Science.gov

Sample records for relativistic thin disks

  1. Relativistic static thin disks: The counterrotating model

    NASA Astrophysics Data System (ADS)

    González, Guillermo A.; Espitia, Omar A.

    2003-11-01

    A detailed study is presented of the counterrotating model (CRM) for generic finite static axially symmetric thin disks with nonzero radial pressure. A general constraint over the counterrotating tangential velocities, needed to cast the surface energy-momentum tensor of the disk as the superposition of two counterrotating perfect fluids, and expressions for the energy density and pressure of the counterrotating fluids are obtained. We show that, in general, it is not possible to take the two counterrotating fluids as circulating along geodesics nor take the two counterrotating tangential velocities as equal and opposite. A simple family of disks is studied that admits some CRMs with well defined counterrotating tangential velocities and stable against radial perturbations.

  2. General Relativistic Magnetohydrodynamic Simulations of Jet Formation with a Thin Keplerian Disk

    NASA Technical Reports Server (NTRS)

    Mizuno, Yosuke; Nishikawa, Ken-Ichi; Koide, Shinji; Hardee, Philip; Gerald, J. Fishman

    2006-01-01

    We have performed several simulations of black hole systems (non-rotating, black hole spin parameter a = 0.0 and rapidly rotating, a = 0.95) with a geometrically thin Keplerian disk using the newly developed RAISHIN code. The simulation results show the formation of jets driven by the Lorentz force and the gas pressure gradient. The jets have mildly relativistic speed (greater than or equal to 0.4 c). The matter is continuously supplied from the accretion disk and the jet propagates outward until each applicable terminal simulation time (non-rotating: t/tau S = 275 and rotating: t/tau S = 200, tau s equivalent to r(sub s/c). It appears that a rotating black hole creates an additional, faster, and more collimated inner outflow (greater than or equal to 0.5 c) formed and accelerated by the twisted magnetic field resulting from frame-dragging in the black hole ergosphere. This new result indicates that jet kinematic structure depends on black hole rotation.

  3. Exact Relativistic Models of Thin Disks around Static Black Holes in a Magnetic Field

    NASA Astrophysics Data System (ADS)

    Gutiérrez-Piñeres, Antonio C.; García-Reyes, Gonzalo; González, Guillermo A.

    2014-11-01

    The exact superposition of a central static black hole with surrounding thin disk in presence of a magnetic field is investigated. We consider two models of disk, one of infinite extension based on a Kuzmin-Chazy-Curzon metric and other finite based on the first Morgan-Morgan disk. We also analyze a simple model of active galactic nuclei (AGN) consisting of black hole, a Kuzmin-Chazy-Curzon disk and two rods representing jets, in presence of magnetic field. To explain the stability of the disks, we consider the matter of the disk made of two pressureless streams of counter-rotating charged particles (counter-rotating model) moving along electrogeodesic. Using the Rayleigh criterion, we derivate for circular orbits the stability conditions of the particles of the streams. The influence of the magnetic field on the matter properties of the disk and on its stability are also analyzed.

  4. Relativistic model of disk-jet variability

    NASA Astrophysics Data System (ADS)

    Mohan, P.; Mangalam, A.

    2014-07-01

    We present a relativistic model of disk-jet variability in the optical/UV and X-ray wavelengths from AGN. The model treats the kinematics of a bulk inflow in orbital motion in a relativistic thin disk. A part of the advected plasma continues in a helical orbital motion onto a relativistic jet shaped by a magnetic surface with foot points near the innermost stable circular orbit. The model, cast in Kerr geometry includes Doppler and gravitational shifts, aberration, light bending and time delay effects on the outgoing radiation. Light curves are simulated for studying effects of the relativistic beaming and the quasi-periodic oscillation (QPO) phenomena with resulting typical timescales ranging between a few 1000 s and a few days. A power law power spectral density shape results with a typical slope of ˜ -2.5. Also, using a model for the quality factor of the QPO, we place constraints on black hole mass, spin and the size of the emission region.

  5. Electrovacuum static counterrotating relativistic dust disks

    NASA Astrophysics Data System (ADS)

    García R., Gonzalo; González, Guillermo A.

    2004-06-01

    A detailed study is presented of the counterrotating model (CRM) for generic electrovacuum static axially symmetric relativistic thin disks without radial pressure. We find a general constraint over the counterrotating tangential velocities needed to cast the surface energy-momentum tensor of the disk as the superposition of two counterrotating charged dust fluids. We also find explicit expressions for the energy densities, charge densities and velocities of the counterrotating fluids. We then show that this constraint can be satisfied if we take the two counterrotating streams as circulating along electrogeodesics. However, we show that, in general, it is not possible to take the two counterrotating fluids as circulating along electrogeodesics nor take the two counterrotating tangential velocities as equal and opposite. Four simple families of models of counterrotating charged disks based on Chazy-Curzon-type, Zipoy-Voorhees-type, Bonnor-Sackfield-type, and Kerr-type electrovacuum solutions are considered where we obtain some disks with a CRM well behaved. The models are constructed using the well-known “displace, cut and reflect” method extended to solutions of vacuum Einstein-Maxwell equations.

  6. Relativistic slim disks with vertical structure

    NASA Astrophysics Data System (ADS)

    Sądowski, A.; Abramowicz, M.; Bursa, M.; Kluźniak, W.; Lasota, J.-P.; Różańska, A.

    2011-03-01

    We report on a scheme for incorporating vertical radiative energy transport into a fully relativistic, Kerr-metric model of optically thick, advective, transonic alpha disks. Our code couples the radial and vertical equations of the accretion disk. The flux was computed in the diffusion approximation, and convection is included in the mixing-length approximation. We present the detailed structure of this "two-dimensional" slim-disk model for α = 0.01. We then calculated the emergent spectra integrated over the disk surface. The values of surface density, radial velocity, and the photospheric height for these models differ by 20%-30% from those obtained in the polytropic, height-averaged slim disk model considered previously. However, the emission profiles and the resulting spectra are quite similar for both types of models. The effective optical depth of the slim disk becomes lower than unity for high values of the alpha parameter and for high accretion rates.

  7. Observational evidence for thin AGN disks

    NASA Technical Reports Server (NTRS)

    Netzer, Hagai

    1992-01-01

    AGN spectrum and spectral features, polarization, inclination, and X-ray line and continuum reflection features are discussed in a critical way in order to determine the ones that are the least model-dependent. The sign and strength of absorption and emission edges are found to be model-dependent, and relativistic broadening and shifting makes them hard to detect. The presence or absence of the predicted Lyman edge polarization feature may be used as a decisive test for thin, bare AGN disks. Other good model-independent tests are several inclination-related line and continuum correlations in big AGN samples. It is shown that electron temperature near the surface of the disk can greatly exceed the disk equilibrium temperature, which causes deviations from LTE. This effect must be incorporated into realistic disk models.

  8. Optically thin accretion disks in the Kerr metric

    NASA Technical Reports Server (NTRS)

    Bjornsson, G.

    1995-01-01

    We calculate the structure of an effectively optically thin and geometrically thin accretion disk in the Kerr geometry, including electron-positron pairs. We show that the properties of the disk solutions are strongly dependent on the angular momentum of the central black hole. We find that close to a rapidly rotating hole there can be an appreciable pair density even for modest accretion rates. Pair critical accretion rates recently discovered in Newtonian disk models are also shown to be present in the general relativistic models, and we show that the geometrically thin disk approximations easily break down for rapidly rotating holes.

  9. Stability of general-relativistic accretion disks

    NASA Astrophysics Data System (ADS)

    Korobkin, Oleg; Abdikamalov, Ernazar B.; Schnetter, Erik; Stergioulas, Nikolaos; Zink, Burkhard

    2011-02-01

    Self-gravitating relativistic disks around black holes can form as transient structures in a number of astrophysical scenarios such as binary neutron star and black hole-neutron star coalescences, as well as the core collapse of massive stars. We explore the stability of such disks against runaway and nonaxisymmetric instabilities using three-dimensional hydrodynamics simulations in full general relativity using the Thor code. We model the disk matter using the ideal fluid approximation with a Γ-law equation of state with Γ=4/3. We explore three disk models around nonrotating black holes with disk-to-black hole mass ratios of 0.24, 0.17, and 0.11. Because of metric blending in our initial data, all of our initial models contain an initial axisymmetric perturbation which induces radial disk oscillations. Despite these oscillations, our models do not develop the runaway instability during the first several orbital periods. Instead, all of the models develop unstable nonaxisymmetric modes on a dynamical time scale. We observe two distinct types of instabilities: the Papaloizou-Pringle and the so-called intermediate type instabilities. The development of the nonaxisymmetric mode with azimuthal number m=1 is accompanied by an outspiraling motion of the black hole, which significantly amplifies the growth rate of the m=1 mode in some cases. Overall, our simulations show that the properties of the unstable nonaxisymmetric modes in our disk models are qualitatively similar to those in the Newtonian theory.

  10. Stability of general-relativistic accretion disks

    SciTech Connect

    Korobkin, Oleg; Abdikamalov, Ernazar B.; Schnetter, Erik; Stergioulas, Nikolaos; Zink, Burkhard

    2011-02-15

    Self-gravitating relativistic disks around black holes can form as transient structures in a number of astrophysical scenarios such as binary neutron star and black hole-neutron star coalescences, as well as the core collapse of massive stars. We explore the stability of such disks against runaway and nonaxisymmetric instabilities using three-dimensional hydrodynamics simulations in full general relativity using the Thor code. We model the disk matter using the ideal fluid approximation with a {Gamma}-law equation of state with {Gamma}=4/3. We explore three disk models around nonrotating black holes with disk-to-black hole mass ratios of 0.24, 0.17, and 0.11. Because of metric blending in our initial data, all of our initial models contain an initial axisymmetric perturbation which induces radial disk oscillations. Despite these oscillations, our models do not develop the runaway instability during the first several orbital periods. Instead, all of the models develop unstable nonaxisymmetric modes on a dynamical time scale. We observe two distinct types of instabilities: the Papaloizou-Pringle and the so-called intermediate type instabilities. The development of the nonaxisymmetric mode with azimuthal number m=1 is accompanied by an outspiraling motion of the black hole, which significantly amplifies the growth rate of the m=1 mode in some cases. Overall, our simulations show that the properties of the unstable nonaxisymmetric modes in our disk models are qualitatively similar to those in the Newtonian theory.

  11. Scattering from Thin Dielectric Disks

    NASA Technical Reports Server (NTRS)

    Levine, D. M.; Schneider, A.; Lang, R. H.; Carter, H. G.

    1984-01-01

    A solution was obtained for scattering from thin dielectric disks by approximating the currents induced inside the disk with the currents which would exist inside a dielectric slab of the same thickness, orientation and dielectric properties. This approximation reduces to an electrostatic approximation when the disk thickness, T, is small compared to the wavelength of the incident radiation and the approximation yields a conventional physical optics solution when the dimension, A, characteristic of the geometrical cross section of the disk (e.g., the diameter of a circular disk) is large compared to wavelength. When the ratio A/T is sufficiently large the disk will always be in one or the other of these regimes (T lambda or kA1. Consequently, when A/T is large this solution provides a conventional approximation for the scattered fields which can be applied at all frequencies. As a check on this conclusion, a comparison was made between the theoretical and measured radar cross section of thin dielectric disks. Agreement was found for thin disks with both large and small values of kA.

  12. Exploring Stability of General Relativistic Accretion Disks

    NASA Astrophysics Data System (ADS)

    Korobkin, Oleg; Abdikamalov, Ernazar; Schnetter, Erik; Stergioulas, Nikolaos; Zink, Burkhard

    2011-04-01

    Self-gravitating relativistic disks around black holes can form as transient structures in a number of astrophysical scenarios, involving core collapse of massive stars and mergers of compact ob jects. I will present results on our recent study of the stability of such disks against runaway and non-axisymmetric instabilities, which we explore using three-dimensional hydrodynamics simulations in full general relativity. All of our models develop unstable non-axisymmetric modes on a dynamical timescale. We observe two distinct types of instabilities: the Papaloizou-Pringle and the so-called intermediate type instabilities. The development of the non-axisymmetric mode with azimuthal number m=1 is accompanied by an outspiraling motion of the black hole, which significantly amplifies the growth rate of the m=1 mode in some cases. We will discuss the types, growth rates and pattern speeds of the unstable modes, as well as the detectability of the gravitational waves from such objects.

  13. Conservative GRMHD simulations of moderately thin, tilted accretion disks

    SciTech Connect

    Teixeira, Danilo Morales; Fragile, P. Chris; Zhuravlev, Viacheslav V.; Ivanov, Pavel B.

    2014-12-01

    This paper presents our latest numerical simulations of accretion disks that are misaligned with respect to the rotation axis of a Kerr black hole. In this work, we use a new, fully conservative version of the Cosmos++ general relativistic magnetohydrodynamics (GRMHD) code, coupled with an ad hoc cooling function designed to control the thickness of the disk. Together these allow us to simulate the thinnest tilted accretion disks ever using a GRMHD code. In this way, we are able to probe the regime where the dimensionless stress and scale height of the disk become comparable. We present results for both prograde and retrograde cases. The simulated prograde tilted disk shows no sign of Bardeen-Petterson alignment even in the innermost parts of the disk. The simulated retrograde tilted disk, however, does show modest alignment. The implication of these results is that the parameter space associated with Bardeen-Petterson alignment for prograde disks may be rather small, only including very thin disks. Unlike our previous work, we find no evidence for standing shocks in our simulated tilted disks. We ascribe this to the black hole spin, tilt angle, and disk scale height all being small in these simulations. We also add to the growing body of literature pointing out that the turbulence driven by the magnetorotational instability in global simulations of accretion disks is not isotropic. Finally, we provide a comparison between our moderately thin, untilted reference simulation and other numerical simulations of thin disks in the literature.

  14. Alignment of magnetized accretion disks and relativistic jets with spinning black holes.

    PubMed

    McKinney, Jonathan C; Tchekhovskoy, Alexander; Blandford, Roger D

    2013-01-01

    Accreting black holes (BHs) produce intense radiation and powerful relativistic jets, which are affected by the BH's spin magnitude and direction. Although thin disks might align with the BH spin axis via the Bardeen-Petterson effect, this does not apply to jet systems with thick disks. We used fully three-dimensional general relativistic magnetohydrodynamical simulations to study accreting BHs with various spin vectors and disk thicknesses and with magnetic flux reaching saturation. Our simulations reveal a "magneto-spin alignment" mechanism that causes magnetized disks and jets to align with the BH spin near BHs and to reorient with the outer disk farther away. This mechanism has implications for the evolution of BH mass and spin, BH feedback on host galaxies, and resolved BH images for the accreting BHs in SgrA* and M87.

  15. Thin Disk Accretion in the Magnetically-Arrested State

    NASA Astrophysics Data System (ADS)

    Avara, Mark J.; McKinney, Jonathan; Reynolds, Christopher S.

    2016-01-01

    Shakura-Sunyaev thin disk theory is fundamental to black hole astrophysics. Though applications of the theory are wide-spread and powerful tools for explaining observations, such as Soltan's argument using quasar power, broadened iron line measurements, continuum fitting, and recently reverberation mapping, a significant large-scale magnetic field causes substantial deviations from standard thin disk behavior. We have used fully 3D general relativistic MHD simulations with cooling to explore the thin (H/R~0.1) magnetically arrested disk (MAD) state and quantify these deviations. This work demonstrates that accumulation of large-scale magnetic flux into the MAD state is possible, and then extends prior numerical studies of thicker disks, allowing us to measure how jet power scales with the disk state, providing a natural explanation of phenomena like jet quenching in the high-soft state of X-ray binaries. We have also simulated thin MAD disks with a misaligned black hole spin axis in order to understand further deviations from thin disk theory that may significantly affect observations.

  16. Spectropolarimetric test of the relativistic disk model for the broad emission lines of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Chen, Kaiyou; Halpern, Jules P.

    1990-01-01

    Previously, it was claimed that the broad emission lines of the radio galaxy Arp 102B can be fitted by the line profile from a simple relativistic Keplerian thin disk. It was argued that the lines originating from the relativistic accretion disk could be polarized due to electron scattering, which is likely to be the dominant opacity in the line-emitting region of Arp 102B. In the present work, the expected polarization properties of these broad emission lines are calculated. The percentage of polarization depends strongly on the inclination angle. For some angles, the red peak of the polarized, double-peaked line profile can be higher than the blue peak. This is in contrast to the total line profile, in which the blue peak is always higher than the red one. Spectropolarimetric observations could, therefore, provide an independent test of the relativistic disk model for the broad emission lines of Arp 102B and other active galactic nuclei.

  17. Thin disk lasers: history and prospects

    NASA Astrophysics Data System (ADS)

    Speiser, Jochen

    2016-04-01

    During the early 1990s, collaboration between the German Aerospace Center and the University of Stuttgart started to work on the Thin Disk concept. The core idea behind the thin disk design is the use of a thin, disk-shaped active medium that is cooled through one of the flat faces of the disk. This ensures a large surface-to-volume ratio and therefore provides very efficient thermal management. Today, the thin disk concept is used in various commercial lasers - ranging from compact, efficient low power systems to multi-kW lasers, including cw lasers and also pulsed (femtosecond to nanosecond) oscillators and amplifiers. The whole development of the Thin Disk laser was and will be accompanied by numerical modeling and optimization of the thermal and thermo-mechanic behavior of the disk and also the heat sink structure, mostly based on finite element models. For further increasing the energy and efficiency of pulsed Thin Disk lasers, the effects of amplified spontaneous emission (ASE) are a core issue. Actual efforts are oriented towards short pulse and ultra-short pulse amplifiers with (multi-)kW average power or Joule-class Thin Disk amplifiers, but also on new designs for cw thin disk MOPA designs.

  18. Acceleration and Collimation of Relativistic Magnetohydrodynamic Disk Winds

    NASA Astrophysics Data System (ADS)

    Porth, Oliver; Fendt, Christian

    2010-02-01

    We perform axisymmetric relativistic magnetohydrodynamic simulations to investigate the acceleration and collimation of jets and outflows from disks around compact objects. Newtonian gravity is added to the relativistic treatment in order to establish the physical boundary condition of an underlying accretion disk in centrifugal and pressure equilibrium. The fiducial disk surface (respectively a slow disk wind) is prescribed as boundary condition for the outflow. We apply this technique for the first time in the context of relativistic jets. The strength of this approach is that it allows us to run a parameter study in order to investigate how the accretion disk conditions govern the outflow formation. Substantial effort has been made to implement a current-free, numerical outflow boundary condition in order to avoid artificial collimation present in the standard outflow conditions. Our simulations using the PLUTO code run for 500 inner disk rotations and on a physical grid size of 100 × 200 inner disk radii. The simulations evolve from an initial state in hydrostatic equilibrium and an initially force-free magnetic field configuration. Two options for the initial field geometries are applied—an hourglass-shaped potential magnetic field and a split monopole field. Most of our parameter runs evolve into a steady state solution which can be further analyzed concerning the physical mechanism at work. In general, we obtain collimated beams of mildly relativistic speed with Lorentz factors up to 6 and mass-weighted half-opening angles of 3-7 deg. The split-monopole initial setup usually results in less collimated outflows. The light surface of the outflow magnetosphere tends to align vertically—implying three relativistically distinct regimes in the flow—an inner subrelativistic domain close to the jet axis, a (rather narrow) relativistic jet and a surrounding subrelativistic outflow launched from the outer disk surface—similar to the spine-sheath structure

  19. ACCELERATION AND COLLIMATION OF RELATIVISTIC MAGNETOHYDRODYNAMIC DISK WINDS

    SciTech Connect

    Porth, Oliver; Fendt, Christian E-mail: fendt@mpia.d

    2010-02-01

    We perform axisymmetric relativistic magnetohydrodynamic simulations to investigate the acceleration and collimation of jets and outflows from disks around compact objects. Newtonian gravity is added to the relativistic treatment in order to establish the physical boundary condition of an underlying accretion disk in centrifugal and pressure equilibrium. The fiducial disk surface (respectively a slow disk wind) is prescribed as boundary condition for the outflow. We apply this technique for the first time in the context of relativistic jets. The strength of this approach is that it allows us to run a parameter study in order to investigate how the accretion disk conditions govern the outflow formation. Substantial effort has been made to implement a current-free, numerical outflow boundary condition in order to avoid artificial collimation present in the standard outflow conditions. Our simulations using the PLUTO code run for 500 inner disk rotations and on a physical grid size of 100 x 200 inner disk radii. The simulations evolve from an initial state in hydrostatic equilibrium and an initially force-free magnetic field configuration. Two options for the initial field geometries are applied-an hourglass-shaped potential magnetic field and a split monopole field. Most of our parameter runs evolve into a steady state solution which can be further analyzed concerning the physical mechanism at work. In general, we obtain collimated beams of mildly relativistic speed with Lorentz factors up to 6 and mass-weighted half-opening angles of 3-7 deg. The split-monopole initial setup usually results in less collimated outflows. The light surface of the outflow magnetosphere tends to align vertically-implying three relativistically distinct regimes in the flow-an inner subrelativistic domain close to the jet axis, a (rather narrow) relativistic jet and a surrounding subrelativistic outflow launched from the outer disk surface-similar to the spine-sheath structure currently

  20. Thin Disks Gone MAD: Magnetically Arrested Accretion in the Thin Regime

    NASA Astrophysics Data System (ADS)

    Avara, Mark J.; McKinney, Jonathan C.; Reynolds, Christopher S.

    2015-01-01

    The collection and concentration of surrounding large scale magnetic fields by black hole accretion disks may be required for production of powerful, spin driven jets. So far, accretion disks have not been shown to grow sufficient poloidal flux via the turbulent dynamo alone to produce such persistent jets. Also, there have been conflicting answers as to how, or even if, an accretion disk can collect enough magnetic flux from the ambient environment. Extending prior numerical studies of magnetically arrested disks (MAD) in the thick (angular height, H/R~1) and intermediate (H/R~.2-.6) accretion regimes, we present our latest results from fully general relativistic MHD simulations of the thinnest BH (H/R~.1) accretion disks to date exhibiting the MAD mode of accretion. We explore the significant deviations of this accretion mode from the standard picture of thin, MRI-driven accretion, and demonstrate the accumulation of large-scale magnetic flux.

  1. Relativistic particle transport in hot accretion disks

    NASA Technical Reports Server (NTRS)

    Becker, Peter A.; Kafatos, Menas; Maisack, Michael

    1994-01-01

    Accretion disks around rapidly rotating black holes provide one of the few plausible models for the production of intense radiation in Acitve Galactic Nuclei (AGNs) above energies of several hundred MeV. The rapid rotation of the hole increases the binding energy per nucleon in the last stable orbit relative to the Schwarzschild case, and naturally leads to ion temperatures in the range 10(exp 12) - 10(exp 13) K for sub-Eddington accretion rates. The protons in the hot inner region of a steady, two-temperature disk form a reservoir of energy that is sufficient to power the observed Energetic Gamma Ray Experiment Telescope (EGRET) outbursts if the black hole mass is 10(exp 10) solar mass. Moreover, the accretion timescale for the inner region is comparable to the observed transient timescale of approximately 1 week. Hence EGRET outbursts may be driven by instabilities in hot, two-temperature disks around supermassive black holes. In this paper we discuss turbulent (stochastic) acceleration in hot disks as a possible source of GeV particles and radiation. We constrain the model by assuming the turbulence is powered by a collective instability that drains energy from the hot protons. We also provide some ideas concerning new, high-energy Penrose processes that produce GeV emission be directly tapping the rotational energy of Kerr black holes.

  2. Relativistic Lines and Reflection from the Inner Accretion Disks Around Neutron Stars

    NASA Astrophysics Data System (ADS)

    Cackett, Edward M.; Miller, Jon M.; Ballantyne, David R.; Barret, Didier; Bhattacharyya, Sudip; Boutelier, Martin; Miller, M. Coleman; Strohmayer, Tod E.; Wijnands, Rudy

    2010-09-01

    A number of neutron star low-mass X-ray binaries (LMXBs) have recently been discovered to show broad, asymmetric Fe K emission lines in their X-ray spectra. These lines are generally thought to be the most prominent part of a reflection spectrum, originating in the inner part of the accretion disk where strong relativistic effects can broaden emission lines. We present a comprehensive, systematic analysis of Suzaku and XMM-Newton spectra of 10 neutron star LMXBs, all of which display broad Fe K emission lines. Of the 10 sources, 4 are Z sources, 4 are atolls, and 2 are accreting millisecond X-ray pulsars (also atolls). The Fe K lines are fit well by a relativistic line model for a Schwarzschild metric, and imply a narrow range of inner disk radii (6-15 GM/c 2) in most cases. This implies that the accretion disk extends close to the neutron star surface over a range of luminosities. Continuum modeling shows that for the majority of observations, a blackbody component (plausibly associated with the boundary layer) dominates the X-ray emission from 8 to 20 keV. Thus it appears likely that this spectral component produces the majority of the ionizing flux that illuminates the accretion disk. Therefore, we also fit the spectra with a blurred reflection model, wherein a blackbody component illuminates the disk. This model fits well in most cases, supporting the idea that the boundary layer illuminates a geometrically thin disk.

  3. RELATIVISTIC LINES AND REFLECTION FROM THE INNER ACCRETION DISKS AROUND NEUTRON STARS

    SciTech Connect

    Cackett, Edward M.; Miller, Jon M.; Ballantyne, David R.; Barret, Didier; Boutelier, Martin; Miller, M. Coleman; Strohmayer, Tod E.

    2010-09-01

    A number of neutron star low-mass X-ray binaries (LMXBs) have recently been discovered to show broad, asymmetric Fe K emission lines in their X-ray spectra. These lines are generally thought to be the most prominent part of a reflection spectrum, originating in the inner part of the accretion disk where strong relativistic effects can broaden emission lines. We present a comprehensive, systematic analysis of Suzaku and XMM-Newton spectra of 10 neutron star LMXBs, all of which display broad Fe K emission lines. Of the 10 sources, 4 are Z sources, 4 are atolls, and 2 are accreting millisecond X-ray pulsars (also atolls). The Fe K lines are fit well by a relativistic line model for a Schwarzschild metric, and imply a narrow range of inner disk radii (6-15 GM/c {sup 2}) in most cases. This implies that the accretion disk extends close to the neutron star surface over a range of luminosities. Continuum modeling shows that for the majority of observations, a blackbody component (plausibly associated with the boundary layer) dominates the X-ray emission from 8 to 20 keV. Thus it appears likely that this spectral component produces the majority of the ionizing flux that illuminates the accretion disk. Therefore, we also fit the spectra with a blurred reflection model, wherein a blackbody component illuminates the disk. This model fits well in most cases, supporting the idea that the boundary layer illuminates a geometrically thin disk.

  4. ESTIMATION OF RELATIVISTIC ACCRETION DISK PARAMETERS FROM IRON LINE EMISSION

    SciTech Connect

    V. PARIEV; B. BROMLEY; W. MILLER

    2001-03-01

    The observed iron K{alpha} fluorescence lines in Seyfert I galaxies provide strong evidence for an accretion disk near a supermassive black hole as a source of the emission. Here we present an analysis of the geometrical and kinematic properties of the disk based on the extreme frequency shifts of a line profile as determined by measurable flux in both the red and blue wings. The edges of the line are insensitive to the distribution of the X-ray flux over the disk, and hence provide a robust alternative to profile fitting of disk parameters. Our approach yields new, strong bounds on the inclination angle of the disk and the location of the emitting region. We apply our method to interpret observational data from MCG-6-30-15 and find that the commonly assumed inclination 30{degree} for the accretion disk in MCG-6-30-15 is inconsistent with the position of the blue edge of the line at a 3{sigma} level. A thick turbulent disk model or the presence of highly ionized iron may reconcile the bounds on inclination from the line edges with the full line profile fits based on simple, geometrically thin disk models. The bounds on the innermost radius of disk emission indicate that the black hole in MCG-6-30-15 is rotating faster than 30% of theoretical maximum. When applied to data from NGC 4151, our method gives bounds on the inclination angle of the X-ray emitting inner disk of 50 {+-} 10{degree}, consistent with the presence of an ionization cone grazing the disk as proposed by Pedlar et al. (1993). The frequency extrema analysis also provides limits to the innermost disk radius in another Seyfert 1 galaxy, NGC 3516, and is suggestive of a thick disk model.

  5. THICK-DISK EVOLUTION INDUCED BY THE GROWTH OF AN EMBEDDED THIN DISK

    SciTech Connect

    Villalobos, Alvaro; Helmi, Amina; Kazantzidis, Stelios E-mail: ahelmi@astro.rug.n E-mail: villalobos@oats.inaf.i

    2010-07-20

    We perform collisionless N-body simulations to investigate the evolution of the structural and kinematical properties of simulated thick disks induced by the growth of an embedded thin disk. The thick disks used in the present study originate from cosmologically common 5:1 encounters between initially thin primary disk galaxies and infalling satellites. The growing thin disks are modeled as static gravitational potentials and we explore a variety of growing-disk parameters that are likely to influence the response of thick disks. We find that the final thick-disk properties depend strongly on the total mass and radial scale length of the growing thin disk, and much less sensitively on its growth timescale and vertical scale height as well as the initial sense of thick-disk rotation. Overall, the growth of an embedded thin disk can cause a substantial contraction in both the radial and vertical direction, resulting in a significant decrease in the scale lengths and scale heights of thick disks. Kinematically, a growing thin disk can induce a notable increase in the mean rotation and velocity dispersions of thick-disk stars. We conclude that the reformation of a thin disk via gas accretion may play a significant role in setting the structure and kinematics of thick disks, and thus it is an important ingredient in models of thick-disk formation.

  6. Structure of relativistic accretion disk with non-standard model

    NASA Astrophysics Data System (ADS)

    Khesali, A. R.; Salahshoor, K.

    2016-07-01

    The structure of stationary, axisymmetric advection-dominated accretion disk (ADAF) around rotating black hole, using non-standard model, was examined. In this model, the transport efficiency of the angular momentum α was dependent on the magnetic Prandtl number α ∝ Pm^{δ } . The full relativistic shear stress recently obtained by a new manner, was used. By considering black hole spin and Prandtl number instantaneously, the structure of ADAFs was changed in inner and outer region of the disk. It was discovered that the accretion flow was denser and hotter in the inner region, due to the black hole spin, and in the outer region, due to the presence of Prandtl parameter. Inasmuch as the rotation of the black hole affected the transport efficiency of angular momentum in parts of the disk very close to the even horizon, then in these regions, the viscosity depended on the rotation of black hole. Also, it was discovered that the effect of the black hole spin on the structure of the disk was related to the presence of Prandtl parameter.

  7. Geometrical Structures of Chemically Decomposed Thick and Thin Disk Populations

    NASA Astrophysics Data System (ADS)

    Kawata, D.; Brook, C. B.; Rahimi, A.; Gibson, B. K.

    2016-10-01

    We summarize the thick and thin disk formation commonly seen in cosmological N-body simulations. As suggested in Brook et al. (2004), a hierarchical clustering scenario causes multiple minor gas-rich mergers, and leads to the formation of a kinematically hot disk, thick disk population, at a high redshift. Once the mergers become less significant at a later epoch, the thin disk population starts building up. Because in this scenario the thick disk population forms intensively at high redshift through multiple gas-rich mergers, the thick disk population is compact and has systematically higher [α/Fe] abundance than the thin disk population. We discuss that the thick disk population would be affected by the formation of the thin disk and suffer from the radial migration, which helps the thick disk population to be observed in the solar neighborhood. In addition, we show that the current cosmological simulations also naturally predict that the thin disk population is flaring at the outer region. As shown in Rahimi et al. (2014), at high vertical height from the disk plane, the compact thick disk population (low metallicity and high [α/Fe]) is dominant in the inner region and the flaring thin disk population (high metallicity and low [α/Fe]) contributes more in the outer region. This helps to explain the positive radial metallicity gradient and negative radial [α/Fe] gradient observed at high vertical height in the Milky Way stellar disk.

  8. A GENERAL RELATIVISTIC MODEL OF ACCRETION DISKS WITH CORONAE SURROUNDING KERR BLACK HOLES

    SciTech Connect

    You Bei; Cao Xinwu; Yuan Yefei E-mail: cxw@shao.ac.cn

    2012-12-20

    We calculate the structure of a standard accretion disk with a corona surrounding a massive Kerr black hole in the general relativistic frame, in which the corona is assumed to be heated by the reconnection of the strongly buoyant magnetic fields generated in the cold accretion disk. The emergent spectra of accretion disk-corona systems are calculated by using the relativistic ray-tracing method. We propose a new method to calculate the emergent Comptonized spectra from the coronae. The spectra of disk-corona systems with a modified {alpha}-magnetic stress show that both the hard X-ray spectral index and the hard X-ray bolometric correction factor L{sub bol}/L{sub X,2-10keV} increase with the dimensionless mass accretion rate, which is qualitatively consistent with the observations of active galactic nuclei. The fraction of the power dissipated in the corona decreases with increasing black hole spin parameter a, which leads to lower electron temperatures of the coronae for rapidly spinning black holes. The X-ray emission from the coronae surrounding rapidly spinning black holes becomes weak and soft. The ratio of the X-ray luminosity to the optical/UV luminosity increases with the viewing angle, while the spectral shape in the X-ray band is insensitive to the viewing angle. We find that the spectral index in the infrared waveband depends on the mass accretion rate and the black hole spin a, which deviates from the f{sub {nu}}{proportional_to}{nu}{sup 1/3} relation expected by the standard thin disk model.

  9. High average power scaleable thin-disk laser

    DOEpatents

    Beach, Raymond J.; Honea, Eric C.; Bibeau, Camille; Payne, Stephen A.; Powell, Howard; Krupke, William F.; Sutton, Steven B.

    2002-01-01

    Using a thin disk laser gain element with an undoped cap layer enables the scaling of lasers to extremely high average output power values. Ordinarily, the power scaling of such thin disk lasers is limited by the deleterious effects of amplified spontaneous emission. By using an undoped cap layer diffusion bonded to the thin disk, the onset of amplified spontaneous emission does not occur as readily as if no cap layer is used, and much larger transverse thin disks can be effectively used as laser gain elements. This invention can be used as a high average power laser for material processing applications as well as for weapon and air defense applications.

  10. The spectra of relativistic accretion disks - Application to A0620-00

    NASA Technical Reports Server (NTRS)

    Fu, Albert; Taam, Ronald E.

    1990-01-01

    The X-ray flux emitted from a geometrically thin, relativistic accretion disk in the steady state approximation is investigated in order to place limits on the quiescent state mass flow rate in the soft X-ray transient black hole candidate source A0620-00. Specific attention is focused on the effects associated with gravitational redshifts, Doppler shifts, and on the enhancement of the apparent accretion disk area due to gravitational light bending on the continuum spectrum. It is found that the upper limit to the mass flow rate within the inner regions of the disk, constrained by the lack of soft X-rays in the quiescent state, is about 2.8 x 10 to the -11th solar mass/yr for black hole masses greater than about 5.4 solar mass. The optical data are consistent with these upper limits provided that the inclination angle of the binary system is less than about 65 deg. The upper limits and the lack of a hard X-ray flux, together, suggest that the soft X-ray transient model based upon a mass transfer instability situated in the stellar envelope of the companion is inapplicable to A0620-00.

  11. Thin accretion disks in f(R) modified gravity models

    SciTech Connect

    Pun, C. S. J.; Harko, T.; Kovacs, Z.

    2008-07-15

    We consider the basic physical properties of matter forming a thin accretion disc in the static and spherically symmetric space-time metric of the vacuum f(R) modified gravity models. The Lagrangian of the generalized gravity theory is also obtained in a parametric form, and the conditions of the viability of the model are also discussed. The exact Schwarzschild-type solution of the gravitational field equations in the f(R) gravity contains a linearly increasing term, as well as a logarithmic correction, as compared to the standard Schwarzschild solution of general relativity, and it depends on four arbitrary integration constants. The energy flux and the emission spectrum from the accretion disk around the f(R) gravity black holes are obtained, and they are compared to the general relativistic case. Particular signatures can appear in the electromagnetic spectrum, thus leading to the possibility of directly testing modified gravity models by using astrophysical observations of the emission spectra from accretion disks.

  12. An upper limit to the electrodynamic power output from a thin accretion disk around a black hole

    NASA Technical Reports Server (NTRS)

    Park, Seok Jae; Vishniac, Ethan T.

    1994-01-01

    We examine the electrodynamic power output from a thin accretion disk surrounding a Kerr black hole. We derive an upper limit for the total power. We find that this limit is only moderately sensitive to most of the relativistic correction factors. In fact, this limit is less sensitive to the change in the black hole spin than one would expect from the change in the inner radius of the accretion disk. The disk around a rapidly rotating black hole will produce more nonthermal radiation than a similar disk around a slowly rotating black hole of identical mass, but the difference is only a factor of approximately 1.7.

  13. NEUTRINO SPECTRA FROM ACCRETION DISKS: NEUTRINO GENERAL RELATIVISTIC EFFECTS AND THE CONSEQUENCES FOR NUCLEOSYNTHESIS

    SciTech Connect

    Caballero, O. L.; McLaughlin, G. C.; Surman, R. E-mail: olcaball@ncsu.edu E-mail: surmanr@union.edu

    2012-02-01

    Black hole (BH) accretion disks have been proposed as good candidates for a range of interesting nucleosynthesis, including the r-process. The presence of the BH influences the neutrino fluxes and affects the nucleosynthesis resulting from the interaction of the emitted neutrinos and hot outflowing material ejected from the disk. We study the impact of general relativistic effects on the neutrinos emitted from BH accretion disks. We present abundances obtained by considering null geodesics and energy shifts for two different disk models. We find that both the bending of the neutrino trajectories and the energy shifts have important consequences for the nucleosynthetic outcome.

  14. Thermal stability of a thin disk with magnetically driven winds

    SciTech Connect

    Li, Shuang-Liang; Begelman, Mitchell C. E-mail: mitch@jila.colorado.edu

    2014-05-01

    The absence of thermal instability in the high/soft state of black hole X-ray binaries, in disagreement with the standard thin disk theory, has been a long-standing riddle for theoretical astronomers. We have tried to resolve this question by studying the thermal stability of a thin disk with magnetically driven winds in the M-dot −Σ plane. It is found that disk winds can greatly decrease the disk temperature and thus help the disk become more stable at a given accretion rate. The critical accretion rate, M-dot {sub crit}, corresponding to the thermal instability threshold, is significantly increased in the presence of disk winds. For α = 0.01 and B {sub φ} = 10B {sub p}, the disk is quite stable even for a very weak initial poloidal magnetic field [β{sub p,0}∼2000,β{sub p}=(P{sub gas}+P{sub rad})/(B{sub p}{sup 2}/8π)]. However, when B {sub φ} = B {sub p} or B {sub φ} = 0.1B {sub p}, a somewhat stronger (but still weak) field (β{sub p,} {sub 0} ∼ 200 or β{sub p,} {sub 0} ∼ 20) is required to make the disk stable. Nevertheless, despite the great increase of M-dot {sub crit}, the luminosity threshold, corresponding to instability, remains almost constant or decreases slowly with increasing M-dot {sub crit} due to decreased gas temperature. The advection and diffusion timescales of the large-scale magnetic field threading the disk are also investigated in this work. We find that the advection timescale can be smaller than the diffusion timescale in a disk with winds, because the disk winds take away most of the gravitational energy released in the disk, resulting in the decrease of the magnetic diffusivity η and the increase of the diffusion timescale.

  15. Precise curvature measurement of Yb:YAG thin disk

    NASA Astrophysics Data System (ADS)

    Muzik, Jiri; Chyla, Michal; Nagisetty, Siva S.; Miura, Taisuke; Mann, Klaus; Endo, Akira; Mocek, Tomas

    2015-01-01

    We are developing an Yb:YAG thin disk regenerative amplifier operating at 1 kHz repetition rate which should deliver output of 100 W of average power which corresponds to the pulse energy of 100 mJ. In order to achieve such high output energy, large size mode matching on a thin-disk is required to avoid optical damage but on the other hand, larger mode area is more susceptible to the influence of optical phase distortions (OPD's) thus limits achievable pulse energy and beam quality. We developed a compact setup allowing precise measurement of the thin-disk deformations by implementation of a Hartmann-Shack wavefront sensor and a single mode probe laser diode. In comparison to the interferometric measurement methods, our approach brings a number of advantages like simplicity of alignment, compactness and robustness, at the same time keeping the high precision of measurement in a range of few nanometers.

  16. Consequences of Relativistic Neutron Outflow beyond the Accretion Disks of Active Galaxies

    NASA Astrophysics Data System (ADS)

    Ekejiuba, I. E.; Okeke, P. N.

    1993-05-01

    Three channels of relativistic electron injection in the jets of extragalactic radio sources (EGRSs) are discussed. With the assumption that an active galactic nucleus (AGN) is powered by a spinning supermassive black hole of mass ~ 10(8) M_⊙ which sits at the center of the nucleus and ingests matter and energy through an accretion disk, a model for extracting relativistic neutrons from the AGN is forged. In this model, the inelastic proton--proton and proton--photon interactions within the accretion disk, of relativistic protons with background thermal protons and photons, respectively, produce copious amounts of relativistic neutrons. These neutrons travel ballistically for ~ 10(3gamma_n ) seconds and escape from the disk before they decay. The secondary particles produced from the neutron decays then interact with the ambient magnetic field and/or other particles to produce the radio emissions observed in the jets of EGRSs. IEE acknowledges the support of the World Bank and the Federal University of Technology, Yola, Nigeria as well as the hospitality of Georgia State University.

  17. THE LARGE-SCALE MAGNETIC FIELDS OF THIN ACCRETION DISKS

    SciTech Connect

    Cao Xinwu; Spruit, Hendrik C. E-mail: henk@mpa-garching.mpg.de

    2013-03-10

    Large-scale magnetic field threading an accretion disk is a key ingredient in the jet formation model. The most attractive scenario for the origin of such a large-scale field is the advection of the field by the gas in the accretion disk from the interstellar medium or a companion star. However, it is realized that outward diffusion of the accreted field is fast compared with the inward accretion velocity in a geometrically thin accretion disk if the value of the Prandtl number P{sub m} is around unity. In this work, we revisit this problem considering the angular momentum of the disk to be removed predominantly by the magnetically driven outflows. The radial velocity of the disk is significantly increased due to the presence of the outflows. Using a simplified model for the vertical disk structure, we find that even moderately weak fields can cause sufficient angular momentum loss via a magnetic wind to balance outward diffusion. There are two equilibrium points, one at low field strengths corresponding to a plasma-beta at the midplane of order several hundred, and one for strong accreted fields, {beta} {approx} 1. We surmise that the first is relevant for the accretion of weak, possibly external, fields through the outer parts of the disk, while the latter one could explain the tendency, observed in full three-dimensional numerical simulations, of strong flux bundles at the centers of disk to stay confined in spite of strong magnetororational instability turbulence surrounding them.

  18. Nondissipative saturation of the magnetorotational instability in thin disks.

    PubMed

    Liverts, Edward; Shtemler, Yuri; Mond, Michael; Umurhan, Orkan M; Bisikalo, Dmitry V

    2012-11-30

    A new nondissipative mechanism is proposed for the saturation of the axisymmetric magnetorotational (MRI) instability in thin Keplerian disks that are subject to an axial magnetic field. That mechanism relies on the energy transfer from the MRI to stable magnetosonic waves. Such mode interaction is enabled due to the vertical stratification of the disk that results in the discretization of its MRI spectrum, as well as by applying the appropriate boundary conditions. A second order Duffing-like amplitude equation for the initially unstable MRI modes is derived. The solutions of that equation exhibit bursty nonlinear oscillations with a constant amplitude that signifies the saturation level of the MRI. Those results are verified by a direct numerical solution of the full nonlinear reduced set of thin disk magnetohydrodynamics equations. PMID:23368127

  19. Slip effect for thin liquid film on a rotating disk

    NASA Astrophysics Data System (ADS)

    Yanagisawa, Masahiro

    1987-02-01

    A flow for thin liquid films on rotating disks has been theoretically and experimentally studied. Liquid depletion behavior during a spin-coating process is calculated by solving the Navier-Stokes equation, taking into account interface slip between liquid and disk. Excellent agreement is seen between the model prediction and experimental data. According to observed depletion behavior on thin liquid films for various spin-coating parameters, half life falls off at the inverse square of rotational speed, and increases when viscosity increases, although the increasing rate falls off. The interface slip, represented as an external friction coefficient, is thermodynamically explained by the different (Δrc) in critical surface tension (rc) values between the liquid and the disk, which will be proportional to the solubility parameter. An infinite external friction coefficient, representing nonslip flow, may be given, when Δrc is zero. Spin-off experiments for liquids of various rc values, prepared by differing surface treatments, support this consideration.

  20. Electromagnetic signatures of thin accretion disks in wormhole geometries

    SciTech Connect

    Harko, Tiberiu; Kovacs, Zoltan; Lobo, Francisco S. N.

    2008-10-15

    In this paper, we study the physical properties and characteristics of matter forming thin accretion disks in static and spherically symmetric wormhole spacetimes. In particular, the time averaged energy flux, the disk temperature, and the emission spectra of the accretion disks are obtained for these exotic geometries and are compared with the Schwarzschild solution. It is shown that more energy is emitted from the disk in a wormhole geometry than in the case of the Schwarzschild potential and the conversion efficiency of the accreted mass into radiation is more than a factor of 2 higher for the wormholes than for static black holes. These effects in the disk radiation are confirmed in the radial profiles of temperature corresponding to theses flux distributions, and in the emission spectrum {omega}L({omega}) of the accretion disks. We conclude that specific signatures appear in the electromagnetic spectrum, thus leading to the possibility of distinguishing wormhole geometries by using astrophysical observations of the emission spectra from accretion disks.

  1. On Relativistic Disk Spectroscopy in Compact Objects with X-ray CCD Cameras

    NASA Astrophysics Data System (ADS)

    Miller, J. M.; D'Aì, A.; Bautz, M. W.; Bhattacharyya, S.; Burrows, D. N.; Cackett, E. M.; Fabian, A. C.; Freyberg, M. J.; Haberl, F.; Kennea, J.; Nowak, M. A.; Reis, R. C.; Strohmayer, T. E.; Tsujimoto, M.

    2010-12-01

    X-ray charge-coupled devices (CCDs) are the workhorse detectors of modern X-ray astronomy. Typically covering the 0.3-10.0 keV energy range, CCDs are able to detect photoelectric absorption edges and K shell lines from most abundant metals. New CCDs also offer resolutions of 30-50 (E/ΔE), which is sufficient to detect lines in hot plasmas and to resolve many lines shaped by dynamical processes in accretion flows. The spectral capabilities of X-ray CCDs have been particularly important in detecting relativistic emission lines from the inner disks around accreting neutron stars and black holes. One drawback of X-ray CCDs is that spectra can be distorted by photon "pile-up," wherein two or more photons may be registered as a single event during one frame time. We have conducted a large number of simulations using a statistical model of photon pile-up to assess its impacts on relativistic disk line and continuum spectra from stellar-mass black holes and neutron stars. The simulations cover the range of current X-ray CCD spectrometers and operational modes typically used to observe neutron stars and black holes in X-ray binaries. Our results suggest that severe photon pile-up acts to falsely narrow emission lines, leading to falsely large disk radii and falsely low spin values. In contrast, our simulations suggest that disk continua affected by severe pile-up are measured to have falsely low flux values, leading to falsely small radii and falsely high spin values. The results of these simulations and existing data appear to suggest that relativistic disk spectroscopy is generally robust against pile-up when this effect is modest.

  2. Binary Black Holes, Accretion Disks and Relativistic Jets: Photocenters of Nearby AGN and Quasars

    NASA Technical Reports Server (NTRS)

    Wehrle, Ann E.; Jones, Dayton L.; Meier, David L.; Piner, B. Glenn; Unwin, Stephen C.

    2004-01-01

    One of the most challenging questions in astronomy today is to understand the origin, structure, and evolution of the central engines in the nuclei of quasars and active galaxies (AGNs). The favoured theory involves the activation of relativistic jets from the fueling of a supermassive black hole through an accretion disk. In some AGN an outer optically thick, dusty torus is seen orbiting the black hole system. This torus is probably related to an inner accretion disk - black hole system that forms the actual powerhouse of the AGN. In radio-loud AGN two oppositely-directed radio jets are ejected perpendicular to the torus/disk system. Although there is a wealth of observational data on AGN, some very basic questions have not been definitively answered. The Space Interferometry Mission (SIM) will address the following three key questions about AGN. 1) Does the most compact optical emission from an AGN come from an accretion disk or from a relativistic jet? 2) Does the separation of the radio core and optical photocenter of the quasars used for the reference frame tie, change on the timescales of their photometric variability, or is the separation stable at the level of a few microarcseconds? 3) Do the cores of galaxies harbor binary supermassive black holes remaining from galaxy mergers? It is not known whether such mergers are common, and whether binaries would persist for a significant time.

  3. Milky Way's thick and thin disk: Is there a distinct thick disk?

    NASA Astrophysics Data System (ADS)

    Kawata, D.; Chiappini, C.

    2016-09-01

    This article is based on our discussion session on Milky Way models at the 592 WE-Heraeus Seminar, Reconstructing the Milky Way's History: Spectroscopic Surveys, Asteroseismology and Chemodynamical Models. The discussion focused on the following question: "Are there distinct thick and thin disks?". The answer to this question depends on the definition one adopts for thin and thick disks. The participants of this discussion converged to the idea that there are at least two different types of disks in the Milky Way. However, there are still important open questions on how to best define these two types of disks (chemically, kinematically, geometrically or by age?). The question of what is the origin of the distinct disks remains open. The future Galactic surveys which are highlighted in this conference should help us answering these questions. The almost one-hour debate involving researchers in the field representing different modelling approaches (Galactic models such as TRILEGAL, Besançon and Galaxia, chemical evolution models, extended distribution functions method, chemodynamics in the cosmological context, and self-consistent cosmological simulations) illustrated how important is to have all these parallel approaches. All approaches have their advantages and shortcomings (also discussed), and different approaches are useful to address specific points that might help us answering the more general question above.

  4. Thin accretion disks onto brane world black holes

    SciTech Connect

    Pun, C. S. J.; Harko, T.; Kovacs, Z.

    2008-10-15

    The brane-world description of our universe entails a large extra dimension and a fundamental scale of gravity that might be lower by several orders of magnitude as compared to the Planck scale. An interesting consequence of the brane-world scenario is in the nature of the vacuum solutions of the brane gravitational field equations, with properties quite distinct as compared to the standard black-hole solutions of general relativity. One possibility of observationally discriminating between different types of black holes is the study of the emission properties of the accretion disks. In the present paper we obtain the energy flux, the emission spectrum and accretion efficiency from the accretion disks around several classes of static and rotating brane-world black holes, and we compare them to the general relativistic case. Particular signatures can appear in the electromagnetic spectrum, thus leading to the possibility of directly testing extra-dimensional physical models by using astrophysical observations of the emission spectra from accretion disks.

  5. Electrodeposited Co-Pt thin films for magnetic hard disks

    NASA Astrophysics Data System (ADS)

    Bozzini, B.; De Vita, D.; Sportoletti, A.; Zangari, G.; Cavallotti, P. L.; Terrenzio, E.

    1993-03-01

    ew baths for Co-Pt electrodeposition have been developed and developed and ECD thin films (≤0.3μm) have been prepared and characterized structurally (XRD), morphologically (SEM), chemically (EDS) and magnetically (VSM); their improved corrosion, oxidation and wear resistance have been ascertained. Such alloys appear suitable candidates for magnetic storage systems, from all technological viewpoints. The originally formulated baths contain Co-NH 3-citrate complexes and Pt-p salt (Pt(NH 3) 2(NO 2) 2). Co-Pt thin films of fcc structure are deposited obtaining microcrystallites of definite composition. At Pt ⋍ 30 at% we obtain fcc films with a=0.369 nm, HC=80 kA m, and high squareness; increasing Co and decreasing Pt content in the bath it is possible to reduce the Pt content of the deposit, obtaining fcc structures containing two types of microcrystals with a = 0.3615 nm and a = 0.369 nm deposited simultaneously. NaH 2PO 2 additions to the bath have a stabilizing influence on the fcc structure of a = 0.3615 nm, Pt ⋍ 20 at% and HC as high as 200 kA/m, with hysteresis loops suitable for both longitudinal or perpendicular recording, depending on the thickness. We have prepared 2.5 in. hard disks for magnetic recording with ECD Co-Pt 20 at% with a polished and texturized ACD Ni-P underlayer. Pulse response, 1F & 2F frequency and frequency sweep response behaviour, as well as noise and overwrite characteristics have been measured for both our disks and high-standard sputtered Co-Cr-Ta production disks, showin improved D50 for Co-Pt ECD disks. The signal-to-noise ratio could be improved by pulse electrodeposition and etching post-treatments.

  6. MEASURING THE SPIN OF GRS 1915+105 WITH RELATIVISTIC DISK REFLECTION

    SciTech Connect

    Blum, J. L.; Miller, J. M.; Cackett, E. M.; Fabian, A. C.; Reis, R. C.; Miller, M. C.; Homan, J.; Van der Klis, M.

    2009-11-20

    GRS 1915+105 harbors one of the most massive known stellar black holes in the Galaxy. In 2007 May, we observed GRS 1915+105 for approx117 ks in the low/hard state using Suzaku. We collected and analyzed the data with the Hard X-ray Detector/Positive Intrinsic Negative and X-ray Spectrometer cameras spanning the energy range from 2.3 to 55 keV. Fits to the spectra with simple models reveal strong disk reflection through an Fe K emission line and a Compton backscattering hump. We report constraints on the spin parameter of the black hole in GRS 1915 + 105 using relativistic disk reflection models. The model for the soft X-ray spectrum (i.e., < 10 keV) suggests a-hat=0.56{sup +0.02}{sub -0.02} and excludes zero spin at the 4sigma level of confidence. The model for the full broadband spectrum suggests that the spin may be higher, a-hat=0.98{sup +0.01}{sub =0.01} (1sigma confidence), and again excludes zero spin at the 2sigma level of confidence. We discuss these results in the context of other spin constraints and inner disk studies in GRS 1915 + 105.

  7. NEAR-INFRARED DETECTION OF A SUPER-THIN DISK IN NGC 891

    SciTech Connect

    Schechtman-Rook, Andrew; Bershady, Matthew A.

    2013-08-10

    We probe the disk structure of the nearby, massive, edge-on spiral galaxy NGC 891 with subarcsecond resolution JHK{sub s}-band images covering {approx} {+-}10 kpc in radius and {+-}5 kpc in height. We measure intrinsic surface brightness (SB) profiles using realistic attenuation corrections constrained from near- and mid-infrared (Spitzer) color maps and three-dimensional Monte Carlo radiative-transfer models. In addition to the well-known thin and thick disks, a super-thin disk with 60-80 pc scale-height-comparable to the star-forming disk of the Milky Way-is visibly evident and required to fit the attenuation-corrected light distribution. Asymmetries in the super-thin disk light profile are indicative of young, hot stars producing regions of excess luminosity and bluer (attenuation-corrected) near-infrared color. To fit the inner regions of NGC 891, these disks must be truncated within {approx}3 kpc, with almost all their luminosity redistributed in a bar-like structure 50% thicker than the thin disk. There appears to be no classical bulge but rather a nuclear continuation of the super-thin disk. The super-thin, thin, thick, and bar components contribute roughly 30%, 42%, 13%, and 15% (respectively) to the total K{sub s}-band luminosity. Disk axial ratios (length/height) decrease from 30 to 3 from super-thin to thick components. Both exponential and sech{sup 2} vertical SB profiles fit the data equally well. We find that the super-thin disk is significantly brighter in the K{sub s}-band than typically assumed in integrated spectral energy distribution models of NGC 891: it appears that in these models the excess flux, likely produced by young stars in the super-thin disk, has been mistakenly attributed to the thin disk.

  8. General relativistic hydrodynamics with viscosity: Contraction, catastrophic collapse, and disk formation in hypermassive neutron stars

    NASA Astrophysics Data System (ADS)

    Duez, Matthew D.; Liu, Yuk Tung; Shapiro, Stuart L.; Stephens, Branson C.

    2004-05-01

    Viscosity and magnetic fields drive differentially rotating stars toward uniform rotation, and this process has important consequences in many astrophysical contexts. For example, merging binary neutron stars can form a “hypermassive” remnant, i.e., a differentially rotating star with a mass greater than would be possible for a uniformly rotating star. The removal of the centrifugal support provided by differential rotation can lead to delayed collapse of the remnant to a black hole, accompanied by a delayed burst of gravitational radiation. Both magnetic fields and viscosity alter the structure of differentially rotating stars on secular time scales, and tracking this evolution presents a strenuous challenge to numerical hydrodynamic codes. Here, we present the first evolutions of rapidly rotating stars with shear viscosity in full general relativity. We self-consistently include viscosity in our relativistic hydrodynamic code by solving the fully relativistic Navier-Stokes equations. We perform these calculations both in axisymmetry and in full 3+1 dimensions. In axisymmetry, the resulting reduction in computational costs allows us to follow secular evolution with high resolution over dozens of rotation periods (thousands of M). We find that viscosity operating in a hypermassive star generically leads to the formation of a compact, uniformly rotating core surrounded by a low-density disk. These uniformly rotating cores are often unstable to gravitational collapse. We follow the collapse in such cases and determine the mass and the spin of the final black hole and ambient disk. However, viscous braking of differential rotation in hypermassive neutron stars does not always lead to catastrophic collapse, especially when viscous heating is substantial. The stabilizing influences of viscous heating, which generates enhanced thermal pressure, and centrifugal support prevent collapse in some cases, at least until the star cools. In all cases studied, the rest mass

  9. General-relativistic versus Newtonian: Geometric dragging and dynamic antidragging in stationary self-gravitating disks in the first post-Newtonian approximation

    NASA Astrophysics Data System (ADS)

    Jaranowski, Piotr; Mach, Patryk; Malec, Edward; Piróg, Michał

    2015-01-01

    We evaluate general-relativistic effects in the motion of stationary self-gravitating accretion disks around a Schwarzschild black hole, assuming the first post-Newtonian (1PN) approximation. There arises an integrability condition that leads to the emergence of two types of general-relativistic corrections to a Newtonian rotation curve. The well-known geometric dragging of frames accelerates rotation, but the hitherto unknown dynamic term, that reflects the disk structure, decelerates rotation. The net result can diminish the Newtonian angular velocity of rotation in a central disk zone, but the geometric dragging of frames dominates in the disk boundary zone. Both effects are nonlinear in nature, and they disappear in the limit of test fluids. Dust disks can only be geometrically dragged, while uniformly rotating gaseous disks are untouched at the 1PN order. General-relativistic contributions can strongly affect rotation periods in Keplerian motion for compact systems.

  10. Continuous-wave and modelocked Yb:YCOB thin disk laser: first demonstration and future prospects.

    PubMed

    Heckl, O H; Kränkel, C; Baer, C R E; Saraceno, C J; Südmeyer, T; Petermann, K; Huber, G; Keller, U

    2010-08-30

    Yb:YCOB is a very attractive material for femtosecond pulse generation given its broad emission bandwidth. We demonstrate continuous-wave power scaling in the thin disk geometry to the 100-W level with a 40% optical-to-optical efficiency in multi-mode operation. Furthermore, we present initial modelocking results in the thin disk geometry, achieving pulse durations as short as 270 fs. The modelocked average power is, however, limited to less than 5 W because of transverse mode degradation. This is caused by anisotropic thermal aberrations in the 15% Yb-doped thin disks which were 300 to 400 µm thick. This result confirms the potential of Yb:YCOB to generate short femtosecond pulses in the thin disk geometry but also makes clear that significantly thinner disks are required to overcome the thermal limitations for high power operation.

  11. Powerful 100-fs-scale Kerr-lens mode-locked thin-disk oscillator.

    PubMed

    Brons, Jonathan; Pervak, Vladimir; Bauer, Dominik; Sutter, Dirk; Pronin, Oleg; Krausz, Ferenc

    2016-08-01

    We have recently demonstrated a simple power scaling procedure for Kerr-lens mode-locked thin-disk oscillators. Here we report on the extension of this scheme to a broadband high-peak-power thin-disk oscillator, delivering 140-fs pulses with a peak and average power of 62 MW and 155 W, respectively. This result shows that reaching the emission bandwidth of the gain material in Kerr-lens mode-locked thin-disk oscillators is feasible without sacrificing output power, efficiency, or stability by relying on high intracavity nonlinearities.

  12. The power of relativistic jets is larger than the luminosity of their accretion disks.

    PubMed

    Ghisellini, G; Tavecchio, F; Maraschi, L; Celotti, A; Sbarrato, T

    2014-11-20

    Theoretical models for the production of relativistic jets from active galactic nuclei predict that jet power arises from the spin and mass of the central supermassive black hole, as well as from the magnetic field near the event horizon. The physical mechanism underlying the contribution from the magnetic field is the torque exerted on the rotating black hole by the field amplified by the accreting material. If the squared magnetic field is proportional to the accretion rate, then there will be a correlation between jet power and accretion luminosity. There is evidence for such a correlation, but inadequate knowledge of the accretion luminosity of the limited and inhomogeneous samples used prevented a firm conclusion. Here we report an analysis of archival observations of a sample of blazars (quasars whose jets point towards Earth) that overcomes previous limitations. We find a clear correlation between jet power, as measured through the γ-ray luminosity, and accretion luminosity, as measured by the broad emission lines, with the jet power dominating the disk luminosity, in agreement with numerical simulations. This implies that the magnetic field threading the black hole horizon reaches the maximum value sustainable by the accreting matter.

  13. The power of relativistic jets is larger than the luminosity of their accretion disks.

    PubMed

    Ghisellini, G; Tavecchio, F; Maraschi, L; Celotti, A; Sbarrato, T

    2014-11-20

    Theoretical models for the production of relativistic jets from active galactic nuclei predict that jet power arises from the spin and mass of the central supermassive black hole, as well as from the magnetic field near the event horizon. The physical mechanism underlying the contribution from the magnetic field is the torque exerted on the rotating black hole by the field amplified by the accreting material. If the squared magnetic field is proportional to the accretion rate, then there will be a correlation between jet power and accretion luminosity. There is evidence for such a correlation, but inadequate knowledge of the accretion luminosity of the limited and inhomogeneous samples used prevented a firm conclusion. Here we report an analysis of archival observations of a sample of blazars (quasars whose jets point towards Earth) that overcomes previous limitations. We find a clear correlation between jet power, as measured through the γ-ray luminosity, and accretion luminosity, as measured by the broad emission lines, with the jet power dominating the disk luminosity, in agreement with numerical simulations. This implies that the magnetic field threading the black hole horizon reaches the maximum value sustainable by the accreting matter. PMID:25409827

  14. Direct liquid cooled Nd:YLF thin disk laser with unstable resonator

    NASA Astrophysics Data System (ADS)

    Ye, Zhibin; Cai, Zhen; Tu, Bo; Wang, Ke; Gao, Qingsong; Tang, Chun; Liu, Chong

    2015-10-01

    A large-aperture Nd:YLF thin disk laser oscillator is demonstrated, in which the refractive index matching liquid is used as the coolant flowing in narrow channels to cool the multiple thin disks directly. A high uniformity of pump intensity distribution is realized by using waveguides. With the a-cut Nd:YLF thin disks at different doping levels, a linearly polarized laser with the maximum output energy of 346 mJ is achieved with the repetition of 350 Hz, corresponding to an optical-optical efficiency of 8.7%, and a slope efficiency of 10%. The beam quality β factor is estimated less than 8 in the horizontal direction due to the positive branch confocal unstable resonator. To the best of our knowledge, it is the first time that the direct-liquid-cooled Nd:YLF thin disk unstable resonator is reported.

  15. Near fundamental mode 1.1 kW Yb:YAG thin-disk laser.

    PubMed

    Peng, Yuan Han; Lim, Yu Xian; Cheng, James; Guo, Yipei; Cheah, Yan Ying; Lai, Kin Seng

    2013-05-15

    We report on a Yb:YAG thin-disk laser with 1.1 kW output power and beam quality factor M²<1.4 using a simple stable resonator comprising just a single cavity mirror and a single thin disk, without the use of any aspherical elements or any adaptive optics. An optical-to-optical efficiency of 40% was obtained. The cavity was designed to give good beam quality and low misalignment sensitivity to maintain stable and robust laser operation throughout the changes in the thin-disk curvature. To the best of the authors' knowledge, this is the first time an output power beyond 1 kW has been achieved from a single thin-disk laser in near fundamental mode operation (M²<1.4).

  16. Time-resolved deformation measurement of Yb:YAG thin disk using wavefront sensor

    NASA Astrophysics Data System (ADS)

    Chyla, Michal; Nagisetty, Shiva S.; Severova, Patricie; Miura, Taisuke; Mann, Klaus; Endo, Akira; Mocek, Tomas

    2015-03-01

    Even though thin-disk medium mounted on a diamond substrate is generally used for high average power operation, we found that the pulsed pumping of the Yb:YAG thin-disk mounded on a copper-tungsten heatsink could improve both optical-to-optical O-O efficiency and beam quality. We are expecting that the increase of O-O efficiency is caused by the suppression of ASE. However, the mechanism of beam quality improvement is not clear. We developed a precise measurement system of thin-disk deformations based on a Hartmann-Shack wavefront sensor. Investigating thin-disk dynamics under pulsed pumping can help to greatly improve the mode matching and allow obtaining higher output energy.

  17. Frequency comb offset dynamics of SESAM modelocked thin disk lasers.

    PubMed

    Emaury, Florian; Diebold, Andreas; Klenner, Alexander; Saraceno, Clara J; Schilt, Stéphane; Südmeyer, Thomas; Keller, Ursula

    2015-08-24

    We present a detailed study of the carrier-envelope offset (CEO) frequency dynamics of SESAM modelocked thin disk lasers (TDLs) pumped by kW-class highly transverse multimode pump diodes with a typical M(2) value of 200-300, and give guidelines for future frequency stabilization of multi-100-W oscillators. We demonstrate CEO frequency detection with > 30 dB signal-to-noise ratio with a resolution bandwidth of 100 kHz from a SESAM modelocked Yb:YAG TDL delivering 140 W average output power with 748-fs pulses at 7-MHz pulse repetition rate. We compare with a low-power CEO frequency stabilized Yb:CALGO TDL delivering 2.1 W with 77-fs pulses at 65 MHz. For both lasers, we perform a complete noise characterization, measure the relevant transfer functions (TFs) and compare them to theoretical models. The measured TFs are used to determine the propagation of the pump noise step-by-step through the system components. From the noise propagation analysis, we identify the relative intensity noise (RIN) of the pump diode as the main contribution to the CEO frequency noise. The resulting noise levels are not excessive and do not prevent CEO frequency stabilization. More importantly, the laser cavity dynamics are shown to play an essential role in the CEO frequency dynamics. The cavity TFs of the two lasers are very different which explains why at this point a tight CEO frequency lock can be obtained with the Yb:CALGO TDL but not with the Yb:YAG TDL. For CEO stabilization laser cavities should exhibit high damping of the relaxation oscillations by nonlinear intra-cavity elements, for example by operating a SESAM in the roll-over regime. Therefore the optimum SESAM operation point is a trade-off between enough damping and avoiding multiple pulsing instabilities. Additional cavity components could be considered for supplementary damping independent of the SESAM operation point.

  18. Frequency comb offset dynamics of SESAM modelocked thin disk lasers.

    PubMed

    Emaury, Florian; Diebold, Andreas; Klenner, Alexander; Saraceno, Clara J; Schilt, Stéphane; Südmeyer, Thomas; Keller, Ursula

    2015-08-24

    We present a detailed study of the carrier-envelope offset (CEO) frequency dynamics of SESAM modelocked thin disk lasers (TDLs) pumped by kW-class highly transverse multimode pump diodes with a typical M(2) value of 200-300, and give guidelines for future frequency stabilization of multi-100-W oscillators. We demonstrate CEO frequency detection with > 30 dB signal-to-noise ratio with a resolution bandwidth of 100 kHz from a SESAM modelocked Yb:YAG TDL delivering 140 W average output power with 748-fs pulses at 7-MHz pulse repetition rate. We compare with a low-power CEO frequency stabilized Yb:CALGO TDL delivering 2.1 W with 77-fs pulses at 65 MHz. For both lasers, we perform a complete noise characterization, measure the relevant transfer functions (TFs) and compare them to theoretical models. The measured TFs are used to determine the propagation of the pump noise step-by-step through the system components. From the noise propagation analysis, we identify the relative intensity noise (RIN) of the pump diode as the main contribution to the CEO frequency noise. The resulting noise levels are not excessive and do not prevent CEO frequency stabilization. More importantly, the laser cavity dynamics are shown to play an essential role in the CEO frequency dynamics. The cavity TFs of the two lasers are very different which explains why at this point a tight CEO frequency lock can be obtained with the Yb:CALGO TDL but not with the Yb:YAG TDL. For CEO stabilization laser cavities should exhibit high damping of the relaxation oscillations by nonlinear intra-cavity elements, for example by operating a SESAM in the roll-over regime. Therefore the optimum SESAM operation point is a trade-off between enough damping and avoiding multiple pulsing instabilities. Additional cavity components could be considered for supplementary damping independent of the SESAM operation point. PMID:26368160

  19. Formation of Overheated Regions and Truncated Disks around Black Holes: Three-dimensional General Relativistic Radiation-magnetohydrodynamics Simulations

    NASA Astrophysics Data System (ADS)

    Takahashi, Hiroyuki R.; Ohsuga, Ken; Kawashima, Tomohisa; Sekiguchi, Yuichiro

    2016-07-01

    Using three-dimensional general relativistic radiation-magnetohydrodynamics simulations of accretion flows around stellar mass black holes, we report that the relatively cold disk (≳ {10}7 {{K}}) is truncated near the black hole. Hot and less dense regions, of which the gas temperature is ≳ {10}9 {{K}} and more than 10 times higher than the radiation temperature (overheated regions), appear within the truncation radius. The overheated regions also appear above as well as below the disk, sandwiching the cold disk, leading to the effective Compton upscattering. The truncation radius is ˜ 30{r}{{g}} for \\dot{M}˜ {L}{{Edd}}/{c}2, where {r}{{g}},\\dot{M},{L}{Edd},c are the gravitational radius, mass accretion rate, Eddington luminosity, and light speed, respectively. Our results are consistent with observations of a very high state, whereby the truncated disk is thought to be embedded in the hot rarefied regions. The truncation radius shifts inward to ˜ 10{r}{{g}} with increasing mass accretion rate \\dot{M}˜ 100{L}{{Edd}}/{c}2, which is very close to an innermost stable circular orbit. This model corresponds to the slim disk state observed in ultraluminous X-ray sources. Although the overheated regions shrink if the Compton cooling effectively reduces the gas temperature, the sandwich structure does not disappear at the range of \\dot{M}≲ 100{L}{{Edd}}/{c}2. Our simulations also reveal that the gas temperature in the overheated regions depends on black hole spin, which would be due to efficient energy transport from black hole to disks through the Poynting flux, resulting in gas heating.

  20. Why the Milky Way's bulge is not only a bar formed from a cold thin disk

    NASA Astrophysics Data System (ADS)

    Di Matteo, P.; Gómez, A.; Haywood, M.; Combes, F.; Lehnert, M. D.; Ness, M.; Snaith, O. N.; Katz, D.; Semelin, B.

    2015-05-01

    By analyzing an N-body simulation of a bulge formed simply via a bar instability mechanism operating on a kinematically cold stellar disk, and by comparing the results of this analysis with the structural and kinematic properties of the main stellar populations of the Milky Way bulge, we conclude that the bulge of our Galaxy is not a pure stellar bar formed from a pre-existing thin stellar disk, as some studies have recently suggested. On the basis of several arguments emphasized in this paper, we propose that the bulge population that, in the Milky Way, is observed to not be part of the peanut structure corresponds to the old Galactic thick disk, thus implying that the Milky Way is a pure thin+thick disk galaxy, with only a possible limited contribution by a classical bulge.

  1. Ion acceleration and plasma jet formation in ultra-thin foils undergoing expansion and relativistic transparency

    NASA Astrophysics Data System (ADS)

    King, M.; Gray, R. J.; Powell, H. W.; MacLellan, D. A.; Gonzalez-Izquierdo, B.; Stockhausen, L. C.; Hicks, G. S.; Dover, N. P.; Rusby, D. R.; Carroll, D. C.; Padda, H.; Torres, R.; Kar, S.; Clarke, R. J.; Musgrave, I. O.; Najmudin, Z.; Borghesi, M.; Neely, D.; McKenna, P.

    2016-09-01

    At sufficiently high laser intensities, the rapid heating to relativistic velocities and resulting decompression of plasma electrons in an ultra-thin target foil can result in the target becoming relativistically transparent to the laser light during the interaction. Ion acceleration in this regime is strongly affected by the transition from an opaque to a relativistically transparent plasma. By spatially resolving the laser-accelerated proton beam at near-normal laser incidence and at an incidence angle of 30°, we identify characteristic features both experimentally and in particle-in-cell simulations which are consistent with the onset of three distinct ion acceleration mechanisms: sheath acceleration; radiation pressure acceleration; and transparency-enhanced acceleration. The latter mechanism occurs late in the interaction and is mediated by the formation of a plasma jet extending into the expanding ion population. The effect of laser incident angle on the plasma jet is explored.

  2. Experimental analysis and flow visualization of a thin liquid film on a stationary and rotating disk

    NASA Technical Reports Server (NTRS)

    Thomas, S.; Faghri, A.; Hankey, W.

    1991-01-01

    The mean thickness of a thin liquid film of deionized water with a free surface on a stationary and rotating horizontal disk has been measured with a nonobtrusive capacitance technique. The measurements were taken when the rotational speed ranged from 0-300 rpm and the flow rate varied from 7.0-15.0 lpm. A flow visualization study of the thin film was also performed to determine the characteristics of the waves on the free surface. When the disk was stationary, a circular hydraulic jump was present on the disk. Upstream from the jump, the film thickness was determined by the inertial and frictional forces on the fluid, and the radial spreading of the film. The surface tension at the edge of the disk affected the film thickness downstream from the jump. For the rotating disk, the film thickness was dependent upon the inertial and frictional forces near the center of the disk and the centrifugal forces near the edge of the disk.

  3. Cryogenic Yb:YAG composite-thin-disk for high energy and average power amplifiers.

    PubMed

    Zapata, Luis E; Lin, Hua; Calendron, Anne-Laure; Cankaya, Huseyin; Hemmer, Michael; Reichert, Fabian; Huang, W Ronny; Granados, Eduardo; Hong, Kyung-Han; Kärtner, Franz X

    2015-06-01

    A cryogenic composite-thin-disk amplifier with amplified spontaneous emission (ASE) rejection is implemented that overcomes traditional laser system problems in high-energy pulsed laser drivers of high average power. A small signal gain of 8 dB was compared to a 1.5 dB gain for an uncapped thin-disk without ASE mitigation under identical pumping conditions. A strict image relayed 12-pass architecture using an off-axis vacuum telescope and polarization switching extracted 100 mJ at 250 Hz in high beam quality stretched 700 ps pulses of 0.6-nm bandwidth. PMID:26030570

  4. Efficient pump beam shaping for high-power thin-disk laser systems.

    PubMed

    Pereira, Rui; Weichelt, Birgit; Liang, Dawei; Morais, Paulo J; Gouveia, Helena; Abdou-Ahmed, Marwan; Voss, Andreas; Graf, Thomas

    2010-09-20

    We report a beam-shaping technique whereby the output power from a high-power laser-diode stack is efficiently coupled, reconfigured, and transmitted to a thin-disk laser by means of a compact optical fiber bundle. By using this technique, the power density is increased by a factor of 2 when compared to direct coupling with a octagonal fused silica rod while the numerical aperture is kept constant. Transmission efficiency of 80% was measured for the beam shaper without antireflection coating. The top-hat distribution is numerically calculated at the thin-disk laser crystal.

  5. Radially and azimuthally polarized laser beams by thin-disk laser.

    PubMed

    Aghbolaghi, Reza; Charehjolo, Habib Sahebghoran

    2016-05-01

    The generation of radially and azimuthally polarized beams is theoretically investigated in thin-disk laser configurations by writing Jones matrices for optical elements. Higher modes are omitted by aperture and the mode-selection operation is done by discontinuous phase elements. Two modes, TEM01x and TEM01y, are combined to generate the radially and azimuthally polarized laser beam. The polarization of the output beams is studied by the extended Jones matrices. In addition, the output power of the thin-disk laser is numerically estimated by solving the rate equations in ytterbium-doped materials. PMID:27140363

  6. Experiments on Heat Transfer in a Thin Liquid Film Flowing Over a Rotating Disk

    NASA Technical Reports Server (NTRS)

    Sankaran, Subramanian (Technical Monitor); Ozar, B.; Cetegen, B. M.; Faghri, A.

    2004-01-01

    An experimental study of heat transfer into a thin liquid film on a rotating heated disk is described. Deionized water was introduced at the center of a heated. horizontal disk with a constant film thickness and uniform radial velocity. Radial distribution of the disk surface temperatures was measured using a thermocouple/slip ring arrangement. Experiments were performed for a range of liquid flow rates between 3.01pm and 15.01pm. The angular speed of the disk was varied from 0 rpm to 500 rpm. The local heat transfer coefficient was determined based on the heat flux supplied to the disk and the temperature difference between the measured disk surface temperature and the liquid entrance temperature onto the disk. The local heat transfer coefficient was seen to increase with increasing flow rate as well as increasing angular velocity of the disk. Effect of rotation on heat transfer was largest for the lower liquid flow rates with the effect gradually decreasing with increasing liquid flow rates. Semi-empirical correlations are presented in this study for the local and average Nusselt numbers.

  7. Vertical dissipation profiles and the photosphere location in thin and slim accretion disks

    NASA Astrophysics Data System (ADS)

    Sadowski, A.; Abramowicz, M. A.; Bursa, M.; Kluźniak, W.; Różańska, A.; Straub, O.

    2009-07-01

    As several authors in the past, we calculate optically thick but geometrically thin (and slim) accretion disk models and perform a ray-tracing of photons in the Kerr geometry to calculate the observed disk continuum spectra. Previously, it was common practice to ray-trace photons assuming that they are emitted from the Kerr geometry equatorial plane, z = 0. We show that the continuum spectra calculated with this assumption differ from these calculated under the assumption that photons are emitted from the actual surface of the disc, z = H(r). This implies that a knowledge of the location of the thin disk effective photosphere is relevant for calculating the continuum emission. In this paper we investigate, in terms of a simple model, a possible influence of the (unknown, and therefore assumed ad hoc) vertical dissipation profiles on the vertical structure of the disk and thus on the location of the effective photosphere, and on the observed continuum spectra. For disks with moderate and high mass accretion rates (dot m > 0.01 dot m_C), we find that the photosphere location in the inner, radiation pressure dominated, disk region (where most of the radiation comes from) does not depend on the dissipation profile and therefore emerging disk spectra are insensitive to the choice of the dissipation function. For lower accretion rates, the photosphere location depends on the assumed vertical dissipation profile down to the disk inner edge, but the dependence is very weak and thus of minor importance. We conclude that the continuum spectra of optically thick accretion disks around black holes should be calculated with ray-tracing from the effective photosphere and that, fortunately, the choice of a particular vertical dissipation profile does not substantially influence the calculated emission.

  8. High-Speed Recording up to 15,000 rpm Using Thin Optical Disks

    NASA Astrophysics Data System (ADS)

    Koide, Daiichi; Takano, Yoshimichi; Tokumaru, Haruki; Onagi, Nobuaki; Aman, Yasutomo; Murata, Shozo; Sugimoto, Yasunori; Ohishi, Kiyoshi

    2008-07-01

    We propose a high-speed optical disk system using thin flexible optical disks (HS-FOD) recording up to 15,000 rpm. The thin optical disk system is composed of three technical elements: media employing a thin and flexible substrate 0.1 mm thick, a mechanical stabilizer, and a high-speed tracking servo employing a feed-forward control with zero phase error tracking (ZPET-FF control). The HS-FOD system has an optical head with numerical aperture (NA) of 0.85 and is compatible with the optical system of a Blu-ray disc or a broadcast-use optical disk. We have successfully performed disk rotation stably and have performed precisely a focus servo and a tracking servo at 15,000 rpm. We also achieved writing and reading data at 15,000 rpm and recording 252 Mbps of random pattern data and could get small values of jitter below the tolerance. These results are enough to record professional high-definition television (HDTV) video signals in formats such as HD-D5 for broadcast-use.

  9. Geometrically thin, hot accretion disks - Topology of the thermal equilibrium curves

    NASA Technical Reports Server (NTRS)

    Kusunose, Masaaki; Mineshige, Shin

    1992-01-01

    All the possible thermal equilibrium states of geometrically thin alpha-disks around stellar-mass black holes are presented. A (vertically) one-zone disk model is employed and it is assumed that a main energy source is viscous heating of protons and that cooling is due to bremsstrahlung and Compton scattering. There exist various branches of the thermal equilibrium solution, depending on whether disks are effectively optically thick or thin, radiation pressure-dominated or gas pressure-dominated, composed of one-temperature plasmas or of two-temperature plasmas, and with high concentration of e(+)e(-) pairs or without pairs. The thermal equilibrium curves at high temperatures (greater than or approximately equal to 10 exp 8 K) are substantially modified by the presence of e(+)e(-) pairs. The thermal stability of these branches are examined.

  10. THE ABUNDANCE OF FLUORINE IN NORMAL G AND K STARS OF THE GALACTIC THIN DISK

    SciTech Connect

    Pilachowski, C. A.; Pace, Cameron E-mail: cjamespace@gmail.com

    2015-09-15

    The abundance of fluorine is determined from the (2-0) R9 2.3358 μm feature of the molecule HF for several dozen normal G and K stars in the Galactic thin disk from spectra obtained with the Phoenix IR spectrometer on the 2.1 m telescope at Kitt Peak. The abundances are analyzed in the context of Galactic chemical evolution to explore the contributions of supernovae and asymptotic giant branch (AGB) stars to the abundance of fluorine in the thin disk. The average abundance of fluorine in the thin disk is found to be [F/Fe] = +0.23 ± 0.03, and the [F/Fe] ratio is flat or declines slowly with metallicity in the range from –0.6 < [Fe/H] < +0.3, within the limits of our estimated uncertainty. The measured abundance of fluorine and lack of variation with metallicity in Galactic thin disk stars suggest neutrino spallation in Type II supernovae contributes significantly to the Galactic fluorine abundance, although contributions from AGB stars may also be important.

  11. The flow of a thin liquid film on a stationary and rotating disk. II - Theoretical prediction

    NASA Technical Reports Server (NTRS)

    Rahman, M. M.; Faghri, A.; Hankey, W. L.

    1990-01-01

    The existing theoretical models are improved and a systematic procedure to compute the free surface flow of a thin liquid film is suggested. The solutions for axisymmetric radial flow on a stationary horizontal disk and for the disk rotating around its axis are presented. The theoretical predictions are compared with the experimental data presented in Part I of this report. The analysis shows results for both supercritical and subcritical flows and the flow structure in the vicinity of a hydraulic jump which isolates these two flow types. The detailed flow structure in a hydraulic jump was computed and shown to contain regions of separation including a 'surface roller'. The effects of surface tension are found to be important near the outer edge of the disk where the fluid experiences a free fall. At other locations, the surface tension is negligible. For a rotating disk, the frictional resistance in the angular direction is found to be as important as that in the radial direction.

  12. The flow of a thin liquid film on a stationary and rotating disk. I - Experimental analysis and flow visualization

    NASA Technical Reports Server (NTRS)

    Thomas, S.; Faghri, A.; Hankey, W.

    1990-01-01

    The mean thickness of a thin liquid film of deionized water with a free surface on a stationary and rotating horizontal disk has been measured with a nonobtrusive capacitance technique. The measurements were taken when the rotational speed was 0-300 RPM and the flow rate was 7.0-15.0 LPM. A flow visualization study of the thin film was also performed to determine the characteristics of the waves on the free surface. When the disk was stationary, a circular hydraulic jump was present on the disk. Surface waves were found in the supercritical and subcritical regions at all flow rates studied. When the rotational speed of the disk is low, a standing wave at the edge of the disk was present. As the rotational speed increased, the surface waves changed from the wavy-laminar region to a region in which the waves ran nearly radially across the disk on top of a thin substrate of fluid.

  13. Non-linear radial spinwave modes in thin magnetic disks

    SciTech Connect

    Helsen, M. De Clercq, J.; Vansteenkiste, A.; Van Waeyenberge, B.; Weigand, M.

    2015-01-19

    We present an experimental investigation of radial spin-wave modes in magnetic nano-disks with a vortex ground state. The spin-wave amplitude was measured using a frequency-resolved magneto-optical spectrum analyzer, allowing for high-resolution resonance curves to be recorded. It was found that with increasing excitation amplitude up to about 10 mT, the lowest-order mode behaves strongly non-linearly as the mode frequency redshifts and the resonance peak strongly deforms. This behavior was quantitatively reproduced by micromagnetic simulations. Micromagnetic simulations showed that at higher excitation amplitudes, the spinwaves are transformed into a soliton by self-focusing, and collapse onto the vortex core, dispersing the energy in short-wavelength spinwaves. Additionally, this process can lead to switching of the vortex polarization through the injection of a Bloch point.

  14. ASE in thin disk lasers: theory and experiment.

    PubMed

    Peterson, P; Gavrielides, A; Newell, T C; Vretenar, N; Latham, W P

    2011-12-01

    We derive equations for the ASE intensity, decay time, and heat load. The crux of our development is frequency integration over the gain lineshape followed by a spatial integration over the emitters. These integrations result in a gain length that is determined from experiment. We measure the gain as a function of incident pump power for a multi-pass pumped Yb:YAG disk doped at 9.8 at.% with an anti-ASE cap. The incident pump powers are up to 3kW. Our fit to the measured gain is within 10% of the measured gain up to pump powers where the gain starts to flatten out and roll over. In this comparison we extract the gain length that turns out to be 43% of the pump spot size of 7mm.

  15. Non-LTE sodium abundance in galactic thick- and thin-disk red giants

    NASA Astrophysics Data System (ADS)

    Alexeeva, S. A.; Pakhomov, Yu. V.; Mashonkina, L. I.

    2014-07-01

    The non-LTE sodium abundance has been determined from the Na I 6154 and 6161 Å lines for 38 thin-disk stars (15 of them are Ba II stars), 15 thick-disk stars, 13 Hercules-stream stars, and 13 stars that cannot be attributed neither to the thick Galactic disk nor to the thin one. The Na I model atom has been constructed using the most accurate present-day atomic data. For the Na I 6154 and 6161 Å lines, the non-LTEabundance corrections are from -0.06 to -0.24 dex, depending on the stellar parameters. No differences in [Na/Fe] abundance between the thick and thin disks have been detected; the derived ratios are close to the solar ones. The existence of a [Na/Fe] overabundance in the Ba II stars has been confirmed. The Hercules-stream stars exhibit nearly solar [Na/Fe] ratios. The results obtained can be used to test the sodium nucleosynthesis models.

  16. Large-Scale Magnetic Field in Accretion Disks and Relativistic Poynting-Flux Jets

    NASA Astrophysics Data System (ADS)

    Lovelace, R. V. E.; Bisnovatyi-Kogan, G. S.

    In earlier works we pointed out that the disk's surface layers are non-turbulent and thus highly conducting (or non-diffusive) because of hydrodynamic and/or magnetorotational (MRI) instabilities are suppressed high in the disk where the magnetic and radiation pressures are larger than the plasma thermal pressure. We have derived equations for the vertical profiles of stationary accretion flows (with radial and azimuthal components), and the profiles of the large-scale, magnetic field taking into account the turbulent viscosity and diffusivity and the fact that the turbulence vanishes at the surface of the disk. Our recent analysis in Ref. 1 shows that the inward or outward advection of the large-scale magnetic field depends on the ratio {R} of the accretion power going into magnetic disk winds to the viscous power dissipation and the plasma-β which is the ratio of the midplane plasma pressure to the magnetic pressure. Recent radio emission, polarization, and Faraday rotation maps of the radio jet of the galaxy 3C303 have been obtained in Ref. 2 and show that one component of this jet has a galactic-scale electric current of 3 × 1018 A flowing along the jet axis. We show that this current can be used to calculate the electromagnetic energy flow in this magnetically dominated jet.

  17. Thin-disk Raman laser operation of Yb:YVO4/YVO4 around 1120 nm

    NASA Astrophysics Data System (ADS)

    Yang, F. G.; Qiao, L.; Xia, Z. C.

    2015-12-01

    We present diode-pumped Yb:YVO4/YVO4 thin-disk Raman laser operation around 1120 nm. The thin-disk crystals, Yb:YVO4, and the Raman crystal, YVO4, are cut with 250 μm and 20 mm, respectively. In multimode configurations, up to 0.91 W of Raman laser output power and a maximum slope efficiency of 10% are demonstrated corresponding to a pump power of 10 W. A continuous wavelength tuning range of 54 nm from 1096 to 1150 nm with a maximum output power of 320 mW at 1126 nm is confirmed.

  18. High-power, 1-ps, all-Yb:YAG thin-disk regenerative amplifier.

    PubMed

    Fattahi, Hanieh; Alismail, Ayman; Wang, Haochuan; Brons, Jonathan; Pronin, Oleg; Buberl, Theresa; Vámos, Lénárd; Arisholm, Gunnar; Azzeer, Abdallah M; Krausz, Ferenc

    2016-03-15

    We report a 100 W, 20 mJ, 1-ps, all-Yb:YAG thin-disk regenerative amplifier seeded by a microjoule-level Yb:YAG thin-disk Kerr-lens mode-locked oscillator. The regenerative amplifier is implemented in a chirped pulse amplification system and operates at an ambient temperature in air, delivering ultrastable output pulses at a 5 kHz repetition rate and with a root mean square power noise value of less than 0.5%. Second harmonic generation of the amplifier's output in a 1.5 mm-thick BBO crystal results in more than 70 W at 515 nm, making the system an attractive source for pumping optical parametric chirped pulse amplifiers in the visible and near-infrared spectral ranges.

  19. High-power, 1-ps, all-Yb:YAG thin-disk regenerative amplifier.

    PubMed

    Fattahi, Hanieh; Alismail, Ayman; Wang, Haochuan; Brons, Jonathan; Pronin, Oleg; Buberl, Theresa; Vámos, Lénárd; Arisholm, Gunnar; Azzeer, Abdallah M; Krausz, Ferenc

    2016-03-15

    We report a 100 W, 20 mJ, 1-ps, all-Yb:YAG thin-disk regenerative amplifier seeded by a microjoule-level Yb:YAG thin-disk Kerr-lens mode-locked oscillator. The regenerative amplifier is implemented in a chirped pulse amplification system and operates at an ambient temperature in air, delivering ultrastable output pulses at a 5 kHz repetition rate and with a root mean square power noise value of less than 0.5%. Second harmonic generation of the amplifier's output in a 1.5 mm-thick BBO crystal results in more than 70 W at 515 nm, making the system an attractive source for pumping optical parametric chirped pulse amplifiers in the visible and near-infrared spectral ranges. PMID:26977650

  20. 6.5 kW, Yb:YAG Ceramic Thin Disk Laser

    SciTech Connect

    Latham, William P.; Newell, Tim C.

    2010-10-08

    The operation of a 1030 nm, single, thin disk laser which produced 6.5 kW of laser output power with 57 percent slope efficiency is reported. The Yb:YAG ceramic gain element is 200 {mu}m thick, bonded to a 1 mm, undoped, ceramic YAG cap. The gain element is pumped by diodes at 940 nm. The maximum incident pump intensity was 5 kW/cm{sup 2}, which yielded an output intensity of 2.6 kW/cm{sup 2} of multimode laser radiation. Rigrod analysis suggests that the laser operates with inhomogeneous gain saturation. This is attributed to the enhanced, spatial-hole-burning effect when the gain element is adjacent to a mirror. The pump threshold and output intensities were independent of pump spot size, which validates area scaling. Observed thermal lensing contributions include thermal-expansion-induced disk flexure, pump-edge-induced temperature profile and a strong thermal imprint of the cooling nozzle due to the direct jet impingement on the high reflection (HR) coated side. Weak absorption of the 1030 nm intracavity intensity in the undoped cap and/or the anti-reflection (AR) coating led to excess heating that limited the extracted power intensity. These results suggest ceramic Yb:YAG can be scaled to higher powers using optimized thin disk elements and improved disk thermal management techniques.

  1. The Gaia-ESO Survey: Separating disk chemical substructures with cluster models. Evidence of a separate evolution in the metal-poor thin disk

    NASA Astrophysics Data System (ADS)

    Rojas-Arriagada, A.; Recio-Blanco, A.; de Laverny, P.; Schultheis, M.; Guiglion, G.; Mikolaitis, Š.; Kordopatis, G.; Hill, V.; Gilmore, G.; Randich, S.; Alfaro, E. J.; Bensby, T.; Koposov, S. E.; Costado, M. T.; Franciosini, E.; Hourihane, A.; Jofré, P.; Lardo, C.; Lewis, J.; Lind, K.; Magrini, L.; Monaco, L.; Morbidelli, L.; Sacco, G. G.; Worley, C. C.; Zaggia, S.; Chiappini, C.

    2016-02-01

    Context. Recent spectroscopic surveys have begun to explore the Galactic disk system on the basis of large data samples, with spatial distributions sampling regions well outside the solar neighborhood. In this way, they provide valuable information for testing spatial and temporal variations of disk structure kinematics and chemical evolution. Aims: The main purposes of this study are to demonstrate the usefulness of a rigorous mathematical approach to separate substructures of a stellar sample in the abundance-metallicity plane, and provide new evidence with which to characterize the nature of the metal-poor end of the thin disk sequence. Methods: We used a Gaussian mixture model algorithm to separate in the [Mg/Fe] vs. [Fe/H] plane a clean disk star subsample (essentially at RGC< 10 kpc) from the Gaia-ESO survey (GES) internal data release 2 (iDR2). We aim at decomposing it into data groups highlighting number density and/or slope variations in the abundance-metallicity plane. An independent sample of disk red clump stars from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) was used to cross-check the identified features. Results: We find that the sample is separated into five groups associated with major Galactic components; the metal-rich end of the halo, the thick disk, and three subgroups for the thin disk sequence. This is confirmed with the sample of red clump stars from APOGEE. The three thin disk groups served to explore this sequence in more detail. The two metal-intermediate and metal-rich groups of the thin disk decomposition ([Fe/H] > -0.25 dex) highlight a change in the slope at solar metallicity. This holds true at different radial regions of the Milky Way. The distribution of Galactocentric radial distances of the metal-poor part of the thin disk ([Fe/H] < -0.25 dex) is shifted to larger distances than those of the more metal-rich parts. Moreover, the metal-poor part of the thin disk presents indications of a scale height

  2. VADER: A flexible, robust, open-source code for simulating viscous thin accretion disks

    NASA Astrophysics Data System (ADS)

    Krumholz, M. R.; Forbes, J. C.

    2015-06-01

    The evolution of thin axisymmetric viscous accretion disks is a classic problem in astrophysics. While models based on this simplified geometry provide only approximations to the true processes of instability-driven mass and angular momentum transport, their simplicity makes them invaluable tools for both semi-analytic modeling and simulations of long-term evolution where two- or three-dimensional calculations are too computationally costly. Despite the utility of these models, the only publicly-available frameworks for simulating them are rather specialized and non-general. Here we describe a highly flexible, general numerical method for simulating viscous thin disks with arbitrary rotation curves, viscosities, boundary conditions, grid spacings, equations of state, and rates of gain or loss of mass (e.g., through winds) and energy (e.g., through radiation). Our method is based on a conservative, finite-volume, second-order accurate discretization of the equations, which we solve using an unconditionally-stable implicit scheme. We implement Anderson acceleration to speed convergence of the scheme, and show that this leads to factor of ∼5 speed gains over non-accelerated methods in realistic problems, though the amount of speedup is highly problem-dependent. We have implemented our method in the new code Viscous Accretion Disk Evolution Resource (VADER), which is freely available for download from

  3. O and Fe Abundance Correlations and Distributions Inferred for the Thick and Thin Disk

    NASA Astrophysics Data System (ADS)

    Caimmi, R.

    2015-06-01

    A linear [Fe/H]-[O/H] relation is found for different stellar populations in the Galaxy (halo, thick disk, thin disk) from a data sample obtained in a recent investigation (Ramirez et al. 2013). These correlations support previous results inferred from poorer samples: stars display a "main sequence" expressed as [Fe/H] = a[O/H]+b∓Δ b where the unit slope, a=1, implies a constant [O/Fe] abundance ratio. Oxygen and iron empirical abundance distributions are then determined for different subsamples, which are well explained by the theoretical predictions of multistage closed-(box+reservoir) (MCBR) chemical evolution models taking into account the found correlations. The interpretation of these distributions in the framework of MCBR models gives us clues about inflow/outflow rates in these different Galactic regions and their corresponding evolution. Outflow rates for the thick and the thin disks are lower than the halo outflow rate. Besides that, the iron-to-oxygen yield ratio and the primary to not primary contribution ratio for the iron production are obtained from the data, resulting consistent with the SNII progenitor nucleosynthesis and with the iron production from SNIa supernova events.

  4. BREAKS IN THIN AND THICK DISKS OF EDGE-ON GALAXIES IMAGED IN THE SPITZER SURVEY OF STELLAR STRUCTURE IN GALAXIES (S{sup 4}G)

    SciTech Connect

    Comeron, Sebastien; Salo, Heikki; Laurikainen, Eija; Laine, Jarkko; Elmegreen, Bruce G.; Athanassoula, E.; Bosma, Albert; Knapen, Johan H.; Gadotti, Dimitri A.; Sheth, Kartik; Munoz-Mateos, Juan Carlos; Kim, Taehyun; Hinz, Joannah L.; Regan, Michael W.; Gil de Paz, Armando; Menendez-Delmestre, Karin; Seibert, Mark; Ho, Luis C.; Mizusawa, Trisha; Holwerda, Benne

    2012-11-10

    Breaks in the radial luminosity profiles of galaxies have until now been mostly studied averaged over disks. Here, we study separately breaks in thin and thick disks in 70 edge-on galaxies using imaging from the Spitzer Survey of Stellar Structure in Galaxies. We built luminosity profiles of the thin and thick disks parallel to midplanes and we found that thin disks often truncate (77%). Thick disks truncate less often (31%), but when they do, their break radius is comparable with that in the thin disk. This suggests either two different truncation mechanisms-one of dynamical origin affecting both disks simultaneously and another one only affecting the thin disk-or a single mechanism that creates a truncation in one disk or in both depending on some galaxy property. Thin disks apparently antitruncate in around 40% of galaxies. However, in many cases, these antitruncations are an artifact caused by the superposition of a thin disk and a thick disk, with the latter having a longer scale length. We estimate the real thin disk antitruncation fraction to be less than 15%. We found that the ratio of the thick and thin stellar disk mass is roughly constant (0.2 < M{sub T} /M{sub t} < 0.7) for circular velocities v{sub c} > 120 km s{sup -1}, but becomes much larger at smaller velocities. We hypothesize that this is due to a combination of a high efficiency of supernova feedback and a slower dynamical evolution in lower-mass galaxies causing stellar thin disks to be younger and less massive than in higher-mass galaxies.

  5. Solar flare X-ray polarimeter utilizing a large area thin beryllium scattering disk

    NASA Technical Reports Server (NTRS)

    Gotthelf, E.; Hamilton, T.; Novick, R.; Chanan, G.; Emslie, A.; Weisskopf, M.

    1989-01-01

    A model of a solar flare X-ray polarimeter utilizing a large-area thin beryllium scattering disk was developed using Monte Carlo techniques for several classes of solar flares. The solar-flare polarimeter consists of a 30-cm-diam Be disk of about 1/3 of a scattering length thickness, which is surrounded by a cylindrical detector composed of six segmented panels of NaI scintillators, each coupled to 15 photomultiplier tubes. The instrument is sensitive to X-rays from 10 to 100 keV. For a class-M-2 solar flare observed for 10 sec from a balloon at an altitude of 150,000 ft, the minimum detectable polarization at the 99 percent statistical confidence level was found to be 1-6 percent over the energy range 20-100 keV.

  6. The thickening of the thin disk in the third galactic quadrant

    SciTech Connect

    Carraro, Giovanni; Vázquez, Rubén A.; Ahumada, Javier A.; Giorgi, Edgar E. E-mail: rvazquez@fcaglp.unlp.edu.ar E-mail: javier@oac.uncor.edu

    2015-01-01

    In the third Galactic quadrant (180{sup ∘}⩽l⩽270{sup ∘}) of the Milky Way, the Galactic thin disk exhibits a significant warp—shown both by gas and young stars—bending down a few kiloparsecs below the formal Galactic plane (b=0{sup ∘}). This warp shows its maximum at l∼240{sup ∘}, in the direction of the Canis Major constellation. In a series of papers, we have traced the detailed structure of this region using open star clusters, putting particular emphasis on the spiral structure of the outer disk. We noted a conspicuous accumulation of young star clusters within 2–3 kpc from the Sun and close to b = 0°, which we interpreted as the continuation of the Local (Orion) arm toward the outer disk. While most clusters (and young stars in their background) closely follow the warp of the disk, our decade-old survey of the spiral structure of this region led us to identify three clusters, Haffner 18 (1 and 2) and Haffner 19, which remain very close to b = 0° and lie at distances (4.5, ∼8.0, and 6.4 kpc) where most of the material is already significantly warped. Here, we report on a search for clusters that share the same properties as Haffner 18 and 19, and investigate the possible reasons for such an unexpected occurrence. We present UBVRI photometry of five young clusters, namely NGC 2345, NGC 2374, Trumpler 9, Haffner 20, and Haffner 21, which also lie close to the formal Galactic plane. With the exception of Haffner 20, in the background of these clusters we detected young stars that appear close to b=0{sup ∘} and are located at distances up to ∼8 kpc from the Sun, thus deviating significantly from the warp. These populations define a structure that distributes over almost the entire third Galactic quadrant. We discuss this structure in the context of a possible thin disk flaring, similar to the Galactic thick disk.

  7. Composite Thin-Disk Laser Scaleable to 100 kW Average Power Output and Beyond

    SciTech Connect

    Zapata, L.; Beach, R.; Payne, S.

    2000-06-01

    By combining newly developed technologies to engineer composite laser components with state of the art diode laser pump delivery technologies, we are in a position to demonstrate high beam quality, continuous wave, laser radiation at scaleable high average powers. The crucial issues of our composite thin disk laser technology were demonstrated during a successful first light effort. The high continuous wave power levels that are now within reach make this system of high interest to future DoD initiatives in solid-state laser technology for the laser weapon arena.

  8. A 12.1-W SESAM mode-locked Yb:YAG thin disk laser

    NASA Astrophysics Data System (ADS)

    Yingnan, Peng; Zhaohua, Wang; Dehua, Li; Jiangfeng, Zhu; Zhiyi, Wei

    2016-05-01

    Pumped by a 940 nm fiber-coupled diode laser, a passively mode-locked Yb:YAG thin disk oscillator was demonstrated with a semiconductor saturable absorber mirror (SESAM). 12.1 W mode-locked pulses were obtained with pulse duration of 698 fs at the repetition rate of 57.43 MHz. Measurement showed that the beam quality was close to the diffraction limit. Project supported by the National Key Basic Research Program of China (Grant No. 2013CB922402), the National Major Instrument Program of China (Grant No. 2012YQ120047), and the National Natural Science Foundation of China (Grant No. 61210017).

  9. On the α-element gradients of the Galactic thin disk using Cepheids

    NASA Astrophysics Data System (ADS)

    Genovali, K.; Lemasle, B.; da Silva, R.; Bono, G.; Fabrizio, M.; Bergemann, M.; Buonanno, R.; Ferraro, I.; François, P.; Iannicola, G.; Inno, L.; Laney, C. D.; Kudritzki, R.-P.; Matsunaga, N.; Nonino, M.; Primas, F.; Romaniello, M.; Urbaneja, M. A.; Thévenin, F.

    2015-08-01

    We present new homogeneous measurements of Na, Al, and three α-elements (Mg, Si, Ca) for 75 Galactic Cepheids. The abundances are based on high spectral resolution (R~ 38 000) and high signal-to-noise ratio (S/N ~ 50-300) spectra collected with UVES at ESO VLT. The current measurements were complemented with Cepheid abundances provided by our group (75) or available in the literature, for a total of 439 Galactic Cepheids. Special attention was given to providing a homogeneous abundance scale for these five elements plus iron. In addition, accurate Galactocentric distances (RG) based on near-infrared photometry are also available for all the Cepheids in the sample. They cover a large section of the Galactic thin disk (4.1 ≤RG≤ 18.4 kpc). We found that these five elements display well-defined linear radial gradients and modest standard deviations over the entire range of RG. Moreover, the [element/Fe] abundance ratios are constant across the entire thin disk; only the Ca radial distribution shows marginal evidence of a positive slope. These results indicate that the chemical enrichment history of iron and of the quoted five elements has been quite similar across the four quadrants of the Galactic thin disk. The [element/Fe] ratios are also constant over the entire period range. This empirical evidence indicates that the chemical enrichment of Galactic Cepheids has also been very homogenous within the range in age that they cover (~10-300 Myr). Once again, [Ca/Fe] vs. log P shows a (negative) gradient, since it is underabundant among the youngest Cepheids. Finally, we also find that Cepheid abundances agree quite well with similar abundances for thin and thick disk dwarf stars, and they follow the typical Mg-Al and Na-O correlations. Based on spectra collected with the UVES spectrograph available at the ESO Very Large Telescope (VLT), Cerro Paranal, Chile (ESO Proposals: 081.D-0928(A), PI: S. Pedicelli; 082.D-0901(A), PI: S. Pedicelli; 089.D-0767(C), PI: K

  10. Improvement of thermal management in the composite Yb:YAG/YAG thin-disk laser

    NASA Astrophysics Data System (ADS)

    Kuznetsov, I. I.; Mukhin, I. B.; Palashov, O. V.

    2016-04-01

    To improve the thermal management in the composite Yb:YAG/YAG thin-disk laser a new design of laser head is developed. Thermal-induced phase distortions, small signal gain and lasing in the upgraded laser head are investigated and compared with previously published results. A substantial decrease of the thermal lens optical power and phase aberrations and increase of the laser slope efficiency are observed. A continuous-wave laser with 440 W average power and 44% slope efficiency is constructed.

  11. Levitation force from high-Tc superconducting thin-film disks

    NASA Astrophysics Data System (ADS)

    Riise, Anjali B.; Johansen, T. H.; Bratsberg, H.; Koblischka, M. R.; Shen, Y. Q.

    1999-10-01

    Experimental studies and theoretical modeling of the levitation force between a permanent magnet and superconducting thin film are reported. Measurements of the force Fz and magnetic stiffness κz=\\|δFz/δz\\| as functions of the magnet-superconductor separation z, show several features contrasting all previous levitation force data for bulk superconductors. In particular, the Fz(z) curves measured for decreasing and increasing separation form hysteresis loops of nearly symmetrical shape, also displaying a peak in the repulsive force branch. Recent theories for flux penetration in thin type-II superconductors in transverse magnetic fields are invoked to explain the results, which were obtained using a cylindrical Nd-Fe-B magnet and a YBa2Cu3O7-δ circular disk made by laser ablation. We derive explicit formulas for both Fz and κz, reproducing quantitatively all the features seen experimentally.

  12. Toy model for a two-dimensional accretion disk dominated by Poynting flux

    SciTech Connect

    Lee, Hyun Kyu

    2001-08-15

    We discuss the effect of the Poynting flux on a magnetically dominated thin accretion disk, which is simplified to a two-dimensional disk on the equatorial plane. It is shown in the relativistic formulation that the Poynting flux caused by a rotating magnetic field with Keplerian angular velocity can balance the energy and angular momentum conservation of a stationary accretion flow.

  13. On the Global Warping of a Thin Self-gravitating Near-Keplerian Gaseous Disk with Application to the Disk in NGC 4258

    NASA Astrophysics Data System (ADS)

    Papaloizou, John C. B.; Terquem, Caroline; Lin, Doug N. C.

    1998-04-01

    We derive the tilt equation governing the inclination of a thin self-gravitating gaseous disk subject to low-frequency global m = 1 bending perturbations. The disk orbits under the influence of a dominant central mass. However, self-gravity can be important enough that the disk approaches marginal stability to local axisymmetric perturbations (Q ~ 1). The vertical restoring forces due to self-gravity and pressure are evaluated correct to the first order in the aspect ratio H/r. Thus the effects of bending waves are included correct to lowest order in the wave-crossing rate (H/r)Ω, Ω being a characteristic disk rotation frequency. Both free and forced disturbances are considered. The disk response and precession frequency induced by the presence of a binary companion in an orbit with general inclination to the unperturbed disk plane are derived. When the degree of warping and the inclination are small, it is shown that identical results are obtained if, alternatively, perturbation of the disk out of an equilibrium plane coinciding with that of the companion is considered, the time-averaged potential due to the latter being incorporated into the equilibrium potential. The condition for the disk to precess approximately like a rigid body with a small degree of warping is found to be that the density-wave crossing time is significantly shorter than the precession period. We consider the effects of the presence of a viscosity that can be characterized with the standard α parameterization and find that, to the order we work, the precession frequency is unaffected, with any change to the inclination of the slightly warped disk occurring at a slower rate. For α << H/r, effects due to both pressure and self-gravity are important in the response, while for α >> H/r, the response becomes dominated by self-gravity with pressure effects becoming negligible. As an application of these results, we explore the possibility that the recently observed warped disk in the active

  14. Pulse compression of a high-power thin disk laser using rod-type fiber amplifiers.

    PubMed

    Saraceno, C J; Heckl, O H; Baer, C R E; Südmeyer, T; Keller, U

    2011-01-17

    We report on two pulse compressors for a high-power thin disk laser oscillator using rod-type fiber amplifiers. Both systems are seeded by a standard SESAM modelocked thin disk laser that delivers 16 W of average power at a repetition rate of 10.6 MHz with a pulse energy of 1.5 μJ and a pulse duration of 1 ps. We discuss two results with different fiber parameters with different trade-offs in pulse duration, average power, damage and complexity. The first amplifier setup consists of a Yb-doped fiber amplifier with a 2200 μm2 core area and a length of 55 cm, resulting in a compressed average power of 55 W with 98-fs pulses at a repetition rate of 10.6 MHz. The second system uses a shorter 36-cm fiber with a larger core area of 4500 μm2. In a stretcher-free configuration we obtained 34 W of compressed average power and 65-fs pulses. In both cases peak powers of > 30 MW were demonstrated at several μJ pulse energies. The power scaling limitations due to damage and self-focusing are discussed.

  15. Foreign Object Damage of Two Gas-Turbine Grade Silicon Nitrides in a Thin Disk Configuration

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Pereira, J. Michael; Janosik, Lesley A.; Bhatt, Ramakrishna T.

    2003-01-01

    Foreign object damage (FOD) behavior of two commercial gas-turbine grade silicon nitrides, AS800 and SN282, was determined at ambient temperature through post-impact strength testing for thin disks impacted by steel-ball projectiles with a diameter of 1.59 mm in a velocity range from 115 to 440 m/s. AS800 silicon nitride exhibited a greater FOD resistance than SN282, primarily due to its greater value of fracture toughness (K(sub IC)). The critical impact velocity in which the corresponding post-impact strength yielded the lowest value was V(sub c) approx. 440 and 300 m/s for AS800 and SN282, respectively. A unique lower-strength regime was typified for both silicon nitrides depending on impact velocity, attributed to significant radial cracking. The damages generated by projectile impact were typically in the forms of ring, radial, and cone cracks with their severity and combination being dependent on impact velocity. Unlike thick (3 mm) flexure bar specimens used in the previous studies, thin (2 mm) disk target specimens exhibited a unique backside radial cracking occurring on the reverse side just beneath the impact sites at and above impact velocity of 160 and 220 m/s for SN282 and AS800, respectively.

  16. Noncontact thermophysical property measurement by levitation of a thin liquid disk.

    PubMed

    Lee, Sungho; Ohsaka, Kenichi; Rednikov, Alexei; Sadhal, Satwindar Singh

    2006-09-01

    The purpose of the current research program is to develop techniques for noncontact measurement of thermophysical properties of highly viscous liquids. The application would be for undercooled liquids that remain liquid even below the freezing point when suspended without a container. The approach being used here consists of carrying out thermocapillary flow and temperature measurements in a horizontally levitated, laser-heated thin glycerin disk. In a levitated state, the disk is flattened by an intense acoustic field. Such a disk has the advantage of a relatively low gravitational potential over the thickness, thus mitigating the buoyancy effects, and helping isolate the thermocapillary-driven flows. For the purpose of predicting the thermal properties from these measurements, it is necessary to develop a theoretical model of the thermal processes. Such a model has been developed, and, on the basis of the observed shape, the thickness is taken to be a minimum at the center with a gentle parabolic profile at both the top and the bottom surfaces. This minimum thickness is much smaller than the radius of disk drop and the ratio of thickness to radius becomes much less than unity. It is heated by laser beam in normal direction to the edge. A general three-dimensional momentum equation is transformed into a two-variable vorticity equation. For the highly viscous liquid, a few millimeters in size, Stokes equations adequately describe the flow. Additional approximations are made by considering average flow properties over the disk thickness in a manner similar to lubrication theory. In the same way, the three-dimensional energy equation is averaged over the disk thickness. With convection boundary condition at the surfaces, we integrate a general three-dimensional energy equation to get an averaged two-dimensional energy equation that has convection terms, conduction terms, and additional source terms corresponding to a Biot number. A finite-difference numerical

  17. Noncontact thermophysical property measurement by levitation of a thin liquid disk.

    PubMed

    Lee, Sungho; Ohsaka, Kenichi; Rednikov, Alexei; Sadhal, Satwindar Singh

    2006-09-01

    The purpose of the current research program is to develop techniques for noncontact measurement of thermophysical properties of highly viscous liquids. The application would be for undercooled liquids that remain liquid even below the freezing point when suspended without a container. The approach being used here consists of carrying out thermocapillary flow and temperature measurements in a horizontally levitated, laser-heated thin glycerin disk. In a levitated state, the disk is flattened by an intense acoustic field. Such a disk has the advantage of a relatively low gravitational potential over the thickness, thus mitigating the buoyancy effects, and helping isolate the thermocapillary-driven flows. For the purpose of predicting the thermal properties from these measurements, it is necessary to develop a theoretical model of the thermal processes. Such a model has been developed, and, on the basis of the observed shape, the thickness is taken to be a minimum at the center with a gentle parabolic profile at both the top and the bottom surfaces. This minimum thickness is much smaller than the radius of disk drop and the ratio of thickness to radius becomes much less than unity. It is heated by laser beam in normal direction to the edge. A general three-dimensional momentum equation is transformed into a two-variable vorticity equation. For the highly viscous liquid, a few millimeters in size, Stokes equations adequately describe the flow. Additional approximations are made by considering average flow properties over the disk thickness in a manner similar to lubrication theory. In the same way, the three-dimensional energy equation is averaged over the disk thickness. With convection boundary condition at the surfaces, we integrate a general three-dimensional energy equation to get an averaged two-dimensional energy equation that has convection terms, conduction terms, and additional source terms corresponding to a Biot number. A finite-difference numerical

  18. Analytical model of optical field distribution of thin disk laser with thermal-optical aberration gain medium

    NASA Astrophysics Data System (ADS)

    Zhu, Guangzhi; Qiu, Yuli; Wang, Zexiong; Zhu, Xiao; Zhu, Changhong

    2016-08-01

    An analytical model is developed to analyze the optical field distribution of thin disk laser with a thermal-optical aberration gain medium. The fundamental mode field distribution is calculated by using the eigenvector method of the resonator transit matrix for different pumping parameters. The analytical results show that the uniformity of the pumping spot is an important factor that impacts the beam quality of thin disk laser. The uniform pumping spot is beneficial to decrease thermal aberration and Optical Path Difference (OPD) of thin disk crystal, and to improve the beam quality. However, the beam quality still decreases slightly with the increasing of pumping intensity under the uniform pumping condition. The main reason for degradation of beam quality is the aspherical part of OPD which leads to diffraction losses of the resonator and wavefront deformation.

  19. THE HANLE EFFECT AS A DIAGNOSTIC OF MAGNETIC FIELDS IN STELLAR ENVELOPES. V. THIN LINES FROM KEPLERIAN DISKS

    SciTech Connect

    Ignace, R.

    2010-12-10

    This paper focuses on the polarized profiles of resonance scattering lines that form in magnetized disks. Optically thin lines from Keplerian planar disks are considered. Model line profiles are calculated for simple field topologies of axial fields (i.e., vertical to the disk plane) and toroidal fields (i.e., purely azimuthal). A scheme for discerning field strengths and geometries in disks is developed based on Stokes Q - U diagrams for the run of polarization across line profiles that are Doppler-broadened by the disk rotation. A discussion of the Hanle effect for magnetized disks in which the magnetorotational instability (MRI) is operating is also presented. Given that the MRI has a tendency to mix the vector field orientation, it may be difficult to detect the disk fields with the longitudinal Zeeman effect, since the amplitude of the circularly polarized signal scales with the net magnetic flux in the direction of the observer. The Hanle effect does not suffer from this impediment, and so a multi-line analysis could be used to constrain field strengths in disks dominated by the MRI.

  20. Diode-pumped thin-disk Nd:GdVO4 laser at 893 nm

    NASA Astrophysics Data System (ADS)

    Li, Y. L.; Wang, A. G.; Fu, X. H.

    2011-08-01

    We report for the first time a Nd:GdVO4 laser operating in a continuous wave (CW) on the quasi-three-level laser at 893 nm, based on the 4F3/2 - 4I9/2 transition, generally used for a 912 nm emission. The use of a pump module with 16 passes through the crystal allowed the realization of a Nd:GdVO4 thin-disk laser with 157 mW of CW output power at 893 nm. Moreover, intracavity second-harmonic generation (SHG) has also been achieved with a power of 23 mW at 447 nm by using a BiB3O6 (BiBO) nonlinear crystal.

  1. Novel thin-disk oscillator concept for the generation of radially polarized femtosecond laser pulses.

    PubMed

    Eckerle, Michael; Dietrich, Tom; Schaal, Frederik; Pruss, Christof; Osten, Wolfgang; Ahmed, Marwan Abdou; Graf, Thomas

    2016-04-01

    We report on the first demonstration of a radially polarized passively mode-locked thin-disk oscillator. Radial polarization was achieved by the use of a novel circular grating waveguide output coupler. We showed mode-locked operation up to a maximum average output power of 13.3 W with an optical efficiency of 21.8%. The degree of radial polarization of the emitted beam was measured to be 97±1%. The laser system generated pulses with a duration of 907 fs and an energy of 316 nJ corresponding to a peak power of 0.35 MW. To the best of our knowledge, these values exceed the performance of previously reported radially polarized mode-locked oscillator systems.

  2. Experiments on the Flow of a Thin Liquid Film Over a Horizontal Stationary and Rotating Disk Surface

    NASA Technical Reports Server (NTRS)

    Ozar, B.; Cetegen, B. M.; Faghri, A.

    2003-01-01

    Experiments on characterization of thin liquid films flowing over stationary and rotating disk surfaces are described. The thin liquid film was created by introducing deionized water from a flow collar at the center of an aluminum disk with a known initial film thickness and uniform radial velocity. Radial film thickness distribution was measured using a non-intrusive laser light interface reflection technique that enabled the measurement of the instantaneous film thickness over a finite segment of the disk. Experiments were performed for a range of flow rates between 3.01pm and 15.01pm, corresponding to Reynolds numbers based on the liquid inlet gap height and velocity between 238 and 1,188. The angular speed of the disk was varied from 0 rpm to 300 rpm. When the disk was stationary, a circular hydraulic jump was present in the liquid film. The liquid-film thickness in the subcritical region (down-stream of the hydraulic jump) was an order of magnitude greater than that in the supercritical region (upstream of the hydraulic jump) which was of the order of 0.3 mm. As the Reynolds number increased, the hydraulic jump migrated toward the edge of the disk. In the case of rotation, the liquid-film thickness exhibited a maximum on the disk surface. The liquid-film inertia and friction influenced the inner region where the film thickness progressively increased. The outer region where the film thickness decreased was primarily affected by the centrifugal forces. A flow visualization study of the thin film was also performed to determine the characteristics of the waves on the free surface. At high rotational speeds, spiral waves were observed on the liquid film. It was also determined that the angle of the waves which form on the liquid surface was a function of the ratio of local radial to tangential velocity.

  3. No evidence for Bardeen-Petterson alignment in GRMHD simulations and semi-analytic models of moderately thin, prograde, tilted accretion disks

    SciTech Connect

    Zhuravlev, Viacheslav V.; Ivanov, Pavel B.; Teixeira, Danilo Morales

    2014-12-01

    In this paper, we introduce the first results that use data extracted directly from numerical simulations as inputs to the analytic twisted disk model of Zhuravlev and Ivanov. In both numerical and analytic approaches, fully relativistic models of tilted and twisted disks having a moderate effective viscosity around a slowly rotating Kerr black hole are considered. Qualitatively, the analytic model demonstrates the same dynamics as the simulations, although with some quantitative offset. Namely, the general relativistic magnetohydrodynamic simulations typically give smaller variations of tilt and twist across the disk. When the black hole and the disk rotate in the same direction, the simulated tilted disk and analytic model show no sign of Bardeen-Petterson alignment, even in the innermost parts of the disk where the characteristic time for relaxation to a quasi-stationary configuration is of the same order as the computation time. In the opposite case, when the direction of the disk's rotation is opposite to that of the black hole, a partial alignment is observed, in agreement with previous theoretical estimates. Thus, both fully numerical and analytic schemes demonstrate that the Bardeen-Petterson effect may not be possible for the case of prograde rotation provided that disk's effective viscosity is sufficiently small. This may have implications in modeling of different astrophysical phenomena such as disk spectra and jet orientation.

  4. Relativistic radiative transfer in relativistic plane-parallel flows: Behavior of the Eddington factor

    NASA Astrophysics Data System (ADS)

    Fukue, Jun

    2014-07-01

    Relativistic radiative transfer in a relativistic plane-parallel flow which is accelerated from its base, like an accretion disk wind, is numerically examined under a fully special-relativistic treatment. We first derive relativistic formal solutions. We then iteratively solve the relativistic transfer equation for several cases such as radiative equilibrium or local thermodynamic equilibrium, and obtain specific intensities in the inertial and comoving frames, as well as moment quantities and the Eddington factor. Moment quantities are rather different in each case, but the behavior of the Eddington factor for the plane-parallel case is quite similar in all cases. The Eddington factor generally depends on the flow velocity v as well as the optical depth τ. In the case of relativistic plane-parallel flows, in an optically thin regime of τ ≲ 1, it is slightly larger than 1/3 at very slow speed, it becomes smaller than 1/3 at mildly relativistic speed, and it again increases up to unity in the highly relativistic case. At highly relativistic speed, on the other hand, it becomes larger than 1/3 even in an optically thick regime. We find the Eddington approximation is fairly good, except for τ ≲ 1 or v/c ≳ 0.9, although the moment formalism under the Eddington approximation has some defects at v/c=1/√{3}.

  5. Analysis of Hydrodynamics and Heat Transfer in a Thin Liquid Film Flowing over a Rotating Disk by Integral Method

    NASA Technical Reports Server (NTRS)

    Basu, S.; Cetegen, B. M.

    2005-01-01

    An integral analysis of hydrodynamics and heat transfer in a thin liquid film flowing over a rotating disk surface is presented for both constant temperature and constant heat flux boundary conditions. The model is found to capture the correct trends of the liquid film thickness variation over the disk surface and compare reasonably well with experimental results over the range of Reynolds and Rossby numbers covering both inertia and rotation dominated regimes. Nusselt number variation over the disk surface shows two types of behavior. At low rotation rates, the Nusselt number exhibits a radial decay with Nusselt number magnitudes increasing with higher inlet Reynolds number for both constant wall temperature and heat flux cases. At high rotation rates, the Nusselt number profiles exhibit a peak whose location advances radially outward with increasing film Reynolds number or inertia. The results also compare favorably with the full numerical simulation results from an earlier study as well as with the reported experimental results.

  6. Self-referenceable frequency comb from an ultrafast thin disk laser.

    PubMed

    Saraceno, Clara J; Pekarek, Selina; Heckl, Oliver H; Baer, Cyrill R E; Schriber, Cinia; Golling, Matthias; Beil, Kolja; Kränkel, Christian; Huber, Günter; Keller, Ursula; Südmeyer, Thomas

    2012-04-23

    We present the first measurement of the carrier envelope offset (CEO) frequency of an ultrafast thin disk laser (TDL). The TDL used for this proof-of-principle experiment was based on the gain material Yb:Lu(2)O(3) and delivered 7 W of average power in 142-fs pulses, which is more than two times shorter than previously realized with this material. Using only 65 mW of the output of the laser, we generated a coherent octave-spanning supercontinuum (SC) in a highly nonlinear photonic crystal fiber (PCF). We detected the CEO beat signal using a standard f-to-2f interferometer, achieving a signal-to-noise ratio of >25 dB (3 kHz resolution bandwidth). The CEO frequency was tunable with the pump current with a slope of 33 kHz/mA. This result opens the door towards high-power frequency combs from unamplified oscillators. Furthermore, it confirms the suitability of these sources for future intralaser extreme nonlinear optics experiments such as high harmonic generation and VUV frequency comb generation from compact sources.

  7. Effects of Yb:KYW thin-disk femtosecond laser ablation on enamel surface roughness

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Sun, Yuchun; Wang, Yong; Lü, Peijun

    2014-07-01

    This study aimed to quantitatively evaluate the surface roughness of enamel following ablation with a Yb:KYW thin-disk femtosecond pulsed laser at different fluences (F), scanning speeds and scanning line spacings. Thirty human extracted teeth were sectioned into crowns and roots along the cementum-enamel junction, and then the crowns were cut longitudinally into sheets about 1.5 mm thick. The samples were randomly divided into ten groups (n=3). Samples of groups 1-8 were irradiated with a femtosecond pulsed laser. These enamel samples were fixed on a stage at focus plane, and a laser beam irradiated onto the samples through a galvanometric scanning system, with which rectangular movement could be achieved. Samples of groups 9 and 10 were prepared with grinding instruments. Following ablation and preparation, the samples were examined for surface roughness with a three-dimensional laser profile measurement microscope. The results showed that scanning speed and scanning line spacing had little influence on the surface roughness of femtosecond pulsed laser-ablated enamel, except when F=4 J/cm2. When a lower fluence was used, the enamel surface roughness was higher, and vice versa. This study showed that various laser fluences, scanning speeds and scanning line spacings can affect and alter enamel surface roughness. Therefore, adequate parameters should be chosen to achieve the proper therapeutic benefits.

  8. Thin-disk piezoceramic ultrasonic motor. Part I: design and performance evaluation.

    PubMed

    Wen, Fuh Liang; Yen, Chi Yung; Ouyang, Minsun

    2003-08-01

    The purpose of this study is to gain the knowledge and experience in the design of thin-disk piezoceramic-driving ultrasonic actuator dedicated. In this paper, the design and construction of an innovative ultrasonic actuator is developed as a stator, which is a composite structure consisting of piezoceramic (PZT) membrane bonded on a metal sheet. Such a concentric PZT structure possesses the electrical and mechanical coupling characteristics in flexural wave. The driving ability of the actuator comes from the mechanical vibration of extension and shrinkage of a metal sheet due to the converse piezoelectric effect, corresponding to the frequency of a single-phase AC power. By applying the constraints on the specific geometry positions on the metal sheet, the various behaviors of flexural waves have been at the different directions. The rotor is impelled by the actuator with rotational speeds of 600 rpm in maximum using a friction-contact mechanism. Very high actuating and braking abilities are obtained. This simple and inexpensive structure of actuator demonstrates that the mechanical design of actuator and rotor could be done separately and flexibly according to the requirements for various applications. And, its running accuracy and positioning precision are described in Part II.A closed loop servo positioning control i.e. sliding mode control (SMC) is used to compensate automatically for nonlinearly mechanical behaviors such as dry friction, ultrasonic vibrating, slip-stick phenomena. Additionally, SMC scheme has been successfully applied to position tracking to prove the excellent robust performance in noise rejection.

  9. High-intracavity-power thin-disk laser for the alignment of molecules.

    PubMed

    Deppe, Bastian; Huber, Günter; Kränkel, Christian; Küpper, Jochen

    2015-11-01

    We propose a novel approach for strong alignment of gas-phase molecules for experiments at arbitrary repetition rates. A high-intracavity-power continuous-wave laser will provide the necessary ac electric field of 10(10)-10(11) W/cm(2). We demonstrate thin-disk lasers based on Yb:YAG and Yb:Lu(2)O(3) in a linear high-finesse resonator providing intracavity power levels in excess of 100 kW at pump power levels on the order of 50 W. The multi-longitudinal-mode operation of this laser avoids spatial-hole burning even in a linear standing-wave resonator. The system will be scaled up as in-vacuum system to allow for the generation of fields of 10(11) W/cm(2). This system will be directly applicable for experiments at modern X-ray light sources, such as synchrotrons or free-electron lasers, which operate at various very high repetition rates. This would allow to record molecular movies through temporally resolved diffractive imaging of fixed-in-space molecules, as well as the spectroscopic investigation of combined X-ray-NIR strong-field effects of atomic and molecular systems. PMID:26561120

  10. Experimental investigation of freely falling thin disks: Transition of three-dimensional motion from zigzag to spiral

    NASA Astrophysics Data System (ADS)

    Su, Zhuang; Lee, Cunbiao

    2015-11-01

    The motion of a freely falling thin disk was investigated experimentally. Different motion modes, including plannar zigzag and three dimensional spiral, were identifed based on the measurements of the whole six degrees of freedom of the disk. The final motion modes in the fall were found to change with the dimensionless moments of inertial (I*), which is determined by the aspect ratio of the disk and the density ratio between the disk and water. The motion mode is zigzag in the range of 2 . 95 ×10-3 to 1 . 17 ×10-2 and spiral in the range of 7 . 36 ×10-4 to 1 . 47 ×10-3 in our experiments. A zigzag to spiral transition process was found in the lower I* range. Two differet types of transition were identified, which are zigzag-spiral monotonous transition in the lower and higher Reynolds number range (600 to 1000 and above 2900 in our experiments) and zigzag-spiral-zigzag intermittence transition in the middle range. The forces acted on the disk were also investigated. Different force behaviors corresponding to different types of wake structures were identified and analyzed.

  11. Kilowatt-level direct-'refractive index matching liquid'-cooled Nd:YLF thin disk laser resonator.

    PubMed

    Ye, Zhibin; Liu, Chong; Tu, Bo; Wang, Ke; Gao, Qingsong; Tang, Chun; Cai, Zhen

    2016-01-25

    A direct-liquid-cooled Nd:YLF thin disk laser resonator is presented, which features the use of refractive index matching liquid (RIML) as coolant. Highly uniform pump intensity distribution with rectangular shape is realized by using metallic planar waveguides. Much attention has been paid on the design of the gain module, including how to achieve excellent cooling ability with multi-channel coolers and how to choose the doping levels of the crystals for realizing well-distributed pump absorption. The flow velocity of the coolant is found to be a key parameter for laser performance and optimized to keep it in laminar flow status for dissipating unwanted heat load. A single channel device is used to measure the convective heat transfer coefficient (CHTC) at different flow velocities. Accordingly, the thermal stress in the disk is analyzed numerically and the maximum permissible thermal load is estimated. Experimentally, with ten pieces of a-cut Nd:YLF thin disks of different doping levels, a linear polarized laser with an average output power of 1120 W is achieved at the pump power of 5202 W, corresponding to an optical-optical efficiency of 21.5%, and a slope efficiency of 30.8%. Furthermore, the wavefront aberration of the gain module is measured to be quite weak, with a peak to valley (PV) value of 4.0 μm when it is pumped at 5202 W, which enables the feasibility of its application in an unstable resonator. To the best of our knowledge, this is the first demonstration of kilowatt-level direct-'refractive index matching liquid'-cooled Nd:YLF thin disk laser resonator.

  12. Kilowatt-level direct-'refractive index matching liquid'-cooled Nd:YLF thin disk laser resonator.

    PubMed

    Ye, Zhibin; Liu, Chong; Tu, Bo; Wang, Ke; Gao, Qingsong; Tang, Chun; Cai, Zhen

    2016-01-25

    A direct-liquid-cooled Nd:YLF thin disk laser resonator is presented, which features the use of refractive index matching liquid (RIML) as coolant. Highly uniform pump intensity distribution with rectangular shape is realized by using metallic planar waveguides. Much attention has been paid on the design of the gain module, including how to achieve excellent cooling ability with multi-channel coolers and how to choose the doping levels of the crystals for realizing well-distributed pump absorption. The flow velocity of the coolant is found to be a key parameter for laser performance and optimized to keep it in laminar flow status for dissipating unwanted heat load. A single channel device is used to measure the convective heat transfer coefficient (CHTC) at different flow velocities. Accordingly, the thermal stress in the disk is analyzed numerically and the maximum permissible thermal load is estimated. Experimentally, with ten pieces of a-cut Nd:YLF thin disks of different doping levels, a linear polarized laser with an average output power of 1120 W is achieved at the pump power of 5202 W, corresponding to an optical-optical efficiency of 21.5%, and a slope efficiency of 30.8%. Furthermore, the wavefront aberration of the gain module is measured to be quite weak, with a peak to valley (PV) value of 4.0 μm when it is pumped at 5202 W, which enables the feasibility of its application in an unstable resonator. To the best of our knowledge, this is the first demonstration of kilowatt-level direct-'refractive index matching liquid'-cooled Nd:YLF thin disk laser resonator. PMID:26832554

  13. Wettability of dentin after Yb:KYW thin-disk femtosecond ablation.

    PubMed

    Liu, Jing; Lü, Peijun; Sun, Yuchun; Wang, Yong

    2015-08-01

    The aim of this study was to quantitatively evaluate the wettability of dentin after Yb:KYW thin-disk femtosecond-pulsed laser ablation by measuring the contact angle. Different laser parameters were used including different fluences (F), scanning speeds, and scanning line spacings. Crowns of 15 extracted human teeth were cut longitudinally into slices approximately 1.5-mm thick with a cutting instrument. The samples were randomly divided into ten groups (n = 3/group). Samples in groups 1-8 were irradiated with a femtosecond-pulsed laser. The dentin samples were fixed on a stage at the focal plane, and the laser beam irradiated the samples through a galvanometric scanning system so rectangular movement could be achieved. Samples in groups 9 and 10 were prepared with grinding instruments. Following ablation and preparation, the samples were examined for contact angle with an optical contact angle measuring instrument. The results showed that scanning speed and scanning line spacing had little influence on the wettability of dentin following femtosecond-pulsed laser ablation, except when F = 6 J/cm(2). For six out of the eight laser ablation groups, when a lower fluence was used, the dentin contact angle was higher and vice versa. Most of the dentin which had been ablated using the femtosecond-pulsed laser had improved wettability compared to samples prepared with the grinding instruments. This study showed that various laser fluences, scanning speeds, and scanning line spacings can alter dentin wettability. Therefore, adequate parameters should be chosen to achieve proper therapeutic benefits.

  14. Soft X-Ray Emission Lines from a Relativistic Accretion Disk in MCG -6-30-15 and Mrk 766

    NASA Technical Reports Server (NTRS)

    Branduardi-Raymont, G.; Sako, M.; Kahn, S. M.; Brinkman, A. C.; Kaastra, J. S.; Page, M. J.

    2000-01-01

    XMM-Newton Reflection Grating Spectrometer (RGS) spectra of the Narrow Line Seyfert 1 galaxies MCG -6-30-15 and Mrk 766 are physically and spectroscopically inconsistent with standard models comprising a power-law continuum absorbed by either cold or ionized matter. We propose that the remarkably similar features detected in both objects in the 5 - 35 A band are H-like oxygen, nitrogen, and carbon emission lines, gravitation- ally redshifted and broadened by relativistic effects in the vicinity of a Kerr black hole. We discuss the implications of our interpretation, and demonstrate that the derived parameters can be physically self-consistent.

  15. Conjugate heat transfer from a heated disk to a thin liquid film formed by a controlled impinging jet

    NASA Technical Reports Server (NTRS)

    Faghri, A.; Thomas, S.; Rahman, M. M.

    1993-01-01

    An experimental and numerical study of the heat transfer from a heated horizontal disk to a thin film of liquid is described. The liquid was delivered to the disk by a collar arrangement such that the film thickness and radial velocity were known at the outer radius of the collar. This method of delivery is termed as a controlled impinging jet. Flow visualization tests were performed and heat transfer data were collected along the radius of the disk for different volumetric flow rates and inlet temperatures in the supercritical and subcritical regions. The heat transfer coefficient was found to increase with flow rate when both supercritical and subcritical regions were present on the heated surface. A numerical simulation of this free surface problem was performed, which included the effects of conjugate heat transfer within the heated disk and the liquid. The numerical predictions agree with the experimental results and show that conjugate heat transfer has a significant effect on the local wail temperature and heat transfer coefficient.

  16. Numerical simulation of fluid flow and heat transfer in a thin liquid film over a rotating disk

    NASA Technical Reports Server (NTRS)

    Rahman, M. M.; Faghri, A.

    1992-01-01

    The results of a numerical simulation of the flow field and associated heat transfer coefficient are presented for the free surface flow of a thin liquid film adjacent to a horizontal rotating disk. The computation has been performed for different flow rates and rotational velocities using a three-dimensional boundary-fitted coordinate system. Since the geometry of the free surface is unknown and dependent on flow rate, rate of rotation, and other parameters, an interative procedure had to be used to ascertain its location. The computed film height agreed well with existing experimental measurements. The flow was dominated by inertia near the entrance and close to the free surface, and dominated by centrifugal force at larger radii and adjacent to the disk. The rotation enhanced the heat transfer coefficient by a significant amount.

  17. Acceleration of relativistic electrons by magnetohydrodynamic turbulence: Implications for non-thermal emission from black hole accretion disks

    SciTech Connect

    Lynn, Jacob W.; Quataert, Eliot; Chandran, Benjamin D. G.; Parrish, Ian J.

    2014-08-10

    We use analytic estimates and numerical simulations of test particles interacting with magnetohydrodynamic (MHD) turbulence to show that subsonic MHD turbulence produces efficient second-order Fermi acceleration of relativistic particles. This acceleration is not well described by standard quasi-linear theory but is a consequence of resonance broadening of wave-particle interactions in MHD turbulence. We provide momentum diffusion coefficients that can be used for astrophysical and heliospheric applications and discuss the implications of our results for accretion flows onto black holes. In particular, we show that particle acceleration by subsonic turbulence in radiatively inefficient accretion flows can produce a non-thermal tail in the electron distribution function that is likely important for modeling and interpreting the emission from low-luminosity systems such as Sgr A* and M87.

  18. Neutron-capture elements across the Galactic thin disk using Cepheids

    NASA Astrophysics Data System (ADS)

    da Silva, R.; Lemasle, B.; Bono, G.; Genovali, K.; McWilliam, A.; Cristallo, S.; Bergemann, M.; Buonanno, R.; Fabrizio, M.; Ferraro, I.; François, P.; Iannicola, G.; Inno, L.; Laney, C. D.; Kudritzki, R.-P.; Matsunaga, N.; Nonino, M.; Primas, F.; Przybilla, N.; Romaniello, M.; Thévenin, F.; Urbaneja, M. A.

    2016-02-01

    We present new accurate abundances for five neutron-capture elements (Y, La, Ce, Nd, Eu) in 73 classical Cepheids located across the Galactic thin disk. Individual abundances are based on high spectral resolution (R ~ 38 000) and high signal-to-noise ratio (S/N ~ 50-300) spectra collected with UVES at ESO VLT for the DIONYSOS project. Taking into account similar Cepheid abundances provided by our group (111 stars) and available in the literature, we end up with a sample of 435 Cepheids covering a broad range in iron abundances (-1.6 < [Fe/H] < 0.6). We found, via homogeneous individual distances and abundance scales, well-defined gradients for the above elements. However, the slope of the light s-process element (Y) is at least a factor of two steeper than the slopes of heavy s- (La, Ce, Nd) and r- (Eu) process elements. The s-to-r abundance ratio ([La/Eu]) of Cepheids shows a well-defined anticorrelation with both Eu and Fe. On the other hand, Galactic field stars attain an almost constant value and display a mild enhancement in La only when they approach solar iron abundance. The [Y/Eu] ratio shows slight evidence of a correlation with Eu and, in particular, with iron abundance for field Galactic stars. We also investigated the s-process index ([hs/ls]) and we found a well-defined anticorrelation, as expected, between [La/Y] and iron abundance. Moreover, we found a strong correlation between [La/Y] and [La/Fe] and, in particular, a clear separation between Galactic and Sagittarius red giants. Finally, the comparison between predictions for low-mass asymptotic giant branch stars and the observed[La/Y] ratio indicate a very good agreement over the entire metallicity range covered by Cepheids. However, the observed spread at fixed iron content is larger than predicted by current models. Based on spectra collected with the UVES spectrograph available at the ESO Very Large Telescope (VLT), Cerro Paranal, Chile (ESO Proposals: 081.D-0928(A), PI: S. Pedicelli; 082.D

  19. How Do The Relativistic Effects Effect the Appearance of a Clothed Black Hole?

    NASA Technical Reports Server (NTRS)

    Zhang, Xiaoling; Zhang, S. N.; Feng, Yuxin; Yao, Yangsen

    2002-01-01

    For an accretion disk around a black hole, the strong relativistic effects affect every aspect of the radiation from the disk, including the spectrum, the light-curve, and the image. If the disk is in high inclination angle (nearly edge-on), the image will be greatly distorted; the farther side of the disk will appear to bend toward the observer, photons from the other side of the disk can reach the observer (if they are not blocked by the disk) to form a ghost image. This work differs mainly from previous work by taking into account the temperature distribution of a standard thin disk model and investigating the expected images from different viewing angles and in different energy bands. The edge-blocking effect is also considered. Direct images of black hole systems may be obtained with future X-ray missions like MAXIM pathfinder.

  20. THE VVV SURVEY REVEALS CLASSICAL CEPHEIDS TRACING A YOUNG AND THIN STELLAR DISK ACROSS THE GALAXY’S BULGE

    SciTech Connect

    Dékány, I.; Minniti, D.; Majaess, D.; Zoccali, M.; Hajdu, G.; Catelan, M.; Alonso-García, J.; Gieren, W.; Borissova, J.

    2015-10-20

    Solid insight into the physics of the inner Milky Way is key to understanding our Galaxy’s evolution, but extreme dust obscuration has historically hindered efforts to map the area along the Galactic mid-plane. New comprehensive near-infrared time-series photometry from the VVV Survey has revealed 35 classical Cepheids, tracing a previously unobserved component of the inner Galaxy, namely a ubiquitous inner thin disk of young stars along the Galactic mid-plane, traversing across the bulge. The discovered period (age) spread of these classical Cepheids implies a continuous supply of newly formed stars in the central region of the Galaxy over the last 100 million years.

  1. Development of a kW-level picosecond thin-disk regenerative amplifier with a ring cavity

    NASA Astrophysics Data System (ADS)

    Mužik, J.; Smrž, M.; Novák, O.; Miura, T.; Endo, A.; Kubeček, V.; Mocek, T.

    2016-04-01

    We report on development of a 100-kHz, 5-mJ picosecond system based on a two-stage thin-disk Yb:YAG regenerative amplifier. With a compact ring cavity, we obtained 565 W with 46.7% optical-to-optical efficiency in continuous-wave. In seeded operation, pulses with energy up to 4 mJ and 1.4-nm bandwidth were generated with 39% extraction efficiency. Pulse compression below 2 ps was so far demonstrated at lower pulse energy of 1 mJ. Full-power pulse compression and further pulse energy increase are under development.

  2. Extraordinary light transmission through opaque thin metal film with subwavelength holes blocked by metal disks.

    PubMed

    Li, Wen-Di; Hu, Jonathan; Chou, Stephen Y

    2011-10-10

    We observed that when subwavelength-sized holes in an optically opaque metal film are completely covered by opaque metal disks larger than the holes, the light transmission through the holes is not reduced, but rather enhanced. Particularly we report (i) the observation of light transmission through the holes blocked by the metal disks up to 70% larger than the unblocked holes; (ii) the observation of tuning the light transmission by varying the coupling strength between the blocking disks and the hole array, or by changing the size of the disks and holes; (iii) the observation and simulation that the metal disk blocker can improve light coupling from free space to a subwavelength hole; and (iv) the simulation that shows the light transmission through subwavelength holes can be enhanced, even though the gap between the disk and the metal film is partially connected with a metal. We believe these finding should have broad and significant impacts and applications to optical systems in many fields.

  3. Disk Emission from Magnetohydrodynamic Simulations of Spinning Black Holes

    NASA Astrophysics Data System (ADS)

    Schnittman, Jeremy D.; Krolik, Julian H.; Noble, Scott C.

    2016-03-01

    We present the results of a new series of global, three-dimensional, relativistic magnetohydrodynamic (MHD) simulations of thin accretion disks around spinning black holes. The disks have aspect ratios of H/R˜ 0.05 and spin parameters of a/M=0,0.5,0.9, and 0.99. Using the ray-tracing code Pandurata, we generate broadband thermal spectra and polarization signatures from the MHD simulations. We find that the simulated spectra can be well fit with a simple, universal emissivity profile that better reproduces the behavior of the emission from the inner disk, compared to traditional analyses carried out using a Novikov-Thorne thin disk model. Finally, we show how spectropolarization observations can be used to convincingly break the spin-inclination degeneracy well known to the continuum-fitting method of measuring black hole spin.

  4. SELF-GRAVITATIONAL FORCE CALCULATION OF SECOND-ORDER ACCURACY FOR INFINITESIMALLY THIN GASEOUS DISKS IN POLAR COORDINATES

    SciTech Connect

    Wang, Hsiang-Hsu; Taam, Ronald E.; Yen, David C. C.

    2015-11-15

    Investigating the evolution of disk galaxies and the dynamics of proto-stellar disks can involve the use of both a hydrodynamical and a Poisson solver. These systems are usually approximated as infinitesimally thin disks using two-dimensional Cartesian or polar coordinates. In Cartesian coordinates, the calculations of the hydrodynamics and self-gravitational forces are relatively straightforward for attaining second-order accuracy. However, in polar coordinates, a second-order calculation of self-gravitational forces is required for matching the second-order accuracy of hydrodynamical schemes. We present a direct algorithm for calculating self-gravitational forces with second-order accuracy without artificial boundary conditions. The Poisson integral in polar coordinates is expressed in a convolution form and the corresponding numerical complexity is nearly linear using a fast Fourier transform. Examples with analytic solutions are used to verify that the truncated error of this algorithm is of second order. The kernel integral around the singularity is applied to modify the particle method. The use of a softening length is avoided and the accuracy of the particle method is significantly improved.

  5. General Relativistic Radiative Transfer: Applications to Black-Hole Systems

    NASA Technical Reports Server (NTRS)

    Wu, Kinwah; Fuerst, Steven V.; Mizuno, Yosuke; Nishikawa, Ken-Ichi; Branduardi-Raymont, Graziella; Lee, Khee-Gan

    2007-01-01

    We present general relativistic radiation transfer formulations which include opacity effects due to absorption, emission and scattering explicitly. We consider a moment expansions for the transfer in the presence of scattering. The formulation is applied to calculation emissions from accretion and outflows in black-hole systems. Cases with thin accretion disks and accretion tori are considered. Effects, such as emission anisotropy, non-stationary flows and geometrical self-occultation are investigated. Polarisation transfer in curved space-time is discussed qualitatively.

  6. Power Spectrum Density of Stochastic Oscillating Accretion Disk

    NASA Astrophysics Data System (ADS)

    Long, G. B.; Ou, J. W.; Zheng, Y. G.

    2016-06-01

    In this paper, we employ a stochastic oscillating accretion disk model for the power spectral index and variability of BL Lac object S5 0716+714. In the model, we assume that there is a relativistic oscillation of thin accretion disks and it interacts with an external thermal bath through a friction force and a random force. We simulate the light curve and the power spectrum density (PSD) at (i) over-damped, (ii) critically damped and (iii) under-damped cases, respectively. Our results show that the simulated PSD curves depend on the intrinsic property of the accretion disk, and it could be produced in a wide interval ranging from 0.94 to 2.05 by changing the friction coefficient in a stochastic oscillating accretion disk model. We argue that accretion disk stochastic oscillating could be a possible interpretation for observed PSD variability.

  7. Optimization of beam quality and optical-to-optical efficiency of Yb:YAG thin-disk regenerative amplifier by pulsed pumping.

    PubMed

    Chyla, Michal; Miura, Taisuke; Smrz, Martin; Jelinkova, Helena; Endo, Akira; Mocek, Tomas

    2014-03-15

    We demonstrate an optimization method of beam quality and optical-to-optical (O-O) efficiency by using pulsed pumping. By changing the pulse duration and the peak intensity of pump pulse at the repetition rate of 1 kHz, the beam quality and O-O efficiency of the Yb:YAG thin-disk regenerative amplifier can be improved. We applied this method to the regenerative amplifier under the pumping wavelength of both 940 and 969 nm, and found that the method was effective in both pumping wavelengths. Although a Yb:YAG thin disk soldered on a copper tungsten heat sink, which has poor thermal properties compared with a thin disk mounted on a diamond substrate, was applied as a gain media, we obtained 45 mJ output with 19.3% O-O efficiency and nearly diffraction-limited beam.

  8. Analytical model of optical path difference in an end-pumped Yb:YAG thin-disk laser with nonuniform pumping light.

    PubMed

    Zhu, Guangzhi; Zhu, Xiao; Dai, Zhongxiong; Wang, Zexiong; Zhu, Changhong

    2015-04-01

    An analytical model of the thermal effect and optical path difference (OPD) of a thin-disk laser is developed by an arbitrary form pumping spot. Based on the analytical model, the distribution of temperature, stress, and strain can be derived using a super-Gaussian form pumping spot. The total OPD caused by temperature gradient, axial thermal strain, thermal strain-induced birefringence, and deformation of the thin-disk crystal is discussed for different super-Gaussian factors and is separated into spherical and aspherical parts. The analytical results show that the aspherical part of the OPD is the main reason leading to the decrease of the laser beam quality and it is closely related to super-Gaussian factors, which are very useful for thin-disk laser design and evaluation. PMID:25967218

  9. Enhanced Oxygen Reduction Activity on Pt/C for Nafion-free, Thin, Uniform Films in Rotating Disk Electrode Studies

    SciTech Connect

    Shinozaki, Kazuma; Pivovar, Bryan S.; Kocha, Shyam S.

    2013-01-01

    Commercially available nanoparticle platinum on high surface area carbon black (Pt/HSC) electrocatalysts were characterized in rotating disk electrode (RDE) setups using varying ink formulations and film drying techniques in an attempt to obtain thin, uniform films and reproducible activity. Electrodes prepared from Nafion-free inks that were dried under an isopropyl alcohol (IPA) atmosphere produced uniform, thin films at low electrocatalyst loadings of ~4.5 mg/cm2 Pt. These Nafion-free/IPA-dried electrodes were found to exhibit oxygen reduction reaction (ORR) activities higher than conventional Nafion-based/Air-dried electrodes by a factor of ~2.8. The magnitude of mass and specific activities were determined to be im ~771 ±56 mA/mgPt and is~812 ±59 mA/cm2Pt respectively and appear to be the highest values reported for RDE measurements on Pt/HSC in 0.1M HClO4 at 20 mV/s and 25°C. Electrochemical diagnostics including ORR I-V profiles, cyclic voltammograms and electrochemical impedance spectroscopy (EIS) studies were conducted to investigate the thin film Pt/HSC electrodes and correlate results to film morphology and electrochemical activity.

  10. Line Emission from Optically Thick RelativisticAccretion Tori

    SciTech Connect

    Fuerst, Steven V.; Wu, Kinwah; /Mullard Space Sci. Lab.

    2007-09-14

    We calculate line emission from relativistic accretion tori around Kerr black holes and investigate how the line profiles depend on the viewing inclination, spin of the central black hole, parameters describing the shape of the tori, and spatial distribution of line emissivity on the torus surface. We also compare the lines with those from thin accretion disks. Our calculations show that lines from tori and lines from thin disks share several common features. In particular, at low and moderate viewing inclination angles they both have asymmetric double-peaked profiles with a tall, sharp blue peak and a shorter red peak which has an extensive red wing. At high viewing inclination angles they both have very broad, asymmetric lines which can be roughly considered as single-peaked. Torus and disk lines may show very different red and blue line wings, but the differences are due to the models for relativistic tori and disks having differing inner boundary radii. Self-eclipse and lensing play some role in shaping the torus lines, but they are effective only at high inclination angles. If inner and outer radii of an accretion torus are the same as those of an accretion disk, their line profiles show substantial differences only when inclination angles are close to 90{sup o}, and those differences are manifested mostly at the central regions of the lines instead of the wings.

  11. High-efficiency wavelength and polarization selective grating-waveguide structures for Yb:YAG thin-disk lasers

    NASA Astrophysics Data System (ADS)

    Rumpel, Martin; Abdou Ahmed, Marwan; Voss, Andreas; Graf, Thomas

    2012-06-01

    We report on Grating Waveguide Structures (GWS) with a high diffraction efficiency used in Littrow configuration to select (and tune) the wavelength of an Yb:YAG thin-disk laser. The structures are composed of a multilayer HR coating, on which an additional low index layer (SiO2) and high index layer (Ta2O5) was deposited. A binary grating with a period of 580 nm is etched on top of the structure with a groove depth of 87 nm for GWS 1 and 72 nm for GWS 2. The simulation results show that the diffraction efficiency in the -1st order can reach a value of 99.99% for TE polarization, whereas it is only about 20% for TM polarization at 1030 nm. The grating was fabricated by standard interference lithography followed by a dry etching process to the desired groove depth. The spectroscopic measurement exhibited a diffraction efficiency of 99.6% for GWS 1 at 1030 nm and 99.7% for GWS 2 at 1048 nm. The devices were placed as end-mirror into the resonator of a Yb:YAG thin-disk laser. An output power of up to 110 W could be obtained from the laser in fundamental-mode operation (M2 ~ 1.2) with GWS 1, corresponding to an optical efficiency of ηoo = 36.2%. In multi-mode operation (M2 ~ 6) a power of 325 W with ηoo = 53.2% could be extracted. The spectral bandwidth of the emitted beam was measured using an Optical Spectrum Analyzer (OSA) to be less than 20 pm in fundamental-mode. We also showed a continuous wavelength tuning range of 46 nm for GWS 1 and of 38 nm for GWS 2. With a commercially available Stokes polarimeter the degree of linear polarization (DOLP) was measured to be higher than 98.6% over the whole power and wavelength tuning range.

  12. Planet signatures and effect of the chemical evolution of the Galactic thin-disk stars

    NASA Astrophysics Data System (ADS)

    Spina, Lorenzo; Meléndez, Jorge; Ramírez, Ivan

    2016-01-01

    Context. Studies based on high-precision abundance determinations revealed that chemical patterns of solar twins are characterised by the correlation between the differential abundances relative to the Sun and the condensation temperatures (Tc) of the elements. It has been suggested that the origin of this relation is related to the chemical evolution of the Galactic disk, but other processes, associated with the presence of planets around stars, might also be involved. Aims: We analyse HIRES spectra of 14 solar twins and the Sun to provide new insights on the mechanisms that can determine the relation between [X/H] and Tc. Methods: Our spectroscopic analysis produced stellar parameters (Teff, log g, [Fe/H], and ξ), ages, masses, and abundances of 22 elements (C, O, Na, Mg, Al, Si, S, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr, Y, and Ba). We used these determinations to place new constraints on the chemical evolution of the Galactic disk and to verify whether this process alone can explain the different [X/H]-Tc slopes observed so far. Results: We confirm that the [X/Fe] ratios of all the species correlate with age. The slopes of these relations allow us to describe the effect that the chemical evolution of the Galactic disk has on the chemical patterns of the solar twins. After subtracting the chemical evolution effect, we find that the unevolved [X/H]-Tc slope values do not depend on the stellar ages anymore. However, the wide diversity among these [X/H]-Tc slopes, covering a range of ± 4 × 10-5 dex K-1, indicates that processes in addition to the chemical evolution may affect the [X/H]-Tc slopes. Conclusions: The wide range of unevolved [X/H]-Tc slope values spanned at all ages by our sample could reflect the wide diversity among exo-planetary systems observed so far and the variety of fates that the matter in circumstellar disks can experience.

  13. Heating of thin foils with a relativistic-intensity short-pulse laser.

    PubMed

    Audebert, P; Shepherd, R; Fournier, K B; Peyrusse, O; Price, D; Lee, R; Springer, P; Gauthier, J-C; Klein, L

    2002-12-23

    K-shell x-ray spectroscopy of sub-100 nm Al foils irradiated by high contrast, spatially uniform, 150 fs, Ilambda (2)=2 x 10(18) W microm(2)/cm(2), laser pulses is obtained with 500 fs time resolution. Two distinct phases occur: At /=500 fs the resonance transitions dominate. Initial satellites arise from a large area, high density, low temperature (approximately 100 eV) plasma created by fast electrons. Thus, contrary to predictions, a short, high intensity laser incident on a thin foil does not create a uniform, hot dense plasma. PMID:12484827

  14. Relativistic Astrophysics

    NASA Astrophysics Data System (ADS)

    Jones, Bernard J. T.; Markovic, Dragoljub

    1997-06-01

    Preface; Prologue: Conference overview Bernard Carr; Part I. The Universe At Large and Very Large Redshifts: 2. The size and age of the Universe Gustav A. Tammann; 3. Active galaxies at large redshifts Malcolm S. Longair; 4. Observational cosmology with the cosmic microwave background George F. Smoot; 5. Future prospects in measuring the CMB power spectrum Philip M. Lubin; 6. Inflationary cosmology Michael S. Turner; 7. The signature of the Universe Bernard J. T. Jones; 8. Theory of large-scale structure Sergei F. Shandarin; 9. The origin of matter in the universe Lev A. Kofman; 10. New guises for cold-dark matter suspects Edward W. Kolb; Part II. Physics and Astrophysics Of Relativistic Compact Objects: 11. On the unification of gravitational and inertial forces Donald Lynden-Bell; 12. Internal structure of astrophysical black holes Werner Israel; 13. Black hole entropy: external facade and internal reality Valery Frolov; 14. Accretion disks around black holes Marek A. Abramowicz; 15. Black hole X-ray transients J. Craig Wheeler; 16. X-rays and gamma rays from active galactic nuclei Roland Svensson; 17. Gamma-ray bursts: a challenge to relativistic astrophysics Martin Rees; 18. Probing black holes and other exotic objects with gravitational waves Kip Thorne; Epilogue: the past and future of relativistic astrophysics Igor D. Novikov; I. D. Novikov's scientific papers and books.

  15. Normal Modes of Black Hole Accretion Disks

    SciTech Connect

    Ortega-Rodriguez, Manuel; Silbergleit, Alexander S.; Wagoner, Robert V.; /Stanford U., Phys. Dept. /KIPAC, Menlo Park

    2006-11-07

    This paper studies the hydrodynamical problem of normal modes of small adiabatic oscillations of relativistic barotropic thin accretion disks around black holes (and compact weakly magnetic neutron stars). Employing WKB techniques, we obtain the eigen frequencies and eigenfunctions of the modes for different values of the mass and angular momentum of the central black hole. We discuss the properties of the various types of modes and examine the role of viscosity, as it appears to render some of the modes unstable to rapid growth.

  16. Evolution of the Milky Way with radial motions of stars and gas. I. The solar neighbourhood and the thin and thick disks

    NASA Astrophysics Data System (ADS)

    Kubryk, M.; Prantzos, N.; Athanassoula, E.

    2015-08-01

    Context. We study the role of radial migration of stars on the chemical evolution of the Milky Way disk. Aims: We are interested in the impact of that process on the local properties of the disk (age-metallicity relation and its dispersion, metallicity distribution, evolution of abundance ratios) and on the morphological properties of the resulting thick and thin disks. Methods: We use a model with several new or up-dated ingredients: atomic and molecular gas phases, star formation that depends on molecular gas, yields from a recent homogeneous grid and observationally inferred SNIa rates. We describe radial migration with parametrised time- and radius-dependent diffusion coefficients, based on the analysis of an N-body+SPH simulation. We also consider parametrised radial gas flows, induced by the action of the Galactic bar. Results: Our model reproduces current values of most of the main global observables of the MW disk and bulge, and also the observed "stacked" evolution of MW-type galaxies. The azimuthally averaged radial velocity of gas inflow is constrained to less than a few tenths of km s-1. Radial migration is constrained by the observed dispersion in the age-metallicity relation. Assuming that the thick disk is the oldest (>9 Gyr) part of the disk, we find that the adopted radial migration scheme can quantitatively reproduce the main local properties of the thin and thick disk: metallicity distributions, "two-branch" behaviour in the O/Fe vs. Fe/H relation and the local surface densities of stars. The thick disk extends up to ~11 kpc and has a scale length of 1.8 kpc, which is considerably shorter than the thin disk, because of the inside-out formation scheme. We also show how, in this framework, current and forthcoming spectroscopic observations can constrain the nucleosynthesis yields of massive stars for the metallicity range of 0.1 Z⊙ to 2-3 Z⊙. Appendices are available in electronic form at http://www.aanda.org

  17. TECHNICAL NOTE: High-speed grinding using thin abrasive disks for microcomponents

    NASA Astrophysics Data System (ADS)

    Yeo, S. H.; Balon, S. A. P.

    2002-01-01

    This paper introduces the development of a high-speed grinding device for cylindrical grinding of microcomponents made of hard and brittle materials. The study made use of an ultraprecision diamond turning machine tool as a basic platform. The novelty of the device is based on the high-speed air bearing spindle with a thin grinding wheel, similar to the dicing technology for silicon wafer fabrication. The spindle attachment is inclined at an angle to the main spindle which holds the precision fixture mechanism via the vacuum chuck. Experiments have been conducted to verify the design and implementation of the grinding methodology. A feature size as small as 31 μm in diameter and average surface roughness of 98 nm were obtained in the experimental work. It is found that the work done is capable of manufacturing miniature components, such as microcylindrical stepped shafts.

  18. Efficient generation of cylindrically polarized beams in an Yb:YAG thin-disk laser enabled by a ring-shaped pumping distribution

    NASA Astrophysics Data System (ADS)

    Dietrich, Tom; Rumpel, Martin; Graf, Thomas; Abdou Ahmed, Marwan

    2016-04-01

    The efficient generation of a cylindrically (radially or azimuthally) polarized LG01 mode was investigated using a ring-shaped pumping distribution in a high-power Yb:YAG thin-disk laser setup. This was realized by implementing a 300 mm long customized fused silica fiber capillary in the pump beam path of the pumping optics of a thin-disk laser. Furthermore, a grating waveguide mirror based on the leaky-mode coupling mechanism was used as one of the cavity end mirrors to allow sufficient reduction of the reflectivity of the polarization state to be suppressed in the resonator. In order to achieve efficient laser operation, an optimized mode overlap between the ring-shaped pump spot and the excited first order Laguerre-Gaussian doughnut mode is required. This was investigated theoretically by analyzing the intensity distribution generated by different fiber geometries using a commercially raytracing software (Zemax). The output power, polarization state and efficiency of the emitted laser beam were compared to that obtained with a standard flattop pumping distribution. In particular, the thermal behavior of the disk was investigated since the excessive fluorescence caused by the non-saturated excitation in the center of the homogeneously pumped disk leads to a strong heating of the crystal. This considerable heating source is avoided in the case of the ring-shaped pumping and a reduction of the temperature increase on the disk surface of about 21% (at 280 W of pump power) was observed. This should allow higher pump power densities without increasing the risk of damaging the disk or distorting the polarization purity. With a laser efficiency of 41.2% to be as high as in the case of the flattop pumping, a maximum output power of 107 W was measured.

  19. Yb:YAG thin disk laser passively Q-switched by a hydro-thermal grown molybdenum disulfide saturable absorber

    NASA Astrophysics Data System (ADS)

    Zhan, Yi; Wang, Li; Wang, Jie Yu; Li, Hong Wei; Yu, Zhen Huang

    2015-02-01

    We demonstrate a passively Q-switched Yb:YAG thin disk solid-state laser based on nanoflake MoS2 as a saturable absorber. MoS2 is synthesized by a hydro-thermal process. The prepared MoS2 is transferred onto the BK7 glass for ease-of-use in the solid-state laser as a saturable absorber. The average output power could reach up to 250 mW, center wavelength 1030 nm corresponding to a pulse width, a pulse repetition rate, and a per pulse energy of 12 μs, 17 kHz, and 15 μJ, respectively. Our results show that nanoflake MoS2 could be a promising saturable absorber for Q-switching solid-state lasers. The over saturation of the MoS2 saturable absorber at a high pump strength limit in a solid-state laser could be also effective for high power operation.

  20. A CODE TO COMPUTE THE EMISSION OF THIN ACCRETION DISKS IN NON-KERR SPACETIMES AND TEST THE NATURE OF BLACK HOLE CANDIDATES

    SciTech Connect

    Bambi, Cosimo

    2012-12-20

    Astrophysical black hole (BH) candidates are thought to be the Kerr BHs predicted by general relativity, but the actual nature of these objects has still to be proven. The analysis of the electromagnetic radiation emitted by a geometrically thin and optically thick accretion disk around a BH candidate can provide information about the geometry of the spacetime around the compact object and it can thus test the Kerr BH hypothesis. In this paper, I present a code based on a ray-tracing approach and capable of computing some basic properties of thin accretion disks in spacetimes with deviations from the Kerr background. The code can be used to fit current and future X-ray data of stellar-mass BH candidates and constrain possible deviations from the Kerr geometry in the spin parameter-deformation parameter plane.

  1. A 1.78 μJ and 285fs Yb:CaF2 SESAM-modelocked thin-disk oscillator

    NASA Astrophysics Data System (ADS)

    Dannecker, Benjamin; Abdou Ahmed, Marwan; Graf, Thomas

    2016-04-01

    We present a SESAM-modelocked Yb:CaF2 thin-disk laser designed for pulse durations below 300 fs and high peak powers of more than 5 MW. A cavity for fundamental mode operation (beam quality factor M2 below 1.2) was set up and modelocked using a SESAM. An average output power of up to 17.8 W was obtained at a repetition-rate of 10 MHz, corresponding to a pulse energy of approximately 1.8 μJ. The pulse duration was measured to be 285 fs, therefore a peak power of 5.5 MW was attained. Our research enables a comparison of the potential of Yb:CaF2 with other Yb-doped crystals with broad gain bandwidth in thin-disk laser technology. We conclude from our results that this gain material is very promising for high pulse energies and high peak powers.

  2. Multipass pumped Nd-based thin-disk lasers: continuous-wave laser operation at 1.06 and 0.9 microm with intracavity frequency doubling.

    PubMed

    Pavel, Nicolaie; Lünstedt, Kai; Petermann, Klaus; Huber, Günter

    2007-12-01

    The laser performances of the 1.06 microm (4)F(3/2) --> (4)I(11/2) four-level transition and of the 0.9 microm (4)F(3/2) --> I(9/2)4 quasi-three-level transition were investigated using multipass pumped Nd-based media in thin-disk geometry. When pumping at 0.81 microm into the (4)F(5/2) level, continuous-wave laser operation was obtained with powers in excess of 10 W at 1.06 microm, in the multiwatt region at 0.91 microm in Nd:YVO(4) and Nd:GdVO(4), and at 0.95 microm in Nd:YAG. Intracavity frequency-doubled Nd:YVO(4) thin-disk lasers with output powers of 6.4 W at 532 nm and of 1.6 W at 457 nm were realized at this pumping wavelength. The pumping at 0.88 microm, which is directed into the (4)F(3/2) emitting level, was also employed, and Nd:YVO(4) and Nd:GdVO(4) thin-disk lasers with ~9 W output power at 1.06 microm and visible laser radiation at 0.53 microm with output power in excess of 4 W were realized. Frequency-doubled Nd:vanadate thin-disk lasers with deep blue emission at 0.46 microm were obtained under pumping directly into the (4)F(3/2) emitting level.

  3. VizieR Online Data Catalog: Thin disk BV-GV Hipparcos stars within 333pc (Gontcharov+, 2012)

    NASA Astrophysics Data System (ADS)

    Gontcharov, G. A.

    2016-01-01

    The variations of kinematic parameters with age are considered for a sample of 15402 thin-disk O-F stars with accurate RA, DEC, proper motion, and parallax higher than 3 mas from the Hipparcos catalogue (2007A&A...474..653V) and radial velocities from the PCRV (2006PAZh...32..844G) catalogue. The ages have been calculated from the positions of the stars on the Hertzsprung-Russell diagram relative to the isochrones from the Padova database (http://stev.oapd.inaf.it/cmd) by taking into account the extinction from the previously constructed 3D analytical model (2009AstL...35..780G) and extinction coefficient RV from the 3D map of its variations (2012AstL...38...12G). Smooth, mutually reconciled variations of the velocity dispersions sigma(U), sigma(V), sigma(W), solar motion components Usun, Vsun, Wsun, Ogorodnikov-Milne model parameters, Oort constants, and vertex deviation lxy consistent with all of the extraneous results for which the stellar ages were determined have been found and presented in the table solution.dat. The velocity dispersion variations are well fitted by power laws the deviations from which are explained by the influence of predominantly radial stellar streams: Sirius, Hyades, alpha Cet/Wolf 630, and Hercules. The accuracy of determining the solar motion relative to the local standard of rest is shown to be fundamentally limited due to these variations of stellar kinematics. The deviations of our results from those of Dehnen and Binney (1998MNRAS.294..429D), the Geneva-Copenhagen survey of dwarfs (V/117), and the Besancon model of the Galaxy (2003A&A...409..523R) are explained by the use of PCRV radial velocities with corrected systematic errors. (2 data files).

  4. THE TRANSITION LAYER BETWEEN THE THIN ACCRETION DISK AND THE HOT CORONA: CONSTRAINTS FROM THE THERMAL X-RAY LINE EMISSION

    SciTech Connect

    Xu, Ya-Di

    2013-02-15

    The observed continuum spectra in the low-luminosity active galactic nuclei, M81, can be reproduced by the advection-dominated accretion flow (ADAF)+thin disk/corona accretion flow model. We find that the best fit to the spectral energy distribution of M81 requires accretion rate m-dot =3 Multiplication-Sign 10{sup -4} for R {sub tr} = 60 R {sub S}. The observed H-like and He-like iron lines may probably be emitted from the transition layer between the vertically connected hot corona and cold thin disk. We model a power-law function of height z for the electron temperature in the transition layer, and calculate the thermal H-like and He-like iron line emission from M81. Combining the observations with our results, we find that the thickness of the transition layer is {approx}14%-23% of the thickness of the corona at the same radius. We discuss that the observed stronger H-like line emission than He-like line emission cannot be explained with the pure ADAF model. Our results provide useful constraints on the theoretical model for disk-corona connection.

  5. Testing slim-disk models on the thermal spectra of LMC X-3

    NASA Astrophysics Data System (ADS)

    Straub, O.; Bursa, M.; Sądowski, A.; Steiner, J. F.; Abramowicz, M. A.; Kluźniak, W.; McClintock, J. E.; Narayan, R.; Remillard, R. A.

    2011-09-01

    Slim-disk models describe advective accretion flows at high luminosities, while reducing to the standard thin disk form in the low luminosity limit. We have developed a new spectral model, slimbb, within the framework of XSPEC, which describes fully relativistic slim-disk accretion and includes photon ray-tracing that starts from the disk photosphere, rather than the equatorial plane. We demonstrate the features of this model by applying it to RXTE spectra of the persistent black-hole X-ray binary LMC X-3. LMC X-3 has the virtues of exhibiting large intensity variations while maintaining itself in soft spectral states which are well described using accretion-disk models, making it an ideal candidate to test the aptness of slimbb. Our results demonstrate consistency between the low-luminosity (thin-disk) and high luminosity (slim-disk) regimes. The results also illustrate that advection alone does not solve the problem of the origin of the surprisingly soft high-luminosity spectra in LMC X-3. We show that X-ray continuum-fitting in the high accretion rate regime can powerfully test black-hole accretion disk models.

  6. Numerical and experimental analysis of a thin liquid film on a rotating disk related to development of a spacecraft absorption cooling system

    NASA Technical Reports Server (NTRS)

    Faghri, Amir; Swanson, Theodore D.

    1989-01-01

    The numerical and experimental analysis of a thin liquid film on a rotating and a stationary disk related to the development of an absorber unit for a high capacity spacecraft absorption cooling system, is described. The creation of artificial gravity by the use of a centrifugal field was focused upon in this report. Areas covered include: (1) One-dimensional computation of thin liquid film flows; (2) Experimental measurement of film height and visualization of flow; (3) Two-dimensional computation of the free surface flow of a thin liquid film using a pressure optimization method; (4) Computation of heat transfer in two-dimensional thin film flow; (5) Development of a new computational methodology for the free surface flows using a permeable wall; (6) Analysis of fluid flow and heat transfer in a thin film in the presence and absence of gravity; and (7) Comparison of theoretical prediction and experimental data. The basic phenomena related to fluid flow and heat transfer on rotating systems reported here can also be applied to other areas of space systems.

  7. 615 fs pulses with 17 mJ energy generated by an Yb:thin-disk amplifier at 3 kHz repetition rate.

    PubMed

    Fischer, Jonathan; Heinrich, Alexander-Cornelius; Maier, Simon; Jungwirth, Julian; Brida, Daniele; Leitenstorfer, Alfred

    2016-01-15

    A combination of Er/Yb:fiber and Yb:thin-disk technology produces 615 fs pulses at 1030 nm with an average output power of 72 W. The regenerative amplifier allows variation of the repetition rate between 3 and 5 kHz with pulse energies from 13 to 17 mJ. A broadband and intense seed provided by the compact and versatile fiber front-end minimizes gain narrowing. The resulting sub-ps performance is ideal for nonlinear frequency conversion and pulse compression. Operating in the upper branch of a bifurcated pulse train, the system exhibits exceptional noise performance and stability.

  8. Gas lines from the 5-Myr old optically thin disk around HD 141569A . Herschel observations and modeling

    NASA Astrophysics Data System (ADS)

    Thi, W.-F.; Pinte, C.; Pantin, E.; Augereau, J. C.; Meeus, G.; Ménard, F.; Martin-Zaïdi, C.; Woitke, P.; Riviere-Marichalar, P.; Kamp, I.; Carmona, A.; Sandell, G.; Eiroa, C.; Dent, W.; Montesinos, B.; Aresu, G.; Meijerink, R.; Spaans, M.; White, G.; Ardila, D.; Lebreton, J.; Mendigutía, I.; Brittain, S.

    2014-01-01

    Context. The gas- and dust dissipation processes in disks around young stars remain uncertain despite numerous studies. At the distance of ~99-116 pc, HD 141569A is one of the nearest HerbigAe stars that is surrounded by a tenuous disk, probably in transition between a massive primordial disk and a debris disk. Atomic and molecular gases have been found in the structured 5-Myr old HD 141569A disk, making HD 141569A the perfect object within which to directly study the gaseous atomic and molecular component. Aims: We wish to constrain the gas and dust mass in the disk around HD 141569A. Methods: We observed the fine-structure lines of O i at 63 and 145 μm and the C ii line at 157 μm with the PACS instrument onboard the Herschel Space Telescope as part of the open-time large program GASPS. We complemented the atomic line observations with archival Spitzer spectroscopic and photometric continuum data, a ground-based VLT-VISIR image at 8.6 μm, and 12CO fundamental ro-vibrational and pure rotational J = 3-2 observations. We simultaneously modeled the continuum emission and the line fluxes with the Monte Carlo radiative transfer code MCFOST and the thermo-chemical code ProDiMo to derive the disk gas- and dust properties assuming no dust settling. Results: The models suggest that the oxygen lines are emitted from the inner disk around HD 141569A, whereas the [C ii] line emission is more extended. The CO submillimeter flux is emitted mostly by the outer disk. Simultaneous modeling of the photometric and line data using a realistic disk structure suggests a dust mass derived from grains with a radius smaller than 1 mm of ~2.1 × 10-7M⊙ and from grains with a radius of up to 1 cm of 4.9 × 10-6M⊙. We constrained the polycyclic aromatic hydrocarbons (PAH) mass to be between 2 × 10-11 and 1.4 × 10-10M⊙ assuming circumcircumcoronene (C150H30) as the representative PAH. The associated PAH abundance relative to hydrogen is lower than those found in the interstellar

  9. Rich Kozai–Lidov Dynamics in an Initially Thin and Eccentric Stellar Disk around a Supermassive Black Hole

    NASA Astrophysics Data System (ADS)

    Haas, Jaroslav; Šubr, Ladislav

    2016-05-01

    There is growing evidence of star formation in the vicinity of supermassive black holes (SMBHs) in galactic nuclei. A viable scenario for this process assumes infall of a massive gas cloud toward the SMBH and subsequent formation of a dense accretion disk, which gives birth to the young stars. Numerical hydrodynamical models indicate that this star formation process is rather fast and precedes full circularization of the accretion flow, i.e., the new stars are born on elliptic orbits. By means of direct numerical N-body modeling, we show in this paper that the nonzero eccentricity of the stellar disks around the SMBH leads to an onset of various types of the Kozai–Lidov oscillations of a non-negligible subset of individual orbits in the disk, showing a remarkable robustness of this classical mechanism. Among others, we demonstrate that under certain circumstances, the presence of an additional spherical cluster (which is generally known to damp Kozai–Lidov oscillations) may trigger such oscillations as a result of affecting the internal flow of the angular momentum through the disk. We conclude that the Kozai–Lidov oscillations are capable of substantially modifying the initial structure of the disk (its thickness and distribution of eccentricities, in particular).

  10. Rich Kozai-Lidov Dynamics in an Initially Thin and Eccentric Stellar Disk around a Supermassive Black Hole

    NASA Astrophysics Data System (ADS)

    Haas, Jaroslav; Šubr, Ladislav

    2016-05-01

    There is growing evidence of star formation in the vicinity of supermassive black holes (SMBHs) in galactic nuclei. A viable scenario for this process assumes infall of a massive gas cloud toward the SMBH and subsequent formation of a dense accretion disk, which gives birth to the young stars. Numerical hydrodynamical models indicate that this star formation process is rather fast and precedes full circularization of the accretion flow, i.e., the new stars are born on elliptic orbits. By means of direct numerical N-body modeling, we show in this paper that the nonzero eccentricity of the stellar disks around the SMBH leads to an onset of various types of the Kozai-Lidov oscillations of a non-negligible subset of individual orbits in the disk, showing a remarkable robustness of this classical mechanism. Among others, we demonstrate that under certain circumstances, the presence of an additional spherical cluster (which is generally known to damp Kozai-Lidov oscillations) may trigger such oscillations as a result of affecting the internal flow of the angular momentum through the disk. We conclude that the Kozai-Lidov oscillations are capable of substantially modifying the initial structure of the disk (its thickness and distribution of eccentricities, in particular).

  11. SESAM-modelocked Yb:CaF2 thin-disk-laser generating 285 fs pulses with 1.78 μJ of pulse energy

    NASA Astrophysics Data System (ADS)

    Dannecker, Benjamin; Abdou Ahmed, Marwan; Graf, Thomas

    2016-05-01

    We report on a SESAM-modelocked Yb:CaF2 thin-disk oscillator designed to generate more than 1 μJ of pulse energy at a moderate pulse repetition rate. The goal of our experiment was to explore the potential of Yb:CaF2 in a thin-disk laser (TDL) architecture for high power at pulse durations shorter than 300 fs as compared to other Yb-doped crystals exhibiting broad gain bandwidth. At a repetition rate of 10 MHz the laser produced an average output power of up to 17.8 W (1.78 μJ of pulse energy) with a beam quality factor M 2 below 1.2. The pulse duration was measured to be 285 fs, which results in a peak power of 5.5 MW. To the best of our knowledge, this is the highest pulse energy and peak power demonstrated to date with sub-300 fs pulses generated by SESAM-modelocked oscillators, leading to the conclusion that Yb:CaF2 is a very promising crystal for TDL technology.

  12. Numerical simulation of fluid flow and heat transfer in a thin liquid film over a stationary and rotating disk and comparison with experimental data

    NASA Technical Reports Server (NTRS)

    Faghri, Amir; Swanson, Theodore D.

    1990-01-01

    In the first section, improvements in the theoretical model and computational procedure for the prediction of film height and heat-transfer coefficient of the free surface flow of a radially-spreading thin liquid film adjacent to a flat horizontal surface of finite extent are presented. Flows in the presence and absence of gravity are considered. Theoretical results are compared to available experimental data with good agreement. In the presence of gravity, a hydraulic jump is present, isolating the flow into two regimes: supercritical upstream from the jump and subcritical downstream of it. In this situation, the effects of surface tension are important near the outer edge of the disk where the fluid experiences a free fall. A region of flow separation is present just downstream of the jump. In the absence of gravity, no hydraulic jump or separated flow region is present. The variation of the heat-transfer coefficient for flows in the presence and absence of gravity are also presented. In the second section, the results of a numerical simulation of the flow field and associated heat transfer coefficients are presented for the free surface flow of a thin liquid film adjacent to a horizontal rotating disk. The computation was performed for different flow rates and rotational velocities using a 3-D boundary-fitted coordinate system. Since the geometry of the free surface is unknown and dependent on flow rate, rate of rotation, and other parameters, an iterative procedure had to be used to ascertain its location. The computed film height agreed well with existing experimental measurements. The flow is found to be dominated by inertia near the entrance and close to the free surface and dominated by centrifugal force at larger radii and adjacent to the disk. The rotation enhances the heat transfer coefficient by a significant amount.

  13. THE STRUCTURE AND SPECTRAL FEATURES OF A THIN DISK AND EVAPORATION-FED CORONA IN HIGH-LUMINOSITY ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Liu, J. Y.; Mineshige, S. E-mail: bfliu@nao.cas.cn

    2012-08-01

    We investigate the accretion process in high-luminosity active galactic nuclei (HLAGNs) in the scenario of the disk evaporation model. Based on this model, the thin disk can extend down to the innermost stable circular orbit (ISCO) at accretion rates higher than 0.02 M-dot{sub Edd} while the corona is weak since part of the coronal gas is cooled by strong inverse Compton scattering of the disk photons. This implies that the corona cannot produce as strong X-ray radiation as observed in HLAGNs with large Eddington ratio. In addition to the viscous heating, other heating to the corona is necessary to interpret HLAGN. In this paper, we assume that a part of accretion energy released in the disk is transported into the corona, heating up the electrons, and is thereby radiated away. For the first time, we compute the corona structure with additional heating, fully taking into account the mass supply to the corona, and find that the corona could indeed survive at higher accretion rates and that its radiation power increases. The spectra composed of bremsstrahlung and Compton radiation are also calculated. Our calculations show that the Compton-dominated spectrum becomes harder with the increase of energy fraction (f) liberating in the corona, and the photon index for hard X-ray (2-10 keV) is 2.2 < {Gamma} < 2.7. We discuss possible heating mechanisms for the corona. Combining the energy fraction transported to the corona with the accretion rate by magnetic heating, we find that the hard X-ray spectrum becomes steeper at a larger accretion rate and the bolometric correction factor (L{sub bol}/L{sub 2-10keV}) increases with increasing accretion rate for f < 8/35, which is roughly consistent with the observational results.

  14. Edge-facet pumped, multi-aperture, thin-disk laser geometry for very high average power output scaling

    DOEpatents

    Zapata, Luis E.

    2004-12-21

    The average power output of a laser is scaled, to first order, by increasing the transverse dimension of the gain medium while increasing the thickness of an index matched light guide proportionately. Strategic facets cut at the edges of the laminated gain medium provide a method by which the pump light introduced through edges of the composite structure is trapped and passes through the gain medium repeatedly. Spontaneous emission escapes the laser volume via these facets. A multi-faceted disk geometry with grooves cut into the thickness of the gain medium is optimized to passively reject spontaneous emission generated within the laser material, which would otherwise be trapped and amplified within the high index composite disk. Such geometry allows the useful size of the laser aperture to be increased, enabling the average laser output power to be scaled.

  15. Slim accretion disks

    SciTech Connect

    Abramowicz, M.A.; Czerny, B.; Lasota, J.P.; Szuszkiewicz, E.

    1988-09-01

    A new branch of equilibrium solutions for stationary accretion disks around black holes is found. These solutions correspond to moderately super-Eddington accretion rates. The existence of the new branch is a consequence of an additional cooling due to general relativistic Roche lobe overflow and horizontal advection of heat. On an accretion rate versus surface density plane the new branch forms, together with the two standard branches (corresponding to the Shakura-Sunyaev accretion disk models) a characteristically S-shaped curve. This could imply a limit cycle-type behavior for black hole accretion flows with accretion rates close ot the Eddington one. 29 references.

  16. Critical condition for the propeller effect in systems with magnetized neutron stars accreting from geometrically thin accretion disks

    NASA Astrophysics Data System (ADS)

    Ertan, Unal

    2016-07-01

    The inner disk radius around a magnetized neutron star in the spin-down phase is usually assumed to be close to the radius at which the viscous and magnetic stresses are balanced. With different assumptions, this radius is estimated to be very close the Alfven radius. Furthermore, it is commonly assumed that the propeller mechanism can expel the matter from the system when this radius is found to be greater than the co-rotation radius. In the present work, we have shown with simple analytical calculations from the first principles that a steady-state propeller mechanism cannot be established at the radius where the viscous and the magnetic torques are balanced. We have found that a steady-state propeller phase can be built up with an inner disk radius that is at least ~10 - 30 times smaller than the Alfven radius depending on the current mass-flow rate of the disk, the field strength and the rotational period of the source. This result also indicates that the critical accretion rate for the accretion-propeller transition is orders of magnitude smaller than the rate found by equating the Alfven and the co-rotation radii. Our results are consistent with the properties of recently discovered transitional millisecond pulsars which show transitions between the rotational powered radio pulsar and the accretion powered X-ray pulsar states.

  17. Continuous-wave seeded mid-IR parametric system pumped by the high-average-power picosecond Yb:YAG thin-disk laser

    NASA Astrophysics Data System (ADS)

    Novák, Ondřej; Smrž, Martin; Miura, Taisuke; Turčičová, Hana; Endo, Akira; Mocek, Tomáś

    2015-05-01

    Mid-IR wavelength range offers variety of interesting applications. Down-conversion in the optical parametric devices is promising to generate high average power mid-IR beam due to inherently low thermal load of the nonlinear crystals if a powerful and high quality pump beam is available. We developed 100 kHz pump laser of 100-W level average power. The stretched pulses of Yb-fiber laser oscillator at 1030 nm wavelength are injected into the regenerative amplifier with an Yb:YAG thin-disk. Diode pumping at zero phonon line at wavelength of 969 nm significantly reduces its thermal load and increases conversion efficiency and stability. We obtained the beam with power of 80 W and 2 ps compressed pulsewidth. We are developing a watt level mid-IR picosecond light source pumped by a beam of the thin disk regenerative amplifier. Part of the beam pumps PPLN, which is seeded by a continuous wave laser diode at 1.94 μm to decrease the generation threshold and determine the amplified spectrum. The 3 W pumping gave output of 30 mW, which is by up to two orders higher compared to unseeded operation. The gain of about 107 was achieved in the PPLN in the temporal window of the pump pulse. The spectrum and beam of the generated idler pulses in the mid-IR was measured. We obtained an amplified signal from the second stage with the KTP crystal. We expect watt level mid-IR output for initial 50-W pumping. The generation of longer wavelengths is discussed.

  18. Design and Characterization of Thin Stainless Steel Burst Disks for Increasing Two-Stage Light Gas Launcher Efficiency

    NASA Technical Reports Server (NTRS)

    Tylka, Jonathan M.; Johnson, Kenneth L.; Henderson, Donald; Rodriguez, Karen

    2012-01-01

    Laser etched 300 series Stainless Steel Burst Disks (SSBD) ranging between 0.178 mm (0.007-in.) and 0.508mm (0.020-in.) thick were designed for use in a 17-caliber two-stage light gas launcher. First, a disk manufacturing method was selected using a combination of wire electrical discharge machining (EDM) to form the blank disks and laser etching to define the pedaling fracture pattern. Second, a replaceable insert was designed to go between the SSDB and the barrel. This insert reduced the stress concentration between the SSBD and the barrel, providing a place for the petals of the SSDB to open, and protecting the rifling on the inside of the barrel. Thereafter, a design of experiments was implemented to test and characterize the burst characteristics of SSBDs. Extensive hydrostatic burst testing of the SSBDs was performed to complete the design of experiments study with one-hundred and seven burst tests. The experiment simultaneously tested the effects of the following: two SSBD material states (full hard, annealed); five SSBD thicknesses 0.178, 0.254, 0.305, 0.381 mm (0.007, 0.010, 0.012, 0.015, 0.020-in.); two grain directions relative); number of times the laser etch pattern was repeated (varies between 5-200 times); two heat sink configurations (with and without heat sink); and, two barrel configurations (with and without insert). These tests resulted in the quantification of the relationship between SSBD thickness, laser etch parameters, and desired burst pressure. Of the factors investigated only thickness and number of laser etches were needed to develop a mathematical relationship predicting hydrostatic burst pressure of disks using the same barrel configuration. The fracture surfaces of two representative SSBD bursts were then investigated with a scanning electron microscope, one burst hydrostatically in a fixture and another dynamically in the launcher. The fracture analysis verified that both burst conditions resulted in a ductile overload failure

  19. Hot Accretion Disks Revisited

    NASA Astrophysics Data System (ADS)

    Bjoernsson, Gunnlaugur; Abramowicz, Marek A.; Chen, Xingming; Lasota, Jean-Pierre

    1996-08-01

    All previous studies of hot (Tp 1010-1012 K), optically thin accretion disks have neglected either the presence of e+ e- pairs or advective cooling. Thus all hot disk models constructed previously have not been self-consistent. In this paper we calculate local disk models including pair physics, relevant radiative processes in the hot plasma, and the effect of advective cooling. We use a modification of the Björnsson & Svensson mapping method. We find that the role of e+ e- pairs in the structure of hot, optically thin accretion disks is far less significant than was previously thought. The improved description of the radiation-matter interactions provided in the present paper modify the previously obtained values of the critical parameters characterizing advectively dominated flows.

  20. Relativistic electrons in space.

    NASA Technical Reports Server (NTRS)

    Simnett, G. M.

    1972-01-01

    This paper reviews the current state of knowledge concerning relativistic electrons, above 0.3 MeV, in interplanetary space, as measured by detectors on board satellites operating beyond the influence of the magnetosphere. The electrons have a galactic component, which at the lower energies is subject both to solar modulation and to spasmodic 'quiet time' increases and a direct solar component correlated with flare activity. The recent measurements have established the form of the differential energy spectrum of solar flare electrons. Electrons have been detected from flares behind the visible solar disk. Relativistic electrons do not appear to leave the sun at the time of the flash phase of the flare, although there are several signatures of electron acceleration at this time. The delay is interpreted as taking place during the transport of the electrons through the lower corona.

  1. Propagation of cosmic-ray nuclei in a diffusing galaxy with convective halo and thin matter disk

    NASA Technical Reports Server (NTRS)

    Webber, W. R.; Lee, M. A.; Gupta, M.

    1992-01-01

    A diffusion model for cosmic-ray propagation in the galaxy that includes the effects of convection in the halo is presented. Calculations are made for 13 primary and secondary nuclei with rigidities between 1 and 1000 GV using interaction loss rates, secondary production rates, and radioactive decay on the basis of recent new cross-section measurements. It is found that, in order to fit the rather weak radial dependence of cosmic-ray protons derived from gamma-ray data, the radial profile of the cosmic-ray sources must also have a weak radial dependence. It is suggested that convection perpendicular to the disk of the Milky Way Galaxy may not be important even at rigidities less than a few GV. The obtained limits on halo thicknesses are consistent with what can be determined for the distribution of cosmic-ray electrons in the halo based on the distribution of radio synchrotron emission in this and other galaxies.

  2. Microstructural origin of in-plane magnetic anisotropy in magnetron in-line sputtered CoPtCr thin-film disks

    NASA Astrophysics Data System (ADS)

    Kim, Myong R.; Guruswamy, Sivaraman; Johnson, Kenneth E.

    1993-10-01

    The microstructural origin of magnetic anisotropy in a magnetron in-line sputter-deposited CoPtCr/Cr magnetic thin-film disk was examined by mapping magnetic properties and microstructure. The film coercivity (Hc), remanence-thickness product (Mrδ), and coercivity squareness (S*) were determined as a function of radial (r) and angular (θ) co-ordinates using a transfer curve magnetometer. The observed variations in Hc, Mrδ, and S* across the disk were 85 Oe, 0.15 emu/cm2, and 0.03, respectively. The angular variation in magnetic properties showed a sinusoidal pattern with the maxima corresponding to the regions where the tracks were parallel (θ=270°) to the pallet movement direction. High-resolution scanning transmission electron microscopy showed subtle differences in the Co-alloy grain morphology and crystallographic orientation between θ=270° and θ=360° locations. The grains were equiaxed in general except for a small fraction of grains elongated in the direction of pallet movement. Lattice images clearly showed that about 45% of the Co-alloy grains had in-plane c axes and a preferred alignment of the c axes along the texture groove. A greater preference for the c axes to lie along the texture line was observed for the θ=270° location. A coherency stress-based model is proposed to explain the preferred c-axis alignment. While the crystalline anisotropy appears to be the main factor responsible for the magnetic anisotropy, both crystalline and shape anisotropies contribute to the magnetic anisotropy variations.

  3. Generation of 15W femtosecond laser pulse from a Kerr-lens mode-locked Yb:YAG thin-disk oscillator

    NASA Astrophysics Data System (ADS)

    Peng, Yingnan; Zhang, Jinwei; Wang, Zhaohua; Zhu, Jiangfeng; Li, Dehua; Wei, Zhiyi

    2016-09-01

    We demonstrated a robust power-scalable Kerr-lens mode-locked (KLM) operation based on a Yb:YAG thin-disk oscillator. 15-W, 272-fs pulses were realized at a repetition rate of 86.7 MHz with an additional Kerr medium and a 2.5 mm hard aperture in the cavity. 247-fs pulses with an average power of 11 W could also be obtained by using a 2.4 mm hard aperture. Based on this shorter pulse, high efficient second-harmonic generation (SHG) was performed with a 1.7-mm-long LiB3O5 (LBO) crystal. The SHG laser power was up to 5 W with the power fluctuation RMS of 1% measured over one hour. Project supported by the National Basic Research Program of China (Grant No. 2013CB922402), the National Major Instrument Program of China (Grant No. 2012YQ120047), and the National Natural Science Foundation of China (Grant Nos. 11434016 and 61210017).

  4. Beam delivery and pulse compression to sub-50 fs of a modelocked thin-disk laser in a gas-filled Kagome-type HC-PCF fiber.

    PubMed

    Emaury, Florian; Dutin, Coralie Fourcade; Saraceno, Clara J; Trant, Mathis; Heckl, Oliver H; Wang, Yang Y; Schriber, Cinia; Gerome, Frederic; Südmeyer, Thomas; Benabid, Fetah; Keller, Ursula

    2013-02-25

    We present two experiments confirming that hypocycloid Kagome-type hollow-core photonic crystal fibers (HC-PCFs) are excellent candidates for beam delivery of MW peak powers and pulse compression down to the sub-50 fs regime. We demonstrate temporal pulse compression of a 1030-nm Yb:YAG thin disk laser providing 860 fs, 1.9 µJ pulses at 3.9 MHz. Using a single-pass grating pulse compressor, we obtained a pulse duration of 48 fs (FWHM), a spectral bandwidth of 58 nm, and an average output power of 4.2 W with an overall power efficiency into the final polarized compressed pulse of 56%. The pulse energy was 1.1 µJ. This corresponds to a peak power of more than 10 MW and a compression factor of 18 taking into account the exact temporal pulse profile measured with a SHG FROG. The compressed pulses were close to the transform limit of 44 fs. Moreover, we present transmission of up to 97 µJ pulses at 10.5 ps through 10-cm long fiber, corresponding to more than twice the critical peak power for self-focusing in silica.

  5. Generation of 15W femtosecond laser pulse from a Kerr-lens mode-locked Yb:YAG thin-disk oscillator

    NASA Astrophysics Data System (ADS)

    Peng, Yingnan; Zhang, Jinwei; Wang, Zhaohua; Zhu, Jiangfeng; Li, Dehua; Wei, Zhiyi

    2016-09-01

    We demonstrated a robust power-scalable Kerr-lens mode-locked (KLM) operation based on a Yb:YAG thin-disk oscillator. 15-W, 272-fs pulses were realized at a repetition rate of 86.7 MHz with an additional Kerr medium and a 2.5 mm hard aperture in the cavity. 247-fs pulses with an average power of 11 W could also be obtained by using a 2.4 mm hard aperture. Based on this shorter pulse, high efficient second-harmonic generation (SHG) was performed with a 1.7-mm-long LiB3O5 (LBO) crystal. The SHG laser power was up to 5 W with the power fluctuation RMS of 1% measured over one hour. Project supported by the National Basic Research Program of China (Grant No. 2013CB922402), the National Major Instrument Program of China (Grant No. 2012YQ120047), and the National Natural Science Foundation of China (Grant Nos. 11434016 and 61210017).

  6. Relativistic Iron Line Fits

    NASA Astrophysics Data System (ADS)

    Fink, M.; Dauser, T.; Beuchert, T.; Jeffreson, S.; Tawabutr, J.; Wilms, J.; García, J.; Walton, D. J.

    2016-08-01

    The 6.4 keV Iron reflection line possesses strong diagnostic potential for AGN-systems. In the rare case of unobscured AGN, this line receives a contribution from the very center of the accretion flow close to the event horizon that is subject to strong relativistic effects. The shape of this line distortion can be used infer important parameters of the central accretion region, especially the black hole spin parameter a* and the accretion disk inclination i. We analyze several (nine?) bare AGN spectra from the sample of Walton et al. 2012 using high resolution spectra from the XMM and NuStar archives. The relativistic reflection is modeled using the RELXILL code (Dauser 20XX). The newest iteration of the RELXILL model also supports a lamp post geometry for the irradiation of the accretion disk. By combining these detailed models with the wide spectral range of NuStar and XMM/NuStar joint observations we can put tight constraints on the aforementioned parameters and we can constrain the height of the source h in a possible lamp post geometry.

  7. Herniated Disk

    MedlinePlus

    ... keep them in place. As you age, the disks break down or degenerate. As they do, they lose their cushioning ability. This can lead to pain if the back is stressed. A herniated disk is a disk that ruptures. This allows the ...

  8. Polyanalytic relativistic second Bargmann transforms

    SciTech Connect

    Mouayn, Zouhaïr

    2015-05-15

    We construct coherent states through special superpositions of eigenstates of the relativistic isotonic oscillator. In each superposition, the coefficients are chosen to be L{sup 2}-eigenfunctions of a σ-weight Maass Laplacian on the Poincaré disk, which are associated with the eigenvalue 4m(σ−1−m), m∈Z{sub +}∩[0,(σ−1)/2]. For each nonzero m, the associated coherent states transform constitutes the m-true-polyanalytic extension of a relativistic version of the second Bargmann transform, whose integral kernel is expressed in terms of a special Appel-Kampé de Fériet’s hypergeometric function. The obtained results could be used to extend the known semi-classical analysis of quantum dynamics of the relativistic isotonic oscillator.

  9. Accretion disks around black holes

    NASA Technical Reports Server (NTRS)

    Abramowicz, M. A.

    1994-01-01

    The physics of accretion flow very close to a black hole is dominated by several general relativistic effects. It cannot be described by the standard Shakura Sunyaev model or by its relativistic version developed by Novikov and Thome. The most important of these effects is a dynamical mass loss from the inner edge of the disk (Roche lobe overflow). The relativistic Roche lobe overflow induces a strong advective cooling, which is sufficient to stabilize local, axially symmetric thermal and viscous modes. It also stabilizes the non-axially-symmetric global modes discovered by Papaloizou and Pringle. The Roche lobe overflow, however, destabilizes sufficiently self-gravitating accretion disks with respect to a catastrophic runaway of mass due to minute changes of the gravitational field induced by the changes in the mass and angular momentum of the central black hole. One of the two acoustic modes may become trapped near the inner edge of the disk. All these effects, absent in the standard model, have dramatic implications for time-dependent behavior of the accretion disks around black holes.

  10. Tunable mid-IR parametric conversion system pumped by a high-average-power picosecond Yb:YAG thin-disk laser

    NASA Astrophysics Data System (ADS)

    Novák, Ondřej; Miura, Taisuke; Smrž, Martin; Huynh, Jaroslav; Severová, Patricie; Endo, Akira; Mocek, TomáÅ.¡

    2014-05-01

    The mid-IR wavelength range has gained increased interest due to its applications in gas sensing, medicine, defense, and others. Optical parametric devices play an important role in the generation of radiation in the mid-IR. Low thermal load of nonlinear crystals promises high average power outputs if powerful pump laser is available. We have developed 75-W average power pump laser operating at 100 kHz repetition rate. The pulses of Yb-fiber laser oscillator at 1030-nm wavelength are stretched by a chirped volume Bragg grating from 5 ps to 180 ps and inserted into a cavity of regenerative amplifier with an Yb:YAG thin-disk. The amplified pulses are compressed by a chirped volume Bragg grating with an 88% efficiency. We have proposed a wavelength conversion system generating picosecond pulses tunable between 2 and 3 μm. The seed signal radiation is acquired by the optical parametric generation in the first nonlinear crystal. Signal pulse energy is increased in the subsequent optical parametric amplifiers. Each amplification stage consists of a crystal pair in the walkoff compensating arrangement. The wavelength of the signal beam is tunable between 1.6 and 2.1 μm. The 2.1 - 3 μm tunable source will be the idler beam taken from the last amplification stage. Calculations show the output power of ten watt can be achieved for 100 W pump. The results of preliminary experiments with seeded optical parametric generation and subsequent amplification are presented and discussed.

  11. GRMHD/RMHD Simulations and Stability of Magnetized Spine-Sheath Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Hardee, Philip; Mizuno, Yosuke; Nishikawa, Ken-Ichi

    2007-01-01

    A new general relativistic magnetohydrodynamics (GRMHD ) code "RAISHIN" used to simulate jet generation by rotating and non-rotating black holes with a geometrically thin Keplarian accretion disk finds that the jet develops a spine-sheath structure in the rotating black hole case. Spine-sheath structure and strong magnetic fields significantly modify the Kelvin-Helmholtz (KH) velocity shear driven instability. The RAISHIN code has been used in its relativistic magnetohydrodynamic (RMHD) configuration to study the effects of strong magnetic fields and weakly relativistic sheath motion, cl2, on the KH instability associated with a relativistic, Y = 2.5, jet spine-sheath interaction. In the simulations sound speeds up to ? c/3 and Alfven wave speeds up to ? 0.56 c are considered. Numerical simulation results are compared to theoretical predictions from a new normal mode analysis of the RMHD equations. Increased stability of a weakly magnetized system resulting from c/2 sheath speeds and stabilization of a strongly magnetized system resulting from d 2 sheath speeds is found.

  12. Relativistic diffusion

    NASA Astrophysics Data System (ADS)

    Haba, Z.

    2009-02-01

    We discuss relativistic diffusion in proper time in the approach of Schay (Ph.D. thesis, Princeton University, Princeton, NJ, 1961) and Dudley [Ark. Mat. 6, 241 (1965)]. We derive (Langevin) stochastic differential equations in various coordinates. We show that in some coordinates the stochastic differential equations become linear. We obtain momentum probability distribution in an explicit form. We discuss a relativistic particle diffusing in an external electromagnetic field. We solve the Langevin equations in the case of parallel electric and magnetic fields. We derive a kinetic equation for the evolution of the probability distribution. We discuss drag terms leading to an equilibrium distribution. The relativistic analog of the Ornstein-Uhlenbeck process is not unique. We show that if the drag comes from a diffusion approximation to the master equation then its form is strongly restricted. The drag leading to the Tsallis equilibrium distribution satisfies this restriction whereas the one of the Jüttner distribution does not. We show that any function of the relativistic energy can be the equilibrium distribution for a particle in a static electric field. A preliminary study of the time evolution with friction is presented. It is shown that the problem is equivalent to quantum mechanics of a particle moving on a hyperboloid with a potential determined by the drag. A relation to diffusions appearing in heavy ion collisions is briefly discussed.

  13. Relativistic diffusion.

    PubMed

    Haba, Z

    2009-02-01

    We discuss relativistic diffusion in proper time in the approach of Schay (Ph.D. thesis, Princeton University, Princeton, NJ, 1961) and Dudley [Ark. Mat. 6, 241 (1965)]. We derive (Langevin) stochastic differential equations in various coordinates. We show that in some coordinates the stochastic differential equations become linear. We obtain momentum probability distribution in an explicit form. We discuss a relativistic particle diffusing in an external electromagnetic field. We solve the Langevin equations in the case of parallel electric and magnetic fields. We derive a kinetic equation for the evolution of the probability distribution. We discuss drag terms leading to an equilibrium distribution. The relativistic analog of the Ornstein-Uhlenbeck process is not unique. We show that if the drag comes from a diffusion approximation to the master equation then its form is strongly restricted. The drag leading to the Tsallis equilibrium distribution satisfies this restriction whereas the one of the Jüttner distribution does not. We show that any function of the relativistic energy can be the equilibrium distribution for a particle in a static electric field. A preliminary study of the time evolution with friction is presented. It is shown that the problem is equivalent to quantum mechanics of a particle moving on a hyperboloid with a potential determined by the drag. A relation to diffusions appearing in heavy ion collisions is briefly discussed.

  14. Review of gravitomagnetic acceleration from accretion disks

    NASA Astrophysics Data System (ADS)

    Poirier, J.; Mathews, G. J.

    2015-11-01

    We review the development of the equations of gravitoelectromagnetism and summarize how the motion of the neutral masses in an accretion disk orbiting a black hole creates a general-relativistic magnetic-like (gravitomagnetic) field that vertically accelerates neutral particles near the accretion disk upward and then inward toward the axis of the accretion disk. Even though this gravitomagnetic field is not the only mechanism to produce collimated jets, it is a novel means to identify one general relativistic effect from a much more complicated problem. In addition, as the accelerated material above or below the accretion disk nears the axis with a nearly vertical direction, a frame-dragging effect twists the trajectories around the axis thus contributing to the collimation of the jet.

  15. Gravitomagnetic acceleration from black hole accretion disks

    NASA Astrophysics Data System (ADS)

    Poirier, J.; Mathews, G. J.

    2016-05-01

    We demonstrate how the motion of the neutral masses in an accretion disk orbiting a black hole creates a general-relativistic magnetic-like (gravitomagnetic) field that vertically accelerates neutral particles near an accretion disk upward and then inward toward the axis of the accretion disk. Even though this gravitomagnetic field is not the only mechanism contributing to the production of jets, it presents a novel means to identify one general relativistic effect from a much more complicated problem. In addition, as the accelerated material above or below the accretion disk nears the axis with a nearly vertical direction, a frame-dragging effect twists the trajectories around the axis thus contributing to the collimation of the jet.

  16. Optical Disks.

    ERIC Educational Resources Information Center

    Gale, John C.; And Others

    1985-01-01

    This four-article section focuses on information storage capacity of the optical disk covering the information workstation (uses microcomputer, optical disk, compact disc to provide reference information, information content, work product support); use of laser videodisc technology for dissemination of agricultural information; encoding databases…

  17. Relativistic geodesy

    NASA Astrophysics Data System (ADS)

    Flury, J.

    2016-06-01

    Quantum metrology enables new applications in geodesy, including relativistic geodesy. The recent progress in optical atomic clocks and in long-distance frequency transfer by optical fiber together pave the way for using measurements of the gravitational frequency redshift for geodesy. The remote comparison of frequencies generated by calibrated clocks will allow for a purely relativistic determination of differences in gravitational potential and height between stations on Earth surface (chronometric leveling). The long-term perspective is to tie potential and height differences to atomic standards in order to overcome the weaknesses and inhomogeneity of height systems determined by classical spirit leveling. Complementarily, gravity measurements with atom interferometric setups, and satellite gravimetry with space borne laser interferometers allow for new sensitivities in the measurement of the Earth's gravity field.

  18. Relativistic klystrons

    SciTech Connect

    Allen, M.A.; Azuma, O.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fant, K.S.; Fowkes, W.R.; Herrmannsfeldt, W.B.; Hoag, H.A.; Koontz, R.F.

    1989-03-01

    Experimental work is underway by a SLAC-LLNL-LBL collaboration to investigate the feasibility of using relativistic klystrons as a power source for future high gradient accelerators. Two different relativistic klystron configurations have been built and tested to date: a high grain multicavity klystron at 11.4 GHz and a low gain two cavity subharmonic buncher driven at 5.7 GHz. In both configurations power is extracted at 11.4 GHz. In order to understand the basic physics issues involved in extracting RF from a high power beam, we have used both a single resonant cavity and a multi-cell traveling wave structure for energy extraction. We have learned how to overcome our previously reported problem of high power RF pulse shortening, and have achieved peak RF power levels of 170 MW with the RF pulse of the same duration as the beam current pulse. 6 refs., 3 figs., 3 tabs.

  19. Kinematic Dynamo In Turbulent Circumstellar Disks

    NASA Technical Reports Server (NTRS)

    Stepinski, T.

    1993-01-01

    Many circumstellar disks associated with objects ranging from protoplanetary nebulae, to accretion disks around compact stars allow for the generation of magnetic fields by an (alpha)omega dynamo. We have applied kinematic dynamo formalism to geometrically thin accretion disks. We calculate, in the framework of an adiabatic approximation, the normal mode solutions for dynamos operating in disks around compact stars. We then describe the criteria for a viable dynamo in protoplanetary nebulae, and discuss the particular features that make accretion disk dynamos different from planetary, stellar, and galactic dynamos.

  20. Emergent Spectra from Disks Surrounding Kerr Black Holes: Effect of Photon Trapping and Disk Self-shadowing

    NASA Astrophysics Data System (ADS)

    Li, Guang-Xing; Yuan, Ye-Fei; Cao, Xinwu

    2010-05-01

    Based on a new estimation of their thickness, the global properties of relativistic slim accretion disks are investigated in this work. The resulting emergent spectra are calculated using the relativistic ray-tracing method, in which we neglect the self-irradiation of the accretion disk. The angular dependence of the disk luminosity, the effects of the heat advection, and the disk thickness on the estimation of the black hole spin are discussed. Compared with the previous works, our improvements are that we use the self-consistent disk equations and we consider the disk self-shadowing effect. We find that at the moderate accretion rate, the radiation trapped in the outer region of the accretion disks will escape in the inner region of the accretion disk and contribute to the emergent spectra. At the high accretion rate, for the large inclination and large black hole spin, both the disk thickness and the heat advection have significant influence on the emergent spectra. Consequently, these effects will influence the measurement of the black hole spin based on the spectra fitting and influence the angular dependence of the luminosity. For the disks around Kerr black holes with a = 0.98, if the disk inclination is greater than 60°, and their luminosity is beyond 0.2 Eddington luminosity, the spectral model which is based on the relativistic standard accretion disk is no longer applicable for the spectra fitting. We also confirm that the effect of the self-shadowing is significantly enhanced by the light bending, which implies that the non-relativistic treatment of the self-shadowing is inaccurate. According to our results, the observed luminosity dependence of the measured spin suggests that the disk self-shadowing significantly shapes the spectra of GRS 1915+105, which might lead to the underestimation of the black hole spin for the high luminosity states.

  1. EMERGENT SPECTRA FROM DISKS SURROUNDING KERR BLACK HOLES: EFFECT OF PHOTON TRAPPING AND DISK SELF-SHADOWING

    SciTech Connect

    Li Guangxing; Yuan Yefei; Cao Xinwu E-mail: yfyuan@ustc.edu.c

    2010-05-20

    Based on a new estimation of their thickness, the global properties of relativistic slim accretion disks are investigated in this work. The resulting emergent spectra are calculated using the relativistic ray-tracing method, in which we neglect the self-irradiation of the accretion disk. The angular dependence of the disk luminosity, the effects of the heat advection, and the disk thickness on the estimation of the black hole spin are discussed. Compared with the previous works, our improvements are that we use the self-consistent disk equations and we consider the disk self-shadowing effect. We find that at the moderate accretion rate, the radiation trapped in the outer region of the accretion disks will escape in the inner region of the accretion disk and contribute to the emergent spectra. At the high accretion rate, for the large inclination and large black hole spin, both the disk thickness and the heat advection have significant influence on the emergent spectra. Consequently, these effects will influence the measurement of the black hole spin based on the spectra fitting and influence the angular dependence of the luminosity. For the disks around Kerr black holes with a = 0.98, if the disk inclination is greater than 60{sup 0}, and their luminosity is beyond 0.2 Eddington luminosity, the spectral model which is based on the relativistic standard accretion disk is no longer applicable for the spectra fitting. We also confirm that the effect of the self-shadowing is significantly enhanced by the light bending, which implies that the non-relativistic treatment of the self-shadowing is inaccurate. According to our results, the observed luminosity dependence of the measured spin suggests that the disk self-shadowing significantly shapes the spectra of GRS 1915+105, which might lead to the underestimation of the black hole spin for the high luminosity states.

  2. The Formation of Relativistic Jets from Kerr Black Holes

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Richardson, G.; Preece, R.; Hardee, P.; Koide, S.; Shibata, K.; Kudoh, T.; Sol, H.; Fishman, G. J.

    2003-01-01

    We have performed the first fully three-dimensional general relativistic magnetohydrodynamics (GRMHD) simulation for Schwarzschild and Kerr black holes with a free falling corona and thin accretion disk. The initial simulation results with a Schwarzschild metric show that a jet is created as in the previous axisymmetric simulations with mirror symmetry at the equator. However, the time to form the jet is slightly longer than in the 2-D axisymmetric simulation. We expect that the dynamics of jet formation are modified due to the additional freedom in the azimuth dimension without axisymmetry with respect to the Z axis and reflection symmetry respect to the equatorial plane. The jet which is initially formed due to the twisted magnetic fields and shocks becomes a wind at the later time. The wind flows out with a much wider angle than the initial jet. The twisted magnetic fields at the earlier time were untwisted and less pinched. The accretion disk became thicker than the initial condition. Further simulations with initial perturbations will provide insights for accretion dynamics with instabilities such as magneto-rotational instability (MRI) and accretion-eject instability (AEI). These instabilities may contribute to variabilities observed in microquasars and AGN jets.

  3. Herniated disk

    MedlinePlus

    ... roots. Slipped disks occur more often in middle-aged and older men, usually after strenuous activity. Other ... calm the nerves Muscle relaxants to relieve back spasms LIFESTYLE CHANGES If you are overweight, diet and ...

  4. Low-state disks and low-beta disks

    NASA Technical Reports Server (NTRS)

    Mineshige, Shin; Kusnose, Masaaki; Matsumoto, Ryoji

    1995-01-01

    Stellar black hole candidates (BHCs) exhibit bimodal spectral states. We calculate nonthermal disk spectra, demonstrating that a large photon index (alpha (sub x) approximately 2-3) observed in the soft (high) state is due to a copious soft photon supply, whereas soft photon starvation leads to a smaller index (alpha (sub x) approximately 1.5-2) in the hard (low) state. Thus, the absence of the soft component flux in the low state cannot be due to obscuration. A possible disk configuration during the low state is discussed. We proposed that a low-state disk may be a low-beta disk in which magnetic pressure may exceed gas pressure becuase of the suppression of field escape by a strong shear. As a result, disk material will take the form of blobs constricted by mainly toroidal magnetic fields. Fields are dissipated mainly by occasional reconnection events with a huge energy release. This will account for large-amplitude, aperiodic X-ray variations (flickering) and high-energy radiation with small alpha(sub x) from hard state BHCs and possibly from active galactic nuclei. Further, we propose a hysteretic relation between the mass-flow rate and plasma-beta, a ratio of gas pressure to magnetic pressure, for the spectral evolution of transient BHCs. The disk is in the low-beta state in quiescence and early rise. The low-beta disk is optically thin and affected by advection. A hard-to-soft transition occurs before the peak luminosity, since there is no advection-dominated branch at higher luminosities. An optically thick, high-beta disk appears at small radii. In the decay phase of the light curve, the standard-type disk becomes effectively optically thin, when a soft-hard transition is triggered. High-beta plasmas in the main body shrink to form minute blobs, and low-beta coronal plasma fills interblob space.

  5. Recent Observational Progress on Accretion Disks Around Compact Objects

    NASA Astrophysics Data System (ADS)

    Miller, Jon M.

    2016-04-01

    Studies of accretion disks around black holes and neutron stars over the last ten years have made remarkable progress. Our understanding of disk evolution as a function of mass accretion rate is pushing toward a consensus on thin/thick disk transitions; an apparent switching between disk-driven outflow modes has emerged; and monitoring observations have revealed complex spectral energy distributions wherein disk reprocessing must be important. Detailed studies of disk winds, in particular, have the potential to reveal the basic physical processes that mediate disk accretion, and to connect with numerical simulations. This talk will review these developments and look ahead to the potential of Astro-H.

  6. Relativistic radiative transfer in a moving stratus irradiated by a luminous flat source

    NASA Astrophysics Data System (ADS)

    Fukue, Jun

    2015-06-01

    Relativistic radiative transfer in a geometrically thin stratus (sheet-like gaseous cloud with finite optical depth), which is moving at a relativistic speed around a luminous flat source, such as accretion disks, and is irradiated by the source, is examined under the special relativistic treatment. Incident radiation is aberrated and Doppler-shifted when it is received by the stratus, and emitted radiation is also aberrated and Doppler-shifted when it leaves the stratus. Considering these relativistic effects, we analytically obtain the emergent intensity as well as other radiative quantities in the purely scattering case for both infinite and finite strati. We mainly consider the frequency-integrated case, but also briefly show the frequency-dependent one. We also solve the relativistic radiative transfer equation numerically, and compare the results with the analytical solutions. In the infinite stratus, the mean intensity in the comoving and inertial frames decreases and becomes constant, as the stratus speed increases. The flux in the comoving frame decreases exponentially with the optical depth. The emergent intensity decreases as the speed increases, since the incident photons are redshifted at the bottom-side of the stratus. In the finite stratus, the mean intensity in the comoving and inertial frames quickly increases in the top-side region due to the aberrated photons. The flux in the comoving frame is positive in the range of 0 < β ≤ 0.4, while it becomes negative for β ≳ 0.5. The behavior of the emergent intensity is similar to that of the infinite case, although there is an irradiation effect caused by the aberrated photons.

  7. Fabrication of large ceramic electrolyte disks

    NASA Technical Reports Server (NTRS)

    Ring, S. A.

    1972-01-01

    Process for sintering compressed ceramic powders produces large ceramic disks for use as electrolytes in high-temperature electrolytic cells. Thin, strain-free uniformly dense disks as large as 30 cm squared have been fabricated by slicing ceramic slugs produced by this technique.

  8. Simulations of Relativistic Extragalactic Jets

    NASA Astrophysics Data System (ADS)

    Hughes, P. A.; Duncan, G. C.

    1994-05-01

    We present results for 2-D, axisymmetric simulations of flows with Lorentz factors ~ 5 -- 10, typical of values inferred for superluminal BL Lacs and QSOs. The simulations were performed with a numerical hydrodynamic code that admits relativistic flow speed. We exploit the property that the relativistic Euler equations for mass, momentum and total energy densities in the laboratory frame have the same form as the nonrelativistic equations, to solve for laboratory frame variables using a conventional Godunov-type scheme with approximate Riemann solver: the HLLE method. The relativistic nature of the flow is incorporated by performing a Lorentz transformation at every step, at each cell center or cell boundary where pressure, sound speed or velocity are required. Determination of the velocity in this manner is a robust algebraic procedure within which we can ensure that vdisk, cocoon, bow shock etc.), but the relativistic flows exhibit a less pronounced pattern of incident and reflection shocks on axis. For flows which have propagated to a fixed number of jet radii, the Kelvin-Helmholtz instability at the contact surface is much less evident in the high Lorentz factor cases, supporting the contention that relativistic flows are less prone to such instability. We describe how the morphology of the cocoon and shocked ambient gas change with increasing Lorentz factor. This work was supported by NSF grant AST 9120224 and by the Ohio Supercomputer Center from a Cray Research Software Development Grant.

  9. Herschel evidence for disk flattening or gas depletion in transitional disks

    SciTech Connect

    Keane, J. T.; Pascucci, I.; Espaillat, C.; Woitke, P.; Andrews, S.; Kamp, I.; Thi, W.-F.; Meeus, G.; Dent, W. R. F.

    2014-06-01

    Transitional disks are protoplanetary disks characterized by reduced near- and mid-infrared emission, with respect to full disks. This characteristic spectral energy distribution indicates the presence of an optically thin inner cavity within the dust disk believed to mark the disappearance of the primordial massive disk. We present new Herschel Space Observatory PACS spectra of [O I] 63.18 μm for 21 transitional disks. Our survey complements the larger Herschel GASPS program ({sup G}as in Protoplanetary Systems{sup )} by quadrupling the number of transitional disks observed with PACS in this wavelength. [O I] 63.18 μm traces material in the outer regions of the disk, beyond the inner cavity of most transitional disks. We find that transitional disks have [O I] 63.18 μm line luminosities ∼2 times fainter than their full disk counterparts. We self-consistently determine various stellar properties (e.g., bolometric luminosity, FUV excess, etc.) and disk properties (e.g., disk dust mass, etc.) that could influence the [O I] 63.18 μm line luminosity, and we find no correlations that can explain the lower [O I] 63.18 μm line luminosities in transitional disks. Using a grid of thermo-chemical protoplanetary disk models, we conclude that either transitional disks are less flared than full disks or they possess lower gas-to-dust ratios due to a depletion of gas mass. This result suggests that transitional disks are more evolved than their full disk counterparts, possibly even at large radii.

  10. Relativistic fluid dynamics. Proceedings.

    NASA Astrophysics Data System (ADS)

    Anile, A. M.; Choquet-Bruhat, Y.

    Contents: 1. Covariant theory of conductivity in ideal fluid or solid media (B. Carter). 2. Hamiltonian techniques for relativistic fluid dynamics and stability theory (D. D. Holm). 3. Covariant fluid mechanics and thermodynamics: an introduction (W. Israel). 4. Relativistic plasmas (H. Weitzner). 5. An improved relativistic warm plasma model (A. M. Anile, S. Pennisi). 6. Relativistic extended thermodynamics II (I. Müller). 7. Relativistic extended thermodynamics: general assumptions and mathematical procedure (T. Ruggeri). 8. Relativistic hydrodynamics and heavy ion reactions (D. Strottman). 9. Some problems in relativistic hydrodynamics (C. G. van Weert).

  11. Gravitational instabilities in protostellar disks

    NASA Technical Reports Server (NTRS)

    Tohline, J. E.

    1994-01-01

    The nonaxisymmetric stability of self-gravitating, geometrically thick accretion disks has been studied for protostellar systems having a wide range of disk-to-central object mass ratios. Global eigenmodes with four distinctly different characters were identified using numerical, nonlinear hydrodynamic techniques. The mode that appears most likely to arise in normal star formation settings, however, resembles the 'eccentric instability' that was identified earlier in thin, nearly Keplerian disks: It presents an open, one-armed spiral pattern that sweeps continuously in a trailing direction through more than 2-pi radians, smoothly connecting the inner and outer edges of the disk, and requires cooperative motion of the point mass for effective amplification. This particular instability promotes the development of a single, self-gravitating clump of material in orbit about the point mass, so its routine appearance in our simulations supports the conjecture that the eccentric instability provides a primary route to the formation of short-period binaries in protostellar systems.

  12. ACCRETION DISK WARPING BY RESONANT RELAXATION: THE CASE OF MASER DISK NGC 4258

    SciTech Connect

    Bregman, Michal; Alexander, Tal

    2009-08-01

    The maser disk around the massive black hole (MBH) in active galaxy NGC 4258 exhibits an O(10 deg.) warp on the O(0.1 pc) scale. The physics driving the warp is still debated. Suggested mechanisms include torquing by relativistic frame dragging or by radiation pressure. We propose here a new warping mechanism: resonant torquing of the disk by stars in the dense cusp around the MBH. We show that resonant torquing can induce such a warp over a wide range of observed and deduced physical parameters of the maser disk.

  13. ON THE FORMATION OF GALACTIC THICK DISKS

    SciTech Connect

    Minchev, I.; Streich, D.; Scannapieco, C.; De Jong, R. S.; Steinmetz, M.; Martig, M.

    2015-05-01

    Recent spectroscopic observations in the Milky Way suggest that the chemically defined thick disk (stars that have high [α/Fe] ratios and are thus old) has a significantly smaller scale-length than the thin disk. This is in apparent contradiction with observations of external edge-on galaxies, where the thin and thick components have comparable scale-lengths. Moreover, while observed disks do not flare (scale-height does not increase with radius), numerical simulations suggest that disk flaring is unavoidable, resulting from both environmental effects and secular evolution. Here we address these problems by studying two different suites of simulated galactic disks formed in the cosmological context. We show that the scale-heights of coeval populations always increase with radius. However, the total population can be decomposed morphologically into thin and thick disks, which do not flare. We relate this to the disk inside-out formation, where younger populations have increasingly larger scale-lengths and flare at progressively larger radii. In this new picture, thick disks are composed of the imbedded flares of mono-age stellar populations. Assuming that disks form inside out, we predict that morphologically defined thick disks must show a decrease in age (or [α/Fe] ratios) with radius and that coeval populations should always flare. This also explains the observed inversion in the metallicity and [α/Fe] gradients for stars away from the disk midplane in the Milky Way. The results of this work are directly linked to, and can be seen as evidence of, inside-out disk growth.

  14. Accretion Disks and Jets Around Black Holes

    NASA Astrophysics Data System (ADS)

    Narayan, Ramesh

    2008-04-01

    Some of the most luminous objects in the universe involve accretion disks around black holes. In these systems, gas spirals into the black hole and converts a fraction of its gravitational binding energy into thermal energy and radiation. Sometimes, twin relativistic jets are ejected along the angular momentum axis of the disk. Understanding the physics of black hole accretion disks and jets is a major focus of modern astrophysics. Because the object at the center is a black hole, one must work with a relativistic theory. More importantly, one must allow for the effects of magnetic fields. These play an extremely important role, both in the extraction of angular momentum from the accreting gas -- which is what allows the gas to fall into the hole -- and in the launching, acceleration and collimation of the relativistic jets. Thus, at a minimum, one must work with the relativistic single-fluid MHD equations. The talk will briefly summarize our current understanding of black hole accretion, and outline some of the major unsolved problems.

  15. Warped circumbinary disks in active galactic nuclei

    SciTech Connect

    Hayasaki, Kimitake; Sohn, Bong Won; Jung, Taehyun; Zhao, Guangyao; Okazaki, Atsuo T.; Naito, Tsuguya

    2014-07-20

    We study a warping instability of a geometrically thin, non-self-gravitating disk surrounding binary supermassive black holes on a circular orbit. Such a circumbinary disk is subject to not only tidal torques due to the binary gravitational potential but also radiative torques due to radiation emitted from an accretion disk around each black hole. We find that a circumbinary disk initially aligned with the binary orbital plane is unstable to radiation-driven warping beyond the marginally stable warping radius, which is sensitive to both the ratio of vertical to horizontal shear viscosities and the mass-to-energy conversion efficiency. As expected, the tidal torques give no contribution to the growth of warping modes but tend to align the circumbinary disk with the orbital plane. Since the tidal torques can suppress the warping modes in the inner part of circumbinary disk, the circumbinary disk starts to be warped at radii larger than the marginally stable warping radius. If the warping radius is of the order of 0.1 pc, a resultant semi-major axis is estimated to be of the order of 10{sup –2} pc to 10{sup –4} pc for 10{sup 7} M{sub ☉} black hole. We also discuss the possibility that the central objects of observed warped maser disks in active galactic nuclei are binary supermassive black holes with a triple disk: two accretion disks around the individual black holes and one circumbinary disk surrounding them.

  16. Disk filter

    DOEpatents

    Bergman, W.

    1985-01-09

    An electric disk filter provides a high efficiency at high temperature. A hollow outer filter of fibrous stainless steel forms the ground electrode. A refractory filter material is placed between the outer electrode and the inner electrically isolated high voltage electrode. Air flows through the outer filter surfaces through the electrified refractory filter media and between the high voltage electrodes and is removed from a space in the high voltage electrode.

  17. Disk filter

    DOEpatents

    Bergman, Werner

    1986-01-01

    An electric disk filter provides a high efficiency at high temperature. A hollow outer filter of fibrous stainless steel forms the ground electrode. A refractory filter material is placed between the outer electrode and the inner electrically isolated high voltage electrode. Air flows through the outer filter surfaces through the electrified refractory filter media and between the high voltage electrodes and is removed from a space in the high voltage electrode.

  18. Gas Rich Mergers in Disk Formation

    NASA Astrophysics Data System (ADS)

    Brook, C. B.; Veilleux, V.; Kawata, D.; Martel, H.; Gibson, B. K.

    In order to explain disk galaxy formation within the hierarchical structure formation, it seems that gas rich mergers must play an important role. We review here our previous studies which have shown the importance of mergers at high redshift being gas rich, in the formation of both the stellar halo and thick disk components of disk galaxies. Regulation of star formation in the building blocks of our galaxy is required to form a low mass low metallicity stellar halo. This regulation results in high redshift, gas rich mergers during which the thick disk forms. In these proceedings, we categorise stars from our simulated disk galaxy into thin and thick disk components by using the Toomre diagram. Rotation velocity, metallicity and age histograms of the two populations are presented, along with alpha element abundances (oxygen, silicone, magnesium), age-height above the plane, age-radius, metallicity-height, and metalicity-radius gradients.

  19. Surface engineering of artificial heart valve disks using nanostructured thin films deposited by chemical vapour deposition and sol-gel methods.

    PubMed

    Jackson, M J; Robinson, G M; Ali, N; Kousar, Y; Mei, S; Gracio, J; Taylor, H; Ahmed, W

    2006-01-01

    Pyrolytic carbon (PyC) is widely used in manufacturing commercial artificial heart valve disks (HVD). Although PyC is commonly used in HVD, it is not the best material for this application since its blood compatibility is not ideal for prolonged clinical use. As a result thrombosis often occurs and the patients are required to take anti-coagulation drugs on a regular basis in order to minimize the formation of thrombosis. However, anti-coagulation therapy gives rise to some detrimental side effects in patients. Therefore, it is extremely urgent that newer and more technically advanced materials with better surface and bulk properties are developed. In this paper, we report the mechanical properties of PyC-HVD, i.e. strength, wear resistance and coefficient of friction. The strength of the material was assessed using Brinell indentation tests. Furthermore, wear resistance and coefficient of friction values were obtained from pin-on-disk testing. The micro-structural properties of PyC were characterized using XRD, Raman spectroscopy and SEM analysis. Also in this paper we report the preparation of freestanding nanocrystalline diamond films (FSND) using the time-modulated chemical vapour deposition (TMCVD) process. Furthermore, the sol-gel technique was used to uniformly coat PyC-HVD with dense, nanocrystalline-titanium oxide (nc-TiO2) coatings. The as-grown nc-TiO2 coatings were characterized for microstructure using SEM and XRD analysis.

  20. Relativistic electron beam generator

    DOEpatents

    Mooney, L.J.; Hyatt, H.M.

    1975-11-11

    A relativistic electron beam generator for laser media excitation is described. The device employs a diode type relativistic electron beam source having a cathode shape which provides a rectangular output beam with uniform current density.

  1. Foundations of Black Hole Accretion Disk Theory

    NASA Astrophysics Data System (ADS)

    Abramowicz, Marek A.; Fragile, P. Chris

    2013-12-01

    This review covers the main aspects of black hole accretion disk theory. We begin with the view that one of the main goals of the theory is to better understand the nature of black holes themselves. In this light we discuss how accretion disks might reveal some of the unique signatures of strong gravity: the event horizon, the innermost stable circular orbit, and the ergosphere. We then review, from a first-principles perspective, the physical processes at play in accretion disks. This leads us to the four primary accretion disk models that we review: Polish doughnuts (thick disks), Shakura-Sunyaev (thin) disks, slim disks, and advection-dominated accretion flows (ADAFs). After presenting the models we discuss issues of stability, oscillations, and jets. Following our review of the analytic work, we take a parallel approach in reviewing numerical studies of black hole accretion disks. We finish with a few select applications that highlight particular astrophysical applications: measurements of black hole mass and spin, black hole vs. neutron star accretion disks, black hole accretion disk spectral states, and quasi-periodic oscillations (QPOs).

  2. Gravitational Instabilities in Circumstellar Disks

    NASA Astrophysics Data System (ADS)

    Kratter, Kaitlin; Lodato, Giuseppe

    2016-09-01

    Star and planet formation are the complex outcomes of gravitational collapse and angular momentum transport mediated by protostellar and protoplanetary disks. In this review, we focus on the role of gravitational instability in this process. We begin with a brief overview of the observational evidence for massive disks that might be subject to gravitational instability and then highlight the diverse ways in which the instability manifests itself in protostellar and protoplanetary disks: the generation of spiral arms, small-scale turbulence-like density fluctuations, and fragmentation of the disk itself. We present the analytic theory that describes the linear growth phase of the instability supplemented with a survey of numerical simulations that aim to capture the nonlinear evolution. We emphasize the role of thermodynamics and large-scale infall in controlling the outcome of the instability. Despite apparent controversies in the literature, we show a remarkable level of agreement between analytic predictions and numerical results. In the next part of our review, we focus on the astrophysical consequences of the instability. We show that the disks most likely to be gravitationally unstable are young and relatively massive compared with their host star, Md/M*≥0.1. They will develop quasi-stable spiral arms that process infall from the background cloud. Although instability is less likely at later times, once infall becomes less important, the manifestations of the instability are more varied. In this regime, the disk thermodynamics, often regulated by stellar irradiation, dictates the development and evolution of the instability. In some cases the instability may lead to fragmentation into bound companions. These companions are more likely to be brown dwarfs or stars than planetary mass objects. Finally, we highlight open questions related to the development of a turbulent cascade in thin disks and the role of mode-mode coupling in setting the maximum angular

  3. Numerical simulations of accretion disks and astrophysical jets.

    NASA Astrophysics Data System (ADS)

    Rossi, P.; Bodo, G.; Mignone, A.; Massaglia, S.; Ferrari, A.

    We present the results of high resolution numerical simulations concerning accretion disks and relativistic jets. For accretion disks, in the context of the problem of angular momentum transport, we performed simulations of the magnetorotational instability in the shearing box approximation and, on the basis of our results, we discuss its validity. In the case of relativistic jets, we analyse how their interaction with the ambient medium can lead to their deceleration, as it appears to be the case for jets in FRI extragalactic radiosources.

  4. Vertical Structure of Magnetized Accretion Disks Around Young Stars

    NASA Astrophysics Data System (ADS)

    Tapia, Carlos; Lizano, Susana

    2016-01-01

    We model the vertical structure of magnetized accretion disks subject to viscous and resistive heating, and irradiation by the central star. We apply our formalism to the radial structure of magnetized accretion disks threaded by a poloidal magnetic field dragged during the process of star formation developed by Shu and coworkers. We consider disks around low mass protostars, T Tauri, and FU Orionis stars. We consider two levels of disk magnetization, λsys = 4 (strongly magnetized disks), and λsys = 12 (weakly magnetized disks). The rotation rates of strongly magnetized disks have large deviations from Keplerian rotation. In these models, resistive heating dominates the thermal structure for the FU Ori disk. The T Tauri disk is very thin and cold because it is strongly compressed by magnetic pressure; it may be too thin compared with observations. Instead, in the weakly magnetized disks, rotation velocities are close to Keplerian, and resistive heating is always less than 7% of the viscous heating. In these models, the T Tauri disk has a larger aspect ratio, consistent with that inferred from observations. All the disks have spatially extended hot atmospheres where the irradiation flux is absorbed, although most of the mass (~ 90 - 95 %) is in the disk midplane.

  5. Near-infrared Structure of Fast and Slow-rotating Disk Galaxies

    NASA Astrophysics Data System (ADS)

    Schechtman-Rook, Andrew; Bershady, Matthew A.

    2014-11-01

    We investigate the stellar disk structure of six nearby edge-on spiral galaxies using high-resolution JHK s-band images and three-dimensional radiative transfer models. To explore how mass and environment shape spiral disks, we selected galaxies with rotational velocities between 69 km s-1 disk structure. Of the fast-rotating (V rot > 150 km s-1) galaxies, only NGC 4013 has the super-thin+thin+thick nested disk structure seen in NGC 891 and the Milky Way, albeit with decreased oblateness, while NGC 1055, a disturbed massive spiral galaxy, contains disks with hz <~ 200 pc. NGC 4565, another fast-rotator, contains a prominent ring at a radius ~5 kpc but no super-thin disk. Despite these differences, all fast-rotating galaxies in our sample have inner truncations in at least one of their disks. These truncations lead to Freeman Type II profiles when projected face-on. Slow-rotating galaxies are less complex, lacking inner disk truncations and requiring fewer disk components to reproduce their light distributions. Super-thin disk components in undisturbed disks contribute ~25% of the total K s-band light, up to that of the thin-disk contribution. The presence of super-thin disks correlates with infrared flux ratios; galaxies with super-thin disks have f{K_s}/f60 μ m ≤ 0.12 for integrated light, consistent with super-thin disks being regions of ongoing star-formation. Attenuation-corrected vertical color gradients in (J - K s) correlate with the observed disk structure and are consistent with population gradients with young-to-intermediate ages closer to the mid-plane, indicating that disk heating—or cooling—is a ubiquitous phenomenon.

  6. A cool disk in the Galactic Center?

    NASA Astrophysics Data System (ADS)

    Liu, B. F.; Meyer, F.; Meyer-Hofmeister, E.

    2004-07-01

    We study the possibility of a cool disk existing in the Galactic Center in the framework of the disk-corona evaporation/condensation model. Assuming an inactive disk near the gravitational capture distance left over from an earlier evolutionary stage, a hot corona should form above the disk since there is a continuous supply of hot gas from stellar winds of the close-by massive stars. We study the interaction between the disk and the corona. Whether the cool disk can survive depends on the mass exchange between disk and corona which is determined by the energy and pressure balance. If evaporation is the dominant process and the rate is larger than the Bondi accretion rate in the Galactic Center, the disk will be depleted within a certain time and no persistent disk will exist. On the other hand, if the interaction results in hot gas steadily condensing into the disk, an inactive cool disk with little gas accreting towards the central black hole might survive in the Galactic Center. For this case we further investigate the Bremsstrahlung radiation from the hot corona and compare it with the observed X-ray luminosity. Our model shows that, for standard viscosity in the corona (α=0.3), the mass evaporation rate is much higher than the Bondi accretion rate and the coronal density is much larger than that inferred from Chandra observations. An inactive disk can not survive such strong evaporation. For small viscosity (α ⪉ 0.07) we find condensation solutions. But detailed coronal structure computations show that in this case there is too much X-ray radiation from the corona to be in agreement with the observations. From this modeling we conclude that there should be no thin/inactive disk presently in the Galactic Center. However we do not exclude that the alternative non-radiative model of Nayakshin (\\cite{Nayakshin04}) might instead be realized in nature and shortly discuss this question.}

  7. Relativistic helix traveling wave tube amplifiers

    SciTech Connect

    Freund, H.P.; Vanderplaats, N.R.; Kodis, M.A. )

    1992-07-01

    A relativistic field theory of a helix traveling wave tube (TWT) is described for the case in which a thin annular beam propagates through a sheath helix enclosed within a loss-free wall. The theory is applied to the study of a TWT with an intense relativistic electron beam. The analysis implicitly includes beam space-charge effects and is valid for arbitrary azimuthal mode number, and the coupled-wave Pierce theory is recovered in the [ital near]-[ital resonant] limit. The results indicate that impressive gains and efficiencies are possible in this regime. In addition, the interaction is relatively insensitive to the effects of a beam energy spread.

  8. Relativistic Effects on Reflection X-ray Spectra of AGN

    SciTech Connect

    Lee, Khee-Gan; Fuerst, Steven V.; Brandwardi-Raymond, Graziella; Wu, Kinwah; Crowley, Oliver; /University Coll. London

    2007-01-05

    We have calculated the reflection component of the X-ray spectra of active galactic nuclei (AGN) and shown that they can be significantly modified by the relativistic motion of the accretion flow and various gravitational effects of the central black hole. The absorption edges in the reflection spectra suffer severe energy shifts and smearing. The degree of distortion depends on the system parameters, and the dependence is stronger for some parameters such as the inner radius of the accretion disk and the disk viewing inclination angles. The relativistic effects are significant and are observable. Improper treatment of the reflection component of the X-ray continuum in spectral fittings will give rise to spurious line-like features, which will mimic the fluorescent emission lines and mask the relativistic signatures of the lines.

  9. Magnetic Forces in an Isopedic Disk

    NASA Astrophysics Data System (ADS)

    Shu, Frank H.; Li, Zhi-Yun

    1997-01-01

    We consider the magnetic forces in electrically conducting thin disks threaded by magnetic fields originating in the external (interstellar) medium. We focus on disks that have dimensionless ratios λ of the mass to flux that are spatially constant, a condition that we term isopedic. For arbitrary distributions of the surface density Σ (which can be nonaxisymmetric and time dependent), we show that the magnetic tension exerts a force in the plane of the disk equal to -1/λ2 times the self-gravitational force. In addition, if the disk maintains magnetostatic equilibrium in the vertical direction, the magnetic pressure, integrated over the z-height of the disk, may be approximated as (1 + η2)/(λ2 + η2) times the gas pressure integrated over z, where η ≡ f||/2πGΣ and f|| is the component of the local gravitational field parallel to the plane of the disk. We apply these results to the problem of the stability of magnetized isothermal disks to gravitational fragmentation into subcondensations of a size comparable to the vertical scale height of the disk. Contrary to common belief, such dynamical fragmentation probably does not occur. In particular, the case of the magnetized singular isothermal disk undergoes not dynamical fragmentation into many subcondensations, but inside-out collapse into a single compact object, a self similar problem that is studied in a companion paper (Li & Shu 1997).

  10. Observational constraints on black hole accretion disks

    NASA Technical Reports Server (NTRS)

    Liang, Edison P.

    1994-01-01

    We review the empirical constraints on accretion disk models of stellar-mass black holes based on recent multiwavelength observational results. In addition to time-averaged emission spectra, the time evolutions of the intensity and spectrum provide critical information about the structure, stability, and dynamics of the disk. Using the basic thermal Keplerian disk paradigm, we consider in particular generalizations of the standard optically thin disk models needed to accommodate the extremely rich variety of dynamical phenomena exhibited by black hole candidates ranging from flares of electron-positron annihilations and quasiperiodic oscillations in the X-ray intensity to X-ray novae activity. These in turn provide probes of the disk structure and global geometry. The goal is to construct a single unified framework to interpret a large variety of black hole phenomena. This paper will concentrate on the interface between basic theory and observational data modeling.

  11. A Debris Disk Case Study: 49 Ceti with Herschel

    NASA Technical Reports Server (NTRS)

    Roberge, Aki

    2011-01-01

    Gas-poor debris disks represent a fundamentally different class of circumstellar disk than gas-rich protoplanetary disks. Their gas probably originates from the same source as the dust, i.e. planetesimal destruction, but the low gas densities make it difficult to detect. So far, Herschel has detected far-IR gas emission from one debris disk, Beta Pictoris. Here I discuss a well-known debris disk system in the GASPS survey, 49 Ceti. It serves as a case study for modeling low-density gas in optically thin disks. The dust disk appears to be spatially resolved at 70 um. Most interestingly, there appears to be a hint of ClI 158 urn emission at the roughly 2 sigma level. Preliminary modeling suggests that reconciling the sub-mm CO emission from this system with the weak or non-existent far-IR atomic lines may require an unusual chemical composition in the gas of this disk.

  12. Dynamics of acoustically levitated disk samples.

    PubMed

    Xie, W J; Wei, B

    2004-10-01

    The acoustic levitation force on disk samples and the dynamics of large water drops in a planar standing wave are studied by solving the acoustic scattering problem through incorporating the boundary element method. The dependence of levitation force amplitude on the equivalent radius R of disks deviates seriously from the R3 law predicted by King's theory, and a larger force can be obtained for thin disks. When the disk aspect ratio gamma is larger than a critical value gamma(*) ( approximately 1.9 ) and the disk radius a is smaller than the critical value a(*) (gamma) , the levitation force per unit volume of the sample will increase with the enlargement of the disk. The acoustic levitation force on thin-disk samples ( gamma

  13. Dynamics of acoustically levitated disk samples

    NASA Astrophysics Data System (ADS)

    Xie, W. J.; Wei, B.

    2004-10-01

    The acoustic levitation force on disk samples and the dynamics of large water drops in a planar standing wave are studied by solving the acoustic scattering problem through incorporating the boundary element method. The dependence of levitation force amplitude on the equivalent radius R of disks deviates seriously from the R3 law predicted by King’s theory, and a larger force can be obtained for thin disks. When the disk aspect ratio γ is larger than a critical value γ*(≈1.9) and the disk radius a is smaller than the critical value a*(γ) , the levitation force per unit volume of the sample will increase with the enlargement of the disk. The acoustic levitation force on thin-disk samples (γ⩽γ*) can be formulated by the shape factor f(γ,a) when a⩽a*(γ) . It is found experimentally that a necessary condition of the acoustic field for stable levitation of a large water drop is to adjust the reflector-emitter interval H slightly above the resonant interval Hn . The simulation shows that the drop is flattened and the central parts of its top and bottom surface become concave with the increase of sound pressure level, which agrees with the experimental observation. The main frequencies of the shape oscillation under different sound pressures are slightly larger than the Rayleigh frequency because of the large shape deformation. The simulated translational frequencies of the vertical vibration under normal gravity condition agree with the theoretical analysis.

  14. OT1_briaz_4: Disk masses for ~10 Myr old brown dwarf disks

    NASA Astrophysics Data System (ADS)

    Riaz, B.

    2010-07-01

    We request SPIRE 200-500mu observations for two brown dwarf disks, 2MASSW J1207334-393254 (2M1207) and SSSPM J1102-3431 (SSSPM 1102), in the TW Hydrae Association (TWA). From our previous Spitzer observations, we had confirmed excess emission at wavelengths of ~5-38mu for both of these sources. With the SPIRE observations, we can probe the optically thin dust in the outer cooler regions of these disks. We have performed radiative transfer modeling for these systems. With the available mid-infrared observations, we find high degeneracies for the disk mass and outer disk radius estimates. Observations at far-infrared wavelengths can help constrain the model fits and obtain better estimates for the disk mass and outer radius for these disks. At an age of ~10 Myr, 2M1207 and SSSPM1102 are the oldest known brown dwarf disks. It is thus important to estimate the disk masses for these older disks, and to understand, in comparison with the younger Taurus systems, if brown dwarf disk masses show any decline with the age of the system. We also request PACS 70mu photometry for another candidate brown dwarf disk in the TWA, 2MASSW J1139511-315921 (2M1139). This object shows an excess emission at 24mu, but none at shorter wavelengths. With 70mu observations, we can confirm if the disk flares up at longer wavelengths. If the presence of such a disk is confirmed for 2M1139, then this would be the first transition disk detected among the sub-stellar members of TWA.

  15. Study of X-Ray Polarization Due to Comptonization of Photons inside Thick Disks

    NASA Astrophysics Data System (ADS)

    Chatterjee, Arka; Chakrabarti, Sandip Kumar; Ghosh, Himadri

    2016-07-01

    We study the Comptonization of Photons inside generalized relativistic thick disks. Relativistic and non- relativistic effect of Photon paths on the spectrum are computed. We include the polarization of photons induced by the Compton scattering. The degree of polarization for initially unpolarized and linearly polarized photons are calculated separately. Variation of X-ray polarization with number of scattering is presented. Finally, the polarimetric images of thick disk for different energy bands are shown. We compare our simulated results with outbursting black hole candidates. We are also adding effects of spin of the black hole on the degree of polarization. These results are useful for future missions which could measure polarization very accurately.

  16. Relativistic mirrors in laser plasmas (analytical methods)

    NASA Astrophysics Data System (ADS)

    Bulanov, S. V.; Esirkepov, T. Zh; Kando, M.; Koga, J.

    2016-10-01

    Relativistic flying mirrors in plasmas are realized as thin dense electron (or electron-ion) layers accelerated by high-intensity electromagnetic waves to velocities close to the speed of light in vacuum. The reflection of an electromagnetic wave from the relativistic mirror results in its energy and frequency changing. In a counter-propagation configuration, the frequency of the reflected wave is multiplied by the factor proportional to the Lorentz factor squared. This scientific area promises the development of sources of ultrashort x-ray pulses in the attosecond range. The expected intensity will reach the level at which the effects predicted by nonlinear quantum electrodynamics start to play a key role. We present an overview of theoretical methods used to describe relativistic flying, accelerating, oscillating mirrors emerging in intense laser-plasma interactions.

  17. Relativistic Linear Restoring Force

    ERIC Educational Resources Information Center

    Clark, D.; Franklin, J.; Mann, N.

    2012-01-01

    We consider two different forms for a relativistic version of a linear restoring force. The pair comes from taking Hooke's law to be the force appearing on the right-hand side of the relativistic expressions: d"p"/d"t" or d"p"/d["tau"]. Either formulation recovers Hooke's law in the non-relativistic limit. In addition to these two forces, we…

  18. Relativistic Guiding Center Equations

    SciTech Connect

    White, R. B.; Gobbin, M.

    2014-10-01

    In toroidal fusion devices it is relatively easy that electrons achieve relativistic velocities, so to simulate runaway electrons and other high energy phenomena a nonrelativistic guiding center formalism is not sufficient. Relativistic guiding center equations including flute mode time dependent field perturbations are derived. The same variables as used in a previous nonrelativistic guiding center code are adopted, so that a straightforward modifications of those equations can produce a relativistic version.

  19. Vertical Structure of Magnetized Accretion Disks around Young Stars

    NASA Astrophysics Data System (ADS)

    Lizano, S.; Tapia, C.; Boehler, Y.; D'Alessio, P.

    2016-01-01

    We model the vertical structure of the magnetized accretion disks that are subject to viscous and resistive heating and irradiation by the central star. We apply our formalism to the radial structure of the magnetized accretion disks that are threaded by the poloidal magnetic field dragged during the process of star formation, which was developed by Shu and coworkers. We consider disks around low-mass protostars, T Tauri, and FU Orionis stars, as well as two levels of disk magnetization: {λ }{sys}=4 (strongly magnetized disks) and {λ }{sys}=12 (weakly magnetized disks). The rotation rates of strongly magnetized disks have large deviations from Keplerian rotation. In these models, resistive heating dominates the thermal structure for the FU Ori disk, and the T Tauri disk is very thin and cold because it is strongly compressed by magnetic pressure; it may be too thin compared with observations. Instead, in the weakly magnetized disks, rotation velocities are close to Keplerian, and resistive heating is always less than 7% of the viscous heating. In these models, the T Tauri disk has a larger aspect ratio, which is consistent with that inferred from observations. All the disks have spatially extended hot atmospheres where the irradiation flux is absorbed, although most of the mass (˜90%-95%) is in the disk midplane. With the advent of ALMA one expects direct measurements of magnetic fields and their morphology at disk scales. It will then be possible to determine the mass-to-flux ratio of magnetized accretion disks around young stars, an essential parameter for their structure and evolution. Our models contribute to the understanding of the vertical structure and emission of these disks.

  20. Radiative ablation of disks around massive stars

    NASA Astrophysics Data System (ADS)

    Kee, Nathaniel Dylan

    Hot, massive stars (spectral types O and B) have extreme luminosities (10. 4 -10. 6 L?) that drive strong stellar winds through UV line-scattering.Some massive stars also have disks, formed by either decretion from the star (as in the rapidly rotating "Classical Be stars"), or accretion during the star's formation. This dissertation examines the role of stellar radiation in driving (ablating) material away from these circumstellar disks. A key result is that the observed month to year decay of Classical Be disks can be explained by line-driven ablation without, as previously done, appealing to anomalously strong viscous diffusion. Moreover, the higher luminosity of O stars leads to ablation of optically thin disks on dynamical timescales of order a day, providing a natural explanation for the lack of observed Oe stars. In addition to the destruction of Be disks, this dissertation also introduces a model for their formation by coupling observationally inferred non-radial pulsation modes and rapid stellar rotation to launch material into orbiting Keplerian disks of Be-like densities. In contrast to such Be decretion disks, star-forming accretion disks are much denser and so are generally optically thick to continuum processes. To circumvent the computational challenges associated with radiation hydrodynamics through optically thick media, we develop an approximate method for treating continuum absorption in the limit of geometrically thin disks. The comparison of ablation with and without continuum absorption shows that accounting for disk optical thickness leads to less than a 50% reduction in ablation rate, implying that ablation rate depends mainly on stellar properties like luminosity. Finally, we discuss the role of "thin-shell mixing" in reducing X-rays from colliding wind binaries. Laminar, adiabatic shocks produce well understood X-ray emission, but the emission from radiatively cooled shocks is more complex due to thin-shell instabilities. The parameter

  1. A Very-High-Specific-Impulse Relativistic Laser Thruster

    SciTech Connect

    Horisawa, Hideyuki; Kimura, Itsuro

    2008-04-28

    Characteristics of compact laser plasma accelerators utilizing high-power laser and thin-target interaction were reviewed as a potential candidate of future spacecraft thrusters capable of generating relativistic plasma beams for interstellar missions. Based on the special theory of relativity, motion of the relativistic plasma beam exhausted from the thruster was formulated. Relationships of thrust, specific impulse, input power and momentum coupling coefficient for the relativistic plasma thruster were derived. It was shown that under relativistic conditions, the thrust could be extremely large even with a small amount of propellant flow rate. Moreover, it was shown that for a given value of input power thrust tended to approach the value of the photon rocket under the relativistic conditions regardless of the propellant flow rate.

  2. Prospect of the Theory of Black Hole Accretion Disks

    NASA Astrophysics Data System (ADS)

    Ju, Q.; Wang, W.

    2011-12-01

    The theory of black hole accretion disks is one of the most important basic theories and advanced topics in astrophysics. There are four known models of black hole accretion disks: standard thin disk (SSD), Shapiro-Lightman-Eardley (SLE) disk, optically thick advection dominated accretion flows (ADAF) theory (slim disk) and optically thin ADAF theory. During the past decades, they have made great contributions to the development of astrophysics. Despite their great successes in both theory and application, there are still many open questions. First of all, this paper will briefly introduce these four models. Then it will discuss several limitations of these models and review present possible solutions to address these problems. Our review work will contribute to further research of black hole accretion disks to a certain extent.

  3. UNVEILING THE STRUCTURE OF PRE-TRANSITIONAL DISKS

    SciTech Connect

    Espaillat, C.; D'Alessio, P.; Hernandez, J.; Nagel, E.; Luhman, K. L.; Watson, D. M.; Calvet, N.; McClure, M.; Muzerolle, J. E-mail: p.dalessio@crya.unam.m E-mail: erick@astro.ugto.m E-mail: dmw@pas.rochester.ed E-mail: melisma@umich.ed

    2010-07-01

    In the past few years, several disks with inner holes that are relatively empty of small dust grains have been detected and are known as transitional disks. Recently, Spitzer has identified a new class of 'pre-transitional disks' with gaps based on near-infrared photometry and mid-infrared spectra; these objects have an optically thick inner disk separated from an optically thick outer disk by an optically thin disk gap. A near-infrared spectrum provided the first confirmation of a gap in the pre-transitional disk of LkCa 15 by verifying that the near-infrared excess emission in this object was due to an optically thick inner disk. Here, we investigate the difference between the nature of the inner regions of transitional and pre-transitional disks using the same veiling-based technique to extract the near-infrared excess emission above the stellar photosphere. However, in this work we use detailed disk models to fit the excess continua as opposed to the simple blackbody fits previously used. We show that the near-infrared excess emission of the previously identified pre-transitional disks of LkCa 15 and UX Tau A in the Taurus cloud as well as the newly identified pre-transitional disk of ROX 44 in Ophiuchus can be fit with an inner disk wall located at the dust destruction radius. We also present detailed modeling of the broadband spectral energy distributions of these objects, taking into account the effect of shadowing by the inner disk on the outer disk, but considering the finite size of the star, unlike other recent treatments. The near-infrared excess continua of these three pre-transitional disks, which can be explained by optically thick inner disks, are significantly different from that of the transitional disks of GM Aur, whose near-infrared excess continuum can be reproduced by emission from sub-micron-sized optically thin dust, and DM Tau, whose near-infrared spectrum is consistent with a disk hole that is relatively free of small dust. The structure

  4. SYNCHROTRON RADIATION OF SELF-COLLIMATING RELATIVISTIC MAGNETOHYDRODYNAMIC JETS

    SciTech Connect

    Porth, Oliver; Fendt, Christian; Vaidya, Bhargav; Meliani, Zakaria E-mail: fendt@mpia.de

    2011-08-10

    The goal of this paper is to derive signatures of synchrotron radiation from state-of-the-art simulation models of collimating relativistic magnetohydrodynamic (MHD) jets featuring a large-scale helical magnetic field. We perform axisymmetric special relativistic MHD simulations of the jet acceleration region using the PLUTO code. The computational domain extends from the slow-magnetosonic launching surface of the disk up to 6000{sup 2} Schwarzschild radii allowing jets to reach highly relativistic Lorentz factors. The Poynting-dominated disk wind develops into a jet with Lorentz factors of {Gamma} {approx_equal} 8 and is collimated to 1{sup 0}. In addition to the disk jet, we evolve a thermally driven spine jet emanating from a hypothetical black hole corona. Solving the linearly polarized synchrotron radiation transport within the jet, we derive very long baseline interferometry radio and (sub-) millimeter diagnostics such as core shift, polarization structure, intensity maps, spectra, and Faraday rotation measure (RM) directly from the Stokes parameters. We also investigate depolarization and the detectability of a {lambda}{sup 2}-law RM depending on beam resolution and observing frequency. We find non-monotonic intrinsic RM profiles that could be detected at a resolution of 100 Schwarzschild radii. In our collimating jet geometry, the strict bimodality in the polarization direction (as predicted by Pariev et al.) can be circumvented. Due to relativistic aberration, asymmetries in the polarization vectors across the jet can hint at the spin direction of the central engine.

  5. 2-µm Tm:Lu₂O₃ ceramic disk laser intracavity-pumped by a semiconductor disk laser.

    PubMed

    Saarinen, Esa J; Vasileva, Elena; Antipov, Oleg; Penttinen, Jussi-Pekka; Tavast, Miki; Leinonen, Tomi; Okhotnikov, Oleg G

    2013-10-01

    A proof-of-principle study of a 1.97-µm Tm:Lu2O3 ceramic disk laser, intracavity pumped by a 1.2-µm semiconductor disk laser, is presented. The demonstrated concept allows for improved pump absorption and takes advantage of the broad wavelength coverage provided by semiconductor disk laser technology. For thin disk lasers the small thickness of the gain element typically leads to inefficient pump light absorption. This problem is usually solved by using a complex multi-pass pump arrangement. In this study we address this challenge with a new laser concept of an intracavity pumped ceramic thin disk laser. The output power at 1.97 µm was limited to 250 mW due to heat spreader-less mounting scheme of the ceramic gain disk.

  6. The matter-neutrino resonance around thick disks

    NASA Astrophysics Data System (ADS)

    Deaton, Michael

    2016-03-01

    We are studying neutrino flavor transformations in typical neutron star merger environments. Here a dominance of νe over νe fluxes introduces transformation behaviors qualitatively different from those seen in supernovae. Discovered in thin disk models, the matter neutrino resonance (MNR) may behave differently around thick disks, or not appear at all. I'll present what we have learned about the MNR using a phenomenological model motivated by hydrodynamical simulations of post-merger disks. JINA-CEE.

  7. Black Hole Advective Accretion Disks with Optical Depth Transition

    SciTech Connect

    Artemove, Y.V.; Bisnovatyi-Kogan, G.S.; Igumenshchev, I.V.; Novikov, I.D.

    2006-02-01

    We have constructed numerically global solutions of advective accretion disks around black holes that describe a continuous transition between the effectively optically thick outer and optically thin inner disk regions. We have concentrated on models of accretion flows with large mass accretion rates, and we have employed a bridging formula for radiative losses at high and low effective optical depths.

  8. Models of unsaturated Compton disks around supermassive black holes

    NASA Technical Reports Server (NTRS)

    Liang, E. P. T.; Thompson, K. A.

    1979-01-01

    Two inverse-Compton disk models for the hard X-ray spectra of quasi-stellar objects and active galactic nuclei are studied and compared. One is a slightly generalized version of the Shapiro, Lightman and Eardley optically thin disk model, and the other is a conduction-stabilized Corona model. Observational distinctions between the two models are discussed.

  9. Stability of MRI Turbulent Accretion Disks

    NASA Astrophysics Data System (ADS)

    Takahashi, H. R.; Masada, Y.

    2010-12-01

    We study the stability of geometrically thin accretion disks with non-standard α parameter, which characterizes the efficiency of the angular momentum transport. Following recent results of numerical simulations of the Magnetorotational instability (MRI) driven turbulence, we assume that α increases with the magnetic Prandtl number. By adopting Spitzer's microscopic diffusivities, we obtain local structures of geometrically thin accretion disks consistently including effects of MRI-driven turbulence. Since the magnetic Prandtl number increases with the temperature, the efficiency of the angular momentum transport and thus viscous heating rate are smaller for a larger radius when δ > 0. We find that such disks can be unstable to gravitational, thermal, and secular instabilities. It is most remarkable feature that the thermal and secular instabilities can grow in the middle part of accretion disks even when the radiation pressure is negligible, while the standard Shakura & Sunyaev's accretion disk (constant α) is stable to these instabilities. We conclude that it would be difficult to maintain the steady mass accretion state unless the Pm-dependence of the MRI-driven turbulence is weak. Consideration of Pm dependence of α due to the MRI-driven turbulence may make the phase transition of accretion disks less mysterious.

  10. Disk Alloy Development

    NASA Technical Reports Server (NTRS)

    Gabb, Tim; Gayda, John; Telesman, Jack

    2001-01-01

    The advanced powder metallurgy disk alloy ME3 was designed using statistical screening and optimization of composition and processing variables in the NASA HSR/EPM disk program to have extended durability at 1150 to 1250 "Fin large disks. Scaled-up disks of this alloy were produced at the conclusion of this program to demonstrate these properties in realistic disk shapes. The objective of the UEET disk program was to assess the mechanical properties of these ME3 disks as functions of temperature, in order to estimate the maximum temperature capabilities of this advanced alloy. Scaled-up disks processed in the HSR/EPM Compressor / Turbine Disk program were sectioned, machined into specimens, and tested in tensile, creep, fatigue, and fatigue crack growth tests by NASA Glenn Research Center, in cooperation with General Electric Engine Company and Pratt & Whitney Aircraft Engines. Additional sub-scale disks and blanks were processed and tested to explore the effects of several processing variations on mechanical properties. Scaled-up disks of an advanced regional disk alloy, Alloy 10, were used to evaluate dual microstructure heat treatments. This allowed demonstration of an improved balance of properties in disks with higher strength and fatigue resistance in the bores and higher creep and dwell fatigue crack growth resistance in the rims. Results indicate the baseline ME3 alloy and process has 1300 to 1350 O F temperature capabilities, dependent on detailed disk and engine design property requirements. Chemistry and process enhancements show promise for further increasing temperature capabilities.

  11. Accretion disk viscosity and internal waves in disks

    NASA Astrophysics Data System (ADS)

    Huang, Min

    1992-01-01

    Recently, Vishniac, Jin and Diamond suggested that internal waves in accretion disks play a critical role in generating magnetic fields, and consequently are indirectly responsible for angular momentum transfer in thin, conducting, and non-self-gravitational disk systems. A project in which we will construct a quantitative model of the internal wave spectrum in accretion disks is started. It includes two aspects of work. The physical properties of the waves in a thin, non-self-gravitational, and non-magnetized accretion disk with realistic vertical structure is cataloged and examined. Besides the low frequency internal waves discovered by Vishniac and Diamond, it was found that sound waves with low frequency and low axisymmetry (with small absolute value of m) are capable of a driving dynamo because they are (1) well confined in a layer with thickness 2(absolute value of m)H where H is the disk scale height; (2) highly dispersive so they may survive the strong dissipation caused by the coherent nonlinear interaction their high frequency partners experience; and (3) elliptically polarized because they are confined in the z-direction. As a first step towards constructing a quantitative theory of this dynamo effect, a framework of calculating resonant nonlinear interaction among waves in disk is established. We are developing a numerical code which will compute the steady spectrum of the wave field in this framework. For simplicity, we only include the low frequency internal waves suggested by Vishniac and Diamond in the present stage. In the vicinity of the static state, the time step whose length is determined by the evolution of the modes with the largest amplitudes is too large for the modes with smaller amplitudes and overshooting occurs. Through nonlinear coupling, this overshooting is amplified and appears as a numerical instability affecting the evolution of the large amplitude modes. Shorter time steps may delay the appearance of the instability but not cure

  12. Where a Neutron Star's Accretion Disk Ends

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-03-01

    In X-ray binaries that consist of a neutron star and a companion star, gas funnels from the companion into an accretion disk surrounding the neutron star, spiraling around until it is eventually accreted. How do the powerful magnetic fields threading through the neutron star affect this accretion disk? Recent observations provide evidence that they may push the accretion disk away from the neutron stars surface.Truncated DisksTheoretical models have indicated that neutron star accretion disks may not extend all the way in to the surface of a neutron star, but may instead be truncated at a distance. This prediction has been difficult to test observationally, however, due to the challenge of measuring the location of the inner disk edge in neutron-star X-ray binaries.In a new study, however, a team of scientists led by Ashley King (Einstein Fellow at Stanford University) has managed to measure the location of the inner edge of the disk in Aquila X-1, a neutron-star X-ray binary located 17,000 light-years away.Iron line feature detected by Swift (red) and NuSTAR (black). The symmetry of the line is one of the indicators that the disk is located far from the neutron star; if the inner regions of the disk were close to the neutron star, severe relativistic effects would skew the line to be asymmetric. [King et al. 2016]Measurements from ReflectionsKing and collaborators used observations made by NuSTAR and Swift/XRT both X-ray space observatories of Aquila X-1 during the peak of an X-ray outburst. By observing the reflection of Aquila X-1s emission off of the inner regions of the accretion disk, the authors were able to estimate the location of the inner edge of the disk.The authors find that this inner edge sits at ~15 gravitational radii. Since the neutron stars surface is at ~5 gravitational radii, this means that the accretion disk is truncated far from the stars surface. In spite of this truncation, material still manages to cross the gap and accrete onto the

  13. Interstellar Gas and a Dark Disk

    NASA Astrophysics Data System (ADS)

    Kramer, Eric David; Randall, Lisa

    2016-10-01

    We introduce a potentially powerful method for constraining or discovering a thin dark matter disk in the Milky Way. The method relies on the relationship between the midplane densities and scale heights of interstellar gas being determined by the gravitational potential, which is sensitive to the presence of a dark disk. We show how to use the interstellar gas parameters to set a bound on a dark disk and discuss the constraints suggested by the current data. However, current measurements for these parameters are discordant, with the uncertainty in the constraint being dominated by the molecular hydrogen midplane density measurement, as well as by the atomic hydrogen velocity dispersion measurement. Magnetic fields and cosmic ray pressure, which are expected to play a role, are uncertain as well. The current models and data are inadequate to determine the disk's existence, but taken at face value, may favor its existence depending on the gas parameters used.

  14. The radar cross section of dielectric disks

    NASA Technical Reports Server (NTRS)

    Levine, D. M.

    1982-01-01

    A solution is presented for the backscatter (nonstatic) radar cross section of dielectric disks of arbitrary shape, thickness and dielectric constant. The result is obtained by employing a Kirchhoff type approximation to obtain the fields inside the disk. The internal fields induce polarization and conduction currents from which the scattered fields and the radar cross section can be computed. The solution for the radar cross section obtained in this manner is shown to agree with known results in the special cases of normal incidence, thin disks and perfect conductivity. The solution can also be written as a product of the reflection coefficient of an identically oriented slab times the physical optics solution for the backscatter cross section of a perfectly conducting disk of the same shape. This result follows directly from the Kirchhoff type approximation without additional assumptions.

  15. IGRINS observations toward Class I disk sources

    NASA Astrophysics Data System (ADS)

    Lee, Seokho; Lee, Jeong-Eun; Park, Sunkyung; Jaffe, Daniel T.; Lee, Jae-Joon

    2015-08-01

    We present the high-resolution Immersion GRating INfrared spectrograph (IGRINS) spectra of Class I sources, including IRAS03445+3242 and IRAS04239+2436. These sources show the evidence of Keplerian disks; the broadened CO overtone (Δ v=2) transitions in emission and neutral metal lines (Mg I, Fe I, and Al I) in absorption. The thin Keplerian disk with a rotational velocity of ~100 km s-1 and a gas temperature of 5000 K at the innermost annulus can reproduce the CO overtone transitions including the bandhead emission. The temperature is assumed to have a power-law distribution with p=0.5. The outer colder disk or the envelope needs to fit the narrow absorption features overlaid on the broad emission lines in the CO overtone transitions. Other atomic and molecular emission lines likely radiated from the disk and/or wind are also detected.

  16. DO MAGNETIC FIELDS DESTROY BLACK HOLE ACCRETION DISK g-MODES?

    SciTech Connect

    Ortega-Rodríguez, Manuel; Solís-Sánchez, Hugo; Arguedas-Leiva, J. Agustín; Wagoner, Robert V.; Levine, Adam

    2015-08-10

    Diskoseismology, the theoretical study of normal-mode oscillations in geometrically thin, optically thick accretion disks, is a strong candidate for explaining some quasi-periodic oscillations in the power spectra of many black hole X-ray binary systems. The existence of g-modes, presumably the most robust and visible of the modes, depends on general relativistic gravitational trapping in the hottest part of the disk. As the existence of the required cavity in the presence of magnetic fields has been put into doubt by theoretical calculations, we will explore in greater generality what effect the inclusion of magnetic fields has on the existence of g-modes. We use an analytical perturbative approach on the equations of MHD to assess the impact of such effects. Our main conclusion is that there appears to be no compelling reason to discard g-modes. In particular, the inclusion of a non-zero radial component of the magnetic field enables a broader scenario for cavity non-destruction, especially taking into account recent simulations’ saturation values for the magnetic field.

  17. Stability of MRI-turbulent Accretion Disks

    NASA Astrophysics Data System (ADS)

    Takahashi, Hiroyuki R.; Masada, Youhei

    2011-02-01

    Based on the characteristics of the magnetorotational instability (MRI) and the MRI-driven turbulence, we construct a steady model for a geometrically thin disk using "non-standard" α-prescription. The efficiency of the angular momentum transport depends on the magnetic Prandtl number, Pm = ν/η, where ν and η are the microscopic viscous and magnetic diffusivities. In our disk model, Shakura-Sunyaev's α-parameter has a power-law dependence on the magnetic Prandtl number, that is α vprop Pm δ, where δ is the constant power-law index. Adopting Spitzer's microscopic diffusivities, the magnetic Prandtl number becomes a decreasing function of the disk radius when δ>0. The transport efficiency of the angular momentum and the viscous heating rate are thus smaller in the outer part of the disk, while these are impacted by the size of index δ. We find that the disk becomes more unstable to the gravitational instability for a larger value of index δ. The most remarkable feature of our disk model is that the thermal and secular instabilities can grow in its middle part even if the radiation pressure is negligibly small in the condition δ>2/3. In the realistic disk systems, it would be difficult to maintain the steady mass accretion state unless the Pm dependence of MRI-driven turbulence is relatively weak.

  18. Fast Radial Flows in Transition Disk Holes

    NASA Astrophysics Data System (ADS)

    Rosenfeld, Katherine A.; Chiang, Eugene; Andrews, Sean M.

    2014-02-01

    Protoplanetary "transition" disks have large, mass-depleted central cavities, yet also deliver gas onto their host stars at rates comparable to disks without holes. The paradox of simultaneous transparency and accretion can be explained if gas flows inward at much higher radial speeds inside the cavity than outside the cavity, since surface density (and by extension optical depth) varies inversely with inflow velocity at fixed accretion rate. Radial speeds within the cavity might even have to approach free-fall values to explain the huge surface density contrasts inferred for transition disks. We identify observational diagnostics of fast radial inflow in channel maps made in optically thick spectral lines. Signatures include (1) twisted isophotes in maps made at low systemic velocities and (2) rotation of structures observed between maps made in high-velocity line wings. As a test case, we apply our new diagnostic tools to archival Atacama Large Millimeter Array data on the transition disk HD 142527 and uncover evidence for free-fall radial velocities inside its cavity. Although the observed kinematics are also consistent with a disk warp, the radial inflow scenario is preferred because it predicts low surface densities that appear consistent with recent observations of optically thin CO isotopologues in this disk. How material in the disk cavity sheds its angular momentum wholesale to fall freely onto the star is an unsolved problem; gravitational torques exerted by giant planets or brown dwarfs are briefly discussed as a candidate mechanism.

  19. Fast radial flows in transition disk holes

    SciTech Connect

    Rosenfeld, Katherine A.; Andrews, Sean M.; Chiang, Eugene

    2014-02-20

    Protoplanetary 'transition' disks have large, mass-depleted central cavities, yet also deliver gas onto their host stars at rates comparable to disks without holes. The paradox of simultaneous transparency and accretion can be explained if gas flows inward at much higher radial speeds inside the cavity than outside the cavity, since surface density (and by extension optical depth) varies inversely with inflow velocity at fixed accretion rate. Radial speeds within the cavity might even have to approach free-fall values to explain the huge surface density contrasts inferred for transition disks. We identify observational diagnostics of fast radial inflow in channel maps made in optically thick spectral lines. Signatures include (1) twisted isophotes in maps made at low systemic velocities and (2) rotation of structures observed between maps made in high-velocity line wings. As a test case, we apply our new diagnostic tools to archival Atacama Large Millimeter Array data on the transition disk HD 142527 and uncover evidence for free-fall radial velocities inside its cavity. Although the observed kinematics are also consistent with a disk warp, the radial inflow scenario is preferred because it predicts low surface densities that appear consistent with recent observations of optically thin CO isotopologues in this disk. How material in the disk cavity sheds its angular momentum wholesale to fall freely onto the star is an unsolved problem; gravitational torques exerted by giant planets or brown dwarfs are briefly discussed as a candidate mechanism.

  20. Relativistic effects on radiative ejection of coronae in variable X-ray sources

    NASA Astrophysics Data System (ADS)

    Mishra, B.; Kluźniak, W.

    2014-06-01

    Context. Optically thin coronae around neutron stars suffering an X-ray burst can be ejected as a result of rapid increase in stellar luminosity. In general relativity, radiation pressure from the central luminous star counteracts gravitational attraction more strongly than in Newtonian physics. However, motion near the neutron star is very effectively impeded by the radiation field. Aims: To explore the mechanisms leading to ejection of accretion disk coronae Methods: We perform a general relativistic calculation of the motion of a test particle in a spherically symmetric radiation field. Results: At every radial distance from the star larger than that of the innermost stable circular orbit (ISCO), and any initial luminosity of the star, there exists a luminosity change which leads to coronal ejection. The luminosity required to eject from the system the inner parts of the optically thin neutron-star corona is very high in the presence of radiation drag and always close to the Eddington luminosity. Outer parts of the corona, at a distance of 20 RG or more, will be ejected by a sub-Eddington outburst. Mildly fluctuating luminosity will lead to dissipation in the plasma and may explain the observed X-ray temperatures of coronae in low mass X-ray binaries. At large radial distances from the star (3 × 103 RG or more) the results do not depend on whether or not Poynting-Robertson drag is included in the calculation.

  1. Low-frequency modes and nonbarotropic effects in pseudo-Newtonian accretion disks

    NASA Technical Reports Server (NTRS)

    Ipser, James R.

    1994-01-01

    A recently developed formalism is used to reexamine the question of the existence of hydrodynamical modes that pulsate with very low frequencies in the inner regions of accretion disks. The formalism is valid in an exact sense for the adiabatic pulsations of rotating Newtonian fluids that are generally nonbarotropic (such as those with 'nonadiabatic temperature gradients,' for example), and hence its application in the present context represents an improvement over previous analyses that are more approximate. The formalism is applied to thin non-self-gravitating disks, with the gravitational potential of the central source modified in the usual way in order to simulate relativistic effects. In the barotropic limit, the analyses indicate that in many cases nearly Keplerian disks exhibit nonaxisymmetric modes of pulsation that are trapped in the inner disk regions, with pulsation periods much longer than the dynamical timescale. These results are similar to those of earlier calculations that assume disks pulsate without changing the temperature distribution. A method is developed for including lowest order nonbarotropic effects. Previous analyses have been incapable of accurately treating the nonbarotropic regime. The application of the present method to the low-frequency modes reveals that, due to unexpected cancellations among terms, the nonbarotropic correction to the pusation frequency omega is only of order tilde-omega(sub BV exp 2) omega, where tilde-omega(sub BV) is the appropriate dimensionless Brunt-Vaisala frequency. This correction is much smaller than the expected correction of order tilde-omega(sub BV) Omega, where Omega is the rotation angular velocity. The important conclusion drawn from this is that nonbarotropic corrections are generally small and hence that low-frequency modes persist into the nonbarotropic regime. For disk temperatures appropriate to X-ray emission, the adiabatic frequencies of trapped modes are of the same order as the frequencies

  2. Relativistic redshifts in quasar broad lines

    SciTech Connect

    Tremaine, Scott; Shen, Yue; Liu, Xin; Loeb, Abraham E-mail: yshen@obs.carnegiescience.edu E-mail: aloeb@cfa.harvard.edu

    2014-10-10

    The broad emission lines commonly seen in quasar spectra have velocity widths of a few percent of the speed of light, so special- and general-relativistic effects have a significant influence on the line profile. We have determined the redshift of the broad Hβ line in the quasar rest frame (determined from the core component of the [O III] line) for over 20,000 quasars from the Sloan Digital Sky Survey Data Release 7 quasar catalog. The mean redshift as a function of line width is approximately consistent with the relativistic redshift that is expected if the line originates in a randomly oriented Keplerian disk that is obscured when the inclination of the disk to the line of sight exceeds ∼30°-45°, consistent with simple active galactic nucleus unification schemes. This result also implies that the net line-of-sight inflow/outflow velocities in the broad-line region are much less than the Keplerian velocity when averaged over a large sample of quasars with a given line width.

  3. Relativistic Gravity Research

    NASA Astrophysics Data System (ADS)

    Ehlers, Jürgen; Schäfer, Gerhard

    17 readable articles give a thorough and self-contained overview of recent developments in relativistic gravity research. The subjects covered are: gravitational lensing, the general relativistic n-body problem, observable effects in the solar system, gravitational waves and their interferometric detection, very-long-baseline interferometry, international atomic time, lunar laserranging measurements, measurement of the gravitomagnetic field of the Earth, fermion and boson stars and black holes with hair, rapidly rotating neutron stars, matter wave interferometry, and the laboratory test of Newton's law of gravity. Any scientist interested in experimentally or observatio- nally oriented relativistic gravity will read the book with profit. In addition, it is perfectly suited as a complementary text for courses on general relativity and relativistic astrophysics.

  4. Relativistic spherical plasma waves

    NASA Astrophysics Data System (ADS)

    Bulanov, S. S.; Maksimchuk, A.; Schroeder, C. B.; Zhidkov, A. G.; Esarey, E.; Leemans, W. P.

    2012-02-01

    Tightly focused laser pulses that diverge or converge in underdense plasma can generate wake waves, having local structures that are spherical waves. Here we study theoretically and numerically relativistic spherical wake waves and their properties, including wave breaking.

  5. Weakly relativistic plasma expansion

    SciTech Connect

    Fermous, Rachid Djebli, Mourad

    2015-04-15

    Plasma expansion is an important physical process that takes place in laser interactions with solid targets. Within a self-similar model for the hydrodynamical multi-fluid equations, we investigated the expansion of both dense and under-dense plasmas. The weakly relativistic electrons are produced by ultra-intense laser pulses, while ions are supposed to be in a non-relativistic regime. Numerical investigations have shown that relativistic effects are important for under-dense plasma and are characterized by a finite ion front velocity. Dense plasma expansion is found to be governed mainly by quantum contributions in the fluid equations that originate from the degenerate pressure in addition to the nonlinear contributions from exchange and correlation potentials. The quantum degeneracy parameter profile provides clues to set the limit between under-dense and dense relativistic plasma expansions at a given density and temperature.

  6. Relativistic Quantum Scars

    SciTech Connect

    Huang, Liang; Lai Yingcheng; Ferry, David K.; Goodnick, Stephen M.; Akis, Richard

    2009-07-31

    The concentrations of wave functions about classical periodic orbits, or quantum scars, are a fundamental phenomenon in physics. An open question is whether scarring can occur in relativistic quantum systems. To address this question, we investigate confinements made of graphene whose classical dynamics are chaotic and find unequivocal evidence of relativistic quantum scars. The scarred states can lead to strong conductance fluctuations in the corresponding open quantum dots via the mechanism of resonant transmission.

  7. Exact Relativistic `Antigravity' Propulsion

    NASA Astrophysics Data System (ADS)

    Felber, Franklin S.

    2006-01-01

    The Schwarzschild solution is used to find the exact relativistic motion of a payload in the gravitational field of a mass moving with constant velocity. At radial approach or recession speeds faster than 3-1/2 times the speed of light, even a small mass gravitationally repels a payload. At relativistic speeds, a suitable mass can quickly propel a heavy payload from rest nearly to the speed of light with negligible stresses on the payload.

  8. Understanding Floppy Disks.

    ERIC Educational Resources Information Center

    Valentine, Pamela

    1980-01-01

    The author describes the floppy disk with an analogy to the phonograph record, and discusses the advantages, disadvantages, and capabilities of hard-sectored and soft-sectored floppy disks. She concludes that, at present, the floppy disk will continue to be the primary choice of personal computer manufacturers and their customers. (KC)

  9. Relativistic effects in chemistry

    SciTech Connect

    Yatsimirskii, K.B.

    1995-11-01

    Relativistic effects become apparent when the velocity of the electron is arbitrarily close to the speed of light (137 au) without actually attaining it (in heavy atoms of elements at the end of Mendeleev`s Periodic Table). At the orbital level, the relativistic effect is apparent in the radial contraction of penetrating s and p shells, expansion of nonpenetrating d and f shells, and the spin-orbit splitting of p-,d-, and f-shells. The appearance of a relativistic effect is indicated in the variation in the electronic configurations of the atoms in the Periodic Table, the appearance of new types of closed electron shells (6s{sub 1/2}{sup 2}, 6p{sub 1/2}{sup 2}, 7s{sub 1/2}{sup 2}, 5d{sub 3/2}{sup 4}), the stabilization of unstable oxidation states of heavy elements, the characteristic variation in the ionization enthalpies of heavy atoms, their electron affinity, hydration energies, redox potentials, and optical electronegativities. In the spectra of coordination compounds, a relativistic effect is observed when comparing the position of the charge transfer bands in analogous compounds, the parameters characterizing the ligand field strength (10Dq), the interatomic distances and angles in compounds of heavy elements. A relativistic effect is also apparent in the ability of heavy metals to form clusters and superclusters. Relativistic corrections also affect other properties of heavy metal compounds (force constants, dipole moments, biological activity, etc.).

  10. Relativistic viscoelastic fluid mechanics

    SciTech Connect

    Fukuma, Masafumi; Sakatani, Yuho

    2011-08-15

    A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.

  11. Relativistic viscoelastic fluid mechanics.

    PubMed

    Fukuma, Masafumi; Sakatani, Yuho

    2011-08-01

    A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.

  12. HERSCHEL OBSERVATIONS OF THE T CHA TRANSITION DISK: CONSTRAINING THE OUTER DISK PROPERTIES

    SciTech Connect

    Cieza, Lucas A.; Olofsson, Johan; Henning, Thomas; Harvey, Paul M.; Evans II, Neal J.; Pinte, Christophe; Augereau, Jean-Charles; Menard, Francois; Najita, Joan

    2011-11-10

    T Cha is a nearby (d {approx} 100 pc) transition disk known to have an optically thin gap separating optically thick inner and outer disk components. Huelamo et al. recently reported the presence of a low-mass object candidate within the gap of the T Cha disk, giving credence to the suspected planetary origin of this gap. Here we present the Herschel photometry (70, 160, 250, 350, and 500 {mu}m) of T Cha from the 'Dust, Ice, and Gas in Time' Key Program, which bridges the wavelength range between existing Spitzer and millimeter data and provide important constraints on the outer disk properties of this extraordinary system. We model the entire optical to millimeter wavelength spectral energy distribution (SED) of T Cha (19 data points between 0.36 and 3300 {mu}m without any major gaps in wavelength coverage). T Cha shows a steep spectral slope in the far-IR, which we find clearly favors models with outer disks containing little or no dust beyond {approx}40 AU. The full SED can be modeled equally well with either an outer disk that is very compact (only a few AU wide) or a much larger one that has a very steep surface density profile. That is, T Cha's outer disk seems to be either very small or very tenuous. Both scenarios suggest a highly unusual outer disk and have important but different implications for the nature of T Cha. Spatially resolved images are needed to distinguish between the two scenarios.

  13. General Relativistic Magnetohydrodynamic Simulations of Magnetically Choked Accretion Flows around Black Holes

    SciTech Connect

    McKinney, Jonathan C.; Tchekhovskoy, Alexander; Blandford, Roger D.

    2012-04-26

    Black hole (BH) accretion flows and jets are qualitatively affected by the presence of ordered magnetic fields. We study fully three-dimensional global general relativistic magnetohydrodynamic (MHD) simulations of radially extended and thick (height H to cylindrical radius R ratio of |H/R| {approx} 0.2-1) accretion flows around BHs with various dimensionless spins (a/M, with BH mass M) and with initially toroidally-dominated ({phi}-directed) and poloidally-dominated (R-z directed) magnetic fields. Firstly, for toroidal field models and BHs with high enough |a/M|, coherent large-scale (i.e. >> H) dipolar poloidal magnetic flux patches emerge, thread the BH, and generate transient relativistic jets. Secondly, for poloidal field models, poloidal magnetic flux readily accretes through the disk from large radii and builds-up to a natural saturation point near the BH. While models with |H/R| {approx} 1 and |a/M| {le} 0.5 do not launch jets due to quenching by mass infall, for sufficiently high |a/M| or low |H/R| the polar magnetic field compresses the inflow into a geometrically thin highly non-axisymmetric 'magnetically choked accretion flow' (MCAF) within which the standard linear magneto-rotational instability is suppressed. The condition of a highly-magnetized state over most of the horizon is optimal for the Blandford-Znajek mechanism that generates persistent relativistic jets with and 100% efficiency for |a/M| {approx}> 0.9. A magnetic Rayleigh-Taylor and Kelvin-Helmholtz unstable magnetospheric interface forms between the compressed inflow and bulging jet magnetosphere, which drives a new jet-disk oscillation (JDO) type of quasi-periodic oscillation (QPO) mechanism. The high-frequency QPO has spherical harmonic |m| = 1 mode period of {tau} {approx} 70GM/c{sup 3} for a/M {approx} 0.9 with coherence quality factors Q {approx}> 10. Overall, our models are qualitatively distinct from most prior MHD simulations (typically, |H/R| << 1 and poloidal flux is limited by

  14. Structure and dynamics of Andromeda's stellar disk

    NASA Astrophysics Data System (ADS)

    Dorman, Claire Elise

    2015-10-01

    Lambda cold dark matter (LambdaCDM) cosmology predicts that the disks of Milky Way-mass galaxies should have undergone at least one merger with a large (mass ratio 1:10) satellite in the last several Gyr. However, the stellar disk in the solar neighborhood of the Milky Way is too thin and dynamically cold to have experienced such an impact. The dynamics of the nearby Andromeda galaxy can serve as a second data point, and help us understand whether the Milky Way may simply have had an unusually quiescent merger history, or whether LambdaCDM theory needs to be revisited. Over the last few years, we have carried out a detailed study of the resolved stellar populations in the disk of the Andromeda galaxy using data from two surveys: six-filter Hubble Space Telescope photometry from the recently-completed Panchromatic Hubble Andromeda Treasury (PHAT) survey, and radial velocities derived from Keck/DEIMOS optical spectra obtained as part of the Spectroscopic and Photometric Landscape of Andromeda's Stellar 0Halo (SPLASH) program. These detailed, multidimensional data sets allow us to decouple the structural subcomponents and characterize them individually. We find that an old, dynamically hot (velocity dispersion 150 km/s) RGB population extends out to 20 kpc (the edge of the visible disk) but has a disk-like surface brightness profile and luminosity function. This population may have originated in the disk but been kicked out subsequently in impacts with satellite galaxies. We also study the kinematics of the disk as a function of the age of stellar tracers, and find a direct correlation between age and velocity dispersion, indicating that Andromeda has undergone a continuous heating or disk settling process throughout its lifetime. Overall, both the velocity dispersion of Andromeda's disk and the slope of the velocity dispersion vs. stellar age curve are several times those of the Milky Way's, suggesting a more active merger history more in line with Lambda

  15. Gravitomagnetic acceleration of accretion disk matter to polar jets

    NASA Astrophysics Data System (ADS)

    Poirier, John; Mathews, Grant

    2016-03-01

    The motion of the masses of an accretion disk around a black hole creates a general relativistic, gravitomagnetic field (GEM) from the moving matter (be it charged or uncharged) of the accretion disk. This GEM field accelerates moving masses (neutral or charged) near the accretion disk vertically upward and away from the disk, and then inward toward the axis of the disk. As the accelerated material nears the axis with approximately vertical angles, a frame dragging effect contributes to the formation of narrow jets emanating from the poles. This GEM effect is numerically evaluated in the first post Newtonian (1PN) approximation from observable quantities like the mass and velocity of the disk. This GEM force is linear in the total mass of the accretion disk matter and quadratic in the velocity of matter near to the disk with approximately the same velocity. Since these masses and velocities can be quite high in astrophysical contexts, the GEM force, which in other contexts is weak, is quite significant. This GEM effect is compared to the ordinary electromagnetic effects applied to this problem in the past.

  16. Floppy disk utility user's guide

    NASA Technical Reports Server (NTRS)

    Akers, J. W.

    1980-01-01

    A floppy disk utility program is described which transfers programs between files on a hard disk and floppy disk. It also copies the data on one floppy disk onto another floppy disk and compares the data. The program operates on the Data General NOVA-4X under the Real Time Disk Operating System. Sample operations are given.

  17. Floppy disk utility user's guide

    NASA Technical Reports Server (NTRS)

    Akers, J. W.

    1981-01-01

    The Floppy Disk Utility Program transfers programs between files on the hard disk and floppy disk. It also copies the data on one floppy disk onto another floppy disk and compares the data. The program operates on the Data General NOVA-4X under the Real Time Disk Operating System (RDOS).

  18. Black hole accretion disks with coronae

    NASA Technical Reports Server (NTRS)

    Svensson, Roland; Zdziarski, Andrzej A.

    1994-01-01

    Observations suggest the existence of both hot and cold dark matter in the centers of active galactic nuclei. Recent spectral models require a major fraction of power to be dissipated in the hot matter. We study the case when the hot matter forms a corona around a standard cold alpha-disk. In particular, we investigate the case when a major fraction, f, of the power released when the cold matter accretes is transported to and dissipated in the corona. This has major effects on the cold disk, making it colder, more geometrically thin, denser, and having larger optical depths. One important consequence is the disappearance of the effectively optically thin zone as well as of the radiation pressure dominated zone for values of f sufficiently closed to unity. The disappearance of the radiation pressure dominated zone will result in a cold disk with only a gas pressure dominated zone that is stable against thermal and viscous instabilities. We also show that the pressure ( and the radiation) from the corona will only affect the surface layers of the cold disk. Our results disagree with those of other recent work on accretion disks with coronae. We find those works to be based on unphysical assumptions.

  19. THE THICK DISKS OF SPIRAL GALAXIES AS RELICS FROM GAS-RICH, TURBULENT, CLUMPY DISKS AT HIGH REDSHIFT

    SciTech Connect

    Bournaud, Frederic; Martig, Marie; Elmegreen, Bruce G.

    2009-12-10

    The formation of thick stellar disks in spiral galaxies is studied. Simulations of gas-rich young galaxies show formation of internal clumps by gravitational instabilities, clump coalescence into a bulge, and disk thickening by strong stellar scattering. The bulge and thick disks of modern galaxies may form this way. Simulations of minor mergers make thick disks too, but there is an important difference. Thick disks made by internal processes have a constant scale height with galactocentric radius, but thick disks made by mergers flare. The difference arises because in the first case, perpendicular forcing and disk-gravity resistance are both proportional to the disk column density, so the resulting scale height is independent of this density. In the case of mergers, perpendicular forcing is independent of the column density and the low-density regions get thicker; the resulting flaring is inconsistent with observations. Late-stage gas accretion and thin-disk growth are shown to preserve the constant scale heights of thick disks formed by internal evolution. These results reinforce the idea that disk galaxies accrete most of their mass smoothly and acquire their structure by internal processes, in particular through turbulent and clumpy phases at high redshift.

  20. HNC IN PROTOPLANETARY DISKS

    SciTech Connect

    Graninger, Dawn; Öberg, Karin I.; Qi, Chunhua; Kastner, Joel

    2015-07-01

    The distributions and abundances of small organics in protoplanetary disks are potentially powerful probes of disk physics and chemistry. HNC is a common probe of dense interstellar regions and the target of this study. We use the Submillimeter Array (SMA) to observe HNC 3–2 toward the protoplanetary disks around the T Tauri star TW Hya and the Herbig Ae star HD 163296. HNC is detected toward both disks, constituting the first spatially resolved observations of HNC in disks. We also present SMA observations of HCN 3–2 and IRAM 30 m observations of HCN and HNC 1–0 toward HD 163296. The disk-averaged HNC/HCN emission ratio is 0.1–0.2 toward both disks. Toward TW Hya, the HNC emission is confined to a ring. The varying HNC abundance in the TW Hya disk demonstrates that HNC chemistry is strongly linked to the disk physical structure. In particular, the inner rim of the HNC ring can be explained by efficient destruction of HNC at elevated temperatures, similar to what is observed in the ISM. However, to realize the full potential of HNC as a disk tracer requires a combination of high SNR spatially resolved observations of HNC and HCN and disk-specific HNC chemical modeling.

  1. Circumstellar Debris Disks and SIRTF

    NASA Astrophysics Data System (ADS)

    Backman, D. E.

    2000-05-01

    At least 15% of nearby main sequence stars are found to have far-IR excesses representing thermal emission from optically thin dust clouds. Famous prototypes of this class of objects include the Vega and beta Pictoris systems. Because destruction times for observed grains are much shorter than the system ages, the dust is known to be ``2nd generation" material released recently from hypothetical asteroid or comet parent bodies and not primordial grains persisting since system formation. The best local analogs to the main sequence debris disk systems are the inner solar system's zodiacal dust cloud and a presumed dust component of the Kuiper Belt. Planetary masses are probably required to drive planetesimals into shattering collisions and star-grazing orbits that produce dust, thus debris disks may allow inference of presence and location of planets. SIRTF will give us much-improved understanding of the frequency of debris disks around field main sequence stars, as well as the amount, size and composition of dust grains versus stellar age. This will help place our solar system into context of evolution of planetary material around normal stars.

  2. Resistive collimation of electron beams in relativistic and degenerate plasma

    NASA Astrophysics Data System (ADS)

    Mahdavi, M.; Khodadadi Azadboni, F.

    2014-09-01

    The purpose of this research is the study of the effects of plasma state and fiber on collimating relativistic electron beam in fast ignition. In this paper, for collimating relativistic electrons produced at the laser plasma interaction, a thin fiber of aluminum, lithium or CH either in the classical, degenerate or relativistic plasma states is considered. The fast electron beam could be collimated down to radii of 10 μm, in that case, the best results are achieved when there is a sharp transition in resistance. This ensures that the correct magnetic growth rate is used for hot electrons at different energy levels. Calculations show that the resistivity of the material surrounding the CH fiber in the degenerate plasma is smaller than that for classical and relativistic plasma.

  3. Imprint of accretion disk-induced migration on gravitational waves from extreme mass ratio inspirals.

    PubMed

    Yunes, Nicolás; Kocsis, Bence; Loeb, Abraham; Haiman, Zoltán

    2011-10-21

    We study the effects of a thin gaseous accretion disk on the inspiral of a stellar-mass black hole into a supermassive black hole. We construct a phenomenological angular momentum transport equation that reproduces known disk effects. Disk torques modify the gravitational wave phase evolution to detectable levels with LISA for reasonable disk parameters. The Fourier transform of disk-modified waveforms acquires a correction with a different frequency trend than post-Newtonian vacuum terms. Such inspirals could be used to detect accretion disks with LISA and to probe their physical parameters. PMID:22107500

  4. Radially Magnetized Protoplanetary Disk: Vertical Profile

    NASA Astrophysics Data System (ADS)

    Russo, Matthew; Thompson, Christopher

    2015-11-01

    This paper studies the response of a thin accretion disk to an external radial magnetic field. Our focus is on protoplanetary disks (PPDs), which are exposed during their later evolution to an intense, magnetized wind from the central star. A radial magnetic field is mixed into a thin surface layer, wound up by the disk shear, and pushed downward by a combination of turbulent mixing and ambipolar and ohmic drift. The toroidal field reaches much greater strengths than the seed vertical field that is usually invoked in PPD models, even becoming superthermal. Linear stability analysis indicates that the disk experiences the magnetorotational instability (MRI) at a higher magnetization than a vertically magnetized disk when both the effects of ambipolar and Hall drift are taken into account. Steady vertical profiles of density and magnetic field are obtained at several radii between 0.06 and 1 AU in response to a wind magnetic field Br ˜ (10-4-10-2)(r/ AU)-2 G. Careful attention is given to the radial and vertical ionization structure resulting from irradiation by stellar X-rays. The disk is more strongly magnetized closer to the star, where it can support a higher rate of mass transfer. As a result, the inner ˜1 AU of a PPD is found to evolve toward lower surface density. Mass transfer rates around 10-8 M⊙ yr-1 are obtained under conservative assumptions about the MRI-generated stress. The evolution of the disk and the implications for planet migration are investigated in the accompanying paper.

  5. Computational Relativistic Astrophysics Using the Flowfield-Dependent Variation Theory

    NASA Technical Reports Server (NTRS)

    Richardson, G. A.; Chung, T. J.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Theoretical models, observations and measurements have preoccupied astrophysicists for many centuries. Only in recent years, has the theory of relativity as applied to astrophysical flows met the challenges of how the governing equations can be solved numerically with accuracy and efficiency. Even without the effects of relativity, the physics of magnetohydrodynamic flow instability, turbulence, radiation, and enhanced transport in accretion disks has not been completely resolved. Relativistic effects become pronounced in such cases as jet formation from black hole magnetized accretion disks and also in the study of Gamma-Ray bursts (GRB). Thus, our concern in this paper is to reexamine existing numerical simulation tools as to the accuracy and efficiency of computations and introduce a new approach known as the flowfield-dependent variation (FDV) method. The main feature of the FDV method consists of accommodating discontinuities of shock waves and high gradients of flow variables such as occur in turbulence and unstable motions. In this paper, the physics involved in the solution of relativistic hydrodynamics and solution strategies of the FDV theory are elaborated. The general relativistic astrophysical flow and shock solver (GRAFSS) is introduced, and some simple example problems for Computational Relativistic Astrophysics (CRA) are demonstrated.

  6. THE SUBMILLIMETER BUMP IN Sgr A* FROM RELATIVISTIC MHD SIMULATIONS

    SciTech Connect

    Dexter, Jason; Agol, Eric; Fragile, P. Chris; McKinney, Jonathan C.

    2010-07-10

    Recent high resolution observations of the Galactic center black hole allow for direct comparison with accretion disk simulations. We compare two-temperature synchrotron emission models from three-dimensional, general relativistic magnetohydrodynamic simulations to millimeter observations of Sgr A*. Fits to very long baseline interferometry and spectral index measurements disfavor the monochromatic face-on black hole shadow models from our previous work. Inclination angles {<=}20{sup 0} are ruled out to 3{sigma}. We estimate the inclination and position angles of the black hole, as well as the electron temperature of the accretion flow and the accretion rate, to be i=50{sup o+35o}{sub -15}{sup o}, {xi}=-23{sup o+97o}{sub -22}{sup o}, T{sub e} = (5.4 {+-} 3.0) x 10{sup 10} K, and M-dot =5{sup +15}{sub -2}x10{sup -9} M{sub sun} yr{sup -1}, respectively, with 90% confidence. The black hole shadow is unobscured in all best-fit models, and may be detected by observations on baselines between Chile and California, Arizona, or Mexico at 1.3 mm or .87 mm either through direct sampling of the visibility amplitude or using closure phase information. Millimeter flaring behavior consistent with the observations is present in all viable models and is caused by magnetic turbulence in the inner radii of the accretion flow. The variability at optically thin frequencies is strongly correlated with that in the accretion rate. The simulations provide a universal picture of the 1.3 mm emission region as a small region near the midplane in the inner radii of the accretion flow, which is roughly isothermal and has {nu}/{nu} {sub c} {approx} 1-20, where {nu} {sub c} is the critical frequency for thermal synchrotron emission.

  7. Debris disks: seeing dust, thinking of planetesimals and planets

    NASA Astrophysics Data System (ADS)

    Krivov, Alexander V.

    2010-05-01

    Debris disks are optically thin, almost gas-free dusty disks observed around a significant fraction of main-sequence stars older than about 10 Myr. Since the circumstellar dust is short-lived, the very existence of these disks is considered as evidence that dust-producing planetesimals are still present in mature systems, in which planets have formed - or failed to form - a long time ago. It is inferred that these planetesimals orbit their host stars at asteroid to Kuiper-belt distances and continually supply fresh dust through mutual collisions. This review outlines observational techniques and results on debris disks, summarizes their essential physics and theoretical models, and then places them into the general context of planetary systems, uncovering interrelations between the disks, dust parent bodies, and planets. It is shown that debris disks can serve as tracers of planetesimals and planets and shed light on the planetesimal and planet formation processes that operated in these systems in the past.

  8. General Relativistic Radiative Transfer and GeneralRelativistic MHD Simulations of Accretion and Outflows of Black Holes

    SciTech Connect

    Fuerst, Steven V.; Mizuno, Yosuke; Nishikawa, Ken-Ichi; Wu, Kinwah; /Mullard Space Sci. Lab.

    2007-01-05

    We calculate the emission from relativistic flows in black hole systems using a fully general relativistic radiative transfer formulation, with flow structures obtained by general relativistic magneto-hydrodynamic simulations. We consider thermal free-free emission and thermal synchrotron emission. Bright filament-like features protrude (visually) from the accretion disk surface, which are enhancements of synchrotron emission where the magnetic field roughly aligns with the line-of-sight in the co-moving frame. The features move back and forth as the accretion flow evolves, but their visibility and morphology are robust. We propose that variations and drifts of the features produce certain X-ray quasi-periodic oscillations (QPOs) observed in black-hole X-ray binaries.

  9. An MCMC Circumstellar Disks Modeling Tool

    NASA Astrophysics Data System (ADS)

    Wolff, Schuyler; Perrin, Marshall D.; Mazoyer, Johan; Choquet, Elodie; Soummer, Remi; Ren, Bin; Pueyo, Laurent; Debes, John H.; Duchene, Gaspard; Pinte, Christophe; Menard, Francois

    2016-01-01

    We present an enhanced software framework for the Monte Carlo Markov Chain modeling of circumstellar disk observations, including spectral energy distributions and multi wavelength images from a variety of instruments (e.g. GPI, NICI, HST, WFIRST). The goal is to self-consistently and simultaneously fit a wide variety of observables in order to place constraints on the physical properties of a given disk, while also rigorously assessing the uncertainties in the derived properties. This modular code is designed to work with a collection of existing modeling tools, ranging from simple scripts to define the geometry for optically thin debris disks, to full radiative transfer modeling of complex grain structures in protoplanetary disks (using the MCFOST radiative transfer modeling code). The MCMC chain relies on direct chi squared comparison of model images/spectra to observations. We will include a discussion of how best to weight different observations in the modeling of a single disk and how to incorporate forward modeling from PCA PSF subtraction techniques. The code is open source, python, and available from github. Results for several disks at various evolutionary stages will be discussed.

  10. Heating and Cooling Protostellar Disks

    NASA Astrophysics Data System (ADS)

    Hirose, S.; Turner, N. J.

    2011-05-01

    We examine heating and cooling in protostellar disks using three-dimensional radiation-MHD calculations of a patch of the Solar nebula at 1 AU, employing the shearing-box and flux-limited radiation diffusion approximations. The disk atmosphere is ionized by stellar X-rays, well coupled to magnetic fields, and sustains a turbulent accretion flow driven by magnetorotational instability, while the interior is resistive and magnetically dead. The turbulent layers are heated by absorbing the light from the central star and by dissipating the magnetic fields. They are optically thin to their own radiation and cool inefficiently. The optically thick interior in contrast is heated only weakly, by re-emission from the atmosphere. The interior is colder than a classical viscous model and isothermal. The magnetic fields support an extended atmosphere that absorbs the starlight 1.5 times higher than the hydrostatic viscous model. The disk thickness thus measures not the internal temperature, but the magnetic field strength. Fluctuations in the fields move the starlight-absorbing surface up and down. The height ranges between 13% and 24% of the radius over timescales of several orbits, with implications for infrared variability. The fields are buoyant, so the accretion heating occurs higher in the atmosphere than the stresses. The heating is localized around current sheets, caused by magnetorotational instability at lower elevations and by Parker instability at higher elevations. Gas in the sheets is heated above the stellar irradiation temperature, even though accretion is much less than irradiation power when volume averaged. The hot optically thin current sheets might be detectable through their line emission.

  11. Computational Relativistic Astrophysics Using the Flow Field-Dependent Variation Theory

    NASA Technical Reports Server (NTRS)

    Richardson, G. A.; Chung, T. J.

    2002-01-01

    We present our method for solving general relativistic nonideal hydrodynamics. Relativistic effects become pronounced in such cases as jet formation from black hole magnetized accretion disks which may lead to the study of gamma-ray bursts. Nonideal flows are present where radiation, magnetic forces, viscosities, and turbulence play an important role. Our concern in this paper is to reexamine existing numerical simulation tools as to the accuracy and efficiency of computations and introduce a new approach known as the flow field-dependent variation (FDV) method. The main feature of the FDV method consists of accommodating discontinuities of shock waves and high gradients of flow variables such as occur in turbulence and unstable motions. In this paper, the physics involved in the solution of relativistic hydrodynamics and solution strategies of the FDV theory are elaborated. The general relativistic astrophysical flow and shock solver (GRAFSS) is introduced, and some simple example problems for computational relativistic astrophysics (CRA) are demonstrated.

  12. Radiation-Driven Warping. 2; Nonisothermal Disks

    NASA Technical Reports Server (NTRS)

    Maloney, Philip R.; Begelman, Mitchell C.; Nowak, Michael A.

    1998-01-01

    Recent work by Pringle and by Maloney, Begelman, & Pringle has shown that geometrically thin, optically thick, accretion disks are unstable to warping driven by radiation torque from the central source. This work was confined to isothermal (i.e., surface density Sigma varies as R(sup -3/2) disks. In this paper we generalize the study of radiation-driven warping to include general power-law surface density distributions, Sigma varies as R(sup -delta).We consider the range from Delta = 3/2 (the isothermal case) to Delta = -3/2, which corresponds to a radiation-pressure-supported disk; this spans the range of surface density distributions likely to be found in real astrophysical disks. In all cases there are an infinite number of zero-crossing solutions (i.e., solutions that cross the equator), which are the physically relevant modes if the outer boundary of the disk is required to lie in a specified plane. However, unlike the isothermal disk, which is the degenerate case, the frequency eigenvalues for Delta does not equal 3/2 are all distinct. In all cases the location of the zero moves outward from the steady state (pure precession) value with increasing growth rate; thus, there is a critical minimum size for unstable disks. Modes with zeros at smaller radii are damped. The critical radius and the steady state precession rate depend only weakly on Delta. An additional analytic solution has been found for Delta = 1. The case Delta = 1 divides the solutions into two qualitatively different regimes. For Delta greater than or equal to 1, the fastest growing modes have maximum warp amplitude, close to the disk outer edge, and the ratio of Beta(sub max) to the warp amplitude at the disk inner edge, Beta(sub o), is much greater than 1. For Delta less than 1, Beta(sub max/Beta(sub o) approximately equals 1, and the warp maximum steadily approaches the origin as Delta decreases. This implies that nonlinear effects must be important if the warp extends to the disk inner edge

  13. PARTICLE ACCELERATION DURING MAGNETOROTATIONAL INSTABILITY IN A COLLISIONLESS ACCRETION DISK

    SciTech Connect

    Hoshino, Masahiro

    2013-08-20

    Particle acceleration during the magnetorotational instability (MRI) in a collisionless accretion disk was investigated by using a particle-in-cell simulation. We discuss the important role that magnetic reconnection plays not only on the saturation of MRI but also on the relativistic particle generation. The plasma pressure anisotropy of p > p{sub ||} induced by the action of MRI dynamo leads to rapid growth in magnetic reconnection, resulting in the fast generation of nonthermal particles with a hard power-law spectrum. This efficient particle acceleration mechanism involved in a collisionless accretion disk may be a possible model to explain the origin of high-energy particles observed around massive black holes.

  14. SAMPEX Relativistic Microbursts Observation

    NASA Astrophysics Data System (ADS)

    Liang, X.; Comess, M.; Smith, D. M.; Selesnick, R. S.; Sample, J. G.; Millan, R. M.

    2012-12-01

    Relativistic (>1 MeV) electron microburst precipitation is thought to account for significant relativistic electron loss. We present the statistical and spectral analysis of relativistic microbursts observed by the Proton/Electron Telescope (PET) on board the Solar Anomalous Magnetospheric Particle Explorer(SAMPEX) satellite from 1992 to 2004. Spectrally we find that microbursts are well fit by an exponential energy distribution in the 0.5-4 MeV range with a spectral e-folding energy of E0 < 375 keV. We also discuss the comparison of morning microbursts with events at midnight, which were first identified as microbursts by O'Brien et al. (2004). Finally, we compare the loss-rates due to microbursts and non-microburst precipitation during storm times and averaged over all times.

  15. Relativistic Weierstrass random walks.

    PubMed

    Saa, Alberto; Venegeroles, Roberto

    2010-08-01

    The Weierstrass random walk is a paradigmatic Markov chain giving rise to a Lévy-type superdiffusive behavior. It is well known that special relativity prevents the arbitrarily high velocities necessary to establish a superdiffusive behavior in any process occurring in Minkowski spacetime, implying, in particular, that any relativistic Markov chain describing spacetime phenomena must be essentially Gaussian. Here, we introduce a simple relativistic extension of the Weierstrass random walk and show that there must exist a transition time t{c} delimiting two qualitative distinct dynamical regimes: the (nonrelativistic) superdiffusive Lévy flights, for trelativistic) Gaussian diffusion, for t>t{c} . Implications of this crossover between different diffusion regimes are discussed for some explicit examples. The study of such an explicit and simple Markov chain can shed some light on several results obtained in much more involved contexts. PMID:20866862

  16. Relativistic Bursian diode equilibria

    SciTech Connect

    Ender, A. Y.; Kuznetsov, V. I.; Schamel, H.

    2011-03-15

    A comprehensive study of steady-states of a planar vacuum diode driven by a cold relativistic electron beam is presented. The emitter electric field as a characteristic function for their existence is evaluated in dependence of the diode length, the applied potential V, and the relativistic beam factor at injection {gamma}{sub 0}. It is used to classify the different branches of possible solutions, which encompass electron flows that are (i) transmitted through the diode completely, (ii) partially reflected from a virtual cathode (VC) either within the diode region or at the collector side, and (iii) reflected totally. As a byproduct, the V and {gamma}{sub 0} dependences of both bifurcation points of the minimum potential and of the transmitted current are obtained and the ultrarelativistic limit, {gamma}{sub 0}>>1, is performed. In this highly relativistic regime, the density of electrons appears to be constant across the diode region except for a small area around the VC.

  17. Relativistic Weierstrass random walks.

    PubMed

    Saa, Alberto; Venegeroles, Roberto

    2010-08-01

    The Weierstrass random walk is a paradigmatic Markov chain giving rise to a Lévy-type superdiffusive behavior. It is well known that special relativity prevents the arbitrarily high velocities necessary to establish a superdiffusive behavior in any process occurring in Minkowski spacetime, implying, in particular, that any relativistic Markov chain describing spacetime phenomena must be essentially Gaussian. Here, we introduce a simple relativistic extension of the Weierstrass random walk and show that there must exist a transition time t{c} delimiting two qualitative distinct dynamical regimes: the (nonrelativistic) superdiffusive Lévy flights, for trelativistic) Gaussian diffusion, for t>t{c} . Implications of this crossover between different diffusion regimes are discussed for some explicit examples. The study of such an explicit and simple Markov chain can shed some light on several results obtained in much more involved contexts.

  18. ON THE ROLE OF THE ACCRETION DISK IN BLACK HOLE DISK-JET CONNECTIONS

    SciTech Connect

    Miller, J. M.; Reis, R. C.; Pooley, G. G.; Fabian, A. C.; Cackett, E. M.; Nowak, M. A.; Pottschmidt, K.; Wilms, J.

    2012-09-20

    Models of jet production in black hole systems suggest that the properties of the accretion disk-such as its mass accretion rate, inner radius, and emergent magnetic field-should drive and modulate the production of relativistic jets. Stellar-mass black holes in the 'low/hard' state are an excellent laboratory in which to study disk-jet connections, but few coordinated observations are made using spectrometers that can incisively probe the inner disk. We report on a series of 20 Suzaku observations of Cygnus X-1 made in the jet-producing low/hard state. Contemporaneous radio monitoring was done using the Arcminute MicroKelvin Array radio telescope. Two important and simple results are obtained: (1) the jet (as traced by radio flux) does not appear to be modulated by changes in the inner radius of the accretion disk and (2) the jet is sensitive to disk properties, including its flux, temperature, and ionization. Some more complex results may reveal aspects of a coupled disk-corona-jet system. A positive correlation between the reflected X-ray flux and radio flux may represent specific support for a plasma ejection model of the corona, wherein the base of a jet produces hard X-ray emission. Within the framework of the plasma ejection model, the spectra suggest a jet base with v/c {approx_equal} 0.3 or the escape velocity for a vertical height of z {approx_equal} 20 GM/c {sup 2} above the black hole. The detailed results of X-ray disk continuum and reflection modeling also suggest a height of z {approx_equal} 20 GM/c {sup 2} for hard X-ray production above a black hole, with a spin in the range 0.6 {<=} a {<=} 0.99. This height agrees with X-ray time lags recently found in Cygnus X-1. The overall picture that emerges from this study is broadly consistent with some jet-focused models for black hole spectral energy distributions in which a relativistic plasma is accelerated at z = 10-100 GM/c {sup 2}. We discuss these results in the context of disk-jet connections

  19. BE STAR DISK MODELS IN CONSISTENT VERTICAL HYDROSTATIC EQUILIBRIUM

    SciTech Connect

    Sigut, T. A. A.; McGill, M. A.; Jones, C. E. E-mail: mmcgill@astro.uwo.ca

    2009-07-10

    A popular model for the circumstellar disks of Be stars is that of a geometrically thin disk with a density in the equatorial plane that drops as a power law of distance from the star. It is usually assumed that the vertical structure of such a disk (in the direction parallel to the stellar rotation axis) is governed by the hydrostatic equilibrium set by the vertical component of the star's gravitational acceleration. Previous radiative equilibrium models for such disks have usually been computed assuming a fixed density structure. This introduces an inconsistency as the gas density is not allowed to respond to temperature changes and the resultant disk model is not in vertical, hydrostatic equilibrium. In this work, we modify the BEDISK code of Sigut and Jones so that it enforces a hydrostatic equilibrium consistent with the temperature solution. We compare the disk densities, temperatures, H{alpha} line profiles, and near-IR excesses predicted by such models with those computed from models with a fixed density structure. We find that the fixed models can differ substantially from the consistent hydrostatic models when the disk density is high enough that the circumstellar disk develops a cool (T {approx}< 10, 000 K) equatorial region close to the parent star. Based on these new hydrostatic disks, we also predict an approximate relation between the (global) density-averaged disk temperature and the T{sub eff} of the central star, covering the full range of central Be star spectral types.

  20. THERMAL EQUILIBRIA OF MAGNETICALLY SUPPORTED BLACK HOLE ACCRETION DISKS

    SciTech Connect

    Oda, H.; Machida, M.; Nakamura, K. E.; Matsumoto, R.

    2009-05-20

    We present new thermal equilibrium solutions for optically thin and optically thick disks incorporating magnetic fields. The purpose of this paper is to explain the bright hard state and the bright/slow transition observed in the rising phases of outbursts in black hole candidates. On the basis of the results of three-dimensional magnetohydrodynamic simulations, we assume that magnetic fields inside the disk are turbulent and dominated by the azimuthal component and that the azimuthally averaged Maxwell stress is proportional to the total (gas, radiation, and magnetic) pressure. We prescribe the magnetic flux advection rate to determine the azimuthal magnetic flux at a given radius. Local thermal equilibrium solutions are obtained by equating the heating, radiative cooling, and heat advection terms. We find magnetically supported ({beta} = (p {sub gas} + p {sub rad})/p {sub mag} < 1), thermally stable solutions for both optically thin disks and optically thick disks, in which the heating enhanced by the strong magnetic field balances the radiative cooling. The temperature in a low-{beta} disk (T {approx} 10{sup 7}-10{sup 11}K) is lower than that in an advection-dominated accretion flow (or radiatively inefficient accretion flow) but higher than that in a standard disk. We also study the radial dependence of the thermal equilibrium solutions. The optically thin, low-{beta} branch extends to M-dot{approx}>0.1 M-dot{sub Edd}, where M-dot is the mass accretion rate and M-dot{sub Edd} is the Eddington mass accretion rate, in which the temperature anticorrelates with the mass accretion rate. Thus, optically thin low-{beta} disks can explain the bright hard state. Optically thick, low-{beta} disks have the radial dependence of the effective temperature T {sub eff} {proportional_to} piv{sup -3/4}. Such disks will be observed as staying in a high/soft state. Furthermore, limit cycle oscillations between an optically thick low-{beta} disk and a slim disk will occur because

  1. Perspective: relativistic effects.

    PubMed

    Autschbach, Jochen

    2012-04-21

    This perspective article discusses some broadly-known and some less broadly-known consequences of Einstein's special relativity in quantum chemistry, and provides a brief outline of the theoretical methods currently in use, along with a discussion of recent developments and selected applications. The treatment of the electron correlation problem in relativistic quantum chemistry methods, and expanding the reach of the available relativistic methods to calculate all kinds of energy derivative properties, in particular spectroscopic and magnetic properties, requires on-going efforts. PMID:22519307

  2. Relativistic nuclear dynamics

    SciTech Connect

    Coester, F.

    1985-01-01

    A review is presented of three distinct approaches to the construction of relativistic dynamical models: (1) Relativistic canonical quantum mechanics. (The Hilbert space of states is independent of the interactions, which are introduced by modifying the energy operator.) (2) Hilbert spaces of manifestly covariant wave functions. (The interactions modify the metric of the Hilbert space.) (3) Covariant Green functions. In each of the three approaches the focus is on the formulation of the two-body dynamics, and problems in the construction of the corresponding many-body dynamics are discussed briefly. 21 refs.

  3. Perspective: relativistic effects.

    PubMed

    Autschbach, Jochen

    2012-04-21

    This perspective article discusses some broadly-known and some less broadly-known consequences of Einstein's special relativity in quantum chemistry, and provides a brief outline of the theoretical methods currently in use, along with a discussion of recent developments and selected applications. The treatment of the electron correlation problem in relativistic quantum chemistry methods, and expanding the reach of the available relativistic methods to calculate all kinds of energy derivative properties, in particular spectroscopic and magnetic properties, requires on-going efforts.

  4. Tilted Thick-Disk Accretion onto a Kerr Black Hole

    SciTech Connect

    Fragile, P C; Anninos, P

    2003-12-12

    We present the first results from fully general relativistic numerical studies of thick-disk accretion onto a rapidly-rotating (Kerr) black hole with a spin axis that is tilted (not aligned) with the angular momentum vector of the disk. We initialize the problem with the solution for an aligned, constant angular momentum, accreting thick disk around a black hole with spin a/M = J/M{sup 2} = +0.9 (prograde disk). The black hole is then instantaneously tilted, through a change in the metric, by an angle {beta}{sub 0}. In this Letter we report results with {beta}{sub 0} = 0, 15, and 30{sup o}. The disk is allowed to respond to the Lense-Thirring precession of the tilted black hole. We find that the disk settles into a quasi-static, twisted, warped configuration with Lense-Thirring precession dominating out to a radius analogous to the Bardeen-Petterson transition in tilted Keplerian disks.

  5. The Nature of Transition Disks in Nearby Star-forming Regions

    NASA Astrophysics Data System (ADS)

    Cieza, Lucas A.; Schreiber, M. R.; Romero, G. A.; Orellana, M.; Williams, J. P.; Merin, B.

    2011-01-01

    We present an update on our ongoing project to characterize a large sample of Spitzer selected transition disks located in several star-forming regions. Transition objects are pre-main-sequence stars with optically thin inner disks and optically thick outer disks. Different mechanisms have been proposed to explain their inner opacity holes: planet formation, grain growth, photoevaporation, and tidal truncation in tight binaries. These mechanisms, all relevant to disk evolution in general, can be distinguished when disk masses, accretion rates, and multiplicity information are available. We have already completed our study of Ophiuchus objects, presenting the results from Adaptive Optics (AO) imaging, submillimeter photometry, and echelle spectroscopy observations. We are currently working on several other regions, including Taurus-Auriga, Perseus, Serpens, and Lupus. Our results show that transition disks are a very heterogeneous group of objects with a wide range of SED morphologies, disk masses ( < 0.5 to 40 Mjup), and accretion rates (<10E-11 to 10E-7 Msolar/yr). Since the properties of our transition disks point toward distinct processes driving the evolution of each disk, we have been able to identify very strong candidates for the following disk categories: circumbinary disks, grain-growth dominated disks, photoevaporating disks, debris disks, and (giant) planet-forming disks.

  6. Astounding Jumping Disk.

    ERIC Educational Resources Information Center

    Guzdziol, Edward S.

    1991-01-01

    Activities involving concave rubber disks are utilized to illustrate the scientific principles of kinetic and potential energy. Provides teacher instructions and questions related to the activity. (MDH)

  7. Glass rupture disk

    DOEpatents

    Glass, S. Jill; Nicolaysen, Scott D.; Beauchamp, Edwin K.

    2002-01-01

    A frangible rupture disk and mounting apparatus for use in blocking fluid flow, generally in a fluid conducting conduit such as a well casing, a well tubing string or other conduits within subterranean boreholes. The disk can also be utilized in above-surface pipes or tanks where temporary and controllable fluid blockage is required. The frangible rupture disk is made from a pre-stressed glass with controllable rupture properties wherein the strength distribution has a standard deviation less than approximately 5% from the mean strength. The frangible rupture disk has controllable operating pressures and rupture pressures.

  8. Near-infrared structure of fast and slow-rotating disk galaxies

    SciTech Connect

    Schechtman-Rook, Andrew; Bershady, Matthew A.

    2014-11-10

    We investigate the stellar disk structure of six nearby edge-on spiral galaxies using high-resolution JHK {sub s}-band images and three-dimensional radiative transfer models. To explore how mass and environment shape spiral disks, we selected galaxies with rotational velocities between 69 km s{sup –1} disk structure. Of the fast-rotating (V {sub rot} > 150 km s{sup –1}) galaxies, only NGC 4013 has the super-thin+thin+thick nested disk structure seen in NGC 891 and the Milky Way, albeit with decreased oblateness, while NGC 1055, a disturbed massive spiral galaxy, contains disks with h{sub z} ≲ 200 pc. NGC 4565, another fast-rotator, contains a prominent ring at a radius ∼5 kpc but no super-thin disk. Despite these differences, all fast-rotating galaxies in our sample have inner truncations in at least one of their disks. These truncations lead to Freeman Type II profiles when projected face-on. Slow-rotating galaxies are less complex, lacking inner disk truncations and requiring fewer disk components to reproduce their light distributions. Super-thin disk components in undisturbed disks contribute ∼25% of the total K {sub s}-band light, up to that of the thin-disk contribution. The presence of super-thin disks correlates with infrared flux ratios; galaxies with super-thin disks have f{sub K{sub s}}/f{sub 60} {sub μm}≤0.12 for integrated light, consistent with super-thin disks being regions of ongoing star-formation. Attenuation-corrected vertical color gradients in (J – K {sub s}) correlate with the observed disk structure and are consistent with population gradients with young-to-intermediate ages closer to the mid-plane, indicating that disk heating—or cooling—is a ubiquitous phenomenon.

  9. Relativistic impulse dynamics.

    PubMed

    Swanson, Stanley M

    2011-08-01

    Classical electrodynamics has some annoying rough edges. The self-energy of charges is infinite without a cutoff. The calculation of relativistic trajectories is difficult because of retardation and an average radiation reaction term. By reconceptuallizing electrodynamics in terms of exchanges of impulses rather than describing it by forces and potentials, we eliminate these problems. A fully relativistic theory using photonlike null impulses is developed. Numerical calculations for a two-body, one-impulse-in-transit model are discussed. A simple relationship between center-of-mass scattering angle and angular momentum was found. It reproduces the Rutherford cross section at low velocities and agrees with the leading term of relativistic distinguishable-particle quantum cross sections (Møller, Mott) when the distance of closest approach is larger than the Compton wavelength of the particle. Magnetism emerges as a consequence of viewing retarded and advanced interactions from the vantage point of an instantaneous radius vector. Radiation reaction becomes the local conservation of energy-momentum between the radiating particle and the emitted impulse. A net action is defined that could be used in developing quantum dynamics without potentials. A reinterpretation of Newton's laws extends them to relativistic motion.

  10. The Relativistic Rocket

    ERIC Educational Resources Information Center

    Antippa, Adel F.

    2009-01-01

    We solve the problem of the relativistic rocket by making use of the relation between Lorentzian and Galilean velocities, as well as the laws of superposition of successive collinear Lorentz boosts in the limit of infinitesimal boosts. The solution is conceptually simple, and technically straightforward, and provides an example of a powerful…

  11. Radiation from Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Mizuno, Y.; Hardee, P.; Sol, H.; Medvedev, M.; Zhang, B.; Nordlund, A.; Frederiksen, J. T.; Fishman, G. J.; Preece, R.

    2008-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., gamma-ray bursts (GRBs), active galactic nuclei (AGNs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations of relativistic electron-ion (electron-positron) jets injected into a stationary medium show that particle acceleration occurs within the downstream jet. In the presence of relativistic jets, instabilities such as the Buneman instability, other two-streaming instability, and the Weibel (filamentation) instability create collisionless shocks, which are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The 'jitter' radiation from deflected electrons in small-scale magnetic fields has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation, a case of diffusive synchrotron radiation, may be important to understand the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  12. Multifrequency emission from hot ion disks

    NASA Technical Reports Server (NTRS)

    Maisack, Michael; Becker, Peter A.; Kafatos, Menas

    1994-01-01

    The discovery of a large number of gamma-emitting active galactic nuclei (AGNs) by the EGRET instrument on the Compton Gamma Ray Observatory (CGRO) has spawned a lot of theoretical interest in the high-energy and multifrequency emission from these objects. Since most of them show evidence for relativistic outflow, jet models have received most of the attention so far. However, the presence of soft photons at the center of the active nucleus and the resulting Compton drag make it difficult to produce the observed amount of MeV/GeV emission. We explore hot, two-temperature accretion disks around Kerr black holes as an alternative to relativistic beam models for the production of the high-enerty emission. The decay of neutral pions created in the hot region produces photons with energies up to several hundred MeV. Relativistic pairs created as a result of charged pion decays produce additional inverse-Compton radiation in the range of approx. 1 keV-4 MeV if the pairs are exposed to UV radiation, or in the range of approx. 40 keV-150 MeV if the pairs are exposed to soft X-rays. This suggests that high-energy flares in AGNs may be triggered by changes in the disk structure (such as phase transitions or the development of electron scattering coronae) that temporarily shield the hot inner region from UV photons emitted at larger radii, thereby reducing the optical depth for MeV/GeV gamma-rays. Stochastic processes may also play a role in accelerating the utrarelativistic electrons responsible for producing the highest energy (GeV) emission.

  13. Evolutionary time scales for circumstellar disks associated with intermediate- and solar-type stars

    NASA Technical Reports Server (NTRS)

    Strom, Stephen E.; Edwards, Suzan; Skrutskie, Michael F.

    1993-01-01

    The frequency with which massive, optically thick disks form around solar-type and intermediate mass stars is determined. Criteria are developed for diagnosing massive, optically thick disks, and the fraction of young, optically visible stars surrounded by such disks is determined. The range of survival times for massive, optically thick disks is determined by determining the fraction of stars surrounded by such disks as a function of stellar age. The existence of the probable descendents of massive, optically thick disks - optically thin dust disks, perhaps analogous to the structures surrounding Vega and Beta Pictoris - is established. The existence of structures in transition between those which are optically thick from the stellar surface outward, and those which are optically thin throughout is established.

  14. Reprocessing in Luminous Disks

    NASA Astrophysics Data System (ADS)

    Bell, K. R.

    1999-11-01

    We develop and investigate a procedure that accounts for disk reprocessing of photons that originate in the disk itself. Surface temperatures and simple, blackbody spectral energy distributions (SEDs) of protostellar disks are calculated. In disks that flare with radius, reprocessing of stellar photons results in temperature profiles that are not power-law at all radii but are consistently shallower than r-3/4. Including the disk as a radiation source (as in the case of active accretion) along with the stellar source further flattens the temperature profile. Disks that flare strongly near the star and then smoothly curve over and become shadowed at some distance (``decreasing curvature'' disks) exhibit nearly power-law temperature profiles that result in power-law infrared SEDs with slopes in agreement with typical observations of young stellar objects. Disk models in which the photospheric thickness is controlled by the local opacity and in which the temperature decreases with radius naturally have this shape. Uniformly flaring models do not match observations as well; progressively stronger reprocessing at larger radii leads to SEDs that flatten toward the infrared or even have a second peak at the wavelength corresponding (through the Wien law) to the temperature of the outer edge of the disk. In FU Orionis outbursting systems, the dominant source of energy is the inner disk. Reprocessing throughout the disk depends sensitively on the inner disk shape and emitted temperature profile. We show that the thermal instability outburst models of Bell & Lin reproduce trends in the observed SEDs of FU Ori systems with T~r-3/4 in the inner disk (r<~0.25 AU corresponding to λ<~10 μm) and T~r-1/2 in the outer disk. Surface irradiation during outburst and quiescence is compared in the region of planet formation (1-10 AU). The contrast between the two phases is diminished by the importance of the reprocessing of photons from the relatively high mass flux, outer disk (Ṁ=10

  15. Relativistic effects on plasma expansion

    SciTech Connect

    Benkhelifa, El-Amine; Djebli, Mourad

    2014-07-15

    The expansion of electron-ion plasma is studied through a fully relativistic multi-fluids plasma model which includes thermal pressure, ambipolar electrostatic potential, and internal energy conversion. Numerical investigation, based on quasi-neutral assumption, is performed for three different regimes: nonrelativistic, weakly relativistic, and relativistic. Ions' front in weakly relativistic regime exhibits spiky structure associated with a break-down of quasi-neutrality at the expanding front. In the relativistic regime, ion velocity is found to reach a saturation limit which occurs at earlier stages of the expansion. This limit is enhanced by higher electron velocity.

  16. Chemistry in disks. X. The molecular content of protoplanetary disks in Taurus

    NASA Astrophysics Data System (ADS)

    Guilloteau, S.; Reboussin, L.; Dutrey, A.; Chapillon, E.; Wakelam, V.; Piétu, V.; Di Folco, E.; Semenov, D.; Henning, Th.

    2016-08-01

    Aims: We attempt to determine the molecular composition of disks around young low-mass stars. Methods: We used the IRAM 30 m radio telescope to perform a sensitive wideband survey of 30 stars in the Taurus Auriga region known to be surrounded by gaseous circumstellar disks. We simultaneously observed HCO+(3-2), HCN(3-2), C2H(3-2), CS(5-4), and two transitions of SO. We combined the results with a previous survey that observed 13CO (2-1), CN(2-1), two o-H2CO lines, and another transition of SO. We used available interferometric data to derive excitation temperatures of CN and C2H in several sources. We determined characteristic sizes of the gas disks and column densities of all molecules using a parametric power-law disk model. Our study is mostly sensitive to molecules at 200-400 au from the stars. We compared the derived column densities to the predictions of an extensive gas-grain chemical disk model under conditions representative of T Tauri disks. Results: This survey provides 20 new detections of HCO+ in disks, 18 in HCN, 11 in C2H, 8 in CS, and 4 in SO. HCO+ is detected in almost all sources and its J = 3-2 line is essentially optically thick, providing good estimates of the disk radii. The other transitions are (at least partially) optically thin. Large variations of the column density ratios are observed, but do not correlate with any specific property of the star or disk. Disks around Herbig Ae stars appear less rich in molecules than those around T Tauri stars, although the sample remains small. SO is only found in the (presumably younger) embedded objects, perhaps reflecting an evolution of the S chemistry due to increasing depletion with time. Overall, the molecular column densities, and in particular the CN/HCN and CN/C2H ratios, are well reproduced by gas-grain chemistry in cold disks. Conclusions: This study provides a comprehensive census of simple molecules in disks of radii >200-300 au. Extending that to smaller disks, or searching for less

  17. Mind the Gap: Timing Planet Formation by Looking in the Holes and Gaps of Dusty Disks

    NASA Astrophysics Data System (ADS)

    Calvet, Nuria; Espaillat, Catherine; Furlan, Elise; Hartmann, Lee; Muzerolle, James; Watson, Dan

    2008-03-01

    Uncovering the details of disk dissipation is critical to understanding the formation of planetary systems. In the past few years Spitzer has greatly aided in this task by giving us an unprecedented view of dust clearing in the inner regions of protoplanetary disks, most notably through observations of stars with inner disks that are mostly devoid of small dust i.e. the 'transitional disks.' Recently, Spitzer has identified a new class of 'pre-transitional disks' with significant near-infrared excesses which indicate the presence of an optically thick inner disk separated from an optically thick outer disk, suggesting the incipient development of disk gaps as opposed to the inner holes seen in transitional disks. Here we propose for five hours of IRS time to study variability in 18 transitional and pre-transitional disks in Taurus and Chamaeleon in order to refine planet formation theories. The prospect of detecting variability in these objects is favorable based on IRS data taken in the past few weeks showing that transitional disks exhibit extreme variability due to the behavior of optically thin dust within the inner disk hole. Variability in transitional and pre-transitional disks can be linked with planets interacting with dust in the holes and gaps of these disks and therefore this study will help provide estimates of spatial inhomogeneities and characteristic timescales of changes for planet formation models.

  18. A SEMI-ANALYTICAL DESCRIPTION FOR THE FORMATION AND GRAVITATIONAL EVOLUTION OF PROTOPLANETARY DISKS

    SciTech Connect

    Takahashi, Sanemichi Z.; Inutsuka, Shu-ichiro; Machida, Masahiro N. E-mail: inutsuka@nagoya-u.jp E-mail: machida.masahiro.018@m.kyushu-u.ac.jp

    2013-06-10

    We investigate the formation process of self-gravitating protoplanetary disks in unmagnetized molecular clouds. The angular momentum is redistributed by the action of gravitational torques in the massive disk during its early formation. We develop a simplified one-dimensional accretion disk model that takes into account the infall of gas from the envelope onto the disk and the transfer of angular momentum in the disk with an effective viscosity. First we evaluate the gas accretion rate from the cloud core onto the disk by approximately estimating the effects of gas pressure and gravity acting on the cloud core. We formulate the effective viscosity as a function of the Toomre Q parameter that measures the local gravitational stability of the rotating thin disk. We use a function for viscosity that changes sensitively with Q when the disk is gravitationally unstable. We find a strong self-regulation mechanism in the disk evolution. During the formation stage of protoplanetary disks, the evolution of the surface density does not depend on the other details of the modeling of effective viscosity, such as the prefactor of the viscosity coefficient. Next, to verify our model, we compare the time evolution of the disk calculated with our formulation with that of three-dimensional hydrodynamical simulations. The structures of the resultant disks from the one-dimensional accretion disk model agree well with those of the three-dimensional simulations. Our model is a useful tool for the further modeling of chemistry, radiative transfer, and planet formation in protoplanetary disks.

  19. Nonlinear dynamics of accretion disks with stochastic viscosity

    SciTech Connect

    Cowperthwaite, Philip S.; Reynolds, Christopher S.

    2014-08-20

    We present a nonlinear numerical model for a geometrically thin accretion disk with the addition of stochastic nonlinear fluctuations in the viscous parameter. These numerical realizations attempt to study the stochastic effects on the disk angular momentum transport. We show that this simple model is capable of reproducing several observed phenomenologies of accretion-driven systems. The most notable of these is the observed linear rms-flux relationship in the disk luminosity. This feature is not formally captured by the linearized disk equations used in previous work. A Fourier analysis of the dissipation and mass accretion rates across disk radii show coherence for frequencies below the local viscous frequency. This is consistent with the coherence behavior observed in astrophysical sources such as Cygnus X-1.

  20. Structure and Spectroscopy of Black Hole Accretion Disks

    SciTech Connect

    Liedahl, D; Mauche, C

    2005-02-14

    The warped spacetime near black holes is one of the most exotic observable environments in the Universe. X-ray spectra from active galaxies obtained with the current generation of X-ray observatories reveal line emission that is modified by both special relativistic and general relativistic effects. The interpretation is that we are witnessing X-ray irradiated matter orbiting in an accretion disk around a supermassive black hole, as it prepares to cross the event horizon. This interpretation, however, is based upon highly schematized models of accretion disk structure. This report describes a project to design a detailed computer model of accretion disk atmospheres, with the goal of elucidating the high radiation density environments associated with mass flows in the curved spacetime near gravitationally collapsed objects. We have evolved the capability to generate realistic theoretical X-ray line spectra of accretion disks, thereby providing the means for a workable exploration of the behavior of matter in the strong-field limit of gravitation.

  1. TRANSITIONAL DISKS AS SIGNPOSTS OF YOUNG, MULTIPLANET SYSTEMS

    SciTech Connect

    Dodson-Robinson, Sarah E.; Salyk, Colette

    2011-09-10

    Although there has yet been no undisputed discovery of a still-forming planet embedded in a gaseous protoplanetary disk, the cleared inner holes of transitional disks may be signposts of young planets. Here, we show that the subset of accreting transitional disks with wide, optically thin inner holes of 15 AU or more can only be sculpted by multiple planets orbiting inside each hole. Multiplanet systems provide two key ingredients for explaining the origins of transitional disks. First, multiple planets can clear wide inner holes where single planets open only narrow gaps. Second, the confined, non-axisymmetric accretion flows produced by multiple planets provide a way for an arbitrary amount of mass transfer to occur through an apparently optically thin hole without overproducing infrared excess flux. Rather than assuming that the gas and dust in the hole are evenly and axisymmetrically distributed, one can construct an inner hole with apparently optically thin infrared fluxes by covering a macroscopic fraction of the hole's surface area with locally optically thick tidal tails. We also establish that other clearing mechanisms, such as photoevaporation, cannot explain our subset of accreting transitional disks with wide holes. Transitional disks are therefore high-value targets for observational searches for young planetary systems.

  2. COUNTER-ROTATION IN RELATIVISTIC MAGNETOHYDRODYNAMIC JETS

    SciTech Connect

    Cayatte, V.; Sauty, C.; Vlahakis, N.; Tsinganos, K.; Matsakos, T.; Lima, J. J. G.

    2014-06-10

    Young stellar object observations suggest that some jets rotate in the opposite direction with respect to their disk. In a recent study, Sauty et al. showed that this does not contradict the magnetocentrifugal mechanism that is believed to launch such outflows. Motion signatures that are transverse to the jet axis, in two opposite directions, have recently been measured in M87. One possible interpretation of this motion is that of counter-rotating knots. Here, we extend our previous analytical derivation of counter-rotation to relativistic jets, demonstrating that counter-rotation can indeed take place under rather general conditions. We show that both the magnetic field and a non-negligible enthalpy are necessary at the origin of counter-rotating outflows, and that the effect is associated with a transfer of energy flux from the matter to the electromagnetic field. This can be realized in three cases: if a decreasing enthalpy causes an increase of the Poynting flux, if the flow decelerates, or if strong gradients of the magnetic field are present. An illustration of the involved mechanism is given by an example of a relativistic magnetohydrodynamic jet simulation.

  3. Accreting planets as dust dams in 'transition' disks

    SciTech Connect

    Owen, James E.

    2014-07-01

    We investigate under what circumstances an embedded planet in a protoplanetary disk may sculpt the dust distribution such that it observationally presents as a 'transition' disk. We concern ourselves with 'transition' disks that have large holes (≳ 10 AU) and high accretion rates (∼10{sup –9}-10{sup –8} M {sub ☉} yr{sup –1}), particularly, those disks which photoevaporative models struggle to explain. Adopting the observed accretion rates in 'transition' disks, we find that the accretion luminosity from the forming planet is significant, and can dominate over the stellar luminosity at the gap edge. This planetary accretion luminosity can apply a significant radiation pressure to small (s ≲ 1 μm) dust particles provided they are suitably decoupled from the gas. Secular evolution calculations that account for the evolution of the gas and dust components in a disk with an embedded, accreting planet, show that only with the addition of the radiation pressure can we explain the full observed characteristics of a 'transition' disk (NIR dip in the spectral energy distribution (SED), millimeter cavity, and high accretion rate). At suitably high planet masses (≳ 3-4 M{sub J} ), radiation pressure from the accreting planet is able to hold back the small dust particles, producing a heavily dust-depleted inner disk that is optically thin to infrared radiation. The planet-disk system will present as a 'transition' disk with a dip in the SED only when the planet mass and planetary accretion rate are high enough. At other times, it will present as a disk with a primordial SED, but with a cavity in the millimeter, as observed in a handful of protoplanetary disks.

  4. THICK DISKS OF EDGE-ON GALAXIES SEEN THROUGH THE SPITZER SURVEY OF STELLAR STRUCTURE IN GALAXIES (S{sup 4}G): LAIR OF MISSING BARYONS?

    SciTech Connect

    Comeron, Sebastien; Elmegreen, Bruce G.; Knapen, Johan H.; Salo, Heikki; Laine, Jarkko; Laurikainen, Eija; Athanassoula, E.; Bosma, Albert; Hinz, Joannah L.; De Paz, Armando Gil; Menendez-Delmestre, KarIn; Seibert, Mark; Ho, Luis C.; Elmegreen, Debra M.; Gadotti, Dimitri A.

    2011-11-01

    Most, if not all, disk galaxies have a thin (classical) disk and a thick disk. In most models thick disks are thought to be a necessary consequence of the disk formation and/or evolution of the galaxy. We present the results of a study of the thick disk properties in a sample of carefully selected edge-on galaxies with types ranging from T = 3 to T = 8. We fitted one-dimensional luminosity profiles with physically motivated functions-the solutions of two stellar and one gaseous isothermal coupled disks in equilibrium-which are likely to yield more accurate results than other functions used in previous studies. The images used for the fits come from the Spitzer Survey of Stellar Structure in Galaxies (S{sup 4}G). We found that thick disks are on average more massive than previously reported, mostly due to the selected fitting function. Typically, the thin and thick disks have similar masses. We also found that thick disks do not flare significantly within the observed range in galactocentric radii and that the ratio of thick-to-thin disk scale heights is higher for galaxies of earlier types. Our results tend to favor an in situ origin for most of the stars in the thick disk. In addition, the thick disk may contain a significant amount of stars coming from satellites accreted after the initial buildup of the galaxy and an extra fraction of stars coming from the secular heating of the thin disk by its own overdensities. Assigning thick disk light to the thin disk component may lead to an underestimate of the overall stellar mass in galaxies because of different mass-to-light ratios in the two disk components. On the basis of our new results, we estimate that disk stellar masses are between 10% and 50% higher than previously thought and we suggest that thick disks are a reservoir of 'local missing baryons'.

  5. Relativistic Pseudospin Symmetry

    SciTech Connect

    Ginocchio, Joseph N.

    2011-05-06

    We show that the pseudospin symmetry that Akito Arima discovered many years ago (with collaborators) is a symmetry of the the Dirac Hamiltonian for which the sum of the scalar and vector potentials are a constant. In this paper we discuss some of the implications of this relativistic symmetry and the experimental data that support these predictions. In his original paper Akito also discussed pseudo-U(3) symmetry. We show that pseudo-U(3) symmetry is a symmetry of the Dirac Hamiltonian for which the sum of harmonic oscillator vector and scalar potentials are equal to a constant, and we give the generators of pseudo-U(3) symmetry. Going beyond the mean field we summarize new results on non relativistic shell model Hamiltonians that have pseudospin symmetry and pseudo-orbital angular momentum symmetry as a dynamical symmetries.

  6. Relativistic multiwave Cerenkov generators

    SciTech Connect

    Bugaev, S.P.; Cherepenin, V.A.; Kanavets, V.I.; Klimov, A.I.; Kopenkin, A.D.; Koshelev, V.I.; Popov, V.A.; Slepkov, A.I. )

    1990-06-01

    A review of research on relativistic multiwave Cherenkov generators (MWCG) is provided. Presented is the linear theory of these devices, allowing a detailed description of multiwave interaction of a relativistic electron beam with an electromagnetic field in an electro-dynamic superdimensional MWCG system. The results of theoretical research on the starting parameters of generation, power flows, and the structure of the radiated field in a MWCG of a 3-cm-wave band are reported. The experiments on obtaining and investigating high-power pulses of microwave radiation in a MWCG of 3-cm- and 8-mm-wavelength bands are described. In particular, the results of research on a MWCG with the power of 15 GW in a 3-cm-wavelength band and the power of 3 GW in a 8-mm-wavelength band are presented. The results of research of spatial and temporal coherence of such generator radiation are reported.

  7. Relativistic shell model calculations

    NASA Astrophysics Data System (ADS)

    Furnstahl, R. J.

    1986-06-01

    Shell model calculations are discussed in the context of a relativistic model of nuclear structure based on renormalizable quantum field theories of mesons and baryons (quantum hadrodynamics). The relativistic Hartree approximation to the full field theory, with parameters determined from bulk properties of nuclear matter, predicts a shell structure in finite nuclei. Particle-hole excitations in finite nuclei are described in an RPA calculation based on this QHD ground state. The particle-hole interaction is prescribed by the Hartree ground state, with no additional parameters. Meson retardation is neglected in deriving the RPA equations, but it is found to have negligible effects on low-lying states. The full Dirac matrix structure is maintained throughout the calculation; no nonrelativistic reductions are made. Despite sensitive cancellations in the ground state calculation, reasonable excitation spectra are obtained for light nuclei. The effects of including charged mesons, problems with heavy nuclei, and prospects for improved and extended calculations are discussed.

  8. Electrodynamics of disk-accreting magnetic neutron stars

    NASA Technical Reports Server (NTRS)

    Miller, M. Coleman; Lamb, Frederick K.; Hamilton, Russell J.

    1994-01-01

    We have investigated the electrodynamics of magnetic neutron stars accreting from Keplerian disks and the implications for particle acceleration and gamma-ray emission by such systems. We argue that the particle density in the magnetospheres of such stars is larger by orders of magnitude than the Goldreich-Julian density, so that the formation of vacuum gaps is unlikely. We show that even if the star rotates slowly, electromotive forces (EMFs) of order 10(exp 15) V are produced by the interaction of plasma in the accretion disk with the magnetic field of the neutron star. The resistance of the disk-magnetosphere-star circuit is small, and hence these EMFs drive very large conduction currents. Such large currents are likely to produce magnetospheric instabilities, such as relativistic double layers and reconnection events, that can accelerate electrons or ions to very high energies.

  9. Dielectric cavity relativistic magnetron

    NASA Astrophysics Data System (ADS)

    Hashemi, S. M. A.

    2010-02-01

    An alteration in the structure of the A6 relativistic magnetron is proposed, which introduces an extra degree of freedom to its design and enhances many of its quality factors. This modification involves the partial filling of the cavities of the device with a low-loss dielectric material. The operation of a dielectric-filled A6 is simulated; the results indicate single-mode operation at the desired π mode and a substantially cleaner rf spectrum.

  10. Childhood to adolescence: dust and gas clearing in protoplanetary disks

    NASA Astrophysics Data System (ADS)

    Brown, Joanna Margaret

    Disks are ubiquitous around young stars. Over time, disks dissipate, revealing planets that formed hidden by their natal dust. Since direct detection of young planets at small orbital radii is currently impossible, other tracers of planet formation must be found. One sign of disk evolution, potentially linked to planet formation, is the opening of a gap or inner hole in the disk. In this thesis, I have identified and characterized several cold disks with large inner gaps but retaining massive primordial outer disks. While cold disks are not common, with ~5% of disks showing signs of inner gaps, they provide proof that at least some disks evolve from the inside-out. These large gaps are equivalent to dust clearing from inside the Earth's orbit to Neptune's orbit or even the inner Kuiper belt. Unlike more evolved systems like our own, the central star is often still accreting and a large outer disk remains. I identified four cold disks in Spitzer 5-40 μm spectra and modeled these disks using a 2-D radiative transfer code to determine the gap properties. Outer gap radii of 20-45 AU were derived. However, spectrophotometric identification is indirect and model-dependent. To validate this interpretation, I observed three disks with a submillimeter interferometer and obtained the first direct images of the central holes. The images agree well with the gap sizes derived from the spectrophotometry. One system, LkH&alpha 330, has a very steep outer gap edge which seems more consistent with gravitational perturbation rather than gradual processes, such as grain growth and settling. Roughly 70% of cold disks show CO v=1&rarr 0 gas emission from the inner 1 AU and therefore are unlikely to have evolved due to photoevaporation. The derived rotation temperatures are significantly lower for the cold disks than disks without gaps. Unresolved (sub)millimeter photometry shows that cold disks have steeper colors, indicating that they are optically thin at these wavelengths, unlike

  11. Relativistic tidal disruption events

    NASA Astrophysics Data System (ADS)

    Levan, A.

    2012-12-01

    In March 2011 Swift detected an extremely luminous and long-lived outburst from the nucleus of an otherwise quiescent, low luminosity (LMC-like) galaxy. Named Swift J1644+57, its combination of high-energy luminosity (1048 ergs s-1 at peak), rapid X-ray variability (factors of >100 on timescales of 100 seconds) and luminous, rising radio emission suggested that we were witnessing the birth of a moderately relativistic jet (Γ ˜ 2 - 5), created when a star is tidally disrupted by the supermassive black hole in the centre of the galaxy. A second event, Swift J2058+0516, detected two months later, with broadly similar properties lends further weight to this interpretation. Taken together this suggests that a fraction of tidal disruption events do indeed create relativistic outflows, demonstrates their detectability, and also implies that low mass galaxies can host massive black holes. Here, I briefly outline the observational properties of these relativistic tidal flares observed last year, and their evolution over the first year since their discovery.

  12. Point form relativistic quantum mechanics and relativistic SU(6)

    NASA Technical Reports Server (NTRS)

    Klink, W. H.

    1993-01-01

    The point form is used as a framework for formulating a relativistic quantum mechanics, with the mass operator carrying the interactions of underlying constituents. A symplectic Lie algebra of mass operators is introduced from which a relativistic harmonic oscillator mass operator is formed. Mass splittings within the degenerate harmonic oscillator levels arise from relativistically invariant spin-spin, spin-orbit, and tensor mass operators. Internal flavor (and color) symmetries are introduced which make it possible to formulate a relativistic SU(6) model of baryons (and mesons). Careful attention is paid to the permutation symmetry properties of the hadronic wave functions, which are written as polynomials in Bargmann spaces.

  13. Duskside relativistic electron precipitation

    NASA Astrophysics Data System (ADS)

    Lorentzen, Kirsten Ruth

    1999-10-01

    On August 20, 1996, a balloon-borne X-ray pinhole camera and a high resolution germanium X-ray spectrometer observed an intense X-ray event near Kiruna, Sweden, at 1835 MLT, on an L-shell of 5.8. This X-ray event consisted of seven bursts spaced 100-200 seconds apart, with smaller 10-20 second variations observed within individual bursts. The energy spectra of these bursts show the presence of X-rays with energies greater than 1 MeV, which are best accounted for by atmospheric bremsstrahlung from mono-energetic 1.7 MeV precipitating electrons. The X-ray imager observed no significant motion or small-scale spatial structure in the event, implying that the bursts were temporal in nature. Ultra- violet images from the Polar satellite and energetic particle data from the Los Alamos geosynchronous satellites show a small magnetospheric substorm onset about 24 minutes before the start of the relativistic precipitation event. Since the balloon was south of the auroral oval and there was no associated increase in relativistic electron flux at geosynchronous altitude, the event must be the result of some mechanism selectively precipitating ambient relativistic electrons from the radiation belts. The balloon X-ray observations are analyzed in a magnetospheric context, in order to determine which of several mechanisms for selective precipitation of relativistic electrons can account for the event. Resonance with electromagnetic ion cyclotron mode waves on the equator is the most likely candidate. The drift of substorm-injected warm protons is calculated using input from the geosynchronous satellites. Wave growth in the model is driven by temperature anisotropies in the warm proton population. A numerical solution of the wave dispersion relation shows that electromagnetic ion cyclotron waves can be excited in high-density duskside regions such as the plasmasphere or detached plasma regions. These waves can selectively precipitate relativistic electrons of energy 1.7 MeV in

  14. Megaparsec relativistic jets launched from an accreting supermassive black hole in an extreme spiral galaxy

    SciTech Connect

    Bagchi, Joydeep; Vivek, M.; Srianand, Raghunathan; Gopal-Krishna; Vikram, Vinu; Hota, Ananda; Biju, K. G.; Sirothia, S. K.; Jacob, Joe

    2014-06-20

    The radio galaxy phenomenon is directly connected to mass-accreting, spinning supermassive black holes found in the active galactic nuclei. It is still unclear how the collimated jets of relativistic plasma on hundreds to thousands of kiloparsec scales form and why they are nearly always launched from the nuclei of bulge-dominated elliptical galaxies and not flat spirals. Here we present the discovery of the giant radio source J2345–0449 (z = 0.0755), a clear and extremely rare counterexample where relativistic jets are ejected from a luminous and massive spiral galaxy on a scale of ∼1.6 Mpc, the largest known so far. Extreme physical properties observed for this bulgeless spiral host, such as its high optical and infrared luminosity, large dynamical mass, rapid disk rotation, and episodic jet activity, are possibly the results of its unusual formation history, which has also assembled, via gas accretion from a disk, its central black hole of mass >2 × 10{sup 8} M {sub ☉}. The very high mid-IR luminosity of the galaxy suggests that it is actively forming stars and still building a massive disk. We argue that the launch of these powerful jets is facilitated by an advection-dominated, magnetized accretion flow at a low Eddington rate onto this unusually massive (for a bulgeless disk galaxy) and possibly fast spinning central black hole. Therefore, J2345–0449 is an extremely rare, unusual galactic system whose properties challenge the standard paradigms for black hole growth and the formation of relativistic jets in disk galaxies. Thus, it provides fundamental insight into accretion disk-relativistic jet coupling processes.

  15. Ripples in disk galaxies

    NASA Astrophysics Data System (ADS)

    Schweizer, Francois; Seitzer, Patrick

    1988-05-01

    The authors present evidence that ripples ("shells") occur not only in ellipticals, as hitherto believed, but also in disk galaxies of Hubble types S0, S0/Sa, and Sa, and probably even in the Sbc galaxy NGC 3310. This evidence includes the discovery of ripples in the northern disk galaxies NGC 3032, 3619, 4382, 5548 (a Seyfert), and 5739, and in the "diskless S0" NGC 7600. It is argued that these ripples cannot usually have resulted form transient spiral waves or other forced vibrations in the existing disks, but instead consist of extraneous sheet-like matter. The frequent presence of major disk-shaped companions suggests that ripple material may be acquired not only through wholesale mergers, but also through mass transfer from neighbor galaxies.

  16. Gas in Protoplanetary Disks

    NASA Technical Reports Server (NTRS)

    Roberge, Aki

    2008-01-01

    Gas makes up the bulk of the mass in a protoplanetary disk, but it is much more difficult to observe than the smaller dust component. The l ifetime of gas in a disk has far-reaching consequences. including lim iting the time available for giant planet formation and controlling t he migration of planetary bodies of all sizes, from Jupiters to meter-sized planetesimals. Here I will discuss what is known about the gas component of protoplanetary disks, highlighting recent results from i nfrared studies with the Spitzer Space Telescope. Exciting upcoming o pportunities for gas studies will also be discussed. In particular, the first large far-IR survey of gas tracers from young disks will be p erformed using the Herschel Space Observatory, as part of the "Gas in Protoplanetary Systems" (GASPS) Open Time Key Project.

  17. Gas in Protoplanetary Disks

    NASA Technical Reports Server (NTRS)

    Roberge, Aki

    2008-01-01

    Gas makes up the bulk of the mass in a protoplanetary disk, but it is much more difficult to observe than the smaller dust component. The lifetime of gas in a disk has far-reaching consequences, including limiting the time available for giant planet formation and controlling the migration of planetary bodies of all sizes, from Jupiters to meter-sized planetesimals. Here I will discuss what is known about the gas component of protoplanetary disks, highlighting recent results from infrared studies with the Spitzer Space Telescope. Exciting upcoming opportunities for gas studies will also be discussed. In particular, the first large far-IR survey of gas tracers from young disks will be performed using the Herschel Space Observatory, as part of the 'Gas in Protoplanetary Systems' (GASPS) Open Time Key Project.

  18. Organizing Your Hard Disk.

    ERIC Educational Resources Information Center

    Stocker, H. Robert; Hilton, Thomas S. E.

    1991-01-01

    Suggests strategies that make hard disk organization easy and efficient, such as making, changing, and removing directories; grouping files by subject; naming files effectively; backing up efficiently; and using PATH. (JOW)

  19. DIAGNOSING CIRCUMSTELLAR DEBRIS DISKS

    SciTech Connect

    Hahn, Joseph M.

    2010-08-20

    A numerical model of a circumstellar debris disk is developed and applied to observations of the circumstellar dust orbiting {beta} Pictoris. The model accounts for the rates at which dust is produced by collisions among unseen planetesimals, and the rate at which dust grains are destroyed due to collisions. The model also accounts for the effects of radiation pressure, which is the dominant perturbation on the disk's smaller but abundant dust grains. Solving the resulting system of rate equations then provides the dust abundances versus grain size and dust abundances over time. Those solutions also provide the dust grains' collisional lifetime versus grain size, and the debris disk's optical depth and surface brightness versus distance from the star. Comparison to observations then yields estimates of the unseen planetesimal disk's radius, and the rate at which the disk sheds mass due to planetesimal grinding. The model can also be used to measure or else constrain the dust grain's physical and optical properties, such as the dust grains' strength, their light-scattering asymmetry parameter, and the grains' efficiency of light scattering Q{sub s}. The model is then applied to optical observations of the edge-on dust disk orbiting {beta} Pictoris, and good agreement is achieved when the unseen planetesimal disk is broad, with 75 {approx}< r {approx}< 150 AU. If it is assumed that the dust grains are bright like Saturn's icy rings (Q{sub s} = 0.7), then the cross section of dust in the disk is A{sub d} {approx_equal} 2 x 10{sup 20} km{sup 2} and its mass is M{sub d} {approx_equal} 11 lunar masses. In this case, the planetesimal disk's dust-production rate is quite heavy, M-dot {sub d{approx}}9 M {sub +} Myr{sup -1}, implying that there is or was a substantial amount of planetesimal mass there, at least 110 Earth masses. If the dust grains are darker than assumed, then the planetesimal disk's mass-loss rate and its total mass are heavier. In fact, the apparent dearth

  20. Relativistic interactions and realistic applications

    SciTech Connect

    Hoch, T.; Madland, D.; Manakos, P.; Mannel, T.; Nikolaus, B.A.; Strottman, D. |

    1992-12-31

    A four-fermion-coupling Lagrangian (relativistic Skyrme-type) interaction has been proposed for relativistic nuclear structure calculations. This interaction, which has the merit of simplicity, is from the outset tailored as an effective interaction for relativistic Hartree-Fock calculations. Various extensions of such a model are discussed and compared with Walecka`s meson-nucleon mean field approach. We also present results of the calculation of nuclear ground state properties with an extended (density dependent) version of the four fermion interaction in a relativistic Hartree-Fock approximation.

  1. Protostars and Disks

    NASA Technical Reports Server (NTRS)

    Ho, Paul

    1997-01-01

    The research concentrated on high angular resolution (arc-second scale) studies of molecular cloud cores associated with very young star formation. New ways to study disks and protoplanetary systems were explored. Findings from the areas studied are briefly summarized: (1) molecular clouds; (2) gravitational contraction; (3) jets, winds, and outflows; (4) Circumstellar Disks (5) Extrasolar Planetary Systems. A bibliography of publications and submitted papers produced during the grant period is included.

  2. Planet Forming Protostellar Disks

    NASA Technical Reports Server (NTRS)

    Lubow, Stephen

    1998-01-01

    The project achieved many of its objectives. The main area of investigation was the interaction of young binary stars with surrounding protostellar disks. A secondary objective was the interaction of young planets with their central stars and surrounding disks. The grant funds were used to support visits by coinvestigators and visitors: Pawel Artymowicz, James Pringle, and Gordon Ogilvie. Funds were also used to support travel to meetings by Lubow and to provide partial salary support.

  3. PLANET SHADOWS IN PROTOPLANETARY DISKS. II. OBSERVABLE SIGNATURES

    SciTech Connect

    Jang-Condell, Hannah

    2009-07-20

    We calculate simulated images of disks perturbed by embedded small planets. These 10-50 M{sub +} bodies represent the growing cores of giant planets. We examine scattered light and thermal emission from these disks over a range of wavelengths, taking into account the wavelength-dependent opacity of dust in the disk. We also examine the effect of inclination on the observed perturbations. We find that the perturbations are best observed in the visible to mid-infrared (mid-IR). Scattered light images reflect shadows produced at the surface of perturbed disks, while the infrared images follow thermal emission from the surface of the disk, showing cooled/heated material in the shadowed/brightened regions. At still longer wavelengths in the submillimeter, the perturbation fades as the disk becomes optically thin and surface features become overwhelmed by emission closer toward the midplane of the disk. With the construction of telescopes such as TMT, GMT, and ALMA due in the next decade, there is a real possibility of observing planets forming in disks in the optical and submillimeter. However, having the angular resolution to observe the features in the mid-IR will remain a challenge.

  4. Equilibrium Initialization and Stability of Three-Dimensional Gas Disks

    SciTech Connect

    Wang, Hsiang-Hsu; Klessen, Ralf S.; Dullemond, Cornelis P.; Bosch, Frank C.van den; Fuchs, Burkhard; /KIPAC, Menlo Park

    2010-08-25

    We present a new systematic way of setting up galactic gas disks based on the assumption of detailed hydrodynamic equilibrium. To do this, we need to specify the density distribution and the velocity field which supports the disk. We first show that the required circular velocity has no dependence on the height above or below the midplane so long as the gas pressure is a function of density only. The assumption of disks being very thin enables us to decouple the vertical structure from the radial direction. Based on that, the equation of hydrostatic equilibrium together with the reduced Poisson equation leads to two sets of second-order non-linear differential equation, which are easily integrated to set-up a stable disk. We call one approach 'density method' and the other one 'potential method'. Gas disks in detailed balance are especially suitable for investigating the onset of the gravitational instability. We revisit the question of global, axisymmetric instability using fully three-dimensional disk simulations. The impact of disk thickness on the disk instability and the formation of spontaneously induced spirals is studied systematically with or without the presence of the stellar potential. In our models, the numerical results show that the threshold value for disk instability is shifted from unity to 0.69 for self-gravitating thick disks and to 0.75 for combined stellar and gas thick disks. The simulations also show that self-induced spirals occur in the correct regions and with the right numbers as predicted by the analytic theory.

  5. Relativistic Effects on the Observed AGN Luminosity Distribution

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Zhang, Shuang Nan; Zhang, Xiao Ling

    2007-02-01

    Recently, Zhang (2005 ApJ, 618, L79) has proposed a model to account for the well-established effect that the fraction of type-II AGNs is anti-correlated with the observed X-ray luminosity; the model consists of an X-ray emitting accretion disk coaligned to the dusty torus within the standard AGN unification model. In this paper the model is refined by including relativistic effects of the observed X-ray radiation from the vicinity of the supermassive black hole in an AGN. The relativistic corrections improve the combined fitting results of the observed luminosity distribution and the type-II AGN fraction, though the improvement is not significant. The type-II AGN fraction prefers non- or mildly spinning black hole cases, and rules out the extremely spinning case.

  6. Fast, Capacious Disk Memory Device

    NASA Technical Reports Server (NTRS)

    Muller, Ronald M.

    1990-01-01

    Device for recording digital data on, and playing back data from, memory disks has high recording or playback rate and utilizes available recording area more fully. Two disks, each with own reading/writing head, used to record data at same time. Head on disk A operates on one of tracks numbered from outside in; head on disk B operates on track of same number in sequence from inside out. Underlying concept of device applicable to magnetic or optical disks.

  7. The relativist stance.

    PubMed

    Rössler, O E; Matsuno, K

    1998-04-01

    The two mindsets of absolutism and relativism are juxtaposed, and the relational or relativist stance is vindicated. The only 'absolute' entity which undeniably exists, consciousness has the reality of a dream. The escape hatch from this prison is relational, as Descartes and Levinas found out: Unfalsified relational consistency implies exteriority. Exteriority implies infinite power which in turn makes compassion inevitable. Aside from ethics as a royal way to enlightenment, a new technology called 'deep technology' may be accessible. It changes the whole world in a demonstrable fashion by manipulation of the micro frame--that is, the observer-world interface.

  8. Relativistic quantum information

    NASA Astrophysics Data System (ADS)

    Mann, R. B.; Ralph, T. C.

    2012-11-01

    Over the past few years, a new field of high research intensity has emerged that blends together concepts from gravitational physics and quantum computing. Known as relativistic quantum information, or RQI, the field aims to understand the relationship between special and general relativity and quantum information. Since the original discoveries of Hawking radiation and the Unruh effect, it has been known that incorporating the concepts of quantum theory into relativistic settings can produce new and surprising effects. However it is only in recent years that it has become appreciated that the basic concepts involved in quantum information science undergo significant revision in relativistic settings, and that new phenomena arise when quantum entanglement is combined with relativity. A number of examples illustrate that point. Quantum teleportation fidelity is affected between observers in uniform relative acceleration. Entanglement is an observer-dependent property that is degraded from the perspective of accelerated observers moving in flat spacetime. Entanglement can also be extracted from the vacuum of relativistic quantum field theories, and used to distinguish peculiar motion from cosmological expansion. The new quantum information-theoretic framework of quantum channels in terms of completely positive maps and operator algebras now provides powerful tools for studying matters of causality and information flow in quantum field theory in curved spacetimes. This focus issue provides a sample of the state of the art in research in RQI. Some of the articles in this issue review the subject while others provide interesting new results that will stimulate further research. What makes the subject all the more exciting is that it is beginning to enter the stage at which actual experiments can be contemplated, and some of the articles appearing in this issue discuss some of these exciting new developments. The subject of RQI pulls together concepts and ideas from

  9. The relativist stance.

    PubMed

    Rössler, O E; Matsuno, K

    1998-04-01

    The two mindsets of absolutism and relativism are juxtaposed, and the relational or relativist stance is vindicated. The only 'absolute' entity which undeniably exists, consciousness has the reality of a dream. The escape hatch from this prison is relational, as Descartes and Levinas found out: Unfalsified relational consistency implies exteriority. Exteriority implies infinite power which in turn makes compassion inevitable. Aside from ethics as a royal way to enlightenment, a new technology called 'deep technology' may be accessible. It changes the whole world in a demonstrable fashion by manipulation of the micro frame--that is, the observer-world interface. PMID:9648695

  10. Modeling relativistic nuclear collisions.

    SciTech Connect

    Anderlik, C.; Magas, V.; Strottman, D.; Csernai, L. P.

    2001-01-01

    Modeling Ultra-Relativistic Heavy Ion Collisioiis at RHIC and LHC energies using a Multi Module Model is presented. The first Module is the Effective String Rope Model for the calculation of the initial stages of the reaction; the output of this module is used as the initial state for the subsequent one-fluid hydrodynainical calculation module. It is shown that such an initial state leads to the creation of the third flow component. The hydrodynamical evolution of the energy density distribution is presented for RHIC energies. The final module describing the Freeze Out; and Hadronization is also discussed.

  11. Ultrafast thin-disk multipass amplifier with 1.4 kW average power and 4.7 mJ pulse energy at 1030 nm converted to 820 W and 2.7 mJ at 515 nm

    NASA Astrophysics Data System (ADS)

    Negel, Jan-Philipp; Loescher, André; Voss, Andreas; Bauer, Dominik; Sutter, Dirk H.; Killi, Alexander; Abdou Ahmed, Marwan; Graf, Thomas

    2015-02-01

    In recent years, there has been a growing interest in increasing the output power of ultrafast lasers to the kW-range. This allows higher productivity for laser material processing, e.g. for cutting of carbon-fiber reinforced plastics (CFRP) or for micro-machining. We developed an Yb:YAG thin-disk multipass amplifier delivering sub-8 ps pulses with 1.4 kW average power which is - to the best of our knowledge - the highest output power reported for a sub-100 ps ultrafast laser system so far. The amplifier is seeded by a regenerative amplifier with 6.5 ps pulses and 115 W of average power at a repetition rate of 300 kHz. Taking this repetition rate into account, the energy of the amplified pulses is as high as 4.7 mJ. This was achieved using a scheme with 40 mirrors in an array to geometrically fold the seed beam 40 times over the thin-disk. The beam quality was measured to be better than M2=1.4. This system was used in first experiments to cut CFRP with very good quality and with unprecedented efficiency. Additionally, the output beam of the amplifier was frequency-doubled in an LBO crystal to 820 W (70 % conversion efficiency) output power at the second harmonic wavelength (515 nm) and 106 W (26.5 % conversion efficiency) at the third harmonic wavelength (343 nm). Both results are record output powers for ultrafast laser systems at the respective wavelengths. In the presentation, we will show concepts on further power scaling of the system.

  12. Relativistic Effects on Chemical Properties.

    ERIC Educational Resources Information Center

    McKelvey, Donald R.

    1983-01-01

    Discusses how anomalous chemical properties may be explained by considering relativistic effects. Traces development of the relativistic wave equation (Dirac equation) starting with the Borh treatment of the hydrogen atom and discusses major consequences of the Dirac equation. Suggests that these topics receive greater attention in the…

  13. A Simple Relativistic Bohr Atom

    ERIC Educational Resources Information Center

    Terzis, Andreas F.

    2008-01-01

    A simple concise relativistic modification of the standard Bohr model for hydrogen-like atoms with circular orbits is presented. As the derivation requires basic knowledge of classical and relativistic mechanics, it can be taught in standard courses in modern physics and introductory quantum mechanics. In addition, it can be shown in a class that…

  14. relline: Relativistic line profiles calculation

    NASA Astrophysics Data System (ADS)

    Dauser, Thomas

    2015-05-01

    relline calculates relativistic line profiles; it is compatible with the common X-ray data analysis software XSPEC (ascl:9910.005) and ISIS (ascl:1302.002). The two basic forms are an additive line model (RELLINE) and a convolution model to calculate relativistic smearing (RELCONV).

  15. Relativistic and nonrelativistic quarkonium models

    SciTech Connect

    Ono, S.

    1982-11-01

    We propose a quarkonium potential for the Klein-Gordon equation. The relativistic effects are small even for uu-bar and dd-bar systems because the introduction of a scalar constant potential in a Klein-Gordon equation allows a minimization of relativistic effects via cancellations in our model.

  16. Modeling transiting circumstellar disks: characterizing the newly discovered eclipsing disk system OGLE LMC-ECL-11893

    SciTech Connect

    Scott, Erin L.; Mamajek, Eric E.; Pecaut, Mark J.; Quillen, Alice C.; Moolekamp, Fred; Bell, Cameron P. M.

    2014-12-10

    We investigate the nature of the unusual eclipsing star OGLE LMC-ECL-11893 (OGLE J05172127-6900558) in the Large Magellanic Cloud recently reported by Dong et al. The eclipse period for this star is 468 days, and the eclipses exhibit a minimum of ∼1.4 mag, preceded by a plateau of ∼0.8 mag. Spectra and optical/IR photometry are consistent with the eclipsed star being a lightly reddened B9III star of inferred age ∼150 Myr and mass ∼4 M {sub ☉}. The disk appears to have an outer radius of ∼0.2 AU with predicted temperatures of ∼1100-1400 K. We model the eclipses as being due to either a transiting geometrically thin dust disk or gaseous accretion disk around a secondary object; the debris disk produces a better fit. We speculate on the origin of such a dense circumstellar dust disk structure orbiting a relatively old low-mass companion, and on the similarities of this system to the previously discovered EE Cep.

  17. Relativistic Continuum Shell Model

    NASA Astrophysics Data System (ADS)

    Grineviciute, Janina; Halderson, Dean

    2011-04-01

    The R-matrix formalism of Lane and Thomas has been extended to the relativistic case so that the many-coupled channels problem may be solved for systems in which binary breakup channels satisfy a relative Dirac equation. The formalism was previously applied to the relativistic impulse approximation RIA and now we applied it to Quantum Hadrodynamics QHD in the continuum Tamm-Dancoff approximation TDA with the classical meson fields replaced by one-meson exchange potentials. None of the published QHD parameters provide a decent fit to the 15 N + p elastic cross section. The deficiency is also evident in inability of the QHD parameters with the one meson exchange potentials to reproduce the QHD single particle energies. Results with alternate parameters sets are presented. A. M. Lane and R. G. Thomas, R-Matrix Theory of Nuclear Reactions, Reviews of Modern Physics, 30 (1958) 257

  18. Stationary relativistic jets

    NASA Astrophysics Data System (ADS)

    Komissarov, Serguei S.; Porth, Oliver; Lyutikov, Maxim

    2015-11-01

    In this paper we describe a simple numerical approach which allows to study the structure of steady-state axisymmetric relativistic jets using one-dimensional time-dependent simulations. It is based on the fact that for narrow jets with vz≈ c the steady-state equations of relativistic magnetohydrodynamics can be accurately approximated by the one-dimensional time-dependent equations after the substitution z=ct. Since only the time-dependent codes are now publicly available this is a valuable and efficient alternative to the development of a high-specialised code for the time-independent equations. The approach is also much cheaper and more robust compared to the relaxation method. We tested this technique against numerical and analytical solutions found in literature as well as solutions we obtained using the relaxation method and found it sufficiently accurate. In the process, we discovered the reason for the failure of the self-similar analytical model of the jet reconfinement in relatively flat atmospheres and elucidated the nature of radial oscillations of steady-state jets.

  19. A relativistic trolley paradox

    NASA Astrophysics Data System (ADS)

    Matvejev, Vadim N.; Matvejev, Oleg V.; Grøn, Ø.

    2016-06-01

    We present an apparent paradox within the special theory of relativity, involving a trolley with relativistic velocity and its rolling wheels. Two solutions are given, both making clear the physical reality of the Lorentz contraction, and that the distance on the rails between each time a specific point on the rim touches the rail is not equal to 2 π R , where R is the radius of the wheel, but 2 π R / √{ 1 - R 2 Ω 2 / c 2 } , where Ω is the angular velocity of the wheels. In one solution, the wheel radius is constant as the velocity of the trolley increases, and in the other the wheels contract in the radial direction. We also explain two surprising facts. First that the shape of a rolling wheel is elliptical in spite of the fact that the upper part of the wheel moves faster than the lower part, and thus is more Lorentz contracted, and second that a Lorentz contracted wheel with relativistic velocity rolls out a larger distance between two successive touches of a point of the wheel on the rails than the length of a circle with the same radius as the wheels.

  20. Relativistic harmonic oscillator revisited

    SciTech Connect

    Bars, Itzhak

    2009-02-15

    The familiar Fock space commonly used to describe the relativistic harmonic oscillator, for example, as part of string theory, is insufficient to describe all the states of the relativistic oscillator. We find that there are three different vacua leading to three disconnected Fock sectors, all constructed with the same creation-annihilation operators. These have different spacetime geometric properties as well as different algebraic symmetry properties or different quantum numbers. Two of these Fock spaces include negative norm ghosts (as in string theory), while the third one is completely free of ghosts. We discuss a gauge symmetry in a worldline theory approach that supplies appropriate constraints to remove all the ghosts from all Fock sectors of the single oscillator. The resulting ghost-free quantum spectrum in d+1 dimensions is then classified in unitary representations of the Lorentz group SO(d,1). Moreover, all states of the single oscillator put together make up a single infinite dimensional unitary representation of a hidden global symmetry SU(d,1), whose Casimir eigenvalues are computed. Possible applications of these new results in string theory and other areas of physics and mathematics are briefly mentioned.

  1. Generation of rectangular optical waves by relativistic clipping

    NASA Astrophysics Data System (ADS)

    Varró, Sándor

    2013-05-01

    Theoretical results are reported for the reflection and transmission of few-cycle laser pulses on a very thin conducting layer, which may represent the surface current density of the massless relativistic charges of graphene. It is shown that the pulse may undergo violent distortions to the extent that the scattered radiation contains rectangular trains, which are approximate physical realizations of Rademacher functions in the optical or terahertz regime.

  2. Planetesimal Disk Microlensing

    NASA Astrophysics Data System (ADS)

    Heng, Kevin; Keeton, Charles R.

    2009-12-01

    Motivated by debris disk studies, we investigate the gravitational microlensing of background starlight by a planetesimal disk around a foreground star. We use dynamical survival models to construct a plausible example of a planetesimal disk and study its microlensing properties using established ideas of microlensing by small bodies. When a solar-type source star passes behind a planetesimal disk, the microlensing light curve may exhibit short-term, low-amplitude residuals caused by planetesimals several orders of magnitude below Earth mass. The minimum planetesimal mass probed depends on the photometric sensitivity and the size of the source star, and is lower when the planetesimal lens is located closer to us. Planetesimal lenses may be found more nearby than stellar lenses because the steepness of the planetesimal mass distribution changes how the microlensing signal depends on the lens/source distance ratio. Microlensing searches for planetesimals require essentially continuous monitoring programs that are already feasible and can potentially set constraints on models of debris disks, the progeny of the supposed extrasolar analogues of Kuiper Belts.

  3. Radio pulsar disk electrodynamics

    SciTech Connect

    Michel, F.C.

    1983-03-01

    We outline the macroscopic physics of a disk close to an isolated, magnetized, rotating neutron star. It seems likely that such systems are formed from time to time in the universe. The neutron star acts as a Faraday disk dynamo, and the disk acts as both a load and a neutral sheet, permitting the polar cap current to return to the neutron star and also splitting a dipolar magnetic field into two monopolar halves. Michel and Dessler have proposed that such systems are radio pulsars. The dominant energy loss is from the stellar wind torque (giving a deceleration index n = 7/3), and the next contribution is dissipation in the ''auroral'' zones, where the current returns to the star in a sheet about 5 cm thick. The latter is comparable to the observed radio luminosities and is in reasonable accord with the data. The disk itself may be a source of visible radiation comparable to that in pulsed radiofrequency emission. As the pulsar ages, the disk expands and narrows into a ring, the plausible consequence of which could be cessation of pulsed emission at periods of a few seconds.

  4. PLANETESIMAL DISK MICROLENSING

    SciTech Connect

    Heng, Kevin; Keeton, Charles R. E-mail: keeton@physics.rutgers.ed

    2009-12-10

    Motivated by debris disk studies, we investigate the gravitational microlensing of background starlight by a planetesimal disk around a foreground star. We use dynamical survival models to construct a plausible example of a planetesimal disk and study its microlensing properties using established ideas of microlensing by small bodies. When a solar-type source star passes behind a planetesimal disk, the microlensing light curve may exhibit short-term, low-amplitude residuals caused by planetesimals several orders of magnitude below Earth mass. The minimum planetesimal mass probed depends on the photometric sensitivity and the size of the source star, and is lower when the planetesimal lens is located closer to us. Planetesimal lenses may be found more nearby than stellar lenses because the steepness of the planetesimal mass distribution changes how the microlensing signal depends on the lens/source distance ratio. Microlensing searches for planetesimals require essentially continuous monitoring programs that are already feasible and can potentially set constraints on models of debris disks, the progeny of the supposed extrasolar analogues of Kuiper Belts.

  5. bhlight: GENERAL RELATIVISTIC RADIATION MAGNETOHYDRODYNAMICS WITH MONTE CARLO TRANSPORT

    SciTech Connect

    Ryan, B. R.; Gammie, C. F.; Dolence, J. C.

    2015-07-01

    We present bhlight, a numerical scheme for solving the equations of general relativistic radiation magnetohydrodynamics using a direct Monte Carlo solution of the frequency-dependent radiative transport equation. bhlight is designed to evolve black hole accretion flows at intermediate accretion rate, in the regime between the classical radiatively efficient disk and the radiatively inefficient accretion flow (RIAF), in which global radiative effects play a sub-dominant but non-negligible role in disk dynamics. We describe the governing equations, numerical method, idiosyncrasies of our implementation, and a suite of test and convergence results. We also describe example applications to radiative Bondi accretion and to a slowly accreting Kerr black hole in axisymmetry.

  6. bhlight: General Relativistic Radiation Magnetohydrodynamics with Monte Carlo Transport

    DOE PAGES

    Ryan, Benjamin R; Dolence, Joshua C.; Gammie, Charles F.

    2015-06-25

    We present bhlight, a numerical scheme for solving the equations of general relativistic radiation magnetohydrodynamics using a direct Monte Carlo solution of the frequency-dependent radiative transport equation. bhlight is designed to evolve black hole accretion flows at intermediate accretion rate, in the regime between the classical radiatively efficient disk and the radiatively inefficient accretion flow (RIAF), in which global radiative effects play a sub-dominant but non-negligible role in disk dynamics. We describe the governing equations, numerical method, idiosyncrasies of our implementation, and a suite of test and convergence results. We also describe example applications to radiative Bondi accretion and tomore » a slowly accreting Kerr black hole in axisymmetry.« less

  7. bhlight: General Relativistic Radiation Magnetohydrodynamics with Monte Carlo Transport

    SciTech Connect

    Ryan, Benjamin R; Dolence, Joshua C.; Gammie, Charles F.

    2015-06-25

    We present bhlight, a numerical scheme for solving the equations of general relativistic radiation magnetohydrodynamics using a direct Monte Carlo solution of the frequency-dependent radiative transport equation. bhlight is designed to evolve black hole accretion flows at intermediate accretion rate, in the regime between the classical radiatively efficient disk and the radiatively inefficient accretion flow (RIAF), in which global radiative effects play a sub-dominant but non-negligible role in disk dynamics. We describe the governing equations, numerical method, idiosyncrasies of our implementation, and a suite of test and convergence results. We also describe example applications to radiative Bondi accretion and to a slowly accreting Kerr black hole in axisymmetry.

  8. Improved reflection models of black hole accretion disks: Treating the angular distribution of X-rays

    SciTech Connect

    García, J.; Steiner, J. F.; McClintock, J. E.; Brenneman, L. E-mail: jsteiner@head.cfa.harvard.edu E-mail: lbrenneman@cfa.harvard.edu; and others

    2014-02-20

    X-ray reflection models are used to constrain the properties of the accretion disk, such as the degree of ionization of the gas and the elemental abundances. In combination with general relativistic ray tracing codes, additional parameters like the spin of the black hole and the inclination to the system can be determined. However, current reflection models used for such studies only provide angle-averaged solutions for the flux reflected at the surface of the disk. Moreover, the emission angle of the photons changes over the disk due to relativistic light bending. To overcome this simplification, we have constructed an angle-dependent reflection model with the XILLVER code and self-consistently connected it with the relativistic blurring code RELLINE. The new model, relxill, calculates the proper emission angle of the radiation at each point on the accretion disk and then takes the corresponding reflection spectrum into account. We show that the reflected spectra from illuminated disks follow a limb-brightening law highly dependent on the ionization of disk and yet different from the commonly assumed form I∝ln (1 + 1/μ). A detailed comparison with the angle-averaged model is carried out in order to determine the bias in the parameters obtained by fitting a typical relativistic reflection spectrum. These simulations reveal that although the spin and inclination are mildly affected, the Fe abundance can be overestimated by up to a factor of two when derived from angle-averaged models. The fit of the new model to the Suzaku observation of the Seyfert galaxy Ark 120 clearly shows a significant improvement in the constraint of the physical parameters, in particular by enhancing the accuracy in the inclination angle and the spin determinations.

  9. The Chemistry of Nearby Disks

    NASA Astrophysics Data System (ADS)

    Öberg, Karin I.

    2016-01-01

    The gas and dust rich disks around young stars are the formation sites of planets. Observations of molecular trace species have great potential as probes of the disk structures and volatile compositions that together regulate planet formation. The disk around young star TW Hya has become a template for disk molecular studies due to a combination of proximity, a simple face-on geometry and richness in volatiles. It is unclear, however, how typical the chemistry of the TW disk is. In this proceeding, we review lessons learnt from exploring the TW Hya disk chemistry, focusing on the CO snowline, and on deuterium fractionation chemistry. We compare these results with new ALMA observations toward more distant, younger disks. We find that while all disks have some chemical structures in common, there are also substantial differences between the disks, which may be due to different initial conditions, structural or chemical evolutionary stages, or a combination of all three.

  10. HD139614: the Interferometric Case for a Group-Ib Pre-Transitional Young Disk

    NASA Technical Reports Server (NTRS)

    Labadie, Lucas; Matter, Alexis; Kreplin, Alexander; Lopez, Bruno; Wolf, Sebastian; Weigelt, Gerd; Ertel, Steve; Berger, Jean-Philippe; Pott, Jorg-Uwe; Danchi, William C.

    2014-01-01

    The Herbig Ae star HD139614 is a group-Ib object, which featureless SED indicates disk flaring and a possible pre-transitional evolutionary stage. We present mid- and near-IR interferometric results collected with MIDI, AMBER and PIONIER with the aim of constraining the spatial structure of the 0.1-10 AU disk region and assess its possible multi-component structure. A two-component disk model composed of an optically thin 2-AU wide inner disk and an outer temperature-gradient disk starting at 5.6 AU reproduces well the observations. This is an additional argument to the idea that group-I HAeBe inner disks could be already in the disk-clearing transient stage. HD139614 will become a prime target for mid-IR interferometric imaging with the second-generation instrument MATISSE of the VLTI.

  11. Application of the Cubed-Sphere Grid to Tilted Black-Hole Accretion Disks

    SciTech Connect

    Fragile, P C; Lindner, C C; Anninos, P; Salmonson, J D

    2008-09-24

    In recent work we presented the first results of global general relativistic magnetohydrodynamic (GRMHD) simulations of tilted (or misaligned) accretion disks around rotating black holes. The simulated tilted disks showed dramatic differences from comparable untilted disks, such as asymmetrical accretion onto the hole through opposing 'plunging streams' and global precession of the disk powered by a torque provided by the black hole. However, those simulations used a traditional spherical-polar grid that was purposefully underresolved along the pole, which prevented us from assessing the behavior of any jets that may have been associated with the tilted disks. To address this shortcoming we have added a block-structured 'cubed-sphere' grid option to the Cosmos++ GRMHD code, which will allow us to simultaneously resolve the disk and polar regions. Here we present our implementation of this grid and the results of a small suite of validation tests intended to demonstrate that the new grid performs as expected. The most important test in this work is a comparison of identical tilted disks, one evolved using our spherical-polar grid and the other with the cubed-sphere grid. We also demonstrate an interesting dependence of the early-time evolution of our disks on their orientation with respect to the grid alignment. This dependence arises from the differing treatment of current sheets within the disks, especially whether they are aligned with symmetry planes of the grid or not.

  12. Generalized Langevin equation with colored noise description of the stochastic oscillations of accretion disks

    NASA Astrophysics Data System (ADS)

    Harko, Tiberiu; Leung, Chun Sing; Mocanu, Gabriela

    2014-05-01

    We consider a description of the stochastic oscillations of the general relativistic accretion disks around compact astrophysical objects interacting with their external medium based on a generalized Langevin equation with colored noise and on the fluctuation-dissipation theorems. The former accounts for the general memory and retarded effects of the frictional force. The presence of the memory effects influences the response of the disk to external random interactions, and it modifies the dynamical behavior of the disk, as well as the energy dissipation processes. The generalized Langevin equation of the motion of the disk in the vertical direction is studied numerically, and the vertical displacements, velocities, and luminosities of the stochastically perturbed disks are explicitly obtained for both the Schwarzschild and the Kerr cases. The power spectral distribution of the disk luminosity is also obtained. As a possible astrophysical application of the formalism we investigate the possibility that the intra-day variability of the active galactic nuclei may be due to the stochastic disk instabilities. The perturbations due to colored/nontrivially correlated noise induce a complicated disk dynamics, which could explain some astrophysical observational features related to disk variability.

  13. STRONG FIELD EFFECTS ON EMISSION LINE PROFILES: KERR BLACK HOLES AND WARPED ACCRETION DISKS

    SciTech Connect

    Wang Yan; Li Xiangdong

    2012-01-10

    If an accretion disk around a black hole is illuminated by hard X-rays from non-thermal coronae, fluorescent iron lines will be emitted from the inner region of the accretion disk. The emission line profiles will show a variety of strong field effects, which may be used as a probe of the spin parameter of the black hole and the structure of the accretion disk. In this paper, we generalize the previous relativistic line profile models by including both the black hole spinning effects and the non-axisymmetries of warped accretion disks. Our results show different features from the conventional calculations for either a flat disk around a Kerr black hole or a warped disk around a Schwarzschild black hole by presenting, at the same time, multiple peaks, rather long red tails, and time variations of line profiles with the precession of the disk. We show disk images as seen by a distant observer, which are distorted by the strong gravity. Although we are primarily concerned with the iron K-shell lines in this paper, the calculation is general and is valid for any emission lines produced from a warped accretion disk around a black hole.

  14. Jets and Accretion Disks in X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Tomsick, John

    The outflow of material in the form of jets is a common phenomenon in astronomical sources with accretion disks. Even though jets are seen coming from the cores of galaxies, Galactic compact objects in X-ray binaries, and stars as they are forming, we do not understand in detail what accretion disk conditions are necessary to support a relativistic jet. This proposal focuses on multi-wavelength studies of X-ray binaries in order to improve our understanding of the connection between the disk and the jet. Specifically, this proposal includes work on two approved cycle 14 Rossi X-ray Timing Explorer (RXTE) programs, an approved XMM-Newton program, as well as a synthesis study of transient black hole X-ray binaries using archival RXTE and radio data. We plan to use X-ray spectral and timing properties to determine the disk properties during the re-activation of the compact jet (as seen in the radio and infrared) during the decays of black hole transient outbursts, to determine how the inner disk properties change at low mass accretion rates, and to use RXTE along with multi-wavelength observations to constrain the jet properties required for the microquasar Cygnus~X-3 to produce high- energy emission. Due to the ubiquity of jets in astrophysical settings, these science topics are relevant to NASA programs dealing with the origin, structure, evolution, and destiny of the Universe, and especially to understanding phenomena near black holes.

  15. Relativistic fluid formulation and theory of intense relativistic electron beams

    SciTech Connect

    Siambis, J.G.

    1984-01-01

    A new general relativistic fluid formulation has been obtained for intense relativistic electron beams (IREB) with arbitrarily high relativistic mass factor ..gamma... This theory is valid for confined IREB equilibria such as those found inside high energy accelerators as well as in the pinched and ion-focused regimes of beam propagation in plasma channels. The new relativistic fluid formulation is based on the covariant relativistic fluid formulation of Newcomb with the parameter lambda identical to 1, in order to allow for realistic confined equilibria. The resulting equilibrium constraints require that the beam has a slow rotational velocity around its direction of propagation and that the off-diagonal thermal stress element, associated with these two directions of motion, be nonzero. The effective betatron oscillation frequency of the fluid elements of the beam is modified by the radial gradient and anisotropies in the thermal stress elements of the beam fluid. The wave equation, for sausage, hose and filamentation excitations on the relativistic fluid beam, is found to be formally identical to that obtained from the Vlasov equation approach, hence phase-mixing damping is a generic and self-consistent correlate of the new relativistic fluid formulation.

  16. Premixed direct injection disk

    SciTech Connect

    York, William David; Ziminsky, Willy Steve; Johnson, Thomas Edward; Lacy, Benjamin; Zuo, Baifang; Uhm, Jong Ho

    2013-04-23

    A fuel/air mixing disk for use in a fuel/air mixing combustor assembly is provided. The disk includes a first face, a second face, and at least one fuel plenum disposed therebetween. A plurality of fuel/air mixing tubes extend through the pre-mixing disk, each mixing tube including an outer tube wall extending axially along a tube axis and in fluid communication with the at least one fuel plenum. At least a portion of the plurality of fuel/air mixing tubes further includes at least one fuel injection hole have a fuel injection hole diameter extending through said outer tube wall, the fuel injection hole having an injection angle relative to the tube axis. The invention provides good fuel air mixing with low combustion generated NOx and low flow pressure loss translating to a high gas turbine efficiency, that is durable, and resistant to flame holding and flash back.

  17. Supersized Disk (Artist's Concept)

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Annotated ImageData Graph

    This illustration compares the size of a gargantuan star and its surrounding dusty disk (top) to that of our solar system. Monstrous disks like this one were discovered around two 'hypergiant' stars by NASA's Spitzer Space Telescope. Astronomers believe these disks might contain the early 'seeds' of planets, or possibly leftover debris from planets that already formed.

    The hypergiant stars, called R 66 and R 126, are located about 170,000 light-years away in our Milky Way's nearest neighbor galaxy, the Large Magellanic Cloud. The stars are about 100 times wider than the sun, or big enough to encompass an orbit equivalent to Earth's. The plump stars are heavy, at 30 and 70 times the mass of the sun, respectively. They are the most massive stars known to sport disks.

    The disks themselves are also bloated, with masses equal to several Jupiters. The disks begin at a distance approximately 120 times greater than that between Earth and the sun, or 120 astronomical units, and terminate at a distance of about 2,500 astronomical units.

    Hypergiant stars are the puffed-up, aging descendants of the most massive class of stars, called 'O' stars. The stars are so massive that their cores ultimately collapse under their own weight, triggering incredible explosions called supernovae. If any planets circled near the stars during one of these blasts, they would most likely be destroyed.

    The orbital distances in this picture are plotted on a logarithmic scale. This means that a given distance shown here represents proportionally larger actual distances as you move to the right. The sun and planets in our solar system have been scaled up in size for better viewing. Little Dust Grains in Giant Stellar Disks The graph above of data from NASA's Spitzer Space Telescope shows the composition of a monstrous disk of what may be planet-forming dust circling the colossal 'hypergiant' star

  18. Pondermotive acceleration of charged particles along the relativistic jets of an accreting blackhole

    NASA Astrophysics Data System (ADS)

    Ebisuzaki, T.; Tajima, T.

    2014-05-01

    Accreting blackholes such as miniquasars and active galactic nuclei can contribute to the highest energy components of intra- (˜1015 eV) galactic and extra-galactic components (˜1020 eV) of cosmic rays. Alfven wave pulses which are excited in the accretion disk around blackholes propagate in relativistic jets. Because of their highly non-linear nature of the waves, charged particles (protons, ions, and electrons) can be accelerated to high energies in relativistic jets in accreting blackhole systems, the central engine of miniquasars and active galactic nuclei.

  19. Dust Evolution Can Produce Scattered Light Gaps in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Birnstiel, Tilman; Andrews, Sean M.; Pinilla, Paola; Kama, Mihkel

    2015-11-01

    Recent imaging of protoplanetary disks with high resolution and contrast have revealed a striking variety of substructure. Of particular interest are cases where near-infrared scattered light images show evidence for low-intensity annular “gaps.” The origins of such structures are still uncertain, but the interaction of the gas disk with planets is a common interpretation. We study the impact that the evolution of the solid material can have on the observable properties of disks in a simple scenario without any gravitational or hydrodynamical disturbances to the gas disk structure. Even with a smooth and continuous gas density profile, we find that the scattered light emission produced by small dust grains can exhibit ring-like depressions similar to those presented in recent observations. The physical mechanisms responsible for these features rely on the inefficient fragmentation of dust particles. The occurrence and position of the proposed “gap” features depend most strongly on the dust-to-gas ratio, the fragmentation threshold velocity, the strength of the turbulence, and the age of the disk, and should be generic (at some radius) for typically adopted disk parameters. The same physical processes can affect the thermal emission at optically thin wavelengths (˜1 mm), although the behavior can be more complex; unlike for disk-planet interactions, a “gap” should not be present at these longer wavelengths.

  20. High Resolution Imaging of Circumstellar Disks at Millimeter Wavelengths

    NASA Technical Reports Server (NTRS)

    Wilner, David J.

    2003-01-01

    Our program uses the techniques of millimeter interferometry to make high resolution observations of dust continuum emission to study the structure of protoplanetary disks and debris disks around nearby stars. Observations of dust emission at these wavelengths are advantageous because the dust emission is generally optically thin and directly proportional to mass, and contrast with stellar photospheres is not a problem. We are using of several observational facilities, including (1) the Very Large Array (VLA) of the National Radio Astronomy Observatories, (2) the Plateau de Bure Interferometer (PdBI) of the Institut de RadioAstronomie Millimetrique, and (3) the Submillimeter Array (SMA), now under construction by the Smithsonian Astrophysical Observatory and Academia Sinica (Taiwan). In the past year, we have accomplished the following (more details below): (1) We continued work on our 'low resolution' VLA survey of disks in Herbig Ae star and binary systems, primarily to identify candidates for higher resolution follow-up. We have submitted a paper for publication on the detailed analysis of the structure of the disk around CQ Tauri; (2) We completed analysis of our PdBI observations of the debris disk around Vega, and we presented these results at (1) the 199th AAS meeting in Washington, DC, and (2) a symposium in memory of Fred Gillett on Debris Disks and the Formation of Planets, in Tucson, AZ; (3) We continue commissioning observations with the SMA, which include the first ever interferometric images in the 850 micron wavelength band, in preparation for eventually imaging debris disks.

  1. The effect of radial migration on galactic disks

    SciTech Connect

    Vera-Ciro, Carlos; D'Onghia, Elena; Navarro, Julio; Abadi, Mario

    2014-10-20

    We study the radial migration of stars driven by recurring multi-arm spiral features in an exponential disk embedded in a dark matter halo. The spiral perturbations redistribute angular momentum within the disk and lead to substantial radial displacements of individual stars, in a manner that largely preserves the circularity of their orbits and that results, after 5 Gyr (∼40 full rotations at the disk scale length), in little radial heating and no appreciable changes to the vertical or radial structure of the disk. Our results clarify a number of issues related to the spatial distribution and kinematics of migrators. In particular, we find that migrators are a heavily biased subset of stars with preferentially low vertical velocity dispersions. This 'provenance bias' for migrators is not surprising in hindsight, for stars with small vertical excursions spend more time near the disk plane, and thus respond more readily to non-axisymmetric perturbations. We also find that the vertical velocity dispersion of outward migrators always decreases, whereas the opposite holds for inward migrators. To first order, newly arrived migrators simply replace stars that have migrated off to other radii, thus inheriting the vertical bias of the latter. Extreme migrators might therefore be recognized, if present, by the unexpectedly small amplitude of their vertical excursions. Our results show that migration, understood as changes in angular momentum that preserve circularity, can strongly affect the thin disk, but cast doubts on models that envision the Galactic thick disk as a relic of radial migration.

  2. Hot stars with disks

    NASA Astrophysics Data System (ADS)

    Grundstrom, Erika D.

    The evolutionary paths of the massive O and B type stars are often defined by angular momentum transformations that involve circumstellar gas disks. This circumstellar gas is revealed in several kinds of observations, and here I describe a series of investigations of the hydrogen line emission from such disk using detailed studies of five massive binaries and a survey of 128 Be stars. By examining three sets of spectra of the active mass-transfer binary system RY Scuti, I determined masses of 7.1±1.2 [Special characters omitt ed.] for the bright supergiant and 30.0±2.1 [Special characters omitted.] for the massive companion that is hidden by an accretion torus. I also present a cartoon model of the complex mass flows in the system. Using optical spectroscopy and X-ray flux data, I investigated the mass transfer processes in four massive X-ray binaries (a massive B star with mass flowing onto a compact, neutron star companion). The B-supergiant system LS I +65 010 transfers mass via stellar winds. I find the X-ray flux modulates with the orbital period. In the other three X-ray binary systems (LS I +61 303, HDE 245770, and X Per), an outflowing circumstellar disk is responsible for the mass transfer, and in all three systems, the disk appears to be truncated by gravitational interactions with the compact companion. The disk in the microquasar system LS I +61 303 is limited in radius by the periastron separation and an increase in both Ha equivalent width and X-ray flux following periastron may be due to a density wave in the disk induced by tidal forces. Observations of HDE 245770 document what appears to be the regeneration of a circumstellar disk. The disk of X Per appears to have grown to near record proportions and the X-ray flux has dramatically increased. Tidal interaction may generate a spiral density wave in the disk and cause an increase in Ha equivalent width and mass transfer to the compact companion. During the course of the analysis of the X

  3. Relativistic Quantum Cryptography

    NASA Astrophysics Data System (ADS)

    Jeffrey, Evan; Kwiat, Paul

    2006-03-01

    We present results from a relativistic quantum cryptography system which uses photon storage to avoid bit sifting, in principle doubling the useful key rate. Bob stores the photon he receives from Alice in an optical delay line until she sends him the classical basis information, allowing him to measure every photon in the correct basis. Accounting for loss in our 489-ns storage cavity, we achieve a 66% increase in the BB84 key rate. The same system could be used for even greater gains in either the six-state protocol or cryptography using a larger Hilbert space. We show that the security of this protocol is equivalent to standard BB84: assuming the quantum and classical signals are space-like separated, no eavesdropper bound by special relativity can access both simultaneously.

  4. A FIRST CONSTRAINT ON THE THICK DISK SCALE LENGTH: DIFFERENTIAL RADIAL ABUNDANCES IN K GIANTS AT GALACTOCENTRIC RADII 4, 8, AND 12 kpc

    SciTech Connect

    Bensby, T.; Alves-Brito, A.; Oey, M. S.; Yong, D.; Melendez, J.

    2011-07-10

    Based on high-resolution spectra obtained with the MIKE spectrograph on the Magellan telescopes, we present detailed elemental abundances for 20 red giant stars in the outer Galactic disk, located at Galactocentric distances between 9 and 13 kpc. The outer disk sample is complemented with samples of red giants from the inner Galactic disk and the solar neighborhood, analyzed using identical methods. For Galactocentric distances beyond 10 kpc, we only find chemical patterns associated with the local thin disk, even for stars far above the Galactic plane. Our results show that the relative densities of the thick and thin disks are dramatically different from the solar neighborhood, and we therefore suggest that the radial scale length of the thick disk is much shorter than that of the thin disk. We make a first estimate of the thick disk scale length of L{sub thick} = 2.0 kpc, assuming L{sub thin} = 3.8 kpc for the thin disk. We suggest that radial migration may explain the lack of radial age, metallicity, and abundance gradients in the thick disk, possibly also explaining the link between the thick disk and the metal-poor bulge.

  5. Relativistic Runaway Electrons

    NASA Astrophysics Data System (ADS)

    Breizman, Boris

    2014-10-01

    This talk covers recent developments in the theory of runaway electrons in a tokamak with an emphasis on highly relativistic electrons produced via the avalanche mechanism. The rapidly growing population of runaway electrons can quickly replace a large part of the initial current carried by the bulk plasma electrons. The magnetic energy associated with this current is typically much greater than the particle kinetic energy. The current of a highly relativistic runaway beam is insensitive to the particle energy, which separates the description of the runaway current evolution from the description of the runaway energy spectrum. A strongly anisotropic distribution of fast electrons is generally prone to high-frequency kinetic instabilities that may cause beneficial enhancement of runaway energy losses. The relevant instabilities are in the frequency range of whistler waves and electron plasma waves. The instability thresholds reported in earlier work have been revised considerably to reflect strong dependence of collisional damping on the wave frequency and the role of plasma non-uniformity, including radial trapping of the excited waves in the plasma. The talk also includes a discussion of enhanced scattering of the runaways as well as the combined effect of enhanced scattering and synchrotron radiation. A noteworthy feature of the avalanche-produced runaway current is a self-sustained regime of marginal criticality: the inductive electric field has to be close to its critical value (representing avalanche threshold) at every location where the runaway current density is finite, and the current density should vanish at any point where the electric field drops below its critical value. This nonlinear Ohm's law enables complete description of the evolving current profile. Work supported by the U.S. Department of Energy Contract No. DEFG02-04ER54742 and by ITER contract ITER-CT-12-4300000273. The views and opinions expressed herein do not necessarily reflect those of

  6. Giant Planet Formation by Disk Instability in Low Mass Disks?

    NASA Astrophysics Data System (ADS)

    Boss, Alan P.

    2010-12-01

    Forming giant planets by disk instability requires a gaseous disk that is massive enough to become gravitationally unstable and able to cool fast enough for self-gravitating clumps to form and survive. Models with simplified disk cooling have shown the critical importance of the ratio of the cooling to the orbital timescales. Uncertainties about the proper value of this ratio can be sidestepped by including radiative transfer. Three-dimensional radiative hydrodynamics models of a disk with a mass of 0.043 M sun from 4 to 20 AU in orbit around a 1 M sun protostar show that disk instabilities are considerably less successful in producing self-gravitating clumps than in a disk with twice this mass. The results are sensitive to the assumed initial outer disk (To ) temperatures. Models with To = 20 K are able to form a single self-gravitating clump, whereas models with To = 25 K form clumps that are not quite self-gravitating. These models imply that disk instability requires a disk with a mass of at least ~0.043 M sun inside 20 AU in order to form giant planets around solar-mass protostars with realistic disk cooling rates and outer-disk temperatures. Lower mass disks around solar-mass protostars must rely upon core accretion to form inner giant planets.

  7. Transport coefficients of a relativistic plasma

    NASA Astrophysics Data System (ADS)

    Pike, O. J.; Rose, S. J.

    2016-05-01

    In this work, a self-consistent transport theory for a relativistic plasma is developed. Using the notation of Braginskii [S. I. Braginskii, in Reviews of Plasma Physics, edited by M. A. Leontovich (Consultants Bureau, New York, 1965), Vol. 1, p. 174], we provide semianalytical forms of the electrical resistivity, thermoelectric, and thermal conductivity tensors for a Lorentzian plasma in a magnetic field. This treatment is then generalized to plasmas with arbitrary atomic number by numerically solving the linearized Boltzmann equation. The corresponding transport coefficients are fitted by rational functions in order to make them suitable for use in radiation-hydrodynamic simulations and transport calculations. Within the confines of linear transport theory and on the assumption that the plasma is optically thin, our results are valid for temperatures up to a few MeV. By contrast, classical transport theory begins to incur significant errors above kBT ˜10 keV, e.g., the parallel thermal conductivity is suppressed by 15% at kBT =20 keV due to relativistic effects.

  8. Some problems in relativistic thermodynamics

    SciTech Connect

    Veitsman, E. V.

    2007-11-15

    The relativistic equations of state for ideal and real gases, as well as for various interface regions, have been derived. These dependences help to eliminate some controversies in the relativistic thermodynamics based on the special theory of relativity. It is shown, in particular, that the temperature of system whose velocity tends to the velocity of light in vacuum varies in accordance with the Ott law T = T{sub 0}/{radical}1 - v{sup 2}/c{sup 2}. Relativistic dependences for heat and mass transfer, for Ohm's law, and for a viscous flow of a liquid have also been derived.

  9. Boosted High-Harmonics Pulse from a Double-Sided Relativistic Mirror

    NASA Astrophysics Data System (ADS)

    Esirkepov, T. Zh.; Bulanov, S. V.; Kando, M.; Pirozhkov, A. S.; Zhidkov, A. G.

    2009-07-01

    An ultrabright high-power x- and γ-radiation source is proposed. A high-density thin plasma slab, accelerating in the radiation pressure dominant regime by an ultraintense electromagnetic wave, reflects a counterpropagating relativistically strong electromagnetic wave, producing extremely time-compressed and intensified radiation. The reflected light contains relativistic harmonics generated at the plasma slab, all upshifted with the same factor as the fundamental mode of the incident light. The theory of an arbitrarily moving thin plasma slab reflectivity is presented.

  10. Boosted high-harmonics pulse from a double-sided relativistic mirror.

    PubMed

    Esirkepov, T Zh; Bulanov, S V; Kando, M; Pirozhkov, A S; Zhidkov, A G

    2009-07-10

    An ultrabright high-power x- and gamma-radiation source is proposed. A high-density thin plasma slab, accelerating in the radiation pressure dominant regime by an ultraintense electromagnetic wave, reflects a counterpropagating relativistically strong electromagnetic wave, producing extremely time-compressed and intensified radiation. The reflected light contains relativistic harmonics generated at the plasma slab, all upshifted with the same factor as the fundamental mode of the incident light. The theory of an arbitrarily moving thin plasma slab reflectivity is presented.

  11. Solar disk sextant

    NASA Technical Reports Server (NTRS)

    Sofia, S.; Chiu, H.-Y.; Maier, E.; Schatten, K. H.; Minott, P.; Endal, A. S.

    1984-01-01

    This paper presents the conceptual design of an instrument, called the solar disk sextant, to be used in space to measure the shape and the size of the sun and their variations. The instrumental parameters required to produce sufficient sensitivity to address the problems of solar oblateness, solar pulsations, and global size changes of climatic importance are given.

  12. Accretion disk coronae

    NASA Technical Reports Server (NTRS)

    White, N. E.; Holt, S. S.

    1981-01-01

    Recent observations of partial X-ray eclipses from 4U1822-37 have shown that the central X-ray source in this system is diffused by a large Compton-thick accretion disk corona (ADC). Another binary, 4U2129-47, also displays a partial eclipse and contains an ADC. The possible origin of an ADC is discussed and a simple hydrostatic evaporated ADC model is developed which, when applied to 4U1822-37, 4U2129+47 and Cyg X-3, can explain their temporal and spectral properties. The quasi-sinusoidal modulation of all three sources can be reconciled with the partial occultation of the ADC by a bulge at the edge of the accretion disk which is caused by the inflowing material. The height of this bulge is an order of magnitude larger than the hydrostatic disk height and is the result of turbulence in the outer region of the disk. The spectral properties of all three sources can be understood in terms of Compton scattering of the original source spectrum by the ADC. Spectral variations with epoch in Cyg X-3 are probably caused by changes in the optical depth of the corona. A consequence of our model is that any accreting neutron star X-ray source in a semi-detached binary system which is close to its Eddington limit most likely contains an optically thick ADC.

  13. Herniated disk repair (image)

    MedlinePlus

    ... one of the most common causes of lower back pain. The mainstay of treatment for herniated disks is an initial period of rest with pain and anti-inflammatory medications followed by physical therapy. If pain and symptoms persist, surgery to remove ...

  14. Plasmofluidic Disk Resonators

    PubMed Central

    Kwon, Min-Suk; Ku, Bonwoo; Kim, Yonghan

    2016-01-01

    Waveguide-coupled silicon ring or disk resonators have been used for optical signal processing and sensing. Large-scale integration of optical devices demands continuous reduction in their footprints, and ultimately they need to be replaced by silicon-based plasmonic resonators. However, few waveguide-coupled silicon-based plasmonic resonators have been realized until now. Moreover, fluid cannot interact effectively with them since their resonance modes are strongly confined in solid regions. To solve this problem, this paper reports realized plasmofluidic disk resonators (PDRs). The PDR consists of a submicrometer radius silicon disk and metal laterally surrounding the disk with a 30-nm-wide channel in between. The channel is filled with fluid, and the resonance mode of the PDR is strongly confined in the fluid. The PDR coupled to a metal-insulator-silicon-insulator-metal waveguide is implemented by using standard complementary metal oxide semiconductor technology. If the refractive index of the fluid increases by 0.141, the transmission spectrum of the waveguide coupled to the PDR of radius 0.9 μm red-shifts by 30 nm. The PDR can be used as a refractive index sensor requiring a very small amount of analyte. Plus, the PDR filled with liquid crystal may be an ultracompact intensity modulator which is effectively controlled by small driving voltage. PMID:26979929

  15. STELLAR-MASS BLACK HOLE SPIN CONSTRAINTS FROM DISK REFLECTION AND CONTINUUM MODELING

    SciTech Connect

    Miller, J. M.; Reynolds, C. S.; Fabian, A. C.; Miniutti, G.; Gallo, L. C.

    2009-05-20

    Accretion disk reflection spectra, including broad iron emission lines, bear the imprints of the strong Doppler shifts and gravitational redshifts close to black holes. The extremity of these shifts depends on the proximity of the innermost stable circular orbit to the black hole, and that orbit is determined by the black hole spin parameter. Modeling relativistic spectral features, then, gives a means of estimating black hole spin. We report on the results of fits made to archival X-ray spectra of stellar-mass black holes and black hole candidates, selected for strong disk reflection features. Following recent work, these spectra were fit with reflection models and disk continuum emission models (where required) in which black hole spin is a free parameter. Although our results must be regarded as preliminary, we find evidence for a broad range of black hole spin parameters in our sample. The black holes with the most relativistic radio jets are found to have high spin parameters, though jets are observed in a black hole with a low spin parameter. For those sources with constrained binary system parameters, we examine the distribution of spin parameters versus black hole mass, binary mass ratio, and orbital period. We discuss the results within the context of black hole creation events, relativistic jet production, and efforts to probe the innermost relativistic regime around black holes.

  16. GRAVITATIONAL DRAG ON A POINT MASS IN HYPERSONIC MOTION WITHIN A GAUSSIAN DISK

    SciTech Connect

    Canto, J.; Sanchez-Salcedo, F. J.; Esquivel, A.; Raga, A. C. E-mail: esquivel@nucleares.una.mx

    2013-01-01

    We develop an analytical model for the accretion and gravitational drag on a point mass that moves hypersonically in the midplane of a gaseous disk with a Gaussian vertical density stratification. Such a model is of interest for studying the interaction between a planet and a protoplanetary disk, as well as the dynamical decay of massive black holes in galactic nuclei. The model assumes that the flow is ballistic, and gives fully analytical expressions for both the accretion rate onto the point mass and the gravitational drag it suffers. The expressions are further simplified by taking the limits of a thick and of a thin disk. The results for the thick disk reduce correctly to those for a uniform density environment. We find that for a thin disk (small vertical scaleheight compared to the gravitational radius), the accretion rate is proportional to the mass of the moving object and to the surface density of the disk, while the drag force is independent of the velocity of the object. The gravitational deceleration of the hypersonic perturber in a thin disk was found to be independent of its parameters (i.e., mass or velocity) and depends only on the surface mass density of the disk. The predictions of the model are compared to the results of three-dimensional hydrodynamical simulations, with reasonable agreement.

  17. Relativistic spectra of bound fermions

    SciTech Connect

    Giachetti, Riccardo; Sorace, Emanuele

    2007-02-27

    A two fermion relativistic invariant wave equation is used for numerical calculations of the hyperfine shifts of the Positronium levels in a Breit interaction scheme. The results agree with known data up to the order {alpha}4.

  18. Simulating relativistic binaries with Whisky

    NASA Astrophysics Data System (ADS)

    Baiotti, L.

    We report about our first tests and results in simulating the last phase of the coalescence and the merger of binary relativistic stars. The simulations were performed using our code Whisky and mesh refinement through the Carpet driver.

  19. Relativistic Transformation of Solid Angle.

    ERIC Educational Resources Information Center

    McKinley, John M.

    1980-01-01

    Rederives the relativistic transformations of light intensity from compact sources (stars) to show where and how the transformation of a solid angle contributes. Discusses astrophysical and other applications of the transformations. (Author/CS)

  20. Conductivity of a relativistic plasma

    SciTech Connect

    Braams, B.J.; Karney, C.F.F.

    1989-03-01

    The collision operator for a relativistic plasma is reformulated in terms of an expansion in spherical harmonics. This formulation is used to calculate the electrical conductivity. 13 refs., 1 fig., 1 tab.

  1. Binary black-hole mergers in magnetized disks: simulations in full general relativity.

    PubMed

    Farris, Brian D; Gold, Roman; Paschalidis, Vasileios; Etienne, Zachariah B; Shapiro, Stuart L

    2012-11-30

    We present results from the first fully general relativistic, magnetohydrodynamic (MHD) simulations of an equal-mass black-hole binary (BHBH) in a magnetized, circumbinary accretion disk. We simulate both the pre- and postdecoupling phases of a BHBH-disk system and both "cooling" and "no-cooling" gas flows. Prior to decoupling, the competition between the binary tidal torques and the effective viscous torques due to MHD turbulence depletes the disk interior to the binary orbit. However, it also induces a two-stream accretion flow and mildly relativistic polar outflows from the BHs. Following decoupling, but before gas fills the low-density "hollow" surrounding the remnant, the accretion rate is reduced, while there is a prompt electromagnetic luminosity enhancement following merger due to shock heating and accretion onto the spinning BH remnant. This investigation, though preliminary, previews more detailed general relativistic, MHD simulations we plan to perform in anticipation of future, simultaneous detections of gravitational and electromagnetic radiation from a merging BHBH-disk system.

  2. Scattering in Relativistic Particle Mechanics.

    NASA Astrophysics Data System (ADS)

    de Bievre, Stephan

    The problem of direct interaction in relativistic particle mechanics has been extensively studied and a variety of models has been proposed avoiding the conclusions of the so-called no-interaction theorems. In this thesis we study scattering in the relativistic two-body problem. We use our results to analyse gauge invariance in Hamiltonian constraint models and the uniqueness of the symplectic structure in manifestly covariant relativistic particle mechanics. We first present a general geometric framework that underlies approaches to relativistic particle mechanics. This permits a model-independent and geometric definition of the notions of asymptotic completeness and of Moller and scattering operators. Subsequent analysis of these concepts divides into two parts. First, we study the kinematic properties of the scattering transformation, i.e. those properties that arise solely from the invariance of the theory under the Poincare group. We classify all canonical (symplectic) scattering transformations on the relativistic phase space for two free particles in terms of a single function of the two invariants of the theory. We show how this function is determined by the center of mass time delay and scattering angle and vice versa. The second part of our analysis of the relativistic two-body scattering problem is devoted to the dynamical properties of the scattering process. Hence, we turn to two approaches to relativistic particle mechanics: the Hamiltonian constraint models and the manifestly covariant formalism. Using general geometric arguments, we prove "gauge invariance" of the scattering transformation in the Todorov -Komar Hamiltonian constraint model. We conclude that the scattering cross sections of the Todorov-Komar models have the same angular dependence as their non-relativistic counterpart, irrespective of a choice of gauge. This limits the physical relevance of those models. We present a physically non -trivial Hamiltonian constraint model, starting from

  3. THE DISK-WIND-JET CONNECTION IN THE BLACK HOLE H 1743-322

    SciTech Connect

    Miller, J. M.; King, A. L.; Raymond, J.; Fabian, A. C.; Reynolds, C. S.; Kallman, T. R.; Cackett, E. M.; Van der Klis, M.; Steeghs, D. T. H.

    2012-11-01

    X-ray disk winds are detected in spectrally soft, disk-dominated phases of stellar-mass black hole outbursts. In contrast, compact, steady, relativistic jets are detected in spectrally hard states that are dominated by non-thermal X-ray emission. Although these distinctive outflows appear to be almost mutually exclusive, it is possible that a disk wind persists in hard states but cannot be detected via X-ray absorption lines owing to very high ionization. Here, we present an analysis of a deep, 60 ks Chandra/HETGS observation of the black hole candidate H 1743-322 in the low/hard state. The spectrum shows no evidence of a disk wind, with tight limits, and within the range of ionizing flux levels that were measured in prior Chandra observations wherein a wind was clearly detected. In H 1743-322, at least, disk winds are actually diminished in the low/hard state, and disk winds and jets are likely state dependent and anti-correlated. These results suggest that although the launching radii of winds and jets may differ by orders of magnitude, they may both be tied to a fundamental property of the inner accretion flow, such as the mass accretion rate and/or the magnetic field topology of the disk. We discuss these results in the context of disk winds and jets in other stellar-mass black holes, and possible launching mechanisms for black hole outflows.

  4. Observations of Circumstellar Disks with Infrared Interferometry

    NASA Technical Reports Server (NTRS)

    Akeson, Rachel

    2008-01-01

    Star formation is arguably the area of astrophysics in which infrared interferometry has had the biggest impact. The optically thick portion of T Tauri and Herbig Ae/Be disks DO NOT extend to a few stellar radii of the stellar surface. Emission is coming from near the dust sublimation radius, but not all from a single radius. The Herbig Ae stars can be either flared or self-shadowed but very massive (early Be) stars are geometrically thin. The Herbig Ae stars can be either flared or self-shadowed but very massive (early Be) stars are geometrically thin. Observational prospects are rapidly improving: a) Higher spectral resolution will allow observations of the gas: jets, winds, accretion. b) Closure phase and imaging will help eliminate model uncertainties/dependencies.

  5. Voyager disk-integrated photometry of Triton

    NASA Technical Reports Server (NTRS)

    Hillier, J.; Helfenstein, P.; Verbiscer, A.; Veverka, J.; Brown, R. H.; Goguen, J.; Johnson, T. V.

    1990-01-01

    Hapke's (1981) photometric model has been combined with a plane-parallel thin atmospheric haze model to describe Voyager whole-disk observations of Triton, in the violet, blue, and green wavelength bands, in order to obtain estimates of Triton's geometric albedo, phase integral, and Bond albedo. Phase angle coverage in these filters ranging from about 12 to 159 deg was obtained by combining narrow- and wide-angle camera images. An upturn in the data at the highest phase angles observed can be explained by including scattering in a thin atmospheric haze layer with optical depths systematically decreasing with wavelength from about 0.06 in the violet to 0.03 for the green filter data.

  6. THE EVOLUTION OF INNER DISK GAS IN TRANSITION DISKS

    SciTech Connect

    Hoadley, K.; France, K.; McJunkin, M.; Alexander, R. D.; Schneider, P. C.

    2015-10-10

    Investigating the molecular gas in the inner regions of protoplanetary disks (PPDs) provides insight into how the molecular disk environment changes during the transition from primordial to debris disk systems. We conduct a small survey of molecular hydrogen (H{sub 2}) fluorescent emission, using 14 well-studied Classical T Tauri stars at two distinct dust disk evolutionary stages, to explore how the structure of the inner molecular disk changes as the optically thick warm dust dissipates. We simulate the observed Hi-Lyman α-pumped H{sub 2} disk fluorescence by creating a 2D radiative transfer model that describes the radial distributions of H{sub 2} emission in the disk atmosphere and compare these to observations from the Hubble Space Telescope. We find the radial distributions that best describe the observed H{sub 2} FUV emission arising in primordial disk targets (full dust disk) are demonstrably different than those of transition disks (little-to-no warm dust observed). For each best-fit model, we estimate inner and outer disk emission boundaries (r{sub in} and r{sub out}), describing where the bulk of the observed H{sub 2} emission arises in each disk, and we examine correlations between these and several observational disk evolution indicators, such as n{sub 13–31}, r{sub in,} {sub CO}, and the mass accretion rate. We find strong, positive correlations between the H{sub 2} radial distributions and the slope of the dust spectral energy distribution, implying the behavior of the molecular disk atmosphere changes as the inner dust clears in evolving PPDs. Overall, we find that H{sub 2} inner radii are ∼4 times larger in transition systems, while the bulk of the H{sub 2} emission originates inside the dust gap radius for all transitional sources.

  7. Nucleosynthesis in Outflows from Kerr Black Hole Accretion Disks

    SciTech Connect

    Surman, Rebecca; Mclaughlin, Gail C; Sabbatino, N.; Hix, William Raphael

    2008-01-01

    Observational evidence suggests long-duration, collapsar-type gamma-ray bursts (GRBs) may have been more common in the early universe. These events are thought to be powered by accretion disks around black holes (AD-BHs). While GRBs require AD-BHs, not all AD-BHs will power bursts and therefore their formation will be more common than GRBs themselves. Outflows from AD-BHs may therefore be important contributors to the nuclear abundances in the oldest stars, particularly for rare species or those not uniformly observed. Here we consider the nucleosynthesis in this environment starting with relativistic disk models of Kerr black holes and following the element synthesis in a parameterized outflow. We present nucleosynthesis results from a range of AD-BH models.

  8. Fiber Optic Flexural Disk Microphone

    NASA Astrophysics Data System (ADS)

    Brown, David A.; Hofler, T.; Garrett, S. L.

    1989-02-01

    A microphone consisting of a hollow cylinder whose flexible, circular endplates are bonded to pairs of flat spiral wound coils of optical fiber is described. When the endplate/disk is deformed due to a pressure difference, the outer and inner fiber coils experience opposite strains resulting in a "push-pull" optical path length difference which is detected in an all-fiber Michelson interferometer. The close proximity of the interferometric fiber coils, separated by the thin thermally conducting end plate, rejects thermal gradient induced signals. The addition of a second identical endplate and fiber coil pair at the opposite end of the cylinder doubles the acoustic sensitivity while canceling acceleration induced signals. The calculated and measured optical strain of a single plate, single coil sensor using static pressure, acoustic pressure, and acceleration are in good agreement and yield a sensitivity of 21 milliradians per Pascal per meter of optical fiber for an 8.0 cm diameter, 3.0 mm thick plate below its resonance frequency of 3 KHz.

  9. The Evolution of a Planet-Forming Disk (Artist's Concept Animation)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This animation shows the evolution of a planet-forming disk around a star. Initially, the young disk is bright and thick with dust, providing raw materials for building planets. In the first 10 million years or so, gaps appear within the disk as newborn planets coalesce out of the dust, clearing out a path.

    In time, this planetary 'debris disk' thins out as gravitational interactions with numerous planets slowly sweep away the dust. Steady pressure from the starlight and solar winds also blows out the dust. After a few billion years, only a thin ring remains in the outermost reaches of the system, a faint echo of the once-brilliant disk.

    Our own solar system has a similar debris disk -- a ring of comets called the Kuiper Belt. Leftover dust in the inner portion of the solar system is known as 'zodiacal dust.'

    Bright, young disks can be imaged directly by visible-light telescopes, such as NASA's Hubble Space Telescope. Older, fainter debris disks can be detected only by infrared telescopes like NASA's Spitzer Space Telescope, which sense the disks' dim heat.

  10. Model scattering envelopes of young stellar objects. I - Method and application to circumstellar disks

    NASA Technical Reports Server (NTRS)

    Whitney, Barbara A.; Hartmann, Lee

    1992-01-01

    We describe a Monte Carlo code that accurately treats multiple scattering, absorption, and polarization by dust, and use this code to calculate images of dusty disks around young stellar objects. We present some approximate analytic results that describe the behavior of the Monte Carlo calculations. A geometrically thin disk illuminated by a central T Tauri star scatters very little light at distances of many AU from the star. Viewed at any inclination, the flux scattered by such a disk at the distance to the nearest star-forming region will be overwhelmed by the stellar image. An optically thick disk that has a flaring surface may be observable, especially if viewed nearly edge-on so that the stellar source becomes occulted. An optically thin disk with a finite opening angle, similar to the one surrounding beta Pictoris, is about as observable as the typical flared optically thick disk at a similar distance from the earth. The polarization position angle is perpendicular to the disk plane in all of the models, in contrast to observations of many young stellar objects which have the position angle oriented parallel to the presumed disk plane. We suggest that the scattered light structures observed around many premain-sequence objects are dusty envelopes rather than disks.

  11. Weak Accretion in the Outer Regions of Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Simon, Jacob B.; Bai, X.; Stone, J. M.; Armitage, P. J.; Beckwith, K.

    2013-01-01

    I will present numerical simulations of turbulence in the outer regions of protoplanetary disks. In these regions, low ionization levels and gas densities lead to weak coupling between neutral and ionized gas, enhancing the effect of ambipolar diffusion drastically. Only very thin surface layers of the disk are well ionized due to FUV photons from the central star. Our simulations focus on turbulent accretion driven by the magnetorotational instability (MRI) in the absence of a vertical magnetic field penetrating the disk. The result is a form of layered accretion, akin to the Ohmic dead zone paradigm relevant to smaller disk radii; gas is only accreted through very thin surface layers that surround a magnetically inactive "ambipolar dead zone". We find that the measured accretion rates due to this strong ambipolar diffusion are too small, by at least an order of magnitude, to account for observations. I will discuss the implications of these results for disk evolution, and a promising solution to the problem by including a vertical magnetic field.

  12. The average size and temperature profile of quasar accretion disks

    SciTech Connect

    Jiménez-Vicente, J.; Mediavilla, E.; Muñoz, J. A.; Motta, V.; Falco, E.

    2014-03-01

    We use multi-wavelength microlensing measurements of a sample of 10 image pairs from 8 lensed quasars to study the structure of their accretion disks. By using spectroscopy or narrowband photometry, we have been able to remove contamination from the weakly microlensed broad emission lines, extinction, and any uncertainties in the large-scale macro magnification of the lens model. We determine a maximum likelihood estimate for the exponent of the size versus wavelength scaling (r{sub s} ∝λ {sup p}, corresponding to a disk temperature profile of T∝r {sup –1/p}) of p=0.75{sub −0.2}{sup +0.2} and a Bayesian estimate of p = 0.8 ± 0.2, which are significantly smaller than the prediction of the thin disk theory (p = 4/3). We have also obtained a maximum likelihood estimate for the average quasar accretion disk size of r{sub s}=4.5{sub −1.2}{sup +1.5} lt-day at a rest frame wavelength of λ = 1026 Å for microlenses with a mean mass of M = 1 M {sub ☉}, in agreement with previous results, and larger than expected from thin disk theory.

  13. The Relativistic Iron Emission Line - QPO Connection in GRS 1915+105

    NASA Astrophysics Data System (ADS)

    Miller, Jon

    2005-10-01

    In accreting black hole and neutron star binaries, QPOs and broad Fe emission lines are both thought to be incisive diagnostics of the inner disk, and can even be used to constrain black hole spin parameters. We have discovered a connection between Fe line strength and QPO phase in RXTE observations of GRS 1915+105. This connection clearly ties Fe lines to radii less than 100 Rschw, where relativistic skewing is inevitable. Moreover, for a known mass, the connection gives two measures of radius; over-constraining radii in this way will enable mapping of the inner disk and strong tests of accretion flow models and general relativistic effects. We request a 45 ksec TOO observation of GRS 1915+105 to study this connection at CCD resolution.

  14. Three New Planetary Systems Orbiting Metal-Poor Thick Disk Stars

    NASA Astrophysics Data System (ADS)

    Cochran, William D.; Endl, M.; Brugamyer, E. J.; MacQueen, P. J.

    2013-10-01

    We report the detection of Jovian mass planets orbiting three nearby metal-poor thick disk stars. These discoveries were all made using precise radial velocity measurements from the High Resolution Spectrograph of the Hobby-Eberly Telescope. All of the planets are of Jovian mass or larger, with orbital periods ranging from about a year to over six years. HIP 14342 shows two planetary companions with orbital periods near a 2:1 resonance. The other planets detected orbit HIP 13366 and HIP 109384. All three of these stars are kinematic members of the galactic "thick disk", which is a population of stars with a larger vertical scale height and a larger velocity dispersion that the thin disk to which the Sun belongs. The thick disk stars are of lower total metallicity than the Sun, and are also chemically different than thin disk stars, having the abundances of their alpha-capture elements (e.g. O, Ne, Mg, Si, S, Ca, Ti) enhanced by 0.2 to 0.4 dex over those of thin disk stars of the same [Fe/H]. The majority of planets found among stars with [Fe/H] < ~-0.2 orbit thick disk stars, even though thin disk stars significantly outnumber thick disk stars in this metallicity range. Thus, the enhanced abundance of the alpha-capture elements, which are also key elements in the chemistry of planet-forming materials, may be responsible for the large fraction of low-metallicity thick-disk stars with planetary companions.

  15. Statistical thermodynamics of a two-dimensional relativistic gas.

    PubMed

    Montakhab, Afshin; Ghodrat, Malihe; Barati, Mahmood

    2009-03-01

    In this paper we study a fully relativistic model of a two-dimensional hard-disk gas. This model avoids the general problems associated with relativistic particle collisions and is therefore an ideal system to study relativistic effects in statistical thermodynamics. We study this model using molecular-dynamics simulation, concentrating on the velocity distribution functions. We obtain results for x and y components of velocity in the rest frame (Gamma) as well as the moving frame (Gamma;{'}) . Our results confirm that Jüttner distribution is the correct generalization of Maxwell-Boltzmann distribution. We obtain the same "temperature" parameter beta for both frames consistent with a recent study of a limited one-dimensional model. We also address the controversial topic of temperature transformation. We show that while local thermal equilibrium holds in the moving frame, relying on statistical methods such as distribution functions or equipartition theorem are ultimately inconclusive in deciding on a correct temperature transformation law (if any). PMID:19391919

  16. Brown dwarf disks with ALMA

    SciTech Connect

    Ricci, L.; Isella, A.; Testi, L.; De Gregorio-Monsalvo, I.; Natta, A.; Scholz, A.

    2014-08-10

    We present Atacama Large Millimeter/submillimeter Array continuum and spectral line data at 0.89 mm and 3.2 mm for three disks surrounding young brown dwarfs and very low mass stars in the Taurus star forming region. Dust thermal emission is detected and spatially resolved for all the three disks, while CO(J = 3-2) emission is seen in two disks. We analyze the continuum visibilities and constrain the disks' physical structure in dust. The results of our analysis show that the disks are relatively large; the smallest one has an outer radius of about 70 AU. The inferred disk radii, radial profiles of the dust surface density, and disk to central object mass ratios lie within the ranges found for disks around more massive young stars. We derive from our observations the wavelength dependence of the millimeter dust opacity. In all the three disks, data are consistent with the presence of grains with at least millimeter sizes, as also found for disks around young stars, and confirm that the early stages of the solid growth toward planetesimals occur also around very low-mass objects. We discuss the implications of our findings on models of solids evolution in protoplanetary disks, the main mechanisms proposed for the formation of brown dwarfs and very low-mass stars, as well as the potential of finding rocky and giant planets around very low-mass objects.

  17. THE QUASAR ACCRETION DISK SIZE-BLACK HOLE MASS RELATION

    SciTech Connect

    Morgan, Christopher W.; Kochanek, C. S.; Morgan, Nicholas D.; Falco, Emilio E. E-mail: ckochanek@astronomy.ohio-state.ed E-mail: efalco@cfa.harvard.ed

    2010-04-01

    We use the microlensing variability observed for 11 gravitationally lensed quasars to show that the accretion disk size at a rest-frame wavelength of 2500 A is related to the black hole mass by log(R{sub 2500}/cm) = (15.78 +- 0.12) + (0.80 +- 0.17)log(M{sub BH}/10{sup 9} M{sub sun}). This scaling is consistent with the expectation from thin-disk theory (R {proportional_to} M {sup 2/3}{sub BH}), but when interpreted in terms of the standard thin-disk model (T {proportional_to} R {sup -3/4}), it implies that black holes radiate with very low efficiency, log(eta) = -1.77 +- 0.29 + log(L/L{sub E}), where eta=L/(M-dot c{sup 2}). Only by making the maximum reasonable shifts in the average inclination, Eddington factors, and black hole masses can we raise the efficiency estimate to be marginally consistent with typical efficiency estimates (eta {approx} 10%). With one exception, these sizes are larger by a factor of {approx}4 than the size needed to produce the observed 0.8 {mu}m quasar flux by thermal radiation from a thin disk with the same T {proportional_to} R {sup -3/4} temperature profile. While scattering a significant fraction of the disk emission on large scales or including a large fraction of contaminating line emission can reduce the size discrepancy, resolving it also appears to require that accretion disks have flatter temperature/surface brightness profiles.

  18. Practical Relativistic Bit Commitment.

    PubMed

    Lunghi, T; Kaniewski, J; Bussières, F; Houlmann, R; Tomamichel, M; Wehner, S; Zbinden, H

    2015-07-17

    Bit commitment is a fundamental cryptographic primitive in which Alice wishes to commit a secret bit to Bob. Perfectly secure bit commitment between two mistrustful parties is impossible through an asynchronous exchange of quantum information. Perfect security is, however, possible when Alice and Bob each split into several agents exchanging classical information at times and locations suitably chosen to satisfy specific relativistic constraints. In this Letter we first revisit a previously proposed scheme [C. Crépeau et al., Lect. Notes Comput. Sci. 7073, 407 (2011)] that realizes bit commitment using only classical communication. We prove that the protocol is secure against quantum adversaries for a duration limited by the light-speed communication time between the locations of the agents. We then propose a novel multiround scheme based on finite-field arithmetic that extends the commitment time beyond this limit, and we prove its security against classical attacks. Finally, we present an implementation of these protocols using dedicated hardware and we demonstrate a 2 ms-long bit commitment over a distance of 131 km. By positioning the agents on antipodal points on the surface of Earth, the commitment time could possibly be extended to 212 ms.

  19. Dark-disk universe.

    PubMed

    Fan, JiJi; Katz, Andrey; Randall, Lisa; Reece, Matthew

    2013-05-24

    We point out that current constraints on dark matter imply only that the majority of dark matter is cold and collisionless. A subdominant fraction of dark matter could have much stronger interactions. In particular, it could interact in a manner that dissipates energy, thereby cooling into a rotationally supported disk, much as baryons do. We call this proposed new dark matter component double-disk dark matter (DDDM). We argue that DDDM could constitute a fraction of all matter roughly as large as the fraction in baryons, and that it could be detected through its gravitational effects on the motion of stars in galaxies, for example. Furthermore, if DDDM can annihilate to gamma rays, it would give rise to an indirect detection signal distributed across the sky that differs dramatically from that predicted for ordinary dark matter. DDDM and more general partially interacting dark matter scenarios provide a large unexplored space of testable new physics ideas.

  20. Dark-disk universe.

    PubMed

    Fan, JiJi; Katz, Andrey; Randall, Lisa; Reece, Matthew

    2013-05-24

    We point out that current constraints on dark matter imply only that the majority of dark matter is cold and collisionless. A subdominant fraction of dark matter could have much stronger interactions. In particular, it could interact in a manner that dissipates energy, thereby cooling into a rotationally supported disk, much as baryons do. We call this proposed new dark matter component double-disk dark matter (DDDM). We argue that DDDM could constitute a fraction of all matter roughly as large as the fraction in baryons, and that it could be detected through its gravitational effects on the motion of stars in galaxies, for example. Furthermore, if DDDM can annihilate to gamma rays, it would give rise to an indirect detection signal distributed across the sky that differs dramatically from that predicted for ordinary dark matter. DDDM and more general partially interacting dark matter scenarios provide a large unexplored space of testable new physics ideas. PMID:23745856

  1. DISK-SATELLITE INTERACTION IN DISKS WITH DENSITY GAPS

    SciTech Connect

    Petrovich, Cristobal; Rafikov, Roman R.

    2012-10-10

    Gravitational coupling between a gaseous disk and an orbiting perturber leads to angular momentum exchange between them that can result in gap opening by planets in protoplanetary disks and clearing of gas by binary supermassive black holes (SMBHs) embedded in accretion disks. Understanding the co-evolution of the disk and the orbit of the perturber in these circumstances requires knowledge of the spatial distribution of the torque exerted by the latter on a highly non-uniform disk. Here we explore disk-satellite interaction in disks with gaps in linear approximation both in Fourier and in physical space, explicitly incorporating the disk non-uniformity in the fluid equations. Density gradients strongly displace the positions of Lindblad resonances in the disk (which often occur at multiple locations), and the waveforms of modes excited close to the gap edge get modified compared to the uniform disk case. The spatial distribution of the excitation torque density is found to be quite different from the existing prescriptions: most of the torque is exerted in a rather narrow region near the gap edge where Lindblad resonances accumulate, followed by an exponential falloff with the distance from the perturber. Despite these differences, for a given gap profile, the full integrated torque exerted on the disk agrees with the conventional uniform disk theory prediction at the level of {approx}10%. The nonlinearity of the density wave excited by the perturber is shown to decrease as the wave travels out of the gap, slowing down its nonlinear evolution and damping. Our results suggest that gap opening in protoplanetary disks and gas clearing around SMBH binaries can be more efficient than the existing theories predict. They pave the way for self-consistent calculations of the gap structure and the orbital evolution of the perturber using accurate prescription for the torque density behavior.

  2. Superradiant scattering of electromagnetic waves emitted from disk around Kerr black holes

    SciTech Connect

    Kobayashi, Taichi; Tomimatsu, Akira

    2010-10-15

    We study electromagnetic perturbations around a Kerr black hole surrounded by a thin disk on the equatorial plane. Our main purpose is to reveal the black hole superradiance of electromagnetic waves emitted from the disk surface. The outgoing Kerr-Schild field is used to describe the disk emission, and the superradiant scattering is represented by a vacuum wave field which is added to satisfy the ingoing condition on the horizon. The formula to calculate the energy flux on the disk surface is presented, and the energy transport in the disk-black hole system is investigated. Within the low-frequency approximation we find that the energy extracted from the rotating black hole is mainly transported back to the disk, and the energy spectrum of electromagnetic waves observed at infinity is also discussed.

  3. Impact of radial migration on the chemical evolution of the Milky Way disk

    NASA Astrophysics Data System (ADS)

    Prantzos, N.; Kubryk, M.; Athanassoula, E.

    2014-07-01

    We study the role of radial migration of stars on the chemical evolution of the Milky Way disk with a 1D semi-analytical disk model. We describe radial migration with parametrised time- and radius-dependent diffusion coefficients, based on the analysis of a N-body+SPH simulation of a disk galaxy (analyzed by Kubryk et al. 2013). Our model reproduces well the present day values of most of the main global observables of the MW. Assuming that the thick disk is the oldest (>9 Gyr) part of the disk, we find that the adopted radial migration scheme can reproduce quantitatively the main local properties of the thin and thick disk: metallicity-distributions, dispersion in age-metallicity relation, "two-branch" behaviour in the O/Fe vs. Fe/H relation, local surface densities of stars, etc..

  4. Refining a relativistic, hydrodynamic solver: Admitting ultra-relativistic flows

    NASA Astrophysics Data System (ADS)

    Bernstein, J. P.; Hughes, P. A.

    2009-09-01

    We have undertaken the simulation of hydrodynamic flows with bulk Lorentz factors in the range 102-106. We discuss the application of an existing relativistic, hydrodynamic primitive variable recovery algorithm to a study of pulsar winds, and, in particular, the refinement made to admit such ultra-relativistic flows. We show that an iterative quartic root finder breaks down for Lorentz factors above 102 and employ an analytic root finder as a solution. We find that the former, which is known to be robust for Lorentz factors up to at least 50, offers a 24% speed advantage. We demonstrate the existence of a simple diagnostic allowing for a hybrid primitives recovery algorithm that includes an automatic, real-time toggle between the iterative and analytical methods. We further determine the accuracy of the iterative and hybrid algorithms for a comprehensive selection of input parameters and demonstrate the latter’s capability to elucidate the internal structure of ultra-relativistic plasmas. In particular, we discuss simulations showing that the interaction of a light, ultra-relativistic pulsar wind with a slow, dense ambient medium can give rise to asymmetry reminiscent of the Guitar nebula leading to the formation of a relativistic backflow harboring a series of internal shockwaves. The shockwaves provide thermalized energy that is available for the continued inflation of the PWN bubble. In turn, the bubble enhances the asymmetry, thereby providing positive feedback to the backflow.

  5. Disk scattering and absorption by an improved computational method.

    PubMed

    Willis, T M; Weil, H

    1987-09-15

    A computer method for determining the scattering, absorption, and internal field structure of thin flat disks of arbitrary refractive index is described. The code is shown to be accurate for all angles of incidence for radii up to at least two free space wavelengths and for media ranging from pure dielectric to highly conductive ones. The accuracy of the method is assessed by comparison with published experimental data and with results computed by other methods. The applicability of this technique for analyzing clouds of disk-shaped aerosols is also discussed.

  6. LAUNCHING AND QUENCHING OF BLACK HOLE RELATIVISTIC JETS AT LOW ACCRETION RATE

    SciTech Connect

    Pu, Hung-Yi; Chang, Hsiang-Kuang; Hirotani, Kouichi

    2012-10-20

    Relativistic jets are launched from black hole (BH) X-ray binaries and active galactic nuclei when the disk accretion rate is below a certain limit (i.e., when the ratio of the accretion rate to the Eddingtion accretion rate, m-dot , is below about 0.01) but quenched when above. We propose a new paradigm to explain this observed coupling between the jet and the accretion disk by investigating the extraction of the rotational energy of a BH when it is surrounded by different types of accretion disk. At low accretion rates (e.g., when m-dot {approx}<0.1), the accretion near the event horizon is quasi-spherical. The accreting plasmas fall onto the event horizon in a wide range of latitudes, breaking down the force-free approximation near the horizon. To incorporate the plasma inertia effect, we consider the magnetohydrodynamical (MHD) extraction of the rotational energy from BHs by the accreting MHD fluid, as described by the MHD Penrose process. It is found that the energy extraction operates, and hence a relativistic jet is launched, preferentially when the accretion disk consists of an outer Shakura-Sunyaev disk (SSD) and an inner advection-dominated accretion flow. When the entire accretion disk type changes into an SSD, the jet is quenched because the plasmas bring more rest-mass energy than what is extracted from the hole electromagnetically to stop the extraction. Several other issues related to observed BH disk-jet couplings, such as why the radio luminosity increases with increasing X-ray luminosity until the radio emission drops, are also explained.

  7. HD 100453: A Link Between Gas-Rich Protoplanetary Disks and Gas-Poor Debris Disks

    NASA Astrophysics Data System (ADS)

    Collins, K. A.; Grady, C. A.; Hamaguchi, K.; Wisniewski, J. P.; Brittain, S.; Sitko, M.; Carpenter, W. J.; Williams, J. P.; Mathews, G. S.; Williger, G. M.; van Boekel, R.; Carmona, A.; Henning, Th.; van den Ancker, M. E.; Meeus, G.; Chen, X. P.; Petre, R.; Woodgate, B. E.

    2009-05-01

    HD 100453 has an IR spectral energy distribution (SED) which can be fit with a power law plus a blackbody. Previous analysis of the SED suggests that the system is a young Herbig Ae star with a gas-rich, flared disk. We reexamine the evolutionary state of the HD 100453 system by refining its age (based on a candidate low-mass companion) and by examining limits on the disk extent, mass accretion rate, and gas content of the disk environment. We confirm that HD 100453B is a common proper motion companion to HD 100453A, with a spectral type of M4.0V-M4.5V, and derive an age of 10 ± 2 Myr. We find no evidence of mass accretion onto the star. Chandra ACIS-S imagery shows that the Herbig Ae star has L x/L bol and an X-ray spectrum similar to nonaccreting β Pic Moving Group early F stars. Moreover, the disk lacks the conspicuous Fe II emission and excess FUV continuum seen in spectra of actively accreting Herbig Ae stars, and from the FUV continuum, we find the accretion rate is < 1.4 × 10-9 M sun yr-1. A sensitive upper limit to the CO J = 3-2 intensity indicates that the gas in the outer disk is likely optically thin. Assuming a [CO]/[H2] abundance of 1 × 10-4 and a depletion factor of 103, we find that the mass of cold molecular gas is less than ~0.33 M J and that the gas-to-dust ratio is no more than ~4:1 in the outer disk. The combination of a high fractional IR excess luminosity, a relatively old age, an absence of accretion signatures, and an absence of detectable circumstellar molecular gas suggests that the HD 100453 system is in an unusual state of evolution between a gas-rich protoplanetary disk and a gas-poor debris disk.

  8. HD 100453: A LINK BETWEEN GAS-RICH PROTOPLANETARY DISKS AND GAS-POOR DEBRIS DISKS

    SciTech Connect

    Collins, K. A.; Williger, G. M.; Grady, C. A. E-mail: williger@physics.louisville.edu

    2009-05-20

    HD 100453 has an IR spectral energy distribution (SED) which can be fit with a power law plus a blackbody. Previous analysis of the SED suggests that the system is a young Herbig Ae star with a gas-rich, flared disk. We reexamine the evolutionary state of the HD 100453 system by refining its age (based on a candidate low-mass companion) and by examining limits on the disk extent, mass accretion rate, and gas content of the disk environment. We confirm that HD 100453B is a common proper motion companion to HD 100453A, with a spectral type of M4.0V-M4.5V, and derive an age of 10 {+-} 2 Myr. We find no evidence of mass accretion onto the star. Chandra ACIS-S imagery shows that the Herbig Ae star has L {sub x}/L {sub bol} and an X-ray spectrum similar to nonaccreting {beta} Pic Moving Group early F stars. Moreover, the disk lacks the conspicuous Fe II emission and excess FUV continuum seen in spectra of actively accreting Herbig Ae stars, and from the FUV continuum, we find the accretion rate is < 1.4 x 10{sup -9} M {sub sun} yr{sup -1}. A sensitive upper limit to the CO J = 3-2 intensity indicates that the gas in the outer disk is likely optically thin. Assuming a [CO]/[H{sub 2}] abundance of 1 x 10{sup -4} and a depletion factor of 10{sup 3}, we find that the mass of cold molecular gas is less than {approx}0.33 M {sub J} and that the gas-to-dust ratio is no more than {approx}4:1 in the outer disk. The combination of a high fractional IR excess luminosity, a relatively old age, an absence of accretion signatures, and an absence of detectable circumstellar molecular gas suggests that the HD 100453 system is in an unusual state of evolution between a gas-rich protoplanetary disk and a gas-poor debris disk.

  9. Relativistic tidal interaction of a white dwarf with a massive black hole

    NASA Technical Reports Server (NTRS)

    Frolov, V. P.; Khokhlov, A. M.; Novikov, I. D.; Pethick, C. J.

    1994-01-01

    We compute encounters of a realistic white dwarf model with a massive black hole in the regime where relativistic effects are important, using a three-dimensional, finite-difference, Eulerian, piecewise parabolic method (PPM) hydrodynamical code. Both disruptive and nondisruptive encounters are considered. We identify and discuss relativistic effects important for the problem: relativistic shift of the pericenter distance, time delay, relativistic precession, and the tensorial structure of the tidal forces. In the nondisruptive case, stripping of matter takes place. In the surface layers of the surviving core, complicated hydrodynamical phenomena are revealed. In both disruptive and nondispruptive encounters, material flows out in the form of two thin, S-shaped, supersonic jets. Our results provide realistic initial conditions for the subsequent investigation of the dynamics of the debris in the field of the black hole. We evaluate the critical conditions for complete disruption of the white dwarf, and compare our results with the corresponding results for nonrelativistic encounters.

  10. DUST EVOLUTION CAN PRODUCE SCATTERED LIGHT GAPS IN PROTOPLANETARY DISKS

    SciTech Connect

    Birnstiel, Tilman; Andrews, Sean M.; Pinilla, Paola; Kama, Mihkel E-mail: sandrews@cfa.harvard.edu E-mail: mkama@strw.leidenuniv.nl

    2015-11-01

    Recent imaging of protoplanetary disks with high resolution and contrast have revealed a striking variety of substructure. Of particular interest are cases where near-infrared scattered light images show evidence for low-intensity annular “gaps.” The origins of such structures are still uncertain, but the interaction of the gas disk with planets is a common interpretation. We study the impact that the evolution of the solid material can have on the observable properties of disks in a simple scenario without any gravitational or hydrodynamical disturbances to the gas disk structure. Even with a smooth and continuous gas density profile, we find that the scattered light emission produced by small dust grains can exhibit ring-like depressions similar to those presented in recent observations. The physical mechanisms responsible for these features rely on the inefficient fragmentation of dust particles. The occurrence and position of the proposed “gap” features depend most strongly on the dust-to-gas ratio, the fragmentation threshold velocity, the strength of the turbulence, and the age of the disk, and should be generic (at some radius) for typically adopted disk parameters. The same physical processes can affect the thermal emission at optically thin wavelengths (∼1 mm), although the behavior can be more complex; unlike for disk–planet interactions, a “gap” should not be present at these longer wavelengths.

  11. On the viability of the magnetorotational instability in circumplanetary disks

    SciTech Connect

    Fujii, Yuri I.; Okuzumi, Satoshi; Inutsuka, Shu-ichiro; Tanigawa, Takayuki

    2014-04-20

    We examine whether the magnetorotational instability (MRI) can serve as a mechanism of angular momentum transport in circumplanetary disks. For the MRI to operate the ionization degree must be sufficiently high and the magnetic pressure must be sufficiently lower than the gas pressure. We calculate the spatial distribution of the ionization degree and search for the MRI-active region where the two criteria are met. We find that there can be thin active layers at the disk surface depending on the model parameters, however, we find hardly any region which can sustain well-developed MRI turbulence; when the magnetic field is enhanced by MRI turbulence at the disk surface layer, a magnetically dominated atmosphere encroaches on a lower altitude and a region of well-developed MRI turbulence becomes smaller. We conclude that if there are no angular momentum transfer mechanisms other than MRI in gravitationally stable circumplanetary disks, gas is likely to pile up until disks become gravitationally unstable, and massive disks may survive for a long time.

  12. Cold Dark Matter Substructure and Galactic Disks I: Morphological Signatures of Hierarchical SatelliteAccretion

    SciTech Connect

    Kazantzidis, Stelios; Bullock, James S.; Zentner, Andrew R.; Kravtsov, Andrey V.; Moustakas, Leonidas A.

    2007-12-03

    We conduct a series of high-resolution, fully self-consistent dissipation less N-body simulations to investigate the cumulative effect of substructure mergers onto thin disk galaxies in the context of the {Lambda}CDM paradigm of structure formation. Our simulation campaign is based on a hybrid approach combining cosmological simulations and controlled numerical experiments. Substructure mass functions, orbital distributions, internal structures, and accretion times are culled directly from cosmological simulations of galaxy-sized cold dark matter (CDM) halos. We demonstrate that accretions of massive subhalos onto the central regions of host halos, where the galactic disk resides, since z {approx} 1 should be common occurrences. In contrast, extremely few satellites in present-day CDM halos are likely to have a significant impact on the disk structure. This is due to the fact that massive subhalos with small orbital pericenters that are most capable of strongly perturbing the disk become either tidally disrupted or suffer substantial mass loss prior to z = 0. One host halo merger history is subsequently used to seed controlled N-body experiments of repeated satellite impacts on an initially-thin Milky Way-type disk galaxy. These simulations track the effects of six dark matter substructures, with initial masses in the range {approx} (0.7-2) x 10{sup 10} M{sub {circle_dot}} ({approx} 20-60% of the disk mass), crossing the disk in the past {approx} 8 Gyr. We show that these accretion events produce several distinctive observational signatures in the stellar disk including: a long-lived, low-surface brightness, ring-like feature in the outskirts; a significant flare; a central bar; and faint filamentary structures that (spuriously) resemble tidal streams in configuration space. The final distribution of disk stars exhibits a complex vertical structure that is well-described by a standard 'thin-thick' disk decomposition, where the 'thick' disk component has emerged

  13. DVD - digital versatile disks

    SciTech Connect

    Gaunt, R.

    1997-05-01

    An international standard has emerged for the first true multimedia format. Digital Versatile Disk (by its official name), you may know it as Digital Video Disks. DVD has applications in movies, music, games, information CD-ROMS, and many other areas where massive amounts of digital information is needed. Did I say massive amounts of data? Would you believe over 17 gigabytes on a single piece of plastic the size of an audio-CD? That`s the promise, at least, by the group of nine electronics manufacturers who have agreed to the format specification, and who hope to make this goal a reality by 1998. In this major agreement, which didn`t come easily, the manufacturers will combine Sony and Phillip`s one side double-layer NMCD format with Toshiba and Matsushita`s double sided Super-Density disk. By Spring of this year, they plan to market the first 4.7 gigabyte units. The question is: Will DVD take off? Some believe that read-only disks recorded with movies will be about as popular as video laser disks. They say that until the eraseable/writable DVD arrives, the consumer will most likely not buy it. Also, DVD has a good market for replacement of CD- Roms. Back in the early 80`s, the international committee deciding the format of the audio compact disk decided its length would be 73 minutes. This, they declared, would allow Beethoven`s 9th Symphony to be contained entirely on a single CD. Similarly, today it was agreed that playback length of a single sided, single layer DVD would be 133 minutes, long enough to hold 94% of all feature-length movies. Further, audio can be in Dolby`s AC-3 stereo or 5.1 tracks of surround sound, better than CD-quality audio (16-bits at 48kHz). In addition, there are three to five language tracks, copy protection and parental ``locks`` for R rated movies. DVD will be backwards compatible with current CD-ROM and audio CD formats. Added versatility comes by way of multiple aspect rations: 4:3 pan-scan, 4:3 letterbox, and 16:9 widescreen. MPEG

  14. Volatile snowlines in embedded disks around low-mass protostars

    NASA Astrophysics Data System (ADS)

    Harsono, D.; Bruderer, S.; van Dishoeck, E. F.

    2015-10-01

    Context. Models of the young solar nebula assume a hot initial disk in which most volatiles are in the gas phase. Water emission arising from within 50 AU radius has been detected around low-mass embedded young stellar objects. The question remains whether an actively accreting disk is warm enough to have gas-phase water up to 50 AU radius. No detailed studies have yet been performed on the extent of snowlines in an accreting disk embedded in a dense envelope (stage 0). Aims: We aim to quantify the location of gas-phase volatiles in the inner envelope and disk system for an actively accreting embedded disk. Methods: Two-dimensional physical and radiative transfer models were used to calculate the temperature structure of embedded protostellar systems. Heating due to viscous accretion was added through the diffusion approximation. Gas and ice abundances of H2O, CO2, and CO were calculated using the density-dependent thermal desorption formulation. Results: The midplane water snowline increases from 3 to ~55 AU for accretion rates through the disk onto the star between 10-9-10-4M⊙ yr-1. CO2 can remain in the solid phase within the disk for Ṁ ≤ 10-5M⊙ yr-1 down to ~20 AU. Most of the CO is in the gas phase within an actively accreting disk independent of disk properties and accretion rate. The predicted optically thin water isotopolog emission is consistent with the detected H218O emission toward the stage 0 embedded young stellar objects, originating from both the disk and the warm inner envelope (hot core). An accreting embedded disk can only account for water emission arising from R< 50 AU, however, and the extent rapidly decreases for Ṁ ≤ 10-5M⊙ yr-1. Thus, the radial extent of the emission can be measured with future ALMA observations and compared to this 50 AU limit. Conclusions: Volatiles such as H2O, CO2, CO, and the associated complex organics sublimate out to 50 AU in the midplane of young disks and, thus, can reset the chemical content

  15. Warping and tearing of misaligned circumbinary disks around eccentric supermassive black hole binaries

    SciTech Connect

    Hayasaki, K.; Sohn, B.W.; Jung, T.; Zhao, G.; Okazaki, A.T.; Naito, T. E-mail: bwsohn@kasi.re.kr E-mail: thjung@kasi.re.kr E-mail: tsuguya@ygu.ac.jp

    2015-07-01

    We study the warping and tearing of a geometrically thin, non-self-gravitating disk surrounding binary supermassive black holes on an eccentric orbit. The circumbinary disk is significantly misaligned with the binary orbital plane, and is subject to the time-dependent tidal torques. In principle, such a disk is warped and precesses, and is torn into mutually misaligned rings in the region, where the tidal precession torques are stronger than the local viscous torques. We derive the tidal-warp and tearing radii of the misaligned circumbinary disks around eccentric SMBH binaries. We find that in disks with the viscosity parameter α larger than a critical value depending on the disk aspect ratio, the disk warping appears outside the tearing radius. This condition is expressed for small amplitude warps as α > √H/(3r) for H/r∼<0.1, where H is the disk scale height. If α < √H/(3r), only the disk tearing occurs because the tidal warp radius is inside the tearing radius, where most of disk material is likely to rapidly accrete onto SMBHs. In warped and torn disks, both the tidal-warp and the tearing radii most strongly depend on the binary semi-major axis, although they also mildly depend on the other orbital and disk parameters. This strong dependence enables us to estimate the semi-major axis, once the tidal warp or tearing radius is determined observationally: for the tidal warp radius of 0.1 pc, the semi-major axis is estimated to be ∼10{sup −2} pc for 10{sup 7} M{sub ⊙} black hole with typical orbital and disk parameters. We also briefly discuss the possibility that central objects of observed warped maser disks in active galactic nuclei are supermassive black hole binaries.

  16. ACCRETION OUTBURSTS IN CIRCUMPLANETARY DISKS

    SciTech Connect

    Lubow, S. H.; Martin, R. G.

    2012-04-20

    We describe a model for the long-term evolution of a circumplanetary disk that is fed mass from a circumstellar disk and contains regions of low turbulence (dead zones). We show that such disks can be subject to accretion-driven outbursts, analogous to outbursts previously modeled in the context of circumstellar disks to explain FU Ori phenomena. Circumplanetary disks around a proto-Jupiter can undergo outbursts for infall accretion rates onto the disks in the range M-dot{sub infall} approx. 10{sup -9} to 10{sup -7} M{sub Sun} yr{sup -1}, typical of accretion rates in the T Tauri phase. During outbursts, the accretion rate and disk luminosity increases by several orders of magnitude. Most of the planet mass growth during planetary gas accretion may occur via disk outbursts involving gas that is considerably hotter than predicted by steady state models. For low infall accretion rates M-dot{sub infall} {approx}< 10{sup -10} M{sub sun} yr{sup -1} that occur in late stages of disk accretion, disk outbursts are unlikely to occur, even if dead zones are present. Such conditions are favorable for the formation of icy satellites.

  17. Shielding of relativistic protons.

    PubMed

    Bertucci, A; Durante, M; Gialanella, G; Grossi, G; Manti, L; Pugliese, M; Scampoli, P; Mancusi, D; Sihver, L; Rusek, A

    2007-06-01

    Protons are the most abundant element in the galactic cosmic radiation, and the energy spectrum peaks around 1 GeV. Shielding of relativistic protons is therefore a key problem in the radiation protection strategy of crewmembers involved in long-term missions in deep space. Hydrogen ions were accelerated up to 1 GeV at the NASA Space Radiation Laboratory, Brookhaven National Laboratory, New York. The proton beam was also shielded with thick (about 20 g/cm2) blocks of lucite (PMMA) or aluminium (Al). We found that the dose rate was increased 40-60% by the shielding and decreased as a function of the distance along the axis. Simulations using the General-Purpose Particle and Heavy-Ion Transport code System (PHITS) show that the dose increase is mostly caused by secondary protons emitted by the target. The modified radiation field after the shield has been characterized for its biological effectiveness by measuring chromosomal aberrations in human peripheral blood lymphocytes exposed just behind the shield block, or to the direct beam, in the dose range 0.5-3 Gy. Notwithstanding the increased dose per incident proton, the fraction of aberrant cells at the same dose in the sample position was not significantly modified by the shield. The PHITS code simulations show that, albeit secondary protons are slower than incident nuclei, the LET spectrum is still contained in the low-LET range (<10 keV/microm), which explains the approximately unitary value measured for the relative biological effectiveness. PMID:17256178

  18. The Disk-Jet Connection in Radio-Loud AGN: The X-Ray Perspective

    NASA Technical Reports Server (NTRS)

    Sambruna, Rita

    2008-01-01

    Unification schemes assume that radio-loud active galactic nuclei (AGN) contain an accretion disk and a relativistic jet perpendicular to the disk, and an obscuring molecular torus. The jet dominance decreases with larger viewing angles from blazars to Broad-Line and Narrow-Line Radio Galaxies. A fundamental question is how accretion and ejecta are related. The X-rays provide a convenient window to study these issues, as they originate in the innermost nuclear regions and penetrate large obscuring columns. I review the data, using observations by Chandra but also from other currently operating high-energy experiments. Synergy with the upcoming GLAST mission will also be highlighted.

  19. Relativistic breakdown in planetary atmospheres

    SciTech Connect

    Dwyer, J. R.

    2007-04-15

    In 2003, a new electrical breakdown mechanism involving the production of runaway avalanches by positive feedback from runaway positrons and energetic photons was introduced. This mechanism, which shall be referred to as 'relativistic feedback', allows runaway discharges in gases to become self-sustaining, dramatically increasing the flux of runaway electrons, the accompanying high-energy radiation, and resulting ionization. Using detailed Monte Carlo calculations, properties of relativistic feedback are investigated. It is found that once relativistic feedback fully commences, electrical breakdown will occur and the ambient electric field, extending over cubic kilometers, will be discharged in as little as 2x10{sup -5} s. Furthermore, it is found that the flux of energetic electrons and x rays generated by this mechanism can exceed the flux generated by the standard relativistic runaway electron model by a factor of 10{sup 13}, making relativistic feedback a good candidate for explaining terrestrial gamma-ray flashes and other high-energy phenomena observed in the Earth's atmosphere.

  20. PLANETARY NEBULAE IN FACE-ON SPIRAL GALAXIES. III. PLANETARY NEBULA KINEMATICS AND DISK MASS

    SciTech Connect

    Herrmann, Kimberly A.; Ciardullo, Robin E-mail: rbc@astro.psu.ed

    2009-11-10

    Much of our understanding of dark matter halos comes from the assumption that the mass-to-light ratio (Y) of spiral disks is constant. The best way to test this hypothesis is to measure the disk surface mass density directly via the kinematics of old disk stars. To this end, we have used planetary nebulae (PNe) as test particles and have measured the vertical velocity dispersion (sigma{sub z}) throughout the disks of five nearby, low-inclination spiral galaxies: IC 342, M74 (NGC 628), M83 (NGC 5236), M94 (NGC 4736), and M101 (NGC 5457). By using H I to map galactic rotation and the epicyclic approximation to extract sigma{sub z} from the line-of-sight dispersion, we find that, with the lone exception of M101, our disks do have a constant Y out to approx3 optical scale lengths (h{sub R} ). However, once outside this radius, sigma{sub z} stops declining and becomes flat with radius. Possible explanations for this behavior include an increase in the disk mass-to-light ratio, an increase in the importance of the thick disk, and heating of the thin disk by halo substructure. We also find that the disks of early type spirals have higher values of Y and are closer to maximal than the disks of later-type spirals, and that the unseen inner halos of these systems are better fit by pseudo-isothermal laws than by NFW models.

  1. A SCALING RELATION BETWEEN MEGAMASER DISK RADIUS AND BLACK HOLE MASS IN ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Wardle, Mark; Yusef-Zadeh, Farhad E-mail: zadeh@northwestern.edu

    2012-05-10

    Several thin, Keplerian, sub-parsec megamaser disks have been discovered in the nuclei of active galaxies and used to precisely determine the mass of their host black holes. We show that there is an empirical linear correlation between the disk radius and the black hole mass. We demonstrate that such disks are naturally formed by the partial capture of molecular clouds passing through the galactic nucleus and temporarily engulfing the central supermassive black hole. Imperfect cancellation of the angular momenta of the cloud material colliding after passing on opposite sides of the hole leads to the formation of a compact disk. The radial extent of the disk is determined by the efficiency of this process and the Bondi-Hoyle capture radius of the black hole, and naturally produces the empirical linear correlation of the radial extent of the maser distribution with black hole mass. The disk has sufficient column density to allow X-ray irradiation from the central source to generate physical and chemical conditions conducive to the formation of 22 GHz H{sub 2}O masers. For initial cloud column densities {approx}< 10{sup 23.5} cm{sup -2} the disk is non-self-gravitating, consistent with the ordered kinematics of the edge-on megamaser disks; for higher cloud columns the disk would fragment and produce a compact stellar disk similar to that observed around Sgr A* at the galactic center.

  2. The Frequency of Binary Star Interlopers Amongst Transitional Disks.

    NASA Astrophysics Data System (ADS)

    Ruíz-Rodríguez, D.; Ireland, M.; Cieza, L.; Kraus, A.

    2016-09-01

    Using Non-Redundant Mask interferometry (NRM), we searched for binary companions to objects previously classified as Transitional Disks (TD). These objects are thought to be an evolutionary stage between an optically thick disk and optically thin disk. We investigate the presence of a stellar companion as a possible mechanism of material depletion in the inner region of these disks, which would rule out an ongoing planetary formation process in distances comparable to the binary separation. For our detection limits, we implement a new method of completeness correction using a combination of randomly sampled binary orbits and Bayesian inference. The selected sample of 24 TDs belong to the nearby and young star forming regions: Ophiuchus (˜ 130 pc), Taurus-Auriga (˜ 140 pc) and IC348 ( ˜ 220 pc). These regions are suitable to resolve faint stellar companions with moderate to high confidence levels at distances as low as 2 au from the central star. With a total of 31 objects, including 11 known TDs and circumbinary disks from the literature, we have found that a fraction of 0.38 ± 0.09 of the SEDs of these objects are likely due to the tidal interaction between a close binary and its disk, while the remaining SEDs are likely the result of other internal processes such as photoevaporation, grain growth, planet disk interactions. In addition, we detected four companions orbiting outside the area of the truncation radii and we propose that the IR excesses of these systems are due to a disk orbiting a secondary companion

  3. Constraining the Milky Way thick disk formation: Chemical characterization of the thick disk outside of the solar neighbourhood

    NASA Astrophysics Data System (ADS)

    Posbic, H.; Katz, D.; Haywood, M.; Bonifacio, P.; Caffau, E.; Gomez, A.; Sbordone, L.; Arenou, F.; Royer, F.

    2012-12-01

    The formation of the Milky Way disk is still an open question. Many scenarios are proposed. Different formation scenarios predict different disk chemical trends. This work aims to chemically characterize the Milky Way disk inside and outside the solar neighbourhood, to better constrain its formation scenario. This is possible thanks to high resolution spectra of 200 disk stars observed using the Giraffe spectrograph on the Very Large Telescope (VLT). They were selected to have galactic altitudes |Z| that cover both the thin and thick disk (|Z| up to 2 kpc). The new automatic spectra analysis software SPADES (Stellar PArameters DEtermination Software, Posbic et al. 2012) was used to determine the stellar parameters, and most importantly, the elemental abundances of these stars. The distances of these stars were also determined. The metallicity distribution function of the disk using this sample was calculated. It showed a large contribution of the thick disk stars and a smooth transition at the metallicity of the thick disk/halo interface. The vertical behaviour of the metallicity distribution function was also studied. A vertical metallicity gradient in the disk of partial [Fe/H] / partial |Z| = -0.19 ± 0.14 dex/kpc was marginally detected at the 1.4 sigma level. The [Ti/Fe] and [Ca/Fe] vs [Fe/H] trends for the stars are determined. The main result of the analysis is that the trends of [Ca/Fe] vs [Fe/H] and [Ti/Fe] vs [Fe/H] show no significant difference close (i.e. |Z| leq 1 kpc) and farther away (1 < |Z| < 2.5 kpc) from the Galactic plane. This suggests that thick disk gas and stars have been enriched by the same proportion of type II and type I super-novae from the galactic plane up to at least 2.5 kpc. These results support thick disk formation scenarios like collapse or gas-rich accretion and disfavour a thick disk formed of stars captured during a merger event.

  4. Relativistic atomic beam spectroscopy. Progress report, February 1--September 30, 1990

    SciTech Connect

    Bryant, H.C.

    1990-12-31

    This year major advances have been made in 3 areas: high-lying, doubly-excited resonance states in the H{sup -}, interaction of relativistic H{sup -} ions with thin carbon foils, and multiphoton photodetachment. We plan to pursue these studies further.

  5. Probing galactic disks with planetary nebulae

    NASA Astrophysics Data System (ADS)

    Herrmann, Kimberly A.

    PNe in IC 342, M74, M83, M94, and M101, respectively, to better than 15 km s -1 precision. I performed rigorous tests to determine my velocity uncertainties and I examined the line ratios of the spectra as well. Using these data, I have determined disk mass surface density directly by analyzing the vertical velocity dispersion (s z ) of 550 planetaries in the previously mentioned five nearby low inclination spirals. I removed galactic rotation using H I rotation curves and isolated s z from the velocity ellipsoid by using the epicyclic approximation, a maximum likelihood analysis, and stability arguments. Results from edge-on spirals helped me to estimate the vertical scale height, h z , initially assumed to be constant with radius. My results are interesting. In most cases, within ~3 h R , the exponential decrease of s z generally follows that of the light, indicating that M/L is indeed constant in the inner regions of my galaxies. These results agree with absorption line studies out to 1.5 h R . However, in the two galaxies with significant data beyond 4 h R , s z stops declining and drastically flattens out. Possible physical explanations for my results include (1) variations in the light profile (i.e., a broken exponential) and flaring, possibly indicative of a transition between the thin and thick disks and (2) heating of the disk by halo substructure.

  6. A Hard Look at Neutron Star Radii and Disks with XMM-Newton and NuSTAR

    NASA Astrophysics Data System (ADS)

    Miller, Jon

    2013-10-01

    We request 40 ks observations of Cygnus X-2, 4U 1636-53, GX 17+2 and 4U 1705-44, jointly with XMM-Newton and NuSTAR. The primary goals are to test the ubiquity of relativistic lines in "Z" and "atoll" sources, and to obtain constraints on stellar radii and/or inner disk radii in cases where relativistic lines are found. With NuSTAR as a guide, we will determine when pile-up has been removed from the EPIC-pn ``timing'' mode observations via the exclusion of central pixels. We can then fully leverage the superior resolution of the EPIC-pn in the Fe K band in order to check for ionized disk winds that could distort disk reflection. The low energy coverage of XMM-Newton will give the best possible contraints on the direct continuum and the neutral line-of-sight absorption.

  7. CO GAS INSIDE THE PROTOPLANETARY DISK CAVITY IN HD 142527: DISK STRUCTURE FROM ALMA

    SciTech Connect

    Perez, S.; Casassus, S.; Van der Plas, G.; Christiaens, V.; Ménard, F.; Roman, P.; Cieza, L.; Hales, A. S.; Pinte, C.

    2015-01-10

    Inner cavities and annular gaps in circumstellar disks are possible signposts of giant planet formation. The young star HD 142527 hosts a massive protoplanetary disk with a large cavity that extends up to 140 AU from the central star, as seen in continuum images at infrared and millimeter wavelengths. Estimates of the survival of gas inside disk cavities are needed to discriminate between clearing scenarios. We present a spatially and spectrally resolved carbon monoxide isotopologue observations of the gas-rich disk HD 142527, in the J = 2-1 line of {sup 12}CO, {sup 13}CO, and C{sup 18}O obtained with the Atacama Large Millimeter/submillimeter Array (ALMA). We detect emission coming from inside the dust-depleted cavity in all three isotopologues. Based on our analysis of the gas in the dust cavity, the {sup 12}CO emission is optically thick, while {sup 13}CO and C{sup 18}O emissions are both optically thin. The total mass of residual gas inside the cavity is ∼1.5-2 M {sub Jup}. We model the gas with an axisymmetric disk model. Our best-fit model shows that the cavity radius is much smaller in CO than it is in millimeter continuum and scattered light observations, with a gas cavity that does not extend beyond 105 AU (at 3σ). The gap wall at its outer edge is diffuse and smooth in the gas distribution, while in dust continuum it is manifestly sharper. The inclination angle, as estimated from the high velocity channel maps, is 28 ± 0.5 deg, higher than in previous estimates, assuming a fix central star mass of 2.2 M {sub ☉}.

  8. Fluctuations in relativistic causal hydrodynamics

    NASA Astrophysics Data System (ADS)

    Kumar, Avdhesh; Bhatt, Jitesh R.; Mishra, Ananta P.

    2014-05-01

    Formalism to calculate the hydrodynamic fluctuations by applying the Onsager theory to the relativistic Navier-Stokes equation is already known. In this work, we calculate hydrodynamic fluctuations within the framework of the second order hydrodynamics of Müller, Israel and Stewart and its generalization to the third order. We have also calculated the fluctuations for several other causal hydrodynamical equations. We show that the form for the Onsager-coefficients and form of the correlation functions remain the same as those obtained by the relativistic Navier-Stokes equation and do not depend on any specific model of hydrodynamics. Further we numerically investigate evolution of the correlation function using the one dimensional boost-invariant (Bjorken) flow. We compare the correlation functions obtained using the causal hydrodynamics with the correlation function for the relativistic Navier-Stokes equation. We find that the qualitative behavior of the correlation functions remains the same for all the models of the causal hydrodynamics.

  9. Toward a relativistic gas dynamics

    SciTech Connect

    Solovev, L.S.

    1982-01-01

    Macroscopic gas dynamics on the basis of general-relativity equations is examined. An additional equation is derived which provides for completeness of the system of relativistic gasdynamic equations. Relativistic equations of two-fluid electromagnetic gas dynamics are obtained. The introduction of appropriate energy-momentum tensors makes it possible to allow for dissipative processes conditioned by viscosity, thermal conductivity, radiative thermal conductivity, ohmic resistance, and ion-electron temperature difference. The problem of generalizing the Friedmann cosmological model in the case of particle production and annihilation is considered. Also, considered are gas equilibrium in a spherically symmetric gravitational field and a two-fluid relativistic stream in an intrinsic electromagnetic field. 16 references.

  10. Inversions for axisymmetric galactic disks

    NASA Astrophysics Data System (ADS)

    Hiotelis, N.; Patsis, P. A.

    1993-08-01

    We use two models for the distribution function to solve an inverse problem for axisymmetric disks. These systems may be considered - under certain assumptions - as galactic disks. In some cases the solutions of the resulting integral equations are simple, which allows the determination of the kinematic properties of self-consistent models for these systems. These properties for then = 1 Toomre disk are presented in this study.

  11. Upper lumbar disk herniations.

    PubMed

    Cedoz, M E; Larbre, J P; Lequin, C; Fischer, G; Llorca, G

    1996-06-01

    Specific features of upper lumbar disk herniations are reviewed based on data from the literature and from a retrospective study of 24 cases treated surgically between 1982 and 1994 (seven at L1-L2 and 17 at L2-L3). Clinical manifestations are polymorphic, misleading (abdominogenital pain suggestive of a visceral or psychogenic condition, meralgia paresthetica, isolated sciatica; femoral neuralgia is uncommon) and sometimes severe (five cases of cauda equina syndrome in our study group). The diagnostic usefulness of imaging studies (radiography, myelography, computed tomography, magnetic resonance imaging) and results of surgery are discussed. The risk of misdiagnosis and the encouraging results of surgery are emphasized. PMID:8817752

  12. Photoevaporation of Disks and Clumps by Nearby Massive Stars: Application to Disk Destruction in the Orion Nebula

    NASA Astrophysics Data System (ADS)

    Johnstone, Doug; Hollenbach, David; Bally, John

    1998-05-01

    We present a model for the photoevaporation of circumstellar disks or dense clumps of gas by an external source of ultraviolet radiation. Our model includes the thermal and dynamic effects of 6-13.6 eV far-ultraviolet (FUV) photons and Lyman continuum EUV photons incident upon disks or clumps idealized as spheres of radius rd and enclosed mass M*. For sufficiently large values of rd/M*, the radiation field evaporates the surface gas and dust. Analytical and numerical approximations to the resulting flows are presented; the model depends on rd, M*, the flux of FUV and EUV photons, and the column density of neutral gas heated by FUV photons to high temperatures. Application of this model shows that the circumstellar disks (rd ~ 1014-1015 cm) in the Orion Nebula (``proplyds'') are rapidly destroyed by the external UV radiation field. Close (d <~ 1017 cm) to θ1 Ori C, the ionizing EUV photon flux controls the mass-loss rate, and the ionization front (IF) is approximately coincident with the disk surface. Gas evaporated from the cold disk moves subsonically through a relatively thin photodissociation region (PDR) dominated by FUV photons and heated to ~1000 K. As the distance from θ1 Ori C increases, the Lyman continuum flux declines, the PDR thickens, and the IF moves away from the disk surface. At d ~ 3 × 1017 cm, the thickness of the PDR becomes comparable to the disk radius. Between 3 × 1017 cm <~ d <~ 1018 cm, spherical divergence and the resultant pressure gradient in the 103 K PDR forms a mildly supersonic (~3-6 km s-1) but neutral Parker wind. This wind flows outward until it passes through a shock, beyond which gas moves subsonically through a stationary D-type IF. The IF is moved away from the disk surface to a standoff distance rIF >~ 2.5rd. In this regime, the mass-loss rate is determined by the incident FUV photon flux and not the ionizing flux. However, at very large distances, d >~ 1018 cm, the FUV photon flux drops to values that cannot maintain the

  13. No Disk Winds in Failed Black Hole Outbursts? New Observations of H1743-322

    NASA Astrophysics Data System (ADS)

    Neilsen, Joseph; Coriat, Mickael; Motta, Sara; Fender, Rob P.; Ponti, Gabriele; Corbel, Stephane

    2016-04-01

    The rich and complex physics of stellar-mass black holes in outburst is often referred to as the "disk-jet connection," a term that encapsulates the evolution of accretion disks over several orders of magnitude in Eddington ratio; through Compton scattering, reflection, and thermal emission; as they produce steady compact jets, relativistic plasma ejections, and (from high spectral resolution revelations of the last 15 years) massive, ionized disk winds. It is well established that steady jets are associated with radiatively inefficient X-ray states, and that winds tend to appear during states with more luminous disks, but the underlying physical processes that govern these connections (and their changes during state transitions) are not fully understood. I will present a unique perspective on the disk-wind-jet connection based on new Chandra HETGS, NuSTAR, and JVLA observations of the black hole H1743-322. Rather than following the usual outburst track, the 2015 outburst of H1743 fizzled: the disk never appeared in X-rays, and the source remained spectrally hard for the entire ~100 days. Remarkably, we find no evidence for any accretion disk wind in our data, even though H1743-322 has produced winds at comparable hard X-ray luminosities. I will discuss the implications of this "failed outburst" for our picture of winds from black holes and the astrophysics that governs them.

  14. CONSTRAINTS ON COMPTON-THICK WINDS FROM BLACK HOLE ACCRETION DISKS: CAN WE SEE THE INNER DISK?

    SciTech Connect

    Reynolds, Christopher S.

    2012-11-01

    Strong evidence is emerging that winds can be driven from the central regions of accretion disks in both active galactic nuclei and Galactic black hole binaries. Direct evidence for highly ionized, Compton-thin inner-disk winds comes from observations of blueshifted (v {approx} 0.05-0.1c) iron-K X-ray absorption lines. However, it has been suggested that the inner regions of black hole accretion disks can also drive Compton-thick winds-such winds would enshroud the inner disk, preventing us from seeing direct signatures of the accretion disk (i.e., the photospheric thermal emission, or the Doppler/gravitationally broadened iron K{alpha} line). Here, we show that, provided the source is sub-Eddington, the well-established wind-driving mechanisms fail to launch a Compton-thick wind from the inner disk. For the accelerated region of the wind to be Compton-thick, the momentum carried in the wind must exceed the available photon momentum by a factor of at least 2/{lambda}, where {lambda} is the Eddington ratio of the source, ruling out radiative acceleration unless the source is very close to the Eddington limit. Compton-thick winds also carry large mass fluxes, and a consideration of the connections between the wind and the disk shows this to be incompatible with magneto-centrifugal driving. Finally, thermal driving of the wind is ruled out on the basis of the large Compton radii that typify black hole systems. In the absence of some new acceleration mechanisms, we conclude that the inner regions of sub-Eddington accretion disks around black holes are indeed naked.

  15. Hall Effect Controlled Gas Dynamics in Protoplanetary Disks. II. Full 3D Simulations toward the Outer Disk

    NASA Astrophysics Data System (ADS)

    Bai, Xue-Ning

    2015-01-01

    We perform three-dimensional stratified shearing-box magnetohydrodynamic (MHD) simulations on the gas dynamics of protoplanetary disks with a net vertical magnetic flux of B z0. All three nonideal MHD effects, Ohmic resistivity, the Hall effect, and ambipolar diffusion, are included in a self-consistent manner based on equilibrium chemistry. We focus on regions toward outer disk radii, from 5 to 60 AU, where Ohmic resistivity tends to become negligible, ambipolar diffusion dominates over an extended region across the disk height, and the Hall effect largely controls the dynamics near the disk midplane. We find that at around R = 5 AU the system launches a laminar or weakly turbulent magnetocentrifugal wind when the net vertical field B z0 is not too weak. Moreover, the wind is able to achieve and maintain a configuration with reflection symmetry at the disk midplane. The case with anti-aligned field polarity ({\\boldsymbol{Ω }}\\cdot {\\boldsymbol{B}}z0<0) is more susceptible to the magnetorotational instability (MRI) when B z0 decreases, leading to an outflow oscillating in radial directions and very inefficient angular momentum transport. At the outer disk around and beyond R = 30 AU, the system shows vigorous MRI turbulence in the surface layer due to far-UV ionization, which efficiently drives disk accretion. The Hall effect affects the stability of the midplane region to the MRI, leading to strong/weak Maxwell stress for aligned/anti-aligned field polarities. Nevertheless, the midplane region is only very weakly turbulent in both cases. Overall, the basic picture is analogous to the conventional layered accretion scenario applied to the outer disk. In addition, we find that the vertical magnetic flux is strongly concentrated into thin, azimuthally extended shells in most of our simulations beyond 15 AU, leading to enhanced radial density variations know as zonal flows. Theoretical implications and observational consequences are briefly discussed.

  16. HALL EFFECT CONTROLLED GAS DYNAMICS IN PROTOPLANETARY DISKS. II. FULL 3D SIMULATIONS TOWARD THE OUTER DISK

    SciTech Connect

    Bai, Xue-Ning

    2015-01-10

    We perform three-dimensional stratified shearing-box magnetohydrodynamic (MHD) simulations on the gas dynamics of protoplanetary disks with a net vertical magnetic flux of B {sub z0}. All three nonideal MHD effects, Ohmic resistivity, the Hall effect, and ambipolar diffusion, are included in a self-consistent manner based on equilibrium chemistry. We focus on regions toward outer disk radii, from 5 to 60 AU, where Ohmic resistivity tends to become negligible, ambipolar diffusion dominates over an extended region across the disk height, and the Hall effect largely controls the dynamics near the disk midplane. We find that at around R = 5 AU the system launches a laminar or weakly turbulent magnetocentrifugal wind when the net vertical field B {sub z0} is not too weak. Moreover, the wind is able to achieve and maintain a configuration with reflection symmetry at the disk midplane. The case with anti-aligned field polarity (Ω⋅B{sub z0}<0) is more susceptible to the magnetorotational instability (MRI) when B {sub z0} decreases, leading to an outflow oscillating in radial directions and very inefficient angular momentum transport. At the outer disk around and beyond R = 30 AU, the system shows vigorous MRI turbulence in the surface layer due to far-UV ionization, which efficiently drives disk accretion. The Hall effect affects the stability of the midplane region to the MRI, leading to strong/weak Maxwell stress for aligned/anti-aligned field polarities. Nevertheless, the midplane region is only very weakly turbulent in both cases. Overall, the basic picture is analogous to the conventional layered accretion scenario applied to the outer disk. In addition, we find that the vertical magnetic flux is strongly concentrated into thin, azimuthally extended shells in most of our simulations beyond 15 AU, leading to enhanced radial density variations know as zonal flows. Theoretical implications and observational consequences are briefly discussed.

  17. PRE-TRANSITIONAL DISK NATURE OF THE AB Aur DISK

    SciTech Connect

    Honda, M.; Inoue, A. K.; Okamoto, Y. K.; Kataza, H.; Fujiwara, H.; Kamizuka, T.; Fukagawa, M.; Yamashita, T.; Tamura, M.; Hashimoto, J.; Fujiyoshi, T.; Miyata, T.; Sako, S.; Sakon, I.; Onaka, T.

    2010-08-01

    The disk around AB Aur was imaged and resolved at 24.6 {mu}m using the Cooled Mid-infrared Camera and Spectrometer on the 8.2 m Subaru Telescope. The Gaussian full width at half-maximum of the source size is estimated to be 90 {+-} 6 AU, indicating that the disk extends further out at 24.6 {mu}m than at shorter wavelengths. In order to interpret the extended 24.6 {mu}m image, we consider a disk with a reduced surface density within a boundary radius R{sub c} , which is motivated by radio observations that suggest a reduced inner region within about 100 AU from the star. Introducing the surface density reduction factor f{sub c} for the inner disk, we determine that the best match with the observed radial intensity profile at 24.6 {mu}m is achieved with R{sub c} = 88 AU and f{sub c} = 0.01. We suggest that the extended emission at 24.6 {mu}m is due to the enhanced emission from a wall-like structure at the boundary radius (the inner edge of the outer disk), which is caused by a jump in the surface density at R{sub c} . Such a reduced inner disk and geometrically thick outer disk structure can also explain the more point-like nature at shorter wavelengths. We also note that this disk geometry is qualitatively similar to a pre-transitional disk, suggesting that the AB Aur disk is in a pre-transitional disk phase.

  18. Thermodynamical Structure of Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Hirose, S.; Turner, N.

    2009-12-01

    The thermodynamics of protoplanetary disks determines chemical and physical evolution of dust and gas in the disks, and thus is relevant for understanding the origin and formation of planetary systems. In this paper, the thermodynamical structure of protoplanetary disks around low-mass stars is studied using three-dimensional radiation magnetohydrodynamic (MHD) simulations. Local patches of the disk are modeled using the shearing box approximation with vertical gravity. For simplicity, the dust and gas are well mixed and have the same temperature, and ideal MHD is assumed. The frequency-integrated radiation field is evolved using the flux-limited diffusion approximation, adopting thermally averaged opacities. The heating arises from the dissipation of MHD turbulence driven by magnetorotational instability due to differential rotation of the disk, and the cooling comes from infrared radiation losses. Irradiation by the central star is treated by injecting appropriate amount of thermal energy near the disk photosphere for visible lights. The results indicate the heating is more concentrated in the disk atmosphere than in the classical model. The single-point heating rate in the atmosphere fluctuates by orders of magnitude over time intervals comparable to the orbital period due to magnetic reconnection and shocks, while the patch of disk overall sustains dynamical and thermodynamical equilibrium over many cooling times. We will discuss implications of our numerical results for line and continuum emission from protoplanetary disks.

  19. Gravitational Instability in Planetesimal Disks

    NASA Astrophysics Data System (ADS)

    Bolin, Bryce T.; Lithwick, Yoram; Pan, Margaret; Rein, Hanno; Wu, Yanqin

    2014-11-01

    Gravitational instability (GI) has been proposed as a method of forming giant gas planets enhanced by disk thermodynamics in a protoplanetary disk (Boss, 1997, Science 276; Durisen et al., 2007, Protostars and Planets V) and as a method of forming planetesimals through the focusing of boulders by the interaction between solids and gases in a turbulent circumstellar disk (Johansen et al., 2007, Nature 448; Youdin & Goodman, 2005, Astrophys. J. 620). GI is mediated through a gaseous circumstellar disk in each each of these scenarios. We explore the possibility of GI occurring in a planetesimal disk devoid of gas. In this regime, mutual collisions between planetesimals are required to dissipate their orbital shear and velocity dispersion enough for collapse to occur as described by the Toomre stability criterion (Toomre, 1964, Astrophys. J. 139; Toomre, 1981, Structure and Evolution of Normal Galaxies). How frequent must collisions be between planetesimals in a gravitationally stable planetesimal disk for GI to occur? Are there collisional rates where GI is postponed indefinitely in an equilibrium state between gravitational stirring and collisional cooling? We present 3D shearing sheet simulations using the REBOUND N-body code with the symplectic epicyclic integrator (Rein & Liu, 2011, A&A 537; Rein & Tremaine, 2011, MNRAS 415) in which the candidate collision rates are within a few orders of magnitude of the disk dynamical lifetime. Our simulations suggest that collisions rate directly controls disk cooling. The shape of the disk cooling curve is independent of the collision rate when scaled to the collision time.

  20. Phenomenological Relativistic Energy Density Functionals

    SciTech Connect

    Lalazissis, G. A.; Kartzikos, S.; Niksic, T.; Paar, N.; Vretenar, D.; Ring, P.

    2009-08-26

    The framework of relativistic nuclear energy density functionals is applied to the description of a variety of nuclear structure phenomena, not only in spherical and deformed nuclei along the valley of beta-stability, but also in exotic systems with extreme isospin values and close to the particle drip-lines. Dynamical aspects of exotic nuclear structure is explored using the fully consistent quasiparticle random-phase approximation based on the relativistic Hartree-Bogoliubov model. Recent applications of energy density functionals with explicit density dependence of the meson-nucleon couplings are presented.

  1. Physics-Based Spectra of Accretion Disks around Black Holes

    NASA Technical Reports Server (NTRS)

    Krolik, Julian H.

    2005-01-01

    The purpose of this grant was to begin the process of deriving the light output of accretion disks around black holes directly from the actual processes that inject heat into the accreting matter, rather than from guessed dependences of heating rate on physical parameters. At JHU, the effort has focussed so far on models of accretion onto "intermediate mass black holes", a possible class of black holes, examples of which may have recently been discovered in nearby galaxies. There, Krolik and his student (Yawei Hui) have computed stellar atmospheres for uniformly-heated disks around this class of black holes. Their models serve two purposes: they are the very first serious attempts to compute the spectrum from accreting black holes in this mass range; and a library of such models can be used later in this program as contrasts for those computed on the basis of real disk dynamics. The output from these local disk calculations has also been successfully coupled to a program that applies the appropriate relativistic transformations and computes photon trajectories in order to predict the spectrum received by observers located at different polar angles. The principal new result of these calculations is the discovery of potentially observable ionization edges of H-like C and O at frequencies near the peak in flux from these objects. Most of the grant money at UCSB was spent on supporting graduate student Shane Davis. In addition. some money was spent on supporting two other students: Ari Socrates (now a Hubble Fellow at Princeton), and Laura Melling. Davis spent the year constructing stellar atmosphere models of accretion disks appropriate for the high/soft (thermal) state of black hole X-ray binaries. As with AGN models published previously by our collaboration with NASA support. our models include a complete general relativistic treatment of both the disk structure and the propagation of photons from the disk to a distant observer. They also include all important

  2. Disk MHD generator study

    NASA Technical Reports Server (NTRS)

    Retallick, F. D.

    1980-01-01

    Directly-fired, separately-fired, and oxygen-augmented MHD power plants incorporating a disk geometry for the MHD generator were studied. The base parameters defined for four near-optimum-performance MHD steam power systems of various types are presented. The finally selected systems consisted of (1) two directly fired cases, one at 1920 K (2996F) preheat and the other at 1650 K (2500 F) preheat, (2) a separately-fired case where the air is preheated to the same level as the higher temperature directly-fired cases, and (3) an oxygen augmented case with the same generator inlet temperature of 2839 (4650F) as the high temperature directly-fired and separately-fired cases. Supersonic Mach numbers at the generator inlet, gas inlet swirl, and constant Hall field operation were specified based on disk generator optimization. System pressures were based on optimization of MHD net power. Supercritical reheat stream plants were used in all cases. Open and closed cycle component costs are summarized and compared.

  3. Disk storage at CERN

    NASA Astrophysics Data System (ADS)

    Mascetti, L.; Cano, E.; Chan, B.; Espinal, X.; Fiorot, A.; González Labrador, H.; Iven, J.; Lamanna, M.; Lo Presti, G.; Mościcki, JT; Peters, AJ; Ponce, S.; Rousseau, H.; van der Ster, D.

    2015-12-01

    CERN IT DSS operates the main storage resources for data taking and physics analysis mainly via three system: AFS, CASTOR and EOS. The total usable space available on disk for users is about 100 PB (with relative ratios 1:20:120). EOS actively uses the two CERN Tier0 centres (Meyrin and Wigner) with 50:50 ratio. IT DSS also provide sizeable on-demand resources for IT services most notably OpenStack and NFS-based clients: this is provided by a Ceph infrastructure (3 PB) and few proprietary servers (NetApp). We will describe our operational experience and recent changes to these systems with special emphasis to the present usages for LHC data taking, the convergence to commodity hardware (nodes with 200-TB each with optional SSD) shared across all services. We also describe our experience in coupling commodity and home-grown solution (e.g. CERNBox integration in EOS, Ceph disk pools for AFS, CASTOR and NFS) and finally the future evolution of these systems for WLCG and beyond.

  4. Relativistic Hydrodynamics for Heavy-Ion Collisions

    ERIC Educational Resources Information Center

    Ollitrault, Jean-Yves

    2008-01-01

    Relativistic hydrodynamics is essential to our current understanding of nucleus-nucleus collisions at ultrarelativistic energies (current experiments at the Relativistic Heavy Ion Collider, forthcoming experiments at the CERN Large Hadron Collider). This is an introduction to relativistic hydrodynamics for graduate students. It includes a detailed…

  5. Relativistic treatment of inertial spin effects

    NASA Astrophysics Data System (ADS)

    Ryder, Lewis

    1998-03-01

    A relativistic spin operator for Dirac particles is identified and it is shown that a coupling of spin to angular velocity arises in the relativistic case, just as Mashhoon had speculated, and Hehl and Ni had demonstrated, in the non-relativistic case.

  6. The Milky Way Has No Distinct Thick Disk

    NASA Astrophysics Data System (ADS)

    Bovy, Jo; Rix, Hans-Walter; Hogg, David W.

    2012-06-01

    Different stellar sub-populations of the Milky Way's stellar disk are known to have different vertical scale heights, their thickness increasing with age. Using SEGUE spectroscopic survey data, we have recently shown that mono-abundance sub-populations, defined in the [α/Fe]-[Fe/H] space, are well described by single-exponential spatial-density profiles in both the radial and the vertical direction; therefore, any star of a given abundance is clearly associated with a sub-population of scale height hz . Here, we work out how to determine the stellar surface-mass density contributions at the solar radius R 0 of each such sub-population, accounting for the survey selection function, and for the fraction of the stellar population mass that is reflected in the spectroscopic target stars given populations of different abundances and their presumed age distributions. Taken together, this enables us to derive \\Sigma _{R_0}(h_z), the surface-mass contributions of stellar populations with scale height hz . Surprisingly, we find no hint of a thin-thick disk bi-modality in this mass-weighted scale-height distribution, but a smoothly decreasing function, approximately \\Sigma _{R_0}(h_z)\\propto \\exp (-h_z), from hz ≈ 200 pc to hz ≈ 1 kpc. As hz is ultimately the structurally defining property of a thin or thick disk, this shows clearly that the Milky Way has a continuous and monotonic distribution of disk thicknesses: there is no "thick disk" sensibly characterized as a distinct component. We discuss how our result is consistent with evidence for seeming bi-modality in purely geometric disk decompositions or chemical abundances analyses. We constrain the total visible stellar surface-mass density at the solar radius to be \\Sigma ^{^*}_{R_0} = 30 +/- 1\\ M_\\odot pc-2.

  7. Radiation-driven warping of circumbinary disks around eccentric young star binaries

    SciTech Connect

    Hayasaki, Kimitake; Sohn, Bong Won; Jung, Taehyun; Zhao, Guangyao; Okazaki, Atsuo T.; Naito, Tsuguya

    2014-12-10

    We study a warping instability of a geometrically thin, non-self-gravitating, circumbinary disk around young binary stars on an eccentric orbit. Such a disk is subject to both the tidal torques due to a time-dependent binary potential and the radiative torques due to radiation emitted from each star. The tilt angle between the circumbinary disk plane and the binary orbital plane is assumed to be very small. We find that there is a radius within/beyond which the circumbinary disk is unstable to radiation-driven warping, depending on the disk density and temperature gradient indices. This marginally stable warping radius is very sensitive to viscosity parameters, a fiducial disk radius and the temperature measured there, the stellar luminosity, and the disk surface density at a radius where the disk changes from optically thick to thin for the irradiation from the central stars. On the other hand, it is insensitive to the orbital eccentricity and binary irradiation parameter, which is a function of the binary mass ratio and luminosity of each star. Since the tidal torques can suppress the warping in the inner part of the circumbinary disk, the disk starts to be warped in the outer part. While the circumbinary disks are most likely to be subject to the radiation-driven warping on an AU to kilo-AU scale for binaries with young massive stars more luminous than 10{sup 4} L {sub ☉}, the radiation-driven warping does not work for those around young binaries with the luminosity comparable to the solar luminosity.

  8. A twisted disk equation that describes warped galaxy disks

    NASA Technical Reports Server (NTRS)

    Barker, K.

    1994-01-01

    Warped H1 gas layers in the outer regions of spiral galaxies usually display a noticeably twisted structure. This structure is thought to arise primarily as a result of differential precession in the H1 disk as it settles toward a 'preferred orientation' in an underlying dark halo potential well that is not spherically symmetric. In an attempt to better understand the structure and evolution of these twisted, warped disk structures, we have utilized the 'twist-equation' formalism. Specifically, we have generalized the twist equation to allow the treatment of non-Keplerian disks and from it have derived the steady-state structure of twisted disks that develop from free precession in a nonspherical, logarithmic halo potential. This generalized equation can also be used to examine the time-evolutionary behavior of warped galaxy disks.

  9. Particle Acceleration in Relativistic Outflows

    NASA Technical Reports Server (NTRS)

    Bykov, Andrei; Gehrels, Neil; Krawczynski, Henric; Lemoine, Martin; Pelletier, Guy; Pohl, Martin

    2012-01-01

    In this review we confront the current theoretical understanding of particle acceleration at relativistic outflows with recent observational results on various source classes thought to involve such outflows, e.g. gamma-ray bursts, active galactic nuclei, and pulsar wind nebulae. We highlight the possible contributions of these sources to ultra-high-energy cosmic rays.

  10. Simplified Relativistic Force Transformation Equation.

    ERIC Educational Resources Information Center

    Stewart, Benjamin U.

    1979-01-01

    A simplified relativistic force transformation equation is derived and then used to obtain the equation for the electromagnetic forces on a charged particle, calculate the electromagnetic fields due to a point charge with constant velocity, transform electromagnetic fields in general, derive the Biot-Savart law, and relate it to Coulomb's law.…

  11. RINGED ACCRETION DISKS: EQUILIBRIUM CONFIGURATIONS

    SciTech Connect

    Pugliese, D.; Stuchlík, Z. E-mail: zdenek.stuchlik@physics.cz

    2015-12-15

    We investigate a model of a ringed accretion disk, made up by several rings rotating around a supermassive Kerr black hole attractor. Each toroid of the ringed disk is governed by the general relativity hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. Properties of the tori can then be determined by an appropriately defined effective potential reflecting the background Kerr geometry and the centrifugal effects. The ringed disks could be created in various regimes during the evolution of matter configurations around supermassive black holes. Therefore, both corotating and counterrotating rings have to be considered as being a constituent of the ringed disk. We provide constraints on the model parameters for the existence and stability of various ringed configurations and discuss occurrence of accretion onto the Kerr black hole and possible launching of jets from the ringed disk. We demonstrate that various ringed disks can be characterized by a maximum number of rings. We present also a perturbation analysis based on evolution of the oscillating components of the ringed disk. The dynamics of the unstable phases of the ringed disk evolution seems to be promising in relation to high-energy phenomena demonstrated in active galactic nuclei.

  12. Disk Dispersal Around Young Stars

    NASA Technical Reports Server (NTRS)

    Hollenbach, David

    2004-01-01

    We first review the evidence pertaining to the lifetimes of planet-forming disks of gas and dust around young stars and discuss possible disk dispersal mechanisms: 1) viscous accretion of material onto the central source, 2) close stellar encounters, 3) stellar winds, and 4) photoevaporation caused by the heating of the disk surface by ultraviolet radiation. Photoevaporation is likely the most important dispersal mechanism for the outer regions of disks, and this talk focuses on the evaporation caused by the presence of a nearby, luminous star rather than the central star itself. We also focus on disks around low-mass stars like the Sun rather than high-mass stars, which we have treated previously. Stars often form in clusters and the ultraviolet flux from the most luminous star in the cluster can have a dramatic effect on the disk orbiting a nearby low-mass star. We apply our theoretical models to the evaporating protoplanetary disks (or "proplyds") in the Trapezium cluster in Orion, to the formation of gas giant planets like Jupiter around Sun-like stars in the Galaxy, and to the formation of Kuiper belts around low mass stars. We find a possible explanation for the differences between Neptune and Jupiter, and make a prediction concerning recent searches for giant planets in large clusters. We discuss recent models of the infrared spectra from gaseous disks around young stars.

  13. Fast lattice Boltzmann solver for relativistic hydrodynamics.

    PubMed

    Mendoza, M; Boghosian, B M; Herrmann, H J; Succi, S

    2010-07-01

    A lattice Boltzmann formulation for relativistic fluids is presented and numerically validated through quantitative comparison with recent hydrodynamic simulations of relativistic fluids. In order to illustrate its capability to handle complex geometries, the scheme is also applied to the case of a three-dimensional relativistic shock wave, generated by a supernova explosion, impacting on a massive interstellar cloud. This formulation opens up the possibility of exporting the proven advantages of lattice Boltzmann methods, namely, computational efficiency and easy handling of complex geometries, to the context of (mildly) relativistic fluid dynamics at large, from quark-gluon plasmas up to supernovae with relativistic outflows.

  14. Fast lattice Boltzmann solver for relativistic hydrodynamics.

    PubMed

    Mendoza, M; Boghosian, B M; Herrmann, H J; Succi, S

    2010-07-01

    A lattice Boltzmann formulation for relativistic fluids is presented and numerically validated through quantitative comparison with recent hydrodynamic simulations of relativistic fluids. In order to illustrate its capability to handle complex geometries, the scheme is also applied to the case of a three-dimensional relativistic shock wave, generated by a supernova explosion, impacting on a massive interstellar cloud. This formulation opens up the possibility of exporting the proven advantages of lattice Boltzmann methods, namely, computational efficiency and easy handling of complex geometries, to the context of (mildly) relativistic fluid dynamics at large, from quark-gluon plasmas up to supernovae with relativistic outflows. PMID:20867451

  15. Relativistic formulation of the Voigt profile

    NASA Astrophysics Data System (ADS)

    Wcisło, P.; Amodio, P.; Ciuryło, R.; Gianfrani, L.

    2015-02-01

    The relativistic formulation of the Voigt profile is reported for the spontaneous emission from an atomic or molecular cloud, in coincidence with a given spectral line. We considered the simultaneous occurrence of homogeneous broadening and thermal broadening, this latter being determined by the relativistic Doppler effect. Our formula for the relativistic Voigt profile reproduces those characterizing the two available limit cases, namely, the relativistic Gaussian profile and the classical Voigt convolution. The relativistic deformation of the Voigt profile was carefully quantified at different temperatures, in the case of the molecular hydrogen spectrum.

  16. Impact of an inhomogeneous density distribution on selected observational characteristics of circumstellar disks

    NASA Astrophysics Data System (ADS)

    Brauer, R.; Wolf, S.

    2016-01-01

    Context. Analysis of observations of circumstellar disks around young stellar objects is often based on disk models with smooth and continuous density distribution. However, spatially resolved observations with increasing angular resolution and dynamical models indicate that circumstellar disks are highly structured. Aims: We investigate the influence of different clumpy density distributions on selected physical properties and on the observable characteristics of circumstellar disks. In particular, these are the temperature distribution, the spectral energy distribution (SED), the radial brightness profile and the degree of polarization of scattered stellar radiation. Methods: Based on radiative transfer modeling we calculated the temperature structure of the disk and simulate observational quantities in the thermal re-emission and scattering regime. The clumpy density distributions are realized using a two-phase medium approach with phases for the clumps and the medium in between. We compared our results to those obtained for a smooth and continuous density distribution to quantify the influence of clumps on internal physical parameters and observable quantities of circumstellar disks. Results: Within the considered model space, the clumpiness has a significant impact on the disk temperature distribution. For instance, in the transition region from the optically thin upper disk layers to the disk interior, it causes a decrease in the mean temperature by up to 12 K (corresponding to ~15%), if compared to continuous disks. In addition, circumstellar disks with clumpy density distributions generally feature a lower spectral index in the submm/mm range of the SED than continuous disks. The strength of this decrease can be varied by changing the dust mass or grain size, but not by changing the inclination of the disk. As a consequence of the lower spectral index, the dust grain size derived from the submm/mm-slope of the SED may be overestimated, if the inhomogeneity

  17. Optical disk technology and information.

    PubMed

    Goldstein, C M

    1982-02-12

    The optical video disk, spawned by the home entertainment industry, and its counterpart, the optical digital disk, both hold great promise for information storage and retrieval and the scientific enterprise. Optical digital disks for computer mass storage are currently under development by many firms. In addition, efforts are under way to allow encoding of digital information on video disks. This is desirable as an inexpensive publication medium for machine-readable data as well as a means of obtaining both video and digital information on one disk. Potential applications of this technology include inexpensive on-line storage, random access graphics to complement on-line information systems, hybrid network architectures, office automation systems, and archival storage.

  18. DISK GALAXIES WITH BROKEN LUMINOSITY PROFILES FROM COSMOLOGICAL SIMULATIONS

    SciTech Connect

    Martinez-Serrano, F. J.; Serna, A.; Domenech-Moral, M.; Dominguez-Tenreiro, R.

    2009-11-10

    We present smoothed particle hydrodynamics cosmological simulations of the formation of three disk galaxies with a detailed treatment of chemical evolution and cooling. The resulting galaxies have properties compatible with observations: relatively high disk-to-total ratios, thin stellar disks, and good agreement with the Tully-Fisher and the luminosity-size relations. They present a break in the luminosity profile at 3.0 +- 0.5 disk scale lengths while showing an exponential mass profile without any apparent breaks, which is in line with recent observational results. Since the stellar mass profile is exponential, only differences in the stellar populations can be the cause of the luminosity break. Although we find a cutoff for the star formation rate (SFR) imposed by a density threshold in our star formation model, it does not coincide with the luminosity break and is located at 4.3 +- 0.4 disk scale lengths, with star formation going on between both radii. The color profiles and the age profiles are 'U-shaped', with the minimum for both profiles located approximately at the break radius. The SFR to stellar mass ratio increases until the break, explaining the coincidence of the break with the minimum of the age profile. Beyond the break, we find a steep decline in the gas density and, consequently, a decline in the SFR and redder colors. We show that most stars (64%-78%) in the outer disk originate in the inner disk and afterward migrate there. Such stellar migrations are likely the main origin of the U-shaped age profile and, therefore, of the luminosity break.

  19. Multiwavelength search for protoplanetary disks

    NASA Technical Reports Server (NTRS)

    Neuhaeuser, Ralph; Schmidt-Kaler, Theodor

    1994-01-01

    Infrared emission of circumstellar dust was observed for almost one hundred T Tauri stars. This dust is interpreted to be part of a protoplanetary disk orbiting the central star. T Tauri stars are young stellar objects and evolve into solar type stars. Planets are believed to form in these disks. The spectral energy distribution of a disk depends on its temperature profile. Different disk regions emit at different wavelengths. The disk-star boundary layer is hot and emits H(alpha) radiation. Inner disk regions at around 1 AU with a temperature of a few hundred Kelvin can be probed in near infrared wavelength regimes. Outer disk regions at around 100 AU distance from the star are colder and emit far infrared and sub-millimeter radiation. Also, X-ray emission from the stellar surface can reveal information on disk properties. Emission from the stellar surface and the boundary layer may be shielded by circumstellar gas and dust. T Tauri stars with low H(alpha) emission, i.e. no boundary layer, show stronger X-ray emission than classical T Tauri stars, because the inner disk regions of weak emission-line T Tauri stars may be clear of material. In this paper, first ROSAT all sky survey results on the X-ray emission of T Tauri stars and correlations between X-ray luminosity and properties of T Tauri disks are presented. Due to atmospheric absorption, X-ray and most infrared observations cannot be carried out on Earth, but from Earth orbiting satellites (e.g. IRAS, ROSAT, ISO) or from lunar based observatories, which would have special advantages such as a stable environment.

  20. Berkeley Disk Resource Manager

    2004-02-27

    The Berkeley Disk Resource Manager (B-DRM) is a middleware component whose function is to provide dynamic space allocation and file management of a shared disk system on the Grid. It provides space allocation and dynamic information on storage availability for the planning and execution of Grid jobs. The B-DRM manages two types of resources: space and files. Vi1en managing space, the B-DRM allocates space to the requesting client based on a default space quota, Thenmore » managing files, the B-DRM allocates space for files, invokes file transfer services to move files into the space, pins files for a certain lifetime, releases files upon the client’s request, and uses file replacement policies to optimize the use of the shared space. The B-DRM is designed to provide effective sharing of files, by monitoring the activity of shared files, and making dynamic decisions on which files to replace when space is needed. In addition, the B-DRM performs automatic garbage collection of unused files when space is needed by removing selected files that were released by the client or whose lifetime has expired. The BDRM supports requests to get multiple files in a single call, manages a queue of the requested files, brings in as many files as the space quota permits, and continues to reuse the space when files are released to stream files to the client until the entire request is satisfied. Similarly, the B-DRM supports requests to put multiple files into its space, streaming files into the allocated space and reusing the space if necessary.« less

  1. Relativistic ionization fronts in gas jets

    NASA Astrophysics Data System (ADS)

    Lemos, Nuno; Dias, J. M.; Gallacher, J. G.; Issac, R. C.; Fonseca, R. A.; Lopes, N. C.; Silva, L. O.; Mendonça, J. T.; Jaroszynski, D. A.

    2006-10-01

    A high-power ultra-short laser pulse propagating through a gas jet, ionizes the gas by tunnelling ionization, creating a relativistic plasma-gas interface. The relativistic ionization front that is created can be used to frequency up-shift electromagnetic radiation either in co-propagation or in counter-propagation configurations. In the counter-propagation configuration, ionization fronts can act as relativistic mirrors for terahertz radiation, leading to relativistic double Doppler frequency up-shift to the visible range. In this work, we identified and explored, the parameters that optimize the key features of relativistic ionization fronts for terahertz radiation reflection. The relativistic ionization front generated by a high power laser (TOPS) propagating in a supersonic gas jet generated by a Laval nozzle has been fully characterized. We have also performed detailed two-dimensional relativistic particle-in-cell simulations with Osiris 2.0 to analyze the generation and propagation of the ionization fronts.

  2. Relativistic Modeling Capabilities in PERSEUS Extended-MHD Simulation Code for HED Plasmas

    NASA Astrophysics Data System (ADS)

    Hamlin, Nathaniel; Seyler, Charles

    2015-11-01

    We discuss the incorporation of relativistic modeling capabilities into the PERSEUS extended MHD simulation code for high-energy-density (HED) plasmas, and present the latest simulation results. The use of fully relativistic equations enables the model to remain self-consistent in simulations of such relativistic phenomena as hybrid X-pinches and laser-plasma interactions. We have overcome a major challenge of a relativistic fluid implementation, namely the recovery of primitive variables (density, velocity, pressure) from conserved quantities at each time step of a simulation. Our code recovers non-relativistic results along with important features of published Particle-In-Cell simulation results for a laser penetrating a super-critical hydrogen gas with Fast Ignition applications. In particular, we recover the penetration of magnetized relativistic electron jets ahead of the laser. Our code also reveals new physics in the modeling of a laser incident on a thin foil. This work is supported by the National Nuclear Security Administration stewardship sciences academic program under Department of Energy cooperative agreements DE-FOA-0001153 and DE-NA0001836.

  3. Accretion of solid materials onto circumplanetary disks from protoplanetary disks

    SciTech Connect

    Tanigawa, Takayuki; Maruta, Akito; Machida, Masahiro N.

    2014-04-01

    We investigate the accretion of solid materials onto circumplanetary disks from heliocentric orbits rotating in protoplanetary disks, which is a key process for the formation of regular satellite systems. In the late stage of the gas-capturing phase of giant planet formation, the accreting gas from protoplanetary disks forms circumplanetary disks. Since the accretion flow toward the circumplanetary disks affects the particle motion through gas drag force, we use hydrodynamic simulation data for the gas drag term to calculate the motion of solid materials. We consider a wide range of size for the solid particles (10{sup –2}-10{sup 6} m), and find that the accretion efficiency of the solid particles peaks around 10 m sized particles because energy dissipation of drag with circum-planetary disk gas in this size regime is most effective. The efficiency for particles larger than 10 m becomes lower because gas drag becomes less effective. For particles smaller than 10 m, the efficiency is lower because the particles are strongly coupled with the background gas flow, which prevents particles from accretion. We also find that the distance from the planet where the particles are captured by the circumplanetary disks is in a narrow range and well described as a function of the particle size.

  4. Disk reprocessing in three dimensions - emerging spectra and polarization

    NASA Astrophysics Data System (ADS)

    Goosmann, R.; Tamborra, F.; Marin, F.; Mouchet, M.; Dumont, A.; Dovčiak, M.

    2015-07-01

    We present the latest results from our ongoing computation of a new X-ray reprocessing model for irradiated, ionized accretion disks observed e.g. in active galactic nuclei and X-ray binaries. Combining a semi-analytical radiative transfer method (TITAN) with Monte-Carlo simulations (STOKES), we obtain a grid of reprocessed intensity and polarization spectra across an energy range of 0.1--100 keV with sufficient energy resolution to be applied to NuSTAR and even Astro-H observations. The model includes all polar and, for the first time, also azimuthal dependencies of the local incident and emission angles. As it was shown previously, these dependencies matter once the observed spectrum at infinity is computed by a relativistic ray-tracing routine. The Monte-Carlo treatment of the disk reprocessing also allows us to investigate in detail the impact of thermal and turbulent velocity on the line transfer, which can affect the observed amount of soft X-ray emission. Finally, we explore the impact of the high and low energy cutoff of the irradiating spectrum on the reprocessing and we determine the timing response of the disk spectrum as a function of photon energy. We conduct a comparison of our results with existing X-ray reprocessing models.

  5. Resonantly driven nonlinear density waves in protostellar disks

    NASA Technical Reports Server (NTRS)

    Yuan, Chi; Cassen, Pat

    1994-01-01

    Recent observations of binary, pre-main-sequence, solar-type stars provide evidence that such systems may coexist with circumstellar disks. The binary disk systems, besides being of general interest for the study of star formation, potentially provide useful tests of companion-disk interaction theories prominent in current hypotheses of planet formation. In this paper, we apply an asymptotic analysis of the nonlinear, resonant interaction of a stellar companion with a disk to understand the dependence of such interactions on the properties of the system: the binary mass ratio, the physical properties of the disk, and the effective dissipation (treated herein as viscosity). The method is based on a WKBJ approximation and exploits the conditions that the disk is thin and much less massive than the primary, but does not require that the companion-induced disturbance be small. Both isothermal and adiabatic responses are treated. Only circular orbit resonances are considered in this paper. It is demonstrated that the temperature of the disk as well as the relative mass of the companion affects the degree of nonlinearity, and that nonlinearity promotes high wave compression ratios, long wavelengths, and increased propagation distances. Nevertheless, the total torque exerted between the companion and the disk is well represented by linear theory. The amplitudes of density disturbances are reduced by viscosity and nonisothermality. Because resonant interactions are generally strong and capable of driving rapid evolution, one might expect observations of systems undergoing strong, resonant-driven evolution to be rare. In this connection, it is pointed out that the m = 1 resonance is distinguished by being anomalously weaker than the others and is therefore of observational interest. It is speculated that, in conditions of intrinsically small dissipation, the propagation of resonant-driven density waves is limited by the tendency of their wavelength to diminish with distance

  6. RELATIVISTIC SUPPRESSION OF BLACK HOLE RECOILS

    SciTech Connect

    Kesden, Michael; Sperhake, Ulrich; Berti, Emanuele

    2010-06-01

    Numerical-relativity simulations indicate that the black hole produced in a binary merger can recoil with a velocity up to v {sub max} {approx_equal} 4000 km s{sup -1} with respect to the center of mass of the initial binary. This challenges the paradigm that most galaxies form through hierarchical mergers, yet retain supermassive black holes (SBHs) at their centers despite having escape velocities much less than v {sub max}. Interaction with a circumbinary disk can align the binary black hole spins with their orbital angular momentum, reducing the recoil velocity of the final black hole produced in the subsequent merger. However, the effectiveness of this alignment depends on highly uncertain accretion flows near the binary black holes. In this paper, we show that if the spin S {sub 1} of the more massive binary black hole is even partially aligned with the orbital angular momentum L, relativistic spin precession on sub-parsec scales can align the binary black hole spins with each other. This alignment significantly reduces the recoil velocity even in the absence of gas. For example, if the angle between S {sub 1} and L at large separations is 10{sup 0} while the second spin S {sub 2} is isotropically distributed, the spin alignment discussed in this paper reduces the median recoil from 864 km s{sup -1} to 273 km s{sup -1} for maximally spinning black holes with a mass ratio of 9/11. This reduction will greatly increase the fraction of galaxies retaining their SBHs.

  7. Protoplanetary and Debris Disk Morphologies

    NASA Astrophysics Data System (ADS)

    Lomax, Jamie R.; Wisniewski, John P.; Grady, Carol A.; McElwain, Michael W.; Hashimoto, Jun; Donaldson, Jessica; Debes, John H.; Malumuth, Eliot; Roberge, Aki; Weinberger, Alycia J.; SEEDS Team

    2016-01-01

    The types of planets that form around other stars are highly dependent on their natal disk conditions. Therefore, the composition, morphology, and distribution of material in protoplanetary and debris disks are important for planet formation. Here we present the results of studies of two disk systems: AB Aur and AU Mic.The circumstellar disk around the Herbig Ae star AB Aur has many interesting features, including spirals, asymmetries, and non-uniformities. However, comparatively little is known about the envelope surrounding the system. Recent work by Tang et al (2012) has suggested that the observed spiral armss may not in fact be in the disk, but instead are due to areas of increased density in the envelope and projection effects. Using Monte Carlo modeling, we find that it is unlikely that the envelope holds enough material to be responsible for such features and that it is more plausible that they form from disk material. Given the likelihood that gravitational perturbations from planets cause the observed spiral morphology, we use archival H band observations of AB Aur with a baseline of 5.5 years to determine the locations of possible planets.The AU Mic debris disk also has many interesting morphological features. Because its disk is edge on, the system is an ideal candidate for color studies using coronagraphic spectroscopy. Spectra of the system were taken by placing a HST/STIS long slit parallel to and overlapping the disk while blocking out the central star with an occulting fiducial bar. Color gradients may reveal the chemical processing that is occuring within the disk. In addition, it may trace the potential composition and architecture of any planetary bodies in the system because collisional break up of planetesimals produces the observed dust in the system. We present the resulting optical reflected spectra (5200 to 10,200 angstroms) from this procedure at several disk locations. We find that the disk is bluest at the innermost locations of the

  8. An Extended Magnetohydrodynamics Model for Relativistic Weakly Collisional Plasmas

    NASA Astrophysics Data System (ADS)

    Chandra, Mani; Gammie, Charles F.; Foucart, Francois; Quataert, Eliot

    2015-09-01

    Black holes that accrete far below the Eddington limit are believed to accrete through a geometrically thick, optically thin, rotationally supported plasma that we will refer to as a radiatively inefficient accretion flow (RIAF). RIAFs are typically collisionless in the sense that the Coulomb mean free path is large compared to {GM}/{c}2, and relativistically hot near the event horizon. In this paper we develop a phenomenological model for the plasma in RIAFs, motivated by the application to sources such as Sgr A* and M87. The model is derived using Israel–Stewart theory, which considers deviations up to second order from thermal equilibrium, but modified for a magnetized plasma. This leads to thermal conduction along magnetic field lines and a difference in pressure, parallel and perpendicular to the field lines (which is equivalent to anisotropic viscosity). In the non-relativistic limit, our model reduces to the widely used Braginskii theory of magnetized, weakly collisional plasmas. We compare our model to the existing literature on dissipative relativistic fluids, describe the linear theory of the plasma, and elucidate the physical meaning of the free parameters in the model. We also describe limits of the model when the conduction is saturated and when the viscosity implies a large pressure anisotropy. In future work, the formalism developed in this paper will be used in numerical models of RIAFs to assess the importance of non-ideal processes for the dynamics and radiative properties of slowly accreting black holes.

  9. Relativistic hydrodynamics in the presence of puncture black holes

    SciTech Connect

    Faber, Joshua A.; Etienne, Zachariah B.; Shapiro, Stuart L.; Taniguchi, Keisuke; Baumgarte, Thomas W.

    2007-11-15

    Many of the recent numerical simulations of binary black holes in vacuum adopt the moving puncture approach. This successful approach avoids the need to impose numerical excision of the black hole interior and is easy to implement. Here we wish to explore how well the same approach can be applied to moving black hole punctures in the presence of relativistic hydrodynamic matter. First, we evolve single black hole punctures in vacuum to calibrate our Baumgarte-Shapiro-Shibata-Nakamura implementation and to confirm that the numerical solution for the exterior spacetime is invariant to any junk (i.e., constraint-violating) initial data employed in the black hole interior. Then we focus on relativistic Bondi accretion onto a moving puncture Schwarzschild black hole as a numerical test bed for our high-resolution shock-capturing relativistic hydrodynamics scheme. We find that the hydrodynamical equations can be evolved successfully in the interior without imposing numerical excision. These results help motivate the adoption of the moving puncture approach to treat the binary black hole-neutron star problem using conformal thin-sandwich initial data.

  10. The Bright Side of Black Holes: Radiation from Black Hole Accretion Disks

    NASA Astrophysics Data System (ADS)

    Zhu, Yucong

    An understanding of radiation is paramount for connecting observations of accretion disks with the theory of black holes. In this thesis, we explore via radiative transfer postprocessing calculations the observational signatures of black holes. We investigate disk spectra by analyzing general relativistic magnetohydrodynamic (GRMHD) simulations of accretion disks. For the most part there are no surprises -- the resulting GRMHD spectrum is very close to the analytic Novikov & Thorne (1973) prediction from decades past, except for a small modification in the case of spinning black holes, which exhibit a high-energy power-law tail that is sourced by hot Comptonized gas from within the plunging region of the accretion flow. These conclusions are borne out by both 1D and 3D radiative transfer calculations of the disk. Significant effort was spent in developing from scratch the 3D radiative code that we used for the analysis. The code is named HERO (Hybrid Evaluator for Radiative Objects) and it is a new general purpose grid-based 3D general relativistic radiative solver.

  11. Relativistic atomic beam spectroscopy. Progress report, July 20, 1987--June 30, 1989

    SciTech Connect

    Bryant, H.C.

    1989-06-01

    With the HIRAB (High Resolution Atomic Beam) building, the photodetachment experiments at LAMPF was able to continue. The 1988 runs provided data to complement that of 1986 on effects of electric fields on photodetachment cross section of H{sup -} and interaction of thin foils with relativistic H{sup -} ions. The first multiphoton detachment of H{sup -} was observed. In each of these experiments, a high-powered laser beam was allowed to intersect the relativistic ion beam; the photon energy in the barycentric system is Doppler shifted, and the laser may thus effectively be tuned (through up to a decade) by changing the angle of intersection of the 2 beams.

  12. Magnetorotational decay instability in Keplerian disks.

    PubMed

    Shtemler, Yuri; Liverts, Edward; Mond, Michael

    2013-12-01

    The saturation of the magnetorotational instability (MRI) in thin Keplerian disks through three-wave resonant interactions is introduced and discussed. That mechanism is a natural generalization of the fundamental decay instability discovered five decades ago for infinite, homogeneous, and immovable plasmas. The decay instability relies on the energy transfer from the MRI to stable slow Alfvén-Coriolis as well as magnetosonic waves. A second-order forced Duffing amplitude equation for the initially unstable MRI as well as two first-order equations for the other two waves are derived. The solutions of those equations exhibit bounded bursty nonlinear oscillations for the MRI as well as unbounded growth for the linearly stable slow Alfvén-Coriolis and magnetosonic perturbations, thus giving rise to the magnetorotational decay instability. PMID:24476249

  13. A SPITZER CENSUS OF TRANSITIONAL PROTOPLANETARY DISKS WITH AU-SCALE INNER HOLES

    SciTech Connect

    Muzerolle, James; Allen, Lori E.; Megeath, S. Thomas; Hernandez, Jesus; Gutermuth, Robert A.

    2010-01-10

    Protoplanetary disks with AU-scale inner clearings, often referred to as transitional disks, provide a unique sample for understanding disk dissipation mechanisms and possible connections to planet formation. Observations of young stellar clusters with the Spitzer Space Telescope have amassed mid-infrared (IR) spectral energy distributions (SEDs) for thousands of star-disk systems from which transition disks can be identified. From a sample of eight relatively nearby young regions (d approx< 400 pc), we have identified about 20 such objects, which we term 'classical' transition disks, spanning a wide range of stellar age and mass. We employed strict IR continuum criteria to limit ambiguity: an 8-24 mum spectral slope limit (alpha>0) to select for robust optically thick outer disks, and 3.6-5.8 mum spectral slope and 5.8 mum continuum excess limits to select for optically thin or zero continuum excess from the inner few AU of the disks. We also identified two additional categories representing more ambiguous cases: 'warm excess' objects with transition-like SEDs but moderate excess at 5.8 mum, and 'weak excess' objects with smaller 24 mum excess that may be optically thin or exhibit advanced dust grain growth and settling. From existing Halpha emission measurements, we find evidence for different accretion activity among the three categories, with a majority of the classical and warm excess transition objects still accreting gas through their inner holes and onto the central stars, while a smaller fraction of the weak transition objects are accreting at detectable rates. We find a possible age dependence on the frequency of classical transition objects, with fractions relative to the total population of disks in a given region of a few percent at 1-2 Myr rising to 10%-20% at 3-10 Myr. The trend is even stronger if the weak and warm excess objects are included. This relationship may be due to a dependence of the outer disk clearing timescale with stellar age

  14. DISK EVOLUTION IN THE THREE NEARBY STAR-FORMING REGIONS OF TAURUS, CHAMAELEON, AND OPHIUCHUS

    SciTech Connect

    Furlan, E.; Watson, Dan M.; McClure, M. K. E-mail: dmw@pas.rochester.ed

    2009-10-01

    We analyze samples of Spitzer Infrared Spectrograph spectra of T Tauri stars in the Ophiuchus, Taurus, and Chamaeleon I star-forming regions, whose median ages lie in the <1-2 Myr range. The median mid-infrared spectra of objects in these three regions are similar in shape, suggesting, on average, similar disk structures. When normalized to the same stellar luminosity, the medians follow each other closely, implying comparable mid-infrared excess emission from the circumstellar disks. We use the spectral index between 13 and 31 {mu}m and the equivalent width of the 10 {mu}m silicate emission feature to identify objects whose disk configuration departs from that of a continuous, optically thick accretion disk. Transitional disks, whose steep 13-31 {mu}m spectral slope and near-IR flux deficit reveal inner disk clearing, occur with about the same frequency of a few percent in all three regions. Objects with unusually large 10 {mu}m equivalent widths are more common (20%-30%); they could reveal the presence of disk gaps filled with optically thin dust. Based on their medians and fraction of evolved disks, T Tauri stars in Taurus and Chamaeleon I are very alike. Disk evolution sets in early, since already the youngest region, the Ophiuchus core (L1688), has more settled disks with larger grains. Our results indicate that protoplanetary disks show clear signs of dust evolution at an age of a few Myr, even as early as approx1 Myr, but age is not the only factor determining the degree of evolution during the first few million years of a disk's lifetime.

  15. Axisymmetric Two-Dimensional Computation of Magnetic Field Dragging in Accretion Disks

    NASA Technical Reports Server (NTRS)

    Reyes-Ruiz, Mauricio; Stepinski, Tomasz F.

    1996-01-01

    In this paper we model a geometrically thin accretion disk interacting with an externally imposed, uniform, vertical magnetic field. The accretion flow in the disk drags and distorts field lines, amplifying the magnetic field in the process. Inside the disk the radial component of the field is sheared into a toroidal component. The aim of this work is to establish the character of the resultant magnetic field and its dependence on the disk's parameters. We concentrate on alpha-disks driven by turbulent viscosity. Axisymmetric, two-dimensional solutions are obtained without taking into account the back-reaction of the magnetic field on the structure of the disk. The character of the magnetic field depends strongly on the magnitude of the magnetic Prandtl number, P . We present two illustrative examples of viscous disks: a so-called 'standard' steady state model of a disk around a compact star (e.g., cataclysmic variable), and a steady state model of a proto-planetary disk. In both cases, P = 1, P = 10(sup -1), and P = 10(sup -2) scenarios are calculated. Significant bending and magnification of the magnetic field is possible only for disks characterized by P of the order of 10(sup -2). In such a case, the field lines are bent sufficiently to allow the development of a centrifugally driven wind. Inside the disk the field is dominated by its toroidal component. We also investigate the dragging of the magnetic field by a nonviscous protoplanetary disk described by a phenomenological model. This scenario leads to large distortion and magnification of the magnetic field.

  16. Self-Consistent Models of Accretion Disks

    NASA Technical Reports Server (NTRS)

    Narayan, Ramesh

    1997-01-01

    The investigations of advection-dominated accretion flows (ADAFs), with emphasis on applications to X-ray binaries containing black holes and neutron stars is presented. This work is now being recognized as the standard paradigm for understanding the various spectral states of black hole X-ray Binaries (BHXBs). Topics discussed include: (1) Problem in BHXBS, namely that several of these binaries have unusually large concentrations of lithium in their companion stars; (2) A novel test to show that black holes have event horizons; (3) Application of the ADAF model to the puzzling X-ray delay in the recent outburst of the BHXB, GRO J1655-40; (4) Description of the various spectral states in BHXBS; (5) Application of the ADAF model to the famous supermassive black hole at the center of our Galaxy, Sgr A(*); (6) Writing down and solving equations describing steady-state, optically thin, advection-dominated accretion onto a Kerr black hole; (7) The effect of "photon bubble" instability on radiation dominated accretion disks; and (8) Dwarf nova disks in quiescence that have rather low magnetic Reynolds number, of order 10(exp 3).

  17. Photoevaporating Disks Around Young Stars

    NASA Technical Reports Server (NTRS)

    Hollenbach, David

    2004-01-01

    Ultraviolet radiation from the central star or from a nearby massive star heats the surfaces of protoplanetary disks and causes the outer, less gravitationally bound part of the disks, to photoevaporate into interstellar space. Photoevaporation is likely the most important dispersal mechanism for the outer regions of disks. We focus in this talk on disks around low-mass stars like the Sun rather than high-mass stars, which we have treated previously. Stars often form in clusters and the ultraviolet flux from the most luminous star in the cluster can have a dramatic effect on the disk orbiting a nearby low-mass star. We apply our theoretical models to the evaporating protoplanetary disks (or "proplyds") in the Trapezium cluster in Orion, to the formation of gas giant planets like Jupiter around Sun-like stars in the Galaxy, and to the formation of Kuiper belts around low mass stars. We discuss recent models of the effects of the radiation from the central low mass star including both the predicted infrared spectra from the heated disks as well as preliminary results on the photoevaporation rates.

  18. Disk Dispersal Around Young Stars

    NASA Technical Reports Server (NTRS)

    Hollenbach, David; Yorke, Harold W.; Johnstone, Doug; DeVincenzi, Donald L. (Technical Monitor)

    1999-01-01

    We review the evidence pertaining to the lifetimes of planet-forming disks and discuss possible disk dispersal mechanisms: 1) viscous accretion of material onto the central source, 2) close stellar encounters, 3) stellar winds, and 4) by ultraviolet radiation. We focus on 3) and 4) and describe the quasi-steady state appearance and the overall evolution of disks under the influence of winds and radiation from the central star and of radiation from external OB stars. Viscous accretion likely dominates disk dispersal in the, inner disk (r approx. less than A 10 AU), while photoevaporation is the principal process of disk dispersal outside of r approximately greater than 10 AU. Disk dispersed timescales are compared and discussed in relation to theoretical estimates for planet formation timescales. Photoevaporation may explain the large differences in the hydrogen content of the giant planets in the solar system. The commonly held belief that our early sun's stellar wind dispersed the solar nebula is called into question.

  19. Heating and Cooling Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Turner, Neal

    Many of the disks of gas and dust orbiting young Sun-like stars produce mid-infrared emission from water and other oxygen- and carbon-bearing molecules, as discovered in the last few years using the Spitzer Space Telescope. The emission reveals the temperatures, columns and chemical composition of the gas in the disk atmosphere within 2 AU of the star, directly overlying the region where the planets form. Better understanding of the processes governing the line emission is vital for converting this new class of measurements into information about the planets' raw ingredients. We propose to combine MHD models of the turbulence driving the disk accretion flows, with a thermal-chemical model of the disk atmospheres, to predict emergent spectra that will capture the dynamics, heating, and chemical composition. By comparing the predicted and observed spectra we can determine the strength of the turbulence that heats and mixes the gas, and test ideas about the conditions in the disk interior. We will investigate the coupling of the turbulence to the thermal and chemical evolution, seek to locate the line emission's power source, gauge the rate at which the atmosphere and interior exchange material, and obtain new independent measures of the disk mass accretion rates. These efforts will help infrared spectroscopy of protostellar disks reach its full potential as a diagnostic of the environments in which planets form.

  20. Relativistic Transparency Experiments at the Trident Laser

    NASA Astrophysics Data System (ADS)

    Cobble, J. A.; Palaniyappan, S.; Gautier, D. C.; Kim, Y. H.; Clark, D. D.; Johnson, R. P.; Shimada, T.; Fernandez, J. C.; Herrmann, H. W.

    2013-10-01

    With near-diffraction-limited irradiance of 3 × 1020 W/cm2 on target and prelase contrast better than 10-9, we have accessed the regime of relativistic transparency (RT) at the Trident Laser. The goal was to assess electron debris emitted from the target rear surface with phase-contrast imaging (PCI) and current density measurements (hence, the total electron current). Companion diagnostics show whether the experiments are in the target-normal-sheath-acceleration mode or in the RT regime. The superb laser contrast allows us to shoot targets as thin as 50 nm. PCI at 527 nm is temporally resolved to 600 fs. It has shown the evolution of electron behavior over tens of ps, including thermal electrons accompanying the ion jet, accelerated to many tens of MeV earlier in time. Faraday-cup measurements indicate the transfer of many uC of charge during the laser drive. As a ride-along experiment using a gas Cherenkov detector (GCD), we have detected gamma rays of energy >5 MeV. This radiation has a prompt component and a lesser source, driven by accelerated ions, that is time resolved by the GCD. The ion time of flight is compared to Thomson parabola data. Electron energy spectra are also collected. This work has been performed under the auspices of the US DOE contract number DE-AC52-06NA25396.

  1. Relativistic Jets: Acceleration, Dissipation and Interactions with Ambient Gas

    NASA Astrophysics Data System (ADS)

    Giannois, Dimitrios

    Collimated, relativistic outflows, known as relativistic jets, originate from supermassive black holes in active galactic nuclei (AGN), solar-mass compact objects in x-ray binaries (XRBs), and gamma ray bursts (GRBs). Such jets are among the most well observed phenomena in astrophysics, in part because of NASA's continued commitment to funding missions that target compact objects and their outflows. Jets are thought to come from rotating objects (neutron stars, black holes, or accretion disks) that are threaded with strong magnetic fields. Despite recent progress in the field, we still lack a self-consistent model that connects the invisible processes -- jet launching, acceleration and energy dissipation -- to their observational manifestations: emission and interaction with the ambient medium. Our work over the past several years demonstrated that magnetic energy dissipation crucially affects how jets accelerate and radiate. Though still a major challenge, we believe that due to recent developments in theory and numerical simulations, we are now in a unique position, for the first time, to compute jet evolution and determine the locations at which dissipation and radiation takes place from first principles. To achieve this long-sought goal, we propose to carry out relativistic 3D magnetohydrodynamic (MHD) numerical simulations that follow jets from the central compact object out to their interactions with the ambient medium, in a variety of astrophysical contexts ranging from AGN to XRBs to GRBs. Then, using radiative transfer calculations, we will make direct connection to observations. We will complement the numerical work with analytical studies and develop a quantitative description of instabilities in the jet, and their connection to energy dissipation and emission. The MHD and radiative transfer experience of the PI Giannios and Co-I Barniol-Duran, combined with the numerical MHD expertise of the Co-I Tchekhovskoy make achieving the proposed goals realistic

  2. Relativistic rocket: Dream and reality

    NASA Astrophysics Data System (ADS)

    Semyonov, Oleg G.

    2014-06-01

    The dream of interstellar flights persists since the first pioneers in astronautics and has never died. Many concepts of thruster capable to propel a rocket to the stars have been proposed and the most suitable among them are thought to be photon propulsion and propulsion by the products of proton-antiproton annihilation in magnetic nozzle. This article addresses both concepts allowing for cross-section of annihilation among other issues in order to show their vulnerability and to indicate the problems. The concept of relativistic matter propulsion is substantiated and discussed. The latter is argued to be the most straightforward way to build-up a relativistic rocket firstly because it is based on the existing technology of ion generators and accelerators and secondly because it can be stepped up in efflux power starting from interplanetary spacecrafts powered by nuclear reactors to interstellar starships powered by annihilation reactors. The problems imposed by thermodynamics and heat disposal are accentuated.

  3. Relativistic hydrodynamics on graphic cards

    NASA Astrophysics Data System (ADS)

    Gerhard, Jochen; Lindenstruth, Volker; Bleicher, Marcus

    2013-02-01

    We show how to accelerate relativistic hydrodynamics simulations using graphic cards (graphic processing units, GPUs). These improvements are of highest relevance e.g. to the field of high-energetic nucleus-nucleus collisions at RHIC and LHC where (ideal and dissipative) relativistic hydrodynamics is used to calculate the evolution of hot and dense QCD matter. The results reported here are based on the Sharp And Smooth Transport Algorithm (SHASTA), which is employed in many hydrodynamical models and hybrid simulation packages, e.g. the Ultrarelativistic Quantum Molecular Dynamics model (UrQMD). We have redesigned the SHASTA using the OpenCL computing framework to work on accelerators like graphic processing units (GPUs) as well as on multi-core processors. With the redesign of the algorithm the hydrodynamic calculations have been accelerated by a factor 160 allowing for event-by-event calculations and better statistics in hybrid calculations.

  4. Pythagoras Theorem and Relativistic Kinematics

    NASA Astrophysics Data System (ADS)

    Mulaj, Zenun; Dhoqina, Polikron

    2010-01-01

    In two inertial frames that move in a particular direction, may be registered a light signal that propagates in an angle with this direction. Applying Pythagoras theorem and principles of STR in both systems, we can derive all relativistic kinematics relations like the relativity of simultaneity of events, of the time interval, of the length of objects, of the velocity of the material point, Lorentz transformations, Doppler effect and stellar aberration.

  5. Relativistic opacities for astrophysical applications

    DOE PAGES

    Fontes, Christopher John; Fryer, Christopher Lee; Hungerford, Aimee L.; Hakel, Peter; Colgan, James Patrick; Kilcrease, David Parker; Sherrill, Manalo Edgar

    2015-06-29

    Here, we report on the use of the Los Alamos suite of relativistic atomic physics codes to generate radiative opacities for the modeling of astrophysically relevant plasmas under local thermodynamic equilibrium (LTE) conditions. The atomic structure calculations are carried out in fine-structure detail, including full configuration interaction. Three example applications are considered: iron opacities at conditions relevant to the base of the solar convection zone, nickel opacities for the modeling of stellar envelopes, and samarium opacities for the modeling of light curves produced by neutron star mergers. In the first two examples, comparisons are made between opacities that are generatedmore » with the fully and semi-relativistic capabilities in the Los Alamos suite of codes. As expected for these highly charged, iron-peak ions, the two methods produce reasonably similar results, providing confidence that the numerical methods have been correctly implemented. However, discrepancies greater than 10% are observed for nickel and investigated in detail. In the final application, the relativistic capability is used in a preliminary investigation of the complicated absorption spectrum associated with cold lanthanide elements.« less

  6. Relativistic Tennis Using Flying Mirror

    SciTech Connect

    Pirozhkov, A. S.; Kando, M.; Ma, J.; Fukuda, Y.; Chen, L.-M.; Daito, I.; Ogura, K.; Homma, T.; Hayashi, Y.; Kotaki, H.; Sagisaka, A.; Mori, M.; Koga, J. K.; Kawachi, T.; Daido, H.; Kimura, T.; Kato, Y.; Tajima, T.; Esirkepov, T. Zh.; Bulanov, S. V.

    2008-06-24

    Upon reflection from a relativistic mirror, the electromagnetic pulse frequency is upshifted and the duration is shortened by the factor proportional to the relativistic gamma-factor squared due to the double Doppler effect. We present the results of the proof-of-principle experiment for frequency upshifting of the laser pulse reflected from the relativistic 'flying mirror', which is a wake wave near the breaking threshold created by a strong driver pulse propagating in underdense plasma. Experimentally, the wake wave is created by a 2 TW, 76 fs Ti:S laser pulse from the JLITE-X laser system in helium plasma with the electron density of {approx_equal}4-6x10{sup 19} cm{sup -3}. The reflected signal is observed with a grazing-incidence spectrograph in 24 shots. The wavelength of the reflected radiation ranges from 7 to 14 nm, the corresponding frequency upshifting factors are {approx}55-115, and the gamma-factors are y = 4-6. The reflected signal contains at least 3x10{sup 7} photons/sr. This effect can be used to generate coherent high-frequency ultrashort pulses that inherit temporal shape and polarization from the original (low-frequency) ones. Apart from this, the reflected radiation contains important information about the wake wave itself, e.g. location, size, phase velocity, etc.

  7. Relativistic Tennis Using Flying Mirror

    NASA Astrophysics Data System (ADS)

    Pirozhkov, A. S.; Kando, M.; Esirkepov, T. Zh.; Ma, J.; Fukuda, Y.; Chen, L.-M.; Daito, I.; Ogura, K.; Homma, T.; Hayashi, Y.; Kotaki, H.; Sagisaka, A.; Mori, M.; Koga, J. K.; Kawachi, T.; Daido, H.; Bulanov, S. V.; Kimura, T.; Kato, Y.; Tajima, T.

    2008-06-01

    Upon reflection from a relativistic mirror, the electromagnetic pulse frequency is upshifted and the duration is shortened by the factor proportional to the relativistic gamma-factor squared due to the double Doppler effect. We present the results of the proof-of-principle experiment for frequency upshifting of the laser pulse reflected from the relativistic "flying mirror", which is a wake wave near the breaking threshold created by a strong driver pulse propagating in underdense plasma. Experimentally, the wake wave is created by a 2 TW, 76 fs Ti:S laser pulse from the JLITE-X laser system in helium plasma with the electron density of ≈4-6×1019 cm-3. The reflected signal is observed with a grazing-incidence spectrograph in 24 shots. The wavelength of the reflected radiation ranges from 7 to 14 nm, the corresponding frequency upshifting factors are ˜55-115, and the gamma-factors are y = 4-6. The reflected signal contains at least 3×107 photons/sr. This effect can be used to generate coherent high-frequency ultrashort pulses that inherit temporal shape and polarization from the original (low-frequency) ones. Apart from this, the reflected radiation contains important information about the wake wave itself, e.g. location, size, phase velocity, etc.

  8. Rewriteable optical disk recorder development

    NASA Technical Reports Server (NTRS)

    Shull, Thomas A.; Rinsland, Pamela L.

    1991-01-01

    A NASA program to develop a high performance (high rate, high capability) rewriteable optical disk recorder for spaceflight applications is presented. An expandable, adaptable system concept is proposed based on disk Drive modules and a modular Controller. Drive performance goals are 10 gigabyte capacity are up to 1.8 gigabits per second rate with concurrent I/O, synchronous data transfer, and 2 to 5 years operating life in orbit. Technology developments, design concepts, current status, and future plans are presented.

  9. CHEMICAL PROCESSES IN PROTOPLANETARY DISKS

    SciTech Connect

    Walsh, Catherine; Millar, T. J.; Nomura, Hideko

    2010-10-20

    We have developed a high-resolution combined physical and chemical model of a protoplanetary disk surrounding a typical T Tauri star. Our aims were to use our model to calculate the chemical structure of disks on small scales (submilliarcsecond in the inner disk for objects at the distance of Taurus, {approx}140 pc) to investigate the various chemical processes thought to be important in disks and to determine potential molecular tracers of each process. Our gas-phase network was extracted from the UMIST Database for Astrochemistry to which we added gas-grain interactions including freezeout and thermal and non-thermal desorption (cosmic-ray-induced desorption, photodesorption, and X-ray desorption), and a grain-surface network. We find that cosmic-ray-induced desorption has the least effect on our disk chemical structure while photodesorption has a significant effect, enhancing the abundances of most gas-phase molecules throughout the disk and affecting the abundances and distribution of HCN, CN, and CS, in particular. In the outer disk, we also see enhancements in the abundances of H{sub 2}O and CO{sub 2}. X-ray desorption is a potentially powerful mechanism in disks, acting to homogenize the fractional abundances of gas-phase species across the depth and increasing the column densities of most molecules, although there remain significant uncertainties in the rates adopted for this process. The addition of grain-surface chemistry enhances the fractional abundances of several small complex organic molecules including CH{sub 3}OH, HCOOCH{sub 3}, and CH{sub 3}OCH{sub 3} to potentially observable values (i.e., a fractional abundance of {approx}>10{sup -11}).

  10. Centrally-Rupturing Squib-Closure Disks

    NASA Technical Reports Server (NTRS)

    Richter, R.

    1986-01-01

    Rupture-disk design makes squib action more predictable. In new design, center of rupture disk contains cruciform indentation in which thickness reduced to about 0.5 mil (0.013 mm). Reduces strength of center of rupture disk in same manner as that of pull tabs on beverage cans; therefore, disk will fail predictably in center.

  11. Relativistic high harmonics and (sub-)attosecond pulses: relativistic spikes and relativistic mirror

    NASA Astrophysics Data System (ADS)

    Pukhov, A.; Baeva, T.; An der Brügge, D.; Münster, S.

    2009-11-01

    Using particle-in-cell simulations, we study high harmonic generation from overdense plasmas in the relativistic regime. Different incidence angles as well as different laser polarizations are considered and scalings are recovered. It is shown that the theory of relativistic spikes and the BGP power-law spectra [Phys. Rev. E 74, 046404 (2006)] describes well the normal incidence and s-polarized obliquely incident laser pulses. In the case of p-polarized laser pulses, exceptions from the BGP theory can appear when the quasi-static vector potential build-up at the plasma boundary becomes equal to that of the laser. In this case, the spectrum flattens significantly and has a lower cutoff.

  12. Relativistic Navigation: A Theoretical Foundation

    NASA Technical Reports Server (NTRS)

    Turyshev, Slava G.

    1996-01-01

    We present a theoretical foundation for relativistic astronomical measurements in curved space-time. In particular, we discuss a new iterative approach for describing the dynamics of an isolated astronomical N-body system in metric theories of gravity. To do this, we generalize the Fock-Chandrasekhar method of the weak-field and slow-motion approximation (WFSMA) and develop a theory of relativistic reference frames (RF's) for a gravitationally bounded many-extended-body problem. In any proper RF constructed in the immediate vicinity of an arbitrary body, the N-body solutions of the gravitational field equations are formally presented as a sum of the Riemann-flat inertial space-time, the gravitational field generated by the body itself, the unperturbed solutions for each body in the system transformed to the coordinates of this proper RF, and the gravitational interaction term. We develop the basic concept of a general WFSMA theory of the celestial RF's applicable to a wide class of metric theories of gravity and an arbitrary model of matter distribution. We apply the proposed method to general relativity. Celestial bodies are described using a perfect fluid model; as such, they possess any number of internal mass and current multipole moments that explicitly characterize their internal structures. The obtained relativistic corrections to the geodetic equations of motion arise because of a coupling of the bodies' multiple moments to the surrounding gravitational field. The resulting relativistic transformations between the different RF's extend the Poincare group to the motion of deformable self-gravitating bodies. Within the present accuracy of astronomical measurements we discuss the properties of the Fermi-normal-like proper RF that is defined in the immediate vicinity of the extended compact bodies. We further generalize the proposed approximation method and include two Eddington parameters (gamma, Beta). This generalized approach was used to derive the

  13. Chemodynamical evolution of the Milky Way disk. I. The solar vicinity

    NASA Astrophysics Data System (ADS)

    Minchev, I.; Chiappini, C.; Martig, M.

    2013-10-01

    In the first paper of this series, we present a new approach for studying the chemo-dynamical evolution in disk galaxies, which consists of fusing disk chemical evolution models with compatible numerical simulations of galactic disks. This method avoids known star formation and chemical enrichment problems encountered in simulations. Here we focus on the Milky Way, by using a detailed thin-disk chemical evolution model (matching local observables, which are weakly affected by radial migration) and a simulation in the cosmological context, with dynamical properties close to those of our Galaxy. We examine in detail the interplay between in situ chemical enrichment and radial migration and their impact on key observables in the solar neighborhood, e.g., the age-metallicity-velocity relation, the metallicity distribution, and gradients in the radial and vertical directions. We show that, due to radial migration from mergers at high redshift and the central bar at later times, a sizable fraction of old metal-poor high-[α/Fe] stars can reach the solar vicinity. This naturally accounts for a number of recent observations related to both the thin and thick disks, despite the fact that we use thin-disk chemistry only. Although significant radial mixing is present, the slope in the age-metallicity relation is only weakly affected, with a scatter compatible with recent observational work. While we find a smooth density distribution in the [O/Fe]-[Fe/H] plane, we can recover the observed discontinuity by selecting particles according to kinematic criteria used in high-resolution samples to define the thin and thick disks. We outline a new method for estimating the birth place of the Sun and predict that the most likely radius lies in the range 4.4 < r < 7.7 kpc (for a current location at r = 8 kpc). A new, unifying model for the Milky Way thick disk is offered, where both mergers and radial migration play a role at different stages of the disk evolution. We show that in the

  14. HIGH-CONTRAST NEAR-INFRARED IMAGING POLARIMETRY OF THE PROTOPLANETARY DISK AROUND RY TAU

    SciTech Connect

    Takami, Michihiro; Karr, Jennifer L.; Kim, Hyosun; Chou, Mei-Yin; Hashimoto, Jun; Kandori, Ryo; Kusakabe, Nobuhiko; Kwon, Jungmi; Wisniewski, John; Henning, Thomas; Brandner, Wolfgang; Grady, Carol A.; Hodapp, Klaus W.; Kudo, Tomoyuki; Itoh, Yoichi; Momose, Munetake; Mayama, Satoshi; Currie, Thayne; Follette, Katherine B.; Abe, Lyu; and others

    2013-08-01

    We present near-infrared coronagraphic imaging polarimetry of RY Tau. The scattered light in the circumstellar environment was imaged at the H band at a high resolution ({approx}0.''05) for the first time, using Subaru/HiCIAO. The observed polarized intensity (PI) distribution shows a butterfly-like distribution of bright emission with an angular scale similar to the disk observed at millimeter wavelengths. This distribution is offset toward the blueshifted jet, indicating the presence of a geometrically thick disk or a remnant envelope, and therefore the earliest stage of the Class II evolutionary phase. We perform comparisons between the observed PI distribution and disk models with (1) full radiative transfer code, using the spectral energy distribution (SED) to constrain the disk parameters; and (2) monochromatic simulations of scattered light which explore a wide range of parameters space to constrain the disk and dust parameters. We show that these models cannot consistently explain the observed PI distribution, SED, and the viewing angle inferred by millimeter interferometry. We suggest that the scattered light in the near-infrared is associated with an optically thin and geometrically thick layer above the disk surface, with the surface responsible for the infrared SED. Half of the scattered light and thermal radiation in this layer illuminates the disk surface, and this process may significantly affect the thermal structure of the disk.

  15. High-Contrast Near-Infrared Imaging Polarimetry of the Protoplanetary Disk around RY Tau

    NASA Technical Reports Server (NTRS)

    Takami, Michihiro; Karr, Jennifer L.; Hashimoto, Jun; Kim, Hyosun; Wisenewski, John; Henning, Thomas; Grady, Carol; Kandori, Ryo; Hodapp, Klaus W.; Kudo, Tomoyuki; Kusakabe, Nobuhiko; Chou, Mei-yin; Itoh, Yoichi; Momose, Mumetake; Mayama, Satoshi; Currie, Thayne; Follette, Katherine B.; Kwon, Jungmi; Abe, Lyu; Brandner, Wolfgang; Brandt, Timothy D.; Carson, Joseph; Egner, Sebastian E.; McElwain, Michael W.; Serabyn, Eugene

    2013-01-01

    We present near-infrared coronagraphic imaging polarimetry of RY Tau. The scattered light in the circumstellar environment was imaged at H-band at a high resolution (approx. 0.05) for the first time, using Subaru-HiCIAO. The observed polarized intensity (PI) distribution shows a butterfly-like distribution of bright emission with an angular scale similar to the disk observed at millimeter wavelengths. This distribution is offset toward the blueshifted jet, indicating the presence of a geometrically thick disk or a remnant envelope, and therefore the earliest stage of the Class II evolutionary phase. We perform comparisons between the observed PI distribution and disk models with: (1) full radiative transfer code, using the spectral energy distribution (SED) to constrain the disk parameters; and (2) monochromatic simulations of scattered light which explore a wide range of parameters space to constrain the disk and dust parameters. We show that these models cannot consistently explain the observed PI distribution, SED, and the viewing angle inferred by millimeter interferometry. We suggest that the scattered light in the near-infrared is associated with an optically thin and geometrically thick layer above the disk surface, with the surface responsible for the infrared SED. Half of the scattered light and thermal radiation in this layer illuminates the disk surface, and this process may significantly affect the thermal structure of the disk.

  16. The Spatial Distribution of Large and Small Dust Grains in Transitional Disks

    NASA Astrophysics Data System (ADS)

    Gutierrez, Elizabeth; Perez, Laura M.

    2016-01-01

    The transitional disk stage occurs when a circumstellar disk of gas and dust goes from being optically thick to optically thin within a few Myr, leading to the existence of a prominent cavity between the forming star and the surrounding disk of material. Understanding the processes that open gaps and cavities in transitional disks, such as grain growth, photo-evaporation, or dynamical clearing, can improve our understanding of the planet formation process. With the recent commission of the Atacama Large Millimeter/Submillimeter Array (ALMA) and the upgraded Very Large Array (VLA), the sensitivity and angular resolution essential for observing transitional disks is now available to examine the structure of transitional disks and relate them to theoretical predictions. The research we present encompasses high frequency observations from ALMA Cycle 0 to observe 0.5 mm grains at 690 GHz, and VLA data using Q band frequencies (40.06GHz-47.6GHz) to observe 7 mm grains. We observed four transitional disk targets: SR 21, LkCa 15, RXJ1615.3-3255, and SAO 206462. We present multi-configuration continuum images of each object which were used to find their respective brightness temperature profiles and azimuthal averages to identify any asymmetries within the spatial distribution of the transitional disks and compare our results with existing theoretical models.

  17. RADIATION PRESSURE-SUPPORTED ACCRETION DISKS: VERTICAL STRUCTURE, ENERGY ADVECTION, AND CONVECTIVE STABILITY

    SciTech Connect

    Gu Weimin

    2012-07-10

    By taking into account the local energy balance per unit volume between the viscous heating and the advective cooling plus the radiative cooling, we investigate the vertical structure of radiation pressure-supported accretion disks in spherical coordinates. Our solutions show that the photosphere of the disk is close to the polar axis and therefore the disk seems to be extremely thick. However, the density profile implies that most of the accreted matter exists in a moderate range around the equatorial plane. We show that the well-known polytropic relation between the pressure and the density is unsuitable for describing the vertical structure of radiation pressure-supported disks. More importantly, we find that the energy advection is significant even for slightly sub-Eddington accretion disks. We argue that the non-negligible advection may help us understand why the standard thin disk model is likely to be inaccurate above {approx}0.3 Eddington luminosity, which was found by some works on black hole spin measurement. Furthermore, the solutions satisfy the Solberg-Hoiland conditions, which indicate the disk to be convectively stable. In addition, we discuss the possible link between our disk model and ultraluminous X-ray sources.

  18. Outflows from Accretion Disks around Compact Objects

    NASA Astrophysics Data System (ADS)

    Jiao, Cheng-Liang; Wu, Xue-Bing

    2013-02-01

    We solve the set of hydrodynamic equations for accretion disks in the spherical coordinates (rθφ) to obtain the explicit structure along the θ direction. The results display thinner, quasi-Keplerian disks for Shakura-Sunyaev Disks (SSDs) and thicker, sub-Keplerian disks for Advection Dominated Accretion Flows (ADAFs) and slim disks, which are consistent with previous popular analytical models, while an inflow region and an outflow region always exist, which supports the results of some recent numerical simulation works. Our results indicate that the outflows should be common in various accretion disks and stronger in slim disks and ADAFs.

  19. Relativistic electron mirrors from nanoscale foils for coherent frequency upshift to the extreme ultraviolet.

    PubMed

    Kiefer, D; Yeung, M; Dzelzainis, T; Foster, P S; Rykovanov, S G; Lewis, C Ls; Marjoribanks, R S; Ruhl, H; Habs, D; Schreiber, J; Zepf, M; Dromey, B

    2013-01-01

    Reflecting light from a mirror moving close to the speed of light has been envisioned as a route towards producing bright X-ray pulses since Einstein's seminal work on special relativity. For an ideal relativistic mirror, the peak power of the reflected radiation can substantially exceed that of the incident radiation due to the increase in photon energy and accompanying temporal compression. Here we demonstrate for the first time that dense relativistic electron mirrors can be created from the interaction of a high-intensity laser pulse with a freestanding, nanometre-scale thin foil. The mirror structures are shown to shift the frequency of a counter-propagating laser pulse coherently from the infrared to the extreme ultraviolet with an efficiency >10(4) times higher than in the case of incoherent scattering. Our results elucidate the reflection process of laser-generated electron mirrors and give clear guidance for future developments of a relativistic mirror structure. PMID:23612304

  20. Relativistic electron mirrors from nanoscale foils for coherent frequency upshift to the extreme ultraviolet.

    PubMed

    Kiefer, D; Yeung, M; Dzelzainis, T; Foster, P S; Rykovanov, S G; Lewis, C Ls; Marjoribanks, R S; Ruhl, H; Habs, D; Schreiber, J; Zepf, M; Dromey, B

    2013-01-01

    Reflecting light from a mirror moving close to the speed of light has been envisioned as a route towards producing bright X-ray pulses since Einstein's seminal work on special relativity. For an ideal relativistic mirror, the peak power of the reflected radiation can substantially exceed that of the incident radiation due to the increase in photon energy and accompanying temporal compression. Here we demonstrate for the first time that dense relativistic electron mirrors can be created from the interaction of a high-intensity laser pulse with a freestanding, nanometre-scale thin foil. The mirror structures are shown to shift the frequency of a counter-propagating laser pulse coherently from the infrared to the extreme ultraviolet with an efficiency >10(4) times higher than in the case of incoherent scattering. Our results elucidate the reflection process of laser-generated electron mirrors and give clear guidance for future developments of a relativistic mirror structure.