Science.gov

Sample records for relativistic particle-in-cell simulation

  1. Relativistic Particle-In-Cell Simulations of Particle Accleration in Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Hardee, P.; Mizuno, Y.; Medvedev, M.; Hartmann, D. H.; Fishman, J. F.

    2008-01-01

    Highly accelerated particles are observed in astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), microquasars, and Gamma-Ray Bursts (GRBs). Particle-In-Cell (PIC) simulations of relativistic electron-ion and electron-positron jets injected into a stationary medium show that efficient acceleration occurs downstream in the jet. In collisionless relativistic shocks particle acceleration is due to plasma waves and their associated instabilities, e.g., the Buneman instability, other two-stream instabilities, and the Weibel (filamentation) instability. Simulations show that the Weibel instability is responsible for generating and amplifying highly non-uniform, small-scale magnetic fields. The instability depends on strength and direction of the magnetic field. Particles in relativistic jets may be accelerated in a complicated dynamics of relativistic jets with magnetic field. We present results of our recent PIC simulations.

  2. The scaling of relativistic double-year widths - Poisson-Vlasov solutions and particle-in-cell simulations

    NASA Technical Reports Server (NTRS)

    Sulkanen, Martin E.; Borovsky, Joseph E.

    1992-01-01

    The study of relativistic plasma double layers is described through the solution of the one-dimensional, unmagnetized, steady-state Poisson-Vlasov equations and by means of one-dimensional, unmagnetized, particle-in-cell simulations. The thickness vs potential-drop scaling law is extended to relativistic potential drops and relativistic plasma temperatures. The transition in the scaling law for 'strong' double layers suggested by analytical two-beam models by Carlqvist (1982) is confirmed, and causality problems of standard double-layer simulation techniques applied to relativistic plasma systems are discussed.

  3. Particle-in-cell simulation of two-dimensional electron velocity shear driven instability in relativistic domain

    NASA Astrophysics Data System (ADS)

    Shukla, Chandrasekhar; Das, Amita; Patel, Kartik

    2016-08-01

    We carry out particle-in-cell simulations to study the instabilities associated with a 2-D sheared electron flow configuration against a neutralizing background of ions. Both weak and strong relativistic flow velocities are considered. In the weakly relativistic case, we observe the development of electromagnetic Kelvin-Helmholtz instability with similar characteristics as that predicted by the electron Magnetohydrodynamic (EMHD) model. On the contrary, in a strong relativistic case, the compressibility effects of electron fluid dominate and introduce upper hybrid electrostatic oscillations transverse to the flow which are very distinct from EMHD fluid behavior. In the nonlinear regime, both weak and strong relativistic cases lead to turbulence with broad power law spectrum.

  4. Propagation of localized structures in relativistic magnetized electron-positron plasmas using particle-in-cell simulations

    SciTech Connect

    López, Rodrigo A.; Muñoz, Víctor; Viñas, Adolfo F.; Valdivia, Juan A.

    2015-09-15

    We use a particle-in-cell simulation to study the propagation of localized structures in a magnetized electron-positron plasma with relativistic finite temperature. We use as initial condition for the simulation an envelope soliton solution of the nonlinear Schrödinger equation, derived from the relativistic two fluid equations in the strongly magnetized limit. This envelope soliton turns out not to be a stable solution for the simulation and splits in two localized structures propagating in opposite directions. However, these two localized structures exhibit a soliton-like behavior, as they keep their profile after they collide with each other due to the periodic boundary conditions. We also observe the formation of localized structures in the evolution of a spatially uniform circularly polarized Alfvén wave. In both cases, the localized structures propagate with an amplitude independent velocity.

  5. Relativistic Particle-In-Cell Simulation Studies of Prompt and Early Afterglows from GRBs

    NASA Technical Reports Server (NTRS)

    Nishikawa, Ken-Ichi; Hardee, Philip; Mizuno, Yosuke; Fishman, Gerald

    2008-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., gamma-ray bursts (GRBs), active galactic nuclei (AGNs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations of relativistic electron-ion (electro-positron) jets injected into a stationary medium show that particle acceleration occurs within the downstream jet. In the collisionless relativistic shock particle acceleration is due to plasma waves and their associated instabilities {e.g., the Weibel (filamentation) instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.-/

  6. New Relativistic Particle-In-Cell Simulation Studies of Prompt and Early Afterglows from GRBs

    NASA Technical Reports Server (NTRS)

    Nishikawa, Ken-ichi; Hardee, P.; Mizuno, Y.; Zhang, B.; Medvedev, M.; Hartmann, D.; Fishman, J. F.; Preece, R.

    2008-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., gamma-ray bursts (GRBs), active galactic nuclei (AGNs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations of relativistic electron-ion (electro-positron) jets injected into a stationary medium show that particle acceleration occurs within the downstream jet. In the collisionless relativistic shock particle acceleration is due to plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel (filamentation) instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The 'jitter' radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  7. Relativistic Particle-in-Cell Simulation Studies of Prompt and Early Afterglows Observed by GLAST

    NASA Technical Reports Server (NTRS)

    Mizuno, Y.; Nishikawa, K.-I.; Hardee, P.; Fishman, G. J.; Preece, R.

    2007-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., gamma-ray bursts (GRBs), active galactic nuclei (AGNs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets show that acceleration occurs within the downstream jet. Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "'jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  8. Investigation of Rising-Sun Magnetrons Operated at Relativistic Voltages Using Three Dimensional Particle-in-Cell Simulations

    SciTech Connect

    Lemke, R.W.; Genoni, T.C.; Spencer, T.A.

    1999-08-02

    This work is an attempt to elucidate effects that may limit efficiency in magnetrons operated at relativistic voltages (V {approximately} 500 kV). Three-dimensional particle-in-cell simulation is used to investigate the behavior of 14 and 22 cavity, cylindrical, rising-sun magnetrons. Power is extracted radially through a single iris located at the end of every other cavity. Numerical results show that in general output power and efficiency increase approximately linearly with increasing iris width (decreasing vacuum Q) until the total Q becomes too low for stable oscillation in the n-mode to be maintained. Beyond this point mode competition and/or switching occur and efficiency decreases. Results reveal that the minimum value of Q (maximum efficiency) that can be achieved prior to the onset of mode competition is significantly affected by the magnitude of the 0-space-harmonic of the {pi}-mode, a unique characteristic of rising-suns, and by the magnitude of the electron current density (space-charge effects). By minimizing these effects, up to 3.7 GW output power has been produced at an efficiency of 40%.

  9. Particle-in-cell simulation study of the interaction between a relativistically moving leptonic micro-cloud and ambient electrons

    NASA Astrophysics Data System (ADS)

    Dieckmann, M. E.; Sarri, G.; Markoff, S.; Borghesi, M.; Zepf, M.

    2015-05-01

    Context. The jets of compact accreting objects are composed of electrons and a mixture of positrons and ions. These outflows impinge on the interstellar or intergalactic medium and both plasmas interact via collisionless processes. Filamentation (beam-Weibel) instabilities give rise to the growth of strong electromagnetic fields. These fields thermalize the interpenetrating plasmas. Aims: Hitherto, the effects imposed by a spatial non-uniformity on filamentation instabilities have remained unexplored. We examine the interaction between spatially uniform background electrons and a minuscule cloud of electrons and positrons. The cloud size is comparable to that created in recent laboratory experiments and such clouds may exist close to internal and external shocks of leptonic jets. The purpose of our study is to determine the prevalent instabilities, their ability to generate electromagnetic fields and the mechanism, by which the lepton micro-cloud transfers energy to the background plasma. Methods: A square micro-cloud of equally dense electrons and positrons impinges in our particle-in-cell (PIC) simulation on a spatially uniform plasma at rest. The latter consists of electrons with a temperature of 1 keV and immobile ions. The initially charge- and current neutral micro-cloud has a temperature of 100 keV and a side length of 2.5 plasma skin depths of the micro-cloud. The side length is given in the reference frame of the background plasma. The mean speed of the micro-cloud corresponds to a relativistic factor of 15, which is relevant for laboratory experiments and for relativistic astrophysical outflows. The spatial distributions of the leptons and of the electromagnetic fields are examined at several times. Results: A filamentation instability develops between the magnetic field carried by the micro-cloud and the background electrons. The electromagnetic fields, which grow from noise levels, redistribute the electrons and positrons within the cloud, which boosts

  10. Particle-in-cell simulation for parametric decays of a circularly polarized Alfvén wave in relativistic thermal electron-positron plasma

    SciTech Connect

    López, Rodrigo A. Muñoz, Víctor; Viñas, Adolfo F.; Alejandro Valdivia, J.

    2014-03-15

    Parametric decays of a left-handed circularly polarized Alfvén wave propagating along a constant background magnetic field in a relativistic thermal electron-positron plasma are studied by means of a one dimensional relativistic particle-in-cell simulation. Relativistic effects are included in the Lorentz equation for the momentum of the particles and in their thermal motion, by considering a Maxwell-Jüttner velocity distribution function for the initial condition. In the linear stage of the simulation, we find many instabilities that match the predictions of relativistic fluid theory. In general, the growth rates of the instabilities increase as the pump wave amplitude is increased, and decrease with a raise in the plasma temperatures. We have confirmed that for very high temperatures the Alfvén branch is suppressed, consistent with analytical calculations.

  11. Investigation of the operating characteristics of a 12 stepped-cavity relativistic magnetron with axial extraction driven by an "F" transparent cathode using particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Liu, M.; Schamiloglu, E.; Jiang, W.; Fuks, M.; Liu, C.

    2016-11-01

    We explore the performance of a 12 stepped-cavity relativistic magnetron with axial extraction (12 stepped-cavity RMDO) driven by an "F" transparent cathode (the "F" transparent cathode is a coaxial transparent cathode with two azimuthal periods of increased thickness and which looks like the letter "F," so we call it "F" transparent cathode) through particle-in-cell (PIC) simulations. It is shown that using the "F" transparent cathode, an electronic efficiency of 70% with gigawatt output power is obtained while reducing the axial leakage current by about 50% compared to using the usual transparent cathode. Further PIC simulations demonstrate that frequency bifurcation occurs and mode switching can be achieved using several hundred kilowatts input RF power in the 12 stepped-cavity RMDO driven by an "F" transparent cathode. For example, it was found that using an applied driver power of 180 kW for 10 ns, the operating TE31 mode can be switched to the TE41 mode. It is also found that the secondary electron and backscattered electron emission and axial leakage current were two disturbing factors for the 12 stepped-cavity RMDO when it works at a stable operation mode but when the 12 stepped-cavity RMDO works near the critical magnetic field at the boundary between two modes, these two factors would lead to the operation modes changing.

  12. A study of the early-stage evolution of relativistic electron-ion shock using three-dimensional particle-in-cell simulations

    SciTech Connect

    Choi, E. J.; Min, K.; Choi, C. R.; Nishikawa, K.-I.

    2014-07-15

    We report the results of a 3D particle-in-cell simulation carried out to study the early-stage evolution of the shock formed when an unmagnetized relativistic jet interacts with an ambient electron-ion plasma. Full-shock structures associated with the interaction are observed in the ambient frame. When open boundaries are employed in the direction of the jet, the forward shock is seen as a hybrid structure consisting of an electrostatic shock combined with a double layer, while the reverse shock is seen as a double layer. The ambient ions show two distinct features across the forward shock: a population penetrating into the shocked region from the precursor region and an accelerated population escaping from the shocked region into the precursor region. This behavior is a signature of a combination of an electrostatic shock and a double layer. Jet electrons are seen to be electrostatically trapped between the forward and reverse shock structures showing a ring-like distribution in a phase-space plot, while ambient electrons are thermalized and become essentially isotropic in the shocked region. The magnetic energy density grows to a few percent of the jet kinetic energy density at both the forward and the reverse shock transition layers in a rather short time scale. We see little disturbance of the jet ions over this time scale.

  13. Development of a relativistic Particle In Cell code PARTDYN for linear accelerator beam transport

    NASA Astrophysics Data System (ADS)

    Phadte, D.; Patidar, C. B.; Pal, M. K.

    2017-04-01

    A relativistic Particle In Cell (PIC) code PARTDYN is developed for the beam dynamics simulation of z-continuous and bunched beams. The code is implemented in MATLAB using its MEX functionality which allows both ease of development as well higher performance similar to a compiled language like C. The beam dynamics calculations carried out by the code are compared with analytical results and with other well developed codes like PARMELA and BEAMPATH. The effect of finite number of simulation particles on the emittance growth of intense beams has been studied. Corrections to the RF cavity field expressions were incorporated in the code so that the fields could be calculated correctly. The deviations of the beam dynamics results between PARTDYN and BEAMPATH for a cavity driven in zero-mode have been discussed. The beam dynamics studies of the Low Energy Beam Transport (LEBT) using PARTDYN have been presented.

  14. Modeling of relativistic plasmas with the Particle-In-Cell method

    NASA Astrophysics Data System (ADS)

    Vay, Jean-Luc; Godfrey, Brendan B.

    2014-10-01

    Standard methods employed in relativistic electromagnetic Particle-In-Cell codes are reviewed, as well as novel techniques that were introduced recently. Advances in the analysis and mitigation of the numerical Cherenkov instability are also presented with comparison between analytical theory and numerical experiments. The algorithmic and numerical analytic advances are expanding the range of applicability of the method in the ultra-relativistic regime in particular, where the numerical Cherenkov instability is the strongest without corrective measures.

  15. Multigrid Particle-in-cell Simulations of Plasma Microturbulence

    SciTech Connect

    J.L.V. Lewandowski

    2003-06-17

    A new scheme to accurately retain kinetic electron effects in particle-in-cell (PIC) simulations for the case of electrostatic drift waves is presented. The splitting scheme, which is based on exact separation between adiabatic and on adiabatic electron responses, is shown to yield more accurate linear growth rates than the standard df scheme. The linear and nonlinear elliptic problems that arise in the splitting scheme are solved using a multi-grid solver. The multi-grid particle-in-cell approach offers an attractive path, both from the physics and numerical points of view, to simulate kinetic electron dynamics in global toroidal plasmas.

  16. Concurrent Algorithm For Particle-In-Cell Simulations

    NASA Technical Reports Server (NTRS)

    Liewer, Paulett C.; Decyk, Viktor K.

    1990-01-01

    Separate decompositions used for particle-motion and field calculations. General Concurrent Particle-in-Cell (GCPIC) algorithm used to implement motions of individual plasma particles (ions and electrons) under influence of particle-in-cell (PIC) computer codes on concurrent processors. Simulates motions of individual plasma particles under influence of electromagnetic fields generated by particles themselves. Performed to study variety of nonlinear problems in plasma physics, including magnetic and inertial fusion, plasmas in outer space, propagation of electron and ion beams, free-electron lasers, and particle accelerators.

  17. Particle-in-cell simulations of plasma accelerators and electron-neutral collisions

    SciTech Connect

    Bruhwiler, David L.; Giacone, Rodolfo E.; Cary, John R.; Verboncoeur, John P.; Mardahl, Peter; Esarey, Eric; Leemans, W.P.; Shadwick, B.A.

    2001-10-01

    We present 2-D simulations of both beam-driven and laser-driven plasma wakefield accelerators, using the object-oriented particle-in-cell code XOOPIC, which is time explicit, fully electromagnetic, and capable of running on massively parallel supercomputers. Simulations of laser-driven wakefields with low ({approx}10{sup 16} W/cm{sup 2}) and high ({approx}10{sup 18} W/cm{sup 2}) peak intensity laser pulses are conducted in slab geometry, showing agreement with theory and fluid simulations. Simulations of the E-157 beam wakefield experiment at the Stanford Linear Accelerator Center, in which a 30 GeV electron beam passes through 1 m of preionized lithium plasma, are conducted in cylindrical geometry, obtaining good agreement with previous work. We briefly describe some of the more significant modifications of XOOPIC required by this work, and summarize the issues relevant to modeling relativistic electron-neutral collisions in a particle-in-cell code.

  18. Enhanced stopping of macro-particles in particle-in-cell simulations

    SciTech Connect

    May, J.; Tonge, J.; Ellis, I.; Mori, W. B.; Fiuza, F.; Fonseca, R. A.; Silva, L. O.

    2014-05-15

    We derive an equation for energy transfer from relativistic charged particles to a cold background plasma appropriate for finite-size particles that are used in particle-in-cell simulation codes. Expressions for one-, two-, and three-dimensional particles are presented, with special attention given to the two-dimensional case. This energy transfer is due to the electric field of the wake set up in the background plasma by the relativistic particle. The enhanced stopping is dependent on the q{sup 2}/m, where q is the charge and m is the mass of the relativistic particle, and therefore simulation macro-particles with large charge but identical q/m will stop more rapidly. The stopping power also depends on the effective particle shape of the macro-particle. These conclusions are verified in particle-in-cell simulations. We present 2D simulations of test particles, relaxation of high-energy tails, and integrated fast ignition simulations showing that the enhanced drag on macro-particles may adversely affect the results of these simulations in a wide range of high-energy density plasma scenarios. We also describe a particle splitting algorithm which can potentially overcome this problem and show its effect in controlling the stopping of macro-particles.

  19. Optimized Loading for Particle-in-cell Gyrokinetic Simulations

    SciTech Connect

    J.L.V. Lewandowski

    2004-05-13

    The problem of particle loading in particle-in-cell gyrokinetic simulations is addressed using a quadratic optimization algorithm. Optimized loading in configuration space dramatically reduces the short wavelength modes in the electrostatic potential that are partly responsible for the non-conservation of total energy; further, the long wavelength modes are resolved with good accuracy. As a result, the conservation of energy for the optimized loading is much better that the conservation of energy for the random loading. The method is valid for any geometry and can be coupled to optimization algorithms in velocity space.

  20. Accelerating particle-in-cell simulations using multilevel Monte Carlo

    NASA Astrophysics Data System (ADS)

    Ricketson, Lee

    2015-11-01

    Particle-in-cell (PIC) simulations have been an important tool in understanding plasmas since the dawn of the digital computer. Much more recently, the multilevel Monte Carlo (MLMC) method has accelerated particle-based simulations of a variety of systems described by stochastic differential equations (SDEs), from financial portfolios to porous media flow. The fundamental idea of MLMC is to perform correlated particle simulations using a hierarchy of different time steps, and to use these correlations for variance reduction on the fine-step result. This framework is directly applicable to the Langevin formulation of Coulomb collisions, as demonstrated in previous work, but in order to apply to PIC simulations of realistic scenarios, MLMC must be generalized to incorporate self-consistent evolution of the electromagnetic fields. We present such a generalization, with rigorous results concerning its accuracy and efficiency. We present examples of the method in the collisionless, electrostatic context, and discuss applications and extensions for the future.

  1. AB INITIO PULSAR MAGNETOSPHERE: THREE-DIMENSIONAL PARTICLE-IN-CELL SIMULATIONS OF AXISYMMETRIC PULSARS

    SciTech Connect

    Philippov, Alexander A.; Spitkovsky, Anatoly

    2014-04-20

    We perform ''first-principles'' relativistic particle-in-cell simulations of aligned pulsar magnetosphere. We allow free escape of particles from the surface of a neutron star and continuously populate the magnetosphere with neutral pair plasma to imitate pair production. As pair plasma supply increases, we observe the transition from a charge-separated ''electrosphere'' solution with trapped plasma and no spin-down to a solution close to the ideal force-free magnetosphere with electromagnetically dominated pulsar wind. We calculate the magnetospheric structure, current distribution, and spin-down power of the neutron star. We also discuss particle acceleration in the equatorial current sheet.

  2. Particle-in-cell simulations on spontaneous thermal magnetic field fluctuations

    SciTech Connect

    Simões, F. J. R. Jr.; Pavan, J.; Gaelzer, R.; Ziebell, L. F.; Yoon, P. H.

    2013-10-15

    In this paper an electromagnetic particle code is used to investigate the spontaneous thermal emission. Specifically we perform particle-in-cell simulations employing a non-relativistic isotropic Maxwellian particle distribution to show that thermal fluctuations are related to the origin of spontaneous magnetic field fluctuation. These thermal fluctuations can become seed for further amplification mechanisms and thus be considered at the origin of the cosmological magnetic field, at microgauss levels. Our numerical results are in accordance with theoretical results presented in the literature.

  3. Fast electron energy deposition in a magnetized plasma: Kinetic theory and particle-in-cell simulation

    SciTech Connect

    Robiche, J.; Rax, J.-M.; Bonnaud, G.; Gremillet, L.

    2010-03-15

    The collisional dynamics of a relativistic electron jet in a magnetized plasma are investigated within the framework of kinetic theory. The relativistic Fokker-Planck equation describing slowing down, pitch angle scattering, and cyclotron rotation is derived and solved. Based on the solution of this Fokker-Planck equation, an analytical formula for the root mean square spot size transverse to the magnetic field is derived and this result predicts a reduction in radial transport. Some comparisons with particle-in-cell simulation are made and confirm striking agreement between the theory and the simulation. For fast electron with 1 MeV typical kinetic energy interacting with a solid density hydrogen plasma, the energy deposition density in the transverse direction increases by a factor 2 for magnetic field of the order of 1 T. Along the magnetic field, the energy deposition profile is unaltered compared with the field-free case.

  4. Particle-in-cell simulations of Hall plasma thrusters

    NASA Astrophysics Data System (ADS)

    Miranda, Rodrigo; Ferreira, Jose Leonardo; Martins, Alexandre

    2016-07-01

    Hall plasma thrusters can be modelled using particle-in-cell (PIC) simulations. In these simulations, the plasma is described by a set of equations which represent a coupled system of charged particles and electromagnetic fields. The fields are computed using a spatial grid (i.e., a discretization in space), whereas the particles can move continuously in space. Briefly, the particle and fields dynamics are computed as follows. First, forces due to electric and magnetic fields are employed to calculate the velocities and positions of particles. Next, the velocities and positions of particles are used to compute the charge and current densities at discrete positions in space. Finally, these densities are used to solve the electromagnetic field equations in the grid, which are interpolated at the position of the particles to obtain the acting forces, and restart this cycle. We will present numerical simulations using software for PIC simulations to study turbulence, wave and instabilities that arise in Hall plasma thrusters. We have sucessfully reproduced a numerical simulation of a SPT-100 Hall thruster using a two-dimensional (2D) model. In addition, we are developing a 2D model of a cylindrical Hall thruster. The results of these simulations will contribute to improve the performance of plasma thrusters to be used in Cubesats satellites currenty in development at the Plasma Laboratory at University of Brasília.

  5. Speed-limited particle-in-cell (SLPIC) simulation

    NASA Astrophysics Data System (ADS)

    Werner, Gregory; Cary, John; Jenkins, Thomas

    2016-10-01

    Speed-limited particle-in-cell (SLPIC) simulation is a new method for particle-based plasma simulation that allows increased timesteps in cases where the timestep is determined (e.g., in standard PIC) not by the smallest timescale of interest, but rather by an even smaller physical timescale that affects numerical stability. For example, SLPIC need not resolve the plasma frequency if plasma oscillations do not play a significant role in the simulation; in contrast, standard PIC must usually resolve the plasma frequency to avoid instability. Unlike fluid approaches, SLPIC retains a fully-kinetic description of plasma particles and includes all the same physical phenomena as PIC; in fact, if SLPIC is run with a PIC-compatible timestep, it is identical to PIC. However, unlike PIC, SLPIC can run stably with larger timesteps. SLPIC has been shown to be effective for finding steady-state solutions for 1D collisionless sheath problems, greatly speeding up computation despite a large ion/electron mass ratio. SLPIC is a relatively small modification of standard PIC, with no complexities that might degrade parallel efficiency (compared to PIC), and is similarly compatible with PIC field solvers and boundary conditions.

  6. Turbulence dissipation challenge: particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Roytershteyn, V.; Karimabadi, H.; Omelchenko, Y.; Germaschewski, K.

    2015-12-01

    We discuss application of three particle in cell (PIC) codes to the problems relevant to turbulence dissipation challenge. VPIC is a fully kinetic code extensively used to study a variety of diverse problems ranging from laboratory plasmas to astrophysics. PSC is a flexible fully kinetic code offering a variety of algorithms that can be advantageous to turbulence simulations, including high order particle shapes, dynamic load balancing, and ability to efficiently run on Graphics Processing Units (GPUs). Finally, HYPERS is a novel hybrid (kinetic ions+fluid electrons) code, which utilizes asynchronous time advance and a number of other advanced algorithms. We present examples drawn both from large-scale turbulence simulations and from the test problems outlined by the turbulence dissipation challenge. Special attention is paid to such issues as the small-scale intermittency of inertial range turbulence, mode content of the sub-proton range of scales, the formation of electron-scale current sheets and the role of magnetic reconnection, as well as numerical challenges of applying PIC codes to simulations of astrophysical turbulence.

  7. Particle in cell simulation of laser-accelerated proton beams for radiation therapy.

    PubMed

    Fourkal, E; Shahine, B; Ding, M; Li, J S; Tajima, T; Ma, C M

    2002-12-01

    In this article we present the results of particle in cell (PIC) simulations of laser plasma interaction for proton acceleration for radiation therapy treatments. We show that under optimal interaction conditions protons can be accelerated up to relativistic energies of 300 MeV by a petawatt laser field. The proton acceleration is due to the dragging Coulomb force arising from charge separation induced by the ponderomotive pressure (light pressure) of high-intensity laser. The proton energy and phase space distribution functions obtained from the PIC simulations are used in the calculations of dose distributions using the GEANT Monte Carlo simulation code. Because of the broad energy and angular spectra of the protons, a compact particle selection and beam collimation system will be needed to generate small beams of polyenergetic protons for intensity modulated proton therapy.

  8. Loading relativistic Maxwell distributions in particle simulations

    SciTech Connect

    Zenitani, Seiji

    2015-04-15

    Numerical algorithms to load relativistic Maxwell distributions in particle-in-cell (PIC) and Monte-Carlo simulations are presented. For stationary relativistic Maxwellian, the inverse transform method and the Sobol algorithm are reviewed. To boost particles to obtain relativistic shifted-Maxwellian, two rejection methods are proposed in a physically transparent manner. Their acceptance efficiencies are ≈50% for generic cases and 100% for symmetric distributions. They can be combined with arbitrary base algorithms.

  9. Low-noise Collision Operators for Particle-in-cell Simulations

    SciTech Connect

    J.L.V. Lewandowski

    2005-03-08

    A new method to implement low-noise collision operators in particle-in-cell simulations is presented. The method is based on the fact that relevant collision operators can be included naturally in the Lagrangian formulation that exemplifies the particle-in-cell simulation method. Numerical simulations show that the momentum and energy conservation properties of the simulated plasma associated with the low-noise collision operator are improved as compared with standard collision algorithms based on random numbers.

  10. Particle-in-cell simulations for virtual cathode oscillator including foil ablation effects

    SciTech Connect

    Singh, Gursharn; Chaturvedi, S.

    2011-06-15

    We have performed two- and three-dimensional, relativistic, electromagnetic, particle-in-cell simulations of an axially extracted virtual cathode oscillator (vircator). The simulations include, for the first time, self-consistent dynamics of the anode foil under the influence of the intense electron beam. This yields the variation of microwave output power as a function of time, including the role of anode ablation and anode-cathode gap closure. These simulations have been done using locally developed particle-in-cell (PIC) codes. The codes have been validated using two vircator designs available from the literature. The simulations reported in the present paper take account of foil ablation due to the intense electron flux, the resulting plasma expansion and shorting of the anode-cathode gap. The variation in anode transparency due to plasma formation is automatically taken into account. We find that damage is generally higher near the axis. Also, at all radial positions, there is little damage in the early stages, followed by a period of rapid erosion, followed in turn by low damage rates. A physical explanation has been given for these trends. As a result of gap closure due to plasma formation from the foil, the output microwave power initially increases, reaches a near-flat-top and then decreases steadily, reaching a minimum around 230 ns. This is consistent with a typical plasma expansion velocity of {approx}2 cm/{mu}s reported in the literature. We also find a significant variation in the dominant output frequency, from 6.3 to 7.6 GHz. This variation is small as long as the plasma density is small, up to {approx}40 ns. As the AK gap starts filling with plasma, there is a steady increase in this frequency.

  11. Loading relativistic Maxwell distributions in particle simulations

    NASA Astrophysics Data System (ADS)

    Zenitani, S.

    2015-12-01

    In order to study energetic plasma phenomena by using particle-in-cell (PIC) and Monte-Carlo simulations, we need to deal with relativistic velocity distributions in these simulations. However, numerical algorithms to deal with relativistic distributions are not well known. In this contribution, we overview basic algorithms to load relativistic Maxwell distributions in PIC and Monte-Carlo simulations. For stationary relativistic Maxwellian, the inverse transform method and the Sobol algorithm are reviewed. To boost particles to obtain relativistic shifted-Maxwellian, two rejection methods are newly proposed in a physically transparent manner. Their acceptance efficiencies are 􏰅50% for generic cases and 100% for symmetric distributions. They can be combined with arbitrary base algorithms.

  12. Elimination of numerical Cherenkov instability in flowing-plasma particle-in-cell simulations by using Galilean coordinates.

    PubMed

    Lehe, Remi; Kirchen, Manuel; Godfrey, Brendan B; Maier, Andreas R; Vay, Jean-Luc

    2016-11-01

    Particle-in-cell (PIC) simulations of relativistic flowing plasmas are of key interest to several fields of physics (including, e.g., laser-wakefield acceleration, when viewed in a Lorentz-boosted frame) but remain sometimes infeasible due to the well-known numerical Cherenkov instability (NCI). In this article, we show that, for a plasma drifting at a uniform relativistic velocity, the NCI can be eliminated by simply integrating the PIC equations in Galilean coordinates that follow the plasma (also sometimes known as comoving coordinates) within a spectral analytical framework. The elimination of the NCI is verified empirically and confirmed by a theoretical analysis of the instability. Moreover, it is shown that this method is applicable both to Cartesian geometry and to cylindrical geometry with azimuthal Fourier decomposition.

  13. Elimination of numerical Cherenkov instability in flowing-plasma particle-in-cell simulations by using Galilean coordinates

    NASA Astrophysics Data System (ADS)

    Lehe, Remi; Kirchen, Manuel; Godfrey, Brendan B.; Maier, Andreas R.; Vay, Jean-Luc

    2016-11-01

    Particle-in-cell (PIC) simulations of relativistic flowing plasmas are of key interest to several fields of physics (including, e.g., laser-wakefield acceleration, when viewed in a Lorentz-boosted frame) but remain sometimes infeasible due to the well-known numerical Cherenkov instability (NCI). In this article, we show that, for a plasma drifting at a uniform relativistic velocity, the NCI can be eliminated by simply integrating the PIC equations in Galilean coordinates that follow the plasma (also sometimes known as comoving coordinates) within a spectral analytical framework. The elimination of the NCI is verified empirically and confirmed by a theoretical analysis of the instability. Moreover, it is shown that this method is applicable both to Cartesian geometry and to cylindrical geometry with azimuthal Fourier decomposition.

  14. Particle-in-cell simulation of a Hall thruster

    NASA Astrophysics Data System (ADS)

    Liu, Hui; Wu, Boying; Yu, Daren; Cao, Yong; Duan, Ping

    2010-04-01

    Hall thrusters are widely used as space electric propulsion devices. Due to the complex plasma phenomenon and high computation cost, currently it is difficult to fully simulate the real physical process in Hall thrusters. Recently, Szabo and Taccogna have proposed two different methods to simplify and accelerate the simulation, respectively. In this paper, both these methods of acceleration are analysed and compared, and then a modified method of acceleration is proposed. In order to verify the modified method of acceleration, the influence of magnetic field gradient on plasma parameter distribution in the channel is simulated. The numerical results show that the magnetic field gradient can significantly alter the position of the ionization region and thruster performance.

  15. Particle-in-Cell simulation of energetic particles driven instabilities

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Parker, Scott E.; Lang, Jianying; Fu, Guoyong

    2009-11-01

    We present simulations of the evolution of energetic particles driven modes with the gyrokinetic turbulence code GEMfootnotetextY. Chen and S. E. Parker, J. Comp. Phys. 220, 839 (2007), except that kinetic electrons are replaced by a mass-less fluid model. PIC simulations of energetic particles use either the conventional full-f method or the δ method. The latter is adequate for low-amplitude fluctuation amplitudes. The collisional δ -methodfootnotetextY. Chen and R. White, Phys. Plasmas 4, 3591 (1997) is used to systematically account for collisions and particle source and sink. Steady state saturation amplitudes are benchmarked with predictions of analytic theory. We also employ full-f simulationsfootnotetextY. Todo et. al, Phys. Plasmas 10, 2888 (2003) to study bursty events in which the instabilities reach large amplitudes and cause macroscopic redistribution or loss of the particles. With full-f it is easy to retain all the nonlinear effects and treat accurately discontinuities in the distribution function at phase-space boundaries. Whereas the energetic particle current is neglegible in the Ampere's law in δ simulations, it is important in full-f simulations. Thermal ion kinetic effects are observed to be important.

  16. Particle-in-cell simulations of the relaxation of electron beams in inhomogeneous solar wind plasmas

    NASA Astrophysics Data System (ADS)

    Thurgood, Jonathan O.; Tsiklauri, David

    2016-12-01

    Previous theoretical considerations of electron beam relaxation in inhomogeneous plasmas have indicated that the effects of the irregular solar wind may account for the poor agreement of homogeneous modelling with the observations. Quasi-linear theory and Hamiltonian models based on Zakharov's equations have indicated that when the level of density fluctuations is above a given threshold, density irregularities act to de-resonate the beam-plasma interaction, restricting Langmuir wave growth on the expense of beam energy. This work presents the first fully kinetic particle-in-cell (PIC) simulations of beam relaxation under the influence of density irregularities. We aim to independently determine the influence of background inhomogeneity on the beam-plasma system, and to test theoretical predictions and alternative models using a fully kinetic treatment. We carry out one-dimensional (1-D) PIC simulations of a bump-on-tail unstable electron beam in the presence of increasing levels of background inhomogeneity using the fully electromagnetic, relativistic EPOCH PIC code. We find that in the case of homogeneous background plasma density, Langmuir wave packets are generated at the resonant condition and then quasi-linear relaxation leads to a dynamic increase of wavenumbers generated. No electron acceleration is seen - unlike in the inhomogeneous experiments, all of which produce high-energy electrons. For the inhomogeneous experiments we also observe the generation of backwards-propagating Langmuir waves, which is shown directly to be due to the refraction of the packets off the density gradients. In the case of higher-amplitude density fluctuations, similar features to the weaker cases are found, but also packets can also deviate from the expected dispersion curve in -space due to nonlinearity. Our fully kinetic PIC simulations broadly confirm the findings of quasi-linear theory and the Hamiltonian model based on Zakharov's equations. Strong density fluctuations

  17. Particle-in-cell Simulations of Stimulated Raman Scattering

    NASA Astrophysics Data System (ADS)

    Winjum, B. J.; Fahlen, J.; Tsung, F. S.; Mori, W. B.; Hinkel, D. E.; Langdon, A. B.

    2006-10-01

    Using the full-PIC code OSIRIS, we have studied stimulated Raman scattering (SRS) over a wide range of parameters relevant to NIF. The role of beat-wave damping as a saturation mechanism is explored, as well as its relationship to other nonlinear effects which have previously been used to explain SRS behavior in NIF-relevant plasmas. Vu et al., have proposed that a nonlinear frequency shift due to the trapped particles detunes the instability, Brunner and Valeo argue that the trapped-particle instability is one of the dominant saturation mechanisms, while L. Yin et al., claim that electron beam acoustic modes are important. We will discuss the role played by each of these effects in OSIRIS simulations, as well as the importance of plasma wave convection on the recurrence of SRS reflectivity. We will also discuss how SRS behavior changes as the electron density and temperature are varied.

  18. Implementations of mesh refinement schemes for particle-in-cell plasma simulations

    SciTech Connect

    Vay, J.-L.; Colella, P.; Friedman, A.; Grote, D.P.; McCorquodale, P.; Serafini, D.B.

    2003-10-20

    Plasma simulations are often rendered challenging by the disparity of scales in time and in space which must be resolved. When these disparities are in distinctive zones of the simulation region, a method which has proven to be effective in other areas (e.g. fluid dynamics simulations) is the mesh refinement technique. We briefly discuss the challenges posed by coupling this technique with plasma Particle-In-Cell simulations and present two implementations in more detail, with examples.

  19. Global gyrokinetic particle-in-cell simulations of internal kink instabilities

    SciTech Connect

    Mishchenko, Alexey; Zocco, Alessandro

    2012-12-15

    Internal kink instabilities have been studied in straight tokamak geometry employing an electromagnetic gyrokinetic particle-in-cell (PIC) code. The ideal-MHD internal kink mode and the collisionless m=1 tearing mode have been successfully simulated with the PIC code. Diamagnetic effects on the internal kink modes have also been investigated.

  20. AB INITIO PULSAR MAGNETOSPHERE: THREE-DIMENSIONAL PARTICLE-IN-CELL SIMULATIONS OF OBLIQUE PULSARS

    SciTech Connect

    Philippov, Alexander A.; Spitkovsky, Anatoly; Cerutti, Benoit

    2015-03-01

    We present “first-principles” relativistic particle-in-cell simulations of the oblique pulsar magnetosphere with pair formation. The magnetosphere starts to form with particles extracted from the surface of the neutron star. These particles are accelerated by surface electric fields and emit photons capable of producing electron–positron pairs. We inject secondary pairs at the locations of primary energetic particles whose energy exceeds the threshold for pair formation. We find solutions that are close to the ideal force-free magnetosphere with the Y-point and current sheet. Solutions with obliquities ≤40° do not show pair production in the open field line region because the local current density along the magnetic field is below the Goldreich–Julian value. The bulk outflow in these solutions is charge-separated, and pair formation happens in the current sheet and return current layer only. Solutions with higher inclinations show pair production in the open field line region, with high multiplicity of the bulk flow and the size of the pair-producing region increasing with inclination. We observe the spin-down of the star to be comparable to MHD model predictions. The magnetic dissipation in the current sheet ranges between 20% for the aligned rotator and 3% for the orthogonal rotator. Our results suggest that for low obliquity neutron stars with suppressed pair formation at the light cylinder, the presence of phenomena related to pair activity in the bulk of the polar region, e.g., radio emission, may crucially depend on the physics beyond our simplified model, such as the effects of curved spacetime or multipolar surface fields.

  1. Lorentz boosted frame simulation technique in Particle-in-cell methods

    NASA Astrophysics Data System (ADS)

    Yu, Peicheng

    In this dissertation, we systematically explore the use of a simulation method for modeling laser wakefield acceleration (LWFA) using the particle-in-cell (PIC) method, called the Lorentz boosted frame technique. In the lab frame the plasma length is typically four orders of magnitude larger than the laser pulse length. Using this technique, simulations are performed in a Lorentz boosted frame in which the plasma length, which is Lorentz contracted, and the laser length, which is Lorentz expanded, are now comparable. This technique has the potential to reduce the computational needs of a LWFA simulation by more than four orders of magnitude, and is useful if there is no or negligible reflection of the laser in the lab frame. To realize the potential of Lorentz boosted frame simulations for LWFA, the first obstacle to overcome is a robust and violent numerical instability, called the Numerical Cerenkov Instability (NCI), that leads to unphysical energy exchange between relativistically drifting particles and their radiation. This leads to unphysical noise that dwarfs the real physical processes. In this dissertation, we first present a theoretical analysis of this instability, and show that the NCI comes from the unphysical coupling of the electromagnetic (EM) modes and Langmuir modes (both main and aliasing) of the relativistically drifting plasma. We then discuss the methods to eliminate them. However, the use of FFTs can lead to parallel scalability issues when there are many more cells along the drifting direction than in the transverse direction(s). We then describe an algorithm that has the potential to address this issue by using a higher order finite difference operator for the derivative in the plasma drifting direction, while using the standard second order operators in the transverse direction(s). The NCI for this algorithm is analyzed, and it is shown that the NCI can be eliminated using the same strategies that were used for the hybrid FFT

  2. Verification of particle-in-cell simulations against exact solutions of kinetic equations

    NASA Astrophysics Data System (ADS)

    Turner, Miles

    2015-09-01

    Demonstrating correctness of computer simulations (or verification) has become a matter of increasing concern in recent years. The strongest type of verification is a demonstration that the simulation converges to an exact solution of the mathematical model that is supposed to be solved. Of course, this is possible only if such an exact solution is available. In this paper, we are interested in kinetic simulation using the particle-in-cell method, and consequently a relevant exact solution must be a solution of a kinetic equation. While we know of no such solutions that exercise all the features of a typical particle-in-cell simulation, in this paper we show that the mathematical literature contains several such solutions that involve a large fraction of the functionality of such a code, and which collectively exercise essentially all of the code functionality. These solutions include the plane diode, the neutron criticality problem, and the calculation of ion energy distribution functions in oscillating fields. In each of theses cases, we can show the the particle-in-cell simulation converges to the exact solution in the expected way. These demonstrations are strong evidence of correct implementation. Work supported by Science Foundation Ireland under grant 08/SRC/I1411.

  3. Wavelet-based Poisson solver for use in particle-in-cell simulations.

    PubMed

    Terzić, Balsa; Pogorelov, Ilya V

    2005-06-01

    We report on a successful implementation of a wavelet-based Poisson solver for use in three-dimensional particle-in-cell simulations. Our method harnesses advantages afforded by the wavelet formulation, such as sparsity of operators and data sets, existence of effective preconditioners, and the ability simultaneously to remove numerical noise and additional compression of relevant data sets. We present and discuss preliminary results relating to the application of the new solver to test problems in accelerator physics and astrophysics.

  4. Rescaling of microwave breakdown theory for monatomic gases by particle-in-cell/Monte Carlo simulations

    SciTech Connect

    Wang, Huihui; Meng, Lin; Liu, Dagang; Liu, Laqun

    2013-12-15

    A particle-in-cell/Monte Carlo code is developed to rescale the microwave breakdown theory which is put forward by Vyskrebentsev and Raizer. The results of simulations show that there is a distinct error in this theory when the high energy tail of electron energy distribution function increases. A rescaling factor is proposed to modify this theory, and the change rule of the rescaling factor is presented.

  5. Electron Accelerations at High Mach Number Shocks: Two-dimensional Particle-in-cell Simulations in Various Parameter Regimes

    NASA Astrophysics Data System (ADS)

    Matsumoto, Yosuke; Amano, Takanobu; Hoshino, Masahiro

    2012-08-01

    Electron accelerations at high Mach number collisionless shocks are investigated by means of two-dimensional electromagnetic particle-in-cell simulations with various Alfvén Mach numbers, ion-to-electron mass ratios, and the upstream electron β e (the ratio of the thermal pressure to the magnetic pressure). We find electrons are effectively accelerated at a super-high Mach number shock (MA ~ 30) with a mass ratio of M/m = 100 and β e = 0.5. The electron shock surfing acceleration is an effective mechanism for accelerating the particles toward the relativistic regime even in two dimensions with a large mass ratio. Buneman instability excited at the leading edge of the foot in the super-high Mach number shock results in a coherent electrostatic potential structure. While multi-dimensionality allows the electrons to escape from the trapping region, they can interact with the strong electrostatic field several times. Simulation runs in various parameter regimes indicate that the electron shock surfing acceleration is an effective mechanism for producing relativistic particles in extremely high Mach number shocks in supernova remnants, provided that the upstream electron temperature is reasonably low.

  6. Electron Accelerations at High Mach Number Shocks: Two-Dimensional Particle-in-Cell Simulations in Various Parameter Regimes

    NASA Astrophysics Data System (ADS)

    Matsumoto, Y.; Amano, T.; Hoshino, M.

    2012-12-01

    Electron accelerations at high Mach number collision-less shocks are investigated by means of two-dimensional electromagnetic Particle-in-Cell simulations with various Alfven Mach numbers, ion-to-electron mass ratios, and the upstream electron βe (the ratio of the thermal pressure to the magnetic pressure). We found electrons are effectively accelerated at a super-high Mach number shock (MA ~ 30) with a mass ratio of M/m=100 and βe=0.5. The electron shock surfing acceleration is an effective mechanism for accelerating the particles toward the relativistic regime even in two dimensions with the large mass ratio. Buneman instability excited at the leading edge of the foot in the super-high Mach number shock results in a coherent electrostatic potential structure. While multi-dimensionality allows the electrons to escape from the trapping region, they can interact with the strong electrostatic field several times. Simulation runs in various parameter regimes indicate that the electron shock surfing acceleration is an effective mechanism for producing relativistic particles in extremely-high Mach number shocks in supernova remnants, provided that the upstream electron temperature is reasonably low. Matsumoto et al., Astrophys. J., 755, 109, 2012.

  7. ELECTRON ACCELERATIONS AT HIGH MACH NUMBER SHOCKS: TWO-DIMENSIONAL PARTICLE-IN-CELL SIMULATIONS IN VARIOUS PARAMETER REGIMES

    SciTech Connect

    Matsumoto, Yosuke; Amano, Takanobu; Hoshino, Masahiro

    2012-08-20

    Electron accelerations at high Mach number collisionless shocks are investigated by means of two-dimensional electromagnetic particle-in-cell simulations with various Alfven Mach numbers, ion-to-electron mass ratios, and the upstream electron {beta}{sub e} (the ratio of the thermal pressure to the magnetic pressure). We find electrons are effectively accelerated at a super-high Mach number shock (M{sub A} {approx} 30) with a mass ratio of M/m = 100 and {beta}{sub e} = 0.5. The electron shock surfing acceleration is an effective mechanism for accelerating the particles toward the relativistic regime even in two dimensions with a large mass ratio. Buneman instability excited at the leading edge of the foot in the super-high Mach number shock results in a coherent electrostatic potential structure. While multi-dimensionality allows the electrons to escape from the trapping region, they can interact with the strong electrostatic field several times. Simulation runs in various parameter regimes indicate that the electron shock surfing acceleration is an effective mechanism for producing relativistic particles in extremely high Mach number shocks in supernova remnants, provided that the upstream electron temperature is reasonably low.

  8. Particle-in-cell based parameter study of 12-cavity, 12-cathode rising-sun relativistic magnetrons for improved performance

    SciTech Connect

    Majzoobi, A.; Joshi, R. P. Neuber, A. A.; Dickens, J. C.

    2015-10-15

    Particle-in-cell simulations are performed to analyze the efficiency, output power and leakage currents in a 12-Cavity, 12-Cathode rising-sun magnetron with diffraction output (MDO). The central goal is to conduct a parameter study of a rising-sun magnetron that comprehensively incorporates performance enhancing features such as transparent cathodes, axial extraction, the use of endcaps, and cathode extensions. Our optimum results demonstrate peak output power of about 2.1 GW, with efficiencies of ∼70% and low leakage currents at a magnetic field of 0.45 Tesla, a 400 kV bias with a single endcap, for a range of cathode extensions between 3 and 6 centimeters.

  9. Nonequilibrium Gyrokinetic Fluctuation Theory and Sampling Noise in Gyrokinetic Particle-in-cell Simulations

    SciTech Connect

    John A. Krommes

    2007-10-09

    The present state of the theory of fluctuations in gyrokinetic GK plasmas and especially its application to sampling noise in GK particle-in-cell PIC simulations is reviewed. Topics addressed include the Δf method, the fluctuation-dissipation theorem for both classical and GK many-body plasmas, the Klimontovich formalism, sampling noise in PIC simulations, statistical closure for partial differential equations, the theoretical foundations of spectral balance in the presence of arbitrary noise sources, and the derivation of Kadomtsev-type equations from the general formalism.

  10. Sheath and presheath in ion-ion plasmas via particle-in-cell simulation

    SciTech Connect

    Meige, A.; Leray, G.; Raimbault, J.-L.; Chabert, P.

    2008-02-11

    A full particle-in-cell simulation is developed to investigate electron-free plasmas constituted of positive and negative ions under the influence of a dc bias voltage. It is shown that high-voltage sheaths following the classical Child-law sheaths form within a few microseconds (which corresponds to the ion transit time) after the dc voltage is applied. It is also shown that there exists the equivalent of a Bohm criterion where a presheath accelerates the ions collected at one of the electrodes up to the sound speed before they enter the sheath. From an applied perspective, this leads to smaller sheaths than one would expect.

  11. Global particle-in-cell simulations of plasma pressure effects on Alfvenic modes

    SciTech Connect

    Mishchenko, Alexey; Koenies, Axel; Hatzky, Roman

    2011-01-15

    Global linear gyrokinetic particle-in-cell simulations of electromagnetic modes in realistic tokamak geometry are reported. The effect of plasma pressure on Alfvenic modes is studied. It is shown that the fast-particle pressure can considerably affect the shear Alfven wave continuum structure and hence the toroidicity-induced gap in the continuum. It is also found that the energetic ions can substantially reduce the growth rate of the ballooning modes (and perhaps completely stabilize them in a certain parameter range). Ballooning modes are found to be the dominant instabilities if the bulk-plasma pressure gradient is large enough.

  12. Particle-in-cell simulations of ambipolar and nonambipolar diffusion in magnetized plasmas

    SciTech Connect

    Lafleur, T.; Boswell, R. W.

    2012-05-15

    Using a two-dimensional particle-in-cell simulation, we investigate cross-field diffusion in low-pressure magnetized plasmas both in the presence and absence of conducting axial boundaries. With no axial boundary, the cross-field diffusion is observed to be ambipolar, as expected. However, when axial boundaries are added, the diffusion becomes distinctly nonambipolar. Electrons are prevented from escaping to the transverse walls and are preferentially removed from the discharge along the magnetic field lines, thus allowing quasi-neutrality to be maintained via a short-circuit effect at the axial boundaries.

  13. Particle-in-cell simulations of the runaway breakdown of nitrogen

    SciTech Connect

    Levko, D.; Krasik, Ya. E.

    2012-12-01

    The runaway breakdown initiated by a mono-energetic beam of runaway electrons propagating through a cathode-anode gap filled with nitrogen at atmospheric pressure is studied using the one-dimensional particle-in-cell numerical model. It is shown that the breakdown is strongly influenced by the amplitude of the beam, its duration, and the electric field in the vicinity of the cathode. In addition, the simulation results showed that, in spite of the formation of rather dense plasma inside the cathode-anode gap by runaway electrons, the electric field is not screened because of frequent electron-neutral collisions.

  14. Acceleration of a Particle-in-Cell Code for Space Plasma Simulations with OpenACC

    NASA Astrophysics Data System (ADS)

    Peng, Ivy Bo; Markidis, Stefano; Vaivads, Andris; Vencels, Juris; Deca, Jan; Lapenta, Giovanni; Hart, Alistair; Laure, Erwin

    2015-04-01

    We simulate space plasmas with the Particle-in-cell (PIC) method that uses computational particles to mimic electrons and protons in solar wind and in Earth magnetosphere. The magnetic and electric fields are computed by solving the Maxwell's equations on a computational grid. In each PIC simulation step, there are four major phases: interpolation of fields to particles, updating the location and velocity of each particle, interpolation of particles to grids and solving the Maxwell's equations on the grid. We use the iPIC3D code, which was implemented in C++, using both MPI and OpenMP, for our case study. By November 2014, heterogeneous systems using hardware accelerators such as Graphics Processing Unit (GPUs) and the Many Integrated Core (MIC) coprocessors for high performance computing continue growth in the top 500 most powerful supercomputers world wide. Scientific applications for numerical simulations need to adapt to using accelerators to achieve portability and scalability in the coming exascale systems. In our work, we conduct a case study of using OpenACC to offload the computation intensive parts: particle mover and interpolation of particles to grids, in a massively parallel Particle-in-Cell simulation code, iPIC3D, to multi-GPU systems. We use MPI for inter-node communication for halo exchange and communicating particles. We identify the most promising parts suitable for GPUs accelerator by profiling using CrayPAT. We implemented manual deep copy to address the challenges of porting C++ classes to GPU. We document the necessary changes in the exiting algorithms to adapt for GPU computation. We present the challenges and findings as well as our methodology for porting a Particle-in-Cell code to multi-GPU systems using OpenACC. In this work, we will present the challenges, findings and our methodology of porting a Particle-in-Cell code for space applications as follows: We profile the iPIC3D code by Cray Performance Analysis Tool (CrayPAT) and identify

  15. Numerical thermalization in particle-in-cell simulations with Monte-Carlo collisions

    NASA Astrophysics Data System (ADS)

    Lai, P. Y.; Lin, T. Y.; Lin-Liu, Y. R.; Chen, S. H.

    2014-12-01

    Numerical thermalization in collisional one-dimensional (1D) electrostatic (ES) particle-in-cell (PIC) simulations was investigated. Two collision models, the pitch-angle scattering of electrons by the stationary ion background and large-angle collisions between the electrons and the neutral background, were included in the PIC simulation using Monte-Carlo methods. The numerical results show that the thermalization times in both models were considerably reduced by the additional Monte-Carlo collisions as demonstrated by comparisons with Turner's previous simulation results based on a head-on collision model [M. M. Turner, Phys. Plasmas 13, 033506 (2006)]. However, the breakdown of Dawson's scaling law in the collisional 1D ES PIC simulation is more complicated than that was observed by Turner, and the revised scaling law of the numerical thermalization time with numerical parameters are derived on the basis of the simulation results obtained in this study.

  16. Numerical thermalization in particle-in-cell simulations with Monte-Carlo collisions

    SciTech Connect

    Lai, P. Y.; Lin, T. Y.; Lin-Liu, Y. R.; Chen, S. H.

    2014-12-15

    Numerical thermalization in collisional one-dimensional (1D) electrostatic (ES) particle-in-cell (PIC) simulations was investigated. Two collision models, the pitch-angle scattering of electrons by the stationary ion background and large-angle collisions between the electrons and the neutral background, were included in the PIC simulation using Monte-Carlo methods. The numerical results show that the thermalization times in both models were considerably reduced by the additional Monte-Carlo collisions as demonstrated by comparisons with Turner's previous simulation results based on a head-on collision model [M. M. Turner, Phys. Plasmas 13, 033506 (2006)]. However, the breakdown of Dawson's scaling law in the collisional 1D ES PIC simulation is more complicated than that was observed by Turner, and the revised scaling law of the numerical thermalization time with numerical parameters are derived on the basis of the simulation results obtained in this study.

  17. Particle-In-Cell simulations of high pressure plasmas using graphics processing units

    NASA Astrophysics Data System (ADS)

    Gebhardt, Markus; Atteln, Frank; Brinkmann, Ralf Peter; Mussenbrock, Thomas; Mertmann, Philipp; Awakowicz, Peter

    2009-10-01

    Particle-In-Cell (PIC) simulations are widely used to understand the fundamental phenomena in low-temperature plasmas. Particularly plasmas at very low gas pressures are studied using PIC methods. The inherent drawback of these methods is that they are very time consuming -- certain stability conditions has to be satisfied. This holds even more for the PIC simulation of high pressure plasmas due to the very high collision rates. The simulations take up to very much time to run on standard computers and require the help of computer clusters or super computers. Recent advances in the field of graphics processing units (GPUs) provides every personal computer with a highly parallel multi processor architecture for very little money. This architecture is freely programmable and can be used to implement a wide class of problems. In this paper we present the concepts of a fully parallel PIC simulation of high pressure plasmas using the benefits of GPU programming.

  18. Particle-in-Cell Simulations of Stimulated Brillouin Scattering in Two and Three Spatial Dimensions.

    NASA Astrophysics Data System (ADS)

    Giacone, R. E.; Vu, H. X.

    1996-11-01

    The results arising from numerical simulations of Stimulated Brillouin Scattering (SBS) in two and three spatial dimensions using HERCULES, a particle ion/adiabatic fluid-electron particle-in cell code(H. X. Vu, J. Comput. Phys.) 124, 417 (1996)., are presented. We compare the results of these simulations against the solutions of a linearized fluid model of SBS in homogeneous plasmas(C. J. McKinstrie, R. Betti, R. E. Giacone, T. Kolber and J. S. Li, Phys. Rev. E) 50, 2182 (1994).. Multidimensional effects on the angular dependance of SBS are studied. The results obtained from numerical simulations are in good agreement with the linear model. Comparisons of beam bending (H. A. Rose, Phys. Plasmas) 3, 1709 (1996). and cross laser beams effects in two and three dimensions will be also presented. Work performed under the auspices of the US Department of Energy.

  19. Model and particle-in-cell simulation of ion energy distribution in collisionless sheath

    SciTech Connect

    Zhou, Zhuwen; Kong, Bo; Luo, Yuee; Chen, Deliang; Wang, Yuansheng

    2015-06-15

    In this paper, we propose a self-consistent theoretical model, which is described by the ion energy distributions (IEDs) in collisionless sheaths, and the analytical results for different combined dc/radio frequency (rf) capacitive coupled plasma discharge cases, including sheath voltage errors analysis, are compared with the results of numerical simulations using a one-dimensional plane-parallel particle-in-cell (PIC) simulation. The IEDs in collisionless sheaths are performed on combination of dc/rf voltage sources electrodes discharge using argon as the process gas. The incident ions on the grounded electrode are separated, according to their different radio frequencies, and dc voltages on a separated electrode, the IEDs, and widths of energy in sheath and the plasma sheath thickness are discussed. The IEDs, the IED widths, and sheath voltages by the theoretical model are investigated and show good agreement with PIC simulations.

  20. Solution of Poisson's equation in electrostatic Particle-In-Cell simulations

    NASA Astrophysics Data System (ADS)

    Kahnfeld, Daniel; Schneider, Ralf; Matyash, Konstantin; Lüskow, Karl; Bandelow, Gunnar; Kalentev, Oleksandr; Duras, Julia; Kemnitz, Stefan

    2016-10-01

    For spacecrafts the concept of ion thrusters presents a very efficient method of propulsion. Optimization of thrusters is imperative, but experimental access is difficult. Plasma simulations offer means to understand the plasma physics within an ion thruster and can aid the design of new thruster concepts. In order to achieve best simulation performances, code optimizations and parallelization strategies need to be investigated. In this work the role of different solution strategies for Poisson's equation in electrostatic Particle-in-Cell simulations of the HEMP-DM3a ion thruster was studied. The direct solution method of LU decomposition is compared to a stationary iterative method, the successive over-relaxation solver. Results and runtime of solvers were compared, and an outlook on further improvements and developments is presented. This work was supported by the German Space Agency DLR through Project 50RS1510..

  1. Particle-in-Cell simulations of filamentary structures formation in DBD-tissue interaction

    NASA Astrophysics Data System (ADS)

    Likhanskii, Alexandre; Messmer, Peter

    2011-10-01

    Recent studies demonstrated high potential of the dielectric barrier discharge (DBD) plasmas for medical applications, such as sterilization or tissue regeneration. Despite intensive experimental studies have been conducted, the mechanism of plasma-tissue interaction still remains unclear. One of the open questions for the plasma-medical applications is the mechanism of filamentary structures formation in plasma and their interaction with tissues. Since formation of filaments is a purely kinetic effect, this issue needs to be addressed using kinetic, Particle-In-Cell simulation approach. We will present results of such numerical study. We performed 2D simulations of multiple streamers generation in atmospheric air using Tech-X's 2D/3D hybrid simulation tool VORPAL. We will demonstrate the resolution of the filamentary structure and will report the plasma properties. We will also address the plasma-induced effects on the tissue.

  2. Small-angle Coulomb collision model for particle-in-cell simulations

    SciTech Connect

    Lemons, Don S. Winske, Dan; Daughton, William; Albright, Brian

    2009-03-20

    We construct and investigate a set of stochastic differential equations that incorporate the physics of velocity-dependent small-angle Coulomb collisions among the plasma particles in a particle-in-cell simulation. Each particle is scattered stochastically from all the other particles in a simulation cell modeled as one or more Maxwellians. Total energy and momentum are conserved by linear transformation of the velocity increments. In two test simulations the proposed 'particle-moment' collision algorithm performs well with time steps as large as 10% of the relaxation time - far larger than a particle-pairing collision algorithm, in which pairs of particles are scattered from one another, requires to achieve the same accuracy.

  3. Self-consistent particle-in-cell simulations of fundamental and harmonic radio plasma emission mechanisms

    NASA Astrophysics Data System (ADS)

    Tsiklauri, D.; Thurgood, J. O.

    2015-12-01

    first co-author Jonathan O. Thurgood (QMUL) The simulation of three-wave interaction based plasma emission, an underlying mechanism for type III solar radio bursts, is a challenging task requiring fully-kinetic, multi-dimensional models. This paper aims to resolve a contradiction in past attempts, whereby some authors report that no such processes occur and others draw conflicting conclusions, by using 2D, fully kinetic, particle-in-cell simulations of relaxing electron beams. Here we present the results of particle-in-cell simulations which for different physical parameters permit or prohibit the plasma emission. We show that the possibility of plasma emission is contingent upon the frequency of the initial electrostatic waves generated by the bump-in-tail instability, and that these waves may be prohibited from participating in the necessary three-wave interactions due to the frequency beat requirements. We caution against simulating astrophysical radio bursts using unrealistically dense beams (a common approach which reduces run time), as the resulting non-Langmuir characteristics of the initial wave modes significantly suppresses the emission. Comparison of our results indicates that, contrary to the suggestions of previous authors, a plasma emission mechanism based on two counter-propagating beams is unnecessary in astrophysical context. Finally, we also consider the action of the Weibel instability, which generates an electromagnetic beam mode. As this provides a stronger contribution to electromagnetic energy than the emission, we stress that evidence of plasma emission in simulations must disentangle the two contributions and not simply interpret changes in total electromagnetic energy as the evidence of plasma emission. In summary, we present the first self-consistent demonstration of fundamental and harmonic plasma emission from a single-beam system via fully kinetic numerical simulation. Pre-print can be found at http://astro.qmul.ac.uk/~tsiklauri/jtdt1

  4. Load management strategy for Particle-In-Cell simulations in high energy particle acceleration

    NASA Astrophysics Data System (ADS)

    Beck, A.; Frederiksen, J. T.; Dérouillat, J.

    2016-09-01

    In the wake of the intense effort made for the experimental CILEX project, numerical simulation campaigns have been carried out in order to finalize the design of the facility and to identify optimal laser and plasma parameters. These simulations bring, of course, important insight into the fundamental physics at play. As a by-product, they also characterize the quality of our theoretical and numerical models. In this paper, we compare the results given by different codes and point out algorithmic limitations both in terms of physical accuracy and computational performances. These limitations are illustrated in the context of electron laser wakefield acceleration (LWFA). The main limitation we identify in state-of-the-art Particle-In-Cell (PIC) codes is computational load imbalance. We propose an innovative algorithm to deal with this specific issue as well as milestones towards a modern, accurate high-performance PIC code for high energy particle acceleration.

  5. Direct Numerical Simulation of Yukawa Systems by Particle-in-cell Methods

    NASA Astrophysics Data System (ADS)

    Müller, Wolf-Christian; Zeiler, Andreas; Morfill, Gregor E.

    2002-12-01

    Aiming at a fully self-consistent numerical model for the simulation of complex plasmas in rf-driven discharges, a highly efficient parallel particle-in-cell code has been developed, allowing for realizations of up to one billion interacting particles. As a first test case, we consider a Yukawa system which represents the simplest approximation of a complex plasma. The Yukawa approach where the dust particles are dressed with an isotropic Debye potential can be regarded as a low-order description of the dust-plasma interaction in the bulk a rf-driven complex plasma, away from the electrode sheaths. The simulation code is tested by examining a liquid-solid phase transition, i.e., the formation of a face-centered-cubic Yukawa crystal. This is done in a periodic-cube sub-volume, containing 13,824 dust particles, which corresponds to a total system size of ≈ 884,000 particles.

  6. Observation of transient electric fields in particle-in-cell simulation of capacitively coupled discharges

    SciTech Connect

    Sharma, S. Mishra, S. K.; Kaw, Predhiman K.

    2014-07-15

    The analytical prediction of the presence of transient electric field regions between the bulk plasma and sheath edge in radio frequency capacitively coupled plasma (RF-CCP) discharges has been reported by Kaganovich [Phys. Rev. Lett. 89, 265006 (2002)]. In this paper, we have used the semi-infinite particle-in-cell (PIC) simulation technique to verify the theoretical prediction for the existence of transient electric field in the linear regime; it is shown that the PIC simulation results are in good agreement with the results predicted by analytical model in this regime. It is also demonstrated that the linear theory overestimates the transient electric field as one moves from linear to weakly nonlinear regime. The effect of applied RF current density and electron temperature on evolution of transition field and phase mixing regime has been explored.

  7. Particle in cell simulation of a radiofrequency plasma jet expanding in vacuum

    SciTech Connect

    Charles, C. Hawkins, R.; Boswell, R. W.

    2015-03-02

    The effect of a pressure gradient (∼133 Pa–0.133 Pa) on electron and ion energy distributions in a radiofrequency (rf at 13.56 MHz) argon plasma jet is studied using a 1D-3v Particle In Cell (PIC) simulation. The PIC domain is three times that of the 0.018 m long plasma cavity and the total simulation time is 1 ms. Ion heating and acceleration up to a drift velocity about 2000 m s{sup −1} are measured along the jet's main expansion axis. Elastic and charge exchange ion-neutral collisions histograms computed at equilibrium during 0.74 ms show that charge exchange collisions act as the main neutral heating mechanism.

  8. Verification of particle-in-cell simulations with Monte Carlo collisions

    NASA Astrophysics Data System (ADS)

    Turner, M. M.

    2016-10-01

    Widespread recent interest in techniques for demonstrating that computer simulation programs are correct (‘verification’) has been motivated by evidence that traditional development and testing procedures are disturbingly ineffective. Reproducing an exact solution of the relevant model equations is generally accepted as the strongest available verification procedure, but this technique depends on the availability of suitable exact solutions. In this paper we consider verification of a particle-in-cell simulation with Monte Carlo collisions. We know of no exact solutions that simultaneously exercise all of the functions of this code. However, we show here that there can be found in the literature a number of non-trivial exact solutions, each of which exercises a substantial subset of these functions, and which in combination exercise all of the functions of the code. That the code is able to reproduce these solutions is correctness evidence of a stronger kind than has hitherto been elucidated.

  9. Particle-in-cell simulations of ion-acoustic waves with application to Saturn's magnetosphere

    SciTech Connect

    Koen, Etienne J.; Collier, Andrew B.; Hellberg, Manfred A.; Maharaj, Shimul K.

    2014-07-15

    Using a particle-in-cell simulation, the dispersion and growth rate of the ion-acoustic mode are investigated for a plasma containing two ion and two electron components. The electron velocities are modelled by a combination of two kappa distributions, as found in Saturn's magnetosphere. The ion components consist of adiabatic ions and an ultra-low density ion beam to drive a very weak instability, thereby ensuring observable waves. The ion-acoustic mode is explored for a range of parameter values such as κ, temperature ratio, and density ratio of the two electron components. The phase speed, frequency range, and growth rate of the mode are investigated. Simulations of double-kappa two-temperature plasmas typical of the three regions of Saturn's magnetosphere are also presented and analysed.

  10. Plasma electron hole kinematics. II. Hole tracking Particle-In-Cell simulation

    NASA Astrophysics Data System (ADS)

    Zhou, C.; Hutchinson, I. H.

    2016-08-01

    The kinematics of a 1-D electron hole is studied using a novel Particle-In-Cell simulation code. A hole tracking technique enables us to follow the trajectory of a fast-moving solitary hole and study quantitatively hole acceleration and coupling to ions. We observe a transient at the initial stage of hole formation when the hole accelerates to several times the cold-ion sound speed. Artificially imposing slow ion speed changes on a fully formed hole causes its velocity to change even when the ion stream speed in the hole frame greatly exceeds the ion thermal speed, so there are no reflected ions. The behavior that we observe in numerical simulations agrees very well with our analytic theory of hole momentum conservation and the effects of "jetting."

  11. Measuring Landau damping in Particle-in-Cell simulations using particles of different charge-weights

    NASA Astrophysics Data System (ADS)

    Ren, C.; Sarkar, A.; Cao, Y.-X.; Huang, M. C.; Li, J.

    2016-10-01

    We study whether putting more particles in ``region of interest (ROI)'' in phase space can efficiently increase Particle-in-Cell (PIC) simulation accuracy. We use Landau damping of a plasma wave as a figure of merit and set the ROI near the phase velocity of the wave. Improvement in Landau damping rate measurement is observed in 1D PIC simulations when employing more particles in the ROI but the effect is not monotonic. This is partly due to energy transfer from particles of large charge weights to those of smaller weights through the electric fields. Possible strategies to mitigate the energy transfer will also be discussed. This work is supported by the National Science Foundation under Grant No. PHY-1314734 and by the Department of Energy under Grant No. DE-SC0012316.

  12. Particle in cell simulation of a radiofrequency plasma jet expanding in vacuum

    NASA Astrophysics Data System (ADS)

    Charles, C.; Hawkins, R.; Boswell, R. W.

    2015-03-01

    The effect of a pressure gradient (˜133 Pa-0.133 Pa) on electron and ion energy distributions in a radiofrequency (rf at 13.56 MHz) argon plasma jet is studied using a 1D-3v Particle In Cell (PIC) simulation. The PIC domain is three times that of the 0.018 m long plasma cavity and the total simulation time is 1 ms. Ion heating and acceleration up to a drift velocity about 2000 m s-1 are measured along the jet's main expansion axis. Elastic and charge exchange ion-neutral collisions histograms computed at equilibrium during 0.74 ms show that charge exchange collisions act as the main neutral heating mechanism.

  13. Optimizing physical parameters in 1-D particle-in-cell simulations with Python

    NASA Astrophysics Data System (ADS)

    Ragan-Kelley, Benjamin; Verboncoeur, John P.; Lin, Ming-Chieh

    2014-10-01

    A particle-in-cell (PIC) simulation tool, OOPD1, is wrapped in the Python programming language, enabling automated algorithmic optimization of physical and numerical parameters. The Python-based environment exposes internal variables, enabling modification of simulation parameters, as well as run-time generation of new diagnostics based on calculations with internal data. For problems requiring an iterative optimization approach, this enables a programmable interactive feedback loop style simulation model, where the input to one simulation is a programmable function of the output of the previous one. This approach is applied to field-emission of electrons in a diode, in order to explore space charge effects in bipolar flow. We find an analytical solution for maximizing the space-charge limited current through a diode with an upstream ion current, and confirm the result with simulations, demonstrating the efficacy of the feedback scheme. We also demonstrate and analyze a modeling approach for scaling the ion mass, which can shorten simulation time without changing the ultimate result. The methods presented can be generalized to handle other applications where it is desirable to evolve simulation parameters based on algorithmic results from the simulation, including models in which physical or numerical parameter tuning is used to converge or optimize a system in one or more variables.

  14. Three-dimensional simple conformal symplectic particle-in-cell methods for simulations of high power microwave devices

    NASA Astrophysics Data System (ADS)

    Wang, Yue; Wang, Jianguo; Chen, Zaigao; Cheng, Guoxin; Wang, Pan

    2016-08-01

    To overcome the staircase error in the traditional particle-in-cell (PIC) method, a three dimensional (3D) simple conformal (SC) symplectic PIC method is presented in this paper. The SC symplectic finite integration technique (FIT) scheme is used to advance the electromagnetic fields without reduction of the time step. Particles are emitted from conformal boundaries with the charge conserving emission scheme and moved by using the relativistic Newton-Lorentz force equation. The symplectic formulas of auxiliary-differential equation, complex frequency shifted perfectly matched layer (ADE-CFS-PML) are given for truncating the open boundaries, numerical results show that the maximum relative error of truncation is less than 90 dB. Based on the surface equivalence theorem, the computing algorithms of conformal signals' injection are given, numerical results show that the algorithms can give the right mode patterns and the errors of cutoff frequencies could be as low as 0.1%. To verify the conformal algorithms, a magnetically insulated line oscillator is simulated, and the results are compared to those provided by using the 2.5D UNIPIC code, which show that they agree well. The results also show that the high order symplectic integration method can suppress the numerical Cherenkov radiation.

  15. Particle-in-cell simulations of electron energization in laser-driven magnetic reconnection

    DOE PAGES

    Lu, San; Lu, Quanming; Guo, Fan; ...

    2016-01-25

    Electrons can be energized during laser-driven magnetic reconnection, and the energized electrons form three super-Alfvénic electron jets in the outflow region (Lu et al 2014 New J. Phys. 16 083021). In this paper, by performing two-dimensional particle-in-cell simulations, we find that the electrons can also be significantly energized before magnetic reconnection occurs. When two plasma bubbles with toroidal magnetic fields expand and squeeze each other, the electrons in the magnetic ribbons are energized through betatron acceleration due to the enhancement of the magnetic field, and an electron temperature anisotropymore » $${T}_{{\\rm{e}}\\perp }\\gt {T}_{{\\rm{e}}| | }$$ develops. Meanwhile, some electrons are trapped and bounced repeatedly between the two expanding/approaching bubbles and get energized through a Fermi-like process. Furthermore, the energization before magnetic reconnection is more significant (or important) than that during magnetic reconnection.« less

  16. Wavelet-based Poisson Solver for use in Particle-In-CellSimulations

    SciTech Connect

    Terzic, B.; Mihalcea, D.; Bohn, C.L.; Pogorelov, I.V.

    2005-05-13

    We report on a successful implementation of a wavelet based Poisson solver for use in 3D particle-in-cell (PIC) simulations. One new aspect of our algorithm is its ability to treat the general(inhomogeneous) Dirichlet boundary conditions (BCs). The solver harnesses advantages afforded by the wavelet formulation, such as sparsity of operators and data sets, existence of effective preconditioners, and the ability simultaneously to remove numerical noise and further compress relevant data sets. Having tested our method as a stand-alone solver on two model problems, we merged it into IMPACT-T to obtain a fully functional serial PIC code. We present and discuss preliminary results of application of the new code to the modeling of the Fermilab/NICADD and AES/JLab photoinjectors.

  17. Parametric decay of a parallel propagating monochromatic whistler wave: Particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Ke, Yangguang; Gao, Xinliang; Lu, Quanming; Wang, Shui

    2017-01-01

    In this paper, by using one-dimensional (1-D) particle-in-cell simulations, we investigate the parametric decay of a parallel propagating monochromatic whistler wave with various wave frequencies and amplitudes. The pump whistler wave can decay into a backscattered daughter whistler wave and an ion acoustic wave, and the decay instability grows more rapidly with the increase of the frequency or amplitude. When the frequency or amplitude is sufficiently large, a multiple decay process may occur, where the daughter whistler wave undergoes a secondary decay into an ion acoustic wave and a forward propagating whistler wave. We also find that during the parametric decay a considerable part of protons can be accelerated along the background magnetic field by the enhanced ion acoustic wave through the Landau resonance. The implication of the parametric decay to the evolution of whistler waves in Earth's magnetosphere is also discussed in the paper.

  18. Suprathermal particle energization in dipolarization fronts: Particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Lu, San; Angelopoulos, V.; Fu, Huishan

    2016-10-01

    Within dipolarization fronts (DFs) in the Earth's magnetotail, significant magnetic energy is converted to plasma energy, and a significant portion of the electrons and ions therein are accelerated to suprathermal energies. The mechanism that produces these suprathermal particles while simultaneously reducing magnetic field energy is poorly understood, however. We use two-dimensional particle-in-cell simulations to explore this process in conventional flux bundle-type DFs, which are formed by single X line reconnection and connected to the Earth, and in newly proposed flux rope-type DFs, which are formed and bracketed by two X lines. In flux bundle-type DFs, electrons are betatron accelerated near the Bz peak, and ions are energized through reflection at the front. In flux rope-type DFs, most suprathermal electrons and ions are confined to the flux rope's magnetic structure and are accelerated through repeated reflections at the structure's two ends.

  19. Multi-dimensional, fully implicit, exactly conserving electromagnetic particle-in-cell simulations in curvilinear geometry

    NASA Astrophysics Data System (ADS)

    Chen, Guangye; Chacon, Luis

    2015-11-01

    We discuss a new, conservative, fully implicit 2D3V Vlasov-Darwin particle-in-cell algorithm in curvilinear geometry for non-radiative, electromagnetic kinetic plasma simulations. Unlike standard explicit PIC schemes, fully implicit PIC algorithms are unconditionally stable and allow exact discrete energy and charge conservation. Here, we extend these algorithms to curvilinear geometry. The algorithm retains its exact conservation properties in curvilinear grids. The nonlinear iteration is effectively accelerated with a fluid preconditioner for weakly to modestly magnetized plasmas, which allows efficient use of large timesteps, O (√{mi/me}c/veT) larger than the explicit CFL. In this presentation, we will introduce the main algorithmic components of the approach, and demonstrate the accuracy and efficiency properties of the algorithm with various numerical experiments in 1D (slow shock) and 2D (island coalescense).

  20. New Particle-in-Cell Code for Numerical Simulation of Coherent Synchrotron Radiation

    SciTech Connect

    Balsa Terzic, Rui Li

    2010-05-01

    We present a first look at the new code for self-consistent, 2D simulations of beam dynamics affected by the coherent synchrotron radiation. The code is of the particle-in-cell variety: the beam bunch is sampled by point-charge particles, which are deposited on the grid; the corresponding forces on the grid are then computed using retarded potentials according to causality, and interpolated so as to advance the particles in time. The retarded potentials are evaluated by integrating over the 2D path history of the bunch, with the charge and current density at the retarded time obtained from interpolation of the particle distributions recorded at discrete timesteps. The code is benchmarked against analytical results obtained for a rigid-line bunch. We also outline the features and applications which are currently being developed.

  1. Parallel 3D Finite Element Particle-in-Cell Simulations with Pic3P

    SciTech Connect

    Candel, A.; Kabel, A.; Lee, L.; Li, Z.; Ng, C.; Schussman, G.; Ko, K.; Ben-Zvi, I.; Kewisch, J.; /Brookhaven

    2009-06-19

    SLAC's Advanced Computations Department (ACD) has developed the parallel 3D Finite Element electromagnetic Particle-In-Cell code Pic3P. Designed for simulations of beam-cavity interactions dominated by space charge effects, Pic3P solves the complete set of Maxwell-Lorentz equations self-consistently and includes space-charge, retardation and boundary effects from first principles. Higher-order Finite Element methods with adaptive refinement on conformal unstructured meshes lead to highly efficient use of computational resources. Massively parallel processing with dynamic load balancing enables large-scale modeling of photoinjectors with unprecedented accuracy, aiding the design and operation of next-generation accelerator facilities. Applications include the LCLS RF gun and the BNL polarized SRF gun.

  2. Particle-in-cell simulation of a double stage Hall thruster

    NASA Astrophysics Data System (ADS)

    Yu, Daren; Song, Maojiang; Liu, H.; Ding, Y. J.; Li, Hong

    2012-03-01

    The purpose of inventing a double stage Hall thruster is to control the propellant ionization and ion acceleration independently. In order to better understand the physics involved in such a thruster, an improved particle-in-cell method is used in this paper to simulate the discharge process. It is shown that the numerical features in the ionization stage accord well with the experimental results. It is also indicated that the ionization process and the acceleration process cannot be separated completely, as a relatively important ionization still occurs in the acceleration stage. Furthermore, an optimal threshold of ionization voltage in the ionization stage is existed to obtain the most favorable distributions of plasma parameters in the whole discharge channel.

  3. Half-Cell RF Gun Simulations with the Electromagnetic Particle-in-Cell Code VORPAL

    SciTech Connect

    Paul, K.; Dimitrov, D. A.; Busby, R.; Bruhwiler, D. L.; Smithe, D.; Cary, J. R.; Kewisch, J.; Kayran, D.; Calaga, R.; Ben-Zvi, I.

    2009-01-22

    We have simulated Brookhaven National Laboratory's half-cell superconducting RF gun design for a proposed high-current ERL using the three-dimensional, electromagnetic particle-in-cell code VORPAL. VORPAL computes the fully self-consistent electromagnetic fields produced by the electron bunches, meaning that it accurately models space-charge effects as well as bunch-to-bunch beam loading effects and the effects of higher-order cavity modes, though these are beyond the scope of this paper. We compare results from VORPAL to the well-established space-charge code PARMELA, using RF fields produced by SUPERFISH, as a benchmarking exercise in which the two codes should agree well.

  4. Particle-in-cell simulations of electron energization in laser-driven magnetic reconnection

    SciTech Connect

    Lu, San; Lu, Quanming; Guo, Fan; Sheng, Zhengming; Wang, Huanyu; Wang, Shui

    2016-01-25

    Electrons can be energized during laser-driven magnetic reconnection, and the energized electrons form three super-Alfvénic electron jets in the outflow region (Lu et al 2014 New J. Phys. 16 083021). In this paper, by performing two-dimensional particle-in-cell simulations, we find that the electrons can also be significantly energized before magnetic reconnection occurs. When two plasma bubbles with toroidal magnetic fields expand and squeeze each other, the electrons in the magnetic ribbons are energized through betatron acceleration due to the enhancement of the magnetic field, and an electron temperature anisotropy ${T}_{{\\rm{e}}\\perp }\\gt {T}_{{\\rm{e}}| | }$ develops. Meanwhile, some electrons are trapped and bounced repeatedly between the two expanding/approaching bubbles and get energized through a Fermi-like process. Furthermore, the energization before magnetic reconnection is more significant (or important) than that during magnetic reconnection.

  5. Fully implicit, energy-conserving electromagnetic particle-in-cell simulations in multiple dimensions

    NASA Astrophysics Data System (ADS)

    Chacon, Luis; Chen, Guangye

    2015-11-01

    We discuss a new, implicit 2D-3V particle-in-cell (PIC) algorithm for non-radiative, electromagnetic kinetic plasma simulations, based on the Vlasov-Darwin model. The Vlasov-Darwin model avoids radiative noise issues, but is elliptic and renders explicit time integration unconditionally unstable. Absolutely stable, fully implicit, charge and energy conserving PIC algorithms for both electrostatic and electromagnetic regimes have been recently developed in 1D. In this study, we build on these recent successes to develop a multi-D, fully implicit PIC algorithm for the Vlasov-Darwin model. The algorithm conserves global energy, local charge, and particle canonical-momentum exactly. The nonlinear iteration is effectively accelerated with a fluid preconditioner, allowing the efficient use of large timesteps compared to the explicit CFL. We demonstrate the potential of the approach with various numerical examples in 2D-3V.

  6. Whistler turbulence forward vs. inverse cascade. Three-dimensional particle-in-cell simulations

    DOE PAGES

    Chang, Ouliang; Gary, S. Peter; Wang, Joseph

    2015-02-12

    In this study, we present the results of the first fully three-dimensional particle-in-cell simulations of decaying whistler turbulence in a magnetized, homogeneous, collisionless plasma in which both forward cascades to shorter wavelengths, and inverse cascades to longer wavelengths are allowed to proceed. For the electron beta βe = 0.10 initial value considered here, the early-time rate of inverse cascade is very much smaller than the rate of forward cascade, so that at late times the fluctuation energy in the regime of the inverse cascade is much weaker than that in the forward cascade regime. Similarly, the wavevector anisotropy in themore » inverse cascade regime is much weaker than that in the forward cascade regime.« less

  7. Particle-in-cell simulations of laser beat-wave magnetization of dense plasmas

    SciTech Connect

    Welch, D. R.; Genoni, T. C.; Thoma, C.; Rose, D. V.; Hsu, S. C.

    2014-03-15

    The interaction of two lasers with a difference frequency near that of the ambient plasma frequency produces beat waves that can resonantly accelerate thermal electrons. These beat waves can be used to drive electron current and thereby embed magnetic fields into the plasma [Welch et al., Phys. Rev. Lett. 109, 225002 (2012)]. In this paper, we present two-dimensional particle-in-cell simulations of the beat-wave current-drive process over a wide range of angles between the injected lasers, laser intensities, and plasma densities. We discuss the application of this technique to the magnetization of dense plasmas, motivated in particular by the problem of forming high-β plasma targets in a standoff manner for magneto-inertial fusion. The feasibility of a near-term experiment embedding magnetic fields using lasers with micron-scale wavelengths into a ∼10{sup 18} cm{sup −3}-density plasma is assessed.

  8. Whistler turbulence forward vs. inverse cascade. Three-dimensional particle-in-cell simulations

    SciTech Connect

    Chang, Ouliang; Gary, S. Peter; Wang, Joseph

    2015-02-12

    In this study, we present the results of the first fully three-dimensional particle-in-cell simulations of decaying whistler turbulence in a magnetized, homogeneous, collisionless plasma in which both forward cascades to shorter wavelengths, and inverse cascades to longer wavelengths are allowed to proceed. For the electron beta βe = 0.10 initial value considered here, the early-time rate of inverse cascade is very much smaller than the rate of forward cascade, so that at late times the fluctuation energy in the regime of the inverse cascade is much weaker than that in the forward cascade regime. Similarly, the wavevector anisotropy in the inverse cascade regime is much weaker than that in the forward cascade regime.

  9. Taking larger timesteps with speed-limited particle-in-cell simulation

    NASA Astrophysics Data System (ADS)

    Werner, Gregory; Cary, John

    2015-11-01

    Particle-in-cell (PIC) simulation is often impractical because it includes too much unnecessary physics. For example, to avoid instability in many simulations the timestep must be small enough to resolve the plasma frequency, even if plasma oscillations do not play a significant role. Other methods (e.g., MHD/fluid and hybrid approaches) allow faster simulation, but often don't include enough physics. A new method, speed-limited PIC (SLPIC) simulation, offers kinetic simulation with an arbitrary-strength approximation tied to the timestep. With a small (standard PIC) timestep, SLPIC is identical to PIC, while a larger timestep (e.g., large compared to the inverse plasma frequency) results in the relaxation of fast particles over slower timescales. SLPIC is therefore useful in situations where the particle distribution functions change slowly compared to the timestep required by PIC. For example, SLPIC can simulate collisionless sheaths with a timestep hundreds of times larger than the inverse plasma frequency. SLPIC involves relatively isolated changes of a standard PIC code and poses no extra difficulties for parallelism; complexities of PIC, such as field solvers, collisions, and boundary conditions, carry over naturally to SLPIC with little change. This work is supported by NASA.

  10. Particle-in-cell simulations of electron acceleration by a simple capacitative antenna in collisionless plasma

    NASA Astrophysics Data System (ADS)

    Dieckmann, M. E.; Rowlands, G.; Eliasson, B.; Shukla, P. K.

    2004-12-01

    We examine the electron acceleration by a localized electrostatic potential oscillating at high frequencies by means of particle-in-cell (PIC) simulations, in which we apply oscillating electric fields to two neighboring simulation cells. We derive an analytic model for the direct electron heating by the externally driven antenna electric field, and we confirm that it approximates well the electron heating obtained in the simulations. In the simulations, transient waves accelerate electrons in a sheath surrounding the antenna. This increases the Larmor radii of the electrons close to the antenna, and more electrons can reach the antenna location to interact with the externally driven fields. The resulting hot electron sheath is dense enough to support strong waves that produce high-energy sounder-accelerated electrons (SAEs) by their nonlinear interaction with the ambient electrons. By increasing the emission amplitudes in our simulations to values that are representative for the ones of the sounder on board the OEDIPUS C (OC) satellites, we obtain electron acceleration into the energy range which is comparable to the 20 keV energies of the SAE observed by the OC mission. The emission also triggers stable electrostatic waves oscillating at frequencies close to the first harmonic of the electron cyclotron frequency. We find this to be an encouraging first step of examining SAE generation with kinetic numerical simulation codes.

  11. Electron and ion heating by whistler turbulence: Three-dimensional particle-in-cell simulations

    SciTech Connect

    Hughes, R. Scott; Gary, S. Peter; Wang, Joseph

    2014-12-17

    Three-dimensional particle-in-cell simulations of decaying whistler turbulence are carried out on a collisionless, homogeneous, magnetized, electron-ion plasma model. In addition, the simulations use an initial ensemble of relatively long wavelength whistler modes with a broad range of initial propagation directions with an initial electron beta βe = 0.05. The computations follow the temporal evolution of the fluctuations as they cascade into broadband turbulent spectra at shorter wavelengths. Three simulations correspond to successively larger simulation boxes and successively longer wavelengths of the initial fluctuations. The computations confirm previous results showing electron heating is preferentially parallel to the background magnetic field Bo, and ion heating is preferentially perpendicular to Bo. The new results here are that larger simulation boxes and longer initial whistler wavelengths yield weaker overall dissipation, consistent with linear dispersion theory predictions of decreased damping, stronger ion heating, consistent with a stronger ion Landau resonance, and weaker electron heating.

  12. Electron and ion heating by whistler turbulence: Three-dimensional particle-in-cell simulations

    DOE PAGES

    Hughes, R. Scott; Gary, S. Peter; Wang, Joseph

    2014-12-17

    Three-dimensional particle-in-cell simulations of decaying whistler turbulence are carried out on a collisionless, homogeneous, magnetized, electron-ion plasma model. In addition, the simulations use an initial ensemble of relatively long wavelength whistler modes with a broad range of initial propagation directions with an initial electron beta βe = 0.05. The computations follow the temporal evolution of the fluctuations as they cascade into broadband turbulent spectra at shorter wavelengths. Three simulations correspond to successively larger simulation boxes and successively longer wavelengths of the initial fluctuations. The computations confirm previous results showing electron heating is preferentially parallel to the background magnetic field Bo,more » and ion heating is preferentially perpendicular to Bo. The new results here are that larger simulation boxes and longer initial whistler wavelengths yield weaker overall dissipation, consistent with linear dispersion theory predictions of decreased damping, stronger ion heating, consistent with a stronger ion Landau resonance, and weaker electron heating.« less

  13. Accuracy of momentum and gyrodensity transport in global gyrokinetic particle-in-cell simulations

    SciTech Connect

    McMillan, B. F.; Villard, L.

    2014-05-15

    Gyrokinetic Particle-In-Cell (PIC) simulations based on conservative Lagrangian formalisms admit transport equations for conserved quantities such as gyrodensity and toroidal momentum, and these can be derived for arbitrary wavelength, even though previous applications have used the long-wavelength approximation. In control-variate PIC simulations, a consequence of the different treatment of the background (f{sub 0}) and perturbed parts (δf), when a splitting f = f{sub 0} + δf is performed, is that analytical transport relations for the relevant fluxes and moments are only reproduced in the large marker number limit. The transport equations for f can be used to write the inconsistency in the perturbed quantities explicitly in terms of the sampling of the background distribution f{sub 0}. This immediately allows estimates of the error in consistency of momentum transport in control-variate PIC simulations. This inconsistency tends to accumulate secularly and is not directly affected by the sources and noise control in the system. Although physical tokamaks often rotate quite strongly, the standard gyrokinetic formalism assumes weak perpendicular flows, comparable to the drift speed. For systems with such weak flows, maintaining acceptably small relative errors requires that a number of markers scale with the fourth power of the linear system size to consistently resolve long-wavelength evolution. To avoid this unfavourable scaling, an algorithm for exact gyrodensity transport has been developed, and this is shown to allow accurate simulations with an order of magnitude fewer markers.

  14. Particle-in-cell simulations of particle energization from low Mach number fast mode shocks

    NASA Astrophysics Data System (ADS)

    Park, Jaehong; Workman, Jared C.; Blackman, Eric G.; Ren, Chuang; Siller, Robert

    2012-06-01

    Astrophysical shocks are often studied in the high Mach number limit but weakly compressive fast shocks can occur in magnetic reconnection outflows and are considered to be a site of particle energization in solar flares. Here we study the microphysics of such perpendicular, low Mach number collisionless shocks using two-dimensional particle-in-cell simulations with a reduced ion/electron mass ratio and employ a moving wall boundary method for initial generation of the shock. This moving wall method allows for more control of the shock speed, smaller simulation box sizes, and longer simulation times than the commonly used fixed wall, reflection method of shock formation. Our results, which are independent of the shock formation method, reveal the prevalence shock drift acceleration (SDA) of both electron and ions in a purely perpendicular shock with Alfvén Mach number MA=6.8 and ratio of thermal to magnetic pressure β=8. We determine the respective minimum energies required for electrons and ions to incur SDA. We derive a theoretical electron distribution via SDA that compares to the simulation results. We also show that a modified two-stream instability due to the incoming and reflecting ions in the shock transition region acts as the mechanism to generate collisionless plasma turbulence that sustains the shock.

  15. Electron and Ion Heating By Whistler Turbulence: Three-Dimensional Particle-in-Cell Simulations

    NASA Astrophysics Data System (ADS)

    Hughes, R. S.; Gary, S. P.; Wang, J.

    2014-12-01

    Three-dimensional particle-in-cell (PIC) simulations of whistler turbulence in a magnetized, homogeneous, collisionless plasma have been carried out to study the consequent heating of both electrons and ions. An initial relatively isotropic spectrum of long-wavelength whistler mode fluctuations is imposed upon the system. The simulations follow the temporal evolution of the field fluctuations as they decay via a forward cascade into a broadband, turbulent spectrum at shorter wavelengths with an anisotropy in the sense of stronger fluctuation energy at k||, where the subscripts denote directions relative to the background magnetic field. As in previous whistler turbulence PIC simulations, electrons are heated with T||e >> Tperp,e. Consistent with the results of Saito and Nariyuki (2014) the ions are also heated, although more weakly than the electrons and with Tperp,i >> T||i. Larger simulation box sizes enable longer wavelength turbulence and lead to comparatively greater ion heating. Ion heating as a function of βe and initial fluctuation amplitudes is also studied. Saito, S., and Y. Nariyuki (2014), Perpendicular Ion Acceleration in Whistler Turbulence, Phys. Plasmas, 21, 042303.

  16. Particle-in-Cell Simulations of Atmospheric Pressure He/2%H2O Discharges

    NASA Astrophysics Data System (ADS)

    Kawamura, E.; Lieberman, M. A.; Lichtenberg, A. J.; Graves, D. B.; Gopalakrishnan, R.

    2015-09-01

    Atmospheric pressure micro-discharges in contact with liquid surfaces are of increasing interest, especially in the bio-medical field. We conduct 1D3v particle-in-cell (PIC) simulations of a voltage-driven 1 mm width atmospheric pressure He/2% H2O plasma discharge in series with an 0.5 mm width liquid H2O layer and a 1mm width quartz dielectric layer. A previously developed two-temperature hybrid global model of atmospheric pressure He/H2O discharges was used to determine the most important species and collisional reactions to use in the PIC simulations. We found that H13O6+, H5O3-, and electrons were the most prominent charged species, while most of the metastable helium He* was quenched via Penning ionization. The ion-induced secondary emission coefficient γi was assumed to be 0.15 at all surfaces. A series of simulations were conducted at 27.12 MHz with Jrf ~ 800-2200 A/m2. The H2O rotational and vibrational excitation losses were so high that electrons reached the walls at thermal temperatures. We also simulated a much lower frequency case of 50 kHz with Vrf = 10 kV. In this case, the discharge ran in a pure time-varying γ-mode. This work was supported by the Department of Energy Office of Fusion Energy Science Contract DE-SC0001939.

  17. Particle-in-cell simulations of electron beam control using an inductive current divider

    SciTech Connect

    Swanekamp, S. B.; Angus, J. R.; Cooperstein, G.; Ottinger, P. F.; Richardson, A. S.; Schumer, J. W.; Weber, B. V.

    2015-11-18

    Kinetic, time-dependent, electromagnetic, particle-in-cell simulations of the inductive current divider are presented. The inductive current divider is a passive method for controlling the trajectory of an intense, hollow electron beam using a vacuum structure that inductively splits the beam’s return current. The current divider concept was proposed and studied theoretically in a previous publication [Phys. Plasmas 22, 023107 (2015)] A central post carries a portion of the return current (I1) while the outer conductor carries the remainder (I2) with the injected beam current given by Ib=I1+I2. The simulations are in agreement with the theory which predicts that the total force on the beam trajectory is proportional to (I2-I1) and the force on the beam envelope is proportional to Ib. For a fixed central post, the beam trajectory is controlled by varying the outer conductor radius which changes the inductance in the return-current path. The simulations show that the beam emittance is approximately constant as the beam propagates through the current divider to the target. As a result, independent control over both the current density and the beam angle at the target is possible by choosing the appropriate return-current geometry.

  18. Particle-in-cell simulations of electron beam control using an inductive current divider

    DOE PAGES

    Swanekamp, S. B.; Angus, J. R.; Cooperstein, G.; ...

    2015-11-18

    Kinetic, time-dependent, electromagnetic, particle-in-cell simulations of the inductive current divider are presented. The inductive current divider is a passive method for controlling the trajectory of an intense, hollow electron beam using a vacuum structure that inductively splits the beam’s return current. The current divider concept was proposed and studied theoretically in a previous publication [Phys. Plasmas 22, 023107 (2015)] A central post carries a portion of the return current (I1) while the outer conductor carries the remainder (I2) with the injected beam current given by Ib=I1+I2. The simulations are in agreement with the theory which predicts that the total forcemore » on the beam trajectory is proportional to (I2-I1) and the force on the beam envelope is proportional to Ib. For a fixed central post, the beam trajectory is controlled by varying the outer conductor radius which changes the inductance in the return-current path. The simulations show that the beam emittance is approximately constant as the beam propagates through the current divider to the target. As a result, independent control over both the current density and the beam angle at the target is possible by choosing the appropriate return-current geometry.« less

  19. Particle-in-cell Simulations Of Particle Energization From Low Mach Number Fast Mode Shocks

    NASA Astrophysics Data System (ADS)

    Ren, Chuang; Blackman, E.; Park, J.; Siller, R.; Workman, J.

    2012-05-01

    Collisionless perpendicular mangetosonic shocks relevant for termination shocks during solar flares are studied using two-dimensional particle-in-cell simulations with a reduced ion/electron mass ratio and a moving wall boundary condition. Compared to the reflection boundary condition, the moving wall method can control the shock speed and allows for smaller box sizes and longer simulation times in the study of shocks. In a purely perpendicular shock with the Alfven Mach number of 6.8 and plasma beta of 8. Electron and ion acceleration via shock drift acceleration (SDA) is observed. The modified two-stream instability due to the incoming and reflecting ions in the shock transition region is identified to be a possible turbulent dissipation mechanism. We determine the respective minimum energies required for electrons and ions to incur SDA. We derive a theoretical electron distribution via SDA that compares favorably to the simulation results. This work was supported by DOE under Grant DE-FG02-06ER54879 and Cooperate Agreement No. DE-FC52-08NA28302, by NSF under Grant PHY-0903797, and by NSFC under Grant No. 11129503. The research used resources of NERSC. We also thank the OSIRIS consortium for the use of OSIRIS.

  20. Particle-In-Cell Simulation on the Characteristics of a Receiving Antenna in Space Plasma Environment

    SciTech Connect

    Miyake, Yohei; Usui, Hideyuki; Kojima, Hirotsugu; Omura, Yoshiharu

    2008-12-31

    We applied the electromagnetic Particle-In-Cell simulation to the analysis of receiving antenna characteristics in space plasma environment. In the analysis, we set up external waves in a simulation region and receive them with a numerical antenna model placed in the simulation region. Using this method, we evaluated the effective length of electric field antennas used for plasma wave investigations conducted by scientific spacecraft. We particularly focused on the effective length of an electric field instrument called MEFISTO for a future mission to Mercury: BepiColombo. We first confirmed that the effective length of the MEFISTO-type antenna is basically longer than that of a simple dipole antenna for both electrostatic and electromagnetic plasma waves. By applying the principle of a voltmeter, the effective length of the MEFISTO-type antenna is predicted to become identical to the separation between two sensor-conductor's midpoints. However, the numerical result revealed that the actual effective length becomes shorter than the prediction, which is caused by the shorting-out effect due to the presence of a center boom conductor between the two sensor conductors. Since the above effect is difficult to treat theoretically, the present numerical method is a powerful tool for further quantitative evaluation of the antenna characteristics.

  1. Three-dimensional particle-in-cell simulation on gain saturation effect of microchannel plate.

    PubMed

    Wang, Qiangqiang; Yuan, Zheng; Cao, Zhurong; Deng, Bo; Chen, Tao; Deng, Keli

    2016-07-01

    We present here the results of the simulation work, using the three-dimensional particle-in-cell method, on the performance of the lead glass microchannel plate under saturated state. We calculated the electron cascade process with different DC bias voltages under both self-consistent condition and non-self-consistent condition. The comparative results have demonstrated that the strong self-consistent field can suppress the cascade process and make the microchannel plate saturated. The simulation results were also compared to the experimental data and good agreement was obtained. The simulation results also show that the electron multiplication process in the channel is accompanied by the buildup process of positive charges in the channel wall. Though the interactions among the secondary electron cloud in the channel, the positive charges in the channel wall, and the external acceleration field can make the electron-surface collision more frequent, the collision energy will be inevitably reduced, thus the electron gain will also be reduced.

  2. Three-dimensional particle-in-cell simulations of 300 GHz reflex klystrons

    SciTech Connect

    Jeon, S. G.; Jin, Y. S.; Kim, J. I.; Kim, G. J.; Shon, C. H.

    2007-03-01

    Three-dimensional (3D) particle-in-cell simulations of 300 GHz reflex klystrons are presented. 300 GHz electromagnetic wave generation in a resonant cavity is analyzed by using a 3D simulation model in which all the geometric parameters (such as the grid thickness, repeller shape, beam radius, etc.) are described. When an electron beam of an energy of 1.0 keV and a net current of 8.9 mA is used, the maximum electronic efficiency of energy transfer is observed when the gap transit angle is 0.7{pi} rad, and the efficiency saturates when the beam current is over 10 mA. Space charge forces produce a shift in the optimum repeller voltage. It is also shown that the effect of the beam temperature is not critical, even though the bunching wavelength of the electron beam is several times smaller than that in conventional vacuum electron devices. Our simulation results show that a microfabricated 300 GHz reflex klystron can directly generate electromagnetic waves with output power levels of several tens of milliwatts.

  3. Electrostatic particle-in-cell simulation of heat flux mitigation using magnetic fields

    NASA Astrophysics Data System (ADS)

    Lüskow, Karl Felix; Kemnitz, S.; Bandelow, G.; Duras, J.; Kahnfeld, D.; Matthias, P.; Schneider, R.; Konigorski, D.

    2016-10-01

    The particle-in-cell (PIC) method was used to simulate heat flux mitigation experiments with partially ionised argon. The experiments demonstrate the possibility of reducing heat flux towards a target using magnetic fields. Modelling using the PIC method is able to reproduce the heat flux mitigation qualitatively. This is driven by modified electron transport. Electrons are magnetised and react directly to the external magnetic field. In addition, an increase of radial turbulent transport is also needed to explain the experimental observations in the model. Close to the target an increase of electron density is created. Due to quasi-neutrality, ions follow the electrons. Charge exchange collisions couple the dynamics of the neutrals to the ions and reduce the flow velocity of neutrals by radial momentum transport and subsequent losses. By this, the dominant heat-transport channel by neutrals gets reduced and a reduction of the heat deposition, similar to the experiment, is observed. Using the simulation a diagnostic module for optical emission is developed and its results are compared with spectroscopic measurements and photos from the experiment. The results of this study are in good agreement with the experiment. Experimental observations such as a shrank bright emission region close to the nozzle exit, an additional emission in front of the target and an overall change in colour to red are reproduced by the simulation.

  4. Three-dimensional particle-in-cell simulation on gain saturation effect of microchannel plate

    NASA Astrophysics Data System (ADS)

    Wang, Qiangqiang; Yuan, Zheng; Cao, Zhurong; Deng, Bo; Chen, Tao; Deng, Keli

    2016-07-01

    We present here the results of the simulation work, using the three-dimensional particle-in-cell method, on the performance of the lead glass microchannel plate under saturated state. We calculated the electron cascade process with different DC bias voltages under both self-consistent condition and non-self-consistent condition. The comparative results have demonstrated that the strong self-consistent field can suppress the cascade process and make the microchannel plate saturated. The simulation results were also compared to the experimental data and good agreement was obtained. The simulation results also show that the electron multiplication process in the channel is accompanied by the buildup process of positive charges in the channel wall. Though the interactions among the secondary electron cloud in the channel, the positive charges in the channel wall, and the external acceleration field can make the electron-surface collision more frequent, the collision energy will be inevitably reduced, thus the electron gain will also be reduced.

  5. Particle-in-cell simulation of x-ray wakefield acceleration and betatron radiation in nanotubes

    SciTech Connect

    Zhang, Xiaomei; Tajima, Toshiki; Farinella, Deano; Shin, Youngmin; Mourou, Gerard; Wheeler, Jonathan; Taborek, Peter; Chen, Pisin; Dollar, Franklin; Shen, Baifei

    2016-10-18

    Though wakefield acceleration in crystal channels has been previously proposed, x-ray wakefield acceleration has only recently become a realistic possibility since the invention of the single-cycled optical laser compression technique. We investigate the acceleration due to a wakefield induced by a coherent, ultrashort x-ray pulse guided by a nanoscale channel inside a solid material. By two-dimensional particle-in-cell computer simulations, we show that an acceleration gradient of TeV/cm is attainable. This is about 3 orders of magnitude stronger than that of the conventional plasma-based wakefield accelerations, which implies the possibility of an extremely compact scheme to attain ultrahigh energies. In addition to particle acceleration, this scheme can also induce the emission of high energy photons at ~O(10–100) MeV. Here, our simulations confirm such high energy photon emissions, which is in contrast with that induced by the optical laser driven wakefield scheme. In addition to this, the significantly improved emittance of the energetic electrons has been discussed.

  6. Particle-in-cell simulation of x-ray wakefield acceleration and betatron radiation in nanotubes

    DOE PAGES

    Zhang, Xiaomei; Tajima, Toshiki; Farinella, Deano; ...

    2016-10-18

    Though wakefield acceleration in crystal channels has been previously proposed, x-ray wakefield acceleration has only recently become a realistic possibility since the invention of the single-cycled optical laser compression technique. We investigate the acceleration due to a wakefield induced by a coherent, ultrashort x-ray pulse guided by a nanoscale channel inside a solid material. By two-dimensional particle-in-cell computer simulations, we show that an acceleration gradient of TeV/cm is attainable. This is about 3 orders of magnitude stronger than that of the conventional plasma-based wakefield accelerations, which implies the possibility of an extremely compact scheme to attain ultrahigh energies. In additionmore » to particle acceleration, this scheme can also induce the emission of high energy photons at ~O(10–100) MeV. Here, our simulations confirm such high energy photon emissions, which is in contrast with that induced by the optical laser driven wakefield scheme. In addition to this, the significantly improved emittance of the energetic electrons has been discussed.« less

  7. Particle-in-cell Simulations of Raman Laser Amplification in Ionizing Plasmas

    SciTech Connect

    Daniel S. Clark; Nathaniel J. Fisch

    2003-06-27

    By using the amplifying laser pulse in a plasma-based backward Raman laser amplifier to generate the plasma by photo-ionization of a gas simultaneous with the amplification process, possible instabilities of the pumping laser pulse can be avoided. Particle-in-cell simulations are used to study this amplification mechanism, and earlier results using more elementary models of the Raman interaction are verified [D.S. Clark and N.J. Fisch, Phys. Plasmas, 9 (6): 2772-2780, 2002]. The effects (unique to amplification in ionizing plasmas and not included in previous simulations) of blue-shifting of the pump and seed laser pulses and the generation of a wake are observed not significantly to impact the amplification process. As expected theoretically, the peak output intensity is found to be limited to I {approx} 10{sup 17} W/cm{sup 2} by forward Raman scattering of the amplifying seed. The integrity of the ionization front of the seed pulse against the development of a possible transverse modulation instability is also demonstrated.

  8. Electromagnetic particle-in-cell simulations of the solar wind interaction with lunar magnetic anomalies.

    PubMed

    Deca, J; Divin, A; Lapenta, G; Lembège, B; Markidis, S; Horányi, M

    2014-04-18

    We present the first three-dimensional fully kinetic and electromagnetic simulations of the solar wind interaction with lunar crustal magnetic anomalies (LMAs). Using the implicit particle-in-cell code iPic3D, we confirm that LMAs may indeed be strong enough to stand off the solar wind from directly impacting the lunar surface forming a mini-magnetosphere, as suggested by spacecraft observations and theory. In contrast to earlier magnetohydrodynamics and hybrid simulations, the fully kinetic nature of iPic3D allows us to investigate the space charge effects and in particular the electron dynamics dominating the near-surface lunar plasma environment. We describe for the first time the interaction of a dipole model centered just below the lunar surface under plasma conditions such that only the electron population is magnetized. The fully kinetic treatment identifies electromagnetic modes that alter the magnetic field at scales determined by the electron physics. Driven by strong pressure anisotropies, the mini-magnetosphere is unstable over time, leading to only temporal shielding of the surface underneath. Future human exploration as well as lunar science in general therefore hinges on a better understanding of LMAs.

  9. Multidimensional, fully implicit, exactly conserving electromagnetic particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Chacon, Luis

    2015-09-01

    We discuss a new, conservative, fully implicit 2D-3V particle-in-cell algorithm for non-radiative, electromagnetic kinetic plasma simulations, based on the Vlasov-Darwin model. Unlike earlier linearly implicit PIC schemes and standard explicit PIC schemes, fully implicit PIC algorithms are unconditionally stable and allow exact discrete energy and charge conservation. This has been demonstrated in 1D electrostatic and electromagnetic contexts. In this study, we build on these recent algorithms to develop an implicit, orbit-averaged, time-space-centered finite difference scheme for the Darwin field and particle orbit equations for multiple species in multiple dimensions. The Vlasov-Darwin model is very attractive for PIC simulations because it avoids radiative noise issues in non-radiative electromagnetic regimes. The algorithm conserves global energy, local charge, and particle canonical-momentum exactly, even with grid packing. The nonlinear iteration is effectively accelerated with a fluid preconditioner, which allows efficient use of large timesteps, O(√{mi/me}c/veT) larger than the explicit CFL. In this presentation, we will introduce the main algorithmic components of the approach, and demonstrate the accuracy and efficiency properties of the algorithm with various numerical experiments in 1D and 2D. Support from the LANL LDRD program and the DOE-SC ASCR office.

  10. Kinetic Structures of Quasi-Perpendicular Shocks in Global Particle-in-Cell Simulations

    NASA Astrophysics Data System (ADS)

    Peng, I. B.; Markidis, S.; Laure, E.; Johlander, A.; Vaivads, A.; Khotyaintsev, Y. V.; Pierre, H.; Lapenta, G.

    2015-12-01

    We carried out global Particle-in-Cell simulations of the interaction between the solar wind and a magnetosphere to study the kinetic collisionless physics in super-critical quasi-perpendicular shocks. After an initial simulation transient, a collisionless bow shock forms as a result of the interaction of the solar wind and a planet magnetic dipole. The shock ramp has a thickness of approximately one ion skin depth and is followed by a trailing wave train in the shock downstream. At the downstream edge of the bow shock, whistler waves propagate along the magnetic field lines and the presence of electron cyclotron waves has been identified. A small part of the solar wind ion population is specularly reflected by the shock while a larger part is deflected and heated by the shock. Solar wind ions and electrons are heated in the perpendicular directions. Ions are accelerated in the perpendicular direction in the trailing wave train region. This work is an initial effort to study the electron and ion kinetic effects developed near the bow shock in a realistic magnetic field configuration.

  11. Particle-in-cell simulation of x-ray wakefield acceleration and betatron radiation in nanotubes

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaomei; Tajima, Toshiki; Farinella, Deano; Shin, Youngmin; Mourou, Gerard; Wheeler, Jonathan; Taborek, Peter; Chen, Pisin; Dollar, Franklin; Shen, Baifei

    2016-10-01

    Though wakefield acceleration in crystal channels has been previously proposed, x-ray wakefield acceleration has only recently become a realistic possibility since the invention of the single-cycled optical laser compression technique. We investigate the acceleration due to a wakefield induced by a coherent, ultrashort x-ray pulse guided by a nanoscale channel inside a solid material. By two-dimensional particle-in-cell computer simulations, we show that an acceleration gradient of TeV /cm is attainable. This is about 3 orders of magnitude stronger than that of the conventional plasma-based wakefield accelerations, which implies the possibility of an extremely compact scheme to attain ultrahigh energies. In addition to particle acceleration, this scheme can also induce the emission of high energy photons at ˜O (10 - 100 ) MeV . Our simulations confirm such high energy photon emissions, which is in contrast with that induced by the optical laser driven wakefield scheme. In addition to this, the significantly improved emittance of the energetic electrons has been discussed.

  12. 2D Kinetic Particle in Cell Simulations of a Shear-Flow Stabilized Z-Pinch

    NASA Astrophysics Data System (ADS)

    Tummel, Kurt; Higginson, Drew; Schmidt, Andrea; Link, Anthony; McLean, Harry; Shumlak, Uri; Nelson, Brian; Golingo, Raymond; Claveau, Elliot; Lawrence Livermore National Lab Team; University of Washington Team

    2016-10-01

    The Z-pinch is a relatively simple and attractive potential fusion reactor design, but attempts to develop such a reactor have consistently struggled to overcome Z-pinch instabilities. The ``sausage'' and ``kink'' modes are among the most robust and prevalent Z-pinch instabilities, but theory and simulations suggest that axial flow-shear, dvz / dr ≠ 0 , can suppress these modes. Experiments have confirmed that Z-pinch plasmas with embedded axial flow-shear display a significantly enhanced resilience to the sausage and kink modes at a demonstration current of 50kAmps. A new experiment is under way to test the concept at higher current, and efforts to model these plasmas are being expanded. The performance and stability of these devices will depend on features like the plasma viscosity, anomalous resistivity, and finite Larmor radius effects, which are most accurately characterized in kinetic models. To predict these features, kinetic simulations using the particle in cell code LSP are now in development, and initial benchmarking and 2D stability analyses of the sausage mode are presented here. These results represent the first kinetic modeling of the flow-shear stabilized Z-pinch. This work is funded by the USDOE/ARPAe Alpha Program. Prepared by LLNL under Contract DE-AC52-07NA27344.

  13. Particle-in-cell Simulation of Electron Acceleration in Solar Coronal Jets

    NASA Astrophysics Data System (ADS)

    Baumann, G.; Nordlund, Å.

    2012-11-01

    We investigate electron acceleration resulting from three-dimensional magnetic reconnection between an emerging, twisted magnetic flux rope and a pre-existing weak, open magnetic field. We first follow the rise of an unstable, twisted flux tube with a resistive MHD simulation where the numerical resolution is enhanced by using fixed mesh refinement. As in previous MHD investigations of similar situations, the rise of the flux tube into the pre-existing inclined coronal magnetic field results in the formation of a solar coronal jet. A snapshot of the MHD model is then used as an initial and boundary condition for a particle-in-cell simulation, using up to half a billion cells and over 20 billion charged particles. Particle acceleration occurs mainly in the reconnection current sheet, with accelerated electrons displaying a power law in the energy probability distribution with an index of around -1.5. The main acceleration mechanism is a systematic electric field, striving to maintaining the electric current in the current sheet against losses caused by electrons not being able to stay in the current sheet for more than a few seconds at a time.

  14. Hybrid particle-in-cell simulations of weakly collisional shock formation

    NASA Astrophysics Data System (ADS)

    Spisak, Jacob; Valenzuela, Julio; Kim, Joohwan; Beg, Farhat

    2016-10-01

    Recently, we studied shock formation by the head on collision of supersonic plasma jets using a wire configuration on the compact current driver GenASIS (200 kA in 150 ns). We used two wire materials: aluminum, where radiative cooling is not significant, and copper, where radiation is important to shock dynamics. In both cases, when the jets collide a conical structure develops in time and moves towards the cathode at a speed of 20km/s. Radiation effects are apparent in the copper case, as the shock is thinner than in the Aluminum case and when it starts moving a prominent bow shock develops. Furthermore, the estimated inter jet ion mean free path is larger than the shock width, indicating a magnetic field may help mediate the shock. To investigate the physics of weakly collisional shock formation, we perform two dimensional simulations of two merging, counter-propagating jets using the initial conditions from the experiment. Electrons are treated as a fluid and ions are treated as kinetic particles using the hybrid particle in cell code LSP. We explore how shock formation is affected by radiative cooling and the presence of an external magnetic field. We also carried out simulations where both ions and electrons were treated as fluids. This work was partially financed by Department of Energy Grant Number DE-SC0014493.

  15. Kinetic structures of quasi-perpendicular shocks in global particle-in-cell simulations

    SciTech Connect

    Peng, Ivy Bo Markidis, Stefano; Laure, Erwin; Johlander, Andreas; Vaivads, Andris; Khotyaintsev, Yuri; Henri, Pierre; Lapenta, Giovanni

    2015-09-15

    We carried out global Particle-in-Cell simulations of the interaction between the solar wind and a magnetosphere to study the kinetic collisionless physics in super-critical quasi-perpendicular shocks. After an initial simulation transient, a collisionless bow shock forms as a result of the interaction of the solar wind and a planet magnetic dipole. The shock ramp has a thickness of approximately one ion skin depth and is followed by a trailing wave train in the shock downstream. At the downstream edge of the bow shock, whistler waves propagate along the magnetic field lines and the presence of electron cyclotron waves has been identified. A small part of the solar wind ion population is specularly reflected by the shock while a larger part is deflected and heated by the shock. Solar wind ions and electrons are heated in the perpendicular directions. Ions are accelerated in the perpendicular direction in the trailing wave train region. This work is an initial effort to study the electron and ion kinetic effects developed near the bow shock in a realistic magnetic field configuration.

  16. Particle-in-cell Simulations of Raman Laser Amplification in Preformed Plasmas

    SciTech Connect

    Daniel S. Clark; Nathaniel J. Fisch

    2003-06-27

    Two critical issues in the amplification of laser pulses by backward Raman scattering in plasma slabs are the saturation mechanism of the amplification effect (which determines the maximum attainable output intensity of a Raman amplifier) and the optimal plasma density for amplification. Previous investigations [V.M. Malkin, et al., Phys. Rev. Lett., 82 (22):4448-4451, 1999] identified forward Raman scattering and modulational instabilities of the amplifying seed as the likely saturation mechanisms and lead to an estimated unfocused output intensities of 10{sup 17}W/cm{sup 2}. The optimal density for amplification is determined by the competing constraints of minimizing the plasma density so as to minimize the growth rate of the instabilities leading to saturation but also maintaining the plasma sufficiently dense that the driven Langmuir wave responsible for backscattering does not break prematurely. Here, particle-in-cell code are simulations presented which verify that saturation of backward Raman amplification does occur at intensities of {approx}10{sup 17}W/cm{sup 2} by forward Raman scattering and modulational instabilities. The optimal density for amplification in a plasma with the representative temperature of T(sub)e = 200 eV is also shown in these simulations to be intermediate between the cold plasma wave-breaking density and the density limit found by assuming a water bag electron distribution function.

  17. Magnetohydrodynamics with Embedded Particle-in-Cell Simulation of Mercury's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Toth, G.; Jia, X.; Gombosi, T. I.; Markidis, S.

    2015-12-01

    Mercury's magnetosphere is much more dynamic than other planetary magnetospheres because of Mercury's weak intrinsic magnetic field and its proximity to the Sun. Magnetic reconnection and Kelvin-Helmholtz phenomena occur in Mercury's magnetopause and magnetotail at higher frequencies than in other planetary magnetosphere. For instance, chains of flux transfer events (FTEs) on the magnetopause, have been frequentlyobserved by the the MErcury Surface, Space ENvironment, GEochemistry and Ranging (MESSENGER) spacecraft (Slavin et al., 2012). Because ion Larmor radius is comparable to typical spatial scales in Mercury's magnetosphere, finite Larmor radius effects need to be accounted for. In addition, it is important to take in account non-ideal dissipation mechanisms to accurately describe magnetic reconnection. A kinetic approach allows us to model these phenomena accurately. However, kinetic global simulations, even for small-size magnetospheres like Mercury's, are currently unfeasible because of the high computational cost. In this work, we carry out global simulations of Mercury's magnetosphere with the recently developed MHD-EPIC model, which is a two-way coupling of the extended magnetohydrodynamic (XMHD) code BATS-R-US with the implicit Particle-in-Cell (PIC) model iPIC3D. The PIC model can cover the regions where kinetic effects are most important, such as reconnection sites. The BATS-R-US code, on the other hand, can efficiently handle the rest of the computational domain where the MHD or Hall MHD description is sufficient. We will present our preliminary results and comparison with MESSENGER observations.

  18. The Plasma Simulation Code: A modern particle-in-cell code with patch-based load-balancing

    NASA Astrophysics Data System (ADS)

    Germaschewski, Kai; Fox, William; Abbott, Stephen; Ahmadi, Narges; Maynard, Kristofor; Wang, Liang; Ruhl, Hartmut; Bhattacharjee, Amitava

    2016-08-01

    This work describes the Plasma Simulation Code (PSC), an explicit, electromagnetic particle-in-cell code with support for different order particle shape functions. We review the basic components of the particle-in-cell method as well as the computational architecture of the PSC code that allows support for modular algorithms and data structure in the code. We then describe and analyze in detail a distinguishing feature of PSC: patch-based load balancing using space-filling curves which is shown to lead to major efficiency gains over unbalanced methods and a previously used simpler balancing method.

  19. Particle-in-cell simulation of collisionless reconnection with open outflow boundaries

    SciTech Connect

    Klimas, Alex; Hesse, Michael; Zenitani, Seiji

    2008-08-15

    A new method for applying open boundary conditions in particle-in-cell (PIC) simulations is utilized to study magnetic reconnection. Particle distributions are assumed to have zero normal derivatives at the boundaries. Advantages and possible limitations of this method for PIC simulations are discussed. Results from a reconnection simulation study are presented. For the purpose of this investigation, a 2 (1/2)-dimensional electromagnetic PIC simulation using open conditions at the outflow boundaries and simple reflecting boundaries to the inflow regions is discussed. The electron diffusion region is defined as that region where the out-of-plane electron inertial electric field is positive indicating acceleration and flux transfer; the evolution of this region is analyzed. It is found that this region varies in the range 2.5-4 local electron inertial lengths in total width and in the range 10-15 local electron inertial lengths in total length for the mass ratio 25. The reconnection rate is investigated in terms of the aspect ratio of the electron diffusion region plus inflow and outflow measures at its boundaries. It is shown that a properly measured aspect ratio predicts the flux transfer rate, scaled to account for the decline in field strength and electron density at the inflow boundary to the electron diffusion region. It is concluded that this electron diffusion region either adjusts its aspect ratio for compatibility with the flux transfer rate that is set elsewhere, as in the Hall reconnection model, or that it is this region that controls the reconnection flux transfer rate.

  20. Particle-in-cell simulation of coherent and superradiant Smith-Purcell radiation

    NASA Astrophysics Data System (ADS)

    Li, D.; Yang, Z.; Imasaki, K.; Park, Gun-Sik

    2006-04-01

    This paper presents a study of coherent and superradiant Smith-Purcell (SP) radiation with the help of a two-dimensional particle-in-cell (PIC) simulation. The simulation model supposes a rectangular grating with period length of 173μm to be driven by a single electron bunch, a train of periodic bunches and a continuous beam, respectively. We chose 40 keV as the initial energy of electrons and therefore the SP radiation frequency falls in the THz regime. From our single bunch simulation we distinguish the true SP radiation separated in time from the emission of the evanescent wave. The evanescent wave radiates from both ends of the grating and is characterized by an angle independent frequency lower than the minimum allowed SP frequency. In order to avoid the buildup of beam bunching from an initially continuous beam, we use a train of periodic bunches to excite the grating and observe the superradiant phenomenon. The repetition frequency of the spatially periodic bunches is assumed to be 300 GHz. We find that the superradiant radiation is only emitted at higher harmonics of this frequency and at the corresponding SP angles. This result conforms to the viewpoint of Andrews and co-workers. The simulation with a continuous beam shows the dependence of the output power on the beam current. The power curve shows two regimes, one for the incoherent SP radiation and the other for the superradiance, which resembles the Dartmouth experimental result. And furthermore, the frequency spectrum shows an apparent difference for the two regimes, which is in contrast to the observations of Urata and co-workers.

  1. Physics based optimization of Particle-in-Cell simulations on GPUs

    NASA Astrophysics Data System (ADS)

    Abbott, Stephen; D'Azevedo, Ed

    2016-10-01

    We present progress in improving the performance of the gyrokinetic particle-in-cell (PIC) code XGC-1 on NVIDIA GPUs, as well as enhancements made to portability and developer productivity using OpenACC directives. Increasingly simulation codes are required to use heterogeneous accelerator resources on the most powerful supercomputing systems. PIC methods are well suited to these massively parallel accelerator architectures, as particles can largely be advanced independently within a time-step. Their advance must still, however, reference field data on underlying grid structures, which presents a significant performance bottleneck. Even ported to GPUs using CUDA Fortran, the XGC-1 electron push routine accounts for a significant portion of the code execution time. By applying physical insight to the motion of electrons across the device (and therefore field grids) we have developed techniques that increase performance of this kernel by up to 5X, compared to the original CUDA Fortran implementation. Architecture specific optimizations can be isolated in small `leaf' routines, which allows for a portable OpenACC implementation that performs nearly as well as the optimized CUDA.

  2. Parallel mesh support for particle-in-cell methods in magnetic fusion simulations

    NASA Astrophysics Data System (ADS)

    Yoon, Eisung; Shephard, Mark S.; Seol, E. Seegyoung; Kalyanaraman, Kaushik; Ibanez, Daniel

    2016-10-01

    As supercomputing power continues to increase Particle-In-Cell (PIC) methods are being widely adopted for transport simulations of magnetic fusion devices. Current implementations place a copy of the entire continuum mesh and its fields used in the PIC calculations on every node. This is in general not a scalable solution as computational power continues to grow faster than node level memory. To address this scalability issue, while still maintaining sufficient mesh per node to control costly inter-node communication, a new unstructured mesh distribution methods and associated mesh based PIC calculation procedure is being developed building on the parallel unstructured mesh infrastructure (PUMI). Key components to be outlined in the presentation include (i) the mesh distribution strategy, (ii) how the particles are tracked during a push cycle taking advantage of the unstructured mesh adjacency structures and searches based on that structure, and (iii) how the field solve steps and particle migration are controlled. Performance comparisons to the current approach will also be presented.

  3. Particle-In-Cell simulation concerning heat-flux mitigation using electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Lüskow, Karl Felix; Duras, Julia; Kemnitz, Stefan; Kahnfeld, Daniel; Matthias, Paul; Bandelow, Gunnas; Schneider, Ralf; Konigorski, Detlev

    2016-10-01

    In space missions enormous amount of money is spent for the thermal protection system for re-entry. To avoid complex materials and save money one idea is to reduce the heat-flux towards the spacecraft. The partially-ionized gas can be controlled by electromagnetic fields. For first-principle tests partially ionized argon flow from an arc-jet was used to measure the heat-flux mitigation created by an external magnetic field. In the successful experiment a reduction of 85% was measured. In this work the Particle-in-Cell (PIC) method was used to simulate this experiment. PIC is able to reproduce the heat flux mitigation qualitatively. The main mechanism is identified as a changed electron transport and by this, modified electron density due to the reaction to the applied magnetic field. Ions follow due to quasi-neutrality and influence then strongly by charge exchange collisions the neutrals dynamics and heat deposition. This work was supported by the German Space Agency DLR through Project 50RS1508.

  4. Particle-in-cell simulation of large amplitude ion-acoustic solitons

    SciTech Connect

    Sharma, Sarveshwar Sengupta, Sudip; Sen, Abhijit

    2015-02-15

    The propagation of large amplitude ion-acoustic solitons is studied in the laboratory frame (x, t) using a 1-D particle-in-cell code that evolves the ion dynamics by treating them as particles but assumes the electrons to follow the usual Boltzmann distribution. It is observed that for very low Mach numbers the simulation results closely match the Korteweg-de Vries soliton solutions, obtained in the wave frame, and which propagate without distortion. The collision of two such profiles is observed to exhibit the usual solitonic behaviour. As the Mach number is increased, the given profile initially evolves and then settles down to the exact solution of the full non-linear Poisson equation, which then subsequently propagates without distortion. The fractional change in amplitude is found to increase linearly with Mach number. It is further observed that initial profiles satisfying k{sup 2}λ{sub de}{sup 2}<1 break up into a series of solitons.

  5. Comparison of dust charging between orbital-motion-limited theory and particle-in-cell simulations

    SciTech Connect

    Delzanno, Gian Luca Tang, Xian-Zhu

    2015-11-15

    The Orbital-Motion-Limited (OML) theory has been modified to predict the dust charge and the results were contrasted with the Whipple approximation [X. Z. Tang and G. L. Delzanno, Phys. Plasmas 21, 123708 (2014)]. To further establish its regime of applicability, in this paper, the OML predictions (for a non-electron-emitting, spherical dust grain at rest in a collisionless, unmagnetized plasma) are compared with particle-in-cell simulations that retain the absorption radius effect. It is found that for large dust grain radius r{sub d} relative to the plasma Debye length λ{sub D}, the revised OML theory remains a very good approximation as, for the parameters considered (r{sub d}/λ{sub D} ≤ 10, equal electron and ion temperatures), it yields the dust charge to within 20% accuracy. This is a substantial improvement over the Whipple approximation. The dust collected currents and energy fluxes, which remain the same in the revised and standard OML theories, are accurate to within 15%–30%.

  6. Particle-in-cell simulation of collisionless driven reconnection with open boundaries

    SciTech Connect

    Klimas, Alex; Zenitani, Seiji; Hesse, Michael; Kuznetsova, Maria

    2010-11-15

    First results are discussed from an ongoing study of driven collisionless reconnection using a 2(1/2)-dimensional electromagnetic particle-in-cell simulation model with open inflow and outflow boundaries. An extended electron diffusion region (EEDR) is defined as that region surrounding a reconnecting neutral line in which the out-of-plane nonideal electric field is positive. It is shown that the boundaries of this region in the directions of the outflow jets are at the positions where the electrons make the transition from unfrozen meandering motion in the current sheet to outward drifting with the magnetic field in the outflow jets; a turning length scale is defined to mark these positions. The initial width of the EEDR in the inflow directions is comparable to the electron bounce width. Later, as shoulders develop to form a two-scale structure, the EEDR width expands to the ion bounce width scale. The inner portion of the EEDR or the electron diffusion region proper remains at the electron bounce width. Two methods are introduced for predicting the reconnection electric field using the dimensions of the EEDR. These results are interpreted as further evidence that the EEDR is the region that is relevant to understanding the electron role in the neutral line vicinity.

  7. Open Boundary Particle-in-Cell Simulation of Dipolarization Front Propagation

    NASA Technical Reports Server (NTRS)

    Klimas, Alex; Hwang, Kyoung-Joo; Vinas, Adolfo F.; Goldstein, Melvyn L.

    2014-01-01

    First results are presented from an ongoing open boundary 2-1/2D particle-in-cell simulation study of dipolarization front (DF) propagation in Earth's magnetotail. At this stage, this study is focused on the compression, or pileup, region preceding the DF current sheet. We find that the earthward acceleration of the plasma in this region is in general agreement with a recent DF force balance model. A gyrophase bunched reflected ion population at the leading edge of the pileup region is reflected by a normal electric field in the pileup region itself, rather than through an interaction with the current sheet. We discuss plasma wave activity at the leading edge of the pileup region that may be driven by gradients, or by reflected ions, or both; the mode has not been identified. The waves oscillate near but above the ion cyclotron frequency with wavelength several ion inertial lengths. We show that the waves oscillate primarily in the perpendicular magnetic field components, do not propagate along the background magnetic field, are right handed elliptically (close to circularly) polarized, exist in a region of high electron and ion beta, and are stationary in the plasma frame moving earthward. We discuss the possibility that the waves are present in plasma sheet data, but have not, thus far, been discovered.

  8. Particle-in-Cell Simulation of Collisionless Driven Reconnection with Open Boundaries

    NASA Technical Reports Server (NTRS)

    Kimas, Alex; Hesse, Michael; Zenitani, Seiji; Kuznetsova, Maria

    2010-01-01

    First results are discussed from an ongoing study of driven collisionless reconnection using a 2 1/2-dimensional electromagnetic particle-in-cell simulation model with open inflow and outflow boundaries. An extended electron diffusion region (EEDR) is defined as that region surrounding a reconnecting neutral line in which the out-of-plane nonideal electric field is positive. It is shown that the boundaries of this region in the directions of the outflow jets are at the positions where the electrons make the transition from unfrozen meandering motion in the current sheet to outward drifting with the magnetic field in the outflow jets; a turning length scale is defined to mark these positions, The initial width of the EEDR in the inflow directions is comparable to the electron bounce width. Later. as shoulders develop to form a two-scale structure. thc EEDR width expands to the ion bounce width scale. The inner portion of the EEDR or the electron diffusion region proper remains at the electron bounce width. Two methods are introduced for predicting the reconnection electric field using the dimensions of the EEDR. These results are interpreted as further evidence that the EEDR is the region that is relevant to understanding the electron role in the neutral line vicinity.

  9. Nonlinear kinetic effects in inductively coupled plasmas via particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Froese, Aaron; Smolyakov, Andrei; Sydorenko, Dmytro

    2007-11-01

    Kinetic effects in inductively coupled plasmas due to thermal motion of particles modified by self-consistent magnetic fields are studied using a particle-in-cell code. In the low pressure, low frequency regime, electron mean free paths are large relative to device size and the trajectories are strongly curved by the induced rf magnetic field. Analytic linear theories are unable to recover effects accumulated along each nonlinear path. Therefore, the simulated ICP is made progressively more complex to find the source of observed plasma behaviours. With only thermal motion modifying the wave-particle interaction, nonlocal behaviour becomes dominant at low frequencies, causing an anomalous skin effect with increased skin depth and power absorption and decreased ponderomotive force. However, when influenced by magnetic fields, the nonlocal effects are suppressed at large wave amplitudes due to nonlinear trapping. A mechanism is proposed for this low frequency restoration of local behaviour. Finally, a low rate of electron-neutral collisions is found to counteract the nonlinear behaviour, and hence reinforces nonlocal behaviour.

  10. Investigation of Parametric Excitation of Whistler Waves Using 3D Particle-In-Cell Simulations

    NASA Astrophysics Data System (ADS)

    Caplinger, James; Sotnikov, Vladimir; Main, Daniel; Rose, David; Paraschiv, Ioana

    2016-10-01

    Previous theoretical work has shown that a parametric interaction between quasi-electrostatic lower oblique resonance (LOR) and lower frequency (ω < ωLH) ion acoustic or extremely low frequency (ELF) waves can produce electromagnetic whistler waves in a cold magnetized plasma. It was also demonstrated theoretically that this interaction can more efficiently generate electromagnetic whistler waves than by direct excitation by a conventional loop antenna, operating at a single frequency. For the purpose of numerically validating the above result, a series of particle-in-cell simulations were carried out. We first demonstrate the ability to accurately model whistler wave excitation producing the familiar resonant surfaces which comprise the LOR using a modeled loop antenna. Next we demonstrate the ability to generate ion acoustic waves as well as ELF waves, both of which are shown to agree with the expected linear dispersion relations. Finally, we investigate the existence of any nonlinear interaction which indicates the desired parametric excitation and attempt to analyze the efficiency of this method of excitation and radiated power going into the whistler part of the VLF wave spectrum.

  11. Electron Debye scale Kelvin-Helmholtz instability: Electrostatic particle-in-cell simulations

    SciTech Connect

    Lee, Sang-Yun; Lee, Ensang Kim, Khan-Hyuk; Lee, Dong-Hun; Seon, Jongho; Jin, Ho

    2015-12-15

    In this paper, we investigated the electron Debye scale Kelvin-Helmholtz (KH) instability using two-dimensional electrostatic particle-in-cell simulations. We introduced a velocity shear layer with a thickness comparable to the electron Debye length and examined the generation of the KH instability. The KH instability occurs in a similar manner as observed in the KH instabilities in fluid or ion scales producing surface waves and rolled-up vortices. The strength and growth rate of the electron Debye scale KH instability is affected by the structure of the velocity shear layer. The strength depends on the magnitude of the velocity and the growth rate on the velocity gradient of the shear layer. However, the development of the electron Debye scale KH instability is mainly determined by the electric field generated by charge separation. Significant mixing of electrons occurs across the shear layer, and a fraction of electrons can penetrate deeply into the opposite side fairly far from the vortices across the shear layer.

  12. Numerical Uncertainty Estimation for Stochastic Particle-in-Cell Simulations Applied to Verification and Validation

    NASA Astrophysics Data System (ADS)

    Cartwright, Keith

    2015-09-01

    Numerical error estimation is a key component in verification, validation, and uncertainty quantification. For ParticleIn-Cell (PIC) plasma simulations, error estimation is complicated due to the presence of stochastic noise and multiple convergence parameters (grid size, time step, macro particle weight). In this talk, we will discuss recent developments for the Stochastic Richardson Extrapolation Based Error Quantification method (StREEQ). This method at its core is a multi-regression technique, where nine regression models and multiple bootstrap samples propagate uncertainties due to the fit and the stochasticity of the underlying data for an appropriate error model with unknown convergence rates. Recently, automation of the convergence parameter domain selection has been implemented; this enables efficient error estimation for large data sets, including analysis of multiple quantities of interest and time dependent data. This method is demonstrated for verification of both steady and time-periodic electron diodes, as well as validation of radiation generated plasma in an end-radiated cylinder. In collaboration with Gregg Radtke, Sandia National Laboratories. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  13. Electron Debye scale Kelvin-Helmholtz instability: Electrostatic particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Yun; Lee, Ensang; Kim, Khan-Hyuk; Lee, Dong-Hun; Seon, Jongho; Jin, Ho

    2015-12-01

    In this paper, we investigated the electron Debye scale Kelvin-Helmholtz (KH) instability using two-dimensional electrostatic particle-in-cell simulations. We introduced a velocity shear layer with a thickness comparable to the electron Debye length and examined the generation of the KH instability. The KH instability occurs in a similar manner as observed in the KH instabilities in fluid or ion scales producing surface waves and rolled-up vortices. The strength and growth rate of the electron Debye scale KH instability is affected by the structure of the velocity shear layer. The strength depends on the magnitude of the velocity and the growth rate on the velocity gradient of the shear layer. However, the development of the electron Debye scale KH instability is mainly determined by the electric field generated by charge separation. Significant mixing of electrons occurs across the shear layer, and a fraction of electrons can penetrate deeply into the opposite side fairly far from the vortices across the shear layer.

  14. Non-linear evolution of the diocotron instability in a pulsar electrosphere: two-dimensional particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Pétri, J.

    2009-08-01

    Context: The physics of the pulsar magnetosphere near the neutron star surface remains poorly constrained by observations. Indeed, little is known about its emission mechanism, from radio to high-energy X-ray and gamma-rays. Nevertheless, it is believed that large vacuum gaps exist in this magnetosphere, and a non-neutral plasma partially fills the neutron star surroundings to form an electrosphere in differential rotation. Aims: According to several of our previous works, the equatorial disk in this electrosphere is diocotron and magnetron unstable, at least in the linear regime. To better assess the long term evolution of these instabilities, we study the behavior of the non-neutral plasma using particle simulations. Methods: We designed a two-dimensional electrostatic particle-in-cell (PIC) code in cylindrical coordinates, solving Poisson equation for the electric potential. In the diocotron regime, the equation of motion for particles obeys the electric drift approximation. As in the linear study, the plasma is confined between two conducting walls. Moreover, in order to simulate a pair cascade in the gaps, we add a source term feeding the plasma with charged particles having the same sign as those already present in the electrosphere. Results: First we checked our code by looking for the linear development of the diocotron instability in the same regime as the one used in our previous work, for a plasma annulus and for a typical electrosphere with differential rotation. To very good accuracy, we retrieve the same growth rates, supporting the correctness of our PIC code. Next, we consider the long term non-linear evolution of the diocotron instability. We found that particles tend to cluster together to form a small vortex of high charge density rotating around the axis of the cylinder with only little radial excursion of the particles. This grouping of particles generates new low density or even vacuum gaps in the plasma column. Finally, in more general

  15. Lagrangian MHD Particle-in-Cell simulations of coronal interplanetary shocks driven by observations

    NASA Astrophysics Data System (ADS)

    Lapenta, Giovanni; Bacchini, Fabio; Bemporad, Alessandro; Susino, Roberto; Olshevskyi, Vyacheslav

    2016-04-01

    In this work, we compare the spatial distribution of the plasma parameters along the June 11, 1999 CME-driven shock front with the results obtained from a CME-like event simulated with the FLIPMHD3D code, based on the FLIP-MHD Particle-in-Cell (PiC) method. The observational data are retrieved from the combination of white-light (WL) coronagraphic data (for the upstream values) and the application of the Rankine-Hugoniot (RH) equations (for the downstream values). The comparison shows a higher compression ratio X and Alfvénic Mach number MA at the shock nose, and a stronger magnetic field deflection d towards the flanks, in agreement with observations. Then, we compare the spatial distribution of MA with the profiles obtained from the solutions of the shock adiabatic equation relating MA, X, and the angle between the upstream magnetic field and the shock front normal for the special cases of parallel and perpendicular shock, and with a semi-empirical expression for a generically oblique shock. The semi-empirical curve approximates the actual values of MA very well, if the effects of a non-negligible shock thickness and plasma-to magnetic pressure ratio are taken into account throughout the computation. Moreover, the simulated shock turns out to be supercritical at the nose and sub-critical at the flanks. Finally, we develop a new 1D Lagrangian ideal MHD method based on the GrAALE code, to simulate the ion-electron temperature decoupling due to the shock transit. Two models are used, a simple solar wind model and a variable-gamma model. Both produce results in agreement with observations, the second one being capable of introducing the physics responsible for the additional electron heating due to secondary effects (collisions, Alfvén waves, etc.). Work supported by the European Commission under the SWIFF project (swiff.eu)

  16. Colliding Two Shocks: 1-D full Particle-in-Cell Simulation

    NASA Astrophysics Data System (ADS)

    Nakanotani, Masaru; Hada, T.; Matsukiyo, Shuichi; Mazelle, Christian

    2016-07-01

    Shock-shock interactions occur on various places in space and the interaction can produce high energy particles. A coronal mass ejection driven shock can collide with the Earth's bow shock [Hietala et al., 2011]. This study reported that ions are accelerated by the first Fermi acceleration between the two shocks before the collision. An electron acceleration through an interplanetary shock-Earth's bow shock interaction was also reported [Terasawa et al., 1997]. Shock-shock interactions can occur in astrophysical phenomena as well as in the heliosphere. For example, a young supernova shock can collide with the wind termination shock of a massive star if they are close to each other [Bykov et al., 2013]. Although hybrid simulations (ions and electrons treated as super-particles and mass-less fluid, respectively) were carried out to understand the kinetic nature of a shock-shock interaction [Cargill et al., 1986], hybrid simulations cannot resolve electron dynamics and non-thermal electrons. We, therefore, use one-dimensional full particle-in-cell (PIC) simulations to investigate a shock-shock interaction in which two shocks collide head-on. In a case of quasi-perpendicular shocks, electrons are accelerated by the mirror reflection between the two shocks before the collision (Fermi acceleration). On the other hand, because ions cannot go back upstream, the electron acceleration mechanism does not occur for ions. In a case of quasi-parallel shocks, ions can go back upstream and are accelerated at the shocks. The accelerated ions have great effect on the shock structure.

  17. Particle-In-Cell Simulations on Electric Field Antenna Characteristics in the Spacecraft Environment

    NASA Astrophysics Data System (ADS)

    Miyake, Y.; Usui, H.; Kojima, H.; Omura, Y.; Matsumoto, H.

    2006-12-01

    The Solar Terrestrial Physics (STP) group in Japan has organized a new magnetospheric mission named SCOPE whose objective is to investigate the scale-coupling process of plasma dynamics in the Terrestrial magnetosphere. For the sophisticated electric field measurements planned in the SCOPE mission, we have to investigate the antenna characteristics which are essential for the precise calibration of observed data. Particularly, (1) realistic antenna geometries including spacecraft body and (2) inhomogeneous plasma environment created by plasma-spacecraft interactions should be taken into consideration in the antenna analysis for application to the scientific mission. However, the analysis of the antenna impedance is very complex because the plasma is a dispersive and anisotropic medium, and thus it is too difficult to consider the realistic plasma environment near the spacecraft by the theoretical approaches. In the present study, we apply the Particle-In-Cell simulations to the antenna analysis, which enables us to treat the antenna model including a spacecraft body and analyze the effects of photoelectron emission on antenna characteristics. The present antenna model consists of perfect conducting antennas and spacecraft body, and the photoelectron emission from the sunlit surfaces is also modeled. Using these models, we first performed the electrostatic simulations and examined the photoelectron environment around the spacecraft. Next, the antenna impedance under the obtained photoelectron environment was examined by the electromagnetic simulations. Impedance values obtained in photoelectron environment were much different from those in free space, and they were analogous to the impedance characteristics of an equivalent electric circuit consisting of a resistance and capacitance connected in parallel. The validity of the obtained values has been examined by the comparison with the measurements by the scientific spacecraft.

  18. Self-consistent particle-in-cell simulations of fundamental and harmonic plasma radio emission mechanisms

    NASA Astrophysics Data System (ADS)

    Thurgood, J. O.; Tsiklauri, D.

    2015-12-01

    Aims: The simulation of three-wave interaction based plasma emission, thought to be the underlying mechanism for Type III solar radio bursts, is a challenging task requiring fully-kinetic, multi-dimensional models. This paper aims to resolve a contradiction in past attempts, whereby some studies indicate that no such processes occur. Methods: We self-consistently simulate three-wave based plasma emission through all stages by using 2D, fully kinetic, electromagnetic particle-in-cell simulations of relaxing electron beams using the EPOCH2D code. Results: Here we present the results of two simulations; Run 1 (nb/n0 = 0.0057, vb/ Δvb = vb/Ve = 16) and Run 2 (nb/n0 = 0.05, vb/ Δvb = vb/Ve = 8), which we find to permit and prohibit plasma emission respectively. We show that the possibility of plasma emission is contingent upon the frequency of the initial electrostatic waves generated by the bump-in-tail instability, and that these waves may be prohibited from participating in the necessary three-wave interactions due to frequency conservation requirements. In resolving this apparent contradiction through a comprehensive analysis, in this paper we present the first self-consistent demonstration of fundamental and harmonic plasma emission from a single-beam system via fully kinetic numerical simulation. We caution against simulating astrophysical radio bursts using unrealistically dense beams (a common approach which reduces run time), as the resulting non-Langmuir characteristics of the initial wave modes significantly suppresses emission. Comparison of our results also indicates that, contrary to the suggestions of previous authors, an alternative plasma emission mechanism based on two counter-propagating beams is unnecessary in an astrophysical context. Finally, we also consider the action of the Weibel instability which generates an electromagnetic beam mode. As this provides a stronger contribution to electromagnetic energy than the emission, we stress that

  19. Delta-f particle-in-cell simulation of X-B mode conversion

    NASA Astrophysics Data System (ADS)

    Xiang, N.; Cary, J. R.; Barnes, D. C.; Carlsson, J.

    2006-04-01

    Low-noise, delta-f particle-in-cell algorithm has been implemented in VORPAL, a massive parallel, hybrid plasma modeling code (Chet Nieter and John. R. Cary, J. Comp. Physics 196, 448 (2004)). This computation method allows us to simulate the mode conversion between the extraordinary wave (X) and electron Bernstein wave (EBW) in both linear and nonlinear regimes. In the linear regime, it is found that a full X-B mode conversion can be obtained for optimized parameters as φ/φce<2 (φ is the driving frequency and φce is the electron cyclotron frequency). No 100% conversion is found for φ/φce moderately larger than 2. The simulation results agree with the predictions of Ram's theory (Ram & Schultz, Phys. Plasma 4084 (2000)). The agreement indicates that X-B mode conversion can be well described by the quadratic wave equation based on cold plasma approximation, and this is consistent with the phase-space picture of mode conversion. It is also shown that the conversion efficiency is significantly affected by the gradient of magnetic fields. When the amplitude of the incident X wave increases, it is shown that the nonlinear self-interaction of the electron converted EBW gives rise to the second harmonic generation at a pump power as low as three orders smaller than the electron thermal energy. If the fundamental EBW is sufficiently large, the non-propagating third and fourth harmonic modes are also generated. *The work was supported by DOE Contract No.DE-FG02-04ER54735.

  20. Revealing the sub-structures of the magnetic reconnection separatrix via particle-in-cell simulation

    SciTech Connect

    Zhou, M.; Deng, X. H.; Pang, Y.; Xu, X. J.; Yao, M.; Huang, S. Y.; Yuan, Z. G.; Li, H. M.; Wang, D. D.; Wang, Y. H.

    2012-07-15

    Magnetic separatrix is an important boundary layer separating the inflow and outflow regions in magnetic reconnection. In this article, we investigate the sub-structures of the separatrix region by using two-and-half dimensional electromagnetic particle-in-cell simulation. The separatrix region can be divided into two sub-regions in terms of the ion and electron frozen-in conditions. Far from the neutral sheet, ions and electrons are magnetized in magnetic fields. Approaching the neutral sheet, ion frozen-in condition is broken in a narrow region ({approx}c/{omega}{sub pi}) at the edge of a density cavity, while electrons are frozen-in to magnetic fields. In this region, electric field E{sub z} is around zero, and the convective term -(v{sub i} Multiplication-Sign B) is balanced by the Hall term in the generalized Ohm's law because ions carry the perpendicular current. Inside the density cavity, both ion and electron frozen-in conditions are broken. The region consists of two sub-ion or electron-scale layers, which contain intense electric fields. Formation of the two sub-layers is due to the complex electron flow pattern around the separatrix region. In the layer, E{sub z} is balanced by a combination of Hall term and the divergence of electron pressure tensor, with the Hall term being dominant. Our preliminary simulation result shows that the separatrix region in guide field reconnection also contains two sub-regions: the inner region and the outer region. However, the inner region contains only one current layer in contrast with the case without guide field.

  1. Ab Initio Petaflop-scale Particle-in-Cell Simulation of Laser-Plasma Interaction

    NASA Astrophysics Data System (ADS)

    Albright, Brian

    2008-11-01

    Large three-dimensional (3D) particle-in-cell (PIC) simulations have been performed using the VPIC code on some of the world's largest supercomputers, including the Roadrunner supercomputer, the first machine capable of a petaflop/s. These simulations have revealed the complex physical mechanisms underlying laser-plasma interactions and show an emerging universal picture of nonlinear saturation of LPI in the kinetic regime. Moreover, with the advent of peta-scale computing, we are entering an era of ``at-scale'' modeling necessary to understand the essential nonlinearity of LPI in solitary laser speckles, the building-blocks of multi-speckle beams. Under NIF-relevant conditions, stimulated Raman scattering (SRS) vs. speckle intensity shows a sharp onset at a threshold intensity (below linear estimates) and saturation at higher intensity, as validated in Trident experiments. Wavefront bowing of electron plasma waves (EPW) from trapped electron nonlinear frequency shift and amplitude-dependent damping is observed in 3D. This is followed by trapped particle modulational instability, which evolves nonlinearly into self-focusing, rapid transverse EPW phase variation, increased loss of trapped electrons, and EPW damping. In 3D, EPW turbulence may also exhibit loss of coherence through azimuthal filamentation. This reduction of source coherence for backscattered light and increased damping limit how much backscatter can obtain in a speckle. In addition, 3D modeling of novel ultraintense laser-ion acceleration mechanisms will be shown. Collaborators: L. Yin, K. J. Bowers, B. Bergen, D. S. Montgomery, J. L. Kline, H. A. Rose, B. M. Hegelich, K. A. Flippo, J. C. Fern'andez.

  2. Particle in Cell Simulations of the Pulsar Y-Point -- Nature of the Accelerating Electric Field

    NASA Astrophysics Data System (ADS)

    Belyaev, Mikhail

    2016-06-01

    Over the last decade, satellite observations have yielded a wealth of data on pulsed high-energy emission from pulsars. Several different models have been advanced to fit this data, all of which “paint” the emitting region onto a different portion of the magnetosphere.In the last few years, particle in cell simulations of pulsar magnetospheres have reached the point where they are able to self-consistently model particle acceleration and dissipation. One of the key findings of these simulations is that the region of the current sheet in and around the Y-point provides the highest rate of dissipation of Poynting flux (Belyaev 2015a). On the basis of this physical evidence, it is quite plausible that this region should be associated with the pulsed high energy emission from pulsars. We present high resolution PIC simulations of an axisymmetric pulsar magnetosphere, which are run using PICsar (Belyaev 2015b). These simulations focus on the particle dynamics and electric fields in and around the Y-point region. We run two types of simulations -- first, a force-free magnetosphere and second, a magnetosphere with a gap between the return current layer and the outflowing plasma in the polar wind zone. The latter setup is motivated by studies of pair production with general relativity (Philippov et al. 2015, Belyaev & Parfrey (in preparation)). In both cases, we find that the Y-point and the current sheet in its direct vicinity act like an “electric particle filter” outwardly accelerating particles of one sign of charge while returning the other sign of charge back to the pulsar. We argue that this is a natural behavior of the plasma as it tries to adjust to a solution that is as close to force-free as possible. As a consequence, a large E dot J develops in the vicinity of the Y-point leading to dissipation of Poynting flux. Our work is relevant for explaining the plasma physical mechanisms underlying pulsed high energy emission from pulsars.

  3. Magnetospheric Simulations With the Three-Dimensional Magnetohydrodynamics With Embedded Particle-in-Cell Model

    NASA Astrophysics Data System (ADS)

    Toth, G.; Jia, X.; Chen, Y.; Markidis, S.; Peng, B.; Daldorff, L. K. S.; Tenishev, V.; Borovikov, D.; Haiducek, J. D.; Gombosi, T. I.; Glocer, A.; Dorelli, J.; Lapenta, G.

    2015-12-01

    We have recently developed a new modeling capability to embed the implicit Particle-in-Cell (PIC) model iPIC3D into the BATS-R-US magnetohydrodynamic model. The PIC domain can cover the regions where kinetic effects are most important, such as reconnection sites. The BATS-R-US code, on the other hand, can efficiently handle the rest of the computational domain where the MHD or Hall MHD description is sufficient with its block-adaptive grid. The current implementation of the MHD-EPIC model allows two-way coupled simulations in two and three dimensions with multiple embedded PIC regions. The MHD and PIC grids can have different grid resolutions. The MHD variables and the moments of the PIC distribution functions are interpolated and message passed in an efficient manner through the Space Weather Modeling Framework (SWMF). Both BATS-R-US and iPIC3D are massively parallel codes fully integrated into, run by and coupled through the SWMF. We have successfully applied the MHD-EPIC code to model Ganymede's magnetosphere. Using four PIC regions we have in effect performed a fully kinetic simulation of the moon's mini-magnetosphere with a grid resolution that is about 5 times finer than the ion inertial length. The Hall MHD model provides proper boundary conditions for the four PIC regions and connects them with each other and with the inner and outer outer boundary conditions of the much larger MHD domain. We compare our results with Galileo magnetic observations and find good overall agreement with both Hall MHD and MHD-EPIC simulations. The power spectrum for the small scale fluctuations, however, agrees with the data much better for the MHD-EPIC simulation than for Hall MHD. In the MHD-EPIC simulation, unlike in the pure Hall MHD results, we also find signatures of flux transfer events (FTEs) that agree very well with the observed FTE signatures both in terms of shape and amplitudes. We will also highlight our ongoing efforts to model the magnetospheres of Mercury and

  4. Transverse instability and the structure of two-dimensional electron holes: particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Lu, Q.; Wu, M.; Huang, C.; Wang, S.

    2011-12-01

    A multi-dimensional electron phase-space hole (electron hole) is considered to be unstable to the transverse instability. We perform two-dimensional (2D) particle-in-cell (PIC) simulations to study the evolution of electron holes at different plasma conditions; we find that the evolution is determined by combined actions between the transverse instability and the stabilization by the ackground magnetic field. In very weakly magnetized plasma, the transverse instability dominates the evolution of the electron holes. The parallel cut of the perpendicular electric field has bipolar structures, accompanied by the kinking of the electron holes. Such structures last for only tens of electron plasma periods. With the increase of the background magnetic field, the evolution of the electron holes becomes slower. The bipolar structures of the parallel cut of the perpendicular electric field in the electron holes can evolve into unipolar structures. In very strongly magnetized plasma, the unipolar structures of the parallel cut of the perpendicular electric field can last for thousands of electron plasma periods. At the same time, the perpendicular electric field in the electron holes can also influence electron trajectories passing through the electron holes, which results in variations of charge density along the direction perpendicular to the background magnetic field outside of the electron holes. When the amplitude of the electron hole is sufficiently strong, streaked structures of the perpendicular electric field can be formed outside of the electron holes, which then emit electrostatic whistler waves because of the interactions between the streaked structures of the perpendicular electric field and vibrations of the kinked electron holes.

  5. Gyrokinetic particle-in-cell simulations of Alfvén eigenmodes in presence of continuum effects

    SciTech Connect

    Mishchenko, Alexey Könies, Axel; Hatzky, Roman

    2014-05-15

    First-principle gyrokinetic particle-in-cell simulations of a global Toroidal Alfvén Eigenmode (TAE) are undertaken in the presence of a strong coupling with the continuum. Effects of the bulk plasma temperature on the interplay between the TAE and Kinetic Alfvén Waves (KAWs) are investigated. A global TAE-KAW structure is identified which appears to be more unstable with respect to the fast ions than a simple (fluid-like) TAE mode.

  6. Particle-in-cell simulations of the critical ionization velocity effect in finite size clouds

    NASA Technical Reports Server (NTRS)

    Moghaddam-Taaheri, E.; Lu, G.; Goertz, C. K.; Nishikawa, K. - I.

    1994-01-01

    The critical ionization velocity (CIV) mechanism in a finite size cloud is studied with a series of electrostatic particle-in-cell simulations. It is observed that an initial seed ionization, produced by non-CIV mechanisms, generates a cross-field ion beam which excites a modified beam-plasma instability (MBPI) with frequency in the range of the lower hybrid frequency. The excited waves accelerate electrons along the magnetic field up to the ion drift energy that exceeds the ionization energy of the neutral atoms. The heated electrons in turn enhance the ion beam by electron-neutral impact ionization, which establishes a positive feedback loop in maintaining the CIV process. It is also found that the efficiency of the CIV mechanism depends on the finite size of the gas cloud in the following ways: (1) Along the ambient magnetic field the finite size of the cloud, L (sub parallel), restricts the growth of the fastest growing mode, with a wavelength lambda (sub m parallel), of the MBPI. The parallel electron heating at wave saturation scales approximately as (L (sub parallel)/lambda (sub m parallel)) (exp 1/2); (2) Momentum coupling between the cloud and the ambient plasma via the Alfven waves occurs as a result of the finite size of the cloud in the direction perpendicular to both the ambient magnetic field and the neutral drift. This reduces exponentially with time the relative drift between the ambient plasma and the neutrals. The timescale is inversely proportional to the Alfven velocity. (3) The transvers e charge separation field across the cloud was found to result in the modulation of the beam velocity which reduces the parallel heating of electrons and increases the transverse acceleration of electrons. (4) Some energetic electrons are lost from the cloud along the magnetic field at a rate characterized by the acoustic velocity, instead of the electron thermal velocity. The loss of energetic electrons from the cloud seems to be larger in the direction of

  7. Computer simulation of phase locking multi-cavity relativistic gyrotrons

    NASA Astrophysics Data System (ADS)

    Lin, A. T.; Yang, Z. H.; Lin, Chih-Chien

    1989-07-01

    A particle-in-cell model has been employed to investigate the phase-locking phenomenon of multi-cavity relativistic gyrotron oscillators. Simulation results show that a prebunched beam causes the output wave to overshoot, which in turn prolongs the time for establishing phase locking. The beam axial velocity spread is observed to reduce the locking bandwidth. The phenomenon of priming or injection seeding is simulated. The phase locked time depends on the growth rate of the oscillator and the amount of inject frequency deviation from the locking boundary.

  8. Benchmarking Particle-in-Cell drift wave simulations with Eulerian simulations in a flux-tube

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Parker, Scott; Wan, Weigang; Bravenec, Ronald; Wang, Eric; Candy, Jeff

    2012-10-01

    We present the implementation of a flux-tube option in the global turbulence code GEM.footnotetextY. Chen and S. E. Parker, J. Comp. Phys. 220, 839 (2007) This is necessary for benchmarking purposes because of the immense complexity involved in comparing global simulations. The global GEM assumes the magnetic equilibrium to be completely given. Our initial flux-tube implementation simply selects a radial location as the center of the flux-tube and a radial size of the flux-tube, sets all equilibrium quantities (B, ∇B, T, ∇T, the Jacobian etc.) to be equal to their values at the center of the flux-tube, and retains only a linear radial profile of the safety factor needed for boundary conditions. We found good agreement between GEM and GYRO/GS2 for the mode frequency/growth rate in the case of adiabatic electrons, but a difference of ˜15% in the growth rates when kinetic electrons are included. Our goal is to understand the origin of this moderate disagreement. An alternative local geometry model based on a local solution of the Grad-Shafranov equationfootnotetextJ. Candy, Plasma Phys. Control. Fusion 51, 105009 (2009) has been implemented and new benchmarking results from this model will be presented.

  9. Fluid preconditioning for Newton–Krylov-based, fully implicit, electrostatic particle-in-cell simulations

    SciTech Connect

    Chen, G.; Chacón, L.; Leibs, C.A.; Knoll, D.A.; Taitano, W.

    2014-02-01

    A recent proof-of-principle study proposes an energy- and charge-conserving, nonlinearly implicit electrostatic particle-in-cell (PIC) algorithm in one dimension [9]. The algorithm in the reference employs an unpreconditioned Jacobian-free Newton–Krylov method, which ensures nonlinear convergence at every timestep (resolving the dynamical timescale of interest). Kinetic enslavement, which is one key component of the algorithm, not only enables fully implicit PIC as a practical approach, but also allows preconditioning the kinetic solver with a fluid approximation. This study proposes such a preconditioner, in which the linearized moment equations are closed with moments computed from particles. Effective acceleration of the linear GMRES solve is demonstrated, on both uniform and non-uniform meshes. The algorithm performance is largely insensitive to the electron–ion mass ratio. Numerical experiments are performed on a 1D multi-scale ion acoustic wave test problem.

  10. A particle-in-cell method for the simulation of plasmas based on an unconditionally stable field solver

    NASA Astrophysics Data System (ADS)

    Wolf, Eric M.; Causley, Matthew; Christlieb, Andrew; Bettencourt, Matthew

    2016-12-01

    We propose a new particle-in-cell (PIC) method for the simulation of plasmas based on a recently developed, unconditionally stable solver for the wave equation. This method is not subject to a CFL restriction, limiting the ratio of the time step size to the spatial step size, typical of explicit methods, while maintaining computational cost and code complexity comparable to such explicit schemes. We describe the implementation in one and two dimensions for both electrostatic and electromagnetic cases, and present the results of several standard test problems, showing good agreement with theory with time step sizes much larger than allowed by typical CFL restrictions.

  11. Study of strong enhancement of synchrotron radiation via surface plasma waves excitation by particle-in-cell simulations

    SciTech Connect

    Pan, K. Q.; Zheng, C. Y. Cao, L. H.; He, X. T.; Wu, Dong; Liu, Z. J.

    2015-11-02

    Synchrotron radiation is strongly enhanced by the resonant excitation of surface plasma waves (SPWs). Two-dimensional particle-in-cell simulations show that energy conversion efficiency from laser to radiation in the case of SPWs excitation is about 18.7%, which is improved by more than 2 orders of magnitude compared with that of no SPWs excitation. Besides the high energy conversion efficiency, the frequency spectrum and the angular distribution of the radiation are also improved in the case of SPWs excitation because of the quasi-static magnet field induced by surface plasma waves excitation.

  12. A particle-in-cell method for the simulation of plasmas based on an unconditionally stable field solver

    SciTech Connect

    Wolf, Eric M.; Causley, Matthew; Christlieb, Andrew; Bettencourt, Matthew

    2016-08-09

    Here, we propose a new particle-in-cell (PIC) method for the simulation of plasmas based on a recently developed, unconditionally stable solver for the wave equation. This method is not subject to a CFL restriction, limiting the ratio of the time step size to the spatial step size, typical of explicit methods, while maintaining computational cost and code complexity comparable to such explicit schemes. We describe the implementation in one and two dimensions for both electrostatic and electromagnetic cases, and present the results of several standard test problems, showing good agreement with theory with time step sizes much larger than allowed by typical CFL restrictions.

  13. Output power fluctuations due to different weights of macro particles used in particle-in-cell simulations of Cerenkov devices

    NASA Astrophysics Data System (ADS)

    Bao, Rong; Wang, Hongguang; Li, Yongdong; Liu, Chunliang

    2016-07-01

    The output power fluctuations caused by weights of macro particles used in particle-in-cell (PIC) simulations of a backward wave oscillator and a travelling wave tube are statistically analyzed. It is found that the velocities of electrons passed a specific slow-wave structure form a specific electron velocity distribution. The electron velocity distribution obtained in PIC simulation with a relative small weight of macro particles is considered as an initial distribution. By analyzing this initial distribution with a statistical method, the estimations of the output power fluctuations caused by different weights of macro particles are obtained. The statistical method is verified by comparing the estimations with the simulation results. The fluctuations become stronger with increasing weight of macro particles, which can also be determined reversely from estimations of the output power fluctuations. With the weights of macro particles optimized by the statistical method, the output power fluctuations in PIC simulations are relatively small and acceptable.

  14. Influence of the parallel nonlinearity on zonal flows and heat transport in global gyrokinetic particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Jolliet, S.; McMillan, B. F.; Vernay, T.; Villard, L.; Hatzky, R.; Bottino, A.; Angelino, P.

    2009-07-01

    In this paper, the influence of the parallel nonlinearity on zonal flows and heat transport in global particle-in-cell ion-temperature-gradient simulations is studied. Although this term is in theory orders of magnitude smaller than the others, several authors [L. Villard, P. Angelino, A. Bottino et al., Plasma Phys. Contr. Fusion 46, B51 (2004); L. Villard, S. J. Allfrey, A. Bottino et al., Nucl. Fusion 44, 172 (2004); J. C. Kniep, J. N. G. Leboeuf, and V. C. Decyck, Comput. Phys. Commun. 164, 98 (2004); J. Candy, R. E. Waltz, S. E. Parker et al., Phys. Plasmas 13, 074501 (2006)] found different results on its role. The study is performed using the global gyrokinetic particle-in-cell codes TORB (theta-pinch) [R. Hatzky, T. M. Tran, A. Könies et al., Phys. Plasmas 9, 898 (2002)] and ORB5 (tokamak geometry) [S. Jolliet, A. Bottino, P. Angelino et al., Comput. Phys. Commun. 177, 409 (2007)]. In particular, it is demonstrated that the parallel nonlinearity, while important for energy conservation, affects the zonal electric field only if the simulation is noise dominated. When a proper convergence is reached, the influence of parallel nonlinearity on the zonal electric field, if any, is shown to be small for both the cases of decaying and driven turbulence.

  15. Fully implicit Particle-in-cell algorithms for multiscale plasma simulation

    SciTech Connect

    Chacon, Luis

    2015-07-16

    The outline of the paper is as follows: Particle-in-cell (PIC) methods for fully ionized collisionless plasmas, explicit vs. implicit PIC, 1D ES implicit PIC (charge and energy conservation, moment-based acceleration), and generalization to Multi-D EM PIC: Vlasov-Darwin model (review and motivation for Darwin model, conservation properties (energy, charge, and canonical momenta), and numerical benchmarks). The author demonstrates a fully implicit, fully nonlinear, multidimensional PIC formulation that features exact local charge conservation (via a novel particle mover strategy), exact global energy conservation (no particle self-heating or self-cooling), adaptive particle orbit integrator to control errors in momentum conservation, and canonical momenta (EM-PIC only, reduced dimensionality). The approach is free of numerical instabilities: ωpeΔt >> 1, and Δx >> λD. It requires many fewer dofs (vs. explicit PIC) for comparable accuracy in challenging problems. Significant CPU gains (vs explicit PIC) have been demonstrated. The method has much potential for efficiency gains vs. explicit in long-time-scale applications. Moment-based acceleration is effective in minimizing NFE, leading to an optimal algorithm.

  16. Numerical simulation of quantum systems using the Particle-In-Cell method

    NASA Astrophysics Data System (ADS)

    Dirkmann, Sven; Youssef, Ziad; Hemke, Torben; Mussenbrock, Thomas

    2014-10-01

    The Particle-In-Cell (PIC) method is a very powerful method for studying the dynamics of plasmas. It has been primarily developed for tracking the charged particle trajectories subject to selfconsistent and external electromagnetic fields. Exploiting the power of modern computers, one is able to track the classical paths of tens of millions of particles at the same time. In the late 1980th, it was Dawson (and later Dauger) who had the idea to apply the PIC method to the classical part in the semiclassical approach to quantum systems via path integral methods. One could estimate that if a thousands of classical paths are sufficient to describe the dynamics of one quantum particle, then millions classical paths could describe the dynamics of a quantum particle system. A PIC code in the frame of a semiclassical approach would therefore enable the investigation of a number of quantum phenomena, e.g., optical properties, electrical properties, and, ultimately, chemical reactions. In this contribution we explain the use of the PIC code yapic (developed by the authors) in the frame of the path integral method and discuss the numerical results for simple quantum phenomena, i.e., the quantum harmonic oscillator and quantum tunneling. This work is supported by the German Research Foundation in the frame of FOR 2093.

  17. Particle-in-cell δf gyrokinetic simulations of the microtearing mode

    SciTech Connect

    Chowdhury, J.; Chen, Yang; Wan, Weigang; Parker, Scott E.; Guttenfelder, W.; Canik, J. M.

    2016-01-15

    The linear stability properties of the microtearing mode are investigated in the edge and core regimes of the National Spherical Torus Experiment (NSTX) using the particle-in-cell method based gyrokinetic code GEM. The dependence of the mode on various equilibrium quantities in both regions is compared. While the microtearing mode in the core depends upon the electron-ion collisions, in the edge region, it is found to be weakly dependent on the collisions and exists even when the collision frequency is zero. The electrostatic potential is non-negligible in each of the cases. It plays opposite roles in the core and edge of NSTX. While the microtearing mode is partially stabilized by the electrostatic potential in the core, it has substantial destabilizing effect in the edge. In addition to the spherical tokamak, we also study the microtearing mode for parameters relevant to the core of a standard tokamak. The fundamental characteristics of the mode remain the same; however, the electrostatic potential in this case is destabilizing as opposed to the core of NSTX. The velocity dependence of the collision frequency, which is crucial for the mode to grow in slab calculations, is not required to destabilize the mode in toroidal devices.

  18. Particle-in-cell simulations of discharges with intense electron emission

    NASA Astrophysics Data System (ADS)

    Sydorenko, Dmytro

    2013-09-01

    In many plasma devices, the plasma is bounded by walls which emit electrons due to secondary electron emission or thermionic emission. At low pressures, the electron mean free path exceeds the plasma dimensions, and the emitted electrons accelerated by the intense electric field of the near-wall sheath propagate through the plasma as an electron beam. The beam dynamics in a finite length system is different from theoretical predictions for infinite or periodic plasmas. This presentation gives a summary of numerical studies of beam-plasma interaction in Hall thrusters and dc discharges carried out with a particle-in-cell code. The code resolves one spatial coordinate and three velocity components, it is based on the direct implicit algorithm, the electron-to-ion mass ratio is realistic, numerous collisions between electrons and neutrals and the Coulomb collisions are included, code performance is enhanced with the help of MPI parallelization. The following effects are discussed: vanishing of the two-stream instability due to modification of the bulk electron velocity distribution, sheath instability in Hall thrusters, intermittency and multiple regimes of the two-stream instability in dc discharges. In collaboration with I. D. Kaganovich, Y. Raitses, A. V. Khrabrov (Princeton Plasma Physics Laboratory, Princeton, NJ), P. L. G. Ventzek, L. Chen (Tokyo Electron America, Austin, TX), A. Smolyakov (University of Saskatchewan, Saskatoon, SK, Canada).

  19. The Convergence of Particle-in-Cell Schemes for Cosmological Dark Matter Simulations

    NASA Astrophysics Data System (ADS)

    Myers, Andrew; Colella, Phillip; Van Straalen, Brian

    2016-01-01

    Particle methods are a ubiquitous tool for solving the Vlasov-Poisson equation in comoving coordinates, which is used to model the gravitational evolution of dark matter (DM) in an expanding universe. However, these methods are known to produce poor results on idealized test problems, particularly at late times, after the particle trajectories have crossed. To investigate this, we have performed a series of one- and two-dimensional “Zel’dovich pancake” calculations using the popular particle-in-cell (PIC) method. We find that PIC can indeed converge on these problems provided that the following modifications are made. The first modification is to regularize the singular initial distribution function by introducing a small but finite artificial velocity dispersion. This process is analogous to artificial viscosity in compressible gas dynamics, and, as with artificial viscosity, the amount of regularization can be tailored so that its effect outside of a well-defined region—in this case, the high-density caustics—is small. The second modification is the introduction of a particle remapping procedure that periodically reexpresses the DM distribution function using a new set of particles. We describe a remapping algorithm that is third-order accurate and adaptive in phase space. This procedure prevents the accumulation of numerical errors in integrating the particle trajectories from growing large enough to significantly degrade the solution. Once both of these changes are made, PIC converges at second order on the Zel’dovich pancake problem, even at late times, after many caustics have formed. Furthermore, the resulting scheme does not suffer from the unphysical, small-scale “clumping” phenomenon known to occur on the pancake problem when the perturbation wavevector is not aligned with one of the Cartesian coordinate axes.

  20. THE CONVERGENCE OF PARTICLE-IN-CELL SCHEMES FOR COSMOLOGICAL DARK MATTER SIMULATIONS

    SciTech Connect

    Myers, Andrew; Colella, Phillip; Van Straalen, Brian

    2016-01-10

    Particle methods are a ubiquitous tool for solving the Vlasov–Poisson equation in comoving coordinates, which is used to model the gravitational evolution of dark matter (DM) in an expanding universe. However, these methods are known to produce poor results on idealized test problems, particularly at late times, after the particle trajectories have crossed. To investigate this, we have performed a series of one- and two-dimensional “Zel’dovich pancake” calculations using the popular particle-in-cell (PIC) method. We find that PIC can indeed converge on these problems provided that the following modifications are made. The first modification is to regularize the singular initial distribution function by introducing a small but finite artificial velocity dispersion. This process is analogous to artificial viscosity in compressible gas dynamics, and, as with artificial viscosity, the amount of regularization can be tailored so that its effect outside of a well-defined region—in this case, the high-density caustics—is small. The second modification is the introduction of a particle remapping procedure that periodically reexpresses the DM distribution function using a new set of particles. We describe a remapping algorithm that is third-order accurate and adaptive in phase space. This procedure prevents the accumulation of numerical errors in integrating the particle trajectories from growing large enough to significantly degrade the solution. Once both of these changes are made, PIC converges at second order on the Zel’dovich pancake problem, even at late times, after many caustics have formed. Furthermore, the resulting scheme does not suffer from the unphysical, small-scale “clumping” phenomenon known to occur on the pancake problem when the perturbation wavevector is not aligned with one of the Cartesian coordinate axes.

  1. Variational symplectic particle-in-cell simulation of nonlinear mode conversion from extraordinary waves to Bernstein waves

    SciTech Connect

    Xiao, Jianyuan; Liu, Jian; Qin, Hong; Yu, Zhi; Xiang, Nong

    2015-09-15

    In this paper, the nonlinear mode conversion of extraordinary waves in nonuniform magnetized plasmas is studied using the variational symplectic particle-in-cell simulation. The accuracy of the nonlinear simulation is guaranteed by the long-term accuracy and conservativeness of the symplectic algorithm. The spectra of the electromagnetic wave, the evolution of the wave reflectivity, the energy deposition profile, and the parameter-dependent properties of radio-frequency waves during the nonlinear mode conversion are investigated. It is illustrated that nonlinear effects significantly modify the physics of the radio-frequency injection in magnetized plasmas. The evolutions of the radio-frequency wave reflectivity and the energy deposition are observed, as well as the self-interaction of the Bernstein waves and mode excitations. Even for waves with small magnitude, nonlinear effects can also become important after continuous wave injections, which are common in the realistic radio-frequency wave heating and current drive experiments.

  2. Dynamics of positive probes in underdense, strongly magnetized, E×B drifting plasma: Particle-in-cell simulations

    SciTech Connect

    Heinrich, Jonathon R.; Cooke, David L.

    2013-09-15

    Electron trapping, electron heating, space-charge wings, wake eddies, and current collection by a positive probe in E×B drifting plasma were studied in three-dimensional electromagnetic particle-in-cell simulations. In these simulations, electrons and ions were magnetized with respect to the probe and the plasma was underdense (ω{sub pe}<ω{sub ce}). A large drift velocity (Mach 4.5 with respect to the ion acoustic speed) between the plasma and probe was created with background electric and magnetic fields. Four distinct regions developed in the presences of the positive probe: a quasi-trapped electron region, an electron-depletion wing, an ion-rich wing, and a wake region. We report on the observations of strong electron heating mechanisms, space-charge wings, ion cyclotron charge-density eddies in the wake, electron acceleration due to a magnetic presheath, and the current-voltage relationship.

  3. TWO-DIMENSIONAL PARTICLE-IN-CELL SIMULATIONS OF THE NONRESONANT, COSMIC-RAY-DRIVEN INSTABILITY IN SUPERNOVA REMNANT SHOCKS

    SciTech Connect

    Ohira, Yutaka; Takahara, Fumio; Reville, Brian; Kirk, John G.

    2009-06-10

    In supernova remnants, the nonlinear amplification of magnetic fields upstream of collisionless shocks is essential for the acceleration of cosmic rays to the energy of the 'knee' at 10{sup 15.5} eV. A nonresonant instability driven by the cosmic ray current is thought to be responsible for this effect. We perform two-dimensional, particle-in-cell simulations of this instability. We observe an initial growth of circularly polarized nonpropagating magnetic waves as predicted in linear theory. It is demonstrated that in some cases the magnetic energy density in the growing waves can grow to at least 10 times its initial value. We find no evidence of competing modes, nor of significant modification by thermal effects. At late times, we observe saturation of the instability in the simulation, but the mechanism responsible is an artifact of the periodic boundary conditions and has no counterpart in the supernova-shock scenario.

  4. Electromagnetic 2D/3D Particle-in-Cell simulations of the solar wind interaction with lunar crustal anomalies.

    NASA Astrophysics Data System (ADS)

    Deca, Jan; Lapenta, Giovanni; Lembège, Bertrand; Divin, Andrey; Markidis, Stefano; Amaya, Jorge

    2013-04-01

    We present the first 2D/3D fully kinetic Particle-in-Cell simulations of the solar wind interaction with lunar crustal magnetic anomalies. The simulations are performed using the implicit electromagnetic Particle-in-Cell code iPIC3D [Markidis, Lapenta & Rizwan-uddin, 2010]. Multiscale physics is resolved for all plasma components (heavy ions, protons and electrons) in the code, recently updated with a set of open boundary conditions designed for solar wind-body interactions. We use a dipole to model the crustal anomaly. The dipole center is located outside the computational domain and the boundary representing the lunar surface is modeled as a particle-absorbing plane. Photo-emission from the lunar surface is at this point not included, but will be in future work. We study the behaviour of the dipole model with variable surface magnetic field strength under changing solar wind conditions and confirm that lunar crustal magnetic fields may indeed be strong enough to stand off the solar wind and form a mini-magnetosphere, as suggested by MHD simulations [Harnett & Winglee, 2000, 2002, 2003] and spacecraft observations [Kurata et al., 2005; Halekas et al., 2008; Wieser et al., 2010]. 3D-PIC simulations reveal to be very helpful to analyze the diversion/braking of the particle flux and the characteristics of the resulting particles accumulation. The particle flux to the surface is significantly reduced at the magnetic anomaly, surrounded by a region of enhanced density due to the magnetic mirror effect. Finally we will present preliminary results on the interaction of the solar wind with weaker magnetic anomalies in which highly non-adiabatic interactions are expected.

  5. Particle-In-Cell (PIC) code simulation results and comparison with theory scaling laws for photoelectron-generated radiation

    SciTech Connect

    Dipp, T.M. |

    1993-12-01

    The generation of radiation via photoelectrons induced off of a conducting surface was explored using Particle-In-Cell (PIC) code computer simulations. Using the MAGIC PIC code, the simulations were performed in one dimension to handle the diverse scale lengths of the particles and fields in the problem. The simulations involved monoenergetic, nonrelativistic photoelectrons emitted normal to the illuminated conducting surface. A sinusoidal, 100% modulated, 6.3263 ns pulse train, as well as unmodulated emission, were used to explore the behavior of the particles, fields, and generated radiation. A special postprocessor was written to convert the PIC code simulated electron sheath into far-field radiation parameters by means of rigorous retarded time calculations. The results of the small-spot PIC simulations were used to generate various graphs showing resonance and nonresonance radiation quantities such as radiated lobe patterns, frequency, and power. A database of PIC simulation results was created and, using a nonlinear curve-fitting program, compared with theoretical scaling laws. Overall, the small-spot behavior predicted by the theoretical scaling laws was generally observed in the PIC simulation data, providing confidence in both the theoretical scaling laws and the PIC simulations.

  6. Mesh refinement for particle-in-cell plasma simulations: Applications to - and benefits for - heavy ion fusion

    SciTech Connect

    Vay, J.L.; Colella, P.; McCorquodale, P.; Van Straalen, B.; Friedman, A.; Grote, D.P.

    2002-05-24

    The numerical simulation of the driving beams in a heavy ion fusion power plant is a challenging task, and simulation of the power plant as a whole, or even of the driver, is not yet possible. Despite the rapid progress in computer power, past and anticipated, one must consider the use of the most advanced numerical techniques, if they are to reach the goal expeditiously. One of the difficulties of these simulations resides in the disparity of scales, in time and in space, which must be resolved. When these disparities are in distinctive zones of the simulation region, a method which has proven to be effective in other areas (e.g., fluid dynamics simulations) is the mesh refinement technique. They discuss the challenges posed by the implementation of this technique into plasma simulations (due to the presence of particles and electromagnetic waves). They present the prospects for and projected benefits of its application to heavy ion fusion, in particular to the simulation of the ion source and the final beam propagation in the chamber. A Collaboration project is under way at LBNL between the Applied Numerical Algorithms Group (ANAG) and the HIF group to couple the Adaptive Mesh Refinement (AMR) library CHOMBO developed by the ANAG group to the Particle-In-Cell accelerator code (WARP) developed by the HIF-VNL. They describe their progress and present their initial findings.

  7. First principles simulation of laser-induced periodic surface structure using the particle-in-cell method

    NASA Astrophysics Data System (ADS)

    Mitchell, Robert A.; Schumacher, Douglass W.; Chowdhury, Enam A.

    2015-11-01

    We present our results of a fundamental simulation of a periodic grating structure formation on a copper target during the femtosecond-pulse laser damage process, and compare our results to recent experiment. The particle-in-cell (PIC) method is used to model the initial laser heating of the electrons, a two-temperature model (TTM) is used to model the thermalization of the material, and a modified PIC method is employed to model the atomic transport leading to a damage crater morphology consistent with experimental grating structure formation. This laser-induced periodic surface structure (LIPSS) is shown to be directly related to the formation of surface plasmon polaritons (SPP) and their interference with the incident laser pulse.

  8. Multirate Particle-in-Cell Time Integration Techniques of Vlasov-Maxwell Equations for Collisionless Kinetic Plasma Simulations

    SciTech Connect

    Chen, Guangye; Chacon, Luis; Knoll, Dana Alan; Barnes, Daniel C

    2015-07-31

    A multi-rate PIC formulation was developed that employs large timesteps for slow field evolution, and small (adaptive) timesteps for particle orbit integrations. Implementation is based on a JFNK solver with nonlinear elimination and moment preconditioning. The approach is free of numerical instabilities (ωpeΔt >>1, and Δx >> λD), and requires many fewer dofs (vs. explicit PIC) for comparable accuracy in challenging problems. Significant gains (vs. conventional explicit PIC) may be possible for large scale simulations. The paper is organized as follows: Vlasov-Maxwell Particle-in-cell (PIC) methods for plasmas; Explicit, semi-implicit, and implicit time integrations; Implicit PIC formulation (Jacobian-Free Newton-Krylov (JFNK) with nonlinear elimination allows different treatments of disparate scales, discrete conservation properties (energy, charge, canonical momentum, etc.)); Some numerical examples; and Summary.

  9. Particle-in-cell simulations of sheath formation around biased interconnectors in a low-earth-orbit plasma

    NASA Technical Reports Server (NTRS)

    Thiemann, H.; Schunk, R. W.

    1990-01-01

    The interaction between satellite solar arrays and the LEO plasma is presently studied with particle-in-cell simulations in which an electrical potential was suddenly applied to the solar cell interconnector. The consequent temporal response was followed for the real O(+)-electron mass ratio in the cases of 100- and 250-V solar cells, various solar cell thicknesses, and solar cells with secondary electron emission. Larger applied potentials and thinner solar cells lead to greater initial polarization surface charges, and therefore longer discharging and shielding times. When secondary electron emission from the cover glass is brought to bear, however, the potential structure is nearly planar, allowing constant interaction between plasma electrons and cover glass; a large fraction of the resulting secondary electrons is collected by the interconnector, constituting an order-of-magnitude increase in collected current.

  10. A particle-in-cell method for the simulation of plasmas based on an unconditionally stable field solver

    DOE PAGES

    Wolf, Eric M.; Causley, Matthew; Christlieb, Andrew; ...

    2016-08-09

    Here, we propose a new particle-in-cell (PIC) method for the simulation of plasmas based on a recently developed, unconditionally stable solver for the wave equation. This method is not subject to a CFL restriction, limiting the ratio of the time step size to the spatial step size, typical of explicit methods, while maintaining computational cost and code complexity comparable to such explicit schemes. We describe the implementation in one and two dimensions for both electrostatic and electromagnetic cases, and present the results of several standard test problems, showing good agreement with theory with time step sizes much larger than allowedmore » by typical CFL restrictions.« less

  11. Particle-in-cell simulations of collisionless shock formation via head-on merging of two laboratory supersonic plasma jets

    SciTech Connect

    Thoma, C.; Welch, D. R.; Hsu, S. C.

    2013-08-15

    We describe numerical simulations, using the particle-in-cell (PIC) and hybrid-PIC code lsp[T. P. Hughes et al., Phys. Rev. ST Accel. Beams 2, 110401 (1999)], of the head-on merging of two laboratory supersonic plasma jets. The goals of these experiments are to form and study astrophysically relevant collisionless shocks in the laboratory. Using the plasma jet initial conditions (density ∼10{sup 14}–10{sup 16} cm{sup −3}, temperature ∼ few eV, and propagation speed ∼20–150 km/s), large-scale simulations of jet propagation demonstrate that interactions between the two jets are essentially collisionless at the merge region. In highly resolved one- and two-dimensional simulations, we show that collisionless shocks are generated by the merging jets when immersed in applied magnetic fields (B∼0.1–1 T). At expected plasma jet speeds of up to 150 km/s, our simulations do not give rise to unmagnetized collisionless shocks, which require much higher velocities. The orientation of the magnetic field and the axial and transverse density gradients of the jets have a strong effect on the nature of the interaction. We compare some of our simulation results with those of previously published PIC simulation studies of collisionless shock formation.

  12. Particle-in-cell simulations of Magnetic Field Generation, Evolution, and Reconnection in Laser-driven Plasmas

    NASA Astrophysics Data System (ADS)

    Matteucci, Jack; Moissard, Clément; Fox, Will; Bhattacharjee, Amitava

    2016-10-01

    The advent of high-energy-density physics facilities has introduced the opportunity to experimentally investigate magnetic field dynamics relevant to both ICF and astrophysical plasmas. Recent experiments have demonstrated magnetic reconnection between colliding plasma plumes, where the reconnecting magnetic fields were self-generated in the plasma by the Biermann battery effect. In this study, we simulate these experiments from first principles using 2-D and 3-D particle-in-cell simulations. Simulations self-consistently demonstrate magnetic field generation by the Biermann battery effect, followed by advection by the Hall effect and ion flow. In 2-D simulations, we find in both the collisionless case and the semi-collisional case, defined by eVi × B >> Rei /ne (where Rei is the electron ion momentum transfer) that quantitative agreement with the generalized Ohm's law is only obtained with the inclusion of the pressure tensor. Finally, we document that significant field is destroyed at the reconnection site by the Biermann term, an inverse, `anti-Biermann' effect, which has not been considered previously in analysis of the experiment. The role of the anti-Biermann effect will be compared to standard reconnection mechanisms in 3-D reconnection simulations. This research used resources of the ORLC Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. DoE under Contract No. DE-AC05-00OR22725.

  13. The Multi Level Multi Domain (MLMD) method: a semi-implicit adaptive algorithm for Particle In Cell plasma simulations

    NASA Astrophysics Data System (ADS)

    Innocenti, Maria Elena; Beck, Arnaud; Markidis, Stefano; Lapenta, Giovanni

    2013-10-01

    Particle in Cell (PIC) simulations of plasmas are not bound anymore by the stability constraints of explicit algorithms. Semi implicit and fully implicit methods allow to use larger grid spacings and time steps. Adaptive Mesh Refinement (AMR) techniques permit to locally change the simulation resolution. The code proposed in Innocenti et al., 2013 and Beck et al., 2013 is however the first to combine the advantages of both. The use of the Implicit Moment Method allows to taylor the resolution used in each level to the physical scales of interest and to use high Refinement Factors (RF) between the levels. The Multi Level Multi Domain (MLMD) structure, where all levels are simulated as complete domains, conjugates algorithmic and practical advantages. The different levels evolve according to the local dynamics and achieve optimal level interlocking. Also, the capabilities of the Object Oriented programming model are fully exploited. The MLMD algorithm is demonstrated with magnetic reconnection and collisionless shocks simulations with very high RFs between the levels. Notable computational gains are achieved with respect to simulations performed on the entire domain with the higher resolution. Beck A. et al. (2013). submitted. Innocenti M. E. et al. (2013). JCP, 238(0):115-140.

  14. Nonlinear evolution of ion acoustic solitary waves in space plasmas: Fluid and particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Kakad, Bharati; Kakad, Amar; Omura, Yoshiharu

    2014-07-01

    Spacecraft observations revealed the presence of electrostatic solitary waves (ESWs) in various regions of the Earth's magnetosphere. Over the years, many researchers have attempted to model these observations in terms of electron/ion acoustic solitary waves by using nonlinear fluid theory/simulations. The ESW structures predicted by fluid models can be inadequate due to its inability in handling kinetic effects. To provide clear view on the application of the fluid and kinetic treatments in modeling the ESWs, we perform both fluid and particle-in-cell (PIC) simulations of ion acoustic solitary waves (IASWs) and estimate the quantitative differences in their characteristics like speed, amplitude, and width. We find that the number of trapped electrons in the wave potential is higher for the IASW, which are generated by large-amplitude initial density perturbation (IDP). The present fluid and PIC simulation results are in close agreement for small amplitude IDPs, whereas for large IDPs they show discrepancy in the amplitude, width, and speed of the IASW, which is attributed to negligence of kinetic effects in the former approach. The speed of IASW in the fluid simulations increases with the increase of IASW amplitude, while the reverse tendency is seen in the PIC simulation. The present study suggests that the fluid treatment is appropriate when the magnitude of phase velocity of IASW is less than the ion acoustic (IA) speed obtained from their linear dispersion relation, whereas when it exceeds IA speed, it is necessary to include the kinetic effects in the model.

  15. Delta-f to Full-F Particle-In-Cell Simulation of Microturbulence in Tokamaks

    NASA Astrophysics Data System (ADS)

    Lee, W. W.; Ethier, S.; Ganesh, J.

    2012-10-01

    The use of a generalized weight-based particle simulation scheme suitable for simulating tokamak turbulence is reported. The scheme, which is a generalization of the perturbed distribution schemes developed earlier for PIC simulations, is now capable of handling the full distribution of the particles in the simulation. Specifically, we can simulate both the delta-f and the full-F particles within the same code. Its development [1] is based on the concept of multiscale expansion, which separates the scale lengths of the background inhomogeneity from those associated with the perturbed distributions, and on the fact that the intrinsic particle noise level is troublesome only in the beginning of the simulation, where the signal to noise ratio is low. But, when the signal to noise ratio becomes higher afterwards, we can gradually turn on the the full-F particles without interfering with the ensuing fluctuations. We will report on the simulation studies using GTC [2] for the ion temperature gradient (ITG) driven instabilities in the presence of zonal flows. The physics of steady state transport in tokamaks will be discussed.[4pt] [1] W. W. Lee, T. G. Jenkins and S. Ethier, Comp. Phys. Comm. 182, 564 (2011).[0pt] [2] Z. Lin, T. S. Hahm, W. W. Lee, W. M. Tang, R. White Science 281, 1835 (1998).

  16. Effects of variations in electron thermal velocity on the whistler anisotropy instability: Particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Hughes, R. Scott; Wang, Joseph; Decyk, Viktor K.; Gary, S. Peter

    2016-04-01

    This paper investigates how the physics of the whistler anisotropy instability (WAI) is affected by variations in the electron thermal velocity vte, referred to here in terms of the ratio v̂ t e=vt e/c , where c is the speed of light. The WAI is driven by the electron condition RT>1 , where RT=Te ⊥/Te ∥ is the temperature anisotropy ratio and ⊥/∥ signify directions perpendicular/parallel to the background magnetic field B0 . While a typical value of v̂ t e in the solar wind is ˜0.005 , electromagnetic (EM) particle-in-cell (PIC) simulations often use a value near 0.1 in order to maximize the computational time step. In this study, a two-dimensional (2D) Darwin particle-in-cell (DPIC) code, MDPIC2, is used. The time step in the DPIC model is not affected by the choice of v̂ t e , making DPIC suited for this study. A series of simulations are carried out under the condition that the electron βe is held fixed, while v̂ t e is varied over the range 0.1 ≥v̂ t e≥0.025 . The results show that, with βe held fixed, the linear dispersion properties and the nonlinear saturation amplitude and pitch angle scattering rates associated with the WAI are insensitive to the value of v̂ t e . A supplementary investigation is conducted which characterizes how the WAI model is affected at various values of v̂ t e by noise associated with the limited number of particles in a typical PIC simulation. It is found that the evolution of the WAI is more strongly influenced by electrostatic noise as v̂ t e is decreased. The electrostatic noise level is inversely proportional to the number of particles per computational cell ( Nc ); this implies that the number of particles required to remove nonphysical effects from the PIC simulation increases as v̂ t e decreases. It is concluded that PIC simulations of this instability which use an artificially large value of v̂ t e accurately reproduce the response of a cooler plasma as long as a realistic value of βe is used

  17. Comparison of particle-in-cell simulation with experiment for thetransport system of the superconducting electron cyclotron resonance ionsource VENUS

    SciTech Connect

    Todd, DamonS.; Leitner, Daniela; Leitner, Matthaeus; Lyneis,Claude M.; Qiang, Ji; Grote, Dave P.

    2005-09-19

    The three-dimensional, particle-in-cell code WARP has been enhanced to allow end-to-end beam dynamics simulations of the VENUS beam transport system from the extraction region, through a mass-analyzing magnet, and up to a two-axis emittance scanner. This paper presents first results of comparisons between simulation and experimental data. A helium beam (He+, He2+) is chosen as an initial comparison beam due to its simple mass spectrum. Although a number of simplifications are made for the initial extracted beam, aberration characteristics appear in simulations that are also present in experimental phase space current density measurements. Further, measurements of phase space tilt indicate that simulations must have little or no space charge neutralization along the transport system to best agree with experiment. In addition, recent measurements of triangular beam structure immediately after the source are presented. This beam structure is related to the source magnetic confinement fields and will need to be taken into account as the initial beam approximations are lifted.

  18. Particle-in-cell simulation of the head-on collision between two ion acoustic solitary waves in plasmas

    SciTech Connect

    Qi, Xin; Xu, Yan-xia; Duan, Wen-shan E-mail: lyang@impcas.ac.cn; Zhang, Ling-yu; Yang, Lei E-mail: lyang@impcas.ac.cn

    2014-08-15

    The head-on collision of two ion acoustic solitary waves in plasmas composed of hot electrons and cold ions has been studied by using the Poincare-Lighthill-Kuo (PLK) perturbation method and one-dimensional Particle-in-Cell (PIC) simulation. Then the phase lags of ion acoustic solitary waves (IASWs) obtained from the two approaches have been compared and discussed. It has been found that: if the amplitudes of both the colliding IASWs are small enough, the phase lags obtained from PLK method are in good agreement with those obtained from PIC simulation. As the amplitudes of IASWs increase, the phase lags from PIC simulation become smaller than the analytical ones from PLK method. Besides, the PIC simulation shows the phase lag of an IASW involved in collision depends not only on the characteristics of the wave it collides with but also on itself, which disagrees with the prediction of the PLK method. Finally, the application scopes of the PLK method in studying both the single IASW and the head-on collisions of IASWs have been studied and discussed, and the latter turns out to be more strict.

  19. Quasi-One-Dimensional Particle-in-Cell Simulation of Magnetic Nozzles

    NASA Technical Reports Server (NTRS)

    Ebersohn, Frans H.; Sheehan, J. P.; Gallimore, Alec D.; Shebalin, John V.

    2015-01-01

    A method for the quasi-one-dimensional simulation of magnetic nozzles is presented and simulations of a magnetic nozzle are performed. The effects of the density variation due to plasma expansion and the magnetic field forces on ion acceleration are investigated. Magnetic field forces acting on the electrons are found to be responsible for the formation of potential structures which accelerate ions. The effects of the plasma density variation alone are found to only weakly affect ion acceleration. Strongly diverging magnetic fields drive more rapid potential drops.

  20. Discontinuous Galerkin particle-in-cell simulation of longitudinal plasma wave damping and comparison to the Landau approximation and the exact solution of the dispersion relation

    SciTech Connect

    Foust, F. R.; Bell, T. F.; Spasojevic, M.; Inan, U. S.

    2011-06-15

    We present results showing the measured Landau damping rate using a high-order discontinuous Galerkin particle-in-cell (DG-PIC) [G. B. Jacobs and J. S. Hesthaven, J. Comput. Phys. 214, 96 (2006)] method. We show that typical damping rates measured in particle-in-cell (PIC) simulations can differ significantly from the linearized Landau damping coefficient and propose a simple numerical method to solve the plasma dispersion function exactly for moderate to high damping rates. Simulation results show a high degree of agreement between the high-order PIC results and this calculated theoretical damping rate.

  1. Global particle in cell simulation of radio frequency waves in tokamak ∖fs20

    NASA Astrophysics Data System (ADS)

    Kuley, Animesh; Lin, Z.; Bao, J.; Lau, C.; Sun, G. Y.

    2016-10-01

    We are looking into a new nonlinear kinetic simulation model to study the radio frequency heating and current drive of fusion plasmas using toroidal code GTC. In this model ions are considered as fully kinetic (FK) particles using Vlasov equation and the electrons are treated as drift kinetic (DK) particles using drift kinetic equation. We have benchmarked this numerical model to verify the linear physics of normal modes, conversion of slow and fast waves and its propagation in the core region of the tokamak using the Boozer coordinates. In the nonlinear simulation of ion Bernstein wave (IBW) in a tokamak, parametric decay instability (PDI) is observed where a large amplitude pump wave decays into an IBW sideband and an ion cyclotron quasi-mode (ICQM). The ICQM induces an ion perpendicular heating, with a heating rate proportional to the pump wave intensity. Finally, in the electromagnetic LH simulation, nonlinear wave trapping of electrons is verified and plasma current is nonlinearly driven. Presently we are working on the development of new PIC simulation model using cylindrical coordinates to address the RF wave propagation from the edge of the tokamak to the core region and the parametric instabilities associated with this RF waves. We have verified the cyclotron integrator using Boris push method.

  2. One-dimensional particle-in-cell simulations of electrostatic Bernstein waves in plasmas with kappa velocity distributions

    SciTech Connect

    Abdul, R. F. Mace, R. L.

    2015-10-15

    Electrostatic Bernstein waves that propagate exactly perpendicularly to a static magnetic field in an electron-ion plasma are investigated using one-and-two-halves dimensional particle-in-cell simulations. An ion-to-electron mass ratio of m{sub i}/m{sub e} = 100 is used, allowing sufficient separation of the electron and ion time scales while still accounting for the ion dynamics without resorting to exceptionally long simulation run times. As a consequence of the mass ratio used, both the high frequency electron Bernstein wave and the lower frequency ion Bernstein wave are resolved within a single simulation run. The simulations presented here use isotropic three-dimensional kappa velocity distributions as well as the widely used Maxwellian velocity distribution, and the results from using each of these velocity distributions are analysed and compared. The behaviour of the Bernstein waves is found to be significantly dependent on the spectral index, κ, of the kappa distribution in all frequency domains of the Bernstein waves. In both the Maxwellian and kappa cases, spectral analysis of the electric field (wave) intensities, as a function of ω and k, show very good agreement between the simulation results and the linear dispersion relation for Bernstein waves. This agreement serves to validate the simulation techniques used, as well as the theory of Bernstein waves in plasmas with a kappa velocity distribution. The intensity of the field fluctuations in the simulations containing an abundance of superthermal particles, i.e., where the plasma has a kappa velocity distribution with a low kappa index, is slightly higher compared to the simulations of plasmas with higher kappa values. The plasmas with low kappa values also exhibit a broader region in frequency space of high intensity field fluctuations.

  3. Cosmological particle-in-cell simulations with ultralight axion dark matter

    NASA Astrophysics Data System (ADS)

    Veltmaat, Jan; Niemeyer, Jens C.

    2016-12-01

    We study cosmological structure formation with ultralight axion dark matter, or "fuzzy dark matter" (FDM), using a particle-mesh scheme to account for the quantum pressure arising in the Madelung formulation of the Schrödinger-Poisson equations. Subpercent-level energy conservation and correct linear behavior are demonstrated. Whereas the code gives rise to the same core-halo profiles as direct simulations of the Schrödinger equation, it does not reproduce the detailed interference patterns. In cosmological simulations with FDM initial conditions, we find a maximum relative difference of O(10%) in the power spectrum near the quantum Jeans length compared to using a standard N -body code with identical initial conditions. This shows that the effect of quantum pressure during nonlinear structure formation cannot be neglected for precision constraints on a dark matter component consisting of ultralight axions.

  4. Whistler anisotropy instabilities as the source of banded chorus: Van Allen Probes observations and particle-in-cell simulations.

    PubMed

    Fu, Xiangrong; Cowee, Misa M; Friedel, Reinhard H; Funsten, Herbert O; Gary, S Peter; Hospodarsky, George B; Kletzing, Craig; Kurth, William; Larsen, Brian A; Liu, Kaijun; MacDonald, Elizabeth A; Min, Kyungguk; Reeves, Geoffrey D; Skoug, Ruth M; Winske, Dan

    2014-10-01

    Magnetospheric banded chorus is enhanced whistler waves with frequencies ωr <Ω e , where Ω e is the electron cyclotron frequency, and a characteristic spectral gap at ωr ≃Ω e /2. This paper uses spacecraft observations and two-dimensional particle-in-cell simulations in a magnetized, homogeneous, collisionless plasma to test the hypothesis that banded chorus is due to local linear growth of two branches of the whistler anisotropy instability excited by two distinct, anisotropic electron components of significantly different temperatures. The electron densities and temperatures are derived from Helium, Oxygen, Proton, and Electron instrument measurements on the Van Allen Probes A satellite during a banded chorus event on 1 November 2012. The observations are consistent with a three-component electron model consisting of a cold (a few tens of eV) population, a warm (a few hundred eV) anisotropic population, and a hot (a few keV) anisotropic population. The simulations use plasma and field parameters as measured from the satellite during this event except for two numbers: the anisotropies of the warm and the hot electron components are enhanced over the measured values in order to obtain relatively rapid instability growth. The simulations show that the warm component drives the quasi-electrostatic upper band chorus and that the hot component drives the electromagnetic lower band chorus; the gap at ∼Ω e /2 is a natural consequence of the growth of two whistler modes with different properties.

  5. Study of self-consistent particle flows in a plasma blob with particle-in-cell simulations

    SciTech Connect

    Hasegawa, Hiroki Ishiguro, Seiji

    2015-10-15

    The self-consistent particle flows in a filamentary coherent structure along the magnetic field line in scrape-off layer (SOL) plasma (plasma blob) have been investigated by means of a three-dimensional electrostatic particle-in-cell simulation code. The presence of the spiral current system composed of the diamagnetic and parallel currents in a blob is confirmed by the particle simulation without any assumed sheath boundary models. Furthermore, the observation of the electron and ion parallel velocity distributions in a blob shows that those distributions are far from Maxwellian due to modification with the sheath formation and that the electron temperature on the higher potential side in a blob is higher than that on the lower potential side. Also, it is found that the ions on the higher potential side are accelerated more intensively along the magnetic field line than those on the lower potential side near the edge. This study indicates that particle simulations are able to provide an exact current closure to analysis of blob dynamics and will bring more accurate prediction of plasma transport in the SOL without any empirical assumptions.

  6. Efficient particle-in-cell simulation of auroral plasma phenomena using a CUDA enabled graphics processing unit

    NASA Astrophysics Data System (ADS)

    Sewell, Stephen

    This thesis introduces a software framework that effectively utilizes low-cost commercially available Graphic Processing Units (GPUs) to simulate complex scientific plasma phenomena that are modeled using the Particle-In-Cell (PIC) paradigm. The software framework that was developed conforms to the Compute Unified Device Architecture (CUDA), a standard for general purpose graphic processing that was introduced by NVIDIA Corporation. This framework has been verified for correctness and applied to advance the state of understanding of the electromagnetic aspects of the development of the Aurora Borealis and Aurora Australis. For each phase of the PIC methodology, this research has identified one or more methods to exploit the problem's natural parallelism and effectively map it for execution on the graphic processing unit and its host processor. The sources of overhead that can reduce the effectiveness of parallelization for each of these methods have also been identified. One of the novel aspects of this research was the utilization of particle sorting during the grid interpolation phase. The final representation resulted in simulations that executed about 38 times faster than simulations that were run on a single-core general-purpose processing system. The scalability of this framework to larger problem sizes and future generation systems has also been investigated.

  7. A Particle-in-Cell Simulation for the Traveling Wave Direct Energy Converter (TWDEC) for Fusion Propulsion

    NASA Technical Reports Server (NTRS)

    Chap, Andrew; Tarditi, Alfonso G.; Scott, John H.

    2013-01-01

    A Particle-in-cell simulation model has been developed to study the physics of the Traveling Wave Direct Energy Converter (TWDEC) applied to the conversion of charged fusion products into electricity. In this model the availability of a beam of collimated fusion products is assumed; the simulation is focused on the conversion of the beam kinetic energy into alternating current (AC) electric power. The model is electrostatic, as the electro-dynamics of the relatively slow ions can be treated in the quasistatic approximation. A two-dimensional, axisymmetric (radial-axial coordinates) geometry is considered. Ion beam particles are injected on one end and travel along the axis through ring-shaped electrodes with externally applied time-varying voltages, thus modulating the beam by forming a sinusoidal pattern in the beam density. Further downstream, the modulated beam passes through another set of ring electrodes, now electrically oating. The modulated beam induces a time alternating potential di erence between adjacent electrodes. Power can be drawn from the electrodes by connecting a resistive load. As energy is dissipated in the load, a corresponding drop in beam energy is measured. The simulation encapsulates the TWDEC process by reproducing the time-dependent transfer of energy and the particle deceleration due to the electric eld phase time variations.

  8. Two-dimensional particle-in-cell simulations of plasma cavitation and bursty Brillouin backscattering for nonrelativistic laser intensities

    SciTech Connect

    Riconda, C.; Weber, S.; Tikhonchuk, V. T.; Adam, J.-C.; Heron, A.

    2006-08-15

    Two-dimensional particle-in-cell simulations of laser-plasma interaction using a plane-wave geometry show strong bursty stimulated Brillouin backscattering, rapid filamentation, and subsequent plasma cavitation. It is shown that the cavitation is not induced by self-focusing. The electromagnetic fields below the plasma frequency that are excited are related to transient soliton-like structures. At the origin of these solitons is a three-wave decay process exciting new modes in the plasma. The cavitation is responsible for a strong local reduction of the reflectivity and goes along with an efficient but transient heating of the electrons. Once heating ceases, transmission starts to increase. Local as well as global average reflectivities attain a very low value due to strong plasma density variations brought about by the cavitation process. On the one hand, the simulations confirm the existence of a new mechanism of cavity and soliton formation in nonrelativistic laser-plasma interaction in two dimensions, which was shown to exist in one-dimensional simulations [S. Weber, C. Riconda, and V. T. Tikhonchuk, Phys. Rev. Lett. 94, 055005 (2005)]. On the other hand, new aspects are introduced inherently related to the additional degree of freedom.

  9. Whistler anisotropy instabilities as the source of banded chorus: Van Allen Probes observations and particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Fu, Xiangrong; Cowee, Misa M.; Friedel, Reinhard H.; Funsten, Herbert O.; Gary, S. Peter; Hospodarsky, George B.; Kletzing, Craig; Kurth, William; Larsen, Brian A.; Liu, Kaijun; MacDonald, Elizabeth A.; Min, Kyungguk; Reeves, Geoffrey D.; Skoug, Ruth M.; Winske, Dan

    2014-10-01

    Magnetospheric banded chorus is enhanced whistler waves with frequencies ωr<Ωe, where Ωe is the electron cyclotron frequency, and a characteristic spectral gap at ωr≃Ωe/2. This paper uses spacecraft observations and two-dimensional particle-in-cell simulations in a magnetized, homogeneous, collisionless plasma to test the hypothesis that banded chorus is due to local linear growth of two branches of the whistler anisotropy instability excited by two distinct, anisotropic electron components of significantly different temperatures. The electron densities and temperatures are derived from Helium, Oxygen, Proton, and Electron instrument measurements on the Van Allen Probes A satellite during a banded chorus event on 1 November 2012. The observations are consistent with a three-component electron model consisting of a cold (a few tens of eV) population, a warm (a few hundred eV) anisotropic population, and a hot (a few keV) anisotropic population. The simulations use plasma and field parameters as measured from the satellite during this event except for two numbers: the anisotropies of the warm and the hot electron components are enhanced over the measured values in order to obtain relatively rapid instability growth. The simulations show that the warm component drives the quasi-electrostatic upper band chorus and that the hot component drives the electromagnetic lower band chorus; the gap at ˜Ωe/2 is a natural consequence of the growth of two whistler modes with different properties.

  10. Nonlinear Evolution of Ion Acoustic Solitary Waves in Earth's Magnetosphere: Fluid and Particle-In-Cell Simulations

    NASA Astrophysics Data System (ADS)

    Kakad, A.; Kakad, B. A.; Omura, Y.

    2014-12-01

    In recent spacecraft observations, coherent electrostatic solitary wave (ESWs) structures are observed in various regions of the Earth's magnetosphere. Over the years, many researchers have attempted to model these observations in terms of electron/ion acoustic solitary waves by using nonlinear fluid theory/simulations. The ESW structures predicted by fluid models can be inadequate due to its inability in handling kinetic effects. To provide clear view on the application of the fluid and kinetic treatments in modeling the ESWs, we perform both fluid and particle-in-cell (PIC) simulations of ion acoustic solitary waves (IASWs) and estimate the quantitative differences in their characteristics like speed, amplitude, and width. It is noted that a long time evolution of Gaussian type perturbations in the equilibrium electron and ion densities generated the nonlinear IASW structures in both fluid and PIC simulations. The IASW structures represent vortices of trapped electrons in PIC simulations. We find that the number of trapped electrons in the wave potential is higher for the large amplitude IASW, which are generated by large-amplitude initial density perturbation (IDP). The present fluid and PIC simulation results are in close agreement for small amplitude IDPs, whereas for large IDPs they show discrepancy in the amplitude, width, and speed of the IASW, which is attributed to negligence of kinetic effects in the former approach. The speed of IASW in the fluid simulations increases with the increase of IASW amplitude, while the reverse tendency is seen in the PIC simulation. The present study suggests that the fluid treatment is appropriate to model the IASW observations when the magnitude of phase velocity of IASW is less than the ion acoustic (IA) speed obtained from their linear dispersion relation, whereas when it exceeds IA speed, it is necessary to include the kinetic effects in the model.

  11. Particle-in-Cell Simulations of Collisionless Magnetic Reconnection with a Non-Uniform Guide Field

    NASA Astrophysics Data System (ADS)

    Wilson, Fiona; Neukirch, Thomas; Hesse, Michael

    2016-04-01

    Results are presented of a first study of collisionless magnetic reconnection starting from a recently found exact nonlinear force-free Vlasov-Maxwell equilibrium. The initial state has a Harris sheet magnetic field profile in one direction and a non-uniform guide field in a second direction, resulting in a spatially constant magnetic field strength as well as a constant initial plasma density and plasma pressure. It is found that the reconnection process initially resembles guide field reconnection, but that a gradual transition to anti-parallel reconnection happens as the system evolves. The time evolution of a number of plasma parameters is investigated, and the results are compared with simulations starting from a Harris sheet equilibrium and a Harris sheet plus constant guide field equilibrium.

  12. Particle-in-cell simulations of collisionless magnetic reconnection with a non-uniform guide field

    NASA Astrophysics Data System (ADS)

    Wilson, F.; Neukirch, T.; Hesse, M.; Harrison, M. G.; Stark, C. R.

    2016-03-01

    Results are presented of a first study of collisionless magnetic reconnection starting from a recently found exact nonlinear force-free Vlasov-Maxwell equilibrium. The initial state has a Harris sheet magnetic field profile in one direction and a non-uniform guide field in a second direction, resulting in a spatially constant magnetic field strength as well as a constant initial plasma density and plasma pressure. It is found that the reconnection process initially resembles guide field reconnection, but that a gradual transition to anti-parallel reconnection happens as the system evolves. The time evolution of a number of plasma parameters is investigated, and the results are compared with simulations starting from a Harris sheet equilibrium and a Harris sheet plus constant guide field equilibrium.

  13. Particle-in-cell/accelerator code for space-charge dominated beam simulation

    SciTech Connect

    2012-05-08

    Warp is a multidimensional discrete-particle beam simulation program designed to be applicable where the beam space-charge is non-negligible or dominant. It is being developed in a collaboration among LLNL, LBNL and the University of Maryland. It was originally designed and optimized for heave ion fusion accelerator physics studies, but has received use in a broader range of applications, including for example laser wakefield accelerators, e-cloud studies in high enery accelerators, particle traps and other areas. At present it incorporates 3-D, axisymmetric (r,z) planar (x-z) and transverse slice (x,y) descriptions, with both electrostatic and electro-magnetic fields, and a beam envelope model. The code is guilt atop the Python interpreter language.

  14. Simulations of the effects of mobile ions on the relativistic beam-plasma instability for intense beams

    SciTech Connect

    Jones, M.E.; Lemons, D.S.; Lee, H.

    1983-01-01

    Particle-in-cell simulations of the beam-plasma instability for intense relativistic electron beams in dense plasmas show rapid heating of the electrons to multi-kilovolt temperatures. The resulting hydrodynamic motion of the plasma results in density gradients that degrade the interaction. Heat flow out of the plasma is found in some instances to limit the gradient formation process.

  15. Features of electron current layers: Comparison between three-dimensional particle-in-cell simulations and Cluster observations

    NASA Astrophysics Data System (ADS)

    Singh, Nagendra; Yeladandi, Manish; Somarothu, Trinath; Wells, B. E.

    2010-04-01

    Wygant et al. (2005) and more recently Chen et al. (2008) reported Cluster observations on some basic features of electron current layers (ECL) in the magnetotail. These features include (1) a bifurcated ECL consisting of two layers with relatively large currents separated by a region of small current, (2) peaked density at the ECL center bordered by extended low-density regions, (3) bipolar Hall electric fields (EHall), (4) fine-scale, large-amplitude spiky turbulence in the electric fields normal to the plane of the ECL (En), (5) energized electrons that become increasingly isotropized toward the ECL central region, (6) cold electrons bordering the ECL, (7) ions accelerated by the Hall electric field, and (8) ions counterstreaming against the ions accelerated by EHall on both the north and south sides of the neutral sheet at the ECL midplane. We compare all these features with results from fully three-dimensional particle-in-cell simulations of an ECL. Simulations reveal that the fine structures in the electric fields inside the ECL are created by the ECL-driven electrostatic instabilities, which are instrumental in rapid heating and isotropization of the electrons with power law energy distribution, Fe(E) ≈ E-0.7. The heated electrons set up ambipolar electric fields (Ea) in the central part of the ECL, reflecting ions accelerated by EHall. The overall structures in the normal electric fields result from the superposition of EHall, Ea, and the instability-generated electric fields.

  16. Particle-in-cell Simulations of Continuously Driven Mirror and Ion Cyclotron Instabilities in High Beta Astrophysical and Heliospheric Plasmas

    NASA Astrophysics Data System (ADS)

    Riquelme, Mario A.; Quataert, Eliot; Verscharen, Daniel

    2015-02-01

    We use particle-in-cell simulations to study the nonlinear evolution of ion velocity space instabilities in an idealized problem in which a background velocity shear continuously amplifies the magnetic field. We simulate the astrophysically relevant regime where the shear timescale is long compared to the ion cyclotron period, and the plasma beta is β ~ 1-100. The background field amplification in our calculation is meant to mimic processes such as turbulent fluctuations or MHD-scale instabilities. The field amplification continuously drives a pressure anisotropy with p > p ∥ and the plasma becomes unstable to the mirror and ion cyclotron instabilities. In all cases, the nonlinear state is dominated by the mirror instability, not the ion cyclotron instability, and the plasma pressure anisotropy saturates near the threshold for the linear mirror instability. The magnetic field fluctuations initially undergo exponential growth but saturate in a secular phase in which the fluctuations grow on the same timescale as the background magnetic field (with δB ~ 0.3 langBrang in the secular phase). At early times, the ion magnetic moment is well-conserved but once the fluctuation amplitudes exceed δB ~ 0.1 langBrang, the magnetic moment is no longer conserved but instead changes on a timescale comparable to that of the mean magnetic field. We discuss the implications of our results for low-collisionality astrophysical plasmas, including the near-Earth solar wind and low-luminosity accretion disks around black holes.

  17. Cross-Platform Graphical User Interface with fast 3-D Rendering for Particle-in-Cell Simulations

    NASA Astrophysics Data System (ADS)

    Bruhwiler, David; Luetkemeyer, Kelly; Cary, John

    1999-11-01

    The Graphical User Interface (GUI) for XOOPIC (X11-based Object-Oriented Particle-in-Cell) is being ported to Qt, a cross-platform C++ windowing toolkit, thus permitting the code to run on PC's running both Windows 95/98/NT and Linux, as well as all commercial Unix platforms. All 3-D graphics will be handled through OpenGL, the cross-platform standard for fast 3-D rendering. The use of object-oriented design (OOD) techniques keeps the GUI/physics interface clean, and minimizes the impact of GUI development on the physics code. OOD also improves the maintainability and extensibility of large scientific simulation codes, while allowing for cross-platform portability and ready interchange of individual algorithms or entire physics kernels. Planned new GUI features include interactive modifications of the simulation parameters, including generation of a slowly-varying mesh and automatic updating of a corresponding input file. Improved modeling of high-power microwave tubes is one of the primary applications being targeted by this project.

  18. Monte Carlo approach to calculate ionization dynamics of hot solid-density plasmas within particle-in-cell simulations.

    PubMed

    Wu, D; He, X T; Yu, W; Fritzsche, S

    2017-02-01

    A physical model based on a Monte Carlo approach is proposed to calculate the ionization dynamics of hot-solid-density plasmas within particle-in-cell (PIC) simulations, and where the impact (collision) ionization (CI), electron-ion recombination (RE), and ionization potential depression (IPD) by surrounding plasmas are taken into consideration self-consistently. When compared with other models, which are applied in the literature for plasmas near thermal equilibrium, the temporal relaxation of ionization dynamics can also be simulated by the proposed model. Besides, this model is general and can be applied for both single elements and alloys with quite different compositions. The proposed model is implemented into a PIC code, with (final) ionization equilibriums sustained by competitions between CI and its inverse process (i.e., RE). Comparisons between the full model and model without IPD or RE are performed. Our results indicate that for bulk aluminium at temperature of 1 to 1000 eV, (i) the averaged ionization degree increases by including IPD; while (ii) the averaged ionization degree is significantly over estimated when the RE is neglected. A direct comparison from the PIC code is made with the existing models for the dependence of averaged ionization degree on thermal equilibrium temperatures and shows good agreements with that generated from Saha-Boltzmann model and/or FLYCHK code.

  19. Modeling a thermionic energy converter using finite-difference time-domain particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Lo, F. S.; Lu, P. S.; Ragan-Kelley, B.; Minnich, A. J.; Lee, T. H.; Lin, M. C.; Verboncoeur, J. P.

    2014-02-01

    A thermionic energy converter (TEC) is a static device that converts heat directly into electricity by boiling electrons off a hot emitter surface across a small inter-electrode gap to a cooler collector surface. The main challenge in TECs is overcoming the space charge limit, which limits the current transmitted across a gap of a given voltage and width. We have verified the feasibility of studying and developing a TEC using a bounded finite-difference time-domain particle-in-cell plasma simulation code, OOPD1, developed by Plasma Theory and Simulation Group, formerly at UC Berkeley and now at Michigan State University. In this preliminary work, a TEC has been modeled kinetically using OOPD1, and the accuracy has been verified by comparing with an analytically solvable case, giving good agreement. With further improvement of the code, one will be able to quickly and cheaply analyze space charge effects, and seek designs that mitigate the space charge effect, allowing TECs to become more efficient and cost-effective.

  20. Monte Carlo particle-in-cell methods for the simulation of the Vlasov-Maxwell gyrokinetic equations

    NASA Astrophysics Data System (ADS)

    Bottino, A.; Sonnendrücker, E.

    2015-10-01

    > The particle-in-cell (PIC) algorithm is the most popular method for the discretisation of the general 6D Vlasov-Maxwell problem and it is widely used also for the simulation of the 5D gyrokinetic equations. The method consists of coupling a particle-based algorithm for the Vlasov equation with a grid-based method for the computation of the self-consistent electromagnetic fields. In this review we derive a Monte Carlo PIC finite-element model starting from a gyrokinetic discrete Lagrangian. The variations of the Lagrangian are used to obtain the time-continuous equations of motion for the particles and the finite-element approximation of the field equations. The Noether theorem for the semi-discretised system implies a certain number of conservation properties for the final set of equations. Moreover, the PIC method can be interpreted as a probabilistic Monte Carlo like method, consisting of calculating integrals of the continuous distribution function using a finite set of discrete markers. The nonlinear interactions along with numerical errors introduce random effects after some time. Therefore, the same tools for error analysis and error reduction used in Monte Carlo numerical methods can be applied to PIC simulations.

  1. PARTICLE-IN-CELL SIMULATIONS OF CONTINUOUSLY DRIVEN MIRROR AND ION CYCLOTRON INSTABILITIES IN HIGH BETA ASTROPHYSICAL AND HELIOSPHERIC PLASMAS

    SciTech Connect

    Riquelme, Mario A.; Quataert, Eliot; Verscharen, Daniel E-mail: eliot@berkeley.edu

    2015-02-10

    We use particle-in-cell simulations to study the nonlinear evolution of ion velocity space instabilities in an idealized problem in which a background velocity shear continuously amplifies the magnetic field. We simulate the astrophysically relevant regime where the shear timescale is long compared to the ion cyclotron period, and the plasma beta is β ∼ 1-100. The background field amplification in our calculation is meant to mimic processes such as turbulent fluctuations or MHD-scale instabilities. The field amplification continuously drives a pressure anisotropy with p > p {sub ∥} and the plasma becomes unstable to the mirror and ion cyclotron instabilities. In all cases, the nonlinear state is dominated by the mirror instability, not the ion cyclotron instability, and the plasma pressure anisotropy saturates near the threshold for the linear mirror instability. The magnetic field fluctuations initially undergo exponential growth but saturate in a secular phase in which the fluctuations grow on the same timescale as the background magnetic field (with δB ∼ 0.3 (B) in the secular phase). At early times, the ion magnetic moment is well-conserved but once the fluctuation amplitudes exceed δB ∼ 0.1 (B), the magnetic moment is no longer conserved but instead changes on a timescale comparable to that of the mean magnetic field. We discuss the implications of our results for low-collisionality astrophysical plasmas, including the near-Earth solar wind and low-luminosity accretion disks around black holes.

  2. A comparison of weak-turbulence and particle-in-cell simulations of weak electron-beam plasma interaction

    SciTech Connect

    Ratcliffe, H. Brady, C. S.; Che Rozenan, M. B.; Nakariakov, V. M.

    2014-12-15

    Quasilinear theory has long been used to treat the problem of a weak electron beam interacting with plasma and generating Langmuir waves. Its extension to weak-turbulence theory treats resonant interactions of these Langmuir waves with other plasma wave modes, in particular, ion-sound waves. These are strongly damped in plasma of equal ion and electron temperatures, as sometimes seen in, for example, the solar corona and wind. Weak turbulence theory is derived in the weak damping limit, with a term describing ion-sound wave damping then added. In this paper, we use the EPOCH particle-in-cell code to numerically test weak turbulence theory for a range of electron-ion temperature ratios. We find that in the cold ion limit, the results agree well, but for increasing ion temperature the three-wave resonance becomes broadened in proportion to the ion-sound wave damping rate. Additionally, we establish lower limits on the number of simulation particles needed to accurately reproduce the electron and wave distributions in their saturated states and to reproduce their intermediate states and time evolution. These results should be taken into consideration in, for example, simulations of plasma wave generation in the solar corona of Type III solar radio bursts from the corona to the solar wind and in weak turbulence investigations of ion-acoustic lines in the ionosphere.

  3. Comparison of multi-fluid moment models with particle-in-cell simulations of collisionless magnetic reconnection

    SciTech Connect

    Wang, Liang Germaschewski, K.; Hakim, Ammar H.; Bhattacharjee, A.

    2015-01-15

    We introduce an extensible multi-fluid moment model in the context of collisionless magnetic reconnection. This model evolves full Maxwell equations and simultaneously moments of the Vlasov-Maxwell equation for each species in the plasma. Effects like electron inertia and pressure gradient are self-consistently embedded in the resulting multi-fluid moment equations, without the need to explicitly solving a generalized Ohm's law. Two limits of the multi-fluid moment model are discussed, namely, the five-moment limit that evolves a scalar pressures for each species and the ten-moment limit that evolves the full anisotropic, non-gyrotropic pressure tensor for each species. We first demonstrate analytically and numerically that the five-moment model reduces to the widely used Hall magnetohydrodynamics (Hall MHD) model under the assumptions of vanishing electron inertia, infinite speed of light, and quasi-neutrality. Then, we compare ten-moment and fully kinetic particle-in-cell (PIC) simulations of a large scale Harris sheet reconnection problem, where the ten-moment equations are closed with a local linear collisionless approximation for the heat flux. The ten-moment simulation gives reasonable agreement with the PIC results regarding the structures and magnitudes of the electron flows, the polarities and magnitudes of elements of the electron pressure tensor, and the decomposition of the generalized Ohm's law. Possible ways to improve the simple local closure towards a nonlocal fully three-dimensional closure are also discussed.

  4. Monte Carlo approach to calculate ionization dynamics of hot solid-density plasmas within particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Wu, D.; He, X. T.; Yu, W.; Fritzsche, S.

    2017-02-01

    A physical model based on a Monte Carlo approach is proposed to calculate the ionization dynamics of hot-solid-density plasmas within particle-in-cell (PIC) simulations, and where the impact (collision) ionization (CI), electron-ion recombination (RE), and ionization potential depression (IPD) by surrounding plasmas are taken into consideration self-consistently. When compared with other models, which are applied in the literature for plasmas near thermal equilibrium, the temporal relaxation of ionization dynamics can also be simulated by the proposed model. Besides, this model is general and can be applied for both single elements and alloys with quite different compositions. The proposed model is implemented into a PIC code, with (final) ionization equilibriums sustained by competitions between CI and its inverse process (i.e., RE). Comparisons between the full model and model without IPD or RE are performed. Our results indicate that for bulk aluminium at temperature of 1 to 1000 eV, (i) the averaged ionization degree increases by including IPD; while (ii) the averaged ionization degree is significantly over estimated when the RE is neglected. A direct comparison from the PIC code is made with the existing models for the dependence of averaged ionization degree on thermal equilibrium temperatures and shows good agreements with that generated from Saha-Boltzmann model and/or FLYCHK code.

  5. Whistler Anisotropy Instabilities as the Source of Banded Chorus: Van Allen Probes Observations and Particle-in-Cell Simulations

    NASA Astrophysics Data System (ADS)

    Gary, S. Peter; Fu, Xiangrong; Cowee, Misa M.; Friedel, Reinhard H.; Funsten, Herbert O.; Hospodarsky, George B.; Kletzing, Craig; Kurth, William; Larsen, Brian A.; Liu, Kaijun; MacDonald, Elizabeth A.; Min, Kyungguk; Reeves, Geoffrey D.; Skoug, Ruth M.; Winske, Dan

    2014-10-01

    Magnetospheric banded chorus events are enhanced whistler waves with frequencies ωr <Ωe where Ωe is the electron cyclotron frequency, and a characteristic spectral gap at ωr ~=Ωe / 2 . Here two-dimensional particle-in-cell simulations in a magnetized, homogeneous, collisionless plasma test the hypothesis that banded chorus is due to two branches of the whistler anisotropy instability excited by two distinct, anisotropic electron components. The electron densities and temperatures are derived from HOPE instrument measurements on the Van Allen Probes A satellite during a banded chorus event on 1 November 2012. Observations show a three-component electron model consisting of a dense, cold (a few tens of eV) population, a less dense, warm (a few hundred eV) anisotropic population, and a still less dense, hot (a few keV) anisotropic population. Simulations show that the warm component drives quasi-electrostatic upper-band chorus, and the hot component drives electromagnetic lower-band chorus; the gap near Ωe / 2 follows from growth of the two distinct instabilities.

  6. Verification of high voltage rf capacitive sheath models with particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Lieberman, Michael; Verboncoeur, John

    2009-10-01

    Collisionless and collisional high voltage rf capacitive sheath models were developed in the late 1980's [1]. Given the external parameters of a single-frequency capacitively coupled discharge, plasma parameters including sheath width, electron and ion temperature, plasma density, power, and ion bombarding energy can be estimated. One-dimensional electrostatic PIC codes XPDP1 [2] and OOPD1 [3] are used to investigate plasma behaviors within rf sheaths and bulk plasma. Electron-neutral collisions only are considered for collisionless sheaths, while ion-neutral collisions are taken into account for collisional sheaths. The collisionless sheath model is verified very well by PIC simulations for the rf current-driven and voltage-driven cases. Results will be reported for collisional sheaths also. [1] M. A. Lieberman, IEEE Trans. Plasma Sci. 16 (1988) 638; 17 (1989) 338 [2] J. P. Verboncoeur, M. V. Alves, V. Vahedi, and C. K. Birdsall, J. Comp. Phys. 104 (1993) 321 [3] J. P. Verboncoeur, A. B. Langdon and N. T. Gladd, Comp. Phys. Comm. 87 (1995) 199

  7. Three-dimensional particle-in-cell simulations of a plasma jet/cloud streaming across a transverse magnetic field

    NASA Astrophysics Data System (ADS)

    Voitcu, Gabriel; Echim, Marius

    2014-05-01

    The dynamics of collisionless plasma jets/clouds in magnetic field configurations typical for the terrestrial magnetotail and frontside magnetosheath is a topic of interest for understanding the physics of the magnetosphere and its interaction with the solar wind. The presence of high-speed jets in the frontside magnetosheath has been recently proved experimentally by Cluster and THEMIS spacecrafts. There is increasing evidence that the bursty bulk flows in the magnetotail have jet-like features. In the present paper we use fully electromagnetic 3D explicit particle-in-cell (PIC) simulations to investigate the interaction of a localized three-dimensional plasma element/jet/cloud with a transverse magnetic field. We consider a plasma jet/cloud that moves in vacuum and perpendicular to an ambient magnetic field. Ampère and Faraday's laws are used to compute the self-consistent electric and magnetic fields on a three-dimensional spatial grid having a step-size of the order of the Debye length and using a time-step that resolves the plasma frequency. The initial magnetic field inside the simulation domain is uniform and the plasma bulk velocity at the beginning of the simulation is normal to the magnetic field direction. The total time scale of the simulation is of the order of few ion Larmor periods. Space and time variations of the plasma parameters and of the electromagnetic field are analyzed and discussed. We emphasize non-MHD effects like the energy-dispersion signatures at the edges of the plasma element, similar to results previously reported by Voitcu and Echim (2012) using test-kinetic simulations. Acknowledgments: Research supported by the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 313038/STORM, and a grant of the Romanian Ministry of National Education, CNCS - UEFISCDI, project number PN-II-ID-PCE-2012-4-0418.

  8. Particle-In-Cell Simulations of the Solar Wind Interaction with Lunar Crustal Magnetic Anomalies: Magnetic Cusp Regions

    NASA Technical Reports Server (NTRS)

    Poppe, A. R.; Halekas, J. S.; Delory, G. T.; Farrell, W. M.

    2012-01-01

    As the solar wind is incident upon the lunar surface, it will occasionally encounter lunar crustal remanent magnetic fields. These magnetic fields are small-scale, highly non-dipolar, have strengths up to hundreds of nanotesla, and typically interact with the solar wind in a kinetic fashion. Simulations, theoretical analyses, and spacecraft observations have shown that crustal fields can reflect solar wind protons via a combination of magnetic and electrostatic reflection; however, analyses of surface properties have suggested that protons may still access the lunar surface in the cusp regions of crustal magnetic fields. In this first report from a planned series of studies, we use a 1 1/2-dimensional, electrostatic particle-in-cell code to model the self-consistent interaction between the solar wind, the cusp regions of lunar crustal remanent magnetic fields, and the lunar surface. We describe the self-consistent electrostatic environment within crustal cusp regions and discuss the implications of this work for the role that crustal fields may play regulating space weathering of the lunar surface via proton bombardment.

  9. Particle-in-cell simulations of magnetic reconnection in laser-plasma experiments on Shenguang-II facility

    SciTech Connect

    Lu, San; Lu, Quanming; Huang, Can; Wang, Shui; Dong, Quanli; Zhu, Jianqiang; Sheng, Zhengming; Zhang, Jie

    2013-11-15

    Recently, magnetic reconnection has been realized in high-energy-density laser-produced plasmas. Plasma bubbles with self-generated magnetic fields are created by focusing laser beams to small-scale spots on a foil. The bubbles expand into each other, which may then drive magnetic reconnection. The reconnection experiment in laser-produced plasmas has also been conducted at Shenguang-II (SG-II) laser facility, and the existence of a plasmoid was identified in the experiment [Dong et al., Phys. Rev. Lett. 108, 215001 (2012)]. In this paper, by performing two-dimensional (2-D) particle-in-cell simulations, we investigate such a process of magnetic reconnection based on the experiment on SG-II facility, and a possible explanation for the formation of the plasmoid is proposed. The results show that before magnetic reconnection occurs, the bubbles squeeze strongly each other and a very thin current sheet is formed. The current sheet is unstable to the tearing mode instability, and we can then observe the formation of plasmoid(s) in such a multiple X-lines reconnection.

  10. A simulation of a capacitively coupled oxygen discharge using the oopd1 particle-in-cell Monte Carlo code

    NASA Astrophysics Data System (ADS)

    Gudmundsson, J. T.; Lieberman, M. A.; Wang, Ying; Verboncoeur, J. P.

    2009-10-01

    The oopd1 particle-in-cell Monte Carlo (PIC-MC) code is used to simulate a capacitively coupled discharge in oxygen. oopd1 is a one-dimensional object-oriented PIC-MC code [1] in which the model system has one spatial dimension and three velocity components. It contains models for planar, cylindrical, and spherical geometries and replaces the XPDx1 series [2], which is not object-oriented. The revised oxygen model includes, in addition to electrons, the oxygen molecule in ground state, the oxygen atom in ground state, the negative ion O^-, and the positive ions O^+ and O2^+. The cross sections for the collisions among the oxygen species have been significantly revised from earlier work using the xpdp1 code [3]. Here we explore the electron energy distribution function (EEDF), the ion energy distribution function (IEDF) and the density profiles for various pressures and driving frequencies. In particular we investigate the influence of the O^+ ion on the IEDF, we explore the influence of multiple driving frequencies, and we do comparisons to the previous xpdx1 codes. [1] J. P. Verboncoeur, A. B. Langdon, and N. T. Gladd, Comp. Phys. Comm. 87 (1995) 199 [2] J. P. Verboncoeur, M. V. Alves, V. Vahedi, and C. K. Birdsall, J. Comp. Physics 104 (1993) 321 [2] V. Vahedi and M. Surendra, Comp. Phys. Comm. 87 (1995) 179

  11. Low frequency, electrodynamic simulation of kinetic plasmas with the DArwin Direct Implicit Particle-In-Cell (DADIPIC) method

    SciTech Connect

    Gibbons, Matthew Richard

    1995-06-01

    This dissertation describes a new algorithm for simulating low frequency, kinetic phenomena in plasmas. DArwin Direct Implicit Particle-in-Cell (DADIPIC), as its name implies, is a combination of the Darwin and direct implicit methods. One of the difficulties in simulating plasmas lies in the enormous disparity between the fundamental scale lengths of a plasma and the scale lengths of the phenomena of interest. The objective is to create models which can ignore the fundamental constraints without eliminating relevant plasma properties. Over the past twenty years several PIC methods have been investigated for overcoming the constraints on explicit electrodynamic PIC. These models eliminate selected high frequency plasma phenomena while retaining kinetic phenomena at low frequency. This dissertation shows that the combination of Darwin and Direct Implicit allows them to operate better than they have been shown to operate in the past. Through the Darwin method the hyperbolic Maxwell`s equations are reformulated into a set of elliptic equations. Propagating light waves do not exist in the formulation so the Courant constraint on the time step is eliminated. The Direct Implicit method is applied only to the electrostatic field with the result that electrostatic plasma oscillations do not have to be resolved for stability. With the elimination of these constraints spatial and temporal discretization can be much larger than that possible with explicit, electrodynamic PIC. The code functions in a two dimensional Cartesian region and has been implemented with all components of the particle velocities, the E-field, and the B-field. Internal structures, conductors or dielectrics, may be placed in the simulation region, can be set at desired potentials, and driven with specified currents.

  12. Whistler anisotropy instabilities as the source of banded chorus: Van Allen Probes observations and particle-in-cell simulations

    SciTech Connect

    Fu, Xiangrong; Cowee, Misa M.; Friedel, Reinhard H.; Funsten, Herbert O.; Gary, S. Peter; Hospodarsky, George B.; Kletzing, Craig; Kurth, William; Larsen, Brian A.; Liu, Kaijun; MacDonald, Elizabeth A.; Reeves, Geoffrey D.; Skoug, Ruth M.; Winske, Dan

    2014-10-22

    Magnetospheric banded chorus is enhanced whistler waves with frequencies ωr < Ωe, where Ωe is the electron cyclotron frequency, and a characteristic spectral gap at ωr ≃ Ωe/2. This paper uses spacecraft observations and two-dimensional particle-in-cell simulations in a magnetized, homogeneous, collisionless plasma to test the hypothesis that banded chorus is due to local linear growth of two branches of the whistler anisotropy instability excited by two distinct, anisotropic electron components of significantly different temperatures. The electron densities and temperatures are derived from Helium, Oxygen, Proton, and Electron instrument measurements on the Van Allen Probes A satellite during a banded chorus event on 1 November 2012. The observations are consistent with a three-component electron model consisting of a cold (a few tens of eV) population, a warm (a few hundred eV) anisotropic population, and a hot (a few keV) anisotropic population. The simulations use plasma and field parameters as measured from the satellite during this event except for two numbers: the anisotropies of the warm and the hot electron components are enhanced over the measured values in order to obtain relatively rapid instability growth. The simulations show that the warm component drives the quasi-electrostatic upper band chorus and that the hot component drives the electromagnetic lower band chorus; the gap at ~Ωe/2 is a natural consequence of the growth of two whistler modes with different properties.

  13. Gyrokinetic and kinetic particle-in-cell simulations of guide-field reconnection. I. Macroscopic effects of the electron flows

    SciTech Connect

    Muñoz, P. A. Kilian, P.; Büchner, J.; Told, D.; Jenko, F.

    2015-08-15

    In this work, we compare gyrokinetic (GK) with fully kinetic Particle-in-Cell (PIC) simulations of magnetic reconnection in the limit of strong guide field. In particular, we analyze the limits of applicability of the GK plasma model compared to a fully kinetic description of force free current sheets for finite guide fields (b{sub g}). Here, we report the first part of an extended comparison, focusing on the macroscopic effects of the electron flows. For a low beta plasma (β{sub i} = 0.01), it is shown that both plasma models develop magnetic reconnection with similar features in the secondary magnetic islands if a sufficiently high guide field (b{sub g} ≳ 30) is imposed in the kinetic PIC simulations. Outside of these regions, in the separatrices close to the X points, the convergence between both plasma descriptions is less restrictive (b{sub g} ≳ 5). Kinetic PIC simulations using guide fields b{sub g} ≲ 30 reveal secondary magnetic islands with a core magnetic field and less energetic flows inside of them in comparison to the GK or kinetic PIC runs with stronger guide fields. We find that these processes are mostly due to an initial shear flow absent in the GK initialization and negligible in the kinetic PIC high guide field regime, in addition to fast outflows on the order of the ion thermal speed that violate the GK ordering. Since secondary magnetic islands appear after the reconnection peak time, a kinetic PIC/GK comparison is more accurate in the linear phase of magnetic reconnection. For a high beta plasma (β{sub i} = 1.0) where reconnection rates and fluctuations levels are reduced, similar processes happen in the secondary magnetic islands in the fully kinetic description, but requiring much lower guide fields (b{sub g} ≲ 3)

  14. Whistler anisotropy instabilities as the source of banded chorus: Van Allen Probes observations and particle-in-cell simulations

    DOE PAGES

    Fu, Xiangrong; Cowee, Misa M.; Friedel, Reinhard H.; ...

    2014-10-22

    Magnetospheric banded chorus is enhanced whistler waves with frequencies ωr < Ωe, where Ωe is the electron cyclotron frequency, and a characteristic spectral gap at ωr ≃ Ωe/2. This paper uses spacecraft observations and two-dimensional particle-in-cell simulations in a magnetized, homogeneous, collisionless plasma to test the hypothesis that banded chorus is due to local linear growth of two branches of the whistler anisotropy instability excited by two distinct, anisotropic electron components of significantly different temperatures. The electron densities and temperatures are derived from Helium, Oxygen, Proton, and Electron instrument measurements on the Van Allen Probes A satellite during a bandedmore » chorus event on 1 November 2012. The observations are consistent with a three-component electron model consisting of a cold (a few tens of eV) population, a warm (a few hundred eV) anisotropic population, and a hot (a few keV) anisotropic population. The simulations use plasma and field parameters as measured from the satellite during this event except for two numbers: the anisotropies of the warm and the hot electron components are enhanced over the measured values in order to obtain relatively rapid instability growth. The simulations show that the warm component drives the quasi-electrostatic upper band chorus and that the hot component drives the electromagnetic lower band chorus; the gap at ~Ωe/2 is a natural consequence of the growth of two whistler modes with different properties.« less

  15. One dimensional PIC simulation of relativistic Buneman instability

    NASA Astrophysics Data System (ADS)

    Rajawat, Roopendra Singh; Sengupta, Sudip

    2016-10-01

    Spatio-temporal evolution of the relativistic Buneman instability has been investigated in one dimension using an in-house developed particle-in-cell simulation code. Starting from the excitation of the instability, its evolution has been followed numerically till its quenching and beyond. The simulation results have been quantitatively compared with the fluid theory and are found to be in conformity with the well known fact that the maximum growth rate (γmax) reduces due to relativistic effects and varies with γ e 0 and m/M as γ m a x ˜ /√{ 3 } 2 √{ γ e 0 } ( /m 2 M ) 1 / 3 , where γ e 0 is the Lorentz factor associated with the initial electron drift velocity (v0) and (m/M) is the electron to ion mass ratio. Further it is observed that in contrast to the non-relativistic results [A. Hirose, Plasma Phys. 20, 481 (1978)] at the saturation point, the ratio of electrostatic field energy density ( ∑ k | E k | 2 / 8 π ) to initial drift kinetic energy density (W0) scales with γ e 0 as ˜ 1 / γe 0 2 . This novel result on the scaling of energy densities has been found to be in quantitative agreement with the scalings derived using fluid theory.

  16. PIC Simulation of Relativistic Electromagnetic Plasma Expansion with Radiation Damping

    NASA Astrophysics Data System (ADS)

    Noguchi, Koichi; Liang, Edison; Wilks, Scott

    2004-11-01

    One of the unsolved problems in astrophysics is the acceleration of nonthermal high-energy particles. Nonthermal radiation is observed from pulsars, blazers, gamma-ray bursts and black holes. Recently, a new mechanism of relativistic nonthermal particle acceleration, called the Diamagnetic Relativistic Pulse Accelerator(DRPA), discovered using multi-dimensional Particle-in-Cell(PIC) simulations. When a plasma-loaded electromagnetic pulse expands relativistically, the self-induced drift current creates ponderomotive trap, which drags only the fast particles in the trap and leave slow ones behind. Here we study the effect of radiation on an electron-positron plasma accelerated by the DRPA, by introducing the radiation force in our 2D PIC code. In the radiation case, particles are accelerated by the EM pulse but decelerated by the radiation reaction simultaneously, whereas particles are accelerated indefinitely in the non-radiation case. We find that even with the radiation dumping the DRPA mechanism remains robust and particles are accelerated to over γ>100. After the simulation reaches the quasi-equilibrium state, kinetic energy becomes constant, and field energy is converted to radiation using particles as the transfer agent. We will also produce sample light waves of the radiation output.

  17. Particle Acceleration and Wave Excitation in Quasi-parallel High-Mach-number Collisionless Shocks: Particle-in-cell Simulation

    NASA Astrophysics Data System (ADS)

    Kato, Tsunehiko N.

    2015-04-01

    We herein investigate shock formation and particle acceleration processes for both protons and electrons in a quasi-parallel high-Mach-number collisionless shock through a long-term, large-scale, particle-in-cell simulation. We show that both protons and electrons are accelerated in the shock and that these accelerated particles generate large-amplitude Alfvénic waves in the upstream region of the shock. After the upstream waves have grown sufficiently, the local structure of the collisionless shock becomes substantially similar to that of a quasi-perpendicular shock due to the large transverse magnetic field of the waves. A fraction of protons are accelerated in the shock with a power-law-like energy distribution. The rate of proton injection to the acceleration process is approximately constant, and in the injection process, the phase-trapping mechanism for the protons by the upstream waves can play an important role. The dominant acceleration process is a Fermi-like process through repeated shock crossings of the protons. This process is a “fast” process in the sense that the time required for most of the accelerated protons to complete one cycle of the acceleration process is much shorter than the diffusion time. A fraction of the electrons are also accelerated by the same mechanism, and have a power-law-like energy distribution. However, the injection does not enter a steady state during the simulation, which may be related to the intermittent activity of the upstream waves. Upstream of the shock, a fraction of the electrons are pre-accelerated before reaching the shock, which may contribute to steady electron injection at a later time.

  18. PARTICLE ACCELERATION AND WAVE EXCITATION IN QUASI-PARALLEL HIGH-MACH-NUMBER COLLISIONLESS SHOCKS: PARTICLE-IN-CELL SIMULATION

    SciTech Connect

    Kato, Tsunehiko N.

    2015-04-01

    We herein investigate shock formation and particle acceleration processes for both protons and electrons in a quasi-parallel high-Mach-number collisionless shock through a long-term, large-scale, particle-in-cell simulation. We show that both protons and electrons are accelerated in the shock and that these accelerated particles generate large-amplitude Alfvénic waves in the upstream region of the shock. After the upstream waves have grown sufficiently, the local structure of the collisionless shock becomes substantially similar to that of a quasi-perpendicular shock due to the large transverse magnetic field of the waves. A fraction of protons are accelerated in the shock with a power-law-like energy distribution. The rate of proton injection to the acceleration process is approximately constant, and in the injection process, the phase-trapping mechanism for the protons by the upstream waves can play an important role. The dominant acceleration process is a Fermi-like process through repeated shock crossings of the protons. This process is a “fast” process in the sense that the time required for most of the accelerated protons to complete one cycle of the acceleration process is much shorter than the diffusion time. A fraction of the electrons are also accelerated by the same mechanism, and have a power-law-like energy distribution. However, the injection does not enter a steady state during the simulation, which may be related to the intermittent activity of the upstream waves. Upstream of the shock, a fraction of the electrons are pre-accelerated before reaching the shock, which may contribute to steady electron injection at a later time.

  19. Particle-in-cell Simulations of Electron and Ion Dissipation by Whistler Turbulence: Variations with Electron β

    NASA Astrophysics Data System (ADS)

    Hughes, R. Scott; Gary, S. Peter; Wang, Joseph

    2017-01-01

    Two ensembles of three-dimensional particle-in-cell (PIC) simulations of the forward cascade of decaying whistler turbulence have been carried out on a model of collisionless, homogeneous, magnetized plasma with parameters similar to those of the solar wind near Earth. Initial, relatively isotropic, narrowband spectra of relatively long wavelength modes cascade to anisotropic, broadband spectra of magnetic fluctuations at shorter wavelengths. Electron and ion dissipation rates are computed as functions of the initial electron beta, βe, over the range 0.1 ≤ βe ≤ 5.0, where this quantity is varied by changes in the background magnetic field magnitude Bo. Ensemble One holds the value of the dimensionless initial magnetic fluctuation energy density ɛo ≡ Σk | δ {B}{{k}}{| }2/{B}{{o}}2 constant; Ensemble Two follows solar wind observations, imposing the initial condition ɛo = 0.20 βe. In both ensembles, the maximum dissipation rate of the electrons, Qe, and the maximum dissipation rate of the ions, Qi, satisfy Qe ≫ Qi. In Ensemble One, both dissipation rates scale approximately as {β }{{e}}-1, whereas over 0.1 ≤ βe ≤ 1.0 in Ensemble Two, Qe is approximately constant while Qi scales approximately as {β }{{e}}1/2. These results, when combined with conclusions from earlier PIC simulations, suggest that sufficiently long wavelength and sufficiently large-amplitude magnetosonic-whistler turbulence at sufficiently large βe may heat ions more rapidly than electrons.

  20. Measurements And Particle In Cell vs. Fluid Simulations Of A New Time Domain Impedance Probe For Ionospheric Plasma Characterization

    NASA Astrophysics Data System (ADS)

    Spencer, E. A.; Russ, S.; Kerrigan, B.; Leggett, K.; Mullins, J.; Clark, D. C.; Mizell, J.; Gollapalli, R.; Vassiliadis, D.; Lusk, G. D.

    2015-12-01

    A plasma impedance probe is used to obtain plasma parameters in the ionosphere by measuring the magnitude, shape and location of resonances in the frequency spectrum when a probe structure is driven with RF excitation. The measured magnitude and phase response with respect to frequency can be analyzed via analytical and simulational means. We have designed and developed a new Time Domain Impedance Probe capable of making measurements of absolute electron density and electron neutral collision frequency at temporal and spatial resolutions not previously attained. A single measurement can be made in a time as short as 50 microseconds, which yields a spatial resolution of 0.35 meters for a satellite orbital velocity of 7 km/s. The method essentially consists of applying a small amplitude time limited voltage signal into a probe and measuring the resulting current response. The frequency bandwidth of the voltage signal is selected in order that the electron plasma resonances are observable. A prototype of the instrument will be flown in October 2015 on a NASA Undergraduate Student Instrument Progam (USIP) sounding rocket launched out of Wallops Flight Facility. To analyze the measurements, we use a Particle In Cell (PIC) kinetic simulation to calculate the impedance of a dipole antenna immersed in a plasma. The electromagnetic solver utilizes the Finite Difference Time Domain method, while the particle to grid and grid to particle interpolation schemes are standard. The plasma sheath formation electron flux into the dipole surface is not included. The bulk velocity of the plasma around the dipole is assumed to be zero. For completeness, the hot plasma and nonlinear effects of probe plasma interaction are explored, including the appearance of cyclotron harmonics. In this work the electron neutral collisions are simulated via a Poisson process approximation. Our results are compared to sounding rocket data from the NASA Tropical Storms mission in 2007, as well as the

  1. Simulations of Dynamic Relativistic Magnetospheres

    NASA Astrophysics Data System (ADS)

    Parfrey, Kyle Patrick

    Neutron stars and black holes are generally surrounded by magnetospheres of highly conducting plasma in which the magnetic flux density is so high that hydrodynamic forces are irrelevant. In this vanishing-inertia—or ultra-relativistic—limit, magnetohydrodynamics becomes force-free electrodynamics, a system of equations comprising only the magnetic and electric fields, and in which the plasma response is effected by a nonlinear current density term. In this dissertation I describe a new pseudospectral simulation code, designed for studying the dynamic magnetospheres of compact objects. A detailed description of the code and several numerical test problems are given. I first apply the code to the aligned rotator problem, in which a star with a dipole magnetic field is set rotating about its magnetic axis. The solution evolves to a steady state, which is nearly ideal and dissipationless everywhere except in a current sheet, or magnetic field discontinuity, at the equator, into which electromagnetic energy flows and is dissipated. Magnetars are believed to have twisted magnetospheres, due to internal magnetic evolution which deforms the crust, dragging the footpoints of external magnetic field lines. This twisting may be able to explain both magnetars' persistent hard X-ray emission and their energetic bursts and flares. Using the new code, I simulate the evolution of relativistic magnetospheres subjected to slow twisting through large angles. The field lines expand outward, forming a strong current layer; eventually the configuration loses equilibrium and a dynamic rearrangement occurs, involving large-scale rapid magnetic reconnection and dissipation of the free energy of the twisted magnetic field. When the star is rotating, the magnetospheric twisting leads to a large increase in the stellar spin-down rate, which may take place on the long twisting timescale or in brief explosive events, depending on where the twisting is applied and the history of the system

  2. Plasma asymmetry due to the magnetic filter in fusion-type negative ion sources: Comparisons between two and three-dimensional particle-in-cell simulations

    SciTech Connect

    Fubiani, G. Boeuf, J. P.

    2014-07-15

    Previously reported 2D Particle-In-Cell Monte Carlo Collisions (PIC-MCC) simulations of negative ion sources under conditions similar to those of the ITER neutral beam injection system have shown that the presence of the magnetic filter tends to generate asymmetry in the plasma properties in the extraction region. In this paper, we show that these conclusions are confirmed by 3D PIC-MCC simulations and we provide quantitative comparisons between the 2D and 3D model predictions.

  3. Three-dimensional particle-in-cell simulations of rapid start-up in strapped oven magnetrons due to variation in the insulating magnetic field

    NASA Astrophysics Data System (ADS)

    Luginsland, J. W.; Lau, Y. Y.; Neculaes, V. B.; Gilgenbach, R. M.; Jones, M. C.; Frese, M. H.; Watrous, J. J.

    2004-06-01

    A three-dimensional parallel particle-in-cell code, ICEPIC, is used to simulate the geometry and the magnetic field profiles of the recent low-noise, fast startup magnetron experiments at the University of Michigan. The fast startup, the power levels, and the starting currents that have been observed in these experiments are quantitatively reproduced in the simulations. The tendency for low noise operation has also been reproduced with the use of an azimuthally varying magnetic field.

  4. Exact charge-conserving scatter-gather algorithm for particle-in-cell simulations on unstructured grids: A geometric perspective

    NASA Astrophysics Data System (ADS)

    Moon, Haksu; Teixeira, Fernando L.; Omelchenko, Yuri A.

    2015-09-01

    We describe a charge-conserving scatter-gather algorithm for particle-in-cell simulations on unstructured grids. Charge conservation is obtained from first principles, i.e., without the need for any post-processing or correction steps. This algorithm recovers, at a fundamental level, the scatter-gather algorithms presented recently by Campos-Pinto et al. (2014) (to first-order) and by Squire et al. (2012), but it is derived here in a streamlined fashion from a geometric viewpoint. Some ingredients reflecting this viewpoint are (1) the use of (discrete) differential forms of various degrees to represent fields, currents, and charged particles and provide localization rules for the degrees of freedom thereof on the various grid elements (nodes, edges, facets), (2) use of Whitney forms as basic interpolants from discrete differential forms to continuum space, and (3) use of a Galerkin formula for the discrete Hodge star operators (i.e., "mass matrices" incorporating the metric datum of the grid) applicable to generally irregular, unstructured grids. The expressions obtained for the scatter charges and scatter currents are very concise and do not involve numerical quadrature rules. Appropriate fractional areas within each grid element are identified that represent scatter charges and scatter currents within the element, and a simple geometric representation for the (exact) charge conservation mechanism is obtained by such identification. The field update is based on the coupled first-order Maxwell's curl equations to avoid spurious modes with secular growth (otherwise present in formulations that discretize the second-order wave equation). Examples are provided to verify preservation of discrete Gauss' law for all times.

  5. 3D Electromagnetic Particle-in-Cell simulations of the solar wind interaction with lunar magnetic anomalies

    NASA Astrophysics Data System (ADS)

    Deca, J.; Lapenta, G.; Divin, A. V.; Lembege, B.; Markidis, S.

    2013-12-01

    Unlike the Earth and Mercury, our Moon has no global magnetic field and is therefore not shielded from the impinging solar wind by a magnetosphere. However, lunar magnetic field measurements made by the Apollo missions provided direct evidence that the Moon has regions of small-scale crustal magnetic fields, ranging up to a few 100km in scale size with surface magnetic field strengths up to hundreds of nanoTeslas. More recently, the Lunar Prospector spacecraft has provided high-resolution observations allowing to construct magnetic field maps of the entire Moon, confirming the earlier results from Apollo, but also showing that the lunar plasma environment is much richer than earlier believed. Typically the small-scale magnetic fields are non-dipolar and rather tiny compared to the lunar radius and mainly clustered on the far side of the moon. Using iPic3D we present the first 3D fully kinetic and electromagnetic Particle-in-Cell simulations of the solar wind interaction with lunar magnetic anomalies. We study the behaviour of a dipole model with variable surface magnetic field strength under changing solar wind conditions and confirm that lunar crustal magnetic fields may indeed be strong enough to stand off the solar wind and form a mini-magnetosphere, as suggested by MHD and hybrid simulations and spacecraft observations. 3D-PIC simulations reveal to be very helpful to analyze the diversion/braking of the particle flux and the characteristics of the resulting particles accumulation. The particle flux to the surface is significantly reduced at the magnetic anomaly, surrounded by a region of enhanced density due to the magnetic mirror effect. Second, the ability of iPic3D to resolve all plasma components (heavy ions, protons and electrons) allows to discuss in detail the electron physics leading to the highly non-adiabatic interactions expected as well as the implications for solar wind shielding of the lunar surface, depending on the scale size (solar wind protons

  6. Evidence of magnetic field switch-off in Particle In Cell simulations of collisionless magnetic reconnection with guide field

    NASA Astrophysics Data System (ADS)

    Innocenti, M. E.; Goldman, M. V.; Newman, D. L.; Markidis, S.; Lapenta, G.

    2015-12-01

    The long term evolution of large domain Particle In Cell simulations of collisionless magnetic reconnection is investigated following observations that show two possible outcomes for collisionless reconnection: towards a Petschek-like configuration (Gosling 2007) or towards multiple X points (Eriksson et al. 2014). In the simulations presented here and described in [Innocenti2015*], a mixed scenario develops. At earlier time, plasmoids are emitted, disrupting the formation of Petschek-like structures. Later, an almost stationary monster plasmoid forms, preventing the emission of other plasmoids. A situation reminding of Petschek's switch-off then ensues. Switch-off is obtained through a slow shock / rotational discontinuity (SS/RD) compound structure, with the rotation discontinuity downstreamthe slow shock. Two external slow shocks located in correspondence of the separatrices reduce the in plane tangential component of the magnetic field, but not to zero. Two transitions reminding of rotational discontinuities in the internal part of the exhausts then perform the final switch-off. Both the slow shocks and the rotational discontinuities are characterized as such through the analysis of their Rankine-Hugoniot jump conditions. A moderate guide field is used to suppress the development of the firehose instability in the exhaust that prevented switch off in [Liu2012]. Compound SS/RD structures, with the RD located downstream the SS, have been observed in both the solar wind and the magnetosphere in Wind and Geotail data respectively [Whang1998, Whang2004]. Ion trajectiories across the SS/RD structure are followed and the kinetic origin of the SS/RD structure is investigated. * Innocenti, Goldman, Newman, Markidis, Lapenta, Evidence of magnetic field switch-off in collisionless magnetic reconnection, accepted in Astrophysical Journal Letters, 2015 Acknowledgements: NERSC, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of

  7. Proton velocity ring-driven instabilities in the inner magnetosphere: Linear theory and particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Min, Kyungguk; Liu, Kaijun

    2016-01-01

    Linear dispersion theory and electromagnetic particle-in-cell (PIC) simulations are used to investigate linear growth and nonlinear saturation of the proton velocity ring-driven instabilities, namely, ion Bernstein instability and Alfvén-cyclotron instability, which lead to fast magnetosonic waves and electromagnetic ion cyclotron waves in the inner magnetosphere, respectively. The proton velocity distribution is assumed to consist of 10% of a ring distribution and 90% of a low-temperature Maxwellian background. Here two cases with ring speeds vr/vA=1 and 2 (vA is the Alfvén speed) are examined in detail. For the two cases, linear theory predicts that the maximum growth rate γm of the Bernstein instability is 0.16Ωp and 0.19Ωp, respectively, and γm of the Alfvén-cyclotron instability is 0.045Ωp and 0.15Ωp, respectively, where Ωp is the proton cyclotron frequency. Two-dimensional PIC simulations are carried out for the two cases to examine the instability development and the corresponding evolution of the particle distributions. Initially, Bernstein waves develop and saturate with strong electrostatic fluctuations. Subsequently, electromagnetic Alfvén-cyclotron waves grow and saturate. Despite their smaller growth rate, the saturation levels of the Alfvén-cyclotron waves for both cases are larger than those of the Bernstein waves. Resonant interactions with the Bernstein waves lead to scattering of ring protons predominantly along the perpendicular velocity component (toward both decreasing and, at a lesser extent, increasing speeds) without substantial change of either the parallel temperature or the temperature anisotropy. Consequently, the Alfvén-cyclotron instability can still grow. Furthermore, the free energy resulting from the pitch angle scattering by the Alfvén-cyclotron waves is larger than the free energy resulting from the perpendicular energy scattering, thereby leading to the larger saturation level of the Alfvén-cyclotron waves.

  8. PARTICLE DYNAMICS IN THE RECONNECTING HELIOSPHERIC CURRENT SHEET: SOLAR WIND DATA VERSUS THREE-DIMENSIONAL PARTICLE-IN-CELL SIMULATIONS

    SciTech Connect

    Zharkova, Valentina V.; Khabarova, Olga V. E-mail: habarova@izmiran.ru

    2012-06-10

    In this paper, we apply an assumption of the reconnecting heliospheric current sheet (HCS) for explanation of some contradictory results in the experimental detection of the sector boundaries (SBs) from the interplanetary magnetic field and electron pitch-angle measurements. Trajectories, densities, velocity, and pitch-angle distributions of particles accelerated by a super-Dreicer electric field are investigated with 2.5D full kinetic particle-in-cell approach in the HCS assumed to undergo a slow magnetic reconnection process with magnetic field configurations deduced from the solar wind observations. This approach reveals that during motion in a current sheet both kinds of particles, electrons and protons, are to be separated, either fully or partially, with respect to its midplane that can lead to their ejection to the opposite semiplanes that was also observed during the HCS crossings. This separation is found to form Hall's currents and polarization electric field across the current sheet, which distribution over the current sheets allows us to reproduce the magnitudes and temporal profiles of proton and ion velocities measured across the SB (current sheet midplane). This separation process, in turn, divides both kinds of particles on 'transit' and 'bounced' ones depending on a side of the current sheet where they enter it and where they are supposed to be ejected. The transit and bounced protons reproduce rather closely the measured distributions of proton/ion densities about the current sheet midplane with a larger maximum occurring at the heliospheric SB to be formed by the bounced protons and the other two smaller maximums on both sides from the central one to be formed by 'transit' protons. The observed electron distributions of density and energy before and after sector boundary crossings are found to fit the simulated ones for electrons accelerated in a current sheet revealing a sharp increase of density from one side from the HCS boundary and a

  9. Three-dimensional gyrokinetic particle-in-cell simulation of plasmas on a massively parallel computer: Final report on LDRD Core Competency Project, FY 1991--FY 1993

    SciTech Connect

    Byers, J.A.; Williams, T.J.; Cohen, B.I.; Dimits, A.M.

    1994-04-27

    One of the programs of the Magnetic fusion Energy (MFE) Theory and computations Program is studying the anomalous transport of thermal energy across the field lines in the core of a tokamak. We use the method of gyrokinetic particle-in-cell simulation in this study. For this LDRD project we employed massively parallel processing, new algorithms, and new algorithms, and new formal techniques to improve this research. Specifically, we sought to take steps toward: researching experimentally-relevant parameters in our simulations, learning parallel computing to have as a resource for our group, and achieving a 100 {times} speedup over our starting-point Cray2 simulation code`s performance.

  10. The hierarchical spatial decomposition of three-dimensional particle- in-cell plasma simulations on MIMD distributed memory multiprocessors

    SciTech Connect

    Walker, D.W.

    1992-07-01

    The hierarchical spatial decomposition method is a promising approach to decomposing the particles and computational grid in parallel particle-in-cell application codes, since it is able to maintain approximate dynamic load balance while keeping communication costs low. In this paper we investigate issues in implementing a hierarchical spatial decomposition on a hypercube multiprocessor. Particular attention is focused on the communication needed to update guard ring data, and on the load balancing method. The hierarchical approach is compared with other dynamic load balancing schemes.

  11. Verification of high performance two-dimensional particle-in-cell simulations of low-temperature plasmas

    NASA Astrophysics Data System (ADS)

    Leggate, Huw; Turner, Miles

    2016-09-01

    We discuss a two-dimensional implementation of the particle-in-cell algorithm with Monte Carlo collisions. This implementation is designed for multiprocessor environments in which each processor is assumed to offer vector capabilities and multiple execution threads. An appropriate implementation therefore combines OpenMP to exploit multithreading with MPI to coupled computing nodes. This approach promises to achieve accelerations of a least a factor of several hundred, relative to to a simple serial implementation. However, the complexity involved also offers many opportunities for error, and makes correctness demonstrations especially desirable. In this presentation we discuss the characteristics of this parallel implementation, and we describe a suite of verification tests that collectively create a strong presumption that the code is correct. Work supported by the EUROfusion consortium.

  12. Development of the 3D Parallel Particle-In-Cell Code IMPACT to Simulate the Ion Beam Transport System of VENUS (Abstract)

    SciTech Connect

    Qiang, J.; Leitner, D.; Todd, D.S.; Ryne, R.D.

    2005-03-15

    The superconducting ECR ion source VENUS serves as the prototype injector ion source for the Rare Isotope Accelerator (RIA) driver linac. The RIA driver linac requires a great variety of high charge state ion beams with up to an order of magnitude higher intensity than currently achievable with conventional ECR ion sources. In order to design the beam line optics of the low energy beam line for the RIA front end for the wide parameter range required for the RIA driver accelerator, reliable simulations of the ion beam extraction from the ECR ion source through the ion mass analyzing system are essential. The RIA low energy beam transport line must be able to transport intense beams (up to 10 mA) of light and heavy ions at 30 keV.For this purpose, LBNL is developing the parallel 3D particle-in-cell code IMPACT to simulate the ion beam transport from the ECR extraction aperture through the analyzing section of the low energy transport system. IMPACT, a parallel, particle-in-cell code, is currently used to model the superconducting RF linac section of RIA and is being modified in order to simulate DC beams from the ECR ion source extraction. By using the high performance of parallel supercomputing we will be able to account consistently for the changing space charge in the extraction region and the analyzing section. A progress report and early results in the modeling of the VENUS source will be presented.

  13. Development of the 3D Parallel Particle-In-Cell Code IMPACT to Simulate the Ion Beam Transport System of VENUS (Abstract)

    NASA Astrophysics Data System (ADS)

    Qiang, J.; Leitner, D.; Todd, D. S.; Ryne, R. D.

    2005-03-01

    The superconducting ECR ion source VENUS serves as the prototype injector ion source for the Rare Isotope Accelerator (RIA) driver linac. The RIA driver linac requires a great variety of high charge state ion beams with up to an order of magnitude higher intensity than currently achievable with conventional ECR ion sources. In order to design the beam line optics of the low energy beam line for the RIA front end for the wide parameter range required for the RIA driver accelerator, reliable simulations of the ion beam extraction from the ECR ion source through the ion mass analyzing system are essential. The RIA low energy beam transport line must be able to transport intense beams (up to 10 mA) of light and heavy ions at 30 keV. For this purpose, LBNL is developing the parallel 3D particle-in-cell code IMPACT to simulate the ion beam transport from the ECR extraction aperture through the analyzing section of the low energy transport system. IMPACT, a parallel, particle-in-cell code, is currently used to model the superconducting RF linac section of RIA and is being modified in order to simulate DC beams from the ECR ion source extraction. By using the high performance of parallel supercomputing we will be able to account consistently for the changing space charge in the extraction region and the analyzing section. A progress report and early results in the modeling of the VENUS source will be presented.

  14. Numerical stability of relativistic beam multidimensional PIC simulations employing the Esirkepov algorithm

    SciTech Connect

    Godfrey, Brendan B.; Vay, Jean-Luc

    2013-09-01

    Rapidly growing numerical instabilities routinely occur in multidimensional particle-in-cell computer simulations of plasma-based particle accelerators, astrophysical phenomena, and relativistic charged particle beams. Reducing instability growth to acceptable levels has necessitated higher resolution grids, high-order field solvers, current filtering, etc. except for certain ratios of the time step to the axial cell size, for which numerical growth rates and saturation levels are reduced substantially. This paper derives and solves the cold beam dispersion relation for numerical instabilities in multidimensional, relativistic, electromagnetic particle-in-cell programs employing either the standard or the Cole–Karkkainnen finite difference field solver on a staggered mesh and the common Esirkepov current-gathering algorithm. Good overall agreement is achieved with previously reported results of the WARP code. In particular, the existence of select time steps for which instabilities are minimized is explained. Additionally, an alternative field interpolation algorithm is proposed for which instabilities are almost completely eliminated for a particular time step in ultra-relativistic simulations.

  15. Simulation of laser-driven plasma beat-wave propagation in collisional weakly relativistic plasmas

    NASA Astrophysics Data System (ADS)

    Kaur, Maninder; Nandan Gupta, Devki

    2016-11-01

    The process of interaction of lasers beating in a plasma has been explored by virtue of particle-in-cell (PIC) simulations in the presence of electron-ion collisions. A plasma beat wave is resonantly excited by ponderomotive force by two relatively long laser pulses of different frequencies. The amplitude of the plasma wave become maximum, when the difference in the frequencies is equal to the plasma frequency. We propose to demonstrate the energy transfer between the laser beat wave and the plasma wave in the presence of electron-ion collision in nearly relativistic regime with 2D-PIC simulations. The relativistic effect and electron-ion collision both affect the energy transfer between the interacting waves. The finding of simulation results shows that there is a considerable decay in the plasma wave and the field energy over time in the presence of electron-ion collisions.

  16. Monte Carlo approach to calculate proton stopping in warm dense matter within particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Wu, D.; He, X. T.; Yu, W.; Fritzsche, S.

    2017-02-01

    A Monte Carlo approach to proton stopping in warm dense matter is implemented into an existing particle-in-cell code. This approach is based on multiple electron-electron, electron-ion, and ion-ion binary collision and accounts for both the free and the bound electrons in the plasmas. This approach enables one to calculate the stopping of particles in a more natural manner than existing theoretical treatment. In the low-temperature limit, when "all" electrons are bound to the nucleus, the stopping power coincides with the predictions from the Bethe-Bloch formula and is consistent with the data from the National Institute of Standard and Technology database. At higher temperatures, some of the bound electrons are ionized, and this increases the stopping power in the plasmas, as demonstrated by A. B. Zylstra et al. [Phys. Rev. Lett. 114, 215002 (2015)], 10.1103/PhysRevLett.114.215002. At even higher temperatures, the degree of ionization reaches a maximum and thus decreases the stopping power due to the suppression of collision frequency between projected proton beam and hot plasmas in the target.

  17. Particle-in-cell simulation for frequency up-conversion of microwave pulse in a rapidly created plasma

    NASA Astrophysics Data System (ADS)

    Chen, Kun; Liu, Chunliang; Gao, Mingzhu; Chang, Chao

    2017-03-01

    Microwave pulse propagation through a rapidly created plasma and frequency up-conversion has been demonstrated by the particle-in-cell (PIC) method. Compared with the finite-difference time-domain method in which the time-varying plasma is simplified as a dielectric medium, the PIC method considering the interaction and motion of charged particles would be much closer to the experimental values. It is found that the source wave amplitude has a stable range to obtain the stable output. If the source wave amplitude is below 103 V/m with the plasma density of 4 ×1019m-3 , the output is mainly the plasma noise. Moreover, the higher amplitude source wave beyond 108 V/m would break the spatial distribution of the plasma so as to have an influence on the conversion efficiency. The stable range of source wave amplitude is affected by the plasma density. The power loss will increase with the increase in the plasma density in the PIC method, and it is more convenient and accurate to discuss the effects of the collision frequency.

  18. Particle-in-cell simulation of electron trajectories and irradiation uniformity in an annular cathode high current pulsed electron beam source

    NASA Astrophysics Data System (ADS)

    Jiang, Wei; Wang, Langping; Zhou, Guangxue; Wang, Xiaofeng

    2017-02-01

    In order to study electron trajectories in an annular cathode high current pulsed electron beam (HCPEB) source based on carbon fiber bunches, the transmission process of electrons emitted from the annular cathode was simulated using a particle-in-cell model with Monte Carlo collisions (PIC-MCC). The simulation results show that the intense flow of the electrons emitted from the annular cathode are expanded during the transmission process, and the uniformity of the electron distribution is improved in the transportation process. The irradiation current decreases with the irradiation distance and the pressure, and increases with the negative voltage. In addition, when the irradiation distance and the cathode voltage are larger than 40 mm and -15 kV, respectively, a uniform irradiation current distribution along the circumference of the anode can be obtained. The simulation results show that good irradiation uniformity of circular components can be achieved by this annular cathode HCPEB source.

  19. A Fokker-Planck-Landau collision equation solver on two-dimensional velocity grid and its application to particle-in-cell simulation

    SciTech Connect

    Yoon, E. S.; Chang, C. S.

    2014-03-15

    An approximate two-dimensional solver of the nonlinear Fokker-Planck-Landau collision operator has been developed using the assumption that the particle probability distribution function is independent of gyroangle in the limit of strong magnetic field. The isotropic one-dimensional scheme developed for nonlinear Fokker-Planck-Landau equation by Buet and Cordier [J. Comput. Phys. 179, 43 (2002)] and for linear Fokker-Planck-Landau equation by Chang and Cooper [J. Comput. Phys. 6, 1 (1970)] have been modified and extended to two-dimensional nonlinear equation. In addition, a method is suggested to apply the new velocity-grid based collision solver to Lagrangian particle-in-cell simulation by adjusting the weights of marker particles and is applied to a five dimensional particle-in-cell code to calculate the neoclassical ion thermal conductivity in a tokamak plasma. Error verifications show practical aspects of the present scheme for both grid-based and particle-based kinetic codes.

  20. Kinetic (particle-in-cell) simulation of nonlinear laser absorption in a finite-size plasma with a background inhomogeneous magnetic field

    SciTech Connect

    Mehdian, H. Kargarian, A.; Hajisharifi, K.

    2015-06-15

    In this paper, the effect of an external inhomogeneous magnetic field on the high intensity laser absorption rate in a sub-critical plasma has been investigated by employing a relativistic electromagnetic 1.5 dimensional particle-in-cell code. Relying on the effective nonlinear phenomena such as phase-mixing and scattering, this study shows that in a finite-size plasma the laser absorption increases with inhomogeneity of the magnetic field (i.e., reduction of characteristic length of inhomogeneous magnetic field, λ{sub p}) before exiting a considerable amount of laser energy from the plasma due to scattering process. On the other hand, the presence of the external inhomogeneous magnetic field causes the maximum absorption of laser to occur at a shorter time. Moreover, study of the kinetic results associated with the distribution function of plasma particles shows that, in a special range of the plasma density and the characteristic length of inhomogeneous magnetic field, a considerable amount of laser energy is transferred to the particles producing a population of electrons with kinetic energy along the laser direction.

  1. Particle-in-Cell Simulations of Nonlinear Laser-Plasma Interactions and Hot-Electron Generations in the Shock-Ignition Regime

    NASA Astrophysics Data System (ADS)

    Yan, R.; Borwick, E.; Betti, R.; Li, J.; Theobald, W.; Ren, C.; Krauland, C.; Wei, M. S.; Zhang, S.; Beg, F. N.

    2016-10-01

    We performed particle-in-cell (PIC) simulations with parameters relevant to laser-plasma interaction (LPI) experiments on OMEGA EP using high laser intensities (1016 to 1017 W /cm2). Rich physics were observed in this new LPI regime, including laser filamentation and plasma cavitation, plasma waves beyond the Landau cutoff, and significant pump depletion. We will also compare hot-electron generation from the simulations with the experimental measurements. This material is based upon work supported by the Department of Energy under Grant No. DE-SC0012316; by NSF under Grant No. PHY-1314734; and by Laboratory for Laser Energetics. The research used resources of the National Energy Research Scientific Computing Center.

  2. Canonical symplectic particle-in-cell method for long-term large-scale simulations of the Vlasov–Maxwell equations

    SciTech Connect

    Qin, Hong; Liu, Jian; Xiao, Jianyuan; Zhang, Ruili; He, Yang; Wang, Yulei; Sun, Yajuan; Burby, Joshua W.; Ellison, Leland; Zhou, Yao

    2015-12-14

    Particle-in-cell (PIC) simulation is the most important numerical tool in plasma physics. However, its long-term accuracy has not been established. To overcome this difficulty, we developed a canonical symplectic PIC method for the Vlasov-Maxwell system by discretising its canonical Poisson bracket. A fast local algorithm to solve the symplectic implicit time advance is discovered without root searching or global matrix inversion, enabling applications of the proposed method to very large-scale plasma simulations with many, e.g. 10(9), degrees of freedom. The long-term accuracy and fidelity of the algorithm enables us to numerically confirm Mouhot and Villani's theory and conjecture on nonlinear Landau damping over several orders of magnitude using the PIC method, and to calculate the nonlinear evolution of the reflectivity during the mode conversion process from extraordinary waves to Bernstein waves.

  3. Wave-particle interactions with parallel whistler waves: Nonlinear and time-dependent effects revealed by particle-in-cell simulations

    SciTech Connect

    Camporeale, Enrico; Zimbardo, Gaetano

    2015-09-15

    We present a self-consistent Particle-in-Cell simulation of the resonant interactions between anisotropic energetic electrons and a population of whistler waves, with parameters relevant to the Earth's radiation belt. By tracking PIC particles and comparing with test-particle simulations, we emphasize the importance of including nonlinear effects and time evolution in the modeling of wave-particle interactions, which are excluded in the resonant limit of quasi-linear theory routinely used in radiation belt studies. In particular, we show that pitch angle diffusion is enhanced during the linear growth phase, and it rapidly saturates well before a single bounce period. This calls into question the widely used bounce average performed in most radiation belt diffusion calculations. Furthermore, we discuss how the saturation is related to the fact that the domain in which the particles pitch angle diffuses is bounded, and to the well-known problem of 90° diffusion barrier.

  4. Particle-In-Cell/Monte Carlo Simulation of Ion Back BomBardment in a High Average Current RF Photo-Gun

    SciTech Connect

    Qiang, J.

    2009-10-17

    In this paper, we report on study of ion back bombardment in a high average current radio-frequency (RF) photo-gun using a particle-in-cell/Monte Carlo simulation method. Using this method, we systematically studied effects of gas pressure, RF frequency, RF initial phase, electric field profile, magnetic field, laser repetition rate, different ion species on ion particle line density distribution, kinetic energy spectrum, and ion power line density distribution back bombardment onto the photocathode. Those simulation results suggested that effects of ion back bombardment could increase linearly with the background gas pressure and laser repetition rate. The RF frequency has significantly affected the ion motion inside the gun so that the ion power deposition on the photocathode in an RF gun can be several orders of magnitude lower than that in a DC gun. The ion back bombardment can be minimized by appropriately choosing the electric field profile and the initial phase.

  5. Canonical symplectic particle-in-cell method for long-term large-scale simulations of the Vlasov-Maxwell equations

    NASA Astrophysics Data System (ADS)

    Qin, Hong; Liu, Jian; Xiao, Jianyuan; Zhang, Ruili; He, Yang; Wang, Yulei; Sun, Yajuan; Burby, Joshua W.; Ellison, Leland; Zhou, Yao

    2016-01-01

    Particle-in-cell (PIC) simulation is the most important numerical tool in plasma physics. However, its long-term accuracy has not been established. To overcome this difficulty, we developed a canonical symplectic PIC method for the Vlasov-Maxwell system by discretising its canonical Poisson bracket. A fast local algorithm to solve the symplectic implicit time advance is discovered without root searching or global matrix inversion, enabling applications of the proposed method to very large-scale plasma simulations with many, e.g. 109, degrees of freedom. The long-term accuracy and fidelity of the algorithm enables us to numerically confirm Mouhot and Villani’s theory and conjecture on nonlinear Landau damping over several orders of magnitude using the PIC method, and to calculate the nonlinear evolution of the reflectivity during the mode conversion process from extraordinary waves to Bernstein waves.

  6. RESISTIVE MAGNETOHYDRODYNAMIC SIMULATIONS OF RELATIVISTIC MAGNETIC RECONNECTION

    SciTech Connect

    Zenitani, Seiji; Hesse, Michael; Klimas, Alex

    2010-06-20

    Resistive relativistic magnetohydrodynamic (RRMHD) simulations are applied to investigate the system evolution of relativistic magnetic reconnection. A time-split Harten-Lan-van Leer method is employed. Under a localized resistivity, the system exhibits a fast reconnection jet with an Alfvenic Lorentz factor inside a narrow Petschek-type exhaust. Various shock structures are resolved in and around the plasmoid such as the post-plasmoid vertical shocks and the 'diamond-chain' structure due to multiple shock reflections. Under a uniform resistivity, Sweet-Parker-type reconnection slowly evolves. Under a current-dependent resistivity, plasmoids are repeatedly formed in an elongated current sheet. It is concluded that the resistivity model is of critical importance for RRMHD modeling of relativistic magnetic reconnection.

  7. Resistive Magnetohydrodynamic Simulations of Relativistic Magnetic Reconnection

    NASA Technical Reports Server (NTRS)

    Zenitani, Seiji; Hesse, Michael; Klimas, Alex

    2010-01-01

    Resistive relativistic magnetohydrodynamic (RRMHD) simulations are applied to investigate the system evolution of relativistic magnetic reconnection. A time-split Harten-Lan-van Leer method is employed. Under a localized resistivity, the system exhibits a fast reconnection jet with an Alfv enic Lorentz factor inside a narrow Petschek-type exhaust. Various shock structures are resolved in and around the plasmoid such as the post-plasmoid vertical shocks and the "diamond-chain" structure due to multiple shock reflections. Under a uniform resistivity, Sweet-Parker-type reconnection slowly evolves. Under a current-dependent resistivity, plasmoids are repeatedly formed in an elongated current sheet. It is concluded that the resistivity model is of critical importance for RRMHD modeling of relativistic magnetic reconnection.

  8. Resistive Magnetohydrodynamic Simulations of Relativistic Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Zenitani, Seiji; Hesse, Michael; Klimas, Alex

    2010-06-01

    Resistive relativistic magnetohydrodynamic (RRMHD) simulations are applied to investigate the system evolution of relativistic magnetic reconnection. A time-split Harten-Lan-van Leer method is employed. Under a localized resistivity, the system exhibits a fast reconnection jet with an Alfvénic Lorentz factor inside a narrow Petschek-type exhaust. Various shock structures are resolved in and around the plasmoid such as the post-plasmoid vertical shocks and the "diamond-chain" structure due to multiple shock reflections. Under a uniform resistivity, Sweet-Parker-type reconnection slowly evolves. Under a current-dependent resistivity, plasmoids are repeatedly formed in an elongated current sheet. It is concluded that the resistivity model is of critical importance for RRMHD modeling of relativistic magnetic reconnection.

  9. General Relativistic MHD Simulations of Jet Formation

    NASA Technical Reports Server (NTRS)

    Mizuno, Y.; Nishikawa, K.-I.; Hardee, P.; Koide, S.; Fishman, G. J.

    2005-01-01

    We have performed 3-dimensional general relativistic magnetohydrodynamic (GRMHD) simulations of jet formation from an accretion disk with/without initial perturbation around a rotating black hole. We input a sinusoidal perturbation (m = 5 mode) in the rotation velocity of the accretion disk. The simulation results show the formation of a relativistic jet from the accretion disk. Although the initial perturbation becomes weakened by the coupling among different modes, it survives and triggers lower modes. As a result, complex non-axisymmetric density structure develops in the disk and the jet. Newtonian MHD simulations of jet formation with a non-axisymmetric mode show the growth of the m = 2 mode but GRMHD simulations cannot see the clear growth of the m = 2 mode.

  10. Simulations of atmospheric pressure discharge in a high-voltage nanosecond pulse using the particle-in-cell Monte Carlo collision model in noble gases

    NASA Astrophysics Data System (ADS)

    Shi, Feng; Wang, Dezhen; Ren, Chunsheng

    2008-06-01

    Atmospheric pressure discharge nonequilibrium plasmas have been applied to plasma processing with modern technology. Simulations of discharge in pure Ar and pure He gases at one atmospheric pressure by a high voltage trapezoidal nanosecond pulse have been performed using a one-dimensional particle-in-cell Monte Carlo collision (PIC-MCC) model coupled with a renormalization and weighting procedure (mapping algorithm). Numerical results show that the characteristics of discharge in both inert gases are very similar. There exist the effects of local reverse field and double-peak distributions of charged particles' density. The electron and ion energy distribution functions are also observed, and the discharge is concluded in the view of ionization avalanche in number. Furthermore, the independence of total current density is a function of time, but not of position.

  11. The study of the Poincare-Lighthill-Kuo method by using the particle-in-cell simulation method in a dusty plasma

    SciTech Connect

    Zhang, Jie; Yang, Yang; Xu, Yan-Xia; Qi, Xin E-mail: duanws@nwnu.edu.cn; Duan, Wen-shan E-mail: duanws@nwnu.edu.cn; Yang, Lei

    2014-10-15

    The application scope of the Poincare-Lighthill-Kuo (PLK) method is suggested by using the Particle-in-cell (PIC) numerical method to study head-on collision of two solitary waves. Comparisons between the numerical results from PIC simulations and the analytical ones from the PLK method indicate that the both are in good agreement with each other. The dependence of the phase shifts after the head-on collision on both amplitudes of two solitary waves is given from our PIC method. It is found that the phase shifts depended on the amplitude of both waves. The maximum amplitude during the colliding process is approximately equal to the sum of both amplitudes for the small amplitude solitary waves.

  12. Spectral Methods in General Relativistic MHD Simulations

    NASA Astrophysics Data System (ADS)

    Garrison, David

    2012-03-01

    In this talk I discuss the use of spectral methods in improving the accuracy of a General Relativistic Magnetohydrodynamic (GRMHD) computer code. I introduce SpecCosmo, a GRMHD code developed as a Cactus arrangement at UHCL, and show simulation results using both Fourier spectral methods and finite differencing. This work demonstrates the use of spectral methods with the FFTW 3.3 Fast Fourier Transform package integrated with the Cactus Framework to perform spectral differencing using MPI.

  13. Substructures in Simulations of Relativistic Jet Formation

    NASA Astrophysics Data System (ADS)

    Garcia, Raphael de Oliveira; Oliveira, Samuel Rocha de

    2017-04-01

    We present a set of simulations of relativistic jets from accretion disk initial setup with numerical solutions of a system of general-relativistic magnetohydrodynamics (GRMHD) partial differential equations in a fixed black hole (BH) spacetime which is able to show substructures formations inside the jet as well as lobe formation on the jet head. For this, we used a central scheme of finite volume method without dimensional split and with no Riemann solvers namely the Nessyahu-Tadmor method. Thus, we were able to obtain stable numerical solutions with spurious oscillations under control and with no excessive numerical dissipation. Therefore, we developed some setups for initial conditions capable of simulating the formation of relativistic jets from the accretion disk falling onto central black hole until its ejection, both immersed in a magnetosphere. In our simulations, we were able to observe some substructure of a jet created from an accretion initial disk, namely, jet head, knots, cocoon, and lobe. Also, we present an explanation for cocoon formation and lobe formation. Each initial scenario was determined by ratio between disk density and magnetosphere density, showing that this relation is very important for the shape of the jet and its substructures.

  14. Substructures in Simulations of Relativistic Jet Formation

    NASA Astrophysics Data System (ADS)

    Garcia, Raphael de Oliveira; Oliveira, Samuel Rocha de

    2017-02-01

    We present a set of simulations of relativistic jets from accretion disk initial setup with numerical solutions of a system of general-relativistic magnetohydrodynamics (GRMHD) partial differential equations in a fixed black hole (BH) spacetime which is able to show substructures formations inside the jet as well as lobe formation on the jet head. For this, we used a central scheme of finite volume method without dimensional split and with no Riemann solvers namely the Nessyahu-Tadmor method. Thus, we were able to obtain stable numerical solutions with spurious oscillations under control and with no excessive numerical dissipation. Therefore, we developed some setups for initial conditions capable of simulating the formation of relativistic jets from the accretion disk falling onto central black hole until its ejection, both immersed in a magnetosphere. In our simulations, we were able to observe some substructure of a jet created from an accretion initial disk, namely, jet head, knots, cocoon, and lobe. Also, we present an explanation for cocoon formation and lobe formation. Each initial scenario was determined by ratio between disk density and magnetosphere density, showing that this relation is very important for the shape of the jet and its substructures.

  15. Comparison of particle-in-cell simulation with experiment for the transport system of the superconducting electron cyclotron resonance ion source VENUS

    SciTech Connect

    Todd, D.S.; Leitner, D.; Leitner, M.; Lyneis, C.M.; Qiang, J.; Grote, D.P.

    2006-03-15

    The three-dimensional, particle-in-cell code WARP has been enhanced to allow end-to-end beam dynamics simulations of the VENUS beam transport system from the extraction region, through a mass-analyzing magnet, and up to a two-axis emittance scanner. This article presents the first results of comparisons between the simulation and experimental data. A helium beam (He{sup +} and He{sup 2+}) is chosen as an initial comparison beam due to its simple mass spectrum. Although a number of simplifications are made for the initial extracted beam, aberration characteristics appear in simulations that are also present in experimental phase-space current-density measurements. Further, measurements of phase-space tilt indicate that simulations must have little or no space-charge neutralization along the transport system to best agree with experiment. In addition, recent measurements of triangular beam structure immediately after the source are presented. This beam structure is related to the source magnetic confinement fields and will need to be taken into account as the initial beam approximations are lifted.

  16. Particle-in-cell Simulations of Particle Energization via Shock Drift Acceleration from Low Mach Number Quasi-perpendicular Shocks in Solar Flares

    NASA Astrophysics Data System (ADS)

    Park, Jaehong; Ren, Chuang; Workman, Jared C.; Blackman, Eric G.

    2013-03-01

    Low Mach number, high beta fast mode shocks can occur in the magnetic reconnection outflows of solar flares. These shocks, which occur above flare loop tops, may provide the electron energization responsible for some of the observed hard X-rays and contemporaneous radio emission. Here we present new two-dimensional particle-in-cell simulations of low Mach number/high beta quasi-perpendicular shocks. The simulations show that electrons above a certain energy threshold experience shock-drift-acceleration. The transition energy between the thermal and non-thermal spectrum and the spectral index from the simulations are consistent with some of the X-ray spectra from RHESSI in the energy regime of E <~ 40 ~ 100 keV. Plasma instabilities associated with the shock structure such as the modified-two-stream and the electron whistler instabilities are identified using numerical solutions of the kinetic dispersion relations. We also show that the results from PIC simulations with reduced ion/electron mass ratio can be scaled to those with the realistic mass ratio.

  17. Particle-In-Cell Simulations of Particle Energization from Low Mach Number Fast Mode Shocks Using the Moving Wall Boundary Condition

    NASA Astrophysics Data System (ADS)

    Workman, Jared C.; Park, J.; Blackman, E.; Ren, C.; Siller, R.

    2012-05-01

    Astrophysical shocks are often studied in the high Mach number limit but weakly compressive fast shocks can occur in magnetic reconnection outflows and are considered to be a site of particle energization in solar flares. Here we study the microphysics of such perpendicular, low Mach number collisionless shocks using two-dimensional particle-in-cell (PIC) simulations with a reduced ion/electron mass ratio and employ a moving wall boundary method for initial generation the shock. This moving wall method allows for more control of the shock speed, smaller simulation box sizes, and longer simulation times than the commonly used fixed wall, reflection method of shock formation. Our results, which are independent of the shock formation method, reveal the prevalence shock drift acceleration (SDA) of both electron and ions in a purely perpendicular shock with Alfven Mach number MA = 6.8 and ratio of thermal to magnetic pressure β = 8. We determine the respective minimum energies required for electrons and ions to incur SDA. We derive an theoretical electron distribution via SDA that compares favorably to the simulation results. We also show that a modified two-stream instability due to the incoming and reflecting ions in the shock transition region acts as the mechanism to generate collisionless plasma turbulence that sustains the shock.

  18. 2D Particle-In-Cell simulations of the electron-cyclotron instability and associated anomalous transport in Hall-Effect Thrusters

    NASA Astrophysics Data System (ADS)

    Croes, Vivien; Lafleur, Trevor; Bonaventura, Zdenek; Péchereau, François; Bourdon, Anne; Chabert, Pascal

    2016-09-01

    This work studies the electron-cyclotron instability in Hall-Effect Thrusters (HETs) using a 2D Particle-In-Cell (PIC) simulation. The simulation is configured with a Cartesian coordinate system where a magnetic field, B0, is aligned along the X-axis (radial direction, including absorbing walls), a constant electric field, E0, along the Z-axis (axial direction, perpendicular to simulation plane), and the E0xB0 direction along the Y-axis (O direction, with periodic boundaries). Although for low plasma densities classical electron-neutral collisions theory describes well electron transport, at sufficiently high densities (as measured in HETs) a strong instability can be observed that enhances the electron mobility, even in the absence of collisions. The instability generates high frequency ( MHz) and short wavelength ( mm) fluctuations in both the electric field and charged particle densities. We investigate the correlation between these fluctuations and their role with anomalous electron transport; complementing previous 1D simulations. Plasma is self-consistently heated by the instability, but since the latter does not reach saturation in an infinitely long 2D system, saturation is achieved through implementation of a finite axial length that models convection in E0 direction. With support of Safran Aircraft Engines.

  19. General relativistic screening in cosmological simulations

    NASA Astrophysics Data System (ADS)

    Hahn, Oliver; Paranjape, Aseem

    2016-10-01

    We revisit the issue of interpreting the results of large volume cosmological simulations in the context of large-scale general relativistic effects. We look for simple modifications to the nonlinear evolution of the gravitational potential ψ that lead on large scales to the correct, fully relativistic description of density perturbations in the Newtonian gauge. We note that the relativistic constraint equation for ψ can be cast as a diffusion equation, with a diffusion length scale determined by the expansion of the Universe. Exploiting the weak time evolution of ψ in all regimes of interest, this equation can be further accurately approximated as a Helmholtz equation, with an effective relativistic "screening" scale ℓ related to the Hubble radius. We demonstrate that it is thus possible to carry out N-body simulations in the Newtonian gauge by replacing Poisson's equation with this Helmholtz equation, involving a trivial change in the Green's function kernel. Our results also motivate a simple, approximate (but very accurate) gauge transformation—δN(k )≈δsim(k )×(k2+ℓ-2)/k2 —to convert the density field δsim of standard collisionless N -body simulations (initialized in the comoving synchronous gauge) into the Newtonian gauge density δN at arbitrary times. A similar conversion can also be written in terms of particle positions. Our results can be interpreted in terms of a Jeans stability criterion induced by the expansion of the Universe. The appearance of the screening scale ℓ in the evolution of ψ , in particular, leads to a natural resolution of the "Jeans swindle" in the presence of superhorizon modes.

  20. Relativistic radiation damping for simulation

    NASA Astrophysics Data System (ADS)

    Chotia, Amodsen

    2005-10-01

    The aim of this work is to implement radiation braking into a simulation code. Radiation physics of accelerated charges is not new. It dates from the end of the 19th century, from Maxwell theory and Larmor, Poynting, Thomson, Poincare, Lorentz, Von Laue, Abraham, Schott, Planck, Landau, Einstein, Dirac, Wheeler et Feynmann (and many others). The result reaches out from the length of life of exited levels of atoms, antennas, and lays out through specific production of radiation by bremsstrahlung in particles accelerators but also spatial and stellar astrophysics. In this work we start from Landau Lifchitz equation to express the quadrivector acceleration in term of the fields. Using a result from Pomeranchouck we deduce the energy lost by radiation. We do an instantaneous colinear projection of the velocity vector in order to substract the loss of kinetic energy due to radiation. The equation of motion is then solved based on Boris algorithm. The code is tested on few examples.

  1. An explicit large time step particle-in-cell scheme for nonlinear gyrokinetic simulations in the electromagnetic regime

    NASA Astrophysics Data System (ADS)

    Kleiber, R.; Hatzky, R.; Könies, A.; Mishchenko, A.; Sonnendrücker, E.

    2016-03-01

    A new algorithm for electromagnetic gyrokinetic simulations, the so called "pullback transformation scheme" proposed by Mishchenko et al. [Phys. Plasmas 21, 092110 (2014)] is motivated as an explicit time integrator reset after each full timestep and investigated in detail. Using a numerical dispersion relation valid in slab geometry, it is shown that the linear properties of the scheme are comparable to those of an implicit v∥ -scheme. A nonlinear extension of the mixed variable formulation, derived consistently from a field Lagrangian, is proposed. The scheme shows excellent numerical properties with a low statistical noise level and a large time step especially for MHD modes. The example of a nonlinear slab tearing mode simulation is used to illustrate the properties of different formulations of the physical model equations.

  2. Development of a fully implicit particle-in-cell scheme for gyrokinetic electromagnetic turbulence simulation in XGC1

    NASA Astrophysics Data System (ADS)

    Ku, Seung-Hoe; Hager, R.; Chang, C. S.; Chacon, L.; Chen, G.; EPSI Team

    2016-10-01

    The cancelation problem has been a long-standing issue for long wavelengths modes in electromagnetic gyrokinetic PIC simulations in toroidal geometry. As an attempt of resolving this issue, we implemented a fully implicit time integration scheme in the full-f, gyrokinetic PIC code XGC1. The new scheme - based on the implicit Vlasov-Darwin PIC algorithm by G. Chen and L. Chacon - can potentially resolve cancelation problem. The time advance for the field and the particle equations is space-time-centered, with particle sub-cycling. The resulting system of equations is solved by a Picard iteration solver with fixed-point accelerator. The algorithm is implemented in the parallel velocity formalism instead of the canonical parallel momentum formalism. XGC1 specializes in simulating the tokamak edge plasma with magnetic separatrix geometry. A fully implicit scheme could be a way to accurate and efficient gyrokinetic simulations. We will test if this numerical scheme overcomes the cancelation problem, and reproduces the dispersion relation of Alfven waves and tearing modes in cylindrical geometry. Funded by US DOE FES and ASCR, and computing resources provided by OLCF through ALCC.

  3. A 3D immersed finite element method with non-homogeneous interface flux jump for applications in particle-in-cell simulations of plasma-lunar surface interactions

    NASA Astrophysics Data System (ADS)

    Han, Daoru; Wang, Pu; He, Xiaoming; Lin, Tao; Wang, Joseph

    2016-09-01

    Motivated by the need to handle complex boundary conditions efficiently and accurately in particle-in-cell (PIC) simulations, this paper presents a three-dimensional (3D) linear immersed finite element (IFE) method with non-homogeneous flux jump conditions for solving electrostatic field involving complex boundary conditions using structured meshes independent of the interface. This method treats an object boundary as part of the simulation domain and solves the electric field at the boundary as an interface problem. In order to resolve charging on a dielectric surface, a new 3D linear IFE basis function is designed for each interface element to capture the electric field jump on the interface. Numerical experiments are provided to demonstrate the optimal convergence rates in L2 and H1 norms of the IFE solution. This new IFE method is integrated into a PIC method for simulations involving charging of a complex dielectric surface in a plasma. A numerical study of plasma-surface interactions at the lunar terminator is presented to demonstrate the applicability of the new method.

  4. 2D particle-in-cell simulations of the electron drift instability and associated anomalous electron transport in Hall-effect thrusters

    NASA Astrophysics Data System (ADS)

    Croes, Vivien; Lafleur, Trevor; Bonaventura, Zdeněk; Bourdon, Anne; Chabert, Pascal

    2017-03-01

    In this work we study the electron drift instability in Hall-effect thrusters (HETs) using a 2D electrostatic particle-in-cell (PIC) simulation. The simulation is configured with a Cartesian coordinate system modeling the radial-azimuthal (r{--}θ ) plane for large radius thrusters. A magnetic field, {{B}}0, is aligned along the Oy axis (r direction), a constant applied electric field, {{E}}0, along the Oz axis (perpendicular to the simulation plane), and the {{E}}0× {{B}}0 direction is along the Ox axis (θ direction). Although electron transport can be well described by electron–neutral collisions for low plasma densities, at high densities (similar to those in typical HETs), a strong instability is observed that enhances the electron cross-field mobility; even in the absence of electron–neutral collisions. The instability generates high frequency (of the order of MHz) and short wavelength (of the order of mm) fluctuations in both the azimuthal electric field and charged particle densities, and propagates in the {{E}}0× {{B}}0 direction with a velocity close to the ion sound speed. The correlation between the electric field and density fluctuations (which leads to an enhanced electron–ion friction force) is investigated and shown to be directly responsible for the increased electron transport. Results are compared with a recent kinetic theory, showing good agreement with the instability properties and electron transport.

  5. Appropriate use of the particle-in-cell method in low temperature plasmas: Application to the simulation of negative ion extraction

    NASA Astrophysics Data System (ADS)

    Garrigues, L.; Fubiani, G.; Boeuf, J. P.

    2016-12-01

    The Particle-In-Cell Monte Carlo Collision (PIC MCC) method has been used by different authors in the last ten years to describe negative ion extraction in the context of neutral beam injection for fusion. Questionable results on the intensity and profile of the extracted negative ion beamlets have been presented in several recently published papers. Using a standard explicit PIC MCC method, we show that these results are due to a non-compliance with the constraints of the numerical method (grid spacing, number of particles per cell) and to a non-physical generation of the simulated plasma. We discuss in detail the conditions of mesh convergence and plasma generation and show that the results can significantly deviate from the correct solution and lead to unphysical features when the constraints inherent to the method are not strictly fulfilled. This paper illustrates the importance of verification in any plasma simulation. Since the results presented in this paper have been obtained with careful verification of the method, we propose them as benchmarks for future comparisons between different simulation codes for negative ion extraction.

  6. Full particle-in-cell simulations of kinetic equilibria and the role of the initial current sheet on steady asymmetric magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Dargent, J.; Aunai, N.; Belmont, G.; Dorville, N.; Lavraud, B.; Hesse, M.

    2016-06-01

    > Tangential current sheets are ubiquitous in space plasmas and yet hard to describe with a kinetic equilibrium. In this paper, we use a semi-analytical model, the BAS model, which provides a steady ion distribution function for a tangential asymmetric current sheet and we prove that an ion kinetic equilibrium produced by this model remains steady in a fully kinetic particle-in-cell simulation even if the electron distribution function does not satisfy the time independent Vlasov equation. We then apply this equilibrium to look at the dependence of magnetic reconnection simulations on their initial conditions. We show that, as the current sheet evolves from a symmetric to an asymmetric upstream plasma, the reconnection rate is impacted and the X line and the electron flow stagnation point separate from one another and start to drift. For the simulated systems, we investigate the overall evolution of the reconnection process via the classical signatures discussed in the literature and searched in the Magnetospheric MultiScale data. We show that they seem robust and do not depend on the specific details of the internal structure of the initial current sheet.

  7. Particle-in-cell Simulations of Electromagnetic Wave Scattering From Numerically Generated Flute-type Density Irregularities

    NASA Astrophysics Data System (ADS)

    Main, D. S.; Caplinger, J.; Kim, T. C.; Sotnikov, V. I.

    2014-12-01

    The propagation of electromagnetic (EM) waves can be influenced by the presence of plasma turbulence. It is known that Flute-type density irregularities can develop during the nonlinear stage of an interchange instability in Earth's ionosphere and can affect radio communication channels. These density structures play an important role in the refraction and scattering of EM waves in Earth's ionosphere and also in laser diagnostic scattering experiments. To generate Flute-type density irregularities, we will use previously obtained numerical solution of nonlinear fluid equations involving the electrostatic potential and density. The solutions to these fluid equations govern the development of an interchange instability and results in the spatial dependence of density irregularities which can be used to analyze scattering of high frequency EM waves. This solution contains both large scale vortex density structures coexisting with short scale density perturbations. Next we will initialize a PIC simulation with the density structure from the fluid simulation to calculate the scattering cross-section and compare the results with an analytic solution obtained using numerically calculated density spectra. Because the linear and non-linear stages are well separated in time, we will compare the effect of scattering from density irregularities which form in both the linear and non-linear stages.

  8. First Observation of Switch-Off Slow Shocks in Fully Kinetic Particle in Cell Simulation of Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Lapenta, G.; Sanna, L.; Goldman, M. V.; Newman, D. L.; Markidis, S.

    2014-12-01

    A perduring challenge in the study of reconnection it has long been the failing attempts to reconcile the large scale MHD view based on the Petschek model with the small scale view based on kinetic theory. The first is based on the existence of standing switch off slow shocks (SSS) that eliminate the horizontal (the x component in the usual GSM coordinates) reconnecting magnetic field component forming vertical magnetic field lines. The second is based on nested diffusion regions where the magnetic field lines become decoupled first from ions and then from electrons. The kinetic picture when observed superficially does seem to have seem resemblance to the Petschek topology, despite the nested boxes being more of a Sweet-Parker concept. Nevertheless, the question has always been: if expanded to sufficiently large scales, does the kinetic description eventually lead tot the formation os SSS? The question remains answered. Recently a first negative answer has been proposed in Ref. [1]. The proposed answer is in essence that SSS are made impossible by the presence of a firehose instability in the reconnection exhaust and by the formation of a plateau in the firehose parameter at a value of 0.25 corresponding to the condition where nonlinear slow and intermediate wave become degenerate. We report a new series of simulations where we demonstrate that this is not the case in general. While for the specific case used in Ref [1], we indeed re-obtain the same conclusions reached by the authors. But our study demonstrates that case to be very peculiar and not representative of the more general kinetic answer. We will report direct evidence of the presence of extended SSS (over regions of hundreds of ion inertial lengths) in fully kinetic simulations for parameters typical of the magntotail and of the solar wind. Our results indicate that SSS are the natural extension of kinetic reconnection to large scales. The simulations required for the study are heroic and were conducted

  9. Young gamma-ray pulsar: from modeling the gamma-ray emission to the particle-in-cell simulations of the global magnetosphere

    NASA Astrophysics Data System (ADS)

    Brambilla, Gabriele; Kalapotharakos, Constantions; Timokhin, Andrey; Kust Harding, Alice; Kazanas, Demosthenes

    2016-04-01

    Accelerated charged particles flowing in the magnetosphere produce pulsar gamma-ray emission. Pair creation processes produce an electron-positron plasma that populates the magnetosphere, in which the plasma is very close to force-free. However, it is unknown how and where the plasma departs from the ideal force-free condition, which consequently inhibits the understanding of the emission generation. We found that a dissipative magnetosphere outside the light cylinder effectively reproduces many aspects of the young gamma-ray pulsar emission as seen by the Fermi Gamma-ray Space Telescope, and through particle-in-cell simulations (PIC), we started explaining this configuration self-consistently. These findings show that, together, a magnetic field structure close to force-free and the assumption of gamma-ray curvature radiation as the emission mechanism are strongly compatible with the observations. Two main issues from the previously used models that our work addresses are the inability to explain luminosity, spectra, and light curve features at the same time and the inconsistency of the electrodynamics. Moreover, using the PIC simulations, we explore the effects of different pair multiplicities on the magnetosphere configurations and the locations of the accelerating regions. Our work aims for a self-consistent modeling of the magnetosphere, connecting the microphysics of the pair-plasma to the global magnetosphere macroscopic quantities. This direction will lead to a greater understanding of pulsar emission at all wavelengths, as well as to concrete insights into the physics of the magnetosphere.

  10. A parametric study for the generation of ion Bernstein modes from a discrete spectrum to a continuous one in the inner magnetosphere. II. Particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Sun, Jicheng; Gao, Xinliang; Lu, Quanming; Chen, Lunjin; Tao, Xin; Wang, Shui

    2016-02-01

    In this paper, we perform one-dimensional particle-in-cell simulations to investigate the properties of perpendicular magnetosonic waves in a plasma system consisting of three components: cool electrons, cool protons, and tenuous ring distribution protons, where the waves are excited by the tenuous proton ring distribution. Consistent with the linear theory, the spectra of excited magnetosonic waves can change from discrete to continuous due to the overlapping of adjacent unstable wave modes. The increase of the proton to electron mass ratio, the ratio of the light speed to the Alfven speed, or the concentration of protons with a ring distribution tends to result in a continuous spectrum of magnetosonic waves, while the increase of the ring velocity of the tenuous proton ring distribution leads to a broader one, but with a discrete structure. Moreover, the energization of both cool electrons and protons and the scattering of ring distribution protons due to the excited magnetosonic waves are also observed in our simulations, which cannot be predicted by the linear theory. Besides, a thermalized proton ring distribution may lead to the further excitation of several lower discrete harmonics with their frequencies about several proton gyrofrequencies.

  11. Classical Simulation of Relativistic Zitterbewegung in Photonic Lattices

    SciTech Connect

    Dreisow, Felix; Heinrich, Matthias; Keil, Robert; Tuennermann, Andreas; Nolte, Stefan; Longhi, Stefano; Szameit, Alexander

    2010-10-01

    We present the first experimental realization of an optical analog for relativistic quantum mechanics by simulating the Zitterbewegung (trembling motion) of a free Dirac electron in an optical superlattice. Our photonic setting enables a direct visualization of Zitterbewegung as a spatial oscillatory motion of an optical beam. Direct measurements of the wave packet expectation values in superlattices with tuned miniband gaps clearly show the transition from weak-relativistic to relativistic and far-relativistic regimes.

  12. Development of the Plasma Thruster Particle-in-Cell Simulator to Complement Empirical Studies of a Low-Power Cusped-Field Thruster

    NASA Astrophysics Data System (ADS)

    Gildea, Stephen Robert

    Cusped-field plasma thrusters are an electric propulsion concept being investigated by several laboratories in the United States and Europe. This technology was implemented as a low-power prototype in 2007 to ascertain if durability and performance improvements over comparable Hall thruster designs could be provided by the distinct magnetic topologies inherent to these devices. The first device tested at low-powers was eventually designated the "diverging cusped-field thruster" (DCFT) and demonstrated performance capabilities similar to state-of-the-art Hall thrusters. The research presented herein is a continuation of these initial studies, geared toward identifying significant operational characteristics of the thruster using experiments and numerical simulations. After a review of hybrid, fluid, and particle-in-cell Hall thruster models, experimental contributions from this work are presented. Anode current waveform measurements provide the first evidence of the distinct time-dependent characteristics of the two main modes of DCFT operation. The previously named "high-current" mode exhibits oscillation amplitudes several factors larger than mean current values, while magnitudes in "low-current" mode are at least a full order smaller. Results from a long-duration test, exceeding 200 hours of high-current mode operation, demonstrate lifetime-limiting erosion rates about 50% lower than those observed in comparable Hall thrusters. Concurrently, the plasma thruster particle-in-cell (PTpic) simulator was developed by upgrading numerous aspects of a preexisting Hall thruster model. Improvements in performance and accuracy have been achieved through modifications of the particle moving and electrostatic potential solving algorithms. Data from simulations representing both modes of operation are presented. In both cases, despite being unable to predict the correct location of the main potential drop in the thruster chamber, the model successfully reproduces the hollow

  13. Toward Extrapolating Two-Dimensional High-intensity Laser-Plasma Ion Acceleration Particle-in-Cell Simulations to Three Dimensions

    NASA Astrophysics Data System (ADS)

    Stark, D. J.; Yin, L.; Albright, B. J.; Guo, F.

    2016-10-01

    A PIC study of laser-ion acceleration via relativistic induced transparency points to how 2D-S (laser polarization in the simulation plane) and -P (out-of-plane) simulations may capture different physics characterizing these systems, visible in their entirety in (often cost-prohibitive) 3D simulations. The electron momentum anisotropy induced in the target by the laser pulse is dramatically different in the two 2D cases, manifesting in differences in polarization shift, electric field strength, density threshold for onset of relativistic induced transparency, and target expansion timescales. In particular, a trajectory analysis of individual electrons and ions may allow one to delineate the role of the fields and modes responsible for ion acceleration. With this information, we consider how 2D simulations might be used to develop, in some respects, a fully 3D understanding of the system. Work performed under the auspices of the U.S. DOE by the LANS, LLC, Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. Funding provided by the Los Alamos National Laboratory Directed Research and Development Program.

  14. Evolution of metastable state molecules N2(A3 Σu+) in a nanosecond pulsed discharge: A particle-in-cell/Monte Carlo collisions simulation

    NASA Astrophysics Data System (ADS)

    Gao, Liang; Sun, Jizhong; Feng, Chunlei; Bai, Jing; Ding, Hongbin

    2012-01-01

    A particle-in-cell plus Monte Carlo collisions method has been employed to investigate the nitrogen discharge driven by a nanosecond pulse power source. To assess whether the production of the metastable state N2(A3 Σu+) can be efficiently enhanced in a nanosecond pulsed discharge, the evolutions of metastable state N2(A3 Σu+) density and electron energy distribution function have been examined in detail. The simulation results indicate that the ultra short pulse can modulate the electron energy effectively: during the early pulse-on time, high energy electrons give rise to quick electron avalanche and rapid growth of the metastable state N2(A3 Σu+) density. It is estimated that for a single pulse with amplitude of -9 kV and pulse width 30 ns, the metastable state N2(A3 Σu+) density can achieve a value in the order of 109 cm-3. The N2(A3 Σu+) density at such a value could be easily detected by laser-based experimental methods.

  15. Three dimensional particle-in-cell simulation of particle acceleration by circularly polarised inertial Alfven waves in a transversely inhomogeneous plasma

    SciTech Connect

    Tsiklauri, D.

    2012-08-15

    The process of particle acceleration by left-hand, circularly polarised inertial Alfven waves (IAW) in a transversely inhomogeneous plasma is studied using 3D particle-in-cell simulation. A cylindrical tube with, transverse to the background magnetic field, inhomogeneity scale of the order of ion inertial length is considered on which IAWs with frequency 0.3{omega}{sub ci} are launched that are allowed to develop three wavelength. As a result time-varying parallel electric fields are generated in the density gradient regions which accelerate electrons in the parallel to magnetic field direction. Driven perpendicular electric field of IAWs also heats ions in the transverse direction. Such numerical setup is relevant for solar flaring loops and earth auroral zone. This first, 3D, fully kinetic simulation demonstrates electron acceleration efficiency in the density inhomogeneity regions, along the magnetic field, of the order of 45% and ion heating, in the transverse to the magnetic field direction, of 75%. The latter is a factor of two times higher than the previous 2.5D analogous study and is in accordance with solar flare particle acceleration observations. We find that the generated parallel electric field is localised in the density inhomogeneity region and rotates in the same direction and with the same angular frequency as the initially launched IAW. Our numerical simulations seem also to suggest that the 'knee' often found in the solar flare electron spectra can alternatively be interpreted as the Landau damping (Cerenkov resonance effect) of IAWs due to the wave-particle interactions.

  16. Ion Pre-acceleration in Fully Self-consistent Particle-in-cell Simulations of Supercritical Perpendicular Reforming Shocks in Multiple Ion Species Plasmas

    NASA Astrophysics Data System (ADS)

    Rekaa, V. L.; Chapman, S. C.; Dendy, R. O.

    2014-08-01

    Supernova remnant and heliopause termination shock plasmas may contain significant populations of minority heavy ions, with relative number densities n α/ni up to 50%. Preliminary kinetic simulations of collisionless shocks in these environments showed that the reformation cycle and acceleration mechanisms at quasi-perpendicular shocks can depend on the value of n α/ni . Shock reformation unfolds on ion spatio-temporal scales, requiring fully kinetic simulations of particle dynamics, together with the self-consistent electric and magnetic fields. This paper presents the first set of particle-in-cell simulations for two ion species, protons (np ) and α-particles (n α), with differing mass and charge-to-mass ratios, that spans the entire range of n α/ni from 0% to 100%. The interplay between the differing gyro length scales and timescales of the ion species is crucial to the time-evolving phenomenology of the shocks, the downstream turbulence, and the particle acceleration at different n α/ni . We show how the overall energization changes with n α/ni , and relate this to the processes individual ions undergo in the shock region and in the downstream turbulence, and to the power spectra of magnetic field fluctuations. The crossover between shocks dominated by the respective ion species happens when n α/ni = 25%, and minority ion energization is strongest in this regime. Energization of the majority ion species scales with injection energy. The power spectrum of the downstream turbulence includes peaks at sequential ion cyclotron harmonics, suggestive of ion ring-beam collective instability.

  17. Simulation of Relativistic Shocks and Associated Radiation from Turbulent Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Niemiec, J.; Medvedev, M.; Zhang, B.; Hardee, P.; Nordlund, A.; Frederiksen, J.; Mizuno, Y.; Sol, H.; Pohl, M.; Hartmann, D. H.; Fishman, G. J.

    2011-01-01

    Using our new 3-D relativistic particle-in-cell (PIC) code, we investigated long-term particle acceleration associated with a relativistic electron-positron jet propagating in an unmagnetized ambient electron-positron plasma. The simulations were performed using a much longer simulation system than our previous simulations in order to investigate the full nonlinear stage of the Weibel instability and its particle acceleration mechanism. Cold jet electrons are thermalized and ambient electrons are accelerated in the resulting shocks. Acceleration of ambient electrons leads to a maximum ambient electron density three times larger than the original value as predicted by hydrodynamic compression. Behind the bow shock, in the jet shock, strong electromagnetic fields are generated. These fields may lead to time dependent afterglow emission. In order to go beyond the standard synchrotron model used in astrophysical objects we have used PIC simulations and calculated radiation based on first principles. We calculated radiation from electrons propagating in a uniform parallel magnetic field to verify the technique. We also used the technique to calculate emission from electrons based on simulations with a small system. We obtain spectra which are consistent with those generated from electrons propagating in turbulent magnetic fields. This turbulent magnetic field is similar to the magnetic field generated at an early nonlinear stage of the Weibel instability. A fully developed shock within a larger system may generate a jitter/synchrotron spectrum.

  18. Conformal Electromagnetic Particle in Cell: A Review

    SciTech Connect

    Meierbachtol, Collin S.; Greenwood, Andrew D.; Verboncoeur, John P.; Shanker, Balasubramaniam

    2015-10-26

    We review conformal (or body-fitted) electromagnetic particle-in-cell (EM-PIC) numerical solution schemes. Included is a chronological history of relevant particle physics algorithms often employed in these conformal simulations. We also provide brief mathematical descriptions of particle-tracking algorithms and current weighting schemes, along with a brief summary of major time-dependent electromagnetic solution methods. Several research areas are also highlighted for recommended future development of new conformal EM-PIC methods.

  19. Stability property of numerical Cherenkov radiation and its application to relativistic shock simulations

    NASA Astrophysics Data System (ADS)

    Ikeya, Naoki; Matsumoto, Yosuke

    2015-08-01

    We studied the stability property of numerical Cherenkov radiation in relativistic plasma flows employing particle-in-cell simulations. Using the implicit finite-difference time-domain method to solve the Maxwell equations, we found that nonphysical instability was greatly inhibited with a Courant-Friedrichs-Lewy (CFL) number of 1.0. The present result contrasts with recently reported results (Vay et al. 2011, J. Comp. Phys., 230, 5908; Godfrey & Vay 2013, J. Comp. Phys., 248, 33; Xu et al. 2013, Comput. Phys. Commun., 184, 2503) in which magical CFL numbers in the range 0.5-0.7 were obtained with explicit field solvers. In addition, we found employing higher-order shape functions and an optimal implicitness factor further suppressed long-wavelength modes of the instability. The findings allowed the examination of the long-term evolution of a relativistic collisionless shock without the generation of nonphysical wave excitations in the upstream. This achievement will allow us to investigate particle accelerations in relativistic shocks associated with, for example, gamma-ray bursts.

  20. Simulation of Relativistic Shocks and Associated Radiation from Turbulent Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.; Niemiec, J.; Medvedev, M.; Zhang, B.; Hardee, P.; Mizuno, Y.; Nordlund, A.; Frederiksen, J.; Sol, H.; Pohl, M.; Oka, M.; Hartmann, D. H.; Fishman, J. F.

    2009-01-01

    Plasma instabilities (e.g., Buneman, Weibel and other two-stream instabilities) excited in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a new 3-D relativistic particle-in-cell code, we have investigated the particle acceleration and shock structure associated with an unmagnetized relativistic electron-positron jet propagating into an unmagnetized electron-positron plasma. The simulation has been performed using a long simulation system in order to study the nonlinear stages of the Weibel instability, the particle acceleration mechanism, and the shock structure. Cold jet electrons are thermalized and slowed while the ambient electrons are swept up to create a partially developed hydrodynamic (HD) like shock structure. In the leading shock, electron density increases by a factor of <_ 3.5 in the simulation frame. Strong electromagnetic fields are generated in the trailing shock and provide an emission site. We discuss the possible implication of our simulation results within the AGN and GRB context. We have calculated the time evolution of the spectrum from two electrons propagating in a uniform parallel magnetic field to verify the technique. The same technique will be used to calculate radiation from accelerated electrons (positrons) in turbulent magnetic fields generated by Weibel instability.

  1. Relativistic MHD simulations of extragalactic jets

    NASA Astrophysics Data System (ADS)

    Leismann, T.; Antón, L.; Aloy, M. A.; Müller, E.; Martí, J. M.; Miralles, J. A.; Ibáñez, J. M.

    2005-06-01

    We have performed a comprehensive parameter study of the morphology and dynamics of axisymmetric, magnetized, relativistic jets by means of numerical simulations. The simulations have been performed with an upgraded version of the GENESIS code which is based on a second-order accurate finite volume method involving an approximate Riemann solver suitable for relativistic ideal magnetohydrodynamic flows, and a method of lines. Starting from pure hydrodynamic models we consider the effect of a magnetic field of increasing strength (up to β ≡ |b|2/2p ≈ 3.3 times the equipartition value) and different topology (purely toroidal or poloidal). We computed several series of models investigating the dependence of the dynamics on the magnetic field in jets of different beam Lorentz factor and adiabatic index. We find that the inclusion of the magnetic field leads to diverse effects which contrary to Newtonian magnetohydrodynamics models do not always scale linearly with the (relative) strength of the magnetic field. The relativistic models show, however, some clear trends. Axisymmetric jets with toroidal magnetic fields produce a cavity which consists of two parts: an inner one surrounding the beam which is compressed by magnetic forces, and an adjacent outer part which is inflated due to the action of the magnetic field. The outer border of the outer part of the cavity is given by the bow-shock where its interaction with the external medium takes place. Toroidal magnetic fields well below equipartition (β = 0.05) combined with a value of the adiabatic index of 4/3 yield extremely smooth jet cavities and stable beams. Prominent nose cones form when jets are confined by toroidal fields and carry a high Poynting flux (σ≡ |b|2/ρ>0.01 and β≥ 1). In contrast, none of our models possessing a poloidal field develops such a nose cone. The size of the nose cone is correlated with the propagation speed of the Mach disc (the smaller the speed the larger is the size). If two

  2. Electromagnetic Particle-in-Cell Simulations of the Solar Wind Interaction with Lunar Magnetic Anomalies: Interaction Mechanisms Under Varying Solar Wind Conditions.

    NASA Astrophysics Data System (ADS)

    Deca, Jan; Divin, Andrey; Lapenta, Giovanni; Lembège, Bertrand; Markidis, Stefano; Horányi, Mihály

    2015-04-01

    We present three-dimensional fully kinetic and electromagnetic simulations of the solar wind interaction with lunar crustal magnetic anomalies (LMAs). Using the implicit particle-in-cell code iPic3D, we confirm that LMAs may indeed be strong enough to stand off the solar wind from directly impacting the lunar surface forming a mini-magnetosphere, as suggested by spacecraft observations and theory. In contrast to earlier MHD and hybrid simulations, the fully kinetic nature of iPic3D allows to investigate the space charge effects and in particular the electron dynamics dominating the near-surface lunar plasma environment. We describe the general picture of the interaction of a dipole model centered just below the lunar surface under various solar wind and plasma conditions, and focus afterwards on the ion and electron kinetic behavior of the system. It is shown that the configuration is dominated by electron motion, because the LMA scale size is small with respect to the gyroradius of the solar wind ions. We identify a population of backstreaming ions, the deflection of magnetized electrons via the ExB-drift motion and the subsequent formation of a halo region of elevated density around the dipole source. Finally, it is shown that the presence and efficiency of the latter mechanisms are heavily impacted by the upstream plasma conditions and, on their turn, influence the overall structure and evolution of the LMA system. Our work opens new frontiers of research toward a deeper understanding of LMAs and is ideally suited to be compared with field or particle observations from spacecraft such as Kaguya (SELENE), Lunar Prospector or ARTEMIS. The ability to evaluate the implications for future lunar exploration as well as lunar science in general hinges on a better understanding of LMAs. This research has received funding from the European Commission's FP7 Program with the grant agreement SWIFF (project 2633430, swiff.eu) and EHEROES (project 284461, www.eheroes.eu). The

  3. Simulation studies of relativistic gyroklystron amplifiers

    SciTech Connect

    Saraph, G.P.; Anderson, J.P.; Lawson, W.; Granatstein, V.L.

    1997-12-31

    High power, pulsed gyroklystrons operating in the X, Ku, and Ka bands are being developed for driving future linear colliders. Various design aspects of two and three cavity, coaxial, relativistic gyroklystron systems are studied. Nonlinear simulations predict that over 40% efficiency, 45--50 dB gain, and 100--160 MW power levels are possible for the fundamental and second harmonic designs operating at 8.6, 17.1, and 35.0 GHz frequencies. Gyroklystron designs should also satisfy phase and frequency synchronization criteria for driving large accelerators. Small manufacturing tolerances can lead to 10--20 MHz changes in cold cavity frequencies. It is desirable to have some frequency tunability to compensate for this effect. It is shown that the desired frequency tunability can be achieved by making small adjustments in the axial magnetic field level. Effect of voltage pulse on the device efficiency and output phase is studied using time-dependent simulations. The pulse-shape plays an important role in determining phase stability. Advance design features such as radial coupling slots in the input and output cavities and dielectric loading are studied using HFSS simulations. An improved three cavity, Ku band design will be presented based on these features. In addition, a possible implementation scheme for energy recovery using a single-stage depressed collector will be presented. It is shown that the energy recovery could boost the net device efficiency above 50%.

  4. RELATIVISTIC TWO-FLUID SIMULATIONS OF GUIDE FIELD MAGNETIC RECONNECTION

    SciTech Connect

    Zenitani, Seiji; Hesse, Michael; Klimas, Alex

    2009-11-01

    The nonlinear evolution of relativistic magnetic reconnection in sheared magnetic configuration (with a guide field) is investigated by using two-dimensional relativistic two-fluid simulations. Relativistic guide field reconnection features the charge separation and the guide field compression in and around the outflow channel. As the guide field increases, the composition of the outgoing energy changes from enthalpy-dominated to Poynting-dominated. The inertial effects of the two-fluid model play an important role to sustain magnetic reconnection. Implications for the single-fluid magnetohydrodynamic approach and the physics models of relativistic reconnection are briefly addressed.

  5. Particle-In-Cell modeling of Fast Ignition experiments on the Titan Laser

    NASA Astrophysics Data System (ADS)

    Link, Anthony; Akli, K. U.; Beg, F.; Chen, C. D.; Davies, J. R.; Freeman, R. R.; Kemp, G. E.; Li, K.; McLean, H. S.; Morace, A.; Patel, P. K.; Schumacher, D. W.; Sorokovikova, A. V.; Stephens, R.; Streeter, M. J. V.; Wertepny, D.; Westhover, B.

    2012-10-01

    We report on particle-in-cell-modeling (PIC) of fast ignition experiments conducted on the Titan laser. The Titan laser was used to irradiate multilayer planar targets at intensities greater than 10^20 Wcm-2 to diagnose the laser to electron coupling, electron beam divergence, and energy spectrum of the hot electrons at relativistic intensities. Hot electron beam properties were inferred through buried fluors, escaping electrons and bremsstrahlung measurements. The PIC simulations of the experiment were conducted in two stages: a high resolution laser plasma interaction (LPI) simulation using measured on shot laser parameters but with a subscale target; and a lower resolution transport simulation containing the full scale multilayer target. The transport simulation utilized the electron source based on the output of the LPI simulation and included necessary models to simulate the experimental diagnostics. Comparison of the predicted electron source properties and the experimental data will be presented.

  6. Intense EM filamentation in relativistic hot plasmas

    NASA Astrophysics Data System (ADS)

    Hu, Qiang-Lin; Chen, Zhong-Ping; Mahajan, Swadesh M.

    2017-03-01

    Through 2D particle-in-cell (PIC) simulations, we demonstrate that the nature of filamentation of a high intensity electromagnetic (EM) pulse propagating in an underdense plasma, is profoundly affected at relativistically high temperatures. The "relativistic" filaments are sharper, are dramatically extended (along the direction of propagation), and live much longer than their lower temperature counterparts. The thermally boosted electron inertia is invoked to understand this very interesting and powerful phenomenon.

  7. Short and long term simulations of relativistic, magnetized jets

    NASA Astrophysics Data System (ADS)

    Aloy, M. A.

    2004-12-01

    We will present a series of numerical simulations addressed to understand the morphology and dynamics of relativistic, magnetized, axisymmetric jets. Some of the simulations have been specifically set up to follow the long term evolution of extragalactic jets under idealized conditions. The simulations have been done with an extension of the GENESIS code (Aloy et al 1999a} suitable for relativistic magnetohydrodynamcs applications. The code is based on a Godunov-type scheme whose building block is a method of lines. The numerical algorithm can provide up to third order of accuracy and makes use of a constrained transport method in order to keep the divergence--free condition of the magnetic field.

  8. Mitigating Particle Integration Error in Relativistic Laser-Plasma Simulations

    NASA Astrophysics Data System (ADS)

    Higuera, Adam; Weichmann, Kathleen; Cowan, Benjamin; Cary, John

    2016-10-01

    In particle-in-cell simulations of laser wakefield accelerators with a0 greater than unity, errors in particle trajectories produce incorrect beam charges and energies, predicting performance not realized in experiments such as the Texas Petawatt Laser. In order to avoid these errors, the simulation time step must resolve a time scale smaller than the laser period by a factor of a0. If the Yee scheme advances the fields with this time step, the laser wavelength must be over-resolved by a factor of a0 to avoid dispersion errors. Here is presented and demonstrated with Vorpal simulations, a new electromagnetic algorithm, building on previous work, correcting Yee dispersion for arbitrary sub-CFL time steps, reducing simulation times by a0.

  9. General Relativistic Radiative Transfer and General Relativistic MHD Simulations of Accretion and Outflows of Black Holes

    NASA Technical Reports Server (NTRS)

    Fuerst, Steven V.; Mizuno, Yosuke; Nishikawa, Ken-Ichi; Wu, Kinwah

    2007-01-01

    We have calculated the emission from relativistic flows in black hole systems using a fully general relativistic radiative transfer, with flow structures obtained by general relativistic magnetohydrodynamic simulations. We consider thermal free-free emission and thermal synchrotron emission. Bright filament-like features are found protruding (visually) from the accretion disk surface, which are enhancements of synchrotron emission when the magnetic field is roughly aligned with the line-of-sight in the co-moving frame. The features move back and forth as the accretion flow evolves, but their visibility and morphology are robust. We propose that variations and location drifts of the features are responsible for certain X-ray quasi-periodic oscillations (QPOs) observed in black-hole X-ray binaries.

  10. Particle-in-cell and Monte Carlo collision simulations of the cathode sheath in an atmospheric direct-current arc discharge

    NASA Astrophysics Data System (ADS)

    Zhou, Wen; Guo, Heng; Jiang, Wei; Li, He-Ping; Li, Zeng-Yao; Lapenta, Giovanni

    2016-10-01

    A sheath is the transition region from plasma to a solid surface, which also plays a critical role in determining the behaviors of many lab and industrial plasmas. However, the cathode sheath properties in arc discharges are not well understood yet due to its multi-scale and kinetic features. In this letter, we have adopted an implicit particle-in-cell Monte Carlo collision (PIC-MCC) method to study the cathode sheath in an atmospheric arc discharge plasma. The cathode sheath thickness, number densities and averaged energies of electrons and ions, the electric field distribution, as well as the spatially averaged electron energy probability function (EEPF), are predicted self-consistently by using this newly developed kinetic model. It is also shown that the thermionic emission at the hot cathode surface is the dominant electron emission process to sustain the arc discharges, while the effects from secondary and field electron emissions are negligible. The present results verify the previous conjectures and experimental observations.

  11. Relativistic interpretation of Newtonian simulations for cosmic structure formation

    NASA Astrophysics Data System (ADS)

    Fidler, Christian; Tram, Thomas; Rampf, Cornelius; Crittenden, Robert; Koyama, Kazuya; Wands, David

    2016-09-01

    The standard numerical tools for studying non-linear collapse of matter are Newtonian N-body simulations. Previous work has shown that these simulations are in accordance with General Relativity (GR) up to first order in perturbation theory, provided that the effects from radiation can be neglected. In this paper we show that the present day matter density receives more than 1% corrections from radiation on large scales if Newtonian simulations are initialised before z=50. We provide a relativistic framework in which unmodified Newtonian simulations are compatible with linear GR even in the presence of radiation. Our idea is to use GR perturbation theory to keep track of the evolution of relativistic species and the relativistic space-time consistent with the Newtonian trajectories computed in N-body simulations. If metric potentials are sufficiently small, they can be computed using a first-order Einstein-Boltzmann code such as CLASS. We make this idea rigorous by defining a class of GR gauges, the Newtonian motion gauges, which are defined such that matter particles follow Newtonian trajectories. We construct a simple example of a relativistic space-time within which unmodified Newtonian simulations can be interpreted.

  12. Kinetic Simulations of the Lowest-order Unstable Mode of Relativistic Magnetostatic Equilibria

    NASA Astrophysics Data System (ADS)

    Nalewajko, Krzysztof; Zrake, Jonathan; Yuan, Yajie; East, William E.; Blandford, Roger D.

    2016-08-01

    We present the results of particle-in-cell numerical pair plasma simulations of relativistic two-dimensional magnetostatic equilibria known as the “Arnold-Beltrami-Childress” fields. In particular, we focus on the lowest-order unstable configuration consisting of two minima and two maxima of the magnetic vector potential. Breaking of the initial symmetry leads to exponential growth of the electric energy and to the formation of two current layers, which is consistent with the picture of “X-point collapse” first described by Syrovatskii. Magnetic reconnection within the layers heats a fraction of particles to very high energies. After the saturation of the linear instability, the current layers are disrupted and the system evolves chaotically, diffusing the particle energies in a stochastic second-order Fermi process, leading to the formation of power-law energy distributions. The power-law slopes harden with the increasing mean magnetization, but they are significantly softer than those produced in simulations initiated from Harris-type layers. The maximum particle energy is proportional to the mean magnetization, which is attributed partly to the increase of the effective electric field and partly to the increase of the acceleration timescale. We describe in detail the evolving structure of the dynamical current layers and report on the conservation of magnetic helicity. These results can be applied to highly magnetized astrophysical environments, where ideal plasma instabilities trigger rapid magnetic dissipation with efficient particle acceleration and flares of high-energy radiation.

  13. Load-balancing techniques for a parallel electromagnetic particle-in-cell code

    SciTech Connect

    PLIMPTON,STEVEN J.; SEIDEL,DAVID B.; PASIK,MICHAEL F.; COATS,REBECCA S.

    2000-01-01

    QUICKSILVER is a 3-d electromagnetic particle-in-cell simulation code developed and used at Sandia to model relativistic charged particle transport. It models the time-response of electromagnetic fields and low-density-plasmas in a self-consistent manner: the fields push the plasma particles and the plasma current modifies the fields. Through an LDRD project a new parallel version of QUICKSILVER was created to enable large-scale plasma simulations to be run on massively-parallel distributed-memory supercomputers with thousands of processors, such as the Intel Tflops and DEC CPlant machines at Sandia. The new parallel code implements nearly all the features of the original serial QUICKSILVER and can be run on any platform which supports the message-passing interface (MPI) standard as well as on single-processor workstations. This report describes basic strategies useful for parallelizing and load-balancing particle-in-cell codes, outlines the parallel algorithms used in this implementation, and provides a summary of the modifications made to QUICKSILVER. It also highlights a series of benchmark simulations which have been run with the new code that illustrate its performance and parallel efficiency. These calculations have up to a billion grid cells and particles and were run on thousands of processors. This report also serves as a user manual for people wishing to run parallel QUICKSILVER.

  14. photon-plasma: A modern high-order particle-in-cell code

    SciTech Connect

    Haugbølle, Troels; Frederiksen, Jacob Trier; Nordlund, Åke

    2013-06-15

    We present the photon-plasma code, a modern high order charge conserving particle-in-cell code for simulating relativistic plasmas. The code is using a high order implicit field solver and a novel high order charge conserving interpolation scheme for particle-to-cell interpolation and charge deposition. It includes powerful diagnostics tools with on-the-fly particle tracking, synthetic spectra integration, 2D volume slicing, and a new method to correctly account for radiative cooling in the simulations. A robust technique for imposing (time-dependent) particle and field fluxes on the boundaries is also presented. Using a hybrid OpenMP and MPI approach, the code scales efficiently from 8 to more than 250.000 cores with almost linear weak scaling on a range of architectures. The code is tested with the classical benchmarks particle heating, cold beam instability, and two-stream instability. We also present particle-in-cell simulations of the Kelvin-Helmholtz instability, and new results on radiative collisionless shocks.

  15. Simulation of Relativistic Shocks and Associated Self-Consistent Radiation

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Niemiec, J.; Medvedev, M.; Zhang, B.; Hardee, P.; Mizuno, Y.; Nordlund, A.; Frederiksen, J.; Sol, H.; Pohl, M.; Hartmann, D. H.; Fishman, G. J.

    2010-01-01

    Recent PIC simulations of relativistic electron-positron (electron-ion) jets injected into a stationary medium show that particle acceleration occurs at shocked regions. Simulations show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields and particle acceleration. These magnetic fields contribute to the electron's transverse deflection behind the shock. The "jitter" radiation from deflected electrons in turbulent magnetic fields has different properties than synchrotron radiation, which is calculated in a uniform magnetic field. This jitter radiation may be important for understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets in general, and supernova remnants. We will present detailed spectra for conditions relevant of various astrophysical sites of shock formation via the Weibel instability. In particular we will discuss the application to GRBs and SNRs.

  16. Analysis of plasma and neutral gas flow inside of a PET bottle under PIII condition by particle-in-cell/Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Miyagawa, Y.; Tanaka, M.; Ikeyama, M.; Nakao, S.; Choi, J.; Miyagawa, S.

    2006-01-01

    The plasma behavior inside of a PET bottle has been simulated under the condition of plasma immersed ion implantation and deposition (PIII&D) using the simulation software "PEGASUS". The software uses the "PIC-MCCM" module for the plasma analysis and the "DSMCM" module for the gas flow field analysis. DSMCM gives densities, velocities, fluxes, temperatures and pressures of each neutral species such as the fed gas species and radicals. By coupling PIC-MCCM with DSMCM simulation, the plasma behavior in the flowing Ar gas and N2 gas has been simulated. The gas was injected from the tip of the gas inlet which was inserted into the center of the bottle. The base gas pressure was 1-50 Pa and a positive pulse voltage (maximum voltage = 0.1-1 kV) was applied to the center rod. A two-dimensional cylindrical coordinate system was used. Time evolution of the spacial distribution was obtained for densities of electrons, N2+ ions, N2∗ radicals and N atoms in N2 gas, and Ar+ ions, Ar∗ and Ar∗(4s) radicals in Ar gas. Time evolution of the particle flux and the energy flux of electrons and ions on the target surface was also obtained.

  17. Two Dimensional Particle-in-cell/Monte Carlo (PIC/MC) Simulation of Radio Frequency Capacitively Coupled Plasmas with a Dielectric Side Wall Boundary

    NASA Astrophysics Data System (ADS)

    Liu, Yue; Booth, Jean-Paul; Chabert, Pascal; cold plasma Team, LPP Team

    2016-09-01

    The majority of previous two dimensional (usually fluid) simulations of radio frequency capacitively coupled plasmas have focused on geometrically-asymmetric reactors (with a much larger grounded electrode than power electrode), which produces a strong dc self-bias. However, a commonly-used geometry comprises electrodes of equal area surrounded by a dielectric side wall, but this has not been widely simulated. We have developed a two dimensional (Cartesian) PIC/MC code based on the work of Hongyu Wang, Wei Jiang and Younian Wang, to simulate argon plasmas in this kind of chamber. Even using a thick dielectric, a peak in plasma density and electron power deposition is adjacent to the dielectric. The profiles of the electron and ion fluxes show that the period-averaged currents to the powered electrode are not locally balanced; the electron flux peaks closer to the dielectric edge, before dropping sharply. Finally, the effect of the dielectric thickness on the surface charge distribution and the angular distributions of ions arriving at boundaries is examined. This work is supported by China Scholarship Council.

  18. 3-D General Relativistic MHD Simulations of Generating Jets

    NASA Astrophysics Data System (ADS)

    Nishikawa, K.-I.; Koide, S.; Shibata, K.; Kudoh, T.; Sol, H.; Hughes, J. P.

    2001-12-01

    We have investigated the dynamics of an accretion disk around Schwarzschild black holes initially threaded by a uniform poloidal magnetic field in a non-rotating corona (either in a steady-state infalling state) around a non-rotating black hole using a 3-D GRMHD with the ``axisymmetry'' along the z-direction. Magnetic field is tightly twisted by the rotation of the disk, and plasmas in the shocked region of the disk are accelerated by J x B force to form bipolar relativistic jets. In order to investigate variabilities of generated relativistic jets and magnetic field structure inside jets, we have performed calculations using the 3-D GRMHD code with a full 3-dimensional system without the axisymmetry. We have investigated how the third dimension affects the global disk dynamics and jet generation. We will perform simulations with various incoming flows from an accompanying star.

  19. 3-D General Relativistic MHD Simulations of Generating Jets

    NASA Astrophysics Data System (ADS)

    Nishikawa, K.-I.; Koide, S.; Shibata, K.; Kudoh, T.; Frank, J.; Sol, H.

    1999-05-01

    Koide et al have investigated the dynamics of an accretion disk initially threaded by a uniform poloidal magnetic field in a non-rotating corona (either in a steady-state infalling state or in hydrostatic equilibrium) around a non-rotating black hole using a 3-D GRMHD with the ``axisymmetry'' along the z-direction. Magnetic field is tightly twisted by the rotation of the disk, and plasmas in the shocked region of the disk are accelerated by J x B force to form bipolar relativistic jets. In order to investigate variabilities of generated relativistic jets and magnetic field structure inside jets, we have performed calculations using the 3-D GRMHD code on a full 3-dimensional system. We will investigate how the third dimension affects the global disk dynamics. 3-D RMHD simulations wil be also performed to investigate the dynamics of a jet with a helical mangetic field in it.

  20. Jet Formation with 3-D General Relativistic MHD Simulations

    NASA Astrophysics Data System (ADS)

    Richardson, G. A.; Nishikawa, K.-I.; Preece, R.; Hardee, P.; Koide, S.; Shibata, K.; Kudoh, T.; Sol, H.; Hughes, J. P.; Fishman, J.

    2002-12-01

    We have investigated the dynamics of an accretion disk around Schwarzschild black holes initially threaded by a uniform poloidal magnetic field in a non-rotating corona (in a steady-state infalling state) around a non-rotating black hole using 3-D GRMHD with the ``axisymmetry'' along the z-direction. The magnetic field is tightly twisted by the rotation of the accretion disk, and plasmas in the shocked region of the disk are accelerated by the J x B force to form bipolar relativistic jets. In order to investigate variabilities of generated relativistic jets and the magnetic field structure inside jets, we have performed calculations using the 3-D GRMHD code with a full 3-dimensional system without the axisymmetry. We have investigated how the third dimension affects the global disk dynamics and jet generation. We will perform simulations with various incoming flows from an accompanying star.

  1. 3-D General Relativistic MHD Simulations of Generating Jets

    NASA Astrophysics Data System (ADS)

    Nishikawa, Ken-Ichi; Koide, Shinji; Shibata, Kazunari; Kudoh, Takashiro; Sol, Helene; Hughes, John

    2002-04-01

    We have investigated the dynamics of an accretion disk around Schwarzschild black holes initially threaded by a uniform poloidal magnetic field in a non-rotating corona (either in a steady-state infalling state) around a non-rotating black hole using a 3-D GRMHD with the ``axisymmetry'' along the z-direction. Magnetic field is tightly twisted by the rotation of the disk, and plasmas in the shocked region of the disk are accelerated by J × B force to form bipolar relativistic jets. In order to investigate variabilities of generated relativistic jets and magnetic field structure inside jets, we have performed calculations using the 3-D GRMHD code with a full 3-dimensional system without the axisymmetry. We have investigated how the third dimension affects the global disk dynamics and jet generation. We will perform simulations with various incoming flows from an accompanying star.

  2. Relativistic Modeling Capabilities in PERSEUS Extended MHD Simulation Code for HED Plasmas

    NASA Astrophysics Data System (ADS)

    Hamlin, Nathaniel; Seyler, Charles

    2014-10-01

    We discuss the incorporation of relativistic modeling capabilities into the PERSEUS extended MHD simulation code for high-energy-density (HED) plasmas, and present the latest simulation results. The use of fully relativistic equations enables the model to remain self-consistent in simulations of such relativistic phenomena as hybrid X-pinches and laser-plasma interactions. A major challenge of a relativistic fluid implementation is the recovery of primitive variables (density, velocity, pressure) from conserved quantities at each time step of a simulation. This recovery, which reduces to straightforward algebra in non-relativistic simulations, becomes more complicated when the equations are made relativistic, and has thus far been a major impediment to two-fluid simulations of relativistic HED plasmas. By suitable formulation of the relativistic generalized Ohm's law as an evolution equation, we have reduced the central part of the primitive variable recovery problem to a straightforward algebraic computation, which enables efficient and accurate relativistic two-fluid simulations. Our code recovers expected non-relativistic results and reveals new physics in the relativistic regime. Work supported by the National Nuclear Security Administration stewardship sciences academic program under Department of Energy cooperative Agreement DE-NA0001836.

  3. General mechanism and dynamics of the solar wind interaction with lunar magnetic anomalies from 3-D particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Deca, Jan; Divin, Andrey; Lembège, Bertrand; Horányi, Mihály; Markidis, Stefano; Lapenta, Giovanni

    2015-08-01

    We present a general model of the solar wind interaction with a dipolar lunar crustal magnetic anomaly (LMA) using three-dimensional full-kinetic and electromagnetic simulations. We confirm that LMAs may indeed be strong enough to stand off the solar wind from directly impacting the lunar surface, forming a so-called "minimagnetosphere," as suggested by spacecraft observations and theory. We show that the LMA configuration is driven by electron motion because its scale size is small with respect to the gyroradius of the solar wind ions. We identify a population of back-streaming ions, the deflection of magnetized electrons via the E × B drift motion, and the subsequent formation of a halo region of elevated density around the dipole source. Finally, it is shown that the presence and efficiency of the processes are heavily impacted by the upstream plasma conditions and, on their turn, influence the overall structure and evolution of the LMA system. Understanding the detailed physics of the solar wind interaction with LMAs, including magnetic shielding, particle dynamics and surface charging is vital to evaluate its implications for lunar exploration.

  4. On the Numerical Dispersion of Electromagnetic Particle-In-Cell Code : Finite Grid Instability

    SciTech Connect

    Meyers, Michael David; Huang, Chengkun; Zeng, Yong; Yi, Sunghwan; Albright, Brian James

    2014-07-15

    The Particle-In-Cell (PIC) method is widely used in relativistic particle beam and laser plasma modeling. However, the PIC method exhibits numerical instabilities that can render unphysical simulation results or even destroy the simulation. For electromagnetic relativistic beam and plasma modeling, the most relevant numerical instabilities are the finite grid instability and the numerical Cherenkov instability. We review the numerical dispersion relation of the electromagnetic PIC algorithm to analyze the origin of these instabilities. We rigorously derive the faithful 3D numerical dispersion of the PIC algorithm, and then specialize to the Yee FDTD scheme. In particular, we account for the manner in which the PIC algorithm updates and samples the fields and distribution function. Temporal and spatial phase factors from solving Maxwell's equations on the Yee grid with the leapfrog scheme are also explicitly accounted for. Numerical solutions to the electrostatic-like modes in the 1D dispersion relation for a cold drifting plasma are obtained for parameters of interest. In the succeeding analysis, we investigate how the finite grid instability arises from the interaction of the numerical 1D modes admitted in the system and their aliases. The most significant interaction is due critically to the correct representation of the operators in the dispersion relation. We obtain a simple analytic expression for the peak growth rate due to this interaction.

  5. Efficient GPU implementation for Particle in Cell algorithm

    SciTech Connect

    Joseph, Rejith George; Ravunnikutty, Girish; Ranka, Sanjay; Klasky, Scott A

    2011-01-01

    Particle in cell method is widely used method in the plasma physics to study the trajectories of charged particles under electromagnetic fields. The PIC algorithm is computationally intensive and its time requirements are proportional to the number of charged particles involved in the simulation. The focus of the paper is to parallelize the PIC algorithm on Graphics Processing Unit (GPU). We present several performance tradeoffs related to the small shared memory and atomic operations on the GPU to achieve high performance.

  6. THREE-DIMENSIONAL RELATIVISTIC MAGNETOHYDRODYNAMIC SIMULATIONS OF CURRENT-DRIVEN INSTABILITY. III. ROTATING RELATIVISTIC JETS

    SciTech Connect

    Mizuno, Yosuke; Lyubarsky, Yuri; Nishikawa, Ken-Ichi; Hardee, Philip E.

    2012-09-20

    We have investigated the influence of jet rotation and differential motion on the linear and nonlinear development of the current-driven (CD) kink instability of force-free helical magnetic equilibria via three-dimensional relativistic magnetohydrodynamic simulations. In this study, we follow the temporal development within a periodic computational box. Displacement of the initial helical magnetic field leads to the growth of the CD kink instability. We find that, in accordance with the linear stability theory, the development of the instability depends on the lateral distribution of the poloidal magnetic field. If the poloidal field significantly decreases outward from the axis, then the initial small perturbations grow strongly, and if multiple wavelengths are excited, then nonlinear interaction eventually disrupts the initial cylindrical configuration. When the profile of the poloidal field is shallow, the instability develops slowly and eventually saturates. We briefly discuss implications of our findings for Poynting-dominated jets.

  7. A new approach to theoretical investigations of high harmonics generation by means of fs laser interaction with overdense plasma layers. Combining particle-in-cell simulations with machine learning.

    NASA Astrophysics Data System (ADS)

    Mihailescu, A.

    2016-12-01

    Within the past decade, various experimental and theoretical investigations have been performed in the field of high-order harmonics generation (HHG) by means of femtosecond (fs) laser pulses interacting with laser produced plasmas. Numerous potential future applications thus arise. Beyond achieving higher conversion efficiency for higher harmonic orders and hence harmonic power and brilliance, there are more ambitious scientific goals such as attaining shorter harmonic wavelengths or reducing harmonic pulse durations towards the attosecond and even the zeptosecond range. High order harmonics are also an attractive diagnostic tool for the laser-plasma interaction process itself. Particle-in-Cell (PIC) simulations are known to be one of the most important numerical instruments employed in plasma physics and in laser-plasma interaction investigations. The novelty brought by this paper consists in combining the PIC method with several machine learning approaches. For predictive modelling purposes, a universal functional approximator is used, namely a multi-layer perceptron (MLP), in conjunction with a self-organizing map (SOM). The training sets have been retrieved from the PIC simulations and also from the available literature in the field. The results demonstrate the potential utility of machine learning in predicting optimal interaction scenarios for gaining higher order harmonics or harmonics with particular features such as a particular wavelength range, a particular harmonic pulse duration or a certain intensity. Furthermore, the author will show how machine learning can be used for estimations of electronic temperatures, proving that it can be a reliable tool for obtaining better insights into the fs laser interaction physics.

  8. General relativistic corrections to N -body simulations and the Zel'dovich approximation

    NASA Astrophysics Data System (ADS)

    Fidler, Christian; Rampf, Cornelius; Tram, Thomas; Crittenden, Robert; Koyama, Kazuya; Wands, David

    2015-12-01

    The initial conditions for Newtonian N -body simulations are usually generated by applying the Zel'dovich approximation to the initial displacements of the particles using an initial power spectrum of density fluctuations generated by an Einstein-Boltzmann solver. We show that in most gauges the initial displacements generated in this way receive a first-order relativistic correction. We define a new gauge, the N -body gauge, in which this relativistic correction vanishes and show that a conventional Newtonian N -body simulation includes all first-order relativistic contributions (in the absence of radiation) if we identify the coordinates in Newtonian simulations with those in the relativistic N -body gauge.

  9. TWO-FLUID MAGNETOHYDRODYNAMIC SIMULATIONS OF RELATIVISTIC MAGNETIC RECONNECTION

    SciTech Connect

    Zenitani, Seiji; Hesse, Michael; Klimas, Alex

    2009-05-10

    We investigate the large-scale evolution of a relativistic magnetic reconnection in an electron-positron pair plasma by a relativistic two-fluid magnetohydrodynamic (MHD) code. We introduce an interspecies friction force as an effective resistivity to dissipate magnetic fields. We demonstrate that magnetic reconnection successfully occurs in our two-fluid system, and that it involves Petschek-type bifurcated current layers in a later stage. We further observe a quasi-steady evolution thanks to an open boundary condition, and find that the Petschek-type structure is stable over the long time period. Simulation results and theoretical analyses exhibit that the Petschek outflow channel becomes narrower when the reconnection inflow contains more magnetic energy, as previously claimed. Meanwhile, we find that the reconnection rate goes up to {approx}1 in extreme cases, which is faster than previously thought. The role of the resistivity, implications for reconnection models in the magnetically dominated limit, and relevance to kinetic reconnection works are discussed.

  10. Relativistic Plasma Polarizer: Impact of Temperature Anisotropy on Relativistic Transparency.

    PubMed

    Stark, David J; Bhattacharjee, Chinmoy; Arefiev, Alexey V; Toncian, Toma; Hazeltine, R D; Mahajan, S M

    2015-07-10

    3D particle-in-cell simulations demonstrate that the enhanced transparency of a relativistically hot plasma is sensitive to how the energy is partitioned between different degrees of freedom. For an anisotropic electron distribution, propagation characteristics, like the critical density, will depend on the polarization of the electromagnetic wave. Despite the onset of the Weibel instability in such plasmas, the anisotropy can persist long enough to affect laser propagation. This plasma can then function as a polarizer or a wave plate to dramatically alter the pulse polarization.

  11. General Relativistic Radiative Transfer and GeneralRelativistic MHD Simulations of Accretion and Outflows of Black Holes

    SciTech Connect

    Fuerst, Steven V.; Mizuno, Yosuke; Nishikawa, Ken-Ichi; Wu, Kinwah; /Mullard Space Sci. Lab.

    2007-01-05

    We calculate the emission from relativistic flows in black hole systems using a fully general relativistic radiative transfer formulation, with flow structures obtained by general relativistic magneto-hydrodynamic simulations. We consider thermal free-free emission and thermal synchrotron emission. Bright filament-like features protrude (visually) from the accretion disk surface, which are enhancements of synchrotron emission where the magnetic field roughly aligns with the line-of-sight in the co-moving frame. The features move back and forth as the accretion flow evolves, but their visibility and morphology are robust. We propose that variations and drifts of the features produce certain X-ray quasi-periodic oscillations (QPOs) observed in black-hole X-ray binaries.

  12. A General Relativistic Magnetohydrodynamic Simulation of Jet Formation

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Richardson, G.; Koide, S.; Shibata, K.; Kudoh, T.; Hardee, P.; Fishman, G. J.

    2005-01-01

    We have performed a fully three-dimensional general relativistic magnetohydrodynamic (GRMHD) simulation ofjet formation from a thin accretion disk around a Schwarzschild black hole with a free-falling corona. The initial simulation results show that a bipolar jet (velocity approx.0.3c) is created, as shown by previous two-dimensional axi- symmetric simulations with mirror symmetry at the equator. The three-dimensional simulation ran over 100 light crossing time units (T(sub s) = r(sub s)/c, where r(sub s = 2GM/c(sup 2), which is considerably longer than the previous simulations. We show that the jet is initially formed as predicted owing in part to magnetic pressure from the twisting of the initially uniform magnetic field and from gas pressure associated with shock formation in the region around r = 3r(sub s). At later times, the accretion disk becomes thick and the jet fades resulting in a wind that is ejected from the surface ofthe thickened (torus-like) disk. It should be noted that no streaming matter from a donor is included at the outer boundary in the simulation (an isolated black hole not binary black hole). The wind flows outward with a wider angle than the initial jet. The widening of the jet is consistent with the outward-moving torsional Alfven waves. This evolution of disk-jet coupling suggests that the jet fades with a thickened accretion disk because of the iack of streaming materiai from an accompanying star.

  13. On the numerical dispersion of electromagnetic particle-in-cell code: Finite grid instability

    SciTech Connect

    Meyers, M.D.; Huang, C.-K.; Zeng, Y.; Yi, S.A.; Albright, B.J.

    2015-09-15

    The Particle-In-Cell (PIC) method is widely used in relativistic particle beam and laser plasma modeling. However, the PIC method exhibits numerical instabilities that can render unphysical simulation results or even destroy the simulation. For electromagnetic relativistic beam and plasma modeling, the most relevant numerical instabilities are the finite grid instability and the numerical Cherenkov instability. We review the numerical dispersion relation of the Electromagnetic PIC model. We rigorously derive the faithful 3-D numerical dispersion relation of the PIC model, for a simple, direct current deposition scheme, which does not conserve electric charge exactly. We then specialize to the Yee FDTD scheme. In particular, we clarify the presence of alias modes in an eigenmode analysis of the PIC model, which combines both discrete and continuous variables. The manner in which the PIC model updates and samples the fields and distribution function, together with the temporal and spatial phase factors from solving Maxwell's equations on the Yee grid with the leapfrog scheme, is explicitly accounted for. Numerical solutions to the electrostatic-like modes in the 1-D dispersion relation for a cold drifting plasma are obtained for parameters of interest. In the succeeding analysis, we investigate how the finite grid instability arises from the interaction of the numerical modes admitted in the system and their aliases. The most significant interaction is due critically to the correct representation of the operators in the dispersion relation. We obtain a simple analytic expression for the peak growth rate due to this interaction, which is then verified by simulation. We demonstrate that our analysis is readily extendable to charge conserving models.

  14. On the numerical dispersion of electromagnetic particle-in-cell code: Finite grid instability

    NASA Astrophysics Data System (ADS)

    Meyers, M. D.; Huang, C.-K.; Zeng, Y.; Yi, S. A.; Albright, B. J.

    2015-09-01

    The Particle-In-Cell (PIC) method is widely used in relativistic particle beam and laser plasma modeling. However, the PIC method exhibits numerical instabilities that can render unphysical simulation results or even destroy the simulation. For electromagnetic relativistic beam and plasma modeling, the most relevant numerical instabilities are the finite grid instability and the numerical Cherenkov instability. We review the numerical dispersion relation of the Electromagnetic PIC model. We rigorously derive the faithful 3-D numerical dispersion relation of the PIC model, for a simple, direct current deposition scheme, which does not conserve electric charge exactly. We then specialize to the Yee FDTD scheme. In particular, we clarify the presence of alias modes in an eigenmode analysis of the PIC model, which combines both discrete and continuous variables. The manner in which the PIC model updates and samples the fields and distribution function, together with the temporal and spatial phase factors from solving Maxwell's equations on the Yee grid with the leapfrog scheme, is explicitly accounted for. Numerical solutions to the electrostatic-like modes in the 1-D dispersion relation for a cold drifting plasma are obtained for parameters of interest. In the succeeding analysis, we investigate how the finite grid instability arises from the interaction of the numerical modes admitted in the system and their aliases. The most significant interaction is due critically to the correct representation of the operators in the dispersion relation. We obtain a simple analytic expression for the peak growth rate due to this interaction, which is then verified by simulation. We demonstrate that our analysis is readily extendable to charge conserving models.

  15. Diagnosing particle acceleration in relativistic jets

    NASA Astrophysics Data System (ADS)

    Böttcher, Markus; Baring, Matthew G.; Liang, Edison P.; Summerlin, Errol J.; Fu, Wen; Smith, Ian A.; Roustazadeh, Parisa

    2015-03-01

    The high-energy emission from blazars and other relativistic jet sources indicates that electrons are accelerated to ultra-relativistic (GeV - TeV) energies in these systems. This paper summarizes recent results from numerical studies of two fundamentally different particle acceleration mechanisms potentially at work in relativistic jets: Magnetic-field generation and relativistic particle acceleration in relativistic shear layers, which are likely to be present in relativistic jets, is studied via Particle-in-Cell (PIC) simulations. Diffusive shock acceleration at relativistic shocks is investigated using Monte-Carlo simulations. The resulting magnetic-field configurations and thermal + non-thermal particle distributions are then used to predict multi-wavelength radiative (synchrotron + Compton) signatures of both acceleration scenarios. In particular, we address how anisotropic shear-layer acceleration may be able to circumvent the well-known Lorentz-factor crisis, and how the self-consistent evaluation of thermal + non-thermal particle populations in diffusive shock acceleration simulations provides tests of the bulk Comptonization model for the Big Blue Bump observed in the SEDs of several blazars.

  16. Mitigating the hosing instability in relativistic laser-plasma interactions

    NASA Astrophysics Data System (ADS)

    Ceurvorst, L.; Ratan, N.; Levy, M. C.; Kasim, M. F.; Sadler, J.; Scott, R. H. H.; Trines, R. M. G. M.; Huang, T. W.; Skramic, M.; Vranic, M.; Silva, L. O.; Norreys, P. A.

    2016-05-01

    A new physical model of the hosing instability that includes relativistic laser pulses and moderate densities is presented and derives the density dependence of the hosing equation. This is tested against two-dimensional particle-in-cell simulations. These simulations further examine the feasibility of using multiple pulses to mitigate the hosing instability in a Nd:glass-type parameter space. An examination of the effects of planar versus cylindrical exponential density gradients on the hosing instability is also presented. The results show that strongly relativistic pulses and more planar geometries are capable of mitigating the hosing instability which is in line with the predictions of the physical model.

  17. Noninvariance of Energy-Momentum Scale Ranges in Vlasov Simulations of Relativistic Interactions and Warm Wavebreaking of Relativistic Plasma Waves

    NASA Astrophysics Data System (ADS)

    Thomas, Alec

    2015-11-01

    For certain classes of relativistic plasma problems, using a Lorentz boosted frame can be even more advantageous for gridded momentum space-position space-time simulations than Vay [Vay PRL 2007] showed was the case for position space-time simulations, resulting in speed up proportional to γboost6. The technique was applied using a Spectral Vlasov code to the problem of warm wavebreaking limits in relativistic plasma and demonstrates numerical results consistent with the analytic conclusions of Schroeder et al. [Schroeder PRE 2005]. By appropriate normalization, a self-similar behavior for the Vlasov equation in different Lorentz frames is found. These results are relevant to beam and laser driven plasma based accelerators and the potential for Vlasov simulation of them. National Science Foundation Career grant 1054164 and the Air Force Office of Scientific Research under Young Investigator Program grant FA9550-12-1-0310 and grant FA9550-14-1-0156.

  18. Sparse grid techniques for particle-in-cell schemes

    NASA Astrophysics Data System (ADS)

    Ricketson, L. F.; Cerfon, A. J.

    2017-02-01

    We propose the use of sparse grids to accelerate particle-in-cell (PIC) schemes. By using the so-called ‘combination technique’ from the sparse grids literature, we are able to dramatically increase the size of the spatial cells in multi-dimensional PIC schemes while paying only a slight penalty in grid-based error. The resulting increase in cell size allows us to reduce the statistical noise in the simulation without increasing total particle number. We present initial proof-of-principle results from test cases in two and three dimensions that demonstrate the new scheme’s efficiency, both in terms of computation time and memory usage.

  19. General relativistic magnetohydrodynamical simulations of the jet in M 87

    NASA Astrophysics Data System (ADS)

    Mościbrodzka, Monika; Falcke, Heino; Shiokawa, Hotaka

    2016-02-01

    Context. The connection between black hole, accretion disk, and radio jet can be constrained best by fitting models to observations of nearby low-luminosity galactic nuclei, in particular the well-studied sources Sgr A* and M 87. There has been considerable progress in modeling the central engine of active galactic nuclei by an accreting supermassive black hole coupled to a relativistic plasma jet. However, can a single model be applied to a range of black hole masses and accretion rates? Aims: Here we want to compare the latest three-dimensional numerical model, originally developed for Sgr A* in the center of the Milky Way, to radio observations of the much more powerful and more massive black hole in M 87. Methods: We postprocess three-dimensional GRMHD models of a jet-producing radiatively inefficient accretion flow around a spinning black hole using relativistic radiative transfer and ray-tracing to produce model spectra and images. As a key new ingredient in these models, we allow the proton-electron coupling in these simulations depend on the magnetic properties of the plasma. Results: We find that the radio emission in M 87 is described well by a combination of a two-temperature accretion flow and a hot single-temperature jet. Most of the radio emission in our simulations comes from the jet sheath. The model fits the basic observed characteristics of the M 87 radio core: it is "edge-brightened", starts subluminally, has a flat spectrum, and increases in size with wavelength. The best fit model has a mass-accretion rate of Ṁ ~ 9 × 10-3M⊙ yr-1 and a total jet power of Pj ~ 1043 erg s-1. Emission at λ = 1.3 mm is produced by the counter-jet close to the event horizon. Its characteristic crescent shape surrounding the black hole shadow could be resolved by future millimeter-wave VLBI experiments. Conclusions: The model was successfully derived from one for the supermassive black hole in the center of the Milky Way by appropriately scaling mass and

  20. THE SUBMILLIMETER BUMP IN Sgr A* FROM RELATIVISTIC MHD SIMULATIONS

    SciTech Connect

    Dexter, Jason; Agol, Eric; Fragile, P. Chris; McKinney, Jonathan C.

    2010-07-10

    Recent high resolution observations of the Galactic center black hole allow for direct comparison with accretion disk simulations. We compare two-temperature synchrotron emission models from three-dimensional, general relativistic magnetohydrodynamic simulations to millimeter observations of Sgr A*. Fits to very long baseline interferometry and spectral index measurements disfavor the monochromatic face-on black hole shadow models from our previous work. Inclination angles {<=}20{sup 0} are ruled out to 3{sigma}. We estimate the inclination and position angles of the black hole, as well as the electron temperature of the accretion flow and the accretion rate, to be i=50{sup o+35o}{sub -15}{sup o}, {xi}=-23{sup o+97o}{sub -22}{sup o}, T{sub e} = (5.4 {+-} 3.0) x 10{sup 10} K, and M-dot =5{sup +15}{sub -2}x10{sup -9} M{sub sun} yr{sup -1}, respectively, with 90% confidence. The black hole shadow is unobscured in all best-fit models, and may be detected by observations on baselines between Chile and California, Arizona, or Mexico at 1.3 mm or .87 mm either through direct sampling of the visibility amplitude or using closure phase information. Millimeter flaring behavior consistent with the observations is present in all viable models and is caused by magnetic turbulence in the inner radii of the accretion flow. The variability at optically thin frequencies is strongly correlated with that in the accretion rate. The simulations provide a universal picture of the 1.3 mm emission region as a small region near the midplane in the inner radii of the accretion flow, which is roughly isothermal and has {nu}/{nu} {sub c} {approx} 1-20, where {nu} {sub c} is the critical frequency for thermal synchrotron emission.

  1. 3-D RPIC Simulations of Relativistic Jets: Particle Acceleration, Magnetic Field Generation, and Emission

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Mizuno, Y.; Hardee, P.; Hededal, C. B.; Fishman, G. J.

    2006-01-01

    Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets into ambient plasmas show that acceleration occurs in relativistic shocks. The Weibel instability created in shocks is responsible for particle acceleration, and generation and amplification of highly inhomogeneous, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection in relativistic jets. The "jitter" radiation from deflected electrons has different properties than the synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understand the complex time evolution and spectral structure in relativistic jets and gamma-ray bursts. We will present recent PIC simulations which show particle acceleration and magnetic field generation. We will also calculate associated self-consistent emission from relativistic shocks.

  2. Simulations and analytic models of relativistic magnetized jets

    NASA Astrophysics Data System (ADS)

    Tchekhovskoi, Alexandre Dmitrievich

    Astrophysical jets are tightly collimated streams that are often observed to move at velocities close to the speed of light. While many such systems are known, understanding and explaining how jets collimate and accelerate has been a long-standing challenge and is currently an area of active research. Finding analytic solutions for jets is extremely hard because the equations that describe the jets are highly nonlinear and difficult to solve analytically. Only in the last few years has it become possible to simulate ultrarelativistic jets computationally, which has led to unprecedented insights into their structure. We now think that many relativistic jets are produced by magnetic fields twisted by the rotation of a central compact object, which can be a black hole or a neutron star. In this thesis I present numerical and analytical studies of relativistic jets. In Chapter 2, I start with a discussion of a simple, idealized model that has the bare minimum of ingredients needed for the production of jets: regular magnetic field, spinning central compact object, and externally imposed collimation. The model assumes that magnetic field in the jet is so strong that plasma inertia is negligible and can be ignored. The simplicity of this model allows for a fully analytic description and an intuitive understanding of the results. Despite being simple, this model possesses non-trivial properties and has important applications to various astrophysical systems --- compact object binaries, gamma-ray bursts, and active galactic nuclei. Chapters 3 -- 7 add an extra level of realism (and sophistication) into jet models: they account for mass inertia of the jet fluid and study its effects on the jet structure. Chapter 4 discusses the effect of jet confinement on the acceleration of the jet. Chapter 5 shows that deconfinement can also have a dramatic effect on the jet. Chapter 6 studies how the structure of the jet changes if the central object driving the jet is a black hole

  3. Novel methods in the Particle-In-Cell accelerator Code-Framework Warp

    SciTech Connect

    Vay, J-L; Grote, D. P.; Cohen, R. H.; Friedman, A.

    2012-12-26

    The Particle-In-Cell (PIC) Code-Framework Warp is being developed by the Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL) to guide the development of accelerators that can deliver beams suitable for high-energy density experiments and implosion of inertial fusion capsules. It is also applied in various areas outside the Heavy Ion Fusion program to the study and design of existing and next-generation high-energy accelerators, including the study of electron cloud effects and laser wakefield acceleration for example. This study presents an overview of Warp's capabilities, summarizing recent original numerical methods that were developed by the HIFS-VNL (including PIC with adaptive mesh refinement, a large-timestep 'drift-Lorentz' mover for arbitrarily magnetized species, a relativistic Lorentz invariant leapfrog particle pusher, simulations in Lorentz-boosted frames, an electromagnetic solver with tunable numerical dispersion and efficient stride-based digital filtering), with special emphasis on the description of the mesh refinement capability. In addition, selected examples of the applications of the methods to the abovementioned fields are given.

  4. Effects of relativistic electron temperature on parametric instabilities for intense laser propagation in underdense plasma

    SciTech Connect

    Zhao, Yao; Zheng, Jun; Chen, Min; Yu, Lu-Le; Weng, Su-Ming; Ren, Chuang; Liu, Chuan-Sheng; Sheng, Zheng-Ming E-mail: zhengming.sheng@strath.ac.uk

    2014-11-15

    Effects of relativistic electron temperature on stimulated Raman scattering and stimulated Brillouin scattering instabilities for high intensity lasers propagating in underdense plasma are studied theoretically and numerically. The dispersion relations for these instabilities are derived from the relativistic fluid equation. For a wide range of laser intensity and electron temperature, it is found that the maximum growth rate and the instability region in k-space can be reduced at relativistic electron temperature. Particle-in-cell simulations are carried out, which confirm the theoretical analysis.

  5. Laser prepulse induced plasma channel formation in air and relativistic self focusing of an intense short pulse

    SciTech Connect

    Kumar, Ashok; Dahiya, Deepak; Sharma, A. K.

    2011-02-15

    An analytical formalism is developed and particle-in-cell simulations are carried out to study plasma channel formation in air by a two pulse technique and subsequent relativistic self focusing of the third intense laser through it. The first prepulse causes tunnel ionization of air. The second pulse heats the plasma electrons and establishes a prolonged channel. The third pulse focuses under the combined effect of density nonuniformity of the channel and relativistic mass nonlinearity. A channel with 20% density variation over the spot size of the third pulse is seen to strongly influence relativistic self focusing at normalized laser amplitude {approx}0.4-1. In deeper plasma channels, self focusing is less sensitive to laser amplitude variation. These results are reproduced in particle-in-cell simulations. The present treatment is valid for millimeter range plasma channels.

  6. An X-band overmoded relativistic klystron

    NASA Astrophysics Data System (ADS)

    Xiao, Renzhen; Chen, Changhua; Deng, Yuqun; Li, Jiawei; Bai, Xianchen

    2014-11-01

    An X-band overmoded relativistic klystron is proposed, the operation mode of which is the TM02 mode. The drift tube could not cut off the TM01 mode; isolating the buncher cavity from the input cavity is achieved by introducing a sectional RF lossy material. Microwaves are extracted from the modulated electron beam using a cylindrical waveguide, rather than a coaxial waveguide; thereby, the output structure is significantly simplified. Particle-in-cell simulations show that microwaves with power of 1.28 GW and frequency of 9.30 GHz can be obtained, corresponding to an efficiency of 32% and relative bandwidth of about 8%.

  7. Three-dimensional relativistic electromagnetic subcycle solitons.

    PubMed

    Esirkepov, Timur; Nishihara, Katsunobu; Bulanov, Sergei V; Pegoraro, Francesco

    2002-12-30

    Three-dimensional (3D) relativistic electromagnetic subcycle solitons were observed in 3D particle-in-cell simulations of an intense short-laser-pulse propagation in an underdense plasma. Their structure resembles that of an oscillating electric dipole with a poloidal electric field and a toroidal magnetic field that oscillate in phase with the electron density with frequency below the Langmuir frequency. On the ion time scale, the soliton undergoes a Coulomb explosion of its core, resulting in ion acceleration, and then evolves into a slowly expanding quasineutral cavity.

  8. 3-D General Relativistic MHD Simulations of Generating Jets

    NASA Astrophysics Data System (ADS)

    Nishikawa, K.-I.; Koide, S.; Shibata, K.; Kudoh, T.; Frank, J.; Sol, H.

    1999-12-01

    We have investigated the dynamics of an accretion disk around Schwarzschild black holes initially threaded by a uniform poloidal magnetic field in a non-rotating corona (either in a steady-state infalling state or in hydrostatic equilibrium) around a non-rotating black hole using a 3-D GRMHD with the ``axisymmetry'' along the z-direction. Magnetic field is tightly twisted by the rotation of the disk, and plasmas in the shocked region of the disk are accelerated by J x B force to form bipolar relativistic jets. In order to investigate variabilities of generated relativistic jets and magnetic field structure inside jets, we have performed calculations using the 3-D GRMHD code with a full 3-dimensional system. We will investigate how the third dimension affects the global disk dynamics and jet generation.

  9. 3-D General Relativistic MHD Simulations of Generating Jets

    NASA Astrophysics Data System (ADS)

    Nishikawa, K.-I.; Koide, S.; Shibata, K.; Kudoh, T.; Sol, H.; Hughes, J. P.

    2000-12-01

    We have investigated the dynamics of an accretion disk around Schwarzschild black holes initially threaded by a uniform poloidal magnetic field in a non-rotating corona (either in a steady-state infalling state) around a non-rotating black hole using a 3-D GRMHD with the ``axisymmetry'' along the z-direction. Magnetic field is tightly twisted by the rotation of the disk, and plasmas in the shocked region of the disk are accelerated by J x B force to form bipolar relativistic jets. In order to investigate variabilities of generated relativistic jets and magnetic field structure inside jets, we have performed calculations using the 3-D GRMHD code with a full 3-dimensional system. We will investigate how the third dimension affects the global disk dynamics and jet generation.

  10. Three-dimensional evolution of a relativistic current sheet: triggering of magnetic reconnection by the guide field.

    PubMed

    Zenitani, S; Hoshino, M

    2005-08-26

    The linear and nonlinear evolution of a relativistic current sheet of pair (e(+/-)) plasmas is investigated by three-dimensional particle-in-cell simulations. In a Harris configuration, it is obtained that the magnetic energy is fast dissipated by the relativistic drift kink instability (RDKI). However, when a current-aligned magnetic field (the so-called "guide field") is introduced, the RDKI is stabilized by the magnetic tension force and it separates into two obliquely propagating modes, which we call the relativistic drift-kink-tearing instability. These two waves deform the current sheet so that they trigger relativistic magnetic reconnection at a crossover thinning point. Since relativistic reconnection produces a lot of nonthermal particles, the guide field is of critical importance to study the energetics of a relativistic current sheet.

  11. A study of the discharge characteristics and energy balance of a Ne/Xe pulsed planar dielectric barrier: simulation via the one-dimensional particle-in-cell with Monte Carlo collision method

    NASA Astrophysics Data System (ADS)

    Benstâali, W.; Harrache, Z.; Belasri, A.

    2012-06-01

    Plasma display panels (PDPs) are one of the leading technologies in the flat panels market. However, they are facing intense competition. Different fluid models, both one-dimensional (1D) and 2D, have been used to analyze the energy balance in PDP cells in order to find out how the xenon excitation part can be improved to optimize the luminous efficiency. The aim of this work is to present a 1D particle-in-cell with Monte Carlo collision (PIC-MCC) model for PDPs. The discharge takes place in a Xe10-Ne gas mixture at 560 Torr. The applied voltage is 381 V. We show at first that this model reproduces the electric characteristics of a single PDP discharge pulse. Then, we calculate the energy deposited by charged particles in each collision. The total energy is about 19 μJ cm-2, and the energy used in xenon excitation is of the order of 12.5% compared to the total energy deposited in the discharge. The effect of xenon content in a Xe-Ne mixture is also analyzed. The energies deposited in xenon excitation and ionization are more important when the xenon percentage has been increased from 1 to 30%. The applied voltage increases the energy deposited in xenon excitation.

  12. One-dimensional particle-in-cell simulation on the influence of electron and ion temperature on the sheath expansion process in the post-arc stage of vacuum circuit breaker

    SciTech Connect

    Mo, Yongpeng; Shi, Zongqian; Jia, Shenli; Wang, Lijun

    2015-02-15

    The inter-contact region of vacuum circuit breakers is filled with residual plasma at the moment when the current is zero after the burning of metal vapor arc. The residual plasma forms an ion sheath in front of the post-arc cathode. The sheath then expands towards the post-arc anode under the influence of a transient recovery voltage. In this study, a one-dimensional particle-in-cell model is developed to investigate the post-arc sheath expansion. The influence of ion and electron temperatures on the decrease in local plasma density at the post-arc cathode side and post-arc anode side is discussed. When the decay in the local plasma density develops from the cathode and anode sides into the high-density region and merges, the overall plasma density in the inter-contact region begins to decrease. Meanwhile, the ion sheath begins to expand faster. Furthermore, the theory of ion rarefaction wave only explains quantitatively the decrease in the overall plasma density at relatively low ion temperatures. With the increase of ion temperature to certain extent, another possible reason for the decrease in the overall plasma density is proposed and results from the more active thermal diffusion of plasma.

  13. Relativistic Electron Accleration by a Laser of Intensity in Excess of 1020 W cm-2

    NASA Astrophysics Data System (ADS)

    Mangles, S. P. D.; Walton, B.; Wei, M. S.; Clarke, R. J.; Fritzler, S.; Gopal, A.; Hernandez-Gomez, C.; Krushelnick, K.; Najmudin, Z.; Dangor, A. E.

    Relativistic electrons with energies in excess of 300 MeV have been observed resulting from the interaction of a 0.3 PW laser beam focused to intensities of around 3 × 1020 W cm-2 interacting with an underdense plasma. Two dimensional particle in cell simulation of the interaction show that an interaction directly between preheated electrons and the intense laser field is responsible for the maximum acceleration.

  14. Coherent kilo-electron-volt backscattering from plasma-wave boosted relativistic electron mirrors

    SciTech Connect

    Li, F. Y.; Chen, M. Liu, Y.; Zhang, J.; Sheng, Z. M. E-mail: zmsheng@sjtu.edu.cn; Wu, H. C.; Meyer-ter-Vehn, J.; Mori, W. B.

    2014-10-20

    A different parameter regime of laser wakefield acceleration driven by sub-petawatt femtosecond lasers is proposed, which enables the generation of relativistic electron mirrors further accelerated by the plasma wave. Integrated particle-in-cell simulation, including both the mirror formation and Thomson scattering, demonstrates that efficient coherent backscattering up to keV photon energy can be obtained with moderate driving laser intensities and high density gas targets.

  15. Towards robust algorithms for current deposition and dynamic load-balancing in a GPU particle in cell code

    NASA Astrophysics Data System (ADS)

    Rossi, Francesco; Londrillo, Pasquale; Sgattoni, Andrea; Sinigardi, Stefano; Turchetti, Giorgio

    2012-12-01

    We present `jasmine', an implementation of a fully relativistic, 3D, electromagnetic Particle-In-Cell (PIC) code, capable of running simulations in various laser plasma acceleration regimes on Graphics-Processing-Units (GPUs) HPC clusters. Standard energy/charge preserving FDTD-based algorithms have been implemented using double precision and quadratic (or arbitrary sized) shape functions for the particle weighting. When porting a PIC scheme to the GPU architecture (or, in general, a shared memory environment), the particle-to-grid operations (e.g. the evaluation of the current density) require special care to avoid memory inconsistencies and conflicts. Here we present a robust implementation of this operation that is efficient for any number of particles per cell and particle shape function order. Our algorithm exploits the exposed GPU memory hierarchy and avoids the use of atomic operations, which can hurt performance especially when many particles lay on the same cell. We show the code multi-GPU scalability results and present a dynamic load-balancing algorithm. The code is written using a python-based C++ meta-programming technique which translates in a high level of modularity and allows for easy performance tuning and simple extension of the core algorithms to various simulation schemes.

  16. Implementation of a 3D version of ponderomotive guiding center solver in particle-in-cell code OSIRIS

    NASA Astrophysics Data System (ADS)

    Helm, Anton; Vieira, Jorge; Silva, Luis; Fonseca, Ricardo

    2016-10-01

    Laser-driven accelerators gained an increased attention over the past decades. Typical modeling techniques for laser wakefield acceleration (LWFA) are based on particle-in-cell (PIC) simulations. PIC simulations, however, are very computationally expensive due to the disparity of the relevant scales ranging from the laser wavelength, in the micrometer range, to the acceleration length, currently beyond the ten centimeter range. To minimize the gap between these despair scales the ponderomotive guiding center (PGC) algorithm is a promising approach. By describing the evolution of the laser pulse envelope separately, only the scales larger than the plasma wavelength are required to be resolved in the PGC algorithm, leading to speedups in several orders of magnitude. Previous work was limited to two dimensions. Here we present the implementation of the 3D version of a PGC solver into the massively parallel, fully relativistic PIC code OSIRIS. We extended the solver to include periodic boundary conditions and parallelization in all spatial dimensions. We present benchmarks for distributed and shared memory parallelization. We also discuss the stability of the PGC solver.

  17. GRMHD/RMHD Simulations and Stability of Magnetized Spine-Sheath Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Hardee, Philip; Mizuno, Yosuke; Nishikawa, Ken-Ichi

    2007-01-01

    A new general relativistic magnetohydrodynamics (GRMHD ) code "RAISHIN" used to simulate jet generation by rotating and non-rotating black holes with a geometrically thin Keplarian accretion disk finds that the jet develops a spine-sheath structure in the rotating black hole case. Spine-sheath structure and strong magnetic fields significantly modify the Kelvin-Helmholtz (KH) velocity shear driven instability. The RAISHIN code has been used in its relativistic magnetohydrodynamic (RMHD) configuration to study the effects of strong magnetic fields and weakly relativistic sheath motion, cl2, on the KH instability associated with a relativistic, Y = 2.5, jet spine-sheath interaction. In the simulations sound speeds up to ? c/3 and Alfven wave speeds up to ? 0.56 c are considered. Numerical simulation results are compared to theoretical predictions from a new normal mode analysis of the RMHD equations. Increased stability of a weakly magnetized system resulting from c/2 sheath speeds and stabilization of a strongly magnetized system resulting from d 2 sheath speeds is found.

  18. Numerical simulations of relativistic heavy-ion reactions

    NASA Astrophysics Data System (ADS)

    Daffin, Frank Cecil

    Bulk quantities of nuclear matter exist only in the compact bodies of the universe. There the crushing gravitational forces overcome the Coulomb repulsion in massive stellar collapses. Nuclear matter is subjected to high pressures and temperatures as shock waves propagate and burn their way through stellar cores. The bulk properties of nuclear matter are important parameters in the evolution of these collapses, some of which lead to nucleosynthesis. The nucleus is rich in physical phenomena. Above the Coulomb barrier, complex interactions lead to the distortion of, and as collision energies increase, the destruction of the nuclear volume. Of critical importance to the understanding of these events is an understanding of the aggregate microscopic processes which govern them. In an effort to understand relativistic heavy-ion reactions, the Boltzmann-Uehling-Uhlenbeck (Ueh33) (BUU) transport equation is used as the framework for a numerical model. In the years since its introduction, the numerical model has been instrumental in providing a coherent, microscopic, physical description of these complex, highly non-linear events. This treatise describes the background leading to the creation of our numerical model of the BUU transport equation, details of its numerical implementation, its application to the study of relativistic heavy-ion collisions, and some of the experimental observables used to compare calculated results to empirical results. The formalism evolves the one-body Wigner phase-space distribution of nucleons in time under the influence of a single-particle nuclear mean field interaction and a collision source term. This is essentially the familiar Boltzmann transport equation whose source term has been modified to address the Pauli exclusion principle. Two elements of the model allow extrapolation from the study of nuclear collisions to bulk quantities of nuclear matter: the modification of nucleon scattering cross sections in nuclear matter, and the

  19. Relativistic solutions for one- and two-dimensional space-charge limited current in coaxial diode

    SciTech Connect

    Yang, Zhanfeng; Liu, Guozhi; Shao, Hao; Yan, Teng; Zhang, Yuchuan

    2013-05-15

    This paper reports the two-dimensional physics and space-charge limited current (SLC) of coaxial diodes with a finite-length emitter. A full-voltage and one-dimensional approximate solution is first obtained by matching the non-relativistic solution to the super-relativistic solution. Including the effects of fields induced by the anode current and the beam itself yields the pinch-limited current in the coaxial diode. The SLC of a practically applied coaxial diode with a finite length emitter is obtained by a semi-analytical method. The solutions well agree with numerical solutions and particle-in-cell simulations.

  20. RELATIVISTIC POSITRON-ELECTRON-ION SHEAR FLOWS AND APPLICATION TO GAMMA-RAY BURSTS

    SciTech Connect

    Liang, Edison; Fu, Wen; Smith, Ian; Roustazadeh, Parisa; Boettcher, Markus

    2013-12-20

    We present particle-in-cell simulation results of relativistic shear flows for hybrid positron-electron-ion plasmas and compare to those for pure e {sup +} e {sup –} and pure e {sup –} ion plasmas. Among the three types of relativistic shear flows, we find that only hybrid shear flow is able to energize the electrons to form a high-energy spectral peak plus a hard power law tail. Such electron spectra are needed to model the observational properties of gamma-ray bursts.

  1. Slurm: An innovative Particle-in-Cell Method for Magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Bacchini, Fabio; Olshevsky, Vyacheslav; Lapenta, Giovanni

    2016-10-01

    We present a new Particle-in-Cell method for plasma simulations. This is based on the original algorithm of FLIP-MHD, which uses a Lagrangian formulation of the macroscopic equations. A finite-difference approximation of the equations of motion is solved on a fixed (non-moving) grid, while convection of the quantities is modelled with the support of Lagrangian particles. Interpolation with first-order b-splines is used to project the conserved quantities from particles to the grid and back. In this work, we introduce two modifications of the original scheme. A particle volume evolution procedure is adopted to reduce the computational error, based on the Material Point Method for solid mechanics. The additional step introduces little to none computational diffusion and efficiently suppresses the so-called ringing instability, allowing the use of explicit time differencing. Furthermore, we eliminate the need for a Poisson solver in the magnetic field computation with the use of a vector potential. The vector potential evolution is modelled with a moving grid and interpolated to the fixed grid points to obtain a solenoidal magnetic field. The results of a number of HD and MHD tests show good agreement with the reference solutions and rather fast time and space convergence. Air Force Office of Scientific Research, Air Force Materiel Command, USAF under Award No. FA9550-14-1-0375. European Community's Seventh Framework Programme (FP7/2007-2013) via the DEEP-ER project under Grant Agreement No. 610476.

  2. GPU Acceleration of Particle-In-Cell Methods

    NASA Astrophysics Data System (ADS)

    Cowan, Benjamin; Cary, John; Sides, Scott

    2016-10-01

    Graphics processing units (GPUs) have become key components in many supercomputing systems, as they can provide more computations relative to their cost and power consumption than conventional processors. However, to take full advantage of this capability, they require a strict programming model which involves single-instruction multiple-data execution as well as significant constraints on memory accesses. To bring the full power of GPUs to bear on plasma physics problems, we must adapt the computational methods to this new programming model. We have developed a GPU implementation of the particle-in-cell (PIC) method, one of the mainstays of plasma physics simulation. This framework is highly general and enables advanced PIC features such as high order particles and absorbing boundary conditions. The main elements of the PIC loop, including field interpolation and particle deposition, are designed to optimize memory access. We describe the performance of these algorithms and discuss some of the methods used. Work supported by DARPA Contract No. W31P4Q-16-C-0009.

  3. GPU acceleration of particle-in-cell methods

    NASA Astrophysics Data System (ADS)

    Cowan, Benjamin; Cary, John; Meiser, Dominic

    2015-11-01

    Graphics processing units (GPUs) have become key components in many supercomputing systems, as they can provide more computations relative to their cost and power consumption than conventional processors. However, to take full advantage of this capability, they require a strict programming model which involves single-instruction multiple-data execution as well as significant constraints on memory accesses. To bring the full power of GPUs to bear on plasma physics problems, we must adapt the computational methods to this new programming model. We have developed a GPU implementation of the particle-in-cell (PIC) method, one of the mainstays of plasma physics simulation. This framework is highly general and enables advanced PIC features such as high order particles and absorbing boundary conditions. The main elements of the PIC loop, including field interpolation and particle deposition, are designed to optimize memory access. We describe the performance of these algorithms and discuss some of the methods used. Work supported by DARPA contract W31P4Q-15-C-0061 (SBIR).

  4. GAMMA-RAY BURST DYNAMICS AND AFTERGLOW RADIATION FROM ADAPTIVE MESH REFINEMENT, SPECIAL RELATIVISTIC HYDRODYNAMIC SIMULATIONS

    SciTech Connect

    De Colle, Fabio; Ramirez-Ruiz, Enrico; Granot, Jonathan; Lopez-Camara, Diego

    2012-02-20

    We report on the development of Mezcal-SRHD, a new adaptive mesh refinement, special relativistic hydrodynamics (SRHD) code, developed with the aim of studying the highly relativistic flows in gamma-ray burst sources. The SRHD equations are solved using finite-volume conservative solvers, with second-order interpolation in space and time. The correct implementation of the algorithms is verified by one-dimensional (1D) and multi-dimensional tests. The code is then applied to study the propagation of 1D spherical impulsive blast waves expanding in a stratified medium with {rho}{proportional_to}r{sup -k}, bridging between the relativistic and Newtonian phases (which are described by the Blandford-McKee and Sedov-Taylor self-similar solutions, respectively), as well as to a two-dimensional (2D) cylindrically symmetric impulsive jet propagating in a constant density medium. It is shown that the deceleration to nonrelativistic speeds in one dimension occurs on scales significantly larger than the Sedov length. This transition is further delayed with respect to the Sedov length as the degree of stratification of the ambient medium is increased. This result, together with the scaling of position, Lorentz factor, and the shock velocity as a function of time and shock radius, is explained here using a simple analytical model based on energy conservation. The method used for calculating the afterglow radiation by post-processing the results of the simulations is described in detail. The light curves computed using the results of 1D numerical simulations during the relativistic stage correctly reproduce those calculated assuming the self-similar Blandford-McKee solution for the evolution of the flow. The jet dynamics from our 2D simulations and the resulting afterglow light curves, including the jet break, are in good agreement with those presented in previous works. Finally, we show how the details of the dynamics critically depend on properly resolving the structure of the

  5. Gamma-Ray Burst Dynamics and Afterglow Radiation from Adaptive Mesh Refinement, Special Relativistic Hydrodynamic Simulations

    NASA Astrophysics Data System (ADS)

    De Colle, Fabio; Granot, Jonathan; López-Cámara, Diego; Ramirez-Ruiz, Enrico

    2012-02-01

    We report on the development of Mezcal-SRHD, a new adaptive mesh refinement, special relativistic hydrodynamics (SRHD) code, developed with the aim of studying the highly relativistic flows in gamma-ray burst sources. The SRHD equations are solved using finite-volume conservative solvers, with second-order interpolation in space and time. The correct implementation of the algorithms is verified by one-dimensional (1D) and multi-dimensional tests. The code is then applied to study the propagation of 1D spherical impulsive blast waves expanding in a stratified medium with ρvpropr -k , bridging between the relativistic and Newtonian phases (which are described by the Blandford-McKee and Sedov-Taylor self-similar solutions, respectively), as well as to a two-dimensional (2D) cylindrically symmetric impulsive jet propagating in a constant density medium. It is shown that the deceleration to nonrelativistic speeds in one dimension occurs on scales significantly larger than the Sedov length. This transition is further delayed with respect to the Sedov length as the degree of stratification of the ambient medium is increased. This result, together with the scaling of position, Lorentz factor, and the shock velocity as a function of time and shock radius, is explained here using a simple analytical model based on energy conservation. The method used for calculating the afterglow radiation by post-processing the results of the simulations is described in detail. The light curves computed using the results of 1D numerical simulations during the relativistic stage correctly reproduce those calculated assuming the self-similar Blandford-McKee solution for the evolution of the flow. The jet dynamics from our 2D simulations and the resulting afterglow light curves, including the jet break, are in good agreement with those presented in previous works. Finally, we show how the details of the dynamics critically depend on properly resolving the structure of the relativistic flow.

  6. Effects of high energy photon emissions in laser generated ultra-relativistic plasmas: Real-time synchrotron simulations

    NASA Astrophysics Data System (ADS)

    Wallin, Erik; Gonoskov, Arkady; Marklund, Mattias

    2015-03-01

    We model the emission of high energy photons due to relativistic charged particle motion in intense laser-plasma interactions. This is done within a particle-in-cell code, for which high frequency radiation normally cannot be resolved due to finite time steps and grid size. A simple expression for the synchrotron radiation spectra is used together with a Monte-Carlo method for the emittance. We extend previous work by allowing for arbitrary fields, considering the particles to be in instantaneous circular motion due to an effective magnetic field. Furthermore, we implement noise reduction techniques and present validity estimates of the method. Finally, we perform a rigorous comparison to the mechanism of radiation reaction, and find the emitted energy to be in excellent agreement with the losses calculated using radiation reaction.

  7. Simulation of Relativistic Shocks and Associated Radiation from Turbulent Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Mizuno, Y.; Niemiec, J.; Medvedev, M.; Zhang, B.; Hardee, P.; Frederiksen, J.; Sol, H.; Pohl, M.; Hartmann, D. H.; Fishman, G. J.

    2010-01-01

    Recent PIC simulations of relativistic electron-positron (electron-ion) jets injected into a stationary medium show that particle acceleration occurs at shocked regions. Simulations show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields and particle acceleration. These magnetic fields contribute to the electron's transverse deflection behind the shock. The jitter'' radiation from deflected electrons in turbulent magnetic fields has different properties than synchrotron radiation, which is calculated in a uniform magnetic field. This jitter radiation may be important for understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets in general, and supernova remnants. We will present detailed spectra for conditions relevant of various astrophysical sites of shock formation via the Weibel instability. In particular we will discuss the application to GRBs and SNRs

  8. Simulations and synchrotron radiation from the relativistic jet base

    NASA Astrophysics Data System (ADS)

    Porth, O.

    The central acceleration region of active galactic nuclei (AGN) is simulated for a two-component spine and sheath jet. For the steady jet component we perform the spatially resolved polarized synchrotron transfer producing observables as radio maps, spectra and derived rotation measures. The wealth of detail obtained this way helps to assess the physical processes (such as internal Faraday rotation) and model assumptions.

  9. Using computer simulations to study relativistic heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Murray, Joelle Lynn

    1998-12-01

    One of the most exciting topics in high-energy nuclear physics is the study of the potential phase transition between hadronic and partonic matter. Information about this transition, if it exists and can be experimentally determined, would be vital in understanding confinement of quarks and gluons inside hadrons. New accelerators, RHIC and LIIC, will be online in the next few years and will focus on finding evidence for this transition. RHIC will collide Au on Au at center of mass energies equal to 200 GeV/nucleon and create a high density, high temperature state of matter. To study the large particle multiplicities that will occur at these experiments, computer simulations are being developed. Within this thesis, one type of simulation will be detailed and used to study the invariant mass spectrum of leptons pairs measured at CERN SPS and several hadronic observables that could be measured at RHIC.

  10. Electromagnetic fluctuations and normal modes of a drifting relativistic plasma

    SciTech Connect

    Ruyer, C.; Gremillet, L.; Bénisti, D.; Bonnaud, G.

    2013-11-15

    We present an exact calculation of the power spectrum of the electromagnetic fluctuations in a relativistic equilibrium plasma described by Maxwell-Jüttner distribution functions. We consider the cases of wave vectors parallel or normal to the plasma mean velocity. The relative contributions of the subluminal and supraluminal fluctuations are evaluated. Analytical expressions of the spatial fluctuation spectra are derived in each case. These theoretical results are compared to particle-in-cell simulations, showing a good reproduction of the subluminal fluctuation spectra.

  11. 3-D RPIC simulations of relativistic jets: Particle acceleration, magnetic field generation, and emission

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.

    2006-01-01

    Nonthermal radiation observed from astrophysical systems containing (relativistic) jets and shocks, e.g., supernova remnants, active galactic nuclei (AGNs), gamma-ray bursts (GRBs), and Galactic microquasar systems usually have power-law emission spectra. Fermi acceleration is the mechanism usually assumed for the acceleration of particles in astrophysical environments. Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets show that acceleration occurs within the downstream jet, rather than by the scattering of particles back and forth across the shock as in Fermi acceleration. Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the .shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants. We will review recent PIC simulations which show particle acceleration in jets.

  12. Relativistic Plasma Polarizer: Impact of Temperature Anisotropy on Relativistic Transparency

    NASA Astrophysics Data System (ADS)

    Hazeltine, R. D.; Stark, David J.; Bhattacharjee, Chinmoy; Arefiev, Alexey V.; Toncian, Toma; Mahajan, S. M.

    2015-11-01

    3D particle-in-cell simulations demonstrate that the enhanced transparency of a relativistically hot plasma is sensitive to how the energy is partitioned between different degrees of freedom. We consider here the simplest problem: the propagation of a low amplitude pulse through a preformed relativistically hot anisotropic electron plasma to explore its intrinsic dielectric properties. We find that: 1) the critical density for propagation depends strongly on the pulse polarization, 2) two plasmas with the same density and average energy per electron can exhibit profoundly different responses to electromagnetic pulses, 3) the anisotropy-driven Weibel instability develops as expected; the timescales of the growth and back reaction (on anisotropy), however, are long enough that sufficient anisotropy persists for the entire duration of the simulation. This plasma can then function as a polarizer or a wave plate to dramatically alter the pulse polarization. This work was supported by the U.S. DOE Contract Nos. DE-FG02-04ER54742 and DE-AC05-06OR23100 (D. J. S.) and NNSA Contract No. DE-FC52-08NA28512.

  13. Cold atom simulation of interacting relativistic quantum field theories.

    PubMed

    Cirac, J Ignacio; Maraner, Paolo; Pachos, Jiannis K

    2010-11-05

    We demonstrate that Dirac fermions self-interacting or coupled to dynamic scalar fields can emerge in the low energy sector of designed bosonic and fermionic cold atom systems. We illustrate this with two examples defined in two spacetime dimensions. The first one is the self-interacting Thirring model. The second one is a model of Dirac fermions coupled to a dynamic scalar field that gives rise to the Gross-Neveu model. The proposed cold atom experiments can be used to probe spectral or correlation properties of interacting quantum field theories thereby presenting an alternative to lattice gauge theory simulations.

  14. Laser shaping of a relativistic circularly polarized pulse by laser foil interaction

    SciTech Connect

    Zou, D. B.; Zhuo, H. B.; Yu, T. P.; Yang, X. H.; Shao, F. Q.; Ma, Y. Y.; Yin, Y.; Ouyang, J. M.; Ge, Z. Y.; Zhang, G. B.; Wang, P.

    2013-07-15

    Laser shaping of a relativistic circularly polarized laser pulse in ultra-intense laser thin-foil interaction is investigated by theoretical analysis and particle-in-cell simulations. It is found that the plasma foil as a nonlinear optical shutter has an obvious cut-out effect on the laser temporal and spatial profiles. Two-dimensional particle-in-cell simulations show that the high intensity part of a Gaussian laser pulse can be well extracted from the whole pulse. The transmitted pulse with longitudinal steep rise front and transverse super-Gaussian profile is thus obtained which would be beneficial for the radiation pressure acceleration regime. The Rayleigh-Taylor-like instability is observed in the simulations, which destroys the foil and results in the cut-out effect of the pulse in the rise front of a circularly polarized laser.

  15. Particle Acceleration and Associated Emission from Relativistic Shocks

    NASA Technical Reports Server (NTRS)

    Nishkawa, Ken-Ichi

    2009-01-01

    Five talks consist of a research program consisting of numerical simulations and theoretical development designed to provide an understanding of the emission from accelerated particles in relativistic shocks. The goal of this lecture is to discuss the particle acceleration, magnetic field generation, and radiation along with the microphysics of the shock process in a self-consistent manner. The discussion involves the collisionless shocks that produce emission from gamma-ray bursts and their afterglows, and producing emission from supernova remnants and AGN relativistic jets. Recent particle-in-cell simulation studies have shown that the Weibel (mixed mode two-stream filamentation) instability is responsible for particle (electron, positron, and ion) acceleration and magnetic field generation in relativistic collisionless shocks. 3-D RPIC code parallelized with MPI has been used to investigate the dynamics of collisionless shocks in electron-ion and electron-positron plasmas with and without initial ambient magnetic fields. In this lecture we will present brief tutorials of RPIC simulations and RMHD simulations, a brief summary of recent RPIC simulations, mechanisms of particle acceleration in relativistic shocks, and calculation of synchrotron radiation by tracing particles. We will discuss on emission from the collisionless shocks, which will be calculated during the simulation by tracing particle acceleration self-consistently in the inhomogeneous magnetic fields generated in the shocks. In particular, we will discuss the differences between standard synchrotron radiation and the jitter radiation that arises in turbulent magnetic fields.

  16. High order numerical simulations of the Richtmyer- Meshkov instability in a relativistic fluid

    NASA Astrophysics Data System (ADS)

    Zanotti, O.; Dumbser, M.

    2015-07-01

    We study the Richtmyer-Meshkov (RM) instability of a relativistic perfect fluid by means of high order numerical simulations with adaptive mesh refinement (AMR). The numerical scheme combines a finite volume reconstruction in space, a local space-time discontinuous Galerkin predictor method, a high order one-step time update scheme, and a "cell-by-cell" space-time AMR strategy with time-accurate local time stepping. In this way, third order accurate (both in space and in time) numerical simulations of the RM instability are performed, spanning a wide parameter space. We present results both for the case in which a light fluid penetrates into a higher density one (Atwood number A > 0) and for the case in which a heavy fluid penetrates into a lower density one (Atwood number A < 0). We find that for large Lorentz factors γs of the incident shock wave, the relativistic RM instability is substantially weakened and ultimately suppressed. More specifically, the growth rate of the RM instability in the linear phase has a local maximum which occurs at a critical value of γs ≈ [1.2, 2]. Moreover, we have also revealed a genuinely relativistic effect, absent in Newtonian hydrodynamics, which arises in three dimensional configurations with a non-zero velocity component tangent to the incident shock front. In particular, in A > 0 models, the tangential velocity has a net magnification effect, while in A < 0 models, the tangential velocity has a net suppression effect.

  17. General-relativistic simulations of binary black hole-neutron stars: Precursor electromagnetic signals

    NASA Astrophysics Data System (ADS)

    Paschalidis, Vasileios; Etienne, Zachariah B.; Shapiro, Stuart L.

    2013-07-01

    We perform the first general relativistic force-free simulations of neutron star magnetospheres in orbit about spinning and nonspinning black holes. We find promising precursor electromagnetic emission: typical Poynting luminosities at, e.g., an orbital separation of r=6.6RNS are LEM˜6×1042(BNS,p/1013G)2(MNS/1.4M⊙)2erg/s. The Poynting flux peaks within a broad beam of ˜40° in the azimuthal direction and within ˜60° from the orbital plane, establishing a possible lighthouse effect. Our calculations, though preliminary, preview more detailed simulations of these systems that we plan to perform in the future.

  18. Parallel code NSBC: Simulations of relativistic nuclei scattering by a bent crystal

    NASA Astrophysics Data System (ADS)

    Babaev, A. A.

    2014-01-01

    The presented program was designed to simulate the passage of relativistic nuclei through a bent crystal. Namely, the input data is related to a nuclei beam. The nuclei move into the crystal under planar channeling and quasichanneling conditions. The program realizes the numerical algorithm to evaluate the trajectory of nucleus in the bent crystal. The program output is formed by the projectile motion data including the angular distribution of nuclei behind the crystal. The program could be useful to simulate the particle tracking at the accelerator facilities used the crystal collimation systems. The code has been written on C++ and designed for the multiprocessor systems (clusters).

  19. Simulation study of the formation of a non-relativistic pair shock

    NASA Astrophysics Data System (ADS)

    Dieckmann, M. E.; Bret, A.

    2017-02-01

    We examine with a particle-in-cell (PIC) simulation the collision of two equally dense clouds of cold pair plasma. The clouds interpenetrate until instabilities set in, which heat up the plasma and trigger the formation of a pair of shocks. The fastest-growing waves at the collision speed , where is the speed of light in vacuum, and low temperature are the electrostatic two-stream mode and the quasi-electrostatic oblique mode. Both waves grow and saturate via the formation of phase space vortices. The strong electric fields of these nonlinear plasma structures provide an efficient means of heating up and compressing the inflowing upstream leptons. The interaction of the hot leptons, which leak back into the upstream region, with the inflowing cool upstream leptons continuously drives electrostatic waves that mediate the shock. These waves heat up the inflowing upstream leptons primarily along the shock normal, which results in an anisotropic velocity distribution in the post-shock region. This distribution gives rise to the Weibel instability. Our simulation shows that even if the shock is mediated by quasi-electrostatic waves, strong magnetowaves will still develop in its downstream region.

  20. Comparison of particle-in-cell simulations with experimentally observed frequency shifts between ions of the same mass-to-charge in Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Leach, Franklin E; Kharchenko, Andriy; Heeren, Ron M A; Nikolaev, Eugene; Amster, I Jonathan

    2010-02-01

    It has been previously observed that the measured frequency of ions in a Fourier transform mass spectrometry experiment depend upon the number of trapped ions, even for populations consisting exclusively of a single mass-to-charge. Since ions of the same mass-to-charge are thought not to exert a space-charge effect among themselves, the experimental observation of such frequency shifts raises questions about their origin. To determine the source of such experimentally observed frequency shifts, multiparticle ion trajectory simulations have been conducted on monoisotopic populations of Cs(+) ranging from 10(2) ions to 10(6) ions. A close match to experimental behavior is observed. By probing the effect of ion number and orbital radius on the shift in the cyclotron frequency, it is shown that for a monoisotopic population of ions, the frequency shift is caused by the interaction of ions with their image-charge. The addition of ions of a second mass-to-charge to the simulation allows the comparison of the magnitude of the frequency shift resulting from space-charge (ion-ion) effects versus ion interactions with their image charge.

  1. Pulse shortening via Relativistic Transparency of Nanometer Foils

    NASA Astrophysics Data System (ADS)

    Shah, R. C.; Palaniyappan, S.; Wu, H.-C.; Gautier, D. C.; Jung, D.; Hoerlein, R.; Offermann, D.; Johnson, R. P.; Shimada, T.; Letzring, S.; Yin, L.; Albright, B.; Fernandez, J. C.; Hegelich, B. M.

    2010-11-01

    Intense lasers drive plasma electrons to velocities approaching light-speed. Increase of the electron mass causes optical transparency in otherwise classically over-dense plasma. Simulations indicate relativistic transparency can produce near-single-cycle rise time light pulses. It also lies enables a new mechanism for laser-based ion-acceleration yielding energy increases over earlier approaches. A direct signature of transparency is pulse-shortening thru over-dense plasmas in which relativistic intensity induces transmission. Using nm C foils (LMU) and the high-contrast Trident laser (LANL) we have made auto-correlation measurements showing >2x transmitted pulse duration reduction at intensities corresponding to ˜20-fold increase in electron mass. Spectral measurements agree with pulse shortening thru the target, and 1-D particle-in-cell simulations support the measurements.

  2. General Relativistic Simulations of Magnetized Plasmas around Merging Supermassive Black Holes

    NASA Astrophysics Data System (ADS)

    Giacomazzo, Bruno; Baker, John G.; Miller, M. Coleman; Reynolds, Christopher S.; van Meter, James R.

    2012-06-01

    Coalescing supermassive black hole binaries are produced by the mergers of galaxies and are the most powerful sources of gravitational waves accessible to space-based gravitational observatories. Some such mergers may occur in the presence of matter and magnetic fields and hence generate an electromagnetic counterpart. In this Letter, we present the first general relativistic simulations of magnetized plasma around merging supermassive black holes using the general relativistic magnetohydrodynamic code Whisky. By considering different magnetic field strengths, going from non-magnetically dominated to magnetically dominated regimes, we explore how magnetic fields affect the dynamics of the plasma and the possible emission of electromagnetic signals. In particular, we observe a total amplification of the magnetic field of ~2 orders of magnitude, which is driven by the accretion onto the binary and that leads to much stronger electromagnetic signals, more than a factor of 104 larger than comparable calculations done in the force-free regime where such amplifications are not possible.

  3. Electromagnetic particle in cell modeling of the plasma focus: Current sheath formation and lift off

    SciTech Connect

    Seng, Y. S.; Lee, P.; Rawat, R. S.

    2014-02-15

    The shaping and formation of the current sheath takes place in the breakdown phase of a plasma focus device and critically controls the device performance. Electrostatic particle in cell codes, with magnetic effects ignored, have been used to model the breakdown phase. This Letter reports the successful development and implementation of an electromagnetic particle in cell (EMPIC) code, including magnetic effects self-consistently, to simulate the breakdown phase; from the ionization, localization and gliding discharge along the insulator to the time instant of current sheath lift off. The magnetic field was found to be appreciable from the time the current sheath came into contact with the anode with increased local current, initiating the voltage breakdown of the device as a result.

  4. Review of multi-dimensional large-scale kinetic simulation and physics validation of ion acceleration in relativistic laser-matter interaction

    SciTech Connect

    Wu, Hui-Chun; Hegelich, B.M.; Fernandez, J.C.; Shah, R.C.; Palaniyappan, S.; Jung, D.; Yin, L; Albright, B.J.; Bowers, K.; Huang, C.; Kwan, T.J.

    2012-06-19

    Two new experimental technologies enabled realization of Break-out afterburner (BOA) - High quality Trident laser and free-standing C nm-targets. VPIC is an powerful tool for fundamental research of relativistic laser-matter interaction. Predictions from VPIC are validated - Novel BOA and Solitary ion acceleration mechanisms. VPIC is a fully explicit Particle In Cell (PIC) code: models plasma as billions of macro-particles moving on a computational mesh. VPIC particle advance (which typically dominates computation) has been optimized extensively for many different supercomputers. Laser-driven ions lead to realization promising applications - Ion-based fast ignition; active interrogation, hadron therapy.

  5. The spectrum of solar relativistic cosmic ray measurements and numerical simulation

    NASA Astrophysics Data System (ADS)

    Podgorny, A. I.; Podgorny, I. M.; Balabin, Yu V.; Meshalkina, N. S.; Vashenyuk

    2017-01-01

    The solar relativistic protons are measured with the worldwide network of neutron monitors. The big pulses of relativistic protons appeared after the flares occurring in the West side of the Sun disk. They arrive to the Earth along Archimedean magnetic lines without collisions in ∼15 min after a flare. This prompt anisotropic flux contains information about the exponential ∼exp(‑E/E 0) spectrum of protons ejected from the solar cosmic ray source. After delay of 15 - 20 min the proton flux becomes isotropic with power spectrum E ‑γ where γ ∼ 5. Apparently, beam instability is developed. The protons accelerated in eastern flares can reach the neutron monitor due to diffusion across the magnetic lines. The magnetic field energy accumulation in the current sheet in the solar corona above the active region is proved by MHD simulations and the position of observed flare thermal X-ray source. During a flare the magnetic field energy is transferred into the particle energy. Proton acceleration up to relativistic energy can occur in the electric field applied along the singular line in a current sheet. The electric field E = -V×B/c is created due to the fast rate of reconnection V. At typical V = 2×107 cm/s the measured spectrum coincides with the calculated spectrum.

  6. An optimization method of relativistic backward wave oscillator using particle simulation and genetic algorithms

    NASA Astrophysics Data System (ADS)

    Chen, Zaigao; Wang, Jianguo; Wang, Yue; Qiao, Hailiang; Zhang, Dianhui; Guo, Weijie

    2013-11-01

    Optimal design method of high-power microwave source using particle simulation and parallel genetic algorithms is presented in this paper. The output power, simulated by the fully electromagnetic particle simulation code UNIPIC, of the high-power microwave device is given as the fitness function, and the float-encoding genetic algorithms are used to optimize the high-power microwave devices. Using this method, we encode the heights of non-uniform slow wave structure in the relativistic backward wave oscillators (RBWO), and optimize the parameters on massively parallel processors. Simulation results demonstrate that we can obtain the optimal parameters of non-uniform slow wave structure in the RBWO, and the output microwave power enhances 52.6% after the device is optimized.

  7. An optimization method of relativistic backward wave oscillator using particle simulation and genetic algorithms

    SciTech Connect

    Chen, Zaigao; Wang, Jianguo; Wang, Yue; Qiao, Hailiang; Zhang, Dianhui; Guo, Weijie

    2013-11-15

    Optimal design method of high-power microwave source using particle simulation and parallel genetic algorithms is presented in this paper. The output power, simulated by the fully electromagnetic particle simulation code UNIPIC, of the high-power microwave device is given as the fitness function, and the float-encoding genetic algorithms are used to optimize the high-power microwave devices. Using this method, we encode the heights of non-uniform slow wave structure in the relativistic backward wave oscillators (RBWO), and optimize the parameters on massively parallel processors. Simulation results demonstrate that we can obtain the optimal parameters of non-uniform slow wave structure in the RBWO, and the output microwave power enhances 52.6% after the device is optimized.

  8. Towards Observational Astronomy of Jets in Active Galaxies from General Relativistic Magnetohydrodynamic Simulations

    NASA Astrophysics Data System (ADS)

    Anantua, Richard; Roger Blandford, Jonathan McKinney and Alexander Tchekhovskoy

    2016-01-01

    We carry out the process of "observing" simulations of active galactic nuclei (AGN) with relativistic jets (hereafter called jet/accretion disk/black hole (JAB) systems) from ray tracing between image plane and source to convolving the resulting images with a point spread function. Images are generated at arbitrary observer angle relative to the black hole spin axis by implementing spatial and temporal interpolation of conserved magnetohydrodynamic flow quantities from a time series of output datablocks from fully general relativistic 3D simulations. We also describe the evolution of simulations of JAB systems' dynamical and kinematic variables, e.g., velocity shear and momentum density, respectively, and the variation of these variables with respect to observer polar and azimuthal angles. We produce, at frequencies from radio to optical, fixed observer time intensity and polarization maps using various plasma physics motivated prescriptions for the emissivity function of physical quantities from the simulation output, and analyze the corresponding light curves. Our hypothesis is that this approach reproduces observed features of JAB systems such as superluminal bulk flow projections and quasi-periodic oscillations in the light curves more closely than extant stylized analytical models, e.g., cannonball bulk flows. Moreover, our development of user-friendly, versatile C++ routines for processing images of state-of-the-art simulations of JAB systems may afford greater flexibility for observing a wide range of sources from high power BL-Lacs to low power quasars (possibly with the same simulation) without requiring years of observation using multiple telescopes. Advantages of observing simulations instead of observing astrophysical sources directly include: the absence of a diffraction limit, panoramic views of the same object and the ability to freely track features. Light travel time effects become significant for high Lorentz factor and small angles between

  9. Geant4 simulations on Compton scattering of laser photons on relativistic electrons

    SciTech Connect

    Filipescu, D.; Utsunomiya, H.; Gheorghe, I.; Glodariu, T.; Tesileanu, O.; Shima, T.; Takahisa, K.; Miyamoto, S.

    2015-02-24

    Using Geant4, a complex simulation code of the interaction between laser photons and relativistic electrons was developed. We implemented physically constrained electron beam emittance and spacial distribution parameters and we also considered a Gaussian laser beam. The code was tested against experimental data produced at the γ-ray beam line GACKO (Gamma Collaboration Hutch of Konan University) of the synchrotron radiation facility NewSUBARU. Here we will discuss the implications of transverse missallignments of the collimation system relative to the electron beam axis.

  10. Simulation of ultra-relativistic electrons and positrons channeling in crystals with MBN EXPLORER

    NASA Astrophysics Data System (ADS)

    Sushko, Gennady B.; Bezchastnov, Victor G.; Solov'yov, Ilia A.; Korol, Andrei V.; Greiner, Walter; Solov'yov, Andrey V.

    2013-11-01

    A newly developed code, implemented as a part of the MBN EXPLORER package (Solov'yov et al., 2012; http://www.mbnexplorer.com/, 2012) [1,2] to simulate trajectories of an ultra-relativistic projectile in a crystalline medium, is presented. The motion of a projectile is treated classically by integrating the relativistic equations of motion with account for the interaction between the projectile and crystal atoms. The probabilistic element is introduced by a random choice of transverse coordinates and velocities of the projectile at the crystal entrance as well as by accounting for the random positions of the atoms due to thermal vibrations. The simulated trajectories are used for numerical analysis of the emitted radiation. Initial approbation and verification of the code have been carried out by simulating the trajectories and calculating the radiation emitted by ε=6.7 GeV and ε=855 MeV electrons and positrons in oriented Si(110) crystal and in amorphous silicon. The calculated spectra are compared with the experimental data and with predictions of the Bethe-Heitler theory for the amorphous environment.

  11. Simulation of ultra-relativistic electrons and positrons channeling in crystals with MBN EXPLORER

    SciTech Connect

    Sushko, Gennady B.; Bezchastnov, Victor G.; Solov'yov, Ilia A.; Korol, Andrei V.; Greiner, Walter; Solov'yov, Andrey V.

    2013-11-01

    A newly developed code, implemented as a part of the MBN EXPLORER package (Solov'yov et al., 2012; (http://www.mbnexplorer.com/), 2012) [1,2] to simulate trajectories of an ultra-relativistic projectile in a crystalline medium, is presented. The motion of a projectile is treated classically by integrating the relativistic equations of motion with account for the interaction between the projectile and crystal atoms. The probabilistic element is introduced by a random choice of transverse coordinates and velocities of the projectile at the crystal entrance as well as by accounting for the random positions of the atoms due to thermal vibrations. The simulated trajectories are used for numerical analysis of the emitted radiation. Initial approbation and verification of the code have been carried out by simulating the trajectories and calculating the radiation emitted by ε=6.7 GeV and ε=855 MeV electrons and positrons in oriented Si(110) crystal and in amorphous silicon. The calculated spectra are compared with the experimental data and with predictions of the Bethe–Heitler theory for the amorphous environment.

  12. Laser vacuum acceleration of a relativistic electron bunch

    SciTech Connect

    Glazyrin, I V; Karpeev, A V; Kotova, O G; Nazarov, K S; Bychenkov, V Yu

    2015-06-30

    With regard to the problem of laser acceleration of a relativistic electron bunch we present a scheme of its vacuum acceleration directly by a relativistic intensity laser pulse. The energy of the electron bunch injected into the laser pulse leading edge increases during its coaxial movement to a thin, pulse-reflecting target. The laser-accelerated electrons continue to move free forward, passing through the target. The study of this acceleration scheme in the three-dimensional geometry is verified in a numerical simulation by the particle-in-cell method, which showed that the energy of a part of the electrons can increase significantly compared to the initial one. Restrictions are discussed, which impose limiting values of energy and total charge of accelerated electrons. (superstrong light fields)

  13. General Relativistic Hydrodynamic Simulation of Accretion Flow from a Stellar Tidal Disruption

    NASA Astrophysics Data System (ADS)

    Shiokawa, Hotaka; Krolik, Julian H.; Cheng, Roseanne M.; Piran, Tsvi; Noble, Scott C.

    2015-05-01

    We study how the matter dispersed when a supermassive black hole tidally disrupts a star joins an accretion flow. Combining a relativistic hydrodynamic simulation of the stellar disruption with a relativistic hydrodynamics simulation of the subsequent debris motion, we track the evolution of such a system until ≃ 80% of the stellar mass bound to the black hole has settled into an accretion flow. Shocks near the stellar pericenter and also near the apocenter of the most tightly bound debris dissipate orbital energy, but only enough to make its characteristic radius comparable to the semimajor axis of the most bound material, not the tidal radius as previously envisioned. The outer shocks are caused by post-Newtonian relativistic effects, both on the stellar orbit during its disruption and on the tidal forces. Accumulation of mass into the accretion flow is both non-monotonic and slow, requiring several to 10 times the orbital period of the most tightly bound tidal streams, while the inflow time for most of the mass may be comparable to or longer than the mass accumulation time. Deflection by shocks does, however, cause some mass to lose both angular momentum and energy, permitting it to move inward even before most of the mass is accumulated into the accretion flow. Although the accretion rate still rises sharply and then decays roughly as a power law, its maximum is ≃ 0.1× the previous expectation, and the timescale of the peak is ≃ 5× longer than previously predicted. The geometric mean of the black hole mass and stellar mass inferred from a measured event timescale is therefore ≃ 0.2× the value given by classical theory.

  14. Versatile shaping of a relativistic laser pulse from a nonuniform overdense plasma

    SciTech Connect

    Hur, Min Sup; Kim, Young-Kuk; Kulagin, Victor V.; Nam, Inhyuk; Suk, Hyyong

    2012-07-15

    We studied the versatile shaping of a petawatt laser pulse using its relativistic transparency in a thin overdense plasma slab. The novel concept here is to use the nonuniformity of the plasma slab in its density or thickness in the transverse direction to control the pulse shaping in both the longitudinal and transverse directions. From 2-dimensional particle-in-cell simulations, we succeeded in fabricating a front shape concave to the propagation direction, an extreme case of transverse shaping. A 1-dimensional analytic formula was then applied to predict the transverse shape, which showed good agreement with the simulations.

  15. General relativistic simulations of black-hole-neutron-star mergers: Effects of magnetic fields

    NASA Astrophysics Data System (ADS)

    Etienne, Zachariah B.; Liu, Yuk Tung; Paschalidis, Vasileios; Shapiro, Stuart L.

    2012-03-01

    As a neutron star (NS) is tidally disrupted by a black hole (BH) companion at the end of a black-hole-neutron-star (BHNS) binary inspiral, its magnetic fields will be stretched and amplified. If sufficiently strong, these magnetic fields may impact the gravitational waveforms, merger evolution and mass of the remnant disk. Formation of highly-collimated magnetic field lines in the disk+spinning BH remnant may launch relativistic jets, providing the engine for a short-hard GRB. We analyze this scenario through fully general relativistic, magnetohydrodynamic BHNS simulations from inspiral through merger and disk formation. Different initial magnetic field configurations and strengths are chosen for the NS interior for both nonspinning and moderately spinning (aBH/MBH=0.75) BHs aligned with the orbital angular momentum. Only strong interior (Bmax⁡˜1017G) initial magnetic fields in the NS significantly influence merger dynamics, enhancing the remnant disk mass by 100% and 40% in the nonspinning and spinning BH cases, respectively. However, detecting the imprint of even a strong magnetic field may be challenging for Advanced LIGO. Though there is no evidence of mass outflows or magnetic field collimation during the preliminary simulations we have performed, higher resolution, coupled with longer disk evolutions and different initial magnetic field configurations, may be required to definitively assess the possibility of BHNS binaries as short-hard gamma-ray burst progenitors.

  16. Simulation of Relativistic Shocks and Associated Radiation from Turbulent Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Niemiec, J.; Medvedev, M.; Zhang, B.; Hardee, P.; Mizuno, Y.; Nordlund, A.; Frederiksen, J.; Sol, H.; Pohl, M.; Hartmann, D. H.; Fishman, J. F.

    2009-01-01

    Plasma instabilities excited in collisionless shocks are responsible for particle acceleration. We have investigated the particle acceleration and shock structure associated with an unmagnetized relativistic electron-positron jet propagating into an unmagnetized electron-positron plasma. Cold jet electrons are thermalized and slowed while the ambient electrons are swept up to create a partially developed hydrodynamic-like shock structure. In the leading shock, electron density increases by a factor of about 3.5 in the simulation frame. Strong electromagnetic fields are generated in the trailing shock and provide an emission site. These magnetic fields contribute to the electron's transverse deflection behind the shock. The jitter'' radiation from deflected electrons in turbulent magnetic fields has different properties than synchrotron radiation, which is calculated in a uniform magnetic field. This jitter radiation may be important for understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets in general, and supernova remnants. New spectra based on simulations will be presented.

  17. An X-band overmoded relativistic klystron

    SciTech Connect

    Xiao, Renzhen; Chen, Changhua; Li, Jiawei; Bai, Xianchen; Deng, Yuqun

    2014-11-15

    An X-band overmoded relativistic klystron is proposed, the operation mode of which is the TM{sub 02} mode. The drift tube could not cut off the TM{sub 01} mode; isolating the buncher cavity from the input cavity is achieved by introducing a sectional RF lossy material. Microwaves are extracted from the modulated electron beam using a cylindrical waveguide, rather than a coaxial waveguide; thereby, the output structure is significantly simplified. Particle-in-cell simulations show that microwaves with power of 1.28 GW and frequency of 9.30 GHz can be obtained, corresponding to an efficiency of 32% and relative bandwidth of about 8%.

  18. Gamma-ray flares in the Crab Nebula: A case of relativistic reconnection?

    SciTech Connect

    Cerutti, B.; Werner, G. R. Uzdensky, D. A.; Begelman, M. C.

    2014-05-15

    The Crab Nebula was formed after the collapse of a massive star about a thousand years ago, leaving behind a pulsar that inflates a bubble of ultra-relativistic electron-positron pairs permeated with magnetic field. The observation of brief but bright flares of energetic gamma rays suggests that pairs are accelerated to PeV energies within a few days; such rapid acceleration cannot be driven by shocks. Here, it is argued that the flares may be the smoking gun of magnetic dissipation in the Nebula. Using 2D and 3D particle-in-cell simulations, it is shown that the observations are consistent with relativistic magnetic reconnection, where pairs are subject to strong radiative cooling. The Crab flares may highlight the importance of relativistic magnetic reconnection in astrophysical sources.

  19. Slow down of a globally neutral relativistic e-e+ beam shearing the vacuum

    NASA Astrophysics Data System (ADS)

    Alves, E. P.; Grismayer, T.; Silveirinha, M. G.; Fonseca, R. A.; Silva, L. O.

    2016-01-01

    The microphysics of relativistic collisionless shear flows is investigated in a configuration consisting of a globally neutral, relativistic {{e}-}{{e}+} beam streaming through a hollow plasma/dielectric channel. We show through multidimensional particle-in-cell simulations that this scenario excites the mushroom instability (MI), a transverse shear instability on the electron-scale, when there is no overlap (no contact) between the {{e}-}{{e}+} beam and the walls of the hollow plasma channel. The onset of the MI leads to the conversion of the beam’s kinetic energy into magnetic (and electric) field energy, effectively slowing down a globally neutral body in the absence of contact. The collisionless shear physics explored in this configuration may operate in astrophysical environments, particularly in highly relativistic and supersonic settings where macroscopic shear processes are stable.

  20. General Relativistic Magnetohydrodynamics Simulations of Tilted Black Hole Accretion Flows and Their Radiative Properties

    NASA Astrophysics Data System (ADS)

    Shiokawa, Hotaka; Gammie, C. F.; Dolence, J.; Noble, S. C.

    2013-01-01

    We perform global General Relativistic Magnetohydrodynamics (GRMHD) simulations of non-radiative, magnetized disks that are initially tilted with respect to the black hole's spin axis. We run the simulations with different size and tilt angle of the tori for 2 different resolutions. We also perform radiative transfer using Monte Carlo based code that includes synchrotron emission, absorption and Compton scattering to obtain spectral energy distribution and light curves. Similar work was done by Fragile et al. (2007) and Dexter & Fragile (2012) to model the super massive black hole SgrA* with tilted accretion disks. We compare our results of fully conservative hydrodynamic code and spectra that include X-ray, with their results.

  1. Relativistic MHD simulations of core-collapse GRB jets: 3D instabilities and magnetic dissipation

    NASA Astrophysics Data System (ADS)

    Bromberg, Omer; Tchekhovskoy, Alexander

    2016-02-01

    Relativistic jets are associated with extreme astrophysical phenomena, like the core collapse of massive stars in gamma-ray bursts (GRBs) and the accretion on to supermassive black holes in active galactic nuclei. It is generally accepted that these jets are powered electromagnetically, by the magnetized rotation of a central compact object (black hole or neutron star). However, how the jets produce the observed emission and survive the propagation for many orders of magnitude in distance without being disrupted by current-driven instabilities is the subject of active debate. We carry out time-dependent 3D relativistic magnetohydrodynamic (MHD) simulations of relativistic, Poynting-flux-dominated jets. The jets are launched self-consistently by the rotation of a strongly magnetized central object. This determines the natural degree of azimuthal magnetic field winding, a crucial factor that controls jet stability. We find that the jets are susceptible to two types of instability: (i) a global, external kink mode that grows on long time-scales. It bodily twists the jet, reducing its propagation velocity. We show analytically that in flat density profiles, like the ones associated with galactic cores, the external mode grows and may stall the jet. In the steep profiles of stellar envelopes the external kink weakens as the jet propagates outward. (ii) a local, internal kink mode that grows over short time-scales and causes small-angle magnetic reconnection and conversion of about half of the jet electromagnetic energy flux into heat. We suggest that internal kink instability is the main dissipation mechanism responsible for powering GRB prompt emission.

  2. GENERAL-RELATIVISTIC SIMULATIONS OF THREE-DIMENSIONAL CORE-COLLAPSE SUPERNOVAE

    SciTech Connect

    Ott, Christian D.; Abdikamalov, Ernazar; Moesta, Philipp; Haas, Roland; Drasco, Steve; O'Connor, Evan P.; Reisswig, Christian; Meakin, Casey A.; Schnetter, Erik

    2013-05-10

    We study the three-dimensional (3D) hydrodynamics of the post-core-bounce phase of the collapse of a 27 M{sub Sun} star and pay special attention to the development of the standing accretion shock instability (SASI) and neutrino-driven convection. To this end, we perform 3D general-relativistic simulations with a three-species neutrino leakage scheme. The leakage scheme captures the essential aspects of neutrino cooling, heating, and lepton number exchange as predicted by radiation-hydrodynamics simulations. The 27 M{sub Sun} progenitor was studied in 2D by Mueller et al., who observed strong growth of the SASI while neutrino-driven convection was suppressed. In our 3D simulations, neutrino-driven convection grows from numerical perturbations imposed by our Cartesian grid. It becomes the dominant instability and leads to large-scale non-oscillatory deformations of the shock front. These will result in strongly aspherical explosions without the need for large-scale SASI shock oscillations. Low-l-mode SASI oscillations are present in our models, but saturate at small amplitudes that decrease with increasing neutrino heating and vigor of convection. Our results, in agreement with simpler 3D Newtonian simulations, suggest that once neutrino-driven convection is started, it is likely to become the dominant instability in 3D. Whether it is the primary instability after bounce will ultimately depend on the physical seed perturbations present in the cores of massive stars. The gravitational wave signal, which we extract and analyze for the first time from 3D general-relativistic models, will serve as an observational probe of the postbounce dynamics and, in combination with neutrinos, may allow us to determine the primary hydrodynamic instability.

  3. A General Relativistic Magnetohydrodynamics Simulation of Jet Formation with a State Transition

    NASA Technical Reports Server (NTRS)

    Nishikawa, K. I.; Richardson, G.; Koide, S.; Shibata, K.; Kudoh, T.; Hardee, P.; Fushman, G. J.

    2004-01-01

    We have performed the first fully three-dimensional general relativistic magnetohydrodynamic (GRMHD) simulation of jet formation from a thin accretion disk around a Schwarzschild black hole with a free-falling corona. The initial simulation results show that a bipolar jet (velocity sim 0.3c) is created as shown by previous two-dimensional axisymmetric simulations with mirror symmetry at the equator. The 3-D simulation ran over one hundred light-crossing time units which is considerably longer than the previous simulations. We show that the jet is initially formed as predicted due in part to magnetic pressure from the twisting the initially uniform magnetic field and from gas pressure associated with shock formation. At later times, the accretion disk becomes thick and the jet fades resulting in a wind that is ejected from the surface of the thickened (torus-like) disk. It should be noted that no streaming matter from a donor is included at the outer boundary in the simulation (an isolated black hole not binary black hole). The wind flows outwards with a wider angle than the initial jet. The widening of the jet is consistent with the outward moving shock wave. This evolution of jet-disk coupling suggests that the low/hard state of the jet system may switch to the high/soft state with a wind, as the accretion rate diminishes.

  4. GENERAL RELATIVISTIC SIMULATIONS OF MAGNETIZED PLASMAS AROUND MERGING SUPERMASSIVE BLACK HOLES

    SciTech Connect

    Giacomazzo, Bruno; Baker, John G.; Van Meter, James R.; Coleman Miller, M.; Reynolds, Christopher S.

    2012-06-10

    Coalescing supermassive black hole binaries are produced by the mergers of galaxies and are the most powerful sources of gravitational waves accessible to space-based gravitational observatories. Some such mergers may occur in the presence of matter and magnetic fields and hence generate an electromagnetic counterpart. In this Letter, we present the first general relativistic simulations of magnetized plasma around merging supermassive black holes using the general relativistic magnetohydrodynamic code Whisky. By considering different magnetic field strengths, going from non-magnetically dominated to magnetically dominated regimes, we explore how magnetic fields affect the dynamics of the plasma and the possible emission of electromagnetic signals. In particular, we observe a total amplification of the magnetic field of {approx}2 orders of magnitude, which is driven by the accretion onto the binary and that leads to much stronger electromagnetic signals, more than a factor of 10{sup 4} larger than comparable calculations done in the force-free regime where such amplifications are not possible.

  5. SIMULATIONS AND THEORY OF ION INJECTION AT NON-RELATIVISTIC COLLISIONLESS SHOCKS

    SciTech Connect

    Caprioli, Damiano; Pop, Ana-Roxana; Spitkovsky, Anatoly

    2015-01-10

    We use kinetic hybrid simulations (kinetic ions-fluid electrons) to characterize the fraction of ions that are accelerated to non-thermal energies at non-relativistic collisionless shocks. We investigate the properties of the shock discontinuity and show that shocks propagating almost along the background magnetic field (quasi-parallel shocks) reform quasi-periodically on ion cyclotron scales. Ions that impinge on the shock when the discontinuity is the steepest are specularly reflected. This is a necessary condition for being injected, but it is not sufficient. Also, by following the trajectories of reflected ions, we calculate the minimum energy needed for injection into diffusive shock acceleration, as a function of the shock inclination. We construct a minimal model that accounts for the ion reflection from quasi-periodic shock barrier, for the fraction of injected ions, and for the ion spectrum throughout the transition from thermal to non-thermal energies. This model captures the physics relevant for ion injection at non-relativistic astrophysical shocks with arbitrary strengths and magnetic inclinations, and represents a crucial ingredient for understanding the diffusive shock acceleration of cosmic rays.

  6. Global General Relativistic Magnetohydrodynamic Simulations of Black Hole Accretion Flows: A Convergence Study

    NASA Astrophysics Data System (ADS)

    Shiokawa, Hotaka; Dolence, Joshua C.; Gammie, Charles F.; Noble, Scott C.

    2012-01-01

    Global, general relativistic magnetohydrodynamic (GRMHD) simulations of non-radiative, magnetized disks are widely used to model accreting black holes. We have performed a convergence study of GRMHD models computed with HARM3D. The models span a factor of four in linear resolution, from 96 × 96 × 64 to 384 × 384 × 256. We consider three diagnostics of convergence: (1) dimensionless shell-averaged quantities such as plasma β (2) the azimuthal correlation length of fluid variables; and (3) synthetic spectra of the source including synchrotron emission, absorption, and Compton scattering. Shell-averaged temperature is, except for the lowest resolution run, nearly independent of resolution; shell-averaged plasma β decreases steadily with resolution but shows signs of convergence. The azimuthal correlation lengths of density, internal energy, and temperature decrease steadily with resolution but show signs of convergence. In contrast, the azimuthal correlation length of magnetic field decreases nearly linearly with grid size. We argue by analogy with local models, however, that convergence should be achieved with another factor of two in resolution. Synthetic spectra are, except for the lowest resolution run, nearly independent of resolution. The convergence behavior is consistent with that of higher physical resolution local model ("shearing box") calculations and with the recent non-relativistic global convergence studies of Hawley et al.

  7. A relativistic self-consistent model for studying enhancement of space charge limited emission due to counter-streaming ions

    NASA Astrophysics Data System (ADS)

    Lin, M. C.; Verboncoeur, J.

    2016-10-01

    A maximum electron current transmitted through a planar diode gap is limited by space charge of electrons dwelling across the gap region, the so called space charge limited (SCL) emission. By introducing a counter-streaming ion flow to neutralize the electron charge density, the SCL emission can be dramatically raised, so electron current transmission gets enhanced. In this work, we have developed a relativistic self-consistent model for studying the enhancement of maximum transmission by a counter-streaming ion current. The maximum enhancement is found when the ion effect is saturated, as shown analytically. The solutions in non-relativistic, intermediate, and ultra-relativistic regimes are obtained and verified with 1-D particle-in-cell simulations. This self-consistent model is general and can also serve as a comparison for verification of simulation codes, as well as extension to higher dimensions.

  8. Computer simulation of astrophysical plasmas

    NASA Technical Reports Server (NTRS)

    Max, Claire E.

    1991-01-01

    The role of sophisticated numerical models and simulations in the field of plasma astrophysics is discussed. The need for an iteration between microphysics and macrophysics in order for astrophysical plasma physics to produce quantitative results that can be related to astronomical data is stressed. A discussion on computational requirements for simulations of astrophysical plasmas contrasts microscopic plasma simulations with macroscopic system models. An overview of particle-in-cell simulations (PICS) is given and two examples of PICS of astrophysical plasma are discussed including particle acceleration by collisionless shocks in relativistic plasmas and magnetic field reconnection in astrophysical plasmas.

  9. General Relativistic Magnetohydrodynamic Simulations of Magnetically Choked Accretion Flows around Black Holes

    SciTech Connect

    McKinney, Jonathan C.; Tchekhovskoy, Alexander; Blandford, Roger D.

    2012-04-26

    Black hole (BH) accretion flows and jets are qualitatively affected by the presence of ordered magnetic fields. We study fully three-dimensional global general relativistic magnetohydrodynamic (MHD) simulations of radially extended and thick (height H to cylindrical radius R ratio of |H/R| {approx} 0.2-1) accretion flows around BHs with various dimensionless spins (a/M, with BH mass M) and with initially toroidally-dominated ({phi}-directed) and poloidally-dominated (R-z directed) magnetic fields. Firstly, for toroidal field models and BHs with high enough |a/M|, coherent large-scale (i.e. >> H) dipolar poloidal magnetic flux patches emerge, thread the BH, and generate transient relativistic jets. Secondly, for poloidal field models, poloidal magnetic flux readily accretes through the disk from large radii and builds-up to a natural saturation point near the BH. While models with |H/R| {approx} 1 and |a/M| {le} 0.5 do not launch jets due to quenching by mass infall, for sufficiently high |a/M| or low |H/R| the polar magnetic field compresses the inflow into a geometrically thin highly non-axisymmetric 'magnetically choked accretion flow' (MCAF) within which the standard linear magneto-rotational instability is suppressed. The condition of a highly-magnetized state over most of the horizon is optimal for the Blandford-Znajek mechanism that generates persistent relativistic jets with and 100% efficiency for |a/M| {approx}> 0.9. A magnetic Rayleigh-Taylor and Kelvin-Helmholtz unstable magnetospheric interface forms between the compressed inflow and bulging jet magnetosphere, which drives a new jet-disk oscillation (JDO) type of quasi-periodic oscillation (QPO) mechanism. The high-frequency QPO has spherical harmonic |m| = 1 mode period of {tau} {approx} 70GM/c{sup 3} for a/M {approx} 0.9 with coherence quality factors Q {approx}> 10. Overall, our models are qualitatively distinct from most prior MHD simulations (typically, |H/R| << 1 and poloidal flux is limited by

  10. Simulating satellite observations of 100 kHz radio waves from relativistic electron beams above thunderclouds

    NASA Astrophysics Data System (ADS)

    Füllekrug, M.; Hanuise, C.; Parrot, M.

    2010-10-01

    Relativistic electron beams above thunderclouds emit 100 kHz radio waves which illuminate the Earth's atmosphere and near-Earth space. This contribution aims to clarify the physical processes which are relevant for the spatial spreading of the radio wave energy below and above the ionosphere and thereby enables simulating satellite observations of 100 kHz radio waves from relativistic electron beams above thunderclouds. The simulation uses the DEMETER satellite which observes 100 kHz radio waves from fifty terrestrial Long Range Aid to Navigation (LORAN) transmitters. Their mean luminosity patch in the plasmasphere is a circular area with a radius of 300 km and a power density of 22 μW/Hz as observed at 660km height above the ground. The luminosity patches exhibit a southward displacement of 450 km with respect to the locations of the LORAN transmitters. The displacement is reduced to 150 km when an upward propagation of the radio waves along the geomagnetic field line is assumed. This residual displacement indicates that the radio waves undergo 150 km sub-ionospheric propagation prior to entering a magnetospheric duct and escaping into near-Earth space. The residual displacement at low (L<2.14) and high (L>2.14) geomagnetic latitudes ranges from 100 km to 200 km which suggests that the smaller inclination of the geomagnetic field lines at low latitudes helps to trap the radio waves and to keep them in the magnetospheric duct. Diffuse luminosity areas are observed northward of the magnetic conjugate locations of LORAN transmitters at extremely low geomagnetic latitudes (L<1.36) in Southeast Asia. This result suggests that the propagation along the geomagnetic field lines results in a spatial spreading of the radio wave energy over distances of 1 Mm. The summative assessment of the electric field intensities measured in space show that nadir observations of terrestrial 100 kHz radio waves, e.g., from relativistic electron beams above thunderclouds, are attenuated

  11. Fluid simulation of relativistic electron beam driven wakefield in a cold plasma

    SciTech Connect

    Bera, Ratan Kumar; Sengupta, Sudip; Das, Amita

    2015-07-15

    Excitation of wakefield in a cold homogeneous plasma, driven by an ultra-relativistic electron beam is studied in one dimension using fluid simulation techniques. For a homogeneous rigid beam having density (n{sub b}) less than or equal to half the plasma density (n{sub 0}), simulation results are found to be in good agreement with the analytical work of Rosenzweig [Phys. Rev. Lett. 58, 555 (1987)]. Here, Rosenzweig's work has been analytically extended to regimes where the ratio of beam density to plasma density is greater than half and results have been verified using simulation. Further in contrast to Rosenzweig's work, if the beam is allowed to evolve in a self-consistent manner, several interesting features are observed in simulation viz. splitting of the beam into beam-lets (for l{sub b} > λ{sub p}) and compression of the beam (for l{sub b} < λ{sub p}), l{sub b} and λ{sub p}, respectively, being the initial beam length and plasma wavelength.

  12. A three-dimensional electrostatic particle-in-cell methodology on unstructured Delaunay-Voronoi grids

    SciTech Connect

    Gatsonis, Nikolaos A. Spirkin, Anton

    2009-06-01

    The mathematical formulation and computational implementation of a three-dimensional particle-in-cell methodology on unstructured Delaunay-Voronoi tetrahedral grids is presented. The method allows simulation of plasmas in complex domains and incorporates the duality of the Delaunay-Voronoi in all aspects of the particle-in-cell cycle. Charge assignment and field interpolation weighting schemes of zero- and first-order are formulated based on the theory of long-range constraints. Electric potential and fields are derived from a finite-volume formulation of Gauss' law using the Voronoi-Delaunay dual. Boundary conditions and the algorithms for injection, particle loading, particle motion, and particle tracking are implemented for unstructured Delaunay grids. Error and sensitivity analysis examines the effects of particles/cell, grid scaling, and timestep on the numerical heating, the slowing-down time, and the deflection times. The problem of current collection by cylindrical Langmuir probes in collisionless plasmas is used for validation. Numerical results compare favorably with previous numerical and analytical solutions for a wide range of probe radius to Debye length ratios, probe potentials, and electron to ion temperature ratios. The versatility of the methodology is demonstrated with the simulation of a complex plasma microsensor, a directional micro-retarding potential analyzer that includes a low transparency micro-grid.

  13. The extent of power-law energy spectra in collisionless relativistic magnetic reconnection in pair plasma

    SciTech Connect

    Werner, G. R.; Uzdensky, D. A.; Cerutti, B.; Nalewajko, K.; Begelman, M. C.

    2015-12-30

    Using two-dimensional particle-in-cell simulations, we characterize the energy spectra of particles accelerated by relativistic magnetic reconnection (without guide field) in collisionless electron–positron plasmas, for a wide range of upstream magnetizations σ and system sizes L. The particle spectra are well-represented by a power law ${\\gamma }^{-\\alpha }$, with a combination of exponential and super-exponential high-energy cutoffs, proportional to σ and L, respectively. As a result, for large L and σ, the power-law index α approaches about 1.2.

  14. The extent of power-law energy spectra in collisionless relativistic magnetic reconnection in pair plasma

    DOE PAGES

    Werner, G. R.; Uzdensky, D. A.; Cerutti, B.; ...

    2015-12-30

    Using two-dimensional particle-in-cell simulations, we characterize the energy spectra of particles accelerated by relativistic magnetic reconnection (without guide field) in collisionless electron–positron plasmas, for a wide range of upstream magnetizations σ and system sizes L. The particle spectra are well-represented by a power lawmore » $${\\gamma }^{-\\alpha }$$, with a combination of exponential and super-exponential high-energy cutoffs, proportional to σ and L, respectively. As a result, for large L and σ, the power-law index α approaches about 1.2.« less

  15. High efficiency coaxial klystron-like relativistic backward wave oscillator with a premodulation cavity

    SciTech Connect

    Xiao Renzhen; Teng Yan; Chen Changhua; Sun Jun

    2011-11-15

    The klystron-like relativistic backward wave oscillator (RBWO) combines the transition radiation with Cerenkov radiation and has demonstrated microwave output of high power and high efficiency. The coaxial slow wave structure device can produce microwave with a lower frequency in a smaller cross section. For the purpose of high efficiency, low frequency, and miniaturization, a coaxial klystron-like RBWO with a premodulation cavity is presented. Particle-in-cell simulations show that a microwave with power of 1.15 GW and frequency of 2.1 GHz is generated with conversion efficiency of 48%, whereas for the device with a reflector, the efficiency is 38%.

  16. MAGNETIC FIELD GENERATION AND PARTICLE ENERGIZATION AT RELATIVISTIC SHEAR BOUNDARIES IN COLLISIONLESS ELECTRON-POSITRON PLASMAS

    SciTech Connect

    Liang, Edison; Smith, Ian; Boettcher, Markus E-mail: iansmith@rice.edu

    2013-04-01

    Using particle-in-cell simulations, we study the kinetic physics of relativistic shear flow in collisionless electron-positron (e+e-) plasmas. We find efficient magnetic field generation and particle energization at the shear boundary, driven by streaming instabilities across the shear interface and sustained by the shear flow. Nonthermal, anisotropic high-energy particles are accelerated across field lines to produce a power-law tail turning over just below the shear Lorentz factor. These results have important implications for the dissipation and radiation of jets in blazars and gamma-ray bursts.

  17. Preferential positron heating and acceleration by synchrotron maser instabilities in relativistic positron-electron-proton plasmas

    NASA Technical Reports Server (NTRS)

    Hoshino, Masahiro; Arons, Jonathan

    1991-01-01

    A new process of the preferential strong heating of positrons through the ion synchrotron maser instability in positron-electron-proton magnetized plasmas is investigated using particle-in-cell simulations. It is shown that the positrons form a nonthermal power-law-like energy distribution via their gyroresonant interaction with the extraordinary modes emitted by the ions. It is noted that this process may be of significance in connection with the shock excitation of nonthermal synchrotron radiation from astrophysical systems powered by relativistic outflows from compact central objects, e.g., supernova remnants powered by pulsars and jets from active galactic nuclei.

  18. Intense isolated attosecond pulse generation from relativistic laser plasmas using few-cycle laser pulses

    SciTech Connect

    Ma, Guangjin; Dallari, William; Borot, Antonin; Tsakiris, George D.; Veisz, Laszlo; Krausz, Ferenc; Yu, Wei

    2015-03-15

    We have performed a systematic study through particle-in-cell simulations to investigate the generation of attosecond pulse from relativistic laser plasmas when laser pulse duration approaches the few-cycle regime. A significant enhancement of attosecond pulse energy has been found to depend on laser pulse duration, carrier envelope phase, and plasma scale length. Based on the results obtained in this work, the potential of attaining isolated attosecond pulses with ∼100 μJ energy for photons >16 eV using state-of-the-art laser technology appears to be within reach.

  19. Stable discrete representation of relativistically drifting plasmas

    NASA Astrophysics Data System (ADS)

    Kirchen, M.; Lehe, R.; Godfrey, B. B.; Dornmair, I.; Jalas, S.; Peters, K.; Vay, J.-L.; Maier, A. R.

    2016-10-01

    Representing the electrodynamics of relativistically drifting particle ensembles in discrete, co-propagating Galilean coordinates enables the derivation of a Particle-In-Cell algorithm that is intrinsically free of the numerical Cherenkov instability for plasmas flowing at a uniform velocity. Application of the method is shown by modeling plasma accelerators in a Lorentz-transformed optimal frame of reference.

  20. General Relativistic Magnetohydrodynamic Simulations of Jet Formation with a Thin Keplerian Disk

    NASA Technical Reports Server (NTRS)

    Mizuno, Yosuke; Nishikawa, Ken-Ichi; Koide, Shinji; Hardee, Philip; Gerald, J. Fishman

    2006-01-01

    We have performed several simulations of black hole systems (non-rotating, black hole spin parameter a = 0.0 and rapidly rotating, a = 0.95) with a geometrically thin Keplerian disk using the newly developed RAISHIN code. The simulation results show the formation of jets driven by the Lorentz force and the gas pressure gradient. The jets have mildly relativistic speed (greater than or equal to 0.4 c). The matter is continuously supplied from the accretion disk and the jet propagates outward until each applicable terminal simulation time (non-rotating: t/tau S = 275 and rotating: t/tau S = 200, tau s equivalent to r(sub s/c). It appears that a rotating black hole creates an additional, faster, and more collimated inner outflow (greater than or equal to 0.5 c) formed and accelerated by the twisted magnetic field resulting from frame-dragging in the black hole ergosphere. This new result indicates that jet kinematic structure depends on black hole rotation.

  1. 3D Relativistic Magnetohydrodynamic Simulations of Current-Driven Instability. 1; Instability of a Static Column

    NASA Technical Reports Server (NTRS)

    Mizuno, Yosuke; Lyubarsky, Yuri; ishikawa, Ken-Ichi; Hardee, Philip E.

    2010-01-01

    We have investigated the development of current-driven (CD) kink instability through three-dimensional relativistic MHD simulations. A static force-free equilibrium helical magnetic configuration is considered in order to study the influence of the initial configuration on the linear and nonlinear evolution of the instability. We found that the initial configuration is strongly distorted but not disrupted by the kink instability. The instability develops as predicted by linear theory. In the non-linear regime the kink amplitude continues to increase up to the terminal simulation time, albeit at different rates, for all but one simulation. The growth rate and nonlinear evolution of the CD kink instability depends moderately on the density profile and strongly on the magnetic pitch profile. The growth rate of the kink mode is reduced in the linear regime by an increase in the magnetic pitch with radius and the non-linear regime is reached at a later time than for constant helical pitch. On the other hand, the growth rate of the kink mode is increased in the linear regime by a decrease in the magnetic pitch with radius and reaches the non-linear regime sooner than the case with constant magnetic pitch. Kink amplitude growth in the non-linear regime for decreasing magnetic pitch leads to a slender helically twisted column wrapped by magnetic field. On the other hand, kink amplitude growth in the non-linear regime nearly ceases for increasing magnetic pitch.

  2. Simulations of ion acceleration at non-relativistic shocks. II. Magnetic field amplification

    SciTech Connect

    Caprioli, D.; Spitkovsky, A.

    2014-10-10

    We use large hybrid simulations to study ion acceleration and generation of magnetic turbulence due to the streaming of particles that are self-consistently accelerated at non-relativistic shocks. When acceleration is efficient, we find that the upstream magnetic field is significantly amplified. The total amplification factor is larger than 10 for shocks with Alfvénic Mach number M = 100, and scales with the square root of M. The spectral energy density of excited magnetic turbulence is determined by the energy distribution of accelerated particles, and for moderately strong shocks (M ≲ 30) agrees well with the prediction of resonant streaming instability, in the framework of quasilinear theory of diffusive shock acceleration. For M ≳ 30, instead, Bell's non-resonant hybrid (NRH) instability is predicted and found to grow faster than resonant instability. NRH modes are excited far upstream by escaping particles, and initially grow without disrupting the current, their typical wavelengths being much shorter than the current ions' gyroradii. Then, in the nonlinear stage, most unstable modes migrate to larger and larger wavelengths, eventually becoming resonant in wavelength with the driving ions, which start diffuse. Ahead of strong shocks we distinguish two regions, separated by the free-escape boundary: the far upstream, where field amplification is provided by the current of escaping ions via NRH instability, and the shock precursor, where energetic particles are effectively magnetized, and field amplification is provided by the current in diffusing ions. The presented scalings of magnetic field amplification enable the inclusion of self-consistent microphysics into phenomenological models of ion acceleration at non-relativistic shocks.

  3. Investigation of an X-band gigawatt long pulse multi-beam relativistic klystron amplifier

    NASA Astrophysics Data System (ADS)

    Liu, Zhenbang; Huang, Hua; Lei, Lurong; Jin, Xiao; Zhu, Lei; Wang, Ganping; He, Hu; Wu, Yao; Ge, Yi; Yuan, Huan; Chen, Zhaofu

    2015-09-01

    To achieve a gigawatt-level long pulse radiation power in X-band, a multi-beam relativistic klystron amplifier is proposed and studied experimentally. By introducing 18 electron drift tubes and extended interaction cavities, the power capacity of the device is increased. A radiation power of 1.23 GW with efficiency of 41% and amplifier gain of 46 dB is obtained in the particle-in-cell simulation. Under conditions of a 10 Hz repeat frequency and an input RF power of 30 kW, a radiation power of 0.9 GW, frequency of 9.405 GHz, pulse duration of 105 ns, and efficiency of 30% is generated in the experiment, and the amplifier gain is about 45 dB. Both the simulation and the experiment prove that the multi-beam relativistic klystron amplifier can generate a long pulse GW-level radiation power in X-band.

  4. General Relativistic Simulations of Low-Mass Magnetized Binary Neutron Star Mergers

    NASA Astrophysics Data System (ADS)

    Giacomazzo, Bruno

    2017-01-01

    We will present general relativistic magnetohydrodynamic (GRMHD) simulations of binary neutron star (BNS) systems that produce long-lived neutron stars (NSs) after merger. While the standard scenario for short gamma-ray bursts (SGRBs) requires the formation after merger of a spinning black hole surrounded by an accretion disk, other theoretical models, such as the time-reversal scenario, predict the formation of a long-lived magnetar. The formation of a long-lived magnetar could in particular explain the X-ray plateaus that have been observed in some SGRBs. Moreover, observations of NSs with masses of 2 solar masses indicate that the equation of state of NS matter should support masses larger than that. Therefore a significant fraction of BNS mergers will produce long-lived NSs. This has important consequences both on the emission of gravitational wave signals and on their electromagnetic counterparts. We will discuss GRMHD simulations of ``low-mass'' magnetized BNS systems with different equations of state and mass ratios. We will describe the properties of their post-merger remnants and of their gravitational and electromagnetic emission.

  5. Polarization Signatures of Kink Instabilities in the Blazar Emission Region from Relativistic Magnetohydrodynamic Simulations

    NASA Astrophysics Data System (ADS)

    Zhang, Haocheng; Li, Hui; Guo, Fan; Taylor, Greg

    2017-02-01

    Kink instabilities are likely to occur in the current-carrying magnetized plasma jets. Recent observations of the blazar radiation and polarization signatures suggest that the blazar emission region may be considerably magnetized. While the kink instability has been studied with first-principle magnetohydrodynamic (MHD) simulations, the corresponding time-dependent radiation and polarization signatures have not been investigated. In this paper, we perform comprehensive polarization-dependent radiation modeling of the kink instability in the blazar emission region based on relativistic MHD (RMHD) simulations. We find that the kink instability may give rise to strong flares with polarization angle (PA) swings or weak flares with polarization fluctuations, depending on the initial magnetic topology and magnetization. These findings are consistent with observations. Compared with the shock model, the kink model generates polarization signatures that are in better agreement with the general polarization observations. Therefore, we suggest that kink instabilities may widely exist in the jet environment and provide an efficient way to convert the magnetic energy and produce multiwavelength flares and polarization variations.

  6. Balancing Particle and Mesh Computation in a Particle-In-Cell Code

    SciTech Connect

    Worley, Patrick H; D'Azevedo, Eduardo; Hager, Robert; Ku, Seung-Hoe; Yoon, Eisung; Chang, C. S.

    2016-01-01

    The XGC1 plasma microturbulence particle-in-cell simulation code has both particle-based and mesh-based computational kernels that dominate performance. Both of these are subject to load imbalances that can degrade performance and that evolve during a simulation. Each separately can be addressed adequately, but optimizing just for one can introduce significant load imbalances in the other, degrading overall performance. A technique has been developed based on Golden Section Search that minimizes wallclock time given prior information on wallclock time, and on current particle distribution and mesh cost per cell, and also adapts to evolution in load imbalance in both particle and mesh work. In problems of interest this doubled the performance on full system runs on the XK7 at the Oak Ridge Leadership Computing Facility compared to load balancing only one of the kernels.

  7. A relativistic self-consistent model for studying enhancement of space charge limited field emission due to counter-streaming ions

    NASA Astrophysics Data System (ADS)

    Lin, M. C.; Lu, P. S.; Chang, P. C.; Ragan-Kelley, B.; Verboncoeur, J. P.

    2014-02-01

    Recently, field emission has attracted increasing attention despite the practical limitation that field emitters operate below the Child-Langmuir space charge limit. By introducing counter-streaming ion flow to neutralize the electron charge density, the space charge limited field emission (SCLFE) current can be dramatically enhanced. In this work, we have developed a relativistic self-consistent model for studying the enhancement of SCLFE by a counter-streaming ion current. The maximum enhancement is found when the ion effect is saturated, as shown analytically. The solutions in non-relativistic, intermediate, and ultra-relativistic regimes are obtained and verified with 1-D particle-in-cell simulations. This self-consistent model is general and can also serve as a benchmark or comparison for verification of simulation codes, as well as extension to higher dimensions.

  8. A relativistic self-consistent model for studying enhancement of space charge limited field emission due to counter-streaming ions

    SciTech Connect

    Lin, M. C. Lu, P. S.; Chang, P. C.; Ragan-Kelley, B.; Verboncoeur, J. P.

    2014-02-15

    Recently, field emission has attracted increasing attention despite the practical limitation that field emitters operate below the Child-Langmuir space charge limit. By introducing counter-streaming ion flow to neutralize the electron charge density, the space charge limited field emission (SCLFE) current can be dramatically enhanced. In this work, we have developed a relativistic self-consistent model for studying the enhancement of SCLFE by a counter-streaming ion current. The maximum enhancement is found when the ion effect is saturated, as shown analytically. The solutions in non-relativistic, intermediate, and ultra-relativistic regimes are obtained and verified with 1-D particle-in-cell simulations. This self-consistent model is general and can also serve as a benchmark or comparison for verification of simulation codes, as well as extension to higher dimensions.

  9. Lightning initiation mechanism based on the development of relativistic runaway electron avalanches triggered by background cosmic radiation: Numerical simulation

    SciTech Connect

    Babich, L. P. Bochkov, E. I.; Kutsyk, I. M.

    2011-05-15

    The mechanism of lightning initiation due to electric field enhancement by the polarization of a conducting channel produced by relativistic runaway electron avalanches triggered by background cosmic radiation has been simulated numerically. It is shown that the fields at which the start of a lightning leader is possible even in the absence of precipitations are locally realized for realistic thundercloud configurations and charges. The computational results agree with the in-situ observations of penetrating radiation enhancement in thunderclouds.

  10. Relativistic Buneman instability in the laser breakout afterburner

    SciTech Connect

    Albright, B. J.; Yin, L.; Bowers, Kevin J.; Hegelich, B. M.; Flippo, K. A.; Kwan, T. J. T.; Fernandez, J. C.

    2007-09-15

    A new laser-driven ion acceleration mechanism has been identified in particle-in-cell simulations of high-contrast-ratio ultraintense lasers with very thin (10 s of nm) solid targets [Yin et al., Laser and Particle Beams 24, 291 (2006); Yin et al., Phys. Plasmas 13, 072701 (2007)]. After a brief period of target normal sheath acceleration (TNSA), 'enhanced' TNSA follows. In this stage, the laser rapidly heats all the electrons in the target as the target thickness becomes comparable to the skin depth and enhanced acceleration of the ions results. Then, concomitant with the laser penetrating the target, a large accelerating longitudinal electric field is generated that co-moves with the ions. This last phase has been termed the laser 'breakout afterburner' (BOA). Earlier work suggested that the BOA was associated with the Buneman instability that efficiently converts energy from the drift of the electrons into the ions. In this Brief Communication, this conjecture is found to be consistent with particle-in-cell simulation data and the analytic dispersion relation for the relativistic Buneman instability.

  11. Exactly energy conserving semi-implicit particle in cell formulation

    NASA Astrophysics Data System (ADS)

    Lapenta, Giovanni

    2017-04-01

    We report a new particle in cell (PIC) method based on the semi-implicit approach. The novelty of the new method is that unlike any of its semi-implicit predecessors at the same time it retains the explicit computational cycle and conserves energy exactly. Recent research has presented fully implicit methods where energy conservation is obtained as part of a non-linear iteration procedure. The new method (referred to as Energy Conserving Semi-Implicit Method, ECSIM), instead, does not require any non-linear iteration and its computational cycle is similar to that of explicit PIC. The properties of the new method are: i) it conserves energy exactly to round-off for any time step or grid spacing; ii) it is unconditionally stable in time, freeing the user from the need to resolve the electron plasma frequency and allowing the user to select any desired time step; iii) it eliminates the constraint of the finite grid instability, allowing the user to select any desired resolution without being forced to resolve the Debye length; iv) the particle mover has a computational complexity identical to that of the explicit PIC, only the field solver has an increased computational cost. The new ECSIM is tested in a number of benchmarks where accuracy and computational performance are tested.

  12. Second order gyrokinetic theory for particle-in-cell codes

    NASA Astrophysics Data System (ADS)

    Tronko, Natalia; Bottino, Alberto; Sonnendrücker, Eric

    2016-08-01

    The main idea of the gyrokinetic dynamical reduction consists in a systematical removal of the fast scale motion (the gyromotion) from the dynamics of the plasma, resulting in a considerable simplification and a significant gain of computational time. The gyrokinetic Maxwell-Vlasov equations are nowadays implemented in for modeling (both laboratory and astrophysical) strongly magnetized plasmas. Different versions of the reduced set of equations exist, depending on the construction of the gyrokinetic reduction procedure and the approximations performed in the derivation. The purpose of this article is to explicitly show the connection between the general second order gyrokinetic Maxwell-Vlasov system issued from the modern gyrokinetic theory and the model currently implemented in the global electromagnetic Particle-in-Cell code ORB5. Necessary information about the modern gyrokinetic formalism is given together with the consistent derivation of the gyrokinetic Maxwell-Vlasov equations from first principles. The variational formulation of the dynamics is used to obtain the corresponding energy conservation law, which in turn is used for the verification of energy conservation diagnostics currently implemented in ORB5. This work fits within the context of the code verification project VeriGyro currently run at IPP Max-Planck Institut in collaboration with others European institutions.

  13. Laser-plasma interactions with a Fourier-Bessel particle-in-cell method

    NASA Astrophysics Data System (ADS)

    Andriyash, Igor A.; Lehe, Remi; Lifschitz, Agustin

    2016-03-01

    A new spectral particle-in-cell (PIC) method for plasma modeling is presented and discussed. In the proposed scheme, the Fourier-Bessel transform is used to translate the Maxwell equations to the quasi-cylindrical spectral domain. In this domain, the equations are solved analytically in time, and the spatial derivatives are approximated with high accuracy. In contrast to the finite-difference time domain (FDTD) methods, that are used commonly in PIC, the developed method does not produce numerical dispersion and does not involve grid staggering for the electric and magnetic fields. These features are especially valuable in modeling the wakefield acceleration of particles in plasmas. The proposed algorithm is implemented in the code PLARES-PIC, and the test simulations of laser plasma interactions are compared to the ones done with the quasi-cylindrical FDTD PIC code CALDER-CIRC.

  14. CPIC: A Parallel Particle-In-Cell Code for Studying Spacecraft Charging

    NASA Astrophysics Data System (ADS)

    Meierbachtol, Collin; Delzanno, Gian Luca; Moulton, David; Vernon, Louis

    2015-11-01

    CPIC is a three-dimensional electrostatic particle-in-cell code designed for use with curvilinear meshes. One of its primary objectives is to aid in studying spacecraft charging in the magnetosphere. CPIC maintains near-optimal computational performance and scaling thanks to a mapped logical mesh field solver, and a hybrid physical-logical space particle mover (avoiding the need to track particles). CPIC is written for parallel execution, utilizing a combination of both OpenMP threading and MPI distributed memory. New capabilities are being actively developed and added to CPIC, including the ability to handle multi-block curvilinear mesh structures. Verification results comparing CPIC to analytic test problems will be provided. Particular emphasis will be placed on the charging and shielding of a sphere-in-plasma system. Simulated charging results of representative spacecraft geometries will also be presented. Finally, its performance capabilities will be demonstrated through parallel scaling data.

  15. A particle-in-cell approach to obliquely propagating electrostatic waves

    SciTech Connect

    Koen, Etienne J.; Collier, Andrew B.; Maharaj, Shimul K.

    2014-09-15

    The electron-acoustic and beam-driven modes associated with electron beams have previously been identified and studied numerically. These modes are associated with Broadband Electrostatic Noise found in the Earth's auroral and polar cusp regions. Using a 1-D spatial Particle-in-Cell simulation, the electron-acoustic instability is studied for a magnetized plasma, which includes cool ions, cool electrons and a hot, drifting electron beam. Both the weakly and strongly magnetized regimes with varying wave propagation angle, θ, with respect to the magnetic field are studied. The amplitude and frequency of the electron-acoustic mode are found to decrease with increasing θ. The amplitude of the electron-acoustic mode is found to significantly grow at intermediate wavenumber ranges. It reaches a saturation level at the point, where a plateau forms in the hot electron velocity distribution after which the amplitude of the electron-acoustic mode decays.

  16. Extended particle-in-cell schemes for physics in ultrastrong laser fields: Review and developments.

    PubMed

    Gonoskov, A; Bastrakov, S; Efimenko, E; Ilderton, A; Marklund, M; Meyerov, I; Muraviev, A; Sergeev, A; Surmin, I; Wallin, E

    2015-08-01

    We review common extensions of particle-in-cell (PIC) schemes which account for strong field phenomena in laser-plasma interactions. After describing the physical processes of interest and their numerical implementation, we provide solutions for several associated methodological and algorithmic problems. We propose a modified event generator that precisely models the entire spectrum of incoherent particle emission without any low-energy cutoff, and which imposes close to the weakest possible demands on the numerical time step. Based on this, we also develop an adaptive event generator that subdivides the time step for locally resolving QED events, allowing for efficient simulation of cascades. Further, we present a unified technical interface for including the processes of interest in different PIC implementations. Two PIC codes which support this interface, PICADOR and ELMIS, are also briefly reviewed.

  17. Extended particle-in-cell schemes for physics in ultrastrong laser fields: Review and developments

    NASA Astrophysics Data System (ADS)

    Gonoskov, A.; Bastrakov, S.; Efimenko, E.; Ilderton, A.; Marklund, M.; Meyerov, I.; Muraviev, A.; Sergeev, A.; Surmin, I.; Wallin, E.

    2015-08-01

    We review common extensions of particle-in-cell (PIC) schemes which account for strong field phenomena in laser-plasma interactions. After describing the physical processes of interest and their numerical implementation, we provide solutions for several associated methodological and algorithmic problems. We propose a modified event generator that precisely models the entire spectrum of incoherent particle emission without any low-energy cutoff, and which imposes close to the weakest possible demands on the numerical time step. Based on this, we also develop an adaptive event generator that subdivides the time step for locally resolving QED events, allowing for efficient simulation of cascades. Further, we present a unified technical interface for including the processes of interest in different PIC implementations. Two PIC codes which support this interface, picador and elmis, are also briefly reviewed.

  18. Finite grid instability and spectral fidelity of the electrostatic Particle-In-Cell algorithm

    SciTech Connect

    Huang, C. -K.; Zeng, Y.; Wang, Y.; Meyers, M. D.; Yi, S.; Albright, B. J.

    2016-10-01

    The origin of the Finite Grid Instability (FGI) is studied by resolving the dynamics in the 1D electrostatic Particle-In-Cell (PIC) model in the spectral domain at the single particle level and at the collective motion level. The spectral fidelity of the PIC model is contrasted with the underlying physical system or the gridless model. The systematic spectral phase and amplitude errors from the charge deposition and field interpolation are quantified for common particle shapes used in the PIC models. Lastly, it is shown through such analysis and in simulations that the lack of spectral fidelity relative to the physical system due to the existence of aliased spatial modes is the major cause of the FGI in the PIC model.

  19. Hamiltonian particle-in-cell methods for Vlasov-Maxwell equations

    NASA Astrophysics Data System (ADS)

    He, Yang; Sun, Yajuan; Qin, Hong; Liu, Jian

    2016-09-01

    In this paper, we study the Vlasov-Maxwell equations based on the Morrison-Marsden-Weinstein bracket. We develop Hamiltonian particle-in-cell methods for this system by employing finite element methods in space and splitting methods in time. In order to derive the semi-discrete system that possesses a discrete non-canonical Poisson structure, we present a criterion for choosing the appropriate finite element spaces. It is confirmed that some conforming elements, e.g., Nédélec's mixed elements, satisfy this requirement. When the Hamiltonian splitting method is used to discretize this semi-discrete system in time, the resulting algorithm is explicit and preserves the discrete Poisson structure. The structure-preserving nature of the algorithm ensures accuracy and fidelity of the numerical simulations over long time.

  20. Comparing Particle-in-Cell QED Models for High-Intensity Laser-Plasma Interactions

    NASA Astrophysics Data System (ADS)

    Luedtke, Scott V.; Labun, Lance A.; Hegelich, Björn Manuel

    2016-10-01

    High-intensity lasers, such as the Texas Petawatt, are pushing into new regimes of laser-matter interaction, requiring continuing improvement and inclusion of new physics effects in computer simulations. Experiments at the Texas Petawatt are reaching intensity regimes where new physics-quantum electrodynamics (QED) corrections to otherwise classical plasma dynamics-becomes important. We have two particle-in-cell (PIC) codes with different QED implementations. We review the theory of photon emission in QED-strong fields, and cover the differing PIC implementations. We show predictions from the two codes and compare with ongoing experiments. This work was supported by NNSA cooperative agreement DE-NA0002008, the Defense Advanced Research Projects Agency's PULSE program (12-63-PULSE-FP014) and the Air Force Office of Scientific Research (FA9550-14-1-0045). HPC resources provided by TACC.

  1. Finite grid instability and spectral fidelity of the electrostatic Particle-In-Cell algorithm

    NASA Astrophysics Data System (ADS)

    Huang, C.-K.; Zeng, Y.; Wang, Y.; Meyers, M. D.; Yi, S.; Albright, B. J.

    2016-10-01

    The origin of the Finite Grid Instability (FGI) is studied by resolving the dynamics in the 1D electrostatic Particle-In-Cell (PIC) model in the spectral domain at the single particle level and at the collective motion level. The spectral fidelity of the PIC model is contrasted with the underlying physical system or the gridless model. The systematic spectral phase and amplitude errors from the charge deposition and field interpolation are quantified for common particle shapes used in the PIC models. It is shown through such analysis and in simulations that the lack of spectral fidelity relative to the physical system due to the existence of aliased spatial modes is the major cause of the FGI in the PIC model.

  2. Finite grid instability and spectral fidelity of the electrostatic Particle-In-Cell algorithm

    DOE PAGES

    Huang, C. -K.; Zeng, Y.; Wang, Y.; ...

    2016-10-01

    The origin of the Finite Grid Instability (FGI) is studied by resolving the dynamics in the 1D electrostatic Particle-In-Cell (PIC) model in the spectral domain at the single particle level and at the collective motion level. The spectral fidelity of the PIC model is contrasted with the underlying physical system or the gridless model. The systematic spectral phase and amplitude errors from the charge deposition and field interpolation are quantified for common particle shapes used in the PIC models. Lastly, it is shown through such analysis and in simulations that the lack of spectral fidelity relative to the physical systemmore » due to the existence of aliased spatial modes is the major cause of the FGI in the PIC model.« less

  3. Response of radiation belt simulations to different radial diffusion coefficients for relativistic and ultra-relativistic electrons

    NASA Astrophysics Data System (ADS)

    Drozdov, Alexander; Mann, Ian; Baker, Daniel N.; Subbotin, Dmitriy; Ozeke, Louis; Shprits, Yuri; Kellerman, Adam

    Two parameterizations of the resonant wave-particle interactions of electrons with ULF waves in the magnetosphere by Brautigam and Albert [2000] and Ozeke et al. [2012] are evaluated using the Versatile Electron Radiation Belt (VERB) diffusion code to estimate the effect of changing a diffusion coefficient on the radiation belt simulation. The period of investigation includes geomagnetically quiet and active time. The simulations take into account wave-particle interactions represented by radial diffusion transport, local acceleration, losses due to pitch-angle diffusion, and mixed diffusion. 1. Brautigam, D. H., and J. M. Albert (2000), Radial diffusion analysis of outer radiation belt electrons during the October 9, 1990, magnetic storm, J. Geophys. Res., 105(A1), 291-309, doi:10.1029/1999JA900344 2. Ozeke, L. G., I. R. Mann, K. R. Murphy, I. J. Rae, D. K. Milling, S. R. Elkington, A. A. Chan, and H. J. Singer (2012), ULF wave derived radiation belt radial diffusion coefficients, J. Geophys. Res., 117, A04222, doi:10.1029/2011JA017463.

  4. High field terahertz emission from relativistic laser-driven plasma wakefields

    SciTech Connect

    Chen, Zi-Yu; Pukhov, Alexander

    2015-10-15

    We propose a method to generate high field terahertz (THz) radiation with peak strength of GV/cm level in the THz frequency gap range of 1–10 THz using a relativistic laser interaction with a gaseous plasma target. Due to the effect of local pump depletion, an initially Gaussian laser pulse undergoes leading edge erosion and eventually evolves to a state with leading edge being step function. Interacting with such a pulse, electrons gain transverse residual momentum and excite net transverse currents modulated by the relativistic plasma frequency. These currents give rise to the low frequency THz emission. We demonstrate this process with one and two dimensional particle-in-cell simulations.

  5. The role of the Weibel instability at the reconnection jet front in relativistic pair plasma reconnection

    SciTech Connect

    Zenitani, S.; Hesse, M.

    2008-02-15

    The role of the Weibel instability is investigated for the first time in the context of the large-scale magnetic reconnection problem. A late-time evolution of magnetic reconnection in relativistic pair plasmas is demonstrated by particle-in-cell simulations. In the outflow regions, powerful reconnection jets pile up the magnetic fields and then a contact discontinuity appears there. Further downstream, it is found that the two-dimensional extension of the relativistic Weibel instability generates electromagnetic fields, which are comparable to the antiparallel or piled-up fields. In a microscopic viewpoint, the instability allows the plasma's multiple interactions with the discontinuity. In a macroscopic viewpoint, the instability leads to rapid expansion of the current sheet and then the reconnection jet front further propagates into the downstream. Possible application to the three-dimensional case is briefly discussed.

  6. Ultrashort-Pulse Child-Langmuir Law in the Quantum and Relativistic Regimes

    SciTech Connect

    Ang, L. K.; Zhang, P.

    2007-04-20

    This Letter presents a consistent quantum and relativistic model of short-pulse Child-Langmuir (CL) law, of which the pulse length {tau} is less than the electron transit time in a gap of spacing D and voltage V. The classical value of the short-pulse CL law is enhanced by a large factor due to quantum effects when the pulse length and the size of the beam are, respectively, in femtosecond duration and nanometer scale. At high voltage larger than the electron rest mass, relativistic effects will suppress the enhancement of short-pulse CL law, which is confirmed by particle-in-cell simulation. When the pulse length is much shorter than the gap transit time, the current density is proportional to V, and to the inverse power of D and {tau}.

  7. Nonthermal Particle Acceleration in 3D Relativistic Magnetic Reconnection in Pair Plasma

    NASA Astrophysics Data System (ADS)

    Uzdensky, Dmitri; Werner, Gregory; Zhdankin, Vladimir

    2016-10-01

    Magnetic reconnection is a fundamental plasma process that converts magnetic energy into particle kinetic energy. ``Relativistic'' reconnection is of interest in astrophysical contexts because it can accelerate particles to relativistic energies high enough for synchrotron (or inverse Compton) emission to explain observed high-energy radiation. After several 2D particle-in-cell (PIC) simulations of reconnection in pair plasmas demonstrated power-law electron-energy spectra extending to high energies, a few 3D simulations surprisingly confirmed the robustness of nonthermal particle acceleration, despite fundamental differences, such as the development of the relativistic drift-kink instability (RDKI) in 3D. We present a comprehensive PIC study of 3D relativistic pair-plasma reconnection characterizing the effect of the third dimension. We investigate how reconnection dynamics and particle acceleration depend on guide magnetic field Bz and on the simulation box length Lz in the third dimension. We find that, while the RDKI does indeed grow in 3D reconnection, it does not inhibit particle acceleration, even in the absence of guide field. This work was funded by NSF, DOE, and NASA.

  8. FULLY GENERAL RELATIVISTIC SIMULATIONS OF CORE-COLLAPSE SUPERNOVAE WITH AN APPROXIMATE NEUTRINO TRANSPORT

    SciTech Connect

    Kuroda, Takami; Kotake, Kei; Takiwaki, Tomoya

    2012-08-10

    We present results from the first generation of multi-dimensional hydrodynamic core-collapse simulations in full general relativity (GR) that include an approximate treatment of neutrino transport. Using an M1 closure scheme with an analytic variable Eddington factor, we solve the energy-independent set of radiation energy and momentum based on the Thorne's momentum formalism. Our newly developed code is designed to evolve the Einstein field equation together with the GR radiation hydrodynamic equations. We follow the dynamics starting from the onset of gravitational core collapse of a 15 M{sub Sun} star, through bounce, up to about 100 ms postbounce in this study. By computing four models that differ according to 1D to 3D and by switching from special relativistic (SR) to GR hydrodynamics, we study how the spacial multi-dimensionality and GR would affect the dynamics in the early postbounce phase. Our 3D results support the anticipation in previous 1D results that the neutrino luminosity and average neutrino energy of any neutrino flavor in the postbounce phase increase when switching from SR to GR hydrodynamics. This is because the deeper gravitational well of GR produces more compact core structures, and thus hotter neutrino spheres at smaller radii. By analyzing the residency timescale to the neutrino-heating timescale in the gain region, we show that the criterion to initiate neutrino-driven explosions can be most easily satisfied in 3D models, irrespective of SR or GR hydrodynamics. Our results suggest that the combination of GR and 3D hydrodynamics provides the most favorable condition to drive a robust neutrino-driven explosion.

  9. Second relativistic mean field and virial equation of state for astrophysical simulations

    SciTech Connect

    Shen, G.; Horowitz, C. J.; O'Connor, E.

    2011-06-15

    We generate a second equation of state (EOS) of nuclear matter for a wide range of temperatures, densities, and proton fractions for use in supernovae, neutron star mergers, and black hole formation simulations. We employ full relativistic mean field (RMF) calculations for matter at intermediate density and high density, and the virial expansion of a nonideal gas for matter at low density. For this EOS we use the RMF effective interaction FSUGold, whereas our earlier EOS was based on the RMF effective interaction NL3. The FSUGold interaction has a lower pressure at high densities compared to the NL3 interaction. We calculate the resulting EOS at over 100 000 grid points in the temperature range T=0 to 80 MeV, the density range n{sub B}=10{sup -8} to 1.6 fm{sup -3}, and the proton fraction range Y{sub p}=0 to 0.56. We then interpolate these data points using a suitable scheme to generate a thermodynamically consistent equation of state table on a finer grid. We discuss differences between this EOS, our NL3-based EOS, and previous EOSs by Lattimer-Swesty and H. Shen et al. for the thermodynamic properties, composition, and neutron star structure. The original FSUGold interaction produces an EOS, which we call FSU1.7, that has a maximum neutron star mass of 1.7 solar masses. A modification in the high-density EOS is introduced to increase the maximum neutron star mass to 2.1 solar masses and results in a slightly different EOS that we call FSU2.1. The EOS tables for FSU1.7 and FSU2.1 are available for download.

  10. Simulations of ion acceleration at non-relativistic shocks. I. Acceleration efficiency

    SciTech Connect

    Caprioli, D.; Spitkovsky, A.

    2014-03-10

    We use two-dimensional and three-dimensional hybrid (kinetic ions-fluid electrons) simulations to investigate particle acceleration and magnetic field amplification at non-relativistic astrophysical shocks. We show that diffusive shock acceleration operates for quasi-parallel configurations (i.e., when the background magnetic field is almost aligned with the shock normal) and, for large sonic and Alfvénic Mach numbers, produces universal power-law spectra ∝p {sup –4}, where p is the particle momentum. The maximum energy of accelerated ions increases with time, and it is only limited by finite box size and run time. Acceleration is mainly efficient for parallel and quasi-parallel strong shocks, where 10%-20% of the bulk kinetic energy can be converted to energetic particles and becomes ineffective for quasi-perpendicular shocks. Also, the generation of magnetic turbulence correlates with efficient ion acceleration and vanishes for quasi-perpendicular configurations. At very oblique shocks, ions can be accelerated via shock drift acceleration, but they only gain a factor of a few in momentum and their maximum energy does not increase with time. These findings are consistent with the degree of polarization and the morphology of the radio and X-ray synchrotron emission observed, for instance, in the remnant of SN 1006. We also discuss the transition from thermal to non-thermal particles in the ion spectrum (supra-thermal region) and we identify two dynamical signatures peculiar of efficient particle acceleration, namely, the formation of an upstream precursor and the alteration of standard shock jump conditions.

  11. Inductive and Electrostatic Acceleration in Relativistic Jet-Plasma Interactions

    SciTech Connect

    Ng, Johnny S.T.; Noble, Robert J.; /SLAC

    2005-07-13

    We report on the observation of rapid particle acceleration in numerical simulations of relativistic jet-plasma interactions and discuss the underlying mechanisms. The dynamics of a charge-neutral, narrow, electron-positron jet propagating through an unmagnetized electron-ion plasma was investigated using a three-dimensional, electromagnetic, particle-in-cell computer code. The interaction excited magnetic filamentation as well as electrostatic (longitudinal) plasma instabilities. In some cases, the longitudinal electric fields generated inductively and electrostatically reached the cold plasma wave-breaking limit, and the longitudinal momentum of about half the positrons increased by 50% with a maximum gain exceeding a factor of two. The results are relevant to understanding the micro-physics at the interface region of an astrophysical jet with the interstellar plasma, for example, the edge of a wide jet or the jet-termination point.

  12. Relativistic Guiding Center Equations

    SciTech Connect

    White, R. B.; Gobbin, M.

    2014-10-01

    In toroidal fusion devices it is relatively easy that electrons achieve relativistic velocities, so to simulate runaway electrons and other high energy phenomena a nonrelativistic guiding center formalism is not sufficient. Relativistic guiding center equations including flute mode time dependent field perturbations are derived. The same variables as used in a previous nonrelativistic guiding center code are adopted, so that a straightforward modifications of those equations can produce a relativistic version.

  13. Microwave window breakdown experiments and simulations on the UM/L-3 relativistic magnetron.

    PubMed

    Hoff, B W; Mardahl, P J; Gilgenbach, R M; Haworth, M D; French, D M; Lau, Y Y; Franzi, M

    2009-09-01

    Experiments have been performed on the UM/L-3 (6-vane, L-band) relativistic magnetron to test a new microwave window configuration designed to limit vacuum side breakdown. In the baseline case, acrylic microwave windows were mounted between three of the waveguide coupling cavities in the anode block vacuum housing and the output waveguides. Each of the six 3 cm deep coupling cavities is separated from its corresponding anode cavity by a 1.75 cm wide aperture. In the baseline case, vacuum side window breakdown was observed to initiate at single waveguide output powers close to 20 MW. In the new window configuration, three Air Force Research Laboratory-designed, vacuum-rated directional coupler waveguide segments were mounted between the coupling cavities and the microwave windows. The inclusion of the vacuum side power couplers moved the microwave windows an additional 30 cm away from the anode apertures. Additionally, the Lucite microwave windows were replaced with polycarbonate windows and the microwave window mounts were redesigned to better maintain waveguide continuity in the region around the microwave windows. No vacuum side window breakdown was observed in the new window configuration at single waveguide output powers of 120+MW (a factor of 3 increase in measured microwave pulse duration and factor of 3 increase in measured peak power over the baseline case). Simulations were performed to investigate likely causes for the window breakdown in the original configuration. Results from these simulations have shown that in the original configuration, at typical operating voltage and magnetic field ranges, electrons emitted from the anode block microwave apertures strike the windows with a mean kinetic energy of 33 keV with a standard deviation of 14 keV. Calculations performed using electron impact angle and energy data predict a first generation secondary electron yield of 65% of the primary electron population. The effects of the primary aperture electron

  14. Plasmoids in relativistic reconnection, from birth to adulthood: first they grow, then they go

    NASA Astrophysics Data System (ADS)

    Sironi, Lorenzo; Giannios, Dimitrios; Petropoulou, Maria

    2016-10-01

    Blobs, or quasi-spherical emission regions containing relativistic particles and magnetic fields, are often assumed ad hoc in emission models of relativistic astrophysical jets, yet their physical origin is still not well understood. Here, we employ a suite of large-scale 2D particle-in-cell simulations in electron-positron plasmas to demonstrate that relativistic magnetic reconnection can naturally account for the formation of quasi-spherical plasmoids filled with high-energy particles and magnetic fields. Our simulations extend to unprecedentedly long temporal and spatial scales, so we can capture the asymptotic physics independently of the initial setup. We characterize the properties of the plasmoids, continuously generated as a self-consistent by-product of the reconnection process: they are in rough energy equipartition between particles and magnetic fields; the upper energy cutoff of the plasmoid particle spectrum is proportional to the plasmoid width w, corresponding to a Larmor radius ˜0.2 w; the plasmoids grow in size at ˜0.1 of the speed of light, with most of the growth happening while they are still non-relativistic (`first they grow'); their growth is suppressed once they get accelerated to relativistic speeds by the field line tension, up to the Alfvén speed (`then they go'). The largest plasmoids reach a width wmax ˜ 0.2 L independently of the system length L, they have nearly isotropic particle distributions and contain the highest energy particles, whose Larmor radius is ˜0.03 L. The latter can be regarded as the Hillas criterion for relativistic reconnection. We briefly discuss the implications of our results for the high-energy emission from relativistic jets and pulsar winds.

  15. High Performance Simulations of Accretion Disk Dynamics and Jet Formations Around Kerr Black Holes

    NASA Technical Reports Server (NTRS)

    Nishikawa, Ken-Ichi; Mizuno, Yosuke; Watson, Michael

    2007-01-01

    We investigate jet formation in black-hole systems using 3-D General Relativistic Particle-In-Cell (GRPIC) and 3-D GRMHD simulations. GRPIC simulations, which allow charge separations in a collisionless plasma, do not need to invoke the frozen condition as in GRMHD simulations. 3-D GRPIC simulations show that jets are launched from Kerr black holes as in 3-D GRMHD simulations, but jet formation in the two cases may not be identical. Comparative study of black hole systems with GRPIC and GRMHD simulations with the inclusion of radiate transfer will further clarify the mechanisms that drive the evolution of disk-jet systems.

  16. 3D GRMHD and GRPIC Simulations of Disk-Jet Coupling and Emission

    SciTech Connect

    Nishikawa, Ken-Ichi; Mizuno, Y.; Watson, M.; Hardee, P.; Fuerst, S.; Wu, K.; Fishman, G.J.; /NASA, Marshall

    2006-12-19

    We investigate jet formation in black-hole systems using 3-D General Relativistic Particle-In-Cell (GRPIC) and 3-D GRMHD simulations. GRPIC simulations, which allow charge separations in a collisionless plasma, do not need to invoke the frozen condition as in GRMHD simulations. 3-D GRPIC simulations show that jets are launched from Kerr black holes as in 3-D GRMHD simulations, but jet formation in the two cases may not be identical. Comparative study of black hole systems with GRPIC and GRMHD simulations with the inclusion of radiate transfer will further clarify the mechanisms that drive the evolution of disk-jet systems.

  17. Simulation of the Hydrogen Ground State in Stochastic Electrodynamics-2: Inclusion of Relativistic Corrections

    NASA Astrophysics Data System (ADS)

    Nieuwenhuizen, Theodorus M.; Liska, Matthew T. P.

    2015-10-01

    In a recent paper the authors studied numerically the hydrogen ground state in stochastic electrodynamics (SED) within the the non-relativistic approximation. In quantum theory the leading non-relativistic corrections to the ground state energy dominate the Lamb shift related to the photon cloud that should cause the quantum-like behaviour of SED. The present work takes these corrections into account in the numerical modelling. It is found that they have little effect; the self-ionisation that occurs without them remains present. It is speculated that the point-charge approximation for the electron is the cause of the failure.

  18. Drift-Resonant Interaction of Magnetospheric Relativistic Electrons with Ultra-Low Frequency (ULF) Waves: Comparison between Observations and Simulations

    NASA Technical Reports Server (NTRS)

    Fung, Shing

    2007-01-01

    By analyzing CRRES and GOES observations on Aug. 27 1991, Tan et al. [2004] reported evidence of magnetospheric relativistic electron acceleration by resonant interactions with PC5 ULF waves. The event showed strong ULF wave activities after a storm sudden commencement (SSC) and energetic electron fluxes were enhanced in 2 hours. The electron flux peak observed in energy channels (0.6 - 1.1 MeV) were modulated by local electric field observed by CRRES. In this study, we set up a drift-resonant interaction model between ULF wave and magnetospheric relativistic electrons to model the observed electron flux in the event. In this model, the poloidal mode wave is concentrated in the dayside and the toroidal mode wave is concentrated in two flanks. The toroidal mode waves in the dawn and dusk flanks are in anti-phase. We found that electron can be accelerated jointly by the poloidal wave in the dayside and toroidal wave in flanks. The dayside poloidal wave serves as the dominant source of electron acceleration. The simulated electron flux variations agree well with observations both in fine details and long period behavior. These agreements in electron behavior indicate that the ULF wave plays an important role in accelerating MeV relativistic electrons around the geosynchronous orbit.

  19. Relativistic MHD Simulations of Collision-induced Magnetic Dissipation in Poynting-flux-dominated Jets/outflows

    NASA Astrophysics Data System (ADS)

    Deng, Wei; Li, Hui; Zhang, Bing; Li, Shengtai

    2015-06-01

    We perform 3D relativistic ideal magnetohydrodynamics (MHD) simulations to study the collisions between high-σ (Poynting-flux-dominated (PFD)) blobs which contain both poloidal and toroidal magnetic field components. This is meant to mimic the interactions inside a highly variable PFD jet. We discover a significant electromagnetic field (EMF) energy dissipation with an Alfvénic rate with the efficiency around 35%. Detailed analyses show that this dissipation is mostly facilitated by the collision-induced magnetic reconnection. Additional resolution and parameter studies show a robust result that the relative EMF energy dissipation efficiency is nearly independent of the numerical resolution or most physical parameters in the relevant parameter range. The reconnection outflows in our simulation can potentially form the multi-orientation relativistic mini jets as needed for several analytical models. We also find a linear relationship between the σ values before and after the major EMF energy dissipation process. Our results give support to the proposed astrophysical models that invoke significant magnetic energy dissipation in PFD jets, such as the internal collision-induced magnetic reconnection and turbulence model for gamma-ray bursts, and reconnection triggered mini jets model for active galactic nuclei. The simulation movies are shown in http://www.physics.unlv.edu/∼deng/simulation1.html.

  20. RELATIVISTIC MHD SIMULATIONS OF COLLISION-INDUCED MAGNETIC DISSIPATION IN POYNTING-FLUX-DOMINATED JETS/OUTFLOWS

    SciTech Connect

    Deng, Wei; Zhang, Bing; Li, Hui; Li, Shengtai E-mail: zhang@physics.unlv.edu E-mail: sli@lanl.gov

    2015-06-01

    We perform 3D relativistic ideal magnetohydrodynamics (MHD) simulations to study the collisions between high-σ (Poynting-flux-dominated (PFD)) blobs which contain both poloidal and toroidal magnetic field components. This is meant to mimic the interactions inside a highly variable PFD jet. We discover a significant electromagnetic field (EMF) energy dissipation with an Alfvénic rate with the efficiency around 35%. Detailed analyses show that this dissipation is mostly facilitated by the collision-induced magnetic reconnection. Additional resolution and parameter studies show a robust result that the relative EMF energy dissipation efficiency is nearly independent of the numerical resolution or most physical parameters in the relevant parameter range. The reconnection outflows in our simulation can potentially form the multi-orientation relativistic mini jets as needed for several analytical models. We also find a linear relationship between the σ values before and after the major EMF energy dissipation process. Our results give support to the proposed astrophysical models that invoke significant magnetic energy dissipation in PFD jets, such as the internal collision-induced magnetic reconnection and turbulence model for gamma-ray bursts, and reconnection triggered mini jets model for active galactic nuclei. The simulation movies are shown in http://www.physics.unlv.edu/∼deng/simulation1.html.

  1. Design and 3D simulation of a two-cavity wide-gap relativistic klystron amplifier with high power injection

    SciTech Connect

    Bai Xianchen; Yang Jianhua; Zhang Jiande

    2012-08-15

    By using an electromagnetic particle-in-cell (PIC) code, an S-band two-cavity wide-gap klystron amplifier (WKA) loaded with washers/rods structure is designed and investigated for high power injection application. Influences of the washers/rods structure on the high frequency characteristics and the basic operation of the amplifier are presented. Generally, the rod structure has great impacts on the space-charge potential depression and the resonant frequency of the cavities. Nevertheless, if only the resonant frequency is tuned to the desired operation frequency, effects of the rod size on the basic operation of the amplifier are expected to be very weak. The 3-dimension (3-D) PIC simulation results show an output power of 0.98 GW corresponding to an efficiency of 33% for the WKA, with a 594 keV, 5 kA electron beam guided by an external magnetic field of 1.5 Tesla. Moreover, if a conductive plane is placed near the output gap, such as the electron collector, the beam potential energy can be further released, and the RF power can be increased to about 1.07 GW with the conversion efficiency of about 36%.

  2. Shock Structure and Magnetic Fields Generation Associated with Relativistic Jets Unmagnetized Pair Plasma

    NASA Technical Reports Server (NTRS)

    Niemiec, J.; Nishikawa, K.-I.; Hardee, P.; Pohl, M.; Medvedev, M.; Mizuno, Y.; Zhang, B.; Oka, M.; Sol, H.; Hartmann, D.

    2009-01-01

    Using 3D and 2D particle-in-cell simulations we investigate a shock structure, magnetic field generation, and particle acceleration associated with an unmagnetized relativistic electron-positron jet propagating into an unmagnetized pair plasma. The simulations use long computational grids which allow to study the formation and dynamics of the system in a spatial and temporal way. We find for the first time a relativistic shock system comparable to a predicted magnetohydrodynamic shock structure consisting of leading and trailing shocks separated by a contact discontinuity. Strong electromagnetic fields resulting from the Weibel two-stream instability are generated in the trailing shock where jet matter is thermalized and decelerated. We analyze the formation and nonlinear development through saturation and dissipation of those fields and associated particle acceleration. In the AGN context the trailing shock corresponds to the jet shock at the head of a relativistic astrophysical jet. In the GRB context this trailing shock can be identified with the bow shock driven by relativistic ejecta. The strong electromagnetic field region in the trailing shock provides the emission site for the hot spot at the leading edge of AGN jets and for afterglow emission from GRBs.

  3. Axisymmetric general relativistic simulations of the accretion-induced collapse of white dwarfs

    SciTech Connect

    Abdikamalov, E. B.; Ott, C. D.; Rezzolla, L.; Dessart, L.; Dimmelmeier, H.; Marek, A.; Janka, H.-T.

    2010-02-15

    The accretion-induced collapse (AIC) of a white dwarf may lead to the formation of a protoneutron star and a collapse-driven supernova explosion. This process represents a path alternative to thermonuclear disruption of accreting white dwarfs in type Ia supernovae. In the AIC scenario, the supernova explosion energy is expected to be small and the resulting transient short-lived, making it hard to detect by electromagnetic means alone. Neutrino and gravitational-wave (GW) observations may provide crucial information necessary to reveal a potential AIC. Motivated by the need for systematic predictions of the GW signature of AIC, we present results from an extensive set of general-relativistic AIC simulations using a microphysical finite-temperature equation of state and an approximate treatment of deleptonization during collapse. Investigating a set of 114 progenitor models in axisymmetric rotational equilibrium, with a wide range of rotational configurations, temperatures and central densities, and resulting white dwarf masses, we extend previous Newtonian studies and find that the GW signal has a generic shape akin to what is known as a 'type III' signal in the literature. Despite this reduction to a single type of waveform, we show that the emitted GWs carry information that can be used to constrain the progenitor and the postbounce rotation. We discuss the detectability of the emitted GWs, showing that the signal-to-noise ratio for current or next-generation interferometer detectors could be high enough to detect such events in our Galaxy. Furthermore, we contrast the GW signals of AIC and rotating massive star iron core collapse and find that they can be distinguished, but only if the distance to the source is known and a detailed reconstruction of the GW time series from detector data is possible. Some of our AIC models form massive quasi-Keplerian accretion disks after bounce. The disk mass is very sensitive to progenitor mass and angular momentum

  4. Field ionization model implemented in Particle In Cell code and applied to laser-accelerated carbon ions

    SciTech Connect

    Nuter, R.; Gremillet, L.; Lefebvre, E.; Levy, A.; Ceccotti, T.; Martin, P.

    2011-03-15

    A novel numerical modeling of field ionization in PIC (Particle In Cell) codes is presented. Based on the quasistatic approximation of the ADK (Ammosov Delone Krainov) theory and implemented through a Monte Carlo scheme, this model allows for multiple ionization processes. Two-dimensional PIC simulations are performed to analyze the cut-off energies of the laser-accelerated carbon ions measured on the UHI 10 Saclay facility. The influence of the target and the hydrocarbon pollutant composition on laser-accelerated carbon ion energies is demonstrated.

  5. Ion explosion and multi-mega-electron-volt ion generation from an underdense plasma layer irradiated by a relativistically intense short-pulse laser.

    PubMed

    Yamagiwa, M; Koga, J; Tsintsadze, L N; Ueshima, Y; Kishimoto, Y

    1999-11-01

    Ion acceleration and expansion in the interaction of a relativistically intense short-pulse laser with an underdense plasma layer are investigated. Ion and electron dynamics are studied by a two-dimensional particle-in-cell simulation with the real mass ratio. It is shown that the longitudinal electric field induced by electron evacuation due to a large ponderomotive force or light pressure can accelerate ions to several MeV in the direction of the laser propagation. It is after the laser completely passes through the plasma layer that the ion explosion starts to be significant.

  6. A Particle-In-Cell Gun Code for Surface-Converter H- Ion Source Modeling

    NASA Astrophysics Data System (ADS)

    Chacon-Golcher, Edwin; Bowers, Kevin J.

    2007-08-01

    We present the current status of a particle-in-cell with Monte Carlo collisions (PIC-MCC) gun code under development at Los Alamos for the study of surface-converter H- ion sources. The program preserves a first-principles approach to a significant extent and simulates the production processes without ad hoc models within the plasma region. Some of its features include: solution of arbitrary electrostatic and magnetostatic fields in an axisymmetric (r,z) geometry to describe the self-consistent time evolution of a plasma; simulation of a multi-species (e-,H+,H2+,H3+,H-) plasma discharge from a neutral hydrogen gas and filament-originated seed electrons; full 2-dimensional (r,z) 3-velocity (vr,vz,vφ) dynamics for all species with exact conservation of the canonical angular momentum pφ; detailed collision physics between charged particles and neutrals and the ability to represent multiple smooth (not stair-stepped) electrodes of arbitrary shape and voltage whose surfaces may be secondary-particle emitters (H- and e-). The status of this development is discussed in terms of its physics content and current implementation details.

  7. Semiclassical modeling of quantum-mechanical multiparticle systems using parallel particle-in-cell methods

    NASA Astrophysics Data System (ADS)

    Dauger, Dean Edward

    2001-08-01

    We are successful in building a code that models many particle dynamic quantum systems by combining a semiclassical approximation of Feynman path integrals with parallel computing techniques (particle-in-cell) and numerical methods developed for simulating plasmas, establishing this approach as a viable technique for multiparticle time-dependent quantum mechanics. Run on high-performance parallel computers, this code applies semiclassical methods to simulate the time evolution of wavefunctions of many particles. We describe the analytical derivation and computational implementation of these techniques in detail. We present a study to thoroughly demonstrate the code's fidelity to quantum mechanics, resulting in innovative visualization and analysis techniques. We introduce and exhibit a method to address fermion particle statistics. We present studies of two quantum-mechanical problems: a two-electron, one- dimensional atom, resulting in high-quality extractions of one- and two-electron eigenstates, and electrostatic quasi-modes due to quantum effects in a hot electron plasma, relevant for predictions about stellar evolution. We supply discussions of alternative derivations, alternative implementations of the derivations, and an exploration of their consequences. Source code is shown throughout this dissertation. Finally, we present an extensive discussion of applications and extrapolations of this work, with suggestions for future direction.

  8. Effect of electron heating on self-induced transparency in relativistic-intensity laser-plasma interactions.

    PubMed

    Siminos, E; Grech, M; Skupin, S; Schlegel, T; Tikhonchuk, V T

    2012-11-01

    The effective increase of the critical density associated with the interaction of relativistically intense laser pulses with overcritical plasmas, known as self-induced transparency, is revisited for the case of circular polarization. A comparison of particle-in-cell simulations to the predictions of a relativistic cold-fluid model for the transparency threshold demonstrates that kinetic effects, such as electron heating, can lead to a substantial increase of the effective critical density compared to cold-fluid theory. These results are interpreted by a study of separatrices in the single-electron phase space corresponding to dynamics in the stationary fields predicted by the cold-fluid model. It is shown that perturbations due to electron heating exceeding a certain finite threshold can force electrons to escape into the vacuum, leading to laser pulse propagation. The modification of the transparency threshold is linked to the temporal pulse profile, through its effect on electron heating.

  9. Relativistic MHD simulations of collision-induced magnetic dissipation in poynting-flux-dominated jets/outflows

    DOE PAGES

    Deng, Wei; Li, Hui; Zhang, Bing; ...

    2015-05-29

    We perform 3D relativistic ideal MHD simulations to study the collisions between high-σ (Poynting- ux-dominated) blobs which contain both poloidal and toroidal magnetic field components. This is meant to mimic the interactions inside a highly variable Poynting- ux-dominated jet. We discover a significant electromagnetic field (EMF) energy dissipation with an Alfvenic rate with the efficiency around 35%. Detailed analyses show that this dissipation is mostly facilitated by the collision-induced magnetic reconnection. Additional resolution and parameter studies show a robust result that the relative EMF energy dissipation efficiency is nearly independent of the numerical resolution or most physical parameters in themore » relevant parameter range. The reconnection outflows in our simulation can potentially form the multi-orientation relativistic mini-jets as needed for several analytical models. We also find a linear relationship between the σ values before and after the major EMF energy dissipation process. In conclusion, our results give support to the proposed astrophysical models that invoke signi cant magnetic energy dissipation in Poynting- ux-dominated jets, such as the internal collision-induced magnetic reconnection and turbulence (ICMART) model for GRBs, and reconnection triggered mini-jets model for AGNs.« less

  10. Relativistic MHD simulations of collision-induced magnetic dissipation in poynting-flux-dominated jets/outflows

    SciTech Connect

    Deng, Wei; Li, Hui; Zhang, Bing; Li, Shengtai

    2015-05-29

    We perform 3D relativistic ideal MHD simulations to study the collisions between high-σ (Poynting- ux-dominated) blobs which contain both poloidal and toroidal magnetic field components. This is meant to mimic the interactions inside a highly variable Poynting- ux-dominated jet. We discover a significant electromagnetic field (EMF) energy dissipation with an Alfvenic rate with the efficiency around 35%. Detailed analyses show that this dissipation is mostly facilitated by the collision-induced magnetic reconnection. Additional resolution and parameter studies show a robust result that the relative EMF energy dissipation efficiency is nearly independent of the numerical resolution or most physical parameters in the relevant parameter range. The reconnection outflows in our simulation can potentially form the multi-orientation relativistic mini-jets as needed for several analytical models. We also find a linear relationship between the σ values before and after the major EMF energy dissipation process. In conclusion, our results give support to the proposed astrophysical models that invoke signi cant magnetic energy dissipation in Poynting- ux-dominated jets, such as the internal collision-induced magnetic reconnection and turbulence (ICMART) model for GRBs, and reconnection triggered mini-jets model for AGNs.

  11. Particle-in-cell modeling for MJ scale dense plasma focus with varied anode shape

    SciTech Connect

    Link, A. Halvorson, C. Schmidt, A.; Hagen, E. C.; Rose, D. V.; Welch, D. R.

    2014-12-15

    Megajoule scale dense plasma focus (DPF) Z-pinches with deuterium gas fill are compact devices capable of producing 10{sup 12} neutrons per shot but past predictive models of large-scale DPF have not included kinetic effects such as ion beam formation or anomalous resistivity. We report on progress of developing a predictive DPF model by extending our 2D axisymmetric collisional kinetic particle-in-cell (PIC) simulations from the 4 kJ, 200 kA LLNL DPF to 1 MJ, 2 MA Gemini DPF using the PIC code LSP. These new simulations incorporate electrodes, an external pulsed-power driver circuit, and model the plasma from insulator lift-off through the pinch phase. To accommodate the vast range of relevant spatial and temporal scales involved in the Gemini DPF within the available computational resources, the simulations were performed using a new hybrid fluid-to-kinetic model. This new approach allows single simulations to begin in an electron/ion fluid mode from insulator lift-off through the 5-6 μs run-down of the 50+ cm anode, then transition to a fully kinetic PIC description during the run-in phase, when the current sheath is 2-3 mm from the central axis of the anode. Simulations are advanced through the final pinch phase using an adaptive variable time-step to capture the fs and sub-mm scales of the kinetic instabilities involved in the ion beam formation and neutron production. Validation assessments are being performed using a variety of different anode shapes, comparing against experimental measurements of neutron yield, neutron anisotropy and ion beam production.

  12. Whistler turbulence heating of electrons and ions: Three-dimensional particle-in-cell simuations

    DOE PAGES

    Gary, S. Peter; Hughes, R. Scott; Wang, Joseph

    2016-01-14

    In this study, the decay of whistler turbulence in a collisionless, homogeneous, magnetized plasma is studied using three-dimensional particle-in-cell simulations. The simulations are initialized with a narrowband, relatively isotropic distribution of long wavelength whistler modes. A first ensemble of simulations at electron betamore » $${\\beta }_{{\\rm{e}}}$$ = 0.25 and ion-to-electron mass ratio $${m}_{{\\rm{i}}}$$/$${m}_{{\\rm{e}}}$$ = 400 is carried out on a domain cube of dimension $$L{\\omega }_{\\mathrm{pi}}$$/c = 5.12 where $${\\omega }_{\\mathrm{pi}}$$ is the ion plasma frequency. The simulations begin with a range of dimensionless fluctuating field energy densities, $${\\epsilon }_{{\\rm{o}}}$$, and follow the fluctuations as they cascade to broadband, anisotropic turbulence which dissipates at shorter wavelengths, heating both electrons and ions. The electron heating is stronger and preferentially parallel/antiparallel to the background magnetic field $${{\\boldsymbol{B}}}_{{\\rm{o}}};$$ the ion energy gain is weaker and is preferentially in directions perpendicular to $${{\\boldsymbol{B}}}_{{\\rm{o}}}$$. The important new results here are that, over 0.01 < $${\\epsilon }_{{\\rm{o}}}$$ < 0.25, the maximum rate of electron heating scales approximately as $${\\epsilon }_{{\\rm{o}}}$$, and the maximum rate of ion heating scales approximately as $${\\epsilon }_{{\\rm{o}}}^{1.5}$$. A second ensemble of simulations at $${\\epsilon }_{{\\rm{o}}}$$ = 0.10 and $${\\beta }_{{\\rm{e}}}$$ = 0.25 shows that, over 25 < $${m}_{{\\rm{i}}}$$/$${m}_{{\\rm{e}}}\\;$$< 1836, the ratio of the maximum ion heating rate to the maximum electron heating rate scales approximately as $${m}_{{\\rm{e}}}$$/$${m}_{{\\rm{i}}}$$.« less

  13. Whistler turbulence heating of electrons and ions: Three-dimensional particle-in-cell simuations

    SciTech Connect

    Gary, S. Peter; Hughes, R. Scott; Wang, Joseph

    2016-01-14

    In this study, the decay of whistler turbulence in a collisionless, homogeneous, magnetized plasma is studied using three-dimensional particle-in-cell simulations. The simulations are initialized with a narrowband, relatively isotropic distribution of long wavelength whistler modes. A first ensemble of simulations at electron beta ${\\beta }_{{\\rm{e}}}$ = 0.25 and ion-to-electron mass ratio ${m}_{{\\rm{i}}}$/${m}_{{\\rm{e}}}$ = 400 is carried out on a domain cube of dimension $L{\\omega }_{\\mathrm{pi}}$/c = 5.12 where ${\\omega }_{\\mathrm{pi}}$ is the ion plasma frequency. The simulations begin with a range of dimensionless fluctuating field energy densities, ${\\epsilon }_{{\\rm{o}}}$, and follow the fluctuations as they cascade to broadband, anisotropic turbulence which dissipates at shorter wavelengths, heating both electrons and ions. The electron heating is stronger and preferentially parallel/antiparallel to the background magnetic field ${{\\boldsymbol{B}}}_{{\\rm{o}}};$ the ion energy gain is weaker and is preferentially in directions perpendicular to ${{\\boldsymbol{B}}}_{{\\rm{o}}}$. The important new results here are that, over 0.01 < ${\\epsilon }_{{\\rm{o}}}$ < 0.25, the maximum rate of electron heating scales approximately as ${\\epsilon }_{{\\rm{o}}}$, and the maximum rate of ion heating scales approximately as ${\\epsilon }_{{\\rm{o}}}^{1.5}$. A second ensemble of simulations at ${\\epsilon }_{{\\rm{o}}}$ = 0.10 and ${\\beta }_{{\\rm{e}}}$ = 0.25 shows that, over 25 < ${m}_{{\\rm{i}}}$/${m}_{{\\rm{e}}}\\;$< 1836, the ratio of the maximum ion heating rate to the maximum electron heating rate scales approximately as ${m}_{{\\rm{e}}}$/${m}_{{\\rm{i}}}$.

  14. Particle spectra and efficiency in nonlinear relativistic shock acceleration - survey of scattering models

    NASA Astrophysics Data System (ADS)

    Ellison, Donald C.; Warren, Donald C.; Bykov, Andrei M.

    2016-03-01

    We include a general form for the scattering mean free path, λmfp(p), in a nonlinear Monte Carlo model of relativistic shock formation and Fermi acceleration. Particle-in-cell simulations, as well as analytic work, suggest that relativistic shocks tend to produce short-scale, self-generated magnetic turbulence that leads to a scattering mean free path with a stronger momentum dependence than the λmfp ∝ p dependence for Bohm diffusion. In unmagnetized shocks, this turbulence is strong enough to dominate the background magnetic field so the shock can be treated as parallel regardless of the initial magnetic field orientation, making application to γ-ray bursts, pulsar winds, type Ibc supernovae, and extragalactic radio sources more straightforward and realistic. In addition to changing the scale of the shock precursor, we show that, when nonlinear effects from efficient Fermi acceleration are taken into account, the momentum dependence of λmfp(p) has an important influence on the efficiency of cosmic ray production as well as the accelerated particle spectral shape. These effects are absent in non-relativistic shocks and do not appear in relativistic shock models unless nonlinear effects are self-consistently described. We show, for limited examples, how the changes in Fermi acceleration translate to changes in the intensity and spectral shape of γ-ray emission from proton-proton interactions and pion-decay radiation.

  15. Final Report for "Gyrotron Design and Evaluation using New Particle-in-Cell Capability"

    SciTech Connect

    David N Smithe

    2008-05-28

    ITER will depend on high power CW gyrotrons to deliver power to the plasma at ECR frequencies. However, gyrotrons can suffer from undesirable low frequency oscillations (LFO’s) which are known to interfere with the gun-region diagnostics and data collection, and are also expected to produce undesirable energy and velocity spread in the beam. The origins and processes leading to these oscillations are poorly understood, and existing gyrotron R&D tools, such as static gun solvers and interaction region models, are not designed to look at time-dependant oscillatory behavior. We have applied a time-domain particle-in-cell method to investigate the LFO phenomenon. Our company is at the forefront of smooth-curved-boundary treatment of the electromagnetic fields and particle emission surfaces, and such methods are necessary to simulate the adiabatically trapped and reflected electrons thought to be driving the oscillations. This approach provides the means for understanding, in microscopic detail, the underlying physical processes driving the low-frequency oscillations. In the Phase I project, an electron gun region from an existing gyrotron, known to observe LFO’s, was selected as a proof-of-principle geometry, and was modeled with the curved-geometry time-domain simulation tool, in order to establish the feasibility of simulating LFO physics with this tool on office-scale, and larger, parallel cluster computers. Generally, it was found to be feasible to model the simulation geometry, emission, and magnetic features of the electron gun. Ultimately, the tool will be used to investigate the origins and life cycle within the trapped particle population. This tool also provides the foundations and validation for potential application of the software to numerous other time-dependant beam and rf source problems in the commercial arena.

  16. Spacecraft charging analysis with the implicit particle-in-cell code iPic3D

    SciTech Connect

    Deca, J.; Lapenta, G.; Marchand, R.; Markidis, S.

    2013-10-15

    We present the first results on the analysis of spacecraft charging with the implicit particle-in-cell code iPic3D, designed for running on massively parallel supercomputers. The numerical algorithm is presented, highlighting the implementation of the electrostatic solver and the immersed boundary algorithm; the latter which creates the possibility to handle complex spacecraft geometries. As a first step in the verification process, a comparison is made between the floating potential obtained with iPic3D and with Orbital Motion Limited theory for a spherical particle in a uniform stationary plasma. Second, the numerical model is verified for a CubeSat benchmark by comparing simulation results with those of PTetra for space environment conditions with increasing levels of complexity. In particular, we consider spacecraft charging from plasma particle collection, photoelectron and secondary electron emission. The influence of a background magnetic field on the floating potential profile near the spacecraft is also considered. Although the numerical approaches in iPic3D and PTetra are rather different, good agreement is found between the two models, raising the level of confidence in both codes to predict and evaluate the complex plasma environment around spacecraft.

  17. Particle-in-Cell Modeling of Magnetized Argon Plasma Flow Through Small Mechanical Apertures

    SciTech Connect

    Adam B. Sefkow and Samuel A. Cohen

    2009-04-09

    Motivated by observations of supersonic argon-ion flow generated by linear helicon-heated plasma devices, a three-dimensional particle-in-cell (PIC) code is used to study whether stationary electrostatic layers form near mechanical apertures intersecting the flow of magnetized plasma. By self-consistently evaluating the temporal evolution of the plasma in the vicinity of the aperture, the PIC simulations characterize the roles of the imposed aperture and applied magnetic field on ion acceleration. The PIC model includes ionization of a background neutral-argon population by thermal and superthermal electrons, the latter found upstream of the aperture. Near the aperture, a transition from a collisional to a collisionless regime occurs. Perturbations of density and potential, with mm wavelengths and consistent with ion acoustic waves, propagate axially. An ion acceleration region of length ~ 200-300 λD,e forms at the location of the aperture and is found to be an electrostatic double layer, with axially-separated regions of net positive and negative charge. Reducing the aperture diameter or increasing its length increases the double layer strength.

  18. Recent advances in the modeling of plasmas with the Particle-In-Cell methods

    NASA Astrophysics Data System (ADS)

    Vay, Jean-Luc; Lehe, Remi; Vincenti, Henri; Godfrey, Brendan; Lee, Patrick; Haber, Irv

    2015-11-01

    The Particle-In-Cell (PIC) approach is the method of choice for self-consistent simulations of plasmas from first principles. The fundamentals of the PIC method were established decades ago but improvements or variations are continuously being proposed. We report on several recent advances in PIC related algorithms, including: (a) detailed analysis of the numerical Cherenkov instability and its remediation, (b) analytic pseudo-spectral electromagnetic solvers in Cartesian and cylindrical (with azimuthal modes decomposition) geometries, (c) arbitrary-order finite-difference and generalized pseudo-spectral Maxwell solvers, (d) novel analysis of Maxwell's solvers' stencil variation and truncation, in application to domain decomposition strategies and implementation of Perfectly Matched Layers in high-order and pseudo-spectral solvers. Work supported by US-DOE Contracts DE-AC02-05CH11231 and the US-DOE SciDAC program ComPASS. Used resources of NERSC, supported by US-DOE Contract DE-AC02-05CH11231.

  19. Particle-in-cell study of the ion-to-electron sheath transition

    SciTech Connect

    Scheiner, Brett; Baalrud, Scott D.; Hopkins, Matthew M.; Yee, Benjamin T.; Barnat, Edward V.

    2016-08-09

    The form of a sheath near a small electrode, with bias changing from below to above the plasma potential, is studied using 2D particle-in-cell simulations. When the electrode is biased within Te/2e below the plasma potential, the electron velocity distribution functions (EVDFs) exhibit a loss-cone type truncation due to fast electrons overcoming the small potential difference between the electrode and plasma. No sheath is present in this regime, and the plasma remains quasineutral up to the electrode. The EVDF truncation leads to a presheath-like density and flow velocity gradients. Once the bias exceeds the plasma potential, an electron sheath is present. In this case, the truncation driven behavior persists, but is accompanied by a shift in the maximum value of the EVDF that is not present in the negative bias cases. In conclusion, the flow moment has significant contributions from both the flow shift of the EVDF maximum, and the loss-cone truncation.

  20. An incompressible two-dimensional multiphase particle-in-cell model for dense particle flows

    SciTech Connect

    Snider, D.M.; O`Rourke, P.J.; Andrews, M.J.

    1997-06-01

    A two-dimensional, incompressible, multiphase particle-in-cell (MP-PIC) method is presented for dense particle flows. The numerical technique solves the governing equations of the fluid phase using a continuum model and those of the particle phase using a Lagrangian model. Difficulties associated with calculating interparticle interactions for dense particle flows with volume fractions above 5% have been eliminated by mapping particle properties to a Eulerian grid and then mapping back computed stress tensors to particle positions. This approach utilizes the best of Eulerian/Eulerian continuum models and Eulerian/Lagrangian discrete models. The solution scheme allows for distributions of types, sizes, and density of particles, with no numerical diffusion from the Lagrangian particle calculations. The computational method is implicit with respect to pressure, velocity, and volume fraction in the continuum solution thus avoiding courant limits on computational time advancement. MP-PIC simulations are compared with one-dimensional problems that have analytical solutions and with two-dimensional problems for which there are experimental data.

  1. Particle-in-cell study of the ion-to-electron sheath transition

    DOE PAGES

    Scheiner, Brett; Baalrud, Scott D.; Hopkins, Matthew M.; ...

    2016-08-09

    The form of a sheath near a small electrode, with bias changing from below to above the plasma potential, is studied using 2D particle-in-cell simulations. When the electrode is biased within Te/2e below the plasma potential, the electron velocity distribution functions (EVDFs) exhibit a loss-cone type truncation due to fast electrons overcoming the small potential difference between the electrode and plasma. No sheath is present in this regime, and the plasma remains quasineutral up to the electrode. The EVDF truncation leads to a presheath-like density and flow velocity gradients. Once the bias exceeds the plasma potential, an electron sheath ismore » present. In this case, the truncation driven behavior persists, but is accompanied by a shift in the maximum value of the EVDF that is not present in the negative bias cases. In conclusion, the flow moment has significant contributions from both the flow shift of the EVDF maximum, and the loss-cone truncation.« less

  2. Performance of particle in cell methods on highly concurrent computational architectures

    NASA Astrophysics Data System (ADS)

    Adams, M. F.; Ethier, S.; Wichmann, N.

    2007-07-01

    Particle in cell (PIC) methods are effective in computing Vlasov-Poisson system of equations used in simulations of magnetic fusion plasmas. PIC methods use grid based computations, for solving Poisson's equation or more generally Maxwell's equations, as well as Monte-Carlo type methods to sample the Vlasov equation. The presence of two types of discretizations, deterministic field solves and Monte-Carlo methods for the Vlasov equation, pose challenges in understanding and optimizing performance on today large scale computers which require high levels of concurrency. These challenges arises from the need to optimize two very different types of processes and the interactions between them. Modern cache based high-end computers have very deep memory hierarchies and high degrees of concurrency which must be utilized effectively to achieve good performance. The effective use of these machines requires maximizing concurrency by eliminating serial or redundant work and minimizing global communication. A related issue is minimizing the memory traffic between levels of the memory hierarchy because performance is often limited by the bandwidths and latencies of the memory system. This paper discusses some of the performance issues, particularly in regard to parallelism, of PIC methods. The gyrokinetic toroidal code (GTC) is used for these studies and a new radial grid decomposition is presented and evaluated. Scaling of the code is demonstrated on ITER sized plasmas with up to 16K Cray XT3/4 cores.

  3. External circuit integration with electromagnetic particle in cell modeling of plasma focus devices

    SciTech Connect

    Seng, Y. S.; Lee, P.; Rawat, R. S.

    2015-03-15

    The pinch performance of a plasma focus (PF) device is sensitive to the physical conditions of the breakdown phase. It is therefore essential to model and study the initial phase in order to optimize device performance. An external circuit is self consistently coupled to the electromagnetic particle in cell code to model the breakdown and initial lift phase of the United Nations University/International Centre for Theoretical Physics (UNU-ICTP) plasma focus device. Gas breakdown during the breakdown phase is simulated successfully, following a drop in the applied voltage across the device and a concurrent substantial rise in the circuit current. As a result, the plasma becomes magnetized, with the growing value of the magnetic field over time leading to the gradual lift off of the well formed current sheath into the axial acceleration phase. This lifting off, with simultaneous outward sheath motion along the anode and vertical cathode, and the strong magnetic fields in the current sheath region, was demonstrated in this work, and hence validates our method of coupling the external circuit to PF devices. Our method produces voltage waveforms that are qualitatively similar to the observed experimental voltage profiles of the UNU-ICTP device. Values of the mean electron energy before and after voltage breakdown turned out to be different, with the values after breakdown being much lower. In both cases, the electron energy density function turned out to be non-Maxwellian.

  4. Particle-In-Cell Analysis of an Electric Antenna for the BepiColombo/MMO spacecraft

    NASA Astrophysics Data System (ADS)

    Miyake, Yohei; Usui, Hideyuki; Kojima, Hirotsugu

    The BepiColombo/MMO spacecraft is planned to provide a first electric field measurement in Mercury's magnetosphere by mounting two types of the electric antennas: WPT and MEFISTO. The sophisticated calibration of such measurements should be performed based on precise knowledge of the antenna characteristics in space plasma. However, it is difficult to know prac-tical antenna characteristics considering the plasma kinetics and spacecraft-plasma interactions by means of theoretical approaches. Furthermore, some modern antenna designing techniques such as a "hockey puck" principle is applied to MEFISTO, which introduces much complexity in its overall configuration. Thus a strong demand arises regarding the establishment of a nu-merical method that can solve the complex configuration and plasma dynamics for evaluating the electric properties of the modern instrument. For the self-consistent antenna analysis, we have developed a particle simulation code named EMSES based on the particle-in-cell technique including a treatment antenna conductive sur-faces. In this paper, we mainly focus on electrostatic (ES) features and photoelectron distri-bution in the vicinity of MEFISTO. Our simulation model includes (1) a photoelectron guard electrode, (2) a bias current provided from the spacecraft body to the sensing element, (3) a floating potential treatment for the spacecraft body, and (4) photoelectron emission from sunlit surfaces of the conductive bodies. Of these, the photoelectron guard electrode is a key technol-ogy for producing an optimal condition of plasma environment around MEFISTO. Specifically, we introduced a pre-amplifier housing called puck located between the conductive boom and the sensor wire. The photoelectron guard is then simulated by forcibly fixing the potential difference between the puck surface and the spacecraft body. For the modeling, we use the Capacity Matrix technique in order to assure the conservation condition of total charge owned by the

  5. Kinetic Turbulence in Relativistic Plasma: From Thermal Bath to Nonthermal Continuum.

    PubMed

    Zhdankin, Vladimir; Werner, Gregory R; Uzdensky, Dmitri A; Begelman, Mitchell C

    2017-02-03

    We present results from particle-in-cell simulations of driven turbulence in magnetized, collisionless, and relativistic pair plasmas. We find that the fluctuations are consistent with the classical k_{⊥}^{-5/3} magnetic energy spectrum at fluid scales and a steeper k_{⊥}^{-4} spectrum at sub-Larmor scales, where k_{⊥} is the wave vector perpendicular to the mean field. We demonstrate the development of a nonthermal, power-law particle energy distribution f(E)∼E^{-α}, with an index α that decreases with increasing magnetization and increases with an increasing system size (relative to the characteristic Larmor radius). Our simulations indicate that turbulence can be a viable source of energetic particles in high-energy astrophysical systems, such as pulsar wind nebulae, if scalings asymptotically become insensitive to the system size.

  6. High density ultrashort relativistic positron beam generation by laser-plasma interaction

    NASA Astrophysics Data System (ADS)

    Gu, Y. J.; Klimo, O.; Weber, S.; Korn, G.

    2016-11-01

    A mechanism of high energy and high density positron beam creation is proposed in ultra-relativistic laser-plasma interaction. Longitudinal electron self-injection into a strong laser field occurs in order to maintain the balance between the ponderomotive potential and the electrostatic potential. The injected electrons are trapped and form a regular layer structure. The radiation reaction and photon emission provide an additional force to confine the electrons in the laser pulse. The threshold density to initiate the longitudinal electron self-injection is obtained from analytical model and agrees with the kinetic simulations. The injected electrons generate γ-photons which counter-propagate into the laser pulse. Via the Breit-Wheeler process, well collimated positron bunches in the GeV range are generated of the order of the critical plasma density and the total charge is about nano-Coulomb. The above mechanisms are demonstrated by particle-in-cell simulations and single electron dynamics.

  7. An S-band high gain relativistic klystron amplifier with high phase stability

    SciTech Connect

    Wu, Y.; Li, Z. H.; Xu, Z.; Ma, Q. S.; Xie, H. Q.

    2014-11-15

    For the purpose of coherent high power microwave combining, an S-band high gain relativistic klystron amplifier with high phase stability is presented and studied. By the aid of 3D particle-in-cell code and circuit simulation software, the mechanism of parasitic oscillation in the device is investigated. And the RF lossy material is adopted in the simulation and experiment to suppress the oscillation. The experimental results show that with an input RF power of 10 kW, a microwave pulse with power of 1.8 GW is generated with a gain of 52.6 dB. And the relative phase difference fluctuation between output microwave and input RF signal is less than ±10° in 90 ns.

  8. Kinetic Turbulence in Relativistic Plasma: From Thermal Bath to Nonthermal Continuum

    NASA Astrophysics Data System (ADS)

    Zhdankin, Vladimir; Werner, Gregory R.; Uzdensky, Dmitri A.; Begelman, Mitchell C.

    2017-02-01

    We present results from particle-in-cell simulations of driven turbulence in magnetized, collisionless, and relativistic pair plasmas. We find that the fluctuations are consistent with the classical k⊥-5 /3 magnetic energy spectrum at fluid scales and a steeper k⊥-4 spectrum at sub-Larmor scales, where k⊥ is the wave vector perpendicular to the mean field. We demonstrate the development of a nonthermal, power-law particle energy distribution f (E )˜E-α, with an index α that decreases with increasing magnetization and increases with an increasing system size (relative to the characteristic Larmor radius). Our simulations indicate that turbulence can be a viable source of energetic particles in high-energy astrophysical systems, such as pulsar wind nebulae, if scalings asymptotically become insensitive to the system size.

  9. Three-dimensional fast magnetic reconnection driven by relativistic ultraintense femtosecond lasers.

    PubMed

    Ping, Y L; Zhong, J Y; Sheng, Z M; Wang, X G; Liu, B; Li, Y T; Yan, X Q; He, X T; Zhang, J; Zhao, G

    2014-03-01

    Three-dimensional fast magnetic reconnection driven by two ultraintense femtosecond laser pulses is investigated by relativistic particle-in-cell simulation, where the two paralleled incident laser beams are shot into a near-critical plasma layer to form a magnetic reconnection configuration in self-generated magnetic fields. A reconnection X point and out-of-plane quadrupole field structures associated with magnetic reconnection are formed. The reconnection rate is found to be faster than that found in previous two-dimensional Hall magnetohydrodynamic simulations and electrostatic turbulence contribution to the reconnection electric field plays an essential role. Both in-plane and out-of-plane electron and ion accelerations up to a few MeV due to the magnetic reconnection process are also obtained.

  10. Asymmetric modes decomposition in an overmoded relativistic backward wave oscillator

    NASA Astrophysics Data System (ADS)

    Zhang, Dian; Zhang, Jun; Zhong, Huihuang; Jin, Zhenxing; Ju, Jinchuan

    2014-09-01

    Most of the investigated overmoded relativistic backward wave oscillators (RBWOs) are azimuthally symmetric; thus, they are designed through two dimensional (2-D) particle-in-cell (PIC) simulations. However, 2-D PIC simulations cannot reveal the effect of asymmetric modes on beam-wave interaction. In order to investigate whether asymmetric mode competition needs to be considered in the design of overmoded RBWOs, a numerical method of determining the composition of both symmetric and asymmetric modes in three dimensional (3-D) PIC simulations is introduced in this paper. The 2-D and 3-D PIC simulation results of an X-band overmoded RBWO are analyzed. Our analysis indicates that the 2-D and 3-D PIC simulation results of our device are quite different due to asymmetric mode competition. In fact, asymmetric surface waves, especially EH11 mode, can lead to serious mode competition when electron beam propagates near the surface of slow wave structures (SWSs). Therefore, additional method of suppressing asymmetric mode competition, such as adjusting the reflections at both ends of SWSs to decrease the Q-factor of asymmetric modes, needs to be utilized in the design of overmoded RBWOs. Besides, 3-D PIC simulation and modes decomposition are essential for designing overmoded RBWOs.

  11. Asymmetric modes decomposition in an overmoded relativistic backward wave oscillator

    SciTech Connect

    Zhang, Dian; Zhang, Jun Zhong, Huihuang; Jin, Zhenxing; Ju, Jinchuan

    2014-09-15

    Most of the investigated overmoded relativistic backward wave oscillators (RBWOs) are azimuthally symmetric; thus, they are designed through two dimensional (2-D) particle-in-cell (PIC) simulations. However, 2-D PIC simulations cannot reveal the effect of asymmetric modes on beam-wave interaction. In order to investigate whether asymmetric mode competition needs to be considered in the design of overmoded RBWOs, a numerical method of determining the composition of both symmetric and asymmetric modes in three dimensional (3-D) PIC simulations is introduced in this paper. The 2-D and 3-D PIC simulation results of an X-band overmoded RBWO are analyzed. Our analysis indicates that the 2-D and 3-D PIC simulation results of our device are quite different due to asymmetric mode competition. In fact, asymmetric surface waves, especially EH{sub 11} mode, can lead to serious mode competition when electron beam propagates near the surface of slow wave structures (SWSs). Therefore, additional method of suppressing asymmetric mode competition, such as adjusting the reflections at both ends of SWSs to decrease the Q-factor of asymmetric modes, needs to be utilized in the design of overmoded RBWOs. Besides, 3-D PIC simulation and modes decomposition are essential for designing overmoded RBWOs.

  12. Experimental simulation of satellite observations of 100 kHz radio waves from relativistic electron beams above thunderclouds

    NASA Astrophysics Data System (ADS)

    Füllekrug, M.; Hanuise, C.; Parrot, M.

    2011-01-01

    Relativistic electron beams above thunderclouds emit 100 kHz radio waves which illuminate the Earth's atmosphere and near-Earth space. This contribution aims to clarify the physical processes which are relevant for the spatial spreading of the radio wave energy below and above the ionosphere and thereby enables an experimental simulation of satellite observations of 100 kHz radio waves from relativistic electron beams above thunderclouds. The simulation uses the DEMETER satellite which observes 100 kHz radio waves from fifty terrestrial Long Range Aid to Navigation (LORAN) transmitters. Their mean luminosity patch in the plasmasphere is a circular area with a radius of 300 km and a power density of 22 μW/Hz as observed at 660 km height above the ground. The luminosity patches exhibit a southward displacement of 450 km with respect to the locations of the LORAN transmitters. The displacement is reduced to 150 km when an upward propagation of the radio waves along the geomagnetic field line is assumed. This residual displacement indicates that the radio waves undergo 150 km sub-ionospheric propagation prior to entering a magnetospheric duct and escaping into near-Earth space. The residual displacement at low (L < 2.14) and high (L > 2.14) geomagnetic latitudes ranges from 100 km to 200 km which suggests that the smaller inclination of the geomagnetic field lines at low latitudes helps to trap the radio waves and to keep them in the magnetospheric duct. Diffuse luminosity areas are observed northward of the magnetic conjugate locations of LORAN transmitters at extremely low geomagnetic latitudes (L < 1.36) in Southeast Asia. This result suggests that the propagation along the geomagnetic field lines results in a spatial spreading of the radio wave energy over distances of 1 Mm. The summative assessment of the electric field intensities measured in space show that nadir observations of terrestrial 100 kHz radio waves, e.g., from relativistic electron beams above

  13. Transverse electron-scale instability in relativistic shear flows

    NASA Astrophysics Data System (ADS)

    Alves, E. P.; Grismayer, T.; Fonseca, R. A.; Silva, L. O.

    2015-08-01

    Electron-scale surface waves are shown to be unstable in the transverse plane of a sheared flow in an initially unmagnetized collisionless plasma, not captured by (magneto)hydrodynamics. It is found that these unstable modes have a higher growth rate than the closely related electron-scale Kelvin-Helmholtz instability in relativistic shears. Multidimensional particle-in-cell simulations verify the analytic results and further reveal the emergence of mushroomlike electron density structures in the nonlinear phase of the instability, similar to those observed in the Rayleigh Taylor instability despite the great disparity in scales and different underlying physics. This transverse electron-scale instability may play an important role in relativistic and supersonic sheared flow scenarios, which are stable at the (magneto)hydrodynamic level. Macroscopic (≫c /ωp e ) fields are shown to be generated by this microscopic shear instability, which are relevant for particle acceleration, radiation emission, and to seed magnetohydrodynamic processes at long time scales.

  14. An energy- and charge-conserving, implicit, electrostatic particle-in-cell algorithm

    NASA Astrophysics Data System (ADS)

    Chen, G.; Chacón, L.; Barnes, D. C.

    2011-08-01

    This paper discusses a novel fully implicit formulation for a one-dimensional electrostatic particle-in-cell (PIC) plasma simulation approach. Unlike earlier implicit electrostatic PIC approaches (which are based on a linearized Vlasov-Poisson formulation), ours is based on a nonlinearly converged Vlasov-Ampére (VA) model. By iterating particles and fields to a tight nonlinear convergence tolerance, the approach features superior stability and accuracy properties, avoiding most of the accuracy pitfalls in earlier implicit PIC implementations. In particular, the formulation is stable against temporal (Courant-Friedrichs-Lewy) and spatial (aliasing) instabilities. It is charge- and energy-conserving to numerical round-off for arbitrary implicit time steps (unlike the earlier "energy-conserving" explicit PIC formulation, which only conserves energy in the limit of arbitrarily small time steps). While momentum is not exactly conserved, errors are kept small by an adaptive particle sub-stepping orbit integrator, which is instrumental to prevent particle tunneling (a deleterious effect for long-term accuracy). The VA model is orbit-averaged along particle orbits to enforce an energy conservation theorem with particle sub-stepping. As a result, very large time steps, constrained only by the dynamical time scale of interest, are possible without accuracy loss. Algorithmically, the approach features a Jacobian-free Newton-Krylov solver. A main development in this study is the nonlinear elimination of the new-time particle variables (positions and velocities). Such nonlinear elimination, which we term particle enslavement, results in a nonlinear formulation with memory requirements comparable to those of a fluid computation, and affords us substantial freedom in regards to the particle orbit integrator. Numerical examples are presented that demonstrate the advertised properties of the scheme. In particular, long-time ion acoustic wave simulations show that numerical

  15. Particle Acceleration and Nonthermal Emission in Relativistic Astrophysical Shocks

    NASA Astrophysics Data System (ADS)

    Sironi, Lorenzo

    The common observational feature of Pulsar Wind Nebulae (PWNe), gamma-ray bursts (GRBs), and AGN jets is a broad nonthermal spectrum of synchrotron and inverse Compton radiation. It is usually assumed that the emitting electrons are accelerated to a power-law distribution at relativistic shocks, via the so-called Fermi mechanism. Despite decades of research, the Fermi acceleration process is still not understood from first principles. An assessment of the micro-physics of particle acceleration in relativistic shocks is of paramount importance to unveil the properties of astrophysical nonthermal sources, and it is the subject of this dissertation. In the first part of this thesis, I explore by means of fully-kinetic first-principle particle-in-cell (PIC) simulations the properties of relativistic shocks that propagate in electron-positron and electron-proton plasmas carrying uniform magnetic fields. I find that nonthermal particle acceleration only occurs if the upstream magnetization is weak (sigma<0.001), or if the pre-shock field is nearly aligned with the shock direction of propagation (quasi-parallel shocks). Relativistic shocks in PWNe, GRBs and AGN jets are usually thought to be appreciably magnetized (sigma>0.01) and quasi-perpendicular, yet they need to be efficient particle accelerators, in order to explain the prominent nonthermal signatures of these sources. Motivated by this discrepancy, I then relax the assumption of uniform pre-shock fields, and investigate the acceleration efficiency of perpendicular shocks that propagate in high-sigma flows with alternating magnetic fields. This is the geometry expected at the termination shock of pulsar winds, but it could also be relevant for Poynting-dominated jets in GRBs and AGNs. I show by means of PIC simulations that compression of the flow at the shock will force annihilation of nearby field lines, a process known as shock-driven reconnection. Magnetic reconnection can efficiently transfer the energy of

  16. Particle energization in 3D magnetic reconnection of relativistic pair plasmas

    SciTech Connect

    Liu Wei; Yin Lin; Albright, B. J.; Bowers, K. J.; Liang, Edison P.; Li Hui

    2011-05-15

    We present large scale 3D particle-in-cell simulations to examine particle energization in magnetic reconnection of relativistic electron-positron (pair) plasmas. The initial configuration is set up as a relativistic Harris equilibrium without a guide field. These simulations are large enough to accommodate a sufficient number of tearing and kink modes. Contrary to the non-relativistic limit, the linear tearing instability is faster than the linear kink instability, at least in our specific parameters. We find that the magnetic energy dissipation is first facilitated by the tearing instability and followed by the secondary kink instability. Particles are mostly energized inside the magnetic islands during the tearing stage due to the spatially varying electric fields produced by the outflows from reconnection. Secondary kink instability leads to additional particle acceleration. Accelerated particles are, however, observed to be thermalized quickly. The large amplitude of the vertical magnetic field resulting from the tearing modes by the secondary kink modes further help thermalizing the non-thermal particles generated from the secondary kink instability. Implications of these results for astrophysics are briefly discussed.

  17. Particle Acceleration, Magnetic Field Generation and Emission from Relativistic Jets and Supernova Remnants

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Hartmann, D. H.; Hardee, P.; Hededal, C.; Mizunno, Y.; Fishman, G. J.

    2006-01-01

    We performed numerical simulations of particle acceleration, magnetic field generation, and emission from shocks in order to understand the observed emission from relativistic jets and supernova remnants. The investigation involves the study of collisionless shocks, where the Weibel instability is responsible for particle acceleration as well as magnetic field generation. A 3-D relativistic particle-in-cell (RPIC) code has been used to investigate the shock processes in electron-positron plasmas. The evolution of theWeibe1 instability and its associated magnetic field generation and particle acceleration are studied with two different jet velocities (0 = 2,5 - slow, fast) corresponding to either outflows in supernova remnants or relativistic jets, such as those found in AGNs and microquasars. Slow jets have intrinsically different structures in both the generated magnetic fields and the accelerated particle spectrum. In particular, the jet head has a very weak magnetic field and the ambient electrons are strongly accelerated and dragged by the jet particles. The simulation results exhibit jitter radiation from inhomogeneous magnetic fields, generated by the Weibel instability, which has different spectral properties than standard synchrotron emission in a homogeneous magnetic field.

  18. Toroidal Electromagnetic Particle-in-Cell Code with Gyro-kinetic Electron and Fully-kinetic ion

    NASA Astrophysics Data System (ADS)

    Lin, Jingbo; Zhang, Wenlu; Liu, Pengfei; Li, Ding

    2016-10-01

    A kinetic simulation model has been developed using gyro-kinetic electron and fully-kinetic ion by removing fast gyro motion of electrons using the Lie-transform perturbation theory. A particle-in-cell kinetic code is developed based on this model in general magnetic flux coordinate systems, which is particularly suitable for simulations of toroidally confined plasma. Single particle motion and field solver are successfully verified respectively. Integrated electrostatic benchmark, for example the lower-hybrid wave (LHW) and ion Bernstein wave (IBW), shows a good agreement with theoretical results. Preliminary electromagnetic benchmark of fast wave at lower hybrid frequency range is also presented. This code can be a first-principal tool to investigate high frequency nonlinear phenomenon, such as parametric decay instability, during lower-hybrid current drive (LHCD) and ion cyclotron radio frequency heating (ICRF) with complex geometry effect included. Supported by National Special Research Program of China For ITER and National Natural Science Foundation of China.

  19. Self-consistent particle-in-cell modelling of short pulse absorption and transport for high energy density physics experiments

    NASA Astrophysics Data System (ADS)

    Ramsay, M. G.; Arber, T. D.; Sircombe, N. J.

    2016-03-01

    In order for detailed, solid density particle-in-cell (PIC) simulations to run within a reasonable time frame, novel approaches to modelling high density material must be employed. For the purposes of modelling high intensity, short pulse laser-plasma interactions, however, these approaches must be consistent with retaining a full PIC model in the low-density laser interaction region. By replacing the standard Maxwell field solver with an electric field update based on a simplified Ohm's law in regions of high electron density, it is possible to access densities at and above solid without being subject to the standard grid and time step constraints. Such a model has recently been implemented in the PIC code EPOCH. We present the initial results of a detailed two-dimensional simulation performed to compare the adapted version of the code with recent experimental results from the Orion laser facility.

  20. A variational multi-symplectic particle-in-cell algorithm with smoothing functions for the Vlasov-Maxwell system

    SciTech Connect

    Xiao, Jianyuan; Liu, Jian; Qin, Hong; Yu, Zhi

    2013-10-15

    Smoothing functions are commonly used to reduce numerical noise arising from coarse sampling of particles in particle-in-cell (PIC) plasma simulations. When applying smoothing functions to symplectic algorithms, the conservation of symplectic structure should be guaranteed to preserve good conservation properties. In this paper, we show how to construct a variational multi-symplectic PIC algorithm with smoothing functions for the Vlasov-Maxwell system. The conservation of the multi-symplectic structure and the reduction of numerical noise make this algorithm specifically suitable for simulating long-term dynamics of plasmas, such as those in the steady-state operation or long-pulse discharge of a super-conducting tokamak. The algorithm has been implemented in a 6D large scale PIC code. Numerical examples are given to demonstrate the good conservation properties of the multi-symplectic algorithm and the reduction of the noise due to the application of smoothing function.

  1. Relativistic MHD simulations of collision-induced magnetic dissipation in Poynting-flux-dominated jets/outflows

    SciTech Connect

    Deng, Wei

    2015-07-21

    The question of the energy composition of the jets/outflows in high-energy astrophysical systems, e.g. GRBs, AGNs, is taken up first: Matter-flux-dominated (MFD), σ < 1, and/or Poynting-flux-dominated (PFD), σ >1? The standard fireball IS model and dissipative photosphere model are MFD, while the ICMART (Internal-Collision-induced MAgnetic Reconnection and Turbulence) model is PFD. Motivated by ICMART model and other relevant problems, such as “jets in a jet” model of AGNs, the author investigates the models from the EMF energy dissipation efficiency, relativistic outflow generation, and σ evolution points of view, and simulates collisions between high-σ blobs to mimic the situation of the interactions inside the PFD jets/outflows by using a 3D SRMHD code which solves the conservative form of the ideal MHD equations. σb,f is calculated from the simulation results (threshold = 1). The efficiency obtained from this hybrid method is similar to the efficiency got from the energy evolution of the simulations (35.2%). Efficiency is nearly σ independent, which is also confirmed by the hybrid method. σb,i - σb,f provides an interesting linear relationship. Results of several parameter studies of EMF energy dissipation efficiency are shown.

  2. General-Relativistic Three-Dimensional Multi-group Neutrino Radiation-Hydrodynamics Simulations of Core-Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Roberts, Luke F.; Ott, Christian D.; Haas, Roland; O'Connor, Evan P.; Diener, Peter; Schnetter, Erik

    2016-11-01

    We report on a set of long-term general-relativistic three-dimensional (3D) multi-group (energy-dependent) neutrino radiation-hydrodynamics simulations of core-collapse supernovae. We employ a full 3D two-moment scheme with the local M1 closure, three neutrino species, and 12 energy groups per species. With this, we follow the post-core-bounce evolution of the core of a nonrotating 27 - {M}⊙ progenitor in full unconstrained 3D and in octant symmetry for ≳380 ms. We find the development of an asymmetric runaway explosion in our unconstrained simulation. We test the resolution dependence of our results and, in agreement with previous work, find that low resolution artificially aids explosion and leads to an earlier runaway expansion of the shock. At low resolution, the octant and full 3D dynamics are qualitatively very similar, but at high resolution, only the full 3D simulation exhibits the onset of explosion.

  3. BOA, Beam Optics Analyzer A Particle-In-Cell Code

    SciTech Connect

    Thuc Bui

    2007-12-06

    The program was tasked with implementing time dependent analysis of charges particles into an existing finite element code with adaptive meshing, called Beam Optics Analyzer (BOA). BOA was initially funded by a DOE Phase II program to use the finite element method with adaptive meshing to track particles in unstructured meshes. It uses modern programming techniques, state-of-the-art data structures, so that new methods, features and capabilities are easily added and maintained. This Phase II program was funded to implement plasma simulations in BOA and extend its capabilities to model thermal electrons, secondary emissions, self magnetic field and implement a more comprehensive post-processing and feature-rich GUI. The program was successful in implementing thermal electrons, secondary emissions, and self magnetic field calculations. The BOA GUI was also upgraded significantly, and CCR is receiving interest from the microwave tube and semiconductor equipment industry for the code. Implementation of PIC analysis was partially successful. Computational resource requirements for modeling more than 2000 particles begin to exceed the capability of most readily available computers. Modern plasma analysis typically requires modeling of approximately 2 million particles or more. The problem is that tracking many particles in an unstructured mesh that is adapting becomes inefficient. In particular memory requirements become excessive. This probably makes particle tracking in unstructured meshes currently unfeasible with commonly available computer resources. Consequently, Calabazas Creek Research, Inc. is exploring hybrid codes where the electromagnetic fields are solved on the unstructured, adaptive mesh while particles are tracked on a fixed mesh. Efficient interpolation routines should be able to transfer information between nodes of the two meshes. If successfully developed, this could provide high accuracy and reasonable computational efficiency.

  4. SPECIAL RELATIVISTIC MAGNETOHYDRODYNAMIC SIMULATION OF A TWO-COMPONENT OUTFLOW POWERED BY MAGNETIC EXPLOSION ON COMPACT STARS

    SciTech Connect

    Matsumoto, Jin; Asano, Eiji; Shibata, Kazunari; Masada, Youhei

    2011-05-20

    The nonlinear dynamics of outflows driven by magnetic explosion on the surface of a compact star is investigated through special relativistic magnetohydrodynamic simulations. We adopt, as the initial equilibrium state, a spherical stellar object embedded in hydrostatic plasma which has a density {rho}(r) {proportional_to} r{sup -}{alpha} and is threaded by a dipole magnetic field. The injection of magnetic energy at the surface of a compact star breaks the equilibrium and triggers a two-component outflow. At the early evolutionary stage, the magnetic pressure increases rapidly around the stellar surface, initiating a magnetically driven outflow. A strong forward shock driven outflow is then excited. The expansion velocity of the magnetically driven outflow is characterized by the Alfven velocity on the stellar surface and follows a simple scaling relation v{sub mag} {proportional_to} v{sub A}{sup 1/2}. When the initial density profile declines steeply with radius, the strong shock is accelerated self-similarly to relativistic velocity ahead of the magnetically driven component. We find that it evolves according to a self-similar relation {Gamma}{sub sh} {proportional_to} r{sub sh}, where {Gamma}{sub sh} is the Lorentz factor of the plasma measured at the shock surface r{sub sh}. A purely hydrodynamic process would be responsible for the acceleration mechanism of the shock driven outflow. Our two-component outflow model, which is the natural outcome of the magnetic explosion, can provide a better understanding of the magnetic active phenomena on various magnetized compact stars.

  5. (3+1)D hydrodynamic simulation of relativistic heavy-ion collisions

    SciTech Connect

    Schenke, Bjoern; Jeon, Sangyong; Gale, Charles

    2010-07-15

    We present music, an implementation of the Kurganov-Tadmor algorithm for relativistic 3+1 dimensional fluid dynamics in heavy-ion collision scenarios. This Riemann-solver-free, second-order, high-resolution scheme is characterized by a very small numerical viscosity and its ability to treat shocks and discontinuities very well. We also incorporate a sophisticated algorithm for the determination of the freeze-out surface using a three dimensional triangulation of the hypersurface. Implementing a recent lattice based equation of state, we compute p{sub T}-spectra and pseudorapidity distributions for Au+Au collisions at sq root(s)=200 GeV and present results for the anisotropic flow coefficients v{sub 2} and v{sub 4} as a function of both p{sub T} and pseudorapidity eta. We were able to determine v{sub 4} with high numerical precision, finding that it does not strongly depend on the choice of initial condition or equation of state.

  6. Electron Heating in a Relativistic, Weibel-unstable Plasma

    NASA Astrophysics Data System (ADS)

    Kumar, Rahul; Eichler, David; Gedalin, Michael

    2015-06-01

    The dynamics of two initially unmagnetized relativistic counter-streaming homogeneous ion-electron plasma beams are simulated in two dimensions (2D) using the particle-in-cell (PIC) method. It is shown that current filaments, which form due to the Weibel instability, develop a large-scale longitudinal electric field in the direction opposite to the current carried by the filaments as predicted by theory. This field, which is partially inductive and partially electrostatic, is identified as the main source of net electron acceleration, greatly exceeding that due to magnetic field decay at later stages. The transverse electric field, although larger than the longitudinal field, is shown to play a smaller role in heating electrons, contrary to previous claims. It is found that in one dimension, the electrons become strongly magnetized and are not accelerated beyond their initial kinetic energy. Rather, the heating of the electrons is enhanced by the bending and break up of the filaments, which releases electrons that would otherwise be trapped within a single filament and slow the development of the Weibel instability (i.e., the magnetic field growth) via induction as per Lenz’s law. In 2D simulations, electrons are heated to about one quarter of the initial kinetic energy of ions. The magnetic energy at maximum is about 4%, decaying to less than 1% by the end of the simulation. The ions are found to gradually decelerate until the end of the simulation, by which time they retain a residual anisotropy of less than 10%.

  7. ELECTRON HEATING IN A RELATIVISTIC, WEIBEL-UNSTABLE PLASMA

    SciTech Connect

    Kumar, Rahul; Eichler, David; Gedalin, Michael

    2015-06-20

    The dynamics of two initially unmagnetized relativistic counter-streaming homogeneous ion–electron plasma beams are simulated in two dimensions (2D) using the particle-in-cell (PIC) method. It is shown that current filaments, which form due to the Weibel instability, develop a large-scale longitudinal electric field in the direction opposite to the current carried by the filaments as predicted by theory. This field, which is partially inductive and partially electrostatic, is identified as the main source of net electron acceleration, greatly exceeding that due to magnetic field decay at later stages. The transverse electric field, although larger than the longitudinal field, is shown to play a smaller role in heating electrons, contrary to previous claims. It is found that in one dimension, the electrons become strongly magnetized and are not accelerated beyond their initial kinetic energy. Rather, the heating of the electrons is enhanced by the bending and break up of the filaments, which releases electrons that would otherwise be trapped within a single filament and slow the development of the Weibel instability (i.e., the magnetic field growth) via induction as per Lenz’s law. In 2D simulations, electrons are heated to about one quarter of the initial kinetic energy of ions. The magnetic energy at maximum is about 4%, decaying to less than 1% by the end of the simulation. The ions are found to gradually decelerate until the end of the simulation, by which time they retain a residual anisotropy of less than 10%.

  8. Effects of filamentation instability on the divergence of relativistic electrons driven by ultraintense laser pulses

    NASA Astrophysics Data System (ADS)

    Yang, X. H.; Zhuo, H. B.; Xu, H.; Ge, Z. Y.; Shao, F. Q.; Borghesi, M.; Ma, Y. Y.

    2016-10-01

    Generation of relativistic electron (RE) beams during ultraintense laser pulse interaction with plasma targets is studied by collisional particle-in-cell simulations. A strong magnetic field with a transverse scale length of several local plasma skin depths, associated with RE current propagation in the target, is generated by filamentation instability in collisional plasmas, inducing a great enhancement of the divergence of REs compared to that of collisionless cases. Such an effect is increased with laser intensity and target charge state, suggesting that the RE divergence might be improved by using low-Z materials under appropriate laser intensities in future fast ignition experiments and in other applications of laser-driven electron beams.

  9. Multipass relativistic high-order-harmonic generation for intense attosecond pulses

    NASA Astrophysics Data System (ADS)

    Edwards, Matthew R.; Mikhailova, Julia M.

    2016-02-01

    We demonstrate that the total reflected field produced by the interaction of a moderately relativistic laser with dense plasma is itself an efficient driver of high-order-harmonic generation. A system of two or more successive interactions of an incident laser beam on solid targets may therefore be an experimentally realizable method of optimizing conversion of laser energy to high-order harmonics. Particle-in-cell simulations suggest that attosecond pulse intensity may be increased by up to four orders of magnitude in a multipass system, with decreased duration of the attosecond pulse train. We discuss high-order-harmonic wave-form engineering for enhanced attosecond pulse generation with an electron trajectory model, present the behavior of multipass systems over a range of parameters, and offer possible routes towards experimental implementation of a two-pass system.

  10. Investigation of a K-band large coaxial relativistic backward wave oscillator

    SciTech Connect

    Zeng, Fanzheng Du, Guangxing; Wang, Honggang; Shi, Difu

    2016-01-15

    A K-band large coaxial relativistic backward wave oscillator has been investigated by the 2.5-D particle-in-cell code. This device can generate high-power microwave at a constant frequency with a constant efficiency by increasing the radius of the electron beam and the average radius of the slow-wave structure. The simulation results show that the power conversion efficiency can reach 38.8% at the frequency of 25.48 GHz with the output power of 1.65 GW, while the electron beam has the energy of 196 kV and carries the current of 21.6 kA guided by the magnetic field of 2.5 T.

  11. Stimulated Raman scattering in the relativistic regime in near-critical plasmas

    NASA Astrophysics Data System (ADS)

    Moreau, J. G.; d'Humières, E.; Nuter, R.; Tikhonchuk, V. T.

    2017-01-01

    Interaction of a high-intensity short laser pulse with near-critical plasmas allows us to achieve extremely high coupling efficiency and transfer laser energy to energetic ions. One-dimensional particle-in-cell simulations are considered to detail the processes involved in the energy transfer. A confrontation of the numerical results with the theory highlights a key role played by the process of stimulated Raman scattering in the relativistic regime. The interaction of a 1 ps laser pulse (I ˜6 ×1018W cm-2 with an undercritical (0.5 nc ) homogeneous plasma leads to a very high plasma absorption reaching 68% of the laser pulse energy. This permits a homogeneous electron heating all along the plasma and an efficient ion acceleration at the plasma edges and in cavities.

  12. Radiation emission from ultra-relativistic plasma electrons in short-intense laser light interactions

    NASA Astrophysics Data System (ADS)

    Ondarza-Rovira, R.; Boyd, TJM

    2016-05-01

    Intense femtosecond laser light incident on overcritical density plasmas has shown to emit a prolific number of high-order harmonics of the driver frequency, with spectra characterised by power-law decays. When the laser pulse is p-polarised, plasma effects do modify the harmonic spectrum, weakening the so-called universal decay index p = 8/3 to 5/3. In this work appeal is made to a single particle radiation model in support of the predictions from particle-in-cell (PIC) simulations. Using these, we further show that the emission radiated by electrons -those that are relativistically accelerated inside the plasma, after being expelled into vacuum, the so-called Brunel electrons- is characterised not only by the plasma line but also by ultraviolet harmonic orders characterised by the 5/3 decay index.

  13. Modified magnetic field distribution in relativistic magnetron with diffraction output for compact operation

    NASA Astrophysics Data System (ADS)

    Li, Wei; Liu, Yong-gui

    2011-02-01

    A modified magnetic field distribution in relativistic magnetron with diffraction output (MDO) for compact operation is proposed in this paper. The principle of how the modified magnetic field confines electrons drifting out of the interaction space is analyzed. The results of the particle-in-cell (PIC) simulations of the MDO with the modified magnetic field distribution show that the output power of the MDO is improved, and the long cylindrical waveguide used for collecting the drifting electrons can be omitted. The latter measure allows the horn antenna of the MDO to produce more focused energy with better directivity in the far field than it does with the long cylindrical waveguide. The MDO with the modified magnetic field distribution promises to be the real most compact narrow band high power microwave source.

  14. An X-band phase-locked relativistic backward wave oscillator

    SciTech Connect

    Wu, Y.; Li, Z. H.; Xu, Z.; Jin, X.; Ma, Q. S.

    2015-08-15

    For the purpose of coherent high power microwave combining at high frequency band, an X-band phase-locked relativistic backward wave oscillator is presented and investigated. The phase-locking of the oscillator is accomplished by modulation of the electron beam before it reaches the oscillator. To produce a bunched beam with an acceptable injected RF power requirement, an overmoded input cavity is employed to provide initial density modulation. And a buncher cavity is introduced to further increase the modulation depth. When the beam enters the oscillator, the modulation depth is enough to lock the frequency and phase of the output microwave generated by the oscillator. Particle-in-cell simulation shows that an input power of 90 kW is sufficient to lock the frequency and phase of 1.5 GW output microwave with locking bandwidth of 60 MHz.

  15. Experimental study of an X-band phase-locked relativistic backward wave oscillator

    SciTech Connect

    Wu, Y.; Li, Z. H.; Xu, Z.

    2015-11-15

    To achieve high power microwave combined with high frequency band, an X-band phase-locked relativistic backward wave oscillator (RBWO) is proposed and investigated theoretically and experimentally using a modulated electron beam. In the device, an overmoded input cavity and a buncher cavity are employed to premodulate the electron beam. Particle-in-cell simulation shows that an input power of 90 kW is sufficient to lock the frequency and phase of 1.5 GW output microwave with the locking bandwidth of 60 MHz. Moreover, phase and frequency locking of an RBWO has been accomplished experimentally with an output power of 1.5 GW. The fluctuation of the relative phase difference between output microwave and input RF signal is less than ±20° with the locking duration of about 50 ns. The input RF power required to lock the oscillator is only 90 kW.

  16. A novel relativistic magnetron with circularly polarized TE11 coaxial waveguide mode

    NASA Astrophysics Data System (ADS)

    Shi, Di-Fu; Qian, Bao-Liang; Wang, Hong-Gang; Li, Wei; Du, Guang-Xing

    2016-11-01

    A novel relativistic magnetron (RM) with a circularly polarized TE11 coaxial waveguide mode and its corresponding mode excitation are investigated in this paper. By operating in the 4π/5 mode in the ten-cavity RM and compactly designing the RM structure with the all cavity-magnetron axial extraction technique, the RM can directly output a circularly polarized TE11 coaxial waveguide mode in a reversible direction of rotation without any mode converters. In addition, the analysis of mode excitation can be generalized to a 2N-cavity RM, where 2N  >  4 is the number of cavities. Results of the 3D particle-in-cell (PIC) simulation show that a high power microwave (HPM) with an operating frequency of 4.15 GHz and an output power of 700 MW is obtained from the RM, corresponding to the power conversion efficiency of 50.0%.

  17. Higher-Order Nonlocal Effects of a Relativistic Ponderomotive Force in High-Intensity Laser Fields

    NASA Astrophysics Data System (ADS)

    Iwata, Natsumi; Kishimoto, Yasuaki

    2014-01-01

    We have developed a new formula for a relativistic ponderomotive force of transversely localized laser fields based on the noncanonical Lie perturbation method by finding proper coordinates and gauges in the variational principle. The formula involves new terms represented by second and third spatial derivatives of the field amplitude, so that the ponderomotive force depends not only on the local field gradient, but also on the curvature and its variation. The formula is then applicable to a regime in which the conventional formula is hardly applied such that nonlocal and/or global extent of the field profile becomes important. The result can provide a theoretical basis for describing nonlinear laser-plasma interaction including such nonlocal effects, which is examined via particle-in-cell simulation of laser propagation in a plasma with a super Gaussian transverse field profile.

  18. A small-signal theory for the radial-line relativistic klystron amplifier

    NASA Astrophysics Data System (ADS)

    Dang, Fangchao; Zhang, Xiaoping; Zhong, Huihuang; Zhang, Jun; Ju, Jinchuan

    2017-02-01

    A small-signal theory describing the electron beam modulation in the radial-line relativistic klystron amplifier (RL-RKA) is developed in this paper. We first derive theoretically the space-charge limited current, the dispersion relation of space-charge waves on the radial-radiated electron beam, and the beam coupling coefficient for the radial-line electromagnetic structure. Then, a small-signal theory is established to analyze the beam current bunching during the initial modulation period. With particle-in-cell simulations, the theoretical analysis is verified through observing the fundamental harmonic current of an input cavity in a previous Ku-band RL-RKA. More importantly, the presented small-signal theory can provide a theoretical guidance for the RL-RKA design.

  19. Propagation of an ultra-short, intense laser in a relativistic fluid

    SciTech Connect

    Ritchie, A.B.; Decker, C.D.

    1997-12-31

    A Maxwell-relativistic fluid model is developed to describe the propagation of an ultrashort, intense laser pulse through an underdense plasma. The model makes use of numerically stabilizing fast Fourier transform (FFT) computational methods for both the Maxwell and fluid equations, and it is benchmarked against particle-in-cell (PIC) simulations. Strong fields generated in the wake of the laser are calculated, and the authors observe coherent wake-field radiation generated at harmonics of the plasma frequency due to nonlinearities in the laser-plasma interaction. For a plasma whose density is 10% of critical, the highest members of the plasma harmonic series begin to overlap with the first laser harmonic, suggesting that widely used multiple-scales-theory, by which the laser and plasma frequencies are assumed to be separable, ceases to be a useful approximation.

  20. Performance improvement study of a relativistic magnetron using MAGIC-3D

    SciTech Connect

    Maurya, S.; Singh, V.V.P.; Jain, P.K.

    2011-07-01

    A three dimensional particle-in-cell (PlC) code, MAGIC3D, is used to examine the performance improvement in a relativistic magnetron by perturbing technique. Asymmetrical metal rods of different length have been used to perturb the magnetic field in the annular sector of the resonant system. Enhancement up to 45% in the radiated output power has been obtained in the perturbed magnetic field case over the unperturbed one. It has also been found in the simulation that oscillation start up time is reduced by 16 %, and the amplitude of the nearest competing mode goes down 9dB compared to unperturbed case. Perturbed magnetic field also reduces the end caps current improving the efficiency. (author)