Science.gov

Sample records for relativistic two-phonon model

  1. Relativistic Continuum Shell Model

    NASA Astrophysics Data System (ADS)

    Grineviciute, Janina; Halderson, Dean

    2011-04-01

    The R-matrix formalism of Lane and Thomas has been extended to the relativistic case so that the many-coupled channels problem may be solved for systems in which binary breakup channels satisfy a relative Dirac equation. The formalism was previously applied to the relativistic impulse approximation RIA and now we applied it to Quantum Hadrodynamics QHD in the continuum Tamm-Dancoff approximation TDA with the classical meson fields replaced by one-meson exchange potentials. None of the published QHD parameters provide a decent fit to the 15 N + p elastic cross section. The deficiency is also evident in inability of the QHD parameters with the one meson exchange potentials to reproduce the QHD single particle energies. Results with alternate parameters sets are presented. A. M. Lane and R. G. Thomas, R-Matrix Theory of Nuclear Reactions, Reviews of Modern Physics, 30 (1958) 257

  2. The relativistic Black-Scholes model

    NASA Astrophysics Data System (ADS)

    Trzetrzelewski, Maciej

    2017-02-01

    The Black-Scholes equation, after a certain coordinate transformation, is equivalent to the heat equation. On the other hand the relativistic extension of the latter, the telegraphers equation, can be derived from the Euclidean version of the Dirac equation. Therefore, the relativistic extension of the Black-Scholes model follows from relativistic quantum mechanics quite naturally. We investigate this particular model for the case of European vanilla options. Due to the notion of locality incorporated in this way, one finds that the volatility frown-like effect appears when comparing to the original Black-Scholes model.

  3. Analytic models of relativistic accretion disks

    NASA Astrophysics Data System (ADS)

    Zhuravlev, V. V.

    2015-06-01

    We present not a literature review but a description, as detailed and consistent as possible, of two analytic models of disk accretion onto a rotating black hole: a standard relativistic disk and a twisted relativistic disk. Although one of these models is older than the other, both are of topical interest for black hole studies. The treatment is such that the reader with only a limited knowledge of general relativity and relativistic hydrodynamics, with little or no use of additional sources, can gain insight into many technical details lacking in the original papers.

  4. Exact quantisation of the relativistic Hopfield model

    NASA Astrophysics Data System (ADS)

    Belgiorno, F.; Cacciatori, S. L.; Dalla Piazza, F.; Doronzo, M.

    2016-11-01

    We investigate the quantisation in the Heisenberg representation of a relativistically covariant version of the Hopfield model for dielectric media, which entails the interaction of the quantum electromagnetic field with the matter dipole fields, represented by a mesoscopic polarisation field. A full quantisation of the model is provided in a covariant gauge, with the aim of maintaining explicit relativistic covariance. Breaking of the Lorentz invariance due to the intrinsic presence in the model of a preferred reference frame is also taken into account. Relativistic covariance forces us to deal with the unphysical (scalar and longitudinal) components of the fields, furthermore it introduces, in a more tricky form, the well-known dipole ghost of standard QED in a covariant gauge. In order to correctly dispose of this contribution, we implement a generalised Lautrup trick. Furthermore, causality and the relation of the model with the Wightman axioms are also discussed.

  5. Advanced relativistic VLBI model for geodesy

    NASA Astrophysics Data System (ADS)

    Soffel, Michael; Kopeikin, Sergei; Han, Wen-Biao

    2016-10-01

    Our present relativistic part of the geodetic VLBI model for Earthbound antennas is a consensus model which is considered as a standard for processing high-precision VLBI observations. It was created as a compromise between a variety of relativistic VLBI models proposed by different authors as documented in the IERS Conventions 2010. The accuracy of the consensus model is in the picosecond range for the group delay but this is not sufficient for current geodetic purposes. This paper provides a fully documented derivation of a new relativistic model having an accuracy substantially higher than one picosecond and based upon a well accepted formalism of relativistic celestial mechanics, astrometry and geodesy. Our new model fully confirms the consensus model at the picosecond level and in several respects goes to a great extent beyond it. More specifically, terms related to the acceleration of the geocenter are considered and kept in the model, the gravitational time-delay due to a massive body (planet, Sun, etc.) with arbitrary mass and spin-multipole moments is derived taking into account the motion of the body, and a new formalism for the time-delay problem of radio sources located at finite distance from VLBI stations is presented. Thus, the paper presents a substantially elaborated theoretical justification of the consensus model and its significant extension that allows researchers to make concrete estimates of the magnitude of residual terms of this model for any conceivable configuration of the source of light, massive bodies, and VLBI stations. The largest terms in the relativistic time delay which can affect the current VLBI observations are from the quadrupole and the angular momentum of the gravitating bodies that are known from the literature. These terms should be included in the new geodetic VLBI model for improving its consistency.

  6. Screening parameters for the relativistic hydrogenic model

    NASA Astrophysics Data System (ADS)

    Lanzini, Fernando; Di Rocco, Héctor O.

    2015-12-01

    We present a Relativistic Screened Hydrogenic Model (RSHM) where the screening parameters depend on the variables (n , l , j) and the parameters (Z , N) . These screening parameters were derived theoretically in a neat form with no use of experimental values nor numerical values from self-consistent codes. The results of the model compare favorably with those obtained by using more sophisticated approaches. For the interested reader, a copy of our code can be requested from the corresponding author.

  7. Modeling relativistic plasmas with PIC using VORPAL

    NASA Astrophysics Data System (ADS)

    Nieter, Chet; Cary, John R.

    2002-11-01

    VORPAL, a fully object-oriented, dimension-free plasma simulation code, now has a fully developed PIC model. This PIC model has been applied to studies of Laser Wake Field Acceleration, including the nonlinear structure of the wake field generated in the colliding pulse injection scheme and in the development of a new injection scheme that reduces timing requirements. (See Giacone et al. and Cary et al. at this conference). Since the PIC model was developed using VORPAL's object oriented architecture, it works in any dimension and with both serial and parallel runs. Several different update methods are available, including both relativistic and non-relativistic Boris push and an electrostatic update as well.

  8. Two-phonon excitations in 170Er

    SciTech Connect

    Archer, D E; Becker, J A; Bernstein, L A; Garrett, P E; Johns, G D; Kadi, M; Martin, A; Nelson, R O; Warr, N; Wilburn, W S; Yates, S W; Younes, W

    1998-09-29

    Recent experiments at the GEANIE/WNR facility and the University of Kentucky accelerator have yielded strong evidence for a two-gamma excitation in 170Er. This new case can be added to a handful of previously identified examples of two-gamma vibrations, all of them discovered in this decade. In this paper the experimental evidence for a two-phonon excitation 170Er is presented and the current state of understanding of these structures is reviewed in the context of this and other recent findings.

  9. Relativistic constituent quark model with infrared confinement

    SciTech Connect

    Branz, Tanja; Faessler, Amand; Gutsche, Thomas; Lyubovitskij, Valery E.; Ivanov, Mikhail A.; Koerner, Juergen G.

    2010-02-01

    We refine the relativistic constituent quark model developed in our previous papers to include the confinement of quarks. It is done, first, by introducing the scale integration in the space of {alpha} parameters, and, second, by cutting this scale integration on the upper limit which corresponds to an infrared cutoff. In this manner one removes all possible thresholds present in the initial quark diagram. The cutoff parameter is taken to be the same for all physical processes. We adjust other model parameters by fitting the calculated quantities of the basic physical processes to available experimental data. As an application, we calculate the electromagnetic form factors of the pion and the transition form factors of the {omega} and {eta} Dalitz decays.

  10. OPTICAL DATA PROCESSING: Two-dimensional image edge enhancement in the two-phonon diffraction

    NASA Astrophysics Data System (ADS)

    Kotov, V. M.; Averin, S. V.; Shkerdin, G. N.; Voronko, A. I.

    2010-06-01

    We suggest using the two-phonon Bragg scattering regime for two-dimensional image edge enhancement by means of acousto-optic (AO) diffraction on a single sound wave. Image edge enhancement is demonstrated in the first diffraction order by using an AO cell made of the TeO2 single crystal. To explain this effect, a three-dimensional model of AO interaction is proposed, which takes into account the angular selectivity of diffraction both in the plane of Bragg scattering and in the plane orthogonal to it.

  11. Lattice Boltzmann model for resistive relativistic magnetohydrodynamics.

    PubMed

    Mohseni, F; Mendoza, M; Succi, S; Herrmann, H J

    2015-08-01

    In this paper, we develop a lattice Boltzmann model for relativistic magnetohydrodynamics (MHD). Even though the model is derived for resistive MHD, it is shown that it is numerically robust even in the high conductivity (ideal MHD) limit. In order to validate the numerical method, test simulations are carried out for both ideal and resistive limits, namely the propagation of Alfvén waves in the ideal MHD and the evolution of current sheets in the resistive regime, where very good agreement is observed comparing to the analytical results. Additionally, two-dimensional magnetic reconnection driven by Kelvin-Helmholtz instability is studied and the effects of different parameters on the reconnection rate are investigated. It is shown that the density ratio has a negligible effect on the magnetic reconnection rate, while an increase in shear velocity decreases the reconnection rate. Additionally, it is found that the reconnection rate is proportional to σ-1/2, σ being the conductivity, which is in agreement with the scaling law of the Sweet-Parker model. Finally, the numerical model is used to study the magnetic reconnection in a stellar flare. Three-dimensional simulation suggests that the reconnection between the background and flux rope magnetic lines in a stellar flare can take place as a result of a shear velocity in the photosphere.

  12. Lattice Boltzmann model for resistive relativistic magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Mohseni, F.; Mendoza, M.; Succi, S.; Herrmann, H. J.

    2015-08-01

    In this paper, we develop a lattice Boltzmann model for relativistic magnetohydrodynamics (MHD). Even though the model is derived for resistive MHD, it is shown that it is numerically robust even in the high conductivity (ideal MHD) limit. In order to validate the numerical method, test simulations are carried out for both ideal and resistive limits, namely the propagation of Alfvén waves in the ideal MHD and the evolution of current sheets in the resistive regime, where very good agreement is observed comparing to the analytical results. Additionally, two-dimensional magnetic reconnection driven by Kelvin-Helmholtz instability is studied and the effects of different parameters on the reconnection rate are investigated. It is shown that the density ratio has a negligible effect on the magnetic reconnection rate, while an increase in shear velocity decreases the reconnection rate. Additionally, it is found that the reconnection rate is proportional to σ-1 / 2, σ being the conductivity, which is in agreement with the scaling law of the Sweet-Parker model. Finally, the numerical model is used to study the magnetic reconnection in a stellar flare. Three-dimensional simulation suggests that the reconnection between the background and flux rope magnetic lines in a stellar flare can take place as a result of a shear velocity in the photosphere.

  13. A nonlinear relativistic nuclear model for protoneutronstars

    NASA Astrophysics Data System (ADS)

    Razeira, M.; Vasconcellos, C. A. Z.; Dillig, M.

    2003-08-01

    In the last few decades, studies on the internal structure, composition, dynamics and evolution of protoneutron stars, neutron stars, pulsars, hybrid and strange stars became central topics for theoretical and experimental research. Since the observation of the first pulsar in 1967, whose characteristic observational features allowed its identification as a rotating neutron star, nuclear models have been widely employed in the description of the holly graal of modern physics, the equation of state of dense matter. As under the pull of gravity the energy density in the core of these compact stars is thought to approach or even exceed more than 6 times the density of ordinary nuclear matter, predictions on the structure of the stars depend sensitively on the equation of state provided by model calculations. Combined with the equations of the general relativity metric, predictions on the mass, radius, crust extent and moment of inertia of the stars are then susceptible to the comparison to observation. In this work, a theoretical modeling for protoneutron stars (nuclear matter at finite temperature) is studied in the framework of an effective many-body relativistic mean field theory and the Sommerfeld approximation which contains the fundamental baryon octet and leptonic degrees of freedom, sigma, omega, rho and delta mesons, chemical equilibrium and charge neutrality. Our predictions include the determination of the mass of protoneutron stars, the mass-radius relation, relative population, gravitational redshift among other properties.

  14. Relativistic mean-field mass models

    NASA Astrophysics Data System (ADS)

    Peña-Arteaga, D.; Goriely, S.; Chamel, N.

    2016-10-01

    We present a new effort to develop viable mass models within the relativistic mean-field approach with density-dependent meson couplings, separable pairing and microscopic estimations for the translational and rotational correction energies. Two interactions, DD-MEB1 and DD-MEB2, are fitted to essentially all experimental masses, and also to charge radii and infinite nuclear matter properties as determined by microscopic models using realistic interactions. While DD-MEB1 includes the σ, ω and ρ meson fields, DD-MEB2 also considers the δ meson. Both mass models describe the 2353 experimental masses with a root mean square deviation of about 1.1 MeV and the 882 measured charge radii with a root mean square deviation of 0.029 fm. In addition, we show that the Pb isotopic shifts and moments of inertia are rather well reproduced, and the equation of state in pure neutron matter as well as symmetric nuclear matter are in relatively good agreement with existing realistic calculations. Both models predict a maximum neutron-star mass of more than 2.6 solar masses, and thus are able to accommodate the heaviest neutron stars observed so far. However, the new Lagrangians, like all previously determined RMF models, present the drawback of being characterized by a low effective mass, which leads to strong shell effects due to the strong coupling between the spin-orbit splitting and the effective mass. Complete mass tables have been generated and a comparison with other mass models is presented.

  15. Relativistic Landau models and generation of fuzzy spheres

    NASA Astrophysics Data System (ADS)

    Hasebe, Kazuki

    2016-07-01

    Noncommutative geometry naturally emerges in low energy physics of Landau models as a consequence of level projection. In this work, we proactively utilize the level projection as an effective tool to generate fuzzy geometry. The level projection is specifically applied to the relativistic Landau models. In the first half of the paper, a detail analysis of the relativistic Landau problems on a sphere is presented, where a concise expression of the Dirac-Landau operator eigenstates is obtained based on algebraic methods. We establish SU(2) “gauge” transformation between the relativistic Landau model and the Pauli-Schrödinger nonrelativistic quantum mechanics. After the SU(2) transformation, the Dirac operator and the angular momentum operators are found to satisfy the SO(3, 1) algebra. In the second half, the fuzzy geometries generated from the relativistic Landau levels are elucidated, where unique properties of the relativistic fuzzy geometries are clarified. We consider mass deformation of the relativistic Landau models and demonstrate its geometrical effects to fuzzy geometry. Super fuzzy geometry is also constructed from a supersymmetric quantum mechanics as the square of the Dirac-Landau operator. Finally, we apply the level projection method to real graphene system to generate valley fuzzy spheres.

  16. Relaxation times of the two-phonon processes with spin-flip and spin-conserving in quantum dots

    SciTech Connect

    Wang, Zi-Wu; Liu, Lei; Li, Shu-Shen

    2014-04-07

    We perform a theoretical investigation on the two-phonon processes of the spin-flip and spin-conserving relaxation in quantum dots in the frame of the Huang-Rhys' lattice relaxation model. We find that the relaxation time of the spin-flip is two orders of magnitude longer than that of the spin-conserving, which is in agreement with previous experimental measurements. Moreover, the opposite variational trends of the relaxation time as a function of the energy separation for two-phonon processes are obtained in different temperature regime. The relaxation times display the oscillatory behaviors at the demarcation point with increasing magnetic field, where the energy separation matches the optical phonon energy and results in the optical phonon resonance. These results are useful in understanding the intraband levels' relaxation in quantum dots and could be helpful in designing photoelectric and spin-memory devices.

  17. Nonrelativistic approaches derived from point-coupling relativistic models

    SciTech Connect

    Lourenco, O.; Dutra, M.; Delfino, A.; Sa Martins, J. S.

    2010-03-15

    We construct nonrelativistic versions of relativistic nonlinear hadronic point-coupling models, based on new normalized spinor wave functions after small component reduction. These expansions give us energy density functionals that can be compared to their relativistic counterparts. We show that the agreement between the nonrelativistic limit approach and the Skyrme parametrizations becomes strongly dependent on the incompressibility of each model. We also show that the particular case A=B=0 (Walecka model) leads to the same energy density functional of the Skyrme parametrizations SV and ZR2, while the truncation scheme, up to order {rho}{sup 3}, leads to parametrizations for which {sigma}=1.

  18. The relativistic feedback discharge model of terrestrial gamma ray flashes

    NASA Astrophysics Data System (ADS)

    Dwyer, Joseph R.

    2012-02-01

    As thunderclouds charge, the large-scale fields may approach the relativistic feedback threshold, above which the production of relativistic runaway electron avalanches becomes self-sustaining through the generation of backward propagating runaway positrons and backscattered X-rays. Positive intracloud (IC) lightning may force the large-scale electric fields inside thunderclouds above the relativistic feedback threshold, causing the number of runaway electrons, and the resulting X-ray and gamma ray emission, to grow exponentially, producing very large fluxes of energetic radiation. As the flux of runaway electrons increases, ionization eventually causes the electric field to discharge, bringing the field below the relativistic feedback threshold again and reducing the flux of runaway electrons. These processes are investigated with a new model that includes the production, propagation, diffusion, and avalanche multiplication of runaway electrons; the production and propagation of X-rays and gamma rays; and the production, propagation, and annihilation of runaway positrons. In this model, referred to as the relativistic feedback discharge model, the large-scale electric fields are calculated self-consistently from the charge motion of the drifting low-energy electrons and ions, produced from the ionization of air by the runaway electrons, including two- and three-body attachment and recombination. Simulation results show that when relativistic feedback is considered, bright gamma ray flashes are a natural consequence of upward +IC lightning propagating in large-scale thundercloud fields. Furthermore, these flashes have the same time structures, including both single and multiple pulses, intensities, angular distributions, current moments, and energy spectra as terrestrial gamma ray flashes, and produce large current moments that should be observable in radio waves.

  19. Properties of Doubly Heavy Baryons in the Relativistic Quark Model

    SciTech Connect

    Ebert, D.; Faustov, R.N.; Galkin, V.O.; Martynenko, A.P.

    2005-05-01

    Mass spectra and semileptonic decay rates of baryons consisting of two heavy (b or c) and one light quark are calculated in the framework of the relativistic quark model. The doubly heavy baryons are treated in the quark-diquark approximation. The ground and excited states of both the diquark and quark-diquark bound systems are considered. The quark-diquark potential is constructed. The light quark is treated completely relativistically, while the expansion in the inverse heavy-quark mass is used. The weak transition amplitudes of heavy diquarks bb and bc going, respectively, to bc and cc are explicitly expressed through the overlap integrals of the diquark wave functions in the whole accessible kinematic range. The relativistic baryon wave functions of the quark-diquark bound system are used for the calculation of the decay matrix elements, the Isgur-Wise function, and decay rates in the heavy-quark limit.

  20. Relativistic reflection: Review and recent developments in modeling

    NASA Astrophysics Data System (ADS)

    Dauser, T.; García, J.; Wilms, J.

    2016-05-01

    Measuring relativistic reflection is an important tool to study the innermost regions of the an accreting black hole system. In the following we present a brief review on the different aspects contributing to the relativistic reflection. The combined approach is for the first time incorporated in the new ``relxill'' model. The advantages of this more self-consistent approach are briefly summarized. A special focus is put on the new definition of the intrinsic reflection fraction in the lamp post geometry, which allows to draw conclusions about the primary source of radiation in these system. Additionally the influence of the high energy cutoff of the primary source on the reflection spectrum is motivated, revealing the remarkable capabilities of constraining E_cut by measuring relativistic reflection spectra from NuSTAR, preferably with lower energy coverage.

  1. A relativistic toy model for Unruh black holes

    NASA Astrophysics Data System (ADS)

    Carbonaro, P.

    2014-08-01

    We consider the wave propagation in terms of acoustic geometry in a quantum relativistic system. This reduces, in the hydrodynamic limit, to the equations which govern the motion of a relativistic Fermi-degenerate gas in one space dimension. The derivation of an acoustic metric for one-dimensional (1D) systems is in general plagued with the impossibility of defining a conformal factor. Here we show that, although the system is intrinsically one-dimensional, the Unruh procedure continues to work because of the particular structure symmetry of the model. By analyzing the dispersion relation, attention is also paid to the quantum effects on the wave propagation.

  2. Modeling terrestrial gamma ray flashes produced by relativistic feedback discharges

    NASA Astrophysics Data System (ADS)

    Liu, Ningyu; Dwyer, Joseph R.

    2013-05-01

    This paper reports a modeling study of terrestrial gamma ray flashes (TGFs) produced by relativistic feedback discharges. Terrestrial gamma ray flashes are intense energetic radiation originating from the Earth's atmosphere that has been observed by spacecraft. They are produced by bremsstrahlung interactions of energetic electrons, known as runaway electrons, with air atoms. An efficient physical mechanism for producing large fluxes of the runaway electrons to make the TGFs is the relativistic feedback discharge, where seed runaway electrons are generated by positrons and X-rays, products of the discharge itself. Once the relativistic feedback discharge becomes self-sustaining, an exponentially increasing number of relativistic electron avalanches propagate through the same high-field region inside the thundercloud until the electric field is partially discharged by the ionization created by the discharge. The modeling results indicate that the durations of the TGF pulses produced by the relativistic feedback discharge vary from tens of microseconds to several milliseconds, encompassing all durations of the TGFs observed so far. In addition, when a sufficiently large potential difference is available in thunderclouds, a self-propagating discharge known as the relativistic feedback streamer can be formed, which propagates like a conventional positive streamer. For the relativistic feedback streamer, the positive feedback mechanism of runaway electron production by the positrons and X-rays plays a similar role as the photoionization for the conventional positive streamer. The simulation results of the relativistic feedback streamer show that a sequence of TGF pulses with varying durations can be produced by the streamer. The relativistic streamer may initially propagate with a pulsed manner and turn into a continuous propagation mode at a later stage. Milliseconds long TGF pulses can be produced by the feedback streamer during its continuous propagation. However

  3. Relativistic HD and MHD modelling for AGN jets

    NASA Astrophysics Data System (ADS)

    Keppens, R.; Porth, O.; Monceau-Baroux, R.; Walg, S.

    2013-12-01

    Relativistic hydro and magnetohydrodynamics (MHD) provide a continuum fluid description for plasma dynamics characterized by shock-dominated flows approaching the speed of light. Significant progress in its numerical modelling emerged in the last two decades; we highlight selected examples of modern grid-adaptive, massively parallel simulations realized by our open-source software MPI-AMRVAC (Keppens et al 2012 J. Comput. Phys. 231 718). Hydrodynamical models quantify how energy transfer from active galactic nuclei (AGN) jets to their surrounding interstellar/intergalactic medium (ISM/IGM) gets mediated through shocks and various fluid instability mechanisms (Monceau-Baroux et al 2012 Astron. Astrophys. 545 A62). With jet parameters representative for Fanaroff-Riley type-II jets with finite opening angles, we can quantify the ISM volumes affected by jet injection and distinguish the roles of mixing versus shock-heating in cocoon regions. This provides insight in energy feedback by AGN jets, usually incorporated parametrically in cosmological evolution scenarios. We discuss recent axisymmetric studies up to full 3D simulations for precessing relativistic jets, where synthetic radio maps can confront observations. While relativistic hydrodynamic models allow one to better constrain dynamical parameters like the Lorentz factor and density contrast between jets and their surroundings, the role of magnetic fields in AGN jet dynamics and propagation characteristics needs full relativistic MHD treatments. Then, we can demonstrate the collimating properties of an overal helical magnetic field backbone and study differences between poloidal versus toroidal field dominated scenarios (Keppens et al 2008 Astron. Astrophys. 486 663). Full 3D simulations allow one to consider the fate of non-axisymmetric perturbations on relativistic jet propagation from rotating magnetospheres (Porth 2013 Mon. Not. R. Astron. Soc. 429 2482). Self-stabilization mechanisms related to the detailed

  4. An Extended Magnetohydrodynamics Model for Relativistic Weakly Collisional Plasmas

    NASA Astrophysics Data System (ADS)

    Chandra, Mani; Gammie, Charles F.; Foucart, Francois; Quataert, Eliot

    2015-09-01

    Black holes that accrete far below the Eddington limit are believed to accrete through a geometrically thick, optically thin, rotationally supported plasma that we will refer to as a radiatively inefficient accretion flow (RIAF). RIAFs are typically collisionless in the sense that the Coulomb mean free path is large compared to {GM}/{c}2, and relativistically hot near the event horizon. In this paper we develop a phenomenological model for the plasma in RIAFs, motivated by the application to sources such as Sgr A* and M87. The model is derived using Israel-Stewart theory, which considers deviations up to second order from thermal equilibrium, but modified for a magnetized plasma. This leads to thermal conduction along magnetic field lines and a difference in pressure, parallel and perpendicular to the field lines (which is equivalent to anisotropic viscosity). In the non-relativistic limit, our model reduces to the widely used Braginskii theory of magnetized, weakly collisional plasmas. We compare our model to the existing literature on dissipative relativistic fluids, describe the linear theory of the plasma, and elucidate the physical meaning of the free parameters in the model. We also describe limits of the model when the conduction is saturated and when the viscosity implies a large pressure anisotropy. In future work, the formalism developed in this paper will be used in numerical models of RIAFs to assess the importance of non-ideal processes for the dynamics and radiative properties of slowly accreting black holes.

  5. Kinematic arguments against single relativistic shell models for GRBs

    NASA Technical Reports Server (NTRS)

    Fenimore, Edward E.; Ramirez, E.; Sumner, M. C.

    1997-01-01

    Two main types of models have been suggested to explain the long durations and multiple peaks of Gamma Ray Bursts (GRBs). In one, there is a very quick release of energy at a central site resulting in a single relativistic shell that produces peaks in the time history through its interactions with the ambient material. In the other, the central site sporadically releases energy over hundreds of seconds forming a peak with each burst of energy. The authors show that the average envelope of emission and the presence of gaps in GRBs are inconsistent with a single relativistic shell. They estimate that the maximum fraction of a single shell that can produce gamma-rays in a GRB with multiple peaks is 10(exp (minus)3), implying that single relativistic shells require 10(exp 3) times more energy than previously thought. They conclude that either the central site of a GRB must produce (approx)10(exp 51) erg/s(exp (minus)1) for hundreds of seconds, or the relativistic shell must have structure on a scales the order of (radical)(epsilon)(Gamma)(exp (minus)1), where (Gamma) is the bulk Lorentz factor ((approximately)10(exp 2) to 10(exp 3)) and (epsilon) is the efficiency.

  6. Models of Dilute Relativistic Plasmas Around Black Holes

    NASA Astrophysics Data System (ADS)

    Quataert, Eliot

    2016-10-01

    In some regimes, mass flowing onto a central black hole can become sufficiently hot and low density that the collisional mean free path is appreciable compared to the size of the system. I describe new analytical and numerical models of these relativistically hot low collisionality plasmas around black holes. I also describe the application of these models to interpreting observations of the accreting black holes being observed by the Event Horizon Telescope.

  7. Electroexcitation of the Roper resonance in the relativistic quark models

    SciTech Connect

    Inna Aznauryan

    2007-08-01

    The amplitudes of the transition gamma* N -> P11(1440) are calculated within light-front relativistic quark model assuming that the P11(1440) is the first radial excitation of the 3q nucleon state. The results are compared with those obtained in close approaches by other authors and with standard nonrelativistic results. One of the reasons for this study was to present all these results within unified definition of helicity amplitudes consistent with the definition used in the extraction of the helicity amplitudes from experimental data in one-pion electroproduction. The results of relativistic quark models are qualitatively in good agreement with each other and differ strongly from nonrelativistic calculations. At small Q2 , these results for the transverse amplitude A12 are consistent, but fail to reproduce experimental data. The most probable explanation of this discrepancy is the absence of pion cloud contribution in the approaches under consideration.

  8. Search for two-phonon octupole excitations in 146Gd

    NASA Astrophysics Data System (ADS)

    Orce, J. N.; Kumar Raju, M.; Khumalo, N. A.; Dinoko, T. S.; Jones, P.; Bark, R. A.; Lawrie, E. A.; Majola, S. N. T.; Robledo, L. M.; Rubio, B.; Wiedeking, M.; Easton, J.; Khaleel, E. A.; Kheswa, B. V.; Kheswa, N.; Herbert, M. S.; Lawrie, J. J.; Masiteng, P. L.; Nchodu, M. R.; Ndayishimye, J.; Negi, D.; Noncolela, S. P.; Ntshangase, S. S.; Papka, P.; Roux, D. G.; Shirinda, O.; Sithole, P. S.; Yates, S. W.

    2016-06-01

    The low-spin structure of the nearly spherical nucleus 146Gd was studied using the 144Sm(4He, 2n) fusion-evaporation reaction. High-statistics γ - γ coincidence measurements were performed at iThemba LABS with 7× 109 γ- γ coincidence events recorded. Gated γ-ray energy spectra show evidence for the 6+2 → 3-1 → 0+1 cascade of E3 transitions in agreement with recent findings by Caballero and co-workers, but with a smaller branching ratio of I_{γ} = 4.7(10) for the 6+2 → 3-1 1905.1 keV γ ray. Although these findings may support octupole vibrations in spherical nuclei, sophisticated beyond mean-field calculations including angular-momentum projection are required to interpret in an appropriate way the available data due to the failure of the rotational model assumptions in this nucleus.

  9. Heavy-light mesons in a relativistic model

    NASA Astrophysics Data System (ADS)

    Liu, Jing-Bin; Yang, Mao-Zhi

    2016-07-01

    We study the heavy-light mesons in a relativistic model, which is derived from the Bethe-Salpeter equation by applying the Foldy-Wouthuysen transformation to the heavy quark. The kernel we choose is based on scalar confinement and vector Coulomb potentials. The transverse interaction of the gluon exchange is also taken into account in this model. The spectra and wave functions of D, Ds, B, Bs meson states are obtained. The spectra are calculated up to the order of 1/m Q, and wave functions are treated to leading order. Supported by National Natural Science Foundation of China (11375088, 10975077, 10735080, 11125525)

  10. Relativistic Modeling Capabilities in PERSEUS Extended MHD Simulation Code for HED Plasmas

    NASA Astrophysics Data System (ADS)

    Hamlin, Nathaniel; Seyler, Charles

    2014-10-01

    We discuss the incorporation of relativistic modeling capabilities into the PERSEUS extended MHD simulation code for high-energy-density (HED) plasmas, and present the latest simulation results. The use of fully relativistic equations enables the model to remain self-consistent in simulations of such relativistic phenomena as hybrid X-pinches and laser-plasma interactions. A major challenge of a relativistic fluid implementation is the recovery of primitive variables (density, velocity, pressure) from conserved quantities at each time step of a simulation. This recovery, which reduces to straightforward algebra in non-relativistic simulations, becomes more complicated when the equations are made relativistic, and has thus far been a major impediment to two-fluid simulations of relativistic HED plasmas. By suitable formulation of the relativistic generalized Ohm's law as an evolution equation, we have reduced the central part of the primitive variable recovery problem to a straightforward algebraic computation, which enables efficient and accurate relativistic two-fluid simulations. Our code recovers expected non-relativistic results and reveals new physics in the relativistic regime. Work supported by the National Nuclear Security Administration stewardship sciences academic program under Department of Energy cooperative Agreement DE-NA0001836.

  11. A relativistic two-fluid model of compact stars

    NASA Astrophysics Data System (ADS)

    Chakraborty, Koushik; Rahaman, Farook; Mallick, Arkopriya

    2017-03-01

    We propose a relativistic model of compact star admitting conformal symmetry. Quark matter and baryonic matter which are considered as two different fluids, constitute the star. We define interaction equations between the normal baryonic matter and the quark matter and study the physical situations for repulsive, attractive and zero interaction between the constituent matters. The measured value of the Bag constant is used to explore the spacetime geometry inside the star. From the observed values of the masses of some compact objects, we have obtained theoretical values of the radii. Theoretical values of the radii match well with the previous predictions for such compact objects.

  12. A two-fluid model for relativistic heat conduction

    SciTech Connect

    López-Monsalvo, César S.

    2014-01-14

    Three years ago it was presented in these proceedings the relativistic dynamics of a multi-fluid system together with various applications to a set of topical problems [1]. In this talk, I will start from such dynamics and present a covariant formulation of relativistic thermodynamics which provides us with a causal constitutive equation for the propagation of heat in a relativistic setting.

  13. Relativistic mean field models for finite nuclei and neutron stars

    NASA Astrophysics Data System (ADS)

    Chen, Wei-Chia

    In this dissertation we have created theoretical models for finite nuclei, nuclear matter, and neutron stars within the framework of relativistic mean field (RMF) theory, and we have used these models to investigate the elusive isovector sector and related physics, in particular, the neutron-skin thickness of heavy nuclei, the nuclear symmetry energy, and the properties of neutron stars. To build RMF models that incorporate collective excitations in finite nuclei in addition to their ground-state properties, we have extended the non-relativistic sum rule approach to the relativistic domain. This allows an efficient estimate of giant monopole energies. Moreover, we have combined an exact shell-model-like approach with the mean-field calculation to describe pairing correlations in open-shell nuclei. All the ingredients were then put together to establish the calibration scheme. We have also extended the transformation between model parameters and pseudo data of nuclear matter within the RMF context. Performing calibration in this pseudo data space can not only facilitate the searching algorithm but also make the pseudo data genuine model predictions. This calibration scheme is also supplemented by a covariance analysis enabling us to extract the information content of a model, including theoretical uncertainties and correlation coefficients. A series of RMF models subject to the same isoscalar constraints but one differing isovector assumption were then created using this calibration scheme. By comparing their predictions of the nuclear matter equation of state to both experimental and theoretical constraints, we found that a small neutron skin of about 0.16 fm in Pb208 is favored, indicating that the symmetry energy should be soft. To obtain stronger evidence, we proceeded to examine the evolution of the isotopic chains in both oxygen and calcium. Again, it was found that the model with such small neutron skin and soft symmetry energy can best describe both isotopic

  14. A "Boosted Fireball" Model for Structured Relativistic Jets

    NASA Astrophysics Data System (ADS)

    Duffell, Paul C.; MacFadyen, Andrew I.

    2013-10-01

    We present a model for relativistic jets which generates a particular angular distribution of Lorentz factor and energy per solid angle. We consider a fireball with specific internal energy E/M launched with bulk Lorentz factor γ B . In its center-of-momentum frame the fireball expands isotropically, converting its internal energy into radially expanding flow with asymptotic Lorentz factor η0 ~ E/M. In the lab frame the flow is beamed, expanding with Lorentz factor Γ = 2η0γ B in the direction of its initial bulk motion and with characteristic opening angle θ0 ~ 1/γ B . The flow is jet-like with Γθ0 ~ 2η0 such that jets with Γ > 1/θ0 are naturally produced. The choice η0 ~ γ B ~ 10 yields a jet with Γ ~ 200 on-axis and angular structure characterized by opening angle θ0 ~ 0.1 of relevance for cosmological gamma-ray bursts (GRBs), while γ B >~ 1 may be relevant for low-luminosity GRBs. The model produces a family of outflows, of relevance for different relativistic phenomena with structures completely determined by η0 and γ B . We calculate the energy per unit solid angle for the model and use it to compute light curves for comparison with the widely used top-hat model. The jet break in the boosted fireball light curve is greatly subdued when compared to the top-hat model because the edge of the jet is smoother than for a top-hat. This may explain missing jet breaks in afterglow light curves.

  15. Reaction cross sections of intermediate energy {alpha} particles within a relativistic optical model

    SciTech Connect

    Ait-Tahar, S.; Nedjadi, Y.

    1995-07-01

    The suggestion made recently by H. Abele {ital et} {ital al}. that relativistic effects in the interaction of alpha particles with various nuclei at intermediate energies may remove the existing discrepancy between the theoretical predictions and the experimental data for the reaction cross section is investigated. We use a relativistic model based on the Kemmer-Duffin-Petiau equation and find that relativistic effects do not lead to a reduction in the reaction cross section within the present approach. Alternative explanations are discussed.

  16. Relativistic mean-field models and nuclear matter constraints

    SciTech Connect

    Dutra, M.; Lourenco, O.; Carlson, B. V.; Delfino, A.; Menezes, D. P.; Avancini, S. S.; Stone, J. R.; Providencia, C.; Typel, S.

    2013-05-06

    This work presents a preliminary study of 147 relativistic mean-field (RMF) hadronic models used in the literature, regarding their behavior in the nuclear matter regime. We analyze here different kinds of such models, namely: (i) linear models, (ii) nonlinear {sigma}{sup 3}+{sigma}{sup 4} models, (iii) {sigma}{sup 3}+{sigma}{sup 4}+{omega}{sup 4} models, (iv) models containing mixing terms in the fields {sigma} and {omega}, (v) density dependent models, and (vi) point-coupling ones. In the finite range models, the attractive (repulsive) interaction is described in the Lagrangian density by the {sigma} ({omega}) field. The isospin dependence of the interaction is modeled by the {rho} meson field. We submit these sets of RMF models to eleven macroscopic (experimental and empirical) constraints, used in a recent study in which 240 Skyrme parametrizations were analyzed. Such constraints cover a wide range of properties related to symmetric nuclear matter (SNM), pure neutron matter (PNM), and both SNM and PNM.

  17. Radiative leptonic Bc decay in the relativistic independent quark model

    NASA Astrophysics Data System (ADS)

    Barik, N.; Naimuddin, Sk.; Dash, P. C.; Kar, Susmita

    2008-12-01

    The radiative leptonic decay Bc-→μ-ν¯μγ is analyzed in its leading order in a relativistic independent quark model based on a confining potential in an equally mixed scalar-vector harmonic form. The branching ratio for this decay in the vanishing lepton mass limit is obtained as Br(Bc→μνμγ)=6.83×10-5, which includes the contributions of the internal bremsstrahlung and structure-dependent diagrams at the level of the quark constituents. The contributions of the bremsstrahlung and the structure-dependent diagrams, as well as their additive interference parts, are compared and found to be of the same order of magnitude. Finally, the predicted photon energy spectrum is observed here to be almost symmetrical about the peak value of the photon energy at Ẽγ≃(MBc)/(4), which may be quite accessible experimentally at LHC in near future.

  18. Acceleration of Relativistic Electrons: A Comparison of Two Models

    NASA Astrophysics Data System (ADS)

    Green, J. C.; Kivelson, M. G.

    2001-12-01

    Observations of relativistic electron fluxes show order of magnitude increases during some geomagnetic storms. Many electron acceleration models have been proposed to explain the flux enhancements but attempts to validate these models have yielded ambiguous results. Here we examine two models of electron acceleration, radial diffusion via enhanced ULF wave activity [Elkington et al.,1999] and acceleration by resonant interaction with whistler waves[Summers,1998; Roth et al.,1999]. Two methods are used to compare observations with features predicted by the models. First, the evolution of phase space density as a function of L during flux enhancement events is evaluated. The phase space density (PSD) is calculated at constant first, second and third adiabatic invariants using data obtained by the CEPPAD-HIST instrument and the MFE instrument onboard the Polar spacecraft. Liouville's theorem states that PSD calculated at constant adiabatic invariants does not change with time unless some mechanism violates one of the invariants. The radial diffusion model predicts that only the flux invariant will be violated during the acceleration process while acceleration by whistler waves violates the first invariant. Therefore, the two models predict a different evolution of the PSD as a function of time and L. Previous examinations of the evolution of PSD have yielded ambiguous results because PSD calculations are highly dependent on the global accuracy of magnetic field models. We examine the PSD versus L profiles for a series of geomagnetic storms and in addition determine how errors in the Tsyganenko 96 field model affect the results by comparing the measured magnetic field to the model magnetic field used in the calculations. Second, the evolution of the relativistic electron pitch angle distributions is evaluated. Previous studies of pitch angle distributions were limited because few spacecraft have the necessary instrumentation and global coverage. The CEPPAD

  19. A model distribution function for relativistic bi-Maxwellian with drift

    SciTech Connect

    Naito, O.

    2013-04-15

    A model distribution function for relativistic bi-Maxwellian with drift is proposed, based on the maximum entropy principle and the relativistic canonical transformation. Since the obtained expression is compatible with the existing distribution functions and has a relatively simple form as well as smoothness, it might serve as a useful tool in the research fields of space or high temperature fusion plasmas.

  20. Simulations and analytic models of relativistic magnetized jets

    NASA Astrophysics Data System (ADS)

    Tchekhovskoi, Alexandre Dmitrievich

    Astrophysical jets are tightly collimated streams that are often observed to move at velocities close to the speed of light. While many such systems are known, understanding and explaining how jets collimate and accelerate has been a long-standing challenge and is currently an area of active research. Finding analytic solutions for jets is extremely hard because the equations that describe the jets are highly nonlinear and difficult to solve analytically. Only in the last few years has it become possible to simulate ultrarelativistic jets computationally, which has led to unprecedented insights into their structure. We now think that many relativistic jets are produced by magnetic fields twisted by the rotation of a central compact object, which can be a black hole or a neutron star. In this thesis I present numerical and analytical studies of relativistic jets. In Chapter 2, I start with a discussion of a simple, idealized model that has the bare minimum of ingredients needed for the production of jets: regular magnetic field, spinning central compact object, and externally imposed collimation. The model assumes that magnetic field in the jet is so strong that plasma inertia is negligible and can be ignored. The simplicity of this model allows for a fully analytic description and an intuitive understanding of the results. Despite being simple, this model possesses non-trivial properties and has important applications to various astrophysical systems --- compact object binaries, gamma-ray bursts, and active galactic nuclei. Chapters 3 -- 7 add an extra level of realism (and sophistication) into jet models: they account for mass inertia of the jet fluid and study its effects on the jet structure. Chapter 4 discusses the effect of jet confinement on the acceleration of the jet. Chapter 5 shows that deconfinement can also have a dramatic effect on the jet. Chapter 6 studies how the structure of the jet changes if the central object driving the jet is a black hole

  1. Quasi-exactly solvable relativistic soft-core Coulomb models

    SciTech Connect

    Agboola, Davids Zhang, Yao-Zhong

    2012-09-15

    By considering a unified treatment, we present quasi exact polynomial solutions to both the Klein-Gordon and Dirac equations with the family of soft-core Coulomb potentials V{sub q}(r)=-Z/(r{sup q}+{beta}{sup q}){sup 1/q}, Z>0, {beta}>0, q{>=}1. We consider cases q=1 and q=2 and show that both cases are reducible to the same basic ordinary differential equation. A systematic and closed form solution to the basic equation is obtained using the Bethe ansatz method. For each case, the expressions for the energies and the allowed parameters are obtained analytically and the wavefunctions are derived in terms of the roots of a set of Bethe ansatz equations. - Highlights: Black-Right-Pointing-Pointer The relativistic bound-state solutions of the soft-core Coulomb models. Black-Right-Pointing-Pointer Quasi-exact treatments of the Dirac and Klein-Gordon equations for the soft-core Coulomb models. Black-Right-Pointing-Pointer Solutions obtained in terms of the roots to the Bethe ansatz equations. Black-Right-Pointing-Pointer The hidden Lie algebraic structure discussed for the models. Black-Right-Pointing-Pointer Results useful in describing mesonic atoms and interaction of intense laser fields with atom.

  2. The Thomas–Fermi quark model: Non-relativistic aspects

    SciTech Connect

    Liu, Quan Wilcox, Walter

    2014-02-15

    The first numerical investigation of non-relativistic aspects of the Thomas–Fermi (TF) statistical multi-quark model is given. We begin with a review of the traditional TF model without an explicit spin interaction and find that the spin splittings are too small in this approach. An explicit spin interaction is then introduced which entails the definition of a generalized spin “flavor”. We investigate baryonic states in this approach which can be described with two inequivalent wave functions; such states can however apply to multiple degenerate flavors. We find that the model requires a spatial separation of quark flavors, even if completely degenerate. Although the TF model is designed to investigate the possibility of many-quark states, we find surprisingly that it may be used to fit the low energy spectrum of almost all ground state octet and decuplet baryons. The charge radii of such states are determined and compared with lattice calculations and other models. The low energy fit obtained allows us to extrapolate to the six-quark doubly strange H-dibaryon state, flavor symmetric strange states of higher quark content and possible six quark nucleon–nucleon resonances. The emphasis here is on the systematics revealed in this approach. We view our model as a versatile and convenient tool for quickly assessing the characteristics of new, possibly bound, particle states of higher quark number content. -- Highlights: • First application of the statistical Thomas–Fermi quark model to baryonic systems. • Novel aspects: spin as generalized flavor; spatial separation of quark flavor phases. • The model is statistical, but the low energy baryonic spectrum is successfully fit. • Numerical applications include the H-dibaryon, strange states and nucleon resonances. • The statistical point of view does not encourage the idea of bound many-quark baryons.

  3. Fragmentation of two-phonon {gamma}-vibrational strength in deformed nuclei

    SciTech Connect

    Wu, C.Y.; Cline, D.

    1996-12-31

    Rotational and vibrational modes of collective motion. are very useful in classifying the low-lying excited states in deformed nuclei. The rotational mode of collective motion is characterized by rotational bands having correlated level energies and strongly-enhanced E2 matrix elements. The lowest intrinsic excitation with I,K{sup {pi}} = 2,2{sup +} in even-even deformed nuclei, typically occurring at {approx}1 MeV, is classified as a one-phonon {gamma}-vibration state. In a pure harmonic vibration limit, the expected two-phonon {gamma}-vibration states with I,K{sup {pi}} = 0,0{sup +} and 4,4{sup +} should have excitation energies at twice that of the I,K{sup {pi}} = 2,2{sup +} excitation, i.e. {approx}2 MeV, which usually is above the pairing gap leading to possible mixing with two-quasiparticle configurations. Therefore, the question of the localization of two-phonon {gamma}-vibration strength has been raised because mixing may lead to fragmentation of the two-phonon strength over a range of excitation energy. For several well-deformed nuclei, an assignment of I,K{sup {pi}}=4,4{sup +} states as being two-phonon vibrational excitations has been suggested based on the excitation energies and the predominant {gamma}-ray decay to the I,K{sup {pi}}=2,2{sup +} state. However, absolute B(E2) values connecting the presumed two- and one-phonon states are the only unambiguous measure of double phonon excitation. Such B(E2) data are available for {sup 156}Gd, {sup 160}Dy, {sup 168}Er, {sup 232}Th, and {sup 186,188,190,192}Os. Except for {sup 160}Dy, the measured B(E2) values range from 2-3 Weisskopf units in {sup 156}Gd to 10-20 Weisskopf units in osmium nuclei; enhancement that is consistent with collective modes of motion.

  4. Nonlocal relativistic diffusion (NoRD) model of cosmic ray propagation

    NASA Astrophysics Data System (ADS)

    Uchaikin, V. V.; Sibatov, R. T.

    2017-01-01

    The problem of physical interpretation of the nonlocal relativistic diffusion (NoRD model) for cosmic ray transport in the Galaxy is discussed. The model accounts for the turbulent character of the interstellar medium and the relativistic principle of the speed limitation. Involving fractional calculus and non-Gaussian Lévy statistics yields numerical results compatible with observation data. A special attention is paid to the knee problem. The relativistic speed limit requirement steepens theoretical background spectrum at certain energies, and the position of the break, its sharpness and slopes of asymptotes depend on Dα (E) and α.

  5. Relativistic feedback models of terrestrial gamma-ray flashes and gamma-ray glows

    NASA Astrophysics Data System (ADS)

    Dwyer, J. R.

    2015-12-01

    Relativistic feedback discharges, also known as dark lightning, are capable of explaining many of the observed properties of terrestrial gamma-ray flashes (TGFs) and gamma-ray glows, both created within thunderstorms. During relativistic feedback discharges, the generation of energetic electrons is self-sustained via the production of backward propagating positrons and back-scattered x-rays, resulting in very larges fluxes of energetic radiation. In addition, ionization produces large electric currents that generate LF/VLF radio emissions and eventually discharge the electric field, terminating the gamma-ray production. In this presentation, new relativistic feedback model results will be presented and compared to recent observations.

  6. A hydrodynamical model for relativistic spin quantum plasmas

    SciTech Connect

    Asenjo, Felipe A.; Munoz, Victor; Valdivia, J. Alejandro; Mahajan, Swadesh M.

    2011-01-15

    Based on the one-body particle-antiparticle Dirac theory of electrons, a set of relativistic quantum fluid equations for a spin half plasma is derived. The particle-antiparticle nature of the relativistic particles is explicit in this fluid theory, which also includes quantum effects such as spin. The nonrelativistic limit is shown to be in agreement with previous attempts to develop a spin plasma theory derived from the Pauli Hamiltonian. Harnessing the formalism to the study of electromagnetic mode propagation, conceptually new phenomena are revealed; the particle-antiparticle effects increase the fluid opacity to these waves, while the spin effects tend to make the fluid more transparent.

  7. Nonlinear Walecka models and point-coupling relativistic models

    SciTech Connect

    Lourenco, O.; Amaral, R. L. P. G.; Dutra, M.; Delfino, A.

    2009-10-15

    We study hadronic nonlinear point-coupling (NLPC) models which reproduce numerically the binding energy, the incompressibility, and the nucleon effective mass at the nuclear matter saturation obtained by different nonlinear Walecka (NLW) models. We have investigated their behaviors as functions of the nuclear matter density to observe how they deviate from known NLW models. In our study we present a meson-exchange modified nonlinear Walecka model (MNLW) which exactly underlies a nonlinear point-coupling model (NLPC) presenting third- and fourth-order scalar density self-couplings. A discussion about naive dimensional analysis (NDA) and naturalness is also provided for a large class of NLW and NLPC models. At finite temperature, critical and flash parameters of both approaches are presented.

  8. Hong-Ou-Mandel interference of two phonons in trapped ions

    NASA Astrophysics Data System (ADS)

    Toyoda, Kenji; Hiji, Ryoto; Noguchi, Atsushi; Urabe, Shinji

    2015-11-01

    The quantum statistics of bosons and fermions manifest themselves in the manner in which two indistinguishable particles interfere quantum mechanically. When two photons, which are bosonic particles, enter a beam-splitter with one photon in each input port, they bunch together at either of the two output ports. The corresponding disappearance of the coincidence count is the Hong-Ou-Mandel effect. Here we show the phonon counterpart of this effect in a system of trapped-ion phonons, which are collective excitations derived by quantizing vibrational motions that obey Bose-Einstein statistics. We realize a beam-splitter transformation of the phonons by employing the mutual Coulomb repulsion between ions, and perform a two-phonon quantum interference experiment using that transformation. We observe an almost perfect disappearance of the phonon coincidence between two ion sites, confirming that phonons can be considered indistinguishable bosonic particles. The two-particle interference demonstrated here is purely a quantum effect, without a classical counterpart, hence it should be possible to demonstrate the existence of entanglement on this basis. We attempt to generate an entangled state of phonons at the centre of the Hong-Ou-Mandel dip in the coincidence temporal profile, under the assumption that the entangled phonon state is successfully generated if the fidelity of the analysis pulses is taken into account adequately. Two-phonon interference, as demonstrated here, proves the bosonic nature of phonons in a trapped-ion system. It opens the way to establishing phonon modes as carriers of quantum information in their own right, and could have implications for the quantum simulation of bosonic particles and analogue quantum computation via boson sampling.

  9. Hong-Ou-Mandel interference of two phonons in trapped ions.

    PubMed

    Toyoda, Kenji; Hiji, Ryoto; Noguchi, Atsushi; Urabe, Shinji

    2015-11-05

    The quantum statistics of bosons and fermions manifest themselves in the manner in which two indistinguishable particles interfere quantum mechanically. When two photons, which are bosonic particles, enter a beam-splitter with one photon in each input port, they bunch together at either of the two output ports. The corresponding disappearance of the coincidence count is the Hong-Ou-Mandel effect. Here we show the phonon counterpart of this effect in a system of trapped-ion phonons, which are collective excitations derived by quantizing vibrational motions that obey Bose-Einstein statistics. We realize a beam-splitter transformation of the phonons by employing the mutual Coulomb repulsion between ions, and perform a two-phonon quantum interference experiment using that transformation. We observe an almost perfect disappearance of the phonon coincidence between two ion sites, confirming that phonons can be considered indistinguishable bosonic particles. The two-particle interference demonstrated here is purely a quantum effect, without a classical counterpart, hence it should be possible to demonstrate the existence of entanglement on this basis. We attempt to generate an entangled state of phonons at the centre of the Hong-Ou-Mandel dip in the coincidence temporal profile, under the assumption that the entangled phonon state is successfully generated if the fidelity of the analysis pulses is taken into account adequately. Two-phonon interference, as demonstrated here, proves the bosonic nature of phonons in a trapped-ion system. It opens the way to establishing phonon modes as carriers of quantum information in their own right, and could have implications for the quantum simulation of bosonic particles and analogue quantum computation via boson sampling.

  10. A picosecond accuracy relativistic VLBI model via Fermi normal coordinates

    NASA Technical Reports Server (NTRS)

    Shahid-Saless, Bahman; Hellings, Ronald W.; Ashby, Neil

    1991-01-01

    Fermi normal coordinates are used to construct transformations relating solar system barycentric coordinates to local inertial geocentric coordinates. Relativistic corrections to terrestrial VLBI measurements are calculated, and this formalism is developed to include corrections needed for picosecond accuracy. A calculation of photon time delay which includes effects arising from the motion of gravitational sources is given.

  11. Relativistic mean-field hadronic models under nuclear matter constraints

    NASA Astrophysics Data System (ADS)

    Dutra, M.; Lourenço, O.; Avancini, S. S.; Carlson, B. V.; Delfino, A.; Menezes, D. P.; Providência, C.; Typel, S.; Stone, J. R.

    2014-11-01

    Background: The microscopic composition and properties of infinite hadronic matter at a wide range of densities and temperatures have been subjects of intense investigation for decades. The equation of state (EoS) relating pressure, energy density, and temperature at a given particle number density is essential for modeling compact astrophysical objects such as neutron stars, core-collapse supernovae, and related phenomena, including the creation of chemical elements in the universe. The EoS depends not only on the particles present in the matter, but, more importantly, also on the forces acting among them. Because a realistic and quantitative description of infinite hadronic matter and nuclei from first principles in not available at present, a large variety of phenomenological models has been developed in the past several decades, but the scarcity of experimental and observational data does not allow a unique determination of the adjustable parameters. Purpose: It is essential for further development of the field to determine the most realistic parameter sets and to use them consistently. Recently, a set of constraints on properties of nuclear matter was formed and the performance of 240 nonrelativistic Skyrme parametrizations was assessed [M. Dutra et al., Phys. Rev. C 85, 035201 (2012), 10.1103/PhysRevC.85.035201] in describing nuclear matter up to about three times nuclear saturation density. In the present work we examine 263 relativistic-mean-field (RMF) models in a comparable approach. These models have been widely used because of several important aspects not always present in nonrelativistic models, such as intrinsic Lorentz covariance, automatic inclusion of spin, appropriate saturation mechanism for nuclear matter, causality, and, therefore, no problems related to superluminal speed of sound in medium. Method: Three different sets of constraints related to symmetric nuclear matter, pure neutron matter, symmetry energy, and its derivatives were used. The

  12. Non relativistic limit of integrable QFT and Lieb-Liniger models

    NASA Astrophysics Data System (ADS)

    Bastianello, Alvise; De Luca, Andrea; Mussardo, Giuseppe

    2016-12-01

    In this paper we study a suitable limit of integrable QFT with the aim to identify continuous non-relativistic integrable models with local interactions. This limit amounts to sending to infinity the speed of light c but simultaneously adjusting the coupling constant g of the quantum field theories in such a way to keep finite the energies of the various excitations. The QFT considered here are Toda field theories and the O(N) non-linear sigma model. In both cases the resulting non-relativistic integrable models consist only of Lieb-Liniger models, which are fully decoupled for the Toda theories while symmetrically coupled for the O(N) model. These examples provide explicit evidence of the universality and ubiquity of the Lieb-Liniger models and, at the same time, suggest that these models may exhaust the list of possible non-relativistic integrable theories of bosonic particles with local interactions.

  13. Tensor interaction and short range correlations in relativistic nuclear models

    SciTech Connect

    Panda, Prafulla K.; Providencia, C.; Providencia, J. da

    2007-06-15

    Short range correlations are introduced using a Jastrow factor in a relativistic approach to the equation of state of the infinite nuclear matter in the framework of the Hartree-Fock approximation. The pion exchange, including the tensor contribution, is taken into account. It is shown that both the tensor contribution of pion exchange and short range correlations soften the equation of state. Neutron matter with correlations presents no minimum at low densities.

  14. a Nonlinear Model for Relativistic Electrons at Positive Temperature

    NASA Astrophysics Data System (ADS)

    Hainzl, Christian; Lewin, Mathieu; Seiringer, Robert

    We study the relativistic electron-positron field at positive temperature in the Hartree-Fock approximation. We consider both the case with and without exchange terms, and investigate the existence and properties of minimizers. Our approach is non-perturbative in the sense that the relevant electron subspace is determined in a self-consistent way. The present work is an extension of previous work by Hainzl, Lewin, Séré and Solovej where the case of zero temperature was considered.

  15. Relativistic Brownian motion: from a microscopic binary collision model to the Langevin equation.

    PubMed

    Dunkel, Jörn; Hänggi, Peter

    2006-11-01

    The Langevin equation (LE) for the one-dimensional relativistic Brownian motion is derived from a microscopic collision model. The model assumes that a heavy pointlike Brownian particle interacts with the lighter heat bath particles via elastic hard-core collisions. First, the commonly known, nonrelativistic LE is deduced from this model, by taking into account the nonrelativistic conservation laws for momentum and kinetic energy. Subsequently, this procedure is generalized to the relativistic case. There, it is found that the relativistic stochastic force is still delta correlated (white noise) but no longer corresponds to a Gaussian white noise process. Explicit results for the friction and momentum-space diffusion coefficients are presented and discussed.

  16. Modeling the detector of charge states of relativistic multicharged ions

    NASA Astrophysics Data System (ADS)

    Malyshevsky, V. S.; Fomin, G. V.; Ivanova, I. A.

    2017-01-01

    A way to identify charge distributions of relativistic multicharged ions by recording the angular distribution of the Cherenkov radiation of ions is analyzed; preliminarily, ions with different charges are separated by ion velocities in an external target with a large charge number. As a result, when an ion beam enters the Cherenkov radiator, different charges radiate at different angles to the direction of the ion motion and the radiation intensity is proportional to the fraction of ions with a given charge in the beam.

  17. A finite Zitterbewegung model for relativistic quantum mechanics

    SciTech Connect

    Noyes, H.P.

    1990-02-19

    Starting from steps of length h/mc and time intervals h/mc{sup 2}, which imply a quasi-local Zitterbewegung with velocity steps {plus minus}c, we employ discrimination between bit-strings of finite length to construct a necessary 3+1 dimensional event-space for relativistic quantum mechanics. By using the combinatorial hierarchy to label the strings, we provide a successful start on constructing the coupling constants and mass ratios implied by the scheme. Agreement with experiments is surprisingly accurate. 22 refs., 1 fig.

  18. Search for the two-phonon octupole vibrational state in {sup 208}Pb

    SciTech Connect

    Blumenthal, D.J.; Henning, W.; Janssens, R.V.F.

    1995-08-01

    We performed an experiment to search for the two-phonon octupole vibrational state in {sup 208}Pb. Thick targets of {sup 208}Pb, {sup 209}Bi, {sup 58,64}Ni, and {sup 160}Gd were bombarded with 1305 MeV beams of were bombard {sup 208}Pb supplied by ATLAS. Gamma rays were detected using the Argonne-Notre Dame BGO gamma-ray facility, consisting of 12 Compton-suppressed germanium detectors surrounding an array of 50 BGO scintillators. We identified some 30 known gamma rays from {sup 208}Pb in the spectra gated by the 5{sup -} {yields} 3{sup -} and 3{sup -} {yields} 0{sup +} transitions in {sup 208}Pb. In addition, after unfolding these spectra for Compton response, we observed broad coincident structures in the energy region expected for the 2-phonon states. Furthermore, we confirmed the placement of a 2485 keV line observed previously in {sup 207}Pb and find no evidence consistent with the placement of this line in {sup 208}Pb. We are currently in the process of investigating the origin of the broadened lines observed in the spectra, extracting the excitation probability of states in {sup 208}Pb, and determining the relative probability of mutual excitation and neutron transfer in this reaction. An additional experiment is also being performed to collect much higher statistics germanium-germanium coincidence data for the thick {sup 208}Pb target.

  19. Relativistic compact anisotropic charged stellar models with Chaplygin equation of state

    NASA Astrophysics Data System (ADS)

    Bhar, Piyali; Murad, Mohammad Hassan

    2016-10-01

    This paper presents a new model of static spherically symmetric relativistic charged stellar objects with locally anisotropic matter distribution together with the Chaplygin equation of state. The interior spacetime has been matched continuously to the exterior Reissner-Nordström geometry. Different physical properties of the stellar model have been investigated, analyzed, and presented graphically.

  20. Covariant Newtonian and relativistic dynamics of (magneto)-elastic solid model for neutron star crust

    NASA Astrophysics Data System (ADS)

    Carter, B.; Chachoua, E.; Chamel, N.

    2006-01-01

    This work develops the dynamics of a perfectly elastic solid model for application to the outer crust of a magnetised neutron star. Particular attention is given to the Noether identities responsible for energy-momentum conservation, using a formulation that is fully covariant, not only (as is usual) in a fully relativistic treatment but also (sacrificing accuracy and elegance for economy of degrees of gravitational freedom) in the technically more complicated case of the Newtonian limit. The results are used to obtain explicit (relativistic and Newtonian) formulae for the propagation speeds of generalised (Alfven type) magneto-elastic perturbation modes.

  1. Stochastic two-fluid model for relativistic heavy-ion collisions

    SciTech Connect

    Ayik, S. |; Ivanov, Y.B.; Russkikh, V.N.; Noerenberg, W.

    1993-04-01

    A reduction of the relativistic Boltzmann-Langevin Equation (BLE), to a stochastic two-fluid model is presented, and transport coefficients associated with fluid dynamical variables are extracted. The approach is applied to investigate equilibration in a counter-streaming nuclear system.

  2. Stochastic two-fluid model for relativistic heavy-ion collisions. [Boltzmann[endash]Langevin Equation

    SciTech Connect

    Ayik, S. Joint Inst. for Heavy Ion Research, Oak Ridge, TN ); Ivanov, Y.B.; Russkikh, V.N.; Noerenberg, W. )

    1993-01-01

    A reduction of the relativistic Boltzmann-Langevin Equation (BLE), to a stochastic two-fluid model is presented, and transport coefficients associated with fluid dynamical variables are extracted. The approach is applied to investigate equilibration in a counter-streaming nuclear system.

  3. Longitudinal and Transverse Parton Momentum Distributions for Hadrons within Relativistic Constituent Quark Models

    SciTech Connect

    Frederico, T.; Pace, E.; Pasquini, B.; Salme, G.

    2010-08-05

    Longitudinal and transverse parton distributions for pion and nucleon are calculated from hadron vertexes obtained by a study of form factors within relativistic quark models. The relevance of the one-gluon-exchange dominance at short range for the behavior of the form factors at large momentum transfer and of the parton distributions at the end points is stressed.

  4. On the Methods for Constructing Meson-Baryon Reaction Models within Relativistic Quantum Field Theory

    SciTech Connect

    B. Julia-Diaz, H. Kamano, T.-S. H. Lee, A. Matsuyama, T. Sato, N. Suzuki

    2009-04-01

    Within the relativistic quantum field theory, we analyze the differences between the $\\pi N$ reaction models constructed from using (1) three-dimensional reductions of Bethe-Salpeter Equation, (2) method of unitary transformation, and (3) time-ordered perturbation theory. Their relations with the approach based on the dispersion relations of S-matrix theory are dicusssed.

  5. Relativistic jet models for the BL Lacertae object Mrk 421 during three epochs of observation

    NASA Technical Reports Server (NTRS)

    Mufson, S. L.; Hutter, D. J.; Kondo, Y.; Wisniewski, W. Z.

    1988-01-01

    Coordinated observation of the nearby BL Lacertae object Mrk 421 obtained during May 1980, January 1984, and March 1984 are described. These observations give a time-frozen picture of the continuous spectrum of Mrk 421 at X-ray, ultraviolet, optical, and radio wavelengths. The observed spectra have been fitted to an inhomogeneous relativistic jet model. In general, the models reproduce the data well. Many of the observed differences during the three epochs can be attributed to variations in the opening angle of the jet and in the angle that the jet makes to the line of sight. The jet models obtained here are compared with the homogeneous, spherically symmetric, synchrotron self-Compton models for this source. The models are also compared with the relativistic jet models obtained for other active galactic nuclei.

  6. Axisymmetric toroidal modes of general relativistic magnetized neutron star models

    SciTech Connect

    Asai, Hidetaka; Lee, Umin E-mail: lee@astr.tohoku.ac.jp

    2014-07-20

    We calculate axisymmetric toroidal modes of magnetized neutron stars with a solid crust in the general relativistic Cowling approximation. We assume that the interior of the star is threaded by a poloidal magnetic field, which is continuous at the surface with an outside dipole field. We examine the cases of the field strength B{sub S} ∼ 10{sup 16} G at the surface. Since separation of variables is not possible for the oscillations of magnetized stars, we employ finite series expansions for the perturbations using spherical harmonic functions. We find discrete normal toroidal modes of odd parity, but no toroidal modes of even parity are found. The frequencies of the toroidal modes form distinct mode sequences and the frequency in a given mode sequence gradually decreases as the number of radial nodes of the eigenfunction increases. From the frequency spectra computed for neutron stars of different masses, we find that the frequency is almost exactly proportional to B{sub S} and is well represented by a linear function of R/M for a given B{sub S}, where M and R are the mass and radius of the star. The toroidal mode frequencies for B{sub S} ∼ 10{sup 15} G are in the frequency range of the quasi-periodic oscillations (QPOs) detected in the soft-gamma-ray repeaters, but we find that the toroidal normal modes cannot explain all the detected QPO frequencies.

  7. Comparisons of cross-section predictions for relativistic iron and argon beams with semiempirical fragmentation models

    NASA Technical Reports Server (NTRS)

    Townsend, Lawrence W.; Tripathi, Ram K.; Khan, Ferdous

    1993-01-01

    Cross-section predictions with semi-empirical nuclear fragmentation models from the Langley Research Center and the Naval Research Laboratory are compared with experimental data for the breakup of relativistic iron and argon projectile nuclei in various targets. Both these models are commonly used to provide fragmentation cross-section inputs into galactic cosmic ray transport codes for shielding and exposure analyses. Overall, the Langley model appears to yield better agreement with the experimental data.

  8. Particle spectra and efficiency in nonlinear relativistic shock acceleration - survey of scattering models

    NASA Astrophysics Data System (ADS)

    Ellison, Donald C.; Warren, Donald C.; Bykov, Andrei M.

    2016-03-01

    We include a general form for the scattering mean free path, λmfp(p), in a nonlinear Monte Carlo model of relativistic shock formation and Fermi acceleration. Particle-in-cell simulations, as well as analytic work, suggest that relativistic shocks tend to produce short-scale, self-generated magnetic turbulence that leads to a scattering mean free path with a stronger momentum dependence than the λmfp ∝ p dependence for Bohm diffusion. In unmagnetized shocks, this turbulence is strong enough to dominate the background magnetic field so the shock can be treated as parallel regardless of the initial magnetic field orientation, making application to γ-ray bursts, pulsar winds, type Ibc supernovae, and extragalactic radio sources more straightforward and realistic. In addition to changing the scale of the shock precursor, we show that, when nonlinear effects from efficient Fermi acceleration are taken into account, the momentum dependence of λmfp(p) has an important influence on the efficiency of cosmic ray production as well as the accelerated particle spectral shape. These effects are absent in non-relativistic shocks and do not appear in relativistic shock models unless nonlinear effects are self-consistently described. We show, for limited examples, how the changes in Fermi acceleration translate to changes in the intensity and spectral shape of γ-ray emission from proton-proton interactions and pion-decay radiation.

  9. Finite nuclei in relativistic models with a light chiral scalar meson

    SciTech Connect

    Serot, B.D.; Furnstahl, R.J.

    1993-10-01

    Relativistic chiral models with a light scalar, meson appear to provide an economical marriage of successful relativistic mean-field theories and chiral symmetry. In these models, the scalar meson serves as both the chiral partner of the pion and the mediator of the intermediate-range nucleon-nucleon (NN) attraction. However, while some of these models can reproduce the empirical nuclear matter saturation point, they fail to reproduce observed properties of finite nuclei, such as spin-orbit splittings, shell structure, charge densities, and surface energetics. There deficiencies imply that this realization of chiral symmetry is incorrect. An alternative scenario for chiral hadronic models, which features a heavy chiral scalar and dynamical generation of the NN attraction, is discussed.

  10. Spherical relativistic vacuum core models in a Λ-dominated era

    NASA Astrophysics Data System (ADS)

    Yousaf, Z.

    2017-02-01

    This paper is devoted to analyzing the effects of the cosmological constant in the evolution of exact analytical collapsing vacuum core celestial models. For this purpose, relativistic spherical geometry coupled with null expansion locally anisotropic matter distributions is considered. We have first developed a relation between tidal forces and structural variables. We then explored some viable spherical cosmological models by taking the expansion-free condition. Our first class of spherical models is obtained after constraining system matter content, while the second class is obtained by considering barotropic equation of state. We propose that our calculated solutions could be regarded as a relativistic toy model for those astronomical compact populations where vacuum core is expected to appear, like cosmological voids.

  11. Optical model description of momentum transfer in relativistic heavy ion collisions

    NASA Technical Reports Server (NTRS)

    Khan, F.; Khandelwal, G. S.; Townsend, L. W.; Wilson, J. W.; Norbury, J. W.

    1991-01-01

    An optical model description of momentum transfer in relativistic heavy ion collisions, based upon composite particle multiple scattering theory, is presented. The imaginary component of the complex momentum transfer, which comes from the absorptive part of the optical potential, is identified as the longitudinal momentum downshift of the projectile. Predictions of fragment momentum distribution observables are made and compared with experimental data. Use of the model as a tool for estimating collision impact parameters is discussed.

  12. Project: Modeling Relativistic Electrons from Nuclear Explosions in the Magnetosphere

    SciTech Connect

    Cowee, Misa; Gary, S. Peter; Winske, Dan; Liu, Kaijun

    2012-07-17

    We present a summary of the FY12 activities for DTRA-funded project 'Modeling Relativistic Electrons from Nuclear Explosions in the Magnetosphere'. We briefly review the outstanding scientific questions and discuss the work done in the last year to try to answer these questions. We then discuss the agenda for this Technical Meeting with the DTRA sponsors. In the last year, we have continued our efforts to understand artificial radiation belts from several different perspectives: (1) Continued development of Electron Source Model (ESM) and comparison to HANE test data; (2) Continued studies of relativistic electron scattering by waves in the natural radiation belts; (3) Began study of self-generated waves from the HANE electrons; and (4) Began modeling for the UCLA laser experiment.

  13. General relativistic hydrodynamics with Adaptive-Mesh Refinement (AMR) and modeling of accretion disks

    NASA Astrophysics Data System (ADS)

    Donmez, Orhan

    We present a general procedure to solve the General Relativistic Hydrodynamical (GRH) equations with Adaptive-Mesh Refinement (AMR) and model of an accretion disk around a black hole. To do this, the GRH equations are written in a conservative form to exploit their hyperbolic character. The numerical solutions of the general relativistic hydrodynamic equations is done by High Resolution Shock Capturing schemes (HRSC), specifically designed to solve non-linear hyperbolic systems of conservation laws. These schemes depend on the characteristic information of the system. We use Marquina fluxes with MUSCL left and right states to solve GRH equations. First, we carry out different test problems with uniform and AMR grids on the special relativistic hydrodynamics equations to verify the second order convergence of the code in 1D, 2 D and 3D. Second, we solve the GRH equations and use the general relativistic test problems to compare the numerical solutions with analytic ones. In order to this, we couple the flux part of general relativistic hydrodynamic equation with a source part using Strang splitting. The coupling of the GRH equations is carried out in a treatment which gives second order accurate solutions in space and time. The test problems examined include shock tubes, geodesic flows, and circular motion of particle around the black hole. Finally, we apply this code to the accretion disk problems around the black hole using the Schwarzschild metric at the background of the computational domain. We find spiral shocks on the accretion disk. They are observationally expected results. We also examine the star-disk interaction near a massive black hole. We find that when stars are grounded down or a hole is punched on the accretion disk, they create shock waves which destroy the accretion disk.

  14. Finite nuclei in relativistic models with a light chiral scalar meson

    SciTech Connect

    Furnstahl, R.J. ); Serot, B.D. )

    1993-05-01

    Relativistic chiral models with a light scalar meson appear to provide an economical marriage of successful relativistic mean-field theories and chiral symmetry. The scalar meson serves as both the chiral partner of the pion and the mediator of the intermediate-range nucleon-nucleon ([ital NN]) attraction. However, while some of these models can reproduce the empirical nuclear matter saturation point, they fail to reproduce observed properties of finite nuclei, such as spin-orbit splittings, shell structure, charge densities, and surface energetics. These deficiencies imply that this realization of chiral symmetry is incorrect. An alternative scenario, which features a heavy chiral scalar and dynamical generation of the [ital NN] attraction, is discussed.

  15. Structure of relativistic shocks in pulsar winds: A model of the wisps in the Crab Nebula

    NASA Technical Reports Server (NTRS)

    Gallant, Yves A.; Arons, Jonathan

    1994-01-01

    We propose a model of a optical 'wisps' of the Crab Nebula, features observed in the nebular synchrotron surface brightness near the central pulsar, as manifestations of the internal structure of the shock terminating the pulsar wind. We assume that this wind is composed of ions and a much denser plasma of electrons and positrons, frozen together to a toroidal magnetic field and flowing relativistically. We construct a form of solitary wave model of the shock structure in which we self-consistently solve for the ion orbits and the dynamics of the relativistically hot, magnetized e(+/-) background flow. We ignore dispersion in the ion energies, and we treat the pairs as an adiabatic fluid. The synchrotron emission enhancements, observed as the wisps, are then explained as the regions where reflection of the ions in the self-consistent magnetic field causes compressions of the e(+/-).

  16. Relativistic model for the nonmesonic weak decay of single-lambda hypernuclei

    NASA Astrophysics Data System (ADS)

    Fontoura, C. E.; Krmpotić, F.; Galeão, A. P.; De Conti, C.; Krein, G.

    2016-06-01

    Having in mind its future extension for theoretical investigations related to charmed nuclei, we develop a relativistic formalism for the nonmesonic weak decay (NMWD) of single-Λ hypernuclei in the framework of the independent-particle shell model and with the dynamics represented by the (π ,K) one-meson-exchange model. Numerical results for the one-nucleon-induced transition rates of {}{{Λ }}12{{C}} are presented and compared with those obtained in the analogous nonrelativistic calculation. There is satisfactory agreement between the two approaches, and the only noteworthy difference is that the ratio {{{Γ }}}n/{{{Γ }}}p is appreciably higher and closer to the experimental value in the relativistic calculation. The ability of describing existing data, including the most recent ones, on NMWD of Λ-hypernuclei, warrants application of the formalism to evaluate similar decay processes in charmed nuclei.

  17. Semileptonic decays of Λ _c baryons in the relativistic quark model

    NASA Astrophysics Data System (ADS)

    Faustov, R. N.; Galkin, V. O.

    2016-11-01

    Motivated by recent experimental progress in studying weak decays of the Λ _c baryon we investigate its semileptonic decays in the framework of the relativistic quark model based on the quasipotential approach with the QCD-motivated potential. The form factors of the Λ _c→ Λ lν _l and Λ _c→ nlν _l decays are calculated in the whole accessible kinematical region without extrapolations and additional model assumptions. Relativistic effects are systematically taken into account including transformations of baryon wave functions from the rest to moving reference frame and contributions of the intermediate negative-energy states. Baryon wave functions found in the previous mass spectrum calculations are used for the numerical evaluation. Comprehensive predictions for decay rates, asymmetries and polarization parameters are given. They agree well with available experimental data.

  18. Ultra-relativistic heavy ion collisions in a multi-string model

    SciTech Connect

    Werner, K.

    1987-01-01

    We present a model for ultra-relativistic heavy ion collisions based on color string formation and subsequent independent string fragmentation. Strings are formed due to color exchange between quarks at each individual nucleon nucleon collision. The fragmentation is treated as in e/sup +/e/sup -/ or lepton nucleon scattering. Calculation for pp, pA, and AA were carried out using the Monte Carlo code VENUS for Very Energetic Nuclear Scattering (version 1.0). 20 refs., 6 figs.

  19. Breit and Quantum Electrodynamics Energy Contributions in Multielectron Atoms from the Relativistic Screened Hydrogenic Model

    NASA Astrophysics Data System (ADS)

    Di Rocco, Héctor O.; Lanzini, Fernando

    2016-04-01

    The correction to the Coulomb repulsion between two electrons due to the exchange of a transverse photon, referred to as the Breit interaction, as well as the main quantum electrodynamics contributions to the atomic energies (self-energy and vacuum polarization), are calculated using the recently formulated relativistic screened hydrogenic model. Comparison with the results of multiconfiguration Dirac-Hartree-Fock calculations and experimental X- ray energies is made.

  20. Using van Hove singularities of the two-phonon density of states to investigate the intrinsically localized vibrations of NaI crystal.

    NASA Astrophysics Data System (ADS)

    Agyare, Benjamin; Riseborough, Peter

    2017-01-01

    Intrinsically Localized Modes (ILMs) have purportedly been observed in NaI but only for wave-vectors, q at the corner of the 3-D Brillouin Zone. It has been suggested that, for high-symmetry q vectors, several van Hove singularities may converge at one frequency producing a large peak in the two-phonon density of state and giving rise to ILMs with these q values. We fit the experimentally determined acoustic and the optic phonon modes using a nearest neighbor and a next-nearest neighbor force constant. We find that the two-phonon density of states, for fixed q exhibits non-divergent van Hove singularities. The frequencies of these features are found to vary as q is varied. We intend to search for q values at which the two-phonon density of states is enhanced and then examine whether the anharmonic interactions can bind the two-phonon excitations to produce a quantized ILM.

  1. Weakly nonlinear ion-acoustic excitations in a relativistic model for dense quantum plasma.

    PubMed

    Behery, E E; Haas, F; Kourakis, I

    2016-02-01

    The dynamics of linear and nonlinear ionic-scale electrostatic excitations propagating in a magnetized relativistic quantum plasma is studied. A quantum-hydrodynamic model is adopted and degenerate statistics for the electrons is taken into account. The dispersion properties of linear ion acoustic waves are examined in detail. A modified characteristic charge screening length and "sound speed" are introduced, for relativistic quantum plasmas. By employing the reductive perturbation technique, a Zakharov-Kuznetzov-type equation is derived. Using the small-k expansion method, the stability profile of weakly nonlinear slightly supersonic electrostatic pulses is also discussed. The effect of electron degeneracy on the basic characteristics of electrostatic excitations is investigated. The entire analysis is valid in a three-dimensional as well as in two-dimensional geometry. A brief discussion of possible applications in laboratory and space plasmas is included.

  2. Breaking of relativistically intense longitudinal space charge waves: A description using Dawson sheet model

    SciTech Connect

    Sengupta, Sudip

    2014-02-11

    Spatio-temporal evolution of relativistically intense longitudinal space charge waves in a cold homogeneous plasma is studied analytically as well as numerically, as an initial value problem, using Dawson sheet model. It is found that, except for very special initial conditions which generates the well known longitudinal Akhiezer-Polovin mode, for all other initial conditions, the waves break through a novel mechanism called phase mixing at an amplitude well below the Akhiezer-Polovin limit. An immediate consequence of this is, that Akhiezer-Polovin waves break when subjected to arbitrarily small longitudinal perturbations. We demonstrate this by performing extensive numerical simulations. This result may be of direct relevance to ultrashort, ultraintense laser/beam pulse-plasma interaction experiments where relativistically intense waves are routinely excited.

  3. Breaking of relativistically intense longitudinal space charge waves: A description using Dawson sheet model

    NASA Astrophysics Data System (ADS)

    Sengupta, Sudip

    2014-02-01

    Spatio-temporal evolution of relativistically intense longitudinal space charge waves in a cold homogeneous plasma is studied analytically as well as numerically, as an initial value problem, using Dawson sheet model. It is found that, except for very special initial conditions which generates the well known longitudinal Akhiezer-Polovin mode, for all other initial conditions, the waves break through a novel mechanism called phase mixing at an amplitude well below the Akhiezer-Polovin limit. An immediate consequence of this is, that Akhiezer-Polovin waves break when subjected to arbitrarily small longitudinal perturbations. We demonstrate this by performing extensive numerical simulations. This result may be of direct relevance to ultrashort, ultraintense laser/beam pulse-plasma interaction experiments where relativistically intense waves are routinely excited.

  4. Dynamical systems approach to relativistic spherically symmetric static perfect fluid models

    NASA Astrophysics Data System (ADS)

    Heinzle, J. Mark; Röhr, Niklas; Uggla, Claes

    2003-11-01

    We investigate relativistic spherically symmetric static perfect fluid models with barotropic equations of state that are asymptotically polytropic and linear at low and high pressures, respectively. We generalize standard work on Newtonian polytropes to a relativistic setting and to a much larger class of equations of state. This is accomplished by introducing dimensionless variables that are asymptotically homology invariant in the low pressure regime, which yields a reformulation of the field equations into a regular dynamical system on a three-dimensional compact state space. A global picture of the solution space is thus obtained which makes it possible to derive qualitative features and to prove theorems about mass radius properties. Moreover, the framework is also suited for numerical computations, as illustrated by several numerical examples, e.g., the ideal neutron gas and examples that involve phase transitions.

  5. Multi Module Modeling of Ultra-Relativistic Heavy Ion Collisions.

    SciTech Connect

    Magas, V. K.; Csernai, L. P.; Keranen, A.; Manninen, J.; Strottman, D. D.

    2002-01-01

    Multi Module Model is required for the realistic and detailed description of an ultrarelativistic heavy ion reaction. We are working in the framework of such a model: initial stages are described by Effective String Rope Model with expanding final streaks; hydrodynamical approach is used for the intermediate stages. This paper is mainly devoted to Third Module - the one dealing with Freeze Out (FO). Two possibilities are discussed in details: (A) freeze out at the constant time hypersurface, where the statistical production model is used to describe post FO particle species; and (B) simultaneous hadronization and freeze out from supercooled QGP. For the last case the ALCOR-like algorithm for calculation of the post FO particle species is presented, due to the fact that these do not have time to reach chemical equilibrium.

  6. Relativistic electromagnetic mass models in spherically symmetric spacetime

    NASA Astrophysics Data System (ADS)

    Maurya, S. K.; Gupta, Y. K.; Ray, Saibal; Chatterjee, Vikram

    2016-10-01

    Under the static spherically symmetric Einstein-Maxwell spacetime of embedding class one we explore possibility of constructing electromagnetic mass model where mass and other physical parameters have purely electromagnetic origin (Lorentz in Proc. Acad. Sci. Amst. 6, 1904). This work is in continuation of our earlier investigation of Maurya et al. (Eur. Phys. J. C 75:389, 2015a) where we developed an algorithm and found out three new solutions of electromagnetic mass model. In the present work we consider different metric potentials ν and λ and have analyzed them in a systematic way. It is observed that some of the previous solutions related to electromagnetic mass model are nothing but special cases of the presently obtained generalized solution set. We further verify the solution set and especially show that these are extremely applicable in the case of compact stars.

  7. Thermoinertial bouncing of a relativistic collapsing sphere: A numerical model

    SciTech Connect

    Herrera, L.; Di Prisco, A.; Barreto, W.

    2006-01-15

    We present a numerical model of a collapsing radiating sphere, whose boundary surface undergoes bouncing due to a decreasing of its inertial mass density (and, as expected from the equivalence principle, also of the 'gravitational' force term) produced by the 'inertial' term of the transport equation. This model exhibits for the first time the consequences of such an effect, and shows that under physically reasonable conditions this decreasing of the gravitational term in the dynamic equation may be large enough as to revert the collapse and produce a bouncing of the boundary surface of the sphere.

  8. Relativistic model of anisotropic charged fluid sphere in general relativity

    NASA Astrophysics Data System (ADS)

    Pant, Neeraj; Pradhan, N.; Bansal, Rajeev K.

    2016-01-01

    In this present paper, we present a class of static, spherically symmetric charged anisotropic fluid models of super dense stars in isotropic coordinates by considering a particular type of metric potential, a specific choice of electric field intensity E and pressure anisotropy factor Δ which involve parameters K (charge) and α (anisotropy) respectively. The solutions so obtained are utilized to construct the models for super-dense stars like neutron stars and strange quark stars. Our solutions are well behaved within the following ranges of different constant parameters. In the absence of pressure anisotropy and charge present model reduces to the isotropic model Pant et al. (Astrophys. Space Sci. 330:353-359, 2010). Our solution is well behaved in all respects for all values of X lying in the range 0< X ≤ 0.18, α lying in the range 0 ≤ α ≤6.6, K lying in the range 0< K ≤ 6.6 and Schwarzschild compactness parameter "u" lying in the range 0< u ≤ 0.38. Since our solution is well behaved for a wide ranges of the parameters, we can model many different types of ultra-cold compact stars like quark stars and neutron stars. We have shown that corresponding to X=0.088, α=0.6 and K=4.3 for which u=0.2054 and by assuming surface density ρb = 4.6888 × 10^{14} g/cm3 the mass and radius are found to be 1.51 M_{\\varTheta} and 10.90 km respectively. Assuming surface density ρb = 2 × 10^{14} g/cm3 the mass and radius for a neutron star candidate are found to be 2.313 M_{\\varTheta} and 16.690 km respectively. Hence we obtain masses and radii that fall in the range of what is generally expected for quark stars and neutron stars.

  9. Octet Baryon Electromagnetic Form Factors in a Relativistic Quark Model

    SciTech Connect

    Gilberto Ramalho, Kazuo Tsushima

    2011-09-01

    We study the octet baryon electromagnetic properties by applying the covariant spectator quark model, and provide covariant parametrization that can be used to study baryon electromagnetic reactions. While we use the lattice QCD data in the large pion mass regime (small pion cloud effects) to determine the parameters of the model in the valence quark sector, we use the nucleon physical and octet baryon magnetic moment data to parameterize the pion cloud contributions. The valence quark contributions for the octet baryon electromagnetic form factors are estimated by extrapolating the lattice parametrization in the large pion mass regime to the physical regime. As for the pion cloud contributions, we parameterize them in a covariant, phenomenological manner, combined with SU(3) symmetry. We also discuss the impact of the pion cloud effects on the octet baryon electromagnetic form factors and their radii.

  10. Euclidean bridge to the relativistic constituent quark model

    NASA Astrophysics Data System (ADS)

    Hobbs, T. J.; Alberg, Mary; Miller, Gerald A.

    2017-03-01

    Background: Knowledge of nucleon structure is today ever more of a precision science, with heightened theoretical and experimental activity expected in coming years. At the same time, a persistent gap lingers between theoretical approaches grounded in Euclidean methods (e.g., lattice QCD, Dyson-Schwinger equations [DSEs]) as opposed to traditional Minkowski field theories (such as light-front constituent quark models). Purpose: Seeking to bridge these complementary world views, we explore the potential of a Euclidean constituent quark model (ECQM). This formalism enables us to study the gluonic dressing of the quark-level axial-vector vertex, which we undertake as a test of the framework. Method: To access its indispensable elements with a minimum of inessential detail, we develop our ECQM using the simplified quark + scalar diquark picture of the nucleon. We construct a hyperspherical formalism involving polynomial expansions of diquark propagators to marry our ECQM with the results of Bethe-Salpeter equation (BSE) analyses, and constrain model parameters by fitting electromagnetic form factor data. Results: From this formalism, we define and compute a new quantity—the Euclidean density function (EDF)—an object that characterizes the nucleon's various charge distributions as functions of the quark's Euclidean momentum. Applying this technology and incorporating information from BSE analyses, we find the quenched dressing effect on the proton's axial-singlet charge to be small in magnitude and consistent with zero, while use of recent determinations of unquenched BSEs results in a large suppression. Conclusions: The quark + scalar diquark ECQM is a step toward a realistic quark model in Euclidean space, and needs additional refinements. The substantial effect we obtain for the impact on the axial-singlet charge of the unquenched dressed vertex compared to the quenched demands further investigation.

  11. Calomel-made crystalline acousto-optical cell designed for an advanced regime of noncollinear two-phonon light scattering

    NASA Astrophysics Data System (ADS)

    Shcherbakov, Alexandre S.; Arellanes, Adan Omar

    2016-03-01

    We study the potentials of a wide-aperture crystalline calomel-made acousto-optical cell. Characterizing this cell is nontrivial due to the chosen regime based on an advanced noncollinear two-phonon light scattering. Recently revealed important features of this phenomenon are essentially exploited in the cell and are investigated in more detail. These features can be observed more easily and simply in tetragonal crystals, e.g., calomel, exhibiting specific acousto-optical nonlinearity caused by the acoustic waves of finite amplitude. This parametric nonlinearity manifests itself at low acoustic powers in calomel possessing linear acoustic attenuation. The formerly identified additional degree of freedom, unique to this regime, is exploited for designing the cell with an eye to doubling the resolution due to two-phonon processes. We clarify the role of varying the central acoustic frequency and acoustic attenuation using that degree of freedom. Then the efficiency of calomel is exploited to expand the cell's bandwidth with a cost of its efficiency. Proof-of-principle experiments confirm the developed approaches and illustrate their applicability to innovative techniques of optical spectrum analysis with the improved resolution. The achieved spectral resolution of 0.205 Å at 405 nm and the resolving power 19,800 are the best for acousto-optical spectrometers dedicated to space or airborne operations to date as far as we know.

  12. Well-behaved relativistic charged super-dense star models

    NASA Astrophysics Data System (ADS)

    Faruqi, Shahab; Pant, Neeraj

    2012-10-01

    A new class of charged super-dense star models is obtained by using an electric intensity, which involves a parameter, K. The metric describing the model shares its metric potential g 44 with that of Durgapal's fourth solution (J. Phys. A, Math. Gen. 15:2637, 1982). The pressure-free surface is kept at the density ρ b =2×1014 g/cm3 and joins smoothly with the Reissner-Nordstrom solution. The charge analogues are well-behaved for a wide range, 0≤ K≤59, with the optimum value of X=0.264 i.e. the pressure, density, pressure-density ratio and velocity of sound are monotonically decreasing and the electric intensity is monotonically increasing in nature for the given range of the parameter K. The maximum mass and the corresponding radius occupied by the neutral solution are 4.22 M Θ and 20 km, respectively for X=0.264. For the charged solution, the maximum mass and radius are defined by the expressions M≈(0.0059 K+4.22) M Θ and r b ≈-0.021464 K+20 km respectively.

  13. Critical rotation of general-relativistic polytropic models revisited

    NASA Astrophysics Data System (ADS)

    Geroyannis, V.; Karageorgopoulos, V.

    2013-09-01

    We develop a perturbation method for computing the critical rotational parameter as a function of the equatorial radius of a rigidly rotating polytropic model in the "post-Newtonia approximation" (PNA). We treat our models as "initial value problems" (IVP) of ordinary differential equations in the complex plane. The computations are carried out by the code dcrkf54.f95 (Geroyannis and Valvi 2012 [P1]; modified Runge-Kutta-Fehlberg code of fourth and fifth order for solving initial value problems in the complex plane). Such a complex-plane treatment removes the syndromes appearing in this particular family of IVPs (see e.g. P1, Sec. 3) and allows continuation of the numerical integrations beyond the surface of the star. Thus all the required values of the Lane-Emden function(s) in the post-Newtonian approximation are calculated by interpolation (so avoiding any extrapolation). An interesting point is that, in our computations, we take into account the complete correction due to the gravitational term, and this issue is a remarkable difference compared to the classical PNA. We solve the generalized density as a function of the equatorial radius and find the critical rotational parameter. Our computations are extended to certain other physical characteristics (like mass, angular momentum, rotational kinetic energy, etc). We find that our method yields results comparable with those of other reliable methods. REFERENCE: V.S. Geroyannis and F.N. Valvi 2012, International Journal of Modern Physics C, 23, No 5, 1250038:1-15.

  14. Collisional energy losses in relativistic nuclear collisions within an effective quasiparticle model

    SciTech Connect

    Tarasov, Yu. A.

    2009-10-15

    We investigate the collisional energy losses of the fast gluons and light quarks in quark-gluon plasma produced in central (Au+Au) collisions at at energies currently available at the BNL Relativistic Heavy Ion Collider (RHIC) ({radical}(s{sub NN})=200 GeV). We use the effective quasiparticle model for investigation of physical characteristic of expanding plasma. We take into account the possibility of hot glue production at the first stage. We calculate these energy losses and compare them with radiative energy losses of gluons and quarks in an analogous model. We show that radiative energy losses exceed considerably the collisional energy losses.

  15. A Euclidean bridge to the relativistic constituent quark model

    NASA Astrophysics Data System (ADS)

    Hobbs, Timothy; Alberg, Mary; Miller, Gerald

    2017-01-01

    We explore the potential of a Euclidean constituent quark model (ECQM) to bridge the lingering gap between Euclidean and Minkowski field theories in studies of nucleon structure. Specifically, we develop our ECQM using a simplified quark-scalar diquark picture of the nucleon as a first calculation. Our treatment in Euclidean space necessitates a hyperspherical formalism involving polynomial expansions of diquark propagators in order to marry our ECQM with results from Bethe-Salpeter Equation (BSE) analyses. From this framework, we define and compute a new quantity - a Euclidean density function (EDF) - an object that characterizes the nucleon's various charge distributions as functions of the quark's Euclidean momentum. Applying this technology and incorporating information from BSE analyses, we find the quenched dressing effect on the proton's axial-singlet charge to be small in magnitude and consistent with zero, while use of recent determinations of unquenched BSEs results in a large suppression. The substantial effect we obtain for the impact on the axial-singlet charge of the unquenched dressed vertex compared to the quenched demands further investigation. Work supported by DOE grant DE-FG02-97ER-41014 and NSF Grant No. 1516105.

  16. Relativistic blast-wave model for the rapid flux variations of AO 0235+164 and other compact radio sources

    NASA Technical Reports Server (NTRS)

    Marscher, A. P.

    1978-01-01

    A relativistic blast-wave version of a signal-screen model is developed which can adequately explain the details of the flux-density and structural variations of compact extragalactic radio sources. The relativistic motion implied by flux variations is analyzed with respect to the synchrotron spectrum of the BL Lac object AO 0235+164 observed during outbursts, and a signal-screen model for rapidly expanding shells produced by ultrarelativistic blast waves is examined. The approximate observed structure of the blast wave at three stages in its evolution is illustrated, each stage is described, and the model is applied to the flux density outburst in AO 0235+164 observed in late 1975. The results show that a relativistic blast-wave model can in general reproduce the main features of the observed flux variations in compact sources. Some problems with the proposed model are briefly discussed.

  17. Hadronic matter at finite temperature and density within an effective relativistic mean-field model

    NASA Astrophysics Data System (ADS)

    Lavagno, A.

    2012-10-01

    We study hot and dense hadronic matter by means of an effective relativistic mean-field model with the inclusion of the full octet of baryons, the Δ-isobar degrees of freedom and the lightest pseudoscalar and vector mesons. These last particles are considered by taking into account an effective chemical potential and an effective mass depending on the self-consistent interaction between baryons. The analysis is performed by requiring the Gibbs conditions on the global conservation of baryon number, electric charge fraction and zero net strangeness.

  18. Normalizing a relativistic model of X-ray reflection. Definition of the reflection fraction and its implementation in relxill

    NASA Astrophysics Data System (ADS)

    Dauser, T.; García, J.; Walton, , D. J.; Eikmann, W.; Kallman, T.; McClintock, J.; Wilms, J.

    2016-05-01

    Aims: The only relativistic reflection model that implements a parameter relating the intensity incident on an accretion disk to the observed intensity is relxill. The parameter used in earlier versions of this model, referred to as the reflection strength, is unsatisfactory; it has been superseded by a parameter that provides insight into the accretion geometry, namely the reflection fraction. The reflection fraction is defined as the ratio of the coronal intensity illuminating the disk to the coronal intensity that reaches the observer. Methods: The relxill model combines a general relativistic ray-tracing code and a photoionization code to compute the component of radiation reflected from an accretion that is illuminated by an external source. The reflection fraction is a particularly important parameter for relativistic models with well-defined geometry, such as the lamp post model, which is a focus of this paper. Results: Relativistic spectra are compared for three inclinations and for four values of the key parameter of the lamp post model, namely the height above the black hole of the illuminating, on-axis point source. In all cases, the strongest reflection is produced for low source heights and high spin. A low-spin black hole is shown to be incapable of producing enhanced relativistic reflection. Results for the relxill model are compared to those obtained with other models and a Monte Carlo simulation. Conclusions: Fitting data by using the relxill model and the recently implemented reflection fraction, the geometry of a system can be constrained. The reflection fraction is independent of system parameters such as inclination and black hole spin. The reflection-fraction parameter was implemented with the name refl_frac in all flavours of the relxill model, and the non-relativistic reflection model xillver, in v0.4a (18 January 2016).

  19. Normalizing a Relativistic Model of X-Ray Reflection Definition of the Reflection Fraction and Its Implementation in relxill

    NASA Technical Reports Server (NTRS)

    Dauser, T.; Garcia, J.; Walton, D. J.; Eikmann, W.; Kallman, T.; McClintock, J.; Wilms, J.

    2016-01-01

    Aims. The only relativistic reflection model that implements a parameter relating the intensity incident on an accretion disk to the observed intensity is relxill. The parameter used in earlier versions of this model, referred to as the reflection strength, is unsatisfactory; it has been superseded by a parameter that provides insight into the accretion geometry, namely the reflection fraction. The reflection fraction is defined as the ratio of the coronal intensity illuminating the disk to the coronal intensity that reaches the observer. Methods. The relxill model combines a general relativistic ray-tracing code and a photoionization code to compute the component of radiation reflected from an accretion that is illuminated by an external source. The reflection fraction is a particularly important parameter for relativistic models with well-defined geometry, such as the lamp post model, which is a focus of this paper. Results. Relativistic spectra are compared for three inclinations and for four values of the key parameter of the lamp post model,namely the height above the black hole of the illuminating, on-axis point source. In all cases, the strongest reflection is produced for low source heights and high spin. A low-spin black hole is shown to be incapable of producing enhanced relativistic reflection. Results for the relxill model are compared to those obtained with other models and a Monte Carlo simulation. Conclusions. Fitting data by using the relxill model and the recently implemented reflection fraction, the geometry of a system can be constrained. The reflection-fraction is independent of system parameters such as inclination and black hole spin. The reflection-fraction parameter was implemented with the name reflec_frac all flavours of the relxill model, and the non-relativistic reflection model xillver, in v0.4a (18 January 2016).

  20. A New Multi-dimensional General Relativistic Neutrino Hydrodynamics Code for Core-collapse Supernovae. II. Relativistic Explosion Models of Core-collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Müller, Bernhard; Janka, Hans-Thomas; Marek, Andreas

    2012-09-01

    We present the first two-dimensional general relativistic (GR) simulations of stellar core collapse and explosion with the COCONUT hydrodynamics code in combination with the VERTEX solver for energy-dependent, three-flavor neutrino transport, using the extended conformal flatness condition for approximating the space-time metric and a ray-by-ray-plus ansatz to tackle the multi-dimensionality of the transport. For both of the investigated 11.2 and 15 M ⊙ progenitors we obtain successful, though seemingly marginal, neutrino-driven supernova explosions. This outcome and the time evolution of the models basically agree with results previously obtained with the PROMETHEUS hydro solver including an approximative treatment of relativistic effects by a modified Newtonian potential. However, GR models exhibit subtle differences in the neutrinospheric conditions compared with Newtonian and pseudo-Newtonian simulations. These differences lead to significantly higher luminosities and mean energies of the radiated electron neutrinos and antineutrinos and therefore to larger energy-deposition rates and heating efficiencies in the gain layer with favorable consequences for strong nonradial mass motions and ultimately for an explosion. Moreover, energy transfer to the stellar medium around the neutrinospheres through nucleon recoil in scattering reactions of heavy-lepton neutrinos also enhances the mentioned effects. Together with previous pseudo-Newtonian models, the presented relativistic calculations suggest that the treatment of gravity and energy-exchanging neutrino interactions can make differences of even 50%-100% in some quantities and is likely to contribute to a finally successful explosion mechanism on no minor level than hydrodynamical differences between different dimensions.

  1. A NEW MULTI-DIMENSIONAL GENERAL RELATIVISTIC NEUTRINO HYDRODYNAMICS CODE FOR CORE-COLLAPSE SUPERNOVAE. II. RELATIVISTIC EXPLOSION MODELS OF CORE-COLLAPSE SUPERNOVAE

    SciTech Connect

    Mueller, Bernhard; Janka, Hans-Thomas; Marek, Andreas E-mail: thj@mpa-garching.mpg.de

    2012-09-01

    We present the first two-dimensional general relativistic (GR) simulations of stellar core collapse and explosion with the COCONUT hydrodynamics code in combination with the VERTEX solver for energy-dependent, three-flavor neutrino transport, using the extended conformal flatness condition for approximating the space-time metric and a ray-by-ray-plus ansatz to tackle the multi-dimensionality of the transport. For both of the investigated 11.2 and 15 M{sub Sun} progenitors we obtain successful, though seemingly marginal, neutrino-driven supernova explosions. This outcome and the time evolution of the models basically agree with results previously obtained with the PROMETHEUS hydro solver including an approximative treatment of relativistic effects by a modified Newtonian potential. However, GR models exhibit subtle differences in the neutrinospheric conditions compared with Newtonian and pseudo-Newtonian simulations. These differences lead to significantly higher luminosities and mean energies of the radiated electron neutrinos and antineutrinos and therefore to larger energy-deposition rates and heating efficiencies in the gain layer with favorable consequences for strong nonradial mass motions and ultimately for an explosion. Moreover, energy transfer to the stellar medium around the neutrinospheres through nucleon recoil in scattering reactions of heavy-lepton neutrinos also enhances the mentioned effects. Together with previous pseudo-Newtonian models, the presented relativistic calculations suggest that the treatment of gravity and energy-exchanging neutrino interactions can make differences of even 50%-100% in some quantities and is likely to contribute to a finally successful explosion mechanism on no minor level than hydrodynamical differences between different dimensions.

  2. THE EVOLUTION OF PSR J0737-3039B AND A MODEL FOR RELATIVISTIC SPIN PRECESSION

    SciTech Connect

    Perera, B. B. P.; McLaughlin, M. A.; Kramer, M.; Lyne, A. G.; Stairs, I. H.; Ferdman, R. D.; Freire, P. C. C.; Possenti, A.; Burgay, M.; Breton, R. P.; Manchester, R. N.; Camilo, F.

    2010-10-01

    We present the evolution of the radio emission from the 2.8 s pulsar of the double pulsar system PSR J0737- 3039A/B. We provide an update on the Burgay et al. analysis by describing the changes in the pulse profile and flux density over five years of observations, culminating in the B pulsar's radio disappearance in 2008 March. Over this time, the flux density decreases by 0.177 mJy yr{sup -1} at the brightest orbital phases and the pulse profile evolves from a single to a double peak, with a separation rate of 2.{sup 0}6 yr{sup -1}. The pulse profile changes are most likely caused by relativistic spin precession but cannot be easily explained with a circular hollow-cone beam as in the model of Clifton and Weisberg. Relativistic spin precession, coupled with an elliptical beam, can model the pulse profile evolution well and the reappearance is expected to happen in {approx}2035 with the same part of the beam or in {approx}2014 if we assume a symmetric beam shape. This particular beam shape predicts geometrical parameters for the two bright orbital phases which are consistent with and similar to those derived by Breton et al. However, the observed decrease in flux over time and B's eventual disappearance cannot be easily explained by the model and may be due to the changing influence of A on B.

  3. Modeling the relativistic runaway electron avalanche and the feedback mechanism with GEANT4.

    PubMed

    Skeltved, Alexander Broberg; Østgaard, Nikolai; Carlson, Brant; Gjesteland, Thomas; Celestin, Sebastien

    2014-11-01

    This paper presents the first study that uses the GEometry ANd Tracking 4 (GEANT4) toolkit to do quantitative comparisons with other modeling results related to the production of terrestrial gamma ray flashes and high-energy particle emission from thunderstorms. We will study the relativistic runaway electron avalanche (RREA) and the relativistic feedback process, as well as the production of bremsstrahlung photons from runaway electrons. The Monte Carlo simulations take into account the effects of electron ionization, electron by electron (Møller), and electron by positron (Bhabha) scattering as well as the bremsstrahlung process and pair production, in the 250 eV to 100 GeV energy range. Our results indicate that the multiplication of electrons during the development of RREAs and under the influence of feedback are consistent with previous estimates. This is important to validate GEANT4 as a tool to model RREAs and feedback in homogeneous electric fields. We also determine the ratio of bremsstrahlung photons to energetic electrons Nγ /Ne . We then show that the ratio has a dependence on the electric field, which can be expressed by the avalanche time τ(E) and the bremsstrahlung coefficient α(ε). In addition, we present comparisons of GEANT4 simulations performed with a "standard" and a "low-energy" physics list both validated in the 1 keV to 100 GeV energy range. This comparison shows that the choice of physics list used in GEANT4 simulations has a significant effect on the results.

  4. Cluster decay in very heavy nuclei in a relativistic mean field model

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Madhubrata; Gangopadhyay, G.

    2008-02-01

    Exotic cluster decay of very heavy nuclei was studied in the microscopic Super-Asymmetric Fission Model. The Relativistic Mean Field model with the force FSU Gold was employed to obtain the densities of the cluster and the daughter nuclei. The microscopic nuclear interaction DDM3Y1, which has an exponential density dependence, and the Coulomb interaction were used in the double folding model to obtain the potential between the cluster and the daughter. Half-life values were calculated in the WKB approximation and the spectroscopic factors were extracted. The latter values are seen to have a simple dependence of the mass of the cluster as has been observed earlier. Predictions were made for some possible decays.

  5. A relativistic self-consistent model for studying enhancement of space charge limited emission due to counter-streaming ions

    NASA Astrophysics Data System (ADS)

    Lin, M. C.; Verboncoeur, J.

    2016-10-01

    A maximum electron current transmitted through a planar diode gap is limited by space charge of electrons dwelling across the gap region, the so called space charge limited (SCL) emission. By introducing a counter-streaming ion flow to neutralize the electron charge density, the SCL emission can be dramatically raised, so electron current transmission gets enhanced. In this work, we have developed a relativistic self-consistent model for studying the enhancement of maximum transmission by a counter-streaming ion current. The maximum enhancement is found when the ion effect is saturated, as shown analytically. The solutions in non-relativistic, intermediate, and ultra-relativistic regimes are obtained and verified with 1-D particle-in-cell simulations. This self-consistent model is general and can also serve as a comparison for verification of simulation codes, as well as extension to higher dimensions.

  6. Relativistic scalar-vector models of the N-N and N-nuclear interactions

    SciTech Connect

    Green, A.E.S.

    1985-01-01

    This paper for the Proceedings of Conference an Anti-Nucleon and Nucleon-Nucleus Interactions summarizes work by the principal investigator and his collaborators on the nucleon-nucleon (N-N) and nucleon-nuclear (N-eta) interactions. It draws heavily on a paper presented at the Many Body Conference in Rome in 1972 but also includes a brief review of our phenomenological N-eta interaction studies. We first summarize our 48-49 generalized scalar-vector meson field theory model of the N-N interactions. This is followed by a brief description of our phenomenological work in the 50's on the N-eta interaction sponsored by the Atomic Energy Commission (the present DOE). This work finally led to strong velocity dependent potentials with spin orbit and isospin terms for shell and optical model applications. This is followed by a section on the Emergence of One-Boson Exchange Models describing developments in the 60's of quantitative generalized one boson exchange potentials (GOBEP) including our purely relativistic N-N analyses. Then follows a section on the application of this meson field model to the N-eta interaction, in particular to spherical closed shell nuclei. This work was sponsored by AFOSR but funding was halted with the Mansfield amendment. We conclude with a discussion of subsequent collateral work by former colleagues and by others who have converged upon scalar-vector relativistic models of N-N, antiN-N, N-eta and antiN-eta interactions and some lessons learned from this extended endeavor. 61 refs.

  7. The Analysis of Lagrangian and Hamiltonian Properties of the Classical Relativistic Electrodynamics Models and Their Quantization

    NASA Astrophysics Data System (ADS)

    Bogolubov, Nikolai N.; Prykarpatsky, Anatoliy K.

    2010-05-01

    The Lagrangian and Hamiltonian properties of classical electrodynamics models and their associated Dirac quantizations are studied. Using the vacuum field theory approach developed in (Prykarpatsky et al. Theor. Math. Phys. 160(2): 1079-1095, 2009 and The field structure of a vacuum, Maxwell equations and relativity theory aspects. Preprint ICTP) consistent canonical Hamiltonian reformulations of some alternative classical electrodynamics models are devised, and these formulations include the Lorentz condition in a natural way. The Dirac quantization procedure corresponding to the Hamiltonian formulations is developed. The crucial importance of the rest reference systems, with respect to which the dynamics of charged point particles is framed, is explained and emphasized. A concise expression for the Lorentz force is derived by suitably taking into account the duality of electromagnetic field and charged particle interactions. Finally, a physical explanation of the vacuum field medium and its relativistic properties fitting the mathematical framework developed is formulated and discussed.

  8. Relativistic mean-field model with energy dependent self-energies

    SciTech Connect

    Antic, S.; Typel, S.

    2015-02-24

    Conventional relativistic mean-field theory is extended with the introduction of higher-order derivative couplings of nucleons with the meson fields. The Euler-Lagrange equations follow from the principle of stationary action. From invariance principles of the Lagrangian density the most general expressions for the conserved current and energy-momentum tensor are derived. The nucleon self-energies show the explicit dependence on the meson fields. They contain additional regulator functions which describe the energy dependence. The density dependence of meson-nucleon couplings causes the apperance of additional rearrangement contributions in the self-energies. The equation of state of infinite nuclear matter is obtained and the thermodynamical consistency of the model is demonstrated. This model is applied to the description of spherical, non-rotating stars in β-equilibrium. Stellar structure is calculated by solving the Tolman-Oppenheimer-Volkov (TOV) equations. The results for neutron stars are shown in terms of mass-radius relations.

  9. VISCOUS BOUNDARY LAYERS OF RADIATION-DOMINATED, RELATIVISTIC JETS. I. THE TWO-STREAM MODEL

    SciTech Connect

    Coughlin, Eric R.; Begelman, Mitchell C. E-mail: mitch@jila.colorado.edu

    2015-08-10

    Using the relativistic equations of radiation hydrodynamics in the viscous limit, we analyze the boundary layers that develop between radiation-dominated jets and their environments. In this paper we present the solution for the self-similar, 2D, plane-parallel two-stream problem, wherein the jet and the ambient medium are considered to be separate, interacting fluids, and we compare our results to those of previous authors. (In a companion paper we investigate an alternative scenario, known as the free-streaming jet model.) Consistent with past findings, we show that the boundary layer that develops between the jet and its surroundings creates a region of low-density material. These models may be applicable to sources such as super-Eddington tidal disruption events and long gamma-ray bursts.

  10. Building Relativistic Mean-Field Models for Atomic Nuclei and Neutron Stars

    NASA Astrophysics Data System (ADS)

    Chen, Wei-Chia; Piekarewicz, Jorge

    2014-03-01

    Nuclear energy density functional (EDF) theory has been quite successful in describing nuclear systems such as atomic nuclei and nuclear matter. However, when building new models, attention is usually paid to the best-fit parameters only. In recent years, focus has been shifted to the neighborhood around the minimum of the chi-square function as well. This powerful covariance analysis is able to provide important information bridging experiments, observations, and theories. In this work, we attempt to build a specific type of nuclear EDFs, the relativistic mean-field models, which treat atomic nuclei, nuclear matter, and neutron stars on the same footing. The application of covariance analysis can reveal correlations between observables of interest. The purpose is to elucidate the alleged relations between the neutron skin of heavy nuclei and the size of neutron stars, and to develop insight into future investigations.

  11. Non-relativistic leptogenesis

    SciTech Connect

    Bödeker, Dietrich; Wörmann, Mirco E-mail: mwoermann@physik.uni-bielefeld.de

    2014-02-01

    In many phenomenologically interesting models of thermal leptogenesis the heavy neutrinos are non-relativistic when they decay and produce the baryon asymmetry of the Universe. We propose a non-relativistic approximation for the corresponding rate equations in the non-resonant case, and a systematic way for computing relativistic corrections. We determine the leading order coefficients in these equations, and the first relativistic corrections. The non-relativistic approximation works remarkably well. It appears to be consistent with results obtained using a Boltzmann equation taking into account the momentum distribution of the heavy neutrinos, while being much simpler. We also compute radiative corrections to some of the coefficients in the rate equations. Their effect is of order 1% in the regime favored by neutrino oscillation data. We obtain the correct leading order lepton number washout rate in this regime, which leads to large ( ∼ 20%) effects compared to previous computations.

  12. Modelling the high-energy emission from gamma-ray binaries using numerical relativistic hydrodynamics

    NASA Astrophysics Data System (ADS)

    Dubus, G.; Lamberts, A.; Fromang, S.

    2015-09-01

    Context. Detailed modelling of the high-energy emission from gamma-ray binaries has been propounded as a path to pulsar wind physics. Aims: Fulfilling this ambition requires a coherent model of the flow and its emission in the region where the pulsar wind interacts with the stellar wind of its companion. Methods: We have developed a code that follows the evolution and emission of electrons in the shocked pulsar wind based on inputs from a relativistic hydrodynamical simulation. The code is used to model the well-documented spectral energy distribution and orbital modulations from LS 5039. Results: The pulsar wind is fully confined by a bow shock and a back shock. The particles are distributed into a narrow Maxwellian, emitting mostly GeV photons, and a power law radiating very efficiently over a broad energy range from X-rays to TeV gamma rays. Most of the emission arises from the apex of the bow shock. Doppler boosting shapes the X-ray and very high energy (VHE) lightcurves, constraining the system inclination to i ≈ 35°. There is tension between the hard VHE spectrum and the level of X-ray to MeV emission, which requires differing magnetic field intensities that are hard to achieve with constant magnetisation σ and Lorentz factor Γp of the pulsar wind. Our best compromise implies σ ≈ 1 and Γp ≈ 5 × 103, so respectively higher and lower than the typical values in pulsar wind nebulae. Conclusions: The high value of σ derived here, where the wind is confined close to the pulsar, supports the classical picture that has pulsar winds highly magnetised at launch. However, such magnetisations will require that further investigations are based on relativistic MHD simulations. Movies associated to Figs. A.1-A.4 are available in electronic form at http://www.aanda.org

  13. Relativistic, model-independent, multichannel 2→2 transition amplitudes in a finite volume

    DOE PAGES

    Briceno, Raul A.; Hansen, Maxwell T.

    2016-07-13

    We derive formalism for determining 2 + J → 2 infinite-volume transition amplitudes from finite-volume matrix elements. Specifically, we present a relativistic, model-independent relation between finite-volume matrix elements of external currents and the physically observable infinite-volume matrix elements involving two-particle asymptotic states. The result presented holds for states composed of two scalar bosons. These can be identical or non-identical and, in the latter case, can be either degenerate or non-degenerate. We further accommodate any number of strongly-coupled two-scalar channels. This formalism will, for example, allow future lattice QCD calculations of themore » $$\\rho$$-meson form factor, in which the unstable nature of the $$\\rho$$ is rigorously accommodated. In conclusion, we also discuss how this work will impact future extractions of nuclear parity and hadronic long-range matrix elements from lattice QCD.« less

  14. Relativistic Quark-Model Results for Baryon Ground and Resonant States

    SciTech Connect

    Plessas, W.; Melde, T.

    2008-10-13

    Latest results from a study of baryon ground and resonant states within relativistic constituent quark models are reported. After recalling some typical spectral properties, the description of ground states, especially with regard to the nucleon and hyperon electromagnetic structures, is addressed. In the following, recent covariant predictions for pion, eta, and kaon partial decay widths of light and strange baryon resonances below 2 GeV are summarized. These results exhibit a characteristic pattern that is distinct from nonrelativistic or relativized decay studies performed so far. Together with a detailed analysis of the spin, flavor, and spatial structures of the wave functions, it supports a new and extended classification scheme of baryon ground and resonant states into SU(3) flavor multiplets.

  15. Nuclear reaction cross sections of exotic nuclei in the Glauber model for relativistic mean field densities

    SciTech Connect

    Patra, S. K.; Panda, R. N.; Arumugam, P.; Gupta, Raj K.

    2009-12-15

    We have calculated the total nuclear reaction cross sections of exotic nuclei in the framework of the Glauber model, using as inputs the standard relativistic mean field (RMF) densities and the densities obtained from the more recently developed effective-field-theory-motivated RMF (the E-RMF). Both light and heavy nuclei are taken as the representative targets, and the light neutron-rich nuclei as projectiles. We found the total nuclear reaction cross section to increase as a function of the mass number, for both the target and projectile nuclei. The differential nuclear elastic scattering cross sections are evaluated for some selected systems at various incident energies. We found a large dependence of the differential elastic scattering cross section on incident energy. Finally, we have applied the same formalism to calculate both the total nuclear reaction cross section and the differential nuclear elastic scattering cross section for the recently discussed superheavy nucleus with atomic number Z=122.

  16. Modeling the QCD Equation of State in Relativistic Heavy Ion Collisions on BlueGene/L

    SciTech Connect

    Soltz, R; Grady, J; Hartouni, E P; Gupta, R; Vitev, I; Mottola, E; Petreczky, P; Karsch, F; Christ, N; Mawhinney, R; Bass, S; Mueller, B; Vranas, P; Levkova, L; Molnar, D; Teaney, D; De Tar, C; Toussaint, D; Sugar, R

    2006-04-10

    On 9,10 Feb 2006 a workshop was held at LLNL to discuss how a 10% allocation of the ASC BG/L supercomputer performing a finite temperature Lattice QCD (LQCD) calculation of the equation of state and non-equilibrium properties of the quark-gluon state of matter could lead to a breakthrough in our understanding of recent data from the Relativistic Heavy Ion Collider at Brookhaven National Lab. From this meeting and subsequent discussions we present a detailed plan for this calculation, including mechanisms for working in a secure computing environment and inserting the resulting equation of state into hydrodynamic transport models that will be compared directly to the RHIC data. We discuss expected benefits for DOE Office of Science research programs within the context of the NNSA mission.

  17. Relativistic density functional theory modeling of plutonium and americium higher oxide molecules.

    PubMed

    Zaitsevskii, Andréi; Mosyagin, Nikolai S; Titov, Anatoly V; Kiselev, Yuri M

    2013-07-21

    The results of electronic structure modeling of plutonium and americium higher oxide molecules (actinide oxidation states VI through VIII) by two-component relativistic density functional theory are presented. Ground-state equilibrium molecular structures, main features of charge distributions, and energetics of AnO3, AnO4, An2On (An=Pu, Am), and PuAmOn, n = 6-8, are determined. In all cases, molecular geometries of americium and mixed plutonium-americium oxides are similar to those of the corresponding plutonium compounds, though chemical bonding in americium oxides is markedly weaker. Relatively high stability of the mixed heptoxide PuAmO7 is noticed; the Pu(VIII) and especially Am(VIII) oxides are expected to be unstable.

  18. Relativistic density functional theory modeling of plutonium and americium higher oxide molecules

    NASA Astrophysics Data System (ADS)

    Zaitsevskii, Andréi; Mosyagin, Nikolai S.; Titov, Anatoly V.; Kiselev, Yuri M.

    2013-07-01

    The results of electronic structure modeling of plutonium and americium higher oxide molecules (actinide oxidation states VI through VIII) by two-component relativistic density functional theory are presented. Ground-state equilibrium molecular structures, main features of charge distributions, and energetics of AnO3, AnO4, An2On (An=Pu, Am), and PuAmOn, n = 6-8, are determined. In all cases, molecular geometries of americium and mixed plutonium-americium oxides are similar to those of the corresponding plutonium compounds, though chemical bonding in americium oxides is markedly weaker. Relatively high stability of the mixed heptoxide PuAmO7 is noticed; the Pu(VIII) and especially Am(VIII) oxides are expected to be unstable.

  19. Precise parallel optical spectrum analysis using the advanced two-phonon light scattering combined with the cross-disperser technique.

    PubMed

    Shcherbakov, A S; Arellanes, A O; Chavushyan, V

    2016-12-01

    We develop an advanced approach to the optical spectrometer with acousto-optical dynamic grating for the Guillermo Haro astrophysical observatory (Mexico). The progress consists of two principle novelties. First is the use of the acousto-optical nonlinearity of two-phonon light scattering in crystals with linear acoustic losses. This advanced regime of light scattering exhibits a recently revealed additional degree of freedom, which allows tuning of the frequency of elastic waves and admits the nonlinear apodization improving the dynamic range. The second novelty is the combination of the cross-disperser with acousto-optical processing. A similar pioneering step provides an opportunity to operate over all the visible range in a parallel regime with maximal achievable resolution. The observation window of the optical spectrometer in that observatory is ∼9  cm, so that the theoretical estimations of maximal performances for a low-loss LiNbO3 crystal for this optical aperture at λ=405  nm give spectral resolution of 0.0523 Å, resolving power of 77,400, and 57,500 spots. The illustrative proof-of-principle experiments with a 6 cm LiNbO3 crystal have been performed.

  20. Modeling the relativistic runaway electron avalanche and the feedback mechanism with GEANT4

    PubMed Central

    Skeltved, Alexander Broberg; Østgaard, Nikolai; Carlson, Brant; Gjesteland, Thomas; Celestin, Sebastien

    2014-01-01

    This paper presents the first study that uses the GEometry ANd Tracking 4 (GEANT4) toolkit to do quantitative comparisons with other modeling results related to the production of terrestrial gamma ray flashes and high-energy particle emission from thunderstorms. We will study the relativistic runaway electron avalanche (RREA) and the relativistic feedback process, as well as the production of bremsstrahlung photons from runaway electrons. The Monte Carlo simulations take into account the effects of electron ionization, electron by electron (Møller), and electron by positron (Bhabha) scattering as well as the bremsstrahlung process and pair production, in the 250 eV to 100 GeV energy range. Our results indicate that the multiplication of electrons during the development of RREAs and under the influence of feedback are consistent with previous estimates. This is important to validate GEANT4 as a tool to model RREAs and feedback in homogeneous electric fields. We also determine the ratio of bremsstrahlung photons to energetic electrons Nγ/Ne. We then show that the ratio has a dependence on the electric field, which can be expressed by the avalanche time τ(E) and the bremsstrahlung coefficient α(ε). In addition, we present comparisons of GEANT4 simulations performed with a “standard” and a “low-energy” physics list both validated in the 1 keV to 100 GeV energy range. This comparison shows that the choice of physics list used in GEANT4 simulations has a significant effect on the results. Key Points Testing the feedback mechanism with GEANT4 Validating the GEANT4 programming toolkit Study the ratio of bremsstrahlung photons to electrons at TGF source altitude PMID:26167437

  1. Relativistic Brownian motion

    NASA Astrophysics Data System (ADS)

    Dunkel, Jörn; Hänggi, Peter

    2009-02-01

    Over the past one hundred years, Brownian motion theory has contributed substantially to our understanding of various microscopic phenomena. Originally proposed as a phenomenological paradigm for atomistic matter interactions, the theory has since evolved into a broad and vivid research area, with an ever increasing number of applications in biology, chemistry, finance, and physics. The mathematical description of stochastic processes has led to new approaches in other fields, culminating in the path integral formulation of modern quantum theory. Stimulated by experimental progress in high energy physics and astrophysics, the unification of relativistic and stochastic concepts has re-attracted considerable interest during the past decade. Focusing on the framework of special relativity, we review, here, recent progress in the phenomenological description of relativistic diffusion processes. After a brief historical overview, we will summarize basic concepts from the Langevin theory of nonrelativistic Brownian motions and discuss relevant aspects of relativistic equilibrium thermostatistics. The introductory parts are followed by a detailed discussion of relativistic Langevin equations in phase space. We address the choice of time parameters, discretization rules, relativistic fluctuation-dissipation theorems, and Lorentz transformations of stochastic differential equations. The general theory is illustrated through analytical and numerical results for the diffusion of free relativistic Brownian particles. Subsequently, we discuss how Langevin-type equations can be obtained as approximations to microscopic models. The final part of the article is dedicated to relativistic diffusion processes in Minkowski spacetime. Since the velocities of relativistic particles are bounded by the speed of light, nontrivial relativistic Markov processes in spacetime do not exist; i.e., relativistic generalizations of the nonrelativistic diffusion equation and its Gaussian solutions

  2. Computation of masses and binding energies of some hadrons and bosons according to the rotating lepton model and the relativistic Newton equation

    NASA Astrophysics Data System (ADS)

    Vayenas, C. G.; Fokas, A. S.; Grigoriou, D.

    2016-08-01

    We compute analytically the masses, binding energies and hamiltonians of gravitationally bound Bohr-type states via the rotating relativistic lepton model which utilizes the de Broglie wavelength equation in conjunction with special relativity and Newton's relativistic gravitational law. The latter uses the inertial-gravitational masses, rather than the rest masses, of the rotating particles. The model also accounts for the electrostatic charge- induced dipole interactions between a central charged lepton, which is usually a positron, with the rotating relativistic lepton ring. We use three rotating relativistic neutrinos to model baryons, two rotating relativistic neutrinos to model mesons, and a rotating relativistic electron neutrino - positron (or electron) pair to model the W± bosons. It is found that gravitationally bound ground states comprising three relativistic neutrinos have masses in the baryon mass range (∼⃒ 0.9 to 1 GeV/c2), while ground states comprising two neutrinos have masses in the meson mass range (∼⃒ 0.4 to 0.8 GeV/c2). It is also found that the rest mass values of quarks are in good agreement with the heaviest neutrino mass value of 0.05 eV/c2 and that the mass of W± bosons (∼⃒ 81 GeV/c2) corresponds to the mass of a rotating gravitationally confined e± — ve pair. A generalized expression is also derived for the gravitational potential energy of such relativistic Bohr-type structures.

  3. Relativistic effects on plasma expansion

    SciTech Connect

    Benkhelifa, El-Amine; Djebli, Mourad

    2014-07-15

    The expansion of electron-ion plasma is studied through a fully relativistic multi-fluids plasma model which includes thermal pressure, ambipolar electrostatic potential, and internal energy conversion. Numerical investigation, based on quasi-neutral assumption, is performed for three different regimes: nonrelativistic, weakly relativistic, and relativistic. Ions' front in weakly relativistic regime exhibits spiky structure associated with a break-down of quasi-neutrality at the expanding front. In the relativistic regime, ion velocity is found to reach a saturation limit which occurs at earlier stages of the expansion. This limit is enhanced by higher electron velocity.

  4. SEARCH FOR TWO-PHONON OCTUPOLE VIBRATIONAL BANDS IN 88, 89, 92, 93, 94, 96Sr AND 95, 96, 97, 98Zr

    NASA Astrophysics Data System (ADS)

    Hwang, J. K.; Hamilton, J. H.; Ramayya, A. V.; Brewer, N. T.; Wang, E. H.; Luo, Y. X.; Zhu, S. J.

    2012-09-01

    Several new gamma transitions were identified in 94Sr, 93Sr, 92Sr, 96Zr and 97Zr from the spontaneous fission of 252Cf. Excited states in 88, 89, 92, 94, 96Sr and 95, 96, 97, 98Zr were reanalyzed and reorganized to propose the new two-phonon octupole vibrational states and bands. The spin and parity of 6+ are assigned to a 4034.5 keV state in 94Sr and 3576.4 keV state in 98Zr. These states are proposed as the two-phonon octupole vibrational states along with the 6+ states at 3483.4 keV in 96Zr, at 3786.0 keV in 92Sr and 3604.2 keV in 96Sr. The positive parity bands in 88, 94, 96Sr and 96, 98Zr are the first two-phonon octupole vibrational bands based on a 6+ state assigned in spherical nuclei. It is thought that in 94, 96Sr and 96, 98Zr a 3- octupole vibrational phonon is weakly coupled to an one-phonon octupole vibrational band to make the two-phonon octupole vibrational band. Also, the high spin states of odd-A95Zr and 97Zr are interpreted to be generated by the neutron 2d5/2 hole and neutron 1g7/2 particle, respectively, weakly coupled to one- and two-phonon octupole vibrational bands of 96Zr. The high spin states of odd-A87Sr are interpreted to be caused by the neutron 1g9/2 hole weakly coupled to 3- and 5- states of 88Sr. New one- and two-POV bands in 95, 97Zr and 87, 89Sr are proposed, for the first time, in the present work.

  5. Two-Phonon Absorption

    ERIC Educational Resources Information Center

    Hamilton, M. W.

    2007-01-01

    A nonlinear aspect of the acousto-optic interaction that is analogous to multi-photon absorption is discussed. An experiment is described in which the second-order acousto-optically scattered intensity is measured and found to scale with the square of the acoustic intensity. This experiment using a commercially available acousto-optic modulator is…

  6. A GENERAL RELATIVISTIC MODEL OF ACCRETION DISKS WITH CORONAE SURROUNDING KERR BLACK HOLES

    SciTech Connect

    You Bei; Cao Xinwu; Yuan Yefei E-mail: cxw@shao.ac.cn

    2012-12-20

    We calculate the structure of a standard accretion disk with a corona surrounding a massive Kerr black hole in the general relativistic frame, in which the corona is assumed to be heated by the reconnection of the strongly buoyant magnetic fields generated in the cold accretion disk. The emergent spectra of accretion disk-corona systems are calculated by using the relativistic ray-tracing method. We propose a new method to calculate the emergent Comptonized spectra from the coronae. The spectra of disk-corona systems with a modified {alpha}-magnetic stress show that both the hard X-ray spectral index and the hard X-ray bolometric correction factor L{sub bol}/L{sub X,2-10keV} increase with the dimensionless mass accretion rate, which is qualitatively consistent with the observations of active galactic nuclei. The fraction of the power dissipated in the corona decreases with increasing black hole spin parameter a, which leads to lower electron temperatures of the coronae for rapidly spinning black holes. The X-ray emission from the coronae surrounding rapidly spinning black holes becomes weak and soft. The ratio of the X-ray luminosity to the optical/UV luminosity increases with the viewing angle, while the spectral shape in the X-ray band is insensitive to the viewing angle. We find that the spectral index in the infrared waveband depends on the mass accretion rate and the black hole spin a, which deviates from the f{sub {nu}}{proportional_to}{nu}{sup 1/3} relation expected by the standard thin disk model.

  7. Relativistic Effects and Polarization in Three High-Energy Pulsar Models

    NASA Technical Reports Server (NTRS)

    Dyks, J.; Harding, Alice K.; Rudak, B.

    2004-01-01

    We present the influence of the special relativistic effects of aberration and light travel time delay on pulsar high-energy lightcurves and polarization characteristics predicted by three models: the two-pole caustic model, the outer gap model, and the polar cap model. Position angle curves and degree of polarization are calculated for the models and compared with the optical data on the Crab pulsar. The relative positions of peaks in gamma-ray and radio lightcurves are discussed in detail for the models. We find that the two-pole caustic model can reproduce qualitatively the optical polarization characteristics of the Crab pulsar - fast swings of the position angle and minima in polarization degree associated with both peaks. The anticorrelation between the observed flux and the polarization degree (observed in the optical band also for B0656+14) naturally results from the caustic nature of the peaks which are produced in the model due to the superposition of radiation from many different altitudes, ie. polarized at different angles. The two-pole caustic model also provides an acceptable interpretation of the main features in the Crab's radio profile. Neither the outer gap model nor the polar cap model are able to reproduce the optical polarization data on the Crab. Although the outer gap model is very successful in reproducing the relative positions of gamma-ray and radio peaks in pulse profiles, it can reproduce the high-energy lightcurves only when photon emission from regions very close to the light cylinder is included.

  8. Newtonian self-gravitating system in a relativistic huge void universe model

    NASA Astrophysics Data System (ADS)

    Nishikawa, Ryusuke; Nakao, Ken-ichi; Yoo, Chul-Moon

    2016-12-01

    We consider a test of the Copernican Principle through observations of the large-scale structures, and for this purpose we study the self-gravitating system in a relativistic huge void universe model which does not invoke the Copernican Principle. If we focus on the the weakly self-gravitating and slowly evolving system whose spatial extent is much smaller than the scale of the cosmological horizon in the homogeneous and isotropic background universe model, the cosmological Newtonian approximation is available. Also in the huge void universe model, the same kind of approximation as the cosmological Newtonian approximation is available for the analysis of the perturbations contained in a region whose spatial size is much smaller than the scale of the huge void: the effects of the huge void are taken into account in a perturbative manner by using the Fermi-normal coordinates. By using this approximation, we derive the equations of motion for the weakly self-gravitating perturbations whose elements have relative velocities much smaller than the speed of light, and show the derived equations can be significantly different from those in the homogeneous and isotropic universe model, due to the anisotropic volume expansion in the huge void. We linearize the derived equations of motion and solve them. The solutions show that the behaviors of linear density perturbations are very different from those in the homogeneous and isotropic universe model.

  9. General relativistic considerations of the field shedding model of fast radio bursts

    NASA Astrophysics Data System (ADS)

    Punsly, Brian; Bini, Donato

    2016-06-01

    Popular models of fast radio bursts (FRBs) involve the gravitational collapse of neutron star progenitors to black holes. It has been proposed that the shedding of the strong neutron star magnetic field (B) during the collapse is the power source for the radio emission. Previously, these models have utilized the simplicity of the Schwarzschild metric which has the restriction that the magnetic flux is magnetic `hair' that must be shed before final collapse. But neutron stars have angular momentum and charge and a fully relativistic Kerr-Newman solution exists in which B has its source inside of the event horizon. In this Letter, we consider the magnetic flux to be shed as a consequence of the electric discharge of a metastable collapsed state of a Kerr-Newman black hole. It has also been argued that the shedding model will not operate due to pair creation. By considering the pulsar death line, we find that for a neutron star with B = 1011-1013 G and a long rotation period, >1s this is not a concern. We also discuss the observational evidence supporting the plausibility of magnetic flux shedding models of FRBs that are spawned from rapidly rotating progenitors.

  10. Gup-Based and Snyder Noncommutative Algebras, Relativistic Particle Models, Deformed Symmetries and Interaction: a Unified Approach

    NASA Astrophysics Data System (ADS)

    Pramanik, Souvik; Ghosh, Subir

    2013-08-01

    We have developed a unified scheme for studying noncommutative algebras based on generalized uncertainty principle (GUP) and Snyder form in a relativistically covariant point particle Lagrangian (or symplectic) framework. Even though the GUP-based algebra and Snyder algebra are very distinct, the more involved latter algebra emerges from an approximation of the Lagrangian model of the former algebra. Deformed Poincaré generators for the systems that keep space-time symmetries of the relativistic particle models have been studied thoroughly. From a purely constrained dynamical analysis perspective the models studied here are very rich and provide insights on how to consistently construct approximate models from the exact ones when nonlinear constraints are present in the system. We also study dynamics of the GUP particle in presence of external electromagnetic field.

  11. Gup-Based and Snyder Noncommutative Algebras, Relativistic Particle Models, Deformed Symmetries and Interaction: a Unified Approach

    NASA Astrophysics Data System (ADS)

    Pramanik, Souvik; Ghosh, Subir

    2013-10-01

    We have developed a unified scheme for studying noncommutative algebras based on generalized uncertainty principle (GUP) and Snyder form in a relativistically covariant point particle Lagrangian (or symplectic) framework. Even though the GUP-based algebra and Snyder algebra are very distinct, the more involved latter algebra emerges from an approximation of the Lagrangian model of the former algebra. Deformed Poincaré generators for the systems that keep space-time symmetries of the relativistic particle models have been studied thoroughly. From a purely constrained dynamical analysis perspective the models studied here are very rich and provide insights on how to consistently construct approximate models from the exact ones when nonlinear constraints are present in the system. We also study dynamics of the GUP particle in presence of external electromagnetic field.

  12. Black hole thermodynamics as seen through a microscopic model of a relativistic Bose gas

    NASA Astrophysics Data System (ADS)

    Skákala, Jozef; Shankaranarayanan, S.

    2016-02-01

    Equations of gravity when projected on spacetime horizons resemble Navier-Stokes equation of a fluid with a specific equation of state [T. Damour, Surface effects of black hole physics, in Proc. M. Grossman Meeting (North Holland, 1982), p. 587, T. Padmanabhan, Phys. Rev. D 83 (2011) 044048, arXiv:gr-qc/1012.0119, S. Kolekar and T. Padmanabhan, Phys. Rev. D 85 (2011) 024004, arXiv:gr-qc/1012.5421]. We show that this equation of state describes massless ideal relativistic gas. We use these results, and build an explicit and simple molecular model of the fluid living on the Schwarzschild and Reissner-Nordström black hole horizons. For the spin zero Bose gas, our model makes two predictions: (i) The horizon area/entropy is quantized as given by Bekenstein’s quantization rule, (ii) The model explains the correct type of proportionality between horizon area and entropy. However, for the physically relevant range of parameters, the proportionality constant is never equal to 1/4.

  13. Weakly relativistic plasma expansion

    SciTech Connect

    Fermous, Rachid Djebli, Mourad

    2015-04-15

    Plasma expansion is an important physical process that takes place in laser interactions with solid targets. Within a self-similar model for the hydrodynamical multi-fluid equations, we investigated the expansion of both dense and under-dense plasmas. The weakly relativistic electrons are produced by ultra-intense laser pulses, while ions are supposed to be in a non-relativistic regime. Numerical investigations have shown that relativistic effects are important for under-dense plasma and are characterized by a finite ion front velocity. Dense plasma expansion is found to be governed mainly by quantum contributions in the fluid equations that originate from the degenerate pressure in addition to the nonlinear contributions from exchange and correlation potentials. The quantum degeneracy parameter profile provides clues to set the limit between under-dense and dense relativistic plasma expansions at a given density and temperature.

  14. Modeling of relativistic plasmas with the Particle-In-Cell method

    NASA Astrophysics Data System (ADS)

    Vay, Jean-Luc; Godfrey, Brendan B.

    2014-10-01

    Standard methods employed in relativistic electromagnetic Particle-In-Cell codes are reviewed, as well as novel techniques that were introduced recently. Advances in the analysis and mitigation of the numerical Cherenkov instability are also presented with comparison between analytical theory and numerical experiments. The algorithmic and numerical analytic advances are expanding the range of applicability of the method in the ultra-relativistic regime in particular, where the numerical Cherenkov instability is the strongest without corrective measures.

  15. Modeling relativistic soliton interactions in overdense plasmas: a perturbed nonlinear Schrödinger equation framework.

    PubMed

    Siminos, E; Sánchez-Arriaga, G; Saxena, V; Kourakis, I

    2014-12-01

    We investigate the dynamics of localized solutions of the relativistic cold-fluid plasma model in the small but finite amplitude limit, for slightly overcritical plasma density. Adopting a multiple scale analysis, we derive a perturbed nonlinear Schrödinger equation that describes the evolution of the envelope of circularly polarized electromagnetic field. Retaining terms up to fifth order in the small perturbation parameter, we derive a self-consistent framework for the description of the plasma response in the presence of localized electromagnetic field. The formalism is applied to standing electromagnetic soliton interactions and the results are validated by simulations of the full cold-fluid model. To lowest order, a cubic nonlinear Schrödinger equation with a focusing nonlinearity is recovered. Classical quasiparticle theory is used to obtain analytical estimates for the collision time and minimum distance of approach between solitons. For larger soliton amplitudes the inclusion of the fifth-order terms is essential for a qualitatively correct description of soliton interactions. The defocusing quintic nonlinearity leads to inelastic soliton collisions, while bound states of solitons do not persist under perturbations in the initial phase or amplitude.

  16. A class of exact isotropic solutions of Einstein's equations and relativistic stellar models in general relativity

    NASA Astrophysics Data System (ADS)

    Murad, Mohammad Hassan; Pant, Neeraj

    2014-03-01

    In this paper we have studied a particular class of exact solutions of Einstein's gravitational field equations for spherically symmetric and static perfect fluid distribution in isotropic coordinates. The Schwarzschild compactness parameter, GM/ c 2 R, can attain the maximum value 0.1956 up to which the solution satisfies the elementary tests of physical relevance. The solution also found to have monotonic decreasing adiabatic sound speed from the centre to the boundary of the fluid sphere. A wide range of fluid spheres of different mass and radius for a given compactness is possible. The maximum mass of the fluid distribution is calculated by using stellar surface density as parameter. The values of different physical variables obtained for some potential strange star candidates like Her X-1, 4U 1538-52, LMC X-4, SAX J1808.4-3658 given by our analytical model demonstrate the astrophysical significance of our class of relativistic stellar models in the study of internal structure of compact star such as self-bound strange quark star.

  17. Caloric curve for nuclear liquid-gas phase transition in relativistic mean-field hadronic model

    NASA Astrophysics Data System (ADS)

    Parvan, A. S.

    2012-08-01

    The main thermodynamical properties of the first order phase transition of the relativistic mean-field (RMF) hadronic model were explored in the isobaric, the canonical and the grand canonical ensembles on the basis of the method of the thermodynamical potentials and their first derivatives. It was proved that the first order phase transition of the RMF model is the liquid-gas type one associated with the Gibbs free energy G. The thermodynamical potential G is the piecewise smooth function and its first order partial derivatives with respect to variables of state are the piecewise continuous functions. We have found that the energy in the caloric curve is discontinuous in the isobaric and the grand canonical ensembles at fixed values of the pressure and the chemical potential, respectively, and it is continuous, i.e. it has no plateau, in the canonical and microcanonical ensembles at fixed values of baryon density, while the baryon density in the isotherms is discontinuous in the isobaric and the canonical ensembles at fixed values of the temperature. The general criterion for the nuclear liquid-gas phase transition in the canonical ensemble was identified.

  18. Superheavy Element Chemistry by Relativistic Density Functional Theory Electronic Structure Modeling

    NASA Astrophysics Data System (ADS)

    Zaitsevskii, A. V.; Polyaev, A. V.; Demidov, Yu. A.; Mosyagin, N. S.; Lomachuk, Yu. V.; Titov, A. V.

    2015-06-01

    Two-component density functional theory in its non-collinear formulation combined with the accurate relativistic electronic structure model defined by shape-consistent small-core pseudopotentials (PP/RDFT) provides a robust basis of efficient computational schemes for predicting energetic and structural properties of complex polyatomic systems including superheavy elements (SHEs). Because of the exceptional role of thermochromatography in the experiments on the "chemical" identification of SHEs with atomic numbers Z ≥ 112, we focus on the description of the adsorption of single SHE atoms on the surfaces of solids through cluster modeling of adsorption complexes. In some cases our results differ significantly from those of previous theoretical studies. The results of systematic comparative studies on chemical bonding in simple molecules of binary compounds of SHEs and their nearest homologs with most common light elements, obtained at the PP/RDFT level and visualized through the "chemical graphs", provide the understanding of the general chemistry of SHEs which at present cannot be derived from the experimental data. These results are used to discuss the main trends in changing chemical properties of the elements in the given group of the periodic table and demonstrate the specificity of SHEs.

  19. Semileptonic decays of Λb baryons in the relativistic quark model

    NASA Astrophysics Data System (ADS)

    Faustov, R. N.; Galkin, V. O.

    2016-10-01

    Semileptonic Λb decays are investigated in the framework of the relativistic quark model based on the quasipotential approach and the quark-diquark picture of baryons. The decay form factors are expressed through the overlap integrals of the initial and final baryon wave functions. All calculations are done without employing nonrelativistic and heavy quark expansions. The momentum transfer dependence of the decay form factors is explicitly determined in the whole accessible kinematical range without any extrapolations or model assumptions. Both the heavy-to-heavy Λb→Λcℓνℓ and heavy-to-light Λb→p ℓνℓ decay branching fractions are calculated. The results agree within error bars with the experimental value of the branching fraction of the Λb→Λc+l-ν¯l decay. From the recent LHCb data on the ratio of the branching fractions of the heavy-to-light and heavy-to-heavy semileptonic Λb decays the ratio of the Cabibbo-Kobayashi-Maskawa matrix elements |Vu b|/|Vc b| is obtained. It is consistent with the corresponding ratio determined from the inclusive B meson decays.

  20. Relativistic viscoelastic fluid mechanics.

    PubMed

    Fukuma, Masafumi; Sakatani, Yuho

    2011-08-01

    A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.

  1. Nature of One- and Two-Phonon Mixed Symmetry States in 92Zr and 94Mo from High-Resolution Electron and Proton Scattering

    SciTech Connect

    Neumann-Cosel, P. von; Burda, O.; Kuhar, M.; Lenhardt, A.; Ponomarev, V. Yu.; Richter, A.; Wambach, J.; Botha, N. T.; Fearick, R. W.; Carter, J.; Sideras-Haddad, E.; Foertsch, S. V.; Neveling, R.; Smit, F. D.; Fransen, C.; Fujita, H.; Pietralla, N.

    2006-03-13

    High-resolution inelastic electron (performed at the S-DALINAC) and proton (performed at iThemba LABS) scattering experiments on 92Zr and 94Mo with emphasis on E2 transitions are presented The measured form factors and angular distributions provide a measure for the F-spin purity, respectively the isovector nature, of the proposed one-phonon mixed symmetry states and furthermore provide a sensitive test of a possible two-phonon character of excited 2+ states.

  2. The effect of inclusion of Δ resonances in relativistic mean-field model with scaled hadron masses and coupling constants

    NASA Astrophysics Data System (ADS)

    Maslov, K. A.; Kolomeitsev, E. E.; Voskresensky, D. N.

    2017-01-01

    Knowledge of the equation of state of the baryon matter plays a decisive role in the description of neutron stars. With an increase of the baryon density the filling of Fermi seas of hyperons and Δ isobars becomes possible. Their inclusion into standard relativistic mean-field models results in a strong softening of the equation of state and a lowering of the maximum neutron star mass below the measured values. We extend a relativistic mean-field model with scaled hadron masses and coupling constants developed in our previous works and take into account now not only hyperons but also the Δ isobars. We analyze available empirical information to put constraints on coupling constants of Δs to mesonic mean fields. We show that the resulting equation of state satisfies majority of presently known experimental constraints.

  3. Outline of the concept of stable relativistic radiation sphere. A model of quasar?

    NASA Astrophysics Data System (ADS)

    Neslušan, L.

    2017-03-01

    The new possibilities to construct the stable relativistic compact objects were opened by Ni in 2011, after his discovery of new solution of the Einstein field equations for the spherically symmetric distribution of matter. The solution occurs to be the super-class of the well-known Tolman-Oppenheimer-Volkoff solution published in 1939. In the presented work, we consider the equation of state for a radiation fluid and use the Ni's solution to construct the massive objects consisting of radiation. We describe their fundamental properties. Since there is no upper constraint of energy/mass of the Ni's object, the formally calculated gravitational mass (from gravitational effects) of these objects can be as high as observed for the super-massive compact objects in the centers of galaxies and even in the most massive quasars. In the solution by Ni, the gravitational acceleration is not linearly proportional to the energy concentrated in the object. Actually, the models indicate that the objects should be extremely luminous, as quasars. The most massive of them can have enough energy to emit the radiation with a quasar luminosity during the age of the universe. And, it is predicted that they must possess an extremely extended "corona" with the gravitational effects resembling those, which are assigned to a dark matter.

  4. Modeling the Physics of Sliding Objects on Rotating Space Elevators and Other Non-relativistic Strings

    NASA Astrophysics Data System (ADS)

    Golubovic, Leonardo; Knudsen, Steven

    2017-01-01

    We consider general problem of modeling the dynamics of objects sliding on moving strings. We introduce a powerful computational algorithm that can be used to investigate the dynamics of objects sliding along non-relativistic strings. We use the algorithm to numerically explore fundamental physics of sliding climbers on a unique class of dynamical systems, Rotating Space Elevators (RSE). Objects sliding along RSE strings do not require internal engines or propulsion to be transported from the Earth's surface into outer space. By extensive numerical simulations, we find that sliding climbers may display interesting non-linear dynamics exhibiting both quasi-periodic and chaotic states of motion. While our main interest in this study is in the climber dynamics on RSEs, our results for the dynamics of sliding object are of more general interest. In particular, we designed tools capable of dealing with strongly nonlinear phenomena involving moving strings of any kind, such as the chaotic dynamics of sliding climbers observed in our simulations.

  5. Electroexcitation of the Δ(1232)32+ and Δ(1600)32+ in a light-front relativistic quark model

    DOE PAGES

    Aznauryan, Inna G.; Burkert, Volker D.

    2015-09-30

    Here, the magnetic-dipole form factor and the ratios REM and RSM for the γ* N → Δ(1232)3/2+ transition are predicted within light-front relativistic quark model up to photon virtuality Q2=12 GeV2. Furthermore, we predict the helicity amplitudes of the γ* N → Δ(1600)3/2+ transition assuming the Δ(1600)3/2+ is the first radial excitation of the ground state Delta(1232)3/2+.

  6. relline: Relativistic line profiles calculation

    NASA Astrophysics Data System (ADS)

    Dauser, Thomas

    2015-05-01

    relline calculates relativistic line profiles; it is compatible with the common X-ray data analysis software XSPEC (ascl:9910.005) and ISIS (ascl:1302.002). The two basic forms are an additive line model (RELLINE) and a convolution model to calculate relativistic smearing (RELCONV).

  7. Point form relativistic quantum mechanics and relativistic SU(6)

    NASA Technical Reports Server (NTRS)

    Klink, W. H.

    1993-01-01

    The point form is used as a framework for formulating a relativistic quantum mechanics, with the mass operator carrying the interactions of underlying constituents. A symplectic Lie algebra of mass operators is introduced from which a relativistic harmonic oscillator mass operator is formed. Mass splittings within the degenerate harmonic oscillator levels arise from relativistically invariant spin-spin, spin-orbit, and tensor mass operators. Internal flavor (and color) symmetries are introduced which make it possible to formulate a relativistic SU(6) model of baryons (and mesons). Careful attention is paid to the permutation symmetry properties of the hadronic wave functions, which are written as polynomials in Bargmann spaces.

  8. Phase-space moment-equation model of highly relativistic electron-beams in plasma-wakefield accelerators

    SciTech Connect

    Robson, R.E.; Mehrling, T.; Osterhoff, J.

    2015-05-15

    We formulate a new procedure for modelling the transverse dynamics of relativistic electron beams with significant energy spread when injected into plasma-based accelerators operated in the blow-out regime. Quantities of physical interest, such as the emittance, are furnished directly from solution of phase space moment equations formed from the relativistic Vlasov equation. The moment equations are closed by an Ansatz, and solved analytically for prescribed wakefields. The accuracy of the analytic formulas is established by benchmarking against the results of a semi-analytic/numerical procedure which is described within the scope of this work, and results from a simulation with the 3D quasi-static PIC code HiPACE.

  9. Review of modeling of losses and sources of relativistic electrons in the outer radiation belt I: Radial transport

    NASA Astrophysics Data System (ADS)

    Shprits, Yuri Y.; Elkington, Scot R.; Meredith, Nigel P.; Subbotin, Dmitriy A.

    2008-11-01

    In this paper, we focus on the modeling of radial transport in the Earth's outer radiation belt. A historical overview of the first observations of the radiation belts is presented, followed by a brief description of radial diffusion. We describe how resonant interactions with poloidal and toroidal components of the ULF waves can change the electron's energy and provide radial displacements. We also present radial diffusion and guiding center simulations that show the importance of radial transport in redistributing relativistic electron fluxes and also in accelerating and decelerating radiation belt electrons. We conclude by presenting guiding center simulations of the coupled particle tracing and magnetohydrodynamic (MHD) codes and by discussing the origin of relativistic electrons at geosynchronous orbit. Local acceleration and losses and 3D simulations of the dynamics of the radiation belt fluxes are discussed in the companion paper [Shprits, Y.Y., Subbotin, D.A., Meredith, N.P., Elkington, S.R., 2008. Review of modeling of losses and sources of relativistic electrons in the outer radiation belt II: Local acceleration and loss. Journal of Atmospheric and Solar-Terrestrial Physics, this issue. doi:10.1016/j.jastp.2008.06.014].

  10. Ground State and Charge Renormalization in a Nonlinear Model of Relativistic Atoms

    NASA Astrophysics Data System (ADS)

    Gravejat, Philippe; Lewin, Mathieu; Séré, Éric

    2009-02-01

    We study the reduced Bogoliubov-Dirac-Fock (BDF) energy which allows to describe relativistic electrons interacting with the Dirac sea, in an external electrostatic potential. The model can be seen as a mean-field approximation of Quantum Electrodynamics (QED) where photons and the so-called exchange term are neglected. A state of the system is described by its one-body density matrix, an infinite rank self-adjoint operator which is a compact perturbation of the negative spectral projector of the free Dirac operator (the Dirac sea). We study the minimization of the reduced BDF energy under a charge constraint. We prove the existence of minimizers for a large range of values of the charge, and any positive value of the coupling constant α. Our result covers neutral and positively charged molecules, provided that the positive charge is not large enough to create electron-positron pairs. We also prove that the density of any minimizer is an L 1 function and compute the effective charge of the system, recovering the usual renormalization of charge: the physical coupling constant is related to α by the formula αphys ≃ α(1 + 2α/(3π) log Λ)-1, where Λ is the ultraviolet cut-off. We eventually prove an estimate on the highest number of electrons which can be bound by a nucleus of charge Z. In the nonrelativistic limit, we obtain that this number is ≤ 2 Z, recovering a result of Lieb. This work is based on a series of papers by Hainzl, Lewin, Séré and Solovej on the mean-field approximation of no-photon QED.

  11. Action principles for relativistic extended magnetohydrodynamics: A unified theory of magnetofluid models

    NASA Astrophysics Data System (ADS)

    Kawazura, Yohei; Miloshevich, George; Morrison, Philip J.

    2017-02-01

    Two types of Eulerian action principles for relativistic extended magnetohydrodynamics (MHD) are formulated. With the first, the action is extremized under the constraints of density, entropy, and Lagrangian label conservation, which leads to a Clebsch representation for a generalized momentum and a generalized vector potential. The second action arises upon transformation to physical field variables, giving rise to a covariant bracket action principle, i.e., a variational principle in which constrained variations are generated by a degenerate Poisson bracket. Upon taking appropriate limits, the action principles lead to relativistic Hall MHD and well-known relativistic ideal MHD. For the first time, the Hamiltonian formulation of relativistic Hall MHD with electron thermal inertia (akin to Comisso et al., Phys. Rev. Lett. 113, 045001 (2014) for the electron-positron plasma) is introduced. This thermal inertia effect allows for violation of the frozen-in magnetic flux condition in marked contrast to nonrelativistic Hall MHD that does satisfy the frozen-in condition. We also find the violation of the frozen-in condition is accompanied by freezing-in of an alternative flux determined by a generalized vector potential. Finally, we derive a more general 3 + 1 Poisson bracket for nonrelativistic extended MHD, one that does not assume smallness of the electron ion mass ratio.

  12. A Simple Relativistic Bohr Atom

    ERIC Educational Resources Information Center

    Terzis, Andreas F.

    2008-01-01

    A simple concise relativistic modification of the standard Bohr model for hydrogen-like atoms with circular orbits is presented. As the derivation requires basic knowledge of classical and relativistic mechanics, it can be taught in standard courses in modern physics and introductory quantum mechanics. In addition, it can be shown in a class that…

  13. Convergence of the self-energy in a relativistic chiral quark model: excited nucleon and Δ sector

    NASA Astrophysics Data System (ADS)

    Tursunov, E. M.

    2010-10-01

    A convergence of the valence quark self-energies in the 1S, 2S, 1P1/2, 1P3/2 orbits induced by pion- and gluon-field configurations is shown in the frame of a relativistic chiral quark model. It is shown that in order to reach a convergence, one needs to include the contribution of the intermediate quark and anti-quark states with the total momentum up to j = 25/2. It is argued that a restriction to the lowest mode when estimating the self-energy is not a good approximation.

  14. Exploring center strings in S U (2 ) and S U (3 ) relativistic Yang-Mills-Higgs models

    NASA Astrophysics Data System (ADS)

    Oxman, L. E.; Vercauteren, D.

    2017-01-01

    We develop numerical tools and apply them to solve the relativistic Yang-Mills-Higgs equations in a model where the S U (N ) symmetry is spontaneously broken to its center. In S U (2 ) and S U (3 ), we obtain the different field profiles for infinite and finite center strings, with end points at external monopole sources. Exploration of parameter space permits the detection of a region where the equations get Abelianized. Finally, a general parametrization of the color structure of S U (2 ) fields leads us to a reference point where an Abelian-like Bogomol'nyi-Prasad-Sommereld (BPS) bound is reconciled with N -ality.

  15. Vlasov formalism for extended relativistic mean field models: The crust-core transition and the stellar matter equation of state

    NASA Astrophysics Data System (ADS)

    Pais, Helena; Providência, Constança

    2016-07-01

    The Vlasov formalism is extended to relativistic mean field hadron models with nonlinear terms up to fourth order and applied to the calculation of the crust-core transition density. The effect of the nonlinear ω ρ and σ ρ coupling terms on the crust-core transition density and pressure and on the macroscopic properties of some families of hadronic stars is investigated. For that purpose, six families of relativistic mean field models are considered. Within each family, the members differ in the symmetry energy behavior. For all the models, the dynamical spinodals are calculated, and the crust-core transition density and pressure and the neutron star mass-radius relations are obtained. The effect on the star radius of the inclusion of a pasta calculation in the inner crust is discussed. The set of six models that best satisfy terrestrial and observational constraints predicts a radius of 13.6 ±0.3 km and a crust thickness of 1.36 ±0.06 km for a 1.4 M⊙ star.

  16. Relativistically-Compressed Exploding White-Dwarf Model for Sgr A East

    SciTech Connect

    Dearborn, D P; Wilson, J R; Mathews, G J

    2004-11-10

    Recently, a new mechanism for Type I supernovae has been proposed whereby relativistic terms enhance the self gravity of a carbon-oxygen white dwarf as it passes near a black hole. It was suggested but not confirmed that this relativistic compression can cause the central density to exceed the threshold for pycnonuclear reactions so that a thermonuclear runaway ensues. Here, we present numerical studies of such relativistically induced explosions of white dwarfs and red giant cores of various mass (particularly a typical 0.6 M{sub {circle_dot}} white dwarf) as they pass near a 3.7 x 10{sup 6} black hole like Sgr A* in the Galactic center. We confirm by hydrodynamic thermonuclear burn simulations in three spatial dimensions that white dwarfs and red giant cores do indeed ignite and explode. In fact they seem to explode even farther from the black hole than earlier estimates due to increased internal temperatures from adiabatic heating as the stars are compressed. We find that the compression is sufficiently fast that red giant cores, or young (< 10{sup 8} yr) white dwarfs can even be heated to thermonuclear rather than pychnonuclear ignition. We propose that such an event might explain the observed ''mixed-morphology'' Sgr A East supernova remnant in the Galactic center.

  17. Tetrahedral shapes of neutron-rich Zr isotopes from a multidimensionally constrained relativistic Hartree-Bogoliubov model

    NASA Astrophysics Data System (ADS)

    Zhao, Jie; Lu, Bing-Nan; Zhao, En-Guang; Zhou, Shan-Gui

    2017-01-01

    We develop a multidimensionally constrained relativistic Hartree-Bogoliubov (MDC-RHB) model in which the pairing correlations are taken into account by making the Bogoliubov transformation. In this model, the nuclear shape is assumed to be invariant under the reversion of x and y axes; i.e., the intrinsic symmetry group is V4 and all shape degrees of freedom βλ μ with even μ are included self-consistently. The RHB equation is solved in an axially deformed harmonic oscillator basis. A separable pairing force of finite range is adopted in the MDC-RHB model. The potential energy curves of neutron-rich even-even Zr isotopes are calculated with relativistic functionals DD-PC1 and PC-PK1 and possible tetrahedral shapes in the ground and isomeric states are investigated. The ground state shape of 110Zr is predicted to be tetrahedral with both functionals and so is that of 112Zr with the functional DD-PC1. The tetrahedral ground states are caused by large energy gaps around Z =40 and N =70 when β32 deformation is included. Although the inclusion of the β30 deformation can also reduce the energy around β20=0 and lead to minima with pear-like shapes for nuclei around 110Zr, these minima are unstable due to their shallowness.

  18. Relativistic klystrons

    SciTech Connect

    Allen, M.A.; Azuma, O.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fant, K.S.; Fowkes, W.R.; Herrmannsfeldt, W.B.; Hoag, H.A.; Koontz, R.F.

    1989-03-01

    Experimental work is underway by a SLAC-LLNL-LBL collaboration to investigate the feasibility of using relativistic klystrons as a power source for future high gradient accelerators. Two different relativistic klystron configurations have been built and tested to date: a high grain multicavity klystron at 11.4 GHz and a low gain two cavity subharmonic buncher driven at 5.7 GHz. In both configurations power is extracted at 11.4 GHz. In order to understand the basic physics issues involved in extracting RF from a high power beam, we have used both a single resonant cavity and a multi-cell traveling wave structure for energy extraction. We have learned how to overcome our previously reported problem of high power RF pulse shortening, and have achieved peak RF power levels of 170 MW with the RF pulse of the same duration as the beam current pulse. 6 refs., 3 figs., 3 tabs.

  19. Relativistic geodesy

    NASA Astrophysics Data System (ADS)

    Flury, J.

    2016-06-01

    Quantum metrology enables new applications in geodesy, including relativistic geodesy. The recent progress in optical atomic clocks and in long-distance frequency transfer by optical fiber together pave the way for using measurements of the gravitational frequency redshift for geodesy. The remote comparison of frequencies generated by calibrated clocks will allow for a purely relativistic determination of differences in gravitational potential and height between stations on Earth surface (chronometric leveling). The long-term perspective is to tie potential and height differences to atomic standards in order to overcome the weaknesses and inhomogeneity of height systems determined by classical spirit leveling. Complementarily, gravity measurements with atom interferometric setups, and satellite gravimetry with space borne laser interferometers allow for new sensitivities in the measurement of the Earth's gravity field.

  20. Relativistic Astrophysics

    NASA Astrophysics Data System (ADS)

    Jones, Bernard J. T.; Markovic, Dragoljub

    1997-06-01

    Preface; Prologue: Conference overview Bernard Carr; Part I. The Universe At Large and Very Large Redshifts: 2. The size and age of the Universe Gustav A. Tammann; 3. Active galaxies at large redshifts Malcolm S. Longair; 4. Observational cosmology with the cosmic microwave background George F. Smoot; 5. Future prospects in measuring the CMB power spectrum Philip M. Lubin; 6. Inflationary cosmology Michael S. Turner; 7. The signature of the Universe Bernard J. T. Jones; 8. Theory of large-scale structure Sergei F. Shandarin; 9. The origin of matter in the universe Lev A. Kofman; 10. New guises for cold-dark matter suspects Edward W. Kolb; Part II. Physics and Astrophysics Of Relativistic Compact Objects: 11. On the unification of gravitational and inertial forces Donald Lynden-Bell; 12. Internal structure of astrophysical black holes Werner Israel; 13. Black hole entropy: external facade and internal reality Valery Frolov; 14. Accretion disks around black holes Marek A. Abramowicz; 15. Black hole X-ray transients J. Craig Wheeler; 16. X-rays and gamma rays from active galactic nuclei Roland Svensson; 17. Gamma-ray bursts: a challenge to relativistic astrophysics Martin Rees; 18. Probing black holes and other exotic objects with gravitational waves Kip Thorne; Epilogue: the past and future of relativistic astrophysics Igor D. Novikov; I. D. Novikov's scientific papers and books.

  1. Theory and modeling of a relativistic klystron amplifier with high space charge for microsecond applications

    SciTech Connect

    Carlsten, B.E.; Fazio, M.V.; Faehl, R.J.; Kwan, T.J.; Rickel, D.G.; Stringfield, R.M.

    1992-01-01

    We discuss basic Relativistic Klystron Amplifier physics. We show that in the intense space-charge regime the maximum power extraction does not coincide with the maximum harmonic bunching. In addition, we show that as the beam is bunched, the additional power stored in the Coulomb fields does not add significantly to the overall power extraction. Because of these effects, the power extraction at 1.3 GHz for a 500 kV, 5 kA beam with reasonable beam-to-wall spacing is limited to around 35%. 3 refs., 17 figs.

  2. Validity of the relativistic phase shift model for the extrinsic spin Hall effect in dilute metal alloys.

    PubMed

    Johansson, A; Herschbach, C; Fedorov, D V; Gradhand, M; Mertig, I

    2014-07-09

    Recently, a generalized relativistic phase shift model was proposed (Fedorovet al 2013 Phys. Rev. B 88 085116) for the description of the skew-scattering contribution to the spin Hall effect caused by impurities. Here, we inspect this model by means of a systematic comparison with the results of first-principles calculations performed for several metallic host systems with different substitutional impurities. It is found that for its proper application, the differences between impurity and host phase shifts should be used as input parameters. Generally, the model provides good qualitative agreement with ab initio results for hosts with a free-electron-like Fermi surface and a relatively weak spin-orbit coupling, but fails otherwise.

  3. Corona, Jet, and Relativistic Line Models for Suzaku/RXTE/Chandra-HETG Observations of the Cygnus X-1 Hard State

    NASA Astrophysics Data System (ADS)

    Nowak, Michael A.; Hanke, Manfred; Trowbridge, Sarah N.; Markoff, Sera B.; Wilms, Jörn; Pottschmidt, Katja; Coppi, Paolo; Maitra, Dipankar; Davis, John E.; Tramper, Frank

    2011-02-01

    Using Suzaku and the Rossi X-ray Timing Explorer (RXTE), we have conducted a series of four simultaneous observations of the galactic black hole candidate Cyg X-1 in what were historically faint and spectrally hard "low states." Additionally, all of these observations occurred near superior conjunction with our line of sight to the X-ray source passing through the dense phases of the "focused wind" from the mass donating secondary. One of our observations was also simultaneous with observations by the Chandra-High Energy Transmission Grating (HETG). These latter spectra are crucial for revealing the ionized absorption due to the secondary's focused wind. Such absorption is present and must be accounted for in all four spectra. These simultaneous data give an unprecedented view of the 0.8-300 keV spectrum of Cyg X-1, and hence bear upon both corona and X-ray emitting jet models of black hole hard states. Three models fit the spectra well: coronae with thermal or mixed thermal/non-thermal electron populations and jets. All three models require a soft component that we fit with a low temperature disk spectrum with an inner radius of only a few tens of GM/c 2. All three models also agree that the known spectral break at 10 keV is not solely due to the presence of reflection, but each gives a different underlying explanation for the augmentation of this break. Thus, whereas all three models require that there is a relativistically broadened Fe line, the strength and inner radius of such a line is dependent upon the specific model, thus making premature line-based estimates of the black hole spin in the Cyg X-1 system. We look at the relativistic line in detail, accounting for the narrow Fe emission and ionized absorption detected by HETG. Although the specific relativistic parameters of the line are continuum dependent, none of the broad line fits allow for an inner disk radius that is >40 GM/c 2.

  4. Corona, Jet, and Relativistic Line Models for Suzaku/RXTE/Chandra-HETG Observations of the Cygnus X-1 Hard State

    NASA Technical Reports Server (NTRS)

    Nowak, Michael A.; Hanke, Manfred; Trowbridge, Sarah N.; Markoff, Sera B.; Wilms, Joern; Pottschmidt, Katja; Coppi, Paolo; Maitra, Dipankar; Davis, Jhn E.; Tramper, Frank

    2009-01-01

    Using Suzaku and the Rossi X-ray Timing Explorer (RXTE), we have conducted a series of four simultaneous observations of the galactic black hole candidate Cyg X-1 in what were historically faint and spectrally hard "low states". Additionally, all of these observations occurred near superior conjunction with our line of sight to the X-ray source passing through the dense phases of the "focused wind" from the mass donating secondary. One of our observations was also simultaneous with observations by the Chandra-High Energy Transmission Grating (HETG). These latter spectra are crucial for revealing the ionized absorption due to the secondary s focused wind. Such absorption is present and must be accounted for in all four spectra. These simultaneous data give an unprecedented view of the 0.8-300 keV spectrum of Cyg X-1, and hence bear upon both corona and X-ray emitting jet models of black hole hard states. Three models fit the spectra well: coronae with thermal or mixed thermal/non-thermal electron populations, and jets. All three models require a soft component that we fit with a low temperature disk spectrum with an inner radius of only a few tens of GM/c2. All three models also agree that the known spectral break at 10 keV is not solely due to the presence of reflection, but each gives a different underlying explanation for the augmentation of this break. Thus whereas all three models require that there is a relativistically broadened Fe line, the strength and inner radius of such a line is dependent upon the specific model, thus making premature line-based estimates of the black hole spin in the Cyg X-1 system. We look at the relativistic line in detail, accounting for the narrow Fe emission and ionized absorption detected by HETG. Although the specific relativistic parameters of the line are continuum-dependent, none of the broad line fits allow for an inner disk radius that is > 40 GM/c(sup 2).

  5. Solvable light-front model of the electromagnetic form factor of the relativistic two-body bound state in 1+1 dimensions

    SciTech Connect

    Mankiewicz, L. ); Sawicki, M. )

    1989-11-15

    Within a relativistically correct yet analytically solvable model of light-front quantum mechanics we construct the electromagnetic form factor of the two-body bound state and we study the validity of the static approximation to the full form factor. Upon comparison of full form factors calculated for different values of binding energy we observe an unexpected effect that for very strongly bound states further increase in binding leads to an increase in the size of the bound system. A similar effect is found for another quantum-mechanical model of relativistic dynamics.

  6. A relativistic self-consistent model for studying enhancement of space charge limited field emission due to counter-streaming ions

    NASA Astrophysics Data System (ADS)

    Lin, M. C.; Lu, P. S.; Chang, P. C.; Ragan-Kelley, B.; Verboncoeur, J. P.

    2014-02-01

    Recently, field emission has attracted increasing attention despite the practical limitation that field emitters operate below the Child-Langmuir space charge limit. By introducing counter-streaming ion flow to neutralize the electron charge density, the space charge limited field emission (SCLFE) current can be dramatically enhanced. In this work, we have developed a relativistic self-consistent model for studying the enhancement of SCLFE by a counter-streaming ion current. The maximum enhancement is found when the ion effect is saturated, as shown analytically. The solutions in non-relativistic, intermediate, and ultra-relativistic regimes are obtained and verified with 1-D particle-in-cell simulations. This self-consistent model is general and can also serve as a benchmark or comparison for verification of simulation codes, as well as extension to higher dimensions.

  7. A relativistic self-consistent model for studying enhancement of space charge limited field emission due to counter-streaming ions

    SciTech Connect

    Lin, M. C. Lu, P. S.; Chang, P. C.; Ragan-Kelley, B.; Verboncoeur, J. P.

    2014-02-15

    Recently, field emission has attracted increasing attention despite the practical limitation that field emitters operate below the Child-Langmuir space charge limit. By introducing counter-streaming ion flow to neutralize the electron charge density, the space charge limited field emission (SCLFE) current can be dramatically enhanced. In this work, we have developed a relativistic self-consistent model for studying the enhancement of SCLFE by a counter-streaming ion current. The maximum enhancement is found when the ion effect is saturated, as shown analytically. The solutions in non-relativistic, intermediate, and ultra-relativistic regimes are obtained and verified with 1-D particle-in-cell simulations. This self-consistent model is general and can also serve as a benchmark or comparison for verification of simulation codes, as well as extension to higher dimensions.

  8. Relativistic impulse dynamics.

    PubMed

    Swanson, Stanley M

    2011-08-01

    Classical electrodynamics has some annoying rough edges. The self-energy of charges is infinite without a cutoff. The calculation of relativistic trajectories is difficult because of retardation and an average radiation reaction term. By reconceptuallizing electrodynamics in terms of exchanges of impulses rather than describing it by forces and potentials, we eliminate these problems. A fully relativistic theory using photonlike null impulses is developed. Numerical calculations for a two-body, one-impulse-in-transit model are discussed. A simple relationship between center-of-mass scattering angle and angular momentum was found. It reproduces the Rutherford cross section at low velocities and agrees with the leading term of relativistic distinguishable-particle quantum cross sections (Møller, Mott) when the distance of closest approach is larger than the Compton wavelength of the particle. Magnetism emerges as a consequence of viewing retarded and advanced interactions from the vantage point of an instantaneous radius vector. Radiation reaction becomes the local conservation of energy-momentum between the radiating particle and the emitted impulse. A net action is defined that could be used in developing quantum dynamics without potentials. A reinterpretation of Newton's laws extends them to relativistic motion.

  9. A Relativistic Model for Data Processing of High-precision Astrometry and a Test of Alternative Gravity Theories

    NASA Astrophysics Data System (ADS)

    Deng, X. M.

    2011-09-01

    With the development of the unprecedented techniques for observation and the improvement of the advanced methods for measurement, it is time for astrometry to unfold a new era indubitably. Presently, the satellite laser ranging like LAser GEOdynamics Satellite (LAGEOS) has achieved a precision of 0.5 mas for orbit determination, the precision of Lunar Laser Ranging (LLR) has approached one millimeter, and Very Long Baseline Interferometry (VLBI) has attained the precision of 0.1 mas or even better. Beyond the current thresholds, astrometric observation will be able to attain the precision of a few μas or higher for some astrometric missions in the near future, such as Global Astrometric Interferometer for Astrophysics (GAIA) and Space Interferometry Mission (SIM). With the modern continuous improvement of the observational accuracy, we realize that Newtonian mechanics has already deviated from the high-precision astronomical observation. A relativistic model for data processing of high-precision astrometry needs to be established. On the other hand, the continued failure in merging gravity with quantum mechanics and recent cosmological observations indicate that Einstein's general relativity needs some modifications. Thus, we are motivated by testing alternative gravity theories and parameterizing relativistic model. We mainly try to research these deeply. Firstly, it is shown that the parameterized post-Newtonian parameter γ≠1 for Moffat's STVG by using Chandrasekhar's approach, and the theory is then ruled out by the experiments in the solar system. Then we propose a modified theory, MSTVG, to solve this problem. Besides, we use binary pulsar data to constrain two parameters in MSTVG. Secondly, a parameterized 2PN framework for light propagation is developed based on the previous works in our research. By considering the non-static gravitational field of the solar system, the influences of all kinds of relativistic terms with different physical origins on

  10. Relativistic causality

    NASA Astrophysics Data System (ADS)

    Valente, Giovanni; Owen Weatherall, James

    2014-11-01

    Relativity theory is often taken to include, or to imply, a prohibition on superluminal propagation of causal processes. Yet, what exactly the prohibition on superluminal propagation amounts to and how one should deal with its possible violation have remained open philosophical problems, both in the context of the metaphysics of causation and the foundations of physics. In particular, recent work in philosophy of physics has focused on the causal structure of spacetime in relativity theory and on how this causal structure manifests itself in our most fundamental theories of matter. These topics were the subject of a workshop on "Relativistic Causality in Quantum Field Theory and General Relativity" that we organized (along with John Earman) at the Center for Philosophy of Science in Pittsburgh on April 5-7, 2013. The present Special Issue comprises contributions by speakers in that workshop as well as several other experts exploring different aspects of relativistic causality. We are grateful to the journal for hosting this Special Issue, to the journal's managing editor, Femke Kuiling, for her help and support in putting the issue together, and to the authors and the referees for their excellent work.

  11. Ground State Properties of Z=126 Isotopes within the Relativistic Mean Field Model

    NASA Astrophysics Data System (ADS)

    Yu, Qi-Xin; Li, Jun-Qing; Zhang, Hong-Fei

    2017-01-01

    The ground state properties of Z = 126 isotopes with neutron numbers N = 174-244 are calculated by the relativistic mean field (RMF) theory with effective interactions NL-Z2. In order to make a comprehensive understanding of the possible proton magic number Z = 126, we also perform the calculations in the vicinity of Z = 126, such as Z = 114,116,118,120,122,124,128 and 130 isotopic chains. The calculated results show there exist evident magicity for proton number Z = 120 and relatively weak magicity for proton number Z = 126. Supported by the National Natural Science Foundation of China under Grant Nos. 11675066, 11475050, 11265013, and the CAS Knowledge Innovation under Grant No. KJCX2-EW-N02

  12. REVISITING THE LIGHT CURVES OF GAMMA-RAY BURSTS IN THE RELATIVISTIC TURBULENCE MODEL

    SciTech Connect

    Lin, Da-Bin; Gu, Wei-Min; Hou, Shu-Jin; Liu, Tong; Sun, Mou-Yuan; Lu, Ju-Fu E-mail: lujf@xmu.edu.cn

    2013-10-10

    Rapid temporal variability has been widely observed in the light curves of gamma-ray bursts (GRBs). One possible mechanism for such variability is related to the relativistic eddies in the jet. In this paper, we include the contribution of the inter-eddy medium together with the eddies to the gamma-ray emission. We show that the gamma-ray emission can either lead or lag behind the observed synchrotron emission, where the latter originates in the inter-eddy medium and provides most of the seed photons for producing gamma-ray emission through inverse Compton scattering. As a consequence, we argue that the lead/lag found in non-stationary short-lived light curves may not reveal the intrinsic lead/lag of different emission components. In addition, our results may explain the lead of gamma-ray emission with respect to optical emission observed in GRB 080319B.

  13. Relativistic geometric quantum phases from the Lorentz symmetry violation effects in the CPT-even gauge sector of Standard Model Extension

    NASA Astrophysics Data System (ADS)

    Bakke, K.; Belich, H.

    2015-11-01

    We discuss the appearance of geometric quantum phases for a Dirac neutral particle in the context of relativistic quantum mechanics based on possible scenarios of the Lorentz symmetry violation tensor background in the CPT-even gauge sector of Standard Model Extension. We assume that the Lorentz symmetry breaking is determined by a tensor background given by (KF)μναβ, then, relativistic analogues of the Anandan quantum phase [J. Anandan, Phys. Lett. A 138, 347 (1989)] are obtained based on the parity-even and parity-odd sectors of the tensor (KF)μναβ.

  14. Investigation of the Mg isotopes using the shell-model-like approach in relativistic mean field theory

    NASA Astrophysics Data System (ADS)

    Bai, Hong-Bo; Zhang, Zhen-Hua; Li, Xiao-Wei

    2016-11-01

    Ground state properties for Mg isotopes, including binding energies, one- and two-neutron separation energies, pairing energies, nuclear matter radii and quadrupole deformation parameters, are obtained from the self-consistent relativistic mean field (RMF) model with the pairing correlations treated by a shell-mode-like approach (SLAP), in which the particle-number is conserved and the blocking effects are treated exactly. The experimental data, including the binding energies and the one- and two-neutron separation energies, which are sensitive to the treatment of pairing correlations and block effects, are well reproduced by the RMF+SLAP calculations. Supported by NSFC (11465001,11275098, 11275248, 11505058,11165001) and Natural Science Foundation of Inner Mongolia of China (2016BS0102)

  15. Relativistic effects in atom gravimeters

    NASA Astrophysics Data System (ADS)

    Tan, Yu-Jie; Shao, Cheng-Gang; Hu, Zhong-Kun

    2017-01-01

    Atom interferometry is currently developing rapidly, which is now reaching sufficient precision to motivate laboratory tests of general relativity. Thus, it is extremely significant to develop a general relativistic model for atom interferometers. In this paper, we mainly present an analytical derivation process and first give a complete vectorial expression for the relativistic interferometric phase shift in an atom interferometer. The dynamics of the interferometer are studied, where both the atoms and the light are treated relativistically. Then, an appropriate coordinate transformation for the light is performed crucially to simplify the calculation. In addition, the Bordé A B C D matrix combined with quantum mechanics and the "perturbation" approach are applied to make a methodical calculation for the total phase shift. Finally, we derive the relativistic phase shift kept up to a sensitivity of the acceleration ˜1 0-14 m/s 2 for a 10 -m -long atom interferometer.

  16. The relativistic equations of stellar structure and evolution. Stars with degenerate neutron cores. 1: Structure of equilibrium models

    NASA Technical Reports Server (NTRS)

    Thorne, K. S.; Zytkow, A. N.

    1976-01-01

    The general relativistic equations of stellar structure and evolution are reformulated in a notation which makes easy contact with Newtonian theory. Also, a general relativistic version of the mixing-length formalism for convection is presented. Finally, it is argued that in previous work on spherical systems general relativity theorists have identified the wrong quantity as "total mass-energy inside radius r."

  17. Relativistic Pseudospin Symmetry

    SciTech Connect

    Ginocchio, Joseph N.

    2011-05-06

    We show that the pseudospin symmetry that Akito Arima discovered many years ago (with collaborators) is a symmetry of the the Dirac Hamiltonian for which the sum of the scalar and vector potentials are a constant. In this paper we discuss some of the implications of this relativistic symmetry and the experimental data that support these predictions. In his original paper Akito also discussed pseudo-U(3) symmetry. We show that pseudo-U(3) symmetry is a symmetry of the Dirac Hamiltonian for which the sum of harmonic oscillator vector and scalar potentials are equal to a constant, and we give the generators of pseudo-U(3) symmetry. Going beyond the mean field we summarize new results on non relativistic shell model Hamiltonians that have pseudospin symmetry and pseudo-orbital angular momentum symmetry as a dynamical symmetries.

  18. Modeling Relativistic Electron Precipitation Bremsstrahlung X-Ray Intensities at 10-100 km Manned Vehicle Altitudes

    NASA Astrophysics Data System (ADS)

    Habash Krause, L.; Gilchrist, B. E.; Nishikawa, K.; Williams, A.

    2013-12-01

    Relativistic electron precipitation (REP) events occur when beams or bunches of relativistic electrons of magnetospheric origin enter the Earth's atmosphere, typically at auroral latitudes. REP events are associated with a variety of space weather effects, including production of transitional and bremsstrahlung radiation, catalytic depletion of stratospheric ozone, and scintillation of transionospheric radio waves. This study examines the intensities of x-rays produced at airliner, manned balloon, and suborbital Reusable Launch Vehicle (sRLV) altitudes. The monoenergetic beam is modeled in cylindrical symmetry using the paraxial ray equation. Bremsstrahlung photon production is calculated using the traditional Sauter-Elwert cross-section, providing x-ray emission spectra differential in energy and angle. Attenuation is computed for a plane-stratified standard atmosphere, and the loss processes include photoionization, Rayleigh and Compton scattering, electron-positron pair production, and photonuclear interaction. Peak altitudes of electron energy deposition and bremsstrahlung x-ray production were calculated for beams of energies from 1 MeV through 100 MeV. The altitude peak of bremsstrahlung deposition was consistently and significantly lower that that of the electron deposition due to the longer mean free paths of x-rays compared to electrons within the atmosphere. For example, for a nadir-directed monoenergetic 5 MeV beam, the peak deposition altitude was calculated to be 42 km, but the resulting bremmstrahlung deposition peaked at 25 km. This has implications for crew and passenger safety, especially with the growth of the space tourism industry that relies on sRLVs with a nominal apogee of 100 km. A survey of results covering the 1-100 MeV spectrum for the three altitude ranges of interest will be presented.

  19. A relativistic correction to semiclassical charmonium

    NASA Astrophysics Data System (ADS)

    Weiss, J.

    1995-09-01

    It is shown that the relativistic linear potentials, introduced by the author within the particle à la Wheeler-Feynman direct-interaction (AAD) theory, applied to the semiclassically quantized charmonium, yield energy spectrum comparable to that of some known models. Using the expansion of the relativistic linear AAD potentials in powers ofc -1, the charmonium spectrum, given as a rule by Bohr-Sommerfeld quantization of circular orbits, is extended up to the second order of relativistic corrections.

  20. Atomic orbital-based cubic response theory for one-, two-, and four-component relativistic self-consistent field models

    NASA Astrophysics Data System (ADS)

    Bast, Radovan; Thorvaldsen, Andreas J.; Ringholm, Magnus; Ruud, Kenneth

    2009-02-01

    We present the first analytic calculations of the second hyperpolarizability in a relativistic framework. The calculations are made possible by our recent developments of a response theory built on a quasienergy formalism, in which the basis set may be both time and perturbation dependent. The approach is formulated for an arbitrary self-consistent field state in the atomic orbital basis. The implementation consists of a stand-alone code that only requires the unperturbed density in the atomic orbital basis as input, as well as a linear response solver by which we can determine the perturbed density matrices to different orders, at each new order solving equations that have the same structure as the linear response equation. Using these features of our formalism, we extend in this paper our approach to the relativistic domain, utilizing both two- and four-component relativistic wave functions. We apply the formalism to the calculation of the electronic and pure vibrational contributions to the second hyperpolarizability tensor for the hydrogen halides. Our results demonstrate that relativistic effects can be substantial for frequency-dependent second hyperpolarizabilities. Due to changes in the pole structure when going to the relativistic domain, the relativistic corrections to the hyperpolarizabilities are not transferable between different optical processes, except for very low frequencies.

  1. Particle production in relativistic pp(p¯) and AA collisions at RHIC and LHC energies with Tsallis statistics using the two-cylindrical multisource thermal model

    NASA Astrophysics Data System (ADS)

    Li, Bao-Chun; Wang, Ya-Zhou; Liu, Fu-Hu; Wen, Xin-Jian; Dong, You-Er

    2014-03-01

    An improved Tsallis statistics is implemented in a multisource thermal model to describe systematically pseudorapidity spectra of charged particles produced in relativistic nucleon-nucleon (pp or pp¯) collisions at various collision energies and in relativistic nucleus-nucleus (AA) collisions at different energies with different centralities. The results with Tsallis statistics using the two-cylindrical multisource thermal model are in good agreement with the experimental data measured at RHIC and LHC energies. It is found that the rapidity shifts of longitudinal sources increase linearly with collision energies and centralities in the framework. According to the laws, we also give a prediction of the pseudorapidity distributions in pp(p¯) collisions at higher energies.

  2. Relativistic electron beam generator

    DOEpatents

    Mooney, L.J.; Hyatt, H.M.

    1975-11-11

    A relativistic electron beam generator for laser media excitation is described. The device employs a diode type relativistic electron beam source having a cathode shape which provides a rectangular output beam with uniform current density.

  3. Nuclear equation of state in a relativistic independent quark model with chiral symmetry and dependence on quark masses

    NASA Astrophysics Data System (ADS)

    Barik, N.; Mishra, R. N.; Mohanty, D. K.; Panda, P. K.; Frederico, T.

    2013-07-01

    We have calculated the properties of nuclear matter in a self-consistent manner with a quark-meson coupling mechanism incorporating the structure of nucleons in vacuum through a relativistic potential model; where the dominant confining interaction for the free independent quarks inside a nucleon is represented by a phenomenologically average potential in equally mixed scalar-vector harmonic form. Corrections due to spurious center of mass motion as well as those due to other residual interactions, such as the one gluon exchange at short distances and quark-pion coupling arising out of chiral symmetry restoration, have been considered in a perturbative manner to obtain the nucleon mass in vacuum. The nucleon-nucleon interaction in nuclear matter is then realized by introducing additional quark couplings to σ and ω mesons through mean field approximations. The relevant parameters of the interaction are obtained self-consistently while realizing the saturation properties such as the binding energy, pressure, and compressibility of the nuclear matter. We also discuss some implications of chiral symmetry in nuclear matter along with the nucleon and nuclear σ term and the sensitivity of nuclear matter binding energy with variations in the light quark mass.

  4. Theoretical investigations in nonlinear quantum optics, theory of measurement, and pulsations of general relativistic models of neutron stars

    SciTech Connect

    Schumaker, B.L.

    1985-01-01

    This thesis is a collection of six papers. The first four constitute the heart of the thesis; they are concerned with quantum-mechanical properties of certain harmonic-oscillator states. The first paper is a discourse on single-mode and two-mode Gaussian pure states (GPS), states produced when harmonic oscillators in their ground states are exposed to potentials that are linear or quadratic in oscillator position and momentum variables (creation and annihilation operators). The second and third papers develop a formalism for analyzing two photon devices (e.g., parametric amplifiers and phase-conjugate mirrors), in which photons in the output modes arise from two-proton transitions, i.e., are created or destroyed two at a time. The fourth paper is an analysis of the noise in homodyne detection, a phase-sensitive detection scheme in which the special properties of (single-mode) squeezed states are revealed. The fifth paper considers the validity of the standard quantum limit (SQL) for measurements that monitor the position of a free mass. The sixth paper develops the mathematical theory of torsional (toroidal) oscillations in fully general relativistic, nonrotating, spherical stellar models and of the gravitational waves they emit.

  5. Relativistic breakdown in planetary atmospheres

    SciTech Connect

    Dwyer, J. R.

    2007-04-15

    In 2003, a new electrical breakdown mechanism involving the production of runaway avalanches by positive feedback from runaway positrons and energetic photons was introduced. This mechanism, which shall be referred to as 'relativistic feedback', allows runaway discharges in gases to become self-sustaining, dramatically increasing the flux of runaway electrons, the accompanying high-energy radiation, and resulting ionization. Using detailed Monte Carlo calculations, properties of relativistic feedback are investigated. It is found that once relativistic feedback fully commences, electrical breakdown will occur and the ambient electric field, extending over cubic kilometers, will be discharged in as little as 2x10{sup -5} s. Furthermore, it is found that the flux of energetic electrons and x rays generated by this mechanism can exceed the flux generated by the standard relativistic runaway electron model by a factor of 10{sup 13}, making relativistic feedback a good candidate for explaining terrestrial gamma-ray flashes and other high-energy phenomena observed in the Earth's atmosphere.

  6. Relativistic effects on the motion of asteroids and comets

    NASA Technical Reports Server (NTRS)

    Shahid-Saless, Bahman; Yeomans, Donald K.

    1994-01-01

    We study the effects arising from relativistic perturbations on the motion of asteroids and comets and show that for a number of such objects, inclusion of relativistic contributions in the equations of motion gives rise to significant improvements in the orbital solutions. Furthermore we argue that ignoring relativistic corrections to the equations of motion, while using masses derived from relativistic ephemerides yields incorrect solutions corresponding to an inconsistent, non-Newtonian, nonrelativistic model.

  7. A neural network-based geosynchronous relativistic electron flux forecasting model

    NASA Astrophysics Data System (ADS)

    Ling, A. G.; Ginet, G. P.; Hilmer, R. V.; Perry, K. L.

    2010-09-01

    A multilayer feed-forward neural network model has been developed to forecast >2 MeV electron flux at geosynchronous orbit. The model uses as input 10 consecutive days of historical electron flux values and 7 consecutive days of daily summed values of the planetary Kp index with two neurons in a single hidden layer. Development of the model is discussed in which the size of the training set interval and the retraining period are investigated. Problems associated with neuron saturation which limit the ability of the network to generalize are shown to be circumvented through a daily retraining regimen. The model performance is evaluated for the period 1998-2008 and compared with the results produced by the REFM model. The neural network model is demonstrated to perform quite well relative to the REFM model for this time period, producing mean prediction efficiencies for 6 month test intervals of 0.71, 0.49, and 0.31 for 1 day, 2 day, and 3 day forecasts, respectively.

  8. Large amplitude relativistic plasma waves

    SciTech Connect

    Coffey, Timothy

    2010-05-15

    Relativistic, longitudinal plasma oscillations are studied for the case of a simple water bag distribution of electrons having cylindrical symmetry in momentum space with the axis of the cylinder parallel to the velocity of wave propagation. The plasma is required to obey the relativistic Vlasov-Poisson equations, and solutions are sought in the wave frame. An exact solution for the plasma density as a function of the electrostatic field is derived. The maximum electric field is presented in terms of an integral over the known density. It is shown that when the perpendicular momentum is neglected, the maximum electric field approaches infinity as the wave phase velocity approaches the speed of light. It is also shown that for any nonzero perpendicular momentum, the maximum electric field will remain finite as the wave phase velocity approaches the speed of light. The relationship to previously published solutions is discussed as is some recent controversy regarding the proper modeling of large amplitude relativistic plasma waves.

  9. Phenomenological Relativistic Energy Density Functionals

    SciTech Connect

    Lalazissis, G. A.; Kartzikos, S.; Niksic, T.; Paar, N.; Vretenar, D.; Ring, P.

    2009-08-26

    The framework of relativistic nuclear energy density functionals is applied to the description of a variety of nuclear structure phenomena, not only in spherical and deformed nuclei along the valley of beta-stability, but also in exotic systems with extreme isospin values and close to the particle drip-lines. Dynamical aspects of exotic nuclear structure is explored using the fully consistent quasiparticle random-phase approximation based on the relativistic Hartree-Bogoliubov model. Recent applications of energy density functionals with explicit density dependence of the meson-nucleon couplings are presented.

  10. Dimuon radiation at relativistic energies available at the CERN Super Proton Synchrotron within a (3 + 1)D hydrodynamic + cascade model

    SciTech Connect

    Santini, E.; Steinheimer, J.; Bleicher, M.; Schramm, S.

    2011-07-15

    We analyze dilepton emission from hot and dense matter using a hybrid approach based on the ultrarelativistic quantum molecular dynamics (UrQMD) transport model with an intermediate hydrodynamic stage for the description of heavy-ion collisions at relativistic energies. During the hydrodynamic stage, the production of lepton pairs is described by radiation rates for a strongly interacting medium in thermal equilibrium. In the low-mass region, hadronic thermal emission is evaluated by assuming vector meson dominance including in-medium modifications of the {rho} meson spectral function through scattering from nucleons and pions in the heat bath. In the intermediate-mass region, the hadronic rate is essentially determined by multipion annihilation processes. Emission from quark-antiquark annihilation in the quark gluon plasma (QGP) is taken into account as well. When the system is sufficiently dilute, the hydrodynamic description breaks down and a transition to a final cascade stage is performed. In this stage dimuon emission is evaluated as commonly done in transport models. By focusing on the enhancement with respect to the contribution from long-lived hadron decays after freezeout observed at the SPS in the low-mass region of the dilepton spectra, the relative importance of the different thermal contributions and of the two dynamical stages is investigated. We find that three separated regions can be identified in the invariant mass spectra. Whereas the very low and the intermediate-mass regions mostly receive contribution from the thermal dilepton emission, the region around the vector meson peak is dominated by the cascade emission. Above the {rho}-peak region the spectrum is driven by QGP radiation. Analysis of the dimuon transverse mass spectra reveals that the thermal hadronic emission shows an evident mass ordering not present in the emission from the QGP. A comparison of our calculation to recent acceptance-corrected NA60 data on invariant as well as

  11. A GENERAL RELATIVISTIC EXTERNAL COMPTON-SCATTERING MODEL FOR TeV EMISSION FROM M87

    SciTech Connect

    Cui Yudong; Yuan Yefei; Li Yanrong; Wang Jianmin

    2012-02-20

    M87 is the first detected non-blazar extragalactic tera-electron-volt (TeV) source with rapid variation and a very flat spectrum in the TeV band. To explain the two peaks in the spectral energy distribution of the nucleus of M87, which is similar to that of blazars, the most commonly adopted models are the synchrotron self-Compton-scattering models and the external inverse Compton (EIC) scattering models. Considering that there is no correlated variation in the soft band (from radio to X-ray) matching the TeV variation and that the TeV sources should not suffer from {gamma}{gamma} absorption due to the flat TeV spectrum, the EIC models are advantageous in modeling the TeV emission from M87. In this paper, we propose a self-consistent EIC model to explain the flat TeV spectrum of M87 within the framework of fully general relativity, where the background soft photons are from the advection-dominated accretion flow around the central black hole, and the high-energy electrons are from the mini-jets that are powered by the magnetic reconnection in the main jet. In our model, both the TeV flares observed in the years 2005 and 2008 could be well explained: the {gamma}{gamma} absorption for TeV photons is very low, even inside the region very close to the black hole 20R{sub g} {approx} 50R{sub g} ; at the same region, the average EIC cooling time ({approx}10{sup 2} {approx} 10{sup 3} s) is short, which is consistent with the observed timescale of the TeV variation. Furthermore, we also discuss the possibility that the accompanying X-ray flare in 2008 is due to the direct synchrotron radiation of the mini-jets.

  12. Relativistic radiative transfer in relativistic spherical flows

    NASA Astrophysics Data System (ADS)

    Fukue, Jun

    2017-02-01

    Relativistic radiative transfer in relativistic spherical flows is numerically examined under the fully special relativistic treatment. We first derive relativistic formal solutions for the relativistic radiative transfer equation in relativistic spherical flows. We then iteratively solve the relativistic radiative transfer equation, using an impact parameter method/tangent ray method, and obtain specific intensities in the inertial and comoving frames, as well as moment quantities, and the Eddington factor. We consider several cases; a scattering wind with a luminous central core, an isothermal wind without a core, a scattering accretion on to a luminous core, and an adiabatic accretion on to a dark core. In the typical wind case with a luminous core, the emergent intensity is enhanced at the center due to the Doppler boost, while it reduces at the outskirts due to the transverse Doppler effect. In contrast to the plane-parallel case, the behavior of the Eddington factor is rather complicated in each case, since the Eddington factor depends on the optical depth, the flow velocity, and other parameters.

  13. Particle Acceleration at Relativistic and Ultra-Relativistic Shock Waves

    NASA Astrophysics Data System (ADS)

    Meli, A.

    We perform Monte Carlo simulations using diffusive shock acceleration at relativistic and ultra-relativistic shock waves. High upstream flow gamma factors are used, Γ=(1-uup2/c2)-0.5, which are relevant to models of ultra-relativistic particle shock acceleration in the central engines and relativistic jets of Active Galactic Nuclei (AGN) and in Gamma-Ray Burst (GRB) fireballs. Numerical investigations are carried out on acceleration properties in the relativistic and ultra-relativistic flow regime (Γ ˜ 10-1000) concerning angular distributions, acceleration time scales, particle energy gain versus number of crossings and spectral shapes. We perform calculations for both parallel and oblique sub-luminal and super-luminal shocks. For parallel and oblique sub-luminal shocks, the spectra depend on whether or not the scattering is represented by pitch angle diffusion or by large angle scattering. The large angle case exhibits a distinctive structure in the basic power-law spectrum not nearly so obvious for small angle scattering. However, both cases yield a significant 'speed-up' of acceleration rate when compared with the conventional, non-relativistic expression, tacc=[c/(uup-udown)] (λup/uup+λdown/udown). An energization by a factor Γ2 for the first crossing cycle and a large energy gains for subsequent crossings as well as the high 'speed-up' factors found, are important in supporting past works, especially the models developed by Vietri and Waxman on ultra-high energy cosmic ray, neutrino and gamma-ray production in GRB. For oblique super-luminal shocks, we calculate the energy gain and spectral shape for a number of different inclinations. For this case the acceleration of particles is 'pictured' by a shock drift mechanism. We use high gamma flows with Lorentz factors in the range 10-40 which are relevant to ultra-relativistic shocks in AGN accretion disks and jets. In all investigations we closely follow the particle's trajectory along the magnetic field

  14. Model solution for volume reflection of relativistic particles in a bent crystal

    SciTech Connect

    Bondarenco, M. V.

    2010-10-15

    For volume reflection process in a bent crystal, exact analytic expressions for positively- and negatively-charged particle trajectories are obtained within a model of parabolic continuous potential in each interplanar interval, with the neglect of incoherent multiple scattering. In the limit of the crystal bending radius greatly exceeding the critical value, asymptotic formulas are obtained for the particle mean deflection angle in units of Lindhard's critical angle, and for the final beam profile. Volume reflection of negatively charged particles is shown to contain effects of rainbow scattering and orbiting, whereas with positively charged particles none of these effects arise within the given model. The model predictions are compared with experimental results and numerical simulations. Estimates of the volume reflection mean angle and the final beam profile robustness under multiple scattering are performed.

  15. Relativistic anisotropic models for compact star with equation of state p = f(ρ)

    NASA Astrophysics Data System (ADS)

    Maurya, S. K.; Gupta, Y. K.; Dayanandan, Baiju; Jasim, M. K.; Al-Jamel, Ahmed

    We present new anisotropic models for Buchdahl [H. A. Buchdahl, Phys. Rev. 116 (1959) 1027.] type perfect fluid solution. For this purpose, we started with metric potential eλ same as Buchdahl [H. A. Buchdahl, Phys. Rev. 116 (1959) 1027.] and eν is monotonically increasing function as suggested by Lake [K. Lake, Phys. Rev. D 67 (2003) 104015]. After that we determine the new pressure anisotropy factor Δ with the help of both the metric potentials eλ and eν and propose new well behaved general solution for anisotropic fluid distribution. The physical quantities like energy density, radial and tangential pressures, velocity of sound and redshift etc. are positive and finite inside the compact star. In this connection, we have studied the stability of the models, which is most vital one and also we determined the equation of state p = f(ρ) for the realistic compact star models. It is noted that the mass and radius of our models can represent the structure of realistic astrophysical objects such as Her X-1 and RXJ 1856-37.

  16. Exact well behaved solutions of Einstein-Maxwell equations for relativistic charged superdense star models

    NASA Astrophysics Data System (ADS)

    Maurya, S. K.; Gupta, Y. K.

    2012-08-01

    We present a new class of static spherically symmetric exact solutions of the Einstein-Maxwell system of equations by considering a specific choice of electric intensity which involves a parameter K. The resulting solutions represent charged fluid spheres joining smoothly with the Reissner-Nordstrom metric at the pressure free interface. The solutions so obtained are utilised to construct the models for super-dense star, like neutron stars, strange quark stars and pulsars by taking the surface density as 2×1014 g/cm3. It is observed that the models are regular and well behaved for the restricted value of the parameter K (0.9155≤ K≤0.9485). Over all the model of maximum mass has radius a=10.5834 km and mass equivalent to 1.0111 M Θ. The pulsar character of the super-dense stars so obtained has been tested with the help of moment of inertia. As a consequence the super-dense star models are found capable of representing pulsars with their mass lying in the interval 0.2038 M Θ to 1.0111 M Θ with the radius spanning from 6.6819 km to 10.5834 km. The analysis of the models reveals the possibility of only Vela pulsars i.e. (i) Star model possessing mass 0.9324 M Θ, radius 10.3728 km, the red-shift at centre Z 0=0.1871 and at surface Z a =0.1093 and moment of inertia I=0.6412×1045 g cm2 for K=0.9155 and Ca 2=0.2727. (ii) An another star model possess, mass 0.8283 M Θ, radius 10.0910 km, the red-shift at centre Z 0=0.1658 and at surface Z a =0.0980 and moment of inertia I=0.5213×1045 g cm2 for K=0.9485 and Ca 2=0.2406.

  17. A class of regular and well behaved relativistic super-dense star models

    NASA Astrophysics Data System (ADS)

    Gupta, Y. K.; Maurya, Sunil Kumar

    2011-03-01

    We obtain a new class of charged super-dense star models after prescribing particular forms of the metric potential g 44 and electric intensity. The metric describing the superdense stars joins smoothly with the Reissner-Nordstrom metric at the pressure free boundary. The interior of the stars possess there energy density, pressure, pressure-density ratio and velocity of sound to be monotonically decreasing towards the pressure free interface. In view of the surface density 2×1014 g/cm3, the heaviest star occupies a mass 5.6996 M ⊙ with its radius 17.0960 km. The red shift at the centre and boundary are found to be 3.5120 and 1.1268 respectively. In absence of the charge we are left behind with the regular and well behaved fifth model of Durgapal (J. Phys. A 15:2637, 1982).

  18. Semileptonic decays of double heavy baryons in a relativistic constituent three-quark model

    SciTech Connect

    Faessler, Amand; Gutsche, Thomas; Lyubovitskij, Valery E.; Ivanov, Mikhail A.; Koerner, Juergen G.

    2009-08-01

    We study the semileptonic decays of double-heavy baryons using a manifestly Lorentz covariant constituent three-quark model. We present complete results on transition form factors between double-heavy baryons for finite values of the heavy quark/baryon masses and in the heavy quark symmetry limit, which is valid at and close to zero recoil. Decay rates are calculated and compared to each other in the full theory, keeping masses finite, and also in the heavy quark limit.

  19. Modeling Relativistic Electron Precipitation Bremsstrahlung X-Ray Intensities at 10-100 km Manned Vehicle Altitudes

    NASA Technical Reports Server (NTRS)

    Krause, L. Habsh; Gilchrist, B. E.; Nishikawa, Ken-Ichi

    2013-01-01

    Relativisitic electron precipitation (REP) events occur when beams or bunches of relativistic electrons of magnetospheric origin enter the Earth's atmosphere, typically at auroral latitudes. REP events are associated with a variety of space weather effects, including production of transitional and bremsstrahlung radiation, catalytic depletion of stratospheric ozone, and scintillation of transionospheric radio waves. This study examines the intensities of x-rays produced at airliner, manned balloon, and space reuseable launch vehicles (sRLVs). The monoenergetic beam is modeled in cylindrical symetry using the paraxial ray equation. Bremsstrahlung photon production is calculated using the traditional Sauter-Elwert cross-section, providing x-ray emission spectra differential in energy and angle. Attenuation is computed for a plane-stratified standard atmosphere, and the loss processes include photoionization, Rayleigh and Compton scattering, electron-positron pair production, and photonuclear interaction. Peak altitudes of electron energy deposition and bremsstrahlung x-ray production were calculated for beams of energies from 1 MeV through 100 MeV. The altitude peak of bremsstrahlung deposition was consistently and significantly lower that that of the electron deposition due to the longer mean free paths of x-rays compared to electrons within the atmosphere. For example, for a nadir-directed monoenergetic 5 MeV beam, the peak deposition altitude was calculated to be 42 km, but the resulting bremsstrahlung deposition peaked at 25 km. This has implications for crew and passenger safety, especially with the growth of the space tourism industry. A survey of results covering the 1-100 MeV spectrum for the three altitude ranges of interest will be presented.

  20. VISCOUS BOUNDARY LAYERS OF RADIATION-DOMINATED, RELATIVISTIC JETS. II. THE FREE-STREAMING JET MODEL

    SciTech Connect

    Coughlin, Eric R.; Begelman, Mitchell C. E-mail: mitch@jila.colorado.edu

    2015-08-10

    We analyze the interaction of a radiation-dominated jet and its surroundings using the equations of radiation hydrodynamics in the viscous limit. In a previous paper we considered the two-stream scenario, which treats the jet and its surroundings as distinct media interacting through radiation viscous forces. Here we present an alternative boundary layer model, known as the free-streaming jet model—where a narrow stream of fluid is injected into a static medium—and present solutions where the flow is ultrarelativistic and the boundary layer is dominated by radiation. It is shown that these jets entrain material from their surroundings and that their cores have a lower density of scatterers and a harder spectrum of photons, leading to observational consequences for lines of sight that look “down the barrel of the jet.” These jetted outflow models may be applicable to the jets produced during long gamma-ray bursts and super-Eddington phases of tidal disruption events.

  1. Local equilibrium solutions in simple anisotropic cosmological models, as described by relativistic fluid dynamics

    NASA Astrophysics Data System (ADS)

    Shogin, Dmitry; Amund Amundsen, Per

    2016-10-01

    We test the physical relevance of the full and the truncated versions of the Israel-Stewart (IS) theory of irreversible thermodynamics in a cosmological setting. Using a dynamical systems method, we determine the asymptotic future of plane symmetric Bianchi type I spacetimes with a viscous mathematical fluid, keeping track of the magnitude of the relative dissipative fluxes, which determines the applicability of the IS theory. We consider the situations where the dissipative mechanisms of shear and bulk viscosity are involved separately and simultaneously. It is demonstrated that the only case in the given model when the fluid asymptotically approaches local thermal equilibrium, and the underlying assumptions of the IS theory are therefore not violated, is that of a dissipative fluid with vanishing bulk viscosity. The truncated IS equations for shear viscosity are found to produce solutions which manifest pathological dynamical features and, in addition, to be strongly sensitive to the choice of initial conditions. Since these features are observed already in the case of an oversimplified mathematical fluid model, we have no reason to assume that the truncation of the IS transport equations will produce relevant results for physically more realistic fluids. The possible role of bulk and shear viscosity in cosmological evolution is also discussed.

  2. Development of the Hamiltonian molecular dynamics (HMD) model: A first-principles, relativistic description of nucleus-nucleus interactions at medium energy

    NASA Astrophysics Data System (ADS)

    Zapp, Edward Neal

    Simulation of energetic, colliding nuclear systems at energies between 100 AMeV and 5 AGeV has utility in fields as diverse as the design and construction of fundamental particle physics experiments, patient treatment by radiation exposure, and in the protection of astronaut crews from the risks of exposure to natural radiation sources during spaceflight. Descriptions of these colliding systems which are derived from theoretical principles are necessary in order to provide confidence in describing systems outside the scope of existing data, which is sparse. The system size and velocity dictate descriptions which include both special relativistic and quantum effects, and the currently incomplete state of understanding with respect to the basic processes at work within nuclear matter dictate that any description will exist at some level of approximation. Models commonly found in the literature employ approximations to theory which lead to simulation results which demonstrate departure from fundamental physical principles, most notably conservation of system energy. The HMD (Hamiltonian Molecular Dynamics) mode is developed as a phase-space description of colliding nuclear system on the level of hadrons, inclusive of the necessary quantum and relativistic elements. Evaluation of model simulations shows that the HMD model shows the necessary conservations throughout system simulation. HMD model predictions are compared to both the RQMD (Relativistic Quantum Molecular Dynamics) and JQMD (Jaeri-Quantum Molecular Dynamics) codes, both commonly employed for the purpose of simulating nucleus-nucleus collisions. Comparison is also provided between all three codes and measurement. The HMD model is shown to perform well in light of both measurement and model calculation, while providing for a physically self-consistent description of the system throughout.

  3. A non-relativistic model of two-particle decay III. The pole approximation

    NASA Astrophysics Data System (ADS)

    Dittrich, J.; Exner, P.

    1988-06-01

    In the third part of the paper, we are concerned mostly with the problem of justifying the approximation in which the reduced resolvent is replaced by the pole term alone. Imposing additional regularity assumptions on the function ν, which specifies the interaction, we are able to estimate the difference of the corresponding reduced propagators. This result is used further to derive an estimate of the deviations from the exponential decay law which results from the pole approximation. With exception of very small and very large times, the obtained bound is proportional to fourth power of the coupling constant. We prove also Fermi golden rule for the model under consideration, and compare the present method to the one previously used by Demuth.

  4. A relativistic meson-exchange model of pion-nucleon scattering

    SciTech Connect

    Lee, T.S.H.; Hung, C.T.; Yang, S.N.

    1995-08-01

    Pion-nucleon scattering is investigated using the Kadshevsky three-dimensional reduction of the Bethe-Salpeter equation. The resulting potential includes the direct and crossed N and {Delta} terms, and the t-channel {sigma}- and {rho}-exchange terms. The nucleon-pole condition is imposed to define the renormalization of the nucleon mass and the {pi}NN coupling constant. A mixture of the scalar and vector {sigma}{pi}{pi} couplings is introduced to simulate the broad width of the s-wave correlated two-pion exchange mechanism. Good descriptions of the {pi}N phase shifts up to 400 MeV have been obtained in all S- and P-waves. The off-shell behavior for our model differs significantly from that obtained using different reductions. A paper describing our results was published.

  5. Accurate relativistic adapted Gaussian basis sets for francium through Ununoctium without variational prolapse and to be used with both uniform sphere and Gaussian nucleus models.

    PubMed

    Teodoro, Tiago Quevedo; Haiduke, Roberto Luiz Andrade

    2013-10-15

    Accurate relativistic adapted Gaussian basis sets (RAGBSs) for 87 Fr up to 118 Uuo atoms without variational prolapse were developed here with the use of a polynomial version of the Generator Coordinate Dirac-Fock method. Two finite nuclear models have been used, the Gaussian and uniform sphere models. The largest RAGBS error, with respect to numerical Dirac-Fock results, is 15.4 miliHartree for Ununoctium with a basis set size of 33s30p19d14f functions.

  6. Relativistic rotation curve for cosmological structures

    NASA Astrophysics Data System (ADS)

    Razbin, Mohammadhosein; Firouzjaee, Javad T.; Mansouri, Reza

    2014-08-01

    Using a general relativistic exact model for spherical structures in a cosmological background, we have put forward an algorithm to calculate the test particle geodesics within such cosmological structures in order to obtain the velocity profile of stars or galaxies. The rotation curve thus obtained is based on a density profile and is independent of any mass definition which is not unique in general relativity. It is then shown that this general relativistic rotation curves for a toy model and a NFW density profile are almost identical to the corresponding Newtonian one, although the general relativistic masses may be quite different.

  7. Two-dimensional s-polarized solitary waves in relativistic plasmas. I. The fluid plasma model

    SciTech Connect

    Sanchez-Arriaga, G.; Lefebvre, E.

    2011-09-15

    The properties of two-dimensional linearly s-polarized solitary waves are investigated by fluid-Maxwell equations and particle-in-cell (PIC) simulations. These self-trapped electromagnetic waves appear during laser-plasma interactions, and they have a dominant electric field component E{sub z}, normal to the plane of the wave, that oscillates at a frequency below the electron plasma frequency {omega}{sub pe}. A set of equations that describe the waves are derived from the plasma fluid model in the case of cold or warm plasma and then solved numerically. The main features, including the maximum value of the vector potential amplitude, the total energy, the width, and the cavitation radius are presented as a function of the frequency. The amplitude of the vector potential increases monotonically as the frequency of the wave decreases, whereas the width reaches a minimum value at a frequency of the order of 0.82 {omega}{sub pe}. The results are compared with a set of PIC simulations where the solitary waves are excited by a high-intensity laser pulse.

  8. Relativistic pseudospin symmetry and shell model Hamiltonians that conserve pseudospin symmetry

    SciTech Connect

    Ginocchio, Joseph N

    2010-09-21

    Professor Akito Arima and his colleagues discovered 'pseudospin' doublets forty-one years ago in spherical nuclei. These doublets were subsequently discovered in deformed nuclei. We show that pseudospin symmetry is an SU(2) symmetry of the Dirac Hamiltonian which occurs when the scalar and vector potentials are opposite in sign but equal in magnitude. This symmetry occurs independent of the shape of the nucleus: spherical, axial deformed, triaxial, and gamma unstable. We survey some of the evidence that pseudospin symmetry is approximately conserved for a Dirac Hamiltonian with realistic scalar and vector potentials by examining the energy spectra, the lower components of the Dirac eigenfunctions, the magnetic dipole and Gamow-Teller transitions in nuclei, the upper components of the Dirac eigenfunctions, and nucleon-nucleus scattering. We shall also suggest that pseudospin symmetry may have a fundamental origin in chiral symmetry breaking by examining QCD sum rules. Finally we derive the shell model Hamiltonians which conserve pseudospin and show that they involve tensor interactions.

  9. Relativistic Celestial Mechanics

    NASA Astrophysics Data System (ADS)

    Brumberg, Victor A.

    2010-08-01

    Relativistic celestial mechanics (RCM) refers to a science to study the motion of celestial bodies within the framework of general relativity theory (GRT) by Einstein. Being a straightforward successor of Newtonian celestial mechanics RCM embraces all aspects of motion of celestial bodies including (1) physics of motion, i.e. investigation of the physical nature of all effects influencing the motion of celestial bodies and formulation of a physical model for a specific problem; (2) mathematics of motion, i.e. investigation of the mathematical characteristics of the solutions of the differential equations of motion of celestial bodies; (3) computation of motion, i.e. the actual determination of the quantitative characteristics of motion; (4) astronomy of motion, i.e. application of mathematical solution of a problem to a specific celestial body, comparison with the results of observations, determination of initial values and parameters of motion, and checking the physical and mathematical models employed for a given problem.

  10. CMBE v05-Implementation of a toy-model for chaos analysis of relativistic nuclear collisions at the present BNL energies

    NASA Astrophysics Data System (ADS)

    Grossu, I. V.; Felea, D.; Jipa, Al.; Besliu, C.; Stan, E.; Ristea, O.; Ristea, C.; Calin, M.; Esanu, T.; Bordeianu, C.; Tuturas, N.

    2014-11-01

    In this paper we present a new version of Chaos Many-Body Engine (CMBE) Grossu et al. (2014) [1]. Inspired by the Mean Free Path concept, we implemented a new parameter, namely the “Mean Free Time”, which is defined as the mean time between one particle’s creation and its stimulated decay. This new parameter should be understood as an effect of the nuclear environment and, as opposed to the particle lifetime, it has the advantage of not being affected by the relativistic dilation. In [2] we presented a toy-model for chaos analysis of relativistic nuclear collisions at 4.5 A GeV/c (the SKM 200 collaboration). In this work, we extended our model to 200 A GeV (the maximum BNL energy). Catalogue identifier: AEGH_v5_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGH_v5_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Microsoft Public License (Ms-PL) No. of lines in distributed program, including test data, etc.: 638984 No. of bytes in distributed program, including test data, etc.: 15918340 Distribution format: tar.gz Programming language: Visual C# .Net 2010 Computer: PC Operating system: .Net Framework 4.0 running on MS Windows RAM: 128 MB Classification: 24.60.Lz, 05.45.a Catalogue identifier of previous version: AEGH_v4_0 Journal reference of previous version: Computer Physics Communications 185 (2014) 1339 Does the new version supersede the previous version?: Yes Nature of problem: Toy-model for relativistic nuclear collisions at present BNL energies. Solution method: Relativistic many-body OOP engine, including a reactions module. Implementation of the “Mean Free Time” parameter; Implementation of a new example of use for relativistic nuclear collisions at present BNL energies. Implementation of a new parameter, namely the “Mean Free Time”, defined as the mean time between one particle’s creation and its stimulated decay. The Mean Free Time should be understood as an

  11. Relativistic rotation-vibrational energies for the Cs2 molecule

    NASA Astrophysics Data System (ADS)

    Jia, Chun-Sheng; Jia, Yue

    2017-01-01

    We present bound state solutions of the Dirac equation with the improved Rosen-Morse potential energy model. In the non-relativistic limit, the relativistic energy equation becomes the non-relativistic rotation-vibrational energy expression of the diatomic molecule. We find that the relativistic effect of the relative motion of the ions produces an obvious decrease in the vibrational energies for the 33Σg + state of the Cs2 molecule. It is observed that the behavior of the relativistic rotation-vibrational energies in larger rotational quantum numbers remains similar to that of the system with zero rotational quantum number.

  12. Relativistic Linear Restoring Force

    ERIC Educational Resources Information Center

    Clark, D.; Franklin, J.; Mann, N.

    2012-01-01

    We consider two different forms for a relativistic version of a linear restoring force. The pair comes from taking Hooke's law to be the force appearing on the right-hand side of the relativistic expressions: d"p"/d"t" or d"p"/d["tau"]. Either formulation recovers Hooke's law in the non-relativistic limit. In addition to these two forces, we…

  13. Relativistic Guiding Center Equations

    SciTech Connect

    White, R. B.; Gobbin, M.

    2014-10-01

    In toroidal fusion devices it is relatively easy that electrons achieve relativistic velocities, so to simulate runaway electrons and other high energy phenomena a nonrelativistic guiding center formalism is not sufficient. Relativistic guiding center equations including flute mode time dependent field perturbations are derived. The same variables as used in a previous nonrelativistic guiding center code are adopted, so that a straightforward modifications of those equations can produce a relativistic version.

  14. Hydrodynamics of Relativistic Fireballs

    NASA Technical Reports Server (NTRS)

    Piran, Tsvi; Shemi, Amotz; Narayan, Ramesh

    1993-01-01

    Many models of gamma-ray bursts involve a fireball, which is an optically thick concentration of radiation energy with a high ratio of energy density to rest mass. We examine analytically and numerically the evolution of a relativistic fireball. We show that, after an early rearrangement phase, most of the matter and energy in the fireball is concentrated within a narrow shell. The shell propagates at nearly the speed of light, with a frozen radial profile, and according to a simple set of scaling laws. The spectrum of the escaping radiation is harder at early times and softer later on. Depending on the initial energy-to-mass ratio, the final outcome of a fireball is either photons with roughly the initial temperature or ultrarelativistic baryons. In the latter case, the energy could be converted back to gamma-rays via interaction with surrounding material.

  15. Baryon Loaded Relativistic Blast Waves in Supernovae

    NASA Astrophysics Data System (ADS)

    Chakraborti, Sayan; Ray, Alak

    2011-03-01

    We provide a new analytic blast wave solution which generalizes the Blandford-McKee solution to arbitrary ejecta masses and Lorentz factors. Until recently relativistic supernovae have been discovered only through their association with long-duration gamma-ray bursts (GRBs). The blast waves of such explosions are well described by the Blandford-McKee (in the ultra-relativistic regime) and Sedov-Taylor (in the non-relativistic regime) solutions during their afterglows, as the ejecta mass is negligible in comparison to the swept-up mass. The recent discovery of the relativistic supernova SN 2009bb, without a detected GRB, opens up the possibility of highly baryon loaded, mildly relativistic outflows which remains in nearly free-expansion phase during the radio afterglow. In this work, we consider a massive, relativistic shell, launched by a Central Engine Driven EXplosion (CEDEX), decelerating adiabatically due to its collision with the pre-explosion circumstellar wind profile of the progenitor. We compute the synchrotron emission from relativistic electrons in the shock amplified magnetic field. This models the radio emission from the circumstellar interaction of a CEDEX. We show that this model explains the observed radio evolution of the prototypical SN 2009bb and demonstrate that SN 2009bb had a highly baryon loaded, mildly relativistic outflow. We discuss the effect of baryon loading on the dynamics and observational manifestations of a CEDEX. In particular, our predicted angular size of SN 2009bb is consistent with very long baseline interferometric (VLBI) upper limits on day 85, but is presently resolvable on VLBI angular scales, since the relativistic ejecta is still in the nearly free-expansion phase.

  16. Diagnosing particle acceleration in relativistic jets

    NASA Astrophysics Data System (ADS)

    Böttcher, Markus; Baring, Matthew G.; Liang, Edison P.; Summerlin, Errol J.; Fu, Wen; Smith, Ian A.; Roustazadeh, Parisa

    2015-03-01

    The high-energy emission from blazars and other relativistic jet sources indicates that electrons are accelerated to ultra-relativistic (GeV - TeV) energies in these systems. This paper summarizes recent results from numerical studies of two fundamentally different particle acceleration mechanisms potentially at work in relativistic jets: Magnetic-field generation and relativistic particle acceleration in relativistic shear layers, which are likely to be present in relativistic jets, is studied via Particle-in-Cell (PIC) simulations. Diffusive shock acceleration at relativistic shocks is investigated using Monte-Carlo simulations. The resulting magnetic-field configurations and thermal + non-thermal particle distributions are then used to predict multi-wavelength radiative (synchrotron + Compton) signatures of both acceleration scenarios. In particular, we address how anisotropic shear-layer acceleration may be able to circumvent the well-known Lorentz-factor crisis, and how the self-consistent evaluation of thermal + non-thermal particle populations in diffusive shock acceleration simulations provides tests of the bulk Comptonization model for the Big Blue Bump observed in the SEDs of several blazars.

  17. Relativistic Langevin equation for runaway electrons

    NASA Astrophysics Data System (ADS)

    Mier, J. A.; Martin-Solis, J. R.; Sanchez, R.

    2016-10-01

    The Langevin approach to the kinetics of a collisional plasma is developed for relativistic electrons such as runaway electrons in tokamak plasmas. In this work, we consider Coulomb collisions between very fast, relativistic electrons and a relatively cool, thermal background plasma. The model is developed using the stochastic equivalence of the Fokker-Planck and Langevin equations. The resulting Langevin model equation for relativistic electrons is an stochastic differential equation, amenable to numerical simulations by means of Monte-Carlo type codes. Results of the simulations will be presented and compared with the non-relativistic Langevin equation for RE electrons used in the past. Supported by MINECO (Spain), Projects ENE2012-31753, ENE2015-66444-R.

  18. BL Lac objects and relativistic beaming

    NASA Technical Reports Server (NTRS)

    Worrall, Diana M.

    1986-01-01

    General arguments for relativistic beaming in BL Lac objects are reviewed. These include overproduction of X-rays and fast time variability. Comments are made about the relationship of the X-ray continuum to that at lower frequencies, and observational evidence for and against continuum radiation being relativistically beamed is discussed. Finally, there is discussion of the influence of geometrical effects on predictions for time variability as a function of frequency in the context of inhomogeneous synchrotron self-Compton jet models.

  19. Relativistic optics of nondispersive media

    SciTech Connect

    Miron, R.; Zet, G.

    1995-09-01

    The relativistic optics of the nondispersive media endowed with the metric g{sub ij}(x) and with a nonlinear connection is studied. The d-connection relates the conformal and projective properties of the space-time. A post-Newtonian estimation for the metric g{sub ij} is also given. It is shown that the solar system tests impose a constraint on a combination of the post-Newtonian parameters describing the model.

  20. Relativistic opacities for astrophysical applications

    DOE PAGES

    Fontes, Christopher John; Fryer, Christopher Lee; Hungerford, Aimee L.; ...

    2015-06-29

    Here, we report on the use of the Los Alamos suite of relativistic atomic physics codes to generate radiative opacities for the modeling of astrophysically relevant plasmas under local thermodynamic equilibrium (LTE) conditions. The atomic structure calculations are carried out in fine-structure detail, including full configuration interaction. Three example applications are considered: iron opacities at conditions relevant to the base of the solar convection zone, nickel opacities for the modeling of stellar envelopes, and samarium opacities for the modeling of light curves produced by neutron star mergers. In the first two examples, comparisons are made between opacities that are generatedmore » with the fully and semi-relativistic capabilities in the Los Alamos suite of codes. As expected for these highly charged, iron-peak ions, the two methods produce reasonably similar results, providing confidence that the numerical methods have been correctly implemented. However, discrepancies greater than 10% are observed for nickel and investigated in detail. In the final application, the relativistic capability is used in a preliminary investigation of the complicated absorption spectrum associated with cold lanthanide elements.« less

  1. Relativistic opacities for astrophysical applications

    NASA Astrophysics Data System (ADS)

    Fontes, C. J.; Fryer, C. L.; Hungerford, A. L.; Hakel, P.; Colgan, J.; Kilcrease, D. P.; Sherrill, M. E.

    2015-09-01

    We report on the use of the Los Alamos suite of relativistic atomic physics codes to generate radiative opacities for the modeling of astrophysically relevant plasmas under local thermodynamic equilibrium (LTE) conditions. The atomic structure calculations are carried out in fine-structure detail, including full configuration interaction. Three example applications are considered: iron opacities at conditions relevant to the base of the solar convection zone, nickel opacities for the modeling of stellar envelopes, and samarium opacities for the modeling of light curves produced by neutron star mergers. In the first two examples, comparisons are made between opacities that are generated with the fully and semi-relativistic capabilities in the Los Alamos suite of codes. As expected for these highly charged, iron-peak ions, the two methods produce reasonably similar results, providing confidence that the numerical methods have been correctly implemented. However, discrepancies greater than 10% are observed for nickel and investigated in detail. In the final application, the relativistic capability is used in a preliminary investigation of the complicated absorption spectrum associated with cold lanthanide elements.

  2. Relativistic opacities for astrophysical applications

    SciTech Connect

    Fontes, Christopher John; Fryer, Christopher Lee; Hungerford, Aimee L.; Hakel, Peter; Colgan, James Patrick; Kilcrease, David Parker; Sherrill, Manalo Edgar

    2015-06-29

    Here, we report on the use of the Los Alamos suite of relativistic atomic physics codes to generate radiative opacities for the modeling of astrophysically relevant plasmas under local thermodynamic equilibrium (LTE) conditions. The atomic structure calculations are carried out in fine-structure detail, including full configuration interaction. Three example applications are considered: iron opacities at conditions relevant to the base of the solar convection zone, nickel opacities for the modeling of stellar envelopes, and samarium opacities for the modeling of light curves produced by neutron star mergers. In the first two examples, comparisons are made between opacities that are generated with the fully and semi-relativistic capabilities in the Los Alamos suite of codes. As expected for these highly charged, iron-peak ions, the two methods produce reasonably similar results, providing confidence that the numerical methods have been correctly implemented. However, discrepancies greater than 10% are observed for nickel and investigated in detail. In the final application, the relativistic capability is used in a preliminary investigation of the complicated absorption spectrum associated with cold lanthanide elements.

  3. RELATIVISTIC TWO-FLUID SIMULATIONS OF GUIDE FIELD MAGNETIC RECONNECTION

    SciTech Connect

    Zenitani, Seiji; Hesse, Michael; Klimas, Alex

    2009-11-01

    The nonlinear evolution of relativistic magnetic reconnection in sheared magnetic configuration (with a guide field) is investigated by using two-dimensional relativistic two-fluid simulations. Relativistic guide field reconnection features the charge separation and the guide field compression in and around the outflow channel. As the guide field increases, the composition of the outgoing energy changes from enthalpy-dominated to Poynting-dominated. The inertial effects of the two-fluid model play an important role to sustain magnetic reconnection. Implications for the single-fluid magnetohydrodynamic approach and the physics models of relativistic reconnection are briefly addressed.

  4. Relativistic Jets and Collapsars

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Woosley, S. E.

    2001-05-01

    In order to study the relativistic jets from collapsars, we have developed a special relativistic multiple-dimensional hydrodynamics code similar to the GENESIS code (Aloy et al., ApJS, 122, 151). The code is based on the PPM interpolation algorithm and Marquina's Riemann solver. Using this code, we have simulated the propagation of axisymmetric jets along the rotational axis of collapsed rotating stars (collapsars). Using the progenitors of MacFadyen, Woosley, and Heger, a relativistic jet is injected at a given inner boundary radius. This radius, the opening angle of the jet, its Lorentz factor, and its total energy are parameters of the problem. A highly collimated, relativistic outflow is observed at the surface of the star several seconds later. We will discuss the hydrodynamical focusing of the jet, it's break out properties, time evolution, and sensitivity to the adopted parameters.

  5. Relativistic Length Agony Continued

    NASA Astrophysics Data System (ADS)

    Redzic, D. V.

    2014-06-01

    We made an attempt to remedy recent confusing treatments of some basic relativistic concepts and results. Following the argument presented in an earlier paper (Redzic 2008b), we discussed the misconceptions that are recurrent points in the literature devoted to teaching relativity such as: there is no change in the object in Special Relativity, illusory character of relativistic length contraction, stresses and strains induced by Lorentz contraction, and related issues. We gave several examples of the traps of everyday language that lurk in Special Relativity. To remove a possible conceptual and terminological muddle, we made a distinction between the relativistic length reduction and relativistic FitzGerald-Lorentz contraction, corresponding to a passive and an active aspect of length contraction, respectively; we pointed out that both aspects have fundamental dynamical contents. As an illustration of our considerations, we discussed briefly the Dewan-Beran-Bell spaceship paradox and the 'pole in a barn' paradox.

  6. Exact Relativistic `Antigravity' Propulsion

    NASA Astrophysics Data System (ADS)

    Felber, Franklin S.

    2006-01-01

    The Schwarzschild solution is used to find the exact relativistic motion of a payload in the gravitational field of a mass moving with constant velocity. At radial approach or recession speeds faster than 3-1/2 times the speed of light, even a small mass gravitationally repels a payload. At relativistic speeds, a suitable mass can quickly propel a heavy payload from rest nearly to the speed of light with negligible stresses on the payload.

  7. Numerical Relativistic Quantum Optics

    DTIC Science & Technology

    2013-11-08

    Introduction 1 II. Relativistic Wave Equations 2 III. Stationary States 4 A. Analytical Solutions for Coulomb Potentials 4 B. Numerical Solutions...C. Relativistic Ionization Example 15 V. Computational Performance 18 VI. Conclusions 21 VII. Acknowledgements 22 References 23 1 I. INTRODUCTION ...peculiar result that B0 = 1 TG is a weak field. At present, such fields are observed only in connection with astrophysical phenomena [14]. The highest

  8. Relativistic corrections in K-shell ionization cross sections

    SciTech Connect

    Sheth, C.V.

    1984-03-01

    Relativistic effects on a modified version of Rutherford's scattering cross section are considered up to first-order in the Born approximation for relativistic velocities in the binary-encounter approximation (BEA). The predicted cross sections with protons as projectile are lower than the previous theoretical values at low energies and are seen to be in better agreement with measurements. An approximate relativistic correction factor which accounts for orbital electrons only is compared with exact Dirac corrections, within the BEA model.

  9. SCALING OF THE ANOMALOUS BOOST IN RELATIVISTIC JET BOUNDARY LAYER

    SciTech Connect

    Zenitani, Seiji; Hesse, Michael; Klimas, Alex

    2010-04-01

    We investigate the one-dimensional interaction of a relativistic jet and an external medium. Relativistic magnetohydrodynamic simulations show an anomalous boost of the jet fluid in the boundary layer, as previously reported. We describe the boost mechanism using an ideal relativistic fluid and magnetohydrodynamic theory. The kinetic model is also examined for further understanding. Simple scaling laws for the maximum Lorentz factor are derived, and verified by the simulations.

  10. Relativistic effects in chemistry

    SciTech Connect

    Yatsimirskii, K.B.

    1995-11-01

    Relativistic effects become apparent when the velocity of the electron is arbitrarily close to the speed of light (137 au) without actually attaining it (in heavy atoms of elements at the end of Mendeleev`s Periodic Table). At the orbital level, the relativistic effect is apparent in the radial contraction of penetrating s and p shells, expansion of nonpenetrating d and f shells, and the spin-orbit splitting of p-,d-, and f-shells. The appearance of a relativistic effect is indicated in the variation in the electronic configurations of the atoms in the Periodic Table, the appearance of new types of closed electron shells (6s{sub 1/2}{sup 2}, 6p{sub 1/2}{sup 2}, 7s{sub 1/2}{sup 2}, 5d{sub 3/2}{sup 4}), the stabilization of unstable oxidation states of heavy elements, the characteristic variation in the ionization enthalpies of heavy atoms, their electron affinity, hydration energies, redox potentials, and optical electronegativities. In the spectra of coordination compounds, a relativistic effect is observed when comparing the position of the charge transfer bands in analogous compounds, the parameters characterizing the ligand field strength (10Dq), the interatomic distances and angles in compounds of heavy elements. A relativistic effect is also apparent in the ability of heavy metals to form clusters and superclusters. Relativistic corrections also affect other properties of heavy metal compounds (force constants, dipole moments, biological activity, etc.).

  11. Application of the relativistic mean-field mass model to the r-process and the influence of mass uncertainties

    SciTech Connect

    Sun, B.; Montes, F.; Geng, L. S.; Geissel, H.; Litvinov, Yu. A.; Meng, J.

    2008-08-15

    A new mass table calculated by the relativistic mean-field approach with the state-dependent BCS method for the pairing correlation is applied for the first time to study r-process nucleosynthesis. The solar r-process abundance is well reproduced within a waiting-point approximation approach. Using an exponential fitting procedure to find the required astrophysical conditions, the influence of mass uncertainty is investigated. The r-process calculations using the FRDM, ETFSI-Q, and HFB-13 mass tables have been used for that purpose. It is found that the nuclear physical uncertainty can significantly influence the deduced astrophysical conditions for the r-process site. In addition, the influence of the shell closure and shape transition have been examined in detail in the r-process simulations.

  12. Relativistic Binaries in Globular Clusters.

    PubMed

    Benacquista, Matthew J; Downing, Jonathan M B

    2013-01-01

    Galactic globular clusters are old, dense star systems typically containing 10(4)-10(6) stars. As an old population of stars, globular clusters contain many collapsed and degenerate objects. As a dense population of stars, globular clusters are the scene of many interesting close dynamical interactions between stars. These dynamical interactions can alter the evolution of individual stars and can produce tight binary systems containing one or two compact objects. In this review, we discuss theoretical models of globular cluster evolution and binary evolution, techniques for simulating this evolution that leads to relativistic binaries, and current and possible future observational evidence for this population. Our discussion of globular cluster evolution will focus on the processes that boost the production of tight binary systems and the subsequent interaction of these binaries that can alter the properties of both bodies and can lead to exotic objects. Direct N-body integrations and Fokker-Planck simulations of the evolution of globular clusters that incorporate tidal interactions and lead to predictions of relativistic binary populations are also discussed. We discuss the current observational evidence for cataclysmic variables, millisecond pulsars, and low-mass X-ray binaries as well as possible future detection of relativistic binaries with gravitational radiation.

  13. Quasi-elastic Coulomb response function for finite systems and elimination of the Landau ghost in the relativistic σ-ω model

    NASA Astrophysics Data System (ADS)

    Kazuhiro, Tanaka; Wolfgang, Bentz; Akito, Arima

    1990-11-01

    The quasi-elastic Coulomb response function of finite nuclei including vacuum polarization effects is investigated in the relativistic σ-ω model. For the consistent elimination of the Landau ghost in meson propagators, the description of the ground state and the response function of the system is formulated utilizing the effective action method, and the effects of the ghost elimination on the nuclear matter response function are discussed. Finite system calculations are performed for 12C (|q|= 300, 400, 550 MeV) and 40Ca (|q|= 410, 500, 550 MeV) , in which particle-hole continuum states are fully taken into account by the method of continuum RPA, while the vacuum polarization effects are included by the local density approximation. The effects of the particle-hole effective interaction and the medium modified single-nucleon form factor on the response function are also discussed.

  14. Relativistic Jets from Collapsars

    NASA Astrophysics Data System (ADS)

    Aloy, M. A.; Müller, E.; Ibáñez, J. M.; Martí, J. M.; MacFadyen, A.

    2000-03-01

    Using a collapsar progenitor model of MacFadyen & Woosley, we have simulated the propagation of an axisymmetric jet through a collapsing rotating massive star with the GENESIS multidimensional relativistic hydrodynamic code. The jet forms as a consequence of an assumed (constant or variable) energy deposition in the range of 1050-1051 ergs s-1 within a 30 deg cone around the rotation axis. The jet flow is strongly beamed (approximately less than a few degrees), spatially inhomogeneous, and time dependent. The jet reaches the surface of the stellar progenitor (R*=2.98x1010 cm) intact. At breakout, the maximum Lorentz factor of the jet flow is 33. After breakout, the jet accelerates into the circumstellar medium, whose density is assumed to decrease exponentially and then become constant, ρext=10-5 g cm-3. Outside the star, the flow begins to expand laterally also (v~c), but the beam remains very well collimated. At a distance of 2.54 R*, where the simulation ends, the Lorentz factor has increased to 44.

  15. Theoretical study of the relativistic molecular rotational g-tensor

    SciTech Connect

    Aucar, I. Agustín Gomez, Sergio S.; Giribet, Claudia G.; Ruiz de Azúa, Martín C.

    2014-11-21

    An original formulation of the relativistic molecular rotational g-tensor valid for heavy atom containing compounds is presented. In such formulation, the relevant terms of a molecular Hamiltonian for non-relativistic nuclei and relativistic electrons in the laboratory system are considered. Terms linear and bilinear in the nuclear rotation angular momentum and an external uniform magnetic field are considered within first and second order (relativistic) perturbation theory to obtain the rotational g-tensor. Relativistic effects are further analyzed by carrying out the linear response within the elimination of the small component expansion. Quantitative results for model systems HX (X=F, Cl, Br, I), XF (X=Cl, Br, I), and YH{sup +} (Y=Ne, Ar, Kr, Xe, Rn) are obtained both at the RPA and density functional theory levels of approximation. Relativistic effects are shown to be small for this molecular property. The relation between the rotational g-tensor and susceptibility tensor which is valid in the non-relativistic theory does not hold within the relativistic framework, and differences between both molecular parameters are analyzed for the model systems under study. It is found that the non-relativistic relation remains valid within 2% even for the heavy HI, IF, and XeH{sup +} systems. Only for the sixth-row Rn atom a significant deviation of this relation is found.

  16. Triaxially deformed relativistic point-coupling model for Λ hypernuclei: A quantitative analysis of the hyperon impurity effect on nuclear collective properties

    NASA Astrophysics Data System (ADS)

    Xue, W. X.; Yao, J. M.; Hagino, K.; Li, Z. P.; Mei, H.; Tanimura, Y.

    2015-02-01

    Background: The impurity effect of hyperons on atomic nuclei has received a renewed interest in nuclear physics since the first experimental observation of appreciable reduction of E 2 transition strength in low-lying states of the hypernucleus Λ7Li . Many more data on low-lying states of Λ hypernuclei will be measured soon for s d -shell nuclei, providing good opportunities to study the Λ impurity effect on nuclear low-energy excitations. Purpose: We carry out a quantitative analysis of the Λ hyperon impurity effect on the low-lying states of s d -shell nuclei at the beyond-mean-field level based on a relativistic point-coupling energy density functional (EDF), considering that the Λ hyperon is injected into the lowest positive-parity (Λs) and negative-parity (Λp) states. Method: We adopt a triaxially deformed relativistic mean-field (RMF) approach for hypernuclei and calculate the Λ binding energies of hypernuclei as well as the potential-energy surfaces (PESs) in the (β ,γ ) deformation plane. We also calculate the PESs for the Λ hypernuclei with good quantum numbers by using a microscopic particle rotor model (PRM) with the same relativistic EDF. The triaxially deformed RMF approach is further applied in order to determine the parameters of a five-dimensional collective Hamiltonian (5DCH) for the collective excitations of triaxially deformed core nuclei. Taking 25,27Mg Λ and Si31Λ as examples, we analyze the impurity effects of Λs and Λp on the low-lying states of the core nuclei. Results: We show that Λs increases the excitation energy of the 21+ state and decreases the E 2 transition strength from this state to the ground state by 12 %to17 % . On the other hand, Λp tends to develop pronounced energy minima with larger deformation, although it modifies the collective parameters in such a way that the collectivity of the core nucleus can be either increased or decreased. Conclusions: The quadrupole deformation significantly affects the

  17. Relativistic Navigation: A Theoretical Foundation

    NASA Technical Reports Server (NTRS)

    Turyshev, Slava G.

    1996-01-01

    We present a theoretical foundation for relativistic astronomical measurements in curved space-time. In particular, we discuss a new iterative approach for describing the dynamics of an isolated astronomical N-body system in metric theories of gravity. To do this, we generalize the Fock-Chandrasekhar method of the weak-field and slow-motion approximation (WFSMA) and develop a theory of relativistic reference frames (RF's) for a gravitationally bounded many-extended-body problem. In any proper RF constructed in the immediate vicinity of an arbitrary body, the N-body solutions of the gravitational field equations are formally presented as a sum of the Riemann-flat inertial space-time, the gravitational field generated by the body itself, the unperturbed solutions for each body in the system transformed to the coordinates of this proper RF, and the gravitational interaction term. We develop the basic concept of a general WFSMA theory of the celestial RF's applicable to a wide class of metric theories of gravity and an arbitrary model of matter distribution. We apply the proposed method to general relativity. Celestial bodies are described using a perfect fluid model; as such, they possess any number of internal mass and current multipole moments that explicitly characterize their internal structures. The obtained relativistic corrections to the geodetic equations of motion arise because of a coupling of the bodies' multiple moments to the surrounding gravitational field. The resulting relativistic transformations between the different RF's extend the Poincare group to the motion of deformable self-gravitating bodies. Within the present accuracy of astronomical measurements we discuss the properties of the Fermi-normal-like proper RF that is defined in the immediate vicinity of the extended compact bodies. We further generalize the proposed approximation method and include two Eddington parameters (gamma, Beta). This generalized approach was used to derive the

  18. INDUCED MAXIMUM MAGNETIC FIELD IN COSMIC OUTFLOW SYSTEM BY A RELATIVISTIC CURRENT FILAMENTATION INSTABILITY: EXACT ANALYTICAL MODEL

    SciTech Connect

    Mehdian, H.; Hajisharifi, K.; Hasanbeigi, A.

    2015-03-10

    We present an analytical study of current filamentation instability (CFI) in a fully relativistic cold plasma system, including arbitrary currents. For our purposes, we employ the cold fluid equations, together with Maxwell's equations as well as the plasma shell concept and boost frame method, to obtain an exact solution of the instability growth rate. A simple relation is found for the maximum growth rate of the CFI (for any arbitrary current system), which remarkably is used to calculate the large magnitude of an induced magnetic field in astrophysical environments such as active galactic nuclei (AGNs), microquasars, supernova remnants (SNRs), and stellar winds. We find that the magnetic field is amplified in the SNR up to the level required to justify the recent discovery of the year-scale variability in the X-ray emission of SNRs. Also, the maximum magnetic field of two and three orders higher (or two orders lower) than that of the SNR has been derived for microquasars and AGNs (or stellar winds), respectively. Moreover, making use of the exact analytical solution of the CFI, it is shown that the maximum magnetic field up to around 10{sup 8} G can be detected from a classical cold counterstreaming system after a saturation time.

  19. Relativistic mixtures of charged and uncharged particles

    SciTech Connect

    Kremer, Gilberto M.

    2014-01-14

    Mixtures of relativistic gases within the framework of Boltzmann equation are analyzed. Three systems are considered. The first one refers to a mixture of uncharged particles by using Grad’s moment method, where the relativistic mixture is characterized by the moments of the distribution functions: particle four-flows, energy-momentum tensors, and third-order moment tensors. In the second Fick’s law for a mixture of relativistic gases of non-disparate rest masses in a Schwarzschild metric are derived from an extension of Marle and McCormack model equations applied to a relativistic truncated Grad’s distribution function, where it is shown the dependence of the diffusion coefficient on the gravitational potential. The third one consists in the derivation of the relativistic laws of Ohm and Fourier for a binary mixtures of electrons with protons and electrons with photons subjected to external electromagnetic fields and in presence of gravitational fields by using the Anderson and Witting model of the Boltzmann equation.

  20. RESISTIVE MAGNETOHYDRODYNAMIC SIMULATIONS OF RELATIVISTIC MAGNETIC RECONNECTION

    SciTech Connect

    Zenitani, Seiji; Hesse, Michael; Klimas, Alex

    2010-06-20

    Resistive relativistic magnetohydrodynamic (RRMHD) simulations are applied to investigate the system evolution of relativistic magnetic reconnection. A time-split Harten-Lan-van Leer method is employed. Under a localized resistivity, the system exhibits a fast reconnection jet with an Alfvenic Lorentz factor inside a narrow Petschek-type exhaust. Various shock structures are resolved in and around the plasmoid such as the post-plasmoid vertical shocks and the 'diamond-chain' structure due to multiple shock reflections. Under a uniform resistivity, Sweet-Parker-type reconnection slowly evolves. Under a current-dependent resistivity, plasmoids are repeatedly formed in an elongated current sheet. It is concluded that the resistivity model is of critical importance for RRMHD modeling of relativistic magnetic reconnection.

  1. Resistive Magnetohydrodynamic Simulations of Relativistic Magnetic Reconnection

    NASA Technical Reports Server (NTRS)

    Zenitani, Seiji; Hesse, Michael; Klimas, Alex

    2010-01-01

    Resistive relativistic magnetohydrodynamic (RRMHD) simulations are applied to investigate the system evolution of relativistic magnetic reconnection. A time-split Harten-Lan-van Leer method is employed. Under a localized resistivity, the system exhibits a fast reconnection jet with an Alfv enic Lorentz factor inside a narrow Petschek-type exhaust. Various shock structures are resolved in and around the plasmoid such as the post-plasmoid vertical shocks and the "diamond-chain" structure due to multiple shock reflections. Under a uniform resistivity, Sweet-Parker-type reconnection slowly evolves. Under a current-dependent resistivity, plasmoids are repeatedly formed in an elongated current sheet. It is concluded that the resistivity model is of critical importance for RRMHD modeling of relativistic magnetic reconnection.

  2. Resistive Magnetohydrodynamic Simulations of Relativistic Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Zenitani, Seiji; Hesse, Michael; Klimas, Alex

    2010-06-01

    Resistive relativistic magnetohydrodynamic (RRMHD) simulations are applied to investigate the system evolution of relativistic magnetic reconnection. A time-split Harten-Lan-van Leer method is employed. Under a localized resistivity, the system exhibits a fast reconnection jet with an Alfvénic Lorentz factor inside a narrow Petschek-type exhaust. Various shock structures are resolved in and around the plasmoid such as the post-plasmoid vertical shocks and the "diamond-chain" structure due to multiple shock reflections. Under a uniform resistivity, Sweet-Parker-type reconnection slowly evolves. Under a current-dependent resistivity, plasmoids are repeatedly formed in an elongated current sheet. It is concluded that the resistivity model is of critical importance for RRMHD modeling of relativistic magnetic reconnection.

  3. Einstein Toolkit for Relativistic Astrophysics

    NASA Astrophysics Data System (ADS)

    Collaborative Effort

    2011-02-01

    The Einstein Toolkit is a collection of software components and tools for simulating and analyzing general relativistic astrophysical systems. Such systems include gravitational wave space-times, collisions of compact objects such as black holes or neutron stars, accretion onto compact objects, core collapse supernovae and Gamma-Ray Bursts. The Einstein Toolkit builds on numerous software efforts in the numerical relativity community including CactusEinstein, Whisky, and Carpet. The Einstein Toolkit currently uses the Cactus Framework as the underlying computational infrastructure that provides large-scale parallelization, general computational components, and a model for collaborative, portable code development.

  4. Relativistic Sommerfeld Low Temperature Expansion

    NASA Astrophysics Data System (ADS)

    Lourenço, O.; Dutra, M.; Delfino, A.; Sá Martins, J. S.

    We derive a relativistic Sommerfeld expansion for thermodynamic quantities in many-body fermionic systems. The expansion is used to generate the equation of state of the Walecka model and its isotherms. We find that these results are in good agreement with numerical calculations, even when the expansion is truncated at its lowest order, in the low temperature regime, defined by T/xf ≪ 1. Although the interesting region near the liquid-gas phase transition is excluded by this criterion, the expansion may still find usefulness in the study of very cold nuclear matter systems, such as neutron stars.

  5. The Relativistic Rocket

    ERIC Educational Resources Information Center

    Antippa, Adel F.

    2009-01-01

    We solve the problem of the relativistic rocket by making use of the relation between Lorentzian and Galilean velocities, as well as the laws of superposition of successive collinear Lorentz boosts in the limit of infinitesimal boosts. The solution is conceptually simple, and technically straightforward, and provides an example of a powerful…

  6. Radiation from Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Mizuno, Y.; Hardee, P.; Sol, H.; Medvedev, M.; Zhang, B.; Nordlund, A.; Frederiksen, J. T.; Fishman, G. J.; Preece, R.

    2008-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., gamma-ray bursts (GRBs), active galactic nuclei (AGNs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations of relativistic electron-ion (electron-positron) jets injected into a stationary medium show that particle acceleration occurs within the downstream jet. In the presence of relativistic jets, instabilities such as the Buneman instability, other two-streaming instability, and the Weibel (filamentation) instability create collisionless shocks, which are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The 'jitter' radiation from deflected electrons in small-scale magnetic fields has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation, a case of diffusive synchrotron radiation, may be important to understand the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  7. Relativistic quantum information and time machines

    NASA Astrophysics Data System (ADS)

    Ralph, Timothy C.; Downes, Tony G.

    2012-01-01

    Relativistic quantum information combines the informational approach to understanding and using quantum mechanical systems - quantum information - with the relativistic view of the Universe. In this introductory review we examine key results to emerge from this new field of research in physics and discuss future directions. A particularly active area recently has been the question of what happens when quantum systems interact with general relativistic closed timelike curves - effectively time machines. We discuss two different approaches that have been suggested for modelling such situations. It is argued that the approach based on matching the density operator of the quantum state between the future and past most consistently avoids the paradoxes usually associated with time travel.

  8. Relativistic spin precession in the double pulsar.

    PubMed

    Breton, Rene P; Kaspi, Victoria M; Kramer, Michael; McLaughlin, Maura A; Lyutikov, Maxim; Ransom, Scott M; Stairs, Ingrid H; Ferdman, Robert D; Camilo, Fernando; Possenti, Andrea

    2008-07-04

    The double pulsar PSR J0737-3039A/B consists of two neutron stars in a highly relativistic orbit that displays a roughly 30-second eclipse when pulsar A passes behind pulsar B. Describing this eclipse of pulsar A as due to absorption occurring in the magnetosphere of pulsar B, we successfully used a simple geometric model to characterize the observed changing eclipse morphology and to measure the relativistic precession of pulsar B's spin axis around the total orbital angular momentum. This provides a test of general relativity and alternative theories of gravity in the strong-field regime. Our measured relativistic spin precession rate of 4.77 degrees (-0 degrees .65)(+0 degrees .66) per year (68% confidence level) is consistent with that predicted by general relativity within an uncertainty of 13%.

  9. Nonaxisymmetric oscillations of differentially rotating relativistic stars

    SciTech Connect

    Passamonti, Andrea; Stavridis, Adamantios; Kokkotas, Kostas D.

    2008-01-15

    Nonaxisymmetric oscillations of differentially rotating stars are studied using both slow rotation and Cowling approximation. The equilibrium stellar models are relativistic polytropes where differential rotation is described by the relativistic j-constant rotation law. The oscillation spectrum is studied versus three main parameters: the stellar compactness M/R, the degree of differential rotation A, and the number of maximum couplings l{sub max}. It is shown that the rotational splitting of the nonaxisymmetric modes are strongly enhanced by increasing the compactness of the star and the degree of differential rotation. Finally, we investigate the relation between the fundamental quadrupole mode and the corotation band of differentially rotating stars.

  10. Relativistic and non-relativistic solitons in plasmas

    NASA Astrophysics Data System (ADS)

    Barman, Satyendra Nath

    This thesis entitled as "Relativistic and Non-relativistic Solitons in Plasmas" is the embodiment of a number of investigations related to the formation of ion-acoustic solitary waves in plasmas under various physical situations. The whole work of the thesis is devoted to the studies of solitary waves in cold and warm collisionless magnetized or unmagnetized plasmas with or without relativistic effect. To analyze the formation of solitary waves in all our models of plasmas, we have employed two established methods namely - reductive perturbation method to deduce the Korteweg-de Vries (KdV) equation, the solutions of which represent the important but near exact characteristic concepts of soliton-physics. Next, the pseudopotential method to deduce the energy integral with total nonlinearity in the coupling process for exact characteristic results of solitons has been incorporated. In Chapter 1, a brief description of plasma in nature and laboratory and its generation are outlined elegantly. The nonlinear differential equations to characterize solitary waves and the relevant but important methods of solutions have been mentioned in this chapter. The formation of solitary waves in unmagnetized and magnetized plasmas, and in relativistic plasmas has been described through mathematical entity. Applications of plasmas in different fields are also put forwarded briefly showing its importance. The study of plasmas as they naturally occur in the universe encompasses number of topics including sun's corona, solar wind, planetary magnetospheres, ionospheres, auroras, cosmic rays and radiation. The study of space weather to understand the universe, communications and the activities of weather satellites are some useful areas of space plasma physics. The surface cleaning, sterilization of food and medical appliances, killing of bacteria on various surfaces, destroying of viruses, fungi, spores and plasma coating in industrial instruments ( like computers) are some of the fields

  11. Stable discrete representation of relativistically drifting plasmas

    NASA Astrophysics Data System (ADS)

    Kirchen, M.; Lehe, R.; Godfrey, B. B.; Dornmair, I.; Jalas, S.; Peters, K.; Vay, J.-L.; Maier, A. R.

    2016-10-01

    Representing the electrodynamics of relativistically drifting particle ensembles in discrete, co-propagating Galilean coordinates enables the derivation of a Particle-In-Cell algorithm that is intrinsically free of the numerical Cherenkov instability for plasmas flowing at a uniform velocity. Application of the method is shown by modeling plasma accelerators in a Lorentz-transformed optimal frame of reference.

  12. Trans-Relativistic Particle Acceleration in Astrophysical Plasmas

    NASA Astrophysics Data System (ADS)

    Becker, Peter A.; Subramanian, P.

    2014-01-01

    Trans-relativistic particle acceleration due to Fermi interactions between charged particles and MHD waves helps to power the observed high-energy emission in AGN transients and solar flares. The trans-relativistic acceleration process is challenging to treat analytically due to the complicated momentum dependence of the momentum diffusion coefficient. For this reason, most existing analytical treatments of particle acceleration assume that the injected seed particles are already relativistic, and therefore they are not suited to study trans-relativistic acceleration. The lack of an analytical model has forced workers to rely on numerical simulations to obtain particle spectra describing the trans-relativistic case. In this work we present the first analytical solution to the global, trans-relativistic problem describing the acceleration of seed particles due to hard-sphere collisions with MHD waves. The new results include the exact solution for the steady-state Green's function resulting from the continual injection of monoenergetic seed particles with an arbitrary energy. We also introduce an approximate treatment of the trans-relativistic acceleration process based on a hybrid form for the momentum diffusion coefficient, given by the sum of the two asymptotic forms. We refer to this process as "quasi hard-sphere scattering." The main advantage of the hybrid approximation is that it allows the extension of the physical model to include (i) the effects of synchrotron and inverse-Compton losses and (ii) time dependence. The new analytical results can be used to model the trans-relativistic acceleration of particles in AGN and solar environments, and can also be used to compute the spectra of the associated synchrotron and inverse-Compton emission. Applications of both types are discussed. We highlight (i) relativistic ion acceleration in black hole accretion coronae, and (ii) the production of gyrosynchrotron microwave emission due to relativistic electron

  13. GRIM: General Relativistic Implicit Magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Chandra, Mani; Foucart, Francois; Gammie, Charles F.

    2017-02-01

    GRIM (General Relativistic Implicit Magnetohydrodynamics) evolves a covariant extended magnetohydrodynamics model derived by treating non-ideal effects as a perturbation of ideal magnetohydrodynamics. Non-ideal effects are modeled through heat conduction along magnetic field lines and a difference between the pressure parallel and perpendicular to the field lines. The model relies on an effective collisionality in the disc from wave-particle scattering and velocity-space (mirror and firehose) instabilities. GRIM, which runs on CPUs as well as on GPUs, combines time evolution and primitive variable inversion needed for conservative schemes into a single step using only the residuals of the governing equations as inputs. This enables the code to be physics agnostic as well as flexible regarding time-stepping schemes.

  14. Quasielastic scattering with the relativistic Green’s function approach

    SciTech Connect

    Meucci, Andrea; Giusti, Carlotta

    2015-05-15

    A relativistic model for quasielastic (QE) lepton-nucleus scattering is presented. The effects of final-state interactions (FSI) between the ejected nucleon and the residual nucleus are described in the relativistic Green’s function (RGF) model where FSI are consistently described with exclusive scattering using a complex optical potential. The results of the model are compared with experimental results of electron and neutrino scattering.

  15. Relativistic electrons in space.

    NASA Technical Reports Server (NTRS)

    Simnett, G. M.

    1972-01-01

    This paper reviews the current state of knowledge concerning relativistic electrons, above 0.3 MeV, in interplanetary space, as measured by detectors on board satellites operating beyond the influence of the magnetosphere. The electrons have a galactic component, which at the lower energies is subject both to solar modulation and to spasmodic 'quiet time' increases and a direct solar component correlated with flare activity. The recent measurements have established the form of the differential energy spectrum of solar flare electrons. Electrons have been detected from flares behind the visible solar disk. Relativistic electrons do not appear to leave the sun at the time of the flash phase of the flare, although there are several signatures of electron acceleration at this time. The delay is interpreted as taking place during the transport of the electrons through the lower corona.

  16. Relativistic Quantum Information Theory

    DTIC Science & Technology

    2007-11-20

    In S. Kalara and D.V. Nanopou- los, editors, Proceedings of the International Symposium on Black Holes , Membranes, Wormholes and Superstrings, pages...within the gravitational field of a black hole . We outline the general theory of how the entanglement of polarized photons changes under...relativistic Lorentz transformations, and have studied quantum information transmission in the presence of a black hole . A description of the accretion of

  17. Relativistic statistical arbitrage

    NASA Astrophysics Data System (ADS)

    Wissner-Gross, A. D.; Freer, C. E.

    2010-11-01

    Recent advances in high-frequency financial trading have made light propagation delays between geographically separated exchanges relevant. Here we show that there exist optimal locations from which to coordinate the statistical arbitrage of pairs of spacelike separated securities, and calculate a representative map of such locations on Earth. Furthermore, trading local securities along chains of such intermediate locations results in a novel econophysical effect, in which the relativistic propagation of tradable information is effectively slowed or stopped by arbitrage.

  18. Relativistic gravity gradiometry

    NASA Astrophysics Data System (ADS)

    Bini, Donato; Mashhoon, Bahram

    2016-12-01

    In general relativity, relativistic gravity gradiometry involves the measurement of the relativistic tidal matrix, which is theoretically obtained from the projection of the Riemann curvature tensor onto the orthonormal tetrad frame of an observer. The observer's 4-velocity vector defines its local temporal axis and its local spatial frame is defined by a set of three orthonormal nonrotating gyro directions. The general tidal matrix for the timelike geodesics of Kerr spacetime has been calculated by Marck [Proc. R. Soc. A 385, 431 (1983)]. We are interested in the measured components of the curvature tensor along the inclined "circular" geodesic orbit of a test mass about a slowly rotating astronomical object of mass M and angular momentum J . Therefore, we specialize Marck's results to such a "circular" orbit that is tilted with respect to the equatorial plane of the Kerr source. To linear order in J , we recover the gravitomagnetic beating phenomenon [B. Mashhoon and D. S. Theiss, Phys. Rev. Lett. 49, 1542 (1982)], where the beat frequency is the frequency of geodetic precession. The beat effect shows up as a special long-period gravitomagnetic part of the relativistic tidal matrix; moreover, the effect's short-term manifestations are contained in certain post-Newtonian secular terms. The physical interpretation of this effect is briefly discussed.

  19. Relativistic tidal disruption events

    NASA Astrophysics Data System (ADS)

    Levan, A.

    2012-12-01

    In March 2011 Swift detected an extremely luminous and long-lived outburst from the nucleus of an otherwise quiescent, low luminosity (LMC-like) galaxy. Named Swift J1644+57, its combination of high-energy luminosity (1048 ergs s-1 at peak), rapid X-ray variability (factors of >100 on timescales of 100 seconds) and luminous, rising radio emission suggested that we were witnessing the birth of a moderately relativistic jet (Γ ˜ 2 - 5), created when a star is tidally disrupted by the supermassive black hole in the centre of the galaxy. A second event, Swift J2058+0516, detected two months later, with broadly similar properties lends further weight to this interpretation. Taken together this suggests that a fraction of tidal disruption events do indeed create relativistic outflows, demonstrates their detectability, and also implies that low mass galaxies can host massive black holes. Here, I briefly outline the observational properties of these relativistic tidal flares observed last year, and their evolution over the first year since their discovery.

  20. Symmetry energy of cold nucleonic matter within a relativistic mean field model encapsulating effects of high-momentum nucleons induced by short-range correlations

    NASA Astrophysics Data System (ADS)

    Cai, Bao-Jun; Li, Bao-An

    2016-01-01

    It is well known that short-range nucleon-nucleon correlations (SRC) from the tensor components and/or the repulsive core of nuclear forces lead to a high- (low-)momentum tail (depletion) in the single-nucleon momentum distribution above (below) the nucleon Fermi surface in cold nucleonic matter. Significant progress was made recently in constraining the isospin-dependent parameters characterizing the SRC-modified single-nucleon momentum distribution in neutron-rich nucleonic matter using both experimental data and microscopic model calculations. Using the constrained single-nucleon momentum distribution in a nonlinear relativistic mean field (RMF) model, we study the equation of state (EOS) of asymmetric nucleonic matter (ANM), especially the density dependence of nuclear symmetry energy Esym(ρ ) . First, as a test of the model, the average nucleon kinetic energy extracted recently from electron-nucleus scattering experiments using a neutron-proton dominance model is well reproduced by the RMF model incorporating effects of the SRC-induced high-momentum nucleons, while it is significantly under predicted by the RMF model using a step function for the single-nucleon momentum distribution as in free Fermi gas (FFG) models. Second, consistent with earlier findings within nonrelativistic models, the kinetic symmetry energy of quasinucleons is found to be Esymkin(ρ0) =-16.94 ±13.66 MeV which is dramatically different from the prediction of Esymkin(ρ0) ≈12.5 MeV by FFG models at nuclear matter saturation density ρ0=0.16 fm-3 . Third, comparing the RMF calculations with and without the high-momentum nucleons using two sets of model parameters both reproducing identically all empirical constraints on the EOS of symmetric nuclear matter (SNM) and the symmetry energy of ANM at ρ0, the SRC-modified single-nucleon momentum distribution is found to make the Esym(ρ ) more concave around ρ0 by softening it significantly at both subsaturation and suprasaturation

  1. Magnetohydrodynamic production of relativistic jets.

    PubMed

    Meier, D L; Koide, S; Uchida, Y

    2001-01-05

    A number of astronomical systems have been discovered that generate collimated flows of plasma with velocities close to the speed of light. In all cases, the central object is probably a neutron star or black hole and is either accreting material from other stars or is in the initial violent stages of formation. Supercomputer simulations of the production of relativistic jets have been based on a magnetohydrodynamic model, in which differential rotation in the system creates a magnetic coil that simultaneously expels and pinches some of the infalling material. The model may explain the basic features of observed jets, including their speed and amount of collimation, and some of the details in the behavior and statistics of different jet-producing sources.

  2. Relativistic magnetohydrodynamics in one dimension

    NASA Astrophysics Data System (ADS)

    Lyutikov, Maxim; Hadden, Samuel

    2012-02-01

    We derive a number of solutions for one-dimensional dynamics of relativistic magnetized plasma that can be used as benchmark estimates in relativistic hydrodynamic and magnetohydrodynamic numerical codes. First, we analyze the properties of simple waves of fast modes propagating orthogonally to the magnetic field in relativistically hot plasma. The magnetic and kinetic pressures obey different equations of state, so that the system behaves as a mixture of gases with different polytropic indices. We find the self-similar solutions for the expansion of hot strongly magnetized plasma into vacuum. Second, we derive linear hodograph and Darboux equations for the relativistic Khalatnikov potential, which describe arbitrary one-dimensional isentropic relativistic motion of cold magnetized plasma and find their general and particular solutions. The obtained hodograph and Darboux equations are very powerful: A system of highly nonlinear, relativistic, time-dependent equations describing arbitrary (not necessarily self-similar) dynamics of highly magnetized plasma reduces to a single linear differential equation.

  3. Relativistic magnetohydrodynamics in one dimension.

    PubMed

    Lyutikov, Maxim; Hadden, Samuel

    2012-02-01

    We derive a number of solutions for one-dimensional dynamics of relativistic magnetized plasma that can be used as benchmark estimates in relativistic hydrodynamic and magnetohydrodynamic numerical codes. First, we analyze the properties of simple waves of fast modes propagating orthogonally to the magnetic field in relativistically hot plasma. The magnetic and kinetic pressures obey different equations of state, so that the system behaves as a mixture of gases with different polytropic indices. We find the self-similar solutions for the expansion of hot strongly magnetized plasma into vacuum. Second, we derive linear hodograph and Darboux equations for the relativistic Khalatnikov potential, which describe arbitrary one-dimensional isentropic relativistic motion of cold magnetized plasma and find their general and particular solutions. The obtained hodograph and Darboux equations are very powerful: A system of highly nonlinear, relativistic, time-dependent equations describing arbitrary (not necessarily self-similar) dynamics of highly magnetized plasma reduces to a single linear differential equation.

  4. Relativistic effects on x-ray structure factors

    NASA Astrophysics Data System (ADS)

    Batke, Kilian; Eickerling, Georg

    2016-04-01

    Today, combined experimental and theoretical charge density studies based on quantum chemical calculations and x-ray diffraction experiments allow for the investigation of the topology of the electron density at subatomic resolution. When studying compounds containing transition metal elements, relativistic effects need to be adequately taken into account not only in quantum chemical calculations of the total electron density ρ ({r}), but also for the atomic scattering factors employed to extract ρ ({r}) from experimental x-ray diffraction data. In the present study, we investigate the magnitude of relativistic effects on x-ray structure factors and for this purpose {F}({{r}}*) have been calculated for the model systems M(C2H2) (M = Ni, Pd, Pt) from four-component molecular wave functions. Relativistic effects are then discussed by a comparison to structure factors obtained from a non-relativistic reference and different quasi-relativistic approximations. We show, that the overall effects of relativity on the structure factors on average amount to 0.81%, 1.51% and 2.78% for the three model systems under investigation, but that for individual reflections or reflection series the effects can be orders of magnitude larger. Employing the quasi-relativistic Douglas-Kroll-Hess second order or the zeroth order regular approximation Hamiltonian takes these effects into account to a large extend, reducing the differences between the (quasi-)relativistic and the non-relativistic result by one order of magnitude. In order to further determine the experimental significance of the results, the magnitude of the relativistic effects is compared to the changes of the model structure factor data when charge transfer and chemical bonding is taken into account by a multipolar expansion of {F}({{r}}*).

  5. Consistent resolution of some relativistic quantum paradoxes

    SciTech Connect

    Griffiths, Robert B.

    2002-12-01

    A relativistic version of the (consistent or decoherent) histories approach to quantum theory is developed on the basis of earlier work by Hartle, and used to discuss relativistic forms of the paradoxes of spherical wave packet collapse, Bohm's formulation of the Einstein-Podolsky-Rosen paradox, and Hardy's paradox. It is argued that wave function collapse is not needed for introducing probabilities into relativistic quantum mechanics, and in any case should never be thought of as a physical process. Alternative approaches to stochastic time dependence can be used to construct a physical picture of the measurement process that is less misleading than collapse models. In particular, one can employ a coarse-grained but fully quantum-mechanical description in which particles move along trajectories, with behavior under Lorentz transformations the same as in classical relativistic physics, and detectors are triggered by particles reaching them along such trajectories. States entangled between spacelike separate regions are also legitimate quantum descriptions, and can be consistently handled by the formalism presented here. The paradoxes in question arise because of using modes of reasoning which, while correct for classical physics, are inconsistent with the mathematical structure of quantum theory, and are resolved (or tamed) by using a proper quantum analysis. In particular, there is no need to invoke, nor any evidence for, mysterious long-range superluminal influences, and thus no incompatibility, at least from this source, between relativity theory and quantum mechanics.

  6. Relativistic quantum corrections to laser wakefield acceleration.

    PubMed

    Zhu, Jun; Ji, Peiyong

    2010-03-01

    The influence of quantum effects on the interaction of intense laser fields with plasmas is investigated by using a hydrodynamic model based on the framework of the relativistic quantum theory. Starting from the covariant Wigner function and Dirac equation, the hydrodynamic equations for relativistic quantum plasmas are derived. Based on the relativistic quantum hydrodynamic equations and Poisson equation, the perturbations of electron number densities and the electric field of the laser wakefield containing quantum effects are deduced. It is found that the corrections generated by the quantum effects to the perturbations of electron number densities and the accelerating field of the laser wakefield cannot be neglected. Quantum effects will suppress laser wakefields, which is a classical manifestation of quantum decoherence effects, however, the contribution of quantum effects for the laser wakefield correction will been partially counteracted by the relativistic effects. The analysis also reveals that quantum effects enlarge the effective frequencies of plasmas, and the quantum behavior appears a screening effect for plasma electrons.

  7. Relativistic quantum corrections to laser wakefield acceleration

    SciTech Connect

    Zhu Jun; Ji Peiyong

    2010-03-15

    The influence of quantum effects on the interaction of intense laser fields with plasmas is investigated by using a hydrodynamic model based on the framework of the relativistic quantum theory. Starting from the covariant Wigner function and Dirac equation, the hydrodynamic equations for relativistic quantum plasmas are derived. Based on the relativistic quantum hydrodynamic equations and Poisson equation, the perturbations of electron number densities and the electric field of the laser wakefield containing quantum effects are deduced. It is found that the corrections generated by the quantum effects to the perturbations of electron number densities and the accelerating field of the laser wakefield cannot be neglected. Quantum effects will suppress laser wakefields, which is a classical manifestation of quantum decoherence effects, however, the contribution of quantum effects for the laser wakefield correction will been partially counteracted by the relativistic effects. The analysis also reveals that quantum effects enlarge the effective frequencies of plasmas, and the quantum behavior appears a screening effect for plasma electrons.

  8. Diffusion processes in general relativistic radiating spheres

    SciTech Connect

    Barreto, W.; Herrera, L.; Santos, N.O.; Universidad Central de Venezuela, Caracas; Observatorio Nacional do Brasil, Rio de Janeiro )

    1989-09-01

    The influence of diffusion processes on the dynamics of general relativistic radiating spheres is systematically studied by means of two examples. Differences between the streaming-out limit and the diffusion limit are exhibited, for both models, through the evolution curves of dynamical variables. In particular it is shown the Bondi mass decreases, for both models, in the diffusion limit as compared with its value at the streaming-out regime. 15 refs.

  9. Radiative decays of double heavy baryons in a relativistic constituent three-quark model including hyperfine mixing effects

    SciTech Connect

    Branz, Tanja; Faessler, Amand; Gutsche, Thomas; Lyubovitskij, Valery E.; Oexl, Bettina; Ivanov, Mikhail A.; Koerner, Juergen G.

    2010-06-01

    We study flavor-conserving radiative decays of double-heavy baryons using a manifestly Lorentz covariant constituent three-quark model. Decay rates are calculated and compared to each other in the full theory, keeping masses finite, and also in the heavy quark limit. We discuss in some detail hyperfine mixing effects.

  10. Relativistic quantum information

    NASA Astrophysics Data System (ADS)

    Mann, R. B.; Ralph, T. C.

    2012-11-01

    Over the past few years, a new field of high research intensity has emerged that blends together concepts from gravitational physics and quantum computing. Known as relativistic quantum information, or RQI, the field aims to understand the relationship between special and general relativity and quantum information. Since the original discoveries of Hawking radiation and the Unruh effect, it has been known that incorporating the concepts of quantum theory into relativistic settings can produce new and surprising effects. However it is only in recent years that it has become appreciated that the basic concepts involved in quantum information science undergo significant revision in relativistic settings, and that new phenomena arise when quantum entanglement is combined with relativity. A number of examples illustrate that point. Quantum teleportation fidelity is affected between observers in uniform relative acceleration. Entanglement is an observer-dependent property that is degraded from the perspective of accelerated observers moving in flat spacetime. Entanglement can also be extracted from the vacuum of relativistic quantum field theories, and used to distinguish peculiar motion from cosmological expansion. The new quantum information-theoretic framework of quantum channels in terms of completely positive maps and operator algebras now provides powerful tools for studying matters of causality and information flow in quantum field theory in curved spacetimes. This focus issue provides a sample of the state of the art in research in RQI. Some of the articles in this issue review the subject while others provide interesting new results that will stimulate further research. What makes the subject all the more exciting is that it is beginning to enter the stage at which actual experiments can be contemplated, and some of the articles appearing in this issue discuss some of these exciting new developments. The subject of RQI pulls together concepts and ideas from

  11. Newtonian and relativistic cosmologies

    NASA Astrophysics Data System (ADS)

    Green, Stephen R.; Wald, Robert M.

    2012-03-01

    Cosmological N-body simulations are now being performed using Newtonian gravity on scales larger than the Hubble radius. It is well known that a uniformly expanding, homogeneous ball of dust in Newtonian gravity satisfies the same equations as arise in relativistic Friedmann-Lemaître-Robinson-Walker cosmology, and it also is known that a correspondence between Newtonian and relativistic dust cosmologies continues to hold in linearized perturbation theory in the marginally bound/spatially flat case. Nevertheless, it is far from obvious that Newtonian gravity can provide a good global description of an inhomogeneous cosmology when there is significant nonlinear dynamical behavior at small scales. We investigate this issue in the light of a perturbative framework that we have recently developed [S. R. Green and R. M. Wald, Phys. Rev. DPRVDAQ1550-7998 83, 084020 (2011).10.1103/PhysRevD.83.084020], which allows for such nonlinearity at small scales. We propose a relatively straightforward dictionary—which is exact at the linearized level—that maps Newtonian dust cosmologies into general relativistic dust cosmologies, and we use our “ordering scheme” to determine the degree to which the resulting metric and matter distribution solve Einstein’s equation. We find that, within our ordering scheme, Einstein’s equation fails to hold at “order 1” at small scales and at “order ɛ” at large scales. We then find the additional corrections to the metric and matter distribution needed to satisfy Einstein’s equation to these orders. While these corrections are of some interest in their own right, our main purpose in calculating them is that their smallness should provide a criterion for the validity of the original dictionary (as well as simplified versions of this dictionary). We expect that, in realistic Newtonian cosmologies, these additional corrections will be very small; if so, this should provide strong justification for the use of Newtonian simulations

  12. Ultrabaric relativistic superfluids

    NASA Astrophysics Data System (ADS)

    Papini, G.; Weiss, M.

    1985-09-01

    Ultrabaric superfluid solutions are obtained for Einstein's equations to examine the possibility of the existence of superluminal sound speeds. The discussion is restricted only by requiring the energy-momentum tensor and the equation of state of matter to be represented by full relativistic equations. Only a few universes are known to satisfy the conditions, and those exhibit tension and are inflationary. Superluminal sound velocities are shown, therefore, to be possible for the interior Schwarzchild metric, which has been used to explain the red shift of quasars, and the Stephiani solution (1967). The latter indicates repeated transitions between superluminal and subliminal sound velocities in the hyperbaric superfluid of the early universe.

  13. External Shock Model for the Large-Scale, Relativistic X-Ray Jets from the Microquasar XTE J1550-564

    NASA Astrophysics Data System (ADS)

    Wang, X. Y.; Dai, Z. G.; Lu, T.

    2003-07-01

    Large-scale, decelerating, relativistic X-ray jets due to material ejected from the black-hole candidate X-ray transient and microquasar XTE J1550-564 have been recently discovered with Chandra by Corbel and coworkers. We find that the dynamical evolution of the eastern jet at the late time is consistent with the well-known Sedov evolutionary phase. A transrelativistic external shock dynamic model by analogy with the evolution of gamma-ray burst remnants is shown to be able to fit the observation data reasonably well. The inferred interstellar medium density around the source is well below the canonical value nISM~1cm-3. We find that the emission from the continuously shocked interstellar medium (forward shock region) decays too slowly to be a viable mechanism for the eastern X-ray jet. However, the rapidly fading X-ray emission can be interpreted as synchrotron radiation from the nonthermal electrons in the adiabatically expanding ejecta. These electrons were accelerated by the reverse shock (moving back into the ejecta), which becomes important when the inertia of the swept external matter leads to an appreciable slowing down of the original ejecta. To ensure the dominance of the emission from the shocked ejecta over that from the forward shock region during the period of the observations, the magnetic field and electron energy fractions in the forward shock region must be far below equipartition. Future continuous, follow-up multiwavelength observations of new ejection events from microquasars up to the significant deceleration phase should provide more valuable insight into the nature of the interaction between the jets and external medium.

  14. Afterglows of Mildly Relativistic Supernovae: Baryon Loaded Blastwaves

    NASA Astrophysics Data System (ADS)

    Chakraborti, Sayan; Ray, Alak

    2011-08-01

    Relativistic supernovae have been discovered until recently only through their association with long duration Gamma Ray Bursts (GRB). As the ejecta mass is negligible in comparison to the swept up mass, the blastwaves of such explosions are well described by the Blandford-McKee (in the ultra relativistic regime) and Sedov-Taylor (in the non-relativistic regime) solutions during their afterglows. However, the recent discovery of the relativistic supernova SN 2009bb, without a detected GRB, has indicated the possibility of highly baryon loaded mildly relativistic outflows which remains in nearly free expansion phase during the radio afterglow. In this work, we consider the dynamics and emission from a massive, relativistic shell, launched by a Central Engine Driven EXplosion (CEDEX), decelerating adiabatically due to its collision with the pre-explosion circumstellar wind profile of the progenitor. We show that this model explains the observed radio evolution of the prototypical SN 2009bb and demonstrate that SN 2009bb had a highly baryon loaded, mildly relativistic outflow.

  15. Relativistic Effects on Chemical Properties.

    ERIC Educational Resources Information Center

    McKelvey, Donald R.

    1983-01-01

    Discusses how anomalous chemical properties may be explained by considering relativistic effects. Traces development of the relativistic wave equation (Dirac equation) starting with the Borh treatment of the hydrogen atom and discusses major consequences of the Dirac equation. Suggests that these topics receive greater attention in the…

  16. Chiral phase transition in relativistic heavy-ion collisions with weak magnetic fields: Ring diagrams in the linear sigma model

    SciTech Connect

    Ayala, Alejandro; Bashir, Adnan; Raya, Alfredo; Sanchez, Angel

    2009-08-01

    Working in the linear sigma model with quarks, we compute the finite-temperature effective potential in the presence of a weak magnetic field, including the contribution of the pion ring diagrams and considering the sigma as a classical field. In the approximation where the pion self-energy is computed perturbatively, we show that there is a region of the parameter space where the effect of the ring diagrams is to preclude the phase transition from happening. Inclusion of the magnetic field has small effects that however become more important as the system evolves to the lowest temperatures allowed in the analysis.

  17. Crystallization and collapse in relativistically degenerate matter

    SciTech Connect

    Akbari-Moghanjoughi, M.

    2013-04-15

    In this paper, it is shown that a mass density limit exists beyond which the relativistically degenerate matter would crystallize. The mass density limit, found here, is quite analogous to the mass limit predicted by Chandrasekhar for a type of compact stars called white dwarfs (M{sub Ch} Asymptotically-Equal-To 1.43 Solar Mass). In this study, the old problem of white dwarf core collapse, which has been previously investigated by Chandrasekhar using hydrostatic stability criteria, is revisited in the framework of the quantum hydrodynamics model by inspection of the charge screening at atomic scales in the relativistic degeneracy plasma regime taking into account the relativistic Fermi-Dirac statistics and electron interaction features such as the quantum statistical pressure, Coulomb attraction, electron exchange-correlation, and quantum recoil effects. It is revealed that the existence of ion correlation and crystallization of matter in the relativistically degenerate plasma puts a critical mass density limit on white dwarf core region. It is shown that a white dwarf star with a core mass density beyond this critical limit can undergo the spontaneous core collapse (SCC). The SCC phenomenon, which is dominantly caused by the electron quantum recoil effect (interference and localization of the electron wave function), leads to a new exotic state of matter. In such exotic state, the relativistic electron degeneracy can lead the white dwarf crystallized core to undergo the nuclear fusion and an ultimate supernova by means of the volume reduction (due to the enhanced compressibility) and huge energy release (due to the increase in cohesive energy), under the stars huge inward gravitational pressure. Moreover, it is found that the SCC phenomenon is significantly affected by the core composition (it is more probable for heavier plasmas). The critical mass density found here is consistent with the values calculated for core density of typical white dwarf stars.

  18. Crystallization and collapse in relativistically degenerate matter

    NASA Astrophysics Data System (ADS)

    Akbari-Moghanjoughi, M.

    2013-04-01

    In this paper, it is shown that a mass density limit exists beyond which the relativistically degenerate matter would crystallize. The mass density limit, found here, is quite analogous to the mass limit predicted by Chandrasekhar for a type of compact stars called white dwarfs (MCh≃1.43 Solar Mass). In this study, the old problem of white dwarf core collapse, which has been previously investigated by Chandrasekhar using hydrostatic stability criteria, is revisited in the framework of the quantum hydrodynamics model by inspection of the charge screening at atomic scales in the relativistic degeneracy plasma regime taking into account the relativistic Fermi-Dirac statistics and electron interaction features such as the quantum statistical pressure, Coulomb attraction, electron exchange-correlation, and quantum recoil effects. It is revealed that the existence of ion correlation and crystallization of matter in the relativistically degenerate plasma puts a critical mass density limit on white dwarf core region. It is shown that a white dwarf star with a core mass density beyond this critical limit can undergo the spontaneous core collapse (SCC). The SCC phenomenon, which is dominantly caused by the electron quantum recoil effect (interference and localization of the electron wave function), leads to a new exotic state of matter. In such exotic state, the relativistic electron degeneracy can lead the white dwarf crystallized core to undergo the nuclear fusion and an ultimate supernova by means of the volume reduction (due to the enhanced compressibility) and huge energy release (due to the increase in cohesive energy), under the stars huge inward gravitational pressure. Moreover, it is found that the SCC phenomenon is significantly affected by the core composition (it is more probable for heavier plasmas). The critical mass density found here is consistent with the values calculated for core density of typical white dwarf stars.

  19. A class of regular and well behaved charge analogue of Kuchowicz's relativistic super-dense star model

    NASA Astrophysics Data System (ADS)

    Gupta, Y. K.; Maurya, Sunil Kumar

    2011-04-01

    We obtain a well behaved class of charge analogues of neutral superdense star model due to Kuchowicz, by using a particular electric field, which involves a parameter K and vanishes when K=0. The members of this class are seen to satisfy the various physical conditions e.g. c 2 ρ≥3 p≥0, dp/ dr<0, dρ/ dr<0, along with the velocity of sound, dp/ c 2 dρ<1 and the adiabatic index (( p+ c 2 ρ)/ p)( dp/( c 2 dρ))>1, for the interval 0< K<1 with the maximum mass 6.8374 M Θ and the radius 23.4679 km with the central red shift Z c =0.75364. In the interval, 0< K≤0.1179, the velocity of sound and the ratio p/ c 2 ρ are found monotonically decreasing towards the pressure free interface, which presents a relevant model for massive star like Neutron star or pulsar with the maximum mass as 4.1474 M Θ and the radius 20.5481 km with the central red shift Z c =0.6654.

  20. Directed flow in relativistic heavy-ion collisions within the PHSD transport approach and 3FD hydrodynamical model

    NASA Astrophysics Data System (ADS)

    Konchakovski, V. P.; Cassing, W.; Ivanov, Y. B.; Toneev, V. D.

    2015-05-01

    We analyze recent STAR data for the directed flow of protons, antiprotons and charged pions obtained within the beam energy scan program within the Parton-Hadron-String- Dynamics (PHSD) transport model and the 3-Fluid hydroDynamics (3FD) approach. We clarify the role of partonic degrees of freedom in the kinetic PHSD approach. The PHSD results, simulating a partonic phase and its coexistence with a hadronic one, are roughly consistent with data. The hydrodynamic results are obtained for two EoS, a pure hadronic EoS and an EoS with a crossover type transition. The latter case is favored by the STAR experimental data. Special attention is paid to the description of antiproton directed flow based on the balance of pp\\bar annihilation and the inverse processes for Np\\bar pair creation from multi-meson interactions. Generally, a semi-qualitative agreement between the measured data and model results supports the idea of a crossover type quark-hadron transition which softens the nuclear EoS.

  1. Robust relativistic bit commitment

    NASA Astrophysics Data System (ADS)

    Chakraborty, Kaushik; Chailloux, André; Leverrier, Anthony

    2016-12-01

    Relativistic cryptography exploits the fact that no information can travel faster than the speed of light in order to obtain security guarantees that cannot be achieved from the laws of quantum mechanics alone. Recently, Lunghi et al. [Phys. Rev. Lett. 115, 030502 (2015), 10.1103/PhysRevLett.115.030502] presented a bit-commitment scheme where each party uses two agents that exchange classical information in a synchronized fashion, and that is both hiding and binding. A caveat is that the commitment time is intrinsically limited by the spatial configuration of the players, and increasing this time requires the agents to exchange messages during the whole duration of the protocol. While such a solution remains computationally attractive, its practicality is severely limited in realistic settings since all communication must remain perfectly synchronized at all times. In this work, we introduce a robust protocol for relativistic bit commitment that tolerates failures of the classical communication network. This is done by adding a third agent to both parties. Our scheme provides a quadratic improvement in terms of expected sustain time compared with the original protocol, while retaining the same level of security.

  2. Relativistic harmonic oscillator revisited

    SciTech Connect

    Bars, Itzhak

    2009-02-15

    The familiar Fock space commonly used to describe the relativistic harmonic oscillator, for example, as part of string theory, is insufficient to describe all the states of the relativistic oscillator. We find that there are three different vacua leading to three disconnected Fock sectors, all constructed with the same creation-annihilation operators. These have different spacetime geometric properties as well as different algebraic symmetry properties or different quantum numbers. Two of these Fock spaces include negative norm ghosts (as in string theory), while the third one is completely free of ghosts. We discuss a gauge symmetry in a worldline theory approach that supplies appropriate constraints to remove all the ghosts from all Fock sectors of the single oscillator. The resulting ghost-free quantum spectrum in d+1 dimensions is then classified in unitary representations of the Lorentz group SO(d,1). Moreover, all states of the single oscillator put together make up a single infinite dimensional unitary representation of a hidden global symmetry SU(d,1), whose Casimir eigenvalues are computed. Possible applications of these new results in string theory and other areas of physics and mathematics are briefly mentioned.

  3. Mass spectrum of vector mesons and their leptonic-decay constants in the bilocal relativistic potential model

    SciTech Connect

    Ablakulov, Kh. Narzikulov, Z.

    2015-01-15

    A phenomenological model is developed in terms of bilocal meson fields in order to describe a vector meson and its leptonic decays. A new Salpeter equation for this particle and the Schwinger-Dyson equation allowing for the presence of an arbitrary potential and for a modification associated with the renormalization of the quark (antiquark ) wave function within the meson are given. An expression for the constant of the leptonic decay of the charged rho meson is obtained from an analysis of the decay process τ → ρν via parametrizing in it the hadronization of intermediate charged weak W bosons into a bilocal vector meson. The potential is chosen in the form of the sum of harmonic-oscillator and Coulomb potentials, and the respective boundary-value problem is formulated. It is shown that the solutions to this problem describe both the mass spectrum of vector mesons and their leptonic-decay constants.

  4. Effects of retardation in relativistic equations with confining interaction

    NASA Technical Reports Server (NTRS)

    Maung, Khin Maung; Kahana, David E.; Norbury, John W.

    1992-01-01

    A method has been developed for solving two body relativistic bound state equations in momentum space with a confining interaction. A total of six different three dimensional reductions of the Bethe-Salpeter equations are studied with particular emphasis placed on the competing roles of relativistic kinematics and retardation. The results indicate that these two effects counteract each other and this sheds some light on why nonrelativistic models of meson spectroscopy have been quite successful.

  5. Radiation reaction in a system of relativistic gravitating particles

    NASA Astrophysics Data System (ADS)

    Galtsov, D. V.

    A Lorentz-covariant approach is developed to the description of electromagnetic and gravitational radiation in general relativity. A model of a relativistic system of gravitating point particles is constructed in which energy losses can be interpreted in terms of radiation-reaction forces. These forces are applied not only to the point particles but also to fields generated by these particles in the near zone. It is concluded that radiation friction in a system of relativistic gravitating particles is collective in character.

  6. The relation between relativistic and non-relativistic continuum thermodynamics

    NASA Astrophysics Data System (ADS)

    Schellstede, G. O.; von Borzeszkowski, H.-H.; Chrobok, T.; Muschik, W.

    2014-01-01

    We consider the relativistic theory of irreversible processes with the aim to answer the following questions: (1) Under which conditions is this theory a relativistic generalization of the non-relativistic theory of irreversible processes (in particular, this implies to ask for the conditions under which the first law of thermodynamics can be recovered from the relativistic conservation law of total energy), and (2) how do the relativistic corrections look like? To this end, we perform a low-energy approximation for the balance equations underlying the theory, i.e., for the balances of the particle number, the energy-momentum and the entropy. It is shown that, going up to the 3rd order in the expansion series of the balances, the non-relativistic theory can be derived when one assumes that the 4-current of the particle flow is purely convective and the product of the 3-dimensional acceleration and velocity is equal to zero. Afterwards, the higher-order terms are discussed. Since our discussion mainly makes use of those balance equations that lie on the basis of most versions of continuum thermodynamics, the results do not only refer to early TIP presented by Eckart (Phys Rev 58:919, 1940) and Landau and Lifshitz (Fluid mechanics. Pergamon Press, Oxford, 1940), but also to its extended and/or general-relativistic versions.

  7. Finite nucleus effects on relativistic energy corrections

    NASA Technical Reports Server (NTRS)

    Dyall, Kenneth G.; Faegri, Knut, Jr.

    1993-01-01

    The effect of using a finite nucleus model in quantum-chemical calculations is examined. Relativistic corrections from the first order Foldy-Wouthuysen terms are affected indirectly by the change in wavefunction, but also directly as a result of revised expressions for the Darwin and spin-orbit terms due to the change in nuclear potential. A calculation for the Rn atom indicates that the mass-velocity and Darwin corrections are much more sensitive to the finite nucleus than the non-relativistic total energy, but that the total contribution for these two terms is quite stable provided the revised form of the Darwin term is used. The spin-orbit interaction is not greatly affected by the choice of nuclear model.

  8. Relativistic Fluid Dynamics: Physics for Many Different Scales

    NASA Astrophysics Data System (ADS)

    Andersson, Nils; Comer, Gregory L.

    2007-12-01

    The relativistic fluid is a highly successful model used to describe the dynamics of many-particle, relativistic systems. It takes as input basic physics from microscopic scales and yields as output predictions of bulk, macroscopic motion. By inverting the process, an understanding of bulk features can lead to insight into physics on the microscopic scale. Relativistic fluids have been used to model systems as “small” as heavy ions in collisions, and as large as the Universe itself, with “intermediate” sized objects like neutron stars being considered along the way. The purpose of this review is to discuss the mathematical and theoretical physics underpinnings of the relativistic (multiple) fluid model. We focus on the variational principle approach championed by Brandon Carter and his collaborators, in which a crucial element is to distinguish the momenta that are conjugate to the particle number density currents. This approach differs from the “standard” text-book derivation of the equations of motion from the divergence of the stress-energy tensor in that one explicitly obtains the relativistic Euler equation as an “integrability” condition on the relativistic vorticity. We discuss the conservation laws and the equations of motion in detail, and provide a number of (in our opinion) interesting and relevant applications of the general theory.

  9. Femtoscopy in Relativistic Heavy Ion Collisions

    SciTech Connect

    Lisa, M; Pratt, S; Soltz, R A; Wiedemann, U

    2005-07-29

    Analyses of two-particle correlations have provided the chief means for determining spatio-temporal characteristics of relativistic heavy ion collisions. We discuss the theoretical formalism behind these studies and the experimental methods used in carrying them out. Recent results from RHIC are put into context in a systematic review of correlation measurements performed over the past two decades. The current understanding of these results are discussed in terms of model comparisons and overall trends.

  10. An extended relativistic quantum oscillator for ? particles

    NASA Astrophysics Data System (ADS)

    Nedjadi, Y.; Ait-Tahar, S.; Barrett, R. C.

    1998-04-01

    We introduce the extended Duffin-Kemmer-Petiau (DKP) oscillator obtained by combining two relativistic quantum oscillator models. In a study analogous to Kukulin, Loyola and Moshinsky's work on extended Dirac oscillators, we investigate whether this extended version has oscillator shells controllably independent from the spin-orbit coupling. This extended DKP oscillator is found to be exactly solvable for natural parity states. We calculate and discuss both the natural- and unnatural-parity eigenspectra of its spin-1 representation.

  11. Photodetachment of relativistic ions

    SciTech Connect

    Donahue, J.B.; Gram, P.A.M.; Hamm, M.E.; Hamm, R.W.; Bryant, H.C.; Butterfield, K.B.; Clark, D.A.; Frost, C.A.; Smith, W.W.

    1980-01-01

    A series of fundamental laser ion beam experiments has been made feasible by the high-quality, relativistic (..beta.. = 0.842) H/sup -/ ion beam available at the Clinton P. Anderson Meson Physics Facility (LAMPF). The relatavistic Doppler shift of the light from an ordinary ultraviolet laser provides what is, in effect, a continuously tunable vacuum-ultraviolet laser in the rest frame of the moving ions. The Lorentz transformation of a modest laboratory magnetic field provides an electric field of several megavolts/centimeter. The latest results of photo-detachment work with H/sup -/ beams and our spectroscopic work with H/sup 0/ beams are presented. Plans for future work are discussed.

  12. Processes in relativistic plasmas

    NASA Technical Reports Server (NTRS)

    Gould, R. J.

    1982-01-01

    The establishment and maintenance of a Boltzmann distribution in particle kinetic energies is investigated for a plasma with theta = KTe/mc-squared much greater than unity, where m is the electron mass. It is shown that thermalization of the electron gas by binary collisions is not sufficiently effective to maintain the equilibrium distribution when other processes that perturb the equilibrium are taken into account. Electron-positron pair production in electron-electron and electron-ion collisions, and perturbations of a Boltzmann distribution by nonthermal processes are evaluated. Thermalization by means of other mechanisms, such as interaction with plasma waves is discussed, and the opacity of a relativistic plasma is computed for Compton scattering, pair production in the fields of electrons and ions, inverse bremsstrahlung, and synchrotron self-absorption.

  13. Scaling of Magnetic Reconnection in Relativistic Collisionless Pair Plasmas

    NASA Technical Reports Server (NTRS)

    Liu, Yi-Hsin; Guo, Fan; Daughton, William; Li, Hui; Hesse, Michael

    2015-01-01

    Using fully kinetic simulations, we study the scaling of the inflow speed of collisionless magnetic reconnection in electron-positron plasmas from the non-relativistic to ultra-relativistic limit. In the anti-parallel configuration, the inflow speed increases with the upstream magnetization parameter sigma and approaches the speed of light when sigma is greater than O(100), leading to an enhanced reconnection rate. In all regimes, the divergence of the pressure tensor is the dominant term responsible for breaking the frozen-in condition at the x-line. The observed scaling agrees well with a simple model that accounts for the Lorentz contraction of the plasma passing through the diffusion region. The results demonstrate that the aspect ratio of the diffusion region, modified by the compression factor of proper density, remains approximately 0.1 in both the non-relativistic and relativistic limits.

  14. Some problems in relativistic thermodynamics

    SciTech Connect

    Veitsman, E. V.

    2007-11-15

    The relativistic equations of state for ideal and real gases, as well as for various interface regions, have been derived. These dependences help to eliminate some controversies in the relativistic thermodynamics based on the special theory of relativity. It is shown, in particular, that the temperature of system whose velocity tends to the velocity of light in vacuum varies in accordance with the Ott law T = T{sub 0}/{radical}1 - v{sup 2}/c{sup 2}. Relativistic dependences for heat and mass transfer, for Ohm's law, and for a viscous flow of a liquid have also been derived.

  15. Mixing of relativistic ideal gases with relative relativistic velocities

    NASA Astrophysics Data System (ADS)

    Gonzalez-Narvaez, R. E.; Ares de Parga, A. M.; Ares de Parga, G.

    2017-01-01

    The Redefined Relativistic Thermodynamics is tested by means of mixing two ideal gases at different temperatures and distinct velocities. The conservation of the 4-vector energy-momentum leads to a tremendous increment of the temperature. This phenomenon can be used in order to describe the heating of a cold clump with shocked jets material. A prediction for improving the ignition of a Tokamak is proposed. The compatibility of the Redefined Relativistic Thermodynamics with the Thermodynamical Field Theory is analyzed.

  16. Fluid dynamical description of relativistic nuclear collisions

    NASA Technical Reports Server (NTRS)

    Nix, J. R.; Strottman, D.

    1982-01-01

    On the basis of both a conventional relativistic nuclear fluid dynamic model and a two fluid generalization that takes into account the interpenetration of the target and projectile upon contact, collisions between heavy nuclei moving at relativistic speeds are calculated. This is done by solving the relevant equations of motion numerically in three spatial dimensions by use of particle in cell finite difference computing techniques. The effect of incorporating a density isomer, or quasistable state, in the nuclear equation of state at three times normal nuclear density, and the effect of doubling the nuclear compressibility coefficient are studied. For the reaction 20Ne + 238U at a laboratory bombarding energy per nucleon of 393 MeV, the calculated distributions in energy and angle of outgoing charged particles are compared with recent experimental data both integrated over all impact parameters and for nearly central collisions.

  17. Dudley's dilemma: Magnetic moments in relativistic theories

    NASA Astrophysics Data System (ADS)

    McNeil, J. A.

    1986-10-01

    In 1975 L. Dudley Miller showed how the basic phenomenology of the major shell and spin-orbit splittings constrained the relativistic scalar/vector structure model to values of the potentials incompatible with the observed magnetic moments of nuclei one nucleon away from closed shell [1]. In this talk the resolution of this problem is presented from three different perspectives. First a self-consistent Landau-Migdal approach is used to define the single particle isoscalar current in infinite nuclear matter. The constraint of self-consistency provides a vector suppression factor to the single particle current which returns the current to its nonrelativistic form and resolves the problem. The same suppression factor is shown to follow as well from either a consideration of gauge invariance or (equivalently) the relativistic random phase approximation. Local density approximation calculations of isoscalar magnetic moments of nuclei one nucleon away from closed shell recover the Schmidt values, thus resolving this longstanding problem.

  18. Relativistic Astrophysics in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Reynolds, C.

    2014-07-01

    X-ray spectroscopy and timing with XMM-Newton have given us an unprecedented view of general relativistic physics in the immediate vicinity of accreting supermassive black holes. In addition to firmly establishing the existence of black holes and allowing us to constrain their spin, we are now detecting reverberation effects from the innermost disk that will ultimately allow us to map the location of the enigmatic X-ray source. In this review talk, I shall begin by describing current status of black hole spin measurements and the tantalizing evidence for a mass dependence to the spin distribution. Building on from the previous talk, I shall then describe the general relativistic modeling of the detected reverberation delays as a means to map out the geometry of both the X-ray source and the inner accretion disk. I shall conclude by discussing the promise of ATHENA for these studies.

  19. Relativistic Magnetic Reconnection in the Laboratory

    NASA Astrophysics Data System (ADS)

    Krushelnick, Karl; Raymond, Anthony; Dong, Cf; McKelvey, A.; Zulick, C.; Alexander, N.; Bhattacharjee, A.; Campbell, Pt; Chen, H.; Chvykov, V.; Del Rio, E.; Fitzsimmons, P.; Fox, W.; Hou, Bx; Maksimchuk, A.; Mileham, C.; Nees, J.; Nilson, Pm; Stoekl, C.; Thomas, Agr; Wei, Ms; Yanovsky, V.; Willingale, L.

    2016-10-01

    Magnetic reconnection is a fundamental plasma process involving an exchange of magnetic energy to plasma kinetic energy through changes in the magnetic field topology. Here we present experimental measurements using the OMEGA EP laser at LLE and the HERCULES laser at the University of Michigan as well as numerical modeling which indicate that relativistic magnetic reconnection can be driven by short-pulse, high-intensity lasers that produce a relativistic plasma along with very strong magnetic fields. Evidence of magnetic reconnection was identified by the plasma's X-ray emission patterns, changes to the electron energy spectrum, and by measuring the time over which reconnection occurs. Funded by DOE Award No. DE-NA0002727.

  20. The mechanics of relativistic space flights

    NASA Astrophysics Data System (ADS)

    Zakirov, U. N.

    The relativistic mechanics of an artificial space body with a variable rest mass is presented in a systematic manner. In particular, attention is given to the principles of Lobachevskii geometry, Riemann geometry, and relativity; general Lorentz transformations and relativistic kinematics; the principal theorems of the relativistic mechanics of a space vehicle in spherically symmetric gravitational fields; and the relativistic motion of a space vehicle with jet propulsion. Possible applications of relativistic mechanics are examined.

  1. Relativistic Transformation of Solid Angle.

    ERIC Educational Resources Information Center

    McKinley, John M.

    1980-01-01

    Rederives the relativistic transformations of light intensity from compact sources (stars) to show where and how the transformation of a solid angle contributes. Discusses astrophysical and other applications of the transformations. (Author/CS)

  2. Relativistic Electron Beams Above Thunderclouds

    NASA Astrophysics Data System (ADS)

    Fullekrug, Martin; Roussel-Dupre, Robert; Symbalisty, Eugene; Chanrion, Olivier; van der Velde, Oscar; Soula, Serge; Odzimek, Anna; Bennett, Alec; Whitley, Toby; Neubert, Torsten

    2010-05-01

    It has recently been discovered that lightning discharges generate upward-directed relativistic electron beams above thunderclouds. This extends the phenomenon of relativistic runaway breakdown believed to occur inside thunderclouds to the atmosphere above thunderclouds. This marks a profound advance in our understanding of the atmosphere because we now know it acts as a giant, natural, particle accelerator. The accelerated electrons can reach significant relativistic energies of some MeV during their passage from the troposphere, through the middle atmosphere, into near-Earth space. These relativistic electron beams constitute a current above thunderclouds and effectively transfer energy from the troposphere to the middle atmosphere. This coupling process thereby forms a novel element of the global atmospheric electric circuit which links tropospheric thunderclouds to the atmosphere above. This contribution describes the radio remote sensing of upward electron beams to determine their occurrence frequency and to characterise their physical properites.

  3. Hydrodynamic approaches in relativistic heavy ion reactions

    NASA Astrophysics Data System (ADS)

    Derradi de Souza, R.; Koide, T.; Kodama, T.

    2016-01-01

    We review several facets of the hydrodynamic description of the relativistic heavy ion collisions, starting from the historical motivation to the present understandings of the observed collective aspects of experimental data, especially those of the most recent RHIC and LHC results. In this report, we particularly focus on the conceptual questions and the physical foundations of the validity of the hydrodynamic approach itself. We also discuss recent efforts to clarify some of the points in this direction, such as the various forms of derivations of relativistic hydrodynamics together with the limitations intrinsic to the traditional approaches, variational approaches, known analytic solutions for special cases, and several new theoretical developments. Throughout this review, we stress the role of course-graining procedure in the hydrodynamic description and discuss its relation to the physical observables through the analysis of a hydrodynamic mapping of a microscopic transport model. Several questions to be answered to clarify the physics of collective phenomena in the relativistic heavy ion collisions are pointed out.

  4. Relativistic timescale analysis suggests lunar theory revision

    NASA Technical Reports Server (NTRS)

    Deines, Steven D.; Williams, Carol A.

    1995-01-01

    The SI second of the atomic clock was calibrated to match the Ephemeris Time (ET) second in a mutual four year effort between the National Physical Laboratory (NPL) and the United States Naval Observatory (USNO). The ephemeris time is 'clocked' by observing the elapsed time it takes the Moon to cross two positions (usually occultation of stars relative to a position on Earth) and dividing that time span into the predicted seconds according to the lunar equations of motion. The last revision of the equations of motion was the Improved Lunar Ephemeris (ILE), which was based on E. W. Brown's lunar theory. Brown classically derived the lunar equations from a purely Newtonian gravity with no relativistic compensations. However, ET is very theory dependent and is affected by relativity, which was not included in the ILE. To investigate the relativistic effects, a new, noninertial metric for a gravitated, translationally accelerated and rotating reference frame has three sets of contributions, namely (1) Earth's velocity, (2) the static solar gravity field and (3) the centripetal acceleration from Earth's orbit. This last term can be characterized as a pseudogravitational acceleration. This metric predicts a time dilation calculated to be -0.787481 seconds in one year. The effect of this dilation would make the ET timescale run slower than had been originally determined. Interestingly, this value is within 2 percent of the average leap second insertion rate, which is the result of the divergence between International Atomic Time (TAI) and Earth's rotational time called Universal Time (UT or UTI). Because the predictions themselves are significant, regardless of the comparison to TAI and UT, the authors will be rederiving the lunar ephemeris model in the manner of Brown with the relativistic time dilation effects from the new metric to determine a revised, relativistic ephemeris timescale that could be used to determine UT free of leap second adjustments.

  5. Relativistic Electron Vortices

    NASA Astrophysics Data System (ADS)

    Barnett, Stephen M.

    2017-03-01

    The desire to push recent experiments on electron vortices to higher energies leads to some theoretical difficulties. In particular the simple and very successful picture of phase vortices of vortex charge ℓ associated with ℓℏ units of orbital angular momentum per electron is challenged by the facts that (i) the spin and orbital angular momentum are not separately conserved for a Dirac electron, which suggests that the existence of a spin-orbit coupling will complicate matters, and (ii) that the velocity of a Dirac electron is not simply the gradient of a phase as it is in the Schrödinger theory suggesting that, perhaps, electron vortices might not exist at a fundamental level. We resolve these difficulties by showing that electron vortices do indeed exist in the relativistic theory and show that the charge of such a vortex is simply related to a conserved orbital part of the total angular momentum, closely related to the familiar situation for the orbital angular momentum of a photon.

  6. Newtonian and Relativistic Cosmologies

    NASA Astrophysics Data System (ADS)

    Green, Stephen; Wald, Robert

    2012-03-01

    Cosmological N-body simulations are now being performed using Newtonian gravity on scales larger than the Hubble radius. It is known that a uniformly expanding, homogeneous ball of dust in Newtonian gravity satisfies the Friedmann equations, and also that a correspondence between Newtonian and relativistic dust cosmologies holds in linearized perturbation theory. Nevertheless, it is not obvious that Newtonian gravity can provide a good global description of an inhomogeneous cosmology with significant nonlinear dynamical behavior at small scales. We investigate this issue in light of a perturbative framework that we have recently developed. We propose a straightforward dictionary---exact at the linearized level---that maps Newtonian dust cosmologies into GR dust cosmologies, and we use our ordering scheme to determine the degree to which the resulting metric and matter distribution solve Einstein's equation. We then find additional corrections needed to satisfy Einstein's equation to ``order 1'' at small scales and to ``order ɛ'' at large scales. We expect that, in realistic Newtonian cosmologies, these additional corrections will be very small; if so, this should provide strong justification for the use of Newtonian simulations to describe GR cosmologies.

  7. Exact solution of the relativistic quantum Toda chain

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Cao, Junpeng; Yang, Wen-Li; Shi, Kangjie; Wang, Yupeng

    2017-03-01

    The relativistic quantum Toda chain model is studied with the generalized algebraic Bethe Ansatz method. By employing a set of local gauge transformations, proper local vacuum states can be obtained for this model. The exact spectrum and eigenstates of the model are thus constructed simultaneously.

  8. Relativistic Processes and the Internal Structure of Neutron Stars

    SciTech Connect

    Alvarez-Castillo, D. E.; Kubis, S.

    2011-10-14

    Models for the internal composition of Dense Compact Stars are reviewed as well as macroscopic properties derived by observations of relativistic processes. Modeling of pure neutron matter Neutron Stars is presented and crust properties are studied by means of a two fluid model.

  9. Refining a relativistic, hydrodynamic solver: Admitting ultra-relativistic flows

    NASA Astrophysics Data System (ADS)

    Bernstein, J. P.; Hughes, P. A.

    2009-09-01

    We have undertaken the simulation of hydrodynamic flows with bulk Lorentz factors in the range 102-106. We discuss the application of an existing relativistic, hydrodynamic primitive variable recovery algorithm to a study of pulsar winds, and, in particular, the refinement made to admit such ultra-relativistic flows. We show that an iterative quartic root finder breaks down for Lorentz factors above 102 and employ an analytic root finder as a solution. We find that the former, which is known to be robust for Lorentz factors up to at least 50, offers a 24% speed advantage. We demonstrate the existence of a simple diagnostic allowing for a hybrid primitives recovery algorithm that includes an automatic, real-time toggle between the iterative and analytical methods. We further determine the accuracy of the iterative and hybrid algorithms for a comprehensive selection of input parameters and demonstrate the latter’s capability to elucidate the internal structure of ultra-relativistic plasmas. In particular, we discuss simulations showing that the interaction of a light, ultra-relativistic pulsar wind with a slow, dense ambient medium can give rise to asymmetry reminiscent of the Guitar nebula leading to the formation of a relativistic backflow harboring a series of internal shockwaves. The shockwaves provide thermalized energy that is available for the continued inflation of the PWN bubble. In turn, the bubble enhances the asymmetry, thereby providing positive feedback to the backflow.

  10. Diskoseismology: Probing relativistic accretion disks

    NASA Astrophysics Data System (ADS)

    Nowak, Michael Allen

    1992-08-01

    Helioseismology has provided a wealth of information about the structure of the solar atmosphere. Little is known, however, about the structure of accretion disks that are thought to exist around black holes and neutron stars. In this thesis we present calculations of modes that are trapped in thin Keplerian accretion disks. We hope to use observations of thes modes to elucidate the structure of the inner relativistic regions of accretion disks. Our calculations assume that the thin disk is terminated by an innermost stable orbit, as would occur around a slowly rotating black hole or weakly magnetized compact neutron star. The dominant relativistic effects, which allow modes to be trapped within the inner region of the disk, are approximated via a modified Newtonian potential. Using the Lagrangian formulation of Friedman and Schutz, we develop a general formalism for investigating the adiabatic oscillations of arbitrary unperturbed disk models. First we consider the special case of acoustic waves in disks with isothermal atmospheres. Next we describe the Lagrangian perturbation vectors in terms of the derivatives of a scalar potential, as has been done by Ipser and Lindblom. Using this potential, we derive a single partial differential equation governing the oscillations of a disk. The eigenfunctions and eigenfrequencies of a variety of disk models are found to fall into two main classes which are analogous to the p-modes and g-modes in the sun. Specifically we use the potential formalism to compute the g-modes for disks with isothermal atmospheres. Physical arguments show that both the p-modes and g-modes belong to the same family of modes as the p-modes and g-modes in the sun, just viewed in a different parameter regime. With the aid of the Lagrangian formalism we consider possible growth or damping mechanisms and compute the (assumed) relatively small rates of growth or damping of the modes. Specifically, we consider gravitational radiation reaction and

  11. Effect of EMIC Wave Normal Angle Distribution on Relativistic Electron Scattering Based on the Newly Developed Self-consistent RC/EMIC Waves Model by Khazanov et al. [2006

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gallagher, D. L.; Gamayunov, K.

    2007-01-01

    It is well known that the effects of EMIC waves on RC ion and RB electron dynamics strongly depend on such particle/wave characteristics as the phase-space distribution function, frequency, wave-normal angle, wave energy, and the form of wave spectral energy density. Therefore, realistic characteristics of EMIC waves should be properly determined by modeling the RC-EMIC waves evolution self-consistently. Such a selfconsistent model progressively has been developing by Khaznnov et al. [2002-2006]. It solves a system of two coupled kinetic equations: one equation describes the RC ion dynamics and another equation describes the energy density evolution of EMIC waves. Using this model, we present the effectiveness of relativistic electron scattering and compare our results with previous work in this area of research.

  12. Mitigating the hosing instability in relativistic laser-plasma interactions

    NASA Astrophysics Data System (ADS)

    Ceurvorst, L.; Ratan, N.; Levy, M. C.; Kasim, M. F.; Sadler, J.; Scott, R. H. H.; Trines, R. M. G. M.; Huang, T. W.; Skramic, M.; Vranic, M.; Silva, L. O.; Norreys, P. A.

    2016-05-01

    A new physical model of the hosing instability that includes relativistic laser pulses and moderate densities is presented and derives the density dependence of the hosing equation. This is tested against two-dimensional particle-in-cell simulations. These simulations further examine the feasibility of using multiple pulses to mitigate the hosing instability in a Nd:glass-type parameter space. An examination of the effects of planar versus cylindrical exponential density gradients on the hosing instability is also presented. The results show that strongly relativistic pulses and more planar geometries are capable of mitigating the hosing instability which is in line with the predictions of the physical model.

  13. Non-Relativistic Superstring Theories

    SciTech Connect

    Kim, Bom Soo

    2007-12-14

    We construct a supersymmetric version of the 'critical' non-relativistic bosonic string theory [1] with its manifest global symmetry. We introduce the anticommuting bc CFT which is the super partner of the {beta}{gamma} CFT. The conformal weights of the b and c fields are both 1/2. The action of the fermionic sector can be transformed into that of the relativistic superstring theory. We explicitly quantize the theory with manifest SO(8) symmetry and find that the spectrum is similar to that of Type IIB superstring theory. There is one notable difference: the fermions are non-chiral. We further consider 'noncritical' generalizations of the supersymmetric theory using the superspace formulation. There is an infinite range of possible string theories similar to the supercritical string theories. We comment on the connection between the critical non-relativistic string theory and the lightlike Linear Dilaton theory.

  14. Polyanalytic relativistic second Bargmann transforms

    SciTech Connect

    Mouayn, Zouhaïr

    2015-05-15

    We construct coherent states through special superpositions of eigenstates of the relativistic isotonic oscillator. In each superposition, the coefficients are chosen to be L{sup 2}-eigenfunctions of a σ-weight Maass Laplacian on the Poincaré disk, which are associated with the eigenvalue 4m(σ−1−m), m∈Z{sub +}∩[0,(σ−1)/2]. For each nonzero m, the associated coherent states transform constitutes the m-true-polyanalytic extension of a relativistic version of the second Bargmann transform, whose integral kernel is expressed in terms of a special Appel-Kampé de Fériet’s hypergeometric function. The obtained results could be used to extend the known semi-classical analysis of quantum dynamics of the relativistic isotonic oscillator.

  15. Relativistic calculation of deuteron threshold electrodisintegration at backward angles

    NASA Astrophysics Data System (ADS)

    Arriaga, A.; Schiavilla, R.

    2007-07-01

    The threshold electrodisintegration of the deuteron at backward angles is studied in instant form Hamiltonian dynamics, including a relativistic one-pion-exchange potential (OPEP) with off-shell terms as predicted by pseudovector coupling of pions to nucleons. The bound and scattering states are obtained in the center-of-mass frame, and then boosted from it to the Breit frame, where the evaluation of the relevant matrix elements of the electromagnetic current operator is carried out. The latter includes, in addition to one-body, also two-body terms due to pion exchange, as obtained, consistently with the OPEP, in pseudovector pion-nucleon coupling theory. In order to estimate the magnitude of the relativistic effects we perform, for comparison, the calculation with a nonrelativistic phase-equivalent Hamiltonian and consistent one-body and two-body pion-exchange currents. Our results for the electrodisintegration cross section show that, in the calculations using one-body currents, relativistic corrections become significant (i.e., larger than 10%) only at high momentum transfer Q (Q2≃40 fm-2 and beyond). However, the inclusion of two-body currents makes the relativistic predictions considerably smaller than the corresponding nonrelativistic results in the Q2 region (18 40) fm-2. The calculations based on the relativistic model also confirm the inadequacy, already established in a nonrelativistic context, of the present electromagnetic current model to reproduce accurately the experimental data at intermediate values of momentum transfers.

  16. Relativistic plasma expansion with Maxwell-Ju¨ttner distribution

    NASA Astrophysics Data System (ADS)

    Huang, Yongsheng; Wang, Naiyan; Tang, Xiuzhang; Shi, Yijin

    2013-11-01

    A self-similar analytical solution is proposed to describe the relativistic ion acceleration with the local Maxwell-Ju¨ttner relativistic distribution electrons. It is an alternative to the existing static model [M. Passoni and M. Lontano, Phys. Rev. Lett. 101, 115001 (2008)], which exploits a limited solution for the acceleration potential. With our model, the potential is finite naturally and has an upper limitation proportional to the square root of the electron temperature. The divergent potential in the non-relativistic case is the linear items of the Taylor expansion of that obtained relativistic one here. The energy distribution of ions and the dependence of the ion momentum on the acceleration time are obtained analytically. Maximum ion energy has an upper limitation decided by the finite potential difference. In the ultra-relativistic region, the ion energy at the ion front is proportional to t4/5 and the energy of the ions behind the ion front is proportional to t2/3 since the field there is shielded by the ions beyond them and the field at the ion front is the most intense.

  17. Four-component relativistic calculations in solution with the polarizable continuum model of solvation: theory, implementation, and application to the group 16 dihydrides H2X (X = O, S, Se, Te, Po).

    PubMed

    Remigio, Roberto Di; Bast, Radovan; Frediani, Luca; Saue, Trond

    2015-05-28

    We present a formulation of four-component relativistic self-consistent field (SCF) theory for a molecular solute described within the framework of the polarizable continuum model (PCM) for solvation. The linear response function for a four-component PCM-SCF state is also derived, as well as the explicit form of the additional contributions to the first-order response equations. The implementation of such a four-component PCM-SCF model, as carried out in a development version of the DIRAC program package, is documented. In particular, we present the newly developed application programming interface PCMSolver used in the actual implementation with DIRAC. To demonstrate the applicability of the approach, we present and analyze calculations of solvation effects on the geometries, electric dipole moments, and static electric dipole polarizabilities for the group 16 dihydrides H2X (X = O, S, Se, Te, Po).

  18. Relativistic stars in scalar-tensor theories with disformal coupling

    NASA Astrophysics Data System (ADS)

    Silva, Hector O.; Minamitsuji, Masato

    2017-01-01

    We discuss a general formulation to study the structure of slowly-rotating relativistic stars in a broad class of scalar-tensor theories including disformal coupling to matter. Our approach includes as particular cases theories with generalized kinetic terms and generic scalar field potentials, and contains theories with conformal coupling as particular limits. We propose a minimal model to investigate the role of the disformal coupling on the non-perturbative effect known as spontaneous scalarization, which causes relativistic star solutions in certain classes of scalar-tensor theories to differ dramatically from their general relativistic counterparts. Moreover, we show that the moment of inertia and compactness of stars are equation of state independent, which can potentially be used to constrain the model observationally.

  19. Special Relativistic Hydrodynamics with Gravitation

    NASA Astrophysics Data System (ADS)

    Hwang, Jai-chan; Noh, Hyerim

    2016-12-01

    Special relativistic hydrodynamics with weak gravity has hitherto been unknown in the literature. Whether such an asymmetric combination is possible has been unclear. Here, the hydrodynamic equations with Poisson-type gravity, considering fully relativistic velocity and pressure under the weak gravity and the action-at-a-distance limit, are consistently derived from Einstein’s theory of general relativity. An analysis is made in the maximal slicing, where the Poisson’s equation becomes much simpler than our previous study in the zero-shear gauge. Also presented is the hydrodynamic equations in the first post-Newtonian approximation, now under the general hypersurface condition. Our formulation includes the anisotropic stress.

  20. Relativistic solutions to directed energy

    NASA Astrophysics Data System (ADS)

    Kulkarni, Neeraj; Lubin, Philip M.; Zhang, Qicheng

    2016-09-01

    This paper analyses the nature and feasibility of using directed energy to propel probes through space at relativistic speeds. Possible mission scenarios are considered by varying the spacecraft mass, thickness of the sail and power of the directed energy array. We calculate that gram-scaled probes are capable of achieving relativistic speeds and reaching Alpha Centauri well within a human lifetime. A major drawback is the diffraction of the beam which reduces the incident power on the sail resulting in a terminal velocity for the probes. Various notions of efficiency are discussed and we conclude that directed energy propulsion provides a viable direction for future space exploration.

  1. Quantum Tunneling Time: Relativistic Extensions

    NASA Astrophysics Data System (ADS)

    Xu, Dai-Yu; Wang, Towe; Xue, Xun

    2013-11-01

    Several years ago, in quantum mechanics, Davies proposed a method to calculate particle's traveling time with the phase difference of wave function. The method is convenient for calculating the sojourn time inside a potential step and the tunneling time through a potential hill. We extend Davies' non-relativistic calculation to relativistic quantum mechanics, with and without particle-antiparticle creation, using Klein-Gordon equation and Dirac Equation, for different forms of energy-momentum relation. The extension is successful only when the particle and antiparticle creation/annihilation effect is negligible.

  2. Dynamical phase trajectories for relativistic nuclear collisions

    SciTech Connect

    Arsene, I. C.; Bravina, L. V.; Cassing, W.; Ivanov, Yu. B.; Russkikh, V. N.; Larionov, A.; Randrup, J.; Toneev, V. D.; Zeeb, G.; Zschiesche, D.

    2007-03-15

    Central collisions of gold nuclei are simulated by several existing models and the central net baryon density {rho} and the energy density {epsilon} are extracted at successive times for beam kinetic energies of 5-40 GeV/nucleon. The resulting trajectories in the ({rho},{epsilon}) phase plane are discussed from the perspective of experimentally exploring the expected first-order hadronization phase transition with the planned FAIR at GSI or in a low-energy campaign at the Relativistic Heavy Ion Collider.

  3. Dynamical friction in a relativistic plasma

    NASA Astrophysics Data System (ADS)

    Pike, O. J.; Rose, S. J.

    2014-05-01

    The work of Spitzer on dynamical friction in a plasma [L. Spitzer, Jr., Physics of Fully Ionized Gases, 2nd ed. (Wiley, New York, 1962), Chap. 5] is extended to relativistic systems. We derive the force of dynamical friction, diffusion tensor, and test particle relaxation rates for a Maxwellian background in the same form as Trubnikov [B. A. Trubnikov, in Reviews of Plasma Physics, edited by M. A. Leontovich (Consultants Bureau, New York, 1965), Vol. 1, p. 105], enabling high-temperature laboratory and astrophysical plasmas to be modeled in a consistent manner.

  4. Relativistic Random Phase Approximation At Finite Temperature

    SciTech Connect

    Niu, Y. F.; Paar, N.; Vretenar, D.; Meng, J.

    2009-08-26

    The fully self-consistent finite temperature relativistic random phase approximation (FTRRPA) has been established in the single-nucleon basis of the temperature dependent Dirac-Hartree model (FTDH) based on effective Lagrangian with density dependent meson-nucleon couplings. Illustrative calculations in the FTRRPA framework show the evolution of multipole responses of {sup 132}Sn with temperature. With increased temperature, in both monopole and dipole strength distributions additional transitions appear in the low energy region due to the new opened particle-particle and hole-hole transition channels.

  5. Relativistic Hydrodynamics for Heavy-Ion Collisions

    ERIC Educational Resources Information Center

    Ollitrault, Jean-Yves

    2008-01-01

    Relativistic hydrodynamics is essential to our current understanding of nucleus-nucleus collisions at ultrarelativistic energies (current experiments at the Relativistic Heavy Ion Collider, forthcoming experiments at the CERN Large Hadron Collider). This is an introduction to relativistic hydrodynamics for graduate students. It includes a detailed…

  6. Particle Acceleration in Relativistic Outflows

    NASA Technical Reports Server (NTRS)

    Bykov, Andrei; Gehrels, Neil; Krawczynski, Henric; Lemoine, Martin; Pelletier, Guy; Pohl, Martin

    2012-01-01

    In this review we confront the current theoretical understanding of particle acceleration at relativistic outflows with recent observational results on various source classes thought to involve such outflows, e.g. gamma-ray bursts, active galactic nuclei, and pulsar wind nebulae. We highlight the possible contributions of these sources to ultra-high-energy cosmic rays.

  7. Relativistic Optimized Link by KLT

    NASA Astrophysics Data System (ADS)

    Maccone, C.

    The KLT is a way of optimizing the signal processing of a given noisy signal by projecting the noisy signal itself onto the set of orthonormal basis functions spanned by the eigenfunctions of the autocorrelation of the noisy signal. Thus, the key problem in computing the KLT of a noisy signal is the computation of the eigenvalues and eigenfunctions of the autocorrelation of the noisy signal. For the special case of the Brownian motion (i.e. the basic Gaussian noisy signal) it can be proved that the KLT eigenfunctions are just sines, i.e. the KLT is the same as the FT. Let us now bring relativity into the KLT picture (this paper is confined to special relativity; general relativity can be KLT-studied also, but the calculations are, of course, even more difficult). Also, only rectilinear motions will be considered here. So, if one considers a source in relativistic motion, then the noisy signal undergoes a time-rescaling that depends on the type of relativistic motion. In past work this author has demostrated that the eigenfunctions of the time-rescaled, relativistic Brownian motion are Bessel functions of the first kind, and their eigenvalues are the zeros of such Bessel functions. In addition, it is stated (without proofs) that explicit formulae for the KLT signal processing can be found for the particularly important cases of the noisy signals received on Earth from a relativistic spacecraft whose motion is either: 1) uniform; or 2) uniformly accelerated.

  8. Proper-time relativistic dynamics

    NASA Technical Reports Server (NTRS)

    Gill, Tepper L.; Zachary, W. W.; Lindesay, James

    1993-01-01

    Proper-time relativistic single-particle classical Hamiltonian mechanics is formulated using a transformation from observer time to system proper time which is a canonical contact transformation on extended phase space. It is shown that interaction induces a change in the symmetry structure of the system which can be analyzed in terms of a Lie-isotopic deformation of the algebra of observables.

  9. Relativistic resonance and decay phenomena

    NASA Astrophysics Data System (ADS)

    Bui, Hai V.

    2015-04-01

    The exact relation τ = ℏ/Γ between the width Γ of a resonance and the lifetime τ for the decay of this resonance could not be obtained in standard quantum theory based on the Hilbert space or Schwartz space axiom in non-relativistic physics as well as in the relativistic regime. In order to obtain the exact relation, one has to modify the Hilbert space axiom or the Schwartz space axiom and choose new boundary conditions based on the Hardy space axioms in which the space of the states and the space of the observables are described by two different Hardy spaces. As consequences of the new Hardy space axioms, one obtains, instead of the symmetric time evolution for the states and the observables, asymmetrical time evolutions for the states and observables which are described by two semi-groups. A relativistic resonance obeying the exponential time evolution can be described by a relativistic Gamow vector, which is defined as superposition of the exact out-plane wave states with a Breit-Wigner energy distribution of the width Γ.

  10. Manipulating relativistic electrons with lasers

    NASA Astrophysics Data System (ADS)

    Malka, Victor

    2016-09-01

    The motion control of relativistic electrons with lasers allows for an efficient and elegant way to map the space with ultra-intense electric-field components, which, in turn, permits a unique improvement of the electron beam parameters. This perspective addresses the recent laser plasma accelerator experiments related to the phase space engineering of electron beams in a plasma medium performed at LOA.

  11. Action Principle for Relativistic Magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    D'Avignon, Eric; Morrison, Philip; Pegoraro, Francesco

    2015-11-01

    A covariant action principle for ideal relativistic magnetohydrodynamics in terms of natural Eulerian field variables is given. This is done by generalizing the covariant Poisson bracket theory of Marsden et al., which uses a noncanonical bracket to implement constrained variations of an action functional. Various implications and extensions of this action principle are also discussed.

  12. Microscopic Processes in Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Hardee, P.; Mizuno, Y.; Medvedev, M.; Zhang, B.; Nordlund, A.; Fredricksen, J.; Sol, H.; Niemiec, J.; Lyubarsky, Y.; Hartmann, D. H.; Fishman, G. J.

    2008-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., gamma-ray bursts (GRBs), active galactic nuclei (AGNs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations of relativistic electron-ion (electro-positron) jets injected into a stationary medium show that particle acceleration occurs within the downstream jet. In the collisionless relativistic shock particle acceleration is due to plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel (filamentation) instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The 'jitter' radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  13. Relativistic, model-independent, multichannel 22 transition amplitudes in a finite volume

    SciTech Connect

    Briceno, Raul A.; Hansen, Maxwell T.

    2016-07-13

    We derive formalism for determining 2 + J → 2 infinite-volume transition amplitudes from finite-volume matrix elements. Specifically, we present a relativistic, model-independent relation between finite-volume matrix elements of external currents and the physically observable infinite-volume matrix elements involving two-particle asymptotic states. The result presented holds for states composed of two scalar bosons. These can be identical or non-identical and, in the latter case, can be either degenerate or non-degenerate. We further accommodate any number of strongly-coupled two-scalar channels. This formalism will, for example, allow future lattice QCD calculations of the $\\rho$-meson form factor, in which the unstable nature of the $\\rho$ is rigorously accommodated. In conclusion, we also discuss how this work will impact future extractions of nuclear parity and hadronic long-range matrix elements from lattice QCD.

  14. General relativistic magneto-hydrodynamics with the Einstein Toolkit

    NASA Astrophysics Data System (ADS)

    Moesta, Philipp; Mundim, Bruno; Faber, Joshua; Noble, Scott; Bode, Tanja; Haas, Roland; Loeffler, Frank; Ott, Christian; Reisswig, Christian; Schnetter, Erik

    2013-04-01

    The Einstein Toolkit Consortium is developing and supporting open software for relativistic astrophysics. Its aim is to provide the core computational tools that can enable new science, broaden our community, facilitate interdisciplinary research and take advantage of petascale computers and advanced cyberinfrastructure. The Einstein Toolkit currently consists of an open set of over 100 modules for the Cactus framework, primarily for computational relativity along with associated tools for simulation management and visualization. The toolkit includes solvers for vacuum spacetimes as well as relativistic magneto-hydrodynamics. This talk will present the current capabilities of the Einstein Toolkit with a particular focus on recent improvements made to the general relativistic magneto-hydrodynamics modeling and will point to information how to leverage it for future research.

  15. Interaction of a relativistic soliton with a nonuniform plasma.

    PubMed

    Rouhani, M R; Abbasi, H; Pajouh, H Hakimi; Shukla, P K; Tsintsadze, N L

    2002-06-01

    By using a relativistic fluid model, a nonlinear theory for the propagation of an intense laser pulse in an inhomogeneous cold plasma is developed. Assuming that the radiation spot size is larger than the plasma wavelength, we derive an envelope equation for the momentum of the electron fluid, taking into account relativistic electron mass variation and finite amplitude electron density perturbations that are driven by the relativistic ponderomotive force of light. Localized solutions of the envelope equation are discussed from an energy integral containing an effective potential. Numerical results for envelope solitons are obtained in a quasistationary approximation. The dependency of these localized solutions on the amplitude and the group velocity of the laser pulse is discussed. Also derived is an equation that governs the dynamics of the pulse center.

  16. Fast Lattice Boltzmann Solver for Relativistic Hydrodynamics

    SciTech Connect

    Mendoza, M.; Herrmann, H. J.; Boghosian, B. M.; Succi, S.

    2010-07-02

    A lattice Boltzmann formulation for relativistic fluids is presented and numerically validated through quantitative comparison with recent hydrodynamic simulations of relativistic fluids. In order to illustrate its capability to handle complex geometries, the scheme is also applied to the case of a three-dimensional relativistic shock wave, generated by a supernova explosion, impacting on a massive interstellar cloud. This formulation opens up the possibility of exporting the proven advantages of lattice Boltzmann methods, namely, computational efficiency and easy handling of complex geometries, to the context of (mildly) relativistic fluid dynamics at large, from quark-gluon plasmas up to supernovae with relativistic outflows.

  17. Flat-spectrum radio sources - Cosmic conspiracy or relativistic neutrons?

    NASA Technical Reports Server (NTRS)

    Giovanoni, Peter M.; Kazanas, Demosthenes

    1990-01-01

    The intensity spectrum of the core of radio-loud AGN varies smoothly from 10 exp 8.5 to 10 to the 16th Hz, and is flat between 10 to the 9th and 10 to the 10th Hz, implying that a single emission mechanism is responsible. It is proposed here that energy is transported from the central source by relativistic neutrons which travel freely over a large volume and decay into relativistic protons. The protons produce secondary electrons which generate the observed radiation. The photon spectra thus produced are largely model-independent and flat.

  18. Balloon Observations of Relativistic Electron Precipitation

    NASA Astrophysics Data System (ADS)

    Millan, R. M.; Woodger, L. A.

    2015-12-01

    Relativistic electron precipitation events lasting from minutes to hours have been observed by balloon-borne instrumentation since 1996. This collection of observations, including the recent BARREL observations, all occur in the noon to midnight sector. EMIC waves have been suggested as the precipitation mechanism for this type of event [Lorentzen et al., 2000 and Millan et al., 2002]. A recent study by Li et al., [2014] performed a case study which modeled the radiation belt relativistic electron pitch angle diffusion from EMIC waves which showed convincing agreement between the modeled results and the BARREL x-ray observations. A survey of the BARREL REP events suggests this type of precipitation is a very localized phenomena with most events only being observed by a single balloon at a time despite the extensive L-value and local time coverage of observations during the campaign. This result is consistent with the findings of Blum et al., [2013]. Furthermore, the balloon observations show local time energy dependence consistent with the SAMPEX observations reported by Comess et al, [2013]. In this work we address the following questions: based on the REP events observed by balloon-borne instrumentation, are these characteristics true for all identified REP events and does this support EMIC waves as the precipitation mechanism? Due to the localized region of precipitation, do these events represent a significant radiation belt loss process?

  19. Relativistic perihelion precession of orbits of Venus and the Earth

    NASA Astrophysics Data System (ADS)

    Biswas, Abhijit; Mani, Krishnan

    2008-09-01

    Among all the theories proposed to explain the "anomalous" perihelion precession of Mercury's orbit first announced in 1859 by Le Verrier, the general theory of relativity proposed by Einstein in November 1915 alone could calculate Mercury's "anomalous" precession with the precision demanded by observational accuracy. Since Mercury's precession was a directly derived result of the full general theory, it was viewed by Einstein as the most critical test of general relativity from amongst the three tests he proposed. With the advent of the space age, the level of observational accuracy has improved further and it is now possible to detect this precession for other planetary orbits of the solar system — viz., Venus and the Earth. This conclusively proved that the phenomenon of "anomalous" perihelion precession of planetary orbits is a relativistic effect. Our previous papers presented the mathematical model and the computed value of the relativistic perihelion precession of Mercury's orbit using an alternate relativistic gravitational model, which is a remodeled form of Einstein's relativity theories, and which retained only experimentally proven principles. In addition this model has the benefit of data from almost a century of relativity experimentation, including those that have become possible with the advent of the space age. Using this model, we present in this paper the computed values of the relativistic precession of Venus and the Earth, which compare well with the predictions of general relativity and are also in agreement with the observed values within the range of uncertainty.

  20. Operational Stochastic Cooling in the Relativistic Heavy-Ion Collider

    SciTech Connect

    Blaskiewicz, M.; Brennan, J. M.; Severino, F.

    2008-05-02

    Operational stochastic cooling of 100 GeV/nucleon gold beams has been achieved in the BNL Relativistic Heavy-Ion Collider. We discuss the physics and technology of the longitudinal cooling system and present results with the beams. A simulation algorithm is described and shown to accurately model the system.

  1. Second-order perturbations of cosmological fluids: Relativistic effects of pressure, multicomponent, curvature, and rotation

    SciTech Connect

    Hwang, Jai-chan; Noh, Hyerim

    2007-11-15

    velocity perturbations including the rotation coincide with the ones in Newton's gravity. All equations in this work include the cosmological constant in the background world model. We emphasize that our relativistic/Newtonian correspondences in several situations and pure general relativistic corrections in the context of Newtonian equations are mainly about the dynamic equations of density and velocity perturbations without using the gravitational potential (metric perturbations). Consequently, our relativistic/Newtonian correspondences do not imply the absence of many space-time (i.e., pure general relativistic) effects like frame dragging, and redshift and deflection of photons even in such cases. We also present the case of multiple minimally coupled scalar fields, and properly derive the large-scale conservation properties of curvature perturbation variable in various temporal gauge conditions to the second order.

  2. Wave-induced loss of ultra-relativistic electrons in the Van Allen radiation belts.

    PubMed

    Shprits, Yuri Y; Drozdov, Alexander Y; Spasojevic, Maria; Kellerman, Adam C; Usanova, Maria E; Engebretson, Mark J; Agapitov, Oleksiy V; Zhelavskaya, Irina S; Raita, Tero J; Spence, Harlan E; Baker, Daniel N; Zhu, Hui; Aseev, Nikita A

    2016-09-28

    The dipole configuration of the Earth's magnetic field allows for the trapping of highly energetic particles, which form the radiation belts. Although significant advances have been made in understanding the acceleration mechanisms in the radiation belts, the loss processes remain poorly understood. Unique observations on 17 January 2013 provide detailed information throughout the belts on the energy spectrum and pitch angle (angle between the velocity of a particle and the magnetic field) distribution of electrons up to ultra-relativistic energies. Here we show that although relativistic electrons are enhanced, ultra-relativistic electrons become depleted and distributions of particles show very clear telltale signatures of electromagnetic ion cyclotron wave-induced loss. Comparisons between observations and modelling of the evolution of the electron flux and pitch angle show that electromagnetic ion cyclotron waves provide the dominant loss mechanism at ultra-relativistic energies and produce a profound dropout of the ultra-relativistic radiation belt fluxes.

  3. Wave-induced loss of ultra-relativistic electrons in the Van Allen radiation belts

    NASA Astrophysics Data System (ADS)

    Shprits, Yuri Y.; Drozdov, Alexander Y.; Spasojevic, Maria; Kellerman, Adam C.; Usanova, Maria E.; Engebretson, Mark J.; Agapitov, Oleksiy V.; Zhelavskaya, Irina S.; Raita, Tero J.; Spence, Harlan E.; Baker, Daniel N.; Zhu, Hui; Aseev, Nikita A.

    2016-09-01

    The dipole configuration of the Earth's magnetic field allows for the trapping of highly energetic particles, which form the radiation belts. Although significant advances have been made in understanding the acceleration mechanisms in the radiation belts, the loss processes remain poorly understood. Unique observations on 17 January 2013 provide detailed information throughout the belts on the energy spectrum and pitch angle (angle between the velocity of a particle and the magnetic field) distribution of electrons up to ultra-relativistic energies. Here we show that although relativistic electrons are enhanced, ultra-relativistic electrons become depleted and distributions of particles show very clear telltale signatures of electromagnetic ion cyclotron wave-induced loss. Comparisons between observations and modelling of the evolution of the electron flux and pitch angle show that electromagnetic ion cyclotron waves provide the dominant loss mechanism at ultra-relativistic energies and produce a profound dropout of the ultra-relativistic radiation belt fluxes.

  4. Wave-induced loss of ultra-relativistic electrons in the Van Allen radiation belts

    PubMed Central

    Shprits, Yuri Y.; Drozdov, Alexander Y.; Spasojevic, Maria; Kellerman, Adam C.; Usanova, Maria E.; Engebretson, Mark J.; Agapitov, Oleksiy V.; Zhelavskaya, Irina S.; Raita, Tero J.; Spence, Harlan E.; Baker, Daniel N.; Zhu, Hui; Aseev, Nikita A.

    2016-01-01

    The dipole configuration of the Earth's magnetic field allows for the trapping of highly energetic particles, which form the radiation belts. Although significant advances have been made in understanding the acceleration mechanisms in the radiation belts, the loss processes remain poorly understood. Unique observations on 17 January 2013 provide detailed information throughout the belts on the energy spectrum and pitch angle (angle between the velocity of a particle and the magnetic field) distribution of electrons up to ultra-relativistic energies. Here we show that although relativistic electrons are enhanced, ultra-relativistic electrons become depleted and distributions of particles show very clear telltale signatures of electromagnetic ion cyclotron wave-induced loss. Comparisons between observations and modelling of the evolution of the electron flux and pitch angle show that electromagnetic ion cyclotron waves provide the dominant loss mechanism at ultra-relativistic energies and produce a profound dropout of the ultra-relativistic radiation belt fluxes. PMID:27678050

  5. Stationary self-focusing of Gaussian laser beam in relativistic thermal quantum plasma

    SciTech Connect

    Patil, S. D.; Takale, M. V.

    2013-07-15

    In the present paper, we have employed the quantum dielectric response in thermal quantum plasma to model relativistic self-focusing of Gaussian laser beam in a plasma. We have presented an extensive parametric investigation of the dependence of beam-width parameter on distance of propagation in relativistic thermal quantum plasma. We have studied the role of Fermi temperature in the phenomenon of self-focusing. It is found that the quantum effects cause much higher oscillations of beam-width parameter and better relativistic focusing of laser beam in thermal quantum plasma in comparison with that in the relativistic cold quantum plasma and classical relativistic plasma. Our computations show more reliable results in comparison to the previous works.

  6. Relativistic MHD simulations of extragalactic jets

    NASA Astrophysics Data System (ADS)

    Leismann, T.; Antón, L.; Aloy, M. A.; Müller, E.; Martí, J. M.; Miralles, J. A.; Ibáñez, J. M.

    2005-06-01

    We have performed a comprehensive parameter study of the morphology and dynamics of axisymmetric, magnetized, relativistic jets by means of numerical simulations. The simulations have been performed with an upgraded version of the GENESIS code which is based on a second-order accurate finite volume method involving an approximate Riemann solver suitable for relativistic ideal magnetohydrodynamic flows, and a method of lines. Starting from pure hydrodynamic models we consider the effect of a magnetic field of increasing strength (up to β ≡ |b|2/2p ≈ 3.3 times the equipartition value) and different topology (purely toroidal or poloidal). We computed several series of models investigating the dependence of the dynamics on the magnetic field in jets of different beam Lorentz factor and adiabatic index. We find that the inclusion of the magnetic field leads to diverse effects which contrary to Newtonian magnetohydrodynamics models do not always scale linearly with the (relative) strength of the magnetic field. The relativistic models show, however, some clear trends. Axisymmetric jets with toroidal magnetic fields produce a cavity which consists of two parts: an inner one surrounding the beam which is compressed by magnetic forces, and an adjacent outer part which is inflated due to the action of the magnetic field. The outer border of the outer part of the cavity is given by the bow-shock where its interaction with the external medium takes place. Toroidal magnetic fields well below equipartition (β = 0.05) combined with a value of the adiabatic index of 4/3 yield extremely smooth jet cavities and stable beams. Prominent nose cones form when jets are confined by toroidal fields and carry a high Poynting flux (σ≡ |b|2/ρ>0.01 and β≥ 1). In contrast, none of our models possessing a poloidal field develops such a nose cone. The size of the nose cone is correlated with the propagation speed of the Mach disc (the smaller the speed the larger is the size). If two

  7. Self-Consistent Synchrotron Spectra from Trans-Relativistic Electron Acceleration

    NASA Astrophysics Data System (ADS)

    Becker, Peter A.

    2015-01-01

    Most existing analytical models describing the second-order Fermi acceleration of relativistic electrons due to collisions with MHD waves assume that the injected seed particles are already highly relativistic, despite the fact that the most prevalent source of particles is usually the non-relativistic thermal background gas. This presents a problem because the momentum dependence of the momentum diffusion coefficient describing the interaction between the electrons and the MHD waves is qualitatively different in the non-relativistic and highly relativistic limits. The lack of an analytical model has forced workers to rely on numerical simulations to obtain particle spectra describing the trans-relativistic case. In this work, we present the first analytical solution to the global, trans-relativistic problem of electron acceleration, obtained by using a hybrid form for the momentum diffusion coefficient, given by the sum of the two asymptotic forms. We refer to this process as "quasi hard-sphere scattering." The model also incorporates the appropriate momentum dependence for the particle escape timescale, and the effect of synchrotron and inverse-Compton losses, which are critical for establishing the location of the high-energy cutoff in the particle spectrum. Since synchrotron and inverse-Compton losses are included in the transport equation, the resulting radiation spectra are computed self-consistently. The results can be used to model the acceleration of radiating electrons in AGN and solar environments, applications of both types are discussed.

  8. Relativistic description of pair production of doubly heavy baryons in e{sup +}e{sup −} annihilation

    SciTech Connect

    Martynenko, A. P.; Trunin, A. M.

    2015-05-15

    Relativistic corrections in the pair production of S-wave doubly heavy diquarks in electron-positron annihilation were calculated on the basis of perturbative QCD and the quark model. The relativistic corrections to the wave functions for quark bound states were taken into account with the aid of the Breit potential in QCD. Relativistic effects change substantially the nonrelativistic cross sections for pair diquark production. The yield of pairs of (ccq) doubly heavy baryons at B factories was estimated.

  9. Relativistic stars in beyond Horndeski theories

    NASA Astrophysics Data System (ADS)

    Babichev, Eugeny; Koyama, Kazuya; Langlois, David; Saito, Ryo; Sakstein, Jeremy

    2016-12-01

    This work studies relativistic stars in beyond Horndeski scalar-tensor theories that exhibit a breaking of the Vainshtein mechanism inside matter, focusing on a model based on the quartic beyond Horndeski Lagrangian. We self-consistently derive the scalar field profile for static spherically symmetric objects in asymptotically de Sitter space-time and show that the Vainshtein breaking branch of the solutions is the physical branch thereby resolving several ambiguities with non-relativistic frameworks. The geometry outside the star is shown to be exactly Schwarzschild-de Sitter and therefore the parameterised post-Newtonian parameter {β }{{PPN}}=1, confirming that the external screening works at the post-Newtonian level. The Tolman-Oppenheimer-Volkoff (TOV) equations are derived and a new lower bound on the Vainshtein breaking parameter {{{\\Upsilon }}}1\\gt -4/9 is found by requiring the existence of static spherically symmetric stars. Focusing on the unconstrained case where {{{\\Upsilon }}}1\\lt 0, we numerically solve the TOV equations for polytropic and realistic equations of state and find stars with larger radii at fixed mass. Furthermore, the maximum mass can increase dramatically and stars with masses in excess of 3{M}⊙ can be found for relatively small values of the Vainshtein breaking parameter. We re-examine white dwarf stars and show that post-Newtonian corrections are important in beyond Horndeski theories and therefore the bounds coming from previous analyses should be revisited.

  10. Relativistic rocket: Dream and reality

    NASA Astrophysics Data System (ADS)

    Semyonov, Oleg G.

    2014-06-01

    The dream of interstellar flights persists since the first pioneers in astronautics and has never died. Many concepts of thruster capable to propel a rocket to the stars have been proposed and the most suitable among them are thought to be photon propulsion and propulsion by the products of proton-antiproton annihilation in magnetic nozzle. This article addresses both concepts allowing for cross-section of annihilation among other issues in order to show their vulnerability and to indicate the problems. The concept of relativistic matter propulsion is substantiated and discussed. The latter is argued to be the most straightforward way to build-up a relativistic rocket firstly because it is based on the existing technology of ion generators and accelerators and secondly because it can be stepped up in efflux power starting from interplanetary spacecrafts powered by nuclear reactors to interstellar starships powered by annihilation reactors. The problems imposed by thermodynamics and heat disposal are accentuated.

  11. Thermodynamic and relativistic uncertainty relations

    NASA Astrophysics Data System (ADS)

    Artamonov, A. A.; Plotnikov, E. M.

    2017-01-01

    Thermodynamic uncertainty relation (UR) was verified experimentally. The experiments have shown the validity of the quantum analogue of the zeroth law of stochastic thermodynamics in the form of the saturated Schrödinger UR. We have also proposed a new type of UR for the relativistic mechanics. These relations allow us to consider macroscopic phenomena within the limits of the ratio of the uncertainty relations for different physical quantities.

  12. Relativistic covariance of Ohm's law

    NASA Astrophysics Data System (ADS)

    Starke, R.; Schober, G. A. H.

    2016-04-01

    The derivation of Lorentz-covariant generalizations of Ohm's law has been a long-term issue in theoretical physics with deep implications for the study of relativistic effects in optical and atomic physics. In this article, we propose an alternative route to this problem, which is motivated by the tremendous progress in first-principles materials physics in general and ab initio electronic structure theory in particular. We start from the most general, Lorentz-covariant first-order response law, which is written in terms of the fundamental response tensor χμ ν relating induced four-currents to external four-potentials. By showing the equivalence of this description to Ohm's law, we prove the validity of Ohm's law in every inertial frame. We further use the universal relation between χμ ν and the microscopic conductivity tensor σkℓ to derive a fully relativistic transformation law for the latter, which includes all effects of anisotropy and relativistic retardation. In the special case of a constant, scalar conductivity, this transformation law can be used to rederive a standard textbook generalization of Ohm's law.

  13. Weakly relativistic quantum kinetic theory for electrostatic wave modes in magnetized plasmas

    SciTech Connect

    Hussain, Azhar; Stefan, Martin; Brodin, Gert

    2014-03-15

    We have derived the electrostatic dispersion relation in a magnetized plasma using a recently developed quantum kinetic model based on the Dirac equation. The model contains weakly relativistic spin effects such as Thomas precession, the polarization currents associated with the spin and the spin-orbit coupling. It turns out that for strictly electrostatic perturbations the non-relativistic spin effects vanish, and the modification of the classical dispersion relation is solely associated with the relativistic terms. Several new wave modes appear due the electron spin effects, and an example for astrophysical plasmas are given.

  14. Rarefaction wave in relativistic steady magnetohydrodynamic flows

    SciTech Connect

    Sapountzis, Konstantinos Vlahakis, Nektarios

    2014-07-15

    We construct and analyze a model of the relativistic steady-state magnetohydrodynamic rarefaction that is induced when a planar symmetric flow (with one ignorable Cartesian coordinate) propagates under a steep drop of the external pressure profile. Using the method of self-similarity, we derive a system of ordinary differential equations that describe the flow dynamics. In the specific limit of an initially homogeneous flow, we also provide analytical results and accurate scaling laws. We consider that limit as a generalization of the previous Newtonian and hydrodynamic solutions already present in the literature. The model includes magnetic field and bulk flow speed having all components, whose role is explored with a parametric study.

  15. Microscopic picture of non-relativistic classicalons

    SciTech Connect

    Berkhahn, Felix; Müller, Sophia; Niedermann, Florian; Schneider, Robert E-mail: sophia.x.mueller@physik.uni-muenchen.de E-mail: robert.bob.schneider@physik.uni-muenchen.de

    2013-08-01

    A theory of a non-relativistic, complex scalar field with derivatively coupled interaction terms is investigated. This toy model is considered as a prototype of a classicalizing theory and in particular of general relativity, for which the black hole constitutes a prominent example of a classicalon. Accordingly, the theory allows for a non-trivial solution of the stationary Gross-Pitaevskii equation corresponding to a black hole in the case of GR. Quantum fluctuations on this classical background are investigated within the Bogoliubov approximation. It turns out that the perturbative approach is invalidated by a high occupation of the Bogoliubov modes. Recently, it was proposed that a black hole is a Bose-Einstein condensate of gravitons that dynamically ensures to stay at the verge of a quantum phase transition. Our result is understood as an indication for that claim. Furthermore, it motivates a non-linear numerical analysis of the model.

  16. Relativistic Coulomb excitation of 88Kr

    NASA Astrophysics Data System (ADS)

    Moschner, K.; Blazhev, A.; Jolie, J.; Warr, N.; Boutachkov, P.; Bednarczyk, P.; Sieja, K.; Algora, A.; Ameil, F.; Bentley, M. A.; Brambilla, S.; Braun, N.; Camera, F.; Cederkäll, J.; Corsi, A.; Danchev, M.; DiJulio, D.; Fahlander, C.; Gerl, J.; Giaz, A.; Golubev, P.; Górska, M.; Grebosz, J.; Habermann, T.; Hackstein, M.; Hoischen, R.; Kojouharov, I.; Kurz, N.; Mǎrginean, N.; Merchán, E.; Möller, T.; Naqvi, F.; Nara Singh, B. S.; Nociforo, C.; Pietralla, N.; Pietri, S.; Podolyák, Zs.; Prochazka, A.; Reese, M.; Reiter, P.; Rudigier, M.; Rudolph, D.; Sava, T.; Schaffner, H.; Scruton, L.; Taprogge, J.; Thomas, T.; Weick, H.; Wendt, A.; Wieland, O.; Wollersheim, H.-J.

    2016-11-01

    To investigate the systematics of mixed-symmetry states in N =52 isotones, a relativistic Coulomb excitation experiment was performed during the PreSPEC campaign at the GSI Helmholtzzentrum für Schwerionenforschung to determine E 2 transition strengths to 2+ states of the radioactive nucleus 88Kr. Absolute transition rates could be measured towards the first and third 2+ states. For the latter a mixed-symmetry character is suggested on the basis of the indication for a strong M 1 transition to the fully symmetric 21+ state, extending the knowledge of the N =52 isotones below Z =40 . A comparison with the proton-neutron interacting boson model and shell-model predictions is made and supports the assignment.

  17. Particle acceleration in ultra-relativistic oblique shock waves

    NASA Astrophysics Data System (ADS)

    Meli, A.; Quenby, J. J.

    2003-08-01

    We perform Monte Carlo simulations of diffusive shock acceleration at highly relativistic oblique shock waves. High upstream flow Lorentz gamma factors ( Γ) are used, which are relevant to models of ultra-relativistic particle shock acceleration in active galactic nuclei (AGN) central engines and relativistic jets and gamma ray burst (GRB) fireballs. We investigate numerically the acceleration properties in the relativistic and ultra-relativistic flow regime ( Γ˜10-10 3), such as angular distribution, acceleration time constant, particle energy gain versus number of crossings and spectral shapes. We perform calculations for sub-luminal and super-luminal shocks. For the first case, the dependence on whether or not the scattering is pitch angle diffusion or large angle scattering is studied. The large angle model exhibits a distinctive structure in the basic power-law spectrum which is not nearly so obvious for small angle scattering. However, both models yield significant 'speed-up' or faster acceleration rates when compared with the conventional, non-relativistic expression for the time constant, or alternatively with the time scale rg/ c where rg is Larmor radius. The Γ2 energization for the first crossing cycle and the significantly large energy gain for subsequent crossings as well as the high 'speed-up' factors found, are important in supporting the Vietri and Waxman work on GRB ultra-high energy cosmic ray, neutrino and gamma-ray output. Secondly, for super-luminal shocks, we calculate the energy gain for a number of different inclinations and the spectral shapes of the accelerated particles are given. In this investigation we consider only large angle scattering, partly because of computational time limitations and partly because this model provides the most favourable situation for acceleration. We use high gamma flows with Lorentz factors in the range 10-40, which are relevant to AGN accretion disks and jet ultra-relativistic shock configurations. We

  18. MHD Equation of State with Relativistic Electrons

    NASA Astrophysics Data System (ADS)

    Gong, Zhigang; Däppen, Werner; Zejda, Ladislav

    2001-01-01

    The Mihalas-Däppen-Hummer (MHD) equation of state does not include the effect of relativistic partially degenerate electrons, although nonrelativistic partial degeneracy is taken into account. The discovery of a relativistic correction in helioseismology forces us to perform an appropriate upgrade of the MHD equation of state. We have adopted the method of J. M. Aparicio to evaluate the relativistic Fermi-Dirac functions. Our calculations confirm the validity of the approximation used, which works well for the weakly relativistic electrons under solar-center conditions. However, our results will also provide reliable thermodynamic quantities in the stronger relativistic regime as found in more massive stars. Since a particular feature of the original MHD papers was an explicit list of the adopted free energy and its first- and second-order analytical derivatives, we give the corresponding relativistic quantities in the Appendix.

  19. Relativistic Celestial Mechanics of the Solar System

    NASA Astrophysics Data System (ADS)

    Kopeikin, Sergei; Efroimsky, Michael; Kaplan, George

    2011-09-01

    The general theory of relativity was developed by Einstein a century ago. Since then, it has become the standard theory of gravity, especially important to the fields of fundamental astronomy, astrophysics, cosmology, and experimental gravitational physics. Today, the application of general relativity is also essential for many practical purposes involving astrometry, navigation, geodesy, and time synchronization. Numerous experiments have successfully tested general relativity to a remarkable level of precision. Exploring relativistic gravity in the solar system now involves a variety of high-accuracy techniques, for example, very long baseline radio interferometry, pulsar timing, spacecraft Doppler tracking, planetary radio ranging, lunar laser ranging, the global positioning system (GPS), torsion balances and atomic clocks. Over the last few decades, various groups within the International Astronomical Union have been active in exploring the application of the general theory of relativity to the modeling and interpretation of high-accuracy astronomical observations in the solar system and beyond. A Working Group on Relativity in Celestial Mechanics and Astrometry was formed in 1994 to define and implement a relativistic theory of reference frames and time scales. This task was successfully completed with the adoption of a series of resolutions on astronomical reference systems, time scales, and Earth rotation models by the 24th General Assembly of the IAU, held in Manchester, UK, in 2000. However, these resolutions only form a framework for the practical application of relativity theory, and there have been continuing questions on the details of the proper application of relativity theory to many common astronomical problems. To ensure that these questions are properly addressed, the 26th General Assembly of the IAU, held in Prague in August 2006, established the IAU Commission 52, "Relativity in Fundamental Astronomy". The general scientific goals of the new

  20. Relativistic heavy ions physics

    SciTech Connect

    Mueller, B.

    1989-01-01

    Central nuclear collisions at energies far above 1 GeV/nucleon may provide for conditions, where the transition from highly excited hadronic matter into quark matter or quark-gluon plasma can be probed. We review current ideas about the nature of, and signals for, this transition, and we discuss the (hadronic) string model approach to the nuclear collisions dynamics. At even higher energies in the TeV/nucleon range peripheral nuclear collisions may become a laboratory for electroweak physics at the unification scale allowing, e.g., for Higgs boson production. 42 refs., 29 figs.,

  1. Relativistic radiation transport in dispersive media

    SciTech Connect

    Kichenassamy, S.; Krikorian, R.A.

    1985-10-15

    A general-relativistic radiative transfer equation in an isotropic, weakly absorbing, nonmagnetized dispersive medium is derived using the kinetic-theoretical approach and the relativistic Hamiltonian theory of geometrical optics in those media. It yields the generally accepted classical equation in the special-relativistic approximation and in stationary conditions. The influence of the gravitational field and of space-time variations of the refractive index n on the radiation distribution is made explicit in the case of spherical symmetry.

  2. Mesoscopic Superposition States in Relativistic Landau Levels

    SciTech Connect

    Bermudez, A.; Martin-Delgado, M. A.; Solano, E.

    2007-09-21

    We show that a linear superposition of mesoscopic states in relativistic Landau levels can be built when an external magnetic field couples to a relativistic spin 1/2 charged particle. Under suitable initial conditions, the associated Dirac equation produces unitarily superpositions of coherent states involving the particle orbital quanta in a well-defined mesoscopic regime. We demonstrate that these mesoscopic superpositions have a purely relativistic origin and disappear in the nonrelativistic limit.

  3. Relativistic Electron Wave Packets Carrying Angular Momentum

    NASA Astrophysics Data System (ADS)

    Bialynicki-Birula, Iwo; Bialynicka-Birula, Zofia

    2017-03-01

    There are important differences between the nonrelativistic and relativistic description of electron beams. In the relativistic case the orbital angular momentum quantum number cannot be used to specify the wave functions and the structure of vortex lines in these two descriptions is completely different. We introduce analytic solutions of the Dirac equation in the form of exponential wave packets and we argue that they properly describe relativistic electron beams carrying angular momentum.

  4. Loading relativistic Maxwell distributions in particle simulations

    SciTech Connect

    Zenitani, Seiji

    2015-04-15

    Numerical algorithms to load relativistic Maxwell distributions in particle-in-cell (PIC) and Monte-Carlo simulations are presented. For stationary relativistic Maxwellian, the inverse transform method and the Sobol algorithm are reviewed. To boost particles to obtain relativistic shifted-Maxwellian, two rejection methods are proposed in a physically transparent manner. Their acceptance efficiencies are ≈50% for generic cases and 100% for symmetric distributions. They can be combined with arbitrary base algorithms.

  5. Effect of Chaos on Relativistic Quantum Tunneling

    DTIC Science & Technology

    2012-06-01

    Effect of chaos on relativistic quantum tunneling This article has been downloaded from IOPscience. Please scroll down to see the full text article...of chaos on relativistic quantum tunneling 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e...tunneling dynamics even in the relativistic quantum regime. Similar phenomena have been observed in graphene. A physical theory is developed to

  6. The scaling of relativistic double-year widths - Poisson-Vlasov solutions and particle-in-cell simulations

    NASA Technical Reports Server (NTRS)

    Sulkanen, Martin E.; Borovsky, Joseph E.

    1992-01-01

    The study of relativistic plasma double layers is described through the solution of the one-dimensional, unmagnetized, steady-state Poisson-Vlasov equations and by means of one-dimensional, unmagnetized, particle-in-cell simulations. The thickness vs potential-drop scaling law is extended to relativistic potential drops and relativistic plasma temperatures. The transition in the scaling law for 'strong' double layers suggested by analytical two-beam models by Carlqvist (1982) is confirmed, and causality problems of standard double-layer simulation techniques applied to relativistic plasma systems are discussed.

  7. Relabeling symmetry in relativistic fluids and plasmas

    NASA Astrophysics Data System (ADS)

    Kawazura, Yohei; Yoshida, Zensho; Fukumoto, Yasuhide

    2014-10-01

    The conservation of the recently formulated relativistic canonical helicity is derived from Noether's theorem with the fluid elements' relabeling symmetry. Upon Eulerianizing the Noether current, the purely spatial volume integral on the Lagrangian coordinates is mapped to a space-time mixed three-dimensional integral on the four-dimensional Eulerian coordinates. The relativistic conservation law in the Eulerian coordinates is no longer represented by any divergence-free current. We have also formulated a relativistic action principle of MHD on the Lagrangian coordinates, and have derived the relativistic MHD cross helicity. Work supported by Grant-in-Aid for JSPS Fellows 241010.

  8. Dissipation in Relativistic Pair-Plasma Reconnection

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Zenitani, Seiji

    2007-01-01

    We present an investigation of the relativistic dissipation in magnetic reconnection. The investigated system consists of an electron-positron plasma. A relativistic generalization of Ohm's law is derived. We analyze a set of numerical simulations, composed of runs with and without guide magnetic field, and of runs with different species temperatures. The calculations indicate that the thermal inertia-based dissipation process survives in relativistic plasmas. For anti-parallel reconnection, it is found that the pressure tensor divergence remains the sole contributor to the reconnection electric field, whereas relativistic guide field reconnection exhibits a similarly important role of the bulk inertia terms.

  9. Dissipation in relativistic pair-plasma reconnection

    SciTech Connect

    Hesse, Michael; Zenitani, Seiji

    2007-11-15

    An investigation into the relativistic dissipation in magnetic reconnection is presented. The investigated system consists of an electron-positron plasma. A relativistic generalization of Ohm's law is derived. A set of numerical simulations is analyzed, composed of runs with and without guide magnetic field, and of runs with different species temperatures. The calculations indicate that the thermal inertia-based dissipation process survives in relativistic plasmas. For antiparallel reconnection, it is found that the pressure tensor divergence remains the sole contributor to the reconnection electric field, whereas relativistic guide field reconnection exhibits a similarly important role of the bulk inertia terms.

  10. Conformally symmetric relativistic star

    NASA Astrophysics Data System (ADS)

    Rahaman, Farook; Maharaj, Sunil D.; Sardar, Iftikar Hossain; Chakraborty, Koushik

    2017-03-01

    We investigate whether compact stars having Tolman-like interior geometry admit conformal symmetry. Taking anisotropic pressure along the two principal directions within the compact object, we obtain physically relevant quantities such as transverse and radial pressure, density and redshift function. We study the equation of state (EOS) for the matter distribution inside the star. From the relation between pressure and density function of the constituent matter, we explore the nature and properties of the interior matter. The redshift function and compactness parameter are found to be physically reasonable. The matter inside the star satisfies the null, weak and strong energy conditions. Finally, we compare the masses and radii predicted from the model with corresponding values in some observed stars.

  11. Relativistic Plasma Polarizer: Impact of Temperature Anisotropy on Relativistic Transparency.

    PubMed

    Stark, David J; Bhattacharjee, Chinmoy; Arefiev, Alexey V; Toncian, Toma; Hazeltine, R D; Mahajan, S M

    2015-07-10

    3D particle-in-cell simulations demonstrate that the enhanced transparency of a relativistically hot plasma is sensitive to how the energy is partitioned between different degrees of freedom. For an anisotropic electron distribution, propagation characteristics, like the critical density, will depend on the polarization of the electromagnetic wave. Despite the onset of the Weibel instability in such plasmas, the anisotropy can persist long enough to affect laser propagation. This plasma can then function as a polarizer or a wave plate to dramatically alter the pulse polarization.

  12. Computational Relativistic Astrophysics Using the Flowfield-Dependent Variation Theory

    NASA Technical Reports Server (NTRS)

    Richardson, G. A.; Chung, T. J.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Theoretical models, observations and measurements have preoccupied astrophysicists for many centuries. Only in recent years, has the theory of relativity as applied to astrophysical flows met the challenges of how the governing equations can be solved numerically with accuracy and efficiency. Even without the effects of relativity, the physics of magnetohydrodynamic flow instability, turbulence, radiation, and enhanced transport in accretion disks has not been completely resolved. Relativistic effects become pronounced in such cases as jet formation from black hole magnetized accretion disks and also in the study of Gamma-Ray bursts (GRB). Thus, our concern in this paper is to reexamine existing numerical simulation tools as to the accuracy and efficiency of computations and introduce a new approach known as the flowfield-dependent variation (FDV) method. The main feature of the FDV method consists of accommodating discontinuities of shock waves and high gradients of flow variables such as occur in turbulence and unstable motions. In this paper, the physics involved in the solution of relativistic hydrodynamics and solution strategies of the FDV theory are elaborated. The general relativistic astrophysical flow and shock solver (GRAFSS) is introduced, and some simple example problems for Computational Relativistic Astrophysics (CRA) are demonstrated.

  13. Laser-driven ion acceleration from relativistically transparent nanotargets

    NASA Astrophysics Data System (ADS)

    Hegelich, B. M.; Pomerantz, I.; Yin, L.; Wu, H. C.; Jung, D.; Albright, B. J.; Gautier, D. C.; Letzring, S.; Palaniyappan, S.; Shah, R.; Allinger, K.; Hörlein, R.; Schreiber, J.; Habs, D.; Blakeney, J.; Dyer, G.; Fuller, L.; Gaul, E.; Mccary, E.; Meadows, A. R.; Wang, C.; Ditmire, T.; Fernandez, J. C.

    2013-08-01

    Here we present experimental results on laser-driven ion acceleration from relativistically transparent, overdense plasmas in the break-out afterburner (BOA) regime. Experiments were preformed at the Trident ultra-high contrast laser facility at Los Alamos National Laboratory, and at the Texas Petawatt laser facility, located in the University of Texas at Austin. It is shown that when the target becomes relativistically transparent to the laser, an epoch of dramatic acceleration of ions occurs that lasts until the electron density in the expanding target reduces to the critical density in the non-relativistic limit. For given laser parameters, the optimal target thickness yielding the highest maximum ion energy is one in which this time window for ion acceleration overlaps with the intensity peak of the laser pulse. A simple analytic model of relativistically induced transparency is presented for plasma expansion at the time-evolving sound speed, from which these times may be estimated. The maximum ion energy attainable is controlled by the finite acceleration volume and time over which the BOA acts.

  14. SYNCHROTRON RADIATION OF SELF-COLLIMATING RELATIVISTIC MAGNETOHYDRODYNAMIC JETS

    SciTech Connect

    Porth, Oliver; Fendt, Christian; Vaidya, Bhargav; Meliani, Zakaria E-mail: fendt@mpia.de

    2011-08-10

    The goal of this paper is to derive signatures of synchrotron radiation from state-of-the-art simulation models of collimating relativistic magnetohydrodynamic (MHD) jets featuring a large-scale helical magnetic field. We perform axisymmetric special relativistic MHD simulations of the jet acceleration region using the PLUTO code. The computational domain extends from the slow-magnetosonic launching surface of the disk up to 6000{sup 2} Schwarzschild radii allowing jets to reach highly relativistic Lorentz factors. The Poynting-dominated disk wind develops into a jet with Lorentz factors of {Gamma} {approx_equal} 8 and is collimated to 1{sup 0}. In addition to the disk jet, we evolve a thermally driven spine jet emanating from a hypothetical black hole corona. Solving the linearly polarized synchrotron radiation transport within the jet, we derive very long baseline interferometry radio and (sub-) millimeter diagnostics such as core shift, polarization structure, intensity maps, spectra, and Faraday rotation measure (RM) directly from the Stokes parameters. We also investigate depolarization and the detectability of a {lambda}{sup 2}-law RM depending on beam resolution and observing frequency. We find non-monotonic intrinsic RM profiles that could be detected at a resolution of 100 Schwarzschild radii. In our collimating jet geometry, the strict bimodality in the polarization direction (as predicted by Pariev et al.) can be circumvented. Due to relativistic aberration, asymmetries in the polarization vectors across the jet can hint at the spin direction of the central engine.

  15. Relativistic Magnetic Reconnection in Kerr Spacetime.

    PubMed

    Asenjo, Felipe A; Comisso, Luca

    2017-02-03

    The magnetic reconnection process is analyzed for relativistic magnetohydrodynamical plasmas around rotating black holes. A simple generalization of the Sweet-Parker model is used as a first approximation to the problem. The reconnection rate, as well as other important properties of the reconnection layer, has been calculated taking into account the effect of spacetime curvature. Azimuthal and radial current sheet configurations in the equatorial plane of the black hole have been studied, and the case of small black hole rotation rate has been analyzed. For the azimuthal configuration, it is found that the black hole rotation decreases the reconnection rate. On the other hand, in the radial configuration, it is the gravitational force created by the black hole mass that decreases the reconnection rate. These results establish a fundamental interaction between gravity and magnetic reconnection in astrophysical contexts.

  16. Relativistic two-moment neutrino transport

    NASA Technical Reports Server (NTRS)

    Cernohorsky, J.; Van Weert, Ch. G.

    1992-01-01

    We implement a general relativistic neutrino transport scheme appropriate to problems in stellar collapse and neutron star formation. In this scheme the spectral energy and momentum balance equations are solved as a coupled set. We perform transport calculations on two frozen stellar background models neglecting the feedback of the neutrinos on the matter. We compare with schemes that ignore either relativity or momentum balance or both. The work performed by the neutrino stress on the matter is taken into account and has an important effect. In particular, if there is a hydrodynamical shock in the system, this work contribution boosts the energy deposition behind the shock. This may enhance the chances for a successful neutrino driven supernova explosion.

  17. Relativistic Magnetic Reconnection in Kerr Spacetime

    NASA Astrophysics Data System (ADS)

    Asenjo, Felipe A.; Comisso, Luca

    2017-02-01

    The magnetic reconnection process is analyzed for relativistic magnetohydrodynamical plasmas around rotating black holes. A simple generalization of the Sweet-Parker model is used as a first approximation to the problem. The reconnection rate, as well as other important properties of the reconnection layer, has been calculated taking into account the effect of spacetime curvature. Azimuthal and radial current sheet configurations in the equatorial plane of the black hole have been studied, and the case of small black hole rotation rate has been analyzed. For the azimuthal configuration, it is found that the black hole rotation decreases the reconnection rate. On the other hand, in the radial configuration, it is the gravitational force created by the black hole mass that decreases the reconnection rate. These results establish a fundamental interaction between gravity and magnetic reconnection in astrophysical contexts.

  18. Exploring Stability of General Relativistic Accretion Disks

    NASA Astrophysics Data System (ADS)

    Korobkin, Oleg; Abdikamalov, Ernazar; Schnetter, Erik; Stergioulas, Nikolaos; Zink, Burkhard

    2011-04-01

    Self-gravitating relativistic disks around black holes can form as transient structures in a number of astrophysical scenarios, involving core collapse of massive stars and mergers of compact ob jects. I will present results on our recent study of the stability of such disks against runaway and non-axisymmetric instabilities, which we explore using three-dimensional hydrodynamics simulations in full general relativity. All of our models develop unstable non-axisymmetric modes on a dynamical timescale. We observe two distinct types of instabilities: the Papaloizou-Pringle and the so-called intermediate type instabilities. The development of the non-axisymmetric mode with azimuthal number m=1 is accompanied by an outspiraling motion of the black hole, which significantly amplifies the growth rate of the m=1 mode in some cases. We will discuss the types, growth rates and pattern speeds of the unstable modes, as well as the detectability of the gravitational waves from such objects.

  19. Relativistic Plasma Polarizer: Impact of Temperature Anisotropy on Relativistic Transparency

    NASA Astrophysics Data System (ADS)

    Hazeltine, R. D.; Stark, David J.; Bhattacharjee, Chinmoy; Arefiev, Alexey V.; Toncian, Toma; Mahajan, S. M.

    2015-11-01

    3D particle-in-cell simulations demonstrate that the enhanced transparency of a relativistically hot plasma is sensitive to how the energy is partitioned between different degrees of freedom. We consider here the simplest problem: the propagation of a low amplitude pulse through a preformed relativistically hot anisotropic electron plasma to explore its intrinsic dielectric properties. We find that: 1) the critical density for propagation depends strongly on the pulse polarization, 2) two plasmas with the same density and average energy per electron can exhibit profoundly different responses to electromagnetic pulses, 3) the anisotropy-driven Weibel instability develops as expected; the timescales of the growth and back reaction (on anisotropy), however, are long enough that sufficient anisotropy persists for the entire duration of the simulation. This plasma can then function as a polarizer or a wave plate to dramatically alter the pulse polarization. This work was supported by the U.S. DOE Contract Nos. DE-FG02-04ER54742 and DE-AC05-06OR23100 (D. J. S.) and NNSA Contract No. DE-FC52-08NA28512.

  20. Relativistic quantum private database queries

    NASA Astrophysics Data System (ADS)

    Sun, Si-Jia; Yang, Yu-Guang; Zhang, Ming-Ou

    2015-04-01

    Recently, Jakobi et al. (Phys Rev A 83, 022301, 2011) suggested the first practical private database query protocol (J-protocol) based on the Scarani et al. (Phys Rev Lett 92, 057901, 2004) quantum key distribution protocol. Unfortunately, the J-protocol is just a cheat-sensitive private database query protocol. In this paper, we present an idealized relativistic quantum private database query protocol based on Minkowski causality and the properties of quantum information. Also, we prove that the protocol is secure in terms of the user security and the database security.

  1. On the relativistic anisotropic configurations

    NASA Astrophysics Data System (ADS)

    Shojai, F.; Kohandel, M.; Stepanian, A.

    2016-06-01

    In this paper we study anisotropic spherical polytropes within the framework of general relativity. Using the anisotropic Tolman-Oppenheimer-Volkov equations, we explore the relativistic anisotropic Lane-Emden equations. We find how the anisotropic pressure affects the boundary conditions of these equations. Also we argue that the behavior of physical quantities near the center of star changes in the presence of anisotropy. For constant density, a class of exact solution is derived with the aid of a new ansatz and its physical properties are discussed.

  2. Relativistic shock spectra: A prediction

    NASA Technical Reports Server (NTRS)

    Katz, J. I.

    1994-01-01

    I argue that particles heated by relativistic shocks should assume an equilibrium energy distribution. This leads to a synchrotron spectrum F(sub nu) varies as nu(sup 1/3) up to approximately the critical frequency nu(sub 0) of an electron with the mean electron energy. Application to gamma ray bursts (GRB's) implies that a burst with 10(exp -5) erg/(sq cm s) of soft gamma-rays and h(nu(sub 0)) = 300 KeV should be about 18th magnitude in visible light and a few micro-Jy at 1 GHz (less if self-absorbed).

  3. Relativistic atomic beam spectroscopy II

    SciTech Connect

    1989-12-31

    The negative ion of H is one of the simplest 3-body atomic systems. The techniques we have developed for experimental study of atoms moving near speed of light have been productive. This proposal request continuing support for experimental studies of the H{sup -} system, principally at the 800 MeV linear accelerator (LAMPF) at Los Alamos. Four experiments are currently planned: photodetachment of H{sup -} near threshold in electric field, interaction of relativistic H{sup -} ions with matter, high excitations and double charge escape in H{sup -}, and multiphoton detachment of electrons from H{sup -}.

  4. Arbitrarily Long Relativistic Bit Commitment

    NASA Astrophysics Data System (ADS)

    Chakraborty, Kaushik; Chailloux, André; Leverrier, Anthony

    2015-12-01

    We consider the recent relativistic bit commitment protocol introduced by Lunghi et al. [Phys. Rev. Lett. 115, 030502 (2015)] and present a new security analysis against classical attacks. In particular, while the initial complexity of the protocol scales double exponentially with the commitment time, our analysis shows that the correct dependence is only linear. This has dramatic implications in terms of implementation: in particular, the commitment time can easily be made arbitrarily long, by only requiring both parties to communicate classically and perform efficient classical computation.

  5. Action principle for relativistic magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    D'Avignon, Eric; Morrison, P. J.; Pegoraro, F.

    2015-04-01

    A covariant action principle for ideal relativistic magnetohydrodynamics in terms of natural Eulerian field variables is given. This is done by generalizing the covariant Poisson bracket theory of Marsden et al. [Ann. Phys. 169, 29 (1986)], which uses a noncanonical bracket to effect constrained variations of an action functional. Various implications and extensions of this action principle are also discussed. Two significant byproducts of this formalism are the introduction of a new divergence-free 4-vector variable for the magnetic field, and a new Lie-dragged form for the theory.

  6. Thermodynamics of polarized relativistic matter

    NASA Astrophysics Data System (ADS)

    Kovtun, Pavel

    2016-07-01

    We give the free energy of equilibrium relativistic matter subject to external gravitational and electromagnetic fields, to one-derivative order in the gradients of the external fields. The free energy allows for a straightforward derivation of bound currents and bound momenta in equilibrium. At leading order, the energy-momentum tensor admits a simple expression in terms of the polarization tensor. Beyond the leading order, electric and magnetic polarization vectors are intrinsically ambiguous. The physical effects of polarization, such as the correlation between the magneto-vortically induced surface charge and the electro-vortically induced surface current, are not ambiguous.

  7. Lattice Boltzmann method for relativistic hydrodynamics: Issues on conservation law of particle number and discontinuities

    NASA Astrophysics Data System (ADS)

    Li, Q.; Luo, K. H.; Li, X. J.

    2012-10-01

    In this paper, we aim to address several important issues about the recently developed lattice Boltzmann (LB) model for relativistic hydrodynamics [M. Mendoza, B. Boghosian, H. Herrmann, and S. Succi, Phys. Rev. Lett. 105, 014502 (2010)PRLTAO0031-900710.1103/PhysRevLett.105.014502; Phys. Rev. D 82, 105008 (2010)PRVDAQ1550-799810.1103/PhysRevD.82.105008]. First, we study the conservation law of the particle number in the relativistic LB model. Through the Chapman-Enskog analysis, it is shown that in the relativistic LB model the conservation equation of the particle number is a convection-diffusion equation rather than a continuity equation, which makes the evolution of the particle number dependent on the relaxation time. Furthermore, we investigate the origin of the discontinuities that appeared in the relativistic problems with high viscosities, which were reported in a recent study [D. Hupp, M. Mendoza, I. Bouras, S. Succi, and H. Herrmann, Phys. Rev. D 84, 125015 (2011)PRVDAQ1550-799810.1103/PhysRevD.84.125015]. A multiple-relaxation-time relativistic LB model is presented to examine the influences of different relaxation times on the discontinuities. Numerical experiments show the discontinuities can be eliminated by setting the relaxation time τe (related to the bulk viscosity) to be sufficiently smaller than the relaxation time τν (related to the shear viscosity). Meanwhile, it is found that the relaxation time τɛ, which has no effect on the conservation equations at the Navier-Stokes level, will affect the numerical accuracy of the relativistic LB model. Moreover, the accuracy of the relativistic LB model for simulating moderately relativistic problems is also investigated.

  8. Rotational modes of relativistic stars: Analytic results

    NASA Astrophysics Data System (ADS)

    Lockitch, Keith H.; Andersson, Nils; Friedman, John L.

    2001-01-01

    We study the r modes and rotational ``hybrid'' modes (inertial modes) of relativistic stars. As in Newtonian gravity, the spectrum of low-frequency rotational modes is highly sensitive to the stellar equation of state. If the star and its perturbations obey the same one-parameter equation of state (as with barotropic stars), there exist no pure r modes at all-no modes whose limit, for a star with zero angular velocity, is an axial-parity perturbation. Rotating stars of this kind similarly have no pure g modes, no modes whose spherical limit is a perturbation with polar parity and vanishing perturbed pressure and density. In spherical stars of this kind, the r modes and g modes form a degenerate zero-frequency subspace. We find that rotation splits the degeneracy to zeroth order in the star's angular velocity Ω, and the resulting modes are generically hybrids, whose limit as Ω-->0 is a stationary current with both axial and polar parts. Because each mode has definite parity, its axial and polar parts have alternating values of l. We show that each mode belongs to one of two classes, axial-led or polar-led, depending on whether the spherical harmonic with the lowest value of l that contributes to its velocity field is axial or polar. Newtonian barotropic stars retain a vestigial set of purely axial modes (those with l=m); however, for relativistic barotropic stars, we show that these modes must also be replaced by axial-led hybrids. We compute the post-Newtonian corrections to the l=m modes for uniform density stars. On the other hand, if the star is nonbarotropic (that is, if the perturbed star obeys an equation of state that differs from that of the unperturbed star), the r modes alone span the degenerate zero-frequency subspace of the spherical star. In Newtonian stars, this degeneracy is split only by the order-Ω2 rotational corrections. However, when relativistic effects are included, the degeneracy is again broken at zeroth order. We compute the r modes of a

  9. Modulation and nonlinear evolution of multi-dimensional Langmuir wave envelopes in a relativistic plasma

    NASA Astrophysics Data System (ADS)

    Shahmansouri, M.; Misra, A. P.

    2016-12-01

    The modulational instability (MI) and the evolution of weakly nonlinear two-dimensional (2D) Langmuir wave (LW) packets are studied in an unmagnetized collisionless plasma with weakly relativistic electron flow. By using a 2D self-consistent relativistic fluid model and employing the standard multiple-scale technique, a coupled set of Davey-Stewartson (DS)-like equations is derived, which governs the slow modulation and the evolution of LW packets in relativistic plasmas. It is found that the relativistic effects favor the instability of LW envelopes in the k - θ plane, where k is the wave number and θ ( 0 ≤ θ ≤ π ) the angle of modulation. It is also found that as the electron thermal velocity or θ increases, the growth rate of MI increases with cutoffs at higher wave numbers of modulation. Furthermore, in the nonlinear evolution of the DS-like equations, it is seen that with an effect of the relativistic flow, a Gaussian wave beam collapses in a finite time, and the collapse can be arrested when the effect of the thermal pressure or the relativistic flow is slightly relaxed. The present results may be useful to the MI and the formation of localized LW envelopes in cosmic plasmas with a relativistic flow of electrons.

  10. Apparatus to measure relativistic mass increase

    NASA Astrophysics Data System (ADS)

    Luetzelschwab, John W.

    2003-09-01

    An apparatus that uses readily available material to measure the relativistic mass increase of beta particles from a radioactive 204Tl source is described. Although the most accurate analysis uses curve fitting or a Kurie plot, students may just use the raw data and a simple calculation to verify the relativistic mass increase.

  11. Compton Effect with Non-Relativistic Kinematics

    ERIC Educational Resources Information Center

    Shivalingaswamy, T.; Kagali, B. A.

    2011-01-01

    In deducing the change of wavelength of x-rays scattered by atomic electrons, one normally makes use of relativistic kinematics for electrons. However, recoiling energies of the electrons are of the order of a few keV which is less than 0.2% of their rest energies. Hence the authors may ask whether relativistic formulae are really necessary. In…

  12. Einstein Never Approved of Relativistic Mass

    ERIC Educational Resources Information Center

    Hecht, Eugene

    2009-01-01

    During much of the 20th century it was widely believed that one of the significant insights of special relativity was "relativistic mass." Today there are two schools on that issue: the traditional view that embraces speed-dependent "relativistic mass," and the more modern position that rejects it, maintaining that there is only one mass and it's…

  13. Stability of general-relativistic accretion disks

    NASA Astrophysics Data System (ADS)

    Korobkin, Oleg; Abdikamalov, Ernazar B.; Schnetter, Erik; Stergioulas, Nikolaos; Zink, Burkhard

    2011-02-01

    Self-gravitating relativistic disks around black holes can form as transient structures in a number of astrophysical scenarios such as binary neutron star and black hole-neutron star coalescences, as well as the core collapse of massive stars. We explore the stability of such disks against runaway and nonaxisymmetric instabilities using three-dimensional hydrodynamics simulations in full general relativity using the Thor code. We model the disk matter using the ideal fluid approximation with a Γ-law equation of state with Γ=4/3. We explore three disk models around nonrotating black holes with disk-to-black hole mass ratios of 0.24, 0.17, and 0.11. Because of metric blending in our initial data, all of our initial models contain an initial axisymmetric perturbation which induces radial disk oscillations. Despite these oscillations, our models do not develop the runaway instability during the first several orbital periods. Instead, all of the models develop unstable nonaxisymmetric modes on a dynamical time scale. We observe two distinct types of instabilities: the Papaloizou-Pringle and the so-called intermediate type instabilities. The development of the nonaxisymmetric mode with azimuthal number m=1 is accompanied by an outspiraling motion of the black hole, which significantly amplifies the growth rate of the m=1 mode in some cases. Overall, our simulations show that the properties of the unstable nonaxisymmetric modes in our disk models are qualitatively similar to those in the Newtonian theory.

  14. Stability of general-relativistic accretion disks

    SciTech Connect

    Korobkin, Oleg; Abdikamalov, Ernazar B.; Schnetter, Erik; Stergioulas, Nikolaos; Zink, Burkhard

    2011-02-15

    Self-gravitating relativistic disks around black holes can form as transient structures in a number of astrophysical scenarios such as binary neutron star and black hole-neutron star coalescences, as well as the core collapse of massive stars. We explore the stability of such disks against runaway and nonaxisymmetric instabilities using three-dimensional hydrodynamics simulations in full general relativity using the Thor code. We model the disk matter using the ideal fluid approximation with a {Gamma}-law equation of state with {Gamma}=4/3. We explore three disk models around nonrotating black holes with disk-to-black hole mass ratios of 0.24, 0.17, and 0.11. Because of metric blending in our initial data, all of our initial models contain an initial axisymmetric perturbation which induces radial disk oscillations. Despite these oscillations, our models do not develop the runaway instability during the first several orbital periods. Instead, all of the models develop unstable nonaxisymmetric modes on a dynamical time scale. We observe two distinct types of instabilities: the Papaloizou-Pringle and the so-called intermediate type instabilities. The development of the nonaxisymmetric mode with azimuthal number m=1 is accompanied by an outspiraling motion of the black hole, which significantly amplifies the growth rate of the m=1 mode in some cases. Overall, our simulations show that the properties of the unstable nonaxisymmetric modes in our disk models are qualitatively similar to those in the Newtonian theory.

  15. 24-Hour Relativistic Bit Commitment

    NASA Astrophysics Data System (ADS)

    Verbanis, Ephanielle; Martin, Anthony; Houlmann, Raphaël; Boso, Gianluca; Bussières, Félix; Zbinden, Hugo

    2016-09-01

    Bit commitment is a fundamental cryptographic primitive in which a party wishes to commit a secret bit to another party. Perfect security between mistrustful parties is unfortunately impossible to achieve through the asynchronous exchange of classical and quantum messages. Perfect security can nonetheless be achieved if each party splits into two agents exchanging classical information at times and locations satisfying strict relativistic constraints. A relativistic multiround protocol to achieve this was previously proposed and used to implement a 2-millisecond commitment time. Much longer durations were initially thought to be insecure, but recent theoretical progress showed that this is not so. In this Letter, we report on the implementation of a 24-hour bit commitment solely based on timed high-speed optical communication and fast data processing, with all agents located within the city of Geneva. This duration is more than 6 orders of magnitude longer than before, and we argue that it could be extended to one year and allow much more flexibility on the locations of the agents. Our implementation offers a practical and viable solution for use in applications such as digital signatures, secure voting and honesty-preserving auctions.

  16. Are relativistic jets monoparametric engines?

    NASA Astrophysics Data System (ADS)

    Georganopoulos, M.; Meyer, E. T.; Fossati, G.; Lister, M. L.

    We adopt as a working hypothesis that relativistic jets are essentially mono-parametric entities, and that their physical properties are a function of a single physical parameter, the same way the physical properties of main sequence stars are mainly a function of the star mass. We propose that the physical parameter is the jet kinetic power, and we use as a proxy for this quantity the low frequency extended radio luminosity (LFERL), an orientation insensitive quantity. We discuss the consequences of this hypothesis for the collective properties of relativistic jets and we show that a blazar sequence should spontaneously emerge on the peak frequency vs luminosity plot as the locus of those sources that are well aligned to the observer's line of sight. We also show that the sources of the same LFERL should form tracks that start from a location on the blazar sequence and move to lower luminosities and peak frequencies in a way that encodes information about the emitting plasma energetics and kinematics and velocity gradients, as well as about the inverse Compton (IC) emission seed photons. We are currently working on collecting the observations that will allow us to put this idea to the test.

  17. Single electron relativistic clock interferometer

    NASA Astrophysics Data System (ADS)

    Bushev, P. A.; Cole, J. H.; Sholokhov, D.; Kukharchyk, N.; Zych, M.

    2016-09-01

    Although time is one of the fundamental notions in physics, it does not have a unique description. In quantum theory time is a parameter ordering the succession of the probability amplitudes of a quantum system, while according to relativity theory each system experiences in general a different proper time, depending on the system's world line, due to time dilation. It is therefore of fundamental interest to test the notion of time in the regime where both quantum and relativistic effects play a role, for example, when different amplitudes of a single quantum clock experience different magnitudes of time dilation. Here we propose a realization of such an experiment with a single electron in a Penning trap. The clock can be implemented in the electronic spin precession and its time dilation then depends on the radial (cyclotron) state of the electron. We show that coherent manipulation and detection of the electron can be achieved already with present day technology. A single electron in a Penning trap is a technologically ready platform where the notion of time can be probed in a hitherto untested regime, where it requires a relativistic as well as quantum description.

  18. Loading relativistic Maxwell distributions in particle simulations

    NASA Astrophysics Data System (ADS)

    Zenitani, S.

    2015-12-01

    In order to study energetic plasma phenomena by using particle-in-cell (PIC) and Monte-Carlo simulations, we need to deal with relativistic velocity distributions in these simulations. However, numerical algorithms to deal with relativistic distributions are not well known. In this contribution, we overview basic algorithms to load relativistic Maxwell distributions in PIC and Monte-Carlo simulations. For stationary relativistic Maxwellian, the inverse transform method and the Sobol algorithm are reviewed. To boost particles to obtain relativistic shifted-Maxwellian, two rejection methods are newly proposed in a physically transparent manner. Their acceptance efficiencies are 􏰅50% for generic cases and 100% for symmetric distributions. They can be combined with arbitrary base algorithms.

  19. Electron Correlation in 4-Component Relativistic Calculations

    NASA Technical Reports Server (NTRS)

    Visscher, Luuk; Arnold, James O. (Technical Monitor)

    1994-01-01

    The full 4-component Dirac-Coulomb equation can nowadays be used in molecular calculations, The first step in solving this relativistic many-electron equation usually consists of solving the closed or open-shell Diarc-Fock equations. Like in non-relativistic calculations the outcome does not account for the effects of electron correlation. This can in principle be remedied by developing relativistic variants of electron correlation methods like Configuration Interaction or Coupled Cluster. In this talk the differences and similarities of such relativistic approaches as compared to non-relativistic methods will be reviewed. Results of Configuration Interaction calculations on the PtH molecule and on the MeF(sub 6, sup 2-) (Me= Co, Rh, Ir) complexes will be presented to give an impression of the kind of results that currently can be obtained.

  20. Relativistic calculation of nuclear magnetic shielding tensor using the regular approximation to the normalized elimination of the small component. III. Introduction of gauge-including atomic orbitals and a finite-size nuclear model

    NASA Astrophysics Data System (ADS)

    Hamaya, S.; Maeda, H.; Funaki, M.; Fukui, H.

    2008-12-01

    The relativistic calculation of nuclear magnetic shielding tensors in hydrogen halides is performed using the second-order regular approximation to the normalized elimination of the small component (SORA-NESC) method with the inclusion of the perturbation terms from the metric operator. This computational scheme is denoted as SORA-Met. The SORA-Met calculation yields anisotropies, Δσ =σ∥-σ⊥, for the halogen nuclei in hydrogen halides that are too small. In the NESC theory, the small component of the spinor is combined to the large component via the operator σ⃗ṡπ⃗U/2c, in which π⃗=p⃗+A⃗, U is a nonunitary transformation operator, and c ≅137.036 a.u. is the velocity of light. The operator U depends on the vector potential A⃗ (i.e., the magnetic perturbations in the system) with the leading order c-2 and the magnetic perturbation terms of U contribute to the Hamiltonian and metric operators of the system in the leading order c-4. It is shown that the small Δσ for halogen nuclei found in our previous studies is related to the neglect of the U(0,1) perturbation operator of U, which is independent of the external magnetic field and of the first order with respect to the nuclear magnetic dipole moment. Introduction of gauge-including atomic orbitals and a finite-size nuclear model is also discussed.

  1. Relativistic four-component DFT calculations of 1H NMR chemical shifts in transition-metal hydride complexes: unusual high-field shifts beyond the Buckingham-Stephens model.

    PubMed

    Hrobárik, Peter; Hrobáriková, Veronika; Meier, Florian; Repiský, Michal; Komorovský, Stanislav; Kaupp, Martin

    2011-06-09

    State-of-the-art relativistic four-component DFT-GIAO-based calculations of (1)H NMR chemical shifts of a series of 3d, 4d, and 5d transition-metal hydrides have revealed significant spin-orbit-induced heavy atom effects on the hydride shifts, in particular for several 4d and 5d complexes. The spin-orbit (SO) effects provide substantial, in some cases even the dominant, contributions to the well-known characteristic high-field hydride shifts of complexes with a partially filled d-shell, and thereby augment the Buckingham-Stephens model of off-center paramagnetic ring currents. In contrast, complexes with a 4d(10) and 5d(10) configuration exhibit large deshielding SO effects on their hydride (1)H NMR shifts. The differences between the two classes of complexes are attributed to the dominance of π-type d-orbitals for the true transition-metal systems compared to σ-type orbitals for the d(10) systems.

  2. Relativistic calculation of nuclear magnetic shielding tensor using the regular approximation to the normalized elimination of the small component. III. Introduction of gauge-including atomic orbitals and a finite-size nuclear model.

    PubMed

    Hamaya, S; Maeda, H; Funaki, M; Fukui, H

    2008-12-14

    The relativistic calculation of nuclear magnetic shielding tensors in hydrogen halides is performed using the second-order regular approximation to the normalized elimination of the small component (SORA-NESC) method with the inclusion of the perturbation terms from the metric operator. This computational scheme is denoted as SORA-Met. The SORA-Met calculation yields anisotropies, Delta sigma = sigma(parallel) - sigma(perpendicular), for the halogen nuclei in hydrogen halides that are too small. In the NESC theory, the small component of the spinor is combined to the large component via the operator sigma x piU/2c, in which pi = p + A, U is a nonunitary transformation operator, and c approximately = 137.036 a.u. is the velocity of light. The operator U depends on the vector potential A (i.e., the magnetic perturbations in the system) with the leading order c(-2) and the magnetic perturbation terms of U contribute to the Hamiltonian and metric operators of the system in the leading order c(-4). It is shown that the small Delta sigma for halogen nuclei found in our previous studies is related to the neglect of the U(0,1) perturbation operator of U, which is independent of the external magnetic field and of the first order with respect to the nuclear magnetic dipole moment. Introduction of gauge-including atomic orbitals and a finite-size nuclear model is also discussed.

  3. Observation of Shot Noise Suppression at Optical Wavelengths in a Relativistic Electron Beam

    SciTech Connect

    Ratner, Daniel; Stupakov, Gennady; /SLAC

    2012-06-19

    Control of collective properties of relativistic particles is increasingly important in modern accelerators. In particular, shot noise affects accelerator performance by driving instabilities or by competing with coherent processes. We present experimental observations of shot noise suppression in a relativistic beam at the Linac Coherent Light Source. By adjusting the dispersive strength of a chicane, we observe a decrease in the optical transition radiation emitted from a downstream foil. We show agreement between the experimental results, theoretical models, and 3D particle simulations.

  4. Radiationless transitions to atomic M 1,2,3 shells - Results of relativistic theory

    NASA Technical Reports Server (NTRS)

    Chen, M. H.; Crasemann, B.; Mark, H.

    1983-01-01

    Radiationless transitions filling vacancies in atomic M1, M2, and M3 subshells have been calculated relativistically with Dirac-Hartree-Slater wave functions for ten elements with atomic numbers 67-95. Results are compared with those of nonrelativistic calculations and experiment. Relativistic effects are found to be significant. Limitations of an independent-particle model for the calculation of Coster-Kronig rates are noted.

  5. INVERSE CASCADE OF NONHELICAL MAGNETIC TURBULENCE IN A RELATIVISTIC FLUID

    SciTech Connect

    Zrake, Jonathan

    2014-10-20

    The free decay of nonhelical relativistic magnetohydrodynamic turbulence is studied numerically, and found to exhibit cascading of magnetic energy toward large scales. Evolution of the magnetic energy spectrum P{sub M} (k, t) is self-similar in time and well modeled by a broken power law with subinertial and inertial range indices very close to 7/2 and –2, respectively. The magnetic coherence scale is found to grow in time as t {sup 2/5}, much too slow to account for optical polarization of gamma-ray burst afterglow emission if magnetic energy is to be supplied only at microphysical length scales. No bursty or explosive energy loss is observed in relativistic MHD turbulence having modest magnetization, which constrains magnetic reconnection models for rapid time variability of GRB prompt emission, blazars, and the Crab nebula.

  6. A relativistic signature in large-scale structure

    NASA Astrophysics Data System (ADS)

    Bartolo, Nicola; Bertacca, Daniele; Bruni, Marco; Koyama, Kazuya; Maartens, Roy; Matarrese, Sabino; Sasaki, Misao; Verde, Licia; Wands, David

    2016-09-01

    In General Relativity, the constraint equation relating metric and density perturbations is inherently nonlinear, leading to an effective non-Gaussianity in the dark matter density field on large scales-even if the primordial metric perturbation is Gaussian. Intrinsic non-Gaussianity in the large-scale dark matter overdensity in GR is real and physical. However, the variance smoothed on a local physical scale is not correlated with the large-scale curvature perturbation, so that there is no relativistic signature in the galaxy bias when using the simplest model of bias. It is an open question whether the observable mass proxies such as luminosity or weak lensing correspond directly to the physical mass in the simple halo bias model. If not, there may be observables that encode this relativistic signature.

  7. Relativistic perihelion precession of orbits of Venus and the Earth

    NASA Astrophysics Data System (ADS)

    Biswas, Abhijit; Mani, Krishnan R. S.

    2008-09-01

    Among all the theories proposed to explain the “anomalous” perihelion precession of Mercury’s orbit first announced in 1859 by Le Verrier, the general theory of relativity proposed by Einstein in November 1915 alone could calculate Mercury’s “anomalous” precession with the precision demanded by observational accuracy. Since Mercury’s precession was a directly derived result of the full general theory, it was viewed by Einstein as the most critical test of general relativity from amongst the three tests he proposed. With the advent of the space age, the level of observational accuracy has improved further and it is now possible to detect this precession for other planetary orbits of the solar system — viz., Venus and the Earth. This conclusively proved that the phenomenon of “anomalous” perihelion precession of planetary orbits is a relativistic effect. Our previous papers presented the mathematical model and the computed value of the relativistic perihelion precession of Mercury’s orbit using an alternate relativistic gravitational model, which is a remodeled form of Einstein’s relativity theories, and which retained only experimentally proven principles. In addition this model has the benefit of data from almost a century of relativity experimentation, including those that have become possible with the advent of the space age. Using this model, we present in this paper the computed values of the relativistic precession of Venus and the Earth, which compare well with the predictions of general relativity and are also in agreement with the observed values within the range of uncertainty.

  8. Effect of relativistic motion on witnessing nonclassicality of quantum states

    NASA Astrophysics Data System (ADS)

    Checińska, Agata; Lorek, Krzysztof; Dragan, Andrzej

    2017-01-01

    We show that the operational definition of nonclassicality of a quantum state depends on the motion of the observer. We use the relativistic Unruh-DeWitt detector model to witness nonclassicality of the probed field state. It turns out that the witness based on the properties of the P representation of the quantum state depends on the trajectory of the detector. Inertial and noninertial motion of the device have qualitatively different impact on the performance of the witness.

  9. Relativistic shock waves and the excitation of plerions

    SciTech Connect

    Arons, J. ); Gallant, Y.A. . Dept. of Physics); Hoshino, Masahiro; Max, C.E. . Inst. of Geophysics and Planetary Physics); Langdon, A.B. )

    1991-01-07

    The shock termination of a relativistic magnetohydrodynamic wind from a pulsar is the most interesting and viable model for the excitation of the synchrotron sources observed in plerionic supernova remnants. We have studied the structure of relativistic magnetosonic shock waves in plasmas composed purely of electrons and positrons, as well as those whose composition includes heavy ions as a minority constituent by number. We find that relativistic shocks in symmetric pair plasmas create fully thermalized distributions of particles and fields downstream. Therefore, such shocks are not good candidates for the mechanism which converts rotational energy lost from a pulsar into the nonthermal synchrotron emission observed in plerions. However, when the upstream wind contains heavy ions which are minority constituent by number density, but carry the bulk of the energy density, much of the energy of the shock goes into a downstream, nonthermal power law distribution of positrons with energy distribution N(E)dE {proportional to}E{sup {minus}s}. In a specific model presented in some detail, s = 3. These characteristics are close to those assumed for the pairs in macroscopic MHD wind models of plerion excitation. The essential mechanism is collective synchrotron emission of left-handed extraordinary modes by the ions in the shock front at high harmonics of the ion cyclotron frequency, with the downstream positrons preferentially absorbing almost all of this radiation, mostly at their fundamental (relativistic) cyclotron frequencies. Possible applications to models of plerions and to constraints on theories of energy loss from pulsars are briefly outlines. 27 refs., 5 figs.

  10. Momentum transfer in relativistic heavy ion charge-exchange reactions

    NASA Technical Reports Server (NTRS)

    Townsend, L. W.; Wilson, J. W.; Khan, F.; Khandelwal, G. S.

    1991-01-01

    Relativistic heavy ion charge-exchange reactions yield fragments (Delta-Z = + 1) whose longitudinal momentum distributions are downshifted by larger values than those associated with the remaining fragments (Delta-Z = 1, -2,...). Kinematics alone cannot account for the observed downshifts; therefore, an additional contribution from collision dynamics must be included. In this work, an optical model description of collision momentum transfer is used to estimate the additional dynamical momentum downshift. Good agreement between theoretical estimates and experimental data is obtained.

  11. Simulations of Dynamic Relativistic Magnetospheres

    NASA Astrophysics Data System (ADS)

    Parfrey, Kyle Patrick

    Neutron stars and black holes are generally surrounded by magnetospheres of highly conducting plasma in which the magnetic flux density is so high that hydrodynamic forces are irrelevant. In this vanishing-inertia—or ultra-relativistic—limit, magnetohydrodynamics becomes force-free electrodynamics, a system of equations comprising only the magnetic and electric fields, and in which the plasma response is effected by a nonlinear current density term. In this dissertation I describe a new pseudospectral simulation code, designed for studying the dynamic magnetospheres of compact objects. A detailed description of the code and several numerical test problems are given. I first apply the code to the aligned rotator problem, in which a star with a dipole magnetic field is set rotating about its magnetic axis. The solution evolves to a steady state, which is nearly ideal and dissipationless everywhere except in a current sheet, or magnetic field discontinuity, at the equator, into which electromagnetic energy flows and is dissipated. Magnetars are believed to have twisted magnetospheres, due to internal magnetic evolution which deforms the crust, dragging the footpoints of external magnetic field lines. This twisting may be able to explain both magnetars' persistent hard X-ray emission and their energetic bursts and flares. Using the new code, I simulate the evolution of relativistic magnetospheres subjected to slow twisting through large angles. The field lines expand outward, forming a strong current layer; eventually the configuration loses equilibrium and a dynamic rearrangement occurs, involving large-scale rapid magnetic reconnection and dissipation of the free energy of the twisted magnetic field. When the star is rotating, the magnetospheric twisting leads to a large increase in the stellar spin-down rate, which may take place on the long twisting timescale or in brief explosive events, depending on where the twisting is applied and the history of the system

  12. Reconfinement shocks in relativistic AGN jets

    SciTech Connect

    Nalewajko, Krzysztof; Sikora, Marek

    2008-12-24

    Stationary knots observed in many AGN jets can be explained in terms of a reconfinement shock that forms when relativistic flow of the jet matter collides with the external medium. The position of these knots can be used, together with information on external pressure profile, to constrain dynamical parameters of the jet. We present a semi-analytical model for the dynamical structure of reconfinement shocks, taking into account exact conservation laws both across the shock surface and in the zone of the shocked jet matter. We show that, due to the transverse pressure gradient in the shock zone, the position of the reconfinement is larger than predicted by simple models. A portion of kinetic energy is converted at the shock surface to internal energy, with efficiency increasing strongly with both bulk Lorentz factor of the jet matter and the jet half-opening angle. Our model may be useful as a framework for modeling non-thermal radiation produced within the stationary features.

  13. Generalized Ohm's law for relativistic plasmas

    NASA Astrophysics Data System (ADS)

    Kandus, A.; Tsagas, C. G.

    2008-04-01

    We generalize the relativistic expression of Ohm's law by studying a multifluid system of charged species using the 1 + 3 covariant formulation of general relativistic electrodynamics. This is done by providing a fully relativistic, fully non-linear propagation equation for the spatial component of the electric 4-current. Our analysis proceeds along the lines of the non-relativistic studies and extends previous relativistic work on cold plasmas. Exploiting the compactness and transparency of the covariant formalism, we provide a direct comparison with the standard Newtonian versions of Ohm's law and identify the relativistic corrections in an unambiguous way. The generalized expression of Ohm's law is initially given relative to an arbitrary observer and for a multicomponent relativistic charged medium. Then, the law is written with respect to the Eckart frame and for a hot two-fluid plasma with zero total charge. Finally, we apply our analysis to a cold proton-electron plasma and recover the well-known magnetohydrodynamic expressions. In every step, we discuss the approximations made and identify familiar effects, like the Biermann battery and the Hall effect.

  14. Relativistic effects in Lyman-α forest

    SciTech Connect

    Iršič, Vid; Dio, Enea Di; Viel, Matteo E-mail: enea.didio@oats.inaf.it

    2016-02-01

    We present the calculation of the Lyman-alpha (Lyman-α) transmitted flux fluctuations with full relativistic corrections to the first order. Even though several studies exist on relativistic effects in galaxy clustering, this is the first study to extend the formalism to a different tracer of underlying matter at unique redshift range (z=2−5). Furthermore, we show a comprehensive application of our calculations to the Quasar-Lyman-α cross-correlation function. Our results indicate that the signal of relativistic effects are sizeable at Baryonic Acoustic Oscillation (BAO) scale mainly due to the large differences in density bias factors of our tracers. We construct an observable, the anti-symmetric part of the cross-correlation function, that is dominated by the relativistic signal and offers a new way to measure the relativistic terms at relatively small scales. The analysis shows that relativistic effects are important when considering cross-correlations between tracers with very different biases, and should be included in the data analysis of the current and future surveys. Moreover, the idea presented in this paper is highly complementary to other techniques and observables trying to isolate the effect of the relativistic corrections and thus test the validity of the theory of gravity beyond the Newtonian regime.

  15. Relativistic entanglement and Bell's inequality

    SciTech Connect

    Ahn, Doyeol; Moon, Young Hoon; Lee, Hyuk-jae; Hwang, Sung Woo

    2003-01-01

    In this paper, the Lorentz transformation of entangled Bell states seen by a moving observer is studied. The calculated Bell observable for four joint measurements turns out to give a universal value, ++-=(2/{radical}(2-{beta}{sup 2}))(1+{radical}(1-{beta}{sup 2})), where a,b are the relativistic spin observables derived from the Pauli-Lubanski pseudovector and {beta}=(v/c). We found that the degree of violation of the Bell's inequality is decreasing with increasing velocity of the observer and Bell's inequality is satisfied in the ultrarelativistic limit where the boost speed reaches the speed of light.

  16. Relativistic tidal interaction of a white dwarf with a massive black hole

    NASA Technical Reports Server (NTRS)

    Frolov, V. P.; Khokhlov, A. M.; Novikov, I. D.; Pethick, C. J.

    1994-01-01

    We compute encounters of a realistic white dwarf model with a massive black hole in the regime where relativistic effects are important, using a three-dimensional, finite-difference, Eulerian, piecewise parabolic method (PPM) hydrodynamical code. Both disruptive and nondisruptive encounters are considered. We identify and discuss relativistic effects important for the problem: relativistic shift of the pericenter distance, time delay, relativistic precession, and the tensorial structure of the tidal forces. In the nondisruptive case, stripping of matter takes place. In the surface layers of the surviving core, complicated hydrodynamical phenomena are revealed. In both disruptive and nondispruptive encounters, material flows out in the form of two thin, S-shaped, supersonic jets. Our results provide realistic initial conditions for the subsequent investigation of the dynamics of the debris in the field of the black hole. We evaluate the critical conditions for complete disruption of the white dwarf, and compare our results with the corresponding results for nonrelativistic encounters.

  17. Localization scheme for relativistic spinors

    NASA Astrophysics Data System (ADS)

    Ciupka, J.; Hanrath, M.; Dolg, M.

    2011-12-01

    A new method to determine localized complex-valued one-electron functions in the occupied space is presented. The approach allows the calculation of localized orbitals regardless of their structure and of the entries in the spinor coefficient matrix, i.e., one-, two-, and four-component Kramers-restricted or unrestricted one-electron functions with real or complex expansion coefficients. The method is applicable to localization schemes that maximize (or minimize) a functional of the occupied spinors and that use a localization operator for which a matrix representation is available. The approach relies on the approximate joint diagonalization (AJD) of several Hermitian (symmetric) matrices which is utilized in electronic signal processing. The use of AJD in this approach has the advantage that it allows a reformulation of the localization criterion on an iterative 2 × 2 pair rotating basis in an analytical closed form which has not yet been described in the literature for multi-component (complex-valued) spinors. For the one-component case, the approach delivers the same Foster-Boys or Pipek-Mezey localized orbitals that one obtains from standard quantum chemical software, whereas in the multi-component case complex-valued spinors satisfying the selected localization criterion are obtained. These localized spinors allow the formulation of local correlation methods in a multi-component relativistic framework, which was not yet available. As an example, several heavy and super-heavy element systems are calculated using a Kramers-restricted self-consistent field and relativistic two-component pseudopotentials in order to investigate the effect of spin-orbit coupling on localization.

  18. Testing the relativistic precession model using low-frequency and kHz quasi-periodic oscillations in neutron star low-mass X-ray binaries with known spin

    NASA Astrophysics Data System (ADS)

    van Doesburgh, Marieke; van der Klis, Michiel

    2017-03-01

    We analyse all available RXTE data on a sample of 13 low-mass X-ray binaries with known neutron star spin that are not persistent pulsars. We carefully measure the correlations between the centroid frequencies of the quasi-periodic oscillations (QPOs). We compare these correlations to the prediction of the relativistic precession model that, due to frame dragging, a QPO will occur at the Lense-Thirring precession frequency νLT of a test-particle orbit whose orbital frequency is the upper kHz QPO frequency νu. Contrary to the most prominent previous studies, we find two different oscillations in the range predicted for νLT that are simultaneously present over a wide range of νu. Additionally, one of the low-frequency noise components evolves into a (third) QPO in the νLT range when νu exceeds 600 Hz. The frequencies of these QPOs all correlate to νu following power laws with indices between 0.4 and 3.3, significantly exceeding the predicted value of 2.0 in 80 per cent of the cases (at 3 to >20σ). Also, there is no evidence that the neutron star spin frequency affects any of these three QPO frequencies, as would be expected for frame dragging. Finally, the observed QPO frequencies tend to be higher than the νLT predicted for reasonable neutron star specific moment of inertia. In the light of recent successes of precession models in black holes, we briefly discuss ways in which such precession can occur in neutron stars at frequencies different from test-particle values and consistent with those observed. A precessing torus geometry and other torques than frame dragging may allow precession to produce the observed frequency correlations, but can only explain one of the three QPOs in the νLT range.

  19. Thermodynamic laws and equipartition theorem in relativistic Brownian motion.

    PubMed

    Koide, T; Kodama, T

    2011-06-01

    We extend the stochastic energetics to a relativistic system. The thermodynamic laws and equipartition theorem are discussed for a relativistic Brownian particle and the first and the second law of thermodynamics in this formalism are derived. The relation between the relativistic equipartition relation and the rate of heat transfer is discussed in the relativistic case together with the nature of the noise term.

  20. Relativistic klystron research for linear colliders

    SciTech Connect

    Allen, M.A.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fant, K.S.; Fowkes, W.R.; Herrmannsfeldt, W.B.; Higo, T.; Hoag, H.A.; Koontz, R.F.

    1988-09-01

    Relativistic klystrons are being developed as a power source for high gradient accelerator applications which include large linear electron-positron colliders, compact accelerators, and FEL sources. We have attained 200 MW peak power at 11.4 GHz from a relativistic klystron, and 140 MV/m longitudinal gradient in a short 11.4 GHz accelerator section. We report here on the design of our relativistic klystrons, the results of our experiments so far, and some of our plans for the near future. 5 refs., 9 figs., 1 tab.

  1. Relativistic corrections to a generalized sum rule

    NASA Astrophysics Data System (ADS)

    Sinky, H.; Leung, P. T.

    2006-09-01

    Relativistic corrections to a previously established generalized sum rule are obtained using the Foldy-Wouthysen transformation. This sum rule derived previously by Wang [Phys. Rev. A 60, 262 (1999)] for a nonrelativistic system contains both the well-known Thomas-Reiche-Kuhn and Bethe sum rules, for which relativistic corrections have been obtained in the literature. Our results for the generalized formula will be applied to recover several results obtained previously in the literature, as well as to another sum rule whose relativistic corrections will be obtained.

  2. Relativistic quantum mechanics and relativistic entanglement in the rest-frame instant form of dynamics

    SciTech Connect

    Alba, David; Crater, Horace W.; Lusanna, Luca

    2011-06-15

    A new formulation of relativistic quantum mechanics is proposed in the framework of the rest-frame instant form of dynamics, where the world-lines of the particles are parametrized in terms of the Fokker-Pryce center of inertia and of Wigner-covariant relative 3-coordinates inside the instantaneous Wigner 3-spaces, and where there is a decoupled (non-covariant and non-local) canonical relativistic center of mass. This approach: (a) allows us to make a consistent quantization in every inertial frame; (b) leads to a description of both bound and scattering states; (c) offers new insights on the relativistic localization problem; (d) leads to a non-relativistic limit with a Hamilton-Jacobi treatment of the Newton center of mass; (e) clarifies non-local aspects (spatial non-separability) of relativistic entanglement connected with Lorentz signature and not present in its non-relativistic treatment.

  3. Existence of relativistic stars in f(R) gravity

    SciTech Connect

    Upadhye, Amol; Hu, Wayne

    2009-09-15

    We refute recent claims in the literature that stars with relativistically deep potentials cannot exist in f(R) gravity. Numerical examples of stable stars, including relativistic (GM{sub *}/r{sub *}{approx}0.1), constant density stars, are studied. As a star is made larger, nonlinear 'chameleon' effects screen much of the star's mass, stabilizing gravity at the stellar center. Furthermore, we show that the onset of this chameleon screening is unrelated to strong gravity. At large central pressures P>{rho}/3, f(R) gravity, like general relativity, does have a maximum gravitational potential, but at a slightly smaller value: GM{sub *}/r{sub *}|{sub max}=0.345<4/9 for constant density and one choice of parameters. This difference is associated with negative central curvature R under general relativity not being accessed in the f(R) model, but does not apply to any known astrophysical object.

  4. On wave stability in relativistic cosmic-ray hydrodynamics

    NASA Technical Reports Server (NTRS)

    Webb, G. M.

    1989-01-01

    Wave stability of a two-fluid hydrodynamical model describing the acceleration of cosmic rays by the first-order Fermi mechanism in relativistic, cosmic-ray-modified shocks is investigated. For a uniform background state, the short- and long-wavelength wave speeds are shown to interlace, thus assuring wave stability in this case. A JWKB analysis is performed to investigate the stability of short-wavelength thermal gas sound waves in the smooth, decelerating supersonic flow upstream of a relativistic, cosmic-ray-modified shock. The stability of the waves is assessed both in terms of the fluid velocity and density perturbations, as well as in terms of the wave action. The stability and interaction of the short-wavelength cosmic-ray coherent mode with the background flow is also studied.

  5. Relativistic Few-Body Hadronic Physics Calculations

    SciTech Connect

    Polyzou, Wayne

    2016-06-20

    The goal of this research proposal was to use ``few-body'' methods to understand the structure and reactions of systems of interacting hadrons (neutrons, protons, mesons, quarks) over a broad range of energy scales. Realistic mathematical models of few-hadron systems have the advantage that they are sufficiently simple that they can be solved with mathematically controlled errors. These systems are also simple enough that it is possible to perform complete accurate experimental measurements on these systems. Comparison between theory and experiment puts strong constraints on the structure of the models. Even though these systems are ``simple'', both the experiments and computations push the limits of technology. The important property of ``few-body'' systems is that the ``cluster property'' implies that the interactions that appear in few-body systems are identical to the interactions that appear in complicated many-body systems. Of particular interest are models that correctly describe physics at distance scales that are sensitive to the internal structure of the individual nucleons. The Heisenberg uncertainty principle implies that in order to be sensitive to physics on distance scales that are a fraction of the proton or neutron radius, a relativistic treatment of quantum mechanics is necessary. The research supported by this grant involved 30 years of effort devoted to studying all aspects of interacting two and three-body systems. Realistic interactions were used to compute bound states of two- and three-nucleon, and two- and three-quark systems. Scattering observables for these systems were computed for a broad range of energies - from zero energy scattering to few GeV scattering, where experimental evidence of sub-nucleon degrees of freedom is beginning to appear. Benchmark calculations were produced, which when compared with calculations of other groups provided an essential check on these complicated calculations. In addition to computing bound state

  6. Probing relativistic effects in the central engine of AGN

    NASA Astrophysics Data System (ADS)

    Sanfrutos, M.; Miniutti, G.

    2017-03-01

    Active Galactic Nuclei (AGN) are perfect laboratories to check General Relativity (GR) effects by using Broad Line Region (BLR) clouds eclipses to probe the innermost regions of the accretion disk. A new relativistic X–ray spectral model for X–ray eclipses is introduced. First we present the different observables that are involved in X–ray eclipses, including the X–ray emitting regions size, the emissivity index, the cloud's column density, ionization, size and velocity, the black hole spin, and the system's inclination. Then we highlight some theoretical predictions on the observables by using XMM–Newton simulations, finding that absorption varies depending on the photons' energy range, being maximum when the approaching side of the X–ray–emitting region is covered. Finally, we fit our relativistic model to actual XMM–Newton data from a long observation of the NLS1 galaxy SWIFT J2127.4+5654, and compare our results with a previous work, in which we addressed the BLR cloud eclipse from a non–relativistic prespective.

  7. Dynamical localization of coupled relativistic kicked rotors

    NASA Astrophysics Data System (ADS)

    Rozenbaum, Efim B.; Galitski, Victor

    2017-02-01

    A periodically driven rotor is a prototypical model that exhibits a transition to chaos in the classical regime and dynamical localization (related to Anderson localization) in the quantum regime. In a recent work [Phys. Rev. B 94, 085120 (2016), 10.1103/PhysRevB.94.085120], A. C. Keser et al. considered a many-body generalization of coupled quantum kicked rotors, and showed that in the special integrable linear case, dynamical localization survives interactions. By analogy with many-body localization, the phenomenon was dubbed dynamical many-body localization. In the present work, we study nonintegrable models of single and coupled quantum relativistic kicked rotors (QRKRs) that bridge the gap between the conventional quadratic rotors and the integrable linear models. For a single QRKR, we supplement the recent analysis of the angular-momentum-space dynamics with a study of the spin dynamics. Our analysis of two and three coupled QRKRs along with the proved localization in the many-body linear model indicate that dynamical localization exists in few-body systems. Moreover, the relation between QRKR and linear rotor models implies that dynamical many-body localization can exist in generic, nonintegrable many-body systems. And localization can generally result from a complicated interplay between Anderson mechanism and limiting integrability, since the many-body linear model is a high-angular-momentum limit of many-body QRKRs. We also analyze the dynamics of two coupled QRKRs in the highly unusual superballistic regime and find that the resonance conditions are relaxed due to interactions. Finally, we propose experimental realizations of the QRKR model in cold atoms in optical lattices.

  8. Evolution of relativistic outer belt electrons during extended quiescent period

    NASA Astrophysics Data System (ADS)

    Jaynes, A. N.; Li, X.; Schiller, Q.; Blum, L. W.; Tu, W.; Malaspina, D.; Turner, D.; Baker, D. N.; Kanekal, S. G.; Blake, J. B.; Wygant, J. R.

    2013-12-01

    To effectively study loss due to precipitation of relativistic electron fluxes in the radiation belt, it is necessary to isolate this loss from the Dst effect and magnetopause shadowing by studying loss during a time of relatively quiet geomagnetic activity. We present a study of the slow decay of 200 keV - 2 MeV electron populations in the outer radiation belt during an extended quiescent period from ~15 Dec 2012 - 10 Jan 2013, wherein Dst never extended below -25 nT. We incorporate particle measurements from the Relativistic Electron and Proton Telescope integrated little experiment (REPTile) onboard the Colorado Student Space Weather Experiment (CSSWE) CubeSat with measurements from the Relativistic Electron Proton Telescope (REPT) and the Magnetic Electron Ion Spectrometer (MagEIS) on the Van Allen Probes twin spacecraft to understand the evolution of the electron populations across pitch angle and energy. First, we present REPTile measurements of the precipitating populations (along with trapped & quasi-trapped) at a low-earth orbit, offering a view into the loss cone that is not as easily resolved using only the Van Allen Probes. Electron loss to the atmosphere during this event is quantified through use of a precipitation loss model, using the REPTile measurements. Additionally, phase space densities are derived using pitch-angle-resolved flux data from the REPT and MagEIS instruments, as well as from THEMIS SST data. Finally, we present the net loss effect on the outer radiation belt content during this time, by incorporating the modeled precipitation loss (from REPTile measurements) with Van Allen Probes electron flux data. Hiss and chorus wave data, along with approximate plasmapause location, from Van Allen Probes' Electric Field and Waves Suite (EFW) completes the picture by suggesting mechanisms for the precipitation loss of relativistic electrons during quiet time.

  9. Relativistic projection and boost of solitons

    SciTech Connect

    Wilets, L.

    1991-12-31

    This report discusses the following topics on the relativistic projection and boost of solitons: The center of mass problem; momentum eigenstates; variation after projection; and the nucleon as a composite. (LSP).

  10. Relativistic projection and boost of solitons

    SciTech Connect

    Wilets, L.

    1991-01-01

    This report discusses the following topics on the relativistic projection and boost of solitons: The center of mass problem; momentum eigenstates; variation after projection; and the nucleon as a composite. (LSP).

  11. Pseudospectral approach to relativistic molecular theory.

    PubMed

    Nakajima, Takahito; Hirao, Kimihiko

    2004-08-22

    The efficient relativistic Dirac-Hartree-Fock (DHF) and Dirac-Kohn-Sham (DKS) methods are proposed by an application of the pseudospectral (PS) approach. The present PS-DHF/DKS method is a relativistic extension of the PS-HF/KS method of Friesner, though we aim at higher numerical accuracy by elimination of superfluous arbitrariness. The relativistic PS-DHF/DKS method is implemented into our REL4D programs. Several PS applications to molecular systems show that the relativistic PS-DHF/DKS approach is more efficient than the traditional approach without a loss of accuracy. The present PS-DKS method successfully assigns and predicts the photoelectron spectra of hexacarbonyl complexes of tungsten and seaborgium theoretically.

  12. Coherent states for the relativistic harmonic oscillator

    NASA Technical Reports Server (NTRS)

    Aldaya, Victor; Guerrero, J.

    1995-01-01

    Recently we have obtained, on the basis of a group approach to quantization, a Bargmann-Fock-like realization of the Relativistic Harmonic Oscillator as well as a generalized Bargmann transform relating fock wave functions and a set of relativistic Hermite polynomials. Nevertheless, the relativistic creation and annihilation operators satisfy typical relativistic commutation relations of the Lie product (vector-z, vector-z(sup dagger)) approximately equals Energy (an SL(2,R) algebra). Here we find higher-order polarization operators on the SL(2,R) group, providing canonical creation and annihilation operators satisfying the Lie product (vector-a, vector-a(sup dagger)) = identity vector 1, the eigenstates of which are 'true' coherent states.

  13. Thermal Properties of Degenerate Relativistic Quantum Gases

    NASA Astrophysics Data System (ADS)

    Homorodean, Laurean

    We present the concentration-temperature phase diagram, characteristic functions, thermal equation of state and heat capacity at constant volume for degenerate ideal gases of relativistic fermions and bosons. The nonrelativistic and ultrarelativistic limits of these laws are also discussed.

  14. ULTRA-RELATIVISTIC NUCLEI: A NEW FRONTIER

    SciTech Connect

    MCLERRAN,L.

    1999-10-29

    The collisions of ultra-relativistic nuclei provide a window on the behavior of strong interactions at asymptotically high energies. They also will allow the authors to study the bulk properties of hadronic matter at very high densities.

  15. Entropic formulation of relativistic continuum mechanics.

    PubMed

    Fukuma, Masafumi; Sakatani, Yuho

    2011-08-01

    An entropic formulation of relativistic continuum mechanics is developed in the Landau-Lifshitz frame. We introduce two spatial scales, one being the small scale representing the linear size of each material particle and the other the large scale representing the linear size of a large system which consists of material particles and is to linearly regress to the equilibrium. We propose a local functional which is expected to represent the total entropy of the larger system and require the entropy functional to be maximized in the process of linear regression. We show that Onsager's original idea on linear regression can then be realized explicitly as current conservations with dissipative currents in the desired form. We demonstrate the effectiveness of this formulation by showing that one can treat a wide class of relativistic continuum materials, including standard relativistic viscous fluids and relativistic viscoelastic materials.

  16. Einstein Never Approved of Relativistic Mass

    NASA Astrophysics Data System (ADS)

    Hecht, Eugene

    2009-09-01

    During much of the 20th century it was widely believed that one of the significant insights of special relativity was "relativistic mass." Today there are two schools on that issue: the traditional view that embraces speed-dependent "relativistic mass," and the more modern position that rejects it, maintaining that there is only one mass and it's speed-independent. This paper explores the history of "relativistic mass," emphasizing Einstein's public role and private thoughts. We show how the concept of speed-dependent mass mistakenly evolved out of a tangle of ideas despite Einstein's prescient reluctance. Along the way there will be previously unrevealed surprises (e.g., Einstein never derived the expression for "relativistic mass," and privately disapproved of it).

  17. The case for the relativistic hot big bang cosmology

    NASA Technical Reports Server (NTRS)

    Peebles, P. J. E.; Schramm, D. N.; Kron, R. G.; Turner, E. L.

    1991-01-01

    What has become the standard model in cosmology is described, and some highlights are presented of the now substantial range of evidence that most cosmologists believe convincingly establishes this model, the relativistic hot big bang cosmology. It is shown that this model has yielded a set of interpretations and successful predictions that substantially outnumber the elements used in devising the theory, with no well-established empirical contradictions. Brief speculations are made on how the open puzzles and work in progress might affect future developments in this field.

  18. Quantised vortices and mutual friction in relativistic superfluids

    NASA Astrophysics Data System (ADS)

    Andersson, N.; Wells, S.; Vickers, J. A.

    2016-12-01

    We consider the detailed dynamics of an array of quantised superfluid vortices in the framework of general relativity, as required for quantitative modelling of realistic neutron star cores. Our model builds on the variational approach to relativistic (multi-) fluid dynamics, where the vorticity plays a central role. The description provides a natural extension of, and a better insight into, existing Newtonian models. In particular, we account for the mutual friction associated with scattering of a second ‘normal’ component in the mixture off of the superfluid vortices. This is an important step which facilitates the connection with the involved microphysics.

  19. New relativistic Hamiltonian: the angular magnetoelectric coupling

    NASA Astrophysics Data System (ADS)

    Paillard, Charles; Mondal, Ritwik; Berritta, Marco; Dkhil, Brahim; Singh, Surendra; Oppeneer, Peter M.; Bellaiche, Laurent

    2016-10-01

    Spin-Orbit Coupling (SOC) is a ubiquitous phenomenon in the spintronics area, as it plays a major role in allowing for enhancing many well-known phenomena, such as the Dzyaloshinskii-Moriya interaction, magnetocrystalline anisotropy, the Rashba effect, etc. However, the usual expression of the SOC interaction ħ/4m2c2 [E×p] • σ (1) where p is the momentum operator, E the electric field, σ the vector of Pauli matrices, breaks the gauge invariance required by the electronic Hamiltonian. On the other hand, very recently, a new phenomenological interaction, coupling the angular momentum of light and magnetic moments, has been proposed based on symmetry arguments: ξ/2 [r × (E × B)] M, (2) with M the magnetization, r the position, and ξ the interaction strength constant. This interaction has been demonstrated to contribute and/or give rise, in a straightforward way, to various magnetoelectric phenomena,such as the anomalous Hall effect (AHE), the anisotropic magnetoresistance (AMR), the planar Hall effect and Rashba-like effects, or the spin-current model in multiferroics. This last model is known to be the origin of the cycloidal spin arrangement in bismuth ferrite for instance. However, the coupling of the angular momentum of light with magnetic moments lacked a fundamental theoretical basis. Starting from the Dirac equation, we derive a relativistic interaction Hamiltonian which linearly couples the angular momentum density of the electromagnetic (EM) field and the electrons spin. We name this coupling the Angular MagnetoElectric (AME) coupling. We show that in the limit of uniform magnetic field, the AME coupling yields an interaction exactly of the form of Eq. (2), thereby giving a firm theoretical basis to earlier works. The AME coupling can be expressed as: ξ [E × A] • σ (3) with A being the vector potential. Interestingly, the AME coupling was shown to be complementary to the traditional SOC, and together they restore the gauge invariance of the

  20. Relativistic klystron research at SLAC and LLNL

    SciTech Connect

    Allen, M.A.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fowkes, W.R.; Herrmannsfeldt, W.B.; Higo, T.; Hoag, H.A.; Lavine, T.L.; Lee, T.G.; Loew, G.A.; Miller, R.H.; Morton, P.L.; Palmer, R.B.; Paterson, J.M.; Ruth, R.D.; Schwarz, H.D.; Takeuchi, Y.; Vlieks, A.E.; Wang, J.W.; Wilson, P.B.; Hopkins, D.B.; Sessler, A.M.; Barletta, W.A.; Birx, D.L.; Boyd, J.K.; Houck, T.; Westenskow, G.A.; Yu, S.S.

    1988-06-01

    We are developing relativistic klystrons as a power source for high gradient accelerator applications such as large linear electron-positron colliders and compact accelerators. We have attained 200 MW peak power at 11.4 GHz from a relativistic klystron, and 140 MV/m longitudinal gradient in a short 11.4 GHz accelerator section. We report here briefly on our experiments so far. 5 refs., 1 fig., 1 tab.

  1. Recording of relativistic particles in thin scintillators

    SciTech Connect

    Tolstukhin, I A.; Somov, Alexander S.; Somov, S. V.; Bolozdynya, A. I.

    2014-11-01

    Results of investigating an assembly of thin scintillators and silicon photomultipliers for registering relativistic particles with the minimum ionization are presented. A high efficiency of registering relativistic particles using an Ej-212 plastic scintillator, BSF-91A wavelength-shifting fiber (Saint-Gobain), and a silicon photomultiplier (Hamamtsu) is shown. The measurement results are used for creating a scintillation hodoscope of the magnetic spectrometer for registering γ quanta in the GlueX experiment.

  2. Mass versus relativistic and rest masses

    NASA Astrophysics Data System (ADS)

    Okun, L. B.

    2009-05-01

    The concept of relativistic mass, which increases with velocity, is not compatible with the standard language of relativity theory and impedes the understanding and learning of the theory by beginners. The same difficulty occurs with the term rest mass. To get rid of relativistic mass and rest mass it is appropriate to replace the equation E =mc2 by the true Einstein's equation E0=mc2, where E0 is the rest energy and m is the mass.

  3. Intense EM filamentation in relativistic hot plasmas

    NASA Astrophysics Data System (ADS)

    Hu, Qiang-Lin; Chen, Zhong-Ping; Mahajan, Swadesh M.

    2017-03-01

    Through 2D particle-in-cell (PIC) simulations, we demonstrate that the nature of filamentation of a high intensity electromagnetic (EM) pulse propagating in an underdense plasma, is profoundly affected at relativistically high temperatures. The "relativistic" filaments are sharper, are dramatically extended (along the direction of propagation), and live much longer than their lower temperature counterparts. The thermally boosted electron inertia is invoked to understand this very interesting and powerful phenomenon.

  4. Relativistic uranium beams - the Bevalac experience

    SciTech Connect

    Alonso, J.

    1983-03-01

    This paper will address areas where relativistic heavy ion accelerators differ from proton facilities. Salient areas are: (1) the specialized injectors for heavy ions; ion sources, structures for very low charge-to-mass ratio (q/A) ions, and stripper optimization; (2) special requirements for the synchrotron ring; ultrahigh vacuum, flexible controls and instrumentation. These areas are discussed in the context of the Bevalac, as well as our idea for a next-generation relativistic heavy ion accelerator.

  5. Relativistically modulational instability by strong Langmuir waves

    SciTech Connect

    Liu, X. L.; Liu, S. Q.; Li, X. Q.

    2012-09-15

    Based on the set of nonlinear coupling equations, which has considered the relativistic effects of electrons, modulational instability by strong Langmuir waves has been investigated in this paper. Both the characteristic scale and maximum growth rate of the Langmuir field will enhance with the increase in the electron relativistic effect. The numerical results indicate that longitudinal perturbations induce greater instability than transverse perturbations do, which will lead to collapse and formation of the pancake-like structure.

  6. Exact general relativistic disks with magnetic fields

    NASA Astrophysics Data System (ADS)

    Letelier, Patricio S.

    1999-11-01

    The well-known ``displace, cut, and reflect'' method used to generate cold disks from given solutions of Einstein equations is extended to solutions of Einstein-Maxwell equations. Four exact solutions of the these last equations are used to construct models of hot disks with surface density, azimuthal pressure, and azimuthal current. The solutions are closely related to Kerr, Taub-NUT, Lynden-Bell-Pinault, and to a one-soliton solution. We find that the presence of the magnetic field can change in a nontrivial way the different properties of the disks. In particular, the pure general relativistic instability studied by Bic̆ák, Lynden-Bell, and Katz [Phys. Rev. D 47, 4334 (1993)] can be enhanced or cured by different distributions of currents inside the disk. These currents, outside the disk, generate a variety of axial symmetric magnetic fields. As far as we know these are the first models of hot disks studied in the context of general relativity.

  7. The relativistic inverse stellar structure problem

    SciTech Connect

    Lindblom, Lee

    2014-01-14

    The observable macroscopic properties of relativistic stars (whose equations of state are known) can be predicted by solving the stellar structure equations that follow from Einstein’s equation. For neutron stars, however, our knowledge of the equation of state is poor, so the direct stellar structure problem can not be solved without modeling the highest density part of the equation of state in some way. This talk will describe recent work on developing a model independent approach to determining the high-density neutron-star equation of state by solving an inverse stellar structure problem. This method uses the fact that Einstein’s equation provides a deterministic relationship between the equation of state and the macroscopic observables of the stars which are composed of that material. This talk illustrates how this method will be able to determine the high-density part of the neutron-star equation of state with few percent accuracy when high quality measurements of the masses and radii of just two or three neutron stars become available. This talk will also show that this method can be used with measurements of other macroscopic observables, like the masses and tidal deformabilities, which can (in principle) be measured by gravitational wave observations of binary neutron-star mergers.

  8. Entropy production in relativistic jet boundary layers

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna; Begelman, Mitchell C.

    2015-01-01

    Hot relativistic jets, passing through a background medium with a pressure gradient p ∝ r-η where 2 < η ≤ 8/3, develop a shocked boundary layer containing a significant fraction of the jet power. In previous work, we developed a self-similar description of the boundary layer assuming isentropic flow, but we found that such models respect global energy conservation only for the special case η = 8/3. Here, we demonstrate that models with η < 8/3 can be made self-consistent if we relax the assumption of constant specific entropy. Instead, the entropy must increase with increasing r along the boundary layer, presumably due to multiple shocks driven into the flow as it gradually collimates. The increase in specific entropy slows the acceleration rate of the flow and provides a source of internal energy that could be channelled into radiation. We suggest that this process may be important for determining the radiative characteristics of tidal disruption events and gamma-ray bursts from collapsars.

  9. WDM production with intense relativistic electrons

    NASA Astrophysics Data System (ADS)

    Coleman, Josh; Andrews, Heather; Klasky, Mark; Colgan, James; Burris-Mog, Trevor; Creveling, Dan; Miller, Craig; Welch, Dale; Berninger, Mike

    2016-10-01

    The production of warm dense matter (WDM) through collisional heating with intense relativistic electrons is underway. A 100-ns-long monochromatic bunch of electrons with energies of 19.1-19.8 MeV and currents of 0.2-1.7 kA is used to heat 100- μm-thick foils with Z <29. The principal objective of these experiments is to develop a controlled method of measuring the equation of state with particle beams and benchmark numerical models. Measurements indicate the formation of a warm dense plasma near the end of the pulse, which is on the order of the beam size. These plasmas expand 5 mm in the first microsecond and slow down to <0.5 mm/ μs over the next 10 μs. These plasmas also produce both emitted and absorbed spectra amongst a continuum for Ti, Fe, and Cu. Cu-I spectra is dominated by stark broadening, indicating a cool plasma with ne >1018 cm-3. At these densities our plasma is collisionally dominated making it possible to spectrally model the density and temperature in LTE. Preliminary density gradient measurements will also be presented indicating the spatial extent of the solid density cutoff. This work was supported by the National Nuclear Se- curity Administration of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396.

  10. A Relativistic Long-term Precession of the Earth

    NASA Astrophysics Data System (ADS)

    Tang, K.

    2016-05-01

    et al. (2003), they explain how to calculate the relativistic inertial torque, and discuss how to deal with different relativistic reference systems as well as various time scales and relativistic scalings. The geodetic precession and nutation are also taken into account in a natural way. This theory of Earth's rotation is consistent with General Relativity. This approach allows us to obtain the long-term precession of the Earth in a more rigorous relativistic framework. Our goal is to obtain the relativistic Earth's precession from -1 Myr to 1 Myr around J2000.0. The precession of the ecliptic is obtained by numerical integration as in most previous works. The precession of the equator, which is calculated with the relativistic theory of Earth's rotation as mentioned above, is also derived numerically. This part of work starts with a post-Newtonian rigid-multipole formalism that has been published by Klioner et al. (2003). Then the equations are integrated numerically, and the results are modified due to the effect of tidal dissipation. Approximations for the precession are derived and expressed in form of a linear term plus 20--30 periodic terms. Compared with P03, the difference is only several arcseconds in an interval of 2000 years around J2000.0. The results are consistent with other long-term precession theories. Finally, the relativistic effects of precession are analyzed. In this thesis, the models for the relativistic long-term precession of the Earth are given. Chapter 1 briefly introduces some historical background and the aim of our work. Chapters 2 to 5 give the way to calculate the precession in detail. Chapter 2 is about the structure of a quasi symplectic integrator which was developed by ourselves. According to our dynamical model of the solar system, the numerical integrator is based on the symplectic SABA4 scheme, and some tricks are used to treat the problems of tidal dissipation, close encounters, and round-off errors. The first-order post

  11. Convexity and symmetrization in relativistic theories

    NASA Astrophysics Data System (ADS)

    Ruggeri, T.

    1990-09-01

    There is a strong motivation for the desire to have symmetric hyperbolic field equations in thermodynamics, because they guarantee well-posedness of Cauchy problems. A generic quasi-linear first order system of balance laws — in the non-relativistic case — can be shown to be symmetric hyperbolic, if the entropy density is concave with respect to the variables. In relativistic thermodynamics this is not so. This paper shows that there exists a scalar quantity in relativistic thermodynamics whose concavity guarantees a symmetric hyperbolic system. But that quantity — we call it —bar h — is not the entropy, although it is closely related to it. It is formed by contracting the entropy flux vector — ha with a privileged time-like congruencebar ξ _α . It is also shown that the convexity of h plus the requirement that all speeds be smaller than the speed of light c provide symmetric hyperbolic field equations for all choices of the direction of time. At this level of generality the physical meaning of —h is unknown. However, in many circumstances it is equal to the entropy. This is so, of course, in the non-relativistic limit but also in the non-dissipative relativistic fluid and even in relativistic extended thermodynamics for a non-degenerate gas.

  12. Relabeling symmetry in relativistic fluids and plasmas

    NASA Astrophysics Data System (ADS)

    Kawazura, Yohei; Yoshida, Zensho; Fukumoto, Yasuhide

    2014-11-01

    The conservation of the recently formulated relativistic canonical helicity (Yoshida et al 2014 J. Math. Phys. 55 043101) is derived from Noether's theorem by constructing an action principle on the relativistic Lagrangian coordinates (we obtain general cross helicities that include the helicity of the canonical vorticity). The conservation law is, then, explained by the relabeling symmetry pertinent to the Lagrangian label of fluid elements. Upon Eulerianizing the Noether current, the purely spatial volume integral on the Lagrangian coordinates is mapped to a space-time mixed three-dimensional integral on the four-dimensional Eulerian coordinates. The relativistic conservation law in the Eulerian coordinates is no longer represented by any divergence-free current; hence, it is not adequate to regard the relativistic helicity (represented by the Eulerian variables) as a Noether charge, and this stands the reason why the ‘conventional helicity’ is no longer a constant of motion. We have also formulated a relativistic action principle of magnetohydrodynamics (MHD) on the Lagrangian coordinates, and have derived the relativistic MHD cross helicity.

  13. Light Curve and SED Modeling of the Gamma-Ray Binary 1FGL J1018.6–5856: Constraints on the Orbital Geometry and Relativistic Flow

    NASA Astrophysics Data System (ADS)

    An, Hongjun; Romani, Roger W.

    2017-04-01

    We present broadband spectral energy distributions and light curves of the gamma-ray binary 1FGL J1018.6‑5856 measured in the X-ray and the gamma-ray bands. We find that the orbital modulation in the low-energy gamma-ray band is similar to that in the X-ray band, suggesting a common spectral component. However, above a GeV the orbital light curve changes significantly. We suggest that the GeV band contains significant flux from a pulsar magnetosphere, while the X-ray to TeV light curves are dominated by synchrotron and Compton emission from an intrabinary shock (IBS). We find that a simple one-zone model is inadequate to explain the IBS emission, but that beamed Synchrotron-self Compton radiation from adiabatically accelerated plasma in the shocked pulsar wind can reproduce the complex multiband light curves, including the variable X-ray spike coincident with the gamma-ray maximum. The model requires an inclination of ∼50° and an orbital eccentricity of ∼0.35, consistent with the limited constraints from existing optical observations. This picture motivates searches for pulsations from the energetic young pulsar powering the wind shock.

  14. Particle acceleration, magnetization and radiation in relativistic shocks

    NASA Astrophysics Data System (ADS)

    Derishev, Evgeny V.; Piran, Tsvi

    2016-08-01

    The mechanisms of particle acceleration and radiation, as well as magnetic field build-up and decay in relativistic collisionless shocks, are open questions with important implications to various phenomena in high-energy astrophysics. While the Weibel instability is possibly responsible for magnetic field build-up and diffusive shock acceleration is a model for acceleration, both have problems and current particle-in-cell simulations show that particles are accelerated only under special conditions and the magnetic field decays on a very short length-scale. We present here a novel model for the structure and the emission of highly relativistic collisionless shocks. The model takes into account (and is based on) non-local energy and momentum transport across the shock front via emission and absorption of high-energy photons. This leads to a pre-acceleration of the fluid and pre-amplification of the magnetic fields in the upstream region. Both have drastic implications on the shock structure. The model explains the persistence of the shock-generated magnetic field at large distances from the shock front. The dissipation of this magnetic field results in a continuous particle acceleration within the downstream region. A unique feature of the model is the existence of an `attractor', towards which any shock will evolve. The model is applicable to any relativistic shock, but its distinctive features show up only for sufficiently large compactness. We demonstrate that prompt and afterglow gamma-ray bursts' shocks satisfy the relevant conditions, and we compare their observations with the predictions of the model.

  15. One-Dimensional Quasi-Relativistic Particle in the Box

    NASA Astrophysics Data System (ADS)

    Kaleta, Kamil; Kwaśnicki, Mateusz; Małecki, Jacek

    2013-09-01

    The eigenvalues and eigenfunctions of the one-dimensional quasi-relativistic Hamiltonian (-ℏ2c2d2/dx2 + m2c4)1/2 + Vwell(x) (the Klein-Gordon square-root operator with electrostatic potential) with the infinite square well potential Vwell(x) are studied. Eigenvalues represent energies of a "massive particle in the box" quasi-relativistic model. Approximations to eigenvalues λn are given, uniformly in n, ℏ, m, c and a, with error less than C1ℏca-1exp(-C2ℏ-1mca)n-1. Here 2a is the width of the potential well. As a consequence, the spectrum is simple and the nth eigenvalue is equal to (nπ/2 - π/8)ℏc/a + O(1/n) as n → ∞. Non-relativistic, zero mass and semi-classical asymptotic expansions are included as special cases. In the final part, some L2 and L∞ properties of eigenfunctions are studied.

  16. Relativistic g-modes in rapidly rotating neutron stars

    SciTech Connect

    Gaertig, Erich; Kokkotas, Kostas D.

    2009-09-15

    We study the g-modes of fast rotating stratified neutron stars in the general relativistic Cowling approximation, where we neglect metric perturbations and where the background models take into account the buoyant force due to composition gradients. This is the first paper studying this problem in a general relativistic framework. In a recent paper [A. Passamonti, B. Haskell, N. Andersson, D. I. Jones, and I. Hawke, Mon. Not. R. Astron. Soc. 394, 730 (2009)], a similar study was performed within the Newtonian framework, where the authors presented results about the onset of CFS-unstable g-modes and the close connection between inertial and gravity modes for sufficiently high rotation rates and small composition gradients. This correlation arises from the interplay between the buoyant force which is the restoring force for g-modes and the Coriolis force which is responsible for the existence of inertial modes. In our relativistic treatment of the problem, we find an excellent qualitative agreement with respect to the Newtonian results.

  17. Oscillations and instabilities of fast and differentially rotating relativistic stars

    SciTech Connect

    Krueger, Christian; Gaertig, Erich; Kokkotas, Kostas D.

    2010-04-15

    We study nonaxisymmetric oscillations of rapidly and differentially rotating relativistic stars in the Cowling approximation. Our equilibrium models are sequences of relativistic polytropes, where the differential rotation is described by the relativistic j-constant law. We show that a small degree of differential rotation raises the critical rotation value for which the quadrupolar f-mode becomes prone to the Chandrasekhar-Friedman-Schutz (CFS) instability, while the critical value of T/|W| at the mass-shedding limit is raised even more. For stiffer equations of state these effects are even more pronounced. When increasing differential rotation further to a high degree, the neutral point of the CFS instability first reaches a local maximum and is lowered afterwards. For stars with a rather high compactness we find that for a large degree of differential rotation the absolute value of the critical T/|W| is below the corresponding value for rigid rotation. We conclude that the onset of the CFS instability is eased for a small degree of differential rotation and for a large degree at least in stars with a higher compactness. Moreover, we were able to extract the eigenfrequencies and the eigenfunctions of r-modes for differentially rotating stars and our simulations show a good qualitative agreement with previous Newtonian results.

  18. Relativistic runaway breakdown in low-frequency radio

    NASA Astrophysics Data System (ADS)

    Füllekrug, Martin; Roussel-Dupré, Robert; Symbalisty, Eugene M. D.; Chanrion, Olivier; Odzimek, Anna; van der Velde, Oscar; Neubert, Torsten

    2010-01-01

    The electromagnetic radiation emitted by an electron avalanche beam resulting from relativistic runaway breakdown within the Earth's atmosphere is investigated. It is found from theoretical modeling with a computer simulation that the electron beam emits electromagnetic radiation which is characterized by consecutive broadband pulses in the low-frequency radio range from ˜10 to 300 kHz at a distance of ˜800 km. Experimental evidence for the existence of consecutive broadband pulses is provided by low-frequency radio observations of sprite-producing lightning discharges at a distance of ˜550 km. The measured broadband pulses occur ˜4-9 ms after the sprite-producing lightning discharge, they exhibit electromagnetic radiation which mainly spans the frequency range from ˜50 to 350 kHz, and they exhibit complex waveforms without the typical ionospheric reflection of the first hop sky wave. Two consecutive pulses occur ˜4.5 ms and ˜3 ms after the causative lightning discharge and coincide with the sprite luminosity. It is concluded that relativistic runaway breakdown within the Earth's atmosphere can emit broadband electromagnetic pulses and possibly generates sprites. The source location of the broadband pulses can be determined with an interferometric network of wideband low-frequency radio receivers to lend further experimental support to the relativistic runaway breakdown theory.

  19. Searches for relativistic magnetic monopoles in IceCube

    NASA Astrophysics Data System (ADS)

    Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Ansseau, I.; Archinger, M.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Tjus, J. Becker; Becker, K.-H.; Beiser, E.; Benabderrahmane, M. L.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Buzinsky, N.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Cowen, D. F.; Cruz Silva, A. H.; Daughhetee, J.; Davis, J. C.; Day, M.; de André, J. P. A. M.; De Clercq, C.; del Pino Rosendo, E.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Euler, S.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Fösig, C.-C.; Fuchs, T.; Gaisser, T. K.; Gaior, R.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Gier, D.; Gladstone, L.; Glagla, M.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Góra, D.; Grant, D.; Griffith, Z.; Groß, A.; Ha, C.; Haack, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hansen, E.; Hansmann, B.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Holzapfel, K.; Homeier, A.; Hoshina, K.; Huang, F.; Huber, M.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jurkovic, M.; Kappes, A.; Karg, T.; Karle, A.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kemp, J.; Kheirandish, A.; Kiryluk, J.; Kläs, J.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, G.; Kroll, M.; Krückl, G.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lesiak-Bzdak, M.; Leuermann, M.; Leuner, J.; Lu, L.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mandelartz, M.; Maruyama, R.; Mase, K.; Matis, H. S.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Middell, E.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; Omairat, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Paul, L.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Pütz, J.; Quinnan, M.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Richter, S.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Sabbatini, L.; Sander, H.-G.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Schatto, K.; Scheriau, F.; Schimp, M.; Schmidt, T.; Schmitz, M.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schulte, L.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stahlberg, M.; Stamatikos, M.; Stanev, T.; Stasik, A.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tatar, J.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vallecorsa, S.; Vandenbroucke, J.; van Eijndhoven, N.; Vanheule, S.; van Santen, J.; Veenkamp, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zoll, M.

    2016-03-01

    Various extensions of the Standard Model motivate the existence of stable magnetic monopoles that could have been created during an early high-energy epoch of the Universe. These primordial magnetic monopoles would be gradually accelerated by cosmic magnetic fields and could reach high velocities that make them visible in Cherenkov detectors such as IceCube. Equivalently to electrically charged particles, magnetic monopoles produce direct and indirect Cherenkov light while traversing through matter at relativistic velocities. This paper describes searches for relativistic (vge 0.76c) and mildly relativistic (vge 0.51c) monopoles, each using one year of data taken in 2008/2009 and 2011/2012, respectively. No monopole candidate was detected. For a velocity above 0.51 c the monopole flux is constrained down to a level of 1.55 × 10^{-18} text {cm}^{-2} text {s}^{-1} text {sr}^{-1}. This is an improvement of almost two orders of magnitude over previous limits.

  20. Cosmos++: Relativistic Magnetohydrodynamics on Unstructured Grids with Local Adaptive Refinement

    SciTech Connect

    Anninos, P; Fragile, P C; Salmonson, J D

    2005-05-06

    A new code and methodology are introduced for solving the fully general relativistic magnetohydrodynamic (GRMHD) equations using time-explicit, finite-volume discretization. The code has options for solving the GRMHD equations using traditional artificial-viscosity (AV) or non-oscillatory central difference (NOCD) methods, or a new extended AV (eAV) scheme using artificial-viscosity together with a dual energy-flux-conserving formulation. The dual energy approach allows for accurate modeling of highly relativistic flows at boost factors well beyond what has been achieved to date by standard artificial viscosity methods. it provides the benefit of Godunov methods in capturing high Lorentz boosted flows but without complicated Riemann solvers, and the advantages of traditional artificial viscosity methods in their speed and flexibility. Additionally, the GRMHD equations are solved on an unstructured grid that supports local adaptive mesh refinement using a fully threated oct-tree (in three dimensions) network to traverse the grid hierarchy across levels and immediate neighbors. A number of tests are presented to demonstrate robustness of the numerical algorithms and adaptive mesh framework over a wide spectrum of problems, boosts, and astrophysical applications, including relativistic shock tubes, shock collisions, magnetosonic shocks, Alfven wave propagation, blast waves, magnetized Bondi flow, and the magneto-rotational instability in Kerr black hole spacetimes.

  1. Detonation waves in relativistic hydrodynamics

    SciTech Connect

    Cissoko, M. )

    1992-02-15

    This paper is concerned with an algebraic study of the equations of detonation waves in relativistic hydrodynamics taking into account the pressure and the energy of thermal radiation. A new approach to shock and detonation wavefronts is outlined. The fluid under consideration is assumed to be perfect (nonviscous and nonconducting) and to obey the following equation of state: {ital p}=({gamma}{minus}1){rho} where {ital p}, {rho}, and {gamma} are the pressure, the total energy density, and the adiabatic index, respectively. The solutions of the equations of detonation waves are reduced to the problem of finding physically acceptable roots of a quadratic polynomial {Pi}({ital X}) where {ital X} is the ratio {tau}/{tau}{sub 0} of dynamical volumes behind and ahead of the detonation wave. The existence and the locations of zeros of this polynomial allow it to be shown that if the equation of state of the burnt fluid is known then the variables characterizing the unburnt fluid obey well-defined physical relations.

  2. The Relativistic Heavy Ion Collider

    NASA Astrophysics Data System (ADS)

    Fischer, Wolfram

    The Relativistic Heavy Ion Collider (RHIC), shown in Fig. 1, was build to study the interactions of quarks and gluons at high energies [Harrison, Ludlam and Ozaki (2003)]. The theory of Quantum Chromodynamics (QCD) describes these interactions. One of the main goals for the RHIC experiments was the creation and study of the Quark-Gluon Plasma (QGP), which was expected to be formed after the collision of heavy ions at a temperature of approximately 2 trillion kelvin (or equivalently an energy of 150 MeV). The QGP is the substance which existed only a few microseconds after the Big Bang. The QGP was anticipated to be weakly interacting like a gas but turned out to be strongly interacting and more like a liquid. Among its unusual properties is its extremely low viscosity [Auerbach and Schlomo (2009)], which makes the QGP the substance closest to a perfect liquid known to date. The QGP is opaque to moderate energy quarks and gluons leading to a phenomenon called jet quenching, where of a jet and its recoil jet only one is observable and the other suppressed after traversing and interacting with the QGP [Jacak and Müller (2012)]...

  3. RELATIVISTIC HEAVY ION COLLISIONS: EXPERIMENT

    SciTech Connect

    Friedlander, Erwin M.; Heckman, Harry H.

    1982-04-01

    Relativistic heavy ion physics began as a 'no man's land' between particle and nuclear physics, with both sides frowning upon it as 'unclean', because on one hand, hadronic interactions and particle production cloud nuclear structure effects, while on the other, the baryonic environment complicates the interpretation of production experiments. They have attempted to review here the experimental evidence on RHI collisions from the point of view that it represents a new endeavor in the understanding of strong interaction physics. Such an approach appears increasingly justified; first, by the accumulation of data and observations of new features of hadronic interactions that could not have been detected outside a baryonic environment; second, by the maturation of the field owing to the advances made over the past several years in experimental inquiries on particle production by RHI, including pions, kaons, hyperons, and searches for antiprotons; and third, by the steady and progressive increase in the energy and mass ranges of light nuclear beams that have become available to the experiment; indeed the energy range has widened from the {approx} 0.2 to 2 AGeV at the Bevalac to {approx}4 AGeV at Dubna and recently, to the quantum jump in energies to {approx} 1000 equivalent AGeV at the CERN PS-ISR. Accompanying these expansions in the energy frontier are the immediate prospects for very heavy ion beams at the Bevalac up to, and including, 1 AGeV {sup 238}U, thereby extending the 'mass frontier' to its ultimate extent.

  4. Relativistic Dipole Matrix Element Zeros

    NASA Astrophysics Data System (ADS)

    Lajohn, L. A.; Pratt, R. H.

    2002-05-01

    There is a special class of relativistic high energy dipole matrix element zeros (RZ), whose positions with respect to photon energy ω , only depend on the bound state l quantum number according to ω^0=mc^2/(l_b+1) (independent of primary quantum number n, nuclear charge Z, central potential V and dipole retardation). These RZ only occur in (n,l_b,j_b)arrow (ɛ , l_b+1,j_b) transitions such as ns_1/2arrow ɛ p_1/2; np_3/2arrow ɛ d_3/2: nd_5/2arrow ɛ f_5/2 etc. The nonrelativistic limit of these matrix elements can be established explicitly in the Coulomb case. Within the general matrix element formalism (such as that in [1]); when |κ | is substituted for γ in analytic expressions for matrix elements, the zeros remain, but ω^0 now becomes dependent on n and Z. When the reduction to nonrelativistic form is completed by application of the low energy approximation ω mc^2 mc^2, the zeros disappear. This nonzero behavior was noted in nonrelativistic dipole Coulomb matrix elements by Fano and Cooper [2] and later proven by Oh and Pratt[3]. (J. H. Scofield, Phys. Rev. A 40), 3054 (1989 (U. Fano and J. W. Cooper, Rev. Mod. Phys. 40), 441 (1968). (D. Oh and R. H. Pratt, Phys. Rev. A 34), 2486 (1986); 37, 1524 (1988); 45, 1583 (1992).

  5. Causal Categories: Relativistically Interacting Processes

    NASA Astrophysics Data System (ADS)

    Coecke, Bob; Lal, Raymond

    2013-04-01

    A symmetric monoidal category naturally arises as the mathematical structure that organizes physical systems, processes, and composition thereof, both sequentially and in parallel. This structure admits a purely graphical calculus. This paper is concerned with the encoding of a fixed causal structure within a symmetric monoidal category: causal dependencies will correspond to topological connectedness in the graphical language. We show that correlations, either classical or quantum, force terminality of the tensor unit. We also show that well-definedness of the concept of a global state forces the monoidal product to be only partially defined, which in turn results in a relativistic covariance theorem. Except for these assumptions, at no stage do we assume anything more than purely compositional symmetric-monoidal categorical structure. We cast these two structural results in terms of a mathematical entity, which we call a causal category. We provide methods of constructing causal categories, and we study the consequences of these methods for the general framework of categorical quantum mechanics.

  6. Observation of relativistic antihydrogen atoms

    SciTech Connect

    Blanford, Glenn DelFosse

    1998-01-01

    An observation of relativistic antihydrogen atoms is reported in this dissertation. Experiment 862 at Fermi National Accelerator Laboratory observed antihydrogen atoms produced by the interaction of a circulating beam of high momentum (3 < p < 9 GeV/c) antiprotons and a jet of molecular hydrogen gas. Since the neutral antihydrogen does not bend in the antiproton source magnets, the detectors could be located far from the interaction point on a beamline tangent to the storage ring. The detection of the antihydrogen is accomplished by ionizing the atoms far from the interaction point. The positron is deflected by a magnetic spectrometer and detected, as are the back to back photons resulting from its annihilation. The antiproton travels a distance long enough for its momentum and time of flight to be measured accurately. A statistically significant sample of 101 antihydrogen atoms has been observed. A measurement of the cross section for {bar H}{sup 0} production is outlined within. The cross section corresponds to the process where a high momentum antiproton causes e{sup +} e{sup -} pair creation near a nucleus with the e{sup +} being captured by the antiproton. Antihydrogen is the first atom made exclusively of antimatter to be detected. The observation experiment's results are the first step towards an antihydrogen spectroscopy experiment which would measure the n = 2 Lamb shift and fine structure.

  7. Influence of Pb(II) Ions on the EPR Properties of the Semiquinone Radicals of Humic Acids and Model Compounds: High Field EPR and Relativistic DFT Studies

    NASA Astrophysics Data System (ADS)

    Witwicki, Maciej; Jerzykiewicz, Maria; Jaszewski, Adrian R.; Jezierska, Julia; Ozarowski, Andrzej

    2009-11-01

    X-band (9.76 GHz) and high field (416.00 GHz) electron paramagnetic resonance spectroscopy (EPR) was used to study the interactions between Pb(II) ions and semiquinone radicals of natural humic acids and their simple models. The EPR experiments were performed on powder samples. The formation of Pb(II) complexes with the radicals was accompanied by a significant decrease of g parameters as compared to those observed for parent radicals. Two types of complexes were identified depending on the initial concentration of Pb(II) ions. For one of them the anisotropic hyperfine coupling with the 207Pb nucleus was observed. Systematic DFT calculations were carried out for complexes with different forms of radical ligands (L2-•, HL-•, and H2L•) derived from 3,4-dihydroxybenzoic acid representing different ligation schemes. The g parameters calculated for the structure characterized by a significant accumulation of spin density on the Pb atom are strongly deviated from the values observed experimentally. Moreover, a decrease of the spin population on all oxygen atoms as a result of complexation of Pb(II) via carboxyl oxygens and protonation of hydroxyl oxygens is required to reproduce the experimental g parameters.

  8. BOOK REVIEW: Relativistic Figures of Equilibrium

    NASA Astrophysics Data System (ADS)

    Mars, M.

    2009-08-01

    Compact fluid bodies in equilibrium under its own gravitational field are abundant in the Universe and a proper treatment of them can only be carried out using the full theory of General Relativity. The problem is of enormous complexity as it involves two very different regimes, namely the interior and the exterior of the fluid, coupled through the surface of the body. This problem is very challenging both from a purely theoretical point of view, as well as regarding the obtaining of realistic models and the description of their physical properties. It is therefore an excellent piece of news that the book 'Relativistic Figures of Equilibrium' by R Meinel, M Ansorg, A Kleinwächter, G Neugebauer and D Petroff has been recently published. This book approaches the topic in depth and its contents will be of interest to a wide range of scientists working on gravitation, including theoreticians in general relativity, mathematical physicists, astrophysicists and numerical relativists. This is an advanced book that intends to present some of the present-day results on this topic. The most basic results are presented rather succinctly, and without going into the details, of their derivations. Although primarily not intended to serve as a textbook, the presentation is nevertheless self-contained and can therefore be of interest both for experts on the field as well as for anybody wishing to learn more about rotating self-gravitating compact bodies in equilibrium. It should be remarked, however, that this book makes a rather strong selection of topics and concentrates fundamentally on presenting the main results obtained by the authors during their research in this field. The book starts with a chapter where the fundamental aspects of rotating fluids in equilibrium, including its thermodynamic properties, are summarized. Of particular interest are the so-called mass-shedding limit, which is the limit where the body is rotating so fast that it is on the verge of starting

  9. Relativistic Positioning System in perturbed spacetime

    NASA Astrophysics Data System (ADS)

    Kostić, Uroš; Horvat, Martin; Gomboc, Andreja

    2015-11-01

    We present a variant of a Global Navigation Satellite System called a Relativistic Positioning System (RPS), which is based on emission coordinates. We modelled the RPS dynamics in a spacetime around Earth, described by a perturbed Schwarzschild metric, where we included the perturbations due to Earth multipoles (up to the 6th), the Moon, the Sun, Venus, Jupiter, solid tide, ocean tide, and Kerr rotation effect. The exchange of signals between the satellites and a user was calculated using a ray-tracing method in the Schwarzschild spacetime. We find that positioning in a perturbed spacetime is feasible and is highly accurate already with standard numerical procedures: the positioning algorithms used to transform between the emission and the Schwarzschild coordinates of the user are very accurate and time efficient—on a laptop it takes 0.04 s to determine the user’s spatial and time coordinates with a relative accuracy of {10}-28-{10}-26 and {10}-32-{10}-30, respectively.

  10. Relativistic electrons from sparks in the laboratory

    NASA Astrophysics Data System (ADS)

    Østgaard, N.; Carlson, B. E.; Nisi, R. S.; Gjesteland, T.; Grøndahl, Ø.; Skeltved, A.; Lehtinen, N. G.; Mezentsev, A.; Marisaldi, M.; Kochkin, P.

    2016-03-01

    Discharge experiments were carried out at the Eindhoven University of Technology in 2013. The experimental setup was designed to search for electrons produced in meter-scale sparks using a 1 MV Marx generator. Negative voltage was applied to the high voltage (HV) electrode. Five thin (1 mm) plastic detectors (5 cm2 each) were distributed in various configurations close to the spark gap. Earlier studies have shown (for HV negative) that X-rays are produced when a cloud of streamers is developed 30-60 cm from the negative electrode. This indicates that the electrons producing the X-rays are also accelerated at this location, that could be in the strong electric field from counterstreamers of opposite polarity. Comparing our measurements with modeling results, we find that ˜300 keV electrons produced about 30-60 cm from the negative electrode are the most likely source of our measurements. A statistical analysis of expected detection of photon bursts by these fiber detectors indicates that only 20%-45% of the detected bursts could be from soft (˜10 keV) photons, which further supports that the majority of detected bursts are produced by relativistic electrons.

  11. Ab initio non-relativistic spin dynamics

    SciTech Connect

    Ding, Feizhi; Goings, Joshua J.; Li, Xiaosong; Frisch, Michael J.

    2014-12-07

    Many magnetic materials do not conform to the (anti-)ferromagnetic paradigm where all electronic spins are aligned to a global magnetization axis. Unfortunately, most electronic structure methods cannot describe such materials with noncollinear electron spin on account of formally requiring spin alignment. To overcome this limitation, it is necessary to generalize electronic structure methods and allow each electron spin to rotate freely. Here, we report the development of an ab initio time-dependent non-relativistic two-component spinor (TDN2C), which is a generalization of the time-dependent Hartree-Fock equations. Propagating the TDN2C equations in the time domain allows for the first-principles description of spin dynamics. A numerical tool based on the Hirshfeld partitioning scheme is developed to analyze the time-dependent spin magnetization. In this work, we also introduce the coupling between electron spin and a homogenous magnetic field into the TDN2C framework to simulate the response of the electronic spin degrees of freedom to an external magnetic field. This is illustrated for several model systems, including the spin-frustrated Li{sub 3} molecule. Exact agreement is found between numerical and analytic results for Larmor precession of hydrogen and lithium atoms. The TDN2C method paves the way for the ab initio description of molecular spin transport and spintronics in the time domain.

  12. DYNAMICS OF STRONGLY TWISTED RELATIVISTIC MAGNETOSPHERES

    SciTech Connect

    Parfrey, Kyle; Beloborodov, Andrei M.; Hui, Lam

    2013-09-10

    Magnetar magnetospheres are believed to be strongly twisted due to shearing of the stellar crust by internal magnetic stresses. We present time-dependent axisymmetric simulations showing in detail the evolution of relativistic force-free magnetospheres subjected to slow twisting through large angles. When the twist amplitude is small, the magnetosphere moves quasi-statically through a sequence of equilibria of increasing free energy. At some twist amplitude the magnetosphere becomes tearing-mode unstable to forming a resistive current sheet, initiating large-scale magnetic reconnection in which a significant fraction of the magnetic free energy can be dissipated. This ''critical'' twist angle is insensitive to the resistive length scale. Rapid shearing temporarily stabilizes the magnetosphere beyond the critical angle, allowing the magnetosphere of a rapidly differentially rotating star to store and dissipate more free energy. In addition to these effects, shearing the surface of a rotating star increases the spindown torque applied to the star. If shearing is much slower than rotation, the resulting spikes in spindown rate can occur on timescales anywhere from the long twisting timescale to the stellar spin period or shorter, depending both on the stellar shear distribution and the existing distribution of magnetospheric twists. A model in which energy is stored in the magnetosphere and released by a magnetospheric instability therefore predicts large changes in the measured spindown rate before soft gamma repeater giant flares.

  13. Relativistic electrons from sparks in the laboratory.

    PubMed

    Østgaard, N; Carlson, B E; Nisi, R S; Gjesteland, T; Grøndahl, Ø; Skeltved, A; Lehtinen, N G; Mezentsev, A; Marisaldi, M; Kochkin, P

    2016-03-27

    Discharge experiments were carried out at the Eindhoven University of Technology in 2013. The experimental setup was designed to search for electrons produced in meter-scale sparks using a 1 MV Marx generator. Negative voltage was applied to the high voltage (HV) electrode. Five thin (1 mm) plastic detectors (5 cm(2) each) were distributed in various configurations close to the spark gap. Earlier studies have shown (for HV negative) that X-rays are produced when a cloud of streamers is developed 30-60 cm from the negative electrode. This indicates that the electrons producing the X-rays are also accelerated at this location, that could be in the strong electric field from counterstreamers of opposite polarity. Comparing our measurements with modeling results, we find that ∼300 keV electrons produced about 30-60 cm from the negative electrode are the most likely source of our measurements. A statistical analysis of expected detection of photon bursts by these fiber detectors indicates that only 20%-45% of the detected bursts could be from soft (∼10 keV) photons, which further supports that the majority of detected bursts are produced by relativistic electrons.

  14. Predicting the relativistic periastron advance of a binary without curving spacetime

    NASA Astrophysics Data System (ADS)

    Friedman, Y.; Livshitz, S.; Steiner, J. M.

    2017-01-01

    Relativistic Newtonian dynamics, the simple model used previously for predicting accurately the anomalous precession of Mercury, is now applied to predict the periastron advance of a binary. The classical treatment of a binary as a two-body problem is modified to account for the influence of the gravitational potential on spacetime. Without curving spacetime, the model predicts the identical equation for the relativistic periastron advance as the post-Newtonian approximation of the general relativity formalism thereby providing further substantiation of this model.

  15. Bose-Einstein condensation of relativistic Scalar Field Dark Matter

    SciTech Connect

    Urena-Lopez, L. Arturo

    2009-01-15

    Standard thermodynamical results of ideal Bose gases are used to study the possible formation of a cosmological Bose-Einstein condensate in Scalar Field Dark Matter models; the main hypothesis is that the boson particles were in thermal equilibrium in the early Universe. It is then shown that the only relevant case needs the presence of both particles and anti-particles, and that it corresponds to models in which the bosonic particle is very light. Contrary to common wisdom, the condensate should be a relativistic phenomenon. Some cosmological implications are discussed in turn.

  16. Relativistic Particle-In-Cell Simulations of Particle Accleration in Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Hardee, P.; Mizuno, Y.; Medvedev, M.; Hartmann, D. H.; Fishman, J. F.

    2008-01-01

    Highly accelerated particles are observed in astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), microquasars, and Gamma-Ray Bursts (GRBs). Particle-In-Cell (PIC) simulations of relativistic electron-ion and electron-positron jets injected into a stationary medium show that efficient acceleration occurs downstream in the jet. In collisionless relativistic shocks particle acceleration is due to plasma waves and their associated instabilities, e.g., the Buneman instability, other two-stream instabilities, and the Weibel (filamentation) instability. Simulations show that the Weibel instability is responsible for generating and amplifying highly non-uniform, small-scale magnetic fields. The instability depends on strength and direction of the magnetic field. Particles in relativistic jets may be accelerated in a complicated dynamics of relativistic jets with magnetic field. We present results of our recent PIC simulations.

  17. Particle Acceleration and Nonthermal Emission in Relativistic Astrophysical Shocks

    NASA Astrophysics Data System (ADS)

    Sironi, Lorenzo

    alternating fields to the particles, generating flat power-law tails containing most of the particles. Finally, I directly relate the results of my PIC simulations to observations of nonthermal sources, by presenting a numerical technique that I have developed in order to extract ab initio photon spectra from PIC simulations of shocks. With this technique, I have modeled the emission from GRB jets, ruling out a class of models that relied on the so-called jitter radiation. This reinforces the idea that a detailed understanding of the micro-physics of particle acceleration in relativistic shocks is required in order to correctly interpret the emission signatures of astrophysical nonthermal sources.

  18. RELATIVISTIC BROADENING OF IRON EMISSION LINES IN A SAMPLE OF ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Brenneman, Laura W.; Reynolds, Christopher S.

    2009-09-10

    We present a uniform X-ray spectral analysis of eight type-1 active galactic nuclei that have been previously observed with relativistically broadened iron emission lines. Utilizing data from the XMM-Newton European Photon Imaging Camera (EPIC-pn) we carefully model the spectral continuum, taking complex intrinsic absorption and emission into account. We then proceed to model the broad Fe K{alpha} feature in each source with two different accretion disk emission line codes, as well as a self-consistent, ionized accretion disk spectrum convolved with relativistic smearing from the inner disk. Comparing the results, we show that relativistic blurring of the disk emission is required to explain the spectrum in most sources, even when one models the full reflection spectrum from the photoionized disk.

  19. Imbalanced relativistic force-free magnetohydrodynamic turbulence

    SciTech Connect

    Cho, Jungyeon; Lazarian, A.

    2014-01-01

    When magnetic energy density is much larger than that of matter, as in pulsar/black hole magnetospheres, the medium becomes force-free and we need relativity to describe it. As in non-relativistic magnetohydrodynamics (MHD), Alfvénic MHD turbulence in the relativistic limit can be described by interactions of counter-traveling wave packets. In this paper, we numerically study strong imbalanced MHD turbulence in such environments. Here, imbalanced turbulence means the waves traveling in one direction (dominant waves) have higher amplitudes than the opposite-traveling waves (sub-dominant waves). We find that (1) spectrum of the dominant waves is steeper than that of sub-dominant waves, (2) the anisotropy of the dominant waves is weaker than that of sub-dominant waves, and (3) the dependence of the ratio of magnetic energy densities of dominant and sub-dominant waves on the ratio of energy injection rates is steeper than quadratic (i.e., b{sub +}{sup 2}/b{sub −}{sup 2}∝(ϵ{sub +}/ϵ{sub −}){sup n} with n > 2). These results are consistent with those obtained for imbalanced non-relativistic Alfvénic turbulence. This corresponds well to the earlier reported similarity of the relativistic and non-relativistic balanced magnetic turbulence.

  20. Relativistic generation of vortex and magnetic field

    SciTech Connect

    Mahajan, S. M.; Yoshida, Z.

    2011-05-15

    The implications of the recently demonstrated relativistic mechanism for generating generalized vorticity in purely ideal dynamics [Mahajan and Yoshida, Phys. Rev. Lett. 105, 095005 (2010)] are worked out. The said mechanism has its origin in the space-time distortion caused by the demands of special relativity; these distortions break the topological constraint (conservation of generalized helicity) forbidding the emergence of magnetic field (a generalized vorticity) in an ideal nonrelativistic dynamics. After delineating the steps in the ''evolution'' of vortex dynamics, as the physical system goes from a nonrelativistic to a relativistically fast and hot plasma, a simple theory is developed to disentangle the two distinct components comprising the generalized vorticity--the magnetic field and the thermal-kinetic vorticity. The ''strength'' of the new universal mechanism is, then, estimated for a few representative cases; in particular, the level of seed fields, created in the cosmic setting of the early hot universe filled with relativistic particle-antiparticle pairs (up to the end of the electron-positron era), are computed. Possible applications of the mechanism in intense laser produced plasmas are also explored. It is suggested that highly relativistic laser plasma could provide a laboratory for testing the essence of the relativistic drive.

  1. grim: A Flexible, Conservative Scheme for Relativistic Fluid Theories

    NASA Astrophysics Data System (ADS)

    Chandra, Mani; Foucart, Francois; Gammie, Charles F.

    2017-03-01

    Hot, diffuse, relativistic plasmas such as sub-Eddington black-hole accretion flows are expected to be collisionless, yet are commonly modeled as a fluid using ideal general relativistic magnetohydrodynamics (GRMHD). Dissipative effects such as heat conduction and viscosity can be important in a collisionless plasma and will potentially alter the dynamics and radiative properties of the flow from that in ideal fluid models; we refer to models that include these processes as Extended GRMHD. Here we describe a new conservative code, grim, that enables all of the above and additional physics to be efficiently incorporated. grim combines time evolution and primitive variable inversion needed for conservative schemes into a single step using an algorithm that only requires the residuals of the governing equations as inputs. This algorithm enables the code to be physics agnostic as well as flexibility regarding time-stepping schemes. grim runs on CPUs, as well as on GPUs, using the same code. We formulate a performance model and use it to show that our implementation runs optimally on both architectures. grim correctly captures classical GRMHD test problems as well as a new suite of linear and nonlinear test problems with anisotropic conduction and viscosity in special and general relativity. As tests and example applications, we resolve the shock substructure due to the presence of dissipation, and report on relativistic versions of the magneto-thermal instability and heat flux driven buoyancy instability, which arise due to anisotropic heat conduction, and of the firehose instability, which occurs due to anisotropic pressure (i.e., viscosity). Finally, we show an example integration of an accretion flow around a Kerr black hole, using Extended GRMHD.

  2. The Los Alamos suite of relativistic atomic physics codes

    DOE PAGES

    Fontes, C. J.; Zhang, H. L.; Jr, J. Abdallah; ...

    2015-05-28

    The Los Alamos SuitE of Relativistic (LASER) atomic physics codes is a robust, mature platform that has been used to model highly charged ions in a variety of ways. The suite includes capabilities for calculating data related to fundamental atomic structure, as well as the processes of photoexcitation, electron-impact excitation and ionization, photoionization and autoionization within a consistent framework. These data can be of a basic nature, such as cross sections and collision strengths, which are useful in making predictions that can be compared with experiments to test fundamental theories of highly charged ions, such as quantum electrodynamics. The suitemore » can also be used to generate detailed models of energy levels and rate coefficients, and to apply them in the collisional-radiative modeling of plasmas over a wide range of conditions. Such modeling is useful, for example, in the interpretation of spectra generated by a variety of plasmas. In this work, we provide a brief overview of the capabilities within the Los Alamos relativistic suite along with some examples of its application to the modeling of highly charged ions.« less

  3. The Los Alamos suite of relativistic atomic physics codes

    SciTech Connect

    Fontes, C. J.; Zhang, H. L.; Jr, J. Abdallah; Clark, R. E. H.; Kilcrease, D. P.; Colgan, J.; Cunningham, R. T.; Hakel, P.; Magee, N. H.; Sherrill, M. E.

    2015-05-28

    The Los Alamos SuitE of Relativistic (LASER) atomic physics codes is a robust, mature platform that has been used to model highly charged ions in a variety of ways. The suite includes capabilities for calculating data related to fundamental atomic structure, as well as the processes of photoexcitation, electron-impact excitation and ionization, photoionization and autoionization within a consistent framework. These data can be of a basic nature, such as cross sections and collision strengths, which are useful in making predictions that can be compared with experiments to test fundamental theories of highly charged ions, such as quantum electrodynamics. The suite can also be used to generate detailed models of energy levels and rate coefficients, and to apply them in the collisional-radiative modeling of plasmas over a wide range of conditions. Such modeling is useful, for example, in the interpretation of spectra generated by a variety of plasmas. In this work, we provide a brief overview of the capabilities within the Los Alamos relativistic suite along with some examples of its application to the modeling of highly charged ions.

  4. Two-pion exchange contributions to the relativistic NN kernel: Peripheral scattering

    SciTech Connect

    Cozma, M. D.; Scholten, O.; Timmermans, R. G. E.; Tjon, J. A.

    2007-01-15

    The relativistic one-boson-exchange model for NN scattering is extended by including two-pion exchange (TPE) contributions in the kernel. We develop the formalism for the evaluation of the TPE diagrams within the relativistic quasipotential approach. The peripheral partial waves in elastic NN scattering are studied within this model. The TPE interactions contain a strongly attractive isoscalar-scalar component which requires a low value of the cutoff parameter: {lambda}=650-800 MeV. With this prescription, the peripheral waves can be reasonably described.

  5. Effect of an equilibrium phase transition on multiphase transport in relativistic heavy ion collisions

    SciTech Connect

    Yu Meiling; Du Jiaxin; Liu Lianshou

    2006-10-15

    The hadronization scheme for parton transport in relativistic heavy ion collisions is considered in detail. It is pointed out that the traditional scheme for particles being freezed out one by one leads to serious problem on unreasonable long lifetime of partons. A collective phase transition following a supercooling is implemented in a simple way. It turns out that the modified model with a sudden phase transition is able to reproduce the experimental longitudinal distributions of final state particles better than the original one does. The encouraging results indicate that equilibrium phase transition should be taken into proper account in parton transport models for relativistic heavy ion collisions.

  6. Relativistic mirrors in laser plasmas (analytical methods)

    NASA Astrophysics Data System (ADS)

    Bulanov, S. V.; Esirkepov, T. Zh; Kando, M.; Koga, J.

    2016-10-01

    Relativistic flying mirrors in plasmas are realized as thin dense electron (or electron-ion) layers accelerated by high-intensity electromagnetic waves to velocities close to the speed of light in vacuum. The reflection of an electromagnetic wave from the relativistic mirror results in its energy and frequency changing. In a counter-propagation configuration, the frequency of the reflected wave is multiplied by the factor proportional to the Lorentz factor squared. This scientific area promises the development of sources of ultrashort x-ray pulses in the attosecond range. The expected intensity will reach the level at which the effects predicted by nonlinear quantum electrodynamics start to play a key role. We present an overview of theoretical methods used to describe relativistic flying, accelerating, oscillating mirrors emerging in intense laser-plasma interactions.

  7. Relativistic neutrons in active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Sikora, Marek; Begelman, Mitchell C.; Rudak, Bronislaw

    1989-01-01

    The acceleration of protons to relativistic energies in active galactic nuclei leads to the creation of relativistic neutrons which escape from the central engine. The neutrons decay at distances of up to 1-100 pc, depositing their energies and momenta in situ. Energy deposition by decaying neutrons may inhibit spherical accretion and drive a wind, which could be responsible for the velocity fields in emission-line regions and the outflow of broad absorption line systems. Enhanced pressure in the neutron decay region may also help to confine emission line clouds. A fraction of the relativistic proton energy is radiated in gamma-rays with energies which may be as large as about 100,000 GeV.

  8. Nonlinear relativistic plasma resonance: Renormalization group approach

    NASA Astrophysics Data System (ADS)

    Metelskii, I. I.; Kovalev, V. F.; Bychenkov, V. Yu.

    2017-02-01

    An analytical solution to the nonlinear set of equations describing the electron dynamics and electric field structure in the vicinity of the critical density in a nonuniform plasma is constructed using the renormalization group approach with allowance for relativistic effects of electron motion. It is demonstrated that the obtained solution describes two regimes of plasma oscillations in the vicinity of the plasma resonance— stationary and nonstationary. For the stationary regime, the spatiotemporal and spectral characteristics of the resonantly enhanced electric field are investigated in detail and the effect of the relativistic nonlinearity on the spatial localization of the energy of the plasma relativistic field is considered. The applicability limits of the obtained solution, which are determined by the conditions of plasma wave breaking in the vicinity of the resonance, are established and analyzed in detail for typical laser and plasma parameters. The applicability limits of the earlier developed nonrelativistic theories are refined.

  9. Anomalous magnetic viscosity in relativistic accretion disks

    NASA Astrophysics Data System (ADS)

    Lin, Fujun; Liu, Sanqiu; Li, Xiaoqing

    2013-07-01

    It has been proved that the self-generated magnetic fields by transverse plasmons in the relativistic regime are modulationally unstable, leading to a self-similar collapse of the magnetic flux tubes and resulting in local magnetic structures; highly spatially intermittent flux is responsible for generating the anomalous viscosity. We derive the anomalous magnetic viscosity coefficient, in accretion disks around compact objects, such as black holes, pulsars and quasars, where the plasmas are relativistic, in order to help clarify the nature of viscosity in the theory of accretion disks. The results indicate that, the magnetic viscosity is modified by the relativistic effects of plasmas, and its' strength would be 1015 stronger than the molecular viscosity, which may be helpful in explaining the observations.

  10. Relativistic dynamics, Green function and pseudodifferential operators

    NASA Astrophysics Data System (ADS)

    Cirilo-Lombardo, Diego Julio

    2016-06-01

    The central role played by pseudodifferential operators in relativistic dynamics is known very well. In this work, operators like the Schrodinger one (e.g., square root) are treated from the point of view of the non-local pseudodifferential Green functions. Starting from the explicit construction of the Green (semigroup) theoretical kernel, a theorem linking the integrability conditions and their dependence on the spacetime dimensions is given. Relativistic wave equations with arbitrary spin and the causality problem are discussed with the algebraic interpretation of the radical operator and their relation with coherent and squeezed states. Also we perform by means of pure theoretical procedures (based in physical concepts and symmetry) the relativistic position operator which satisfies the conditions of integrability: it is a non-local, Lorentz invariant and does not have the same problems as the "local"position operator proposed by Newton and Wigner. Physical examples, as zitterbewegung and rogue waves, are presented and deeply analyzed in this theoretical framework.

  11. COMPARATIVE MORPHOLOGY OF SOLAR RELATIVISTIC PARTICLE EVENTS

    SciTech Connect

    Kocharov, Leon; Usoskin, Ilya; Klassen, Andreas; Valtonen, Eino; Ryan, James M.

    2015-09-20

    Time profiles of the 0.25–10 MeV electrons and the ∼(0.1–1) GeV nucleon{sup −1} protons and helium associated with two solar coronal mass ejections (CMEs) are analyzed with a newly formulated method based on modeling of the particle transport in the interplanetary medium. With the modeling, we fit the observed angular distribution of solar particles and infer, for a particular particle instrument and magnetic field orientation, the time delay of the particle registration at 1 AU in respect to the solar source. Then, after the time offset removal, intensity re-normalization and background equalization, the time–intensity profiles of high-energy protons, helium and electrons in different energy channels are superposed and compared. The comparison reveals episodes of remarkable coincidence of different profiles, as well as episodes of essentially different behavior. It implies at least three sources of solar high-energy particles operating in a single event. The first, short-duration source emits electrons next to the flare's impulsive phase and CME liftoff. The second source gradually rises and continues for more than an hour, emitting electrons and lower energy protons, which is consistent with shock acceleration on open magnetic field lines extending to solar wind. An another, third source is the main source of relativistic ions in space. It is retarded in respect to the flare's impulsive phase and may be associated with a structure encountered by the shock within a few solar radii from the Sun.

  12. Magnetohydrodynamic Jump Conditions for Oblique Relativistic Shocks with Gyrotropic Pressure

    NASA Technical Reports Server (NTRS)

    Double, Glen P.; Baring, Matthew G.; Jones, Frank C.; Ellison, Donald C.

    2003-01-01

    Shock jump conditions, i.e., the specification of the downstream parameters of the gas in terms of the upstream parameters, are obtained for steady-state, plane shocks with oblique magnetic fields and arbitrary flow speeds. This is done by combining the continuity of particle number flux and the electromagnetic boundary conditions at the shock with the magnetohydrodynamic conservation laws derived from the stress-energy tensor. For ultrarelativistic and nonrelativistic shocks, the jump conditions may be solved analytically. For mildly relativistic shocks, analytic solutions are obtained for isotropic pressure using an approximation for the adiabatic index that is valid in high sonic Mach number cases. Examples assuming isotropic pressure illustrate how the shock compression ratio depends on the shock speed and obliquity. In the more general case of gyrotropic pressure, the jump conditions cannot be solved analytically with- out additional assumptions, and the effects of gyrotropic pressure are investigated by parameterizing the distribution of pressure parallel and perpendicular to the magnetic field. Our numerical solutions reveal that relatively small departures from isotropy (e.g., approximately 20%) produce significant changes in the shock compression ratio, r , at all shock Lorentz factors, including ultrarelativistic ones, where an analytic solution with gyrotropic pressure is obtained. In particular, either dynamically important fields or significant pressure anisotropies can incur marked departures from the canonical gas dynamic value of r = 3 for a shocked ultrarelativistic flow and this may impact models of particle acceleration in gamma-ray bursts and other environments where relativistic shocks are inferred. The jump conditions presented apply directly to test-particle acceleration, and will facilitate future self-consistent numerical modeling of particle acceleration at oblique, relativistic shocks; such models include the modification of the fluid

  13. The relativistic equations of stellar structure and evolution

    NASA Technical Reports Server (NTRS)

    Thorne, K. S.

    1977-01-01

    The general-relativistic equations of stellar structure and evolution are reformulated in a notation which makes easy contact with Newtonian theory. Also, a general-relativistic version of the mixing-length formalism for convection is presented.

  14. Plasmoids in relativistic reconnection, from birth to adulthood: first they grow, then they go

    NASA Astrophysics Data System (ADS)

    Sironi, Lorenzo; Giannios, Dimitrios; Petropoulou, Maria

    2016-10-01

    Blobs, or quasi-spherical emission regions containing relativistic particles and magnetic fields, are often assumed ad hoc in emission models of relativistic astrophysical jets, yet their physical origin is still not well understood. Here, we employ a suite of large-scale 2D particle-in-cell simulations in electron-positron plasmas to demonstrate that relativistic magnetic reconnection can naturally account for the formation of quasi-spherical plasmoids filled with high-energy particles and magnetic fields. Our simulations extend to unprecedentedly long temporal and spatial scales, so we can capture the asymptotic physics independently of the initial setup. We characterize the properties of the plasmoids, continuously generated as a self-consistent by-product of the reconnection process: they are in rough energy equipartition between particles and magnetic fields; the upper energy cutoff of the plasmoid particle spectrum is proportional to the plasmoid width w, corresponding to a Larmor radius ˜0.2 w; the plasmoids grow in size at ˜0.1 of the speed of light, with most of the growth happening while they are still non-relativistic (`first they grow'); their growth is suppressed once they get accelerated to relativistic speeds by the field line tension, up to the Alfvén speed (`then they go'). The largest plasmoids reach a width wmax ˜ 0.2 L independently of the system length L, they have nearly isotropic particle distributions and contain the highest energy particles, whose Larmor radius is ˜0.03 L. The latter can be regarded as the Hillas criterion for relativistic reconnection. We briefly discuss the implications of our results for the high-energy emission from relativistic jets and pulsar winds.

  15. Relativistic x-ray free-electron lasers in the quantum regime.

    PubMed

    Eliasson, Bengt; Shukla, P K

    2012-06-01

    We present a nonlinear theory for relativistic x-ray free-electron lasers in the quantum regime, using a collective Klein-Gordon (KG) equation (for relativistic electrons), which is coupled with the Maxwell-Poisson equations for the electromagnetic and electrostatic fields. In our model, an intense electromagnetic wave is used as a wiggler which interacts with a relativistic electron beam to produce coherent tunable radiation. The KG-Maxwell-Poisson model is used to derive a general nonlinear dispersion relation for parametric instabilities in three space dimensions, including an arbitrarily large amplitude electromagnetic wiggler field. The nonlinear dispersion relation reveals the importance of quantum recoil effects and oblique scattering of the radiation that can be tuned by varying the beam energy.

  16. Relativistic Electron Precipitation in the Auroral Zone. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Simons, D. J.

    1975-01-01

    The energy spectra and pitch angle distributions of electrons in the energy range from 50 keV to 2 MeV were determined by a solid state electron energy spectrometer during the Relativistic Electron Precipitation (REP) event of 31 May 1972. The pitch angle distributions were determined from a knowledge of the rocket aspect and the direction in space of the earth's magnetic field. The rocket aspect determination was therefore treated in depth and a method was developed to compensate for the malfunctioning of the aspect magnetometer. The electron fluxes during the REP event were highly variable demonstrating correlated energy, flux, and pitch angle pulsations with time periods of less than one second. A theoretical model for the production of relativistic electrons was proposed. It follows from this model that, at comparatively low background electron densities, the anomalous Doppler resonance leads to the acceleration of near relativistic particles.

  17. Relativistic klystron research for high gradient accelerators

    SciTech Connect

    Allen, M.A.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fowkes, W.R.; Herrmannsfeldt, W.B.; Higo, T.; Hoag, H.A.; Lavine, T.L.; Lee, T.G.

    1988-06-01

    Relativistic klystrons are being developed as a power source for high gradient accelerator applications which include large linear electron--positron colliders, compact accelerators, and FEL sources. We have attained 200MW peak power at 11.4 GHz from a relativistic klystron, and 140 MV/m longitudinal gradient in a short 11.4 GHz accelerator section. We report here on the design of our first klystrons, the results of our experiments so far, and some of our plans for the near future. 5 refs., 7 figs.

  18. Recent progress in relativistic klystron research

    SciTech Connect

    Allen, M.A.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fant, K.S.; Fowkes, W.R.; Hoag, H.A.; Koontz, R.F.; Lavine, T.L.; Loew, G.A.; Miller, R.H.; Ruth, R.D.; Vlieks, A.E.; Wang, J.W.; Aalberts, D.P.; Boyd, J.K.; Houck, T.; Ryne, R.D.; Westenskow, G.A.; Yu, S.S.; Hopkins, D.B.; Sessler, A.M.; Haimson, J.; Mecklenburg, B.; Lawrence Livermore National Lab., CA (US

    1989-08-01

    Experimental work is now under way by collaborators at LLNL, SLAC, and LBL to investigate relativistic klystrons as a possible rf power source for future high-gradient accelerators. We have learned how to overcome our previously reported problem of high-power rf pulse shortening and have achieved peak rf power levels of 290 MW. We have used the rf from a relativistic klystron to power a short, 11.4-GHz high-gradient accelerator. The measured momentum spectrum of the accelerated electron beam corresponds to an accelerating gradient of 84 MV/m. 5 refs., 7 figs.

  19. Electronic Broadening operator for relativistic plasmas

    SciTech Connect

    Meftah, M. T.; Naam, A.

    2008-10-22

    In this work we review some aspects of the semiclassical dipole impact approximation for isolated ion lines in relativistic plasma. Mainly we focuss our work on the collision operator for relativistic electrons. In this case, the electron trajectory around a positive charge in the plasma differs drastically from those known earlier as hyperbolic. The effect of this difference on the collision operator is discussed with respect the various plasma conditions. Some theoretical and practical aspects of lines -shape calculations are discussed. Detailed calculations are performed for the collision operator in the semiclassical (dipole) impact approximation.

  20. Relativistic Brownian motion on a graphene chip

    NASA Astrophysics Data System (ADS)

    Pototsky, A.; Marchesoni, F.; Kusmartsev, F. V.; Hänggi, P.; Savel'ev, S. E.

    2012-10-01

    Relativistic Brownian motion can be inexpensively demonstrated on a graphene chip. The interplay of stochastic and relativistic dynamics, governing the transport of charge carrier in graphene, induces noise-controlled effects such as (i) a stochastic effective mass, detectable as a suppression of the particle mobility with increasing the temperature; (ii) transverse harmonic mixing, whereby electron transport can be controlled by two orthogonal, commensurate ac drives; (iii) a transverse ratchet effect, measurable as a net current orthogonal to an ac drive on an asymmetric substrate, and (iv) chaotic stochastic resonance. Such properties can be of practical applications in the emerging graphene technology.