtae; Furumoto, Takenori; Yazaki, Koichi; Hyodo, Tetsuo; Jido, Daisuke; Ohnishi, Akira; Ko, Che Ming; Lee, Su Houng; Nielsen, Marina; Sekihara, Takayasu; Yasui, Shigehiro

    2011-05-27

    Identifying hadronic molecular states and/or hadrons with multiquark components either with or without exotic quantum numbers is a long-standing challenge in hadronic physics. We suggest that studying the production of these hadrons in relativistic heavy ion collisions offers a promising resolution to this problem as yields of exotic hadrons are expected to be strongly affected by their structures. Using the coalescence model for hadron production, we find that, compared to the case of a nonexotic hadron with normal quark numbers, the yield of an exotic hadron is typically an order of magnitude smaller when it is a compact multiquark state and a factor of 2 or more larger when it is a loosely bound hadronic molecule. We further find that some of the newly proposed heavy exotic states could be produced and realistically measured in these experiments.

  16. Relativistic drag and emission radiation pressures in an isotropic photonic gas

    NASA Astrophysics Data System (ADS)

    Lee, Jeffrey S.; Cleaver, Gerald B.

    2016-06-01

    By invoking the relativistic spectral radiance, as derived by Lee and Cleaver,1 the drag radiation pressure of a relativistic planar surface moving through an isotropic radiation field, with which it is in thermal equilibrium, is determined in inertial and non-inertial frames. The forward- and backward-directed emission radiation pressures are also derived and compared. A fleeting (inertial frames) or ongoing (some non-inertial frames) Carnot cycle is shown to exist as a result of an intra-surfaces temperature gradient. The drag radiation pressure on an object with an arbitrary frontal geometry is also described.

  17. Point form relativistic quantum mechanics and relativistic SU(6)

    NASA Technical Reports Server (NTRS)

    Klink, W. H.

    1993-01-01

    The point form is used as a framework for formulating a relativistic quantum mechanics, with the mass operator carrying the interactions of underlying constituents. A symplectic Lie algebra of mass operators is introduced from which a relativistic harmonic oscillator mass operator is formed. Mass splittings within the degenerate harmonic oscillator levels arise from relativistically invariant spin-spin, spin-orbit, and tensor mass operators. Internal flavor (and color) symmetries are introduced which make it possible to formulate a relativistic SU(6) model of baryons (and mesons). Careful attention is paid to the permutation symmetry properties of the hadronic wave functions, which are written as polynomials in Bargmann spaces.

  18. Validation of Hadronic Models in GEANT4

    SciTech Connect

    Koi, Tatsumi; Wright, Dennis H.; Folger, Gunter; Ivanchenko, Vladimir; Kossov, Mikhail; Starkov, Nikolai; Heikkinen, Aatos; Truscott, Peter; Lei, Fan; Wellisch, Hans-Peter

    2007-09-26

    Geant4 is a software toolkit for the simulation of the passage of particles through matter. It has abundant hadronic models from thermal neutron interactions to ultra relativistic hadrons. An overview of validations in Geant4 hadronic physics is presented based on thin target measurements. In most cases, good agreement is available between Monte Carlo prediction and experimental data; however, several problems have been detected which require some improvement in the models.

  19. Hadronization of partons

    SciTech Connect

    Albino, S.

    2010-07-15

    The description of inclusive production of single unpolarized light hadrons using fragmentation functions in the framework of the factorization theorem is reviewed. The factorization of observables into perturbatively calculable quantities and these universal fragmentation functions are summarized and some improvements beyond the standard fixed order approach are discussed. The extraction of fragmentation functions for light charged ({pi}{sup {+-}}, K{sup {+-}}, and p/p) and neutral (K{sub S}{sup 0} and {Lambda}/{Lambda}) hadrons using these theoretical tools is discussed through global fits to experimental data from reactions at various colliders, in particular from accurate e{sup +}e{sup -} reactions at the Large Electron-Position Collider (LEP), and the subsequent successful predictions of other experimental data, such as data gathered at Hadron Electron Ring Accelerator (HERA), the Tevatron, and the Relativistic Heavy Ion Collider (RHIC), from these fitted fragmentation functions as allowed by factorization universality. These global fits also impose competitive constraints on {alpha}{sub s}(M{sub Z}). Emphasis is placed on the need for accurate data from pp(p) and ep reactions in which the hadron species is identified in order to constrain the separate fragmentation functions of the gluon and each quark flavor for each hadron species.

  20. High baryon densities in heavy ion collisions at energies attainable at the BNL Relativistic Heavy-Ion Collider and the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Li, Ming; Kapusta, Joseph I.

    2017-01-01

    In very high-energy collisions nuclei are practically transparent to each other but produce very hot nearly baryon-free matter in the so-called central rapidity region. The energy in the central rapidity region comes from the kinetic energy of the colliding nuclei. We calculate the energy and rapidity loss of the nuclei using the color glass condensate model. This model also predicts the excitation energy of the nuclear fragments. Using a space-time picture of the collision we calculate the baryon and energy densities of the receding baryonic fireballs. For central collisions of gold nuclei at the highest energy attainable at the Relativistic Heavy-Ion Collider, for example, we find baryon densities more than ten times that of atomic nuclei over a large volume.

  1. ULTRA-RELATIVISTIC NUCLEI: A NEW FRONTIER

    SciTech Connect

    MCLERRAN,L.

    1999-10-29

    The collisions of ultra-relativistic nuclei provide a window on the behavior of strong interactions at asymptotically high energies. They also will allow the authors to study the bulk properties of hadronic matter at very high densities.

  2. Concluding Remarks: Connecting Relativistic Heavy Ion Collisions and Neutron Star Mergers by the Equation of State of Dense Hadron- and Quark Matter as signalled by Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Hanauske, Matthias; Steinheimer, Jan; Bovard, Luke; Mukherjee, Ayon; Schramm, Stefan; Takami, Kentaro; Papenfort, Jens; Wechselberger, Natascha; Rezzolla, Luciano; Stöcker, Horst

    2017-07-01

    The underlying open questions in the fields of general relativistic astrophysics and elementary particle and nuclear physics are strongly connected and their results are interdependent. Although the physical systems are quite different, the 4D-simulation of a merger of a binary system of two neutron stars and the properties of the hot and dense matter created in high energy heavy ion collisions, strongly depend on the equation of state of fundamental elementary matter. Neutron star mergers represent optimal astrophysical laboratories to investigate the QCD phase structure using a spectrogram of the post-merger phase of the emitted gravitational waves. These studies can be supplemented by observations from heavy ion collisions to possibly reach a conclusive picture on the QCD phase structure at high density and temperature. As gravitational waves (GWs) emitted from merging neutron star binaries are on the verge of their first detection, it is important to understand the main characteristics of the underlying merging system in order to predict the expected GW signal. Based on numerical-relativity simulations of merging neutron star binaries, the emitted GW and the interior structure of the generated hypermassive neutron stars (HMNS) have been analyzed in detail. This article will focus on the internal and rotational HMNS properties and their connection with the emitted GW signal. Especially, the appearance of the hadon-quark phase transition in the interior region of the HMNS and its conjunction with the spectral properties of the emitted GW will be addressed and confronted with the simulation results of high energy heavy ion collisions.

  3. Heavy Flavor Dynamics in Relativistic Heavy-ion Collisions

    NASA Astrophysics Data System (ADS)

    Cao, Shanshan

    Heavy flavor hadrons serve as valuable probes of the transport properties of the quark-gluon plasma (QGP) created in relativistic heavy-ion collisions. In this dissertation, we introduce a comprehensive framework that describes the full-time evolution of heavy flavor in heavy-ion collisions, including its initial production, in-medium evolution inside the QGP matter, hadronization process from heavy quarks to their respective mesonic bound states and the subsequent interactions between heavy mesons and the hadron gas. The in-medium energy loss of heavy quarks is studied within the framework of a Langevin equation coupled to hydrodynamic models that simulate the space-time evolution of the hot and dense QGP matter. We improve the classical Langevin approach such that, apart from quasi-elastic scatterings between heavy quarks and the medium background, radiative energy loss is incorporated as well by treating gluon radiation as a recoil force term. The subsequent hadronization of emitted heavy quarks is simulated via a hybrid fragmentation plus recombination model. The propagation of produced heavy mesons in the hadronic phase is described using the ultra-relativistic quantum molecular dynamics (UrQMD) model. Our calculation shows that while collisional energy loss dominates the heavy quark motion inside the QGP in the low transverse momentum (p T) regime, contributions from gluon radiation are found to be significant at high pT. The recombination mechanism is important for the heavy flavor meson production at intermediate energies. The hadronic final state interactions further enhance the suppression and the collective flow of heavy mesons we observe. Within our newly developed framework, we present numerical results for the nuclear modification and the elliptic flow of D mesons, which are consistent with measurements at both the CERN Large Hadron Collider (LHC) and the BNL Relativistic Heavy-Ion Collider (RHIC); predictions for B mesons are also provided. In

  4. QCD thermodynamics and missing hadron states

    NASA Astrophysics Data System (ADS)

    Petreczky, Peter

    2016-03-01

    Equation of State and fluctuations of conserved charges in hot strongly interacting matter are being calculated with increasing accuracy in lattice QCD, and continuum results at physical quark masses become available. At sufficiently low temperature the thermodynamic quantities can be understood in terms of hadron resonance gas model that includes known hadrons and hadronic resonances from Particle Data Book. However, for some quantities it is necessary to include undiscovered hadronic resonances (missing states) that are, however, predicted by quark model and lattice QCD study of hadron spectrum. Thus, QCD thermodynamics can provide indications for the existence of yet undiscovered hadron states.

  5. Hard thermal photon production in relativistic heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Steffen, F. D.; Thoma, M. H.

    2001-06-01

    The recent status of hard thermal photon production in relativistic heavy ion collisions is reviewed and the current rates are presented with emphasis on corrected bremsstrahlung processes in the quark-gluon plasma (QGP) and quark-hadron duality. Employing Bjorken hydrodynamics with an EOS supporting the phase transition from QGP to hot hadron gas (HHG), thermal photon spectra are computed. For SPS 158 GeV Pb+Pb collisions, comparison with other theoretical results and the WA98 direct photon data indicates significant contributions due to prompt photons. Extrapolating the presented approach to RHIC and LHC experiments, predictions of the thermal photon spectrum show a QGP outshining the HHG in the high-pT-region.

  6. Chemical freeze-out in relativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Xu, Jun; Ko, Che Ming

    2017-09-01

    One surprising result in relativistic heavy-ion collisions is that the abundance of various particles measured in experiments is consistent with the picture that they reach chemical equilibrium at a temperature much higher than the temperature they freeze out kinetically. Using a multiphase transport model to study particle production in these collisions, we find, as an example, that the effective pion to nucleon ratio, which includes those from resonance decays, indeed changes very little during the evolution of the hadronic matter from the chemical to the kinetic freeze-out, and it is also accompanied by an almost constant specific entropy. We further use a hadron resonance gas model to illustrate the results from the transport model study.

  7. Magnetic anisotropy of heteronuclear dimers in the gas phase and supported on graphene: relativistic density-functional calculations.

    PubMed

    Błoński, Piotr; Hafner, Jürgen

    2014-04-09

    The structural and magnetic properties of mixed PtCo, PtFe, and IrCo dimers in the gas phase and supported on a free-standing graphene layer have been calculated using density-functional theory, both in the scalar-relativistic limit and self-consistently including spin-orbit coupling. The influence of the strong magnetic moments of the 3d atoms on the spin and orbital moments of the 5d atoms, and the influence of the strong spin-orbit coupling contributed by the 5d atom on the orbital moments of the 3d atoms have been studied in detail. The magnetic anisotropy energy is found to depend very sensitively on the nature of the eigenstates in the vicinity of the Fermi level, as determined by band filling, exchange splitting and spin-orbit coupling. The large magnetic anisotropy energy of free PtCo and IrCo dimers relative to the easy direction parallel to the dimer axis is coupled to a strong anisotropy of the orbital magnetic moments of the Co atom for both dimers, and also on the Ir atom in IrCo. In contrast the PtFe dimer shows a weak perpendicular anisotropy and only small spin and orbital anisotropies of opposite sign on the two atoms. For dimers supported on graphene, the strong binding within the dimer and the stronger interaction of the 3d atom with the substrate stabilizes an upright geometry. Spin and orbital moments on the 3d atom are strongly quenched, but due to the weaker binding within the dimer the properties of the 5d atom are more free-atom-like with increased spin and orbital moments. The changes in the magnetic moment are reflected in the structure of the electronic eigenstates near the Fermi level, for all three dimers the easy magnetic direction is now parallel to the dimer axis and perpendicular to the graphene layer. The already very large magnetic anisotropy energy (MAE) of IrCo is further enhanced by the interaction with the support, the MAE of PtFe changes sign, and that of the PtCo dimer is reduced. These changes are discussed in relation to

  8. Theory of hadronic nonperturbative models

    SciTech Connect

    Coester, F.; Polyzou, W.N.

    1995-08-01

    As more data probing hadron structure become available hadron models based on nonperturbative relativistic dynamics will be increasingly important for their interpretation. Relativistic Hamiltonian dynamics of few-body systems (constituent-quark models) and many-body systems (parton models) provides a precisely defined approach and a useful phenomenology. However such models lack a quantitative foundation in quantum field theory. The specification of a quantum field theory by a Euclidean action provides a basis for the construction of nonperturbative models designed to maintain essential features of the field theory. For finite systems it is possible to satisfy axioms which guarantee the existence of a Hilbert space with a unitary representation of the Poincare group and the spectral condition which ensures that the spectrum of the four-momentum operator is in the forward light cone. The separate axiom which guarantees locality of the field operators can be weakened for the construction for few-body models. In this context we are investigating algebraic and analytic properties of model Schwinger functions. This approach promises insight into the relations between hadronic models based on relativistic Hamiltonian dynamics on one hand and Bethe-Salpeter Green`s-function equations on the other.

  9. Hadron interactions

    SciTech Connect

    K. Orginos

    2011-12-01

    In this talk I am reviewing recent calculations of properties of multi-hadron systems in lattice QCD. In particular, I am reviewing results of elastic scattering phase shifts in meson-meson, meson-baryon and baryon-baryon systems, as well as discussing results indicating possible existence of bound states in two baryon systems. Finally, calculations of properties of systems with more than two hadrons are presented.

  10. Optimization of a closed-loop gas system for the operation of Resistive Plate Chambers at the Large Hadron Collider experiments

    NASA Astrophysics Data System (ADS)

    Capeans, M.; Glushkov, I.; Guida, R.; Hahn, F.; Haider, S.

    2012-01-01

    Resistive Plate Chambers (RPCs), thanks to their fast time resolution (˜1 ns), suitable space resolution (˜1 cm) and low production cost (˜50 €/m2), are widely employed for the muon trigger systems at the Large Hadron Collider (LHC). Their large detector volume (they cover a surface of about 4000 m2 equivalent to 16 m3 of gas volume both in ATLAS and CMS) and the use of a relatively expensive Freon-based gas mixture make a closed-loop gas circulation unavoidable. It has been observed that the return gas of RPCs operated in conditions similar to the difficult experimental background foreseen at LHC contains a large amount of impurities potentially dangerous for long-term operation. Several gas-cleaning agents are currently in use in order to avoid accumulation of impurities in the closed-loop circuits. We present the results of a systematic study characterizing each of these cleaning agents. During the test, several RPCs were operated at the CERN Gamma Irradiation Facility (GIF) in a high radiation environment in order to observe the production of typical impurities: mainly fluoride ions, molecules of the Freon group and hydrocarbons. The polluted return gas was sent to several cartridges, each containing a different cleaning agent. The effectiveness of each material was studied using gas chromatography and mass-spectrometry techniques. Results of this test have revealed an optimized configuration of filters that is now under long-term validation.Gas optimization studies are complemented with a finite element simulation of gas flow distribution in the RPCs, aiming at its eventual optimization in terms of distribution and flow rate.

  11. Modeling relativistic nuclear collisions.

    SciTech Connect

    Anderlik, C.; Magas, V.; Strottman, D.; Csernai, L. P.

    2001-01-01

    Modeling Ultra-Relativistic Heavy Ion Collisioiis at RHIC and LHC energies using a Multi Module Model is presented. The first Module is the Effective String Rope Model for the calculation of the initial stages of the reaction; the output of this module is used as the initial state for the subsequent one-fluid hydrodynainical calculation module. It is shown that such an initial state leads to the creation of the third flow component. The hydrodynamical evolution of the energy density distribution is presented for RHIC energies. The final module describing the Freeze Out; and Hadronization is also discussed.

  12. Effects of quark-gluon plasma and hadron gas on charmonium production at energies available at the CERN Super Proton Synchrotron and the Facility for Antiproton and Ion Research

    NASA Astrophysics Data System (ADS)

    Chen, Baoyi

    2016-04-01

    The production of charmonium in heavy ion collisions is investigated based on the Boltzmann-type transport model for charmonium evolution and the Langevin equation for charm quark evolution. Charmonium suppression and regeneration in both quark-gluon plasma (QGP) and hadron phase are considered. Charm quarks are far from thermalization, and regeneration of charmonium in QGP and hadron gas is negligible at the Super Proton Synchrotron (SPS) and the Facility for Antiproton and Ion Research (FAIR). At peripheral collisions, charmonium suppression with hadron gas explains the experimental data well. But at central collisions, additional suppression from deconfined matter (QGP) is necessary for the data. This means there should be QGP produced at central collisions, and no QGP produced at peripheral collisions at SPS energy. Predictions are also made at FAIR √{sN N}=7.7 GeV Au+Au collisions.

  13. Effects of volume corrections and resonance decays on cumulants of net-charge distributions in a Monte Carlo hadron resonance gas model

    NASA Astrophysics Data System (ADS)

    Xu, Hao-jie

    2017-02-01

    The effects of volume corrections and resonance decays (the resulting correlations between positive charges and negative charges) on cumulants of net-proton distributions and net-charge distributions are investigated by using a Monte Carlo hadron resonance gas (MCHRG) model. The required volume distributions are generated by a Monte Carlo Glauber (MC-Glb) model. Except the variances of net-charge distributions, the MCHRG model with more realistic simulations of volume corrections, resonance decays and acceptance cuts can reasonably explain the data of cumulants of net-proton distributions and net-charge distributions reported by the STAR collaboration. The MCHRG calculations indicate that both the volume corrections and resonance decays make the cumulant products of net-charge distributions deviate from the Skellam expectations: the deviations of Sσ and κσ2 are dominated by the former effect while the deviations of ω are dominated by the latter one.

  14. Development of Micro-Pattern Gas Detectors for the Upgrade of the Muon System of the CMS Experiment at the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Bouhali, Othmane

    2017-06-01

    After the discovery of the long awaited Higgs boson in 2012, the Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN) and its two general purpose experiments (ATLAS and CMS) are preparing to break new grounds in High Energy Physics (HEP). The international HEP collaboration has established a rigorous research program of exploring new physics at the high energy frontiers. The program includes substantial increase in the luminosity of the LHC putting detectors into a completely new and unprecedented harsh environment. In order to maintain their excellent performance, an upgrade of the existing detectors is mandatory. In this work we will describe ongoing efforts for the upgrade of the CMS muon detection system, in particular the addition of detection layers based on the Gas Electron Multiplier (GEM) technology. We will summarize the past 5-year R&D program and the future installation and operation plans.

  15. Light-cone quantization and hadron structure

    SciTech Connect

    Brodsky, S.J.

    1996-04-01

    Quantum chromodynamics provides a fundamental description of hadronic and nuclear structure and dynamics in terms of elementary quark and gluon degrees of freedom. In practice, the direct application of QCD to reactions involving the structure of hadrons is extremely complex because of the interplay of nonperturbative effects such as color confinement and multi-quark coherence. In this talk, the author will discuss light-cone quantization and the light-cone Fock expansion as a tractable and consistent representation of relativistic many-body systems and bound states in quantum field theory. The Fock state representation in QCD includes all quantum fluctuations of the hadron wavefunction, including fax off-shell configurations such as intrinsic strangeness and charm and, in the case of nuclei, hidden color. The Fock state components of the hadron with small transverse size, which dominate hard exclusive reactions, have small color dipole moments and thus diminished hadronic interactions. Thus QCD predicts minimal absorptive corrections, i.e., color transparency for quasi-elastic exclusive reactions in nuclear targets at large momentum transfer. In other applications, such as the calculation of the axial, magnetic, and quadrupole moments of light nuclei, the QCD relativistic Fock state description provides new insights which go well beyond the usual assumptions of traditional hadronic and nuclear physics.

  16. Forced canonical thermalization in a hadronic transport approach at high density

    NASA Astrophysics Data System (ADS)

    Oliinychenko, Dmytro; Petersen, Hannah

    2017-03-01

    Hadronic transport approaches based on an effective solution of the relativistic Boltzmann equation are widely applied for the dynamical description of heavy ion reactions at low beam energies. At high densities, the assumption of binary interactions often used in hadronic transport approaches may not be applicable anymore. Therefore, we effectively simulate the high-density regime using the local forced canonical thermalization. This framework provides the opportunity to interpolate in a dynamical way between two different limits of kinetic theory: the dilute gas approximation and the ideal fluid case. This approach will be important for studies of the dynamical evolution of heavy ion collisions at low and intermediate energies as experimentally investigated at the beam energy scan program at RHIC, and in the future at FAIR and NICA. On the other hand, this new way of modeling hot and dense strongly interacting matter might be relevant for small systems at high energies (LHC and RHIC) as well.

  17. Exotic hadrons from heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Cho, Sungtae; Hyodo, Tetsuo; Jido, Daisuke; Ko, Che Ming; Lee, Su Houng; Maeda, Saori; Miyahara, Kenta; Morita, Kenji; Nielsen, Marina; Ohnishi, Akira; Sekihara, Takayasu; Song, Taesoo; Yasui, Shigehiro; Yazaki, Koichi

    2017-07-01

    High energy heavy ion collisions are excellent ways for producing heavy hadrons and composite particles, including the light (anti)nuclei. With upgraded detectors at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC), it has become possible to measure hadrons beyond their ground states. Therefore, heavy ion collisions provide a new method for studying exotic hadrons that are either molecular states made of various hadrons or compact system consisting of multiquarks. Because their structures are related to the fundamental properties of Quantum Chromodynamics (QCD), studying exotic hadrons is currently one of the most active areas of research in hadron physics. Experiments carried out at various accelerator facilities have indicated that some exotic hadrons may have already been produced. The present review is a summary of the current understanding of a selected set of exotic particle candidates that can be potentially measured in heavy ion collisions. It also includes discussions on the production of resonances, exotics and hadronic molecular states in these collisions based on the coalescence model and the statistical model. A more detailed discussion is given on the results from these models, leading to the conclusion that the yield of a hadron that is a compact multiquark state is typically an order of magnitude smaller than if it is an excited hadronic state with normal quark numbers or a loosely bound hadronic molecule. Attention is also given to some of the proposed heavy exotic hadrons that could be produced with sufficient abundance in heavy ion collisions because of the significant numbers of charm and bottom quarks that are produced at RHIC and even larger numbers at LHC, making it possible to study them in these experiments. Further included in the discussion are the general formalism for the coalescence model that involves resonance particles and its implication on the present estimated yield for resonance production. Finally

  18. Gravitationally confined relativistic neutrinos

    NASA Astrophysics Data System (ADS)

    Vayenas, C. G.; Fokas, A. S.; Grigoriou, D.

    2017-09-01

    Combining special relativity, the equivalence principle, and Newton’s universal gravitational law with gravitational rather than rest masses, one finds that gravitational interactions between relativistic neutrinos with kinetic energies above 50 MeV are very strong and can lead to the formation of gravitationally confined composite structures with the mass and other properties of hadrons. One may model such structures by considering three neutrinos moving symmetrically on a circular orbit under the influence of their gravitational attraction, and by assuming quantization of their angular momentum, as in the Bohr model of the H atom. The model contains no adjustable parameters and its solution, using a neutrino rest mass of 0.05 eV/c2, leads to composite state radii close to 1 fm and composite state masses close to 1 GeV/c2. Similar models of relativistic rotating electron - neutrino pairs give a mass of 81 GeV/c2, close to that of W bosons. This novel mechanism of generating mass suggests that the Higgs mass generation mechanism can be modeled as a latent gravitational field which gets activated by relativistic neutrinos.

  19. THE NEUTRAL INTERSTELLAR GAS TOWARD SNR W44: CANDIDATES FOR TARGET PROTONS IN HADRONIC {gamma}-RAY PRODUCTION IN A MIDDLE-AGED SUPERNOVA REMNANT

    SciTech Connect

    Yoshiike, S.; Fukuda, T.; Sano, H.; Ohama, A.; Moribe, N.; Torii, K.; Hayakawa, T.; Okuda, T.; Yamamoto, H.; Mizuno, N.; Onishi, T.; Fukui, Y.; Tajima, H.; Maezawa, H.; Mizuno, A.; Nishimura, A.; Kimura, K.; Ogawa, H.; Giuliani, A.; Koo, B.-C.

    2013-05-10

    We present an analysis of the interstellar medium (ISM) toward the {gamma}-ray supernova remnant (SNR) W44. We used NANTEN2 {sup 12}CO(J = 2-1) and {sup 12}CO(J = 1-0) data and Arecibo H I data in order to identify the molecular and atomic gas in the SNR. We confirmed that the molecular gas is located in the SNR shell with a primary peak toward the eastern edge of the shell. We newly identified high-excitation molecular gas along the eastern shell of the SNR in addition to the high-excitation broad gas previously observed inside the shell; the line intensity ratio between the {sup 12}CO(J = 2-1) and {sup 12}CO(J = 1-0) transitions in these regions is greater than {approx}1.0, suggesting a kinetic temperature of 30 K or higher, which is most likely due to heating by shock interaction. By comparing the ISM with {gamma}-rays, we find that target protons of hadronic origin are dominated by molecular protons of average density around 200 cm{sup -3}, where the possible contribution of atomic protons is 10% or less. This average density is consistent with the recent discovery of the low-energy {gamma}-rays suppressed in 50 MeV-10 GeV as observed with AGILE and Fermi. The {gamma}-ray spectrum differs from place to place in the SNR, suggesting that the cosmic-ray (CR) proton spectrum significantly changes within the middle-aged SNR perhaps due to the energy-dependent escape of CR protons from the acceleration site. We finally derive a total CR proton energy of {approx}10{sup 49} erg, consistent with the SN origin of the majority of the CRs in the Galaxy.

  20. Specific heat of matter formed in relativistic nuclear collisions

    NASA Astrophysics Data System (ADS)

    Basu, Sumit; Chatterjee, Sandeep; Chatterjee, Rupa; Nayak, Tapan K.; Nandi, Basanta K.

    2016-10-01

    We report the excitation energy dependence of specific heat (cv) of hadronic matter at freeze-out in Au+Au and Cu+Cu collisions at the BNL Relativistic Heavy Ion Collider energies by analyzing the published data on event-by-event mean transverse momentum ( ) distributions. The distributions in finite pT ranges are converted to distributions of effective temperatures, and dynamical fluctuations in temperature are extracted by subtracting widths of the corresponding mixed event distributions. The heat capacity per particle at the kinetic freeze-out surface is presented as a function of collision energy, which shows a sharp rise in cv below √{sN N}=62.4 GeV. We employ the hadron resonance gas (HRG) model to estimate cv at the chemical and kinetic freeze-out surfaces. The experimental results are compared to the HRG and other theoretical model calculations. HRG results show good agreement with data. Model predictions for cv at the CERN Large Hadron Collider energy are presented.

  1. Hadron physics

    SciTech Connect

    Bunce, G.

    1984-05-30

    Is all hadronic physics ultimately describable by QCD. Certainly, many disparate phenomena can be understood within the QCD framework. Also certainly, there are important questions which are open, both theoretically (little guidance, as yet) and experimentally, regarding confinement. Are there dibaryons, baryonium, glueballs. In addition, there are experimental results which at present do not have an explanation. This talk, after a short section on QCD successes and difficulties, will emphasize two experimental topics which have recent results - glueball spectroscopy and exclusive reactions at large momentum transfer. Both are experimentally accessible in the AGS/LAMPF II/AGS II/TRIUMF II/SIN II energy domain.

  2. Bubble dynamics and the quark-hadron phase transition in nuclear collisions

    NASA Astrophysics Data System (ADS)

    Fogaça, D. A.; Sanches, S. M.; Fariello, R.; Navarra, F. S.

    2016-05-01

    We study the nucleation of a quark-gluon plasma (QGP) phase in a hadron gas at low temperatures and high baryon densities. This kind of process will presumably happen very often in nuclear collisions at the GSI Facility for Antiproton and Ion Research (FAIR) and the Nuclotron-based Ion Collider Facility (NICA). When the appropriate energy densities (or baryon densities) and temperatures are reached the conversion of one phase into another is not instantaneous. It is a complex process, which involves the nucleation of bubbles of the new phase. One important element of this transition process is the rate of growth of a QGP bubble. In order to estimate it we solve the Relativistic Rayleigh-Plesset equation which governs the dynamics of a relativistic spherical bubble in a strongly interacting medium. The baryon rich hadron gas is represented by the nonlinear Walecka model and the QGP is described by the MIT bag model and also by a mean field model of QCD.

  3. The Hadron Blind Ring Imaging Cherenkov Detector

    NASA Astrophysics Data System (ADS)

    Blatnik, Marie; Zajac, Stephanie; Hemmick, Tom

    2013-10-01

    Heavy Ion Collisions in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven Lab have hinted at the existence of a new form of matter at high gluon density, the Color Glass Condensate. High energy electron scattering off of nuclei, focusing on the low-x components of the nuclear wave function, will definitively measure this state of matter. However, when a nucleus contributes a low x parton, the reaction products are highly focused in the electron-going direction and have large momentum in the lab system. High-momentum particle identification is particularly challenging. A particle is identifiable by its mass, but tracking algorithms only yield a particle's momentum based on its track's curvature. The particle's velocity is needed to identify the particle. A ring-imaging Cerenkov detector is being developed for the forward angle particle identification from the technological advancements of PHENIX's Hadron-Blind Detector (HBD), which uses Gas Electron Multipliers (GEMs) and pixelated pad planes to detect Cerenkov photons. The new HBD will focus the Cerenkov photons into a ring to determine the parent particle's velocity. Results from the pad plane simulations, construction tests, and test beam run will be presented.

  4. Confinement and diffusion time-scales of CR hadrons in AGN-inflated bubbles

    NASA Astrophysics Data System (ADS)

    Prokhorov, D. A.; Churazov, E. M.

    2017-09-01

    While rich clusters are powerful sources of X-rays, γ-ray emission from these large cosmic structures has not been detected yet. X-ray radiative energy losses in the central regions of relaxed galaxy clusters are so strong that one needs to consider special sources of energy, likely active galactic nucleus (AGN) feedback, to suppress catastrophic cooling of the gas. We consider a model of AGN feedback that postulates that the AGN supplies the energy to the gas by inflating bubbles of relativistic plasma, whose energy content is dominated by cosmic-ray (CR) hadrons. If most of these hadrons can quickly escape the bubbles, then collisions of CRs with thermal protons in the intracluster medium (ICM) should lead to strong γ-ray emission, unless fast diffusion of CRs removes them from the cluster. Therefore, the lack of detections with modern γ-ray telescopes sets limits on the confinement time of CR hadrons in bubbles and CR diffusive propagation in the ICM.

  5. Electromagnetic recombination spectra at the quark-hadron phase transition

    NASA Astrophysics Data System (ADS)

    Young, Clint; Pratt, Scott

    2016-10-01

    Because quarks carry electric charge, they can radiate light when they change energy levels, which is exactly what happens when they hadronize. This is true not only in jets but also in heavy-ion collisions, where a thermalized plasma of quarks and gluons cools into a gas of hadrons. First, direct emission of photons from two quarks coalescing from the continuum into pions is calculated using the quark-meson model. The yield of final-state photons to pions is found to be about e2/gπq q 2 , which is on the order of a percent. Second, the yield of photons from the decay of highly excited color singlets, which may exist ephemerally during hadronizaton, is estimated. Because these contributions occur late in the reaction, they should carry significant elliptic flow, which may help explain the large observed flow of direct photons by the PHENIX Collaboration at the BNL Relativistic Heavy Ion Collider. The enhanced emission also helps explain the PHENIX Collaboration's surprisingly large observed γ /π ratio.

  6. Development of Large Area Gas Electron Multiplier Detector and Its Application to a Digital Hadron Calorimeter for Future Collider Experiments

    SciTech Connect

    Yu, Jaehoon; White, Andrew

    2014-09-25

    The UTA High Energy Physics Group conducted generic detector development based on large area, very thin and high sensitivity gas detector using gas electron multiplier (GEM) technology. This is in preparation for a use as a sensitive medium for sampling calorimeters in future collider experiments at the Energy Frontier as well as part of the tracking detector in Intensity Frontier experiments. We also have been monitoring the long term behavior of one of the prototype detectors (30cmx30cm) read out by the SLAC-developed 13-bit KPiX analog chip over three years and have made presentations of results at various APS meetings. While the important next step was the development of large area (1m x 1m) GEM planes, we also have looked into opportunities of applying this technology to precision tracking detectors to significantly improve the performance of the Range Stack detector for CP violation experiments and to provide an amplification layer for the liquid Argon Time Projection Chamber in the LBNE experiment. We have jointly developed 33cmx100cm large GEM foils with the CERN gas detector development group to construct 33cm x100cm unit chambers. Three of these unit chambers will be put together to form a 1m x 1m detector plane. Following characterization of one 33cmx100cm unit chamber prototype, a total of five 1m x 1m planes will be constructed and inserted into an existing 1m3 RPC DHCAL stack to test the performance of the new GEM DHCAL in particle beams. The large area GEM detector we planned to develop in this proposal not only gives an important option to DHCAL for future collider experiments but also the potential to expand its use to Intensity Frontier and Cosmic Frontier experiments as high efficiency, high amplification anode planes for liquid Argon time projection chambers. Finally, thanks to its sensitivity to X-rays and other neutral radiations and its light-weight characteristics, the large area GEM has a great potential for the use in medical imaging and

  7. Investigation of the non-relativistic fermi-gas model by considering the position-dependent mass

    NASA Astrophysics Data System (ADS)

    Zare, S.; de Montigny, M.; Hassanabadi, H.

    2017-01-01

    We investigate the Schrödinger equation in the position-dependent mass framework with an infinite square well potential. We apply this approach to a Fermi gas, calculate the density of states of the gas, examine the information entropy, some expectation values and the uncertainty principle.

  8. Thermodynamics of Hot Hadronic Gases at Finite Baryon Densities

    NASA Astrophysics Data System (ADS)

    Albright, Michael Glenn

    In this thesis we investigate equilibrium and nonequilibrium thermodynamic properties of Quantum Chromodynamics (QCD) matter at finite baryon densities. We begin by constructing crossover models for the thermodynamic equation of state. These use switching functions to smoothly interpolate between a hadronic gas model at low energy densities to a perturbative QCD equation of state at high energy densities. We carefully design the switching function to avoid introducing first-, second-, or higher-order phase transitions which lattice QCD indicates are not present at small baryon chemical potentials. We employ three kinds of hadronic models in the crossover constructions, two of which include repulsive interactions via an excluded volume approximation while one model does not. We find that the three crossover models are in excellent agreement with accurate lattice QCD calculations of the equation of state over a wide range of temperatures and baryon chemical potentials. Hence, the crossover models should be very useful for parameterizing the equation of state at finite baryon densities, which is needed to build next-generation hydrodynamic simulations of heavy-ion collisions. We next calculate the speed of sound and baryon number fluctuations predicted by the crossover models. We find that crossover models with hadronic repulsion are most successful at reproducing the lattice results, while the model without repulsion is less successful, and hadron (only) models show poor agreement. We then compare the crossover models to net-proton fluctuation measurements from the STAR Collaboration at the Relativistic Heavy Ion Collider (RHIC). The comparisons suggest baryon number fluctuations freeze-out well below the chemical freeze-out temperature. We also search for signs of critical fluctuations in the STAR data, but we find no evidence for them at this time. Finally, we derive kinetic theory formulas for the shear and bulk viscosity and thermal conductivity of hot hadronic

  9. FUTURE SCIENCE AT THE RELATIVISTIC HEAVY ION COLLIDER.

    SciTech Connect

    LUDLAM, T.

    2006-12-21

    QCD was developed in the 1970's as a theory of the strong interaction describing the confinement of quarks in hadrons. An early consequence of this picture was the realization that at sufficiently high temperature, or energy density, the confining forces are overcome by color screening effects, resulting in a transition from hadronic matter to a new state--later named the Quark Gluon Plasma--whose bulk dynamical properties are determined by the quark and gluon degrees of freedom, rather than those of confined hadrons. The suggestion that this phase transition in a fundamental theory of nature might occur in the hot, dense nuclear matter created in heavy ion collisions triggered a series of experimental searches during the past two decades at CERN and at BNL, with successively higher-energy nuclear collisions. This has culminated in the present RHIC program. In their first five years of operation, the RHIC experiments have identified a new form of thermalized matter formed in Au+Au collisions at energy densities more than 100 times that of a cold atomic nucleus. Measurements and comparison with relativistic hydrodynamic models indicate that the matter thermalizes in an unexpectedly short time ( < 1 fm/c) , has an energy density at least 15 times larger than needed for color deconfinement, has a temperature about 2 times the critical temperature of {approx}170 MeV predicted by lattice QCD, and appears to exhibit collective motion with ideal hydrodynamic properties--a ''perfect liquid'' that appears to flow with a near-zero viscosity to entropy ratio - lower than any previously observed fluid and perhaps close to a universal lower bound. There are also indications that the new form of matter directly involves quarks. Comparison of measured relative hadron abundances with very successful statistical models indicates that hadrons chemically decouple at a temperature of 160-170 MeV. There is evidence suggesting that this happens very close to the quark-hadron phase

  10. Theoretical studies in hadronic and nuclear physics. Progress report, July 1, 1994--June 1, 1995

    SciTech Connect

    Banerjee, M.K.; Griffin, J.J.

    1995-06-01

    This progress report contains 36 items of research work done by ten members of the University of Maryland Nuclear Theory Group with 21 outside collaborators from various institutions in the US, Canada, Korea and Europe. The report is in four sections, each representing major and basic areas of interest in nuclear theory. The sections are as follows: (1) hadrons in nuclei and nuclear matter; (2) hadron physics; (3) relativistic dynamics in quark, hadron and nuclear physics; (4) heavy ion dynamics and related processes.

  11. Relativistic klystrons

    SciTech Connect

    Allen, M.A.; Azuma, O.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fant, K.S.; Fowkes, W.R.; Herrmannsfeldt, W.B.; Hoag, H.A.; Koontz, R.F.

    1989-03-01

    Experimental work is underway by a SLAC-LLNL-LBL collaboration to investigate the feasibility of using relativistic klystrons as a power source for future high gradient accelerators. Two different relativistic klystron configurations have been built and tested to date: a high grain multicavity klystron at 11.4 GHz and a low gain two cavity subharmonic buncher driven at 5.7 GHz. In both configurations power is extracted at 11.4 GHz. In order to understand the basic physics issues involved in extracting RF from a high power beam, we have used both a single resonant cavity and a multi-cell traveling wave structure for energy extraction. We have learned how to overcome our previously reported problem of high power RF pulse shortening, and have achieved peak RF power levels of 170 MW with the RF pulse of the same duration as the beam current pulse. 6 refs., 3 figs., 3 tabs.

  12. Relativistic geodesy

    NASA Astrophysics Data System (ADS)

    Flury, J.

    2016-06-01

    Quantum metrology enables new applications in geodesy, including relativistic geodesy. The recent progress in optical atomic clocks and in long-distance frequency transfer by optical fiber together pave the way for using measurements of the gravitational frequency redshift for geodesy. The remote comparison of frequencies generated by calibrated clocks will allow for a purely relativistic determination of differences in gravitational potential and height between stations on Earth surface (chronometric leveling). The long-term perspective is to tie potential and height differences to atomic standards in order to overcome the weaknesses and inhomogeneity of height systems determined by classical spirit leveling. Complementarily, gravity measurements with atom interferometric setups, and satellite gravimetry with space borne laser interferometers allow for new sensitivities in the measurement of the Earth's gravity field.

  13. Relativistic Astrophysics

    NASA Astrophysics Data System (ADS)

    Jones, Bernard J. T.; Markovic, Dragoljub

    1997-06-01

    Preface; Prologue: Conference overview Bernard Carr; Part I. The Universe At Large and Very Large Redshifts: 2. The size and age of the Universe Gustav A. Tammann; 3. Active galaxies at large redshifts Malcolm S. Longair; 4. Observational cosmology with the cosmic microwave background George F. Smoot; 5. Future prospects in measuring the CMB power spectrum Philip M. Lubin; 6. Inflationary cosmology Michael S. Turner; 7. The signature of the Universe Bernard J. T. Jones; 8. Theory of large-scale structure Sergei F. Shandarin; 9. The origin of matter in the universe Lev A. Kofman; 10. New guises for cold-dark matter suspects Edward W. Kolb; Part II. Physics and Astrophysics Of Relativistic Compact Objects: 11. On the unification of gravitational and inertial forces Donald Lynden-Bell; 12. Internal structure of astrophysical black holes Werner Israel; 13. Black hole entropy: external facade and internal reality Valery Frolov; 14. Accretion disks around black holes Marek A. Abramowicz; 15. Black hole X-ray transients J. Craig Wheeler; 16. X-rays and gamma rays from active galactic nuclei Roland Svensson; 17. Gamma-ray bursts: a challenge to relativistic astrophysics Martin Rees; 18. Probing black holes and other exotic objects with gravitational waves Kip Thorne; Epilogue: the past and future of relativistic astrophysics Igor D. Novikov; I. D. Novikov's scientific papers and books.

  14. High energy hadron-hadron collisions

    NASA Astrophysics Data System (ADS)

    Chou, T. T.

    Results of a study on high energy collisions with the geometrical model are summarized in three parts: (1) the elastic hadron-hadron collision, (2) the inelastic hadron-hadron collision, and (3) e(sup +)e(sup (minus)) annihilation. For elastic scattering, a modified form for the hadronic matter form factor of the proton was proposed which is still dipole in form but contains an energy-dependent range parameter. This new expression of the opacity function fits the elastic (bar p)p scattering very well from the ISR to S(bar p)pS energies. Extrapolation of this theory also yielded results in good agreement with the (bar p)p differential cross section measured at the Tevatron. For inelastic hadron-hadron collisions, we have made a systematic investigation of the single-particle momentum spectra in the entire S(bar p)pS energy region. Results are useful for the extrapolation of angular distribution to the higher SSC energies. In e(sup +)e(sup (minus)) annihilation, a detailed analysis of all available experimental multiplicity data from PETRA to LEP energies has been performed. The cluster size of emitted hadrons increases gradually with energy. Aside from high-energy collisions, the giant fullerene molecules were studied and precise algebraic eigenvalue expressions of the Hueckel problem for carbon-240 were obtained.

  15. QCD in hadron-hadron collisions

    SciTech Connect

    Albrow, M.

    1997-03-01

    Quantum Chromodynamics provides a good description of many aspects of high energy hadron-hadron collisions, and this will be described, along with some aspects that are not yet understood in QCD. Topics include high E{sub T} jet production, direct photon, W, Z and heavy flavor production, rapidity gaps and hard diffraction.

  16. Hadron-Hadron Interactions in the Constituent Quark Model: Results and Extensions

    SciTech Connect

    Eric S. Swanson

    2001-01-01

    Hadronic interactions are discussed within the context of the constituent quark model. The ''Quark Born Diagram'' methodology is outlined, extensive applications to meson-meson and meson-baryon interactions are discussed, and general features of these interactions are highlighted. The second half of this document deals with shortcomings of the quark model approach and methods to overcome them. These include relativistic kinematics, unitarity, nonlocal potentials, coupled channel effects, and the chiral nature of the pion.

  17. Hadron Correlations in CMS

    NASA Astrophysics Data System (ADS)

    Maguire, Charles F.

    2013-08-01

    The measurements of the anisotropic flow of single particles and particle pairs have provided some of the most compelling evidence for the creation of a strongly interacting quark-gluon plasma (sQGP) in relativistic heavy ion collisions, first at RHIC, and more recently at the LHC. Using PbPb collision data taken in the 2010 and 2011 heavy ion runs at the LHC, the CMS experiment has investigated a broad scope of these flow phenomena. The v2 elliptic flow coefficient has been extracted with four different methods to cross-check contributions from initial state fluctuations and non-flow correlations. The measurements of the v2 elliptic anisotropy have been extended to a transverse momentum of 60 GeV/c, which will enable the placement of new quantitative constraints on parton energy loss models as a function of path length in the sQGP medium. Additionally, for the first time at the LHC, the CMS experiment has extracted precise elliptic anisotropy coefficients for the π0 meson in the centrality range 20-80% and over a transverse momentum range 1.6 to 8 GeV/c. These results are compared with both the π0 results reported by the PHENIX detector at RHIC, and with the inclusive charged particle anisotropy results reported from the LHC. Finally, the CMS experiment has mounted an extensive study of charged hadron pair azimuthal correlations using a Fourier harmonic decomposition to fit the data. The relationship between these pair coefficients and the single particle harmonic flow coefficients can be explored for its insight into the early dynamics of this viscous medium.

  18. High energy hadron-hadron collisions

    SciTech Connect

    Chou, T.T.

    1990-11-01

    Results of a study on high energy collision with the geometrical model are summarized in three parts: (i) the elastic hadron-hadron collision, (ii) the inelastic hadron-hadron collision, and (iii) the e{sup +}e{sup {minus}} annihilation. For elastic collisions, a simple expression for the proton matter distribution is proposed which fits well the elastic {bar p}p scattering from ISR to S{bar p}pS energies within the geometrical model. The proton form factor is of the dipole form with an energy-dependent range parameter. The {bar p}p elastic differential cross section at Tevatron energies obtained by extrapolation is in good agreement with experiments. For multiparticle emission processes a unified physical picture for hadron-hadron and e{sup +}e{sup {minus}} collisions was proposed. A number of predictions were made, including the one that KNO-scaling does not obtain for e{sup +}e{sup {minus}} two-jet events. An extension of the considerations within the geometrical model led to a theory of the momentum distributions of the outgoing particles which are found in good agreement with current experimental data. Extrapolations of results to higher energies have been made. The cluster size of hadrons produced in e{sup +}e{sup {minus}} annihilation is found to increase slowly with energy.

  19. Novel Perspectives for Hadron Physics

    SciTech Connect

    Brodsky, Stanley J.; /SLAC

    2012-03-09

    I discuss several novel and unexpected aspects of quantum chromodynamics. These include: (a) the nonperturbative origin of intrinsic strange, charm and bottom quarks in the nucleon at large x; the breakdown of pQCD factorization theorems due to the lensing effects of initial- and final-state interactions; (b) important corrections to pQCD scaling for inclusive reactions due to processes in which hadrons are created at high transverse momentum directly in the hard processes and their relation to the baryon anomaly in high-centrality heavy-ion collisions; and (c) the nonuniversality of quark distributions in nuclei. I also discuss some novel theoretical perspectives in QCD: (a) light-front holography - a relativistic color-confining first approximation to QCD based on the AdS/CFT correspondence principle; (b) the principle of maximum conformality - a method which determines the renormalization scale at finite order in perturbation theory yielding scheme independent results; (c) the replacement of quark and gluon vacuum condensates by 'in-hadron condensates' and how this helps to resolve the conflict between QCD vacuum and the cosmological constant.

  20. The Common Elements of Atomic and Hadronic Physics

    SciTech Connect

    Brodsky, Stanley J.

    2015-02-26

    Atomic physics and hadronic physics are both governed by the Yang Mills gauge theory Lagrangian; in fact, Abelian quantum electrodynamics can be regarded as the zero-color limit of quantum chromodynamics. I review a number of areas where the techniques of atomic physics can provide important insight into hadronic eigenstates in QCD. For example, the Dirac-Coulomb equation, which predicts the spectroscopy and structure of hydrogenic atoms, has an analog in hadron physics in the form of frame-independent light-front relativistic equations of motion consistent with light-front holography which give a remarkable first approximation to the spectroscopy, dynamics, and structure of light hadrons. The production of antihydrogen in flight can provide important insight into the dynamics of hadron production in QCD at the amplitude level. The renormalization scale for the running coupling is unambiguously set in QED; an analogous procedure sets the renormalization scales in QCD, leading to scheme-independent scale-fixed predictions. Conversely, many techniques which have been developed for hadron physics, such as scaling laws, evolution equations, the quark-interchange process and light-front quantization have important applicants for atomic physics and photon science, especially in the relativistic domain.

  1. Relativistic causality

    NASA Astrophysics Data System (ADS)

    Valente, Giovanni; Owen Weatherall, James

    2014-11-01

    Relativity theory is often taken to include, or to imply, a prohibition on superluminal propagation of causal processes. Yet, what exactly the prohibition on superluminal propagation amounts to and how one should deal with its possible violation have remained open philosophical problems, both in the context of the metaphysics of causation and the foundations of physics. In particular, recent work in philosophy of physics has focused on the causal structure of spacetime in relativity theory and on how this causal structure manifests itself in our most fundamental theories of matter. These topics were the subject of a workshop on "Relativistic Causality in Quantum Field Theory and General Relativity" that we organized (along with John Earman) at the Center for Philosophy of Science in Pittsburgh on April 5-7, 2013. The present Special Issue comprises contributions by speakers in that workshop as well as several other experts exploring different aspects of relativistic causality. We are grateful to the journal for hosting this Special Issue, to the journal's managing editor, Femke Kuiling, for her help and support in putting the issue together, and to the authors and the referees for their excellent work.

  2. Baryon properties in the relativistic quark model

    NASA Astrophysics Data System (ADS)

    Ebert, D.; Faustov, R. N.; Galkin, V. O.

    2017-09-01

    Properties of heavy and strange baryons are investigated in the framework of the relativistic quark-diquark picture. It is based on the relativistic quark model of hadrons, which was previously successfully applied for the calculation of meson properties. It is assumed that two quarks in a baryon form a diquark and baryon is considered as the bound quark-diquark system. The relativistic effects and diquark internal structure are consistently taken into account. Calculations are performed up to rather high orbital and radial excitations of heavy and strange baryons. On this basis the Regge trajectories are constructed. The rates of semileptonic decays of heavy baryons are calculated. The obtained results agree well with available experimental data.

  3. Computational Gas-Phase Formation Enthalpy and Electron Affinity for Platinum Hexafluoride: Is Gaseous PtF6 Diamagnetic because of a Relativistic Effect?

    PubMed

    Fernandes De Farias, Robson

    2016-12-05

    In the present work, a computational thermochemistry study (semiempirical, PM6 method) for platinum hexafluoride (PtF6) is performed. The gas-phase formation enthalpy (ΔfH°) and electron affinity are calculated and the results compared with the experimental data. A calculated ΔfH°(g) value of -669.47 kJ mol(-1), in very good agreement with the experimental data from the literature, was obtained by Knudsen cell mass spectrometry. However, such a value was obtained when a PtF6 molecule with no unpaired electrons (diamagnetic) was modeled. Such a fact is in contrast with the four-unpaired-electron configuration (t2g(3)eg(1)) generally accepted for gaseous (and solid) PtF6 but is in agreement with the fact (based on quantum relativistic calculations) that the triplet state t2g is split in the tetragonal field into a singlet and a lower-lying doublet, with four 5d(4) electrons occupying the 5dxz and 5dyz atomic orbitals in the spin paired state. The modeled compound exhibits a distorted structure and a dipole moment of 0.30 D. The calculated electron affinity is 7.6 eV, in very good agreement with the experimental and calculated data. The computed zero-point energy, G°, H°, and S° values for such a structure are 34.71 kJ mol(-1), -725.59 kJ mol(-1), -612.11 kJ mol(-1), and 380.31 J K(-1) mol(-1). The positive S° and negative G° and H° values show that, from a thermodynamic point of view, the structure it stable. A working hypothesis is proposed in which the coordination number in PtF6 is 8 and the fluoride has a polymeric nature.

  4. Inflation of the early cold Universe filled with a nonlinear scalar field and a nonideal relativistic Fermi gas

    NASA Astrophysics Data System (ADS)

    Pashitskii, E. A.; Pentegov, V. I.

    2017-03-01

    We consider a possible scenario for the evolution of the early cold Universe born from a fairly large quantum fluctuation in a vacuum with a size a 0 ≫ l P (where l P is the Planck length) and filled with both a nonlinear scalar field φ, whose potential energy density U(φ) determines the vacuum energy density λ, and a nonideal Fermi gas with short-range repulsion between particles, whose equation of state is characterized by the ratio of pressure P( n F ) to energy density ɛ( n F ) dependent on the number density of fermions n F . As the early Universe expands, the dimensionless quantity ν( n F ) = P( n F )/ɛ( n F ) decreases with decreasing n F from its maximum value νmax = 1 for n F → ∞ to zero for n F → 0. The interaction of the scalar and gravitational fields, which is characterized by a dimensionless constant ξ, is proportional to the scalar curvature of four-dimensional space R = κ[3 P( n F )-ɛ( n F )-4λ] (where κ is Einstein's gravitational constant), and contains terms both quadratic and linear in φ. As a result, the expanding early Universe reaches the point of first-order phase transition in a finite time interval at critical values of the scalar curvature R = R c =-μ2/ξ and radius a c ≫ a 0. Thereafter, the early closed Universe "rolls down" from the flat inflection point of the potential U(φ) to the zero potential minimum in a finite time. The release of the total potential energy of the scalar field in the entire volume of the expanding Universe as it "rolls down" must be accompanied by the production of a large number of massive particles and antiparticles of various kinds, whose annihilation plays the role of the Big Bang. We also discuss the fundamental nature of Newton' gravitational constant G N .

  5. The PHENIX Hadron Blind Detector

    SciTech Connect

    Durham, J. M.

    2009-03-10

    Dielectron measurements by the PHENIX Experiment at RHIC are limited by the combinatorial background from electrons and positrons which are not produced in the same pair. The Hadron Blind Detector will allow a substantial reduction of this background by correctly identifying dielectrons from photon conversions and pion Dalitz decays which dominate the signal in the low mass region of the spectrum. Triple GEM stacks, with a CsI photocathode deposited on the uppermost GEM, detect Cherenkov light produced by electrons in a CF{sub 4} radiator. The transparency of CF{sub 4}, high quantum efficiency of CsI in the UV, and absence of a window between the gas radiator and the GEMs allow a large photoelectron yield, while minimizing the hadron signal. Results from the HBD in RHIC's Run-7 and preparations for upcoming runs are discussed.

  6. Relativistic magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Hernandez, Juan; Kovtun, Pavel

    2017-05-01

    We present the equations of relativistic hydrodynamics coupled to dynamical electromagnetic fields, including the effects of polarization, electric fields, and the derivative expansion. We enumerate the transport coefficients at leading order in derivatives, including electrical conductivities, viscosities, and thermodynamic coefficients. We find the constraints on transport coefficients due to the positivity of entropy production, and derive the corresponding Kubo formulas. For the neutral state in a magnetic field, small fluctuations include Alfvén waves, magnetosonic waves, and the dissipative modes. For the state with a non-zero dynamical charge density in a magnetic field, plasma oscillations gap out all propagating modes, except for Alfvén-like waves with a quadratic dispersion relation. We relate the transport coefficients in the "conventional" magnetohydrodynamics (formulated using Maxwell's equations in matter) to those in the "dual" version of magnetohydrodynamics (formulated using the conserved magnetic flux).

  7. Unraveling hadron structure with generalized parton distributions

    SciTech Connect

    Andrei Belitsky; Anatoly Radyushkin

    2004-10-01

    The recently introduced generalized parton distributions have emerged as a universal tool to describe hadrons in terms of quark and gluonic degrees of freedom. They combine the features of form factors, parton densities and distribution amplitudes - the functions used for a long time in studies of hadronic structure. Generalized parton distributions are analogous to the phase-space Wigner quasi-probability function of non-relativistic quantum mechanics which encodes full information on a quantum-mechanical system. We give an extensive review of main achievements in the development of this formalism. We discuss physical interpretation and basic properties of generalized parton distributions, their modeling and QCD evolution in the leading and next-to-leading orders. We describe how these functions enter a wide class of exclusive reactions, such as electro- and photo-production of photons, lepton pairs, or mesons.

  8. Many body theory in hadronic physics

    NASA Astrophysics Data System (ADS)

    Llanes-Estrada, Felipe Jose

    2000-11-01

    This dissertation presents the development of several many body techniques of widespread use in Atomic, Nuclear and Solid State to Hadronic, the low energy Particle Physics that studies strong interactions. For the high energy, asymptotically free, quarks and gluons described by Quantum Chromodynamics, a canonical (BCS) transformation is performed to generate effective low energy degrees of freedom. Then a model Hamiltonian is approximately diagonalized in Fock space using the TDA and RPA formulations. The relativistic wave equations resulting in each sector are numerically solved, yielding mass eigenvalues for the hadronic spectrum. The TDA provides a reasonable approximation for the glueball and meson spectra, with the exception of the light pseudoscalar mesons, where only the RPA correctly incorporates chiral symmetry and the Goldstone boson nature of the pion. Particular attention is devoted to charmed and hybrid mesons, especially exotic states, given the existing data from BNL and prospects of detection at both TJNAF (Hall D) and CERN (Compass).

  9. Spin polarizabilities and characteristics of spin-1 hadrons related to parity nonconservation in the Duffin-Kemmer-Petiau formalism

    NASA Astrophysics Data System (ADS)

    Vakulina, E. V.; Maksimenko, N. V.

    2017-09-01

    Spin polarizabilities of spin-1 particles typical of spin-1/2 hadrons are established within the Duffin-Kemmer-Petiau formalism using the relativistically invariant effective tensor representation of Lagrangians of two-photon interaction with hadrons. New spin polarizabilities of spin-1 particles associated with the presence of tensor polarizabilities are also determined.

  10. Hadron Physics at FAIR

    SciTech Connect

    Wiedner, Ulrich

    2011-10-24

    The new FAIR facility in Darmstadt has a broad program in the field of hadron and nuclear physics utilizing ion beams with unprecedented intensity and accuracy. The hadron physics program centers around the the high-energy storage ring HESR for antiprotons and the PANDA experiment that is integrated in it. The physics program includes among others topics like hadron spectroscopy in the charmonium mass region and below, hyperon physics, electromagnetic processes and charm in nuclei.

  11. QCD, hadrons and beyond

    NASA Astrophysics Data System (ADS)

    Nardulli, G.

    2005-04-01

    I give a summary of Section E of the sixth edition of the Conference Quark confinement and the hadron spectrum. Papers were presented on different subjects, from spectroscopy, including pentaquarks and hadron structure, to new physics effects (non commutative field theories, supersymmetry and extra dimensions) and the problem of color confinement, both in ordinary Yang-Mills models and in supersymmetric Yang-Mills.

  12. Regge trajectories of exotic hadrons in the flux tube model

    NASA Astrophysics Data System (ADS)

    Nandan, Hemwati; Ranjan, Akhilesh

    2016-02-01

    We have investigated the Regge trajectories of exotic hadrons by considering different possible pentaquark configurations with finite quark mass in the flux tube model. Significant deviation is observed in the linear behavior of the Regge trajectories for pentaquark systems in view of the universal value of the Regge slope parameter for hadrons. The modified Regge trajectories are also compared with the available experimental and lattice data. It is observed that the nonlinear Regge trajectories of such pentaquark systems can be well described by the relativistic corrections in view of the current quark masses and the high rotational speed of the quarks at the end of flux tube structure.

  13. Spectral functions and in-medium properties of hadrons

    NASA Astrophysics Data System (ADS)

    Tripolt, R.-A.; von Smekal, L.; Wambach, J.

    The in-medium modifications of hadron properties such as masses and decay widths have been a major focus of the scientific work of Gerry Brown and the insights gained by him and his collaborators made them major drivers of this field for several decades. Their prediction of experimental signals in di-lepton pair production in relativistic heavy-ion collisions was instrumental in initiating large experimental campaigns which continue till today. In this chapter, we review recent results which elucidate the relation of hadronic spectral properties at finite temperature and density to the restoration of spontaneously broken chiral symmetry.

  14. Spin-orbit ZORA and four-component Dirac-Coulomb estimation of relativistic corrections to isotropic nuclear shieldings and chemical shifts of noble gas dimers.

    PubMed

    Jankowska, Marzena; Kupka, Teobald; Stobiński, Leszek; Faber, Rasmus; Lacerda, Evanildo G; Sauer, Stephan P A

    2016-02-05

    Hartree-Fock and density functional theory with the hybrid B3LYP and general gradient KT2 exchange-correlation functionals were used for nonrelativistic and relativistic nuclear magnetic shielding calculations of helium, neon, argon, krypton, and xenon dimers and free atoms. Relativistic corrections were calculated with the scalar and spin-orbit zeroth-order regular approximation Hamiltonian in combination with the large Slater-type basis set QZ4P as well as with the four-component Dirac-Coulomb Hamiltonian using Dyall's acv4z basis sets. The relativistic corrections to the nuclear magnetic shieldings and chemical shifts are combined with nonrelativistic coupled cluster singles and doubles with noniterative triple excitations [CCSD(T)] calculations using the very large polarization-consistent basis sets aug-pcSseg-4 for He, Ne and Ar, aug-pcSseg-3 for Kr, and the AQZP basis set for Xe. For the dimers also, zero-point vibrational (ZPV) corrections are obtained at the CCSD(T) level with the same basis sets were added. Best estimates of the dimer chemical shifts are generated from these nuclear magnetic shieldings and the relative importance of electron correlation, ZPV, and relativistic corrections for the shieldings and chemical shifts is analyzed. © 2015 Wiley Periodicals, Inc.

  15. Processes in relativistic plasmas

    NASA Technical Reports Server (NTRS)

    Gould, R. J.

    1982-01-01

    The establishment and maintenance of a Boltzmann distribution in particle kinetic energies is investigated for a plasma with theta = KTe/mc-squared much greater than unity, where m is the electron mass. It is shown that thermalization of the electron gas by binary collisions is not sufficiently effective to maintain the equilibrium distribution when other processes that perturb the equilibrium are taken into account. Electron-positron pair production in electron-electron and electron-ion collisions, and perturbations of a Boltzmann distribution by nonthermal processes are evaluated. Thermalization by means of other mechanisms, such as interaction with plasma waves is discussed, and the opacity of a relativistic plasma is computed for Compton scattering, pair production in the fields of electrons and ions, inverse bremsstrahlung, and synchrotron self-absorption.

  16. RELATIVISTIC HEAVY ION COLLISIONS: EXPERIMENT

    SciTech Connect

    Friedlander, Erwin M.; Heckman, Harry H.

    1982-04-01

    Relativistic heavy ion physics began as a 'no man's land' between particle and nuclear physics, with both sides frowning upon it as 'unclean', because on one hand, hadronic interactions and particle production cloud nuclear structure effects, while on the other, the baryonic environment complicates the interpretation of production experiments. They have attempted to review here the experimental evidence on RHI collisions from the point of view that it represents a new endeavor in the understanding of strong interaction physics. Such an approach appears increasingly justified; first, by the accumulation of data and observations of new features of hadronic interactions that could not have been detected outside a baryonic environment; second, by the maturation of the field owing to the advances made over the past several years in experimental inquiries on particle production by RHI, including pions, kaons, hyperons, and searches for antiprotons; and third, by the steady and progressive increase in the energy and mass ranges of light nuclear beams that have become available to the experiment; indeed the energy range has widened from the {approx} 0.2 to 2 AGeV at the Bevalac to {approx}4 AGeV at Dubna and recently, to the quantum jump in energies to {approx} 1000 equivalent AGeV at the CERN PS-ISR. Accompanying these expansions in the energy frontier are the immediate prospects for very heavy ion beams at the Bevalac up to, and including, 1 AGeV {sup 238}U, thereby extending the 'mass frontier' to its ultimate extent.

  17. Relativistic electron beam generator

    DOEpatents

    Mooney, L.J.; Hyatt, H.M.

    1975-11-11

    A relativistic electron beam generator for laser media excitation is described. The device employs a diode type relativistic electron beam source having a cathode shape which provides a rectangular output beam with uniform current density.

  18. DETAILED COMPARISON BETWEEN PARTON CASCADE AND HADRONIC CASCADE AT SPS AND RHIC.

    SciTech Connect

    NARA,Y.

    1998-10-23

    The authors study the importance of the partonic phase produced in relativistic heavy ion collision by comparing the parton cascade model and the hadronic cascade model. Hadron yield, baryon stopping and transverse momentum distribution are calculated with JAM and discussions are given comparing with VNI. Both of these models give good description of experimental data. They also discuss the strangeness production mechanism and the directed transverse flow.

  19. Hadronic Parity Violation

    NASA Astrophysics Data System (ADS)

    Vanasse, Jared

    2011-11-01

    For 50 years the field of hadronic parity violation has been unresolved. Since the 1980's the standard theoretical framework for hadronic parity violation has been the DDH model. However, discrepancies between the DDH model and experiment have called the use of this model into question. At low energies a new model independent analysis of hadronic parity violation can be carried out via pionless effective field theory. With the use of pionless effective field theory and new precision experiments, focusing on systems with A<=4 in order to eliminate nuclear physics uncertainties, the field of hadronic parity violation at low energies will finally be understood. This talk will give an overview of the theory and possible future experiments in this old yet still exciting field.

  20. Hadron spectroscopy at RHIC

    SciTech Connect

    Chung, S.U.; Kern, W.; Willutzki, H.J.

    1990-08-01

    A description is given of the physics opportunities at RHIC regarding quark-gluon spectroscopy. The basic idea is to isolate with appropriate triggers the subprocesses pomeron + pomeron {yields} hadrons and {gamma}* + {gamma}* {yields} hadrons with the net effective mass of hadrons in the range of 1.0 to 3.0 GeV, in order to study the hadronic states composed of u, d, and s and gluons. The double-pomeron interactions are expected to produce glueballs and hybrids preferentially, while the two-offshell-photon initial states should couple predominantly to quarkonia and multiquark states. A plethora of J{sup PC}-exotic mesons can be produced either directly in both types of interactions or in association with a single recoil photon in the final state. 8 refs., 2 figs.

  1. Gluons in hadron spectroscopy

    SciTech Connect

    Karl, G.

    1985-06-30

    Current hadron spectroscopy is concerned with quark and glounic degrees of freedom which are imaged from the many meson resonances and their decay mechanisms. Interest in the J/psi and the phi resonances is discussed.

  2. Topics in Hadronic Physics

    SciTech Connect

    Tang, Alfred

    2002-08-01

    Hadron production cross sections are calculated in the perturbative QCD frame work. Parton distribution functions are obtained from a strip-soliton model. The fragmentation functions are derived from the Lund model of string breaking.

  3. Renormdynamics and Hadronization

    NASA Astrophysics Data System (ADS)

    Makhaldiani, Nugzar

    2016-01-01

    Independently radiating valence quarks and corresponding negative binomial distribution presents phenomenologically preferable mechanism of hadronization in multiparticle production processes. Main properties of the renormdynamics, corresponding motion equations and their solutions are considered.

  4. Radiobiology of Hadrons

    NASA Astrophysics Data System (ADS)

    Streit-Bianchi, Marilena

    2008-08-01

    Radiobiological studies of hadrons beams are essential for optimizing tumour treatments. Whit hadrons when clinical facilities are running radiobiological studies are also done to ensure beam optimization and quality control as well as for the understanding of tumour and normal tissue reactions and late effects. Beam characteristic determinations nowadays are carried out according to well established radiobiological standard parameters and using well established biological reference systems. Some of the most recent studies on the topic are reported here.

  5. Radiobiology of Hadrons

    SciTech Connect

    Streit-Bianchi, Marilena

    2008-08-11

    Radiobiological studies of hadrons beams are essential for optimizing tumour treatments. Whit hadrons when clinical facilities are running radiobiological studies are also done to ensure beam optimization and quality control as well as for the understanding of tumour and normal tissue reactions and late effects. Beam characteristic determinations nowadays are carried out according to well established radiobiological standard parameters and using well established biological reference systems. Some of the most recent studies on the topic are reported here.

  6. The Mesozoic Era of relativistic heavy ion physics and beyond

    SciTech Connect

    Harris, J.W.

    1994-03-01

    In order to understand how matter 15 billion years ago in the form of quarks, gluons and leptons at a temperature of 2 {times} 10{sup 12} {degrees}K evolved to become today`s Universe, the goal of relativistic and ultra-relativistic heavy ion physics is to understand the equation of state of nuclear, hadronic and partonic matter. This quest is of cross-disciplinary interest. The phase transition from partonic matter to hadronic matter tens of micro-seconds after the beginning of the universe is of interest to cosmology. Fluctuations during this phase transition would influence nucleosynthesis and the understanding of baryonic inhomogeneities in the universe. The nuclear matter equation of state, which describes the incompressibility of nuclear matter, governs neutron star stability. It determines the possible existence of strange quark matter stars and the dynamics of supernova expansion in astrophysics. The existence of collective nuclear phenomena in nuclear physics is also determined by the nuclear equation of state. In relativistic heavy ion collisions collective nuclear flow has been observed and is being studied extensively to obtain a better understanding of the incompressibility of nuclear matter. In high energy nuclear and particle physics, production and excitations of hadronic final states have been studied in detail and are important to an overall understanding of the equation of state of nuclear matter at finite temperature. The possibility in ultra-relativistic heavy ion collisions to create and study highly excited hadronic and partonic degrees of freedom provides a unique opportunity for understanding the behavior of nuclear, hadronic and partonic matter. Study of the QCD vacuum, of particular interest in particle physics, would provide a better understanding of symmetry-breaking mechanisms and the origins of the masses of the various quarks and particles.

  7. Holography inspired stringy hadrons

    NASA Astrophysics Data System (ADS)

    Sonnenschein, Jacob

    2017-01-01

    Holography inspired stringy hadrons (HISH) is a set of models that describe hadrons: mesons, baryons and glueballs as strings in flat four dimensional space-time. The models are based on a "map" from stringy hadrons of holographic confining backgrounds. In this note we review the "derivation" of the models. We start with a brief reminder of the passage from the AdS5 ×S5 string theory to certain flavored confining holographic models. We then describe the string configurations in holographic backgrounds that correspond to a Wilson line, a meson, a baryon and a glueball. The key ingredients of the four dimensional picture of hadrons are the "string endpoint mass" and the "baryonic string vertex". We determine the classical trajectories of the HISH. We review the current understanding of the quantization of the hadronic strings. We end with a summary of the comparison of the outcome of the HISH models with the PDG data about mesons and baryons. We extract the values of the tension, masses and intercepts from best fits, write down certain predictions for higher excited hadrons and present attempts to identify glueballs.

  8. Dynamical phase trajectories for relativistic nuclear collisions

    SciTech Connect

    Arsene, I. C.; Bravina, L. V.; Cassing, W.; Ivanov, Yu. B.; Russkikh, V. N.; Larionov, A.; Randrup, J.; Toneev, V. D.; Zeeb, G.; Zschiesche, D.

    2007-03-15

    Central collisions of gold nuclei are simulated by several existing models and the central net baryon density {rho} and the energy density {epsilon} are extracted at successive times for beam kinetic energies of 5-40 GeV/nucleon. The resulting trajectories in the ({rho},{epsilon}) phase plane are discussed from the perspective of experimentally exploring the expected first-order hadronization phase transition with the planned FAIR at GSI or in a low-energy campaign at the Relativistic Heavy Ion Collider.

  9. Relativistic radiative transfer in relativistic spherical flows

    NASA Astrophysics Data System (ADS)

    Fukue, Jun

    2017-02-01

    Relativistic radiative transfer in relativistic spherical flows is numerically examined under the fully special relativistic treatment. We first derive relativistic formal solutions for the relativistic radiative transfer equation in relativistic spherical flows. We then iteratively solve the relativistic radiative transfer equation, using an impact parameter method/tangent ray method, and obtain specific intensities in the inertial and comoving frames, as well as moment quantities, and the Eddington factor. We consider several cases; a scattering wind with a luminous central core, an isothermal wind without a core, a scattering accretion on to a luminous core, and an adiabatic accretion on to a dark core. In the typical wind case with a luminous core, the emergent intensity is enhanced at the center due to the Doppler boost, while it reduces at the outskirts due to the transverse Doppler effect. In contrast to the plane-parallel case, the behavior of the Eddington factor is rather complicated in each case, since the Eddington factor depends on the optical depth, the flow velocity, and other parameters.

  10. Relativistic linear restoring force

    NASA Astrophysics Data System (ADS)

    Clark, D.; Franklin, J.; Mann, N.

    2012-09-01

    We consider two different forms for a relativistic version of a linear restoring force. The pair comes from taking Hooke’s law to be the force appearing on the right-hand side of the relativistic expressions: dp/dt or dp/dτ. Either formulation recovers Hooke’s law in the non-relativistic limit. In addition to these two forces, we introduce a form of retardation appropriate for the description of a linear (in displacement) force arising from the interaction of a pair of particles with a relativistic field. The procedure is akin to replacing Coulomb’s law in electromagnetism with a retarded form (the first correction in the full relativistic case). This retardation leads to the expected oscillation, but with amplitude growth in both its relativistic and non-relativistic incarnations.

  11. Hadronic wavefunctions in light-cone quantization

    SciTech Connect

    Hyer, Thomas

    1994-05-01

    The analysis of light-cone wavefunctions seems the most promising theoretical approach to a detailed understanding of the structure of relativistic bound states, particularly hadrons. However, there are numerous complications in this approach. Most importantly, the light-cone approach sacrifices manifest rotational invariance in exchange for the elimination of negative-energy states. The requirement of rotational invariance of the full theory places important constraints on proposed light-cone wavefunctions, whether they are modelled or extracted from some numerical procedure. A formulation of the consequences of the hidden rotational symmetry has been sought for some time; it is presented in Chapter 2. In lattice gauge theory or heavy-quark effective theory, much of the focus is on the extraction of numerical values of operators which are related to the hadronic wavefunction. These operators are to some extent interdependent, with relations induced by fundamental constraints on the underlying wavefunction. The consequences of the requirement of unitarity are explored in Chapter 3, and are found to have startling phenomenological relevance. To test model light-cone wavefunctions, experimental predictions must be made. The reliability of perturbative QCD as a tool for making such predictions has been questioned. In Chapter 4, the author presents a computation of the rates for nucleon-antinucleon annihilation, improving the reliability of the perturbative computation by taking into account the Sudakov suppression of exclusive processes at large transverse impact parameter. In Chapter 5, he develops the analysis of semiexclusive production. This work focuses on processes in which a single isolated meson is produced perturbatively and recoils against a wide hadronizing system. At energies above about 10 GeV, semiexclusive processes are shown to be the most sensitive experimental probes of hadronic structure.

  12. Nonrelativistic approaches derived from point-coupling relativistic models

    SciTech Connect

    Lourenco, O.; Dutra, M.; Delfino, A.; Sa Martins, J. S.

    2010-03-15

    We construct nonrelativistic versions of relativistic nonlinear hadronic point-coupling models, based on new normalized spinor wave functions after small component reduction. These expansions give us energy density functionals that can be compared to their relativistic counterparts. We show that the agreement between the nonrelativistic limit approach and the Skyrme parametrizations becomes strongly dependent on the incompressibility of each model. We also show that the particular case A=B=0 (Walecka model) leads to the same energy density functional of the Skyrme parametrizations SV and ZR2, while the truncation scheme, up to order {rho}{sup 3}, leads to parametrizations for which {sigma}=1.

  13. Light-Front Holography and QCD Hadronization at the Amplitude Level

    SciTech Connect

    Brodsky, Stanley J.; de Teramond, Guy F.; /Costa Rica U.

    2009-01-09

    Light-front holography allows hadronic amplitudes in the AdS/QCD fifth dimension to be mapped to frame-independent light-front wavefunctions of hadrons in physical space-time, thus providing a relativistic description of hadrons at the amplitude level. The AdS coordinate z is identified with an invariant light-front coordinate {zeta} which separates the dynamics of quark and gluon binding from the kinematics of constituent spin and internal orbital angular momentum. The result is a single-variable light-front Schroedinger equation for QCD which determines the eigenspectrum and the light-front wavefunctions of hadrons for general spin and orbital angular momentum. A new method for computing the hadronization of quark and gluon jets at the amplitude level using AdS/QCD light-front wavefunctions is outlined.

  14. Relativistic blast waves in two dimensions. I - The adiabatic case

    NASA Technical Reports Server (NTRS)

    Shapiro, P. R.

    1979-01-01

    Approximate solutions are presented for the dynamical evolution of strong adiabatic relativistic blast waves which result from a point explosion in an ambient gas in which the density varies both with distance from the explosion center and with polar angle in axisymmetry. Solutions are analytical or quasi-analytical for the extreme relativistic case and numerical for the arbitrarily relativistic case. Some general properties of nonplanar relativistic shocks are also discussed, including the incoherence of spherical ultrarelativistic blast-wave fronts on angular scales greater than the reciprocal of the shock Lorentz factor, as well as the conditions for producing blast-wave acceleration.

  15. Hadron Resonances from QCD

    SciTech Connect

    Dudek, Jozef

    2016-03-01

    I describe how hadron-hadron scattering amplitudes are related to the eigenstates of QCD in a finite cubic volume. The discrete spectrum of such eigenstates can be determined from correlation functions computed using lattice QCD, and the corresponding scattering amplitudes extracted. I review results from the Hadron Spectrum Collaboration who have used these finite volume methods to study ππ elastic scattering, including the ρ resonance, as well as coupled-channel πK, ηK scattering. The very recent extension to the case where an external current acts is also presented, considering the reaction πγ* → ππ, from which the unstable ρ → πγ transition form factor is extracted. Ongoing calculations are advertised and the outlook for finite volume approaches is presented.

  16. Relativistic Linear Restoring Force

    ERIC Educational Resources Information Center

    Clark, D.; Franklin, J.; Mann, N.

    2012-01-01

    We consider two different forms for a relativistic version of a linear restoring force. The pair comes from taking Hooke's law to be the force appearing on the right-hand side of the relativistic expressions: d"p"/d"t" or d"p"/d["tau"]. Either formulation recovers Hooke's law in the non-relativistic limit. In addition to these two forces, we…

  17. Relativistic Guiding Center Equations

    SciTech Connect

    White, R. B.; Gobbin, M.

    2014-10-01

    In toroidal fusion devices it is relatively easy that electrons achieve relativistic velocities, so to simulate runaway electrons and other high energy phenomena a nonrelativistic guiding center formalism is not sufficient. Relativistic guiding center equations including flute mode time dependent field perturbations are derived. The same variables as used in a previous nonrelativistic guiding center code are adopted, so that a straightforward modifications of those equations can produce a relativistic version.

  18. Relativistic Linear Restoring Force

    ERIC Educational Resources Information Center

    Clark, D.; Franklin, J.; Mann, N.

    2012-01-01

    We consider two different forms for a relativistic version of a linear restoring force. The pair comes from taking Hooke's law to be the force appearing on the right-hand side of the relativistic expressions: d"p"/d"t" or d"p"/d["tau"]. Either formulation recovers Hooke's law in the non-relativistic limit. In addition to these two forces, we…

  19. Hadron Physics with Antiprotons

    SciTech Connect

    Wiedner, Ulrich

    2005-10-26

    The new FAIR facility which comes into operation at GSI in the upcoming years has a dedicated program of utilizing antiprotons for hadron physics. In particular, the planned PANDA experiment belongs to the group of core experiments at the new FAIR facility in Darmstadt/Germany. PANDA will be a universal detector to study the strong interaction by utilizing the annihilation process of antiprotons with protons and nuclear matter. The current paper gives an introduction into the hadron physics with antiprotons and part of the planned physics program with PANDA.

  20. High intensity hadron accelerators

    SciTech Connect

    Teng, L.C.

    1989-05-01

    This rapporteur report consists mainly of two parts. Part I is an abridged review of the status of all High Intensity Hadron Accelerator projects in the world in semi-tabulated form for quick reference and comparison. Part II is a brief discussion of the salient features of the different technologies involved. The discussion is based mainly on my personal experiences and opinions, tempered, I hope, by the discussions I participated in in the various parallel sessions of the workshop. In addition, appended at the end is my evaluation and expression of the merits of high intensity hadron accelerators as research facilities for nuclear and particle physics.

  1. Leptonic and Hadronic Modeling of Fermi-detected Blazars

    NASA Astrophysics Data System (ADS)

    Böttcher, M.; Reimer, A.; Sweeney, K.; Prakash, A.

    2013-05-01

    We describe new implementations of leptonic and hadronic models for the broadband emission from relativistic jets in active galactic nuclei in a temporary steady state. For the leptonic model, a temporary equilibrium between particle injection/acceleration, radiative cooling, and escape from a spherical emission region is evaluated, and the self-consistent radiative output is calculated. For the hadronic model, a temporary equilibrium between particle injection/acceleration, radiative and adiabatic cooling, and escape is evaluated for both primary electrons and protons. A new, semianalytical method to evaluate the radiative output from cascades initiated by internal γγ pair production is presented. We use our codes to fit snapshot spectral energy distributions (SEDs) of a representative set of Fermi-LAT-detected blazars. We find that the leptonic model provides acceptable fits to the SEDs of almost all blazars with parameters close to equipartition between the magnetic field and the relativistic electron population. However, the hard γ-ray spectrum of AO 0235+164, in contrast to the very steep IR-optical-UV continuum, poses a severe problem for the leptonic model. If charge neutrality in leptonic models is provided by cold protons, the kinetic energy carried by the jet should be dominated by protons. We find satisfactory representations of the snapshot SEDs of most blazars in our sample with the hadronic model presented here. However, in the case of two quasars the characteristic break at a few GeV energies cannot be well modeled. All of our hadronic model fits require powers in relativistic protons in the range Lp ~ 1047-1049 erg s-1.

  2. Light-Front Holography and Hadronization at the Amplitude Level

    SciTech Connect

    Brodsky, Stanley J.; Teramond, Guy F. de; Shrock, Robert

    2008-10-13

    The correspondence between theories in anti-de Sitter space and conformal field theories in physical space-time leads to an analytic, semiclassical model for strongly-coupled QCD which has scale invariance at short distances and color confinement at large distances. Light-front holography is a remarkable feature of AdS/CFT: it allows hadronic amplitudes in the AdS fifth dimension to be mapped to frame-independent light-front wavefunctions of hadrons in physical space-time, thus providing a relativistic description of hadrons at the amplitude level. Some novel features of QCD are discussed, including the consequences of confinement for quark and gluon condensates and the behavior of the QCD coupling in the infrared. We suggest that the spatial support of QCD condensates is restricted to the interior of hadrons, since they arise due to the interactions of confined quarks and gluons. Chiral symmetry is thus broken in a limited domain of size 1/m{sub {pi}}, in analogy to the limited physical extent of superconductor phases. A new method for computing the hadronization of quark and gluon jets at the amplitude level, an event amplitude generator, is outlined.

  3. Light-Front Holography and Hadronization at the Amplitude Level

    SciTech Connect

    Brodsky, Stanley J.; de Teramond, Guy; Shrock, Robert

    2008-07-25

    The correspondence between theories in anti-de Sitter space and conformal field theories in physical space-time leads to an analytic, semiclassical model for strongly-coupled QCD which has scale invariance at short distances and color confinement at large distances. Light-front holography is a remarkable feature of AdS/CFT: it allows hadronic amplitudes in the AdS fifth dimension to be mapped to frame-independent light-front wavefunctions of hadrons in physical space-time, thus providing a relativistic description of hadrons at the amplitude level. Some novel features of QCD are discussed, including the consequences of confinement for quark and gluon condensates and the behavior of the QCD coupling in the infrared. We suggest that the spatial support of QCD condensates is restricted to the interior of hadrons, since they arise due to the interactions of confined quarks and gluons. Chiral symmetry is thus broken in a limited domain of size 1=m{sub {pi}} in analogy to the limited physical extent of superconductor phases. A new method for computing the hadronization of quark and gluon jets at the amplitude level, an event amplitude generator, is outlined.

  4. Convexity and symmetrization in relativistic theories

    NASA Astrophysics Data System (ADS)

    Ruggeri, T.

    1990-09-01

    There is a strong motivation for the desire to have symmetric hyperbolic field equations in thermodynamics, because they guarantee well-posedness of Cauchy problems. A generic quasi-linear first order system of balance laws — in the non-relativistic case — can be shown to be symmetric hyperbolic, if the entropy density is concave with respect to the variables. In relativistic thermodynamics this is not so. This paper shows that there exists a scalar quantity in relativistic thermodynamics whose concavity guarantees a symmetric hyperbolic system. But that quantity — we call it —bar h — is not the entropy, although it is closely related to it. It is formed by contracting the entropy flux vector — ha with a privileged time-like congruencebar ξ _α . It is also shown that the convexity of h plus the requirement that all speeds be smaller than the speed of light c provide symmetric hyperbolic field equations for all choices of the direction of time. At this level of generality the physical meaning of —h is unknown. However, in many circumstances it is equal to the entropy. This is so, of course, in the non-relativistic limit but also in the non-dissipative relativistic fluid and even in relativistic extended thermodynamics for a non-degenerate gas.

  5. Hadron Therapy for Cancer Treatment

    SciTech Connect

    Lennox, Arlene

    2003-09-10

    The biological and physical rationale for hadron therapy is well understood by the research community, but hadron therapy is not well established in mainstream medicine. This talk will describe the biological advantage of neutron therapy and the dose distribution advantage of proton therapy, followed by a discussion of the challenges to be met before hadron therapy can play a significant role in treating cancer. A proposal for a new research-oriented hadron clinic will be presented.

  6. Weibull model of multiplicity distribution in hadron-hadron collisions

    NASA Astrophysics Data System (ADS)

    Dash, Sadhana; Nandi, Basanta K.; Sett, Priyanka

    2016-06-01

    We introduce the use of the Weibull distribution as a simple parametrization of charged particle multiplicities in hadron-hadron collisions at all available energies, ranging from ISR energies to the most recent LHC energies. In statistics, the Weibull distribution has wide applicability in natural processes that involve fragmentation processes. This provides a natural connection to the available state-of-the-art models for multiparticle production in hadron-hadron collisions, which involve QCD parton fragmentation and hadronization. The Weibull distribution describes the multiplicity data at the most recent LHC energies better than the single negative binomial distribution.

  7. Hadron collider physics

    SciTech Connect

    Pondrom, L.

    1991-10-03

    An introduction to the techniques of analysis of hadron collider events is presented in the context of the quark-parton model. Production and decay of W and Z intermediate vector bosons are used as examples. The structure of the Electroweak theory is outlined. Three simple FORTRAN programs are introduced, to illustrate Monte Carlo calculation techniques. 25 refs.

  8. Relativistic Sommerfeld Low Temperature Expansion

    NASA Astrophysics Data System (ADS)

    Lourenço, O.; Dutra, M.; Delfino, A.; Sá Martins, J. S.

    We derive a relativistic Sommerfeld expansion for thermodynamic quantities in many-body fermionic systems. The expansion is used to generate the equation of state of the Walecka model and its isotherms. We find that these results are in good agreement with numerical calculations, even when the expansion is truncated at its lowest order, in the low temperature regime, defined by T/xf ≪ 1. Although the interesting region near the liquid-gas phase transition is excluded by this criterion, the expansion may still find usefulness in the study of very cold nuclear matter systems, such as neutron stars.

  9. The physics and experimental program of the Relativistic Heavy Ion Collider (RHIC)

    SciTech Connect

    Harris, J.W.

    1994-09-01

    The primary motivation for studying nucleus-nucleus collisions at relativistic and ultrarelativistic energies is to investigate matter at high energy densities ({var_epsilon} {much_gt} 1 GeV/fm{sup 3}). Early speculations of possible exotic states of matter focused on the astrophysical implications of abnormal states of dense nuclear matter. Field theoretical calculations predicted abnormal nuclear states and excitation of the vacuum. This generated an initial interest among particle and nuclear physicists to transform the state of the vacuum by using relativistic nucleus-nucleus collisions. Extremely high temperatures, above the Hagedorn limiting temperature, were expected and a phase transition to a system of deconfined quarks and gluons, the Quark-Gluon Plasma (QGP), was predicted. Such a phase of matter would have implications for both early cosmology and stellar evolution. The understanding of the behavior of high temperature nuclear matter is still in its early stages. However, the dynamics of the initial stages of these collisions, which involve hard parton-parton interactions, can be calculated using perturbative QCD. Various theoretical approaches have resulted in predictions that a high temperature (T {approximately} 500 MeV) gluon gas will be formed in the first instants (within 0.3 fm/c) of the collision. Furthermore, QCD lattice calculations exhibit a phase transition between a QGP and hadronic matter at a temperature near 250 MeV. Such phases of matter may have existed shortly after the Big Bang and may exist in the cores of dense stars. An important question is whether such states of matter can be created and studied in the laboratory. The Relativistic Heavy Ion Collider (RHIC) and a full complement of detector systems are being constructed at Brookhaven National Laboratory to investigate these new and fundamental properties of matter.

  10. Non-relativistic leptogenesis

    SciTech Connect

    Bödeker, Dietrich; Wörmann, Mirco E-mail: mwoermann@physik.uni-bielefeld.de

    2014-02-01

    In many phenomenologically interesting models of thermal leptogenesis the heavy neutrinos are non-relativistic when they decay and produce the baryon asymmetry of the Universe. We propose a non-relativistic approximation for the corresponding rate equations in the non-resonant case, and a systematic way for computing relativistic corrections. We determine the leading order coefficients in these equations, and the first relativistic corrections. The non-relativistic approximation works remarkably well. It appears to be consistent with results obtained using a Boltzmann equation taking into account the momentum distribution of the heavy neutrinos, while being much simpler. We also compute radiative corrections to some of the coefficients in the rate equations. Their effect is of order 1% in the regime favored by neutrino oscillation data. We obtain the correct leading order lepton number washout rate in this regime, which leads to large ( ∼ 20%) effects compared to previous computations.

  11. SHARE: Statistical hadronization with resonances

    NASA Astrophysics Data System (ADS)

    Torrieri, G.; Steinke, S.; Broniowski, W.; Florkowski, W.; Letessier, J.; Rafelski, J.

    2005-05-01

    SHARE is a collection of programs designed for the statistical analysis of particle production in relativistic heavy-ion collisions. With the physical input of intensive statistical parameters, it generates the ratios of particle abundances. The program includes cascade decays of all confirmed resonances from the Particle Data Tables. The complete treatment of these resonances has been known to be a crucial factor behind the success of the statistical approach. An optional feature implemented is the Breit-Wigner distribution for strong resonances. An interface for fitting the parameters of the model to the experimental data is provided. Program summaryTitle of the program:SHARE, October 2004, version 1.2 Catalogue identifier: ADVD Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADVD Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer: PC, Pentium III, 512 MB RAM (not hardware dependent) Operating system: Linux: RedHat 6.1, 7.2, FEDORA, etc. (not system dependent) Programming language:FORTRAN77: g77, f77 as well as Mathematica, ver. 4 or 5, for the case of full chemical equilibrium and particle widths set to zero Size of the package: 645 KB directory including example programs (87 KB compressed distribution archive) External routines: KERNLIB, MATHLIB and PACKLIB from the CERN Program Library (see http://cernlib.web.cern.ch for download and installation instructions) Distribution format: tar.gz Number of lines in distributed program, including test data, etc.: 15 277 Number of bytes in distributed program, including test data, etc.: 88 522 Computer: Any computer with an f77 compiler Nature of the physical problem: Statistical analysis of particle production in relativistic heavy-ion collisions involves the formation and the subsequent decays of a large number of resonances. With the physical input of thermal parameters, such as the temperature and fugacities, and considering cascading decays, along with weak

  12. Hadronic Lorentz violation in chiral perturbation theory

    NASA Astrophysics Data System (ADS)

    Kamand, Rasha; Altschul, Brett; Schindler, Matthias R.

    2017-03-01

    Any possible Lorentz violation in the hadron sector must be tied to Lorentz violation at the underlying quark level. The relationships between the theories at these two levels are studied using chiral perturbation theory. Starting from a two-flavor quark theory that includes dimension-4 Lorentz-violation operators, the effective Lagrangians are derived for both pions and nucleons, with novel terms appearing in both sectors. Since the Lorentz-violation coefficients for nucleons and pions are all related to a single set of underlying quark coefficients, one can compare the sensitivity of different types of experiments. Our analysis shows that atomic physics experiments currently provide constraints on the quark parameters that are stronger by about 10 orders of magnitude than astrophysical experiments with relativistic pions. Alternatively, it is possible to place approximate bounds on pion Lorentz violation using only proton and neutron observations. Under the assumption that the Lorentz-violating operators considered here are the only ones contributing to the relevant observables and taking the currently unknown hadronic low-energy constants to be of natural size, the resulting estimated bounds on four pion parameters are at the 10-23 level, representing improvements of 10 orders of magnitude.

  13. Relativistic Brownian motion

    NASA Astrophysics Data System (ADS)

    Dunkel, Jörn; Hänggi, Peter

    2009-02-01

    Over the past one hundred years, Brownian motion theory has contributed substantially to our understanding of various microscopic phenomena. Originally proposed as a phenomenological paradigm for atomistic matter interactions, the theory has since evolved into a broad and vivid research area, with an ever increasing number of applications in biology, chemistry, finance, and physics. The mathematical description of stochastic processes has led to new approaches in other fields, culminating in the path integral formulation of modern quantum theory. Stimulated by experimental progress in high energy physics and astrophysics, the unification of relativistic and stochastic concepts has re-attracted considerable interest during the past decade. Focusing on the framework of special relativity, we review, here, recent progress in the phenomenological description of relativistic diffusion processes. After a brief historical overview, we will summarize basic concepts from the Langevin theory of nonrelativistic Brownian motions and discuss relevant aspects of relativistic equilibrium thermostatistics. The introductory parts are followed by a detailed discussion of relativistic Langevin equations in phase space. We address the choice of time parameters, discretization rules, relativistic fluctuation-dissipation theorems, and Lorentz transformations of stochastic differential equations. The general theory is illustrated through analytical and numerical results for the diffusion of free relativistic Brownian particles. Subsequently, we discuss how Langevin-type equations can be obtained as approximations to microscopic models. The final part of the article is dedicated to relativistic diffusion processes in Minkowski spacetime. Since the velocities of relativistic particles are bounded by the speed of light, nontrivial relativistic Markov processes in spacetime do not exist; i.e., relativistic generalizations of the nonrelativistic diffusion equation and its Gaussian solutions

  14. Additional strange hadrons from QCD thermodynamics and strangeness freezeout in heavy ion collisions.

    PubMed

    Bazavov, A; Ding, H-T; Hegde, P; Kaczmarek, O; Karsch, F; Laermann, E; Maezawa, Y; Mukherjee, Swagato; Ohno, H; Petreczky, P; Schmidt, C; Sharma, S; Soeldner, W; Wagner, M

    2014-08-15

    We compare lattice QCD results for appropriate combinations of net strangeness fluctuations and their correlations with net baryon number fluctuations with predictions from two hadron resonance gas (HRG) models having different strange hadron content. The conventionally used HRG model based on experimentally established strange hadrons fails to describe the lattice QCD results in the hadronic phase close to the QCD crossover. Supplementing the conventional HRG with additional, experimentally uncharted strange hadrons predicted by quark model calculations and observed in lattice QCD spectrum calculations leads to good descriptions of strange hadron thermodynamics below the QCD crossover. We show that the thermodynamic presence of these additional states gets imprinted in the yields of the ground-state strange hadrons leading to a systematic 5-8 MeV decrease of the chemical freeze-out temperatures of ground-state strange baryons.

  15. Atoms in Flight: The Remarkable Connections between Atomic and Hadronic Physics

    SciTech Connect

    Brodsky, Stanley J.; /SLAC

    2012-02-16

    Atomic physics and hadron physics are both based on Yang Mills gauge theory; in fact, quantum electrodynamics can be regarded as the zero-color limit of quantum chromodynamics. I review a number of areas where the techniques of atomic physics provide important insight into the theory of hadrons in QCD. For example, the Dirac-Coulomb equation, which predicts the spectroscopy and structure of hydrogenic atoms, has an analog in hadron physics in the form of light-front relativistic equations of motion which give a remarkable first approximation to the spectroscopy, dynamics, and structure of light hadrons. The renormalization scale for the running coupling, which is unambiguously set in QED, leads to a method for setting the renormalization scale in QCD. The production of atoms in flight provides a method for computing the formation of hadrons at the amplitude level. Conversely, many techniques which have been developed for hadron physics, such as scaling laws, evolution equations, and light-front quantization have equal utility for atomic physics, especially in the relativistic domain. I also present a new perspective for understanding the contributions to the cosmological constant from QED and QCD.

  16. Hadronic and nuclear interactions in QCD

    SciTech Connect

    Not Available

    1982-01-01

    Despite the evidence that QCD - or something close to it - gives a correct description of the structure of hadrons and their interactions, it seems paradoxical that the theory has thus far had very little impact in nuclear physics. One reason for this is that the application of QCD to distances larger than 1 fm involves coherent, non-perturbative dynamics which is beyond present calculational techniques. For example, in QCD the nuclear force can evidently be ascribed to quark interchange and gluon exchange processes. These, however, are as complicated to analyze from a fundamental point of view as is the analogous covalent bond in molecular physics. Since a detailed description of quark-quark interactions and the structure of hadronic wavefunctions is not yet well-understood in QCD, it is evident that a quantitative first-principle description of the nuclear force will require a great deal of theoretical effort. Another reason for the limited impact of QCD in nuclear physics has been the conventional assumption that nuclear interactions can for the most part be analyzed in terms of an effective meson-nucleon field theory or potential model in isolation from the details of short distance quark and gluon structure of hadrons. These lectures, argue that this view is untenable: in fact, there is no correspondence principle which yields traditional nuclear physics as a rigorous large-distance or non-relativistic limit of QCD dynamics. On the other hand, the distinctions between standard nuclear physics dynamics and QCD at nuclear dimensions are extremely interesting and illuminating for both particle and nuclear physics.

  17. An estimate of the bulk viscosity of the hadronic medium

    NASA Astrophysics Data System (ADS)

    Sarwar, Golam; Chatterjee, Sandeep; Alam, Jane

    2017-05-01

    The bulk viscosity (ζ) of the hadronic medium has been estimated within the ambit of the Hadron Resonance Gas (HRG) model including the Hagedorn density of states. The HRG thermodynamics within a grand canonical ensemble provides the mean hadron number as well as its fluctuation. The fluctuation in the chemical composition of the hadronic medium in the grand canonical ensemble can result in non-zero divergence of the hadronic fluid flow velocity, allowing us to estimate the ζ of the hadronic matter up to a relaxation time. We study the influence of the hadronic spectrum on ζ and find its correlation with the conformal symmetry breaking measure, ε -3P. We estimate ζ along the contours with constant, S/{N}B (total entropy/net baryon number) in the T-μ plane (temperature-baryonic chemical potential) for S/{N}B=30,45 and 300. We also assess the value of ζ on the chemical freeze-out curve for various centers of mass energy (\\sqrt{{s}{NN}}) and find that the bulk viscosity to entropy density ratio, \\zeta /s is larger in the energy range of the beam energy scan program of RHIC, low energy SPS run, AGS, NICA and FAIR, than LHC energies.

  18. QCD and Hadron Physics

    SciTech Connect

    Brodsky, Stanley J.; Deshpande, Abhay L.; Gao, Haiyan; McKeown, Robert D.; Meyer, Curtis A.; Meziani, Zein-Eddine; Milner, Richard G.; Qiu, Jianwei; Richards, David G.; Roberts, Craig D.

    2015-02-26

    This White Paper presents the recommendations and scientific conclusions from the Town Meeting on QCD and Hadronic Physics that took place in the period 13-15 September 2014 at Temple University as part of the NSAC 2014 Long Range Planning process. The meeting was held in coordination with the Town Meeting on Phases of QCD and included a full day of joint plenary sessions of the two meetings. The goals of the meeting were to report and highlight progress in hadron physics in the seven years since the 2007 Long Range Plan (LRP07), and present a vision for the future by identifying the key questions and plausible paths to solutions which should define the next decade. The introductory summary details the recommendations and their supporting rationales, as determined at the Town Meeting on QCD and Hadron Physics, and the endorsements that were voted upon. The larger document is organized as follows. Section 2 highlights major progress since the 2007 LRP. It is followed, in Section 3, by a brief overview of the physics program planned for the immediate future. Finally, Section 4 provides an overview of the physics motivations and goals associated with the next QCD frontier: the Electron-Ion-Collider.

  19. Relativistic Kinetic Theory

    NASA Astrophysics Data System (ADS)

    Vereshchagin, Gregory V.; Aksenov, Alexey G.

    2017-02-01

    Preface; Acknowledgements; Acronyms and definitions; Introduction; Part I. Theoretical Foundations: 1. Basic concepts; 2. Kinetic equation; 3. Averaging; 4. Conservation laws and equilibrium; 5. Relativistic BBGKY hierarchy; 6. Basic parameters in gases and plasmas; Part II. Numerical Methods: 7. The basics of computational physics; 8. Direct integration of Boltzmann equations; 9. Multidimensional hydrodynamics; Part III. Applications: 10. Wave dispersion in relativistic plasma; 11. Thermalization in relativistic plasma; 12. Kinetics of particles in strong fields; 13. Compton scattering in astrophysics and cosmology; 14. Self-gravitating systems; 15. Neutrinos, gravitational collapse and supernovae; Appendices; Bibliography; Index.

  20. Hadron Production in Heavy Ion Collisions

    SciTech Connect

    Ritter, Hans Georg; Xu, Nu

    2009-05-19

    Heavy ion collisions are an ideal tool to explore the QCD phase diagram. The goal is to study the equation of state (EOS) and to search for possible in-medium modifications of hadrons. By varying the collision energy a variety of regimes with their specific physics interest can be studied. At energies of a few GeV per nucleon, the regime where experiments were performed first at the Berkeley Bevalac and later at the Schwer-Ionen-Synchrotron (SIS) at GSI in Darmstadt, we study the equation of state of dense nuclear matter and try to identify in-medium modifications of hadrons. Towards higher energies, the regime of the Alternating Gradient Synchrotron (AGS) at the Brookhaven National Laboratory (BNL), the Super-Proton Synchrotron (SPS) at CERN, and the Relativistic Heavy Ion Collider (RHIC) at BNL, we expect to produce a new state of matter, the Quark-Gluon Plasma (QGP). The physics goal is to identify the QGP and to study its properties. By varying the energy, different forms of matter are produced. At low energies we study dense nuclear matter, similar to the type of matter neutron stars are made of. As the energy is increased the main constituents of the matter will change. Baryon excitations will become more prevalent (resonance matter). Eventually we produce deconfined partonic matter that is thought to be in the core of neutron stars and that existed in the early universe. At low energies a great variety of collective effects is observed and a rather good understanding of the particle production has been achieved, especially that of the most abundantly produced pions and kaons. Many observations can be interpreted as time-ordered emission of various particle species. It is possible to determine, albeit model dependent, the equation of state of nuclear matter. We also have seen indications, that the kaon mass, especially the mass of the K{sup +}, might be modified by the medium created in heavy ion collisions. At AGS energies and above, emphasis shifts towards

  1. PSEUDOSPIN SYMMETRY IN NUCLEI, SPIN SYMMETRY IN HADRONS

    SciTech Connect

    P. PAGE; T. GOLDMAN; J. GINOCCHIO

    2000-08-01

    Ginocchio argued that chiral symmetry breaking in QCD is responsible for the relativistic pseudospin symmetry in the Dirac equation, explaining the observed approximate pseudospin symmetry in sizable nuclei. On a much smaller scale, it is known that spin-orbit splittings in hadrons are small. Specifically, new experimental data from CLEO indicate small splittings in D-mesons. For heavy-light mesons we identify a cousin of pseudospin symmetry that suppresses these splittings in the Dirac equation, known as spin symmetry. We suggest an experimental test of the implications of spin symmetry for wave functions in electron-positron annihilation. We investigate how QCD can give rise to two different dynamical symmetries on nuclear and hadronic scales.

  2. Hadronization processes in neutrino interactions

    SciTech Connect

    Katori, Teppei; Mandalia, Shivesh

    2015-10-15

    Next generation neutrino oscillation experiments utilize details of hadronic final states to improve the precision of neutrino interaction measurements. The hadronic system was often neglected or poorly modelled in the past, but they have significant effects on high precision neutrino oscillation and cross-section measurements. Among the physics of hadronic systems in neutrino interactions, the hadronization model controls multiplicities and kinematics of final state hadrons from the primary interaction vertex. For relatively high invariant mass events, many neutrino experiments rely on the PYTHIA program. Here, we show a possible improvement of this process in neutrino event generators, by utilizing expertise from the HERMES experiment. Finally, we estimate the impact on the systematics of hadronization models for neutrino mass hierarchy analysis using atmospheric neutrinos such as the PINGU experiment.

  3. High energy hadron-hadron collisions. [Dept. of Physics and Astronomy, Univ. of Georgia, Athens, Georgia

    SciTech Connect

    Chou, T.T.

    1992-01-01

    Results of a study on high energy collisions with the geometrical model are summarized in three parts: (1) the elastic hadron-hadron collision, (2) the inelastic hadron-hadron collision, and (3) e[sup +]e[sup [minus

  4. Relativistic Length Agony Continued

    NASA Astrophysics Data System (ADS)

    Redzic, D. V.

    2014-06-01

    We made an attempt to remedy recent confusing treatments of some basic relativistic concepts and results. Following the argument presented in an earlier paper (Redzic 2008b), we discussed the misconceptions that are recurrent points in the literature devoted to teaching relativity such as: there is no change in the object in Special Relativity, illusory character of relativistic length contraction, stresses and strains induced by Lorentz contraction, and related issues. We gave several examples of the traps of everyday language that lurk in Special Relativity. To remove a possible conceptual and terminological muddle, we made a distinction between the relativistic length reduction and relativistic FitzGerald-Lorentz contraction, corresponding to a passive and an active aspect of length contraction, respectively; we pointed out that both aspects have fundamental dynamical contents. As an illustration of our considerations, we discussed briefly the Dewan-Beran-Bell spaceship paradox and the 'pole in a barn' paradox.

  5. Relativistic GLONASS and geodesy

    NASA Astrophysics Data System (ADS)

    Mazurova, E. M.; Kopeikin, S. M.; Karpik, A. P.

    2016-12-01

    GNSS technology is playing a major role in applications to civil, industrial and scientific areas. Nowadays, there are two fully functional GNSS: American GPS and Russian GLONASS. Their data processing algorithms have been historically based on the Newtonian theory of space and time with only a few relativistic effects taken into account as small corrections preventing the system from degradation on a fairly long time. Continuously growing accuracy of geodetic measurements and atomic clocks suggests reconsidering the overall approach to the GNSS theoretical model based on the Einstein theory of general relativity. This is essentially more challenging but fundamentally consistent theoretical approach to relativistic space geodesy. In this paper, we overview the basic principles of the relativistic GNSS model and explain the advantages of such a system for GLONASS and other positioning systems. Keywords: relativistic GLONASS, Einstein theory of general relativity.

  6. Weakly relativistic plasma expansion

    SciTech Connect

    Fermous, Rachid Djebli, Mourad

    2015-04-15

    Plasma expansion is an important physical process that takes place in laser interactions with solid targets. Within a self-similar model for the hydrodynamical multi-fluid equations, we investigated the expansion of both dense and under-dense plasmas. The weakly relativistic electrons are produced by ultra-intense laser pulses, while ions are supposed to be in a non-relativistic regime. Numerical investigations have shown that relativistic effects are important for under-dense plasma and are characterized by a finite ion front velocity. Dense plasma expansion is found to be governed mainly by quantum contributions in the fluid equations that originate from the degenerate pressure in addition to the nonlinear contributions from exchange and correlation potentials. The quantum degeneracy parameter profile provides clues to set the limit between under-dense and dense relativistic plasma expansions at a given density and temperature.

  7. Relativistic Jets and Collapsars

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Woosley, S. E.

    2001-05-01

    In order to study the relativistic jets from collapsars, we have developed a special relativistic multiple-dimensional hydrodynamics code similar to the GENESIS code (Aloy et al., ApJS, 122, 151). The code is based on the PPM interpolation algorithm and Marquina's Riemann solver. Using this code, we have simulated the propagation of axisymmetric jets along the rotational axis of collapsed rotating stars (collapsars). Using the progenitors of MacFadyen, Woosley, and Heger, a relativistic jet is injected at a given inner boundary radius. This radius, the opening angle of the jet, its Lorentz factor, and its total energy are parameters of the problem. A highly collimated, relativistic outflow is observed at the surface of the star several seconds later. We will discuss the hydrodynamical focusing of the jet, it's break out properties, time evolution, and sensitivity to the adopted parameters.

  8. Influence of pions on the hadron-quark phase transition

    SciTech Connect

    Lourenco, O.; Dutra, M.; Frederico, T.; Malheiro, M.; Delfino, A.

    2013-05-06

    In this work we present the features of the hadron-quark phase transition diagrams in which the pions are included in the system. To construct such diagrams we use two different models in the description of the hadronic and quark sectors. At the quark level, we consider two distinct parametrizations of the Polyakov-Nambu-Jona-Lasinio (PNJL) models. In the hadronic side, we use a well known relativistic mean-field (RMF) nonlinear Walecka model. We show that the effect of the pions on the hadron-quark phase diagrams is to move the critical end point (CEP) of the transitions lines. Such an effect also depends on the value of the critical temperature (T{sub 0}) in the pure gauge sector used to parametrize the PNJL models. Here we treat the phase transitions using two values for T{sub 0}, namely, T{sub 0}= 270 MeV and T{sub 0}= 190 MeV. The last value is used to reproduce lattice QCD data for the transition temperature at zero chemical potential.

  9. Electromagnetic wave equations for relativistically degenerate quantum magnetoplasmas.

    PubMed

    Masood, Waqas; Eliasson, Bengt; Shukla, Padma K

    2010-06-01

    A generalized set of nonlinear electromagnetic quantum hydrodynamic (QHD) equations is derived for a magnetized quantum plasma, including collisional, electron spin- 1/2, and relativistically degenerate electron pressure effects that are relevant for dense astrophysical systems, such as white dwarfs. For illustrative purposes, linear dispersion relations are derived for one-dimensional magnetoacoustic waves for a collisionless nonrelativistic degenerate gas in the presence of the electron spin- 1/2 contribution and for magnetoacoustic waves in a plasma containing relativistically degenerate electrons. It is found that both the spin and relativistic degeneracy at high densities tend to slow down the magnetoacoustic wave due to the Pauli paramagnetic effect and relativistic electron mass increase. The present study outlines the theoretical framework for the investigation of linear and nonlinear behaviors of electromagnetic waves in dense astrophysical systems. The results are applied to calculate the magnetoacoustic speeds for both the nonrelativistic and relativistic electron degeneracy cases typical for white dwarf stars.

  10. Electromagnetic wave equations for relativistically degenerate quantum magnetoplasmas

    SciTech Connect

    Masood, Waqas; Eliasson, Bengt; Shukla, Padma K.

    2010-06-15

    A generalized set of nonlinear electromagnetic quantum hydrodynamic (QHD) equations is derived for a magnetized quantum plasma, including collisional, electron spin-(1/2), and relativistically degenerate electron pressure effects that are relevant for dense astrophysical systems, such as white dwarfs. For illustrative purposes, linear dispersion relations are derived for one-dimensional magnetoacoustic waves for a collisionless nonrelativistic degenerate gas in the presence of the electron spin-(1/2) contribution and for magnetoacoustic waves in a plasma containing relativistically degenerate electrons. It is found that both the spin and relativistic degeneracy at high densities tend to slow down the magnetoacoustic wave due to the Pauli paramagnetic effect and relativistic electron mass increase. The present study outlines the theoretical framework for the investigation of linear and nonlinear behaviors of electromagnetic waves in dense astrophysical systems. The results are applied to calculate the magnetoacoustic speeds for both the nonrelativistic and relativistic electron degeneracy cases typical for white dwarf stars.

  11. Correlations of heavy quarks produced at the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Younus, Mohammed; Jamil, Umme; Srivastava, Dinesh K.

    2012-02-01

    We study the correlations of heavy quarks produced in relativistic heavy-ion collisions and find them to be quite sensitive to the effects of the medium and the production mechanisms. In order to put this on a quantitative footing, as a first step, we analyze the azimuthal, transverse momentum, and rapidity correlations of heavy quark-antiquark (Q\\overline{Q}) pairs in pp collisions at {O}(α3s). This sets the stage for the identification and study of medium modification of similar correlations in the relativistic collision of heavy nuclei at the Large Hadron Collider. Next we study the additional production of charm quarks in heavy ion collisions due to multiple scatterings, namely jet-jet collisions, jet-thermal collisions, and thermal interactions. We find that these give rise to azimuthal correlations which are quite different from those arising from the prompt initial production at leading order and at next to leading order. Communicated by Professor Steffen Bass.

  12. BRAHMS (Broad Range Hadron Magnetic Spectrometer) Figures and Data Archive

    DOE Data Explorer

    The BRAHMS experiment was designed to measure charged hadrons over a wide range of rapidity and transverse momentum to study the reaction mechanisms of the relativistic heavy ion reactions at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory and the properties of the highly excited nuclear matter formed in these reactions. The experiment took its first data during the RHIC 2000 year run and completed data taking in June 2006. The BRAHMS archive makes publications available and also makes data and figures from those publications available as separate items. See also the complete list of publications, multimedia presentations, and related papers at http://www4.rcf.bnl.gov/brahms/WWW/publications.html

  13. High pT hadron spectra at RHIC: an overview

    SciTech Connect

    Klay, J L

    2004-10-11

    Recent results on high transverse momentum (p{sub T}) hadron production in p+p, d+Au and Au+Au collisions at the Relativistic Heavy Ion Collider (RHIC) are reviewed. Comparison of the nuclear modification factors, R{sub dAu}(p{sub T}) and R{sub AA}(p{sub T}), demonstrates that the large suppression in central Au+Au collisions is due to strong final-state effects. Theoretical models which incorporate jet quenching via gluon Bremsstrahlung in the dense partonic medium that is expected in central Au+Au collisions at ultra-relativistic energies are shown to reproduce the shape and magnitude of the observed suppression over the range of collision energies so far studied at RHIC.

  14. Exact Relativistic `Antigravity' Propulsion

    NASA Astrophysics Data System (ADS)

    Felber, Franklin S.

    2006-01-01

    The Schwarzschild solution is used to find the exact relativistic motion of a payload in the gravitational field of a mass moving with constant velocity. At radial approach or recession speeds faster than 3-1/2 times the speed of light, even a small mass gravitationally repels a payload. At relativistic speeds, a suitable mass can quickly propel a heavy payload from rest nearly to the speed of light with negligible stresses on the payload.

  15. Hadronic absorption cross sections of B{sub c}

    SciTech Connect

    Lodhi, M. A. K.; Akram, Faisal; Irfan, Shaheen

    2011-09-15

    The cross sections of B{sub c} absorption by {pi} mesons are calculated using a hadronic Lagrangian based on the SU(5) flavor symmetry. Calculated cross sections are found to be in the ranges 2-7 mb and 0.2-2 mb for the processes B{sub c}{sup +}{pi}{yields}DB and B{sub c}{sup +}{pi}{yields}D*B*, respectively, when the monopole form factor is included. These results could be useful in calculating the production rate of B{sub c} mesons in relativistic heavy ion collisions.

  16. Supersymmetry across the light and heavy-light hadronic spectrum

    SciTech Connect

    Dosch, Hans Gunter; de Teramond, Guy F.; Brodsky, Stanley J.

    2015-10-07

    Relativistic light-front bound-state equations for mesons and baryons can be constructed in the chiral limit from the supercharges of a superconformal algebra which connect baryon and meson spectra. Quark masses break the conformal invariance, but the basic underlying supersymmetric mechanism, which transforms meson and baryon wave functions into each other, still holds and gives remarkable connections across the entire spectrum of light and heavy-light hadrons. As a result, we also briefly examine the consequences of extending the supersymmetric relations to double-heavy mesons and baryons.

  17. Particles with variable spin and a composite hadron model

    SciTech Connect

    Pletyukov, V.A.; Strazhev, V.I.

    1986-01-01

    The theory of relativistic wave equations (RWE) is examined as a possibility for construction of a gauge model without use of external coordinates, based on localization of nongeometric symmetry. The described approach ascribes to the quark a wave function the component of which obey RWE. It considers the quark as a particle with a variable spin of 1/2, 3/2. Without introducing the concept of color it is possible to solve the problem of the relationship between spin and statistics in the composite hadron model.

  18. Evidence for color fluctuations in hadrons from coherent nuclear diffraction

    SciTech Connect

    Frankfurt, L. ); Miller, G.A. ); Strikman, M. )

    1993-11-01

    A QCD-based treatment of projectile size fluctuations is used to compute inelastic diffractive cross sections [sigma][sub diff] for coherent hadron-nuclear processes. We find that fluctuations near the average size give the major contribution to the cross section with [lt] few % contribution from small size configurations. The computed values of [sigma][sub diff] are consistent with the limited available data. The importance of coherent diffraction studies for a wide range of projectiles for high energy Fermilab fixed target experiments is emphasized. The implications of these significant color fluctuations for relativistic heavy ion collisions are discussed.

  19. Relativistic effects in chemistry

    SciTech Connect

    Yatsimirskii, K.B.

    1995-11-01

    Relativistic effects become apparent when the velocity of the electron is arbitrarily close to the speed of light (137 au) without actually attaining it (in heavy atoms of elements at the end of Mendeleev`s Periodic Table). At the orbital level, the relativistic effect is apparent in the radial contraction of penetrating s and p shells, expansion of nonpenetrating d and f shells, and the spin-orbit splitting of p-,d-, and f-shells. The appearance of a relativistic effect is indicated in the variation in the electronic configurations of the atoms in the Periodic Table, the appearance of new types of closed electron shells (6s{sub 1/2}{sup 2}, 6p{sub 1/2}{sup 2}, 7s{sub 1/2}{sup 2}, 5d{sub 3/2}{sup 4}), the stabilization of unstable oxidation states of heavy elements, the characteristic variation in the ionization enthalpies of heavy atoms, their electron affinity, hydration energies, redox potentials, and optical electronegativities. In the spectra of coordination compounds, a relativistic effect is observed when comparing the position of the charge transfer bands in analogous compounds, the parameters characterizing the ligand field strength (10Dq), the interatomic distances and angles in compounds of heavy elements. A relativistic effect is also apparent in the ability of heavy metals to form clusters and superclusters. Relativistic corrections also affect other properties of heavy metal compounds (force constants, dipole moments, biological activity, etc.).

  20. Relativistic viscoelastic fluid mechanics.

    PubMed

    Fukuma, Masafumi; Sakatani, Yuho

    2011-08-01

    A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.

  1. Relativistic viscoelastic fluid mechanics

    SciTech Connect

    Fukuma, Masafumi; Sakatani, Yuho

    2011-08-15

    A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.

  2. Theoretical studies in hadronic and nuclear physics. Progress report, December 1, 1993--June 30, 1994

    SciTech Connect

    Cohen, T.D.; Banerjee, M.K.

    1994-07-01

    Under Hadrons in Nuclei and Nuclear Matter the authors research the ways in which the properties of nucleons and mesons are modified in the nuclear medium. Research progress is reported on a number of topics in this general area, including studies of the role of chiral symmetry for finite density or temperature nuclear matter, the use of QCD sum rules to describe baryons in nuclear matter, and color transparency. In the general field of Hadron Physics broad progress included studies of perturbative QCD, heavy quark physics, QCD sum rules, and QCD-based models. Notable progress was also achieved in Relativistic Dynamics in Quark, Hadron, and Nuclear Physics, where an explicit model of composite particles shows how the z-graph physics (which is an essential part of Dirac phenomenology) comes about. In addition, calculations of elastic electron-deuteron scattering based on two-body relativistic dynamics and meson exchange currents were completed, as were studies of quark-anti-quark bound states based on a relativistic quark model. Progress is also reported on the relativistic few-body problem. In the area of Heavy Ion Dynamics and Sharp Lepton Pairs, work continues on the Composite Particle Scenario for the `Sharp Lepton Problem`. In particular, the scenario can now encompass the anomalous sharp leptons reported from positron irradiation of heavy neutral atoms, establishing such irradiations as an alternative experimental window to the heavy ion experiments.

  3. Summary: Hadron dynamics sessions

    NASA Astrophysics Data System (ADS)

    Carroll, A. S.; Londergan, J. T.

    Four sessions on Hadron Dynamics were organized at this workshop. The first topic, QCD Exclusive Reactions and Color Transparency, featured talks by Ralston, Heppelman, and Strikman; the second, QCD and Inclusive Reactions had talks by Garvey, Speth, and Kisslinger. The third dynamics session, Medium Modification of Elementary Interactions had contributions from Kopeliovich, Alves, and Gyulassy; the fourth session, Pre-QCD Dynamics and Scattering, had talks by Harris, Myhrer, and Brown. An additional joint Spectroscopy/Dynamics session featured talks by Zumbro, Johnson, and McClelland. These contributions are reviewed briefly in this summary. Two additional joint sessions between Dynamics and eta physics are reviewed by the organizers of the eta sessions. In such a brief review there is no way the authors can adequately summarize the details of the physics presented here. As a result, they concentrate only on brief impressionistic sketches of the physics topics discussed and their interrelations. They include no bibliography in this summary, but simply refer to the talks given in more detail in the workshop proceedings. They focus on topics which were common to several presentations in these sessions. First, nuclear and particle descriptions of phenomena are now clearly converging, in both a qualitative and quantitative sense; they show several examples of this convergence. Second, an important issue in hadron dynamics is the extent to which elementary interactions are modified in nuclei at high energies and/or densities, and they illustrate some of these medium effects. Finally, they focus on those dynamical issues where hadron facilities can make an important, or even a unique, contribution to the knowledge of particle and nuclear physics.

  4. Nonextensive statistical effects in the quark-gluon plasma formation at relativistic heavy-ion collisions energies

    NASA Astrophysics Data System (ADS)

    Gervino, Gianpiero; Lavagno, Andrea; Pigato, Daniele

    2012-06-01

    We investigate the relativistic equation of state of hadronic matter and quark-gluon plasma at finite temperature and baryon density in the framework of the non-extensive statistical mechanics, characterized by power-law quantum distributions. We impose the Gibbs conditions on the global conservation of baryon number, electric charge and strangeness number. For the hadronic phase, we study an extended relativistic mean-field theoretical model with the inclusion of strange particles (hyperons and mesons). For the quark sector, we employ an extended MIT-Bag model. In this context we focus on the relevance of non-extensive effects in the presence of strange matter.

  5. The large hadron computer

    NASA Astrophysics Data System (ADS)

    Hirstius, Andreas

    2008-11-01

    In the mid-1990s, when CERN physicists made their first cautious estimates of the amount of data that experiments at the Large Hadron Collider (LHC) would produce, the microcomputer component manufacturer Intel had just released the Pentium Pro processor. Windows was the dominant operating system, although Linux was gaining momentum. CERN had recently made the World Wide Web public, but the system was still a long way from the all-encompassing network it is today. And a single gigabyte (109 bytes) of disk space cost several hundred dollars.

  6. Physics of very high energy hadron-hadron colliders

    SciTech Connect

    Hinchliffe, I.

    1986-09-01

    A review is given of the physics accessible at a very high energy hadron-hadron collider. Emphasis is placed on the reliability of the predicted rates, and upon the energy and luminosity required to explore new physics options. 38 refs., 19 figs.

  7. High energy hadron-hadron collisions. Annual progress report

    SciTech Connect

    Chou, T.T.

    1992-12-31

    Results of a study on high energy collisions with the geometrical model are summarized in three parts: (1) the elastic hadron-hadron collision, (2) the inelastic hadron-hadron collision, and (3) e{sup +}e{sup {minus}} annihilation. For elastic scattering, a modified form for the hadronic matter form factor of the proton was proposed which is still dipole in form but contains an energy--dependent range parameter. This new expression of the opacity function fits the elastic {bar p}p scattering very well from the ISR to S{bar p}pS energies. Extrapolation of this theory also yielded results {bar p}p in good agreement with the {bar p}p differential cross section measured at the Tevatron. For inelastic hadron-hadron collisions, we have made a systematic investigation of the single-particle momentum spectra in the entire S{bar p}pS energy region. Results are useful for the extrapolation of angular distribution to the higher SSC energies. In e{sup +}e{sup {minus}} annihilation, a detailed analysis of all available experimental multiplicity data from PETRA to LEP energies has been performed. The cluster size of emitted hadrons increases gradually with energy. Aside from high-energy collisions, the giant fullerene molecules were studied and precise algebraic eigenvalue expressions of the Hueckel problem for carbon-240 were obtained.

  8. Review on DTU-parton model for hadron-hadron and hadron-nucleus collisions

    SciTech Connect

    Chiu, C.B.

    1980-08-01

    The parton picture of color separation of dual string and its subsequent breakup is used to motivate the DTU-parton model for high energy small p/sub T/ multiparticle productions in hadron-hadron and hadron-nucleus collisions. A brief survey on phenomenological applications of the model: such as the inclusive spectra for various hh processes and central plateau heights predicted, hA inclusive spectra and the approximate anti v-universalities is presented.

  9. Report on the Oak Ridge workshop on Monte Carlo codes for relativistic heavy-ion collisions

    SciTech Connect

    Awes, T.C.; Sorensen, S.P.

    1988-01-01

    In order to make detailed predictions for the case of purely hadronic matter, several Monte Carlo codes have been developed to describe relativistic nucleus-nucleus collisions. Although these various models build upon models of hadron-hadron interactions and have been fitted to reproduce hadron-hadron collision data, they have rather different pictures of the underlying hadron collision process and of subsequent particle production. Until now, the different Monte Carlo codes have, in general, been compared to different sets of experimental data, according to which results were readily available to the model builder or which Monte Carlo code was readily available to an experimental group. As a result, it has been difficult to draw firm conclusions about whether the observed deviations between experiments and calculations were due to deficiencies in the particular model, experimental discrepancies, or interesting effects beyond a simple superposition of nucleon-nucleon collisions. For this reason, it was decided that it would be productive to have a structured confrontation between the available experimental data and the many models of high-energy nuclear collisions in a manner in which it could be ensured that the computer codes were run correctly and the experimental acceptances were properly taken into account. With this purpose in mind, a Workshop on Monte Carlo Codes for Relativistic Heavy-Ion Collisions was organized at the Joint Institute for Heavy Ion Research at Oak Ridge National Laboratory from September 12--23, 1988. This paper reviews this workshop. 11 refs., 6 figs.

  10. Monte Carlo approach for hadron azimuthal correlations in high energy proton and nuclear collisions

    NASA Astrophysics Data System (ADS)

    Ayala, Alejandro; Dominguez, Isabel; Jalilian-Marian, Jamal; Magnin, J.; Tejeda-Yeomans, Maria Elena

    2012-09-01

    We use a Monte Carlo approach to study hadron azimuthal angular correlations in high-energy proton-proton and central nucleus-nucleus collisions at the BNL Relativistic Heavy Ion Collider energies at midrapidity. We build a hadron event generator that incorporates the production of 2→2 and 2→3 parton processes and their evolution into hadron states. For nucleus-nucleus collisions we include the effect of parton energy loss in the quark-gluon plasma using a modified fragmentation function approach. In the presence of the medium, for the case when three partons are produced in the hard scattering, we analyze the Monte Carlo sample in parton and hadron momentum bins to reconstruct the angular correlations. We characterize this sample by the number of partons that are able to hadronize by fragmentation within the selected bins. In the nuclear environment the model allows hadronization by fragmentation only for partons with momentum above a threshold pTthresh=2.4 GeV. We argue that one should treat properly the effect of those partons with momentum below the threshold, because their interaction with the medium may lead to showers of low-momentum hadrons along the direction of motion of the original partons as the medium becomes diluted.

  11. Quarkonia production with leptons and hadrons

    SciTech Connect

    V. Papadimitriou

    2004-06-09

    We discuss current issues and present the latest measurements on quarkonia production from experiments monitoring hadron-hadron and lepton-hadron collisions. These measurements include cross section and polarization results for charmonium and bottomonium states.

  12. Gamma-hadron families and scaling violation

    NASA Technical Reports Server (NTRS)

    Gaisser, T. K.; Stanev, T.; Wrotniak, J. A.

    1985-01-01

    For three different interaction models we have simulated gamma-hadron families, including the detector (Pamir emulsion chamber) response. Rates of gamma families, hadrons, and hadron-gamma ratios were compared with experiments.

  13. Hadronic laws from QCD

    NASA Astrophysics Data System (ADS)

    Cahill, R. T.

    1992-06-01

    A review is given of progress in deriving the effective action for hadronic physics, S[π, ϱ, ω,.., overlineN, N,..] , from the fundamental defining action of QCD, S[ overlineq, q, A μa] . This is a problem in quantum field theory and the most success so far has been achieved using functional integral calculus (FIC) techniques. This formulates the problem as an exercise in changing the variables of integration in the functional integrals, from those of the quark and gluon fields to those of the (bare) meson and baryon fields. The appropriate variables are determined by the dynamics of QCD, and the final hadronic variables (essentially the 'normal modes' of QCD) are local fields describing the 'centre-of-mass' motion of extended bound states of quarks. The quarks are extensively dressed by the gluons, and the detailed aspects of the hidden chiral symmetry emerge naturally from the formalism. Particular attention is given to covariant integral equations which determine bare nucleon structure (i.e. in the quenched approximation). These equations, which arise from the closed double-helix diagrams of the FIC analysis, describe the baryons in terms of quark-diquark structure, in the form of Faddeev equations. This hadronisation of QCD also generates the dressing of these baryons by the pions, and the non-local πNN coupling.

  14. A new hadron spectroscopy

    NASA Astrophysics Data System (ADS)

    Olsen, Stephen Lars

    2015-04-01

    QCD-motivated models for hadrons predict an assortment of "exotic" hadrons that have structures that are more complex than the quark-antiquark mesons and three-quark baryons of the original quark-parton model. These include pentaquark baryons, the six-quark H-dibaryon, and tetraquark, hybrid and glueball mesons. Despite extensive experimental searches, no unambiguous candidates for any of these exotic configurations have been identified. On the other hand, a number of meson states, one that seems to be a proton-antiproton bound state, and others that contain either charmed-anticharmed quark pairs or bottom-antibottom quark pairs, have been recently discovered that neither fit into the quark-antiquark meson picture nor match the expected properties of the QCD-inspired exotics. Here I briefly review results from a recent search for the H-dibaryon, and discuss some properties of the newly discovered states -the proton-antiproton state and the so-called XY Z mesons- and compare them with expectations for conventional quark-antiquark mesons and the predicted QCD-exotic states.

  15. Quarkonium production in hadronic collisions

    SciTech Connect

    Gavai, R.; Schuler, G.A.; Sridhar, K.

    1995-07-01

    We summarize the theoretical description of charmonium and bottonium production in hadronic collisions and compare it to the available data from hadron-nucleon interactions. With the parameters of the theory established by these data, we obtain predictions for quarkonium production at RHIC and LHC energies.

  16. Energy dependence of hadronic activity

    NASA Astrophysics Data System (ADS)

    Gabriel, T. A.; Groom, D. E.; Job, P. K.; Mokhov, N. V.; Stevenson, G. R.

    1994-01-01

    Two features of high-energy hadronic cascades have long been known to shielding specialists: a) in a high-energy hadronic cascade in a given material (incident E ≳ 10 GeV), the relative abundance and spectrum of each hadronic species responsible for most of the energy deposition is independent of the energy or species of the incident hadron, and b) because π0 production bleeds off more and more energy into the electromagnetic sector as the energy of the incident hadron increases, the absolute level of this low-energy hadronic activity ( E ≲ 1 GeV) rises less rapidly than the incident energy, and in fact rises very nearly as a power of the incident energy. Both features are of great importance in hadron calorimetry, where it is the "universal spectrum" which makes possible the definition of an intrinsic {e}/{h}, and the increasing fraction of the energy going into π0's which leads to the energy dependence of {e}/{π}. We present evidence for the "universal spectrum," and use an induction argument and simulation results to demonstrate that the low-energy activity ss Em, with 0.80 ≲ m ≲ 0.85. The hadronic activity produced by incident pions is 15-20% less than that initiated by protons.

  17. Review of hadrons in medium

    SciTech Connect

    Krein, Gastão

    2016-01-22

    I review the present status in the theoretical and phenomenological understanding of hadron properties in strongly interacting matter. The topics covered are the EMC effect, nucleon structure functions in cold nuclear matter, spectral properties of light vector mesons in hot and cold nuclear matter, and in-medium properties of heavy flavored hadrons.

  18. Heavy hadrons in nuclear matter

    NASA Astrophysics Data System (ADS)

    Hosaka, Atsushi; Hyodo, Tetsuo; Sudoh, Kazutaka; Yamaguchi, Yasuhiro; Yasui, Shigehiro

    2017-09-01

    Current studies on heavy hadrons in nuclear medium are reviewed with a summary of the basic theoretical concepts of QCD, namely chiral symmetry, heavy quark spin symmetry, and the effective Lagrangian approach. The nuclear matter is an interesting place to study the properties of heavy hadrons from many different points of view. We emphasize the importance of the following topics: (i) charm/bottom hadron-nucleon interaction, (ii) structure of charm/bottom nuclei, and (iii) QCD vacuum properties and hadron modifications in nuclear medium. We pick up three different groups of heavy hadrons, quarkonia (J / ψ, ϒ), heavy-light mesons (D/ D ¯ , B ¯ / B) and heavy baryons (Λc, Λb). The modifications of those hadrons in nuclear matter provide us with important information to investigate the essential properties of heavy hadrons. We also give the discussions about the heavy hadrons, not only in infinite nuclear matter, but also in finite-size atomic nuclei with finite baryon numbers, to serve future experiments.

  19. Hot and dense hadronic matter in an effective mean-field approach

    SciTech Connect

    Lavagno, A.

    2010-04-15

    We investigate the equation of state of hadronic matter at finite values of baryon density and temperature reachable in high-energy heavy-ion collisions. The analysis is performed by requiring the Gibbs conditions on the global conservation of baryon number, electric charge fraction, and zero net strangeness. We consider an effective relativistic mean-field model with the inclusion of DELTA isobars, hyperons, and the lightest pseudoscalar and vector meson degrees of freedom. In this context, we study the influence of the DELTA-isobar degrees of freedom in the hadronic equation of state and, in connection, the behavior of different particle-antiparticle ratios and strangeness production.

  20. Model Independent Constraints on Hadron Form Factors at Large Q2 in Light-Front QCD

    NASA Astrophysics Data System (ADS)

    Ji, Chueng-Ryong

    2014-01-01

    Among the three forms of relativistic Hamiltonian dynamics proposed by Dirac in 1949, the front form has the largest number of kinematic generators. This distinction provides useful consequences in the analysis of physical observables in hadron physics. We discuss a rationale for using the front form dynamics, known nowadays as the light-front dynamics (LFD), and present a few explicit examples of hadron phenomenology that the front form uniquely can offer from the first principle QCD. In particular, model independent constraints are provided for the analyses of deuteron form factors and the NΔ transition form factors at large momentum transfer square Q2.

  1. Theoretical summary of the 8th International Conference on Hadron Spectroscopy

    SciTech Connect

    Lipkin, H. J.

    1999-11-15

    The Constituent Quark Model has provided a remarkable description of the experimentally observed hadron spectrum but still has no firm theoretical basis. Attempts to provide a QCD justification discussed at Hadron99 include QCD Sum Rules, instantons, relativistic potential models and the lattice. Phenomenological analyses to clarify outstanding problems like the nature of the scalar and pseudoscalar mesons and the low branching ratio for {psi} {prime} {r_arrow} {rho} {r_arrow} {pi} were presented. New experimental puzzles include the observation of {anti p}p {r_arrow} {phi}{pi}.

  2. Hadronic Scenarios for Gamma-Ray Emission from Three Supernova Remnants Interacting with Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Yu, Huan; Fang, Jun; Zhang, Li

    2014-04-01

    GeV γ-rays detected with the large area telescope on board the Fermi Gamma-ray space telescope in the direction of HB21, MSH 17-39 and G337.0-0.1 have been recently reported. The three supernova remnants (SNRs) show interactions with molecular clouds, and they are effective gamma-ray emitters as the relativistic protons accelerated by the SNR shocks inelastically colliding with the dense gas in the clouds. The origin of the observed γ-rays for the three remnants is investigated in the scenario of the diffusive shock acceleration. In the model, a part of the SNR shock transmits into the nearby molecular clouds, and the shock velocity is greatly reduced. As a result, a shock with a relatively low Alfvén Mach number is generated, and the spectra of the accelerated protons and the γ-ray photons produced via proton-proton interaction can be obtained. The results show that the observed γ-ray spectra for the three SNRs interacting with the molecular clouds can be reproduced. It can be concluded that the hadronic origin of the γ-rays for the three SNRs is approved, and the ability of SNR shocks to accelerate protons is also supported.

  3. Gas

    MedlinePlus

    ... intestine. Certain foods may cause gas. Foods that produce gas in one person may not cause gas in another. You can reduce the amount of gas you have by Drinking lots of water and non-fizzy drinks Eating more slowly so you swallow less air ...

  4. Relativistic heavy ions physics

    SciTech Connect

    Mueller, B.

    1989-01-01

    Central nuclear collisions at energies far above 1 GeV/nucleon may provide for conditions, where the transition from highly excited hadronic matter into quark matter or quark-gluon plasma can be probed. We review current ideas about the nature of, and signals for, this transition, and we discuss the (hadronic) string model approach to the nuclear collisions dynamics. At even higher energies in the TeV/nucleon range peripheral nuclear collisions may become a laboratory for electroweak physics at the unification scale allowing, e.g., for Higgs boson production. 42 refs., 29 figs.,

  5. SAMPEX Relativistic Microbursts Observation

    NASA Astrophysics Data System (ADS)

    Liang, X.; Comess, M.; Smith, D. M.; Selesnick, R. S.; Sample, J. G.; Millan, R. M.

    2012-12-01

    Relativistic (>1 MeV) electron microburst precipitation is thought to account for significant relativistic electron loss. We present the statistical and spectral analysis of relativistic microbursts observed by the Proton/Electron Telescope (PET) on board the Solar Anomalous Magnetospheric Particle Explorer(SAMPEX) satellite from 1992 to 2004. Spectrally we find that microbursts are well fit by an exponential energy distribution in the 0.5-4 MeV range with a spectral e-folding energy of E0 < 375 keV. We also discuss the comparison of morning microbursts with events at midnight, which were first identified as microbursts by O'Brien et al. (2004). Finally, we compare the loss-rates due to microbursts and non-microburst precipitation during storm times and averaged over all times.

  6. B1:. Relativistic Astrophysics

    NASA Astrophysics Data System (ADS)

    Friedman, John L.

    2002-09-01

    This review summarizes the parallel session on relativistic astrophysics at GR16. Much of the work reported here involved the structure and stability of neutron stars and the astrophysics of accretion disks around neutron stars and black holes. A large part of the recent work in relativistic astrophysics is tied to numerical investigations of binary coalescence and gravitational waves, but these topics demanded sessions of their own; gravitational waves in the present session were mentioned in connection with neutron-star instability and in a talk on coupling of gravitational waves to radio waves. Two talks involved relativistic stellar systems and cosmology. Finally, several authors outlined advances involving gravitational collapse, cosmic censorship, and baby universes.

  7. Hadron production experiments

    NASA Astrophysics Data System (ADS)

    Popov, Boris A.

    2013-02-01

    The HARP and NA61/SHINE hadroproduction experiments as well as their implications for neutrino physics are discussed. HARP measurements have already been used for predictions of neutrino beams in K2K and MiniBooNE/SciBooNE experiments and are also being used to improve the atmospheric neutrino flux predictions and to help in the optimization of neutrino factory and super-beam designs. First measurements released recently by the NA61/SHINE experiment are of significant importance for a precise prediction of the J-PARC neutrino beam used for the T2K experiment. Both HARP and NA61/SHINE experiments provide also a large amount of input for validation and tuning of hadron production models in Monte-Carlo generators.

  8. Bulk and shear viscosities of matter created in relativistic heavy-ion collisions

    SciTech Connect

    Bozek, Piotr

    2010-03-15

    We study the effects of shear and bulk viscosities in the hadronic phase on the expansion of the fireball and on particle production in relativistic heavy-ion collisions. Comparing simulation with versus without viscosity in hadronic matter, we find that elliptic flow observables are strongly dependent on dissipative effects in the late stage. On the contrary, interferometry radii are sensitive, through early transverse flow, to the viscosity value at high temperatures. We present first calculations including the effects of bulk viscosity on the hadronic phase and on hadron emission. We find them to be important in obtaining a low freeze-out temperature consistent with the measured transverse momentum spectra and elliptic flow of identified particles.

  9. The special relativistic shock tube

    NASA Technical Reports Server (NTRS)

    Thompson, Kevin W.

    1986-01-01

    The shock-tube problem has served as a popular test for numerical hydrodynamics codes. The development of relativistic hydrodynamics codes has created a need for a similar test problem in relativistic hydrodynamics. The analytical solution to the special relativistic shock-tube problem is presented here. The relativistic shock-jump conditions and rarefaction solution which make up the shock tube are derived. The Newtonian limit of the calculations is given throughout.

  10. Physics at future hadron colliders

    SciTech Connect

    U. Baur et al.

    2002-12-23

    We discuss the physics opportunities and detector challenges at future hadron colliders. As guidelines for energies and luminosities we use the proposed luminosity and/or energy upgrade of the LHC (SLHC), and the Fermilab design of a Very Large Hadron Collider (VLHC). We illustrate the physics capabilities of future hadron colliders for a variety of new physics scenarios (supersymmetry, strong electroweak symmetry breaking, new gauge bosons, compositeness and extra dimensions). We also investigate the prospects of doing precision Higgs physics studies at such a machine, and list selected Standard Model physics rates.

  11. Heavy quarks in hadronic collisions

    SciTech Connect

    Brodsky, S.J.; Peterson, C.

    1982-03-01

    It is suggested that the presence of c anti c-pairs on the 1 to 2% level in the hadron Fock state decomposition (intrinsic charm) gives a natural description of the ISR data for charm hadron production. The theoretical foundations of the intrinsic charm hypothesis together with its consequences for lepton- and hadron-induced reactions are discussed in some detail. There is no contradiction with the EMC data on F/sub 2//sup c/ provided the appropriate threshold dependence is taken into account.

  12. Hadron collider physics at UCR

    SciTech Connect

    Kernan, A.; Shen, B.C.

    1997-07-01

    This paper describes the research work in high energy physics by the group at the University of California, Riverside. Work has been divided between hadron collider physics and e{sup +}-e{sup {minus}} collider physics, and theoretical work. The hadron effort has been heavily involved in the startup activities of the D-Zero detector, commissioning and ongoing redesign. The lepton collider work has included work on TPC/2{gamma} at PEP and the OPAL detector at LEP, as well as efforts on hadron machines.

  13. Causality constraints on hadron production in high energy collisions

    NASA Astrophysics Data System (ADS)

    Castorina, Paolo; Satz, Helmut

    2014-04-01

    For hadron production in high energy collisions, causality requirements lead to the counterpart of the cosmological horizon problem: the production occurs in a number of causally disconnected regions of finite space-time size. As a result, globally conserved quantum numbers (charge, strangeness, baryon number) must be conserved locally in spatially restricted correlation clusters. This provides a theoretical basis for the observed suppression of strangeness production in elementary interactions (pp, e+e-). In contrast, the space-time superposition of many collisions in heavy ion interactions largely removes these causality constraints, resulting in an ideal hadronic resonance gas in full equilibrium.

  14. Simulation of soft hadron hadron collisions at ultrarelativistic energies

    SciTech Connect

    Werner, K.

    1987-01-01

    An event generator to simulate ultrarelativistic hadron hadron collisions is proposed. It is based on the following main assumptions: the process can be divided into two independent steps, string formation and string fragmentation; strings are formed as a consequence of color exchange between a quark of the projectile and a quark of the target; the fragmentation of strings is the same as in e/sup +/e/sup -/ annihilation or in lepton nucleon scattering. 11 refs., 4 figs.

  15. The Relativistic Rocket

    ERIC Educational Resources Information Center

    Antippa, Adel F.

    2009-01-01

    We solve the problem of the relativistic rocket by making use of the relation between Lorentzian and Galilean velocities, as well as the laws of superposition of successive collinear Lorentz boosts in the limit of infinitesimal boosts. The solution is conceptually simple, and technically straightforward, and provides an example of a powerful…

  16. Radiation from Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Mizuno, Y.; Hardee, P.; Sol, H.; Medvedev, M.; Zhang, B.; Nordlund, A.; Frederiksen, J. T.; Fishman, G. J.; Preece, R.

    2008-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., gamma-ray bursts (GRBs), active galactic nuclei (AGNs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations of relativistic electron-ion (electron-positron) jets injected into a stationary medium show that particle acceleration occurs within the downstream jet. In the presence of relativistic jets, instabilities such as the Buneman instability, other two-streaming instability, and the Weibel (filamentation) instability create collisionless shocks, which are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The 'jitter' radiation from deflected electrons in small-scale magnetic fields has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation, a case of diffusive synchrotron radiation, may be important to understand the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  17. Relativistic impulse dynamics.

    PubMed

    Swanson, Stanley M

    2011-08-01

    Classical electrodynamics has some annoying rough edges. The self-energy of charges is infinite without a cutoff. The calculation of relativistic trajectories is difficult because of retardation and an average radiation reaction term. By reconceptuallizing electrodynamics in terms of exchanges of impulses rather than describing it by forces and potentials, we eliminate these problems. A fully relativistic theory using photonlike null impulses is developed. Numerical calculations for a two-body, one-impulse-in-transit model are discussed. A simple relationship between center-of-mass scattering angle and angular momentum was found. It reproduces the Rutherford cross section at low velocities and agrees with the leading term of relativistic distinguishable-particle quantum cross sections (Møller, Mott) when the distance of closest approach is larger than the Compton wavelength of the particle. Magnetism emerges as a consequence of viewing retarded and advanced interactions from the vantage point of an instantaneous radius vector. Radiation reaction becomes the local conservation of energy-momentum between the radiating particle and the emitted impulse. A net action is defined that could be used in developing quantum dynamics without potentials. A reinterpretation of Newton's laws extends them to relativistic motion.

  18. The Relativistic Rocket

    ERIC Educational Resources Information Center

    Antippa, Adel F.

    2009-01-01

    We solve the problem of the relativistic rocket by making use of the relation between Lorentzian and Galilean velocities, as well as the laws of superposition of successive collinear Lorentz boosts in the limit of infinitesimal boosts. The solution is conceptually simple, and technically straightforward, and provides an example of a powerful…

  19. Bottom hadrons from lattice QCD with domain wall and NRQCD fermions

    SciTech Connect

    Stefan Meinel, William Detmold, C.-J. David Lin, Matthew Wingate

    2009-07-01

    Dynamical 2+1 flavor lattice QCD is used to calculate the masses of bottom hadrons, including B mesons, singly and doubly bottom baryons, and for the first time also the triply-bottom baryon Omega{sub bbb}. The domain wall action is used for the up-, down-, and strange quarks (both valence and sea), while the bottom quark is implemented with non-relativistic QCD. A calculation of the bottomonium spectrum is also presented.

  20. Relativistic effects on plasma expansion

    SciTech Connect

    Benkhelifa, El-Amine; Djebli, Mourad

    2014-07-15

    The expansion of electron-ion plasma is studied through a fully relativistic multi-fluids plasma model which includes thermal pressure, ambipolar electrostatic potential, and internal energy conversion. Numerical investigation, based on quasi-neutral assumption, is performed for three different regimes: nonrelativistic, weakly relativistic, and relativistic. Ions' front in weakly relativistic regime exhibits spiky structure associated with a break-down of quasi-neutrality at the expanding front. In the relativistic regime, ion velocity is found to reach a saturation limit which occurs at earlier stages of the expansion. This limit is enhanced by higher electron velocity.

  1. Phenomenology of photon and dilepton production in relativistic nuclear collisions

    NASA Astrophysics Data System (ADS)

    Bratkovskaya, Elena

    2014-11-01

    We discuss the latest theoretical results on direct photon and dilepton production from relativistic heavy-ion collisions. While the dilepton spectra at low invariant mass show in-medium effects like collisional broadening of the vector meson spectral functions, the dilepton yield at high invariant masses (above 1.1 GeV) is dominated by QGP contributions for central heavy-ion collisions at relativistic energies. The present status of the photon v2 "puzzle" - a large elliptic flow v2 of the direct photons experimentally observed at RHIC and LHC energies - is also addressed. The role of hadronic and partonic sources for the photon spectra and v2 is considered as well as the possibility to subtract the QGP signal from the experimental observables.

  2. Hadronic γ-ray images of Sedov supernova remnants

    NASA Astrophysics Data System (ADS)

    Beshley, V.; Petruk, O.

    2012-01-01

    A number of modern experiments in high-energy astrophysics produce images of supernova remnants (SNRs) in the TeV and GeV γ-rays. Either relativistic electrons (due to the inverse-Compton scattering) or protons (due to the pion decays) may be responsible for this emission. In particular, the broad-band spectra of SNRs may be explained in both leptonic and hadronic scenarios. Another kind of observational data, namely, images of SNRs, is an important part of experimental information. We present a method to model γ-ray images of Sedov SNRs in uniform media and magnetic field due to hadronic emission. These γ-rays are assumed to appear as a consequence of meson decays produced in inelastic collisions of accelerated protons with thermal protons downstream of the shock - a model would be relevant for SNRs without firm confirmations of the shock-cloud interaction, as e.g. SN 1006. Distribution of surface brightness of the shell-like SNR is synthesized numerically for a number of configurations. An approximate analytical formula for azimuthal and radial variation of hadronic γ-ray brightness close to the shock is derived. The properties of images as well as the main factors determining the surface brightness distribution are determined. Some conclusions that would be relevant to SN 1006 are discussed.

  3. Exploring Jet-Hadron correlations at the LHC with ALICE

    NASA Astrophysics Data System (ADS)

    Mazer, Joel

    2016-08-01

    In relativistic heavy ion collisions at the Large Hadron Collider (LHC), the conditions are met to produce the hot and dense, strongly interacting medium known as the Quark Gluon Plasma (QGP). The QGP, a state of matter created shortly after the Big Bang, is a phase where the deconfinement of quarks and gluons is hypothesized. Jets, the collimated sprays of hadrons from fragmenting partons, are a key probe of the medium. The experimental methods used for jet measurements at ALICE to remove, reduce, and correct for the underlying background event will be presented. In pp collisions, jet production is well understood within the framework of perturbative QCD and acts as a rigorous baseline measurement for jet quenching measurements. By comparing to heavy ion collision systems, we can study the suppression of the number of jets seen and study the modification of the pT or angular distributions of jet fragments. Azimuthal angular correlations of charged hadrons with respect to the axis of a full (charged + neutral) reconstructed (trigger) jet in Pb-Pb and pp collisions at √sNN = 2.76 TeV in ALICE will be presented here. Newly developed combinatoric background subtraction methods and their improvement compared to prior techniques will be discussed.

  4. Hadronic and electromagnetic fragmentation of ultrarelativistic heavy ions at LHC

    NASA Astrophysics Data System (ADS)

    Braun, H. H.; Fassò, A.; Ferrari, A.; Jowett, J. M.; Sala, P. R.; Smirnov, G. I.

    2014-02-01

    Reliable predictions of yields of nuclear fragments produced in electromagnetic dissociation and hadronic fragmentation of ion beams are of great practical importance in analyzing beam losses and interactions with the beam environment at the Large Hadron Collider (LHC) at CERN as well as for estimating radiation effects of galactic cosmic rays on the spacecraft crew and electronic equipment. The model for predicting the fragmentation of relativistic heavy ions is briefly described, and then applied to problems of relevance for LHC. The results are based on the fluka code, which includes electromagnetic dissociation physics and dpmjet-iii as hadronic event generator. We consider the interaction of fully stripped lead ions with nuclei in the energy range from about one hundred MeV to ultrarelativistic energies. The yields of fragments close in the mass and charge to initial ions are calculated. The approach under discussion provides a good overall description of Pb fragmentation data at 30 and 158A GeV as well as recent LHC data for √sNN =2.76 TeV Pb-Pb interactions. Good agreement with the calculations in the framework of different models is found. This justifies application of the developed simulation technique both at the LHC injection energy of 177A GeV and at its collision energies of 1.38, 1.58, and 2.75A TeV, and gives confidence in the results obtained.

  5. Electromagnetic pair production in relativistic heavy-ion collisions

    SciTech Connect

    Bottcher, C.; Strayer, M.R.

    1988-10-04

    We survey the production of electron, muon and tauon pairs in collisions between nuclei at ultra-relativistic energies. Such studies enhance our understanding of the role of the vacuum in field theory, and provide essential input for several experimental programs. A variety of models for the nuclear and nucleon form factors have been considered, revealing some degree of sensitivity to assumptions about sub-nuclear structure. We predict that the cross sections, even at high invariant masses and transverse momenta, are large on hadronic scales, and should act as useful probes of nuclear and nucleon form factors. 21 refs., 5 figs.

  6. Physics at Relativistic Heavy Ion Collider (RHIC)

    SciTech Connect

    Shuryak, E.V.

    1990-08-01

    This introductory talk contains a brief discussion of future experiments at RHIC related to physics of superdense matter. In particular, we consider the relation between space-time picture of the collision and spectra of the observed secondaries. We discuss where one should look for QGP signals and for possible manifestation of the phase transition. We pay more attention to a rather new topic: hadron modification in the gas phase, which is interesting by itself as a collective phenomenon, and also as a precursor indicating what happens with hadrons near the phase transition. We briefly review current understanding of the photon physics, dilepton production, charm and strangeness and J/{psi} suppression. At the end we try to classify all possible experiments. 47 refs., 3 figs.

  7. Light-Front Holography, AdS/QCD, and Hadronic Phenomena

    SciTech Connect

    Brodsky, Stanley J.; de Teramond, Guy F.; /Costa Rica U.

    2009-12-09

    AdS/QCD, the correspondence between theories in a modified five-dimensional anti-de Sitter space and confining field theories in physical space-time, provides a remarkable semiclassical model for hadron physics. Light-front holography allows hadronic amplitudes in the AdS fifth dimension to be mapped to frame-independent light-front wavefunctions of hadrons in physical space-time, thus providing a relativistic description of hadrons at the amplitude level. We identify the AdS coordinate z with an invariant light-front coordinate {zeta} which separates the dynamics of quark and gluon binding from the kinematics of constituent spin and internal orbital angular momentum. The result is a single-variable light-front Schroedinger equation with a confining potential which determines the eigenspectrum and the light-front wavefunctions of hadrons for general spin and orbital angular momentum. The mapping of electromagnetic and gravitational form factors in AdS space to their corresponding expressions in light-front theory confirms this correspondence. Some novel features of QCD are discussed, including the consequences of confinement for quark and gluon condensates. The distinction between static structure functions, such as the probability distributions computed from the square of the light-front wavefunctions, versus dynamical structure functions which include the effects of rescattering, is emphasized. A new method for computing the hadronization of quark and gluon jets at the amplitude level, an event amplitude generator, is outlined.

  8. Current operators in relativistic few-body systems

    SciTech Connect

    Coester, F.; Klink, W.H.; Polyzou, W.N.

    1995-08-01

    The interpretation of experiments that explore hadron structure with electromagnetic probes requires both a nonperturbative representation of the hadron states and a compatible representation of the current-density operator. Intuitive interpretations depend strongly on the {open_quotes}impulse approximation{close_quotes}, that is, the use of one-body currents. One-body currents, however, cannot satisfy essentially the constraints imposed by the dynamics. In nonrelativistic quantum mechanics the problem of constructing dynamically required interaction currents is well understood and has been solved. Since Galilei transformations are kinematic, only time-translation covariance and current conservation impose dynamical constraints on current operators. These constraints can be satisfied by the well-known construction of so-called {open_quotes}minimal{close_quotes} or {open_quotes}model-independent{close_quotes} currents. Descriptions of hadron structure and of nuclear effects probed at high energies require a relativistic description. In relativistic few-body dynamics, one-body currents are covariant only under the kinematic subgroup of the Poincare group. Full Poincare covariance and current conservation implies dynamically determined interaction currents. The separation of the current operator into impulse current and interaction current depends on the {open_quotes}form of dynamics{close_quotes}, that is on the choice of the kinematic subgroup. The choice of the light-front kinematics has unique advantages not available with other forms of dynamics: (1) a relevant subgroup of the translations is kinematic, (2) initial and final states are related by kinematic Lorentz transformations, (3) the contributions of the individual constituents are related kinematically to the total current. These features were exploited successfully in calculations of deuteron form factors and quark-model form factors of hadrons.

  9. Forward physics of hadronic colliders

    NASA Astrophysics Data System (ADS)

    Ivanov, I. P.

    2013-12-01

    These lectures were given at the Baikal Summer School on Physics of Elementary Particles and Astrophysics in July 2012. They can be viewed as a concise introduction to hadronic diffraction, to the physics of the Pomeron and related topics.

  10. Quark-gluon plasma in the early Universe and in ultra-relativistic heavy-ion collisions

    SciTech Connect

    Greco, V.

    2014-05-09

    We briefly give an elementary introduction to the expansion of the Early Universe till when the phase transition of the quark-gluon plasma to a hadronic matter takes place. Then we describe some main element of the study of QGP by mean of ultra-relativistic heavy-ion collisions (uRHIC's)

  11. Bose-Einstein correlation within the framework of hadronic mechanics

    SciTech Connect

    Burande, Chandrakant S.

    2015-03-10

    The Bose-Einstein correlation is the phenomenon in which protons and antiprotons collide at extremely high energies; coalesce one into the other resulting into the fireball of finite dimension. They annihilate each other and produces large number of mesons that remain correlated at distances very large compared to the size of the fireball. It was believed that Einstein’s special relativity and relativistic quantum mechanics are the valid frameworks to represent this phenomenon. Although, these frameworks are incomplete and require arbitrary parameters (chaoticity) to fit the experimental data which are prohibited by the basic axioms of relativistic quantum mechanics, such as that for the vacuum expectation values. Moreover, correlated mesons can not be treated as a finite set of isolated point-like particles because it is non-local event due to overlapping of wavepackets. Therefore, the Bose-Einstein correlation is incompatible with the axiom of expectation values of quantum mechanics. In contrary, relativistic hadronic mechanics constructed by Santilli allows an exact representation of the experimental data of the Bose-Einstein correlation and restore the validity of the Lorentz and Poincare symmetries under nonlocal and non-Hamiltonian internal effects. Further, F. Cardone and R. Mignani observed that the Bose-Einstein two-point correlation function derived by Santilli is perfectly matched with experimental data at high energy.

  12. New Insights into Color Confinement, Hadron Dynamics, Spectroscopy, and Jet Hadronization from Light-Front Holography and Superconformal Algebra

    NASA Astrophysics Data System (ADS)

    Brodsky, S. J.

    2017-07-01

    A fundamental problem in hadron physics is to obtain a relativistic color-confining, first approximation to QCD which can predict both hadron spectroscopy and the frame-independent light-front (LF) wavefunctions underlying hadron dynamics. The QCD Lagrangian with zero quark mass has no explicit mass scale; the classical theory is conformally invariant. Thus, a fundamental problem is to understand how the mass gap and ratios of masses - such as m ρ/m p - can arise in chiral QCD. De Alfaro, Fubini, and Furlan have made an important observation that a mass scale can appear in the equations of motion without affecting the conformal invariance of the action if one adds a term to the Hamiltonian proportional to the dilatation operator or the special conformal operator and rescales the time variable. If one applies the same procedure to the light-front Hamiltonian, it leads uniquely to a confinement potential κ 4 ζ 2 for mesons, where ζ 2 is the LF radial variable conjugate to the q\\overline{q} invariant mass squared. The same result, including spin terms, is obtained using light-front holography - the duality between light-front dynamics and AdS5, the space of isometries of the conformal group if one modifies the action of AdS5 by the dilaton {e}^{κ^2}{z}^2 in the fifth dimension z . When one generalizes this procedure using superconformal algebra, the resulting light-front eigensolutions predict unified Regge spectroscopy of meson, baryon, and tetraquarks, including remarkable supersymmetric relations between the masses of mesons and baryons of the same parity. One also predicts observables such as hadron structure functions, transverse momentum distributions, and the distribution amplitudes defined from the hadronic light-front wavefunctions. The mass scale κ underlying confinement and hadron masses can be connected to the parameter {Λ}_{\\overline{MS}} in the QCD running coupling by matching the nonperturbative dynamics to the perturbative QCD regime. The

  13. New Insights into Color Confinement, Hadron Dynamics, Spectroscopy, and Jet Hadronization from Light-Front Holography and Superconformal Algebra

    NASA Astrophysics Data System (ADS)

    Brodsky, S. J.

    2017-07-01

    A fundamental problem in hadron physics is to obtain a relativistic color-confining, first approximation to QCD which can predict both hadron spectroscopy and the frame-independent light-front (LF) wavefunctions underlying hadron dynamics. The QCD Lagrangian with zero quark mass has no explicit mass scale; the classical theory is conformally invariant. Thus, a fundamental problem is to understand how the mass gap and ratios of masses - such as m ρ/ m p - can arise in chiral QCD. De Alfaro, Fubini, and Furlan have made an important observation that a mass scale can appear in the equations of motion without affecting the conformal invariance of the action if one adds a term to the Hamiltonian proportional to the dilatation operator or the special conformal operator and rescales the time variable. If one applies the same procedure to the light-front Hamiltonian, it leads uniquely to a confinement potential κ 4 ζ 2 for mesons, where ζ 2 is the LF radial variable conjugate to the q\\overline{q} invariant mass squared. The same result, including spin terms, is obtained using light-front holography - the duality between light-front dynamics and AdS5, the space of isometries of the conformal group if one modifies the action of AdS5 by the dilaton {e}^{κ^2}{z}^2 in the fifth dimension z . When one generalizes this procedure using superconformal algebra, the resulting light-front eigensolutions predict unified Regge spectroscopy of meson, baryon, and tetraquarks, including remarkable supersymmetric relations between the masses of mesons and baryons of the same parity. One also predicts observables such as hadron structure functions, transverse momentum distributions, and the distribution amplitudes defined from the hadronic light-front wavefunctions. The mass scale κ underlying confinement and hadron masses can be connected to the parameter {Λ}_{\\overline{MS}} in the QCD running coupling by matching the nonperturbative dynamics to the perturbative QCD regime. The

  14. Late effects from hadron therapy

    SciTech Connect

    Blakely, Eleanor A.; Chang, Polly Y.

    2004-06-01

    Successful cancer patient survival and local tumor control from hadron radiotherapy warrant a discussion of potential secondary late effects from the radiation. The study of late-appearing clinical effects from particle beams of protons, carbon, or heavier ions is a relatively new field with few data. However, new clinical information is available from pioneer hadron radiotherapy programs in the USA, Japan, Germany and Switzerland. This paper will review available data on late tissue effects from particle radiation exposures, and discuss its importance to the future of hadron therapy. Potential late radiation effects are associated with irradiated normal tissue volumes at risk that in many cases can be reduced with hadron therapy. However, normal tissues present within hadron treatment volumes can demonstrate enhanced responses compared to conventional modes of therapy. Late endpoints of concern include induction of secondary cancers, cataract, fibrosis, neurodegeneration, vascular damage, and immunological, endocrine and hereditary effects. Low-dose tissue effects at tumor margins need further study, and there is need for more acute molecular studies underlying late effects of hadron therapy.

  15. Two types of hadrons

    NASA Astrophysics Data System (ADS)

    Jaffe, R. L.

    2008-05-01

    Resonances and enhancements in meson-meson scattering can be divided into two classes distinguished by their behavior as the number of colors (Nc) in QCD becomes large: The first are ordinary mesons that become stable as Nc → ∞. This class includes textbook qbar q mesons as well as glueballs and hybrids. The second class, extraordinary mesons, are enhancements that disappear as Nc → ∞; they subside into the hadronic continuum. This class includes indistinct and controversial objects that have been classified as qbarqbar qq mesons or meson-meson molecules. Peláez's study of the Nc dependence of unitarized chiral dynamics illustrates both classes: the p-wave ππ and Kπ resonances, the ρ (770) and K∗ (892), behave as ordinary mesons; the s-wave ππ and Kπ enhancements, the σ (600) and κ (800), behave like extraordinary mesons. Ordinary mesons resemble Feshbach resonances while extraordinary mesons look more like effects due to potentials in meson-meson scattering channels. I build and explore toy models along these lines. Finally I discuss some related dynamical issues affecting the interpretation of extraordinary mesons.

  16. Gravitational interaction of hadrons: Band-spinor representations of GL(n,R)

    PubMed Central

    Ne'eman, Yuval

    1977-01-01

    We demonstrate the existence of double-valued linear (infinite) spinorial representations of the group of general coordinate transformations. We discuss the topology of the group of general coordinate transformations and its subgroups GA(nR), GL(n,R), SL(nr) for n = 2,3,4, and the existence of a double covering. We present the construction of band-spinor representations of GL(n,R) in terms of Harish-Chandra modules. It is suggested that hadrons interact with gravitation as band-spinors of that type. In the metric-affine extension of general relativity, the hadron intrinsic hypermomentum is minimally coupled to the connection, in addition to the coupling of the energy momentum tensor to the vierbeins. The relativistic conservation of intrinsic hypermomentum fits the observed regularities of hadrons: SU(6) (∼ spin independence), scaling, and complex-J trajectories. The latter correspond to volume-preserving deformations (confinement?) exciting rotational bands. PMID:16592443

  17. Heavy Quarkonium Dissociation Cross Sections in Relativistic Heavy-Ion Collisions

    SciTech Connect

    C.-Y. Wong; Eric Swanson; Ted Barnes

    2001-12-01

    Many of the hadron-hadron cross sections required for the study of the dynamics of matter produced in relativistic heavy-ion collisions can be calculated using the quark-interchange model. Here we evaluate the low-energy dissociation cross sections of J/{psi}, {psi}', {chi}, {Upsilon}, and {Upsilon}' in collision with {pi}, {rho}, and K, which are important for the interpretation of heavy-quarkonium suppression as a signature for the quark gluon plasma. These comover dissociation processes also contribute to heavy-quarkonium suppression, and must be understood and incorporated in simulations of heavy-ion collisions before QGP formation can be established through this signature.

  18. Evidence for creation of strong electromagnetic fields in relativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Toneev, V.; Rogachevsky, O.; Voronyuk, V.

    2016-08-01

    It is proposed to identify the strong electric field created during relativistic collisions of asymmetric nuclei via observation of pseudorapidity and transverse-momentum distributions of hadrons with the same mass but opposite charges. The detailed calculation results for the directed flow within the Parton-Hadron String Dynamics model are given for Cu-Au interactions at the NICA collision energies of √{s_{NN}} = 9 and 5 GeV. The separation effect is observable at 9GeV as clearly as at 200 GeV.

  19. Effect of an equilibrium phase transition on multiphase transport in relativistic heavy ion collisions

    SciTech Connect

    Yu Meiling; Du Jiaxin; Liu Lianshou

    2006-10-15

    The hadronization scheme for parton transport in relativistic heavy ion collisions is considered in detail. It is pointed out that the traditional scheme for particles being freezed out one by one leads to serious problem on unreasonable long lifetime of partons. A collective phase transition following a supercooling is implemented in a simple way. It turns out that the modified model with a sudden phase transition is able to reproduce the experimental longitudinal distributions of final state particles better than the original one does. The encouraging results indicate that equilibrium phase transition should be taken into proper account in parton transport models for relativistic heavy ion collisions.

  20. Relativistic electrons in space.

    NASA Technical Reports Server (NTRS)

    Simnett, G. M.

    1972-01-01

    This paper reviews the current state of knowledge concerning relativistic electrons, above 0.3 MeV, in interplanetary space, as measured by detectors on board satellites operating beyond the influence of the magnetosphere. The electrons have a galactic component, which at the lower energies is subject both to solar modulation and to spasmodic 'quiet time' increases and a direct solar component correlated with flare activity. The recent measurements have established the form of the differential energy spectrum of solar flare electrons. Electrons have been detected from flares behind the visible solar disk. Relativistic electrons do not appear to leave the sun at the time of the flash phase of the flare, although there are several signatures of electron acceleration at this time. The delay is interpreted as taking place during the transport of the electrons through the lower corona.

  1. Relativistic Pseudospin Symmetry

    SciTech Connect

    Ginocchio, Joseph N.

    2011-05-06

    We show that the pseudospin symmetry that Akito Arima discovered many years ago (with collaborators) is a symmetry of the the Dirac Hamiltonian for which the sum of the scalar and vector potentials are a constant. In this paper we discuss some of the implications of this relativistic symmetry and the experimental data that support these predictions. In his original paper Akito also discussed pseudo-U(3) symmetry. We show that pseudo-U(3) symmetry is a symmetry of the Dirac Hamiltonian for which the sum of harmonic oscillator vector and scalar potentials are equal to a constant, and we give the generators of pseudo-U(3) symmetry. Going beyond the mean field we summarize new results on non relativistic shell model Hamiltonians that have pseudospin symmetry and pseudo-orbital angular momentum symmetry as a dynamical symmetries.

  2. Relativistic statistical arbitrage

    NASA Astrophysics Data System (ADS)

    Wissner-Gross, Alexander; Freer, Cameron

    2011-03-01

    Recent advances in high-frequency financial trading have made light propagation delays between geographically separated exchanges relevant. Here we show that there exist optimal locations from which to coordinate the statistical arbitrage of pairs of spacelike separated securities, and calculate a representative map of such locations on Earth. Furthermore, trading local securities along chains of such intermediate locations results in a novel econophysical effect, in which the relativistic propagation of tradable information is effectively slowed or stopped by arbitrage.

  3. Relativistic statistical arbitrage

    NASA Astrophysics Data System (ADS)

    Wissner-Gross, A. D.; Freer, C. E.

    2010-11-01

    Recent advances in high-frequency financial trading have made light propagation delays between geographically separated exchanges relevant. Here we show that there exist optimal locations from which to coordinate the statistical arbitrage of pairs of spacelike separated securities, and calculate a representative map of such locations on Earth. Furthermore, trading local securities along chains of such intermediate locations results in a novel econophysical effect, in which the relativistic propagation of tradable information is effectively slowed or stopped by arbitrage.

  4. Local relativistic exact decoupling

    NASA Astrophysics Data System (ADS)

    Peng, Daoling; Reiher, Markus

    2012-06-01

    We present a systematic hierarchy of approximations for local exact decoupling of four-component quantum chemical Hamiltonians based on the Dirac equation. Our ansatz reaches beyond the trivial local approximation that is based on a unitary transformation of only the atomic block-diagonal part of the Hamiltonian. Systematically, off-diagonal Hamiltonian matrix blocks can be subjected to a unitary transformation to yield relativistically corrected matrix elements. The full hierarchy is investigated with respect to the accuracy reached for the electronic energy and for selected molecular properties on a balanced test molecule set that comprises molecules with heavy elements in different bonding situations. Our atomic (local) assembly of the unitary exact-decoupling transformation—called local approximation to the unitary decoupling transformation (DLU)—provides an excellent local approximation for any relativistic exact-decoupling approach. Its order-N2 scaling can be further reduced to linear scaling by employing a neighboring-atomic-blocks approximation. Therefore, DLU is an efficient relativistic method well suited for relativistic calculations on large molecules. If a large molecule contains many light atoms (typically hydrogen atoms), the computational costs can be further reduced by employing a well-defined nonrelativistic approximation for these light atoms without significant loss of accuracy. We also demonstrate that the standard and straightforward transformation of only the atomic block-diagonal entries in the Hamiltonian—denoted diagonal local approximation to the Hamiltonian (DLH) in this paper—introduces an error that is on the order of the error of second-order Douglas-Kroll-Hess (i.e., DKH2) when compared with exact-decoupling results. Hence, the local DLH approximation would be pointless in an exact-decoupling framework, but can be efficiently employed in combination with the fast to evaluate DKH2 Hamiltonian in order to speed up calculations

  5. Hadron particle theory

    SciTech Connect

    Alonso, J.R.

    1995-05-01

    Radiation therapy with ``hadrons`` (protons, neutrons, pions, ions) has accrued a 55-year track record, with by now over 30,000 patients having received treatments with one of these particles. Very good, and in some cases spectacular results are leading to growth in the field in specific well-defined directions. The most noted contributor to success has been the ability to better define and control the radiation field produced with these particles, to increase the dose delivered to the treatment volume while achieving a high degree of sparing of normal tissue. An additional benefit is the highly-ionizing, character of certain beams, leading to creater cell-killing potential for tumor lines that have historically been very resistant to radiation treatments. Until recently these treatments have been delivered in laboratories and research centers whose primary, or original mission was physics research. With maturity in the field has come both the desire to provide beam facilities more accessible to the clinical setting, of a hospital, as well as achieving, highly-efficient, reliable and economical accelerator and beam-delivery systems that can make maximum advantage of the physical characteristics of these particle beams. Considerable work in technology development is now leading, to the implementation of many of these ideas, and a new generation of clinically-oriented facilities is beginning to appear. We will discuss both the physical, clinical and technological considerations that are driving these designs, as well as highlighting, specific examples of new facilities that are either now treating, patients or that will be doing so in the near future.

  6. Relativistic tidal disruption events

    NASA Astrophysics Data System (ADS)

    Levan, A.

    2012-12-01

    In March 2011 Swift detected an extremely luminous and long-lived outburst from the nucleus of an otherwise quiescent, low luminosity (LMC-like) galaxy. Named Swift J1644+57, its combination of high-energy luminosity (1048 ergs s-1 at peak), rapid X-ray variability (factors of >100 on timescales of 100 seconds) and luminous, rising radio emission suggested that we were witnessing the birth of a moderately relativistic jet (Γ ˜ 2 - 5), created when a star is tidally disrupted by the supermassive black hole in the centre of the galaxy. A second event, Swift J2058+0516, detected two months later, with broadly similar properties lends further weight to this interpretation. Taken together this suggests that a fraction of tidal disruption events do indeed create relativistic outflows, demonstrates their detectability, and also implies that low mass galaxies can host massive black holes. Here, I briefly outline the observational properties of these relativistic tidal flares observed last year, and their evolution over the first year since their discovery.

  7. Relativistic gravity gradiometry

    NASA Astrophysics Data System (ADS)

    Bini, Donato; Mashhoon, Bahram

    2016-12-01

    In general relativity, relativistic gravity gradiometry involves the measurement of the relativistic tidal matrix, which is theoretically obtained from the projection of the Riemann curvature tensor onto the orthonormal tetrad frame of an observer. The observer's 4-velocity vector defines its local temporal axis and its local spatial frame is defined by a set of three orthonormal nonrotating gyro directions. The general tidal matrix for the timelike geodesics of Kerr spacetime has been calculated by Marck [Proc. R. Soc. A 385, 431 (1983)]. We are interested in the measured components of the curvature tensor along the inclined "circular" geodesic orbit of a test mass about a slowly rotating astronomical object of mass M and angular momentum J . Therefore, we specialize Marck's results to such a "circular" orbit that is tilted with respect to the equatorial plane of the Kerr source. To linear order in J , we recover the gravitomagnetic beating phenomenon [B. Mashhoon and D. S. Theiss, Phys. Rev. Lett. 49, 1542 (1982)], where the beat frequency is the frequency of geodetic precession. The beat effect shows up as a special long-period gravitomagnetic part of the relativistic tidal matrix; moreover, the effect's short-term manifestations are contained in certain post-Newtonian secular terms. The physical interpretation of this effect is briefly discussed.

  8. A relativistic gravity train

    NASA Astrophysics Data System (ADS)

    Parker, Edward

    2017-08-01

    A nonrelativistic particle released from rest at the edge of a ball of uniform charge density or mass density oscillates with simple harmonic motion. We consider the relativistic generalizations of these situations where the particle can attain speeds arbitrarily close to the speed of light; generalizing the electrostatic and gravitational cases requires special and general relativity, respectively. We find exact closed-form relations between the position, proper time, and coordinate time in both cases, and find that they are no longer harmonic, with oscillation periods that depend on the amplitude. In the highly relativistic limit of both cases, the particle spends almost all of its proper time near the turning points, but almost all of the coordinate time moving through the bulk of the ball. Buchdahl's theorem imposes nontrivial constraints on the general-relativistic case, as a ball of given density can only attain a finite maximum radius before collapsing into a black hole. This article is intended to be pedagogical, and should be accessible to those who have taken an undergraduate course in general relativity.

  9. Leptonic and Hadronic Modeling of Fermi-Detected Blazars. Spectral Energy Distribution Modeling and High-Energy Polarization Predictions

    NASA Astrophysics Data System (ADS)

    Böttcher, Markus; Reimer, Anita; Zhang, Haocheng

    2013-12-01

    We describe new implementations of leptonic and hadronic models for the broadband emission from relativistic jets in AGN in a temporary steady state. The new model implementations are used to fit snap-shot spectral energy distributions of a representative set of Fermi-LAT detected blazars from the first LAT AGN catalogue. We find that the leptonic model is capable of producing acceptable fits to the SEDs of almost all blazars with reasonable parameters close to equipartition between the magnetic field and the relativistic electron population. If charge neutrality in leptonic models is provided by cold protons, our fits indicate that the kinetic energy carried by the jet should be dominated by protons. We also find satisfactory representations of the snapshot SEDs of most blazars in our sample with the hadronic model presented here. All of our hadronic model fits require powers in relativistic protons in the range 1047 - 1049 erg/s. As a potential way to distinguish between the leptonic and hadronic high-energy emission models considered here, we suggest diagnostics based on the predicted X-ray and γ-ray polarization, which are drastically different for the two types of models.

  10. Chaoticity parameter λ in two-pion interferometry in an expanding boson gas model

    DOE PAGES

    Liu, Jie; Ru, Peng; Zhang, Wei-Ning; ...

    2014-10-15

    We investigate the chaoticity parameter λ in two-pion interferometry in an expanding boson gas model. The degree of Bose-Einstein condensation of identical pions, density distributions, and Hanbury-Brown-Twiss (HBT) correlation functions are calculated for the expanding gas within the mean-field description with a harmonic oscillator potential. The results indicate that a sources with thousands of identical pions may exhibit a degree of Bose-Einstein condensation at the temperatures during the hadronic phase in relativistic heavy-ion collisions. This finite condensation may decrease the chaoticity parameter λ in the two-pion interferometry measurements at low pion pair momenta, but influence only slightly the λ valuemore » at high pion pair momentum.« less

  11. Relativistic magnetohydrodynamics in one dimension

    NASA Astrophysics Data System (ADS)

    Lyutikov, Maxim; Hadden, Samuel

    2012-02-01

    We derive a number of solutions for one-dimensional dynamics of relativistic magnetized plasma that can be used as benchmark estimates in relativistic hydrodynamic and magnetohydrodynamic numerical codes. First, we analyze the properties of simple waves of fast modes propagating orthogonally to the magnetic field in relativistically hot plasma. The magnetic and kinetic pressures obey different equations of state, so that the system behaves as a mixture of gases with different polytropic indices. We find the self-similar solutions for the expansion of hot strongly magnetized plasma into vacuum. Second, we derive linear hodograph and Darboux equations for the relativistic Khalatnikov potential, which describe arbitrary one-dimensional isentropic relativistic motion of cold magnetized plasma and find their general and particular solutions. The obtained hodograph and Darboux equations are very powerful: A system of highly nonlinear, relativistic, time-dependent equations describing arbitrary (not necessarily self-similar) dynamics of highly magnetized plasma reduces to a single linear differential equation.

  12. Relativistic magnetohydrodynamics in one dimension.

    PubMed

    Lyutikov, Maxim; Hadden, Samuel

    2012-02-01

    We derive a number of solutions for one-dimensional dynamics of relativistic magnetized plasma that can be used as benchmark estimates in relativistic hydrodynamic and magnetohydrodynamic numerical codes. First, we analyze the properties of simple waves of fast modes propagating orthogonally to the magnetic field in relativistically hot plasma. The magnetic and kinetic pressures obey different equations of state, so that the system behaves as a mixture of gases with different polytropic indices. We find the self-similar solutions for the expansion of hot strongly magnetized plasma into vacuum. Second, we derive linear hodograph and Darboux equations for the relativistic Khalatnikov potential, which describe arbitrary one-dimensional isentropic relativistic motion of cold magnetized plasma and find their general and particular solutions. The obtained hodograph and Darboux equations are very powerful: A system of highly nonlinear, relativistic, time-dependent equations describing arbitrary (not necessarily self-similar) dynamics of highly magnetized plasma reduces to a single linear differential equation.

  13. Density-Dependent Properties of Hadronic Matter in the self-consistent Chiral ({sigma},{pi},{omega}) Mean-Field Model

    SciTech Connect

    Uechi, Schun T.; Uechi, Hiroshi

    2011-05-06

    Density-dependent relations among saturation properties of symmetric nuclear matter and properties of hadronic stars are discussed by applying the conserving chiral nonlinear ({sigma},{pi},{omega}) hadronic mean-field theory. The chiral nonlinear ({sigma},{pi},{omega}) mean-field theory is an extension of the conserving nonlinear (nonchiral) {sigma}-{omega} hadronic mean-field theory which is thermodynamically consistent, relativistic and is a Lorentz-covariant mean-field theory of hadrons. In the extended chiral ({sigma},{pi},{omega}) mean-field model, all the masses of hadrons are produced by the breaking of chiral symmetry, which is different from other conventional chiral partner models. By comparing both nonchiral and chiral mean-field approximations, the effects of the chiral symmetry breaking mechanism on the mass of {sigma}-meson, coefficients of nonlinear interactions and Fermi-liquid properties are investigated in nuclear matter and neutron stars.

  14. Scaling of elliptic flow, recombination, and sequential freeze-out of hadrons in heavy-ion collisions

    SciTech Connect

    He Min; Rapp, Ralf; Fries, Rainer J.

    2010-09-15

    The scaling properties of elliptic flow of hadrons produced in ultrarelativistic heavy-ion collisions are investigated at low transverse momenta, p{sub T} < or approx. 2 GeV. Utilizing empirical parametrizations of a thermalized fireball with collective-flow fields, the resonance recombination model (RRM) is employed to describe hadronization via quark coalescence at the hadronization transition. We reconfirm that RRM converts equilibrium quark distribution functions into equilibrated hadron spectra including the effects of space-momentum correlations on elliptic flow. This provides the basis for a controlled extraction of quark distributions of the bulk matter at hadronization from spectra of multistrange hadrons which are beligeved to decouple close to the critical temperature. The resulting elliptic flow from empirical fits at the BNL Relativistic Heavy Ion Collider exhibits transverse kinetic-energy and valence-quark scaling. Utilizing the well-established concept of sequential freeze-out, the scaling at low momenta extends to bulk hadrons ({pi}, K, p) at thermal freeze-out, albeit with different source parameters compared to chemical freeze-out. Elliptic-flow scaling is thus compatible with both equilibrium hydrodynamics and quark recombination.

  15. Scaling of Elliptic Flow, Recombination and Sequential Freeze-Out of Hadrons in Heavy-Ion Collisions

    SciTech Connect

    Fries, R.; He, M., and Rapp, R.

    2010-09-21

    The scaling properties of elliptic flow of hadrons produced in ultrarelativistic heavy-ion collisions are investigated at low transverse momenta, p{sub T} {le} 2 GeV. Utilizing empirical parametrizations of a thermalized fireball with collective-flow fields, the resonance recombination model (RRM) is employed to describe hadronization via quark coalescence at the hadronization transition. We reconfirm that RRM converts equilibrium quark distribution functions into equilibrated hadron spectra including the effects of space-momentum correlations on elliptic flow. This provides the basis for a controlled extraction of quark distributions of the bulk matter at hadronization from spectra of multistrange hadrons which are believed to decouple close to the critical temperature. The resulting elliptic flow from empirical fits at the BNL Relativistic Heavy Ion Collider exhibits transverse kinetic-energy and valence-quark scaling. Utilizing the well-established concept of sequential freeze-out, the scaling at low momenta extends to bulk hadrons ({pi}, K, p) at thermal freeze-out, albeit with different source parameters compared to chemical freeze-out. Elliptic-flow scaling is thus compatible with both equilibrium hydrodynamics and quark recombination.

  16. Quenched hadron spectrum of QCD

    SciTech Connect

    Kim, Seyong.

    1992-12-01

    We calculate hadron spectrum of quantum chromodynamics without dynamical fermions on a 32[sup 3] [times] 64 lattice volume at [beta] = 6.5. Using two different wall sources of staggered fermion whose mass is 0.01, 0.005 and 0.0025 under the background gauge configurations, we extract local light hadron masses and the [triangle] masses and compare these hadron masses with those from experiments. The numerical simulation is executed on the Intel Touchstone Delta computer. We employ multihit metropolis algorithm with over-relaxation method steps to update gauge field configuration and gauge field configuration are collected at every 1000 sweeps. After the gauge field configuration is fixed to Coulomb gauge, the conjugate gradient method is used for Dirac matrix inversion.

  17. Quenched hadron spectrum of QCD

    SciTech Connect

    Kim, Seyong

    1992-12-01

    We calculate hadron spectrum of quantum chromodynamics without dynamical fermions on a 32{sup 3} {times} 64 lattice volume at {beta} = 6.5. Using two different wall sources of staggered fermion whose mass is 0.01, 0.005 and 0.0025 under the background gauge configurations, we extract local light hadron masses and the {triangle} masses and compare these hadron masses with those from experiments. The numerical simulation is executed on the Intel Touchstone Delta computer. We employ multihit metropolis algorithm with over-relaxation method steps to update gauge field configuration and gauge field configuration are collected at every 1000 sweeps. After the gauge field configuration is fixed to Coulomb gauge, the conjugate gradient method is used for Dirac matrix inversion.

  18. Hadron Contribution to Vacuum Polarisation

    NASA Astrophysics Data System (ADS)

    Davier, M.; Hoecker, A.; Malaescu, B.; Zhang, Z.

    2016-10-01

    Precision tests of the Standard Theory require theoretical predictions taking into account higher-order quantum corrections. Among these vacuum polarisation plays a predominant role. Vacuum polarisation originates from creation and annihilation of virtual particle-antiparticle states. Leptonic vacuum polarisation can be computed from quantum electrodynamics. Hadronic vacuum polarisation cannot because of the non-perturbative nature of QCD at low energy. The problem is remedied by establishing dispersion relations involving experimental data on the cross section for e+ e- annihilation into hadrons. This chapter sets the theoretical and experimental scene and reviews the progress achieved in the last decades thanks to more precise and complete data sets. Among the various applications of hadronic vacuum polarisation calculations, two are emphasised: the contribution to the anomalous magnetic moment of the muon, and the running of the fine structure constant α to the Z mass scale. They are fundamental ingredients to high precision tests of the Standard Theory.

  19. History of hadron therapy accelerators.

    PubMed

    Degiovanni, Alberto; Amaldi, Ugo

    2015-06-01

    In the last 60 years, hadron therapy has made great advances passing from a stage of pure research to a well-established treatment modality for solid tumours. In this paper the history of hadron therapy accelerators is reviewed, starting from the first cyclotrons used in the thirties for neutron therapy and passing to more modern and flexible machines used nowadays. The technical developments have been accompanied by clinical studies that allowed the selection of the tumours which are more sensitive to this type of radiotherapy. This paper aims at giving a review of the origin and the present status of hadron therapy accelerators, describing the technological basis and the continuous development of this application to medicine of instruments developed for fundamental science. At the end the present challenges are reviewed.

  20. The segmentation of hadron calorimeters

    NASA Astrophysics Data System (ADS)

    Chen, He Sheng

    1987-05-01

    Optimization of the segmentation of large hadron calorimeters is important in order to obtain good resolution for jet physics at minimum construction cost for the next generation of high energy experiments. The principles of the segmentation of hadron calorimeters are discussed. As an example, the Monte Carlo optimization of the segmentation of the L3 hadron calorimeter barrel at CERN is described. Comparisons of results for the reconstructed jet shapes show that the optimum number ADC channels is about 20K for the readout of 450K wires of the proportional chambers. The matching between the sandwiched φ towers and Z towers is the dominant factor for angular resolution. Based on these Monte Carlo simulations, an optimized tower structure is obtained.

  1. Relativistic Radiation Hydrodynamical Accretion-Disk Winds

    NASA Astrophysics Data System (ADS)

    Fukue, Jun; Akizuki, Chizuru

    2007-10-01

    Accretion-disk winds blowing off perpendicular to a luminous disk are examined within the framework of fully special relativistic radiation hydrodynamics. The wind is assumed to be steady, vertical, and isothermal. Using a velocity-dependent variable Eddington factor, we can solve the rigorous equations of relativistic radiative hydrodynamics, and can obtain radiatively driven winds accelerated up to relativistic speeds. For less-luminous cases, disk winds are transonic types passing through saddle-type critical points, and the final speeds of the winds increase as the disk flux and/or the isothermal sound speed increase. For luminous cases, on the other hand, disk winds are always supersonic, since the critical points disappear due to the characteristic nature of the disk gravitational fields. The boundary between the transonic and supersonic types is located at around hat{F}c ˜ 0.1(ɛ + p) / (ρc2) / γc, where hat{F}c is the radiative flux at the critical point normalized by the local Eddington luminosity, (ɛ + p) / (ρc2) is the enthalpy of the gas divided by the rest-mass energy, and γc is the Lorentz factor of the wind velocity at the critical point. In transonic winds, the final speed becomes 0.4-0.8c for typical parameters, while it can reach ˜ c in supersonic winds.

  2. Hadron scattering, resonances, and QCD

    SciTech Connect

    Briceno, Raul

    2016-12-01

    The non-perturbative nature of quantum chromodynamics (QCD) has historically left a gap in our understanding of the connection between the fundamental theory of the strong interactions and the rich structure of experimentally observed phenomena. For the simplest properties of stable hadrons, this is now circumvented with the use of lattice QCD (LQCD). In this talk I discuss a path towards a rigorous determination of few-hadron observables from LQCD. I illustrate the power of the methodology by presenting recently determined scattering amplitudes in the light-meson sector and their resonance content.

  3. An Undergraduate Exercise in the First Law of Relativistic Thermodynamics

    ERIC Educational Resources Information Center

    Guemez, J.

    2010-01-01

    The isothermal compression of an ideal gas is analysed using a relativistic thermodynamics formalism based on the principle of inertia of energy (Einstein's equation) and the asynchronous formulation (Cavalleri and Salgarelli 1969 "Nuovo Cimento" 42 722-54), which is similar to the formalism developed by van Kampen (1968 "Phys. Rev." 173 295-301)…

  4. An Undergraduate Exercise in the First Law of Relativistic Thermodynamics

    ERIC Educational Resources Information Center

    Guemez, J.

    2010-01-01

    The isothermal compression of an ideal gas is analysed using a relativistic thermodynamics formalism based on the principle of inertia of energy (Einstein's equation) and the asynchronous formulation (Cavalleri and Salgarelli 1969 "Nuovo Cimento" 42 722-54), which is similar to the formalism developed by van Kampen (1968 "Phys. Rev." 173 295-301)…

  5. Relativistic Quantum Communication

    NASA Astrophysics Data System (ADS)

    Hosler, Dominic

    In this Ph.D. thesis, I investigate the communication abilities of non-inertial observers and the precision to which they can measure parametrized states. I introduce relativistic quantum field theory with field quantisation, and the definition and transformations of mode functions in Minkowski, Schwarzschild and Rindler spaces. I introduce information theory by discussing the nature of information, defining the entropic information measures, and highlighting the differences between classical and quantum information. I review the field of relativistic quantum information. We investigate the communication abilities of an inertial observer to a relativistic observer hovering above a Schwarzschild black hole, using the Rindler approximation. We compare both classical communication and quantum entanglement generation of the state merging protocol, for both the single and dual rail encodings. We find that while classical communication remains finite right up to the horizon, the quantum entanglement generation tends to zero. We investigate the observers' abilities to precisely measure the parameter of a state that is communicated between Alice and Rob. This parameter was encoded to either the amplitudes of a single excitation state or the phase of a NOON state. With NOON states the dual rail encoding provided greater precision, which is different to the results for the other situations. The precision was maximum for a particular number of excitations in the NOON state. We calculated the bipartite communication for Alice-Rob and Alice-AntiRob beyond the single mode approximation. Rob and AntiRob are causally disconnected counter-accelerating observers. We found that Alice must choose in advance with whom, Rob or AntiRob she wants to create entanglement using a particular setup. She could communicate classically to both.

  6. Properties of b-flavored hadrons

    SciTech Connect

    Jaros, J.A.

    1983-10-01

    Experimental progress in the study of b-flavored hadrons is reviewed. The observation of the B meson, properties of hadronic B decays, semi-leptonic B decays, and the B lifetime are discussed. 30 references.

  7. Newtonian and relativistic cosmologies

    NASA Astrophysics Data System (ADS)

    Green, Stephen R.; Wald, Robert M.

    2012-03-01

    Cosmological N-body simulations are now being performed using Newtonian gravity on scales larger than the Hubble radius. It is well known that a uniformly expanding, homogeneous ball of dust in Newtonian gravity satisfies the same equations as arise in relativistic Friedmann-Lemaître-Robinson-Walker cosmology, and it also is known that a correspondence between Newtonian and relativistic dust cosmologies continues to hold in linearized perturbation theory in the marginally bound/spatially flat case. Nevertheless, it is far from obvious that Newtonian gravity can provide a good global description of an inhomogeneous cosmology when there is significant nonlinear dynamical behavior at small scales. We investigate this issue in the light of a perturbative framework that we have recently developed [S. R. Green and R. M. Wald, Phys. Rev. DPRVDAQ1550-7998 83, 084020 (2011).10.1103/PhysRevD.83.084020], which allows for such nonlinearity at small scales. We propose a relatively straightforward dictionary—which is exact at the linearized level—that maps Newtonian dust cosmologies into general relativistic dust cosmologies, and we use our “ordering scheme” to determine the degree to which the resulting metric and matter distribution solve Einstein’s equation. We find that, within our ordering scheme, Einstein’s equation fails to hold at “order 1” at small scales and at “order ɛ” at large scales. We then find the additional corrections to the metric and matter distribution needed to satisfy Einstein’s equation to these orders. While these corrections are of some interest in their own right, our main purpose in calculating them is that their smallness should provide a criterion for the validity of the original dictionary (as well as simplified versions of this dictionary). We expect that, in realistic Newtonian cosmologies, these additional corrections will be very small; if so, this should provide strong justification for the use of Newtonian simulations

  8. The relativist stance.

    PubMed

    Rössler, O E; Matsuno, K

    1998-04-01

    The two mindsets of absolutism and relativism are juxtaposed, and the relational or relativist stance is vindicated. The only 'absolute' entity which undeniably exists, consciousness has the reality of a dream. The escape hatch from this prison is relational, as Descartes and Levinas found out: Unfalsified relational consistency implies exteriority. Exteriority implies infinite power which in turn makes compassion inevitable. Aside from ethics as a royal way to enlightenment, a new technology called 'deep technology' may be accessible. It changes the whole world in a demonstrable fashion by manipulation of the micro frame--that is, the observer-world interface.

  9. Relativistic quantum information

    NASA Astrophysics Data System (ADS)

    Mann, R. B.; Ralph, T. C.

    2012-11-01

    Over the past few years, a new field of high research intensity has emerged that blends together concepts from gravitational physics and quantum computing. Known as relativistic quantum information, or RQI, the field aims to understand the relationship between special and general relativity and quantum information. Since the original discoveries of Hawking radiation and the Unruh effect, it has been known that incorporating the concepts of quantum theory into relativistic settings can produce new and surprising effects. However it is only in recent years that it has become appreciated that the basic concepts involved in quantum information science undergo significant revision in relativistic settings, and that new phenomena arise when quantum entanglement is combined with relativity. A number of examples illustrate that point. Quantum teleportation fidelity is affected between observers in uniform relative acceleration. Entanglement is an observer-dependent property that is degraded from the perspective of accelerated observers moving in flat spacetime. Entanglement can also be extracted from the vacuum of relativistic quantum field theories, and used to distinguish peculiar motion from cosmological expansion. The new quantum information-theoretic framework of quantum channels in terms of completely positive maps and operator algebras now provides powerful tools for studying matters of causality and information flow in quantum field theory in curved spacetimes. This focus issue provides a sample of the state of the art in research in RQI. Some of the articles in this issue review the subject while others provide interesting new results that will stimulate further research. What makes the subject all the more exciting is that it is beginning to enter the stage at which actual experiments can be contemplated, and some of the articles appearing in this issue discuss some of these exciting new developments. The subject of RQI pulls together concepts and ideas from

  10. Republication of: Relativistic cosmology

    NASA Astrophysics Data System (ADS)

    Robertson, H. P.

    2012-08-01

    This is a reprinting of the paper by Howard Percy Robertson, first published in 1933 in Rev. Mod. Phys., that is a very authoritative summary of relativistic cosmology at the stage at which it was up to 1933. The paper has been selected by the Editors of General Relativity and Gravitation for re-publication in the Golden Oldies series of the journal. This republication is accompanied by an editorial note written by George Ellis, and by Robertson's biography, compiled by Andrzej Krasinski from printed sources.

  11. Relativistic quantum cryptography

    NASA Astrophysics Data System (ADS)

    Kaniewski, Jedrzej

    Special relativity states that information cannot travel faster than the speed of light, which means that communication between agents occupying distinct locations incurs some minimal delay. Alternatively, we can see it as temporary communication constraints between distinct agents and such constraints turn out to be useful for cryptographic purposes. In relativistic cryptography we consider protocols in which interactions occur at distinct locations at well-defined times and we investigate why such a setting allows to implement primitives which would not be possible otherwise. (Abstract shortened by UMI.).

  12. Ultrabaric relativistic superfluids

    NASA Astrophysics Data System (ADS)

    Papini, G.; Weiss, M.

    1985-09-01

    Ultrabaric superfluid solutions are obtained for Einstein's equations to examine the possibility of the existence of superluminal sound speeds. The discussion is restricted only by requiring the energy-momentum tensor and the equation of state of matter to be represented by full relativistic equations. Only a few universes are known to satisfy the conditions, and those exhibit tension and are inflationary. Superluminal sound velocities are shown, therefore, to be possible for the interior Schwarzchild metric, which has been used to explain the red shift of quasars, and the Stephiani solution (1967). The latter indicates repeated transitions between superluminal and subliminal sound velocities in the hyperbaric superfluid of the early universe.

  13. Strange and heavy mesons in hadronic matter

    NASA Astrophysics Data System (ADS)

    Cabrera, Daniel; Abreu, Luciano M.; Bratkovskaya, Elena; Ilner, Andrej; Llanes-Estrada, Felipe J.; Ramos, Angels; Tolos, Laura; Torres-Rincon, Juan M.

    2014-04-01

    We present selected results on the properties of strange and heavy-flavoured mesons in a hot and dense nuclear medium, with emphasis in selfconsistent coupled-channel approaches based on the chiral Lagrangian. In the strangeness sector, we discuss how the enhanced reactivity of light strange vectors at FAIR conditions can be tied to in-medium effects on their predominant decay modes (e.g. bar K* → bar Kπ) and to the excitation of strange baryons in vector-meson nucleon interactions. In the heavy-flavour sector, we focus on recent determinations of the transport coefficients of charmed and bottomed mesons in a hadron gas at vanishing baryonic chemical potential. We comment on the role of microscopic transport simulations to establish a connection between theoretical models and experimental observables from heavy-ion collisions (HICs).

  14. Probing the hadron-quark mixed phase at high isospin and baryon density. Sensitive observables

    NASA Astrophysics Data System (ADS)

    Di Toro, Massimo; Colonna, Maria; Greco, Vincenzo; Shao, Guo-Yun

    2016-08-01

    We discuss the isospin effect on the possible phase transition from hadronic to quark matter at high baryon density and finite temperatures. The two-Equation of State (Two-EoS) model is adopted to describe the hadron-quark phase transition in dense matter formed in heavy-ion collisions. For the hadron sector we use Relativistic Mean-Field (RMF) effective models, already tested on heavy-ion collision (HIC). For the quark phase we consider various effective models, the MIT-Bag static picture, the Nambu-Jona-Lasinio (NJL) approach with chiral dynamics and finally the NJL coupled to the Polyakov-loop field (PNJL), which includes both chiral and (de)confinement dynamics. The idea is to extract mixed phase properties which appear robust with respect to the model differences. In particular we focus on the phase transitions of isospin asymmetric matter, with two main results: i) an earlier transition to a mixed hadron-quark phase, at lower baryon density/chemical potential with respect to symmetric matter; ii) an "Isospin Distillation" to the quark component of the mixed phase, with predicted effects on the final hadron production. Possible observation signals are suggested to probe in heavy-ion collision experiments at intermediate energies, in the range of the NICA program.

  15. Quark-Hadron Duality in Electron Scattering

    SciTech Connect

    W. Melnitchouk

    2000-09-01

    Quark-hadron duality addresses some of the most fundamental issues in strong interaction physics, in particular the nature of the transition from the perturbative to non-perturbative regions of QCD. I summarize recent developments in quark-hadron duality in lepton-hadron scattering, and outline how duality can be studied at future high-luminosity facilities such as Jefferson Lab at 12 GeV, or an electron-hadron collider such as EPIC.

  16. The Relativistic Heavy Ion Collider

    NASA Astrophysics Data System (ADS)

    Fischer, Wolfram

    The Relativistic Heavy Ion Collider (RHIC), shown in Fig. 1, was build to study the interactions of quarks and gluons at high energies [Harrison, Ludlam and Ozaki (2003)]. The theory of Quantum Chromodynamics (QCD) describes these interactions. One of the main goals for the RHIC experiments was the creation and study of the Quark-Gluon Plasma (QGP), which was expected to be formed after the collision of heavy ions at a temperature of approximately 2 trillion kelvin (or equivalently an energy of 150 MeV). The QGP is the substance which existed only a few microseconds after the Big Bang. The QGP was anticipated to be weakly interacting like a gas but turned out to be strongly interacting and more like a liquid. Among its unusual properties is its extremely low viscosity [Auerbach and Schlomo (2009)], which makes the QGP the substance closest to a perfect liquid known to date. The QGP is opaque to moderate energy quarks and gluons leading to a phenomenon called jet quenching, where of a jet and its recoil jet only one is observable and the other suppressed after traversing and interacting with the QGP [Jacak and Müller (2012)]...

  17. Observation of relativistic antihydrogen atoms

    SciTech Connect

    Blanford, Glenn DelFosse

    1998-01-01

    An observation of relativistic antihydrogen atoms is reported in this dissertation. Experiment 862 at Fermi National Accelerator Laboratory observed antihydrogen atoms produced by the interaction of a circulating beam of high momentum (3 < p < 9 GeV/c) antiprotons and a jet of molecular hydrogen gas. Since the neutral antihydrogen does not bend in the antiproton source magnets, the detectors could be located far from the interaction point on a beamline tangent to the storage ring. The detection of the antihydrogen is accomplished by ionizing the atoms far from the interaction point. The positron is deflected by a magnetic spectrometer and detected, as are the back to back photons resulting from its annihilation. The antiproton travels a distance long enough for its momentum and time of flight to be measured accurately. A statistically significant sample of 101 antihydrogen atoms has been observed. A measurement of the cross section for {bar H}{sup 0} production is outlined within. The cross section corresponds to the process where a high momentum antiproton causes e{sup +} e{sup -} pair creation near a nucleus with the e{sup +} being captured by the antiproton. Antihydrogen is the first atom made exclusively of antimatter to be detected. The observation experiment's results are the first step towards an antihydrogen spectroscopy experiment which would measure the n = 2 Lamb shift and fine structure.

  18. Jets propagation through a hadron-string medium

    SciTech Connect

    Konchakovski, V. P.; Bratkovskaya, E. L.; Cassing, W.; Gorenstein, M. I.

    2010-09-15

    Di-jet correlations in nucleus-nucleus collisions are studied within the hadron-string-dynamics (HSD) transport approach taking into account the reaction of the medium on the jet energy loss nonperturbatively. A comparison with the STAR and PHENIX data in central Au+Au collisions at the Relativistic Heavy Ion Collider energy {radical}(s)=200 GeV is performed differentially (i.e., with respect to correlations in azimuthal angle {Delta}{phi} and pseudorapidity {Delta}{eta}). The HSD results do not show enough suppression for the 'away-side' jets in accordance with earlier perturbative studies. Furthermore, the 'Mach-cone' structure for the angle distribution in the away-side jet as well as 'ridge' long-range rapidity correlations in the 'near-side' jet - observed by the STAR, PHENIX, and PHOBOS Collaborations - are not seen in the HSD results, thus suggesting a partonic origin.

  19. Relativistic Effects on Chemical Properties.

    ERIC Educational Resources Information Center

    McKelvey, Donald R.

    1983-01-01

    Discusses how anomalous chemical properties may be explained by considering relativistic effects. Traces development of the relativistic wave equation (Dirac equation) starting with the Borh treatment of the hydrogen atom and discusses major consequences of the Dirac equation. Suggests that these topics receive greater attention in the…

  20. A Simple Relativistic Bohr Atom

    ERIC Educational Resources Information Center

    Terzis, Andreas F.

    2008-01-01

    A simple concise relativistic modification of the standard Bohr model for hydrogen-like atoms with circular orbits is presented. As the derivation requires basic knowledge of classical and relativistic mechanics, it can be taught in standard courses in modern physics and introductory quantum mechanics. In addition, it can be shown in a class that…

  1. Relativistic Effects on Chemical Properties.

    ERIC Educational Resources Information Center

    McKelvey, Donald R.

    1983-01-01

    Discusses how anomalous chemical properties may be explained by considering relativistic effects. Traces development of the relativistic wave equation (Dirac equation) starting with the Borh treatment of the hydrogen atom and discusses major consequences of the Dirac equation. Suggests that these topics receive greater attention in the…

  2. A Simple Relativistic Bohr Atom

    ERIC Educational Resources Information Center

    Terzis, Andreas F.

    2008-01-01

    A simple concise relativistic modification of the standard Bohr model for hydrogen-like atoms with circular orbits is presented. As the derivation requires basic knowledge of classical and relativistic mechanics, it can be taught in standard courses in modern physics and introductory quantum mechanics. In addition, it can be shown in a class that…

  3. relline: Relativistic line profiles calculation

    NASA Astrophysics Data System (ADS)

    Dauser, Thomas

    2015-05-01

    relline calculates relativistic line profiles; it is compatible with the common X-ray data analysis software XSPEC (ascl:9910.005) and ISIS (ascl:1302.002). The two basic forms are an additive line model (RELLINE) and a convolution model to calculate relativistic smearing (RELCONV).

  4. Energy dependence of resonance production in relativistic heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Shao, Feng-Lan; Song, Jun; Wang, Rui-Qin; Zhang, Mao-Sheng

    2017-01-01

    The production of the hadronic resonances K*0(892), ϕ(1020), Σ*(1385), and Ξ*(1530) in central AA collisions at , 200, and 2760 GeV is systematically studied. The direct production of these resonances at system hadronization is described by the quark combination model and the effects of hadron multiple-scattering stage are dealt with by a ultra-relativistic quantum molecular dynamics model (UrQMD). We study the contribution of these two production sources to final observation and compare the final spectra with the available experimental data. The p T spectra of K*0(892) calculated directly by quark combination model are explicitly higher than the data at low p T ≲ 1.5 GeV, and taking into account the modification of rescattering effects, the resulting final spectra well agree with the data at all three collision energies. The rescattering effect on ϕ(1020) production is weak and including it can slightly improve our description at low p T on the basis of overall agreement with the data. We also predict the p T spectra of Σ*(1385) and Ξ*(1530), to be tested by the future experimental data. Supported by National Natural Science Foundation of China (11575100, 11305076, 11505104)

  5. Relativistic Continuum Shell Model

    NASA Astrophysics Data System (ADS)

    Grineviciute, Janina; Halderson, Dean

    2011-04-01

    The R-matrix formalism of Lane and Thomas has been extended to the relativistic case so that the many-coupled channels problem may be solved for systems in which binary breakup channels satisfy a relative Dirac equation. The formalism was previously applied to the relativistic impulse approximation RIA and now we applied it to Quantum Hadrodynamics QHD in the continuum Tamm-Dancoff approximation TDA with the classical meson fields replaced by one-meson exchange potentials. None of the published QHD parameters provide a decent fit to the 15 N + p elastic cross section. The deficiency is also evident in inability of the QHD parameters with the one meson exchange potentials to reproduce the QHD single particle energies. Results with alternate parameters sets are presented. A. M. Lane and R. G. Thomas, R-Matrix Theory of Nuclear Reactions, Reviews of Modern Physics, 30 (1958) 257

  6. Robust relativistic bit commitment

    NASA Astrophysics Data System (ADS)

    Chakraborty, Kaushik; Chailloux, André; Leverrier, Anthony

    2016-12-01

    Relativistic cryptography exploits the fact that no information can travel faster than the speed of light in order to obtain security guarantees that cannot be achieved from the laws of quantum mechanics alone. Recently, Lunghi et al. [Phys. Rev. Lett. 115, 030502 (2015), 10.1103/PhysRevLett.115.030502] presented a bit-commitment scheme where each party uses two agents that exchange classical information in a synchronized fashion, and that is both hiding and binding. A caveat is that the commitment time is intrinsically limited by the spatial configuration of the players, and increasing this time requires the agents to exchange messages during the whole duration of the protocol. While such a solution remains computationally attractive, its practicality is severely limited in realistic settings since all communication must remain perfectly synchronized at all times. In this work, we introduce a robust protocol for relativistic bit commitment that tolerates failures of the classical communication network. This is done by adding a third agent to both parties. Our scheme provides a quadratic improvement in terms of expected sustain time compared with the original protocol, while retaining the same level of security.

  7. Relativistic harmonic oscillator revisited

    SciTech Connect

    Bars, Itzhak

    2009-02-15

    The familiar Fock space commonly used to describe the relativistic harmonic oscillator, for example, as part of string theory, is insufficient to describe all the states of the relativistic oscillator. We find that there are three different vacua leading to three disconnected Fock sectors, all constructed with the same creation-annihilation operators. These have different spacetime geometric properties as well as different algebraic symmetry properties or different quantum numbers. Two of these Fock spaces include negative norm ghosts (as in string theory), while the third one is completely free of ghosts. We discuss a gauge symmetry in a worldline theory approach that supplies appropriate constraints to remove all the ghosts from all Fock sectors of the single oscillator. The resulting ghost-free quantum spectrum in d+1 dimensions is then classified in unitary representations of the Lorentz group SO(d,1). Moreover, all states of the single oscillator put together make up a single infinite dimensional unitary representation of a hidden global symmetry SU(d,1), whose Casimir eigenvalues are computed. Possible applications of these new results in string theory and other areas of physics and mathematics are briefly mentioned.

  8. Hadronic decays of $W$ bosons

    SciTech Connect

    Wilkinson, III, Richard Paul

    1997-01-01

    We present evidence for hadronic W decays in t$\\bar{t}$ → lepton + neutrino + ≥ 4 jet events using a 109 pb -1 data sample of p$\\bar{p}$ collisions at √s = 1.8 TeV collected with the Collider Detector at Fermilab (CDF).

  9. Hadronic Interactions from Lattice QCD

    SciTech Connect

    Konstantinos Orginos

    2006-03-19

    In this talk I discuss a few recent results on lattice calculations of scattering lengths in hadronic processes. In particular, I present the scattering length of the pion-pion scattering in the I=2 channel and the nucleon-nucleon {sup 1}S{sub 0} channel and {sup 3}S{sub 1}-{sup 3}D{sub 1} coupled channels.

  10. Exciting Developments in Hadron Spectroscopy

    SciTech Connect

    Seth, Kamal K.

    2006-02-11

    There has been a renaissance in hadron spectroscopy during the last couple of years. Long lost states have been tracked down. Unexpected states are showing up all over, and numerous measurements with unprecedented precision are being reported. A review is presented.

  11. Hadron production simulation by FLUKA

    NASA Astrophysics Data System (ADS)

    Battistoni, G.; Cerutti, F.; Ferrari, A.; Ranft, J.; Roesler, S.; Sala, P. R.

    2013-02-01

    For the purposes of accelerator based neutrino experiments, the simulation of parent hadron production plays a key role. In this paper a quick overview of the main ingredients of the PEANUT event generator implemented in the FLUKA Monte Carlo code is given, together with some benchmarking examples.

  12. B physics at hadron colliders

    SciTech Connect

    Butler, J.N.; /Fermilab

    2005-09-01

    This paper discusses the physics opportunity and challenges for doing high precision B physics experiments at hadron colliders. It describes how these challenges have been addressed by the two currently operating experiments, CDF and D0, and how they are addressed by three experiments, ATLAS, CMS, and LHCb, at the LHC.

  13. Future hadron physics at Fermilab

    SciTech Connect

    Appel, Jeffrey A.; /Fermilab

    2005-09-01

    Today, hadron physics research occurs at Fermilab as parts of broader experimental programs. This is very likely to be the case in the future. Thus, much of this presentation focuses on our vision of that future--a future aimed at making Fermilab the host laboratory for the International Linear Collider (ILC). Given the uncertainties associated with the ILC--the level of needed R&D, the ILC costs, and the timing--Fermilab is also preparing for other program choices. I will describe these latter efforts, efforts focused on a Proton Driver to increase the numbers of protons available for experiments. As examples of the hadron physics which will be coming from Fermilab, I summarize three experiments: MIPP/E907 which is running currently, and MINERvA and Drell-Yan/E906 which are scheduled for future running periods. Hadron physics coming from the Tevatron Collider program will be summarized by Arthur Maciel in another talk at Hadron05.

  14. Dimensional Reduction and Hadronic Processes

    SciTech Connect

    Signer, Adrian; Stoeckinger, Dominik

    2008-11-23

    We consider the application of regularization by dimensional reduction to NLO corrections of hadronic processes. The general collinear singularity structure is discussed, the origin of the regularization-scheme dependence is identified and transition rules to other regularization schemes are derived.

  15. Key Issues in Hadronic Physics

    SciTech Connect

    Simon Capstick; et. Al.

    2000-12-01

    A group of fifty physicists met in Duck, NC, Nov. 6-9 to discuss the current status and future goals of hadronic physics. The main purpose of the meeting was to define the field by identifying its key issues, challenges, and opportunities. The conclusions, incorporating considerable input from the community at large, are presented in this white paper.

  16. The very large hadron collider

    SciTech Connect

    1998-09-01

    This paper reviews the purposes to be served by a very large hadron collider and the organization and coordination of efforts to bring it about. There is some discussion of magnet requirements and R&D and the suitability of the Fermilab site.

  17. Theoretical predictions for exotic hadrons

    SciTech Connect

    Barnes, T. |

    1996-12-31

    In this contribution the authors discuss current theoretical expectations for the properties of light meson exotica, which are meson resonances outside the q{anti q} quark model. Specifically they discuss expectations for gluonic hadrons (glueballs and hybrids) and multiquark systems (molecules). Experimental candidates for these states are summarized, and the relevance of a TCF to these studies is stressed.

  18. The CMS central hadron calorimeter

    SciTech Connect

    Freeman, J.; E892 Collaboration

    1996-12-31

    The CMS central hadron calorimeter is a copper absorber/ scintillator sampling structure. We describe design choices that led us to this concept, details of the mechanical and optical structure, and test beam results. We discuss calibration techniques, and finally the anticipated construction schedule.

  19. Anomalous correlation between hadron and electromagnetic particles in hadron and gamma-ray families

    NASA Technical Reports Server (NTRS)

    Tamada, M.

    1985-01-01

    Correlations between hadrons and electromagnetic particles were studied in the hadron-gamma families observed in the Chacaltaya emulsion chamber experiment. It is found that there exist a number of hadrons which associate electromagnetic showers in extraordinarily close vicinity. The probability to have such a large number of hadrons associating electromagnetic showers, expected from background calculation, is found to be negligibly small and it means there exists anomalous correlation between hadrons and electromagnetic particles in the characteristic spread of atmospheric electromagnetic cascade.

  20. The relation between relativistic and non-relativistic continuum thermodynamics

    NASA Astrophysics Data System (ADS)

    Schellstede, G. O.; von Borzeszkowski, H.-H.; Chrobok, T.; Muschik, W.

    2014-01-01

    We consider the relativistic theory of irreversible processes with the aim to answer the following questions: (1) Under which conditions is this theory a relativistic generalization of the non-relativistic theory of irreversible processes (in particular, this implies to ask for the conditions under which the first law of thermodynamics can be recovered from the relativistic conservation law of total energy), and (2) how do the relativistic corrections look like? To this end, we perform a low-energy approximation for the balance equations underlying the theory, i.e., for the balances of the particle number, the energy-momentum and the entropy. It is shown that, going up to the 3rd order in the expansion series of the balances, the non-relativistic theory can be derived when one assumes that the 4-current of the particle flow is purely convective and the product of the 3-dimensional acceleration and velocity is equal to zero. Afterwards, the higher-order terms are discussed. Since our discussion mainly makes use of those balance equations that lie on the basis of most versions of continuum thermodynamics, the results do not only refer to early TIP presented by Eckart (Phys Rev 58:919, 1940) and Landau and Lifshitz (Fluid mechanics. Pergamon Press, Oxford, 1940), but also to its extended and/or general-relativistic versions.

  1. Relativistic rise measurement for heavy cosmic rays in xenon

    NASA Technical Reports Server (NTRS)

    Gregory, J. C.; Parnell, T. A.; Watts, J., Jr.

    1982-01-01

    Potential advantages of the use of the relativistic rise of energy loss in gas-filled counters for cosmic ray energy measurement have been noted by Tueller et al. (1979) and Gregory and Parnell (1979). Gregory and Parnell have reported measurements on the relativistic rise for cosmic ray iron nuclei in parallel plate ionization chambers 8.4 cm thick filled with a xenon and methane mixture. The present investigation is concerned with the observed rise and ionization signal fluctuations for a sample of elements from carbon through iron in the cosmic rays. The results are compared with a calculation of the energy deposit within the ion chamber.

  2. Lorentz invariant relative velocity and relativistic binary collisions

    NASA Astrophysics Data System (ADS)

    Cannoni, Mirco

    2017-01-01

    This paper reviews the concept of Lorentz invariant relative velocity that is often misunderstood or unknown in high energy physics literature. The properties of the relative velocity allow to formulate the invariant flux and cross-section without recurring to nonphysical velocities or any assumption about the reference frame. Applications such as the luminosity of a collider, the use as kinematic variable, and the statistical theory of collisions in a relativistic classical gas are reviewed. It is emphasized how the hyperbolic properties of the velocity space explain the peculiarities of relativistic scattering.

  3. A relativistic toy model for Unruh black holes

    NASA Astrophysics Data System (ADS)

    Carbonaro, P.

    2014-08-01

    We consider the wave propagation in terms of acoustic geometry in a quantum relativistic system. This reduces, in the hydrodynamic limit, to the equations which govern the motion of a relativistic Fermi-degenerate gas in one space dimension. The derivation of an acoustic metric for one-dimensional (1D) systems is in general plagued with the impossibility of defining a conformal factor. Here we show that, although the system is intrinsically one-dimensional, the Unruh procedure continues to work because of the particular structure symmetry of the model. By analyzing the dispersion relation, attention is also paid to the quantum effects on the wave propagation.

  4. Equilibration and freeze-out of an expanding gas in a transport approach in a Friedmann-Robertson-Walker metric

    NASA Astrophysics Data System (ADS)

    Tindall, J.; Torres-Rincon, J. M.; Rose, J. B.; Petersen, H.

    2017-07-01

    Motivated by a recent finding of an exact solution of the relativistic Boltzmann equation in a Friedmann-Robertson-Walker spacetime, we implement this metric into the newly developed transport approach Simulating Many Accelerated Strongly-interacting Hadrons (SMASH). We study the numerical solution of the transport equation and compare it to this exact solution for massless particles. We also compare a different initial condition, for which the transport equation can be independently solved numerically. Very nice agreement is observed in both cases. Having passed these checks for the SMASH code, we study a gas of massive particles within the same spacetime, where the particle decoupling is forced by the Hubble expansion. In this simple scenario we present an analysis of the freeze-out times, as function of the masses and cross sections of the particles. The results might be of interest for their potential application to relativistic heavy-ion collisions, for the characterization of the freeze-out process in terms of hadron properties.

  5. Constraining the hadronic spectrum through QCD thermodynamics on the lattice

    NASA Astrophysics Data System (ADS)

    Alba, Paolo; Bellwied, Rene; Borsányi, Szabolcs; Fodor, Zoltan; Günther, Jana; Katz, Sandor D.; Mantovani Sarti, Valentina; Noronha-Hostler, Jacquelyn; Parotto, Paolo; Pasztor, Attila; Vazquez, Israel Portillo; Ratti, Claudia

    2017-08-01

    Fluctuations of conserved charges allow us to study the chemical composition of hadronic matter. A comparison between lattice simulations and the hadron resonance gas (HRG) model suggested the existence of missing strange resonances. To clarify this issue we calculate the partial pressures of mesons and baryons with different strangeness quantum numbers using lattice simulations in the confined phase of QCD. In order to make this calculation feasible, we perform simulations at imaginary strangeness chemical potentials. We systematically study the effect of different hadronic spectra on thermodynamic observables in the HRG model and compare to lattice QCD results. We show that, for each hadronic sector, the well-established states are not enough in order to have agreement with the lattice results. Additional states, either listed in the Particle Data Group booklet (PDG) but not well established, or predicted by the quark model (QM), are necessary in order to reproduce the lattice data. For mesons, it appears that the PDG and the quark model do not list enough strange mesons, or that, in this sector, interactions beyond those included in the HRG model are needed to reproduce the lattice QCD results.

  6. Chaoticity parameter λ in two-pion interferometry in an expanding boson gas model

    SciTech Connect

    Liu, Jie; Ru, Peng; Zhang, Wei-Ning; Wong, Cheuk-Yin

    2014-10-15

    We investigate the chaoticity parameter λ in two-pion interferometry in an expanding boson gas model. The degree of Bose-Einstein condensation of identical pions, density distributions, and Hanbury-Brown-Twiss (HBT) correlation functions are calculated for the expanding gas within the mean-field description with a harmonic oscillator potential. The results indicate that a sources with thousands of identical pions may exhibit a degree of Bose-Einstein condensation at the temperatures during the hadronic phase in relativistic heavy-ion collisions. This finite condensation may decrease the chaoticity parameter λ in the two-pion interferometry measurements at low pion pair momenta, but influence only slightly the λ value at high pion pair momentum.

  7. Relativistic hydrodynamic jets in the intracluster medium

    NASA Astrophysics Data System (ADS)

    Choi, Eunwoo

    2017-08-01

    We have performed the first three-dimensional relativistic hydrodynamic simulations of extragalactic jets of pure leptonic and baryonic plasma compositions propagating into a hydrostatic intracluster medium (ICM) environment. The numerical simulations use a general equation of state for a multicomponent relativistic gas, which closely reproduces the Synge equation of state for a relativistic perfect gas. We find that morphological and dynamical differences between leptonic and baryonic jets are much less evident than those between hot and cold jets. In all these models, the jets first propagate with essentially constant velocities within the core radius of the ICM and then accelerate progressively so as to increase the jet advance velocity by a factor of between 1.2 and 1.6 at the end of simulations, depending upon the models. The temporal evolution of the average cavity pressure is not consistent with that expected by the extended theoretical model even if the average cavity pressure decreases as a function of time with a power law. Our simulations produce synthetic radio images that are dominated by bright hot spots and appear similar to observations of the extended radio galaxies with collimated radio jets. These bright radio lobes would be visible as dark regions in X-ray images and are morphologically similar to observed X-ray cavities in the ICM. This supports the expectation that the bow shock surrounding the head of the jet is important mechanism for producing X-ray cavities in the ICM. Although there are quantitative differences among the models, the total radio and X-ray intensity curves show qualitatively similar trends in all of them.

  8. Inverse Compton Scattering in Mildly Relativistic Plasma

    NASA Technical Reports Server (NTRS)

    Molnar, S. M.; Birkinshaw, M.

    1998-01-01

    We investigated the effect of inverse Compton scattering in mildly relativistic static and moving plasmas with low optical depth using Monte Carlo simulations, and calculated the Sunyaev-Zel'dovich effect in the cosmic background radiation. Our semi-analytic method is based on a separation of photon diffusion in frequency and real space. We use Monte Carlo simulation to derive the intensity and frequency of the scattered photons for a monochromatic incoming radiation. The outgoing spectrum is determined by integrating over the spectrum of the incoming radiation using the intensity to determine the correct weight. This method makes it possible to study the emerging radiation as a function of frequency and direction. As a first application we have studied the effects of finite optical depth and gas infall on the Sunyaev-Zel'dovich effect (not possible with the extended Kompaneets equation) and discuss the parameter range in which the Boltzmann equation and its expansions can be used. For high temperature clusters (k(sub B)T(sub e) greater than or approximately equal to 15 keV) relativistic corrections based on a fifth order expansion of the extended Kompaneets equation seriously underestimate the Sunyaev-Zel'dovich effect at high frequencies. The contribution from plasma infall is less important for reasonable velocities. We give a convenient analytical expression for the dependence of the cross-over frequency on temperature, optical depth, and gas infall speed. Optical depth effects are often more important than relativistic corrections, and should be taken into account for high-precision work, but are smaller than the typical kinematic effect from cluster radial velocities.

  9. The computer simulation of laser proton acceleration for hadron therapy

    NASA Astrophysics Data System (ADS)

    Lykov, Vladimir; Baydin, Grigory

    2008-11-01

    The ions acceleration by intensive ultra-short laser pulses has interest in views of them possible applications for proton radiography, production of medical isotopes and hadron therapy. The 3D relativistic PIC-code LegoLPI is developed at RFNC-VNIITF for modeling of intensive laser interaction with plasma. The LegoLPI-code simulations were carried out to find the optimal conditions for generation of proton beams with parameters necessary for hadrons therapy. The performed simulations show that optimal for it may be two-layer foil of aluminum and polyethylene with thickness 100 nm and 50 nm accordingly. The maximum efficiency of laser energy transformation into 200 MeV protons is achieved on irradiating these foils by 30 fs laser pulse with intensity about 2.10^22 W/cm^2. The conclusion is made that lasers with peak power about 0.5-1PW and average power 0.5-1 kW are needed for generation of proton beams with parameters necessary for proton therapy.

  10. Single spin asymmetries in hadron-hadron collisions

    SciTech Connect

    Bacchetta, A.; Bomhof, C.J.; Mulders, P.J.; Pijlman, F.

    2005-08-01

    We study weighted azimuthal single spin asymmetries in hadron-hadron scattering using the diagrammatic approach at leading order and assuming factorization. The effects of the intrinsic transverse momenta of the partons are taken into account. We show that the way in which T-odd functions, such as the Sivers function, appear in these processes does not merely involve a sign flip when compared with semi-inclusive deep inelastic scattering, such as in the case of the Drell-Yan process. Expressions for the weighted scattering cross sections in terms of distribution and fragmentation functions folded with hard cross sections are obtained by introducing modified hard cross sections, referred to as gluonic-pole cross sections.

  11. Theoretical study of EAS hadronic structure

    NASA Technical Reports Server (NTRS)

    Popova, L.

    1985-01-01

    The structure of extensive air showers (EAS) is determined mainly by the energetic hadrons. They are strongly collimated in the core of the shower and essential difficulties are encountered for resolution of individual hadrons. The properties for resolution are different from the variety of hadron detectors used in EAS experiments. This is the main difficulty in obtaining a general agreement between actually registered data with different detectors. The most plausible source for disagreement is the uncertainty in determination of the energy of individual hadrons. This research demonstrates that a better agreement can be obtained with the average tendency of hadronic measurements if one assumes a larger coefficient of inelasticity and stronger energy increase of the total inelastic cross section in high energy pion interactions. EAS data above 10 to the 5th power GeV are revealing a faster development of hadronic cascades in the air then can be expected by extrapolating the parameters of hadron interactions obtained in accelerator measurements.

  12. Thermalization of hadrons via Hagedorn states

    NASA Astrophysics Data System (ADS)

    Beitel, M.; Gallmeister, K.; Greiner, C.

    2014-10-01

    Hagedorn states are characterized by being very massive hadron-like resonances and by not being limited to quantum numbers of known hadrons. To generate such a zoo of different Hagedorn states, a covariantly formulated bootstrap equation is solved by ensuring energy conservation and conservation of baryon number B, strangeness S, and electric charge Q. The numerical solution of this equation provides Hagedorn spectra, which also enable us to obtain the decay width for Hagedorn states needed in cascading decay simulations. A single Hagedorn state cascades by various two-body decay channels subsequently into final stable hadrons. All final hadronic observables such as masses, spectral functions, and decay branching ratios for hadronic feed-down are taken from a hadronic transport model. Strikingly, the final energy spectra of resulting hadrons are exponential, showing a thermal-like distribution with the characteristic Hagedorn temperature.

  13. Hydrodynamics of Relativistic Fireballs

    NASA Technical Reports Server (NTRS)

    Piran, Tsvi; Shemi, Amotz; Narayan, Ramesh

    1993-01-01

    Many models of gamma-ray bursts involve a fireball, which is an optically thick concentration of radiation energy with a high ratio of energy density to rest mass. We examine analytically and numerically the evolution of a relativistic fireball. We show that, after an early rearrangement phase, most of the matter and energy in the fireball is concentrated within a narrow shell. The shell propagates at nearly the speed of light, with a frozen radial profile, and according to a simple set of scaling laws. The spectrum of the escaping radiation is harder at early times and softer later on. Depending on the initial energy-to-mass ratio, the final outcome of a fireball is either photons with roughly the initial temperature or ultrarelativistic baryons. In the latter case, the energy could be converted back to gamma-rays via interaction with surrounding material.

  14. Relativistic Celestial Mechanics

    NASA Astrophysics Data System (ADS)

    Brumberg, Victor A.

    2010-08-01

    Relativistic celestial mechanics (RCM) refers to a science to study the motion of celestial bodies within the framework of general relativity theory (GRT) by Einstein. Being a straightforward successor of Newtonian celestial mechanics RCM embraces all aspects of motion of celestial bodies including (1) physics of motion, i.e. investigation of the physical nature of all effects influencing the motion of celestial bodies and formulation of a physical model for a specific problem; (2) mathematics of motion, i.e. investigation of the mathematical characteristics of the solutions of the differential equations of motion of celestial bodies; (3) computation of motion, i.e. the actual determination of the quantitative characteristics of motion; (4) astronomy of motion, i.e. application of mathematical solution of a problem to a specific celestial body, comparison with the results of observations, determination of initial values and parameters of motion, and checking the physical and mathematical models employed for a given problem.

  15. Relativistic theory of gravitation

    SciTech Connect

    Logunov, A.A.; Mestvirishvili, M.A.

    1985-06-01

    This paper constructs a relativistic theory of gravitation based on the special principle of relativity and the principle of geometrization. The gravitational field is regarded as a physical field in the spirit of Faraday and Maxwell, possessing energy, momentum, and spin 2 and 0. The source of the gravitational field is the total conserved energy momentum tensor of the matter and the gravitational field in Minkowski space. Conservation laws hold rigorously for the energy, momentum, and angular momentum of the matter and the gravitational field. The theory explains all the existing gravitational experiments. By virtue of the geometrization principle, the Riemann space has a field origin in the theory, arising as an effective force space through the action of the gravitational field on the matter.

  16. Photodetachment of relativistic ions

    SciTech Connect

    Donahue, J.B.; Gram, P.A.M.; Hamm, M.E.; Hamm, R.W.; Bryant, H.C.; Butterfield, K.B.; Clark, D.A.; Frost, C.A.; Smith, W.W.

    1980-01-01

    A series of fundamental laser ion beam experiments has been made feasible by the high-quality, relativistic (..beta.. = 0.842) H/sup -/ ion beam available at the Clinton P. Anderson Meson Physics Facility (LAMPF). The relatavistic Doppler shift of the light from an ordinary ultraviolet laser provides what is, in effect, a continuously tunable vacuum-ultraviolet laser in the rest frame of the moving ions. The Lorentz transformation of a modest laboratory magnetic field provides an electric field of several megavolts/centimeter. The latest results of photo-detachment work with H/sup -/ beams and our spectroscopic work with H/sup 0/ beams are presented. Plans for future work are discussed.

  17. Future Electron-Hadron Colliders

    SciTech Connect

    Litvinenko, V.

    2010-05-23

    Outstanding research potential of electron-hadron colliders (EHC) was clearly demonstrated by first - and the only - electron-proton collider HERA (DESY, Germany). Physics data from HERA revealed new previously unknown facets of Quantum Chromo-Dynamics (QCD). EHC is an ultimate microscope probing QCD in its natural environment, i.e. inside the hadrons. In contrast with hadrons, electrons are elementary particles with known initial state. Hence, scattering electrons from hadrons provides a clearest pass to their secrets. It turns EHC into an ultimate machine for high precision QCD studies and opens access to rich physics with a great discovery potential: solving proton spin puzzle, observing gluon saturation or physics beyond standard model. Access to this physics requires high-energy high-luminosity EHCs and a wide reach in the center-of-mass (CM) energies. This paper gives a brief overview of four proposed electron-hadron colliders: ENC at GSI (Darmstadt, Germany), ELIC/MEIC at TJNAF (Newport News, VA, USA), eRHIC at BNL (Upton, NY, USA) and LHeC at CERN (Geneva, Switzerland). Future electron-hadron colliders promise to deliver very rich physics not only in the quantity but also in the precision. They are aiming at very high luminosity two-to-four orders of magnitude beyond the luminosity demonstrated by the very successful HERA. While ENC and LHeC are on opposite side of the energy spectrum, eRHIC and ELIC are competing for becoming an electron-ion collider (EIC) in the U.S. Administrations of BNL and Jlab, in concert with US DoE office of Nuclear Physics, work on the strategy for down-selecting between eRHIC and ELIC. The ENC, EIC and LHeC QCD physics programs to a large degree are complimentary to each other and to the LHC physics. In last decade, an Electron Ion Collider (EIC) collaboration held about 25 collaboration meetings to develop physics program for EIC with CM energy {approx}100 GeV. One of these meetings was held at GSI, where ENC topic was in the

  18. Relativistic Light Sails

    NASA Astrophysics Data System (ADS)

    Kipping, David

    2017-06-01

    One proposed method for spacecraft to reach nearby stars is by accelerating sails using either solar radiation pressure or directed energy. This idea constitutes the thesis behind the Breakthrough Starshot project, which aims to accelerate a gram-mass spacecraft up to one-fifth the speed of light toward Proxima Centauri. For such a case, the combination of the sail’s low mass and relativistic velocity renders previous treatments incorrect at the 10% level, including that of Einstein himself in his seminal 1905 paper introducing special relativity. To address this, we present formulae for a sail’s acceleration, first in response to a single photon and then extended to an ensemble. We show how the sail’s motion in response to an ensemble of incident photons is equivalent to that of a single photon of energy equal to that of the ensemble. We use this principle of ensemble equivalence for both perfect and imperfect mirrors, enabling a simple analytic prediction of the sail’s velocity curve. Using our results and adopting putative parameters for Starshot, we estimate that previous relativistic treatments underestimate the spacecraft’s terminal velocity by ˜10% for the same incident energy. Additionally, we use a simple model to predict the sail’s temperature and diffraction beam losses during the laser firing period; this allows us to estimate that, for firing times of a few minutes and operating temperatures below 300°C (573 K), Starshot will require a sail that absorbs less than one in 260,000 photons.

  19. Observation of relativistic effects in collective Thomson scattering

    SciTech Connect

    Ross, J S; Glenzer, S H; Palastro, J P; Pollock, B B; Price, D; Divol, L; Tynan, G R; Froula, D H

    2009-10-08

    We observe relativistic modifications to the Thomson scattering spectrum in a traditionally classical regime: v{sub osc}/c = eE{sub 0}/cm{omega}{sub 0} << 1 and T{sub e} < 1 keV. The modifications result from scattering off electron-plasma fluctuations with relativistic phase velocities. Normalized phase velocities v/c between 0.03 and 0.12 have been achieved in a N{sub 2} gas-jet plasma by varying the plasma density from 3 x 10{sup 18} cm{sup -3} to 7 x 10{sup 19} cm{sup -3} and electron temperature between 85 eV and 700 eV. For these conditions, the complete temporally resolved Thomson scattering spectrum including the electron and ion features has been measured. A fully relativistic treatment of the Thomson scattering form factor has been developed and shows excellent agreement with the experimental data.

  20. Some problems in relativistic thermodynamics

    SciTech Connect

    Veitsman, E. V.

    2007-11-15

    The relativistic equations of state for ideal and real gases, as well as for various interface regions, have been derived. These dependences help to eliminate some controversies in the relativistic thermodynamics based on the special theory of relativity. It is shown, in particular, that the temperature of system whose velocity tends to the velocity of light in vacuum varies in accordance with the Ott law T = T{sub 0}/{radical}1 - v{sup 2}/c{sup 2}. Relativistic dependences for heat and mass transfer, for Ohm's law, and for a viscous flow of a liquid have also been derived.

  1. Mixing of relativistic ideal gases with relative relativistic velocities

    NASA Astrophysics Data System (ADS)

    Gonzalez-Narvaez, R. E.; Ares de Parga, A. M.; Ares de Parga, G.

    2017-01-01

    The Redefined Relativistic Thermodynamics is tested by means of mixing two ideal gases at different temperatures and distinct velocities. The conservation of the 4-vector energy-momentum leads to a tremendous increment of the temperature. This phenomenon can be used in order to describe the heating of a cold clump with shocked jets material. A prediction for improving the ignition of a Tokamak is proposed. The compatibility of the Redefined Relativistic Thermodynamics with the Thermodynamical Field Theory is analyzed.

  2. Hadron therapy information sharing prototype

    PubMed Central

    Roman, Faustin Laurentiu; Abler, Daniel; Kanellopoulos, Vassiliki; Amoros, Gabriel; Davies, Jim; Dosanjh, Manjit; Jena, Raj; Kirkby, Norman; Peach, Ken; Salt, Jose

    2013-01-01

    The European PARTNER project developed a prototypical system for sharing hadron therapy data. This system allows doctors and patients to record and report treatment-related events during and after hadron therapy. It presents doctors and statisticians with an integrated view of adverse events across institutions, using open-source components for data federation, semantics, and analysis. There is a particular emphasis upon semantic consistency, achieved through intelligent, annotated form designs. The system as presented is ready for use in a clinical setting, and amenable to further customization. The essential contribution of the work reported here lies in the novel data integration and reporting methods, as well as the approach to software sustainability achieved through the use of community-supported open-source components. PMID:23824127

  3. Quark description of hadronic phases

    SciTech Connect

    Schaefer, T.; Wilczek, F.

    1999-10-01

    We extend our proposal that major universality classes of hadronic matter can be understood, and in favorable cases calculated, directly in the microscopic quark variables, to allow for a splitting between strange and light quark masses. A surprisingly simple but apparently viable picture emerges, featuring essentially three phases, distinguished by whether strangeness is conserved (standard nuclear matter), conserved modulo 2 (hypernuclear matter), or locked to color (color flavor locking). These are separated by sharp phase transitions. There is also, potentially, a quark phase matching hadronic {ital K} condensation. The smallness of the secondary gap in two-flavor color superconductivity corresponds to the disparity between the primary dynamical energy scales of QCD and the much smaller energy scales of nuclear physics. {copyright} {ital 1999} {ital The American Physical Society}

  4. Modeling QCD for Hadron Physics

    SciTech Connect

    Tandy, P. C.

    2011-10-24

    We review the approach to modeling soft hadron physics observables based on the Dyson-Schwinger equations of QCD. The focus is on light quark mesons and in particular the pseudoscalar and vector ground states, their decays and electromagnetic couplings. We detail the wide variety of observables that can be correlated by a ladder-rainbow kernel with one infrared parameter fixed to the chiral quark condensate. A recently proposed novel perspective in which the quark condensate is contained within hadrons and not the vacuum is mentioned. The valence quark parton distributions, in the pion and kaon, as measured in the Drell Yan process, are investigated with the same ladder-rainbow truncation of the Dyson-Schwinger and Bethe-Salpeter equations.

  5. Lifetime measurements for bottom hadrons

    SciTech Connect

    Wolf, G.

    1984-09-01

    The review of lifetime measurements of bottom hadrons begins with a first measurement by JADE, followed by similar measurements by MAC and MKII groups. New MAC data are reviewed based on a total of 75,000 multihadron events taken at a c.m. energy of 29 GeV. According to Monte Carlo calculations, 18% of the lepton candidates stem from charm decay and roughly 30% were misidentified hadrons. DELCO studied electrons obtained from 42,000 multihadron events at 29 GeV. The electrons were identified by means of Cerenkov counters. JADE analayzed 22,000 multihadron events at 35 GeV. Data were analyzed using two methods - one using a sample of b-enriched events, and the other using weighted distributions. The TASSO results were obtained with two different configurations of the detector - one of which used a drift chamber and the other a vertex detector. (LEW)

  6. Exotic Hadrons from B Factories

    NASA Astrophysics Data System (ADS)

    Fulsom, Bryan

    2017-01-01

    The first generation of B-Factories, BaBar and Belle, operated over the previous decade and produced many world-leading measurements related to flavor physics. One of the most important discoveries was that of an apparent four-quark particle, named X(3872). It was the first of a growing X, Y, Z alphabet of exotic hadrons, now numbering more than a dozen, found by the e + e - collider experiments. These multi-quark states represent an unusual departure from the standard description that hadronic matter consists of only two or three quarks. These discoveries have led to the emergence of a new category of physics within heavy meson spectroscopy. This talk will review some of these key experimental results, and highlight the potential of the next generation B-Factory, Belle II, as it begins operation in the coming year.

  7. Hard processes in hadronic interactions

    SciTech Connect

    Satz, H. |; Wang, X.N.

    1995-07-01

    Quantum chromodynamics is today accepted as the fundamental theory of strong interactions, even though most hadronic collisions lead to final states for which quantitative QCD predictions are still lacking. It therefore seems worthwhile to take stock of where we stand today and to what extent the presently available data on hard processes in hadronic collisions can be accounted for in terms of QCD. This is one reason for this work. The second reason - and in fact its original trigger - is the search for the quark-gluon plasma in high energy nuclear collisions. The hard processes to be considered here are the production of prompt photons, Drell-Yan dileptons, open charm, quarkonium states, and hard jets. For each of these, we discuss the present theoretical understanding, compare the resulting predictions to available data, and then show what behaviour it leads to at RHIC and LHC energies. All of these processes have the structure mentioned above: they contain a hard partonic interaction, calculable perturbatively, but also the non-perturbative parton distribution within a hadron. These parton distributions, however, can be studied theoretically in terms of counting rule arguments, and they can be checked independently by measurements of the parton structure functions in deep inelastic lepton-hadron scattering. The present volume is the work of Hard Probe Collaboration, a group of theorists who are interested in the problem and were willing to dedicate a considerable amount of their time and work on it. The necessary preparation, planning and coordination of the project were carried out in two workshops of two weeks` duration each, in February 1994 at CERn in Geneva andin July 1994 at LBL in Berkeley.

  8. Hadron Properties with FLIC Fermions

    SciTech Connect

    James Zanotti; Wolodymyr Melnitchouk; Anthony Williams; J Zhang

    2003-07-01

    The Fat-Link Irrelevant Clover (FLIC) fermion action provides a new form of nonperturbative O(a)-improvement in lattice fermion actions offering near continuum results at finite lattice spacing. It provides computationally inexpensive access to the light quark mass regime of QCD where chiral nonanalytic behavior associated with Goldstone bosons is revealed. The motivation and formulation of FLIC fermions, its excellent scaling properties and its low-lying hadron mass phenomenology are presented.

  9. Cross sections at hadron colliders

    SciTech Connect

    Paige, F.E.

    1982-01-01

    The predicted cross sections are given for new Z'/sup 0/ bosons, for the Drell-Yan continuum of ..mu../sup +/..mu../sup -/ pairs, for high p/sub T/ hadron jets, for high p/sub T/ single photons, and for the associated production of heavy quarks. These processes have been selected not to cover the most interesting physics, but to provide a representative selection of cross sections for which to compare various energies and luminosities.

  10. Compensation effects in hadron calorimeters

    SciTech Connect

    Gabriel, T.A.; Bishop, B.L.; Brau, J.; Di Ciaccio, A.; Goodman, M.; Wilson, R.

    1984-01-01

    The pros and cons of utilizing a fissionable material such as /sup 238/U to compensate for the nuclear binding energy losses in a hadron calorimeter are discussed. Fissionable material can return some lost energy to the particle cascade in terms of low-energy neutrons and gamma rays, but electromagnetic sampling inefficiencies (often called transition effects) and the detection medium which tries to convert this energy to a useable signal are just as important. 12 references.

  11. Hadronic Resonances from Lattice QCD

    SciTech Connect

    John Bulava; Robert Edwards; George Fleming; K. Jimmy Juge; Adam C. Lichtl; Nilmani Mathur; Colin Morningstar; David Richards; Stephen J. Wallace

    2007-06-16

    The determination of the pattern of hadronic resonances as predicted by Quantum Chromodynamics requires the use of non-perturbative techniques. Lattice QCD has emerged as the dominant tool for such calculations, and has produced many QCD predictions which can be directly compared to experiment. The concepts underlying lattice QCD are outlined, methods for calculating excited states are discussed, and results from an exploratory Nucleon and Delta baryon spectrum study are presented.

  12. Hadronic Resonances from Lattice QCD

    SciTech Connect

    Lichtl, Adam C.; Bulava, John; Morningstar, Colin; Edwards, Robert; Mathur, Nilmani; Richards, David; Fleming, George; Juge, K. Jimmy; Wallace, Stephen J.

    2007-10-26

    The determination of the pattern of hadronic resonances as predicted by Quantum Chromodynamics requires the use of non-perturbative techniques. Lattice QCD has emerged as the dominant tool for such calculations, and has produced many QCD predictions which can be directly compared to experiment. The concepts underlying lattice QCD are outlined, methods for calculating excited states are discussed, and results from an exploratory Nucleon and Delta baryon spectrum study are presented.

  13. Hard processes in hadronic interactions

    SciTech Connect

    Satz, H. |; Wang, X.N.

    1995-07-01

    Quantum chromodynamics is today accepted as the fundamental theory of strong interactions, even though most hadronic collisions lead to final states for which quantitative QCD predictions are still lacking. It therefore seems worthwhile to take stock of where we stand today and to what extent the presently available data on hard processes in hadronic collisions can be accounted for in terms of QCD. This is one reason for this work. The second reason--and in fact its original trigger--is the search for the quark-gluon plasma in high energy nuclear collisions. The hard processes to be considered here are the production of prompt photons, Drell-Yan dileptons, open charm, quarkonium states, and hard jets. For each of these, the authors discuss the present theoretical understanding, compare the resulting predictions to available data, and then show what behavior it leads to at RHIC and LHC energies. All of these processes have the structure mentioned above: they contain a hard partonic interaction, calculable perturbatively, but also the non-perturbative parton distribution within a hadron. These parton distributions, however, can be studied theoretically in terms of counting rule arguments, and they can be checked independently by measurements of the parton structure functions in deep inelastic lepton-hadron scattering. The present volume is the work of Hard Probe Collaboration, a group of theorists who are interested in the problem and were willing to dedicate a considerable amount of their time to work on it. The necessary preparation, planning and coordination of the project were carried out in two workshops of two weeks` duration each, in February 1994 at CERN in Geneva and in July 1994 at LBL in Berkeley. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  14. Hadron physics from lattice QCD

    NASA Astrophysics Data System (ADS)

    Bietenholz, Wolfgang

    2016-07-01

    We sketch the basic ideas of the lattice regularization in Quantum Field Theory, the corresponding Monte Carlo simulations, and applications to Quantum Chromodynamics (QCD). This approach enables the numerical measurement of observables at the non-perturbative level. We comment on selected results, with a focus on hadron masses and the link to Chiral Perturbation Theory. At last, we address two outstanding issues: topological freezing and the sign problem.

  15. A hadronic tile calorimeter report

    NASA Astrophysics Data System (ADS)

    Boca, Gianluigi; Gourlay, S.; Chung, Yeon Sei; Lee, Kyoung-Beom; Malvezzi, S.; Sala, A.; Arena, V.; Bonomi, G.; Gianini, G.; Merlo, M.; Ratti, S.; Riccardi, C.; Viola, L.; Vitulo, P.

    1998-02-01

    The design and first performances of a new hadronic calorimeter for the experiment Focus (E831) at Fermilab are presented. It is a sampling calorimeter, with 28 iron (passive) and scintillator (active) planes. The active planes are composed of tiles read out by WaveLength Shifter fibers spliced to clear fibers. This is the first tile calorimeter actually used (1997)in a running experiment.

  16. Probes of the quark-gluon plasma as it might be produced in ultra-relativistic nuclear collisions

    SciTech Connect

    McLerran, L.

    1984-01-01

    The energy densities which might be achieved in ultra-relativistic nuclear collisions are discussed. Using these estimates, promising probes of a quark-gluon plasma as it might be produced in such collisions are reviewed. I discuss in detail the emission of photons and di-leptons. The consequences of hydrodynamic expansion and a first order phase transition are explored for the transverse momentum spectrum of hadrons. Fluctuations in the rapidity distribution of hadrons are also discussed as a possible signal for a first order phase transition. The possibility that copious production of strange particles may signal the production of a quark-gluon plasma is also critically assessed. 24 references.

  17. The mechanics of relativistic space flights

    NASA Astrophysics Data System (ADS)

    Zakirov, U. N.

    The relativistic mechanics of an artificial space body with a variable rest mass is presented in a systematic manner. In particular, attention is given to the principles of Lobachevskii geometry, Riemann geometry, and relativity; general Lorentz transformations and relativistic kinematics; the principal theorems of the relativistic mechanics of a space vehicle in spherically symmetric gravitational fields; and the relativistic motion of a space vehicle with jet propulsion. Possible applications of relativistic mechanics are examined.

  18. Three Lectures on Hadron Physics

    NASA Astrophysics Data System (ADS)

    Roberts, Craig D.

    2016-04-01

    These lectures explain that comparisons between experiment and theory can expose the impact of running couplings and masses on hadron observables and thereby aid materially in charting the momentum dependence of the interaction that underlies strong-interaction dynamics. The series begins with a primer on continuum QCD, which introduces some of the basic ideas necessary in order to understand the use of Schwinger functions as a nonperturbative tool in hadron physics. It continues with a discussion of confinement and dynamical symmetry breaking (DCSB) in the Standard Model, and the impact of these phenomena on our understanding of condensates, the parton structure of hadrons, and the pion electromagnetic form factor. The final lecture treats the problem of grand unification; namely, the contemporary use of Schwinger functions as a symmetry-preserving tool for the unified explanation and prediction of the properties of both mesons and baryons. It reveals that DCSB drives the formation of diquark clusters in baryons and sketches a picture of baryons as bound-states with Borromean character. Planned experiments are capable of validating the perspectives outlined in these lectures.

  19. Understanding forward B hadron production

    NASA Astrophysics Data System (ADS)

    Gauld, Rhorry

    2017-05-01

    The LHCb collaboration has recently performed a measurement of the production rate of inclusive B hadron production ( pp → BX) at both 7 and 13 TeV centre-of-mass (CoM) energies. As part of this measurement, the ratio of these two cross section measurements has been presented differentially in B hadron pseudorapidity within the range of η B ∈ [2 .0 , 5 .0]. A large tension (4 σ) is observed for the ratio measurement in the lower pseudorapidity range of η B ∈ [2 .0 , 3 .0], where the data is observed to exceed theoretical predictions, while consistency is found at larger η B values. This behaviour is not expected within perturbative QCD, and can only be achieved by introducing ad-hoc features into the structure of the non-perturbative gluon PDF within the region of x ∈ [10-3 , 10-4]. Specifically, the gluon PDF must grow extremely quickly with decreasing x within this kinematic range, closely followed by a period of decelerated growth. However, such behaviour is highly disfavoured by global fits of proton structure. Further studies of the available LHCb B and D hadron cross section data, available for a range of CoM energies, indicate systematic tension in the (pseudo)rapidity region of [2 .0 , 2 .5].

  20. Relativistic Electron Beams Above Thunderclouds

    NASA Astrophysics Data System (ADS)

    Fullekrug, Martin; Roussel-Dupre, Robert; Symbalisty, Eugene; Chanrion, Olivier; van der Velde, Oscar; Soula, Serge; Odzimek, Anna; Bennett, Alec; Whitley, Toby; Neubert, Torsten

    2010-05-01

    It has recently been discovered that lightning discharges generate upward-directed relativistic electron beams above thunderclouds. This extends the phenomenon of relativistic runaway breakdown believed to occur inside thunderclouds to the atmosphere above thunderclouds. This marks a profound advance in our understanding of the atmosphere because we now know it acts as a giant, natural, particle accelerator. The accelerated electrons can reach significant relativistic energies of some MeV during their passage from the troposphere, through the middle atmosphere, into near-Earth space. These relativistic electron beams constitute a current above thunderclouds and effectively transfer energy from the troposphere to the middle atmosphere. This coupling process thereby forms a novel element of the global atmospheric electric circuit which links tropospheric thunderclouds to the atmosphere above. This contribution describes the radio remote sensing of upward electron beams to determine their occurrence frequency and to characterise their physical properites.

  1. Relativistic Transformation of Solid Angle.

    ERIC Educational Resources Information Center

    McKinley, John M.

    1980-01-01

    Rederives the relativistic transformations of light intensity from compact sources (stars) to show where and how the transformation of a solid angle contributes. Discusses astrophysical and other applications of the transformations. (Author/CS)

  2. Superposition as a Relativistic Filter

    NASA Astrophysics Data System (ADS)

    Ord, G. N.

    2017-07-01

    By associating a binary signal with the relativistic worldline of a particle, a binary form of the phase of non-relativistic wavefunctions is naturally produced by time dilation. An analog of superposition also appears as a Lorentz filtering process, removing paths that are relativistically inequivalent. In a model that includes a stochastic component, the free-particle Schrödinger equation emerges from a completely relativistic context in which its origin and function is known. The result establishes the fact that the phase of wavefunctions in Schrödinger's equation and the attendant superposition principle may both be considered remnants of time dilation. This strongly argues that quantum mechanics has its origins in special relativity.

  3. Relativistic effects in atom gravimeters

    NASA Astrophysics Data System (ADS)

    Tan, Yu-Jie; Shao, Cheng-Gang; Hu, Zhong-Kun

    2017-01-01

    Atom interferometry is currently developing rapidly, which is now reaching sufficient precision to motivate laboratory tests of general relativity. Thus, it is extremely significant to develop a general relativistic model for atom interferometers. In this paper, we mainly present an analytical derivation process and first give a complete vectorial expression for the relativistic interferometric phase shift in an atom interferometer. The dynamics of the interferometer are studied, where both the atoms and the light are treated relativistically. Then, an appropriate coordinate transformation for the light is performed crucially to simplify the calculation. In addition, the Bordé A B C D matrix combined with quantum mechanics and the "perturbation" approach are applied to make a methodical calculation for the total phase shift. Finally, we derive the relativistic phase shift kept up to a sensitivity of the acceleration ˜1 0-14 m/s 2 for a 10 -m -long atom interferometer.

  4. Hadron Spectroscopy and Wavefunctions in QCD and the AdS/CFT Correspondence

    SciTech Connect

    Brodsky, Stanley J.; de Teramond, Guy F.; /SLAC /Costa Rica U.

    2005-10-13

    The AdS/CFT correspondence has led to important insights into the properties of quantum chromodynamics even though QCD is a broken conformal theory. We have recently shown how a holographic model based on a truncated AdS space can be used to obtain the hadronic spectrum of light q{bar q}, qqq and gg bound states. Specific hadrons are identified by the correspondence of string modes with the dimension of the interpolating operator of the hadron's valence Fock state, including orbital angular momentum excitations. The predicted mass spectrum is linear M {proportional_to} L at high orbital angular momentum, in contrast to the quadratic dependence M{sup 2} {proportional_to} L found in the description of spinning strings. Since only one parameter, the QCD scale LQCD, is introduced, the agreement with the pattern of physical states is remarkable. In particular, the ratio of D to nucleon trajectories is determined by the ratio of zeros of Bessel functions. The light-front quantization of gauge theories in light-cone gauge provides a frame-independent wavefunction representation of relativistic bound states, simple forms for current matrix elements, explicit unitarity, and a trivial vacuum. The light-front Fock-state wavefunctions encode the bound state properties of hadrons in terms of their quark and gluon degrees of freedom at the amplitude level. One can also use the extended AdS/CFT space-time theory to obtain a model for hadronic light-front wavefunctions, thus providing a relativistic description of hadrons in QCD at the amplitude level. The model wavefunctions display confinement at large inter-quark separation and conformal symmetry at short distances. In particular, the scaling and conformal properties of the LFWFs at high relative momenta agree with perturbative QCD. These AdS/CFT model wavefunctions could be used as an initial ansatz for a variational treatment of the light-front QCD Hamiltonian. We also show how hadron form factors in both the space-like and

  5. Hadron Spectroscopy and Wavefunctions in QCD and the AdS/CFT Correspondence

    SciTech Connect

    Brodsky, Stanley J.; Teramond, Guy F. de

    2006-02-11

    The AdS/CFT correspondence has led to important insights into the properties of quantum chromodynamics even though QCD is a broken conformal theory. We have recently shown how a holographic model based on a truncated AdS space can be used to obtain the hadronic spectrum of light qq-bar, qqq and gg bound states. Specific hadrons are identified by the correspondence of string modes with the dimension of the interpolating operator of the hadron's valence Fock state, including orbital angular momentum excitations. The predicted mass spectrum is linear M {proportional_to} L at high orbital angular momentum, in contrast to the quadratic dependence M2 {proportional_to} L found in the description of spinning strings. Since only one parameter, the QCD scale {lambda}QCD, is introduced, the agreement with the pattern of physical states is remarkable. In particular, the ratio of {delta} to nucleon trajectories is determined by the ratio of zeros of Bessel functions. The light-front quantization of gauge theories in light-cone gauge provides a frame-independent wavefunction representation of relativistic bound states, simple forms for current matrix elements, explicit unitarity, and a trivial vacuum. The light-front Fock-state wavefunctions encode the bound state properties of hadrons in terms of their quark and gluon degrees of freedom at the amplitude level. One can also use the extended AdS/CFT space-time theory to obtain a model for hadronic light-front wavefunctions, thus providing a relativistic description of hadrons in QCD at the amplitude level. The model wavefunctions display confinement at large inter-quark separation and conformal symmetry at short distances. In particular, the scaling and conformal properties of the LFWFs at high relative momenta agree with perturbative QCD. These AdS/CFT model wavefunctions could be used as an initial ansatz for a variational treatment of the light-front QCD Hamiltonian. We also show how hadron form factors in both the space

  6. Small pad RPCs as detector for high granularity digital hadron calorimetry

    NASA Astrophysics Data System (ADS)

    Ammosov, V.; Gapienko, V.; Ivanilov, A.; Sefkow, F.; Semak, A.; Sviridov, Yu.; Usenko, E.; Zaets, V.

    2004-11-01

    Requirements for sampling hadron calorimetry with gaseous active medium and digital read-out for a future linear e+e--collider (FLC) are formulated. Monogap glass Resistive Plate Chamber (RPC) prototypes equipped with 1cm2 read-out pads and operated in saturated avalanche and streamer modes are studied as a possible detector for digital hadron calorimetry. Operating characteristics of the prototypes such as induced charges, efficiencies and fired pad multiplicities are measured for different gas mixtures, gas gap widths and anode thicknesses, electronics thresholds, beam incident angle and intensity. Choice of RPC working performance is outlined.

  7. Centrality dependence of charged hadron and strange hadron elliptic flow from {radical}{ovr s} {sub NN} =200 GeV Au+Au collisions.

    SciTech Connect

    Abelev, B. I.; Aggarwal, M. M.; Ahammed, Z.; Anderson, B. D.; Arkhipkin, D.; Krueger, K.; Spinka, H. M.; Underwood, D. G.; High Energy Physics; Univ. of Illinois; Panjab Univ.; Variable Energy Cyclotron; Kent State Univ.; Particle Physic Lab.; STAR Collaboration

    2008-01-01

    We present STAR results on the elliptic flow v{sub 2} of charged hadrons, strange and multistrange particles from {radical}s{sub NN} = 200 GeV Au+Au collisions at the BNL Relativistic Heavy Ion Collider (RHIC). The detailed study of the centrality dependence of v{sub 2} over a broad transverse momentum range is presented. Comparisons of different analysis methods are made in order to estimate systematic uncertainties. To discuss the nonflow effect, we have performed the first analysis of v{sub 2} with the Lee-Yang zero method for KS{sup 0} and {Lambda}. In the relatively low p{sub T} region, p{sub T} {le} 2 GeV/c, a scaling with m{sub T}-m is observed for identified hadrons in each centrality bin studied. However, we do not observe v{sub 2}(p{sub T}) scaled by the participant eccentricity to be independent of centrality. At higher p{sub T},2 {le} p{sub T} {le} 6 GeV/c,v{sub 2} scales with quark number for all hadrons studied. For the multistrange hadron {Omega}, which does not suffer appreciable hadronic interactions, the values of v{sub 2} are consistent with both m{sub T}-m scaling at low p{sub T} and number-of-quark scaling at intermediate p{sub T}. As a function of collision centrality, an increase of p{sub T}-integrated v{sub 2} scaled by the participant eccentricity has been observed, indicating a stronger collective flow in more central Au+Au collisions.

  8. Thermal Photon Radiation in High Multiplicity p+Pb Collisions at the Large Hadron Collider

    DOE PAGES

    Shen, Chun; Paquet, Jean-François; Denicol, Gabriel S.; ...

    2016-02-18

    We observed the collective behavior of hadronic particles in high multiplicity proton-lead collisions at the Large Hadron Collider, as well as in deuteron-gold collisions at the Relativistic Heavy-Ion Collider. In our work we present the first calculation, in the hydrodynamic framework, of thermal photon radiation from such small collision systems. Owing to their compact size, these systems can reach temperatures comparable to those in central nucleus-nucleus collisions. Moreover, the thermal photons can thus shine over the prompt background, and increase the low pT direct photon spectrum by a factor of 2–3 in 0%–1% p+Pb collisions at 5.02 TeV. This thermalmore » photon enhancement can therefore serve as a signature of the existence of a hot quark-gluon plasma during the evolution of these small collision systems, as well as validate hydrodynamic behavior in small systems.« less

  9. Hadron Structure in Holographic Quantum Chromodynamics

    NASA Astrophysics Data System (ADS)

    Lyubovitskij, V. E.; Gutsche, T.; Schmidt, I.

    2017-08-01

    Hadrons and multiquark states are discussed within the context of holographic quantum chromodynamics. This approach is based on an action that describes the hadron structure with breaking of conformal and chiral symmetry and includes confinement through the presence of a background dilaton field. According to gauge/gravity duality, five-dimensional boson and fermion fields, moving in AdS space, are dual to the four-dimensional fields on the surface of the AdS sphere, which correspond to hadrons. In this framework, the hadron wave functions - the building blocks of the hadron properties - are dual to the profiles of the AdS fields in the fifth (holographic) dimension, which is identified with a scale. As applications, we consider the properties of hadrons and multiquark states.

  10. D(s) meson as a quantitative probe of diffusion and hadronization in nuclear collisions.

    PubMed

    He, Min; Fries, Rainer J; Rapp, Ralf

    2013-03-15

    The modifications of D(s)-meson spectra in ultrarelativistic heavy-ion collisions are identified as a quantitative probe of key properties of the hot nuclear medium. The unique valence-quark content of the D(s)=cs̄ couples the well-known strangeness enhancement with the collective-flow pattern of primordially produced charm quarks. This idea is illustrated utilizing a consistent strong-coupling treatment with hydrodynamic bulk evolution and nonperturbative T-matrix interactions for both heavy-quark diffusion and hadronization in the quark-gluon plasma (QGP). A large enhancement of the D(s) nuclear modification factor at Relativistic Heavy Ion Collider is predicted, with a maximum of ∼1.5-1.8 at transverse momenta around 2  GeV/c. This is a direct consequence of the strong coupling of the heavy quarks to the QGP and their hadronization via coalescence with strange quarks. We furthermore introduce the effects of diffusion in the hadronic phase and suggest that an increase of the D-meson elliptic flow compared to the D(s) can disentangle the transport properties of hadronic and QGP liquids.

  11. Shock wave produced by hadron-quark phase transition in neutron star

    SciTech Connect

    Gustavo de Almeida, Luis; Duarte, Sérgio José Barbosa; Rodrigues, Hilário

    2015-12-17

    In this work we present a schematic description of the detonation wave in hadronic matter inside a neutron star core. We have used a simplified two shells model where the inner shell medium is initially composed of a small lump of strange quark matter surrounded by a large outer shell composed of hadronic matter. We have utilized an equation of state (EOS) based on Relativistic Mean Field Theory with the parameter set NL3 to describe the nuclear and subnuclear phases. We use the MIT bag model to describe the strange quark matter. The hadron-quark phase transition actually induces highly non equilibrium modes, which may become a detonation process (faster) or a burning process (slower). The main purpose of the work is to study the formation of a remnant quark star and the possibility of mass ejection caused by the hadron-quark phase transition. We have found that the total amount of ejected mass is dependant of the bag constant utilized in the strange matter description.

  12. Finite-size effects on the hadron-quark phase transition in neutron stars

    NASA Astrophysics Data System (ADS)

    Wu, X. H.; Shen, H.

    2017-08-01

    We study the finite-size effects, like the surface and Coulomb energies, on the hadron-quark mixed phase in neutron stars. The equilibrium conditions for coexisting hadronic and quark phases are derived by minimizing the total energy including the surface and Coulomb contributions, which are different from the Gibbs conditions without finite-size effects. We employ the relativistic mean-field model to describe the hadronic phase, while the Nambu-Jona-Lasinio model with vector interactions is used for the quark phase. It is found that finite-size effects can significantly reduce the region of the mixed phase, and the results lie between those of the Gibbs and Maxwell constructions. We show that a massive star may contain a mixed phase core and its size depends on the surface tension of the hadron-quark interface and the vector coupling between quarks. The repulsive vector interaction in the Nambu-Jona-Lasinio model can stiffen the equation of state of quark matter, and therefore delay the phase transition and increase the maximum mass of neutron stars.

  13. Hadronic form factor models and spectroscopy within the gauge/gravity correspondence

    SciTech Connect

    de Teramond, Guy F.; Brodsky, Stanley J.; /SLAC

    2012-03-20

    We show that the nonperturbative light-front dynamics of relativistic hadronic bound states has a dual semiclassical gravity description on a higher dimensional warped AdS space in the limit of zero quark masses. This mapping of AdS gravity theory to the boundary quantum field theory, quantized at fixed light-front time, allows one to establish a precise relation between holographic wave functions in AdS space and the light-front wavefunctions describing the internal structure of hadrons. The resulting AdS/QCD model gives a remarkably good accounting of the spectrum, elastic and transition form factors of the light-quark hadrons in terms of one parameter, the QCD gap scale. The light-front holographic approach described here thus provides a frame-independent first approximation to the light-front Hamiltonian problem for QCD. This article is based on lectures at the Niccolo Cabeo International School of Hadronic Physics, Ferrara, Italy, May 2011.

  14. Newtonian and Relativistic Cosmologies

    NASA Astrophysics Data System (ADS)

    Green, Stephen; Wald, Robert

    2012-03-01

    Cosmological N-body simulations are now being performed using Newtonian gravity on scales larger than the Hubble radius. It is known that a uniformly expanding, homogeneous ball of dust in Newtonian gravity satisfies the Friedmann equations, and also that a correspondence between Newtonian and relativistic dust cosmologies holds in linearized perturbation theory. Nevertheless, it is not obvious that Newtonian gravity can provide a good global description of an inhomogeneous cosmology with significant nonlinear dynamical behavior at small scales. We investigate this issue in light of a perturbative framework that we have recently developed. We propose a straightforward dictionary---exact at the linearized level---that maps Newtonian dust cosmologies into GR dust cosmologies, and we use our ordering scheme to determine the degree to which the resulting metric and matter distribution solve Einstein's equation. We then find additional corrections needed to satisfy Einstein's equation to ``order 1'' at small scales and to ``order ɛ'' at large scales. We expect that, in realistic Newtonian cosmologies, these additional corrections will be very small; if so, this should provide strong justification for the use of Newtonian simulations to describe GR cosmologies.

  15. Relativistic Electron Vortices

    NASA Astrophysics Data System (ADS)

    Barnett, Stephen M.

    2017-03-01

    The desire to push recent experiments on electron vortices to higher energies leads to some theoretical difficulties. In particular the simple and very successful picture of phase vortices of vortex charge ℓ associated with ℓℏ units of orbital angular momentum per electron is challenged by the facts that (i) the spin and orbital angular momentum are not separately conserved for a Dirac electron, which suggests that the existence of a spin-orbit coupling will complicate matters, and (ii) that the velocity of a Dirac electron is not simply the gradient of a phase as it is in the Schrödinger theory suggesting that, perhaps, electron vortices might not exist at a fundamental level. We resolve these difficulties by showing that electron vortices do indeed exist in the relativistic theory and show that the charge of such a vortex is simply related to a conserved orbital part of the total angular momentum, closely related to the familiar situation for the orbital angular momentum of a photon.

  16. Relativistic Jets from Collapsars

    NASA Astrophysics Data System (ADS)

    Aloy, M. A.; Müller, E.; Ibáñez, J. M.; Martí, J. M.; MacFadyen, A.

    2000-03-01

    Using a collapsar progenitor model of MacFadyen & Woosley, we have simulated the propagation of an axisymmetric jet through a collapsing rotating massive star with the GENESIS multidimensional relativistic hydrodynamic code. The jet forms as a consequence of an assumed (constant or variable) energy deposition in the range of 1050-1051 ergs s-1 within a 30 deg cone around the rotation axis. The jet flow is strongly beamed (approximately less than a few degrees), spatially inhomogeneous, and time dependent. The jet reaches the surface of the stellar progenitor (R*=2.98x1010 cm) intact. At breakout, the maximum Lorentz factor of the jet flow is 33. After breakout, the jet accelerates into the circumstellar medium, whose density is assumed to decrease exponentially and then become constant, ρext=10-5 g cm-3. Outside the star, the flow begins to expand laterally also (v~c), but the beam remains very well collimated. At a distance of 2.54 R*, where the simulation ends, the Lorentz factor has increased to 44.

  17. Relativistic Newtonian dynamics

    NASA Astrophysics Data System (ADS)

    Friedman, Yaakov; Mendel Steiner, Joseph

    2017-05-01

    A new Relativistic Newtonian Dynamics (RND) for motion under a conservative force capable to describe non-classical behavior in astronomy is proposed. The rotor experiments using Mössbauer spectroscopy with synchrotron radiation, described in the paper, indicate the influence of non-gravitational acceleration or potential energy on time. Similarly, the observed precession of Mercury and the periastron advance of binaries can be explained by the influence of gravitational potential energy on spacetime. The proposed RND incorporates the influence of potential energy on spacetime in Newton’s dynamics. The effect of this influence on time intervals, space increments and velocities is described explicitly by the use of the concept of escape trajectory. For an attracting conservative static potential we derived the RND energy conservation and the dynamics equation for motion of objects with non-zero mass and for massless particles. These equations are subsequently simplified for motion under a central force. Without the need to curve spacetime, this model predicts accurately the four non-classical observations in astronomy used to test the General Relativity.

  18. Relativistic theory of gravitation

    SciTech Connect

    Logunov, A.A.; Mestvirishvili, M.A.

    1986-01-01

    In the present paper a relativistic theory of gravitation (RTG) is unambiguously constructed on the basis of the special relativity and geometrization principle. In this a gravitational field is treated as the Faraday--Maxwell spin-2 and spin-0 physical field possessing energy and momentum. The source of a gravitational field is the total conserved energy-momentum tensor of matter and of a gravitational field in Minkowski space. In the RTG the conservation laws are strictly fulfilled for the energy-moment and for the angular momentum of matter and a gravitational field. The theory explains the whole available set of experiments on gravity. By virtue of the geometrization principle, the Riemannian space in our theory is of field origin, since it appears as an effective force space due to the action of a gravitational field on matter. The RTG leads to an exceptionally strong prediction: The universe is not closed but just ''flat.'' This suggests that in the universe a ''missing mass'' should exist in a form of matter.

  19. Hadron Physics with PANDA at FAIR

    SciTech Connect

    Wiedner, Ulrich

    2011-10-21

    The recently established FAIR facility in Darmstadt has a broad program in the field of hadron and nuclear physics utilizing ion beams with unprecedented intensity and accuracy. The PANDA experiment, which is integrated in the HESR storage ring for antiprotons is at the center of the hadron physics program. It includes among others topics like hadron spectroscopy in the charmonium mass region and below, hyperon physics and electromagnetic processes.

  20. Correlation femtoscopy study at energies available at the JINR Nuclotron-based Ion Collider fAcility and the BNL Relativistic Heavy Ion Collider within a viscous hydrodynamic plus cascade model

    NASA Astrophysics Data System (ADS)

    Batyuk, P.; Karpenko, Iu.; Lednicky, R.; Malinina, L.; Mikhaylov, K.; Rogachevsky, O.; Wielanek, D.

    2017-08-01

    Correlation femtoscopy allows one to measure the space-time characteristics of particle production in relativistic heavy-ion collisions due to the effects of quantum statistics (QS) and final state interactions (FSIs). The main features of the femtoscopy measurements at top RHIC and LHC energies are considered as a manifestation of strong collective flow and are well interpreted within hydrodynamic models employing equation of state (EoS) with a crossover type transition between quark-gluon plasma (QGP) and hadron gas phases. The femtoscopy at lower energies was intensively studied at AGS and SPS accelerators and is being studied now in the Beam Energy Scan program (BES) at the BNL Relativistic Heavy Ion Collider in the context of exploration of the QCD phase diagram. In this article we present femtoscopic observables calculated for Au-Au collisions at √{sN N}=7.7 -62.4 GeV in a viscous hydro + cascade model vHLLE+UrQMD and their dependence on the EoS of thermalized matter.

  1. Hadronic weak charges and parity-violating forward Compton scattering

    NASA Astrophysics Data System (ADS)

    Gorchtein, Mikhail; Spiesberger, Hubert

    2016-11-01

    Background: Parity-violating elastic electron-nucleon scattering at low momentum transfer allows one to access the nucleon's weak charge, the vector coupling of the Z -boson to the nucleon. In the Standard Model and at tree level, the weak charge of the proton is related to the weak mixing angle and accidentally suppressed, QWp ,tree=1 -4 sin2θW≈0.07 . Modern experiments aim at extracting QWp at ˜1 % accuracy. Similarly, parity nonconservation in atoms allows to access the weak charge of atomic nuclei. Purpose: We consider a novel class of radiative corrections due to the exchange of two photons, with parity violation in the hadronic/nuclear system. These corrections are prone to long-range interactions and may affect the extraction of sin2θW from the experimental data at the relevant level of precision. Methods: The two-photon exchange contribution to the parity-violating electron-proton scattering amplitude is studied in the framework of forward dispersion relations. We address the general properties of the parity-violating forward Compton scattering amplitude and use relativistic chiral perturbation theory to provide the first field-theoretical proof that it obeys a superconvergence relation. Results: We show that the significance of this new correction increases with the beam energy in parity-violating electron scattering, but the superconvergence relation protects the formal definition of the weak charge as a limit at zero-momentum transfer and zero energy. We evaluate the new correction in a hadronic model with pion loops and the Δ (1232 ) resonance, supplemented with a high-energy contribution. For the kinematic conditions of existing and upcoming experiments we show that two-photon exchange corrections with hadronic or nuclear parity violation do not pose a problem for the interpretation of the data in terms of the weak mixing angle at the present level of accuracy. Conclusions: Two-photon exchange in presence of hadronic or nuclear parity violation

  2. Hadronization measurements in cold nuclear matter

    SciTech Connect

    Dupre, Raphael

    2015-05-01

    Hadronization is the non-perturbative process of QCD by which partons become hadrons. It has been studied at high energies through various processes, we focus here on the experiments of lepto-production of hadrons in cold nuclear matter. By studying the dependence of observables to the atomic number of the target, these experimentscan give information on the dynamic of the hadronization at the femtometer scale. In particular, we will present preliminary results from JLab Hall B (CLAS collaboration), which give unprecedented statistical precision. Then, we will present results of a phenomenological study showing how HERMES data can be described with pure energyloss models.

  3. The Emergence of Hadrons from QCD Color

    NASA Astrophysics Data System (ADS)

    Brooks, William; Color Dynamics in Cold Matter (CDCM) Collaboration

    2015-10-01

    The formation of hadrons from energetic quarks, the dynamical enforcement of QCD confinement, is not well understood at a fundamental level. In Deep Inelastic Scattering, modifications of the distributions of identified hadrons emerging from nuclei of different sizes reveal a rich variety of spatial and temporal characteristics of the hadronization process, including its dependence on spin, flavor, energy, and hadron mass and structure. The EIC will feature a wide range of kinematics, allowing a complete investigation of medium-induced gluon bremsstrahlung by the propagating quarks, leading to partonic energy loss. This fundamental process, which is also at the heart of jet quenching in heavy ion collisions, can be studied for light and heavy quarks at the EIC through observables quantifying hadron ``attenuation'' for a variety of hadron species. Transverse momentum broadening of hadrons, which is sensitive to the nuclear gluonic field, will also be accessible, and can be used to test our understanding from pQCD of how this quantity evolves with pathlength, as well as its connection to partonic energy loss. The evolution of the forming hadrons in the medium will shed new light on the dynamical origins of the forces between hadrons, and thus ultimately on the nuclear force. Supported by the Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) of Chile.

  4. Heavy flavor production from photons and hadrons

    SciTech Connect

    Heusch, C.A.

    1982-01-01

    The present state of the production and observation of hadrons containing heavy quarks or antiquarks as valence constituents, in reactions initiated by real and (space-like) virtual photon or by hadron beams is discussed. Heavy flavor production in e/sup +/e/sup -/ annihilation, which is well covered in a number of recent review papers is not discussed, and similarly, neutrino production is omitted due to the different (flavor-changing) mechanisms that are involved in those reactions. Heavy flavors from spacelike photons, heavy flavors from real photons, and heavy flavors from hadron-hadron collisions are discussed. (WHK)

  5. Refining a relativistic, hydrodynamic solver: Admitting ultra-relativistic flows

    NASA Astrophysics Data System (ADS)

    Bernstein, J. P.; Hughes, P. A.

    2009-09-01

    We have undertaken the simulation of hydrodynamic flows with bulk Lorentz factors in the range 102-106. We discuss the application of an existing relativistic, hydrodynamic primitive variable recovery algorithm to a study of pulsar winds, and, in particular, the refinement made to admit such ultra-relativistic flows. We show that an iterative quartic root finder breaks down for Lorentz factors above 102 and employ an analytic root finder as a solution. We find that the former, which is known to be robust for Lorentz factors up to at least 50, offers a 24% speed advantage. We demonstrate the existence of a simple diagnostic allowing for a hybrid primitives recovery algorithm that includes an automatic, real-time toggle between the iterative and analytical methods. We further determine the accuracy of the iterative and hybrid algorithms for a comprehensive selection of input parameters and demonstrate the latter’s capability to elucidate the internal structure of ultra-relativistic plasmas. In particular, we discuss simulations showing that the interaction of a light, ultra-relativistic pulsar wind with a slow, dense ambient medium can give rise to asymmetry reminiscent of the Guitar nebula leading to the formation of a relativistic backflow harboring a series of internal shockwaves. The shockwaves provide thermalized energy that is available for the continued inflation of the PWN bubble. In turn, the bubble enhances the asymmetry, thereby providing positive feedback to the backflow.

  6. Ultra-relativistic heavy ions and the CBA

    SciTech Connect

    McLerran, L.D.

    1982-01-01

    The study of ultra-relativistic heavy ions at an accelerator such as the CBA provides a unique glimpse of matter as it may have appeared in the early universe. This hot dense matter very probably appears as a quark-gluon plasma which expands and cools into hadronic matter. The CBA would provide data at the very highest energies, and produce matter at the highest energy densities. The possibility of using a cyclotron to inject very heavy ions into the AGS and then into the CBA would also allow the production of quark-gluon matter at higher energy densities than would light ions, and would make the matter in a larger volume where surface effects are minimized. At the highest energies with very heavy ions, there is great flexibility in the experimental signals which might be studied, as well as the nature of the matter which is produced. Some of the possibilities are discussed. (WHK)

  7. Relativistic soliton-like collisionless ionization wave

    NASA Astrophysics Data System (ADS)

    Arefiev, Alexey; McCormick, Matthew; Quevedo, Hernan; Bengtson, Roger; Ditmire, Todd

    2014-10-01

    It has been observed in recent experiments with laser-irradiated gas jets that a plasma filament produced by the laser and containing energetic electrons can launch a relativistic ionization wave into ambient gas. Here we present a self-consistent theory that explains how a collisionless ionization wave can propagate in a self-sustaining regime. A population of hot electrons necessarily generates a sheath electric field at the plasma boundary. This field penetrates the ambient gas, ionizing the gas atoms and thus causing the plasma boundary to expand. We show that the motion of the newly generated electrons can form a potential well adjacent to the plasma boundary. The outwards motion of the well causes a bunch of energetic electrons to become trapped, while allowing the newly generated electrons to escape into the plasma without retaining much energy. The resulting soliton-like ionizing field structure propagates outwards with a bunch of hot electrons that maintain a strong sheath field despite significant plasma expansion. We also present 1D and 2D particle-in-cell simulations that illustrate the described mechanism. The simulations were performed using HPC resources provided by the Texas Advanced Computing Center. This work was supported by NNSA Contract No. DE-FC52-08NA28512 and U.S. DOE Contract No. DE-FG02-04ER54742.

  8. High order harmonics from relativistic electron spikes

    NASA Astrophysics Data System (ADS)

    Pirozhkov, Alexander S.; Kando, Masaki; Esirkepov, Timur Zh; Gallegos, Pablo; Ahmed, Hamad; Ragozin, Eugene N.; Faenov, Anatoly Ya; Pikuz, Tatiana A.; Kawachi, Tetsuya; Sagisaka, Akito; Koga, James K.; Coury, Mireille; Green, James; Foster, Peta; Brenner, Ceri; Dromey, Brendan; Symes, Dan R.; Mori, Michiaki; Kawase, Keigo; Kameshima, Takashi; Fukuda, Yuji; Chen, Liming; Daito, Izuru; Ogura, Koichi; Hayashi, Yukio; Kotaki, Hideyuki; Kiriyama, Hiromitsu; Okada, Hajime; Nishimori, Nobuyuki; Imazono, Takashi; Kondo, Kiminori; Kimura, Toyoaki; Tajima, Toshiki; Daido, Hiroyuki; Rajeev, Pattathil; McKenna, Paul; Borghesi, Marco; Neely, David; Kato, Yoshiaki; Bulanov, Sergei V.

    2014-09-01

    A new regime of relativistic high-order harmonic generation has been discovered (Pirozhkov 2012 Phys. Rev. Lett. 108 135004). Multi-terawatt relativistic-irradiance (>1018 W cm-2) femtosecond (˜30-50 fs) lasers focused to underdense (few × 1019 cm-3) plasma formed in gas jet targets produce comb-like spectra with hundreds of even and odd harmonic orders reaching the photon energy of 360 eV, including the ‘water window’ spectral range. Harmonics are generated either by linearly or circularly polarized pulses from the J-KAREN (KPSI, JAEA) and Astra Gemini (CLF, RAL, UK) lasers. The photon number scalability has been demonstrated with a 120 TW laser, producing 40 μJ sr-1 per harmonic at 120 eV. The experimental results are explained using particle-in-cell simulations and catastrophe theory. A new mechanism of harmonic generation by sharp, structurally stable, oscillating electron spikes at the joint of the boundaries of the wake and bow waves excited by a laser pulse is introduced. In this paper, detailed descriptions of the experiments, simulations and model are provided and new features are shown, including data obtained with a two-channel spectrograph, harmonic generation by circularly polarized laser pulses and angular distribution.

  9. RECOLLIMATION SHOCKS IN MAGNETIZED RELATIVISTIC JETS

    SciTech Connect

    Mizuno, Yosuke; Rezzolla, Luciano; Gómez, Jose L.; Nishikawa, Ken-Ichi; Meli, Athina; Hardee, Philip E.

    2015-08-10

    We have performed two-dimensional special-relativistic magnetohydrodynamic simulations of non-equilibrium over-pressured relativistic jets in cylindrical geometry. Multiple stationary recollimation shock and rarefaction structures are produced along the jet by the nonlinear interaction of shocks and rarefaction waves excited at the interface between the jet and the surrounding ambient medium. Although initially the jet is kinematically dominated, we have considered axial, toroidal, and helical magnetic fields to investigate the effects of different magnetic-field topologies and strengths on the recollimation structures. We find that an axial field introduces a larger effective gas pressure and leads to stronger recollimation shocks and rarefactions, resulting in larger flow variations. The jet boost grows quadratically with the initial magnetic field. On the other hand, a toroidal field leads to weaker recollimation shocks and rarefactions, significantly modifying the jet structure after the first recollimation rarefaction and shock. The jet boost decreases systematically. For a helical field, instead, the behavior depends on the magnetic pitch, with a phenomenology that ranges between the one seen for axial and toroidal magnetic fields, respectively. In general, however, a helical magnetic field yields a more complex shock and rarefaction substructure close to the inlet that significantly modifies the jet structure. The differences in shock structure resulting from different field configurations and strengths may have observable consequences for disturbances propagating through a stationary recollimation shock.

  10. PROGNOSIS OF GLEs OF RELATIVISTIC SOLAR PROTONS

    SciTech Connect

    Pérez-Peraza, Jorge; Juárez-Zuñiga, Alan E-mail: z.alan.z@hotmail.com

    2015-04-10

    Ground level enhancements (GLEs) are relativistic solar particles measured at ground level by the worldwide network of cosmic ray detectors. These sporadic events are associated with solar flares and are assumed to be of a quasi-random nature. Studying them gives information about their source and propagation processes, the maximum capacity of the Sun as a particle accelerator engine, the magnetic structure of the medium traversed, etc. Space vehicles, as well as electric transformers and gas pipes at high latitudes may be damaged by this kind of radiation. As a result, their prediction has turned out to be very important, but because of their random occurrence, up to now few efforts toward this goal have been made. The results of these efforts have been limited to possible warnings in real time, just before a GLE occurrence, but no specific dates have been predicted well enough in advance to prevent possible hazards. In this study we show that, in spite of the quasi-stochastic nature of GLEs, it is possible to predict them with relative precision, even for future solar cycles. Additionally, a previous study establishing synchronization among some periodicities of several layers of solar atmosphere argues against the full randomness of the phenomenon of relativistic particle production. Therefore, by means of wavelet spectral analysis combined with fuzzy logic tools, we reproduce previous known GLE events and present results for future events. The next GLE is expected to occur in the first semester of 2016.

  11. Prognosis of Gles of Relativistic Solar Protons

    NASA Astrophysics Data System (ADS)

    Pérez-Peraza, Jorge; Juárez-Zuñiga, Alan

    2015-04-01

    Ground level enhancements (GLEs) are relativistic solar particles measured at ground level by the worldwide network of cosmic ray detectors. These sporadic events are associated with solar flares and are assumed to be of a quasi-random nature. Studying them gives information about their source and propagation processes, the maximum capacity of the Sun as a particle accelerator engine, the magnetic structure of the medium traversed, etc. Space vehicles, as well as electric transformers and gas pipes at high latitudes may be damaged by this kind of radiation. As a result, their prediction has turned out to be very important, but because of their random occurrence, up to now few efforts toward this goal have been made. The results of these efforts have been limited to possible warnings in real time, just before a GLE occurrence, but no specific dates have been predicted well enough in advance to prevent possible hazards. In this study we show that, in spite of the quasi-stochastic nature of GLEs, it is possible to predict them with relative precision, even for future solar cycles. Additionally, a previous study establishing synchronization among some periodicities of several layers of solar atmosphere argues against the full randomness of the phenomenon of relativistic particle production. Therefore, by means of wavelet spectral analysis combined with fuzzy logic tools, we reproduce previous known GLE events and present results for future events. The next GLE is expected to occur in the first semester of 2016.

  12. Heavy Hadron Spectroscopy at CDF

    SciTech Connect

    Fernandez Ramos, Juan Pablo

    2010-12-22

    We present recent CDF results on the properties of hadrons containing heavy quarks. These include measurements of charm and {Sigma}{sub b}{sup -{Sigma}}{sub b}*{sup -} baryon's masses, lifetimes and masses of {Omega}{sub b}{sup -,} {Xi}{sub b}{sup -} and B{sub c}{sup -} and a measurement of exclusive B{sup +}, B{sup 0} and {Lambda}{sub b} lifetimes as well as lifetime ratios (charge conjugate modes are implied throughout the text). We also summarize new measurements of exotic particles X(3872) and Y(4140).

  13. Heavy hadron spectroscopy at CDF

    SciTech Connect

    Fernandez Ramos, Juan Pablo; /Madrid, CIEMAT

    2011-01-01

    We present recent CDF results on the properties of hadrons containing heavy quarks. These include measurements of charm and {Sigma}{sub b}{sup -}{Sigma}*{sub b}{sup -} baryon's masses, lifetimes and masses of {Omega}{sub b}{sup -}, {Xi}{sub b}{sup -} and B{sub c}{sup -} and a measurement of exclusive B{sup +}, B{sup 0} and {Lambda}{sub b} lifetimes as well as lifetime ratios (charge conjugate modes are implied throughout the text). We also summarize new measurements of exotic particles X(3872) and Y(4140).

  14. The theory of hadronic systems

    SciTech Connect

    Gibbs, W.R.

    1995-03-16

    This report briefly discusses progress on the following topics: isospin breaking in the pion-nucleon system; subthreshold amplitudes in the {pi}N system; neutron-proton charge-exchange; transparency in pion production; energy dependence of pion DCX; direct capture of pions into deeply bound atomic states; knock out of secondary components in the nucleus; radii of neutron distributions in nuclei; the hadronic double scattering operator; pion scattering and charge exchange from polarized nuclei; pion absorption in nuclei; modification of nucleon structure in nuclei; and antiproton annihilation in nuclei.

  15. Recent results from hadron colliders

    SciTech Connect

    Frisch, H.J. )

    1990-12-10

    This is a summary of some of the many recent results from the CERN and Fermilab colliders, presented for an audience of nuclear, medium-energy, and elementary particle physicists. The topics are jets and QCD at very high energies, precision measurements of electroweak parameters, the remarkably heavy top quark, and new results on the detection of the large flux of B mesons produced at these machines. A summary and some comments on the bright prospects for the future of hadron colliders conclude the talk. 39 refs., 44 figs., 3 tabs.

  16. LHC: The Large Hadron Collider

    ScienceCinema

    Lincoln, Don

    2016-07-12

    The Large Hadron Collider (or LHC) is the world’s most powerful particle accelerator. In 2012, scientists used data taken by it to discover the Higgs boson, before pausing operations for upgrades and improvements. In the spring of 2015, the LHC will return to operations with 163% the energy it had before and with three times as many collisions per second. It’s essentially a new and improved version of itself. In this video, Fermilab’s Dr. Don Lincoln explains both some of the absolutely amazing scientific and engineering properties of this modern scientific wonder.

  17. Multidimensional intermittency in hadronic collisions

    NASA Astrophysics Data System (ADS)

    Pan, Jicai; Hwa, Rudolph C.

    1992-12-01

    The study of intermittency in high-energy hadronic collisions by the Monte Carlo code ecco is extended to three-dimensional phase space. Strong intermittency is found in agreement with the data. Fluctuation in the impact parameter is responsible for the intermittency in lnpT, and the transverse-momentum conservation leads to negative intermittency slopes in the azimuthal angle φ. The Ochs-Wosiek plots are linear in all dimensions having universal slopes. An exponent ν=1.448 emerges to characterize multiparticle production in pp collisions. The properties of G moments are also examined, and the fractal dimensions determined.

  18. Multidimensional intermittency in hadronic collisions

    NASA Astrophysics Data System (ADS)

    Pan, J.; Hwa, R. C.

    1992-06-01

    The study of intermittency in high-energy hadronic collisions by the Monte Carlo code ECCO is extended to 3-dimensional phase space. Strong intermittency is found in agreement with the data. Fluctuation in the impact parameter is responsible for the intermittency in 1np(sub T), and the transverse-momentum conservation leads to negative intermittency slopes in the azimuthal angle (phi). The Ochs-Wosiek plots are linear in all dimensions having universal slopes. An exponent nu = 1.448 emerges to characterize multiparticle production in pp collisions. The properties of G moments are also examined, and the fractal dimensions determined.

  19. Quark forces from hadronic spectroscopy.

    PubMed

    Pirjol, Dan; Schat, Carlos

    2009-04-17

    We consider the implications of the most general two-body quark-quark interaction Hamiltonian for the spin-flavor structure of the negative parity L = 1 excited baryons. Assuming the most general two-body quark interaction Hamiltonian, we derive two correlations among the masses and mixing angles of these states, which constrain the mixing angles, and can be used to test for the presence of three-body quark interactions. We find that the pure gluon-exchange model is disfavored by data, independently of any assumptions about hadronic wave functions.

  20. LHC: The Large Hadron Collider

    SciTech Connect

    Lincoln, Don

    2015-03-04

    The Large Hadron Collider (or LHC) is the world’s most powerful particle accelerator. In 2012, scientists used data taken by it to discover the Higgs boson, before pausing operations for upgrades and improvements. In the spring of 2015, the LHC will return to operations with 163% the energy it had before and with three times as many collisions per second. It’s essentially a new and improved version of itself. In this video, Fermilab’s Dr. Don Lincoln explains both some of the absolutely amazing scientific and engineering properties of this modern scientific wonder.

  1. A measurement of the relativistic rise in xenon-filled ionisation chambers for cosmic ray iron

    NASA Technical Reports Server (NTRS)

    Gregory, J. C.; Parnell, T. A.

    1980-01-01

    The relativistic rise of ionization in a pair of xenon-filled pulse ion chambers was measured for primary iron nuclei during a recent balloon flight. Energy calibration over the range 21.5-60 GeV/n was made with a Freon-12 gas Cerenkov detector. This allowed a comparison with recent calculations of the relativistic rise in xenon counters and an estimate of the ion chamber resolution above 21.5 GeV/n to be made.

  2. Relativistic dynamical collapse model

    NASA Astrophysics Data System (ADS)

    Pearle, Philip

    2015-05-01

    A model is discussed where all operators are constructed from a quantum scalar field whose energy spectrum takes on all real values. The Schrödinger picture wave function depends upon space and time coordinates for each particle, as well as an inexorably increasing evolution parameter s which labels a foliation of spacelike hypersurfaces. The model is constructed to be manifestly Lorentz invariant in the interaction picture. Free particle states and interactions are discussed in this framework. Then, the formalism of the continuous spontaneous localization (CSL) theory of dynamical collapse is applied. The collapse-generating operator is chosen to be the particle number space-time density. Unlike previous relativistically invariant models, the vacuum state is not excited. The collapse dynamics depends upon two parameters, a parameter Λ which represents the collapse rate/volume and a scale factor ℓ. A common example of collapse dynamics, involving a clump of matter in a superposition of two locations, is analyzed. The collapse rate is shown to be identical to that of nonrelativistic CSL when the GRW-CSL choice of ℓ=a =1 0-5 cm , is made, along with Λ =λ /a3 (GRW-CSL choice λ =1 0-16s-1). The collapse rate is also satisfactory with the choice ℓ as the size of the Universe, with Λ =λ /ℓa2. Because the collapse narrows wave functions in space and time, it increases a particle's momentum and energy, altering its mass. It is shown that, with ℓ=a , the change of mass of a nucleon is unacceptably large but, when ℓ is the size of the Universe, the change of mass over the age of the Universe is acceptably small.

  3. Integrable nonlinear relativistic equations

    NASA Astrophysics Data System (ADS)

    Hadad, Yaron

    This work focuses on three nonlinear relativistic equations: the symmetric Chiral field equation, Einstein's field equation for metrics with two commuting Killing vectors and Einstein's field equation for diagonal metrics that depend on three variables. The symmetric Chiral field equation is studied using the Zakharov-Mikhailov transform, with which its infinitely many local conservation laws are derived and its solitons on diagonal backgrounds are studied. It is also proven that it is equivalent to a novel equation that poses a fascinating similarity to the Sinh-Gordon equation. For the 1+1 Einstein equation the Belinski-Zakharov transformation is explored. It is used to derive explicit formula for N gravitational solitons on arbitrary diagonal background. In particular, the method is used to derive gravitational solitons on the Einstein-Rosen background. The similarities and differences between the attributes of the solitons of the symmetric Chiral field equation and those of the 1+1 Einstein equation are emphasized, and their origin is pointed out. For the 1+2 Einstein equation, new equations describing diagonal metrics are derived and their compatibility is proven. Different gravitational waves are studied that naturally extend the class of Bondi-Pirani-Robinson waves. It is further shown that the Bondi-Pirani-Robinson waves are stable with respect to perturbations of the spacetime. Their stability is closely related to the stability of the Schwarzschild black hole and the relation between the two allows to conjecture about the stability of a wide range of gravitational phenomena. Lastly, a new set of equations that describe weak gravitational waves is derived. This new system of equations is closely and fundamentally connected with the nonlinear Schrodinger equation and can be properly called the nonlinear Schrodinger-Einstein equations. A few preliminary solutions are constructed.

  4. Relativistic breakdown in planetary atmospheres

    SciTech Connect

    Dwyer, J. R.

    2007-04-15

    In 2003, a new electrical breakdown mechanism involving the production of runaway avalanches by positive feedback from runaway positrons and energetic photons was introduced. This mechanism, which shall be referred to as 'relativistic feedback', allows runaway discharges in gases to become self-sustaining, dramatically increasing the flux of runaway electrons, the accompanying high-energy radiation, and resulting ionization. Using detailed Monte Carlo calculations, properties of relativistic feedback are investigated. It is found that once relativistic feedback fully commences, electrical breakdown will occur and the ambient electric field, extending over cubic kilometers, will be discharged in as little as 2x10{sup -5} s. Furthermore, it is found that the flux of energetic electrons and x rays generated by this mechanism can exceed the flux generated by the standard relativistic runaway electron model by a factor of 10{sup 13}, making relativistic feedback a good candidate for explaining terrestrial gamma-ray flashes and other high-energy phenomena observed in the Earth's atmosphere.

  5. Particle Acceleration at Relativistic and Ultra-Relativistic Shock Waves

    NASA Astrophysics Data System (ADS)

    Meli, A.

    We perform Monte Carlo simulations using diffusive shock acceleration at relativistic and ultra-relativistic shock waves. High upstream flow gamma factors are used, Γ=(1-uup2/c2)-0.5, which are relevant to models of ultra-relativistic particle shock acceleration in the central engines and relativistic jets of Active Galactic Nuclei (AGN) and in Gamma-Ray Burst (GRB) fireballs. Numerical investigations are carried out on acceleration properties in the relativistic and ultra-relativistic flow regime (Γ ˜ 10-1000) concerning angular distributions, acceleration time scales, particle energy gain versus number of crossings and spectral shapes. We perform calculations for both parallel and oblique sub-luminal and super-luminal shocks. For parallel and oblique sub-luminal shocks, the spectra depend on whether or not the scattering is represented by pitch angle diffusion or by large angle scattering. The large angle case exhibits a distinctive structure in the basic power-law spectrum not nearly so obvious for small angle scattering. However, both cases yield a significant 'speed-up' of acceleration rate when compared with the conventional, non-relativistic expression, tacc=[c/(uup-udown)] (λup/uup+λdown/udown). An energization by a factor Γ2 for the first crossing cycle and a large energy gains for subsequent crossings as well as the high 'speed-up' factors found, are important in supporting past works, especially the models developed by Vietri and Waxman on ultra-high energy cosmic ray, neutrino and gamma-ray production in GRB. For oblique super-luminal shocks, we calculate the energy gain and spectral shape for a number of different inclinations. For this case the acceleration of particles is 'pictured' by a shock drift mechanism. We use high gamma flows with Lorentz factors in the range 10-40 which are relevant to ultra-relativistic shocks in AGN accretion disks and jets. In all investigations we closely follow the particle's trajectory along the magnetic field

  6. Suppression of high-p{sub T} hadrons in Pb+Pb collisions at energies available at the CERN Large Hadron Collider

    SciTech Connect

    Chen Xiaofang; Wang Enke; Zhang Hanzhong; Hirano, Tetsufumi; Wang Xinnian

    2011-09-15

    The nuclear modification factor R{sub AA}(p{sub T}) for large transverse momentum pion spectra in Pb+Pb collisions at {radical}(s)=2.76 TeV is predicted within the next-to-leading order perturbative QCD parton model. The effect of jet quenching is incorporated through medium-modified fragmentation functions within the higher-twist approach. The jet transport parameter that controls medium modification is proportional to the initial parton density, and the coefficient is fixed by data on the suppression of large-p{sub T} hadron spectra obtained at the BNL Relativistic Heavy Ion Collider. Data on charged hadron multiplicity dN{sub ch}/d{eta}=1584{+-}80 in central Pb+Pb collisions from the ALICE experiment at the CERN Large Hadron Collider are used to constrain the initial parton density both for determining the jet transport parameter and the 3 + 1 dimensional (3 + 1D) ideal hydrodynamic evolution of the bulk matter that is employed for the calculation of R{sub PbPb}(p{sub T}) for neutral pions.

  7. Suppression of high-pT hadrons in Pb+Pb collisions at energies available at the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Chen, Xiao-Fang; Hirano, Tetsufumi; Wang, Enke; Wang, Xin-Nian; Zhang, Hanzhong

    2011-09-01

    The nuclear modification factor RAA(pT) for large transverse momentum pion spectra in Pb+Pb collisions at s=2.76 TeV is predicted within the next-to-leading order perturbative QCD parton model. The effect of jet quenching is incorporated through medium-modified fragmentation functions within the higher-twist approach. The jet transport parameter that controls medium modification is proportional to the initial parton density, and the coefficient is fixed by data on the suppression of large-pT hadron spectra obtained at the BNL Relativistic Heavy Ion Collider. Data on charged hadron multiplicity dNch/dη=1584±80 in central Pb+Pb collisions from the ALICE experiment at the CERN Large Hadron Collider are used to constrain the initial parton density both for determining the jet transport parameter and the 3 + 1 dimensional (3 + 1D) ideal hydrodynamic evolution of the bulk matter that is employed for the calculation of RPbPb(pT) for neutral pions.

  8. State of hadron collider physics

    SciTech Connect

    Grannis, P.D. |

    1993-12-01

    The 9th Topical Workshop on Proton-Antiproton Collider Physics in Tsukuba Japan demonstrated clearly the enormous breadth of physics accessible in hadron cowders. Although no significant chinks were reported in the armor of the Standard Model, new results presented in this meeting have expanded our knowledge of the electroweak and strong interactions and have extended the searches for non-standard phenomena significantly. Much of the new data reported came from the CDF and D0 experiments at the Fermilab cowder. Superb operation of the Tevatron during the 1992-1993 Run and significant advances on the detector fronts -- in particular, the emergence of the new D0 detector as a productive physics instrument in its first outing and the addition of the CDF silicon vertex detector -- enabled much of this advance. It is noteworthy however that physics from the CERN collider experiments UA1 and UA4 continued to make a large impact at this meeting. In addition, very interesting summary talks were given on new results from HERA, cosmic ray experiments, on super-hadron collider physics, and on e{sup +}e{sup {minus}} experiments at LEP and TRISTAN. These summaries are reported in elsewhere in this volume.

  9. Relativistic like structure of classical thermodynamics

    NASA Astrophysics Data System (ADS)

    Quevedo, Hernando; Sánchez, Alberto; Vázquez, Alejandro

    2015-04-01

    We analyze in the context of geometrothermodynamics a Legendre invariant metric structure in the equilibrium space of an ideal gas. We introduce the concept of thermodynamic geodesic as a succession of points, each corresponding to a state of equilibrium, so that the resulting curve represents a quasi-static process. A rigorous geometric structure is derived in which the thermodynamic geodesics at a given point split the equilibrium space into two disconnected regions separated by adiabatic geodesics. This resembles the causal structure of special relativity, which we use to introduce the concept of adiabatic cone for thermodynamic systems. This result might be interpreted as an alternative indication of the inter-relationship between relativistic physics and classical thermodynamics.

  10. Coupling relativistic viscous hydrodynamics to Boltzmann descriptions

    SciTech Connect

    Pratt, Scott; Torrieri, Giorgio

    2010-10-15

    Models of relativistic heavy-ion collisions typically involve both a hydrodynamic module to describe the high-density liquidlike phase and a Boltzmann module to simulate the low-density breakup phase, which is gaslike. Coupling the prescriptions is more complicated for viscous prescriptions if one wants to maintain continuity of the entire stress-energy tensor and currents. Derivations for the viscosity for a gas are reviewed, which then lead to expressions for changes in the phase-space occupation based on simple relaxation-time pictures of viscosity. These expressions are shown to consistently reproduce the nonequilibrium components of the stress-energy tensor. An algorithm for generating a Monte Carlo sampling of particles with which to initiate the Boltzmann calculations is also presented.

  11. Polyanalytic relativistic second Bargmann transforms

    SciTech Connect

    Mouayn, Zouhaïr

    2015-05-15

    We construct coherent states through special superpositions of eigenstates of the relativistic isotonic oscillator. In each superposition, the coefficients are chosen to be L{sup 2}-eigenfunctions of a σ-weight Maass Laplacian on the Poincaré disk, which are associated with the eigenvalue 4m(σ−1−m), m∈Z{sub +}∩[0,(σ−1)/2]. For each nonzero m, the associated coherent states transform constitutes the m-true-polyanalytic extension of a relativistic version of the second Bargmann transform, whose integral kernel is expressed in terms of a special Appel-Kampé de Fériet’s hypergeometric function. The obtained results could be used to extend the known semi-classical analysis of quantum dynamics of the relativistic isotonic oscillator.

  12. Relativistic Calculation on Pion Condensation

    NASA Astrophysics Data System (ADS)

    Nakano, Masahiro; Tatsumi, Toshitaka; Liu, Liang-Gang; Matsuura, Hiroyuki; Iwasaki, Yoshitaka; Sakamoto, Katsuaki; Kouno, Hiroaki; Hasegawa, Akira

    2001-04-01

    The critical density of neutral pion condensation is investigated by using a new set of Landau-Migdal parameters, which are derived from a recent experimental data on the quenching factor of Gamow-Teller giant resonance. The particle-hole and delta-hole polarizations of the pion selfenergy are calculated based on the relativistic framework and compared with several nonrelativistic formulae. It is shown that the relativistic calculation gives higher critical densities than those of the nonrelativistic calculations. It is confirmed in the relativistic calculation that "universality assumption" leads to so-called "wall" in the critical density and the wall disappears in the present calculation based on the findings of the experiment of Wakasa et al. on the quenching of the Gamow Teller strength.

  13. Large amplitude relativistic plasma waves

    SciTech Connect

    Coffey, Timothy

    2010-05-15

    Relativistic, longitudinal plasma oscillations are studied for the case of a simple water bag distribution of electrons having cylindrical symmetry in momentum space with the axis of the cylinder parallel to the velocity of wave propagation. The plasma is required to obey the relativistic Vlasov-Poisson equations, and solutions are sought in the wave frame. An exact solution for the plasma density as a function of the electrostatic field is derived. The maximum electric field is presented in terms of an integral over the known density. It is shown that when the perpendicular momentum is neglected, the maximum electric field approaches infinity as the wave phase velocity approaches the speed of light. It is also shown that for any nonzero perpendicular momentum, the maximum electric field will remain finite as the wave phase velocity approaches the speed of light. The relationship to previously published solutions is discussed as is some recent controversy regarding the proper modeling of large amplitude relativistic plasma waves.

  14. Non-Relativistic Superstring Theories

    SciTech Connect

    Kim, Bom Soo

    2007-12-14

    We construct a supersymmetric version of the 'critical' non-relativistic bosonic string theory [1] with its manifest global symmetry. We introduce the anticommuting bc CFT which is the super partner of the {beta}{gamma} CFT. The conformal weights of the b and c fields are both 1/2. The action of the fermionic sector can be transformed into that of the relativistic superstring theory. We explicitly quantize the theory with manifest SO(8) symmetry and find that the spectrum is similar to that of Type IIB superstring theory. There is one notable difference: the fermions are non-chiral. We further consider 'noncritical' generalizations of the supersymmetric theory using the superspace formulation. There is an infinite range of possible string theories similar to the supercritical string theories. We comment on the connection between the critical non-relativistic string theory and the lightlike Linear Dilaton theory.

  15. TOPOLOGICAL THEORY OF HADRONS II: BARYONS

    SciTech Connect

    Stapp, Henry P.

    1981-10-01

    The first paper of this series described a method for incorporating spin into the meson sector of the topological theory of hadrons. This second paper extends the theory to all hadrons. It also incorporates into the covariant S-matrix topological framework the group-theoretic properties of the constituent quark model.

  16. A Survey of Hadron Therapy Accelerator Technologies.

    SciTech Connect

    PEGGS,S.; SATOGATA, T.; FLANZ, J.

    2007-06-25

    Hadron therapy has entered a new age [1]. The number of facilities grows steadily, and 'consumer' interest is high. Some groups are working on new accelerator technology, while others optimize existing designs by reducing capital and operating costs, and improving performance. This paper surveys the current requirements and directions in accelerator technology for hadron therapy.

  17. Status and Prospects for Hadron Production Experiments

    SciTech Connect

    Schroeter, Raphaeel

    2010-03-30

    The latest results from the HARP, MIPP and NA61 Hadron Production Experiments are reviewed and their implications for neutrinos physics experiments are discussed. We emphasize three neutrino sources: accelerator-based neutrino beams, advanced neutrino sources and atmospheric neutrinos. Finally, prospects from additional forthcoming hadron production measurements are presented.

  18. Hadron production at PEP/PETRA

    SciTech Connect

    Yamamoto, H.

    1985-12-01

    Recent results on hadron production in e/sup +/e/sup -/ annihilation at PEP and PETRA are summarized. The topics included are: (1) inclusive hadron production, (2) gluon vs quark jet, (3) analysis of 3 jet events and (4) p - anti p correlations. Experimental data are compared with predictions of several models to reveal underlying physics. 47 refs., 18 figs.

  19. Di-hadron production at Jefferson Lab

    SciTech Connect

    Anefalos Pereira, Sergio; et. al.,

    2014-10-01

    Semi-inclusive deep inelastic scattering (SIDIS) has been used extensively in recent years as an important testing ground for QCD. Studies so far have concentrated on better determination of parton distribution functions, distinguishing between the quark and antiquark contributions, and understanding the fragmentation of quarks into hadrons. Hadron pair (di-hadron) SIDIS provides information on the nucleon structure and hadronization dynamics that complement single hadron SIDIS. Di-hadrons allow the study of low- and high-twist distribution functions and Dihadron Fragmentation Functions (DiFF). Together with the twist-2 PDFs ( f1, g1, h1), the Higher Twist (HT) e and hL functions are very interesting because they offer insights into the physics of the largely unexplored quark-gluon correlations, which provide access into the dynamics inside hadrons. The CLAS spectrometer, installed in Hall-B at Jefferson Lab, has collected data using the CEBAF 6 GeV longitudinally polarized electron beam on longitudinally polarized solid NH3 targets. Preliminary results on di-hadron beam-, target- and double-spin asymmetries will be presented.

  20. Quantum Tunneling Time: Relativistic Extensions

    NASA Astrophysics Data System (ADS)

    Xu, Dai-Yu; Wang, Towe; Xue, Xun

    2013-11-01

    Several years ago, in quantum mechanics, Davies proposed a method to calculate particle's traveling time with the phase difference of wave function. The method is convenient for calculating the sojourn time inside a potential step and the tunneling time through a potential hill. We extend Davies' non-relativistic calculation to relativistic quantum mechanics, with and without particle-antiparticle creation, using Klein-Gordon equation and Dirac Equation, for different forms of energy-momentum relation. The extension is successful only when the particle and antiparticle creation/annihilation effect is negligible.

  1. Relativistic solutions to directed energy

    NASA Astrophysics Data System (ADS)

    Kulkarni, Neeraj; Lubin, Philip M.; Zhang, Qicheng

    2016-09-01

    This paper analyses the nature and feasibility of using directed energy to propel probes through space at relativistic speeds. Possible mission scenarios are considered by varying the spacecraft mass, thickness of the sail and power of the directed energy array. We calculate that gram-scaled probes are capable of achieving relativistic speeds and reaching Alpha Centauri well within a human lifetime. A major drawback is the diffraction of the beam which reduces the incident power on the sail resulting in a terminal velocity for the probes. Various notions of efficiency are discussed and we conclude that directed energy propulsion provides a viable direction for future space exploration.

  2. Phenomenological Relativistic Energy Density Functionals

    SciTech Connect

    Lalazissis, G. A.; Kartzikos, S.; Niksic, T.; Paar, N.; Vretenar, D.; Ring, P.

    2009-08-26

    The framework of relativistic nuclear energy density functionals is applied to the description of a variety of nuclear structure phenomena, not only in spherical and deformed nuclei along the valley of beta-stability, but also in exotic systems with extreme isospin values and close to the particle drip-lines. Dynamical aspects of exotic nuclear structure is explored using the fully consistent quasiparticle random-phase approximation based on the relativistic Hartree-Bogoliubov model. Recent applications of energy density functionals with explicit density dependence of the meson-nucleon couplings are presented.

  3. Special Relativistic Hydrodynamics with Gravitation

    NASA Astrophysics Data System (ADS)

    Hwang, Jai-chan; Noh, Hyerim

    2016-12-01

    Special relativistic hydrodynamics with weak gravity has hitherto been unknown in the literature. Whether such an asymmetric combination is possible has been unclear. Here, the hydrodynamic equations with Poisson-type gravity, considering fully relativistic velocity and pressure under the weak gravity and the action-at-a-distance limit, are consistently derived from Einstein’s theory of general relativity. An analysis is made in the maximal slicing, where the Poisson’s equation becomes much simpler than our previous study in the zero-shear gauge. Also presented is the hydrodynamic equations in the first post-Newtonian approximation, now under the general hypersurface condition. Our formulation includes the anisotropic stress.

  4. Numerical magneto-hydrodynamics for relativistic nuclear collisions

    NASA Astrophysics Data System (ADS)

    Inghirami, Gabriele; Del Zanna, Luca; Beraudo, Andrea; Moghaddam, Mohsen Haddadi; Becattini, Francesco; Bleicher, Marcus

    2016-12-01

    We present an improved version of the ECHO-QGP numerical code, which self-consistently includes for the first time the effects of electromagnetic fields within the framework of relativistic magneto-hydrodynamics (RMHD). We discuss results of its application in relativistic heavy-ion collisions in the limit of infinite electrical conductivity of the plasma. After reviewing the relevant covariant 3+1 formalisms, we illustrate the implementation of the evolution equations in the code and show the results of several tests aimed at assessing the accuracy and robustness of the implementation. After providing some estimates of the magnetic fields arising in non-central high-energy nuclear collisions, we perform full RMHD simulations of the evolution of the quark-gluon plasma in the presence of electromagnetic fields and discuss the results. In our ideal RMHD setup we find that the magnetic field developing in non-central collisions does not significantly modify the elliptic flow of the final hadrons. However, since there are uncertainties in the description of the pre-equilibrium phase and also in the properties of the medium, a more extensive survey of the possible initial conditions as well as the inclusion of dissipative effects are indeed necessary to validate this preliminary result.

  5. Unsteady relativistic shock-wave diffraction by cylinders and spheres.

    PubMed

    Tsai, I-Nan; Huang, Juan-Chen; Tsai, Shang-Shi; Yang, J Y

    2012-02-01

    The unsteady relativistic shock-wave diffraction patterns generated by a relativistic blast wave impinging on a circular cylinder and a sphere are numerically simulated using some high-resolution relativistic kinetic beam schemes in a general coordinate system for solving the relativistic Euler equations of gas dynamics. The diffraction patterns are followed through about 6 radii of travel of the incident shock past the body. The complete diffraction patterns, including regular reflection, transition from regular to Mach reflection, slip lines, and the complex shock-on-shock interaction at the wake region resulting from the Mach shocks collision behind the body are reported in detail. Computational results of several incident shock Mach numbers covering the near ultrarelativistic limit are studied. Various contours of flow properties including the Lorentz factor and velocity streamline plots are also presented to add a better understanding of the complex diffraction phenomena. The three-dimensional relieving effects of the sphere cases are evident and can be quantitatively evaluated as compared with the corresponding cylinder cases.

  6. Sum rules and photon emission in hadronic matter

    NASA Astrophysics Data System (ADS)

    Holt, Nathan Prescott Montgomery

    In this work, we examine properties of quantum chromodynamics (QCD) at moderate temperatures and density. These conditions are reached in the later stages of ultra-relativistic heavy-ion collisions after the matter has cooled sufficiently to re-hadronize from a quark-gluon plasma. The properties of matter in this stage are expected to change smoothly with temperature. We explore this behavior in two ways. First, we use finite-temperature sum rules to analyze the properties of vector and axial-vector spectral functions at low temperatures. Previous models used in sum rule analyses frequently led to ambiguous applications. Here we avoid such ambiguities by using an improved vacuum spectral function model together with a strict leading-order-in-temperature expansion. This results in well-defined finite temperature spectral functions. Additionally, we incorporate a finite pion mass, which we show induces an analytical violation of the sum rules. We then proceed to numerically measure that violation. Second, we calculate thermal photon emissivities of QCD matter from interactions involving both mesons and baryons. We identify a novel source of thermal photons from a system composed of pi, rho, and o mesons, then calculate photon emission rates from this system using both relativistic kinetic theory and thermal field theory. These rates are compared to existing calculations and found to be significant. We then calculate thermal photon emission rates from baryon interactions, using an exhaustive set of both strange and non-strange particles. We again find novel sources of photons from this system, compare the total rates to calculations of current state-of-the-art photon emission rates, and find them to be comparable.

  7. Hadron therapy: history, status, prospects

    NASA Astrophysics Data System (ADS)

    Klenov, G. I.; Khoroshkov, V. S.

    2016-08-01

    A brief historical review is given of external radiation therapy (RT), one of the main cancer treatment methods along with surgery and chemotherapy. Cellular mechanisms of radiation damage are described. Special attention is paid to hadron (proton and ion) therapy, its history, results, problems, challenges, current trends, and prospects. Undeniably great contributions to proton therapy have been made by Russian researchers, notably at the experimental centers that have operated since the mid-20th century at the Joint Institute for Nuclear Research, the A I Alikhanov Institute for Theoretical and Experimental Physics (ITEP), and the B P Konstantinov Petersburg Institute of Nuclear Physics. A quarter of the global clinical experience was accumulated by 1990 at the world's largest ITEP-hosted multicabin proton therapy center.

  8. Nuclear Physics and Hadron Therapy

    SciTech Connect

    Braunn, B.

    2011-12-13

    Hadron therapy uses light charged particles beams (mainly proton and {sup 12}C ions) to irradiate tumors. These beams present a ballistic advantage with a maximum energy deposition at the end of the path. A large dose can be delivered inside a deep tumor while the surrounding healthy tissues are preserved. There is an obvious advantage in using these beams but the beam control has to be achieved and all the physical processes leading to the energy deposition have to be fully under control. This treatment protocol requires accurate control devices and a good knowledge of the physical processes occurring all along the path of the projectile in human tissues. In this report, we will present one example of a beam monitor for the proton therapy. We will also present the experimental program which has been initiated to obtain fundamental data on the nuclear fragmentation process.

  9. Collins Asymmetry at Hadron Colliders

    SciTech Connect

    Yuan, Feng

    2008-01-17

    We study the Collins effect in the azimuthal asymmetricdistribution of hadrons inside a high energy jet in the single transversepolarized proton proton scattering. From the detailed analysis ofone-gluon and two-gluon exchange diagrams contributions, the Collinsfunction is found the same as that in the semi-inclusive deep inelasticscattering and e+e- annihilations. The eikonal propagators in thesediagrams do not contribute to the phase needed for the Collins-typesingle spin asymmetry, and the universality is derived as a result of theWard identity. We argue that this conclusion depends on the momentum flowof the exchanged gluon and the kinematic constraints in the fragmentationprocess, and is generic and model-independent.

  10. Ozone Production by Irradiation of Intense, Pulsed Relativistic Electron Beam

    NASA Astrophysics Data System (ADS)

    Imada, Go; Morishima, Nobuyuki; Yatsui, Kiyoshi

    Characteristics of ozone production have been investigated by irradiation of intense, pulsed relativistic electron beam (IREB). The 1.8-m-long gas-treatment chamber is filled up with dry-N2-balanced O2 gas mixture with the pressure of 98 kPa and is irradiated by IREB. The kinetic energy, current and pulse width of the IREB are - 2 MeV, - 2.9 kA, and - 80 ns (FWHM), respectively. It is found that - 340 ppm of ozone is produced by firing 10 shots of the IREB. We have also obtained the production yield of ozone of 9 - 21 g/kWh.

  11. Suppression of the high-p(T) charged-hadron R(AA) at the LHC.

    PubMed

    Majumder, A; Shen, C

    2012-11-16

    We present a parameter-free postdiction of the high-p(T) charged-hadron nuclear modification factor (R(AA)) in two centralities, measured by the CMS Collaboration in Pb-Pb collisions at the LHC. The evolution of the bulk medium is modeled using viscous fluid dynamics, with parameters adjusted to describe the soft hadron yields and elliptic flow. Assuming the dominance of radiative energy loss, we compute the medium modification of the R(AA) using a perturbative QCD-based formalism, the higher twist scheme. The transverse momentum diffusion coefficient q[over ^] is assumed to scale with the entropy density and is normalized by fitting the R(AA) in the most central Au-Au collisions at the Relativistic Heavy-Ion Collider. This setup is validated in noncentral Au-Au collisions at the Relativistic Heavy-Ion Collider and then extrapolated to Pb-Pb collisions at the LHC, keeping the relation between q[over ^] and entropy density unchanged. We obtain a satisfactory description of the CMS R(AA) over the p(T) range from 10 to 100 GeV.

  12. Trends and Progress in Nuclear and Hadron Physics: A Straight or Winding Road

    NASA Astrophysics Data System (ADS)

    Vary, James P.; Adhikari, Lekha; Chen, Guangyao; Li, Meijian; Li, Yang; Maris, Pieter; Qian, Wenyang; Spence, John R.; Tang, Shuo; Tuchin, Kirill; Zhao, Xingbo

    2017-03-01

    Quantitative calculations of the properties of hadrons and nuclei, with assessed uncertainties, have emerged as competitive with experimental measurements in a number of major cases. We may well be entering an era where theoretical predictions are critical for experimental progress. Cross-fertilization between the fields of relativistic hadronic structure and non-relativistic nuclear structure is readily apparent. Non-perturbative renormalization methods such as similarity renormalization group and Okubo-Lee-Suzuki schemes as well as many-body methods such as coupled cluster, configuration interaction and lattice simulation methods are now employed and advancing in both major areas of physics. New algorithms to apply these approaches on supercomputers are shared among these areas of physics. The roads to success have intertwined with each community taking the lead at various times in the recent past. We briefly sketch these fascinating paths and comment on some symbiotic relationships. We also overview some recent results from the Hamiltonian basis light-front quantization approach.

  13. Microscopic Processes in Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Hardee, P.; Mizuno, Y.; Medvedev, M.; Zhang, B.; Nordlund, A.; Fredricksen, J.; Sol, H.; Niemiec, J.; Lyubarsky, Y.; Hartmann, D. H.; Fishman, G. J.

    2008-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., gamma-ray bursts (GRBs), active galactic nuclei (AGNs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations of relativistic electron-ion (electro-positron) jets injected into a stationary medium show that particle acceleration occurs within the downstream jet. In the collisionless relativistic shock particle acceleration is due to plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel (filamentation) instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The 'jitter' radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  14. Proper-time relativistic dynamics

    NASA Technical Reports Server (NTRS)

    Gill, Tepper L.; Zachary, W. W.; Lindesay, James

    1993-01-01

    Proper-time relativistic single-particle classical Hamiltonian mechanics is formulated using a transformation from observer time to system proper time which is a canonical contact transformation on extended phase space. It is shown that interaction induces a change in the symmetry structure of the system which can be analyzed in terms of a Lie-isotopic deformation of the algebra of observables.

  15. Relativistic resonance and decay phenomena

    NASA Astrophysics Data System (ADS)

    Bui, Hai V.

    2015-04-01

    The exact relation τ = ℏ/Γ between the width Γ of a resonance and the lifetime τ for the decay of this resonance could not be obtained in standard quantum theory based on the Hilbert space or Schwartz space axiom in non-relativistic physics as well as in the relativistic regime. In order to obtain the exact relation, one has to modify the Hilbert space axiom or the Schwartz space axiom and choose new boundary conditions based on the Hardy space axioms in which the space of the states and the space of the observables are described by two different Hardy spaces. As consequences of the new Hardy space axioms, one obtains, instead of the symmetric time evolution for the states and the observables, asymmetrical time evolutions for the states and observables which are described by two semi-groups. A relativistic resonance obeying the exponential time evolution can be described by a relativistic Gamow vector, which is defined as superposition of the exact out-plane wave states with a Breit-Wigner energy distribution of the width Γ.

  16. Manipulating relativistic electrons with lasers

    NASA Astrophysics Data System (ADS)

    Malka, Victor

    2016-09-01

    The motion control of relativistic electrons with lasers allows for an efficient and elegant way to map the space with ultra-intense electric-field components, which, in turn, permits a unique improvement of the electron beam parameters. This perspective addresses the recent laser plasma accelerator experiments related to the phase space engineering of electron beams in a plasma medium performed at LOA.

  17. Action Principle for Relativistic Magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    D'Avignon, Eric; Morrison, Philip; Pegoraro, Francesco

    2015-11-01

    A covariant action principle for ideal relativistic magnetohydrodynamics in terms of natural Eulerian field variables is given. This is done by generalizing the covariant Poisson bracket theory of Marsden et al., which uses a noncanonical bracket to implement constrained variations of an action functional. Various implications and extensions of this action principle are also discussed.

  18. Particle Acceleration in Relativistic Outflows

    NASA Technical Reports Server (NTRS)

    Bykov, Andrei; Gehrels, Neil; Krawczynski, Henric; Lemoine, Martin; Pelletier, Guy; Pohl, Martin

    2012-01-01

    In this review we confront the current theoretical understanding of particle acceleration at relativistic outflows with recent observational results on various source classes thought to involve such outflows, e.g. gamma-ray bursts, active galactic nuclei, and pulsar wind nebulae. We highlight the possible contributions of these sources to ultra-high-energy cosmic rays.

  19. Microscopic Processes in Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Hardee, P.; Mizuno, Y.; Medvedev, M.; Zhang, B.; Nordlund, A.; Fredricksen, J.; Sol, H.; Niemiec, J.; Lyubarsky, Y.; hide

    2008-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., gamma-ray bursts (GRBs), active galactic nuclei (AGNs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations of relativistic electron-ion (electro-positron) jets injected into a stationary medium show that particle acceleration occurs within the downstream jet. In the collisionless relativistic shock particle acceleration is due to plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel (filamentation) instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The 'jitter' radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  20. Relativistic Optimized Link by KLT

    NASA Astrophysics Data System (ADS)

    Maccone, C.

    The KLT is a way of optimizing the signal processing of a given noisy signal by projecting the noisy signal itself onto the set of orthonormal basis functions spanned by the eigenfunctions of the autocorrelation of the noisy signal. Thus, the key problem in computing the KLT of a noisy signal is the computation of the eigenvalues and eigenfunctions of the autocorrelation of the noisy signal. For the special case of the Brownian motion (i.e. the basic Gaussian noisy signal) it can be proved that the KLT eigenfunctions are just sines, i.e. the KLT is the same as the FT. Let us now bring relativity into the KLT picture (this paper is confined to special relativity; general relativity can be KLT-studied also, but the calculations are, of course, even more difficult). Also, only rectilinear motions will be considered here. So, if one considers a source in relativistic motion, then the noisy signal undergoes a time-rescaling that depends on the type of relativistic motion. In past work this author has demostrated that the eigenfunctions of the time-rescaled, relativistic Brownian motion are Bessel functions of the first kind, and their eigenvalues are the zeros of such Bessel functions. In addition, it is stated (without proofs) that explicit formulae for the KLT signal processing can be found for the particularly important cases of the noisy signals received on Earth from a relativistic spacecraft whose motion is either: 1) uniform; or 2) uniformly accelerated.

  1. A 3+1 dimensional viscous hydrodynamic code for relativistic heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Karpenko, Iu.; Huovinen, P.; Bleicher, M.

    2014-11-01

    We describe the details of 3+1 dimensional relativistic hydrodynamic code for the simulations of quark-gluon/hadron matter expansion in ultra-relativistic heavy ion collisions. The code solves the equations of relativistic viscous hydrodynamics in the Israel-Stewart framework. With the help of ideal-viscous splitting, we keep the ability to solve the equations of ideal hydrodynamics in the limit of zero viscosities using a Godunov-type algorithm. Milne coordinates are used to treat the predominant expansion in longitudinal (beam) direction effectively. The results are successfully tested against known analytical relativistic inviscid and viscous solutions, as well as against existing 2+1D relativistic viscous code. Catalogue identifier: AETZ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AETZ_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 13 825 No. of bytes in distributed program, including test data, etc.: 92 750 Distribution format: tar.gz Programming language: C++. Computer: any with a C++ compiler and the CERN ROOT libraries. Operating system: tested on GNU/Linux Ubuntu 12.04 x64 (gcc 4.6.3), GNU/Linux Ubuntu 13.10 (gcc 4.8.2), Red Hat Linux 6 (gcc 4.4.7). RAM: scales with the number of cells in hydrodynamic grid; 1900 Mbytes for 3D 160×160×100 grid. Classification: 1.5, 4.3, 12. External routines: CERN ROOT (http://root.cern.ch), Gnuplot (http://www.gnuplot.info/) for plotting the results. Nature of problem: relativistic hydrodynamical description of the 3-dimensional quark-gluon/hadron matter expansion in ultra-relativistic heavy ion collisions. Solution method: finite volume Godunov-type method. Running time: scales with the number of hydrodynamic cells; typical running times on Intel(R) Core(TM) i7-3770 CPU @ 3.40 GHz, single thread mode, 160

  2. Relativistic coupled-cluster calculations of {sup 20}Ne, {sup 40}Ar, {sup 84}Kr, and {sup 129}Xe: Correlation energies and dipole polarizabilities

    SciTech Connect

    Mani, B. K.; Angom, D.; Latha, K. V. P.

    2009-12-15

    We have carried out a detailed and systematic study of the correlation energies of inert gas atoms Ne, Ar, Kr, and Xe using relativistic many-body perturbation theory and relativistic coupled-cluster theory. In the relativistic coupled-cluster calculations, we implement perturbative triples and include these in the correlation energy calculations. We then calculate the dipole polarizability of the ground states using perturbed coupled-cluster theory.

  3. Strangeness in hadronic stellar matter

    NASA Astrophysics Data System (ADS)

    Knorren, R.; Prakash, M.; Ellis, P. J.

    1995-12-01

    We examine the presence of strangeness-bearing components, hyperons and kaons, in dense neutron star matter. Calculations are performed using relativistic mean field models, in which both the baryon-baryon and kaon-baryon interactions are mediated by meson exchange. Results of kaon condensation are found to be qualitatively similar to previous work with chiral models, if compatibility of the kaon optical potentials is required. The presence of strangeness, be it in the form of hyperons or kaons, implies a reduction in the maximum mass and a relatively large number of protons, sufficient to allow rapid cooling to take place. The need to improve upon the poorly known couplings of the strange particles, which determine the composition and structure of neutron stars, is stressed. We also discuss generic problems with effective masses in mean field theories.

  4. Self-Consistent Synchrotron Spectra from Trans-Relativistic Electron Acceleration

    NASA Astrophysics Data System (ADS)

    Becker, Peter A.

    2015-01-01

    Most existing analytical models describing the second-order Fermi acceleration of relativistic electrons due to collisions with MHD waves assume that the injected seed particles are already highly relativistic, despite the fact that the most prevalent source of particles is usually the non-relativistic thermal background gas. This presents a problem because the momentum dependence of the momentum diffusion coefficient describing the interaction between the electrons and the MHD waves is qualitatively different in the non-relativistic and highly relativistic limits. The lack of an analytical model has forced workers to rely on numerical simulations to obtain particle spectra describing the trans-relativistic case. In this work, we present the first analytical solution to the global, trans-relativistic problem of electron acceleration, obtained by using a hybrid form for the momentum diffusion coefficient, given by the sum of the two asymptotic forms. We refer to this process as "quasi hard-sphere scattering." The model also incorporates the appropriate momentum dependence for the particle escape timescale, and the effect of synchrotron and inverse-Compton losses, which are critical for establishing the location of the high-energy cutoff in the particle spectrum. Since synchrotron and inverse-Compton losses are included in the transport equation, the resulting radiation spectra are computed self-consistently. The results can be used to model the acceleration of radiating electrons in AGN and solar environments, applications of both types are discussed.

  5. Baryon resonance yields after QGP hadronization

    NASA Astrophysics Data System (ADS)

    Kuznetsova, Inga; Rafelski, Johann

    2008-10-01

    Yields of baryon resonances which have been studied at RHIC, considering their decay (e.g. δ(1232) ->N+π , σ(1385) ->λ+π), are studied in the framework of a kinetic master equations. The detailed balance requirement implied that they can be also produced by back-reaction. Particularly interesting is the case of entropy rich QGP fast hadronization leading to initial above chemical equilibrium yields of hadrons. In this case the resonance yield in a rapidly expanding system does not always develop towards global chemical equilibrium. We find that a significant additional hadron resonance yields can be produced by the back-reaction of the over-abundance of the decay products of resonances. A more complex situation arises for a relatively narrow resonance such as λ(1520), which can be in part seen as a stable state, which is depopulated to increase the heavier resonance yield. We find that a suppression of yield of such resonances, as compared to statistical hadronization model is possible. The pattern of deviation of hadron resonance yields from expectations based on statistical hadronization model are another characteristic signature for a fast hadronization of entropy rich QGP. The total yields of the ground state baryons used in analysis of data (such as N, λ) are not affected.

  6. Hadron cascades produced by electromagnetic cascades

    SciTech Connect

    Nelson, W.R.; Jenkins, T.M.; Ranft, J.

    1986-12-01

    A method for calculating high energy hadron cascades induced by multi-GeV electron and photon beams is described. Using the EGS4 computer program, high energy photons in the EM shower are allowed to interact hadronically according to the vector meson dominance (VMD) model, facilitated by a Monte Carlo version of the dual multistring fragmentation model which is used in the hadron cascade code FLUKA. The results of this calculation compare very favorably with experimental data on hadron production in photon-proton collisions and on the hadron production by electron beams on targets (i.e., yields in secondary particle beam lines). Electron beam induced hadron star density contours are also presented and are compared with those produced by proton beams. This FLUKA-EGS4 coupling technique could find use in the design of secondary beams, in the determination high energy hadron source terms for shielding purposes, and in the estimation of induced radioactivity in targets, collimators and beam dumps.

  7. Di-hadron production at Jefferson Laboratory

    NASA Astrophysics Data System (ADS)

    Anefalos Pereira, Sergio; CLAS Collaboration

    2015-04-01

    Semi-inclusive deep inelastic scattering (SIDIS) has been used extensively in recent years as an important testing ground for QCD. Studies so far have concentrated on better determination of parton distribution functions, distinguishing between the quark and antiquark contributions, and understanding the fragmentation of quarks into hadrons. Pair of hadrons (di-hadron) SIDIS provides information on the nucleon structure and hadronization dynamics that complements single-hadron SIDIS. The study of di-hadrons allow us to study higher twist distribution functions and Dihadron Fragmentation Functions (DiFF). Together with the twist-2 PDFs (f 1, g 1, h 1), the Higher Twist (HT) e and hL functions are very interesting because they offer insights into the physics of the largely unexplored quark-gluon correlations which provide direct and unique insights into the dynamics inside hadrons. The CLAS spectrometer, installed in Hall-B at Jefferson Lab, has collected data using the CEBAF 6 GeV longitudinally polarized electron beam on longitudinally polarized solid NH3 targets. Preliminary results on beam-, target- and double-spin asymmetries will be presented.

  8. Fast Lattice Boltzmann Solver for Relativistic Hydrodynamics

    SciTech Connect

    Mendoza, M.; Herrmann, H. J.; Boghosian, B. M.; Succi, S.

    2010-07-02

    A lattice Boltzmann formulation for relativistic fluids is presented and numerically validated through quantitative comparison with recent hydrodynamic simulations of relativistic fluids. In order to illustrate its capability to handle complex geometries, the scheme is also applied to the case of a three-dimensional relativistic shock wave, generated by a supernova explosion, impacting on a massive interstellar cloud. This formulation opens up the possibility of exporting the proven advantages of lattice Boltzmann methods, namely, computational efficiency and easy handling of complex geometries, to the context of (mildly) relativistic fluid dynamics at large, from quark-gluon plasmas up to supernovae with relativistic outflows.

  9. Finite nuclei in relativistic models with a light chiral scalar meson

    SciTech Connect

    Serot, B.D.; Furnstahl, R.J.

    1993-10-01

    Relativistic chiral models with a light scalar, meson appear to provide an economical marriage of successful relativistic mean-field theories and chiral symmetry. In these models, the scalar meson serves as both the chiral partner of the pion and the mediator of the intermediate-range nucleon-nucleon (NN) attraction. However, while some of these models can reproduce the empirical nuclear matter saturation point, they fail to reproduce observed properties of finite nuclei, such as spin-orbit splittings, shell structure, charge densities, and surface energetics. There deficiencies imply that this realization of chiral symmetry is incorrect. An alternative scenario for chiral hadronic models, which features a heavy chiral scalar and dynamical generation of the NN attraction, is discussed.

  10. Bound-free electron-positron pair production in relativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Şengül, M. Y.; Güçlü, M. C.; Fritzsche, S.

    2009-10-01

    The bound-free electron-positron pair production is considered for relativistic heavy ion collisions. In particular, cross sections are calculated for the pair production with the simultaneous capture of the electron into the 1s ground state of one of the ions and for energies that are relevant for the relativistic heavy ion collider and the large hadron colliders. In the framework of perturbation theory, we applied Monte Carlo integration techniques to compute the lowest-order Feynman diagrams amplitudes by using Darwin wave functions for the bound states of the electrons and Sommerfeld-Maue wave functions for the continuum states of the positrons. Calculations were performed especially for the collision of Au+Au at 100 GeV/nucleon and Pb+Pb at 3400 GeV/nucleon.

  11. Relativistic calculation of the pion loop correlation energy in nuclear matter in a theory including confinement

    SciTech Connect

    Massot, E.; Chanfray, G.

    2009-07-15

    We present a relativistic calculation of the saturation properties of nuclear matter which contains the correlation energy. Pion loops are incorporated on top of a relativistic Hartree-Fock (RHF) approach based on a chiral theory. It includes the effect of nucleon structure through its response to the background chiral invariant scalar field. All the parameters which enter the RHF calculation are fixed or strongly constrained by hadron phenomenology or lattice data. The new input for the correlation energy is the Landau-Migdal parameter g{sup '} governing the short-range part of the spin-isospin interaction. We find that the inclusion of the correlation energy improves the description of the saturation properties of nuclear matter.

  12. QCD on the Light-Front. A Systematic Approach to Hadron Physics

    NASA Astrophysics Data System (ADS)

    Brodsky, Stanley J.; de Téramond, Guy F.; Dosch, Hans Günter

    2014-06-01

    Light-front Hamiltonian theory, derived from the quantization of the QCD Lagrangian at fixed light-front time x + = x 0 + x 3, provides a rigorous frame-independent framework for solving nonperturbative QCD. The eigenvalues of the light-front QCD Hamiltonian H LF predict the hadronic mass spectrum, and the corresponding eigensolutions provide the light-front wavefunctions which describe hadron structure, providing a direct connection to the QCD Lagrangian. In the semiclassical approximation the valence Fock-state wavefunctions of the light-front QCD Hamiltonian satisfy a single-variable relativistic equation of motion, analogous to the nonrelativistic radial Schrödinger equation, with an effective confining potential U which systematically incorporates the effects of higher quark and gluon Fock states. Remarkably, the potential U has a unique form of a harmonic oscillator potential if one requires that the chiral QCD action remains conformally invariant. A mass gap and the color confinement scale also arises when one extends the formalism of de Alfaro, Fubini and Furlan to light-front Hamiltonian theory. In the case of mesons, the valence Fock-state wavefunctions of H LF for zero quark mass satisfy a single-variable relativistic equation of motion in the invariant variable , which is conjugate to the invariant mass squared . The result is a nonperturbative relativistic light-front quantum mechanical wave equation which incorporates color confinement and other essential spectroscopic and dynamical features of hadron physics, including a massless pion for zero quark mass and linear Regge trajectories with the same slope in the radial quantum number n and orbital angular momentum L. Only one mass parameter appears. The corresponding light-front Dirac equation provides a dynamical and spectroscopic model of nucleons. The same light-front equations arise from the holographic mapping of the soft-wall model modification of AdS5 space with a unique dilaton profile to QCD

  13. Identity method to study chemical fluctuations in relativistic heavy-ion collisions

    SciTech Connect

    Gazdzicki, Marek; Grebieszkow, Katarzyna; Mackowiak, Maja; Mrowczynski, Stanislaw

    2011-05-15

    Event-by-event fluctuations of the chemical composition of the hadronic final state of relativistic heavy-ion collisions carry valuable information on the properties of strongly interacting matter produced in the collisions. However, in experiments incomplete particle identification distorts the observed fluctuation signals. The effect is quantitatively studied and a new technique for measuring chemical fluctuations, the identity method, is proposed. The method fully eliminates the effect of incomplete particle identification. The application of the identity method to experimental data is explained.

  14. Non-perturbative QCD and hadron physics

    NASA Astrophysics Data System (ADS)

    Cobos-Martínez, J. J.

    2016-10-01

    A brief exposition of contemporary non-perturbative methods based on the Schwinger-Dyson (SDE) and Bethe-Salpeter equations (BSE) of Quantum Chromodynamics (QCD) and their application to hadron physics is given. These equations provide a non-perturbative continuum formulation of QCD and are a powerful and promising tool for the study of hadron physics. Results on some properties of hadrons based on this approach, with particular attention to the pion distribution amplitude, elastic, and transition electromagnetic form factors, and their comparison to experimental data are presented.

  15. Modeling Hadronic Showers in MINERvA

    NASA Astrophysics Data System (ADS)

    Velasquez, Juan; Minerva Collaboration

    2011-04-01

    The MINERνA Test Beam (TB) detector took data in a low energy test beam at Fermilab with particle energies from 400 MeV to 1.2 GeV. These data will be used to calibrate the MINERνA neutrino detector. One of the goals of this work is to characterize the length and radius of the hadronic showers produced in the TB data, important for the MINERνA DIS studies. Within the same study, we will perform a comparison of these hadronic showers with the different hadronic models available in GEANT4. The status of this study will be presented.

  16. Hadron scattering and resonances in QCD

    NASA Astrophysics Data System (ADS)

    Dudek, Jozef J.

    2016-05-01

    I describe how hadron-hadron scattering amplitudes are related to the eigenstates of QCD in a finite cubic volume. The discrete spectrum of such eigenstates can be determined from correlation functions computed using lattice QCD, and the corresponding scattering amplitudes extracted. I review results from the Hadron Spectrum Collaboration who have used these finite volume methods to study ππ elastic scattering, including the ρ resonance, as well as coupled-channel π >K, ηK scattering. Ongoing calculations are advertised and the outlook for finite volume approaches is presented.

  17. Constraints on hadronically decaying dark matter

    SciTech Connect

    Garny, Mathias; Ibarra, Alejandro; Tran, David E-mail: alejandro.ibarra@ph.tum.de

    2012-08-01

    We present general constraints on dark matter stability in hadronic decay channels derived from measurements of cosmic-ray antiprotons. We analyze various hadronic decay modes in a model-independent manner by examining the lowest-order decays allowed by gauge and Lorentz invariance for scalar and fermionic dark matter particles and present the corresponding lower bounds on the partial decay lifetimes in those channels. We also investigate the complementarity between hadronic and gamma-ray constraints derived from searches for monochromatic lines in the sky, which can be produced at the quantum level if the dark matter decays into quark-antiquark pairs at leading order.

  18. Quark Hadron Duality - Recent Jefferson Lab Results

    SciTech Connect

    Niculescu, Maria Ioana

    2016-08-01

    The duality between the partonic and hadronic descriptions of electron--nucleon scattering is a remarkable feature of nuclear interactions. When averaged over appropriate energy intervals the cross section at low energy which is dominated by nucleon resonances resembles the smooth behavior expected from perturbative QCD. Recent Jefferson Lab results indicate that quark-hadron duality is present in a variety of observables, not just the proton F2 structure function. An overview of recent results, especially local quark-hadron duality on the neutron, are presented here.

  19. Hadron scattering and resonances in QCD

    SciTech Connect

    Dudek, Jozef J.

    2016-05-01

    I describe how hadron-hadron scattering amplitudes are related to the eigenstates of QCD in a finite cubic volume. The discrete spectrum of such eigenstates can be determined from correlation functions computed using lattice QCD, and the corresponding scattering amplitudes extracted. I review results from the Hadron Spectrum Collaboration who have used these finite volume methods to study pi pi elastic scattering, including the rho resonance, as well as coupled-channel pi K, eta K scattering. Ongoing calculations are advertised and the outlook for finite volume approaches is presented.

  20. Exclusive hadronic and nuclear processes in QCD

    SciTech Connect

    Brodsky, S.J.

    1985-12-01

    Hadronic and nuclear processes are covered, in which all final particles are measured at large invariant masses compared with each other, i.e., large momentum transfer exclusive reactions. Hadronic wave functions in QCD and QCD sum rule constraints on hadron wave functions are discussed. The question of the range of applicability of the factorization formula and perturbation theory for exclusive processes is considered. Some consequences of quark and gluon degrees of freedom in nuclei are discussed which are outside the usual domain of traditional nuclear physics. 44 refs., 7 figs. (LEW)

  1. Theoretical studies in hadronic and nuclear physics. Progress report, December 1, 1992--June 30 , 1993

    SciTech Connect

    Griffin, J.J.; Cohen, T.D.

    1993-07-01

    Research in the Maryland Nuclear Theory Group focusses on problems in four basic areas of current relevance. The section on Hadrons in Nuclei reports research into the ways in which the properties of nucleons and the mesons which play a role in the nuclear force are modified in the nuclear medium. QCD sum rules supply a new insight into the decrease of the nucleon`s mass in the nuclear medium. The quark condensate decreases in nuclear matter, and this is responsible for the decrease of the nucleon`s mass. The section on the Structure of Hadrons reports progress in understanding the structure of the nucleon. These results cover widely different approaches -- lattice gauge calculations, QCD sum rules, quark-meson models with confinement and other hedgehog models. Progress in Relativistic Nuclear Physics is reported on electromagnetic interactions in a relativistic bound state formalism, with applications to elastic electron scattering by deuterium, and on application of a two-body quasipotential equation to calculate the spectrum of mesons formed as bound states of a quark and antiquark. A Lorentz-invariant description of the nuclear force suggests a decrease of the nucleon`s mass in the nuclear medium similar to that found from QCD sum rules. Calculations of three-body bound states with simple forms of relativistic dynamics are also discussed. The section on Heavy Ion Dynamics and Related Processes describes progress on the (e{sup +}e{sup {minus}}) problem and heavy-on dynamics. In particular, the sharp electrons observed in {beta}{sup +} irradiation of heavy atoms have recently been subsumed into the ``Composite Particle Scenario,`` generalizing the ``(e{sup +}e{sup {minus}}-Puzzle`` of the pairs from heavy ion collisions to the ``Sharp Lepton Problem.``

  2. Symmetry energy effects on the mixed hadron-quark phase at high baryon density

    NASA Astrophysics Data System (ADS)

    di Toro, M.; Liu, B.; Greco, V.; Baran, V.; Colonna, M.; Plumari, S.

    2011-01-01

    The phase transition of hadronic to quark matter at high baryon and isospin density is analyzed. Relativistic mean-field models are used to describe hadronic matter, and the MIT bag model is adopted for quark matter. The boundaries of the mixed phase and the related critical points for symmetric and asymmetric matter are obtained. Due to the different symmetry term in the two phases, isospin effects appear to be rather significant. With increasing isospin asymmetry the binodal transition line of the (T,ρB) diagram is lowered to a region accessible through heavy-ion collisions in the energy range of the new planned facilities (e.g., the FAIR/NICA projects). Some observable effects are suggested, in particular an isospin distillation mechanism with a more isospin asymmetric quark phase, to be seen in charged meson yield ratios, and an onset of quark number scaling of the meson-baryon elliptic flows. The presented isospin effects on the mixed phase appear to be robust with respect to even large variations of the poorly known symmetry term at high baryon density in the hadron phase. The dependence of the results on a suitable treatment of isospin contributions in effective QCD Lagrangian approaches, at the level of explicit isovector parts and/or quark condensates, is discussed.

  3. Latest results of charged hadron flow measurements in CuAu collisions at RHIC-PHENIX

    NASA Astrophysics Data System (ADS)

    Nakagomi, Hiroshi

    2016-08-01

    Measurements of azimuthal anisotropic flow vn for inclusive charged hadrons and identified particles at mid rapidity in Cu+Au collisions at √sNN = 200GeV are presented. The data were recorded by the PHENIX experiment at Relativistic Heavy Ion Collider(RHIC). Directed, elliptic and triangular flow as a function of transverse momentum pT are measured with respect to event planes. The inclusive charged hadron vi shows the negative value at high pT. The v2 and v3 are compared to those in Au+Au and Cu+Cu collisions. We find the v 2 and v3 follow an empirical scaling with 1/(ɛnN1/3 part). We also compare the v2 and v3 to hydrodynamical predictions. The identified particles v2 and v3 show a mass ordering in low pT region and baryon and meson splitting in high pT region. However the identified hadron v1 only shows mass ordering in mid pT region.

  4. NUCLEOSYNTHESIS IN CORE-COLLAPSE SUPERNOVA EXPLOSIONS TRIGGERED BY A QUARK-HADRON PHASE TRANSITION

    SciTech Connect

    Nishimura, Nobuya; Thielemann, Friedrich-Karl; Hempel, Matthias; Kaeppeli, Roger; Rauscher, Thomas; Winteler, Christian; Fischer, Tobias; Martinez-Pinedo, Gabriel; Froehlich, Carla; Sagert, Irina

    2012-10-10

    We explore heavy-element nucleosynthesis in the explosion of massive stars that are triggered by a quark-hadron phase transition during the early post-bounce phase of core-collapse supernovae. The present study is based on general-relativistic radiation hydrodynamics simulations with three-flavor Boltzmann neutrino transport in spherical symmetry, which utilize a quark-hadron hybrid equation of state based on the MIT bag model for strange quark matter. The quark-hadron phase transition inside the stellar core forms a shock wave propagating toward the surface of the proto-neutron star. This shock wave results in an explosion and ejects neutron-rich matter from the outer accreted layers of the proto-neutron star. Later, during the cooling phase, the proto-neutron star develops a proton-rich neutrino-driven wind. We present a detailed analysis of the nucleosynthesis outcome in both neutron-rich and proton-rich ejecta and compare our integrated nucleosynthesis with observations of the solar system and metal-poor stars. For our standard scenario, we find that a 'weak' r-process occurs and elements up to the second peak (A {approx} 130) are successfully synthesized. Furthermore, uncertainties in the explosion dynamics could barely allow us to obtain the strong r-process which produces heavier isotopes, including the third peak (A {approx} 195) and actinide elements.

  5. Symmetry energy effects on the mixed hadron-quark phase at high baryon density

    SciTech Connect

    Di Toro, M.; Greco, V.; Plumari, S.; Liu, B.; Baran, V.; Colonna, M.

    2011-01-15

    The phase transition of hadronic to quark matter at high baryon and isospin density is analyzed. Relativistic mean-field models are used to describe hadronic matter, and the MIT bag model is adopted for quark matter. The boundaries of the mixed phase and the related critical points for symmetric and asymmetric matter are obtained. Due to the different symmetry term in the two phases, isospin effects appear to be rather significant. With increasing isospin asymmetry the binodal transition line of the (T,{rho}{sub B}) diagram is lowered to a region accessible through heavy-ion collisions in the energy range of the new planned facilities (e.g., the FAIR/NICA projects). Some observable effects are suggested, in particular an isospin distillation mechanism with a more isospin asymmetric quark phase, to be seen in charged meson yield ratios, and an onset of quark number scaling of the meson-baryon elliptic flows. The presented isospin effects on the mixed phase appear to be robust with respect to even large variations of the poorly known symmetry term at high baryon density in the hadron phase. The dependence of the results on a suitable treatment of isospin contributions in effective QCD Lagrangian approaches, at the level of explicit isovector parts and/or quark condensates, is discussed.

  6. General relativistic calculations for white dwarfs

    NASA Astrophysics Data System (ADS)

    Mathew, Arun; Nandy, Malay K.

    2017-05-01

    The mass-radius relations for white dwarfs are investigated by solving the Newtonian as well as Tolman-Oppenheimer-Volkoff (TOV) equations for hydrostatic equilibrium assuming the electron gas to be non-interacting. We find that the Newtonian limiting mass of 1.4562{M}⊙ is modified to 1.4166{M}⊙ in the general relativistic case for {}_2^4{{He}} (and {}_612{{C}}) white dwarfs. Using the same general relativistic treatment, the critical mass for {}2656{{Fe}} white dwarfs is obtained as 1.2230{M}⊙ . In addition, departure from the ideal degenerate equation of state (EoS) is accounted for by considering Salpeter’s EoS along with the TOV equation, yielding slightly lower values for the critical masses, namely 1.4081{M}⊙ for {}_2^4{{He}}, 1.3916{M}⊙ for {}_612{{C}} and 1.1565{M}⊙ for {}2656{{Fe}} white dwarfs. We also compare the critical densities for gravitational instability with the neutronization threshold densities to find that {}_2^4{{He}} and {}_612{{C}} white dwarfs are stable against neutronization with the critical values of 1.4081{M}⊙ and 1.3916{M}⊙ , respectively. However, the critical masses for {}_816{{O}}, {}1020{{Ne}}, {}1224{{Mg}}, {}1428{{Si}}, {}1632{{S}} and {}2656{{Fe}} white dwarfs are lower due to neutronization. Corresponding to their central densities for neutronization thresholds, we obtain their maximum stable masses due to neutronization by solving the TOV equation coupled with the Salpeter EoS.

  7. Single electron yields from semileptonic charm and bottom hadron decays in Au +Au collisions at √{sN N}=200 GeV

    NASA Astrophysics Data System (ADS)

    Adare, A.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Alexander, J.; Alfred, M.; Aoki, K.; Apadula, N.; Aramaki, Y.; Asano, H.; Aschenauer, E. C.; Atomssa, E. T.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Bandara, N. S.; Bannier, B.; Barish, K. N.; Bassalleck, B.; Bathe, S.; Baublis, V.; Baumgart, S.; Bazilevsky, A.; Beaumier, M.; Beckman, S.; Belmont, R.; Berdnikov, A.; Berdnikov, Y.; Black, D.; Blau, D. S.; Bok, J. S.; Boyle, K.; Brooks, M. L.; Bryslawskyj, J.; Buesching, H.; Bumazhnov, V.; Butsyk, S.; Campbell, S.; Chen, C.-H.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choi, S.; Choudhury, R. K.; Christiansen, P.; Chujo, T.; Chvala, O.; Cianciolo, V.; Citron, Z.; Cole, B. A.; Connors, M.; Cronin, N.; Crossette, N.; Csanád, M.; Csörgő, T.; Dairaku, S.; Danley, T. W.; Datta, A.; Daugherity, M. S.; David, G.; Deblasio, K.; Dehmelt, K.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Dietzsch, O.; Ding, L.; Dion, A.; Diss, P. B.; Do, J. H.; Donadelli, M.; D'Orazio, L.; Drapier, O.; Drees, A.; Drees, K. A.; Durham, J. M.; Durum, A.; Edwards, S.; Efremenko, Y. V.; Engelmore, T.; Enokizono, A.; Esumi, S.; Eyser, K. O.; Fadem, B.; Feege, N.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fukao, Y.; Fusayasu, T.; Gainey, K.; Gal, C.; Gallus, P.; Garg, P.; Garishvili, A.; Garishvili, I.; Ge, H.; Giordano, F.; Glenn, A.; Gong, X.; Gonin, M.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Gu, Y.; Gunji, T.; Hachiya, T.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamilton, H. F.; Han, S. Y.; Hanks, J.; Hasegawa, S.; Haseler, T. O. S.; Hashimoto, K.; Hayano, R.; Hayashi, S.; He, X.; Hemmick, T. K.; Hester, T.; Hill, J. C.; Hollis, R. S.; Homma, K.; Hong, B.; Horaguchi, T.; Hoshino, T.; Hotvedt, N.; Huang, J.; Huang, S.; Ichihara, T.; Iinuma, H.; Ikeda, Y.; Imai, K.; Imazu, Y.; Imrek, J.; Inaba, M.; Iordanova, A.; Isenhower, D.; Isinhue, A.; Ivanishchev, D.; Jacak, B. V.; Javani, M.; Jezghani, M.; Jia, J.; Jiang, X.; Johnson, B. M.; Joo, K. S.; Jouan, D.; Jumper, D. S.; Kamin, J.; Kanda, S.; Kang, B. H.; Kang, J. H.; Kang, J. S.; Kapustinsky, J.; Karatsu, K.; Kawall, D.; Kazantsev, A. V.; Kempel, T.; Key, J. A.; Khachatryan, V.; Khandai, P. K.; Khanzadeev, A.; Kijima, K. M.; Kim, B. I.; Kim, C.; Kim, D. J.; Kim, E.-J.; Kim, G. W.; Kim, M.; Kim, Y.-J.; Kim, Y. K.; Kimelman, B.; Kinney, E.; Kistenev, E.; Kitamura, R.; Klatsky, J.; Kleinjan, D.; Kline, P.; Koblesky, T.; Komkov, B.; Koster, J.; Kotchetkov, D.; Kotov, D.; Krizek, F.; Kurita, K.; Kurosawa, M.; Kwon, Y.; Kyle, G. S.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Lebedev, A.; Lee, D. M.; Lee, J.; Lee, K. B.; Lee, K. S.; Lee, S.; Lee, S. H.; Lee, S. R.; Leitch, M. J.; Leite, M. A. L.; Leitgab, M.; Lewis, B.; Li, X.; Lim, S. H.; Linden Levy, L. A.; Liu, M. X.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Makek, M.; Manion, A.; Manko, V. I.; Mannel, E.; Maruyama, T.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Meles, A.; Mendoza, M.; Meredith, B.; Miake, Y.; Mibe, T.; Midori, J.; Mignerey, A. C.; Milov, A.; Mishra, D. K.; Mitchell, J. T.; Miyasaka, S.; Mizuno, S.; Mohanty, A. K.; Mohapatra, S.; Montuenga, P.; Moon, H. J.; Moon, T.; Morrison, D. P.; Moskowitz, M.; Moukhanova, T. V.; Murakami, T.; Murata, J.; Mwai, A.; Nagae, T.; Nagamiya, S.; Nagashima, K.; Nagle, J. L.; Nagy, M. I.; Nakagawa, I.; Nakagomi, H.; Nakamiya, Y.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Nattrass, C.; Netrakanti, P. K.; Nihashi, M.; Niida, T.; Nishimura, S.; Nouicer, R.; Novák, T.; Novitzky, N.; Nukariya, A.; Nyanin, A. S.; Obayashi, H.; O'Brien, E.; Ogilvie, C. A.; Okada, K.; Orjuela Koop, J. D.; Osborn, J. D.; Oskarsson, A.; Ozawa, K.; Pak, R.; Pantuev, V.; Papavassiliou, V.; Park, I. H.; Park, J. S.; Park, S.; Park, S. K.; Pate, S. F.; Patel, L.; Patel, M.; Pei, H.; Peng, J.-C.; Perepelitsa, D. V.; Perera, G. D. N.; Peressounko, D. Yu.; Perry, J.; Petti, R.; Pinkenburg, C.; Pinson, R.; Pisani, R. P.; Purschke, M. L.; Qu, H.; Rak, J.; Ramson, B. J.; Ravinovich, I.; Read, K. F.; Reynolds, D.; Riabov, V.; Riabov, Y.; Richardson, E.; Rinn, T.; Riveli, N.; Roach, D.; Roche, G.; Rolnick, S. D.; Rosati, M.; Rowan, Z.; Rubin, J. G.; Ryu, M. S.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sako, H.; Samsonov, V.; Sarsour, M.; Sato, S.; Sawada, S.; Schaefer, B.; Schmoll, B. K.; Sedgwick, K.; Seidl, R.; Sen, A.; Seto, R.; Sett, P.; Sexton, A.; Sharma, D.; Shein, I.; Shibata, T.-A.; Shigaki, K.; Shimomura, M.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Sim, K. S.; Singh, B. K.; Singh, C. P.; Singh, V.; Skolnik, M.; Slunečka, M.; Snowball, M.; Solano, S.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Stankus, P. W.; Steinberg, P.; Stenlund, E.

    2016-03-01

    The PHENIX Collaboration at the Relativistic Heavy Ion Collider has measured open heavy flavor production in minimum bias Au +Au collisions at √{sN N}=200 GeV via the yields of electrons from semileptonic decays of charm and bottom hadrons. Previous heavy flavor electron measurements indicated substantial modification in the momentum distribution of the parent heavy quarks owing to the quark-gluon plasma created in these collisions. For the first time, using the PHENIX silicon vertex detector to measure precision displaced tracking, the relative contributions from charm and bottom hadrons to these electrons as a function of transverse momentum are measured in Au +Au collisions. We compare the fraction of electrons from bottom hadrons to previously published results extracted from electron-hadron correlations in p +p collisions at √{sN N}=200 GeV and find the fractions to be similar within the large uncertainties on both measurements for pT>4 GeV/c . We use the bottom electron fractions in Au +Au and p +p along with the previously measured heavy flavor electron RA A to calculate the RA A for electrons from charm and bottom hadron decays separately. We find that electrons from bottom hadron decays are less suppressed than those from charm for the region 3

  8. Single electron yields from semileptonic charm and bottom hadron decays in Au+Au collisions at sNN=200 GeV

    DOE PAGES

    Adare, A.; Aidala, C.; Ajitanand, N. N.; ...

    2016-03-07

    We measured open heavy flavor production in minimum bias Au + Au collisions at √s(NN) = 200 GeV via the yields of electrons from semileptonic decays of charm and bottom hadrons, using the PHENIX Collaboration at the Relativistic Heavy Ion Collider. In the past, heavy flavor electron measurements indicated substantial modification in the momentum distribution of the parent heavy quarks owing to the quark-gluon plasma created in these collisions. For the first time, using the PHENIX silicon vertex detector to measure precision displaced tracking, the relative contributions from charm and bottom hadrons to these electrons as a function of transversemore » momentum are measured in Au + Au collisions. Here, we compare the fraction of electrons from bottom hadrons to previously published results extracted from electron-hadron correlations in p + p collisions at √s(NN) = 200 GeV and find the fractions to be similar within the large uncertainties on both measurements for p(T) > 4 GeV/c. We use the bottom electron fractions in Au + Au and p + p along with the previously measured heavy flavor electron R(AA) to calculate the R(AA) for electrons from charm and bottom hadron decays separately. Finally, we find that electrons from bottom hadron decays are less suppressed than those from charm for the region 3 < p(T) < 4 GeV/c.« less

  9. Strangeness at high temperatures: from hadrons to quarks.

    PubMed

    Bazavov, A; Ding, H-T; Hegde, P; Kaczmarek, O; Karsch, F; Laermann, E; Maezawa, Y; Mukherjee, Swagato; Ohno, H; Petreczky, P; Schmidt, C; Sharma, S; Soeldner, W; Wagner, M

    2013-08-23

    Appropriate combinations of up to fourth order cumulants of net strangeness fluctuations and their correlations with net baryon number and electric charge fluctuations, obtained from lattice QCD calculations, have been used to probe the strangeness carrying degrees of freedom at high temperatures. For temperatures up to the chiral crossover, separate contributions of strange mesons and baryons can be well described by an uncorrelated gas of hadrons. Such a description breaks down in the chiral crossover region, suggesting that the deconfinement of strangeness takes place at the chiral crossover. On the other hand, the strangeness carrying degrees of freedom inside the quark gluon plasma can be described by a weakly interacting gas of quarks only for temperatures larger than twice the chiral crossover temperature. In the intermediate temperature window, these observables show considerably richer structures, indicative of the strongly interacting nature of the quark gluon plasma.

  10. Exotic hadrons in the constituent quark model.

    SciTech Connect

    Lipkin, H. J.; High Energy Physics; Weizmann Institute of Science; Tel Aviv Univ.

    2007-01-01

    Exotic hadrons are important because their existence or absence can provide important clues to understanding how QCD makes hadrons from quarks and gluons. The first experimentally confirmed exotic will be the first hadron containing both qq and {bar q}q pairs and the first hadron containing color sextet and color octet pairs. Theoretical models are not very useful because there is no accepted model for multiquark systems with color-space correlations. The constituent quark model is the only phenomenological model with predictive power that has given experimentally tested universal predictions for both mesons and baryons. This paper reviews its explanation for why there are no bound exotics and its guidance to the search for heavy-flavored exotic tetraquarks and pentaquarks. A possible supersymmetry between mesons and baryons leading to meson-baryon mass relations not easily obtained otherwise is discussed.

  11. Hadronic and nuclear phenomena in quantum chromodynamics

    SciTech Connect

    Brodsky, S.J.

    1987-06-01

    Many of the key issues in understanding quantum chromodynamics involves processes at intermediate energies. We discuss a range of hadronic and nuclear phenomena - exclusive processes, color transparency, hidden color degrees of freedom in nuclei, reduced nuclear amplitudes, jet coalescence, formation zone effects, hadron helicity selection rules, spin correlations, higher twist effects, and nuclear diffraction - as tools for probing hadron structure and the propagation of quark and gluon jets in nuclei. Many of these processes can be studied in electroproduction, utilizing internal targets in storage rings. We also review several areas where there has been significant theoretical progress in determining the form of hadron and nuclear wavefunctions, including QCD sum rules, lattice gauge theory, and discretized light-cone quantization. 98 refs., 40 figs., 2 tabs.

  12. Hadron spectroscopy and B physics at RHIC

    SciTech Connect

    Chung, S.U.; Weygand, D.P.; Willutzki, H.J.

    1991-11-01

    A description is given of the physics opportunities at RHIC regarding quark-gluon spectroscopy. The basic idea is to isolate with appropriate triggers the sub-processes pomeron + pomeron {yields} hadrons and {gamma}{sup *} + {gamma}{sup *} {yields} hadrons with the net effective mass of hadrons in the range of 1.0 to 10.0 GeV, in order to study the hadronic states composed of quarks and gluons. The double-pomeron interactions are expected to produce glueballs and hybrids preferentially, while the two-offshell-photon initial states should couple predominantly to quarkonia and multiquark states. Of particular interest is the possibility of carrying out a CP-violation study in the self-tagging B decays, B{sub d}{sup 0} {yields} K{sup +}{pi}{sup {minus}} and {bar B}{sub d}{sup 0} {yields} K{sup {minus}}{pi}{sup +}. 20 refs., 4 figs.

  13. J/ ψ-hadron correlations at STAR

    NASA Astrophysics Data System (ADS)

    Kikoła, Daniel

    2011-05-01

    Despite over 30 years of theoretical studies of quarkonia production, the consistent description of J/ ψ production mechanism is still missing. At RHIC energies, the main difficulty is the separation of different contributions to the inclusive J/ ψ yield, which are direct production, feed-down from excited charmonium states and b-hadron decays. The information about production rates for these processes is also crucial to understand J/ ψ in-medium interaction which has been an active field of research for the last 20 years. In this article we discuss the recent results of J/ ψ-hadron correlation reported by the STAR collaboration. This measurement was used to constrain the contribution from b-hadron decays to inclusive J/ ψ yield at high transverse momentum. We also discuss prospects for using quarkonia-hadron correlation to study quarkonia direct production.

  14. The CMS central hadron calorimeter: Update

    SciTech Connect

    Freeman, J.

    1998-06-01

    The CMS central hadron calorimeter is a brass absorber/ scintillator sampling structure. We describe details of the mechanical and optical structure. We also discuss calibration techniques, and finally the anticipated construction schedule.

  15. Transition in the Equilibrium Distribution Function of Relativistic Particles

    PubMed Central

    Mendoza, M.; Araújo, N. A. M.; Succi, S.; Herrmann, H. J.

    2012-01-01

    We analyze a transition from single peaked to bimodal velocity distribution in a relativistic fluid under increasing temperature, in contrast with a non-relativistic gas, where only a monotonic broadening of the bell-shaped distribution is observed. Such transition results from the interplay between the raise in thermal energy and the constraint of maximum velocity imposed by the speed of light. We study the Bose-Einstein, the Fermi-Dirac, and the Maxwell-Jüttner distributions, and show that they all exhibit the same qualitative behavior. We characterize the nature of the transition in the framework of critical phenomena and show that it is either continuous or discontinuous, depending on the group velocity. We analyze the transition in one, two, and three dimensions, with special emphasis on twodimensions, for which a possible experiment in graphene, based on the measurement of the Johnson-Nyquist noise, is proposed. PMID:22937220

  16. Relativistic jet feedback in high-redshift galaxies - I. Dynamics

    NASA Astrophysics Data System (ADS)

    Mukherjee, Dipanjan; Bicknell, Geoffrey V.; Sutherland, Ralph; Wagner, Alex

    2016-09-01

    We present the results of 3D relativistic hydrodynamic simulations of interaction of active galactic nucleus jets with a dense turbulent two-phase interstellar medium, which would be typical of high-redshift galaxies. We describe the effect of the jet on the evolution of the density of the turbulent interstellar medium (ISM). The jet-driven energy bubble affects the gas to distances up to several kiloparsecs from the injection region. The shocks resulting from such interactions create a multiphase ISM and radial outflows. One of the striking result of this work is that low-power jets (Pjet ≲ 1043 ergs-1), although less efficient in accelerating clouds, are trapped in the ISM for a longer time and hence affect the ISM over a larger volume. Jets of higher power drill through with relative ease. Although the relativistic jets launch strong outflows, there is little net mass ejection to very large distances, supporting a galactic fountain scenario for local feedback.

  17. Angular dependence of Wigner time delay: Relativistic Effects

    NASA Astrophysics Data System (ADS)

    Mandal, A.; Deshmukh, P. C.; Manson, S. T.; Kkeifets, A. S.

    2016-05-01

    Laser assisted photoionization time delay mainly consists of two parts: Wigner time delay, and time delay in continuum-continuum transition. Wigner time delay results from the energy derivative of the phase of the photoionization amplitude (matrix element). In general, the photoionization time delay is not the same in all directions relative to the incident photon polarization, although when a single transition dominates the amplitude, the resultant time delay is essentially isotropic. The relativistic-random-phase approximation is employed to determine the Wigner time delay in photoionization from the outer np subshells of the noble gas atoms, Ne through Xe. The time delay is found to significantly depend on angle, as well as energy. The angular dependence of the time delay is found to be quite sensitive to atomic dynamics and relativistic effects, and exhibit strong energy and angular variation in the neighborhood of Cooper minima. Work supported by DOE, Office of Chemical Sciences and DST (India).

  18. On wave stability in relativistic cosmic-ray hydrodynamics

    NASA Technical Reports Server (NTRS)

    Webb, G. M.

    1989-01-01

    Wave stability of a two-fluid hydrodynamical model describing the acceleration of cosmic rays by the first-order Fermi mechanism in relativistic, cosmic-ray-modified shocks is investigated. For a uniform background state, the short- and long-wavelength wave speeds are shown to interlace, thus assuring wave stability in this case. A JWKB analysis is performed to investigate the stability of short-wavelength thermal gas sound waves in the smooth, decelerating supersonic flow upstream of a relativistic, cosmic-ray-modified shock. The stability of the waves is assessed both in terms of the fluid velocity and density perturbations, as well as in terms of the wave action. The stability and interaction of the short-wavelength cosmic-ray coherent mode with the background flow is also studied.

  19. Hadrons and Quark-Gluon Plasma

    NASA Astrophysics Data System (ADS)

    Letessier, Jean; Rafelski, Johann

    2002-06-01

    Before matter as we know it emerged, the universe was filled with the primordial state of hadronic matter called quark gluon plasma. This hot soup of quarks and gluon is effectively an inescapable consequence of our current knowledge about the fundamental hadronic interactions, quantum chromodynamics. This book covers the ongoing search to verify this prediction experimentally and discusses the physical properties of this novel form of matter.

  20. Hadron formation from interaction among quarks

    NASA Astrophysics Data System (ADS)

    Tan, Z. G.; Yang, C. B.

    2015-06-01

    This paper deals with the hadronization process of quark system. A phenomenological potential is introduced to describe the interaction between a quark pair. The potential depends on the color charge of those quarks and their relative distances. Those quarks move according to classical equations of motion. Due to the color interaction, coloring quarks are separated to form color neutral clusters which are supposed to be the hadrons.