Yehya, Nadir; Topjian, Alexis A; Thomas, Neal J; Friess, Stuart H
2014-05-01
Children with an immunocompromised condition and requiring invasive mechanical ventilation have high risk of death. Such patients are commonly transitioned to rescue modes of nonconventional ventilation, including airway pressure release ventilation and high-frequency oscillatory ventilation, for acute respiratory distress syndrome refractory to conventional ventilation. Our aim was to describe our experience with airway pressure release ventilation and high-frequency oscillatory ventilation in children with an immunocompromised condition and acute respiratory distress syndrome refractory to conventional ventilation and to identify factors associated with survival. Retrospective cohort study. Tertiary care, university-affiliated PICU. Sixty pediatric patients with an immunocompromised condition and acute respiratory distress syndrome refractory to conventional ventilation transitioned to either airway pressure release ventilation or high-frequency oscillatory ventilation. None. Demographic data, ventilator settings, arterial blood gases, oxygenation index, and PaO(2)/FIO(2) were recorded before transition to either mode of nonconventional ventilation and at predetermined intervals after transition for up to 5 days. Mortality in the entire cohort was 63% and did not differ between patients transitioned to airway pressure release ventilation and high-frequency oscillatory ventilation. For both airway pressure release ventilation and high-frequency oscillatory ventilation, improvements in oxygenation index and PaO(2)/FIO(2) at 24 hours expressed as a fraction of pretransition values (oxygenation index(24)/oxygenation index(pre) and PaO(2)/FIO(224)/PaO(2)/FIO(2pre)) reliably discriminated nonsurvivors from survivors, with receiver operating characteristic areas under the curves between 0.89 and 0.95 (p for all curves < 0.001). Sensitivity-specificity analysis suggested that less than 15% reduction in oxygenation index (90% sensitive, 75% specific) or less than 90% increase in PaO(2)/FIO(2) (80% sensitive, 94% specific) 24 hours after transition to airway pressure release ventilation were the optimal cutoffs to identify nonsurvivors. The comparable values 24 hours after transition to high-frequency oscillatory ventilation were less than 5% reduction in oxygenation index (100% sensitive, 83% specific) or less than 80% increase in PaO(2)/FIO(2) (91% sensitive, 89% specific) to identify nonsurvivors. In this single-center retrospective study of pediatric patients with an immunocompromised condition and acute respiratory distress syndrome failing conventional ventilation transitioned to either airway pressure release ventilation or high-frequency oscillatory ventilation, improved oxygenation at 24 hours expressed as PaO(2)/FIO(224)/PaO(2)/FIO(2pre) or oxygenation index(24)/oxygenation indexpre reliably discriminates nonsurvivors from survivors. These findings should be prospectively verified.
Carvalho, Nadja C; Güldner, Andreas; Beda, Alessandro; Rentzsch, Ines; Uhlig, Christopher; Dittrich, Susanne; Spieth, Peter M; Wiedemann, Bärbel; Kasper, Michael; Koch, Thea; Richter, Torsten; Rocco, Patricia R; Pelosi, Paolo; de Abreu, Marcelo Gama
2014-11-01
To assess the effects of different levels of spontaneous breathing during biphasic positive airway pressure/airway pressure release ventilation on lung function and injury in an experimental model of moderate acute respiratory distress syndrome. Multiple-arm randomized experimental study. University hospital research facility. Thirty-six juvenile pigs. Pigs were anesthetized, intubated, and mechanically ventilated. Moderate acute respiratory distress syndrome was induced by repetitive saline lung lavage. Biphasic positive airway pressure/airway pressure release ventilation was conducted using the airway pressure release ventilation mode with an inspiratory/expiratory ratio of 1:1. Animals were randomly assigned to one of four levels of spontaneous breath in total minute ventilation (n = 9 per group, 6 hr each): 1) biphasic positive airway pressure/airway pressure release ventilation, 0%; 2) biphasic positive airway pressure/airway pressure release ventilation, > 0-30%; 3) biphasic positive airway pressure/airway pressure release ventilation, > 30-60%, and 4) biphasic positive airway pressure/airway pressure release ventilation, > 60%. The inspiratory effort measured by the esophageal pressure time product increased proportionally to the amount of spontaneous breath and was accompanied by improvements in oxygenation and respiratory system elastance. Compared with biphasic positive airway pressure/airway pressure release ventilation of 0%, biphasic positive airway pressure/airway pressure release ventilation more than 60% resulted in lowest venous admixture, as well as peak and mean airway and transpulmonary pressures, redistributed ventilation to dependent lung regions, reduced the cumulative diffuse alveolar damage score across lungs (median [interquartile range], 11 [3-40] vs 18 [2-69]; p < 0.05), and decreased the level of tumor necrosis factor-α in ventral lung tissue (median [interquartile range], 17.7 pg/mg [8.4-19.8] vs 34.5 pg/mg [29.9-42.7]; p < 0.05). Biphasic positive airway pressure/airway pressure release ventilation more than 0-30% and more than 30-60% showed a less consistent pattern of improvement in lung function, inflammation, and damage compared with biphasic positive airway pressure/airway pressure release ventilation more than 60%. In this model of moderate acute respiratory distress syndrome in pigs, biphasic positive airway pressure/airway pressure release ventilation with levels of spontaneous breath higher than usually seen in clinical practice, that is, more than 30% of total minute ventilation, reduced lung injury with improved respiratory function, as compared with protective controlled mechanical ventilation.
Pantelic, J; Tham, K W; Licina, D
2015-12-01
The inhalation intake fraction was used as an indicator to compare effects of desktop personalized ventilation and mixing ventilation on personal exposure to directly released simulated cough droplets. A cough machine was used to simulate cough release from the front, back, and side of a thermal manikin at distances between 1 and 4 m. Cough droplet concentration was measured with an aerosol spectrometer in the breathing zone of a thermal manikin. Particle image velocimetry was used to characterize the velocity field in the breathing zone. Desktop personalized ventilation substantially reduced the inhalation intake fraction compared to mixing ventilation for all investigated distances and orientations of the cough release. The results point out that the orientation between the cough source and the breathing zone of the exposed occupant is an important factor that substantially influences exposure. Exposure to cough droplets was reduced with increasing distance between cough source and exposed occupant. The results from this study show that an advanced air distribution system such as personalized ventilation reduces exposure to cough-released droplets better than commonly applied overhead mixing ventilation. This work can inform HVAC engineers about different aspects of air distribution systems’ performance and can serve as an aid in making critical design decisions. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Thompson, Emma L; Ray, Clare J; Holmes, Andrew P; Pye, Richard L; Wyatt, Christopher N; Coney, Andrew M; Kumar, Prem
2016-08-01
Hypoglycaemia is counteracted by release of hormones and an increase in ventilation and CO2 sensitivity to restore blood glucose levels and prevent a fall in blood pH. The full counter-regulatory response and an appropriate increase in ventilation is dependent on carotid body stimulation. We show that the hypoglycaemia-induced increase in ventilation and CO2 sensitivity is abolished by preventing adrenaline release or blocking its receptors. Physiological levels of adrenaline mimicked the effect of hypoglycaemia on ventilation and CO2 sensitivity. These results suggest that adrenaline, rather than low glucose, is an adequate stimulus for the carotid body-mediated changes in ventilation and CO2 sensitivity during hypoglycaemia to prevent a serious acidosis in poorly controlled diabetes. Hypoglycaemia in vivo induces a counter-regulatory response that involves the release of hormones to restore blood glucose levels. Concomitantly, hypoglycaemia evokes a carotid body-mediated hyperpnoea that maintains arterial CO2 levels and prevents respiratory acidosis in the face of increased metabolism. It is unclear whether the carotid body is directly stimulated by low glucose or by a counter-regulatory hormone such as adrenaline. Minute ventilation was recorded during infusion of insulin-induced hypoglycaemia (8-17 mIU kg(-1) min(-1) ) in Alfaxan-anaesthetised male Wistar rats. Hypoglycaemia significantly augmented minute ventilation (123 ± 4 to 143 ± 7 ml min(-1) ) and CO2 sensitivity (3.3 ± 0.3 to 4.4 ± 0.4 ml min(-1) mmHg(-1) ). These effects were abolished by either β-adrenoreceptor blockade with propranolol or adrenalectomy. In this hypermetabolic, hypoglycaemic state, propranolol stimulated a rise in P aC O2, suggestive of a ventilation-metabolism mismatch. Infusion of adrenaline (1 μg kg(-1) min(-1) ) increased minute ventilation (145 ± 4 to 173 ± 5 ml min(-1) ) without altering P aC O2 or pH and enhanced ventilatory CO2 sensitivity (3.4 ± 0.4 to 5.1 ± 0.8 ml min(-1) mmHg(-1) ). These effects were attenuated by either resection of the carotid sinus nerve or propranolol. Physiological concentrations of adrenaline increased the CO2 sensitivity of freshly dissociated carotid body type I cells in vitro. These findings suggest that adrenaline release can account for the ventilatory hyperpnoea observed during hypoglycaemia by an augmented carotid body and whole body ventilatory CO2 sensitivity. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Thompson, Emma L.; Ray, Clare J.; Holmes, Andrew P.; Pye, Richard L.; Wyatt, Christopher N.; Kumar, Prem
2016-01-01
Key points Hypoglycaemia is counteracted by release of hormones and an increase in ventilation and CO2 sensitivity to restore blood glucose levels and prevent a fall in blood pH.The full counter‐regulatory response and an appropriate increase in ventilation is dependent on carotid body stimulation.We show that the hypoglycaemia‐induced increase in ventilation and CO2 sensitivity is abolished by preventing adrenaline release or blocking its receptors.Physiological levels of adrenaline mimicked the effect of hypoglycaemia on ventilation and CO2 sensitivity.These results suggest that adrenaline, rather than low glucose, is an adequate stimulus for the carotid body‐mediated changes in ventilation and CO2 sensitivity during hypoglycaemia to prevent a serious acidosis in poorly controlled diabetes. Abstract Hypoglycaemia in vivo induces a counter‐regulatory response that involves the release of hormones to restore blood glucose levels. Concomitantly, hypoglycaemia evokes a carotid body‐mediated hyperpnoea that maintains arterial CO2 levels and prevents respiratory acidosis in the face of increased metabolism. It is unclear whether the carotid body is directly stimulated by low glucose or by a counter‐regulatory hormone such as adrenaline. Minute ventilation was recorded during infusion of insulin‐induced hypoglycaemia (8–17 mIU kg−1 min−1) in Alfaxan‐anaesthetised male Wistar rats. Hypoglycaemia significantly augmented minute ventilation (123 ± 4 to 143 ± 7 ml min−1) and CO2 sensitivity (3.3 ± 0.3 to 4.4 ± 0.4 ml min−1 mmHg−1). These effects were abolished by either β‐adrenoreceptor blockade with propranolol or adrenalectomy. In this hypermetabolic, hypoglycaemic state, propranolol stimulated a rise in P aC O2, suggestive of a ventilation–metabolism mismatch. Infusion of adrenaline (1 μg kg−1 min−1) increased minute ventilation (145 ± 4 to 173 ± 5 ml min−1) without altering P aC O2 or pH and enhanced ventilatory CO2 sensitivity (3.4 ± 0.4 to 5.1 ± 0.8 ml min−1 mmHg−1). These effects were attenuated by either resection of the carotid sinus nerve or propranolol. Physiological concentrations of adrenaline increased the CO2 sensitivity of freshly dissociated carotid body type I cells in vitro. These findings suggest that adrenaline release can account for the ventilatory hyperpnoea observed during hypoglycaemia by an augmented carotid body and whole body ventilatory CO2 sensitivity. PMID:27027261
Airway pressure release ventilation: what do we know?
Daoud, Ehab G; Farag, Hany L; Chatburn, Robert L
2012-02-01
Airway pressure release ventilation (APRV) is inverse ratio, pressure controlled, intermittent mandatory ventilation with unrestricted spontaneous breathing. It is based on the principle of open lung approach. It has many purported advantages over conventional ventilation, including alveolar recruitment, improved oxygenation, preservation of spontaneous breathing, improved hemodynamics, and potential lung-protective effects. It has many claimed disadvantages related to risks of volutrauma, increased work of breathing, and increased energy expenditure related to spontaneous breathing. APRV is used mainly as a rescue therapy for the difficult to oxygenate patients with acute respiratory distress syndrome (ARDS). There is confusion regarding this mode of ventilation, due to the different terminology used in the literature. APRV settings include the "P high," "T high," "P low," and "T low". Physicians and respiratory therapists should be aware of the different ways and the rationales for setting these variables on the ventilators. Also, they should be familiar with the differences between APRV, biphasic positive airway pressure (BIPAP), and other conventional and nonconventional modes of ventilation. There is no solid proof that APRV improves mortality; however, there are ongoing studies that may reveal further information about this mode of ventilation. This paper reviews the different methods proposed for APRV settings, and summarizes the different studies comparing APRV and BIPAP, and the potential benefits and pitfalls for APRV.
Ventilation-induced release of phosphatidylcholine from neonatal-rat lungs in vitro.
Nijjar, M S
1984-01-01
Factors regulating the release of phosphatidylcholine (PC) from neonatal-rat lungs were investigated. The results show that the release of prelabelled PC from the newborn-rat lung was augmented by air ventilation at the onset of breathing. This response was mimicked in lungs of pups delivered 1 day before term and allowed to breathe for different time intervals. Anoxia further augmented the ventilation-enhanced PC release from the newborn-rat lungs. The ventilation-induced release of PC was not abolished by the prior treatment of pups in utero or mothers in vivo with phenoxybenzamine, propranolol or atropine, suggesting the lack of receptor stimulation in the ventilation-enhanced PC release at birth. The results also show that ventilation stimulated [methyl-14C]choline incorporation into lung PC, presumably to replenish the depleted surfactant stores. The ratio of adenylate cyclase/cyclic AMP phosphodiesterase activities, which reflects cyclic AMP levels in the developing rat lungs, did not change during the 120 min of air ventilation when the release of PC was much enhanced, implying that cyclic AMP may not be involved. This confirms our conclusion that stimulation of beta-adrenergic receptor was not involved in the air-ventilation-enhanced release of PC. Since the cell number or size did not change during 120 min of ventilation when the alveolar-cell surface was maximally distended, it is suggested that distension of alveolar wall by air ventilation at the onset of breathing may bring the lamellar bodies containing surfactant close to the luminal surface of alveolar type II cells, thereby enhancing their fusion and extrusion by exocytosis. PMID:6477485
Kollisch-Singule, Michaela; Emr, Bryanna; Smith, Bradford; Roy, Shreyas; Jain, Sumeet; Satalin, Joshua; Snyder, Kathy; Andrews, Penny; Habashi, Nader; Bates, Jason; Marx, William; Nieman, Gary; Gatto, Louis A
2014-11-01
Improper mechanical ventilation settings can exacerbate acute lung injury by causing a secondary ventilator-induced lung injury. It is therefore important to establish the mechanism by which the ventilator induces lung injury to develop protective ventilation strategies. It has been postulated that the mechanism of ventilator-induced lung injury is the result of heterogeneous, elevated strain on the pulmonary parenchyma. Acute lung injury has been associated with increases in whole-lung macrostrain, which is correlated with increased pathology. However, the effect of mechanical ventilation on alveolar microstrain remains unknown. To examine whether the mechanical breath profile of airway pressure release ventilation (APRV), consisting of a prolonged pressure-time profile and brief expiratory release phase, reduces microstrain. In a randomized, nonblinded laboratory animal study, rats were randomized into a controlled mandatory ventilation group (n = 3) and an APRV group (n = 3). Lung injury was induced by polysorbate lavage. A thoracotomy was performed and an in vivo microscope was placed on the lungs to measure alveolar mechanics. In the controlled mandatory ventilation group, multiple levels of positive end-expiratory pressure (PEEP; 5, 10, 16, 20, and 24 cm H2O) were tested. In the APRV group, decreasing durations of expiratory release (time at low pressure [T(low)]) were tested. The T(low) was set to achieve ratios of termination of peak expiratory flow rate (T-PEFR) to peak expiratory flow rate (PEFR) of 10%, 25%, 50%, and 75% (the smaller this ratio is [ie, 10%], the more time the lung is exposed to low pressure during the release phase, which decreases end-expiratory lung volume and potentiates derecruitment). Alveolar perimeters were measured at peak inspiration and end expiration using digital image analysis, and strain was calculated by normalizing the change in alveolar perimeter length to the original length. Macrostrain was measured by volume displacement. Higher PEEP (16-24 cm H2O) and a brief T(low) (APRV T-PEFR to PEFR ratio of 75%) reduced microstrain. Microstrain was minimized with an APRV T-PEFR to PEFR ratio of 75% (mean [SEM], 0.05 [0.03]) and PEEP of 16 cm H2O (mean [SEM], 0.09 [0.08]), but an APRV T-PEFR to PEFR ratio of 75% also promoted alveolar recruitment compared with PEEP of 16 cm H2O (mean [SEM] total inspiratory area, 52.0% [2.9%] vs 29.4% [4.3%], respectively; P < .05). Whole-lung strain was correlated with alveolar microstrain in tested settings (P < .05) except PEEP of 16 cm H2O (P > .05). Increased positive-end expiratory pressure and reduced time at low pressure (decreased T(low)) reduced alveolar microstrain. Reduced microstrain and improved alveolar recruitment using an APRV T-PEFR to PEFR ratio of 75% may be the mechanism of lung protection seen in previous clinical and animal studies.
Immediate ventilatory response to sudden changes in venous return in humans.
Cummin, A R; Iyawe, V I; Jacobi, M S; Mehta, N; Patil, C P; Saunders, K B
1986-01-01
We changed venous return transiently by postural manoeuvres, and by lower body positive pressure, to see what happened simultaneously to ventilation. Cardiac output was measured by a Doppler technique. In seven subjects, after inflation of a pressure suit to 80 and 40 mmHg at 30 deg head-up tilt, both cardiac output and ventilation increased. Ventilation increased rapidly to a peak in the first 5 s, cardiac output more slowly to a steady state in about 20 s, at 80 mmHg inflation. After inflation to 80 mmHg in six subjects at 12.5 deg head-up and 30 deg head-down tilt, cardiac output did not change in the first, and fell in the second case. There were no significant changes in ventilation. On release of pressure there were transient increases in both cardiac output and ventilation, with ventilation lagging behind cardiac output, in contrast to (2) above. In five subjects, elevation of the legs at 30 deg head-up tilt caused a rise in both cardiac output and ventilation, but in two subjects neither occurred. In all seven subjects there was a transient increase in cardiac output and ventilation when the legs were lowered. Ventilation and cardiac output changes were approximately in phase. We were therefore unable to dissociate entirely increasing cardiac output from increasing ventilation. The relation between them was certainly not a simple proportional one. PMID:3612571
Thammanomai, Apiradee; Hamakawa, Hiroshi; Bartolák-Suki, Erzsébet; Suki, Béla
2013-01-01
The accepted protocol to ventilate patients with acute lung injury is to use low tidal volume (VT) in combination with recruitment maneuvers or positive end-expiratory pressure (PEEP). However, an important aspect of mechanical ventilation has not been considered: the combined effects of PEEP and ventilation modes on the integrity of the epithelium. Additionally, it is implicitly assumed that the best PEEP-VT combination also protects the epithelium. We aimed to investigate the effects of ventilation mode and PEEP on respiratory mechanics, peak airway pressures and gas exchange as well as on lung surfactant and epithelial cell integrity in mice with acute lung injury. HCl-injured mice were ventilated at PEEPs of 3 and 6 cmH2O with conventional ventilation (CV), CV with intermittent large breaths (CVLB) to promote recruitment, and a new mode, variable ventilation, optimized for mice (VVN). Mechanics and gas exchange were measured during ventilation and surfactant protein (SP)-B, proSP-B and E-cadherin levels were determined from lavage and lung homogenate. PEEP had a significant effect on mechanics, gas exchange and the epithelium. The higher PEEP reduced lung collapse and improved mechanics and gas exchange but it also down regulated surfactant release and production and increased epithelial cell injury. While CVLB was better than CV, VVN outperformed CVLB in recruitment, reduced epithelial injury and, via a dynamic mechanotransduction, it also triggered increased release and production of surfactant. For long-term outcome, selection of optimal PEEP and ventilation mode may be based on balancing lung physiology with epithelial injury. PMID:23326543
2011-01-01
pressure (PEEP) of 5 cm H2O was initiated. Ventilator mode was changed to APRV with incremental elevations of CPAP -high from 10 to 35 cm H2O. After a...Results. Increasing CPAP caused increased PCWP and LAPmeasurements above their baseline values. Mean PCWP and LAP were linearly related (LAP = 0.66...PCWP + 4.5 cmH2O, R2 = 0.674, and P < .001) over a wide range of high and low CPAP values during APRV. With return to conventional ventilation, PCWP
Mechanical stretch induces MMP-2 release and activation in lung endothelium: role of EMMPRIN.
Haseneen, Nadia A; Vaday, Gayle G; Zucker, Stanley; Foda, Hussein D
2003-03-01
High-volume mechanical ventilation leads to ventilator-induced lung injury. This type of lung injury is accompanied by an increased release and activation of matrix metalloproteinases (MMPs). To investigate the mechanism leading to the increased MMP release, we systematically studied the effect of mechanical stretch on human microvascular endothelial cells isolated from the lung. We exposed cells grown on collagen 1 BioFlex plates to sinusoidal cyclic stretch at 0.5 Hz using the Flexercell system with 17-18% elongation of cells. After 4 days of cell stretching, conditioned media and cell lysate were collected and analyzed by gelatin, casein, and reverse zymograms as well as Western blotting. RT-PCR of mRNA extracted from stretched cells was performed. Our results show that 1) cyclic stretch led to increased release and activation of MMP-2 and MMP-1; 2) the activation of MMP-2 was accompanied by an increase in membrane type-1 MMP (MT1-MMP) and inhibited by a hydroxamic acid-derived inhibitor of MMPs (Prinomastat, AG3340); and 3) the MMP-2 release and activation were preceded by an increase in production of extracellular MMP inducer (EMMPRIN). These results suggest that cyclic mechanical stretch leads to MMP-2 activation through an MT1-MMP mechanism. EMMPRIN may play an important role in the release and activation of MMPs during lung injury.
NASA Astrophysics Data System (ADS)
Yozgatligil, Ahmet; Shafee, Sina
2016-11-01
Fire accidents in recent decades have drawn attention to safety issues associated with the design, construction and maintenance of tunnels. A reduced scale tunnel model constructed based on Froude scaling technique is used in the current work. Mixtures of n-heptane and ethanol are burned with ethanol volumetric fraction up to 30 percent and the longitudinal ventilation velocity varying from 0.5 to 2.5 m/s. The burning rates of the pool fires are measured using a precision load cell. The heat release rates of the fires are calculated according to oxygen calorimetry method and the temperature distributions inside the tunnel are also measured. Results of the experiments show that the ventilation velocity variation has a significant effect on the pool fire burning rate, smoke temperature and the critical ventilation velocity. With increased oxygen depletion in case of increased ethanol content of blended pool fires, the quasi-steady heat release rate values tend to increase as well as the ceiling temperatures while the combustion duration decreases.
NASA Astrophysics Data System (ADS)
Schrum, C.; Daewel, U.
2017-12-01
From 1950 onwards, the Baltic Sea ecosystem suffered increasingly from eutrophication. The most obvious reason for the eutrophication is the huge amount of nutrients (nitrogen and phosphorus) reaching the Baltic Sea from human activities. However, although nutrient loads have been decreasing since 1980, the hypoxic areas have not decreased accordingly. Thus, geo-engineering projects were discussed and evaluated to artificially ventilate the Baltic Sea deep water and suppress nutrient release from the sediments. Here, we aim at understanding the consequences of proposed geo-engineering projects in the Baltic Sea using long-term scenario modelling. For that purpose, we utilize a 3d coupled ecosystem model ECOSMO E2E, a novel NPZD-Fish model approach that resolves hydrodynamics, biogeochemical cycling and lower and higher trophic level dynamics. We performed scenario modelling that consider proposed geo-engineering projects such as artificial ventilation of Baltic Sea deep waters and phosphorus binding in sediments with polyaluminium chlorides. The model indicates that deep-water ventilation indeed suppresses phosphorus release in the first 1-4 years of treatment. Thereafter macrobenthos repopulates the formerly anoxic bottom regions and nutrients are increasingly recycled in the food web. Consequently, overall system productivity and fish biomass increases and toxic algae blooms decrease. However, deep-water ventilation has no long-lasting effect on the ecosystem: soon after completion of the ventilation process, the system turns back into its original state. Artificial phosphorus binding in sediments in contrast decreases overall ecosystem productivity through permanent removal of phosphorus. As expected it decreases bacterial production and toxic algae blooms, but it also decreases fish production substantially. Contrastingly to deep water ventilation, artificial phosphorus binding show a long-lasting effect over decades after termination of the treatment.
Robinson, Kendra A.; Hinch, Scott G.; Gale, Marika K.; Clark, Timothy D.; Wilson, Samantha M.; Donaldson, Michael R.; Farrell, Anthony P.; Cooke, Steven J.; Patterson, David A.
2013-01-01
The live release of wild adult Pacific salmon (Oncorhynchus spp.) following capture is a management tactic often used in commercial, aboriginal, and recreational fisheries. Fisheries capture and handling can be both exhausting and stressful to fish, which can limit their ability to swim and survive after release. As a result, researchers have assessed methods intended to improve post-release survival by assisting the flow of water over the gills of fish prior to release. Such approaches use recovery bags or boxes that direct water over the gills of restrained fish. This study evaluated a method of assisting ventilation that mimics one often employed by recreational anglers (i.e. holding fish facing into a current). Under laboratory conditions, wild Fraser River sockeye salmon (Oncorhynchus nerka) either received manual ventilation assistance for 1 min using a jet of water focused at the mouth or were left to recover unassisted following a capture-and-release simulation. A control group consisted of fish that were not exposed to the simulation or ventilation assistance. The experiment was conducted at 16 and 21°C, average and peak summer water temperatures for the Fraser River, and fish survival was monitored for 33 days. At 21°C, all fish perished within 3 days after treatment in all experimental groups, highlighting the consequences of handling adult sockeye salmon during elevated migration temperatures. Survival was higher at 16°C, with fish surviving on average 15–20 days after treatment. At 16°C, the capture-and-release simulation and ventilation assistance did not affect the survival of males; however, female survival was poor after the ventilation assistance compared with the unassisted and control groups. Our results suggest that the method of ventilation assistance tested in this study may not enhance the post-release survival of adult Fraser River sockeye salmon migrating in fresh water. PMID:27293599
Respiration of resting honeybees
Kovac, Helmut; Stabentheiner, Anton; Hetz, Stefan K.; Petz, Markus; Crailsheim, Karl
2011-01-01
The relation between the respiratory activity of resting honeybees and ambient temperature (Ta) was investigated in the range of 5–40 °C. Bees were kept in a temperature controlled flow through respirometer chamber where their locomotor and endothermic activity, as well as abdominal ventilatory movements was recorded by infrared thermography. Surprisingly, true resting bees were often weakly endothermic (thorax surface up to 2.8 °C warmer than abdomen) at a Ta of 14–30 °C. Above 33 °C many bees cooled their body via evaporation from their mouthparts. A novel mathematical model allows description of the relationship of resting (standard) metabolic rate and temperature across the entire functional temperature range of bees. In chill coma (<11 °C) bees were ectothermic and CO2 release was mostly continuous. CO2 release rate (nl s−1) decreased from 9.3 at 9.7 °C to 5.4 at 5 °C. At a Ta of >11 °C CO2 was released discontinuously. In the bees’ active temperature range mean CO2 production rate (nl s−1) increased sigmoidally (10.6 at 14.1 °C, 24.1 at 26.5 °C, and 55.2 at 38.1 °C), coming to a halt towards the upper lethal temperature. This was primarily accomplished by an exponential increase in gas exchange frequency (0.54 and 3.1 breaths min−1 at 14.1 and 38.1 °C) but not in released CO2 volume per respiratory cycle (1487 and 1083 nl cycle−1 at 14.1 and 38.1 °C). Emission of CO2 bursts was mostly (98%) accompanied by abdominal ventilation movements even in small CO2 bursts. Larger bursts coincided with a longer duration of active ventilation. An increased amount of CO2 expelled per unit time of ventilation indicates a higher efficiency of ventilation at high ambient temperatures. PMID:17707395
21 CFR 868.5935 - External negative pressure ventilator.
Code of Federal Regulations, 2010 CFR
2010-04-01
... ventilator. (a) Identification. An external negative pressure ventilator (e.g., iron lung, cuirass) is a device chamber that is intended to support a patient's ventilation by alternately applying and releasing external negative pressure over the diaphragm and upper trunk of the patient. (b) Classification. Class II...
Geochemistry of coalbed gas - a review
Clayton, J.L.
1998-01-01
Coals are both sources and reservoirs of large amounts of gas that has received increasing attention in recent years as a largely untapped potential energy resource. Coal mining operations, such as ventilation of coalbed gas from underground mines, release coalbed CH4 into the atmosphere, an important greehouse gas whose concentration in the atmosphere is increasing. Because of these energy and environmental issues, increased research attention has been focused on the geochemistry of coalbed gas in recent years. This paper presents a summary review of the main aspects of coalbed gas geochemistry and current research advances.Coals are both sources and reservoirs of large amounts of gas that has received increasing attention in recent years as a largely untapped potential energy resource. Coal mining operations, such as ventilation of coalbed gas from underground mines, release coalbed CH4 into the atmosphere, an important greenhouse gas whose concentration in the atmosphere is increasing. Because of these energy and environmental issues, increased research attention has been focused on the geochemistry of coalbed gas in recent years. This paper presents a summary review of the main aspects of coalbed gas geochemistry and current research advances.
Measuring Infiltration Rates in Homes as a Basis for Understanding Indoor Air Quality
NASA Astrophysics Data System (ADS)
Jerz, G. G.; Lamb, B. K.; Pressley, S. N.; O'Keeffe, P.; Fuchs, M.; Kirk, M.
2015-12-01
Infiltration rates, or the rate of air exchange, of houses are important to understand because ventilation can be a dominate factor in determining indoor air quality. There are chemicals that are emitted from surfaces or point sources inside the home which are harmful to humans; these chemicals come from various objects including furniture, cleaning supplies, building materials, gas stoves, and the surrounding environment. The use of proper ventilation to cycle cleaner outdoor air into the house can be crucial for maintaining healthy living conditions in the home. At the same time, there can also be outdoor pollutants which infiltrate the house and contribute to poor indoor air quality. In either case, it is important to determine infiltration rates as a function of outdoor weather conditions, the house structure properties and indoor heating and cooling systems. In this work, the objective is to measure ventilation rates using periodic releases of a tracer gas and measuring how quickly the tracer concentration decays. CO2 will be used as the tracer gas because it is inert and harmless at low levels. An Arduino timer is connected to a release valve which controls the release of 9.00 SLPM of CO2 into the uptake vent within the test home. CO2 will be released until there is at least a 200 to 300 ppm increase above ambient indoor levels. Computers with CO2 sensors and temperature/pressure sensors attached will be used to record data from different locations within the home which will continuously record data up to a week. The results from these periodic ventilation measurements will be analyzed with respect to outdoor wind and temperature conditions and house structure properties. The data will be used to evaluate an established indoor air quality model.
Mathematics of Ventilator-induced Lung Injury.
Rahaman, Ubaidur
2017-08-01
Ventilator-induced lung injury (VILI) results from mechanical disruption of blood-gas barrier and consequent edema and releases of inflammatory mediators. A transpulmonary pressure (P L ) of 17 cmH 2 O increases baby lung volume to its anatomical limit, predisposing to VILI. Viscoelastic property of lung makes pulmonary mechanics time dependent so that stress (P L ) increases with respiratory rate. Alveolar inhomogeneity in acute respiratory distress syndrome acts as a stress riser, multiplying global stress at regional level experienced by baby lung. Limitation of stress (P L ) rather than strain (tidal volume [V T ]) is the safe strategy of mechanical ventilation to prevent VILI. Driving pressure is the noninvasive surrogate of lung strain, but its relations to P L is dependent on the chest wall compliance. Determinants of lung stress (V T , driving pressure, positive end-expiratory pressure, and inspiratory flow) can be quantified in terms of mechanical power, and a safe threshold can be determined, which can be used in decision-making between safe mechanical ventilation and extracorporeal lung support.
Brickner, Philip W; Vincent, Richard L; First, Melvin; Nardell, Edward; Murray, Megan; Kaufman, Will
2003-01-01
Bioterrorism is an area of increasing public health concern. The intent of this article is to review the air cleansing technologies available to protect building occupants from the intentional release of bioterror agents into congregate spaces (such as offices, schools, auditoriums, and transportation centers), as well as through outside air intakes and by way of recirculation air ducts. Current available technologies include increased ventilation, filtration, and ultraviolet germicidal irradiation (UVGI) UVGI is a common tool in laboratories and health care facilities, but is not familiar to the public, or to some heating, ventilation, and air conditioning engineers. Interest in UVGI is increasing as concern about a possible malicious release of bioterror agents mounts. Recent applications of UVGI have focused on control of tuberculosis transmission, but a wide range of airborne respiratory pathogens are susceptible to deactivation by UVGI. In this article, the authors provide an overview of air disinfection technologies, and an in-depth analysis of UVGI-its history, applications, and effectiveness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poppiti, James; Nelson, Roger; MacMillan, Walter J.
The Waste Isolation Pilot Plant (WIPP) is a 655-meter deep mine near Carlsbad, New Mexico, used to dispose the nation’s defense transuranic waste. Limited airborne radioactivity was released from a container of radioactive waste in WIPP on 14 February, 2014. As designed, a mine ventilation filtration system prevented the large scale release of contamination from the underground. However, isolation dampers leaked, which allowed the release of low levels of contaminants after the event until they were sealed. None of the exposed individuals received any recordable dose. While surface contamination was limited, contamination in the ventilation system and portions of themore » underground was substantial. High efficiency particulate air (HEPA) filters in the operating ventilation system ensure continued containment during recovery and resumption of disposal operations. However, ventilation flow is restricted since the incident, with all exhaust air directed through the filters. Decontamination and natural fixation by the hygroscopic nature of the salt host rock has reduced the likelihood of further contamination spread. Contamination control and ventilation system operability are crucial for resumption of operations. This article provides an operational assessment and evaluation of these two key areas.« less
High fat diet blunts the effects of leptin on ventilation and on carotid body activity.
Ribeiro, Maria J; Sacramento, Joana F; Gallego-Martin, Teresa; Olea, Elena; Melo, Bernardete F; Guarino, Maria P; Yubero, Sara; Obeso, Ana; Conde, Silvia V
2017-12-22
Leptin plays a role in the control of breathing, acting mainly on central nervous system; however, leptin receptors have been recently shown to be expressed in the carotid body (CB), and this finding suggests a physiological role for leptin in the regulation of CB function. Leptin increases minute ventilation in both basal and hypoxic conditions in rats. It increases the frequency of carotid sinus nerve discharge in basal conditions, as well as the release of adenosine from the CB. However, in a metabolic syndrome animal model, the effects of leptin in ventilatory control, carotid sinus nerve activity and adenosine release by the CB are blunted. Although leptin may be involved in triggering CB overactivation in initial stages of obesity and dysmetabolism, resistance to leptin signalling and blunting of responses develops in metabolic syndrome animal models. Leptin plays a role in the control of breathing, acting mainly on central nervous system structures. Leptin receptors are expressed in the carotid body (CB) and this finding has been associated with a putative physiological role of leptin in the regulation of CB function. Since, the CBs are implicated in energy metabolism, here we tested the effects of different concentrations of leptin administration on ventilatory parameters and on carotid sinus nerve (CSN) activity in control and high-fat (HF) diet fed rats, in order to clarify the role of leptin in ventilation control in metabolic disease states. We also investigated the expression of leptin receptors and the neurotransmitters involved in leptin signalling in the CBs. We found that in non-disease conditions, leptin increases minute ventilation in both basal and hypoxic conditions. However, in the HF model, the effect of leptin in ventilatory control is blunted. We also observed that HF rats display an increased frequency of CSN discharge in basal conditions that is not altered by leptin, in contrast to what is observed in control animals. Leptin did not modify intracellular Ca 2+ in CB chemoreceptor cells, but it produced an increase in the release of adenosine from the whole CB. We conclude that CBs represent an important target for leptin signalling, not only to coordinate peripheral ventilatory chemoreflexive drive, but probably also to modulate metabolic variables. We also concluded that leptin signalling is mediated by adenosine release and that HF diets blunt leptin responses in the CB, compromising ventilatory adaptation. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
Airway pressure release ventilation during ex vivo lung perfusion attenuates injury.
Mehaffey, J Hunter; Charles, Eric J; Sharma, Ashish K; Money, Dustin T; Zhao, Yunge; Stoler, Mark H; Lau, Christine L; Tribble, Curtis G; Laubach, Victor E; Roeser, Mark E; Kron, Irving L
2017-01-01
Critical organ shortages have resulted in ex vivo lung perfusion gaining clinical acceptance for lung evaluation and rehabilitation to expand the use of donation after circulatory death organs for lung transplantation. We hypothesized that an innovative use of airway pressure release ventilation during ex vivo lung perfusion improves lung function after transplantation. Two groups (n = 4 animals/group) of porcine donation after circulatory death donor lungs were procured after hypoxic cardiac arrest and a 2-hour period of warm ischemia, followed by a 4-hour period of ex vivo lung perfusion rehabilitation with standard conventional volume-based ventilation or pressure-based airway pressure release ventilation. Left lungs were subsequently transplanted into recipient animals and reperfused for 4 hours. Blood gases for partial pressure of oxygen/inspired oxygen fraction ratios, airway pressures for calculation of compliance, and percent wet weight gain during ex vivo lung perfusion and reperfusion were measured. Airway pressure release ventilation during ex vivo lung perfusion significantly improved left lung oxygenation at 2 hours (561.5 ± 83.9 mm Hg vs 341.1 ± 136.1 mm Hg) and 4 hours (569.1 ± 18.3 mm Hg vs 463.5 ± 78.4 mm Hg). Likewise, compliance was significantly higher at 2 hours (26.0 ± 5.2 mL/cm H 2 O vs 15.0 ± 4.6 mL/cm H 2 O) and 4 hours (30.6 ± 1.3 mL/cm H 2 O vs 17.7 ± 5.9 mL/cm H 2 O) after transplantation. Finally, airway pressure release ventilation significantly reduced lung edema development on ex vivo lung perfusion on the basis of percentage of weight gain (36.9% ± 14.6% vs 73.9% ± 4.9%). There was no difference in additional edema accumulation 4 hours after reperfusion. Pressure-directed airway pressure release ventilation strategy during ex vivo lung perfusion improves the rehabilitation of severely injured donation after circulatory death lungs. After transplant, these lungs demonstrate superior lung-specific oxygenation and dynamic compliance compared with lungs ventilated with standard conventional ventilation. This strategy, if implemented into clinical ex vivo lung perfusion protocols, could advance the field of donation after circulatory death lung rehabilitation to expand the lung donor pool. Copyright © 2016 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.
High Levels of S100A8/A9 Proteins Aggravate Ventilator-Induced Lung Injury via TLR4 Signaling
Aslami, Hamid; Jongsma, Geartsje; van den Berg, Elske; Vlaar, Alexander P. J.; Roelofs, Joris J. T. H.; Juffermans, Nicole P.; Schultz, Marcus J.; van der Poll, Tom; Roth, Johannes; Wieland, Catharina W.
2013-01-01
Background Bacterial products add to mechanical ventilation in enhancing lung injury. The role of endogenous triggers of innate immunity herein is less well understood. S100A8/A9 proteins are released by phagocytes during inflammation. The present study investigates the role of S100A8/A9 proteins in ventilator-induced lung injury. Methods Pulmonary S100A8/A9 levels were measured in samples obtained from patients with and without lung injury. Furthermore, wild-type and S100A9 knock-out mice, naive and with lipopolysaccharide-induced injured lungs, were randomized to 5 hours of spontaneously breathing or mechanical ventilation with low or high tidal volume (VT). In addition, healthy spontaneously breathing and high VT ventilated mice received S100A8/A9, S100A8 or vehicle intratracheal. Furthermore, the role of Toll-like receptor 4 herein was investigated. Results S100A8/A9 protein levels were elevated in patients and mice with lung injury. S100A8/A9 levels synergistically increased upon the lipopolysaccharide/high VT MV double hit. Markers of alveolar barrier dysfunction, cytokine and chemokine levels, and histology scores were attenuated in S100A9 knockout mice undergoing the double-hit. Exogenous S100A8/A9 and S100A8 induced neutrophil influx in spontaneously breathing mice. In ventilated mice, these proteins clearly amplified inflammation: neutrophil influx, cytokine, and chemokine levels were increased compared to ventilated vehicle-treated mice. In contrast, administration of S100A8/A9 to ventilated Toll-like receptor 4 mutant mice did not augment inflammation. Conclusion S100A8/A9 proteins increase during lung injury and contribute to inflammation induced by HVT MV combined with lipopolysaccharide. In the absence of lipopolysaccharide, high levels of extracellular S100A8/A9 still amplify ventilator-induced lung injury via Toll-like receptor 4. PMID:23874727
NASA Astrophysics Data System (ADS)
Poussou, Stephane B.; Plesniak, Michael W.
2012-09-01
The air ventilation system in wide-body aircraft cabins provides passengers with a healthy breathing environment. In recent years, the increase in global air traffic has amplified contamination risks by airborne flu-like diseases and terrorist threats involving the onboard release of noxious materials. In particular, passengers moving through a ventilated cabin may transport infectious pathogens in their wake. This paper presents an experimental investigation of the wake produced by a bluff body driven through a steady recirculating flow. Data were obtained in a water facility using particle image velocimetry and planar laser induced fluorescence. Ventilation attenuated the downward convection of counter-rotating vortices produced near the free-end corners of the body and decoupled the downwash mechanism from forward entrainment, creating stagnant contaminant regions.
SY Tank Farm ventilation isolation option risk assessment report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powers, T.B.; Morales, S.D.
The safety of the 241-SY Tank Farm ventilation system has been under extensive scrutiny due to safety concerns associated with tank 101-SY. Hydrogen and other gases are generated and trapped in the waste below the liquid surface. Periodically, these gases are released into the dome space and vented through the exhaust system. This attention to the ventilation system has resulted in the development of several alternative ventilation system designs. The ventilation system provides the primary means of mitigation of accidents associated with flammable gases. This report provides an assessment of various alternatives ventilation system designs.
NEW IMPROVEMENTS TO MFIRE TO ENHANCE FIRE MODELING CAPABILITIES.
Zhou, L; Smith, A C; Yuan, L
2016-06-01
NIOSH's mine fire simulation program, MFIRE, is widely accepted as a standard for assessing and predicting the impact of a fire on the mine ventilation system and the spread of fire contaminants in coal and metal/nonmetal mines, which has been used by U.S. and international companies to simulate fires for planning and response purposes. MFIRE is a dynamic, transient-state, mine ventilation network simulation program that performs normal planning calculations. It can also be used to analyze ventilation networks under thermal and mechanical influence such as changes in ventilation parameters, external influences such as changes in temperature, and internal influences such as a fire. The program output can be used to analyze the effects of these influences on the ventilation system. Since its original development by Michigan Technological University for the Bureau of Mines in the 1970s, several updates have been released over the years. In 2012, NIOSH completed a major redesign and restructuring of the program with the release of MFIRE 3.0. MFIRE's outdated FORTRAN programming language was replaced with an object-oriented C++ language and packaged into a dynamic link library (DLL). However, the MFIRE 3.0 release made no attempt to change or improve the fire modeling algorithms inherited from its previous version, MFIRE 2.20. This paper reports on improvements that have been made to the fire modeling capabilities of MFIRE 3.0 since its release. These improvements include the addition of fire source models of the t-squared fire and heat release rate curve data file, the addition of a moving fire source for conveyor belt fire simulations, improvement of the fire location algorithm, and the identification and prediction of smoke rollback phenomena. All the improvements discussed in this paper will be termed as MFIRE 3.1 and released by NIOSH in the near future.
Ventilator use by emergency medical services during 911 calls in the United States.
El Sayed, Mazen; Tamim, Hani; Mailhac, Aurelie; N Clay, Mann
2018-05-01
Emergency and transport ventilators use in the prehospital field is not well described. This study examines trends of ventilator use by EMS agencies during 911 calls in the United States and identifies factors associated with this use. This retrospective study used four consecutive releases of the US National Emergency Medical Services Information System (NEMSIS) public research dataset (2011-2014) to describe scene EMS activations (911 calls) with and without reported ventilator use. Ventilator use was reported in 260,663 out of 28,221,321 EMS 911 scene activations (0.9%). Patients with ventilator use were older (mean age 67±18years), nearly half were males (49.2%), mostly in urban areas (80.2%) and cared for by advanced life support (ALS) EMS services (89.5%). CPAP mode of ventilation was most common (71.6%). "Breathing problem" was the most common dispatch complaint for EMS activations with ventilator use (63.9%). Common provider impression categories included "respiratory distress" (72.5%), "cardiac rhythm disturbance" (4.6%), "altered level of consciousness" (4.3%) and "cardiac arrest"(4.0%). Ventilator use was consistently higher at the Specialty Care Transport (SCT) and Air Medical Transport (AMT) service levels and increased over the study period for both suburban and rural EMS activations. Significant factors for ventilator use included demographic characteristics, EMS agency type, specific complaints, provider's primary impressions and condition codes. Providers at different EMS levels use ventilators during 911 scene calls in the US. Training of prehospital providers on ventilation technology is needed. The benefit and effectiveness of this intervention remain to be assessed. Copyright © 2017 Elsevier Inc. All rights reserved.
Ventilation during cardiopulmonary bypass: impact on heat shock protein release.
Beer, L; Szerafin, T; Mitterbauer, A; Kasiri, M M; Debreceni T Palotás, L; Dworschak, M; Roth, G A; Ankersmit, H J
2014-12-01
Cardiopulmonary bypass (CPB), utilized in on-pump coronary artery bypass graft procedures (CABG) induces generalized immune suppression, release of heat shock proteins (HSP), inflammatory markers and apoptosis-specific proteins. We hypothesized that continued mechanical ventilation during cardiopulmonary bypass attenuates immune response and HSP liberation. Thirty patients undergoing conventional coronary artery bypass graft (CABG) operation were randomized into a ventilated on CPB (VG; N.=15) and a non-ventilated CPB group (NVG; N.=15). Blood samples were drawn at the beginning and end of surgery, as well as on the five consecutive postoperative days (POD). Molecular markers were measured by ELISA. Data are given as mean ± (SD). Mann-Whitney-U-test was used for statistical analysis. Serum concentrations of HSP70 were significantly lower in VG compared to NVG on POD-1 (VG: 1629±608 vs. NVG: 5203±2128.6 pg/mL, P<0.001). HSP27 and HSP60 depicted a minor increase in both study groups at the end of surgery without any intergroup differences (HSP27: VG 6207.9±1252.5 vs. NVG 7424.1±2632.5; HSP60: VG 1046.2±478.8 vs. NVG 1223.5±510.1). IL-8 and CK-18 M30 evidenced the highest serum concentrations at the end of surgery (IL-8: VG 119.5±77.9 vs. NVG 148.0±184.55; CK-18 M30: VG 62.1±39.2 vs. NVG 67.5±33.9) with no differences between groups. Decreased ICAM-1 serum concentrations were detected postoperatively, however ICAM-1 concentrations on POD-1 to POD-5 showed slightly elevated concentrations in both study groups with no intergroup differences. Significantly less HSP70 was detectable in patients receiving uninterrupted mechanical lung ventilation on CPB, indicating either different inflammatory response, cellular stress or cell damage between the ventilated and non-ventilated group. These data suggest that continued mechanical ventilation has a modulatory effect on the immune response in patients after CABG surgery.
Effectiveness of in-room air filtration and dilution ventilation for tuberculosis infection control.
Miller-Leiden, S; Lobascio, C; Nazaroff, W W; Macher, J M
1996-09-01
Tuberculosis (TB) is a public health problem that may pose substantial risks to health care workers and others. TB infection occurs by inhalation of airborne bacteria emitted by persons with active disease. We experimentally evaluated the effectiveness of in-room air filtration systems, specifically portable air filters (PAFs) and ceiling-mounted air filters (CMAFs), in conjunction with dilution ventilation, for controlling TB exposure in high-risk settings. For each experiment, a test aerosol was continuously generated and released into a full-sized room. With the in-room air filter and room ventilation system operating, time-averaged airborne particle concentrations were measured at several points. The effectiveness of in-room air filtration plus ventilation was determined by comparing particle concentrations with and without device operation. The four PAFs and three CMAFs we evaluated reduced room-average particle concentrations, typically by 30% to 90%, relative to a baseline scenario with two air-changes per hour of ventilation (outside air) only. Increasing the rate of air flow recirculating through the filter and/or air flow from the ventilation did not always increase effectiveness. Concentrations were generally higher near the emission source than elsewhere in the room. Both the air flow configuration of the filter and its placement within the room were important, influencing room air flow patterns and the spatial distribution of concentrations. Air filters containing efficient, but non-high efficiency particulate air (HEPA) filter media were as effective as air filters containing HEPA filter media.
Effectiveness of In-Room Air Filtration and Dilution Ventilation for Tuberculosis Infection Control.
Miller-Leiden, S; Lohascio, C; Nazaroff, W W; Macher, J M
1996-09-01
Tuberculosis (TB) is a public health problem that may pose substantial risks to health care workers and others. TB infection occurs by inhalation of airborne bacteria emitted by persons with active disease. We experimentally evaluated the effectiveness of in-room air filtration systems, specifically portable air filters (PAFs) and ceiling-mounted air filters (CMAFs), in conjunction with dilution ventilation, for controlling TB exposure in high-risk settings. For each experiment, a test aerosol was continuously generated and released into a full-sized room. With the in-room air filter and room ventilation system operating, time-averaged airborne particle concentrations were measured at several points. The effectiveness of in-room air filtration plus ventilation was determined by comparing particle concentrations with and without device operation. The four PAFs and three CMAFs we evaluated reduced room-average particle concentrations, typically by 30% to 90%, relative to a baseline scenario with two air-changes per hour of ventilation (outside air) only. Increasing the rate of air flow recirculating through the filter and/or air flow from the ventilation did not always increase effectiveness. Concentrations were generally higher near the emission source than elsewhere in the room. Both the air flow configuration of the filter and its placement within the room were important, influencing room air flow patterns and the spatial distribution of concentrations. Air filters containing efficient, but non-high efficiency particulate air (HEPA) filter media were as effective as air filters containing HEPA filter media.
Substance P receptor blockade decreases stretch-induced lung cytokines and lung injury in rats.
Brégeon, Fabienne; Steinberg, Jean Guillaume; Andreotti, Nicolas; Sabatier, Jean-Marc; Delpierre, Stéphane; Ravailhe, Sylvie; Jammes, Yves
2010-04-15
Overdistension of lung tissue during mechanical ventilation causes cytokine release, which may be facilitated by the autonomic nervous system. We used mechanical ventilation to cause lung injury in rats, and studied how cervical section of the vagus nerve, or substance P (SP) antagonism, affected the injury. The effects of 40 or 25 cmH(2)O high airway pressure injurious ventilation (HV(40) and HV(25)) were studied and compared with low airway pressure ventilation (LV) and spontaneous breathing (controls). Lung mechanics, lung weight, gas exchange, lung myeloperoxidase activity, lung concentrations of interleukin (IL)-1 beta and IL-6, and amounts of lung SP were measured. Control rats were intact, others were bivagotomized, and in some animals we administered the neurokinin-1 (NK-1) receptor blocking agent SR140333. We first determined the durations of HV(40) and HV(25) that induced the same levels of lung injury and increased lung contents of IL-1 beta and IL-6. They were 90 min and 120 min, respectively. Both HV(40) and HV(25) increased lung SP, IL-1 beta and IL-6 levels, these effects being markedly reduced by NK-1 receptor blockade. Bivagotomy reduced to a lesser extent the HV(40)- and HV(25)-induced increases in SP but significantly reduced cytokine production. Neither vagotomy nor NK-1 receptor blockade prevented HV(40)-induced lung injury but, in the HV(25) group, they made it possible to maintain lung injury indices close to those measured in the LV group. This study suggests that both neuronal and extra-neuronal SP might be involved in ventilator-induced lung inflammation and injury. NK-1 receptor blockade could be a pharmacological tool to minimize some adverse effects of mechanical ventilation.
Variability of Tidal Volume in Patient-Triggered Mechanical Ventilation in ARDS.
Perinel-Ragey, Sophie; Baboi, Loredana; Guérin, Claude
2017-11-01
Limiting tidal volume (V T ) in patients with ARDS may not be achieved once patient-triggered breaths occur. Furthermore, ICU ventilators offer numerous patient-triggered modes that work differently across brands. We systematically investigated, using a bench model, the effect of patient-triggered modes on the size and variability of V T at different breathing frequencies (f), patient effort, and ARDS severity. We used a V500 Infinity ICU ventilator connected to an ASL 5000 lung model whose compliance was mimicking mild, moderate, and severe ARDS. Thirteen patient-triggered modes were tested, falling into 3 categories, namely volume control ventilation with mandatory minute ventilation; pressure control ventilation, including airway pressure release ventilation (APRV); and pressure support ventilation. Two levels of f and effort were tested for each ARDS severity in each mode. Median (first-third quartiles) V T was compared across modes using non-parametric tests. The probability of V T > 6 mL/kg ideal body weight was assessed by binomial regression and expressed as the odds ratio (OR) with 95% CI. V T variability was measured from the coefficient of variation. V T distribution over all f, effort, and ARDS categories significantly differed across modes ( P < .001, Kruskal-Wallis test). V T was significantly greater with pressure support (OR 420 mL, 95% CI 332-527 mL) than with any other mode except for variable pressure support level. Risk for V T to be > 6 mL/kg was significantly increased with spontaneous breaths patient-triggered by pressure support (OR 19.36, 95% CI 12.37-30.65) and significantly reduced in APRV (OR 0.44, 95% CI 0.26-0.72) and pressure support with guaranteed volume mode. The risk increased with increasing effort and decreasing f. Coefficient of variation of V T was greater for low f and volume control-mandatory minute ventilation and pressure control modes. APRV had the greatest within-mode variability. Risk of V T > 6 mL/kg was significantly reduced in APRV and pressure support with guaranteed volume mode. APRV had the highest variability. Pressure support with guaranteed volume could be tested in patients with ARDS. Copyright © 2017 by Daedalus Enterprises.
Morisseau, K; Joubert, A; Le Coq, L; Andres, Y
2017-05-01
This study aimed to demonstrate that particles, especially those associated with fungi, could be released from fibrous filters used in the air-handling unit (AHU) of heating, ventilation and air-conditioning (HVAC) systems during ventilation restarts. Quantification of the water retention capacity and SEM pictures of the filters was used to show the potential for fungal proliferation in unused or preloaded filters. Five fibrous filters with various particle collection efficiencies were studied: classes G4, M5, M6, F7, and combined F7 according to European standard EN779:2012. Filters were clogged with micronized rice particles containing the fungus Penicillium chrysogenum and then incubated for three weeks at 25°C and 90% relative humidity. The results indicated that the five clogged tested filters had various fungal growth capacities depending on their water retention capacity. Preloaded filters were subjected to a simulated ventilation restart in a controlled filtration device to quantify that the fraction of particles released was around 1% for the G4, 0.1% for the M5 and the M6, and 0.001% for the F7 and the combined F7 filter. The results indicate that the likelihood of fungal particle release by low efficiency filters is significantly higher than by high efficiency filters. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Patient warming excess heat: the effects on orthopedic operating room ventilation performance.
Belani, Kumar G; Albrecht, Mark; McGovern, Paul D; Reed, Mike; Nachtsheim, Christopher
2013-08-01
Patient warming has become a standard of care for the prevention of unintentional hypothermia based on benefits established in general surgery. However, these benefits may not fully translate to contamination-sensitive surgery (i.e., implants), because patient warming devices release excess heat that may disrupt the intended ceiling-to-floor ventilation airflows and expose the surgical site to added contamination. Therefore, we studied the effects of 2 popular patient warming technologies, forced air and conductive fabric, versus control conditions on ventilation performance in an orthopedic operating room with a mannequin draped for total knee replacement. Ventilation performance was assessed by releasing neutrally buoyant detergent bubbles ("bubbles") into the nonsterile region under the head-side of the anesthesia drape. We then tracked whether the excess heat from upper body patient warming mobilized the "bubbles" into the surgical site. Formally, a randomized replicated design assessed the effect of device (forced air, conductive fabric, control) and anesthesia drape height (low-drape, high-drape) on the number of bubbles photographed over the surgical site. The direct mass-flow exhaust from forced air warming generated hot air convection currents that mobilized bubbles over the anesthesia drape and into the surgical site, resulting in a significant increase in bubble counts for the factor of patient warming device (P < 0.001). Forced air had an average count of 132.5 versus 0.48 for conductive fabric (P = 0.003) and 0.01 for control conditions (P = 0.008) across both drape heights. Differences in average bubble counts across both drape heights were insignificant between conductive fabric and control conditions (P = 0.87). The factor of drape height had no significant effect (P = 0.94) on bubble counts. Excess heat from forced air warming resulted in the disruption of ventilation airflows over the surgical site, whereas conductive patient warming devices had no noticeable effect on ventilation airflows. These findings warrant future research into the effects of forced air warming excess heat on clinical outcomes during contamination-sensitive surgery.
Cai, Hao; Long, Weiding; Li, Xianting; Kong, Lingjuan; Xiong, Shuang
2010-06-15
In case hazardous contaminants are suddenly released indoors, the prompt and proper emergency responses are critical to protect occupants. This paper aims to provide a framework for determining the optimal combination of ventilation and evacuation strategies by considering the uncertainty of source locations. The certainty of source locations is classified as complete certainty, incomplete certainty, and complete uncertainty to cover all the possible situations. According to this classification, three types of decision analysis models are presented. A new concept, efficiency factor of contaminant source (EFCS), is incorporated in these models to evaluate the payoffs of the ventilation and evacuation strategies. A procedure of decision-making based on these models is proposed and demonstrated by numerical studies of one hundred scenarios with ten ventilation modes, two evacuation modes, and five source locations. The results show that the models can be useful to direct the decision analysis of both the ventilation and evacuation strategies. In addition, the certainty of the source locations has an important effect on the outcomes of the decision-making. Copyright 2010 Elsevier B.V. All rights reserved.
Zhou, Yongfang; Jin, Xiaodong; Lv, Yinxia; Wang, Peng; Yang, Yunqing; Liang, Guopeng; Wang, Bo; Kang, Yan
2017-11-01
Experimental animal models of acute respiratory distress syndrome (ARDS) have shown that the updated airway pressure release ventilation (APRV) methodologies may significantly improve oxygenation, maximize lung recruitment, and attenuate lung injury, without circulatory depression. This led us to hypothesize that early application of APRV in patients with ARDS would allow pulmonary function to recover faster and would reduce the duration of mechanical ventilation as compared with low tidal volume lung protective ventilation (LTV). A total of 138 patients with ARDS who received mechanical ventilation for <48 h between May 2015 to October 2016 while in the critical care medicine unit (ICU) of the West China Hospital of Sichuan University were enrolled in the study. Patients were randomly assigned to receive APRV (n = 71) or LTV (n = 67). The settings for APRV were: high airway pressure (P high ) set at the last plateau airway pressure (P plat ), not to exceed 30 cmH 2 O) and low airway pressure ( P low ) set at 5 cmH 2 O; the release phase (T low ) setting adjusted to terminate the peak expiratory flow rate to ≥ 50%; release frequency of 10-14 cycles/min. The settings for LTV were: target tidal volume of 6 mL/kg of predicted body weight; P plat not exceeding 30 cmH 2 O; positive end-expiratory pressure (PEEP) guided by the PEEP-FiO 2 table according to the ARDSnet protocol. The primary outcome was the number of days without mechanical ventilation from enrollment to day 28. The secondary endpoints included oxygenation, P plat , respiratory system compliance, and patient outcomes. Compared with the LTV group, patients in the APRV group had a higher median number of ventilator-free days {19 [interquartile range (IQR) 8-22] vs. 2 (IQR 0-15); P < 0.001}. This finding was independent of the coexisting differences in chronic disease. The APRV group had a shorter stay in the ICU (P = 0.003). The ICU mortality rate was 19.7% in the APRV group versus 34.3% in the LTV group (P = 0.053) and was associated with better oxygenation and respiratory system compliance, lower P plat , and less sedation requirement during the first week following enrollment (P < 0.05, repeated-measures analysis of variance). Compared with LTV, early application of APRV in patients with ARDS improved oxygenation and respiratory system compliance, decreased P plat and reduced the duration of both mechanical ventilation and ICU stay.
REDUCTION IN INSPIRATORY FLOW ATTENUATES IL-8 RELEASE AND MAPK ACTIVATION OF LUNG OVERSTRETCH
Lung overstretch involves mechanical factors, including large tidal volumes (VT), which induce inflammatory responses. The current authors hypothesised that inspiratory flow contributes to ventilator-induced inflammation. Buffer-perfused rabbit lungs were ventilated for 2 h with ...
Erlichman, J.S.; Hewitt, Amy; Damon, Tracey L.; Hart, Michael; Kurascz, Jennifer; Li, A.; Leiter, J.C.
2009-01-01
The astrocyte-neuronal lactate shuttle hypothesis (ANLSH) posits that lactate released from astrocytes into the extracellular space is metabolized by neurons. The lactate released should alter extracellular pH (pHe), and changes in pH in central chemosensory regions of the brainstem stimulate ventilation. Therefore, we assessed the impact of disrupting the lactate shuttle by administering 100 microM α-cyano-4-hydroxy-cinnamate (4-CIN), a dose that blocks the neuronal monocarboxylate transporter (MCT2), but not the astrocytic MCTs (MCT1 and MCT4). Administration of 4-CIN focally in the retrotrapezoid nucleus (RTN), a medullary central chemosensory nucleus, increased ventilation and decreased pHe in intact animals. In medullary brain slices, 4-CIN reduced astrocytic intracellular pH (pHi) slightly, but alkalinized neuronal pHi. Nonetheless, pHi fell significantly in both cell types when they were treated with exogenous lactate, although 100 microM 4-CIN significantly reduced the magnitude of the acidosis in neurons, but not astrocytes. Finally, 4-CIN treatment increased the uptake of a fluorescent 2-deoxy-d-glucose analogue in neurons, but did not alter the uptake rate of this 2-deoxy-d-glucose analogue in astrocytes. These data confirm the existence of an astrocyte to neuron lactate shuttle in intact animals in the RTN, and lactate derived from astrocytes forms part of the central chemosensory stimulus for ventilation in this nucleus. When the lactate shuttle was disrupted by treatment with 4-CIN, neurons increased the uptake of glucose. Thus, neurons seem to metabolize a combination of glucose and lactate (and other substances such as pyruvate) depending, in part, on the availability of each of these particular substrates. PMID:18463242
EPA has released a draft report entitled, Metabolically-Derived Human Ventilation Rates: A Revised Approach Based Upon Oxygen Consumption Rates, for independent external peer review and public comment. NCEA published the Exposure Factors Handbook in 1997. This comprehens...
Analysis on ventilation pressure of fire area in longitudinal ventilation of underground tunnel
NASA Astrophysics Data System (ADS)
Li, Jiaxin; Li, Yanfeng; Feng, Xiao; Li, Junmei
2018-03-01
In order to solve the problem of ventilation pressure loss in the fire area under the fire condition, the wind pressure loss model of the fire area is established based on the thermodynamic equilibrium relation. The semi-empirical calculation formula is obtained by using the model experiment and CFD simulation. The validity of the formula is verified. The results show that the ventilation pressure loss in the fire zone is proportional to the convective heat release rate at the critical velocity, which is inversely proportional to the upstream ventilation velocity and the tunnel cross-sectional area. The proposed formula is consistent with the law of the tunnel fire test fitting formula that results are close, in contrast, the advantage lies in a clear theoretical basis and ventilation velocity values. The resistance of road tunnel ventilation system is calculated accurately and reliably, and then an effective emergency ventilation operation program is developed. It is necessary to consider the fire zone ventilation pressure loss. The proposed ventilation pressure loss formula can be used for design calculation after thorough verification.
Hasan, Djo; Blankman, Paul; Nieman, Gary F
2017-09-01
Severe pulmonary infection or vigorous cyclic deformation of the alveolar epithelial type I (AT I) cells by mechanical ventilation leads to massive extracellular ATP release. High levels of extracellular ATP saturate the ATP hydrolysis enzymes CD39 and CD73 resulting in persistent high ATP levels despite the conversion to adenosine. Above a certain level, extracellular ATP molecules act as danger-associated molecular patterns (DAMPs) and activate the pro-inflammatory response of the innate immunity through purinergic receptors on the surface of the immune cells. This results in lung tissue inflammation, capillary leakage, interstitial and alveolar oedema and lung injury reducing the production of surfactant by the damaged AT II cells and deactivating the surfactant function by the concomitant extravasated serum proteins through capillary leakage followed by a substantial increase in alveolar surface tension and alveolar collapse. The resulting inhomogeneous ventilation of the lungs is an important mechanism in the development of ventilation-induced lung injury. The high levels of extracellular ATP and the upregulation of ecto-enzymes and soluble enzymes that hydrolyse ATP to adenosine (CD39 and CD73) increase the extracellular adenosine levels that inhibit the innate and adaptive immune responses rendering the host susceptible to infection by invading microorganisms. Moreover, high levels of extracellular adenosine increase the expression, the production and the activation of pro-fibrotic proteins (such as TGF-β, α-SMA, etc.) followed by the establishment of lung fibrosis.
Boghosian, James D; Luethy, Anita; Cotten, Joseph F
2018-07-01
Thyrotropin releasing hormone (TRH) is a tripeptide hormone and a neurotransmitter widely expressed in the central nervous system that regulates thyroid function and maintains physiologic homeostasis. Following injection in rodents, TRH has multiple effects including increased blood pressure and breathing. We tested the hypothesis that TRH and its long-acting analog, taltirelin, will reverse morphine-induced respiratory depression in anesthetized rats following intravenous or intratracheal (IT) administration. TRH (1 mg/kg plus 5 mg/kg/h, i.v.) and talitrelin (1 mg/kg, i.v.), when administered to rats pretreated with morphine (5 mg/kg, i.v.), increased ventilation from 50% ± 6% to 131% ± 7% and 45% ± 6% to 168% ± 13%, respectively (percent baseline; n = 4 ± S.E.M.), primarily through increased breathing rates (from 76% ± 9% to 260% ± 14% and 66% ± 8% to 318% ± 37%, respectively). By arterial blood gas analysis, morphine caused a hypoxemic respiratory acidosis with decreased oxygen and increased carbon dioxide pressures. TRH decreased morphine effects on arterial carbon dioxide pressure, but failed to impact oxygenation; taltirelin reversed morphine effects on both arterial carbon dioxide and oxygen. Both TRH and talirelin increased mean arterial blood pressure in morphine-treated rats (from 68% ± 5% to 126% ± 12% and 64% ± 7% to 116% ± 8%, respectively; n = 3 to 4). TRH, when initiated prior to morphine (15 mg/kg, i.v.), prevented morphine-induced changes in ventilation; and TRH (2 mg/kg, i.v.) rescued all four rats treated with a lethal dose of morphine (5 mg/kg/min, until apnea). Similar to intravenous administration, both TRH (5 mg/kg, IT) and taltirelin (2 mg/kg, IT) reversed morphine effects on ventilation. TRH or taltirelin may have clinical utility as an intravenous or inhaled agent to antagonize opioid-induced cardiorespiratory depression. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.
Beer, Lucian; Warszawska, Joanna Maria; Schenk, Peter; Debreceni, Tamás; Dworschak, Martin; Roth, Georg A; Szerafin, Tamás; Ankersmit, Hendrik Jan
2015-05-01
Patients undergoing open heart surgery with cardiopulmonary bypass (CPB) often develop a systemic immune reaction, characterized by an increase of proinflammatory and anti-inflammatory mediators. We previously demonstrated that continued mechanical ventilation during CPB reduces this response. We hypothesized that this strategy may also impact on matrix metalloproteinase (MMP) release. Thirty consecutive patients undergoing coronary artery bypass grafting with CPB were randomized into a ventilated (VG) (n = 15) and a standard non-ventilated group (NVG) (n = 15). Blood was collected at the beginning, at the end of surgery, and on the five consecutive days. MMPs, tissue inhibitor of matrix metalloproteinase 1 (TIMP-1), and lipocalin 2 (LCN2) were measured by enzyme-linked immunosorbent assay. Parameters of transpulmonary oxygen transport were assessed at different time points. MMP-8, MMP-9, and LCN2 were significantly lower at the end of surgery in VG compared with those in NVG patients (MMP-8 [ng/mL]: 7.1 [3.5] versus 12.5 [7.7], P = 0.02; MMP-9 [ng/mL]: 108 [42] versus 171 [98], P = 0.029; LCN2 [ng/mL]: 109 [42] versus 171 [98], P = 0.03). TIMP-1 concentrations were lower on postoperative day one, (TIMP-1 [ng/mL]: 174 [55] versus 273 [104], P = 0.003), whereas MMP-3 levels were lower on postoperative days four and five (MMP-3 [ng/mL]: 44 [17] versus 67 [35], P = 0.026). The arterial partial pressure of oxygen/fraction of inspired oxygen ratio was significantly higher in VG patients throughout the postoperative observation period, which did not affect the length of postoperative ventilatory support. Continued mechanical ventilation during CPB reduces serum levels of MMPs, their inhibitor TIMP-1 and LCN2, which preserves MMP-9 activity. The present study suggests that continued mechanical ventilation improves postoperative oxygenation and could potentially prevent aggravation of lung injury after CPB. Copyright © 2015 Elsevier Inc. All rights reserved.
Song, Shaohua; Tian, Huiyu; Yang, Xiufen; Hu, Zhenjie
2016-01-01
To evaluate the effect of airway pressure release ventilation (APRV) in patients with acute lung injury/acute respiratory distress syndrome (ALI/ARDS), to evaluate the extent of ventilator-induced lung injury (VILI), and to explore its possible mechanism. A prospective study was conducted in the Department of Critical Care Medicine of the First Hospital of Hebei Medical University from December 2010 to February 2012. The patients with ALI/ARDS were enrolled. They were randomly divided into two groups. The patients in APRV group were given APRV pattern, while those in control group were given lung protection ventilation, synchronized intermittent mandatory ventilation with positive end-expiratory pressure (SIMV+PEEP). All patients were treated with AVEA ventilator. The parameters such as airway peak pressure (Ppeak), mean airway pressure (Pmean), pulse oxygen saturation (SpO2), mean arterial pressure (MAP), heart rate (HR), central venous pressure (CVP), arterial blood gas, urine output (UO), the usage of sedation and muscle relaxation drugs were recorded. AVEA ventilator "turning point (Pflex) operation" was used to describe the quasi-static pressure volume curve (P-V curve). High and low inflection point (UIP, LIP) and triangular Pflex volume (Vdelta) were automatically measured and calculated. The ventilation parameters were set, and the 24-hour P-V curve was recorded again in order to be compared with subsequent results. Venous blood was collected before treatment, 24 hours and 48 hours after ventilation to measure lung surfactant protein D (SP-D) and large molecular mucus in saliva (KL-6) by enzyme linked immunosorbent assay (ELISA), and the correlation between the above two parameters and prognosis on 28 days was analyzed by multinomial logistic regression. Twenty-six patients with ALI/ARDS were enrolled, and 22 of them completed the test with 10 in APRV group and 12 in control group. The basic parameters and P-V curves between two groups were similar before the test. After 24 hours and 48 hours, mechanical ventilation was given in both groups. The patients' oxygenation was improved significantly, though there were no significant changes in hemodynamic parameters. The Pmean (cmH2O, 1 cmH2O = 0.098 kPa) in APRV group was significantly higher than that in control group (24 hours: 24.20±4.59 vs. 17.50±3.48, P < 0.01; 48 hours: 18.10±4.30 vs. 15.00±2.59, P < 0.05). After ventilation for 24 hours, the ratio of patients with increased Vdelta in APRV group was higher than that in control group (90% vs. 75%), but without statistical difference (P > 0.05). The SP-D level (μg/L) in serum in APRV group showed a tendency of increase (increased from 19.70±7.34 to 27.61±10.21, P < 0.05), in contrast there was a tendency of decrease in control group (decreased from 21.83±7.31 to 16.58±2.90, P > 0.05), the difference between the two groups was statistically significant (P < 0.05). After 48-hour ventilation, SP-D in APRV group was decreased, but no change was found in control group, and no significant difference was found as compared with that of the control group (16.45±8.17 vs. 17.20±4.59, P > 0.05). There was no significant difference in serum KL-6 between the two groups before and after ventilation. The SP-D and KL-6 levels in serum were unrelated with 28-day survival rate of the patients. The odds ratio (OR) of SP-D were 0.900 [95% confidence interval (95%CI) = 0.719-1.125], 1.054 (95%CI = 0.878-1.266), 1.143 (95%CI = 0.957-1.365), and the OR of KL-6 were 1.356 (95%CI = 0.668-2.754), 0.658 (95%CI = 0.161-2.685), 0.915 (95%CI = 0.350-2.394) before the test, 24 hours and 48 hours after ventilation (all P > 0.05). APRV was similar to lung protective ventilation strategy in oxygenation and improvements in the lung mechanics parameters. APRV with a higher Pmean can recruit alveolar more effectively, and it had no impact on hemo-dynamics, but might exacerbate VILI.
Animal biocalorimeter and waste management system
NASA Technical Reports Server (NTRS)
Poppendiek, Heinz F. (Inventor); Trimailo, William R. (Inventor)
1995-01-01
A biocalorimeter and waste management system is provided for making metabolic heat release measurements of animals or humans in a calorimeter (enclosure) using ambient air as a low velocity source of ventilating air through the enclosure. A shroud forces ventilating air to pass over the enclosure from an end open to ambient air at the end of the enclosure opposite its ventilating air inlet end and closed around the inlet end of the enclosure in order to obviate the need for regulating ambient air temperature. Psychrometers for measuring dry- and wet-bulb temperature of ventilating air make it possible to account for the sensible and latent heat additions to the ventilating air. A waste removal system momentarily recirculates high velocity air in a closed circuit through the calorimeter wherein a sudden rise in moisture is detected in the ventilating air from the outlet.
The 30-year evolution of airway pressure release ventilation (APRV).
Jain, Sumeet V; Kollisch-Singule, Michaela; Sadowitz, Benjamin; Dombert, Luke; Satalin, Josh; Andrews, Penny; Gatto, Louis A; Nieman, Gary F; Habashi, Nader M
2016-12-01
Airway pressure release ventilation (APRV) was first described in 1987 and defined as continuous positive airway pressure (CPAP) with a brief release while allowing the patient to spontaneously breathe throughout the respiratory cycle. The current understanding of the optimal strategy to minimize ventilator-induced lung injury is to "open the lung and keep it open". APRV should be ideal for this strategy with the prolonged CPAP duration recruiting the lung and the minimal release duration preventing lung collapse. However, APRV is inconsistently defined with significant variation in the settings used in experimental studies and in clinical practice. The goal of this review was to analyze the published literature and determine APRV efficacy as a lung-protective strategy. We reviewed all original articles in which the authors stated that APRV was used. The primary analysis was to correlate APRV settings with physiologic and clinical outcomes. Results showed that there was tremendous variation in settings that were all defined as APRV, particularly CPAP and release phase duration and the parameters used to guide these settings. Thus, it was impossible to assess efficacy of a single strategy since almost none of the APRV settings were identical. Therefore, we divided all APRV studies divided into two basic categories: (1) fixed-setting APRV (F-APRV) in which the release phase is set and left constant; and (2) personalized-APRV (P-APRV) in which the release phase is set based on changes in lung mechanics using the slope of the expiratory flow curve. Results showed that in no study was there a statistically significant worse outcome with APRV, regardless of the settings (F-ARPV or P-APRV). Multiple studies demonstrated that P-APRV stabilizes alveoli and reduces the incidence of acute respiratory distress syndrome (ARDS) in clinically relevant animal models and in trauma patients. In conclusion, over the 30 years since the mode's inception there have been no strict criteria in defining a mechanical breath as being APRV. P-APRV has shown great promise as a highly lung-protective ventilation strategy.
Sherman, Mindy
2007-06-01
The latest American Heart Association guidelines for pediatric cardiopulmonary resuscitation (CPR) were published in December 2005. Changes from the 2000 guidelines were directed toward simplifying CPR. Infants, children, and adults now share the same recommendation for the initial compression:ventilation ratio. This is a significant change for pediatricians trained in the importance of a respiratory etiology of pediatric cardiopulmonary arrest. The present review will focus on the rationale behind these guideline changes. The new guidelines for single rescuer CPR include a compression:ventilation ratio of 30: 2 for both adult and pediatric victims. The impetus for this recommendation is based on recent appreciation for the deleterious effects of hyperventilation as well as an attempt to increase bystander delivery of CPR. The physiologic results of hyperventilation are discussed. The new pediatric basic life support guideline changes are underscored. Research representing the spectrum of opinions on the optimal compression:ventilation ratio, including compression-only CPR, is presented. Although based primarily on adult, animal, and computational models, the new compression:ventilation ratio, recommended for both initial pediatric and adult CPR, is a reasonable recommendation. The simplified CPR guidelines released in 2005 will hopefully contribute to improved bystander delivery of CPR and improved outcome.
Roy, Shreyas; Sadowitz, Benjamin; Andrews, Penny; Gatto, Louis A; Marx, William; Ge, Lin; Wang, Guirong; Lin, Xin; Dean, David A; Kuhn, Michael; Ghosh, Auyon; Satalin, Joshua; Snyder, Kathy; Vodovotz, Yoram; Nieman, Gary; Habashi, Nader
2012-08-01
Established acute respiratory distress syndrome (ARDS) is often refractory to treatment. Clinical trials have demonstrated modest treatment effects, and mortality remains high. Ventilator strategies must be developed to prevent ARDS. Early ventilatory intervention will block progression to ARDS if the ventilator mode (1) maintains alveolar stability and (2) reduces pulmonary edema formation. Yorkshire pigs (38-45 kg) were anesthetized and subjected to a "two-hit" ischemia-reperfusion and peritoneal sepsis. After injury, animals were randomized into two groups: early preventative ventilation (airway pressure release ventilation [APRV]) versus nonpreventative ventilation (NPV) and followed for 48 hours. All animals received anesthesia, antibiotics, and fluid or vasopressor therapy as per the Surviving Sepsis Campaign. Titrated for optimal alveolar stability were the following ventilation parameters: (1) NPV group--tidal volume, 10 mL/kg + positive end-expiratory pressure - 5 cm/H2O volume-cycled mode; (2) APRV group--tidal volume, 10 to 15 mL/kg; high pressure, low pressure, time duration of inspiration (Thigh), and time duration of release phase (Tlow). Physiological data and plasma were collected throughout the 48-hour study period, followed by BAL and necropsy. APRV prevented the development of ARDS (p < 0.001 vs. NPV) by PaO₂/FIO₂ ratio. Quantitative histological scoring showed that APRV prevented lung tissue injury (p < 0.001 vs. NPV). Bronchoalveolar lavage fluid showed that APRV lowered total protein and interleukin 6 while preserving surfactant proteins A and B (p < 0.05 vs. NPV). APRV significantly lowered lung water (p < 0.001 vs. NPV). Plasma interleukin 6 concentrations were similar between groups. Early preventative mechanical ventilation with APRV blocked ARDS development, preserved surfactant proteins, and reduced pulmonary inflammation and edema despite systemic inflammation similar to NPV. These data suggest that early preventative ventilation strategies stabilizing alveoli and reducing pulmonary edema can attenuate ARDS after ischemia-reperfusion and sepsis.
De Smet, Hilde R; Bersten, Andrew D; Barr, Heather A; Doyle, Ian R
2007-12-01
Low tidal volume (V(T)) ventilation strategies may be associated with permissive hypercapnia, which has been shown by ex vivo and in vivo studies to have protective effects. We hypothesized that hypercapnic acidosis may be synergistic with low V(T) ventilation; therefore, we studied the effects of hypercapnia and V(T) on unstimulated and lipopolysaccharide-stimulated isolated perfused lungs. Isolated perfused rat lungs were ventilated for 2 hours with low (7 mL/kg) or moderately high (20 mL/kg) V(T) and 5% or 20% CO(2), with lipopolysaccharide or saline added to the perfusate. Hypercapnia resulted in reduced pulmonary edema, lung stiffness, tumor necrosis factor alpha (TNF-alpha) and interleukin 6 (IL-6) in the lavage and perfusate. The moderately high V(T) did not cause lung injury but increased lavage IL-6 and perfusate IL-6 as well as TNF-alpha. Pulmonary edema and respiratory mechanics improved, possibly as a result of a stretch-induced increase in surfactant turnover. Lipopolysaccharide did not induce significant lung injury. We conclude that hypercapnia exerts a protective effect by modulating inflammation, lung mechanics, and edema. The moderately high V(T) used in this study stimulated inflammation but paradoxically improved edema and lung mechanics with an associated increase in surfactant release.
Mechanical Ventilation as a Therapeutic Tool to Reduce ARDS Incidence.
Nieman, Gary F; Gatto, Louis A; Bates, Jason H T; Habashi, Nader M
2015-12-01
Trauma, hemorrhagic shock, or sepsis can incite systemic inflammatory response syndrome, which can result in early acute lung injury (EALI). As EALI advances, improperly set mechanical ventilation (MV) can amplify early injury into a secondary ventilator-induced lung injury that invariably develops into overt ARDS. Once established, ARDS is refractory to most therapeutic strategies, which have not been able to lower ARDS mortality below the current unacceptably high 40%. Low tidal volume ventilation is one of the few treatments shown to have a moderate positive impact on ARDS survival, presumably by reducing ventilator-induced lung injury. Thus, there is a compelling case to be made that the focus of ARDS management should switch from treatment once this syndrome has become established to the application of preventative measures while patients are still in the EALI stage. Indeed, studies have shown that ARDS incidence is markedly reduced when conventional MV is applied preemptively using a combination of low tidal volume and positive end-expiratory pressure in both patients in the ICU and in surgical patients at high risk for developing ARDS. Furthermore, there is evidence from animal models and high-risk trauma patients that superior prevention of ARDS can be achieved using preemptive airway pressure release ventilation with a very brief duration of pressure release. Preventing rather than treating ARDS may be the way forward in dealing with this recalcitrant condition and would represent a paradigm shift in the way that MV is currently practiced.
Ciabattoni, G.; Montuschi, P.; Currò, D.; Togna, G.; Preziosi, P.
1993-01-01
1. Exogenous vasoactive intestinal polypeptide (VIP) infused into the pulmonary artery of isolated and ventilated lungs of guinea-pigs decreased, in a dose-dependent fashion (1.0-10.0 nmol), airway resistance and thromboxane B2 (TXB2, the stable hydrolysis product of TXA2) release in the perfusion medium. Prostacyclin (PGI2) synthesis, as reflected by the release of its stable hydrolysis product 6-oxo-PGF1 alpha, was unaffected. Pretreatment with the 5-lipoxygenase inhibitor BWA4c (3.5 x 10(-5) M) did not modify the bronchodilatory effect of VIP or its inhibitory action on TXB2 release. 2. Basal release of immunoreactive VIP from perfused lungs decreased from an initial value of 0.96 +/- 0.10 ng min-1 (mean +/- s.e.mean) in the first 2 min to an average of 0.58 +/- 0.10 ng min-1 in the following 15-20 min. 3. Antigen challenge with ovalbumin (0.1%) in sensitized lungs caused an anaphylactic reaction in 45% of tested lungs, concomitant with a 5 fold increase in both VIP and TXB2 release. Tetrodotoxin pretreatment (10(-6) M) reduced basal VIP release by > 80% and abolished the VIP increase observed during anaphylaxis, without modifying TXB2 release or the bronchoconstrictor response. 4. Indomethacin (10(-6) M) inhibited TXB2 synthesis and release by > 90%, delayed the bronchoconstrictor response and blunted the increased VIP release during lung anaphylaxis, without influencing basal VIP release. 5. The 5-lipoxygenase inhibitor BWA4c (3.5 x 10(-5) M) blunted the increase of TXB2 and VIP release from guinea-pig lung and attenuated the bronchoconstrictor response following ovalbumin challenge.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8495242
NASA Astrophysics Data System (ADS)
Poussou, Stephane B.
The air ventilation system in jetliners provides a comfortable and healthy environment for passengers. Unfortunately, the increase in global air traffic has amplified the risks presented by infectious aerosols or noxious material released during flight. Inside the cabin, air typically flows continuously from overhead outlets into sidewall exhausts in a circular pattern that minimizes secondary flow between adjacent seat rows. However, disturbances frequently introduced by individuals walking along an aisle may alter air distribution, and contribute to spreading of contaminants. Numerical simulation of these convoluted transient flow phenomena is difficult and complex, and experimental assessment of contaminant distribution in real cabins often impractical. A fundamental experimental study was undertaken to examine the transport phenomena, to validate computations and to improve air monitoring systems. A finite moving body was modeled in a 10:1 scale simplified aircraft cabin equipped with ventilation, at a Reynolds number (based on body diameter) of the order of 10,000. An experimental facility was designed and constructed to permit measurements of the ventilation and wake velocity fields using particle image velocimetry (PIV). Contaminant migration was imaged using the planar laser induced fluorescence (PLIF) technique. The effect of ventilation was estimated by comparison with a companion baseline study. Results indicate that the evolution of a downwash predominant behind finite bodies of small aspect ratio is profoundly perturbed by the ventilation flow. The reorganization of vortical structures in the near-wake leads to a shorter longitudinal recirculation region. Furthermore, mixing in the wake is modified and contaminant is observed to convect to higher vertical locations corresponding to seated passenger breathing level.
Local ventilation solution for large, warm emission sources.
Kulmala, Ilpo; Hynynen, Pasi; Welling, Irma; Säämänen, Arto
2007-01-01
In a foundry casting line, contaminants are released from a large area. Casting fumes include both volatile and particulate compounds. The volatile fraction contains hydrocarbons, whereas the particulate fraction mostly comprises a mixture of vaporized metal fumes. Casting fumes lower the air quality in foundries. The design of local ventilation for the casting area is a challenging task, because of the large casting area and convection plumes from warm moulds. A local ventilation solution for the mould casting area was designed and dimensioned with the aid of computational fluid dynamic (CFD) calculations. According to the calculations, the most efficient solution was a push-pull ventilation system. The prototype of the push-pull system was built and tested in actual operation at the foundry. The push flow was generated by a free plane jet that blew across the 10 m wide casting area towards an exhaust hood on the opposite side of the casting lines. The capture efficiency of the prototype was determined by the tracer gas method. The measured capture efficiencies with push jet varied between 40 and 80%, depending on the distance between the source and the exhaust. With the aid of the push flow, the average capture efficiency was increased from 40 (without jet) to 60%.
Wind-Driven Natural Ventilation Design Of Walk-Up Apartment In Coastal Region North Jakarta
NASA Astrophysics Data System (ADS)
Nugrahanti, Fathina I.; Yasin, P. E.; Nurdini, A.
2018-05-01
Housing has been the second most energy-consuming sector in Indonesia nowadays. According to the data released by government, the biggest consumption in housing sector is the use of air conditioning. This consumption will significantly rise in metropolitan-high density city like Jakarta along with the increase of vertical housing supply. This research focus on design iteration to achieve optimum model of wind-driven naturally ventilated housing. Cilincing District, North Jakarta, known as industrial and settlement area is used as case study. Since the location by the bay area, Cilincing represents the characteristic of tropical coastal area. This research utilizes the tropical coastal characteristic especially wind to design a naturally ventilated housing. Various building elements are determined as variables and tested using Ansys Fluent CFD simulator to achieve thermal comfort stadard by SNI 03-6572-2001. Preliminary results shows that unlinear (zig-zag) building layout and combination of various building distances give big impact to airflow movement around the buildings. Narrowing building distance in the middle of the site can create a kind-of tunnel / trap that strengthen the wind along the site. Inlet and outlet area should be balance to avoid uneven airflow distribution inside the room and located in different level to maximize cross-ventilation.
Recruitment Maneuver Does not Increase the Risk of Ventilator Induced Lung Injury
Akıncı, İbrahim Özkan; Atalan, Korkut; Tuğrul, Simru; Özcan, Perihan Ergin; Yılmazbayhan, Dilek; Kıran, Bayram; Basel, Ahmet; Telci, Lutfi; Çakar, Nahit
2013-01-01
Background: Mechanical ventilation (MV) may induce lung injury. Aims: To assess and evaluate the role of different mechanical ventilation strategies on ventilator-induced lung injury (VILI) in comparison to a strategy which includes recruitment manoeuvre (RM). Study design: Randomized animal experiment. Methods: Thirty male Sprague-Dawley rats were anaesthetised, tracheostomised and divided into 5 groups randomly according to driving pressures; these were mechanically ventilated with following peak alveolar opening (Pao) and positive end-expiratory pressures (PEEP) for 1 hour: Group 15-0: 15 cmH2O Pao and 0 cmH2O PEEP; Group 30-10: 30 cmH2O Pao and 10 cmH2O PEEP; Group 30-5: 30 cmH2O Pao and 5 cmH2O PEEP; Group 30-5&RM: 30 cmH2O Pao and 5 cmH2O PEEP with additional 45 cmH2O CPAP for 30 seconds in every 15 minutes; Group 45-0: 45 cmH2O Pao and 0 cmH2O PEEP Before rats were sacrificed, blood samples were obtained for the evaluation of cytokine and chemokine levels; then, the lungs were subsequently processed for morphologic evaluation. Results: Oxygenation results were similar in all groups; however, the groups were lined as follows according to the increasing severity of morphometric evaluation parameters: Group 15-0: (0±0.009) < Group 30-10: (0±0.14) < Group 30-5&RM: (1±0.12) < Group 30-5: (1±0.16) < Group 45-0: (2±0.16). Besides, inflammatory responses were the lowest in 30-5&RM group compared to all other groups. TNF-α, IL-1β, IL-6, MCP-1 levels were significantly different between group 30-5&RM and group 15-0 vs. group 45-0 in each group. Conclusion: RM with low PEEP reduces the risk of ventilator-induced lung injury with a lower release of systemic inflammatory mediators in response to mechanical ventilation. PMID:25207105
Impact of Room Ventilation Rates on Mouse Cage Ventilation and Microenvironment.
Reeb, Carolyn K.; Jones, Robert B.; Bearg, David W.; Bedigian, Hendrick; Paigen, Beverly
1997-01-01
To assess the impact of room ventilation on animal cage microenvironment, intracage ventilation rate, temperature, humidity, and concentrations of carbon dioxide and ammonia were monitored in nonpressurized, bonnet-topped mouse cages. Cages on the top, middle, and bottom rows of a mouse rack were monitored at room ventilation rates of 0, 5, 10, and 20 air changes/h (ACH). Ventilation inside the animal cage increased somewhat from 12.8 to 18.9 ACH as room ventilation rate in- creased from 0 to 20 ACH, but the differences were not statistically significant, and most of the increase occurred in cages in the top row nearest to the fresh air supply. Cages containing mice had ventilation rate between 10 and 15 ACH even when room ventilation was reduced to 0 ACH; this ventilation is a result of the thermal heat load of the mice. After 6 days of soiled bedding, intracage ammonia concentration was c 3 ppm at all room ventilation rates and was not affected by increasing room ventilation. Temperature inside cages did not change with increasing ventilation. Humidity inside cages significantly decreased with increasing ventilation, from 55% relative humidity at 5 ACH to 36% relative humidity at 20 ACH. Carbon dioxide concentration decreased from 2,500 ppm to 1,900 ppm when ventilation rate increased from 5 ACH to 10 ACH, but no further significant decrease was observed at 20 ACH. In conclusion, increasing the room ventilation rate higher than 5 ACH did not result in significant improvements in the cage microenvironment.
Schlenker, E H; Eikanger, J
1997-06-01
The purposes of these studies were: 1) to determine the effects of various doses of propranolol, a nonspecific beta-adrenergic antagonist, on ventilation, oxygen consumption, and body temperature in hamsters, and 2) to test the hypothesis that in hamsters the stimulatory effects of naloxone, an opioid receptor antagonist, on ventilation and oxygen consumption occur, at least in part, through the release of catecholamines that act via beta-adrenergic receptors. Propranolol, a non-specific beta adrenergic receptor antagonist, at a 20 mg/kg depressed body temperature, oxygen consumption, tidal volume, and ventilation relative to saline. The lower dose of 10 mg/kg had only transitory effects on tidal volume at 60 min and ventilation at 30 min post-injection-Naloxone (1 mg/kg) relative to saline stimulated ventilation and oxygen consumption. These effects were blocked by propranolol pretreatment. The results of these experiments demonstrate that in the hamster, 1) body temperature, oxygen consumption, and ventilation appear to be modulated by beta-adrenergic receptors, and 2) the stimulatory effects of naloxone on oxygen consumption and ventilation may occur through the interaction of endogenous opioids and beta-adrenergic receptor systems.
Specialized physiological studies in support of manned space flight
NASA Technical Reports Server (NTRS)
1977-01-01
Breath-by-breath measurements of pulmonary capillary O2 transfer and ventilation with a box-balloon spirometer and mass spectrometer were made on 3 subjects before, during and after 10 min of lower body negative pressure (LBNP) at -20, -40 and -60 Torr with arterial samples at -60 Torr. Deficits in blood O2 stores (O2B) were noted during LBNP with repayment of O2B during recovery being related to the intensity of LBNP stress. Concurrent calf volume, measured with a Hg strain gauge, decreased towards baseline well before the peak rise in pulmonary capillary O2 transfer after the release of LBNP which signified that O2B changes were related to blood volume shifts. The return of O2-depleted pooled blood to the central circulation during the first min. of recovery caused significant stress-related hyperpnea which peaked near 30 sec. and returned to near baseline after the first min. Three-compartment lung model analyses indicated an increase in the ventilated unperfused lung fraction from 0.09 to 0.17 with the effective compartment decreasing from 0.83 to 0.77. It appears that the 30% increase in ventilation equivalent was primarily the result of less effective lung perfusion during the LBNP.
Functional significance and control of release of pulmonary surfactant in the lizard lung.
Wood, P G; Daniels, C B; Orgeig, S
1995-10-01
The amount of pulmonary surfactant in the lungs of the bearded dragon (Pogona vitticeps) increases with increasing body temperature. This increase coincides with a decrease in lung compliance. The relationship between surfactant and lung compliance and the principal stimuli for surfactant release and composition (temperature, ventilatory pattern, and autonomic neurotransmitters) were investigated. We chose to investigate ventilatory pattern (which causes mechanical deformation of the type II cells) and adrenergic agents, because they are the major stimuli for surfactant release in mammals. To examine the effects of body temperature and ventilatory pattern, isolated lungs were ventilated at either 18 or 37 degrees C at different ventilatory regimens. An isolated perfused lung preparation at 27 degrees C was used to analyze the effects of autonomic neurotransmitters. Ventilatory pattern did not affect surfactant release, composition, or lung compliance at either 18 or 37 degrees C. An increase in temperature increased phospholipid reuptake and disproportionately increased cholesterol degradation/uptake. Epinephrine and acetylcholine stimulated phospholipid but not cholesterol release. Removal of surfactant caused a decrease in compliance, regardless of the experimental temperature. Temperature appears to be the principal determinant of lung compliance in the bearded dragon, acting directly to increase the tone of the smooth muscle. Increasing the ambient temperature may result in greater surfactant turnover by increasing cholesterol reuptake/degradation directly and by increasing circulating epinephrine, thereby indirectly increasing phospholipid secretion. We suggest that changing ventilatory pattern may be inadequate as a mechanism for maintaining surfactant homeostasis, given the discontinuous, highly variable reptilian breathing pattern.
Mølgaard, Bjarke; Viitanen, Anna-Kaisa; Kangas, Anneli; Huhtiniemi, Marika; Larsen, Søren Thor; Vanhala, Esa; Hussein, Tareq; Boor, Brandon E.; Hämeri, Kaarle; Koivisto, Antti Joonas
2015-01-01
Due to the health risk related to occupational air pollution exposure, we assessed concentrations and identified sources of particles and volatile organic compounds (VOCs) in a handcraft workshop producing fishing lures. The work processes in the site included polyurethane molding, spray painting, lacquering, and gluing. We measured total VOC (TVOC) concentrations and particle size distributions at three locations representing the various phases of the manufacturing and assembly process. The mean working-hour TVOC concentrations in three locations studied were 41, 37, and 24 ppm according to photo-ionization detector measurements. The mean working-hour particle number concentration varied between locations from 3000 to 36,000 cm−3. Analysis of temporal and spatial variations of TVOC concentrations revealed that there were at least four substantial VOC sources: spray gluing, mold-release agent spraying, continuous evaporation from various lacquer and paint containers, and either spray painting or lacquering (probably both). The mold-release agent spray was indirectly also a major source of ultrafine particles. The workers’ exposure can be reduced by improving the local exhaust ventilation at the known sources and by increasing the ventilation rate in the area with the continuous source. PMID:25849539
WASTE HANDLING BUILDING VENTILATION SYSTEM DESCRIPTION DOCUMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
P.A. Kumar
2000-06-21
The Waste Handling Building Ventilation System provides heating, ventilation, and air conditioning (HVAC) for the contaminated, potentially contaminated, and uncontaminated areas of the Monitored Geologic Repository's (MGR) Waste Handling Building (WHB). In the uncontaminated areas, the non-confinement area ventilation system maintains the proper environmental conditions for equipment operation and personnel comfort. In the contaminated and potentially contaminated areas, in addition to maintaining the proper environmental conditions for equipment operation and personnel comfort, the contamination confinement area ventilation system directs potentially contaminated air away from personnel in the WHB and confines the contamination within high-efficiency particulate air (HEPA) filtration units. Themore » contamination confinement areas ventilation system creates airflow paths and pressure zones to minimize the potential for spreading contamination within the building. The contamination confinement ventilation system also protects the environment and the public by limiting airborne releases of radioactive or other hazardous contaminants from the WHB. The Waste Handling Building Ventilation System is designed to perform its safety functions under accident conditions and other Design Basis Events (DBEs) (such as earthquakes, tornadoes, fires, and loss of the primary electric power). Additional system design features (such as compartmentalization with independent subsystems) limit the potential for cross-contamination within the WHB. The system provides status of important system parameters and equipment operation, and provides audible and/or visual indication of off-normal conditions and equipment failures. The Waste Handling Building Ventilation System confines the radioactive and hazardous material within the building such that the release rates comply with regulatory limits. The system design, operations, and maintenance activities incorporate ALARA (as low as is reasonably achievable) principles to maintain personnel radiation doses to all occupational workers below regulatory limits and as low as is reasonably achievable. The Waste Handling Building Ventilation System interfaces with the Waste Handling Building System by being located within the WHB and by maintaining specific pressures, temperatures, and humidity within the building. The system also depends on the WHB for water supply. The system interfaces with the Site Radiological Monitoring System for continuous monitoring of the exhaust air; the Waste Handling Building Fire Protection System for detection of fire and smoke; the Waste Handling Building Electrical System for normal, emergency, and standby power; and the Monitored Geologic Repository Operations Monitoring and Control System for monitoring and control of the system.« less
NASA Astrophysics Data System (ADS)
Visbeck, M.; Banyte, D.; Brandt, P.; Dengler, M.; Fischer, T.; Karstensen, J.; Krahmann, G.; Tanhua, T. S.; Stramma, L.
2013-12-01
Equatorial Dynamics provide an essential influence on the ventilation pathways of well oxygenated surface water on their route to tropical oxygen minimum zones (OMZ). The large scale wind driven circulation shield OMZs from the direct ventilation pathways. They are located in the so called ';shadow zones' equator ward of the subtropical gyres. From what is known most of the oxygen is supplied via pathways from the western boundary modulated by the complex zonal equatorial current system and marginally by vertical mixing. What was less clear is which of the possible pathways are most effective in transporting dissolved oxygen towards the OMZ. A collaborative research program focused on the dynamics of oxygen minimum zones, called SFB754 "Climate - Biogeochemistry Interactions in the Tropical Ocean", allowed us to conduct two ocean tracer release experiments to investigate the vertical and horizontal mixing rates and associated oxygen transports. Specifically we report on the first deliberate tracer release experiment (GUTRE, Guinea Upwelling Tracer Release Experiment) in the tropical northeast Atlantic carried out in order to determine the diapycnal diffusivity coefficient in the upper layer of the OMZ. A tracer (CF3SF5) was injected in spring of 2008 and subsequently measured during three designated tracer survey cruises until the end of 2010. We found that, generally, the diffusivity is larger than expected for low latitudes and similar in magnitude to what has previously been experimentally determined in the Canary Basin. When combining the tracer study with estimates of diapycnal mixing based on microstructure profiling and a newly developed method using ship board ADCPs we were able to compute the vertical oxygen flux and its divergence for the OMZ. To our surprise, the vertical flux of oxygen by diapycnal mixing provides about 30% of the total ventilation. The estimate was derived from the simple advection-diffusion model taking into account moored and ship based velocity observations of the equatorial current systems along 23°W in the tropical Atlantic. However, the advective pathways are less certain and possibly more variable. Firstly, the strength of lateral eddy stirring and the role in oxygen transport is less well known, and is the focus of the ongoing second tracer release experiment (OSTRE, Oxygen Supply Tracer Release Experiment). Secondly, the analysis of historical data from the equatorial regime suggests that the observed decline in dissolved oxygen in the tropical North Atlantic might in part be a consequence of reduced horizontal ventilation by equatorial intermediate current systems. The uncertainty of the long-term variability of the circulation in the equatorial systems and additional uncertainty in the biogeochemical consumption rates provide a challenge for estimates of the future of the OMZ regimes. Model prediction of future oxygen changes depend on the models ability to reproduce the observed oxygen ventilation pathways and processes, which might limit the prediction's accuracy.
NASA Technical Reports Server (NTRS)
Coulbert, C. D.
1978-01-01
A method for predicting the probable course of fire development in an enclosure is presented. This fire modeling approach uses a graphic plot of five fire development constraints, the relative energy release criteria (RERC), to bound the heat release rates in an enclosure as a function of time. The five RERC are flame spread rate, fuel surface area, ventilation, enclosure volume, and total fuel load. They may be calculated versus time based on the specified or empirical conditions describing the specific enclosure, the fuel type and load, and the ventilation. The calculation of these five criteria, using the common basis of energy release rates versus time, provides a unifying framework for the utilization of available experimental data from all phases of fire development. The plot of these criteria reveals the probable fire development envelope and indicates which fire constraint will be controlling during a criteria time period. Examples of RERC application to fire characterization and control and to hazard analysis are presented along with recommendations for the further development of the concept.
Predicting the response of the injured lung to the mechanical breath profile
Smith, Bradford J.; Lundblad, Lennart K. A.; Kollisch-Singule, Michaela; Satalin, Joshua; Nieman, Gary; Habashi, Nader
2015-01-01
Mechanical ventilation is a crucial component of the supportive care provided to patients with acute respiratory distress syndrome. Current practice stipulates the use of a low tidal volume (Vt) of 6 ml/kg ideal body weight, the presumptive notion being that this limits overdistension of the tissues and thus reduces volutrauma. We have recently found, however, that airway pressure release ventilation (APRV) is efficacious at preventing ventilator-induced lung injury, yet APRV has a very different mechanical breath profile compared with conventional low-Vt ventilation. To gain insight into the relative merits of these two ventilation modes, we measured lung mechanics and derecruitability in rats before and following Tween lavage. We fit to these lung mechanics measurements a computational model of the lung that accounts for both the degree of tissue distension of the open lung and the amount of lung derecruitment that takes place as a function of time. Using this model, we predicted how tissue distension, open lung fraction, and intratidal recruitment vary as a function of ventilator settings both for conventional low-Vt ventilation and for APRV. Our predictions indicate that APRV is more effective at recruiting the lung than low-Vt ventilation, but without causing more overdistension of the tissues. On the other hand, low-Vt ventilation generally produces less intratidal recruitment than APRV. Predictions such as these may be useful for deciding on the relative benefits of different ventilation modes and thus may serve as a means for determining how to ventilate a given lung in the least injurious fashion. PMID:25635004
Synchronous deglacial thermocline and deep-water ventilation in the eastern equatorial Pacific
Umling, Natalie E.; Thunell, Robert C.
2017-01-01
The deep ocean is most likely the primary source of the radiocarbon-depleted CO2 released to the atmosphere during the last deglaciation. While there are well-documented millennial scale Δ14C changes during the most recent deglaciation, most marine records lack the resolution needed to identify more rapid ventilation events. Furthermore, potential age model problems with marine Δ14C records may obscure our understanding of the phase relationship between inter-ocean ventilation changes. Here we reconstruct changes in deep water and thermocline radiocarbon content over the last deglaciation in the eastern equatorial Pacific (EEP) using benthic and planktonic foraminiferal 14C. Our records demonstrate that ventilation of EEP thermocline and deep waters occurred synchronously during the last deglaciation. In addition, both gradual and rapid deglacial radiocarbon changes in these Pacific records are coeval with changes in the Atlantic records. This in-phase behaviour suggests that the Southern Ocean overturning was the dominant driver of changes in the Atlantic and Pacific ventilation during deglaciation. PMID:28112161
Schilling, Thomas; Kozian, Alf; Senturk, Mert; Huth, Christof; Reinhold, Annegret; Hedenstierna, Göran; Hachenberg, Thomas
2011-07-01
One-lung ventilation (OLV) results in alveolar proinflammatory effects, whereas their extent may depend on administration of anesthetic drugs. The current study evaluates the effects of different volatile anesthetics compared with an intravenous anesthetic and the relationship between pulmonary and systemic inflammation in patients undergoing open thoracic surgery. Sixty-three patients scheduled for elective open thoracic surgery were randomized to receive anesthesia with 4 mg · kg⁻¹ · h⁻¹ propofol (n = 21), 1 minimum alveolar concentration desflurane (n = 21), or 1 minimum alveolar concentration sevoflurane (n = 21). Analgesia was provided by remifentanil (0.25 μg · kg⁻¹ · min⁻¹). After intubation, all patients received pressure-controlled mechanical ventilation with a tidal volume of approximately 7 ml · kg ideal body weight, a peak airway pressure lower than 30 cm H₂O, a respiratory rate adjusted to a Paco2 of 40 mmHg, and a fraction of inspired oxygen lower than 0.8 during OLV. Fiberoptic bronchoalveolar lavage of the ventilated lung was performed immediately after intubation and after surgery. The expression of inflammatory cytokines was determined in the lavage fluids and serum samples by multiplexed bead-based immunoassays. Proinflammatory cytokines increased in the ventilated lung after OLV. Mediator release was more enhanced during propofol anesthesia compared with desflurane or sevoflurane administration. For tumor necrosis factor-α, the values were as follows: propofol, 5.7 (8.6); desflurane, 1.6 (0.6); and sevoflurane, 1.6 (0.7). For interleukin-8, the values were as follows: propofol, 924 (1680); desflurane, 390 (813); and sevoflurane, 412 (410). (Values are given as median [interquartile range] pg · ml⁻¹). Interleukin-1β was similarly reduced during volatile anesthesia. The postoperative serum interleukin-6 concentration was increased in all patients, whereas the systemic proinflammatory response was negligible. OLV increases the alveolar concentrations of proinflammatory mediators in the ventilated lung. Both desflurane and sevoflurane suppress the local alveolar, but not the systemic, inflammatory responses to OLV and thoracic surgery.
Economic, Environmental and Health Implications of Enhanced Ventilation in Office Buildings.
MacNaughton, Piers; Pegues, James; Satish, Usha; Santanam, Suresh; Spengler, John; Allen, Joseph
2015-11-18
Current building ventilation standards are based on acceptable minimums. Three decades of research demonstrates the human health benefits of increased ventilation above these minimums. Recent research also shows the benefits on human decision-making performance in office workers, which translates to increased productivity. However, adoption of enhanced ventilation strategies is lagging. We sought to evaluate two of the perceived potential barriers to more widespread adoption-Economic and environmental costs. We estimated the energy consumption and associated per building occupant costs for office buildings in seven U.S. cities, representing different climate zones for three ventilation scenarios (standard practice (20 cfm/person), 30% enhanced ventilation, and 40 cfm/person) and four different heating, ventilation and air conditioning (HVAC) system strategies (Variable Air Volume (VAV) with reheat and a Fan Coil Unit (FCU), both with and without an energy recovery ventilator). We also estimated emissions of greenhouse gases associated with this increased energy usage, and, for comparison, converted this to the equivalent number of vehicles using greenhouse gas equivalencies. Lastly, we paired results from our previous research on cognitive function and ventilation with labor statistics to estimate the economic benefit of increased productivity associated with increasing ventilation rates. Doubling the ventilation rate from the American Society of Heating, Refrigeration and Air-Conditioning Engineers minimum cost less than $40 per person per year in all climate zones investigated. Using an energy recovery ventilation system significantly reduced energy costs, and in some scenarios led to a net savings. At the highest ventilation rate, adding an ERV essentially neutralized the environmental impact of enhanced ventilation (0.03 additional cars on the road per building across all cities). The same change in ventilation improved the performance of workers by 8%, equivalent to a $6500 increase in employee productivity each year. Reduced absenteeism and improved health are also seen with enhanced ventilation. The health benefits associated with enhanced ventilation rates far exceed the per-person energy costs relative to salary costs. Environmental impacts can be mitigated at regional, building, and individual-level scales through the transition to renewable energy sources, adoption of energy efficient systems and ventilation strategies, and promotion of other sustainable policies.
Economic, Environmental and Health Implications of Enhanced Ventilation in Office Buildings
MacNaughton, Piers; Pegues, James; Satish, Usha; Santanam, Suresh; Spengler, John; Allen, Joseph
2015-01-01
Introduction: Current building ventilation standards are based on acceptable minimums. Three decades of research demonstrates the human health benefits of increased ventilation above these minimums. Recent research also shows the benefits on human decision-making performance in office workers, which translates to increased productivity. However, adoption of enhanced ventilation strategies is lagging. We sought to evaluate two of the perceived potential barriers to more widespread adoption—Economic and environmental costs. Methods: We estimated the energy consumption and associated per building occupant costs for office buildings in seven U.S. cities, representing different climate zones for three ventilation scenarios (standard practice (20 cfm/person), 30% enhanced ventilation, and 40 cfm/person) and four different heating, ventilation and air conditioning (HVAC) system strategies (Variable Air Volume (VAV) with reheat and a Fan Coil Unit (FCU), both with and without an energy recovery ventilator). We also estimated emissions of greenhouse gases associated with this increased energy usage, and, for comparison, converted this to the equivalent number of vehicles using greenhouse gas equivalencies. Lastly, we paired results from our previous research on cognitive function and ventilation with labor statistics to estimate the economic benefit of increased productivity associated with increasing ventilation rates. Results: Doubling the ventilation rate from the American Society of Heating, Refrigeration and Air-Conditioning Engineers minimum cost less than $40 per person per year in all climate zones investigated. Using an energy recovery ventilation system significantly reduced energy costs, and in some scenarios led to a net savings. At the highest ventilation rate, adding an ERV essentially neutralized the environmental impact of enhanced ventilation (0.03 additional cars on the road per building across all cities). The same change in ventilation improved the performance of workers by 8%, equivalent to a $6500 increase in employee productivity each year. Reduced absenteeism and improved health are also seen with enhanced ventilation. Conclusions: The health benefits associated with enhanced ventilation rates far exceed the per-person energy costs relative to salary costs. Environmental impacts can be mitigated at regional, building, and individual-level scales through the transition to renewable energy sources, adoption of energy efficient systems and ventilation strategies, and promotion of other sustainable policies. PMID:26593933
Rose, Louise; Hawkins, Martyn
2008-10-01
The objective of this study was to identify the definitional criteria for the pressure-limited and time-cycled modes: airway pressure release ventilation (APRV) and biphasic positive airway pressure (BIPAP) available in the published literature. Systematic review. Medline, PubMed, Cochrane, and CINAHL databases (1982-2006) were searched using the following terms: APRV, BIPAP, Bilevel and lung protective strategy, individually and in combination. Two independent reviewers determined the paper eligibility and abstracted data from 50 studies and 18 discussion articles. Of the 50 studies, 39 (78%) described APRV, and 11 (22%) described BIPAP. Various study designs, populations, or outcome measures were investigated. Compared to BIPAP, APRV was described more frequently as extreme inverse inspiratory:expiratory ratio [18/39 (46%) vs. 0/11 (0%), P = 0.004] and used rarely as a noninverse ratio [2/39 (5%) vs. 3/11 (27%), P = 0.06]. One (9%) BIPAP and eight (21%) APRV studies used mild inverse ratio (>1:1 to < or =2:1) (P = 0.7), plus there was increased use of 1:1 ratio [7 (64%) vs. 12 (31%), P = 0.08] with BIPAP. In adult studies, the mean reported set inspiratory pressure (PHigh) was 6 cm H2O greater with APRV when compared to reports of BIPAP (P = 0.3). For both modes, the mean reported positive end expiratory pressure (PLow) was 5.5 cm H2O. Thematic review identified inconsistency of mode descriptions. Ambiguity exists in the criteria that distinguish APRV and BIPAP. Commercial ventilator branding may further add to confusion. Generic naming of modes and consistent definitional parameters may improve consistency of patient response for a given mode and assist with clinical implementation.
Jensen, Erik A; DeMauro, Sara B; Kornhauser, Michael; Aghai, Zubair H; Greenspan, Jay S; Dysart, Kevin C
2015-11-01
Extubation failure is common in extremely preterm infants. The current paucity of data on the adverse long-term respiratory outcomes associated with reinitiation of mechanical ventilation prevents assessment of the risks and benefits of a trial of extubation in this population. To evaluate whether exposure to multiple courses of mechanical ventilation increases the risk of adverse respiratory outcomes before and after adjustment for the cumulative duration of mechanical ventilation. We performed a retrospective cohort study of extremely low-birth-weight (ELBW; birth weight <1000 g) infants born from January 1, 2006, through December 31, 2012, who were receiving mechanical ventilation. Analysis was conducted between November 2014 and February 2015. Data were obtained from the Alere Neonatal Database. The primary study exposures were the cumulative duration of mechanical ventilation and the number of ventilation courses. The primary outcome was bronchopulmonary dysplasia (BPD) among survivors. Secondary outcomes were death, use of supplemental oxygen at discharge, and tracheostomy. We identified 3343 ELBW infants, of whom 2867 (85.8%) survived to discharge. Among the survivors, 1695 (59.1%) were diagnosed as having BPD, 856 (29.9%) received supplemental oxygen at discharge, and 31 (1.1%) underwent tracheostomy. Exposure to a greater number of mechanical ventilation courses was associated with a progressive increase in the risk of BPD and use of supplemental oxygen at discharge. Compared with a single ventilation course, the adjusted odds ratios for BPD ranged from 1.88 (95% CI, 1.54-2.31) among infants with 2 ventilation courses to 3.81 (95% CI, 2.88-5.04) among those with 4 or more courses. After adjustment for the cumulative duration of mechanical ventilation, the odds of BPD were only increased among infants exposed to 4 or more ventilation courses (adjusted odds ratio, 1.44; 95% CI, 1.04-2.01). The number of ventilation courses was not associated with increased risk of supplemental oxygen use at discharge after adjustment for the length of ventilation. A greater number of ventilation courses did not increase the risk of tracheostomy. Among ELBW infants, a longer cumulative duration of mechanical ventilation largely accounts for the increased risk of chronic respiratory morbidity associated with reinitiation of mechanical ventilation. These results support attempts of extubation in ELBW infants receiving mechanical ventilation on low ventilator settings, even when success is not guaranteed.
Music therapy, a review of the potential therapeutic benefits for the critically ill.
Mofredj, A; Alaya, S; Tassaioust, K; Bahloul, H; Mrabet, A
2016-10-01
Intensive care units are a stressful milieu for patients, particularly when under mechanical ventilation which they refer to as inhumane and anxiety producing. Anxiety can impose harmful effects on the course of recovery and overall well-being of the patient. Resulting adverse effects may prolong weaning and recovery time. Music listening, widely used for stress release in all areas of medicine, tends to be a reliable and efficacious treatment for those critically ill patients. It can abate the stress response, decrease anxiety during mechanical ventilation, and induce an overall relaxation response without the use of medication. This relaxation response can lower cardiac workload and oxygen consumption resulting in more effective ventilation. Music may also improve sleep quality and reduce patient's pain with a subsequent decrease in sedative exposure leading to an accelerated ventilator weaning process and a speedier recovery. Copyright © 2016 Elsevier Inc. All rights reserved.
Methane emissions and airflow patterns along longwall faces and through bleeder ventilation systems
Schatzel, Steven J.; Dougherty, Heather N.
2015-01-01
The National Institute for Occupational Safety and Health (NIOSH) conducted an investigation of longwall face and bleeder ventilation systems using tracer gas experiments and computer network ventilation. The condition of gateroad entries, along with the caved material’s permeability and porosity changes as the longwall face advances, determine the resistance of the airflow pathways within the longwall’s worked-out area of the bleeder system. A series of field evaluations were conducted on a four-panel longwall district. Tracer gas was released at the mouth of the longwall section or on the longwall face and sampled at various locations in the gateroads inby the shield line. Measurements of arrival times and concentrations defined airflow/gas movements for the active/completed panels and the bleeder system, providing real field data to delineate these pathways. Results showed a sustained ability of the bleeder system to ventilate the longwall tailgate corner as the panels retreated. PMID:26925166
Conservative fluid management prevents age-associated ventilator induced mortality.
Herbert, Joseph A; Valentine, Michael S; Saravanan, Nivi; Schneck, Matthew B; Pidaparti, Ramana; Fowler, Alpha A; Reynolds, Angela M; Heise, Rebecca L
2016-08-01
Approximately 800 thousand patients require mechanical ventilation in the United States annually with an in-hospital mortality rate of over 30%. The majority of patients requiring mechanical ventilation are over the age of 65 and advanced age is known to increase the severity of ventilator-induced lung injury (VILI) and in-hospital mortality rates. However, the mechanisms which predispose aging ventilator patients to increased mortality rates are not fully understood. Ventilation with conservative fluid management decreases mortality rates in acute respiratory distress patients, but to date there has been no investigation of the effect of conservative fluid management on VILI and ventilator associated mortality rates. We hypothesized that age-associated increases in susceptibility and incidence of pulmonary edema strongly promote age-related increases in ventilator associated mortality. 2month old and 20month old male C57BL6 mice were mechanically ventilated with either high tidal volume (HVT) or low tidal volume (LVT) for up to 4h with either liberal or conservative fluid support. During ventilation, lung compliance, total lung capacity, and hysteresis curves were quantified. Following ventilation, bronchoalveolar lavage fluid was analyzed for total protein content and inflammatory cell infiltration. Wet to dry ratios were used to directly measure edema in excised lungs. Lung histology was performed to quantify alveolar barrier damage/destruction. Age matched non-ventilated mice were used as controls. At 4h, both advanced age and HVT ventilation significantly increased markers of inflammation and injury, degraded pulmonary mechanics, and decreased survival rates. Conservative fluid support significantly diminished pulmonary edema and improved pulmonary mechanics by 1h in advanced age HVT subjects. In 4h ventilations, conservative fluid support significantly diminished pulmonary edema, improved lung mechanics, and resulted in significantly lower mortality rates in older subjects. Our study demonstrates that conservative fluid alone can attenuate the age associated increase in ventilator associated mortality. Copyright © 2016 Elsevier Inc. All rights reserved.
Conservative Fluid Management Prevents Age-Associated Ventilator Induced Mortality
Herbert, Joseph A.; Valentine, Michael S.; Saravanan, Nivi; Schneck, Matthew B.; Pidaparti, Ramana; Fowler, Alpha A.; Reynolds, Angela M.; Heise, Rebecca L.
2017-01-01
Background Approximately 800 thousand patients require mechanical ventilation in the United States annually with an in-hospital mortality rate of over 30%. The majority of patients requiring mechanical ventilation are over the age of 65 and advanced age is known to increase the severity of ventilator-induced lung injury (VILI) and in-hosptial mortality rates. However, the mechanisms which predispose aging ventilator patients to increased mortality rates are not fully understood. Ventilation with conservative fluid management decreases mortality rates in acute respiratory distress patients, but to date there has been no investigation of the effect of conservative fluid management on VILI and ventilator associated mortality rates. We hypothesized that age-associated increases in susceptibility and incidence of pulmonary edema strongly promote age-related increases in ventilator associated mortality. Methods 2 month old and 20 month old male C57BL6 mice were mechanically ventilated with either high tidal volume (HVT) or low tidal volume (LVT) for up to 4 hours with either liberal or conservative fluid support. During ventilation, lung compliance, total lung capacity, and hysteresis curves were quantified. Following ventilation, bronchoalveolar lavage fluid was analyzed for total protein content and inflammatory cell infiltration. Wet to dry ratios were used to directly measure edema in excised lungs. Lung histology was performed to quantify alveolar barrier damage/destruction. Age matched non-ventilated mice were used as controls. Results At 4hrs, both advanced age and HVT ventilation significantly increased markers of inflammation and injury, degraded pulmonary mechanics, and decreased survival rates. Conservative fluid support significantly diminished pulmonary edema and improved pulmonary mechanics by 1hr in advanced age HVT subjects. In 4hr ventilations, conservative fluid support significantly diminished pulmonary edema, improved lung mechanics, and resulted in significantly lower mortality rates in older subjects. Conclusion Our study demonstrates that conservative fluid alone can attenuate the age associated increase in ventilator associated mortality. PMID:27188767
Airway Pressure Release Ventilation During Ex Vivo Lung Perfusion Attenuates Injury
Mehaffey, J. Hunter; Charles, Eric J.; Sharma, Ashish K.; Money, Dustin; Zhao, Yunge; Stoler, Mark H; Lau, Christine L; Tribble, Curtis G.; Laubach, Victor E.; Roeser, Mark E.; Kron, Irving L.
2016-01-01
Objective Critical organ shortages have resulted in Ex Vivo Lung Perfusion (EVLP) gaining clinical acceptance for lung evaluation and rehabilitation to expand the use of Donation after Circulatory Death (DCD) organs for lung transplantation. We hypothesized that an innovative use of airway pressure release ventilation (APRV) during EVLP improves lung function after transplantation. Methods Two groups (n=4 animals/group) of porcine DCD donor lungs were procured after hypoxic cardiac arrest and a 2-hour period of warm ischemia, followed by a 4-hour period of EVLP rehabilitation with either standard conventional volume-based ventilation or pressure-based APRV. Left lungs were subsequently transplanted into recipient animals and reperfused for 4 hours. Blood gases for PaO2/FiO2 ratios, airway pressures for calculation of compliance, and percent wet weight gain during EVLP and reperfusion were measured. Results APRV during EVLP significantly improved left-lung oxygenation at 2-hours (561.5±83.9 vs 341.1±136.1 mmHg) and 4-hours (569.1±18.3 vs 463.5±78.4 mmHg). Similarly, compliance was significantly higher at 2-hours (26.0±5.2 vs 15.0±4.6 mL/cmH2O) and 4-hours (30.6±1.3 vs 17.7±5.9 mL/cmH2O) after transplantation. Finally, APRV significantly reduced lung edema development on EVLP based on percentage weight gain (36.9±14.6 vs 73.9±4.9%). There was no difference in additional edema accumulation 4 hours after reperfusion. Conclusions Pressure-directed APRV ventilation strategy during EVLP improves rehabilitation of severely injured DCD lungs. After transplant these lungs demonstrate superior lung-specific oxygenation and dynamic compliance compared to lungs ventilated with standard conventional ventilation. This strategy, if implemented into clinical EVLP protocols, could advance the field of DCD lung rehabilitation to expand the lung donor pool. PMID:27742245
2014-12-01
she had complained of a sore throat, some difficulty in breathing, and chest pain. Two weeks earlier, she had started lamotrigine for depression. On...Despite escalating ventilator support for 7 days with airway pressure release ventilation, high levels of fraction of inspired oxygen (FiO2), and, later...out of clinical necessity, heavy sedation and paralytics, her saturations remained low (70–80%), with mean airway pressures in the mid-30s and a ris
Sundar, Krishna M; Thaut, Phillip; Nielsen, David B; Alward, William T; Pearce, Michael J
2012-01-01
A number of different modalities have been employed in addition to conventional ventilation to improve oxygenation in patients with severe 2009 pandemic influenza A (H1N1) pneumonia. Outcomes with ventilatory and rescue therapies for H1N1 influenza-related acute respiratory distress syndrome (ARDS) have been varied. A single intensive care unit (ICU) experience with management of laboratory-confirmed 2009 pandemic influenza A (H1N1) ARDS with a combination of proning and airway pressure release ventilation (APRV) is described. A retrospective review of medical records of ICU patients seen at Utah Valley Regional Medical Center during the first and second waves of the H1N1 influenza pandemic was done. Fourteen ICU patients were managed with invasive ventilation for 2009 pandemic influenza A (H1N1)-related ARDS. Hypoxemia refractory to conventional ventilation was noted in 11 of 14 patients despite application of APRV. Following proning in patients on APRV, improvement of hypoxemia and hemodynamic status was achieved. Only 2 of 11 patients on APRV and proning required continuous dialysis. Mortality in intubated patients receiving a combination of proning and APRV was 27.3% (3/11) with 2 of these dying during the first wave of the H1N1 influenza pandemic. In all, 3 of 11 patients on proning and APRV underwent tracheostomy, with 2 of these undergoing tube thoracostomy. ARDSnet fluid-conservative protocol was safely tolerated in 8 of 11 of the intubated patients following initiation of proning and APRV. Proning in combination with APRV provides improvement of hypoxemia with limitation of end-organ dysfunction and thereby facilitates recovery from severe 2009 pandemic influenza A (H1N1).
The ventilation problem in schools: literature review
Fisk, W. J.
2017-07-06
Based on a review of literature published in refereed archival journals, ventilation rates in classrooms often fall far short of the minimum ventilation rates specified in standards. We report that there is compelling evidence, from both cross-sectional and intervention studies, of an association of increased student performance with increased ventilation rates. There is evidence that reduced respiratory health effects and reduced student absence are associated with increased ventilation rates. Increasing ventilation rates in schools imposes energy costs and can increase heating, ventilating, and air-conditioning system capital costs. The net annual costs, ranging from a few dollars to about 10 dollarsmore » per person, are less than 0.1% of typical public spending on elementary and secondary education in the United States. Finally, such expenditures seem like a small price to pay given the evidence of health and performance benefits.« less
The ventilation problem in schools: literature review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisk, W. J.
Based on a review of literature published in refereed archival journals, ventilation rates in classrooms often fall far short of the minimum ventilation rates specified in standards. We report that there is compelling evidence, from both cross-sectional and intervention studies, of an association of increased student performance with increased ventilation rates. There is evidence that reduced respiratory health effects and reduced student absence are associated with increased ventilation rates. Increasing ventilation rates in schools imposes energy costs and can increase heating, ventilating, and air-conditioning system capital costs. The net annual costs, ranging from a few dollars to about 10 dollarsmore » per person, are less than 0.1% of typical public spending on elementary and secondary education in the United States. Finally, such expenditures seem like a small price to pay given the evidence of health and performance benefits.« less
Marek, E M; Volke, J; Hawener, I; Platen, P; Mückenhoff, K; Marek, W
2010-03-01
Arterial lactate concentrations, taken as indicators of physical fitness, in athletes as well as in patients with cardio-respiratory or metabolic diseases, are measured invasively from arterialized ear lobe blood. Currently developed micro enzyme detectors permit a non-invasive measurement of hypoxia-related metabolites such as lactate in exhaled breath condensate (EBC). The aim of our study is to prove whether this technology will replace the traditional measurement of lactate in arterialized blood. Therefore, we determined the functional relation between lactate release in EBC and lactate concentration in blood in young and healthy subjects at rest and after exhausting bicycle exercise. During resting conditions as well as after exhausting bicycle exercise, 100 L of exhaled air along with blood samples from the ear lobe was collected after stationary load conditions in 16 healthy subjects. EBC was obtained by cooling the expired air volume with an ECoScreen I (FILT GmbH, Berlin) condenser. The analysis was performed within 90 min using an ECoCheck ampere meter (FILT GmbH, Berlin). Lactate measurements were performed using a bi-enzyme sensor after lactate oxidase-induced oxidation of lactate to pyruvate and H2O2. The rates of lactate release via the exhaled air were calculated from the lactate concentration, the volume and the collection time of the EBC. The functional relation of lactate release in exhaled air and lactate concentration of arterial blood was computed. At rest, the mean lactate concentration in arterialized blood was 0.93 ± 0.30 mmol L(-1). At a resting ventilation of 11.5 ± 3.4 L min(-1), the collection time for 100 L of exhaled air, Ts, was 8.4 ± 2.9 min, and 1.68 ± 0.40 mL EBC was obtained. In EBC, the lactate concentration was 21.4 ± 7.7 µmol L(-1), and the rate of lactate release rate in collected EBC was 4.5 ± 1.7 nmol min(-1). After maximal exercise load (220 ± 20 W), the blood lactate concentration increased to 10.9 ± 1.8 mmol L(-1) and the ventilation increased to 111.6 ± 21.4 L min(-1). The EBC collection time decreased to 3.9 ± 1.9 min, and 1.20 ± 0.44 mL EBC were obtained in the recovery period after termination of exercise. The lactate concentration in EBC increased to 40.3 ± 23.0 µmol L(-1), and the lactate release in EBC increased to 13.6 ± 8.6 nmol min(-1) (p < 0.01). Assuming a volume of 4.3 mL water in 100 L of exhaled air (saturated with water at 37 °C), we calculated a lactate release at rest of 11.5 ± 4.3 nmol min(-1) and 48.6 ± 30.7 nmol min(-1) (p < 0.01) after exhausting exercise. Detectable releases of lactate in exhaled breath condensate were found already under resting conditions. During exhausting external load on a bicycle spiroergometer, an increase in the lactate concentration was found in arterialized blood along with an increased lactate release in EBC. The correlation between expiratory lactate release via EBC and lactate concentration in arterialized blood is studied in pursuing investigations.
Chamber studies on nonvented decorative fireplaces using liquid or gelled ethanol fuel.
Schripp, Tobias; Salthammer, Tunga; Wientzek, Sebastian; Wensing, Michael
2014-03-18
Decorative ethanol fireplaces are becoming more and more commonly used in many different countries. These fireplaces are constructed such that they have no fume extraction system, and so all of the gases from combustion, volatile organic compounds, and particulate emissions are released into the room. In order to determine the release behavior and the chemical composition of the emissions, a variety of combinations of ethanol fireplaces and fuels were examined in a 48 m(3) emission test chamber under typical living room environmental conditions. Four ethanol fireplaces with 8 different fuels (3 liquid samples, 5 gel-type samples) were tested. The ventilation conditions were set up corresponding to the manufacturers' recommendations and DIN 4734-1. The air concentrations in the chamber were evaluated based on guideline values for indoor air. Of the combustion gases examined, the quantity of carbon dioxide and nitrogen dioxide in particular were close to or even above the guideline values in many cases. A release of components of the fuel (e.g., the denaturing substances) was also detected in the chamber air. In two experiments, a benzene concentration of over 12 ppb and an increased formaldehyde concentration (>0.1 ppm) were identified in the chamber air. The ethanol fireplaces were--irrespective of the type of fuel used--strong sources of fine and ultrafine particles. Overall, ethanol fireplaces have a considerable influence on the quality of the indoor air due to the lack of ventilation. This aspect should--in addition to fire protection--be properly considered when using such devices.
Kim, Elizabeth H; Preissner, Melissa; Carnibella, Richard P; Samarage, Chaminda R; Bennett, Ellen; Diniz, Marcio A; Fouras, Andreas; Zosky, Graeme R; Jones, Heather D
2017-09-01
Increased dead space is an important prognostic marker in early acute respiratory distress syndrome (ARDS) that correlates with mortality. The cause of increased dead space in ARDS has largely been attributed to increased alveolar dead space due to ventilation/perfusion mismatching and shunt. We sought to determine whether anatomic dead space also increases in response to mechanical ventilation. Mice received intratracheal lipopolysaccharide (LPS) or saline and mechanical ventilation (MV). Four-dimensional computed tomography (4DCT) scans were performed at onset of MV and after 5 h of MV. Detailed measurements of airway volumes and lung tidal volumes were performed using image analysis software. The forced oscillation technique was used to obtain measures of airway resistance, tissue damping, and tissue elastance. The ratio of airway volumes to total tidal volume increased significantly in response to 5 h of mechanical ventilation, regardless of LPS exposure, and airways demonstrated significant variation in volumes over the respiratory cycle. These findings were associated with an increase in tissue elastance (decreased lung compliance) but without changes in tidal volumes. Airway volumes increased over time with exposure to mechanical ventilation without a concomitant increase in tidal volumes. These findings suggest that anatomic dead space fraction increases progressively with exposure to positive pressure ventilation and may represent a pathological process. NEW & NOTEWORTHY We demonstrate that anatomic dead space ventilation increases significantly over time in mice in response to mechanical ventilation. The novel functional lung-imaging techniques applied here yield sensitive measures of airway volumes that may have wide applications. Copyright © 2017 the American Physiological Society.
Bruells, Christian S; Smuder, Ashley J; Reiss, Lucy K; Hudson, Matthew B; Nelson, William Bradley; Wiggs, Michael P; Sollanek, Kurt J; Rossaint, Rolf; Uhlig, Stefan; Powers, Scott K
2013-09-01
Mechanical ventilation is a life-saving intervention for patients with respiratory failure. Unfortunately, a major complication associated with prolonged mechanical ventilation is ventilator-induced diaphragmatic atrophy and contractile dysfunction, termed ventilator-induced diaphragmatic dysfunction (VIDD). Emerging evidence suggests that positive pressure ventilation (PPV) promotes lung damage (ventilator-induced lung injury [VILI]), resulting in the release of signaling molecules that foster atrophic signaling in the diaphragm and the resultant VIDD. Although a recent report suggests that negative pressure ventilation (NPV) results in less VILI than PPV, it is unknown whether NPV can protect against VIDD. Therefore, the authors tested the hypothesis that compared with PPV, NPV will result in a lower level of VIDD. Adult rats were randomly assigned to one of three experimental groups (n = 8 each): (1) acutely anesthetized control (CON), (2) 12 h of PPV, and (3) 12 h of NPV. Dependent measures included indices of VILI, diaphragmatic muscle fiber cross-sectional area, diaphragm contractile properties, and the activity of key proteases in the diaphragm. Our results reveal that no differences existed in the degree of VILI between PPV and NPV animals as evidenced by VILI histological scores (CON = 0.082 ± 0.001; PPV = 0.22 ± 0.04; NPV = 0.25 ± 0.02; mean ± SEM). Both PPV and NPV resulted in VIDD. Importantly, no differences existed between PPV and NPV animals in diaphragmatic fiber cross-sectional area, contractile properties, and the activation of proteases. These results demonstrate that NPV and PPV result in similar levels of VILI and that NPV and PPV promote comparable levels of VIDD in rats.
García-de-la-Asunción, José; García-del-Olmo, Eva; Perez-Griera, Jaume; Martí, Francisco; Galan, Genaro; Morcillo, Alfonso; Wins, Richard; Guijarro, Ricardo; Arnau, Antonio; Sarriá, Benjamín; García-Raimundo, Miguel; Belda, Javier
2015-09-01
During lung lobectomy, the operated lung is collapsed and hypoperfused; oxygen deprivation is accompanied by reactive hypoxic pulmonary vasoconstriction. After lung lobectomy, ischaemia present in the collapsed state is followed by expansion-reperfusion and lung injury attributed to the production of reactive oxygen species. The primary objective of this study was to investigate the time course of several markers of oxidative stress simultaneously in exhaled breath condensate and blood and to determine the relationship between oxidative stress and one-lung ventilation time in patients undergoing lung lobectomy. This single-centre, observational, prospective study included 28 patients with non-small-cell lung cancer who underwent lung lobectomy. We measured the levels of hydrogen peroxide, 8-iso-PGF2α, nitrites plus nitrates and pH in exhaled breath condensate (n = 25). The levels of 8-iso-PGF2α and nitrites plus nitrates were also measured in blood (n = 28). Blood samples and exhaled breath condensate samples were collected from all patients at five time points: preoperatively; during one-lung ventilation, immediately before resuming two-lung ventilation; immediately after resuming two-lung ventilation; 60 min after resuming two-lung ventilation and 180 min after resuming two-lung ventilation. Both exhaled breath condensate and blood exhibited significant and simultaneous increases in oxidative-stress markers immediately before two-lung ventilation was resumed. However, all these values underwent larger increases immediately after resuming two-lung ventilation. In both exhaled breath condensate and blood, marker levels significantly and directly correlated with the duration of one-lung ventilation immediately before resuming two-lung ventilation and immediately after resuming two-lung ventilation. Although pH significantly decreased in exhaled breath condensate immediately after resuming two-lung ventilation, these pH values were inversely correlated with the duration of one-lung ventilation. During lung lobectomy, the operated lung is collapsed and oxidative injury occurs, with the levels of markers of oxidative stress increasing simultaneously in exhaled breath condensate and blood during one-lung ventilation. These increases were larger after resuming two-lung ventilation. Increases immediately before resuming two-lung ventilation and immediately after resuming two-lung ventilation were directly correlated with the duration of one-lung ventilation. © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
Mitochondrial Complex IV Subunit 4 Isoform 2 Is Essential for Acute Pulmonary Oxygen Sensing.
Sommer, Natascha; Hüttemann, Maik; Pak, Oleg; Scheibe, Susan; Knoepp, Fenja; Sinkler, Christopher; Malczyk, Monika; Gierhardt, Mareike; Esfandiary, Azadeh; Kraut, Simone; Jonas, Felix; Veith, Christine; Aras, Siddhesh; Sydykov, Akylbek; Alebrahimdehkordi, Nasim; Giehl, Klaudia; Hecker, Matthias; Brandes, Ralf P; Seeger, Werner; Grimminger, Friedrich; Ghofrani, Hossein A; Schermuly, Ralph T; Grossman, Lawrence I; Weissmann, Norbert
2017-08-04
Acute pulmonary oxygen sensing is essential to avoid life-threatening hypoxemia via hypoxic pulmonary vasoconstriction (HPV) which matches perfusion to ventilation. Hypoxia-induced mitochondrial superoxide release has been suggested as a critical step in the signaling pathway underlying HPV. However, the identity of the primary oxygen sensor and the mechanism of superoxide release in acute hypoxia, as well as its relevance for chronic pulmonary oxygen sensing, remain unresolved. To investigate the role of the pulmonary-specific isoform 2 of subunit 4 of the mitochondrial complex IV (Cox4i2) and the subsequent mediators superoxide and hydrogen peroxide for pulmonary oxygen sensing and signaling. Isolated ventilated and perfused lungs from Cox4i2 -/- mice lacked acute HPV. In parallel, pulmonary arterial smooth muscle cells (PASMCs) from Cox4i2 -/- mice showed no hypoxia-induced increase of intracellular calcium. Hypoxia-induced superoxide release which was detected by electron spin resonance spectroscopy in wild-type PASMCs was absent in Cox4i2 -/- PASMCs and was dependent on cysteine residues of Cox4i2. HPV could be inhibited by mitochondrial superoxide inhibitors proving the functional relevance of superoxide release for HPV. Mitochondrial hyperpolarization, which can promote mitochondrial superoxide release, was detected during acute hypoxia in wild-type but not Cox4i2 -/- PASMCs. Downstream signaling determined by patch-clamp measurements showed decreased hypoxia-induced cellular membrane depolarization in Cox4i2 -/- PASMCs compared with wild-type PASMCs, which could be normalized by the application of hydrogen peroxide. In contrast, chronic hypoxia-induced pulmonary hypertension and pulmonary vascular remodeling were not or only slightly affected by Cox4i2 deficiency, respectively. Cox4i2 is essential for acute but not chronic pulmonary oxygen sensing by triggering mitochondrial hyperpolarization and release of mitochondrial superoxide which, after conversion to hydrogen peroxide, contributes to cellular membrane depolarization and HPV. These findings provide a new model for oxygen-sensing processes in the lung and possibly also in other organs. © 2017 American Heart Association, Inc.
Increased ventilation by fish leads to a higher risk of parasitism.
Mikheev, Victor N; Pasternak, Anna F; Valtonen, E Tellervo; Taskinen, Jouni
2014-06-23
Fish are common intermediate hosts of trematode cercariae and their gills can potentially serve as important sites of penetration by these larval stages. We experimentally tested the hypothesis that volume of ventilation flow across the gills contributes to acquisition of these parasites by fish. We manipulated the intensity of ventilation by using different oxygen concentrations. Juvenile Oncorhynchus mykiss were individually exposed for 10 minutes to a standard dose of Diplostomum pseudospathaceum cercariae at three levels of oxygen concentration, 30, 60 and 90%. Ventilation amplitude (measured as a distance between left and right operculum), operculum beat rate, and the number of cercariae established in the eyes of fish were recorded. Fish reacted to low oxygen concentration with wider expansion of opercula (but not with increasing beat rate), leading to an increase in ventilation volume. As expected, the intensity of infection increased with decreasing oxygen saturation-probably due to a higher exposure to cercariae caused by increased ventilation under low oxygen concentrations. The number of cercariae acquired by an individual fish was positively correlated with ventilation amplitude and with ventilation volume, but not with operculum beat rate. However, even though the infection rate increased under these circumstances, the proportion of larval trematodes successfully establishing in fish eyes decreased with increasing ventilation volume, suggesting that the high flow velocity, although increasing host exposure to cercarial parasites, may interfere with the ability of these parasites to penetrate their hosts. There was no difference in the behaviour of trematode cercariae exposed to low and high oxygen concentrations. A reduction in oxygen saturation resulted in an increase in ventilation volume across the gills and in doing so an increase in the exposure of fish to cercariae. A significant correlation between ventilation volume and parasitism represents the first experimental evidence that this physiological mechanism generates variation in transmission of parasites to fish hosts. Other factors that modify ventilation flow, e.g. physiological or social stressors, are expected to produce similar effects on the transmission success of the parasites penetrating fish hosts using the gills.
Increased ventilation by fish leads to a higher risk of parasitism
2014-01-01
Background Fish are common intermediate hosts of trematode cercariae and their gills can potentially serve as important sites of penetration by these larval stages. We experimentally tested the hypothesis that volume of ventilation flow across the gills contributes to acquisition of these parasites by fish. We manipulated the intensity of ventilation by using different oxygen concentrations. Methods Juvenile Oncorhynchus mykiss were individually exposed for 10 minutes to a standard dose of Diplostomum pseudospathaceum cercariae at three levels of oxygen concentration, 30, 60 and 90%. Ventilation amplitude (measured as a distance between left and right operculum), operculum beat rate, and the number of cercariae established in the eyes of fish were recorded. Results Fish reacted to low oxygen concentration with wider expansion of opercula (but not with increasing beat rate), leading to an increase in ventilation volume. As expected, the intensity of infection increased with decreasing oxygen saturation—probably due to a higher exposure to cercariae caused by increased ventilation under low oxygen concentrations. The number of cercariae acquired by an individual fish was positively correlated with ventilation amplitude and with ventilation volume, but not with operculum beat rate. However, even though the infection rate increased under these circumstances, the proportion of larval trematodes successfully establishing in fish eyes decreased with increasing ventilation volume, suggesting that the high flow velocity, although increasing host exposure to cercarial parasites, may interfere with the ability of these parasites to penetrate their hosts. There was no difference in the behaviour of trematode cercariae exposed to low and high oxygen concentrations. Conclusion A reduction in oxygen saturation resulted in an increase in ventilation volume across the gills and in doing so an increase in the exposure of fish to cercariae. A significant correlation between ventilation volume and parasitism represents the first experimental evidence that this physiological mechanism generates variation in transmission of parasites to fish hosts. Other factors that modify ventilation flow, e.g. physiological or social stressors, are expected to produce similar effects on the transmission success of the parasites penetrating fish hosts using the gills. PMID:24954703
Preemptive mechanical ventilation can block progressive acute lung injury.
Sadowitz, Benjamin; Jain, Sumeet; Kollisch-Singule, Michaela; Satalin, Joshua; Andrews, Penny; Habashi, Nader; Gatto, Louis A; Nieman, Gary
2016-02-04
Mortality from acute respiratory distress syndrome (ARDS) remains unacceptable, approaching 45% in certain high-risk patient populations. Treating fulminant ARDS is currently relegated to supportive care measures only. Thus, the best treatment for ARDS may lie with preventing this syndrome from ever occurring. Clinical studies were examined to determine why ARDS has remained resistant to treatment over the past several decades. In addition, both basic science and clinical studies were examined to determine the impact that early, protective mechanical ventilation may have on preventing the development of ARDS in at-risk patients. Fulminant ARDS is highly resistant to both pharmacologic treatment and methods of mechanical ventilation. However, ARDS is a progressive disease with an early treatment window that can be exploited. In particular, protective mechanical ventilation initiated before the onset of lung injury can prevent the progression to ARDS. Airway pressure release ventilation (APRV) is a novel mechanical ventilation strategy for delivering a protective breath that has been shown to block progressive acute lung injury (ALI) and prevent ALI from progressing to ARDS. ARDS mortality currently remains as high as 45% in some studies. As ARDS is a progressive disease, the key to treatment lies with preventing the disease from ever occurring while it remains subclinical. Early protective mechanical ventilation with APRV appears to offer substantial benefit in this regard and may be the prophylactic treatment of choice for preventing ARDS.
Preemptive mechanical ventilation can block progressive acute lung injury
Sadowitz, Benjamin; Jain, Sumeet; Kollisch-Singule, Michaela; Satalin, Joshua; Andrews, Penny; Habashi, Nader; Gatto, Louis A; Nieman, Gary
2016-01-01
Mortality from acute respiratory distress syndrome (ARDS) remains unacceptable, approaching 45% in certain high-risk patient populations. Treating fulminant ARDS is currently relegated to supportive care measures only. Thus, the best treatment for ARDS may lie with preventing this syndrome from ever occurring. Clinical studies were examined to determine why ARDS has remained resistant to treatment over the past several decades. In addition, both basic science and clinical studies were examined to determine the impact that early, protective mechanical ventilation may have on preventing the development of ARDS in at-risk patients. Fulminant ARDS is highly resistant to both pharmacologic treatment and methods of mechanical ventilation. However, ARDS is a progressive disease with an early treatment window that can be exploited. In particular, protective mechanical ventilation initiated before the onset of lung injury can prevent the progression to ARDS. Airway pressure release ventilation (APRV) is a novel mechanical ventilation strategy for delivering a protective breath that has been shown to block progressive acute lung injury (ALI) and prevent ALI from progressing to ARDS. ARDS mortality currently remains as high as 45% in some studies. As ARDS is a progressive disease, the key to treatment lies with preventing the disease from ever occurring while it remains subclinical. Early protective mechanical ventilation with APRV appears to offer substantial benefit in this regard and may be the prophylactic treatment of choice for preventing ARDS. PMID:26855896
Effects of Zolpidem CR on Sleep and Nocturnal Ventilation in Patients with Heart Failure
Gatti, Rodrigo C.; Burke, Patrick R.; Otuyama, Leonardo J.; Almeida, Dirceu R.; Tufik, Sergio; Poyares, Dalva
2016-01-01
Study Objective: This study aimed to evaluate the effects of zolpidem CR (controlled release) on sleep and nocturnal ventilation in patients with congestive heart failure, a population at risk for insomnia and poor sleep quality. Methods: Fifteen patients with heart failure (ischemic cardiomyopathy) and ejection fraction ≤ 45% in NYHA functional class I or II were evaluated with full polysomnography in a placebo-controlled, double-blind, randomized trial. Patients underwent three tests: (1) baseline polysomnography and, after randomization, (2) a new test with zolpidem CR 12.5 mg or placebo, and after 1 week, (3) a new polysomnography, crossing the “medication” used. Results: A 16% increase in total sleep time was found with the use of zolpidem CR and an increase in stage 3 NREM sleep (slow wave sleep). The apnea hypopnea index (AHI) did not change with zolpidem CR even after controlling for supine position; however, a slight but significant decrease was observed in lowest oxygen saturation compared with baseline and placebo conditions (83.60 ± 5.51; 84.43 ± 3.80; 80.71 ± 5.18, P = 0.002). Conclusion: Zolpidem CR improved sleep structure in patients with heart failure, did not change apnea hypopnea index, but slightly decreased lowest oxygen saturation. Citation: Gatti RC, Burke PR, Otuyama LJ, Almeida DR, Tufik S, Poyares D. Effects of zolpidem CR on sleep and nocturnal ventilation in patients with heart failure. SLEEP 2016;39(8):1501–1505. PMID:27166233
Our great forgotten, chronic respiratory sufferers
Bordejé Laguna, María Luisa
2017-05-08
Lung’s own properties make that nutritional support, besides covering the requirements can modulate its infl ammatory response. Lung tissue has a low glucose stock. Fatty acids are the main energy producer of type II pneumocytes, which use them in order to form phospholipids, essential for surfactant whose creation and release decrease in acute lung injury (ALI). Glutamine is a good substratum for endocrine cells and type II pneumocytes. Due to high nutritional risk, it is important its assessments in disorders as COPD and acute respiratory distress syndrome (ADRS). Indirect calorimetry values the effect of ventilation and nutritional support, avoiding overfeeding. Hypophosphatemia and refeeding syndrome are frequent and need to be avoided because of their morbidity. In critically ill patients, malnutrition can lead to respiratory failure and increasing mechanical ventilation time. To avoid hypercapnia in weaning, glucose levels should be controlled. High lipids/carbohydrates ratio do not show usefulness in COPD neither mechanical ventilation removal. ALI patients beneficiate from an early start and the volume administered. Enteral nutrition with high fatty acids ratio (EPA, DHA and γ-linolenic acid) and antioxidants do not show any superiority. Omega-3 fatty acid in parenteral nutrition could modulate infl ammation and immunosuppression in a positive manner. The use of glutamine, vitamins or antioxidants in these patients could be justified.
Barton, Samantha K; Moss, Timothy J M; Hooper, Stuart B; Crossley, Kelly J; Gill, Andrew W; Kluckow, Martin; Zahra, Valerie; Wong, Flora Y; Pichler, Gerhard; Galinsky, Robert; Miller, Suzanne L; Tolcos, Mary; Polglase, Graeme R
2014-01-01
The onset of mechanical ventilation is a critical time for the initiation of cerebral white matter (WM) injury in preterm neonates, particularly if they are inadvertently exposed to high tidal volumes (VT) in the delivery room. Protective ventilation strategies at birth reduce ventilation-induced lung and brain inflammation and injury, however its efficacy in a compromised newborn is not known. Chorioamnionitis is a common antecedent of preterm birth, and increases the risk and severity of WM injury. We investigated the effects of high VT ventilation, after chorioamnionitis, on preterm lung and WM inflammation and injury, and whether a protective ventilation strategy could mitigate the response. Pregnant ewes (n = 18) received intra-amniotic lipopolysaccharide (LPS) 2 days before delivery, instrumentation and ventilation at 127±1 days gestation. Lambs were either immediately euthanased and used as unventilated controls (LPSUVC; n = 6), or were ventilated using an injurious high VT strategy (LPSINJ; n = 5) or a protective ventilation strategy (LPSPROT; n = 7) for a total of 90 min. Mean arterial pressure, heart rate and cerebral haemodynamics and oxygenation were measured continuously. Lungs and brains underwent molecular and histological assessment of inflammation and injury. LPSINJ lambs had poorer oxygenation than LPSPROT lambs. Ventilation requirements and cardiopulmonary and systemic haemodynamics were not different between ventilation strategies. Compared to unventilated lambs, LPSINJ and LPSPROT lambs had increases in pro-inflammatory cytokine expression within the lungs and brain, and increased astrogliosis (p<0.02) and cell death (p<0.05) in the WM, which were equivalent in magnitude between groups. Ventilation after acute chorioamnionitis, irrespective of strategy used, increases haemodynamic instability and lung and cerebral inflammation and injury. Mechanical ventilation is a potential contributor to WM injury in infants exposed to chorioamnionitis.
Kwon, Oh Sung; Smuder, Ashley J.; Wiggs, Michael P.; Hall, Stephanie E.; Sollanek, Kurt J.; Morton, Aaron B.; Talbert, Erin E.; Toklu, Hale Z.; Tumer, Nihal
2015-01-01
Mechanical ventilation is a life-saving intervention for patients in respiratory failure. Unfortunately, prolonged ventilator support results in diaphragmatic atrophy and contractile dysfunction leading to diaphragm weakness, which is predicted to contribute to problems in weaning patients from the ventilator. While it is established that ventilator-induced oxidative stress is required for the development of ventilator-induced diaphragm weakness, the signaling pathway(s) that trigger oxidant production remain unknown. However, recent evidence reveals that increased plasma levels of angiotensin II (ANG II) result in oxidative stress and atrophy in limb skeletal muscles. Using a well-established animal model of mechanical ventilation, we tested the hypothesis that increased circulating levels of ANG II are required for both ventilator-induced diaphragmatic oxidative stress and diaphragm weakness. Cause and effect was determined by administering an angiotensin-converting enzyme inhibitor (enalapril) to prevent ventilator-induced increases in plasma ANG II levels, and the ANG II type 1 receptor antagonist (losartan) was provided to prevent the activation of ANG II type 1 receptors. Enalapril prevented the increase in plasma ANG II levels but did not protect against ventilator-induced diaphragmatic oxidative stress or diaphragm weakness. In contrast, losartan attenuated both ventilator-induced oxidative stress and diaphragm weakness. These findings indicate that circulating ANG II is not essential for the development of ventilator-induced diaphragm weakness but that activation of ANG II type 1 receptors appears to be a requirement for ventilator-induced diaphragm weakness. Importantly, these experiments provide the first evidence that the Food and Drug Administration-approved drug losartan may have clinical benefits to protect against ventilator-induced diaphragm weakness in humans. PMID:26359481
Does ammonia trigger hyperventilation in the elasmobranch, Squalus acanthias suckleyi?
De Boeck, Gudrun; Wood, Chris M
2015-01-15
We examined the ventilatory response of the spiny dogfish, to elevated internal or environmental ammonia. Sharks were injected via arterial catheters with ammonia solutions or their Na salt equivalents sufficient to increase plasma total ammonia concentration [TAmm]a by 3-5 fold from 145±21μM to 447±150μM using NH4HCO3 and a maximum of 766±100μM using (NH4)2SO4. (NH4)2SO4 caused a small increase in ventilation frequency (+14%) and a large increase in amplitude (+69%), while Na2SO4 did not. However, CO2 partial pressure (PaCO2) also increased and arterial pHa and plasma bicarbonate concentration ([HCO3(-)]a) decreased. NH4HCO3 caused a smaller increase in plasma ammonia resulting in a smaller but significant, short lived increases in ventilation frequency (+6%) and amplitude (36%), together with a rise in PaCO2 and [HCO3(-)]a. Injection with NaHCO3 which increased pHa and [HCO3(-)]a did not change ventilation. Plasma ammonia concentration correlated significantly with ventilation amplitude, while ventilation frequency showed a (negative) correlation with pHa. Exposure to high environmental ammonia (1500μM NH4HCO3) did not induce changes in ventilation until plasma [TAmm]a increased and ventilation amplitude (but not frequency) increased in parallel. We conclude that internal ammonia stimulates ventilation in spiny dogfish, especially amplitude or stroke volume, while environmental ammonia only stimulates ventilation after ammonia diffuses into the bloodstream. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakajima, Y; Kadoya, N; Kabus, S
Purpose: To test the hypothesis: 4D-CT ventilation imaging can show the known effects of radiotherapy on lung function: (1) radiation-induced ventilation reductions, and (2) ventilation increases caused by tumor regression. Methods: Repeat 4D-CT scans (pre-, mid- and/or post-treatment) were acquired prospectively for 11 thoracic cancer patients in an IRB-approved clinical trial. A ventilation image for each time point was created using deformable image registration and the Hounsfield unit (HU)-based or Jacobian-based metric. The 11 patients were divided into two subgroups based on tumor volume reduction using a threshold of 5 cm{sup 3}. To quantify radiation-induced ventilation reduction, six patients whomore » showed a small tumor volume reduction (<5 cm{sup 3}) were analyzed for dose-response relationships. To investigate ventilation increase caused by tumor regression, two of the other five patients were analyzed to compare ventilation changes in the lung lobes affected and unaffected by the tumor. The remaining three patients were excluded because there were no unaffected lobes. Results: Dose-dependent reductions of HU-based ventilation were observed in a majority of the patient-specific dose-response curves and in the population-based dose-response curve, whereas no clear relationship was seen for Jacobian-based ventilation. The post-treatment population-based dose-response curve of HU-based ventilation demonstrated the average ventilation reductions of 20.9±7.0% at 35–40 Gy (equivalent dose in 2-Gy fractions, EQD2), and 40.6±22.9% at 75–80 Gy EQD2. Remarkable ventilation increases in the affected lobes were observed for the two patients who showed an average tumor volume reduction of 37.1 cm{sup 3} and re-opening airways. The mid-treatment increase in HU-based ventilation of patient 3 was 100.4% in the affected lobes, which was considerably greater than 7.8% in the unaffected lobes. Conclusion: This study has demonstrated that 4D-CT ventilation imaging shows the known effects of radiotherapy on lung function: radiation-induced ventilation reduction and ventilation increase caused by tumor regression, providing validation for 4D-CT ventilation imaging. This study was supported in part by a National Lung Cancer Partnership Young Investigator Research grant.« less
Protective isolation in single-bed rooms: studies in a modified hospital ward
Ayliffe, G. A. J.; Collins, B. J.; Lowbury, E. J. L.; Wall, Mary
1971-01-01
Studies were made in a modified hospital ward containing 19 beds, 14 of them in the open ward, one in a window-ventilated side-room, two in rooms with partial-recirculation ventilators giving 7-10 air changes per hour, and two in self-contained isolation suites with plenum ventilation (20 air changes per hour), ultra-violet (UV) barriers at doorways and airlocks. Preliminary tests with aerosols of tracer bacteria showed that few bacteria entered the plenum or recirculation-ventilated rooms. Bacteria released inside mechanically ventilated cubicles escaped into the corridor, but this transfer was reduced by the presence of an airlock. UV barriers at the entrance to the airlock and the cubicle reduced the transfer of bacteria from cubicle to corridor. During a period of 4 years while the ward was in use for surgical and gynaecological patients, the incidence of post-operative sepsis and colonization of wounds by multiple-resistant Staphylococcus aureus was lower (though not significantly lower) in the plenum-ventilated rooms than in the open ward, the recirculator-ventilated cubicles and the window-ventilated cubicles. Nasal acquisition of multiple-resistant Staph. aureus was significantly less common in the plenum-ventilated than in the recirculator-ventilated cubicles and in the other areas. Mean counts of bacteria on settle-plates were significantly lower in the plenum-ventilated cubicles than in the other areas; mean settle-plate counts in the recirculator-ventilated cubicles were significantly lower than in the open ward and in the window-ventilated side-room; similar results were shown by slit-sampling of air. Mean settle-plate counts were significantly lower in all areas when the ward was occupied by female patients. Staph. aureus was rarely carried by air from plenum-ventilated or other cubicles to the open ward, or from the open ward to the cubicles; though staphylococci were transferred from one floor area to another, they did not appear to be redispersed into the air in sufficient numbers to infect the patients. Ultra-violet irradiation caused a significant reduction in the total and staphylococcal counts from the floors of airlocks, and a significant reduction of total counts in the air. PMID:5289715
Characterization of a mine fire using atmospheric monitoring system sensor data.
Yuan, L; Thomas, R A; Zhou, L
2017-06-01
Atmospheric monitoring systems (AMS) have been widely used in underground coal mines in the United States for the detection of fire in the belt entry and the monitoring of other ventilation-related parameters such as airflow velocity and methane concentration in specific mine locations. In addition to an AMS being able to detect a mine fire, the AMS data have the potential to provide fire characteristic information such as fire growth - in terms of heat release rate - and exact fire location. Such information is critical in making decisions regarding fire-fighting strategies, underground personnel evacuation and optimal escape routes. In this study, a methodology was developed to calculate the fire heat release rate using AMS sensor data for carbon monoxide concentration, carbon dioxide concentration and airflow velocity based on the theory of heat and species transfer in ventilation airflow. Full-scale mine fire experiments were then conducted in the Pittsburgh Mining Research Division's Safety Research Coal Mine using an AMS with different fire sources. Sensor data collected from the experiments were used to calculate the heat release rates of the fires using this methodology. The calculated heat release rate was compared with the value determined from the mass loss rate of the combustible material using a digital load cell. The experimental results show that the heat release rate of a mine fire can be calculated using AMS sensor data with reasonable accuracy.
Kishore, Sunil; Chandelia, Sudha; Patharia, Neha; Swarnim
2016-11-01
Sewing machine oil ingestion is rare but is possible due to its availability at home. Chemically, it belongs to hydrocarbon family which is toxic if aspirated, owing to their physical properties such as high volatility and low viscosity. On the contrary, sewing machine lubricant has high viscosity and low volatility which makes it aspiration less likely. The main danger of hydrocarbon ingestion is chemical pneumonitis which may be as severe as acute respiratory distress syndrome (ARDS). We report a case of a 5-year-old girl with accidental ingestion of sewing machine lubricant oil, who subsequently developed ARDS refractory to mechanical ventilation. There was much improvement with airway pressure release ventilation mode of ventilation, but the child succumbed to death due to pulmonary hemorrhage.
Kishore, Sunil; Chandelia, Sudha; Patharia, Neha; Swarnim
2016-01-01
Sewing machine oil ingestion is rare but is possible due to its availability at home. Chemically, it belongs to hydrocarbon family which is toxic if aspirated, owing to their physical properties such as high volatility and low viscosity. On the contrary, sewing machine lubricant has high viscosity and low volatility which makes it aspiration less likely. The main danger of hydrocarbon ingestion is chemical pneumonitis which may be as severe as acute respiratory distress syndrome (ARDS). We report a case of a 5-year-old girl with accidental ingestion of sewing machine lubricant oil, who subsequently developed ARDS refractory to mechanical ventilation. There was much improvement with airway pressure release ventilation mode of ventilation, but the child succumbed to death due to pulmonary hemorrhage. PMID:27994384
Roy, Shreyas; Sadowitz, Benjamin; Andrews, Penny; Gatto, Louis; Marx, William; Ge, Lin; Wang, Guirong; Lin, Xin; Dean, David A.; Kuhn, Michael; Ghosh, Auyon; Satalin, Joshua; Snyder, Kathy; Vodovotz, Yoram; Nieman, Gary; Habashi, Nader
2012-01-01
Background Established ARDS is often refractory to treatment. Clinical trials have demonstrated modest treatment effects, and mortality remains high. Ventilator strategies must be developed to prevent ARDS. Hypothesis Early ventilatory intervention will block progression to ARDS if the ventilator mode: 1) maintains alveolar stability and 2) reduces pulmonary edema formation. Methods Yorkshire Pigs (38–45kg) were anaesthetized and subjected to "2-hit" Ischemia-Reperfusion and Peritoneal Sepsis. Following injury, animals were randomized into two groups: Early Preventative Ventilation (Airway Pressure Release Ventilation- APRV) vs. Non-Preventative Ventilation (NPV) and followed for 48hr. All animals received anesthesia, antibiotics, and fluid/vasopressor therapy per Surviving Sepsis Campaign. Ventilation parameters: 1) NPV Group - Tidal volume (Vt): 10cc/kg + PEEP- 5 cm/H2O volume-cycled mode, 2) APRV Group - Vt: 10–15 cc/kg; Phigh, Plow, Thigh, Tlow were titrated for optimal alveolar stability. Physiologic data and plasma were collected throughout the 48hr study period, followed by BAL and necropsy. Results APRV prevented development of ARDS (p<0.001 vs NPV) by PaO2/FiO2 ratio. Quantitative histological scoring showed APRV prevented lung tissue injury (p<0.001 vs. NPV). BALF showed APRV lowered total protein and IL-6, while preserving surfactant proteins A & B (p<0.05 vs. NPV). APRV significantly lowered lung water (p<0.001 vs. NPV). Plasma IL-6 concentrations were similar between groups. Conclusions Early preventative mechanical ventilation with APRV blocked ARDS development, preserved surfactant proteins, and reduced pulmonary inflammation and edema, despite systemic inflammation similar to NPV. These data suggest early preventative ventilation strategies stabilizing alveoli and reducing pulmonary edema can attenuate ARDS after ischemia-reperfusion-sepsis. PMID:22846945
Adelborg, K; Bjørnshave, K; Mortensen, M B; Espeseth, E; Wolff, A; Løfgren, B
2014-07-01
Thirty surf lifeguards (mean (SD) age: 25.1 (4.8) years; 21 male, 9 female) were randomly assigned to perform 2 × 3 min of cardiopulmonary resuscitation on a manikin using mouth-to-face-shield ventilation (AMBU LifeKey) and mouth-to-pocket-mask ventilation (Laerdal Pocket Mask). Interruptions in chest compressions, effective ventilation (visible chest rise) ratio, tidal volume and inspiratory time were recorded. Interruptions in chest compressions per cycle were increased with mouth-to-face-shield ventilation (mean (SD) 8.6 (1.7) s) compared with mouth-to-pocket-mask ventilation (6.9 (1.2) s, p < 0.0001). The proportion of effective ventilations was less using mouth-to-face-shield ventilation (199/242 (82%)) compared with mouth-to-pocket-mask ventilation (239/240 (100%), p = 0.0002). Tidal volume was lower using mouth-to-face-shield ventilation (mean (SD) 0.36 (0.20) l) compared with mouth-to-pocket-mask ventilation (0.45 (0.20) l, p = 0.006). No differences in inspiratory times were observed between mouth-to-face-shield ventilation and mouth-to-pocket-mask ventilation. In conclusion, mouth-to-face-shield ventilation increases interruptions in chest compressions, reduces the proportion of effective ventilations and decreases delivered tidal volumes compared with mouth-to-pocket-mask ventilation. © 2014 The Association of Anaesthetists of Great Britain and Ireland.
Shan, Yuexin; Akram, Ali; Amatullah, Hajera; Zhou, Dun Yuan; Gali, Patricia L.; Maron-Gutierrez, Tatiana; González-López, Adrian; Zhou, Louis; Rocco, Patricia R.M.; Hwang, David; Albaiceta, Guillermo M.; Haitsma, Jack J.
2015-01-01
Abstract Aims: Ventilator-induced lung injury (VILI) contributes to mortality in patients with acute respiratory distress syndrome, the most severe form of acute lung injury (ALI). Absence of activating transcription factor 3 (ATF3) confers susceptibility to ALI/VILI. To identify cell-specific ATF3-dependent mechanisms of susceptibility to ALI/VILI, we generated ATF3 chimera by adoptive bone marrow (BM) transfer and randomized to inhaled saline or lipopolysacharide (LPS) in the presence of mechanical ventilation (MV). Adenovirus vectors to silence or overexpress ATF3 were used in primary human bronchial epithelial cells and murine BM-derived macrophages from wild-type or ATF3-deficient mice. Results: Absence of ATF3 in myeloid-derived cells caused increased pulmonary cellular infiltration. In contrast, absence of ATF3 in parenchymal cells resulted in loss of alveolar-capillary membrane integrity and increased exudative edema. ATF3-deficient macrophages were unable to limit the expression of pro-inflammatory mediators. Knockdown of ATF3 in resident cells resulted in decreased junctional protein expression and increased paracellular leak. ATF3 overexpression abrogated LPS induced membrane permeability. Despite release of ATF3-dependent Nrf2 transcriptional inhibition, mice that lacked ATF3 expression in resident cells had increased Nrf2 protein degradation. Innovation: In our model, in the absence of ATF3 in parenchymal cells increased Nrf2 degradation is the result of increased Keap-1 expression and loss of DJ-1 (Parkinson disease [autosomal recessive, early onset] 7), previously not known to play a role in lung injury. Conclusion: Results suggest that ATF3 confers protection to lung injury by preventing inflammatory cell recruitment and barrier disruption in a cell-specific manner, opening novel opportunities for cell specific therapy for ALI/VILI. Antioxid. Redox Signal. 22, 651–668. PMID:25401197
Levionnois, Olivier L; Bergadano, Alessandra; Schatzmann, Urs
2006-01-01
To describe the use of an endobronchial blocker (EBB) and to perform selective ventilation during pulmonary lobe resection via thoracotomy in a dog and report its accidental stapling in the resection site. Clinical case report. One female dog with a suspected abscess or neoplasia of the right caudal pulmonary lobe. One-lung ventilation was performed using a wire-guided EBB to seal the contaminated parenchyma and facilitate surgical access. The affected lung parenchyma was resected and the resection site was closed with staples. Lobar resection was performed successfully, but the loop of the EBB guide wire was inadvertently entrapped in the staple line of the lobectomy. Staples were removed to release the wire loop, and the resulting air leak caused loss of ventilation control until the parenchyma was re-sealed. We recommend removing the wire guide associate with the EBB after successful lung separation to avoid accidents that could have life-threatening consequences if not recognized. One-lung ventilation is useful to isolate healthy parenchyma from diseased parenchyma during lobectomy. Anesthesiologists and surgeons need to be aware of the potential complications associated with use of EBB.
NASA Astrophysics Data System (ADS)
Krivonogov, Nikolay G.; Efimova, Nataliya Y.; Zavadovsky, Konstantin W.; Lishmanov, Yuri B.
2016-08-01
Ventilation/perfusion lung scintigraphy was performed in 39 patients with verified diagnosis of community-acquired pneumonia (CAP) and in 14 patients with peripheral lung cancer. Ventilation/perfusion ratio, apical-basal gradients of ventilation (U/L(V)) and lung perfusion (U/L(P)), and alveolar capillary permeability of radionuclide aerosol were determined based on scintigraphy data. The study demonstrated that main signs of CAP were increases in ventilation/perfusion ratio, perfusion and ventilation gradient on a side of the diseased lung, and two-side increase in alveolar capillary permeability rate for radionuclide aerosol. Unlike this, scintigraphic signs of peripheral lung cancer comprise an increase in ventilation/perfusion ratio over 1.0 on a side of the diseased lung with its simultaneous decrease on a contralateral side, normal values of perfusion and ventilation gradients of both lungs, and delayed alveolar capillary clearance in the diseased lung compared with the intact lung.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krivonogov, Nikolay G., E-mail: kng@cardio-tomsk.ru; Efimova, Nataliya Y., E-mail: efimova@cardio-tomsk.ru; Zavadovsky, Konstantin W.
Ventilation/perfusion lung scintigraphy was performed in 39 patients with verified diagnosis of community-acquired pneumonia (CAP) and in 14 patients with peripheral lung cancer. Ventilation/perfusion ratio, apical-basal gradients of ventilation (U/L(V)) and lung perfusion (U/L(P)), and alveolar capillary permeability of radionuclide aerosol were determined based on scintigraphy data. The study demonstrated that main signs of CAP were increases in ventilation/perfusion ratio, perfusion and ventilation gradient on a side of the diseased lung, and two-side increase in alveolar capillary permeability rate for radionuclide aerosol. Unlike this, scintigraphic signs of peripheral lung cancer comprise an increase in ventilation/perfusion ratio over 1.0 on amore » side of the diseased lung with its simultaneous decrease on a contralateral side, normal values of perfusion and ventilation gradients of both lungs, and delayed alveolar capillary clearance in the diseased lung compared with the intact lung.« less
Hillman, Noah H; Gisslen, Tate; Polglase, Graeme R; Kallapur, Suhas G; Jobe, Alan H
2014-01-01
Chorioamnionitis and mechanical ventilation are associated with bronchopulmonary dysplasia (BPD) in preterm infants. Mechanical ventilation at birth activates both inflammatory and acute phase responses. These responses can be partially modulated by previous exposure to intra-amniotic (IA) LPS or Ureaplasma parvum (UP). Epidermal growth factor receptor (EGFR) ligands participate in lung development, and angiotensin converting enzyme (ACE) 1 and ACE2 contribute to lung inflammation. We asked whether brief mechanical ventilation at birth altered EGFR and ACE pathways and if antenatal exposure to IA LPS or UP could modulate these effects. Ewes were exposed to IA injections of UP, LPS or saline multiple days prior to preterm delivery at 85% gestation. Lambs were either immediately euthanized or mechanically ventilated for 2 to 3 hr. IA UP and LPS cause modest changes in the EGFR ligands amphiregulin (AREG), epiregulin (EREG), heparin binding epidermal growth factor (HB-EGF), and betacellulin (BTC) mRNA expression. Mechanical ventilation greatly increased mRNA expression of AREG, EREG, and HB-EGF, with no additional increases resulting from IA LPS or UP. With ventilation AREG and EREG mRNA localized to cells in terminal airspace. EGFR mRNA also increased with mechanical ventilation. IA UP and LPS decreased ACE1 mRNA and increased ACE2 mRNA, resulting in a 4 fold change in the ACE1/ACE2 ratio. Mechanical ventilation with large tidal volumes increased both ACE1 and ACE2 expression. The alterations seen in ACE with IA exposures and EGFR pathways with mechanical ventilation may contribute to the development of BPD in preterm infants.
Hartog, A; Vazquez de Anda, G F; Gommers, D; Kaisers, U; Verbrugge, S J; Schnabel, R; Lachmann, B
1999-01-01
We have compared three treatment strategies, that aim to prevent repetitive alveolar collapse, for their effect on gas exchange, lung mechanics, lung injury, protein transfer into the alveoli and surfactant system, in a model of acute lung injury. In adult rats, the lungs were ventilated mechanically with 100% oxygen and a PEEP of 6 cm H2O, and acute lung injury was induced by repeated lung lavage to obtain a PaO2 value < 13 kPa. Animals were then allocated randomly (n = 12 in each group) to receive exogenous surfactant therapy, ventilation with high PEEP (18 cm H2O), partial liquid ventilation or ventilation with low PEEP (8 cm H2O) (ventilated controls). Blood-gas values were measured hourly. At the end of the 4-h study, in six animals per group, pressure-volume curves were constructed and bronchoalveolar lavage (BAL) was performed, whereas in the remaining animals lung injury was assessed. In the ventilated control group, arterial oxygenation did not improve and protein concentration of BAL and conversion of active to non-active surfactant components increased significantly. In the three treatment groups, PaO2 increased rapidly to > 50 kPa and remained stable over the next 4 h. The protein concentration of BAL fluid increased significantly only in the partial liquid ventilation group. Conversion of active to non-active surfactant components increased significantly in the partial liquid ventilation group and in the group ventilated with high PEEP. In the surfactant group and partial liquid ventilation groups, less lung injury was found compared with the ventilated control group and the group ventilated with high PEEP. We conclude that although all three strategies improved PaO2 to > 50 kPa, the impact on protein transfer into the alveoli, surfactant system and lung injury differed markedly.
Choi, Young-Bin; Lee, Juyoung; Park, Jisun; Jun, Yong Hoon
2018-03-01
To evaluate the in-hospital consequences of prolonged respiratory support with invasive mechanical ventilation in very low birth weight infants. A cohort study was performed using prospectively collected data from 69 neonatal intensive care units participating in the Korean national registry. In total, 3508 very low birth weight infants born between January 1, 2013 and December 31, 2014 were reviewed. The adjusted hazard ratio for death increased significantly for infants who received mechanical ventilation for more than 2 weeks compared with those were mechanically ventilated for 7 days or less. The individual mortality rate increased after 8 weeks, reaching 50% and 60% at 14 and 16 weeks of cumulative mechanical ventilation, respectively. After adjusting for potential confounders, the cumulative duration of mechanical ventilation was associated with a clinically significant increase in the odds of bronchopulmonary dysplasia and pulmonary hypertension. Mechanical ventilation exposure for longer than 2 weeks, compared with 7 days or less, was associated with retinopathy of prematurity requiring laser coagulation and periventricular leukomalacia. The odds of abnormal auditory screening test results were significantly increased in infants who needed mechanical ventilation for more than 4 weeks. A longer cumulative duration of mechanical ventilation was associated with increased lengths of hospitalization and parenteral nutrition and a higher probability of discharge with poor achievement of physical growth. Although mechanical ventilation is a life-saving intervention for premature infants, these results indicate that it is associated with negative consequences when applied for prolonged periods. Copyright © 2017 Elsevier Inc. All rights reserved.
Kimura, Fumiharu
2016-04-28
Invasive and/or non-invasive mechanical ventilation are most important options of respiratory management in amyotrophic lateral sclerosis. We evaluated the frequency, clinical characteristics, decision-making factors about ventilation and survival analysis of 190 people with amyotrophic lateral sclerosis patients from 1990 until 2013. Thirty-one percentage of patients underwent tracheostomy invasive ventilation with the rate increasing more than the past 20 years. The ratio of tracheostomy invasive ventilation in patients >65 years old was significantly increased after 2000 (25%) as compared to before (10%). After 2010, the standard use of non-invasive ventilation showed a tendency to reduce the frequency of tracheostomy invasive ventilation. Mechanical ventilation prolonged median survival (75 months in tracheostomy invasive ventilation, 43 months in non-invasive ventilation vs natural course, 32 months). The life-extending effects by tracheostomy invasive ventilation were longer in younger patients ≤65 years old at the time of ventilation support than in older patients. Presence of partners and care at home were associated with better survival. Following factors related to the decision to perform tracheostomy invasive ventilation: patients ≤65 years old: greater use of non-invasive ventilation: presence of a spouse: faster tracheostomy: higher progression rate; and preserved motor functions. No patients who underwent tracheostomy invasive ventilation died from a decision to withdraw mechanical ventilation. The present study provides factors related to decision-making process and survival after tracheostomy and help clinicians and family members to expand the knowledge about ventilation.
USDA-ARS?s Scientific Manuscript database
Increasing broiler house size and ventilation capacity have resulted in increased light ingress through ventilation system component apertures. The effective photoperiod for broilers may create local increases in light intensity, which may also impact broiler’ body homeostasis. The objective of this...
Accelerated deflation promotes homogeneous airspace liquid distribution in the edematous lung.
Wu, You; Nguyen, Tam L; Perlman, Carrie E
2017-04-01
Edematous lungs contain regions with heterogeneous alveolar flooding. Liquid is trapped in flooded alveoli by a pressure barrier-higher liquid pressure at the border than in the center of flooded alveoli-that is proportional to surface tension, T Stress is concentrated between aerated and flooded alveoli, to a degree proportional to T Mechanical ventilation, by cyclically increasing T , injuriously exacerbates stress concentrations. Overcoming the pressure barrier to redistribute liquid more homogeneously between alveoli should reduce stress concentration prevalence and ventilation injury. In isolated rat lungs, we test whether accelerated deflation can overcome the pressure barrier and catapult liquid out of flooded alveoli. We generate a local edema model with normal T by microinfusing liquid into surface alveoli. We generate a global edema model with high T by establishing hydrostatic edema, which does not alter T , and then gently ventilating the edematous lungs, which increases T at 15 cmH 2 O transpulmonary pressure by 52%. Thus ventilation of globally edematous lungs increases T , which should increase stress concentrations and, with positive feedback, cause escalating ventilation injury. In the local model, when the pressure barrier is moderate, accelerated deflation causes liquid to escape from flooded alveoli and redistribute more equitably. Flooding heterogeneity tends to decrease. In the global model, accelerated deflation causes liquid escape, but-because of elevated T -the liquid jumps to nearby, aerated alveoli. Flooding heterogeneity is unaltered. In pulmonary edema with normal T , early ventilation with accelerated deflation might reduce the positive feedback mechanism through which ventilation injury increases over time. NEW & NOTEWORTHY We introduce, in the isolated rat lung, a new model of pulmonary edema with elevated surface tension. We first generate hydrostatic edema and then ventilate gently to increase surface tension. We investigate the mechanical mechanisms through which 1 ) ventilation injures edematous lungs and 2 ) ventilation with accelerated deflation might lessen ventilation injury. Copyright © 2017 the American Physiological Society.
Accelerated deflation promotes homogeneous airspace liquid distribution in the edematous lung
Wu, You; Nguyen, Tam L.
2017-01-01
Edematous lungs contain regions with heterogeneous alveolar flooding. Liquid is trapped in flooded alveoli by a pressure barrier—higher liquid pressure at the border than in the center of flooded alveoli—that is proportional to surface tension, T. Stress is concentrated between aerated and flooded alveoli, to a degree proportional to T. Mechanical ventilation, by cyclically increasing T, injuriously exacerbates stress concentrations. Overcoming the pressure barrier to redistribute liquid more homogeneously between alveoli should reduce stress concentration prevalence and ventilation injury. In isolated rat lungs, we test whether accelerated deflation can overcome the pressure barrier and catapult liquid out of flooded alveoli. We generate a local edema model with normal T by microinfusing liquid into surface alveoli. We generate a global edema model with high T by establishing hydrostatic edema, which does not alter T, and then gently ventilating the edematous lungs, which increases T at 15 cmH2O transpulmonary pressure by 52%. Thus ventilation of globally edematous lungs increases T, which should increase stress concentrations and, with positive feedback, cause escalating ventilation injury. In the local model, when the pressure barrier is moderate, accelerated deflation causes liquid to escape from flooded alveoli and redistribute more equitably. Flooding heterogeneity tends to decrease. In the global model, accelerated deflation causes liquid escape, but—because of elevated T—the liquid jumps to nearby, aerated alveoli. Flooding heterogeneity is unaltered. In pulmonary edema with normal T, early ventilation with accelerated deflation might reduce the positive feedback mechanism through which ventilation injury increases over time. NEW & NOTEWORTHY We introduce, in the isolated rat lung, a new model of pulmonary edema with elevated surface tension. We first generate hydrostatic edema and then ventilate gently to increase surface tension. We investigate the mechanical mechanisms through which 1) ventilation injures edematous lungs and 2) ventilation with accelerated deflation might lessen ventilation injury. PMID:27979983
Duration of Mechanical Ventilation in the Emergency Department.
Angotti, Lauren B; Richards, Jeremy B; Fisher, Daniel F; Sankoff, Jeffrey D; Seigel, Todd A; Al Ashry, Haitham S; Wilcox, Susan R
2017-08-01
Due to hospital crowding, mechanically ventilated patients are increasingly spending hours boarding in emergency departments (ED) before intensive care unit (ICU) admission. This study aims to evaluate the association between time ventilated in the ED and in-hospital mortality, duration of mechanical ventilation, ICU and hospital length of stay (LOS). This was a multi-center, prospective, observational study of patients ventilated in the ED, conducted at three academic Level I Trauma Centers from July 2011 to March 2013. All consecutive adult patients on invasive mechanical ventilation were eligible for enrollment. We performed a Cox regression to assess for a mortality effect for mechanically ventilated patients with each hour of increasing LOS in the ED and multivariable regression analyses to assess for independently significant contributors to in-hospital mortality. Our primary outcome was in-hospital mortality, with secondary outcomes of ventilator days, ICU LOS and hospital LOS. We further commented on use of lung protective ventilation and frequency of ventilator changes made in this cohort. We enrolled 535 patients, of whom 525 met all inclusion criteria. Altered mental status without respiratory pathology was the most common reason for intubation, followed by trauma and respiratory failure. Using iterated Cox regression, a mortality effect occurred at ED time of mechanical ventilation > 7 hours, and the longer ED stay was also associated with a longer total duration of intubation. However, adjusted multivariable regression analysis demonstrated only older age and admission to the neurosciences ICU as independently associated with increased mortality. Of interest, only 23.8% of patients ventilated in the ED for over seven hours had changes made to their ventilator. In a prospective observational study of patients mechanically ventilated in the ED, there was a significant mortality benefit to expedited transfer of patients into an appropriate ICU setting.
Code System to Calculate Tornado-Induced Flow Material Transport.
DOE Office of Scientific and Technical Information (OSTI.GOV)
ANDRAE, R. W.
1999-11-18
Version: 00 TORAC models tornado-induced flows, pressures, and material transport within structures. Its use is directed toward nuclear fuel cycle facilities and their primary release pathway, the ventilation system. However, it is applicable to other structures and can model other airflow pathways within a facility. In a nuclear facility, this network system could include process cells, canyons, laboratory offices, corridors, and offgas systems. TORAC predicts flow through a network system that also includes ventilation system components such as filters, dampers, ducts, and blowers. These ventilation system components are connected to the rooms and corridors of the facility to form amore » complete network for moving air through the structure and, perhaps, maintaining pressure levels in certain areas. The material transport capability in TORAC is very basic and includes convection, depletion, entrainment, and filtration of material.« less
Characterization of a mine fire using atmospheric monitoring system sensor data
Yuan, L.; Thomas, R.A.; Zhou, L.
2017-01-01
Atmospheric monitoring systems (AMS) have been widely used in underground coal mines in the United States for the detection of fire in the belt entry and the monitoring of other ventilation-related parameters such as airflow velocity and methane concentration in specific mine locations. In addition to an AMS being able to detect a mine fire, the AMS data have the potential to provide fire characteristic information such as fire growth — in terms of heat release rate — and exact fire location. Such information is critical in making decisions regarding fire-fighting strategies, underground personnel evacuation and optimal escape routes. In this study, a methodology was developed to calculate the fire heat release rate using AMS sensor data for carbon monoxide concentration, carbon dioxide concentration and airflow velocity based on the theory of heat and species transfer in ventilation airflow. Full-scale mine fire experiments were then conducted in the Pittsburgh Mining Research Division’s Safety Research Coal Mine using an AMS with different fire sources. Sensor data collected from the experiments were used to calculate the heat release rates of the fires using this methodology. The calculated heat release rate was compared with the value determined from the mass loss rate of the combustible material using a digital load cell. The experimental results show that the heat release rate of a mine fire can be calculated using AMS sensor data with reasonable accuracy. PMID:28845058
Indoor Air Quality: Is Increased Ventilation the Answer?
ERIC Educational Resources Information Center
Hansen, Shirley
1989-01-01
Explains how indoor air quality is affected by pollutants in the air and also by temperature, humidity, and ventilation. Increased ventilation alone seldom solves the "sick building syndrome." Lists ways to improve indoor air quality and optimize energy efficiency. (MLF)
Optimal Delivery of Aerosols to Infants During Mechanical Ventilation
Azimi, Mandana; Hindle, Michael
2014-01-01
Abstract Purpose: The objective of this study was to determine optimal aerosol delivery conditions for a full-term (3.6 kg) infant receiving invasive mechanical ventilation by evaluating the effects of aerosol particle size, a new wye connector, and timing of aerosol delivery. Methods: In vitro experiments used a vibrating mesh nebulizer and evaluated drug deposition fraction and emitted dose through ventilation circuits containing either a commercial (CM) or new streamlined (SL) wye connector and 3-mm endotracheal tube (ETT) for aerosols with mass median aerodynamic diameters of 880 nm, 1.78 μm, and 4.9 μm. The aerosol was released into the circuit either over the full inhalation cycle (T1 delivery) or over the first half of inhalation (T2 delivery). Validated computational fluid dynamics (CFD) simulations and whole-lung model predictions were used to assess lung deposition and exhaled dose during cyclic ventilation. Results: In vitro experiments at a steady-state tracheal flow rate of 5 L/min resulted in 80–90% transmission of the 880-nm and 1.78-μm aerosols from the ETT. Based on CFD simulations with cyclic ventilation, the SL wye design reduced depositional losses in the wye by a factor of approximately 2–4 and improved lung delivery efficiencies by a factor of approximately 2 compared with the CM device. Delivery of the aerosol over the first half of the inspiratory cycle (T2) reduced exhaled dose from the ventilation circuit by a factor of 4 compared with T1 delivery. Optimal lung deposition was achieved with the SL wye connector and T2 delivery, resulting in 45% and 60% lung deposition for optimal polydisperse (∼1.78 μm) and monodisperse (∼2.5 μm) particle sizes, respectively. Conclusions: Optimization of selected factors and use of a new SL wye connector can substantially increase the lung delivery efficiency of medical aerosols to infants from current values of <1–10% to a range of 45–60%. PMID:24299500
McGovern, P D; Albrecht, M; Belani, K G; Nachtsheim, C; Partington, P F; Carluke, I; Reed, M R
2011-11-01
We investigated the capacity of patient warming devices to disrupt the ultra-clean airflow system. We compared the effects of two patient warming technologies, forced-air and conductive fabric, on operating theatre ventilation during simulated hip replacement and lumbar spinal procedures using a mannequin as a patient. Infection data were reviewed to determine whether joint infection rates were associated with the type of patient warming device that was used. Neutral-buoyancy detergent bubbles were released adjacent to the mannequin's head and at floor level to assess the movement of non-sterile air into the clean airflow over the surgical site. During simulated hip replacement, bubble counts over the surgical site were greater for forced-air than for conductive fabric warming when the anaesthesia/surgery drape was laid down (p = 0.010) and at half-height (p < 0.001). For lumbar surgery, forced-air warming generated convection currents that mobilised floor air into the surgical site area. Conductive fabric warming had no such effect. A significant increase in deep joint infection, as demonstrated by an elevated infection odds ratio (3.8, p = 0.024), was identified during a period when forced-air warming was used compared to a period when conductive fabric warming was used. Air-free warming is, therefore, recommended over forced-air warming for orthopaedic procedures.
Müller-Redetzky, Holger C; Felten, Matthias; Hellwig, Katharina; Wienhold, Sandra-Maria; Naujoks, Jan; Opitz, Bastian; Kershaw, Olivia; Gruber, Achim D; Suttorp, Norbert; Witzenrath, Martin
2015-01-28
Lung-protective ventilation reduced acute respiratory distress syndrome (ARDS) mortality. To minimize ventilator-induced lung injury (VILI), tidal volume is limited, high plateau pressures are avoided, and positive end-expiratory pressure (PEEP) is applied. However, the impact of specific ventilatory patterns on VILI is not well defined. Increasing inspiratory time and thereby the inspiratory/expiratory ratio (I:E ratio) may improve oxygenation, but may also be harmful as the absolute stress and strain over time increase. We thus hypothesized that increasing inspiratory time and I:E ratio aggravates VILI. VILI was induced in mice by high tidal-volume ventilation (HVT 34 ml/kg). Low tidal-volume ventilation (LVT 9 ml/kg) was used in control groups. PEEP was set to 2 cm H2O, FiO2 was 0.5 in all groups. HVT and LVT mice were ventilated with either I:E of 1:2 (LVT 1:2, HVT 1:2) or 1:1 (LVT 1:1, HVT 1:1) for 4 hours or until an alternative end point, defined as mean arterial blood pressure below 40 mm Hg. Dynamic hyperinflation due to the increased I:E ratio was excluded in a separate group of animals. Survival, lung compliance, oxygenation, pulmonary permeability, markers of pulmonary and systemic inflammation (leukocyte differentiation in lung and blood, analyses of pulmonary interleukin-6, interleukin-1β, keratinocyte-derived chemokine, monocyte chemoattractant protein-1), and histopathologic pulmonary changes were analyzed. LVT 1:2 or LVT 1:1 did not result in VILI, and all individuals survived the ventilation period. HVT 1:2 decreased lung compliance, increased pulmonary neutrophils and cytokine expression, and evoked marked histologic signs of lung injury. All animals survived. HVT 1:1 caused further significant worsening of oxygenation, compliance and increased pulmonary proinflammatory cytokine expression, and pulmonary and blood neutrophils. In the HVT 1:1 group, significant mortality during mechanical ventilation was observed. According to the "baby lung" concept, mechanical ventilation-associated stress and strain in overinflated regions of ARDS lungs was simulated by using high tidal-volume ventilation. Increase of inspiratory time and I:E ratio significantly aggravated VILI in mice, suggesting an impact of a "stress/strain × time product" for the pathogenesis of VILI. Thus increasing the inspiratory time and I:E ratio should be critically considered.
Cost of ventilation and effect of digestive state on the ventilatory response of the tegu lizard.
Skovgaard, Nini; Wang, Tobias
2004-07-12
We performed simultaneous measurements of ventilation, oxygen uptake and carbon dioxide production in the South American lizard, Tupinambis merianae, equipped with a mask and maintained at 25 degrees C. Ventilation of resting animals was stimulated by progressive exposure to hypercapnia (2, 4 and 6%) or hypoxia (15, 10, 8 and 6%) in inspired gas mixture. This was carried out in both fasting and digesting animals. The ventilatory response to hypercapnia and hypoxia were affected by digestive state, with a more vigorous ventilatory response in digesting animals compared to fasting animals. Hypoxia doubled total ventilation while hypercapnia led to a four-fold increase in total ventilation both accomplished through an increase in tidal volume. Oxygen uptake remained constant during all hypercapnic exposures while there was an increase during hypoxia. Cost of ventilation was estimated to be 17% during hypoxia but less than 1% during hypercapnia. Our data indicate that ventilation can be greatly elevated at a small energetic cost.
An Expert System for the Design of Heating, Ventilating, and Air-Conditioning Systems
1989-12-14
vital sources of information that helped to solve this problem were a survey questionnaire sent to a group of novice engineers and classroom interaction...DTIC RILE COPY 00 N FROM: AFIT/CI 31 Jan 90 SUBJ: Review of Thesis/Disseration for Public Release N S TO: PA Request you review the attached for...REPORT APPROVED FOR PUBLIC RELEASE; 2b. DECLASSIFICATION/ DOWNGRADING SCHEDULE DISTRIBUTION UNLIMITED. 4. PERFORMING ORGANIZATION REPORT NUMBER( S ) S
Influence of cigarette filter ventilation on smokers' mouth level exposure to tar and nicotine.
Caraway, John W; Ashley, Madeleine; Bowman, Sheri A; Chen, Peter; Errington, Graham; Prasad, Krishna; Nelson, Paul R; Shepperd, Christopher J; Fearon, Ian M
2017-12-01
Cigarette filter ventilation allows air to be drawn into the filter, diluting the cigarette smoke. Although machine smoking reveals that toxicant yields are reduced, it does not predict human yields. The objective of this study was to investigate the relationship between cigarette filter ventilation and mouth level exposure (MLE) to tar and nicotine in cigarette smokers. We collated and reviewed data from 11 studies across 9 countries, in studies performed between 2005 and 2013 which contained data on MLE from 156 products with filter ventilation between 0% and 87%. MLE among 7534 participants to tar and nicotine was estimated using the part-filter analysis method from spent filter tips. For each of the countries, MLE to tar and nicotine tended to decrease as filter ventilation increased. Across countries, per-cigarette MLE to tar and nicotine decreased as filter ventilation increased from 0% to 87%. Daily MLE to tar and nicotine also decreased across the range of increasing filter ventilation. These data suggest that on average smokers of highly ventilated cigarettes are exposed to lower amounts of nicotine and tar per cigarette and per day than smokers of cigarettes with lower levels of ventilation. Copyright © 2017 British American Tobacco. Published by Elsevier Inc. All rights reserved.
Wang, P M; Lai-Fook, S J
1998-01-01
The hypothesis of this study is that pleural lubrication is enhanced by hyaluronan acting as a boundary lubricant in pleural liquid and by pleural filtration as reflected in changes in protein concentration with ventilation. Anesthetized rabbits were injected intravenously with Evans blue dye and ventilated with 100% O2 at either of two levels of ventilation for 6 h. Postmortem values of hyaluronan, total protein, and Evans blue-dyed albumin (EBA) concentrations in pleural liquid were greater at the higher ventilation, consistent with increases in boundary lubrication, pleural membrane permeability, and pleural filtration. To determine whether these effects were caused by hyperoxia or anesthesia, conscious rabbits were ventilated with either 3% CO2 or room air in a box for 6, 12, or 24 h. Similar to the anesthetized rabbits, pleural liquid hyaluronan concentration after 24 h was higher in the conscious rabbits with the hypercapnic-induced greater ventilation. By contrast, the time course of total protein and EBA in pleural liquid was similar in both groups of conscious rabbits, indicating no effect of ventilation on pleural permeability. The increase in pleural liquid hyaluronan concentration might be the result of mesothelial cell stimulation by a ventilation-induced increase in pleural liquid shear stress.
Paradoxical anaerobism in desert pupfish.
Heuton, Matt; Ayala, Luis; Burg, Chris; Dayton, Kyle; McKenna, Ken; Morante, Aldo; Puentedura, Georgina; Urbina, Natasha; Hillyard, Stanley; Steinberg, Spencer; van Breukelen, Frank
2015-12-01
In order to estimate metabolic demands of desert pupfish for conservation purposes, we measured oxygen consumption in fish acclimated to the ecologically relevant temperatures of 28 or 33°C. For these experiments, we used fish derived from a refuge population of Devils Hole pupfish (Cyprinodon diabolis). Measurement of routine oxygen consumption (V̇O2,routine) revealed some 33°C-acclimated fish (10% of 295 assayed fish) periodically exhibited periods of no measurable oxygen consumption despite available ambient oxygen tensions that were above the critical PO2. We call this phenomenon paradoxical anaerobism. The longest observed continuous bout with no oxygen consumption was 149 min, although typical bouts were much shorter. Fish maintained normal posture and ventilation rate (>230 ventilations per minute) during paradoxical anaerobism. Fish rarely demonstrated a compensatory increase in oxygen use following a period of paradoxical anaerobism. In contrast, only one out of 262 sampled fish acclimated at 28°C spontaneously demonstrated paradoxical anaerobism. Muscle lactate concentration was not elevated during periods of paradoxical anaerobism. However, the amount of ethanol released by the 33°C-acclimated fish was 7.3 times greater than that released by the 28°C acclimation group, suggesting ethanol may be used as an alternative end product of anaerobic metabolism. Exposure to exogenous ethanol, in concentrations as low as 0.1%, produced periods of paradoxical anaerobism even in 28°C-acclimated fish. © 2015. Published by The Company of Biologists Ltd.
Energy and cost associated with ventilating office buildings in a tropical climate.
Rim, Donghyun; Schiavon, Stefano; Nazaroff, William W
2015-01-01
Providing sufficient amounts of outdoor air to occupants is a critical building function for supporting occupant health, well-being and productivity. In tropical climates, high ventilation rates require substantial amounts of energy to cool and dehumidify supply air. This study evaluates the energy consumption and associated cost for thermally conditioning outdoor air provided for building ventilation in tropical climates, considering Singapore as an example locale. We investigated the influence on energy consumption and cost of the following factors: outdoor air temperature and humidity, ventilation rate (L/s per person), indoor air temperature and humidity, air conditioning system coefficient of performance (COP), and cost of electricity. Results show that dehumidification of outdoor air accounts for more than 80% of the energy needed for building ventilation in Singapore's tropical climate. Improved system performance and/or a small increase in the indoor temperature set point would permit relatively large ventilation rates (such as 25 L/s per person) at modest or no cost increment. Overall, even in a thermally demanding tropical climate, the energy cost associated with increasing ventilation rate up to 25 L/s per person is less than 1% of the wages of an office worker in an advanced economy like Singapore's. This result implies that the benefits of increasing outdoor air ventilation rate up to 25 L/s per person--which is suggested to provide for productivity increases, lower sick building syndrome symptom prevalence, and reduced sick leave--can be much larger than the incremental cost of ventilation.
Classroom ventilation and indoor air quality-results from the FRESH intervention study.
Rosbach, J; Krop, E; Vonk, M; van Ginkel, J; Meliefste, C; de Wind, S; Gehring, U; Brunekreef, B
2016-08-01
Inadequate ventilation of classrooms may lead to increased concentrations of pollutants generated indoors in schools. The FRESH study, on the effects of increased classroom ventilation on indoor air quality, was performed in 18 naturally ventilated classrooms of 17 primary schools in the Netherlands during the heating seasons of 2010-2012. In 12 classrooms, ventilation was increased to targeted CO2 concentrations of 800 or 1200 ppm, using a temporary CO2 controlled mechanical ventilation system. Six classrooms were included as controls. In each classroom, data on endotoxin, β(1,3)-glucans, and particles with diameters of <10 μm (PM10 ) and <2.5 μm (PM2.5 ) and nitrogen dioxide (NO2 ) were collected during three consecutive weeks. Associations between the intervention and these measured indoor air pollution levels were assessed using mixed models, with random classroom effects. The intervention lowered endotoxin and β(1,3)-glucan levels and PM10 concentrations significantly. PM10 for instance was reduced by 25 μg/m³ (95% confidence interval 13-38 μg/m³) from 54 μg/m³ at maximum ventilation rate. No significant differences were found between the two ventilation settings. Concentrations of PM2.5 and NO2 were not affected by the intervention. Our results provide evidence that increasing classroom ventilation is effective in decreasing the concentrations of some indoor-generated pollutants. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Modeling particle dispersion and deposition in indoor environments
NASA Astrophysics Data System (ADS)
Gao, N. P.; Niu, J. L.
Particle dispersion and deposition in man-made enclosed environments are closely related to the well-being of occupants. The present study developed a three-dimensional drift-flux model for particle movements in turbulent indoor airflows, and combined it into Eulerian approaches. To account for the process of particle deposition at solid boundaries, a semi-empirical deposition model was adopted in which the size-dependent deposition characteristics were well resolved. After validation against the experimental data in a scaled isothermal chamber and in a full-scale non-isothermal environmental chamber, the drift-flux model was used to investigate the deposition rates and human exposures to particles from two different sources with three typical ventilation systems: mixing ventilation (MV), displacement ventilation (DV), and under-floor air distribution (UFAD). For particles originating from the supply air, a V-shaped curve of the deposition velocity variation as a function of particle size was observed. The minimum deposition appeared at 0.1- 0.5μm. For supermicron particles, the ventilation type and air exchange rate had an ignorable effect on the deposition rate. The movements of submicron particles were like tracer gases while the gravitational settling effect should be taken into account for particles larger than 2.5μm. The temporal increment of human exposure to a step-up particle release in the supply air was determined, among many factors, by the distance between the occupant and air outlet. The larger the particle size, the lower the human exposure. For particles released from an internal heat source, the concentration stratification of small particles (diameter <10μm) in the vertical direction appeared with DV and UFAD, and it was found the advantageous principle for gaseous pollutants that a relatively less-polluted occupied zone existed in DV and UFAD was also applicable to small particles.
Football Equipment Removal Improves Chest Compression and Ventilation Efficacy.
Mihalik, Jason P; Lynall, Robert C; Fraser, Melissa A; Decoster, Laura C; De Maio, Valerie J; Patel, Amar P; Swartz, Erik E
2016-01-01
Airway access recommendations in potential catastrophic spine injury scenarios advocate for facemask removal, while keeping the helmet and shoulder pads in place for ensuing emergency transport. The anecdotal evidence to support these recommendations assumes that maintaining the helmet and shoulder pads assists inline cervical stabilization and that facial access guarantees adequate airway access. Our objective was to determine the effect of football equipment interference on performing chest compressions and delivering adequate ventilations on patient simulators. We hypothesized that conditions with more football equipment would decrease chest compression and ventilation efficacy. Thirty-two certified athletic trainers were block randomized to participate in six different compression conditions and six different ventilation conditions using human patient simulators. Data for chest compression (mean compression depth, compression rate, percentage of correctly released compressions, and percentage of adequate compressions) and ventilation (total ventilations, mean ventilation volume, and percentage of ventilations delivering adequate volume) conditions were analyzed across all conditions. The fully equipped athlete resulted in the lowest mean compression depth (F5,154 = 22.82; P < 0.001; Effect Size = 0.98) and delivery of adequate compressions (F5,154 = 15.06; P < 0.001; Effect Size = 1.09) compared to all other conditions. Bag-valve mask conditions resulted in delivery of significantly higher mean ventilation volumes compared to all 1- or 2-person pocketmask conditions (F5,150 = 40.05; P < 0.001; Effect Size = 1.47). Two-responder ventilation scenarios resulted in delivery of a greater number of total ventilations (F5,153 = 3.99; P = 0.002; Effect Size = 0.26) and percentage of adequate ventilations (F5,150 = 5.44; P < 0.001; Effect Size = 0.89) compared to one-responder scenarios. Non-chinstrap conditions permitted greater ventilation volumes (F3,28 = 35.17; P < 0.001; Effect Size = 1.78) and a greater percentage of adequate volume (F3,28 = 4.85; P = 0.008; Effect Size = 1.12) compared to conditions with the chinstrap buckled or with the chinstrap in place but not buckled. Chest compression and ventilation delivery are compromised in equipment-intense conditions when compared to conditions whereby equipment was mostly or entirely removed. Emergency medical personnel should remove the helmet and shoulder pads from all football athletes who require cardiopulmonary resuscitation, while maintaining appropriate cervical spine stabilization when injury is suspected. Further research is needed to confirm our findings supporting full equipment removal for chest compression and ventilation delivery.
Soluri-Martins, André; Moraes, Lillian; Santos, Raquel S; Santos, Cintia L; Huhle, Robert; Capelozzi, Vera L; Pelosi, Paolo; Silva, Pedro L; de Abreu, Marcelo Gama; Rocco, Patricia R M
2017-01-01
Lung ischemia-reperfusion injury remains a major complication after lung transplantation. Variable ventilation (VV) has been shown to improve respiratory function and reduce pulmonary histological damage compared to protective volume-controlled ventilation (VCV) in different models of lung injury induced by endotoxin, surfactant depletion by saline lavage, and hydrochloric acid. However, no study has compared the biological impact of VV vs. VCV in lung ischemia-reperfusion injury, which has a complex pathophysiology different from that of other experimental models. Thirty-six animals were randomly assigned to one of two groups: (1) ischemia-reperfusion (IR), in which the left pulmonary hilum was completely occluded and released after 30 min; and (2) Sham, in which animals underwent the same surgical manipulation but without hilar clamping. Immediately after surgery, the left (IR-injured) and right (contralateral) lungs from 6 animals per group were removed, and served as non-ventilated group (NV) for molecular biology analysis. IR and Sham groups were further randomized to one of two ventilation strategies: VCV ( n = 6/group) [tidal volume (V T ) = 6 mL/kg, positive end-expiratory pressure (PEEP) = 2 cmH 2 O, fraction of inspired oxygen (FiO 2 ) = 0.4]; or VV, which was applied on a breath-to-breath basis as a sequence of randomly generated V T values ( n = 1200; mean V T = 6 mL/kg), with a 30% coefficient of variation. After 5 min of ventilation and at the end of a 2-h period (Final), respiratory system mechanics and arterial blood gases were measured. At Final, lungs were removed for histological and molecular biology analyses. Respiratory system elastance and alveolar collapse were lower in VCV than VV (mean ± SD, VCV 3.6 ± 1.3 cmH 2 0/ml and 2.0 ± 0.8 cmH 2 0/ml, p = 0.005; median [interquartile range], VCV 20.4% [7.9-33.1] and VV 5.4% [3.1-8.8], p = 0.04, respectively). In left lungs of IR animals, VCV increased the expression of interleukin-6 and intercellular adhesion molecule-1 compared to NV, with no significant differences between VV and NV. Compared to VCV, VV increased the expression of surfactant protein-D, suggesting protection from type II epithelial cell damage. In conclusion, in this experimental lung ischemia-reperfusion model, VV improved respiratory system elastance and reduced lung damage compared to VCV.
Soluri-Martins, André; Moraes, Lillian; Santos, Raquel S.; Santos, Cintia L.; Huhle, Robert; Capelozzi, Vera L.; Pelosi, Paolo; Silva, Pedro L.; de Abreu, Marcelo Gama; Rocco, Patricia R. M.
2017-01-01
Lung ischemia-reperfusion injury remains a major complication after lung transplantation. Variable ventilation (VV) has been shown to improve respiratory function and reduce pulmonary histological damage compared to protective volume-controlled ventilation (VCV) in different models of lung injury induced by endotoxin, surfactant depletion by saline lavage, and hydrochloric acid. However, no study has compared the biological impact of VV vs. VCV in lung ischemia-reperfusion injury, which has a complex pathophysiology different from that of other experimental models. Thirty-six animals were randomly assigned to one of two groups: (1) ischemia-reperfusion (IR), in which the left pulmonary hilum was completely occluded and released after 30 min; and (2) Sham, in which animals underwent the same surgical manipulation but without hilar clamping. Immediately after surgery, the left (IR-injured) and right (contralateral) lungs from 6 animals per group were removed, and served as non-ventilated group (NV) for molecular biology analysis. IR and Sham groups were further randomized to one of two ventilation strategies: VCV (n = 6/group) [tidal volume (VT) = 6 mL/kg, positive end-expiratory pressure (PEEP) = 2 cmH2O, fraction of inspired oxygen (FiO2) = 0.4]; or VV, which was applied on a breath-to-breath basis as a sequence of randomly generated VT values (n = 1200; mean VT = 6 mL/kg), with a 30% coefficient of variation. After 5 min of ventilation and at the end of a 2-h period (Final), respiratory system mechanics and arterial blood gases were measured. At Final, lungs were removed for histological and molecular biology analyses. Respiratory system elastance and alveolar collapse were lower in VCV than VV (mean ± SD, VCV 3.6 ± 1.3 cmH20/ml and 2.0 ± 0.8 cmH20/ml, p = 0.005; median [interquartile range], VCV 20.4% [7.9–33.1] and VV 5.4% [3.1–8.8], p = 0.04, respectively). In left lungs of IR animals, VCV increased the expression of interleukin-6 and intercellular adhesion molecule-1 compared to NV, with no significant differences between VV and NV. Compared to VCV, VV increased the expression of surfactant protein-D, suggesting protection from type II epithelial cell damage. In conclusion, in this experimental lung ischemia-reperfusion model, VV improved respiratory system elastance and reduced lung damage compared to VCV. PMID:28512431
A Case-Control Study on the Impact of Ventilator-Associated Tracheobronchitis in the PICU.
Wheeler, Derek S; Whitt, John D; Lake, Michael; Butcher, John; Schulte, Marion; Stalets, Erika
2015-07-01
Hospital-acquired infections increase morbidity, mortality, and charges in the PICU. We implemented a quality improvement bundle directed at ventilator-associated pneumonia in our PICU in 2005. We observed an increase in ventilator-associated tracheobronchitis coincident with the near-elimination of ventilator-associated pneumonia. The impact of ventilator-associated tracheobronchitis on critically ill children has not been previously described. Accordingly, we hypothesized that ventilator-associated tracheobronchitisis associated with increased length of stay, mortality, and hospital charge. Retrospective case-control study. Critically ill children admitted to a quaternary PICU at a free-standing academic children's hospital in the United States. None. We conducted a retrospective case control study, with institutional review board approval, of 77 consecutive cases of ventilator-associated tracheobronchitis admitted to our PICU from 2004-2010. We matched each case with a control based on the following criteria (in rank order): age range (< 30 d, 30 d to 24 mo, 24 mo to 12 yr, > 12 yr), admission Pediatric Risk of Mortality III score ± 10, number of ventilator days of control group (> 75% of days until development of ventilator-associated tracheobronchitis), primary diagnosis, underlying organ system dysfunction, surgical procedure, and gender. The primary outcome measured was PICU length of stay. Secondary outcomes included ventilator days, hospital length of stay, mortality, and PICU and hospital charges. Data was analyzed using chi square analysis and p less than 0.05 was considered significant. We successfully matched 45 of 77 ventilator-associated tracheobronchitis patients with controls. There were no significant differences in age, gender, diagnosis, or Pediatric Risk of Mortality III score between groups. Ventilator-associated tracheobronchitis patients had a longer PICU length of stay (median, 21.5 d, interquartile range, 24 d) compared to controls (median, 18 d; interquartile range, 17 d), although not statistically significant (p = 0.13). Ventilator days were also longer in the ventilator-associated tracheobronchitis patients (median, 17 d; IQR, 22 d) versus control (median, 10.5 d; interquartile range, 13 d) (p = 0.01). There was no significant difference in total hospital length of stay (54 d vs 36 d; p = 0.69). PICU mortality was higher in the ventilator-associated tracheobronchitis group (15% vs 5%; p = 0.14), although not statistically significant. There was an increase in both median PICU charges ($197,393 vs $172,344; p < 0.05) and hospital charges ($421,576 vs $350,649; p < 0.05) for ventilator-associated tracheobronchitis patients compared with controls. Ventilator-associated tracheobronchitis is a clinically significant hospital-acquired infection in the PICU and is associated with longer duration of mechanical ventilation and healthcare costs, possibly through causing a longer PICU length of stay. Quality improvement efforts should be directed at reducing the incidence of ventilator-associated tracheobronchitis in the PICU.
Marini, John J
2011-02-01
To present an updated discussion of those aspects of controlled positive pressure breathing and retained spontaneous regulation of breathing that impact the management of patients whose tissue oxygenation is compromised by acute lung injury. The recent introduction of ventilation techniques geared toward integrating natural breathing rhythms into even the earliest phase of acute respiratory distress syndrome support (e.g., airway pressure release, proportional assist ventilation, and neurally adjusted ventilatory assist), has stimulated a burst of new investigations. Optimizing gas exchange, avoiding lung injury, and preserving respiratory muscle strength and endurance are vital therapeutic objectives for managing acute lung injury. Accordingly, comparing the physiology and consequences of breathing patterns that preserve and eliminate breathing effort has been a theme of persisting investigative interest throughout the several decades over which it has been possible to sustain cardiopulmonary life support outside the operating theater.
CR Boardman; Samuel V. Glass
2015-01-01
The moisture transfer effectiveness (or latent effectiveness) of a cross-flow, membrane based energy recovery ventilator is measured and modeled. Analysis of in situ measurements for a full year shows that energy recovery ventilator latent effectiveness increases with increasing average relative humidity and surprisingly increases with decreasing average temperature. A...
Woehrle, Holger; Cowie, Martin R; Eulenburg, Christine; Suling, Anna; Angermann, Christiane; d'Ortho, Marie-Pia; Erdmann, Erland; Levy, Patrick; Simonds, Anita K; Somers, Virend K; Zannad, Faiez; Teschler, Helmut; Wegscheider, Karl
2017-08-01
This on-treatment analysis was conducted to facilitate understanding of mechanisms underlying the increased risk of all-cause and cardiovascular mortality in heart failure patients with reduced ejection fraction and predominant central sleep apnoea randomised to adaptive servo ventilation versus the control group in the SERVE-HF trial.Time-dependent on-treatment analyses were conducted (unadjusted and adjusted for predictive covariates). A comprehensive, time-dependent model was developed to correct for asymmetric selection effects (to minimise bias).The comprehensive model showed increased cardiovascular death hazard ratios during adaptive servo ventilation usage periods, slightly lower than those in the SERVE-HF intention-to-treat analysis. Self-selection bias was evident. Patients randomised to adaptive servo ventilation who crossed over to the control group were at higher risk of cardiovascular death than controls, while control patients with crossover to adaptive servo ventilation showed a trend towards lower risk of cardiovascular death than patients randomised to adaptive servo ventilation. Cardiovascular risk did not increase as nightly adaptive servo ventilation usage increased.On-treatment analysis showed similar results to the SERVE-HF intention-to-treat analysis, with an increased risk of cardiovascular death in heart failure with reduced ejection fraction patients with predominant central sleep apnoea treated with adaptive servo ventilation. Bias is inevitable and needs to be taken into account in any kind of on-treatment analysis in positive airway pressure studies. Copyright ©ERS 2017.
Luján, Manel; Sogo, Ana; Pomares, Xavier; Monsó, Eduard; Sales, Bernat; Blanch, Lluís
2013-05-01
New home ventilators are able to provide clinicians data of interest through built-in software. Monitoring of tidal volume (VT) is a key point in the assessment of the efficacy of home mechanical ventilation. To assess the reliability of the VT provided by 5 ventilators in a bench test. Five commercial ventilators from 4 different manufacturers were tested in pressure support mode with the help of a breathing simulator under different conditions of mechanical respiratory pattern, inflation pressure, and intentional leakage. Values provided by the built-in software of each ventilator were compared breath to breath with the VT monitored through an external pneumotachograph. Ten breaths for each condition were compared for every tested situation. All tested ventilators underestimated VT (ranges of -21.7 mL to -83.5 mL, which corresponded to -3.6% to -14.7% of the externally measured VT). A direct relationship between leak and underestimation was found in 4 ventilators, with higher underestimations of the VT when the leakage increased, ranging between -2.27% and -5.42% for each 10 L/min increase in the leakage. A ventilator that included an algorithm that computes the pressure loss through the tube as a function of the flow exiting the ventilator had the minimal effect of leaks on the estimation of VT (0.3%). In 3 ventilators the underestimation was also influenced by mechanical pattern (lower underestimation with restrictive, and higher with obstructive). The inclusion of algorithms that calculate the pressure loss as a function of the flow exiting the ventilator in commercial models may increase the reliability of VT estimation.
Analysis of a Pediatric Home Mechanical Ventilator Population.
Amirnovin, Rambod; Aghamohammadi, Sara; Riley, Carley; Woo, Marlyn S; Del Castillo, Sylvia
2018-05-01
The population of children requiring home mechanical ventilation has evolved over the years and has grown to include a variety of diagnoses and needs that have led to changes in the care of this unique population. The purpose of this study was to provide a descriptive analysis of pediatric patients requiring home mechanical ventilation after hospitalization and how the evolution of this technology has impacted their care. A retrospective, observational, longitudinal analysis of 164 children enrolled in a university-affiliated home mechanical ventilation program over 26 years was performed. Data included each child's primary diagnosis, date of tracheostomy placement, duration of mechanical ventilation during hospitalization that consisted of home mechanical ventilator initiation, total length of pediatric ICU stay, ventilator settings at time of discharge from pediatric ICU, and disposition (home, facility, or died). Univariate, bivariate, and regression analysis was used as appropriate. The most common diagnosis requiring the use of home mechanical ventilation was neuromuscular disease (53%), followed by chronic pulmonary disease (29%). The median length of stay in the pediatric ICU decreased significantly after the implementation of a ventilator ward (70 d [30-142] vs 36 d [18-67], P = .02). The distribution of subjects upon discharge was home (71%), skilled nursing facility (24%), and died (4%), with an increase in the proportion of subjects discharged on PEEP and those going to nursing facilities over time ( P = 0.02). The evolution of home mechanical ventilation has allowed earlier transition out of the pediatric ICU and with increasing disposition to skilled nursing facilities over time. There has also been a change in ventilator management, including increased use of PEEP upon discharge, possibly driven by changes in ventilators and in-patient practice patterns. Copyright © 2018 by Daedalus Enterprises.
Mercury Dispersion Modeling And Purge Ventilation Stack Height Determination For Tank 40H
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivera-Giboyeaux, A.
2017-05-19
The SRNL Atmospheric Technologies Group performed an analysis for mercury emissions from H-Tank Farm - Tank 40 ventilation system exhaust in order to assess whether the Short Term Exposure Limit (STEL), or Threshold Limit Value (TLV) levels for mercury will be exceeded during bulk sludge slurry mixing and sludge removal operations. The American Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD) was used as the main dispersion modelling tool for this analysis. The results indicated that a 45-foot stack is sufficient to raise the plume centerline from the Tank 40 release to prevent mercury exposure problems for any of the stackmore » discharge scenarios provided. However, a 42-foot stack at Tank 40 is sufficient to prevent mercury exposure concerns in all emission scenarios except the 50 mg/m 3 release. At a 42-foot stack height, values exceeding the exposure standards are only measured on receptors located above 34 feet.« less
Home Mechanical Ventilation: A 12-Year Population-Based Retrospective Cohort Study.
Povitz, Marcus; Rose, Louise; Shariff, Salimah Z; Leonard, Sean; Welk, Blayne; Jenkyn, Krista Bray; Leasa, David J; Gershon, Andrea S
2018-04-01
Increasing numbers of individuals are being initiated on home mechanical ventilation, including noninvasive (bi-level) and invasive mechanical ventilation delivered via tracheostomy due to chronic respiratory failure to enable symptom management and promote quality of life. Given the high care needs of these individuals, a better understanding of the indications for home mechanical ventilation, and health-care utilization is needed. We performed a retrospective cohort study using provincial health administrative data from Ontario, Canada (population ∼13,000,000). Home mechanical ventilation users were characterized using health administrative data to determine the indications for home mechanical ventilation, the need for acute care at the time of ventilation approval, and their health service use and mortality rates following approval. The annual incidence of home mechanical ventilation approval rose from 1.8/100,000 in 2000 to 5.0/100,000 in 2012, or an annual increase of approximately 0.3/100,000 persons/y. The leading indications were neuromuscular disease, thoracic restriction, and COPD. The indication for the remainder could not be determined due to limitations of the administrative databases. Of the 4,670 individuals, 23.0% commenced home mechanical ventilation following an acute care hospitalization. Among individuals who survived at least 1 y, fewer required hospitalization in the year that followed home mechanical ventilation approval (29.9% vs 39.8%) as compared with the year prior. Utilization of home mechanical ventilation is increasing in Ontario, Canada, and further study is needed to clarify the factors contributing to this and to further optimize utilization of health-care resources. Copyright © 2018 by Daedalus Enterprises.
Analysis of the systems of ventilation of residential houses of Ukraine and Estonia
NASA Astrophysics Data System (ADS)
Savchenko, Olena; Zhelykh, Vasyl; Voll, Hendrik
2017-12-01
The most common ventilation system in residential buildings in Ukraine is natural ventilation. In recent years, due to increased tightness of structures, an increase in the content of synthetic finishing materials in them, the quality of microclimate parameters deteriorated. One of the measures to improve the parameters of indoor air in residential buildings is the use of mechanical inflow and exhaust ventilation system. In this article the regulatory documents concerning the design of ventilation systems in Ukraine and Estonia and the requirements for air exchange in residential buildings are considered. It is established that the existing normative documents in Ukraine are analogous to European norms, which allow design the system of ventilation of residential buildings according to European standards. However, the basis for the design of ventilation systems in Ukraine is the national standards, in which mechanical ventilation, unfortunately, is provided only for the design of high-rise buildings. To maintain acceptable microclimate parameters in residential buildings, it is advisable for designers to apply the requirements for designing ventilation systems in accordance with European standards.
Adherence to the items in a bundle for the prevention of ventilator-associated pneumonia.
Sachetti, Amanda; Rech, Viviane; Dias, Alexandre Simões; Fontana, Caroline; Barbosa, Gilberto da Luz; Schlichting, Dionara
2014-01-01
To assess adherence to a ventilator care bundle in an intensive care unit and to determine the impact of adherence on the rates of ventilator-associated pneumonia. A total of 198 beds were assessed for 60 days using a checklist that consisted of the following items: bed head elevation to 30 to 45º; position of the humidifier filter; lack of fluid in the ventilator circuit; oral hygiene; cuff pressure; and physical therapy. Next, an educational lecture was delivered, and 235 beds were assessed for the following 60 days. Data were also collected on the incidence of ventilator-acquired pneumonia. Adherence to the following ventilator care bundle items increased: bed head elevation from 18.7% to 34.5%; lack of fluid in the ventilator circuit from 55.6% to 72.8%; oral hygiene from 48.5% to 77.8%; and cuff pressure from 29.8% to 51.5%. The incidence of ventilator-associated pneumonia was statistically similar before and after intervention (p=0.389). The educational intervention performed in this study increased the adherence to the ventilator care bundle, but the incidence of ventilator-associated pneumonia did not decrease in the small sample that was assessed.
Dongelmans, Dave A; Paulus, Frederique; Veelo, Denise P; Binnekade, Jan M; Vroom, Margreeth B; Schultz, Marcus J
2011-05-01
With adaptive support ventilation, respiratory rate and tidal volume (V(T)) are a function of the Otis least work of breathing formula. We hypothesized that adaptive support ventilation in an open lung ventilator strategy would deliver higher V(T)s to patients with acute lung injury. Patients with acute lung injury were ventilated according to a local guideline advising the use of lower V(T) (6-8 ml/kg predicted body weight), high concentrations of positive end-expiratory pressure, and recruitment maneuvers. Ventilation parameters were recorded when the ventilator was switched to adaptive support ventilation, and after recruitment maneuvers. If V(T) increased more than 8 ml/kg predicted body weight, airway pressure was limited to correct for the rise of V(T). Ten patients with a mean (±SD) Pao(2)/Fio(2) of 171 ± 86 mmHg were included. After a switch from pressure-controlled ventilation to adaptive support ventilation, respiratory rate declined (from 31 ± 5 to 21 ± 6 breaths/min; difference = 10 breaths/min, 95% CI 3-17 breaths/min, P = 0.008) and V(T) increased (from 6.5 ± 0.8 to 9.0 ± 1.6 ml/kg predicted body weight; difference = 2.5 ml, 95% CI 0.4-4.6 ml/kg predicted body weight, P = 0.02). Pressure limitation corrected for the rise of V(T), but minute ventilation declined, forcing the user to switch back to pressure-controlled ventilation. Adaptive support ventilation, compared with pressure-controlled ventilation in an open lung strategy setting, delivers a lower respiratory rate-higher V(T) combination. Pressure limitation does correct for the rise of V(T), but leads to a decline in minute ventilation.
Gettys, George C.; Liu, Fang; Kimlin, Ed; Baghdoyan, Helen A.; Lydic, Ralph
2012-01-01
Background Clinical and preclinical data demonstrate the analgesic actions of adenosine. Central administration of adenosine agonists, however, suppresses arousal and breathing by poorly understood mechanisms. This study tested the two-tailed hypothesis that adenosine A1 receptors in the pontine reticular formation (PRF) of C57BL/6J mice modulate breathing, behavioral arousal, and PRF acetylcholine release. Methods Three sets of experiments used 51 mice. First, breathing was measured by plethysmography after PRF microinjection of the adenosine A1 receptor agonist N6-sulfophenyl adenosine (SPA) or saline. Second, mice were anesthetized with isoflurane and time to recovery of righting response (RoRR) was quantified after PRF microinjection of SPA or saline. Third, acetylcholine release in the PRF was measured before and during microdialysis delivery of SPA, the adenosine A1 receptor antagonist 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), or SPA and DPCPX. Results First, SPA significantly decreased respiratory rate (−18%), tidal volume (−12%) and minute ventilation (−16%). Second, SPA concentration accounted for 76% of the variance in RoRR. Third, SPA concentration accounted for a significant amount of the variance in acetylcholine release (52%), RoRR (98%), and breathing rate (86%). DPCPX alone caused a concentration-dependent increase in acetylcholine, decrease in RoRR, and decrease in breathing rate. Coadministration of SPA and DPCPX blocked the SPA-induced decrease in acetylcholine and increase in RoRR. Conclusions Endogenous adenosine acting at adenosine A1 receptors in the PRF modulates breathing, behavioral arousal, and acetylcholine release. The results support the interpretation that an adenosinergic-cholinergic interaction within the PRF comprises one neurochemical mechanism underlying the wakefulness stimulus for breathing. PMID:23263018
Gettys, George C; Liu, Fang; Kimlin, Ed; Baghdoyan, Helen A; Lydic, Ralph
2013-02-01
Clinical and preclinical data demonstrate the analgesic actions of adenosine. Central administration of adenosine agonists, however, suppresses arousal and breathing by poorly understood mechanisms. This study tested the two-tailed hypothesis that adenosine A1 receptors in the pontine reticular formation (PRF) of C57BL/6J mice modulate breathing, behavioral arousal, and PRF acetylcholine release. Three sets of experiments used 51 mice. First, breathing was measured by plethysmography after PRF microinjection of the adenosine A1 receptor agonist N-sulfophenyl adenosine (SPA) or saline. Second, mice were anesthetized with isoflurane and the time to recovery of righting response (RoRR) was quantified after a PRF microinjection of SPA or saline. Third, acetylcholine release in the PRF was measured before and during microdialysis delivery of SPA, the adenosine A1 receptor antagonist 1, 3-dipropyl-8-cyclopentylxanthine, or SPA and 1, 3-dipropyl-8-cyclopentylxanthine. First, SPA significantly decreased respiratory rate (-18%), tidal volume (-12%), and minute ventilation (-16%). Second, SPA concentration accounted for 76% of the variance in RoRR. Third, SPA concentration accounted for a significant amount of the variance in acetylcholine release (52%), RoRR (98%), and breathing rate (86%). 1, 3-dipropyl-8-cyclopentylxanthine alone caused a concentration-dependent increase in acetylcholine, a decrease in RoRR, and a decrease in breathing rate. Coadministration of SPA and 1, 3-dipropyl-8-cyclopentylxanthine blocked the SPA-induced decrease in acetylcholine and increase in RoRR. Endogenous adenosine acting at adenosine A1 receptors in the PRF modulates breathing, behavioral arousal, and acetylcholine release. The results support the interpretation that an adenosinergic-cholinergic interaction within the PRF comprises one neurochemical mechanism underlying the wakefulness stimulus for breathing.
Release of substance P from the cat spinal cord.
Go, V L; Yaksh, T L
1987-01-01
1. The present experiments examine the physiology and pharmacology of the release of substance P-like immunoreactivity (SP-l.i.), from the spinal cord in the halothane-anaesthetized, artificially ventilated cat. 2. Resting release of SP-l.i. was 36 +/- 4 fmol/30 min (mean +/- S.E.; n = 106). Bilateral stimulation of the sciatic nerves at intensities which evoked activity in fibres conducting at A beta conduction velocities (greater than 40 m/s), resulted in no change in blood pressure, pupil diameter or release of SP-l.i. Stimulation intensities which activate fibres conducting at velocities less than 2 m/s resulted in increased blood pressure, miosis and elevated release of SP-l.i. (278 +/- 16% of control). 3. The relationship between nerve-stimulation frequency and release was monotonic up to approximately 20 Hz. Higher stimulation frequencies did not increase the amounts of SP-l.i. released. At 200 Hz there was a reduction. 4. Capsaicin (0.1 mM) increased the release of SP-l.i. from the spinal cord and resulted in an acute desensitization to subsequent nerve stimulation. This acute effect was not accompanied by a reduction in spinal levels of SP-l.i. measured 2 h after stimulation. 5. Cold block of the cervical spinal cord resulted in an increase in the amounts of SP-l.i. released by nerve stimulation. 6. Pre-treatment with intrathecal 5,6-dihydroxytryptamine (300 micrograms) 7 days prior to the experiment caused a reduction in the dorsal and ventral horn stores of SP-l.i., but had no effect on the release of SP-l.i. evoked by nerve stimulation. Similar pre-treatment with intrathecal capsaicin (300 micrograms) resulted in depletion of SP-l.i. in the dorsal but not in the ventral horn of the spinal cord and diminished the release of SP-l.i. evoked by nerve stimulation. 7. Intense thermal stimulation of the flank resulted in small (20-35%), but reliable increases in the release of SP-l.i. above control. 8. Putative agonists for the opioid mu-receptor (morphine, 10-100 microM; sufentanil, 1 microM), and for the delta-receptor (D-Ala2-D-Leu5-enkephalin, 1-10 microM; D-Pen2-D-Pen5-enkephalin, 10 microM), but not the kappa-receptor (U50488H, 100-1000 microM), produced a dose-dependent, naloxone-reversible reduction of the evoked, but not of the resting release of SP-l.i. (-)-Naloxone, but not (+)-naloxone, resulted in a significant increase in evoked but not resting SP-l.i. release.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:2451003
Improving Survival and Promoting Respiratory Motor Function After Cervical Spinal Cord Injury
2017-09-01
ventilator in order to survive. Use of the ventilator severely limits the quality of life of those injured and dramatically increases the demand for health...care for cervical SCI patients so as to lead to an improved quality of life , better-quality health care management, and improved functional outcomes...mechanical ventilator in order to survive. Use of the ventilator severely limits the quality of life of those injured and dramatically increases the
Energy and Cost Associated with Ventilating Office Buildings in a Tropical Climate
Rim, Donghyun; Schiavon, Stefano; Nazaroff, William W.
2015-01-01
Providing sufficient amounts of outdoor air to occupants is a critical building function for supporting occupant health, well-being and productivity. In tropical climates, high ventilation rates require substantial amounts of energy to cool and dehumidify supply air. This study evaluates the energy consumption and associated cost for thermally conditioning outdoor air provided for building ventilation in tropical climates, considering Singapore as an example locale. We investigated the influence on energy consumption and cost of the following factors: outdoor air temperature and humidity, ventilation rate (L/s per person), indoor air temperature and humidity, air conditioning system coefficient of performance (COP), and cost of electricity. Results show that dehumidification of outdoor air accounts for more than 80% of the energy needed for building ventilation in Singapore’s tropical climate. Improved system performance and/or a small increase in the indoor temperature set point would permit relatively large ventilation rates (such as 25 L/s per person) at modest or no cost increment. Overall, even in a thermally demanding tropical climate, the energy cost associated with increasing ventilation rate up to 25 L/s per person is less than 1% of the wages of an office worker in an advanced economy like Singapore’s. This result implies that the benefits of increasing outdoor air ventilation rate up to 25 L/s per person — which is suggested to provide for productivity increases, lower sick building syndrome symptom prevalence, and reduced sick leave — can be much larger than the incremental cost of ventilation. PMID:25822504
Biermann, A; Geissler, A
2016-09-01
Diagnosis-related groups (DRGs) have been used to reimburse hospitals services in Germany since 2003/04. Like any other reimbursement system, DRGs offer specific incentives for hospitals that may lead to unintended consequences for patients. In the German context, specific procedures and their documentation are suspected to be primarily performed to increase hospital revenues. Mechanical ventilation of patients and particularly the duration of ventilation, which is an important variable for the DRG-classification, are often discussed to be among these procedures. The aim of this study was to examine incentives created by the German DRG-based payment system with regard to mechanical ventilation and to identify factors that explain the considerable increase of mechanically ventilated patients in recent years. Moreover, the assumption that hospitals perform mechanical ventilation in order to gain economic benefits was examined. In order to gain insights on the development of the number of mechanically ventilated patients, patient-level data provided by the German Federal Statistical Office and the German Institute for the Hospital Remuneration System were analyzed. The type of performed ventilation, the total number of ventilation hours, the age distribution, mortality and the DRG distribution for mechanical ventilation were calculated, using methods of descriptive and inferential statistics. Furthermore, changes in DRG-definitions and changes in respiratory medicine were compared for the years 2005-2012. Since the introduction of the DRG-based payment system in Germany, the hours of ventilation and the number of mechanically ventilated patients have substantially increased, while mortality has decreased. During the same period there has been a switch to less invasive ventilation methods. The age distribution has shifted to higher age-groups. A ventilation duration determined by DRG definitions could not be found. Due to advances in respiratory medicine, new ventilation methods have been introduced that are less prone to complications. This development has simultaneously improved survival rates. There was no evidence supporting the assumption that the duration of mechanical ventilation is influenced by the time intervals relevant for DRG grouping. However, presumably operational routines such as staff availability within early and late shifts of the hospital have a significant impact on the termination of mechanical ventilation.
Mansell, Stephanie K; Cutts, Steven; Hackney, Isobel; Wood, Martin J; Hawksworth, Kevin; Creer, Dean D; Kilbride, Cherry; Mandal, Swapna
2018-01-01
Introduction Ventilation parameter data from patients receiving home mechanical ventilation can be collected via secure data cards and modem technology. This can then be reviewed by clinicians and ventilator prescriptions adjusted. Typically available measures include tidal volume (VT), leak, respiratory rate, minute ventilation, patient triggered breaths, achieved pressures and patient compliance. This study aimed to assess the potential impact of ventilator data downloads on management of patients requiring home non-invasive ventilation (NIV). Methods A longitudinal within-group design with repeated measurements was used. Baseline ventilator data were downloaded, reviewed and adjustments made to optimise ventilation. Leak, VT and compliance data were collected for comparison at the first review and 3–7 weeks later. Ventilator data were monitored and amended remotely via a modem by a consultant physiotherapist between the first review and second appointment. Results Analysis of data from 52 patients showed increased patient compliance (% days used >4 hours) from 90% to 96% (p=0.007), increased usage from 6.53 to 6.94 hours (p=0.211) and a change in VT(9.4 vs 8.7 mL/kg/ideal body weight, p=0.022). There was no change in leak following review of NIV prescriptions (mean (SD): 43 (23.4) L/min vs 45 (19.9)L/min, p=0.272). Conclusion Ventilator data downloads, via early remote assessment, can help optimise patient ventilation through identification of modifiable factors, in particular interface leak and ventilator prescriptions. However, a prospective study is required to assess whether using ventilator data downloads provides value in terms of patient outcomes and cost-effectiveness. The presented data will help to inform the design of such a study. PMID:29531743
Bordes, Julien; Erwan d'Aranda; Savoie, Pierre-Henry; Montcriol, Ambroise; Goutorbe, Philippe; Kaiser, Eric
2014-09-01
Management of critically ill patients in austere environments is a logistic challenge. Availability of oxygen cylinders for the mechanically ventilated patient may be difficult in such a context. A solution is to use a ventilator able to function with an oxygen concentrator. We tested the SeQual Integra™ (SeQual, San Diego, CA) 10-OM oxygen concentrator paired with the Pulmonetic System(®) LTV 1000 ventilator (Pulmonetic Systems, Minneapolis, MN) and evaluated the delivered fraction of inspired oxygen (FiO2) across a range of minute volumes and combinations of ventilator settings. Two LTV 1000 ventilators were tested. The ventilators were attached to a test lung and FiO2 was measured by a gas analyzer. Continuous-flow oxygen was generated by the OC from 0.5 L/min to 10 L/min and injected into the oxygen inlet port of the LTV 1000. Several combinations of ventilator settings were evaluated to determine the factors affecting the delivered FiO2. The LTV 1000 ventilator is a turbine ventilator that is able to deliver high FiO2 when functioning with an oxygen concentrator. However, modifications of the ventilator settings such as increase in minute ventilation affect delivered FiO2 even if oxygen flow is constant on the oxygen concentrator. The ability of an oxygen concentrator to deliver high FiO2 when used with a turbine ventilator makes this method of oxygen delivery a viable alternative to cylinders in austere environments when used with a turbine ventilator. However, FiO2 has to be monitored continuously because delivered FiO2 decreases when minute ventilation is increased. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Hernández-Almeida, I.; Sierro, F.-J.; Cacho, I.; Flores, J.-A.
2014-10-01
Subsurface water column dynamics in the subpolar North Atlantic were reconstructed in order to improve the understanding of the cause of abrupt IRD events during cold periods of the Early Pleistocene. We used Mg / Ca-based temperatures of deep-dwelling (Neogloboquadrina pachyderma sinistral) planktonic foraminifera and paired Mg / Ca-δ18O measurements to estimate the subsurface temperatures and δ18O of seawater at Site U1314. Carbon isotopes on benthic and planktonic foraminifera from the same site provide information about the ventilation and water column nutrient gradient. Mg / Ca-based temperatures and δ18O of seawater suggest increased temperatures and salinities during ice-rafting, likely due to enhanced northward subsurface transport of subtropical waters during periods of AMOC reduction. Planktonic carbon isotopes support this suggestion, showing coincident increased subsurface ventilation during deposition of ice-rafted detritus (IRD). Warm waters accumulated at subsurface would result in basal warming and break-up of ice-shelves, leading to massive iceberg discharges in the North Atlantic. Release of heat and salt stored at subsurface would help to restart the AMOC. This mechanism is in agreement with modelling and proxy studies that observe a subsurface warming in the North Atlantic in response to AMOC slowdown during the MIS3.
Effects of Zolpidem CR on Sleep and Nocturnal Ventilation in Patients with Heart Failure.
Gatti, Rodrigo C; Burke, Patrick R; Otuyama, Leonardo J; Almeida, Dirceu R; Tufik, Sergio; Poyares, Dalva
2016-08-01
This study aimed to evaluate the effects of zolpidem CR (controlled release) on sleep and nocturnal ventilation in patients with congestive heart failure, a population at risk for insomnia and poor sleep quality. Fifteen patients with heart failure (ischemic cardiomyopathy) and ejection fraction ≤ 45% in NYHA functional class I or II were evaluated with full polysomnography in a placebo-controlled, double-blind, randomized trial. Patients underwent three tests: (1) baseline polysomnography and, after randomization, (2) a new test with zolpidem CR 12.5 mg or placebo, and after 1 week, (3) a new polysomnography, crossing the "medication" used. A 16% increase in total sleep time was found with the use of zolpidem CR and an increase in stage 3 NREM sleep (slow wave sleep). The apnea hypopnea index (AHI) did not change with zolpidem CR even after controlling for supine position; however, a slight but significant decrease was observed in lowest oxygen saturation compared with baseline and placebo conditions (83.60 ± 5.51; 84.43 ± 3.80; 80.71 ± 5.18, P = 0.002). Zolpidem CR improved sleep structure in patients with heart failure, did not change apnea hypopnea index, but slightly decreased lowest oxygen saturation. © 2016 Associated Professional Sleep Societies, LLC.
NASA Astrophysics Data System (ADS)
Chitaru, George; Berville, Charles; Dogeanu, Angel
2018-02-01
This paper presents a comparison between a displacement ventilation method and a mixed flow ventilation method using computational fluid dynamics (CFD) approach. The paper analyses different aspects of the two systems, like the draft effect in certain areas, the air temperatureand velocity distribution in the occupied zone. The results highlighted that the displacement ventilation system presents an advantage for the current scenario, due to the increased buoyancy driven flows caused by the interior heat sources. For the displacement ventilation case the draft effect was less prone to appear in the occupied zone but the high heat emissions from the interior sources have increased the temperature gradient in the occupied zone. Both systems have been studied in similar conditions, concentrating only on the flow patterns for each case.
Are we fully utilizing the functionalities of modern operating room ventilators?
Liu, Shujie; Kacmarek, Robert M; Oto, Jun
2017-12-01
The modern operating room ventilators have become very sophisticated and many of their features are comparable with those of an ICU ventilator. To fully utilize the functionality of modern operating room ventilators, it is important for clinicians to understand in depth the working principle of these ventilators and their functionalities. Piston ventilators have the advantages of delivering accurate tidal volume and certain flow compensation functions. Turbine ventilators have great ability of flow compensation. Ventilation modes are mainly volume-based or pressure-based. Pressure-based ventilation modes provide better leak compensation than volume-based. The integration of advanced flow generation systems and ventilation modes of the modern operating room ventilators enables clinicians to provide both invasive and noninvasive ventilation in perioperative settings. Ventilator waveforms can be used for intraoperative neuromonitoring during cervical spine surgery. The increase in number of new features of modern operating room ventilators clearly creates the opportunity for clinicians to optimize ventilatory care. However, improving the quality of ventilator care relies on a complete understanding and correct use of these new features. VIDEO ABSTRACT: http://links.lww.com/COAN/A47.
NASA Astrophysics Data System (ADS)
Demmers, T. G. M.; Burgess, L. R.; Short, J. L.; Phillips, V. R.; Clark, J. A.; Wathes, C. M.
A method has been developed to measure the emission rate of ammonia from naturally ventilated U.K. livestock buildings. The method is based on measurements of ammonia concentration and estimates of the ventilation rate of the building by continuous release of carbon monoxide tracer within the building. The tracer concentration is measured at nine positions in openings around the perimeter of the building, as well as around a ring sampling line. Two criteria were evaluated to decide whether, at any given time, a given opening in the building acted as an air inlet or as an air outlet. Carbon monoxide concentration difference across an opening was found to be a better criterion than the temperature difference across the opening. Ammonia concentrations were measured continuously at the sampling points using a chemiluminescence analyser. The method was applied to a straw-bedded beef unit and to a slurry-based dairy unit. Both buildings were of space-boarded construction. Ventilation rates estimated by the ring line sample were consistently higher than by the perimeter samples. During calm weather, the ventilation estimates by both samples were similar (10-20 air changes h -1). However, during windy conditions (>5 m s -1) the ventilation rate was overestimated by the ring line sample (average 100 air changes h -1) compared to the perimeter samples (average 50 air changes h -1). The difference was caused by incomplete mixing of the tracer within the building. The ventilation rate estimated from the perimeter samples was used for the calculation of the emission rate. Preliminary estimates of the ammonia emission factor were 6.0 kg NH 3 (500 kg live-weight) -1 (190 d) -1 for the slurry-based dairy unit and 3.7 for the straw-bedded beef unit.
The effectiveness of stand alone air cleaners for shelter-in-place.
Ward, M; Siegel, J A; Corsi, R L
2005-04-01
Stand-alone air cleaners may be efficient for rapid removal of indoor fine particles and have potential use for shelter-in-place (SIP) strategies following acts of bioterrorism. A screening model was employed to ascertain the potential significance of size-resolved particle (0.1-2 microm) removal using portable high efficiency particle arresting (HEPA) air cleaners in residential buildings following an outdoor release of particles. The number of stand-alone air cleaners, air exchange rate, volumetric flow rate through the heating, ventilating and air-conditioning (HVAC) system, and size-resolved particle removal efficiency in the HVAC filter were varied. The effectiveness of air cleaners for SIP was evaluated in terms of the outdoor and the indoor particle concentration with air cleaner(s) relative to the indoor concentration without air cleaners. Through transient and steady-state analysis of the model it was determined that one to three portable HEPA air cleaners can be effective for SIP following outdoor bioaerosol releases, with maximum reductions in particle concentrations as high as 90% relative to conditions in which an air cleaner is not employed. The relative effectiveness of HEPA air cleaners vs. other removal mechanisms was predicted to decrease with increasing particle size, because of increasing competition by particle deposition with indoor surfaces and removal to HVAC filters. However, the effect of particle size was relatively small for most scenarios considered here. The results of a screening analysis suggest that stand-alone (portable) air cleaners that contain high efficiency particle arresting (HEPA) filters can be effective for reducing indoor fine particle concentrations in residential dwellings during outdoor releases of biological warfare agents. The relative effectiveness of stand-alone air cleaners for reducing occupants' exposure to particles of outdoor origin depends on several factors, including the type of heating, ventilating and air-conditioning (HVAC) filter, HVAC operation, building air exchange rate, particle size, and duration of elevated outdoor particle concentration. Maximum particle reductions, relative to no stand-alone air cleaners, of 90% are predicted when three stand-alone air cleaners are employed.
Increase in pulmonary blood flow at birth: role of oxygen and lung aeration.
Lang, Justin A R; Pearson, James T; Binder-Heschl, Corinna; Wallace, Megan J; Siew, Melissa L; Kitchen, Marcus J; te Pas, Arjan B; Fouras, Andreas; Lewis, Robert A; Polglase, Graeme R; Shirai, Mikiyasu; Hooper, Stuart B
2016-03-01
Lung aeration stimulates the increase in pulmonary blood flow (PBF) at birth, but the spatial relationships between PBF and lung aeration and the role of increased oxygenation remain unclear. Using simultaneous phase-contrast X-ray imaging and angiography, we have investigated the separate roles of lung aeration and increased oxygenation in PBF changes at birth using near-term (30 days of gestation) rabbit kits (n = 18). Rabbits were imaged before ventilation, then the right lung was ventilated with 100% nitrogen (N2), air or 100% O2 (oxygen), before all kits were switched to ventilation in air, followed by ventilation of both lungs using air. Unilateral ventilation of the right lung with 100% N2 significantly increased heart rate (from 69.4 ± 4.9 to 93.0 ± 15.0 bpm), the diameters of both left and right pulmonary axial arteries, number of visible vessels in both left and right lungs, relative PBF index in both pulmonary arteries, and reduced bolus transit time for both left and right axial arteries (from 1.34 ± 0.39 and 1.81 ± 0.43 s to 0.52 ± 0.17 and 0.89 ± 0.21 s in the left and right axial arteries, respectively). Similar changes were observed with 100% oxygen, but increases in visible vessel number and vessel diameter of the axial arteries were greater in the ventilated right lung during unilateral ventilation. These findings confirm that PBF increase at birth is not spatially related to lung aeration and that the increase in PBF to unventilated regions is unrelated to oxygenation, although oxygen can potentiate this increase. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.
Hernández-Jiménez, Claudia; García-Torrentera, Rogelio; Olmos-Zúñiga, J. Raúl; Jasso-Victoria, Rogelio; Gaxiola-Gaxiola, Miguel O.; Baltazares-Lipp, Matilde; Gutiérrez-González, Luis H.
2014-01-01
The use of dry gases during mechanical ventilation has been associated with the risk of serious airway complications. The goal of the present study was to quantify the plasma levels of TNF-alpha and IL-6 and to determine the radiological, hemodynamic, gasometric, and microscopic changes in lung mechanics in dogs subjected to short-term mechanical ventilation with and without humidification of the inhaled gas. The experiment was conducted for 24 hours in 10 dogs divided into two groups: Group I (n = 5), mechanical ventilation with dry oxygen dispensation, and Group II (n = 5), mechanical ventilation with oxygen dispensation using a moisture chamber. Variance analysis was used. No changes in physiological, hemodynamic, or gasometric, and radiographic constants were observed. Plasma TNF-alpha levels increased in group I, reaching a maximum 24 hours after mechanical ventilation was initiated (ANOVA p = 0.77). This increase was correlated to changes in mechanical ventilation. Plasma IL-6 levels decreased at 12 hours and increased again towards the end of the study (ANOVA p>0.05). Both groups exhibited a decrease in lung compliance and functional residual capacity values, but this was more pronounced in group I. Pplat increased in group I (ANOVA p = 0.02). Inhalation of dry gas caused histological lesions in the entire respiratory tract, including pulmonary parenchyma, to a greater extent than humidified gas. Humidification of inspired gases can attenuate damage associated with mechanical ventilation. PMID:25036811
Hernández-Jiménez, Claudia; García-Torrentera, Rogelio; Olmos-Zúñiga, J Raúl; Jasso-Victoria, Rogelio; Gaxiola-Gaxiola, Miguel O; Baltazares-Lipp, Matilde; Gutiérrez-González, Luis H
2014-01-01
The use of dry gases during mechanical ventilation has been associated with the risk of serious airway complications. The goal of the present study was to quantify the plasma levels of TNF-alpha and IL-6 and to determine the radiological, hemodynamic, gasometric, and microscopic changes in lung mechanics in dogs subjected to short-term mechanical ventilation with and without humidification of the inhaled gas. The experiment was conducted for 24 hours in 10 dogs divided into two groups: Group I (n = 5), mechanical ventilation with dry oxygen dispensation, and Group II (n = 5), mechanical ventilation with oxygen dispensation using a moisture chamber. Variance analysis was used. No changes in physiological, hemodynamic, or gasometric, and radiographic constants were observed. Plasma TNF-alpha levels increased in group I, reaching a maximum 24 hours after mechanical ventilation was initiated (ANOVA p = 0.77). This increase was correlated to changes in mechanical ventilation. Plasma IL-6 levels decreased at 12 hours and increased again towards the end of the study (ANOVA p>0.05). Both groups exhibited a decrease in lung compliance and functional residual capacity values, but this was more pronounced in group I. Pplat increased in group I (ANOVA p = 0.02). Inhalation of dry gas caused histological lesions in the entire respiratory tract, including pulmonary parenchyma, to a greater extent than humidified gas. Humidification of inspired gases can attenuate damage associated with mechanical ventilation.
Influence of Applying Additional Forcing Fans for the Air Distribution in Ventilation Network
NASA Astrophysics Data System (ADS)
Szlązak, Nikodem; Obracaj, Dariusz; Korzec, Marek
2016-09-01
Mining progress in underground mines cause the ongoing movement of working areas. Consequently, it becomes necessary to adapt the ventilation network of a mine to direct airflow into newly-opened districts. For economic reasons, opening new fields is often achieved via underground workings. Length of primary intake and return routes increases and also increases the total resistance of a complex ventilation network. The development of a subsurface structure can make it necessary to change the air distribution in a ventilation network. Increasing airflow into newly-opened districts is necessary. In mines where extraction does not entail gas-related hazards, there is possibility of implementing a push-pull ventilation system in order to supplement airflows to newly developed mining fields. This is achieved by installing subsurface fan stations with forcing fans at the bottom of downcast shaft. In push-pull systems with multiple main fans, it is vital to select forcing fans with characteristic curves matching those of the existing exhaust fans to prevent undesirable mutual interaction. In complex ventilation networks it is necessary to calculate distribution of airflow (especially in networks with a large number of installed fans). In the article the influence of applying additional forcing fans for the air distribution in ventilation network for underground mine were considered. There are also analysed the extent of overpressure caused by the additional forcing fan in branches of the ventilation network (the operating range of additional forcing fan). Possibilities of increasing airflow rate in working areas were conducted.
Controlled invasive mechanical ventilation strategies in obese patients undergoing surgery.
Maia, Lígia de Albuquerque; Silva, Pedro Leme; Pelosi, Paolo; Rocco, Patricia Rieken Macedo
2017-06-01
The obesity prevalence is increasing in surgical population. As the number of obese surgical patients increases, so does the demand for mechanical ventilation. Nevertheless, ventilatory strategies in this population are challenging, since obesity results in pathophysiological changes in respiratory function. Areas covered: We reviewed the impact of obesity on respiratory system and the effects of controlled invasive mechanical ventilation strategies in obese patients undergoing surgery. To date, there is no consensus regarding the optimal invasive mechanical ventilation strategy for obese surgical patients, and no evidence that possible intraoperative beneficial effects on oxygenation and mechanics translate into better postoperative pulmonary function or improved outcomes. Expert commentary: Before determining the ideal intraoperative ventilation strategy, it is important to analyze the pathophysiology and comorbidities of each obese patient. Protective ventilation with low tidal volume, driving pressure, energy, and mechanical power should be employed during surgery; however, further studies are required to clarify the most effective ventilation strategies, such as the optimal positive end-expiratory pressure and whether recruitment maneuvers minimize lung injury. In this context, an ongoing trial of intraoperative ventilation in obese patients (PROBESE) should help determine the mechanical ventilation strategy that best improves clinical outcome in patients with body mass index≥35kg/m 2 .
High tidal volume ventilation induces NOS2 and impairs cAMP- dependent air space fluid clearance.
Frank, James A; Pittet, Jean-Francois; Lee, Hyon; Godzich, Micaela; Matthay, Michael A
2003-05-01
Tidal volume reduction during mechanical ventilation reduces mortality in patients with acute lung injury and the acute respiratory distress syndrome. To determine the mechanisms underlying the protective effect of low tidal volume ventilation, we studied the time course and reversibility of ventilator-induced changes in permeability and distal air space edema fluid clearance in a rat model of ventilator-induced lung injury. Anesthetized rats were ventilated with a high tidal volume (30 ml/kg) or with a high tidal volume followed by ventilation with a low tidal volume of 6 ml/kg. Endothelial and epithelial protein permeability were significantly increased after high tidal volume ventilation but returned to baseline levels when tidal volume was reduced. The basal distal air space fluid clearance (AFC) rate decreased by 43% (P < 0.05) after 1 h of high tidal volume but returned to the preventilation rate 2 h after tidal volume was reduced. Not all of the effects of high tidal volume ventilation were reversible. The cAMP-dependent AFC rate after 1 h of 30 ml/kg ventilation was significantly reduced and was not restored when tidal volume was reduced. High tidal volume ventilation also increased lung inducible nitric oxide synthase (NOS2) expression and air space total nitrite at 3 h. Inhibition of NOS2 activity preserved cAMP-dependent AFC. Because air space edema fluid inactivates surfactant and reduces ventilated lung volume, the reduction of cAMP-dependent AFC by reactive nitrogen species may be an important mechanism of clinical ventilator-associated lung injury.
DOE Office of Scientific and Technical Information (OSTI.GOV)
HU TA
2009-10-26
Assess the steady-state flammability level at normal and off-normal ventilation conditions. The hydrogen generation rate was calculated for 177 tanks using the rate equation model. Flammability calculations based on hydrogen, ammonia, and methane were performed for 177 tanks for various scenarios.
Weaver, Anne M; Parveen, Shahana; Goswami, Doli; Crabtree-Ide, Christina; Rudra, Carole; Yu, Jihnhee; Mu, Lina; Fry, Alicia M; Sharmin, Iffat; Luby, Stephen P; Ram, Pavani K
2017-08-01
Fine particulate matter (PM 2.5 ) is a risk factor for pneumonia; ventilation may be protective. We tested behavioral and structural ventilation interventions on indoor PM 2.5 in Dhaka, Bangladesh. We recruited 59 good ventilation (window or door in ≥ 3 walls) and 29 poor ventilation (no window, one door) homes. We monitored baseline indoor and outdoor PM 2.5 for 48 hours. We asked all participants to increase ventilation behavior, including opening windows and doors, and operating fans. Where permitted, we installed windows in nine poor ventilation homes, then repeated PM 2.5 monitoring. We estimated effects using linear mixed-effects models and conducted qualitative interviews regarding motivators and barriers to ventilation. Compared with poor ventilation homes, good ventilation homes were larger, their residents wealthier and less likely to use biomass fuel. In multivariable linear mixed-effects models, ventilation structures and opening a door or window were inversely associated with the number of hours PM 2.5 concentrations exceeded 100 and 250 μg/m 3 . Outdoor air pollution was positively associated with the number of hours PM 2.5 concentrations exceeded 100 and 250 μg/m 3 . Few homes accepted window installation, due to landlord refusal and fear of theft. Motivators for ventilation behavior included cooling of the home and sunlight; barriers included rain, outdoor odors or noise, theft risk, mosquito entry, and, for fan use, perceptions of wasting electricity or unavailability of electricity. We concluded that ventilation may reduce indoor PM 2.5 concentrations but, there are barriers to increasing ventilation and, in areas with high ambient PM 2.5 concentrations, indoor concentrations may remain above recommended levels.
NASA Astrophysics Data System (ADS)
Recheis, Wolfgang A.; Kleinsasser, Axel; Schuster, Antonius H.; Loeckinger, Alexander; Frede, Thomas; Springer, Peter; Hoermann, Christoph; zur Nedden, Dieter
2000-04-01
The purpose was to evaluate differences in dynamic changes of the lung aeration (air-tissue ratio) between augmented modes of ventilation (AMV) and controlled mechanical ventilation (CMV) in normal subjects. 4 volunteers, ventilated with the different respirator protocols via face mask, were scanned using the EBCT in the 50 ms mode. A software analyzed the respirator's digitized pressure and volume signals of two subsequent ventilation phases. Using these values it was possible to calculate the onset of inspiration or expiration of the next respiratory phase. The calculated starting point was then used to trigger the EBCT. The dynamic changes of air- tissue ratios were evaluated in three separate regions: a ventral, an intermediate and a dorsal area. AMV results in increase of air-tissue ratio in the dorsal lung area due to the active contraction of the diaphragm, whereas CMV results in a more pronounced increase in air-tissue ratio of the ventral lung area. This study gives further insight into the dynamic changes of the lung's biomechanics by comparing augmented ventilation and controlled mechanical ventilation in the healthy proband.
Diaz-Abad, Montserrat; Brown, John Edward
2014-01-01
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease in which most patients die of respiratory failure. Although volume-targeted non-invasive bilevel positive airway pressure (BPAP) ventilation has been studied in patients with chronic respiratory failure of various etiologies, its use in ALS has not been reported. We present the case of a 66-year-old woman with ALS and respiratory failure treated with volume-targeted BPAP ventilation for 15 weeks. Weekly data downloads showed that disease progression was associated with increased respiratory muscle weakness, decreased spontaneous breathing, and increased use of non-invasive positive pressure ventilation, whereas tidal volume and minute ventilation remained relatively constant. PMID:25210968
[Oxidative stress in patients on mechanical ventilation].
Marjanović, Vesna; Dordević, Vidosava; Marjanović, Goran
2009-01-01
The appearance and intensity of oxidative stress were analyzed in the course of mechanical ventilation and parameters that could point toward potential lung damage. In three time intervals on day 1, 3 and 7 of mechanical ventilation, parameters such as: triglycerides, cholesterol, lactate, serum lactic dehydrogenase, acid-base balance and lipid peroxidation products--thiobarbituric acid reactive substances, were followed in 30 patients with head injuries. A decrease in the level of partial oxygen pressure (PaO2) (p < 0.01) and PaO2/FiO2 index (p < 0.05) in arterial blood was recorded on day 3 of mechanical ventilation. This was accompanied with an increase in alveolar-arterial difference (AaDO2) (p < 0.05), thiobarbituric acid reactive substances (p < 0.001) and lactic dehydrogenase (p < 0.001) comparing to day 1 of mechanical ventilation. The patients with initial PaO2 > 120 mmHg, had significant increase of thiobarbituric acid reactive substances and AaDO2 (p < 0.05) and fall of PaO2 (p < 0.001) on day 3 of mechanical ventilation. Oxidative stress and lipid peroxide production are increased during third day of mechanical ventilation leading to disruption of oxygen diffusion through alveolar-capillary membrane and reduction of parameters of oxygenation.
Tracy, Mark B; Shah, Dharmesh; Hinder, Murray; Klimek, Jan; Marceau, James; Wright, Audrey
2014-05-01
To determine changes in respiratory mechanics when chest compressions are added to mask ventilation, as recommended by the International Liaison Committee on Resuscitation (ILCOR) guidelines for newborn infants. Using a Laerdal Advanced Life Support leak-free baby manikin and a 240-mL self-inflating bag, 58 neonatal staff members were randomly paired to provide mask ventilation, followed by mask ventilation with chest compressions with a 1:3 ratio, for two minutes each. A Florian respiratory function monitor was used to measure respiratory mechanics, including mask leak. The addition of chest compressions to mask ventilation led to a significant reduction in inflation rate, from 63.9 to 32.9 breaths per minute (p < 0.0001), mean airway pressure reduced from 7.6 to 4.9 cm H2 O (p < 0.001), minute ventilation reduced from 770 to 451 mL/kg/min (p < 0.0001), and there was a significant increase in paired mask leak of 6.8% (p < 0.0001). Adding chest compressions to mask ventilation, in accordance with the ILCOR guidelines, in a manikin model is associated with a significant reduction in delivered ventilation and increase in mask leak. If similar findings occur in human infants needing an escalation in resuscitation, there is a potential risk of either delay in recovery or inadequate response to resuscitation. ©2014 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.
Kim, Ki-Hyun; Szulejko, Jan E; Jo, Hyo-Jae; Lee, Min-Hee; Kim, Yong-Hyun; Kwon, Eilhann; Ma, Chang-Jin; Kumar, Pawan
2016-08-01
Volatile organic compounds (VOCs) in automobile cabins were measured quantitatively to describe their emission characteristics in relation to various idling scenarios using three used automobiles (compact, intermediate sedan, and large sedan) under three different idling conditions ([1] cold engine off and ventilation off, [2] exterior air ventilation with idling warm engine, and [3] internal air recirculation with idling warm engine). The ambient air outside the vehicle was also analyzed as a reference. A total of 24 VOCs (with six functional groups) were selected as target compounds. Accordingly, the concentration of 24 VOC quantified as key target compounds averaged 4.58 ± 3.62 ppb (range: 0.05 (isobutyl alcohol) ∼ 38.2 ppb (formaldehyde)). Moreover, if their concentrations are compared between different automobile operational modes: the 'idling engine' levels (5.24 ± 4.07) was 1.3-5 times higher than the 'engine off' levels (4.09 ± 3.23) across all 3 automobile classes. In summary, automobile in-cabin VOC emissions are highly contingent on changes in engine and ventilation modes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Pogodin, M A; Granstrem, M P; Dimitrienko, A I
2007-04-01
We did Read CO2 rebreathing tests in 8 adult males. Both at natural breathing, and at self-controlled mechanical ventilation, volunteers increased ventilation proportionally to growth end-tidal PCO2. Inside individual distinctions of responses to CO2 during controlled mechanical ventilation are result of the voluntary motor control.
Pamenter, Matthew E; Carr, J Austin; Go, Ariel; Fu, Zhenxing; Reid, Stephen G; Powell, Frank L
2014-01-01
When exposed to a hypoxic environment the body's first response is a reflex increase in ventilation, termed the hypoxic ventilatory response (HVR). With chronic sustained hypoxia (CSH), such as during acclimatization to high altitude, an additional time-dependent increase in ventilation occurs, which increases the HVR. This secondary increase persists after exposure to CSH and involves plasticity within the circuits in the central nervous system that control breathing. Currently these mechanisms of HVR plasticity are unknown and we hypothesized that they involve glutamatergic synapses in the nucleus tractus solitarius (NTS), where afferent endings from arterial chemoreceptors terminate. To test this, we treated rats held in normoxia (CON) or 10% O2 (CSH) for 7 days and measured ventilation in conscious, unrestrained animals before and after microinjecting glutamate receptor agonists and antagonists into the NTS. In normoxia, AMPA increased ventilation 25% and 50% in CON and CSH, respectively, while NMDA doubled ventilation in both groups (P < 0.05). Specific AMPA and NMDA receptor antagonists (NBQX and MK801, respectively) abolished these effects. MK801 significantly decreased the HVR in CON rats, and completely blocked the acute HVR in CSH rats but had no effect on ventilation in normoxia. NBQX decreased ventilation whenever it was increased relative to normoxic controls; i.e. acute hypoxia in CON and CSH, and normoxia in CSH. These results support our hypothesis that glutamate receptors in the NTS contribute to plasticity in the HVR with CSH. The mechanism underlying this synaptic plasticity is probably glutamate receptor modification, as in CSH rats the expression of phosphorylated NR1 and GluR1 proteins in the NTS increased 35% and 70%, respectively, relative to that in CON rats. PMID:24492841
Pamenter, Matthew E; Carr, J Austin; Go, Ariel; Fu, Zhenxing; Reid, Stephen G; Powell, Frank L
2014-04-15
When exposed to a hypoxic environment the body's first response is a reflex increase in ventilation, termed the hypoxic ventilatory response (HVR). With chronic sustained hypoxia (CSH), such as during acclimatization to high altitude, an additional time-dependent increase in ventilation occurs, which increases the HVR. This secondary increase persists after exposure to CSH and involves plasticity within the circuits in the central nervous system that control breathing. Currently these mechanisms of HVR plasticity are unknown and we hypothesized that they involve glutamatergic synapses in the nucleus tractus solitarius (NTS), where afferent endings from arterial chemoreceptors terminate. To test this, we treated rats held in normoxia (CON) or 10% O2 (CSH) for 7 days and measured ventilation in conscious, unrestrained animals before and after microinjecting glutamate receptor agonists and antagonists into the NTS. In normoxia, AMPA increased ventilation 25% and 50% in CON and CSH, respectively, while NMDA doubled ventilation in both groups (P < 0.05). Specific AMPA and NMDA receptor antagonists (NBQX and MK801, respectively) abolished these effects. MK801 significantly decreased the HVR in CON rats, and completely blocked the acute HVR in CSH rats but had no effect on ventilation in normoxia. NBQX decreased ventilation whenever it was increased relative to normoxic controls; i.e. acute hypoxia in CON and CSH, and normoxia in CSH. These results support our hypothesis that glutamate receptors in the NTS contribute to plasticity in the HVR with CSH. The mechanism underlying this synaptic plasticity is probably glutamate receptor modification, as in CSH rats the expression of phosphorylated NR1 and GluR1 proteins in the NTS increased 35% and 70%, respectively, relative to that in CON rats.
Heliox Improves Carbon Dioxide Removal during Lung Protective Mechanical Ventilation.
Beurskens, Charlotte J; Brevoord, Daniel; Lagrand, Wim K; van den Bergh, Walter M; Vroom, Margreeth B; Preckel, Benedikt; Horn, Janneke; Juffermans, Nicole P
2014-01-01
Introduction. Helium is a noble gas with low density and increased carbon dioxide (CO2) diffusion capacity. This allows lower driving pressures in mechanical ventilation and increased CO2 diffusion. We hypothesized that heliox facilitates ventilation in patients during lung-protective mechanical ventilation using low tidal volumes. Methods. This is an observational cohort substudy of a single arm intervention study. Twenty-four ICU patients were included, who were admitted after a cardiac arrest and mechanically ventilated for 3 hours with heliox (50% helium; 50% oxygen). A fixed protective ventilation protocol (6 mL/kg) was used, with prospective observation for changes in lung mechanics and gas exchange. Statistics was by Bonferroni post-hoc correction with statistical significance set at P < 0.017. Results. During heliox ventilation, respiratory rate decreased (25 ± 4 versus 23 ± 5 breaths min(-1), P = 0.010). Minute volume ventilation showed a trend to decrease compared to baseline (11.1 ± 1.9 versus 9.9 ± 2.1 L min(-1), P = 0.026), while reducing PaCO2 levels (5.0 ± 0.6 versus 4.5 ± 0.6 kPa, P = 0.011) and peak pressures (21.1 ± 3.3 versus 19.8 ± 3.2 cm H2O, P = 0.024). Conclusions. Heliox improved CO2 elimination while allowing reduced minute volume ventilation in adult patients during protective mechanical ventilation.
Is donation after cardiac death reducing the brain-dead donor pool in Australia?
Sampson, Brett G; O'Callaghan, Gerry P; Russ, Graeme R
2013-03-01
Donation after cardiac death (DCD) has increased faster than donation after brain death (DBD) in Australia. However, DBD is the preferred pathway because it provides more organs per donor, the donation process is simpler and transplant outcomes are optimised. To determine if the increase in DCD has reduced the brain-dead donor pool in Australia. Retrospective analysis of records of organ donors (intended and actual) with brain injury as the cause of death from 2001 to 2011 in Australian intensive care units. Change in median ventilation period, over time, before brain-death determination in DBD donors (as DCD increased); a decreased median ventilation period in DBD donors being consistent with the conversion of DBD to DCD. As DCD (n = 311) increased, the median ventilation period in DBD donors (n = 2218) did not fall overall (P = 0.83), in all jurisdictions (P > 0.25) and for all causes of death (P > 0.3). The proportion of patients ventilated for less than 2 days was unchanged over time in both DBD (P = 1) and DCD (P = 0.99). The overall ventilation period in DCD donors (3.8 days; interquartile range [IQR], 2.1-6.3 days), exceeded the ventilation period in DBD donors (1.3 days; IQR, 1.0-2.4 days; P < 0.0001). DCD ventilation period was significantly longer in all jurisdictions, for all causes of death and annually (P < 0.05). In Australia, brain-injured donors appear to be ventilated long enough to allow progression to brain death before proceeding to DCD. Therefore, DCD is unlikely to have reduced the brain-dead donor pool.
A Stratification Boomerang: Nonlinear Dependence of Deep Southern Ocean Ventilation on PCO2
NASA Astrophysics Data System (ADS)
Galbraith, E. D.; Merlis, T. M.
2014-12-01
Strong correlations between atmospheric CO2, Antarctic temperatures, and marine proxy records have hinted that ventilation of the deep Southern Ocean may have played a central role in the variations of CO2 over glacial-interglacial cycles. One proposition is that, in general, the Southern Ocean ventilates the deep more strongly under higher CO2, due to a change in winds and/or the dominance of thermal stratification in a warm ocean, which weakens ocean biological carbon storage. Here, we explore this idea with a suite of multi-millennial simulations using the GFDL CM2Mc global coupled model. The results are, indeed, consistent with increasing ventilation of the Southern Ocean as pCO2 increases above modern. However, they reveal a surprising twist under low pCO2: increased salinity of the Southern Ocean, due in part to weakening atmospheric moisture transport, actually increases ventilation rate of the deep ocean under low pCO2 as well. This implies that a nadir of Southern Ocean ventilation occurs at intermediate pCO2, which the model estimates as being close to that of the present-day. This is at odds with the interpretation that weak ventilation of the deep Southern Ocean was the unifying coupled mechanism for the glacial pCO2 cycles. Rather, it suggests that factors other than the ventilation rate of the deep Southern Ocean, such as iron fertilization, ecosystem changes, water mass distributions, and sea ice cover, were key players in the glacial-interglacial CO2 changes.
Rowan, Courtney M; Gertz, Shira J; McArthur, Jennifer; Fitzgerald, Julie C; Nitu, Mara E; Loomis, Ashley; Hsing, Deyin D; Duncan, Christine N; Mahadeo, Kris M; Smith, Lincoln S; Moffet, Jerelyn; Hall, Mark W; Pinos, Emily L; Cheifetz, Ira M; Tamburro, Robert F
2016-04-01
To establish the current respiratory practice patterns in pediatric hematopoietic stem cell transplant patients and investigate their associations with mortality across multiple centers. Retrospective cohort between 2009 and 2014. Twelve children's hospitals in the United States. Two hundred twenty-two pediatric allogeneic hematopoietic stem cell transplant recipients with acute respiratory failure using invasive mechanical ventilation. None. PICU mortality of our cohort was 60.4%. Mortality at 180 days post PICU discharge was 74%. Length of PICU stay prior to initiation of invasive mechanical ventilation was significantly lower in survivors, and the odds of mortality increased for longer length of PICU stay prior to intubation. A total of 91 patients (41%) received noninvasive ventilation at some point during their PICU stay prior to intubation. Noninvasive ventilation use preintubation was associated with increased mortality (odds ratio, 2.1; 95% CI, 1.2-3.6; p = 0.010). Patients ventilated longer than 15 days had higher odds of death (odds ratio, 2.4; 95% CI, 1.3-4.2; p = 0.004). Almost 40% of patients (n = 85) were placed on high-frequency oscillatory ventilation with a mortality of 76.5% (odds ratio, 3.3; 95% CI, 1.7-6.5; p = 0.0004). Of the 20 patients who survived high-frequency oscillatory ventilation, 18 were placed on high-frequency oscillatory ventilation no later than the third day of invasive mechanical ventilation. In this subset of 85 patients, transition to high-frequency oscillatory ventilation within 2 days of the start of invasive mechanical ventilation resulted in a 76% decrease in the odds of death compared with those who transitioned to high-frequency oscillatory ventilation later in the invasive mechanical ventilation course. This study suggests that perhaps earlier more aggressive critical care interventions in the pediatric hematopoietic stem cell transplant patient with respiratory failure requiring invasive mechanical ventilation may offer an opportunity to improve outcomes.
2011-01-01
We describe difficult weaning after prolonged mechanical ventilation in three tracheostomized children affected by respiratory virus infection. Although the spontaneous breathing trials were successful, the patients failed all extubations. Therefore a tracheostomy was performed and the weaning plan was begun. The strategy for weaning was the decrease of ventilation support combining pressure control ventilation (PCV) with increasing periods of continuous positive airway pressure + pressure support ventilation (CPAP + PSV) and then CPAP + PSV with increasing intervals of T-piece. They presented acute respiratory distress syndrome on admission with high requirements of mechanical ventilation (MV). Intervening factors in the capabilities and loads of the respiratory system were considered and optimized. The average MV time was 69 days and weaning time 31 days. We report satisfactory results within the context of a directed weaning protocol. PMID:21244710
Rastogi, Shantanu; Mikhael, Michel; Filipov, Panayot; Rastogi, Deepa
2013-03-01
There is increased risk of hearing loss in preterm neonates. This risk is further increased by environmental noise exposure especially from life support equipment such as ventilation. Nasal continuous positive airway pressure (NCPAP) used for respiratory support of preterm neonates is known to be associated with prolonged exposure to high levels of noise. However, there is paucity of information on the effect of NCPAP as compared to mechanical ventilation on hearing loss among preterm neonates. A retrospective chart review was performed on neonates with birth weight (BW) <1500g. Association of clinical factors including the use of NCPAP and mechanical ventilation with failure of hearing screen were studied. Those who failed hearing screen were followed for 2 years to observe long term effects of NCPAP on the hearing loss. Of 344 neonates included in the study, 61 failed hearing screen. Gestational age (p=0.008), BW (p=0.03), ventilation (p=0.02), intrauterine growth retardation (p=0.02), necrotizing enterocolitis (NEC) (p=0.02), apnea (p<0.001), use of vancomycin (p=0.01) and furosemide (p=0.01) were associated with failure of hearing screen. On multivariate analysis, ventilation (OR 4.56, p=0.02), apnea (OR 2.2, p<0.001) and NEC (OR 2.4, p=0.02) were predictors of failed hearing screen. As compared to those not ventilated, the odds of failing hearing screen was 4.53 (p<0.01) and 4.59 (p<0.01) for those treated with NCPAP and mechanical ventilation respectively, with there being no difference between these two ventilatory modalities. Of the 61 neonates, 42 were followed for 2 years, of which 19 had confirmed hearing loss. Among these 19 neonates, there was no difference (p=0.12) between those who were treated with NCPAP or with mechanical ventilation. There is no increase in the hearing loss in preterm neonates treated with NCPAP as compared to mechanical ventilation despite being exposed to higher environmental noise generated by the NCPAP. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Matsunami, Sayuri; Komasawa, Nobuyasu; Konishi, Yuki; Minami, Toshiaki
2017-11-01
We performed two prospective randomized crossover trials to evaluate the effect of head elevation or lateral head rotation to facemask ventilation volume. In the first trial, facemask ventilation was performed with a 12-cm high pillow (HP) and 4-cm low pillow (LP) in 20 female patients who were scheduled to undergo general anesthesia. In the second trial, facemask ventilation was performed with and without lateral head rotation in another 20 female patients. Ventilation volume was measured in a pressure-controlled ventilation (PCV) manner at 10, 15, and 20 cmH 2 O inspiratory pressures. In the first trial evaluating head elevation effect, facemask ventilation volume was significantly higher with a HP than with a LP at 15 and 20 cmH 2 O inspiratory pressure (15 cmH 2 O: HP median 540 [ IQR 480-605] mL, LP 460 [400-520] mL, P=0.006, 20 cmH 2 O: HP 705 [650-800] mL, LP 560 [520-677] mL, P<0.001). In the second trial, lateral head rotation did not significantly increase facemask ventilation volume at all inspiratory pressure. Head elevation increased facemask ventilation volume in normal airway patients, while lateral head rotation did not. Copyright © 2017 Elsevier Inc. All rights reserved.
O'Connor, Christopher M; Whellan, David J; Fiuzat, Mona; Punjabi, Naresh M; Tasissa, Gudaye; Anstrom, Kevin J; Benjafield, Adam V; Woehrle, Holger; Blase, Amy B; Lindenfeld, JoAnn; Oldenberg, Olaf
2017-03-28
Sleep apnea is common in hospitalized heart failure (HF) patients and is associated with increased morbidity and mortality. The CAT-HF (Cardiovascular Improvements With MV-ASV Therapy in Heart Failure) trial investigated whether minute ventilation (MV) adaptive servo-ventilation (ASV) improved cardiovascular outcomes in hospitalized HF patients with moderate-to-severe sleep apnea. Eligible patients hospitalized with HF and moderate-to-severe sleep apnea were randomized to ASV plus optimized medical therapy (OMT) or OMT alone (control). The primary endpoint was a composite global rank score (hierarchy of death, cardiovascular hospitalizations, and percent changes in 6-min walk distance) at 6 months. 126 of 215 planned patients were randomized; enrollment was stopped early following release of the SERVE-HF (Adaptive Servo-Ventilation for Central Sleep Apnea in Systolic Heart Failure) trial results. Average device usage was 2.7 h/night. Mean number of events measured by the apnea-hypopnea index decreased from 35.7/h to 2.1/h at 6 months in the ASV group versus 35.1/h to 19.0/h in the control group (p < 0.0001). The primary endpoint did not differ significantly between the ASV and control groups (p = 0.92 Wilcoxon). Changes in composite endpoint components were not significantly different between ASV and control. There was no significant interaction between treatment and ejection fraction (p = 0.10 Cox model); however, pre-specified subgroup analysis suggested a positive effect of ASV in patients with HF with preserved ejection fraction (p = 0.036). In hospitalized HF patients with moderate-to-severe sleep apnea, adding ASV to OMT did not improve 6-month cardiovascular outcomes. Study power was limited for detection of safety signals and identifying differential effects of ASV in patients with HF with preserved ejection fraction, but additional studies are warranted in this population. (Cardiovascular Improvements With MV ASV Therapy in Heart Failure [CAT-HF]; NCT01953874). Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Protective mechanical ventilation in United Kingdom critical care units: A multicentre audit
Martin, Matthew J; Richardson, Neil; Bourdeaux, Christopher P
2016-01-01
Lung protective ventilation is becoming increasingly used for all critically ill patients being mechanically ventilated on a mandatory ventilator mode. Compliance with the universal application of this ventilation strategy in intensive care units in the United Kingdom is unknown. This 24-h audit of ventilation practice took place in 16 intensive care units in two regions of the United Kingdom. The mean tidal volume for all patients being ventilated on a mandatory ventilator mode was 7.2(±1.4) ml kg−1 predicted body weight and overall compliance with low tidal volume ventilation (≤6.5 ml kg−1 predicted body weight) was 34%. The mean tidal volume for patients ventilated with volume-controlled ventilation was 7.0(±1.2) ml kg−1 predicted body weight and 7.9(±1.8) ml kg−1 predicted body weight for pressure-controlled ventilation (P < 0.0001). Overall compliance with recommended levels of positive end-expiratory pressure was 72%. Significant variation in practice existed both at a regional and individual unit level. PMID:28979556
Protective mechanical ventilation in United Kingdom critical care units: A multicentre audit.
Newell, Christopher P; Martin, Matthew J; Richardson, Neil; Bourdeaux, Christopher P
2017-05-01
Lung protective ventilation is becoming increasingly used for all critically ill patients being mechanically ventilated on a mandatory ventilator mode. Compliance with the universal application of this ventilation strategy in intensive care units in the United Kingdom is unknown. This 24-h audit of ventilation practice took place in 16 intensive care units in two regions of the United Kingdom. The mean tidal volume for all patients being ventilated on a mandatory ventilator mode was 7.2(±1.4) ml kg -1 predicted body weight and overall compliance with low tidal volume ventilation (≤6.5 ml kg -1 predicted body weight) was 34%. The mean tidal volume for patients ventilated with volume-controlled ventilation was 7.0(±1.2) ml kg -1 predicted body weight and 7.9(±1.8) ml kg -1 predicted body weight for pressure-controlled ventilation ( P < 0.0001). Overall compliance with recommended levels of positive end-expiratory pressure was 72%. Significant variation in practice existed both at a regional and individual unit level.
Association between substandard classroom ventilation rates and students' academic achievement.
Haverinen-Shaughnessy, U; Moschandreas, D J; Shaughnessy, R J
2011-04-01
This study focuses on the relationship between classroom ventilation rates and academic achievement. One hundred elementary schools of two school districts in the southwest United States were included in the study. Ventilation rates were estimated from fifth-grade classrooms (one per school) using CO(2) concentrations measured during occupied school days. In addition, standardized test scores and background data related to students in the classrooms studied were obtained from the districts. Of 100 classrooms, 87 had ventilation rates below recommended guidelines based on ASHRAE Standard 62 as of 2004. There is a linear association between classroom ventilation rates and students' academic achievement within the range of 0.9-7.1 l/s per person. For every unit (1 l/s per person) increase in the ventilation rate within that range, the proportion of students passing standardized test (i.e., scoring satisfactory or above) is expected to increase by 2.9% (95%CI 0.9-4.8%) for math and 2.7% (0.5-4.9%) for reading. The linear relationship observed may level off or change direction with higher ventilation rates, but given the limited number of observations, we were unable to test this hypothesis. A larger sample size is needed for estimating the effect of classroom ventilation rates higher than 7.1 l/s per person on academic achievement. The results of this study suggest that increasing the ventilation rates toward recommended guideline ventilation rates in classrooms should translate into improved academic achievement of students. More studies are needed to fully understand the relationships between ventilation rate, other indoor environmental quality parameters, and their effects on students' health and achievement. Achieving the recommended guidelines and pursuing better understanding of the underlying relationships would ultimately support both sustainable and productive school environments for students and personnel. © 2010 John Wiley & Sons A/S.
Field and Laboratory Testing of Approaches to Smart Whole-House Mechanical Ventilation Control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, Eric; Fenaughty, Karen; Parker, Danny
Whole-house mechanical ventilation is a critical component to a comprehensive strategy for good indoor air quality (IAQ). However, due to lack of integration with standard heating and cooling systems, and perceptions from a portion of the homebuilding industry about risks related to increased energy use, increased cost, and decreased comfort, voluntary and code-required adoption varies among regions. Smart ventilation controls (SVC) balance energy consumption, comfort, and IAQ by optimizing mechanical ventilation operation to reduce the heating and/or cooling loads, improve management of indoor moisture, and maintain IAQ equivalence according to ASHRAE 62.2.
Field and Laboratory Testing of Approaches to Smart Whole-House Mechanical Ventilation Control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, Eric; Fenaughty, Karen; Parker, Danny
Whole-house mechanical ventilation is a critical component to a comprehensive strategy for good indoor air quality (IAQ). However, due to lack of integration with standard heating and cooling systems, and perceptions from a portion of the homebuilding industry about risks related to increased energy use, increased cost, and decreased comfort, voluntary and code-required adoption varies amongst regions. Smart ventilation controls (SVC) balance energy consumption, comfort, and IAQ by optimizing mechanical ventilation operation to reduce the heating and/or cooling loads, improve management of indoor moisture, and maintain IAQ equivalence according to ASHRAE 62.2.
Schwaiberger, David; Pickerodt, Philipp A; Pomprapa, Anake; Tjarks, Onno; Kork, Felix; Boemke, Willehad; Francis, Roland C E; Leonhardt, Steffen; Lachmann, Burkhard
2018-06-01
Adherence to low tidal volume (V T ) ventilation and selected positive end-expiratory pressures are low during mechanical ventilation for treatment of the acute respiratory distress syndrome. Using a pig model of severe lung injury, we tested the feasibility and physiological responses to a novel fully closed-loop mechanical ventilation algorithm based on the "open lung" concept. Lung injury was induced by surfactant washout in pigs (n = 8). Animals were ventilated following the principles of the "open lung approach" (OLA) using a fully closed-loop physiological feedback algorithm for mechanical ventilation. Standard gas exchange, respiratory- and hemodynamic parameters were measured. Electrical impedance tomography was used to quantify regional ventilation distribution during mechanical ventilation. Automatized mechanical ventilation provided strict adherence to low V T -ventilation for 6 h in severely lung injured pigs. Using the "open lung" approach, tidal volume delivery required low lung distending pressures, increased recruitment and ventilation of dorsal lung regions and improved arterial blood oxygenation. Physiological feedback closed-loop mechanical ventilation according to the principles of the open lung concept is feasible and provides low tidal volume ventilation without human intervention. Of importance, the "open lung approach"-ventilation improved gas exchange and reduced lung driving pressures by opening atelectasis and shifting of ventilation to dorsal lung regions.
Elective ventilation for organ donation: law, policy and public ethics.
Coggon, John
2013-03-01
This paper examines questions concerning elective ventilation, contextualised within English law and policy. It presents the general debate with reference both to the Exeter Protocol on elective ventilation, and the considerable developments in legal principle since the time that that protocol was declared to be unlawful. I distinguish different aspects of what might be labelled elective ventilation policies under the following four headings: 'basic elective ventilation'; 'epistemically complex elective ventilation'; 'practically complex elective ventilation'; and 'epistemically and practically complex elective ventilation'. I give a legal analysis of each. In concluding remarks on their potential practical viability, I emphasise the importance not just of ascertaining the legal and ethical acceptability of these and other forms of elective ventilation, but also of assessing their professional and political acceptability. This importance relates both to the successful implementation of the individual practices, and to guarding against possible harmful effects in the wider efforts to increase the rates of posthumous organ donation.
Ferrando, Carlos; Mugarra, Ana; Gutierrez, Andrea; Carbonell, Jose Antonio; García, Marisa; Soro, Marina; Tusman, Gerardo; Belda, Francisco Javier
2014-03-01
We investigated whether individualized positive end-expiratory pressure (PEEP) improves oxygenation, ventilation, and lung mechanics during one-lung ventilation compared with standardized PEEP. Thirty patients undergoing thoracic surgery were randomly allocated to the study or control group. Both groups received an alveolar recruitment maneuver at the beginning and end of one-lung ventilation. After the alveolar recruitment maneuver, the control group had their lungs ventilated with a 5 cm·H2O PEEP, while the study group had their lungs ventilated with an individualized PEEP level determined by a PEEP decrement trial. Arterial blood samples, lung mechanics, and volumetric capnography were recorded at multiple timepoints throughout the procedure. The individualized PEEP values in study group were higher than the standardized PEEP values (10 ± 2 vs 5 cm·H2O; P < 0.001). In both groups, arterial oxygenation decreased when bilateral-lung ventilation was switched to one-lung ventilation and increased after the alveolar recruitment maneuver. During one-lung ventilation, oxygenation was maintained in the study group but decreased in the control group. After one-lung ventilation, arterial oxygenation was significantly higher in the study group (306 vs 231 mm·Hg, P = 0.007). Static compliance decreased in both groups when bilateral-lung ventilation was switched to one-lung ventilation. Static compliance increased significantly only in the study group (P < 0.001) after the alveolar recruitment maneuver and optimal PEEP adjustment. The alveolar recruitment maneuver did not decrease cardiac index in any patient. During one-lung ventilation, the improvements in oxygenation and lung mechanics after an alveolar recruitment maneuver were better preserved by ventilation by using individualized PEEP with a PEEP decrement trial than with a standardized 5 cm·H2O of PEEP.
Winkler, Bernd E; Muellenbach, Ralf M; Wurmb, Thomas; Struck, Manuel F; Roewer, Norbert; Kranke, Peter
2017-02-01
While controlled ventilation is most frequently used during cardiopulmonary resuscitation (CPR), the application of continuous positive airway pressure (CPAP) and passive ventilation of the lung synchronously with chest compressions and decompressions might represent a promising alternative approach. One benefit of CPAP during CPR is the reduction of peak airway pressures and therefore a potential enhancement in haemodynamics. We therefore evaluated the tidal volumes and airway pressures achieved during CPAP-CPR. During CPR with the LUCAS™ 2 compression device, a manikin model was passively ventilated at CPAP levels of 5, 10, 20 and 30 hPa with the Boussignac tracheal tube and the ventilators Evita ® V500, Medumat ® Transport, Oxylator ® EMX, Oxylog ® 2000, Oxylog ® 3000, Primus ® and Servo ® -i as well as the Wenoll ® diver rescue system. Tidal volumes and airway pressures during CPAP-CPR were recorded and analyzed. Tidal volumes during CPAP-CPR were higher than during compression-only CPR without positive airway pressure. The passively generated tidal volumes increased with increasing CPAP levels and were significantly influenced by the ventilators used. During ventilation at 20 hPa CPAP via a tracheal tube, the mean tidal volumes ranged from 125 ml (Medumat ® ) to 309 ml (Wenoll ® ) and the peak airway pressures from 23 hPa (Primus ® ) to 49 hPa (Oxylog ® 3000). Transport ventilators generated lower tidal volumes than intensive care ventilators or closed-circuit systems. Peak airway pressures during CPAP-CPR were lower than those during controlled ventilation CPR reported in literature. High peak airway pressures are known to limit the applicability of ventilation via facemask or via supraglottic airway devices and may adversely affect haemodynamics. Hence, the application of ventilators generating high tidal volumes with low peak airway pressures appears desirable during CPAP-CPR. The limited CPAP-CPR capabilities of transport ventilators in our study might be prerequisite for future developments of transport ventilators.
Greenstein, Yonatan Y; Shakespeare, Eric; Doelken, Peter; Mayo, Paul H
2017-07-01
Flexible bronchoscopy (FB) in intubated patients on mechanical ventilation increases airway resistance. During FB, two ventilatory strategies are possible: maintaining tidal volume (VT) while maintaining baseline CO2 or allowing reduction of VT. The former strategy carries risk of hyperinflation due to expiratory flow limitation with FB. The aim of the authors was too study end expiratory lung volume (EELV) during FB of intubated subjects while limiting VT. We studied 16 subjects who were intubated on mechanical ventilation and required FB. Changes in EELV were measured by respiratory inductance plethysmography. Ventilator mechanics, EELV, and arterial blood gases, were measured. FB insertions decreased EELV in 64% of cases (-325±371 mL) and increased it in 32% of cases (65±59 mL). Suctioning decreased EELV in 76% of cases (-120±104 mL) and increased it in 16% of cases (29±33 mL). Respiratory mechanics were unchanged. Pre-FB and post-FB, PaO2 decreased by 61±96 mm Hg and PaCO2 increased by 15±7 mm Hg. There was no clinically significant increase in EELV in any subject during FB. Decreases in EELV coincided with FB-suctioning maneuvers. Peak pressure limiting ventilation protected the subject against hyperinflation with a consequent, well-tolerated reduction in VT, and hypercapnea. Suctioning should be limited, especially in patients vulnerable to derecruitment effect.
Chow, T T; Yang, X Y
2005-02-01
A laminar airflow study was performed in a standard operating theatre in Hong Kong, the design of which followed the requirements of the UK Health Technical Memorandum. The study of the ultra-clean ventilation system investigated the effectiveness of the laminar flow in: (i) preventing bioaerosols released by the surgical staff from causing postoperative infection of the patient; and (ii) protecting the surgical team against infection by bacteria from the wound site. Seven cases of computer simulation are presented and the sensitivity of individual cases is discussed. Air velocity at the supply diffuser has been identified as one of the most important factors in governing the dispersion of airborne infectious particles. Higher velocity within the laminar regime is advantageous in minimizing the heat-dissipation effect, and to ensure an adequate washing effect against particulate settlement. Inappropriate positioning of the medical lamps can be detrimental. Omission of a partial wall may increase the infection risk of the surgical team due to the ingression of room air at the supply diffuser periphery. This paper stresses that a successful outcome in preventing airborne infection depends as much on resolving human factors as on overcoming technical obstacles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cain, W.S.; Isseroff, R.; Leaderer, B.P.
1981-04-01
Experiments on occupancy odor addressed the question of why required ventilation rate per occupant increased progressively with increases in the number of persons in a space. In order to investigate ventilation requirements under approximately ideal conditions, we constructed an aluminum-lined environmental chamber with excellent control over environmental conditions and a ventilation system that provided rapid and uniform mixing of air. Psychophysical experiments on occupancy odor explored 47 different combinations of occupancy density, temperature and humidity, and ventilation rate. The experiments collected judgements both from visitors, who smelled air from the chamber only once every few minutes, and from occupants, whomore » remained in the chamber for an hour at a time. The judgements of visitors revealed that occupancy odor increased only gradually over time and rarely reached very high or objectionable levels. Judgements of occupants also revealed rather minor dissatisfaction. Only during combinations of high temperature and humidity did objectionability become more than a minor issue to either group. Experiments on cigarette smoking explored rates of 4, 8, and 16 cigarettes per hour under various environmental conditions and with ventilation rates as high as 68 cfm (34 L.s/sup -1/) per occupant. As soon as occupants lit cigarettes in the chamber, the odor level increased dramatically. At ventilation rates far greater than necessary to control occupancy odor, the odor from cigarette smoking remained quite intense. In general, the odor proved impossible to control adequately even with a ventilation rate of 68 cfm (34 L.s/sup -1/) per occupant (4 occupants) and even when only one occupant smoked at a time. As in the case of occupancy odor, a combination of high temperature and humidity exacerbated the odor problem.« less
Beda, Alessandro; Güldner, Andreas; Simpson, David M; Carvalho, Nadja C; Franke, Susanne; Uhlig, Christopher; Koch, Thea; Pelosi, Paolo; de Abreu, Marcelo Gama
2012-03-01
The physiological importance of respiratory sinus arrhythmia (RSA) and cardioventilatory coupling (CVC) has not yet been fully elucidated, but these phenomena might contribute to improve ventilation/perfusion matching, with beneficial effects on gas exchange. Furthermore, decreased RSA amplitude has been suggested as an indicator of impaired autonomic control and poor clinical outcome, also during positive-pressure mechanical ventilation (MV). However, it is currently unknown how different modes of MV, including variable tidal volumes (V(T)), affect RSA and CVC during anesthesia. We compared the effects of pressure controlled (PCV) versus pressure assisted (PSV) ventilation, and of random variable versus constant V(T), on RSA and CVC in eight anesthetized pigs. At comparable depth of anesthesia, global hemodynamics, and ventilation, RSA amplitude increased from 20 ms in PCV to 50 ms in PSV (p < 0.05). CVC was detected (using proportional Shannon entropy of the interval between each inspiration onset and the previous R-peak in ECG) in two animals in PCV and seven animals in PSV. Variable V(T) did not significantly influence these phenomena. Furthermore, heart period and systolic arterial pressure oscillations were in phase during PCV but in counter-phase during PSV. At the same depth of anesthesia in pigs, PSV increases RSA amplitude and CVC compared to PCV. Our data suggest that the central respiratory drive, but not the baroreflex or the mechano-electric feedback in the heart, is the main mechanism behind the RSA increase. Hence, differences in RSA and CVC between mechanically ventilated patients might reflect the difference in ventilation mode rather than autonomic impairment. Also, since gas exchange did not increase from PCV to PSV, it is questionable whether RSA has any significance in improving ventilation/perfusion matching during MV.
Bouvet, Lionel; Albert, Marie-Laure; Augris, Caroline; Boselli, Emmanuel; Ecochard, René; Rabilloud, Muriel; Chassard, Dominique; Allaouchiche, Bernard
2014-02-01
The authors sought to determine the level of inspiratory pressure minimizing the risk of gastric insufflation while providing adequate pulmonary ventilation. The primary endpoint was the increase in incidence of gastric insufflation detected by ultrasonography of the antrum while inspiratory pressure for facemask pressure-controlled ventilation increased from 10 to 25 cm H2O. In this prospective, randomized, double-blind study, patients were allocated to one of the four groups (P10, P15, P20, and P25) defined by the inspiratory pressure applied during controlled-pressure ventilation: 10, 15, 20, and 25 cm H2O. Anesthesia was induced using propofol and remifentanil; no neuromuscular-blocking agent was administered. Once loss of eyelash reflex occurred, facemask ventilation was started for a 2-min period while gastric insufflation was detected by auscultation and by real-time ultrasonography of the antrum. The cross-sectional antral area was measured using ultrasonography before and after facemask ventilation. Respiratory parameters were recorded. Sixty-seven patients were analyzed. The authors registered statistically significant increases in incidences of gastric insufflation with inspiratory pressure, from 0% (group P10) to 41% (group P25) according to auscultation, and from 19 to 59% according to ultrasonography. In groups P20 and P25, detection of gastric insufflation by ultrasonography was associated with a statistically significant increase in the antral area. Lung ventilation was insufficient for group P10. Inspiratory pressure of 15 cm H2O allowed for reduced occurrence of gastric insufflation with proper lung ventilation during induction of anesthesia with remifentanil and propofol in nonparalyzed and nonobese patients. (Anesthesiology 2014; 120:326-34).
Gudmundsson, M; Perchiazzi, G; Pellegrini, M; Vena, A; Hedenstierna, G; Rylander, C
2018-01-01
In mechanically ventilated, lung injured, patients without spontaneous breathing effort, atelectasis with shunt and desaturation may appear suddenly when ventilator pressures are decreased. It is not known how such a formation of atelectasis is related to transpulmonary pressure (P L ) during weaning from mechanical ventilation when the spontaneous breathing effort is increased. If the relation between P L and atelectasis were known, monitoring of P L might help to avoid formation of atelectasis and cyclic collapse during weaning. The main purpose of this study was to determine the relation between P L and atelectasis in an experimental model representing weaning from mechanical ventilation. Dynamic transverse computed tomography scans were acquired in ten anaesthetized, surfactant-depleted pigs with preserved spontaneous breathing, as ventilator support was lowered by sequentially reducing inspiratory pressure and positive end expiratory pressure in steps. The volumes of gas and atelectasis in the lungs were correlated with P L obtained using oesophageal pressure recordings. Work of breathing (WOB) was assessed from Campbell diagrams. Gradual decrease in P L in both end-expiration and end-inspiration caused a proportional increase in atelectasis and decrease in the gas content (linear mixed model with an autoregressive correlation matrix; P < 0.001) as the WOB increased. However, cyclic alveolar collapse during tidal ventilation did not increase significantly. We found a proportional correlation between atelectasis and P L during the 'weaning process' in experimental mild lung injury. If confirmed in the clinical setting, a gradual tapering of ventilator support can be recommended for weaning without risk of sudden formation of atelectasis. © 2017 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xiaobing
2011-01-01
This paper presents a study on the impacts of increased outdoor air (OA) ventilation on the performance of ground-source heat pump (GSHP) systems that heat and cool typical primary schools. Four locations Phoenix, Miami, Seattle, and Chicago are selected in this study to represent different climate zones in the United States. eQUEST, an integrated building and HVAC system energy analysis program, is used to simulate a typical primary school and the GSHP system at the four locations with minimum and 30% more than minimum OA ventilation. The simulation results show that, without an energy recovery ventilator, the 30% more OAmore » ventilation results in an 8.0 13.3% increase in total GSHP system energy consumption at the four locations. The peak heating and cooling loads increase by 20.2 30% and 14.9 18.4%, respectively, at the four locations. The load imbalance of the ground heat exchanger is increased in hot climates but reduced in mild and cold climates.« less
NASA Astrophysics Data System (ADS)
Hernández-Almeida, I.; Sierro, F.-J.; Cacho, I.; Flores, J.-A.
2015-04-01
Subsurface water column dynamics in the subpolar North Atlantic were reconstructed in order to improve the understanding of the cause of abrupt ice-rafted detritus (IRD) events during cold periods of the early Pleistocene. We used paired Mg / Ca and δ18O measurements of Neogloboquadrina pachyderma (sinistral - sin.), deep-dwelling planktonic foraminifera, to estimate the subsurface temperatures and seawater δ18O from a sediment core from Gardar Drift, in the subpolar North Atlantic. Carbon isotopes of benthic and planktonic foraminifera from the same site provide information about the ventilation and water column nutrient gradient. Mg / Ca-based temperatures and seawater δ18O suggest increased subsurface temperatures and salinities during ice-rafting, likely due to northward subsurface transport of subtropical waters during periods of weaker Atlantic Meridional Overturning Circulation (AMOC). Planktonic carbon isotopes support this suggestion, showing coincident increased subsurface ventilation during deposition of IRD. Subsurface accumulation of warm waters would have resulted in basal warming and break-up of ice-shelves, leading to massive iceberg discharges in the North Atlantic. The release of heat stored at the subsurface to the atmosphere would have helped to restart the AMOC. This mechanism is in agreement with modelling and proxy studies that observe a subsurface warming in the North Atlantic in response to AMOC slowdown during Marine Isotope Stage (MIS) 3.
Bibby, Chris; Hodgson, Murray
2017-01-01
The work reported here, part of a study on the performance and optimal design of interior natural-ventilation openings and silencers ("ventilators"), discusses the prediction of the acoustical performance of such ventilators, and the factors that affect it. A wave-based numerical approach-the finite-element method (FEM)-is applied. The development of a FEM technique for the prediction of ventilator diffuse-field transmission loss is presented. Model convergence is studied with respect to mesh, frequency-sampling and diffuse-field convergence. The modeling technique is validated by way of predictions and the comparison of them to analytical and experimental results. The transmission-loss performance of crosstalk silencers of four shapes, and the factors that affect it, are predicted and discussed. Performance increases with flow-path length for all silencer types. Adding elbows significantly increases high-frequency transmission loss, but does not increase overall silencer performance which is controlled by low-to-mid-frequency transmission loss.
Antibiotic therapy in ventilator-associated tracheobronchitis: a literature review.
Alves, Abel Eduardo; Pereira, José Manuel
2018-03-01
The concept of ventilator-associated tracheobronchitis is controversial; its definition is not unanimously accepted and often overlaps with ventilator-associated pneumonia. Ventilator-associated tracheobronchitis has an incidence similar to that of ventilator-associated pneumonia, with a high prevalence of isolated multiresistant agents, resulting in an increase in the time of mechanical ventilation and hospitalization but without an impact on mortality. The performance of quantitative cultures may allow better diagnostic definition of tracheobronchitis associated with mechanical ventilation, possibly avoiding the overdiagnosis of this condition. One of the major difficulties in differentiating between ventilator-associated tracheobronchitis and ventilator-associated pneumonia is the exclusion of a pulmonary infiltrate by chest radiography; thoracic computed tomography, thoracic ultrasonography, or invasive specimen collection may also be required. The institution of systemic antibiotic therapy does not improve the clinical impact of ventilator-associated tracheobronchitis, particularly in reducing time of mechanical ventilation, hospitalization or mortality, despite the possible reduced progression to ventilator-associated pneumonia. However, there are doubts regarding the methodology used. Thus, considering the high prevalence of tracheobronchitis associated with mechanical ventilation, routine treatment of this condition would result in high antibiotic usage without clear benefits. However, we suggest the institution of antibiotic therapy in patients with tracheobronchitis associated with mechanical ventilation and septic shock and/or worsening of oxygenation, and other auxiliary diagnostic tests should be simultaneously performed to exclude ventilator-associated pneumonia. This review provides a better understanding of the differentiation between tracheobronchitis associated with mechanical ventilation and pneumonia associated with mechanical ventilation, which can significantly decrease the use of antibiotics in critically ventilated patients.
Using Hyperpolarized 129Xe MRI to Quantify the Pulmonary Ventilation Distribution
He, Mu; Driehuys, Bastiaan; Que, Loretta G.; Huang, Yuh-Chin T.
2017-01-01
Background Ventilation heterogeneity is impossible to detect with spirometry. Alternatively, pulmonary ventilation can be imaged 3-dimensionally using inhaled 129Xe MRI. To date such images have been quantified primarily based on ventilation defects. Here, we introduce a robust means to transform 129Xe MRI scans such that the underlying ventilation distribution and its heterogeneity can be quantified. Methods Quantitative 129Xe ventilation MRI was conducted in 12 younger (24.7±5.2 yrs), and 10 older (62.2±7.2 yrs) healthy individuals, as well as 9 younger (25.9±6.4 yrs) and 10 older (63.2±6.1 yrs) asthmatics. The younger healthy population was used to establish a reference ventilation distribution and thresholds for 6 intensity bins. These were used to display and quantify regions of ventilation defect (VDR), low ventilation (LVR) and high ventilation (HVR). Results The ventilation distribution in young subjects was roughly Gaussian with a mean and SD of 0.52±0.18, resulting in VDR=2.1±1.3%, LVR=15.6±5.4% and HVR=17.4±3.1%. Older healthy volunteers exhibited a significantly right-skewed distribution (0.46±0.20, p=0.034), resulting in significantly increased VDR (7.0±4.8%, p=0.008) and LVR (24.5±11.5%, p=0.025). In the asthmatics, VDR and LVR increased in the older population, and HVR was significantly reduced (13.5±4.6% vs 18.9±4.5%, p=0.009). Quantitative 129Xe MRI also revealed different ventilation distribution patterns in response to albuterol in two asthmatics with normal FEV1. Conclusions Quantitative 129Xe MRI provides a robust and objective means to display and quantify the pulmonary ventilation distribution, even in subjects who have airway function impairment not appreciated by spirometry. PMID:27617823
Li, Y; Nielsen, P V
2011-12-01
There has been a rapid growth of scientific literature on the application of computational fluid dynamics (CFD) in the research of ventilation and indoor air science. With a 1000-10,000 times increase in computer hardware capability in the past 20 years, CFD has become an integral part of scientific research and engineering development of complex air distribution and ventilation systems in buildings. This review discusses the major and specific challenges of CFD in terms of turbulence modelling, numerical approximation, and boundary conditions relevant to building ventilation. We emphasize the growing need for CFD verification and validation, suggest ongoing needs for analytical and experimental methods to support the numerical solutions, and discuss the growing capacity of CFD in opening up new research areas. We suggest that CFD has not become a replacement for experiment and theoretical analysis in ventilation research, rather it has become an increasingly important partner. We believe that an effective scientific approach for ventilation studies is still to combine experiments, theory, and CFD. We argue that CFD verification and validation are becoming more crucial than ever as more complex ventilation problems are solved. It is anticipated that ventilation problems at the city scale will be tackled by CFD in the next 10 years. © 2011 John Wiley & Sons A/S.
Ahn, H J; Kim, J A; Yang, M; Shim, W S; Park, K J; Lee, J J
2012-09-01
Recent papers suggest protective ventilation (PV) as a primary ventilation strategy during one-lung ventilation (OLV) to reduce postoperative pulmonary morbidity. However, data regarding the advantage of the PV strategy in patients with normal preoperative pulmonary function are inconsistent, especially in the case of minimally invasive thoracic surgery. Therefore we compared conventional OLV (VT 10 ml/kg, FiO2 1.0, zero PEEP) to protective OLV (VT 6 ml/kg, FiO2 0.5, PEEP 5 cmH2O) in patients with normal preoperative pulmonary function tests undergoing video-assisted thoracic surgery. Oxygenation, respiratory mechanics, plasma interleukin-6 and malondialdehyde levels were measured at baseline, 15 and 60 minutes after OLV and 15 minutes after restoration of two-lung ventilation. PaO2 and PaO2/FiO2 were higher in conventional OLV than in protective OLV (P<0.001). Interleukin-6 and malondialdehyde increased over time in both groups (P<0.05); however, the magnitudes of increase were not different between the groups. Postoperatively there were no differences in the number of patients with PaO2/FiO2<300 mmHg or abnormalities on chest radiography. Protective ventilation did not provide advantages over conventional ventilation for video-assisted thoracic surgery in this group of patients with normal lung function.
Optimal ventilator strategies for trauma-related ARDS.
Goatly, Giles; Guidozzi, N; Khan, M
2018-03-29
Acute respiratory distress syndrome (ARDS) was first described in the 1960s and has become a major area of research due to the mortality and morbidity associated with it. ARDS is currently defined using the Berlin Consensus; however, this is not wholly applicable for trauma-related ARDS. A systematic review of the literature was undertaken using the Preferred Reporting for Systematic Reviews and Meta Analyses methodology. The Ovid Medline, Web of Science and PubMed online databases were interrogated for papers published between 1 January 1995 and 31 December 2017. The literature search yielded a total of 64 papers that fulfilled the search criteria. Despite decades of dedicated research into different treatment modalities, ARDS continues to carry a high burden of mortality. The ARDS definitions laid out in the Berlin consensus are not entirely suited to trauma. While trauma-related ARDS represents a small portion of the available research, the evidence continues to favour low tidal volume ventilation as the benchmark for current practice. Positive end expiratory ventilation and airway pressure release ventilation in trauma cohorts may be beneficial; however, the evidence to date does not show this. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
International Space Station USOS Crew Quarters Ventilation and Acoustic Design Implementation
NASA Technical Reports Server (NTRS)
Broyan, James Lee, Jr.
2009-01-01
The International Space Station (ISS) United States Operational Segment (USOS) has four permanent rack sized ISS Crew Quarters (CQ) providing a private crewmember space. The CQ uses Node 2 cabin air for ventilation/thermal cooling, as opposed to conditioned ducted air from the ISS Temperature Humidity Control System or the ISS fluid cooling loop connections. Consequently, CQ can only increase the air flow rate to reduce the temperature delta between the cabin and the CQ interior. However, increasing airflow causes increased acoustic noise so efficient airflow distribution is an important design parameter. The CQ utilized a two fan push-pull configuration to ensure fresh air at the crewmember s head position and reduce acoustic exposure. The CQ interior needs to be below Noise Curve 40 (NC-40). The CQ ventilation ducts are open to the significantly louder Node 2 cabin aisle way which required significantly acoustic mitigation controls. The design implementation of the CQ ventilation system and acoustic mitigation are very inter-related and require consideration of crew comfort balanced with use of interior habitable volume, accommodation of fan failures, and possible crew uses that impact ventilation and acoustic performance. This paper illustrates the types of model analysis, assumptions, vehicle interactions, and trade-offs required for CQ ventilation and acoustics. Additionally, on-orbit ventilation system performance and initial crew feedback is presented. This approach is applicable to any private enclosed space that the crew will occupy.
Wolthuis, Esther K; Choi, Goda; Dessing, Mark C; Bresser, Paul; Lutter, Rene; Dzoljic, Misa; van der Poll, Tom; Vroom, Margreeth B; Hollmann, Markus; Schultz, Marcus J
2008-01-01
Mechanical ventilation with high tidal volumes aggravates lung injury in patients with acute lung injury or acute respiratory distress syndrome. The authors sought to determine the effects of short-term mechanical ventilation on local inflammatory responses in patients without preexisting lung injury. Patients scheduled to undergo an elective surgical procedure (lasting > or = 5 h) were randomly assigned to mechanical ventilation with either higher tidal volumes of 12 ml/kg ideal body weight and no positive end-expiratory pressure (PEEP) or lower tidal volumes of 6 ml/kg and 10 cm H2O PEEP. After induction of anesthesia and 5 h thereafter, bronchoalveolar lavage fluid and/or blood was investigated for polymorphonuclear cell influx, changes in levels of inflammatory markers, and nucleosomes. Mechanical ventilation with lower tidal volumes and PEEP (n = 21) attenuated the increase of pulmonary levels of interleukin (IL)-8, myeloperoxidase, and elastase as seen with higher tidal volumes and no PEEP (n = 19). Only for myeloperoxidase, a difference was found between the two ventilation strategies after 5 h of mechanical ventilation (P < 0.01). Levels of tumor necrosis factor alpha, IL-1alpha, IL-1beta, IL-6, macrophage inflammatory protein 1alpha, and macrophage inflammatory protein 1beta in the bronchoalveolar lavage fluid were not affected by mechanical ventilation. Plasma levels of IL-6 and IL-8 increased with mechanical ventilation, but there were no differences between the two ventilation groups. The use of lower tidal volumes and PEEP may limit pulmonary inflammation in mechanically ventilated patients without preexisting lung injury. The specific contribution of both lower tidal volumes and PEEP on the protective effects of the lung should be further investigated.
Lucas, Rebekah A. I.; Pearson, James; Schlader, Zachary J.; Crandall, Craig G.
2016-01-01
This study tested the hypothesis that baroreceptor unloading during passive hyperthermia contributes to increases in ventilation and decreases in end-tidal partial pressure of carbon dioxide (PET,CO2) during that exposure. Two protocols were performed, in which healthy subjects underwent passive hyperthermia (increasing intestinal temperature by ~1.8°C) to cause a sustained increase in ventilation and reduction in PET,CO2. Upon attaining hyperthermic hyperventilation, in protocol 1 (n = 10; three females) a bolus (19 ± 2 ml kg−1) of warm (~38°C) isotonic saline was rapidly (5–10 min) infused intravenously to restore reductions in central venous pressure, whereas in protocol 2 (n = 11; five females) phenylephrine was infused intravenously (60–120 μg min−1) to return mean arterial pressure to normothermic levels. In protocol 1, hyperthermia increased ventilation (by 2.2 ± 1.7 l min−1, P < 0.01), while reducing PET,CO2 (by 4 ± 3 mmHg, P = 0.04) and central venous pressure (by 5 ± 1 mmHg, P <0.01). Saline infusion increased central venous pressure by 5 ± 1 mmHg (P < 0.01), restoring it to normothermic values, but did not change ventilation or PET,CO2 (P > 0.05). In protocol 2, hyperthermia increased ventilation (by 5.0 ± 2.7l min−1, P <0.01) and reduced PET ,CO2 (by 5 ± 2 mmHg, P < 0.01) and mean arterial pressure (by 9 ± 7 mmHg, P <0.01). Phenylephrine infusion increased mean arterial pressure by 12 ± 3 mmHg (P < 0.01), restoring it to normothermic values, but did not change ventilation or PET,CO2 (P > 0.05). The absence of a reduction in ventilation upon reloading the cardiopulmonary and arterial baroreceptors to pre-hyperthermic levels indicates that baroreceptor unloading with hyperthermia is unlikely to contribute to hyperthermic hyperventilation in humans. PMID:26299270
Şenay, Hasan; Sıvacı, Remziye; Kokulu, Serdar; Koca, Buğra; Bakı, Elif Doğan; Ela, Yüksel
2016-08-01
The aim of this present study is to compare the effect of pressure-controlled ventilation and volume-controlled ventilation on pulmonary mechanics and inflammatory markers in prone position. The study included 41 patients undergoing to vertebrae surgery. The patients were randomized into two groups: Group 1 received volume-controlled ventilation, while group 2 received pressure-controlled ventilation. The demographic data, pulmonary mechanics, the inflammatory marker levels just after the induction of anesthetics, at the 6th and 12th hours, and gas analysis from arterial blood samples taken at the beginning and the 30th minute were recorded. The inflammatory marker levels increased in both groups, without any significant difference among groups. Peak inspiratory pressure level was higher in the volume-controlled ventilation group. This study revealed that there is no difference regarding inflammatory marker levels between volume- and pressure-controlled ventilation.
Intraoperative mechanical ventilation for the pediatric patient.
Kneyber, Martin C J
2015-09-01
Invasive mechanical ventilation is required when children undergo general anesthesia for any procedure. It is remarkable that one of the most practiced interventions such as pediatric mechanical ventilation is hardly supported by any scientific evidence but rather based on personal experience and data from adults, especially as ventilation itself is increasingly recognized as a harmful intervention that causes ventilator-induced lung injury. The use of low tidal volume and higher levels of positive end-expiratory pressure became an integral part of lung-protective ventilation following the outcomes of clinical trials in critically ill adults. This approach has been readily adopted in pediatric ventilation. However, a clear association between tidal volume and mortality has not been ascertained in pediatrics. In fact, experimental studies have suggested that young children might be less susceptible to ventilator-induced lung injury. As such, no recommendations on optimal lung-protective ventilation strategy in children with or without lung injury can be made. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Harun, D.; Zulfadhli; Akhyar, H.
2018-05-01
The turbine ventilator is a wind turbine with a vertical axis that has a combined function of the wind turbine and a suction fan. In this study, the turbine ventilator modified by adding a wind cup on the top (cap) turbine ventilator. The purpose of this experiment is to investigated the effect of the addition of wind cup on the turbine ventilator. Turbine ventilator used is type v30 and wind cup with diameter 77 mm. The experiment was conducted using a triangular pentagon model space chamber which was cut off to place the ventilator turbine ventilation cup with a volume of 0.983 m3 (equivalent to 1 mm3). The results of this study indicate that at an average wind speed of 1.8 m/s, the rotation of the turbine produced without a wind cup is 60.6 rpm while with the addition of a wind cup in the turbine ventilator is 69 rpm. The average increase of rotation turbine after added win cup is 8.4 rpm and the efficiency improvement of turbine ventilator is 1.7 %.
Pelosi, P; Solca, M; Ravagnan, I; Tubiolo, D; Ferrario, L; Gattinoni, L
1996-07-01
To evaluate the effect of two commonly used heat and moisture exchangers on respiratory function and gas exchange in patients with acute respiratory failure during pressure-support ventilation. Prospective, randomized trial. Intensive care unit of a university hospital. Fourteen patients with moderate acute respiratory failure, receiving pressure-support ventilation. Patients were assigned randomly to two treatment groups, in which two different heat and moisture exchangers were used: Hygroster (DAR S.p.A., Mirandola, Italy) with higher deadspace and lower resistance (group 1, n = 7), and Hygrobac-S (DAR S.p.A.) with lower deadspace and higher resistance (group 2, n = 7). Patients were assessed at three pressure-support levels: a) baseline (10.3 +/- 2.4 cm H2O for group 1, 9.3 +/- 1.3 cm H2O for group 2); b) 5 cm H2O above baseline; and c) 5 cm H2O below baseline. Measurements obtained with the heat and moisture exchangers were compared with those values obtained using the standard heated hot water humidifier. At baseline pressure-support ventilation, the insertion of both heat and moisture exchangers induced in all patients a significant increase in the following parameters: minute ventilation (12.4 +/- 3.2 to 15.0 +/- 2.6 L/min for group 1, and 11.8 +/- 3.6 to 14.2 +/- 3.5 L/min for group 2); static intrinsic positive end-expiratory pressure (2.9 +/- 2.0 to 5.1 +/- 3.2 cm H2O for group 1, and 2.9 +/- 1.7 to 5.5 +/- 3.0 cm H2O for group 2); ventilatory drive, expressed as P41 (2.7 +/- 2.0 to 5.2 +/- 4.0 cm H2O for group 1, and 3.3 +/- 2.0 to 5.3 +/- 3.0 cm H2O for group 2); and work of breathing, expressed as either power (8.8 +/- 9.4 to 14.5 +/- 10.3 joule/ min for group 1, and 10.5 +/- 7.4 to 16.6 +/- 11.0 joule/min for group 2) or work per liter of ventilation (0.6 +/- 0.6 to 1.0 +/- 0.7 joule/L for group 1, and 0.8 +/- 0.4 to 1.1 +/- 0.5 joule/L. for group 2). These increases also occurred when pressure-support ventilation was both above and below the baseline level, although at high pressure support the increase in work of breathing with heat and moisture exchangers was less evident. Gas exchange was unaffected by heat and moisture exchangers, as minute ventilation increased to compensate for the higher deadspace produced in the circuit by the insertion of heat and moisture exchangers. The tested heat and moisture exchangers should be used carefully in patients with acute respiratory failure during pressure-support ventilation, since these devices substantially increase minute ventilation, ventilatory drive, and work of breathing. However, an increase in pressure-support ventilation (5 to 10 cm H2O) may compensate for the increased work of breathing.
Post-hypercapnic alkalosis is associated with ventilator dependence and increased ICU stay.
Banga, Amit; Khilnani, G C
2009-12-01
Posthypercapnic alkalosis (PHA) is frequently overlooked as a complication of mechanical ventilation in patients with exacerbation of chronic obstructive pulmonary disease (COPD). The current study was conducted to determine the incidence, risk factors for development and effect on outcome of PHA. Eighty-four patients (62 +/- 11 years, range 42-78 years, M:F 58: 26) with exacerbation of COPD with underlying chronic hypercapnic respiratory failure requiring mechanical ventilation were included in a retrospective fashion. PHA was defined as static or rising serum bicarbonate levels, 72 hours or more after return of PaCO2 to baseline, with concurrent pH > 7.44. Development of PHA was noted in 17 patients (20.2%). Corticosteroid use >or=10 days during the hospital stay was an independent risk factor for development of PHA (Adjusted OR, 95% CI: 9.4, 1.6-55.3; P = 0.013). Development of PHA was associated with an increased incidence of ventilator dependence (64.7% vs. 37.3%, OR, 95% CI: 3.1, 1.1-9.4, P = 0.04) and duration of ICU stay (14.7 +/- 6.7 vs. 9.5 +/- 5.9, P = 0.01) but no increase in hospital mortality (43.3% vs. 41.2%, P = NS). It is concluded that PHA is a common complication in patients with exacerbation of COPD requiring mechanical ventilation and is associated with increased incidence of ventilator dependence and ICU stay.
Marjanović, Vesna; Novak, Vesna; Velicković, Ljubinka; Marjanović, Goran
2011-01-01
Patients with severe traumatic brain injury are at a risk of developing ventilator-associated pneumonia. The aim of this study was to describe the incidence, etiology, risk factors for development of ventilator-associated pneumonia and outcome in patients with severe traumatic brain injury. A retrospective study was done in 72 patients with severe traumatic brain injury, who required mechanical ventilation for more than 48 hours. Ventilator-associated pneumonia was found in 31 of 72 (43.06%) patients with severe traumatic brain injury. The risk factors for ventilator-associated pneumonia were: prolonged mechanical ventilation (12.42 vs 4.34 days, p < 0.001), longer stay at intensive care unit (17 vs 5 days, p < 0.001) and chest injury (51.61 vs 19.51%, p < 0.009) compared to patients without ventilator-associated pneumonia. The mortality rate in the patients with ventilator-associated pneumonia was higher (38.71 vs 21.95%, p = 0.12). The development of ventilator-associated pneumonia in patients with severe traumatic brain injury led to the increased morbidity due to the prolonged mechanical ventilation, longer stay at intensive care unit and chest injury, but had no effect on mortality.
Perioperative lung protective ventilation in obese patients.
Fernandez-Bustamante, Ana; Hashimoto, Soshi; Serpa Neto, Ary; Moine, Pierre; Vidal Melo, Marcos F; Repine, John E
2015-05-06
The perioperative use and relevance of protective ventilation in surgical patients is being increasingly recognized. Obesity poses particular challenges to adequate mechanical ventilation in addition to surgical constraints, primarily by restricted lung mechanics due to excessive adiposity, frequent respiratory comorbidities (i.e. sleep apnea, asthma), and concerns of postoperative respiratory depression and other pulmonary complications. The number of surgical patients with obesity is increasing, and facing these challenges is common in the operating rooms and critical care units worldwide. In this review we summarize the existing literature which supports the following recommendations for the perioperative ventilation in obese patients: (1) the use of protective ventilation with low tidal volumes (approximately 8 mL/kg, calculated based on predicted -not actual- body weight) to avoid volutrauma; (2) a focus on lung recruitment by utilizing PEEP (8-15 cmH2O) in addition to recruitment maneuvers during the intraoperative period, as well as incentivized deep breathing and noninvasive ventilation early in the postoperative period, to avoid atelectasis, hypoxemia and atelectrauma; and (3) a judicious oxygen use (ideally less than 0.8) to avoid hypoxemia but also possible reabsorption atelectasis. Obesity poses an additional challenge for achieving adequate protective ventilation during one-lung ventilation, but different lung isolation techniques have been adequately performed in obese patients by experienced providers. Postoperative efforts should be directed to avoid hypoventilation, atelectasis and hypoxemia. Further studies are needed to better define optimum protective ventilation strategies and analyze their impact on the perioperative outcomes of surgical patients with obesity.
[Possibilities of bi-level positive pressure ventilation in chronic hypoventilation].
Saaresranta, Tarja; Anttalainen, Ulla; Polo, Olli
2011-01-01
During the last decade, noninvasive bi-level positive pressure ventilation has enabled respiratory support in inpatient wards and at home. In many cases, a bi-level airway pressure ventilator can be used to avoid artificial airway and respirator therapy, and may shorten hospital stay and save costs. The treatment alleviates the patient's dyspnea and fatigue, whereby the quality of life improves, and in certain situations also the life span increases. The implementation of bi-level positive pressure ventilation by the physician requires knowledge of the basics of respiratory physiology and familiarization with the bi-level airway pressure ventilator.
Cheong, Chang Heon; Lee, Seonhye
2018-01-01
The prevention of airborne infections in emergency departments is a very important issue. This study investigated the effects of architectural features on airborne pathogen dispersion in emergency departments by using a CFD (computational fluid dynamics) simulation tool. The study included three architectural features as the major variables: increased ventilation rate, inlet and outlet diffuser positions, and partitions between beds. The most effective method for preventing pathogen dispersion and reducing the pathogen concentration was found to be increasing the ventilation rate. Installing partitions between the beds and changing the ventilation system’s inlet and outlet diffuser positions contributed only minimally to reducing the concentration of airborne pathogens. PMID:29534043
Cheong, Chang Heon; Lee, Seonhye
2018-03-13
The prevention of airborne infections in emergency departments is a very important issue. This study investigated the effects of architectural features on airborne pathogen dispersion in emergency departments by using a CFD (computational fluid dynamics) simulation tool. The study included three architectural features as the major variables: increased ventilation rate, inlet and outlet diffuser positions, and partitions between beds. The most effective method for preventing pathogen dispersion and reducing the pathogen concentration was found to be increasing the ventilation rate. Installing partitions between the beds and changing the ventilation system's inlet and outlet diffuser positions contributed only minimally to reducing the concentration of airborne pathogens.
Elliott, Ann R.; Prisk, G. Kim; Darquenne, Chantal
2017-01-01
Multiple breath washout (MBW) and oxygen-enhanced MRI techniques use acute exposure to 100% oxygen to measure ventilation heterogeneity. Implicit is the assumption that breathing 100% oxygen does not induce changes in ventilation heterogeneity; however, this is untested. We hypothesized that ventilation heterogeneity decreases with increasing inspired oxygen concentration in healthy subjects. We performed MBW in 8 healthy subjects (4 women, 4 men; age = 43 ± 15 yr) with normal pulmonary function (FEV1 = 98 ± 6% predicted) using 10% argon as a tracer gas and oxygen concentrations of 12.5%, 21%, or 90%. MBW was performed in accordance with ERS-ATS guidelines. Subjects initially inspired air followed by a wash-in of test gas. Tests were performed in balanced order in triplicate. Gas concentrations were measured at the mouth, and argon signals rescaled to mimic a N2 washout, and analyzed to determine the distribution of specific ventilation (SV). Heterogeneity was characterized by the width of a log-Gaussian fit of the SV distribution and from Sacin and Scond indexes derived from the phase III slope. There were no significant differences in the ventilation heterogeneity due to altered inspired oxygen: histogram width (hypoxia 0.57 ± 0.11, normoxia 0.60 ± 0.08, hyperoxia 0.59 ± 0.09, P = 0.51), Scond (hypoxia 0.014 ± 0.011, normoxia 0.012 ± 0.015, hyperoxia 0.010 ± 0.011, P = 0.34), or Sacin (hypoxia 0.11 ± 0.04, normoxia 0.10 ± 0.03, hyperoxia 0.12 ± 0.03, P = 0.23). Functional residual capacity was increased in hypoxia (P = 0.04) and dead space increased in hyperoxia (P = 0.0001) compared with the other conditions. The acute use of 100% oxygen in MBW or MRI is unlikely to affect ventilation heterogeneity. NEW & NOTEWORTHY Hyperoxia is used to measure the distribution of ventilation in imaging and MBW but may alter the underlying ventilation distribution. We used MBW to evaluate the effect of inspired oxygen concentration on the ventilation distribution using 10% argon as a tracer. Short-duration exposure to hypoxia (12.5% oxygen) and hyperoxia (90% oxygen) during MBW had no significant effect on ventilation heterogeneity, suggesting that hyperoxia can be used to assess the ventilation distribution. PMID:28280107
Hopkins, Susan R; Elliott, Ann R; Prisk, G Kim; Darquenne, Chantal
2017-06-01
Multiple breath washout (MBW) and oxygen-enhanced MRI techniques use acute exposure to 100% oxygen to measure ventilation heterogeneity. Implicit is the assumption that breathing 100% oxygen does not induce changes in ventilation heterogeneity; however, this is untested. We hypothesized that ventilation heterogeneity decreases with increasing inspired oxygen concentration in healthy subjects. We performed MBW in 8 healthy subjects (4 women, 4 men; age = 43 ± 15 yr) with normal pulmonary function (FEV 1 = 98 ± 6% predicted) using 10% argon as a tracer gas and oxygen concentrations of 12.5%, 21%, or 90%. MBW was performed in accordance with ERS-ATS guidelines. Subjects initially inspired air followed by a wash-in of test gas. Tests were performed in balanced order in triplicate. Gas concentrations were measured at the mouth, and argon signals rescaled to mimic a N 2 washout, and analyzed to determine the distribution of specific ventilation (SV). Heterogeneity was characterized by the width of a log-Gaussian fit of the SV distribution and from S acin and S cond indexes derived from the phase III slope. There were no significant differences in the ventilation heterogeneity due to altered inspired oxygen: histogram width (hypoxia 0.57 ± 0.11, normoxia 0.60 ± 0.08, hyperoxia 0.59 ± 0.09, P = 0.51), S cond (hypoxia 0.014 ± 0.011, normoxia 0.012 ± 0.015, hyperoxia 0.010 ± 0.011, P = 0.34), or S acin (hypoxia 0.11 ± 0.04, normoxia 0.10 ± 0.03, hyperoxia 0.12 ± 0.03, P = 0.23). Functional residual capacity was increased in hypoxia ( P = 0.04) and dead space increased in hyperoxia ( P = 0.0001) compared with the other conditions. The acute use of 100% oxygen in MBW or MRI is unlikely to affect ventilation heterogeneity. NEW & NOTEWORTHY Hyperoxia is used to measure the distribution of ventilation in imaging and MBW but may alter the underlying ventilation distribution. We used MBW to evaluate the effect of inspired oxygen concentration on the ventilation distribution using 10% argon as a tracer. Short-duration exposure to hypoxia (12.5% oxygen) and hyperoxia (90% oxygen) during MBW had no significant effect on ventilation heterogeneity, suggesting that hyperoxia can be used to assess the ventilation distribution. Copyright © 2017 the American Physiological Society.
Prognostic and Pathogenic Role of Angiopoietin-1 and -2 in Pneumonia.
Gutbier, Birgitt; Neuhauß, Anne-Kathrin; Reppe, Katrin; Ehrler, Carolin; Santel, Ansgar; Kaufmann, Jörg; Scholz, Markus; Weissmann, Norbert; Morawietz, Lars; Mitchell, Timothy J; Aliberti, Stefano; Hippenstiel, Stefan; Suttorp, Norbert; Witzenrath, Martin
2018-02-15
During pneumonia, pathogen-host interaction evokes inflammation and lung barrier dysfunction. Tie2-activation by Angiopoietin-1 reduces, while Tie2-blockade by Angiopoietin-2 increases inflammation and permeability during sepsis. The role of Angiopoietin-1/-2 in pneumonia remains unidentified. To investigate the prognostic and pathogenetic impact of Angiopoietins in regulating pulmonary vascular barrier function and inflammation in bacterial pneumonia. Serum Angiopoietin levels were quantified in pneumonia patients of two independent cohorts (n=148, n=395). Human post mortem lung tissue, pneumolysin- or Angiopoietin-2-stimulated endothelial cells, isolated perfused and ventilated mouse lungs, and mice with pneumococcal pneumonia were investigated. In pneumonia patients, decreased serum Angiopoietin-1 and increased Angiopoietin-2 levels were observed as compared to healthy subjects. Higher Angiopoietin-2 serum levels were found in community-acquired pneumonia patients who died within 28 days after diagnosis compared to survivors. ROC analysis revealed improved prognostic accuracy of CURB-65 for 28-day survival, intensive care treatment and length of hospital stay if combined with Angiopoietin-2 serum levels. In vitro, pneumolysin enhanced endothelial Angiopoietin-2 release, Angiopoietin-2 increased endothelial permeability, and Angiopoietin-1 reduced pneumolysin-evoked endothelial permeability. Ventilated and perfused lungs of mice with Angiopoietin-2-knockdown showed reduced permeability upon pneumolysin stimulation. Increased pulmonary Angiopoietin-2 and reduced Angiopoietin-1 mRNA expression were observed in S. pneumoniae infected mice. Finally, Angiopoietin-1 therapy reduced inflammation and permeability in murine pneumonia. These data suggest a central role of Angiopoietin-1/-2 in pneumonia-evoked inflammation and permeability. Increased Angiopoietin-2 serum levels predicted mortality and length of hospital stay, and Angiopoietin-1 may provide a therapeutic target for severe pneumonia.
de Prost, Nicolas; Roux, Damien; Dreyfuss, Didier; Ricard, Jean-Damien; Le Guludec, Dominique; Saumon, Georges
2007-04-01
To evaluate whether PEEP affects intrapulmonary alveolar edema liquid movement and alveolar permeability to proteins during high volume ventilation. Experimental study in an animal research laboratory. 46 male Wistar rats. A (99m)Tc-labeled albumin solution was instilled in a distal airway to produce a zone of alveolar flooding. Conventional ventilation (CV) was applied for 30 min followed by various ventilation strategies for 3 h: CV, spontaneous breathing, and high volume ventilation with different PEEP levels (0, 6, and 8 cmH(2)O) and different tidal volumes. Dispersion of the instilled liquid and systemic leakage of (99m)Tc-albumin from the lungs were studied by scintigraphy. The instillation protocol produced a zone of alveolar flooding that stayed localized during CV or spontaneous breathing. High volume ventilation dispersed alveolar liquid in the lungs. This dispersion was prevented by PEEP even when tidal volume was the same and thus end-inspiratory pressure higher. High volume ventilation resulted in the leakage of instilled (99m)Tc-albumin from the lungs. This increase in alveolar albumin permeability was reduced by PEEP. Albumin permeability was more affected by the amplitude of tidal excursions than by overall lung distension. PEEP prevents the dispersion of alveolar edema liquid in the lungs and lessens the increase in alveolar albumin permeability due to high volume ventilation.
An evaluation of the impact of the ventilator care bundle.
Crunden, Eddie; Boyce, Carolyn; Woodman, Helen; Bray, Barbara
2005-01-01
A number of interventions have been shown to improve the outcomes of patients who are invasively ventilated in intensive care units (ICUs). However, significant problems still exist in implementing research findings into clinical practice. The aim of this study was to assess whether the systematic and methodical implementation of evidence-based interventions encapsulated in a care bundle influenced length of ventilation and ICU length of stay (LOS). A ventilator care bundle was introduced within a general ICU and evaluated 1 year later. The care bundle was composed of four protocols that consisted of prophylaxis against peptic ulceration, prophylaxis against deep vein thrombosis, daily cessation of sedation and elevation of the patient's head and chest to at least 30 degrees to the horizontal. Compliance with the bundle was assessed, as was ICU LOS, ICU mortality and ICU/high-dependency unit patient throughput. Mean ICU LOS was reduced from 13-75 [standard deviation (SD) 19.11] days to 8.36 (SD 10.21) days (p<0.05). Mean ventilator days were reduced from 10.8 (SD 15.58) days to 6.1 (SD 8.88) days. Unit patient throughput increased by 30.1% and the number of invasively ventilated patients increased by 39.5%. Care bundles encourage the consistent and systematic application of evidence-based protocols used in particular treatment regimes. Since the introduction of the ventilator care bundle, length of ventilation and ICU LOS have reduced significantly.
Max, M; Kuhlen, R; Falter, F; Reyle-Hahn, M; Dembinski, R; Rossaint, R
2000-04-01
Partial liquid ventilation, positive end-expiratory pressure (PEEP) and inhaled nitric oxide (NO) can improve ventilation/perfusion mismatch in acute lung injury (ALI). The aim of the present study was to compare gas exchange and hemodynamics in experimental ALI during gaseous and partial liquid ventilation at two different levels of PEEP, with and without the inhalation of nitric oxide. Seven pigs (24+/-2 kg BW) were surfactant-depleted by repeated lung lavage with saline. Gas exchange and hemodynamic parameters were assessed in all animals during gaseous and subsequent partial liquid ventilation at two levels of PEEP (5 and 15 cmH2O) and intermittent inhalation of 10 ppm NO. Arterial oxygenation increased significantly with a simultaneous decrease in cardiac output when PEEP 15 cmH2O was applied during gaseous and partial liquid ventilation. All other hemodynamic parameters revealed no relevant changes. Inhalation of NO and instillation of perfluorocarbon had no additive effects on pulmonary gas exchange when compared to PEEP 15 cmH2O alone. In experimental lung injury, improvements in gas exchange are most distinct during mechanical ventilation with PEEP 15 cmH2O without significantly impairing hemodynamics. Partial liquid ventilation and inhaled NO did not cause an additive increase of PaO2.
De Michele, Manuela; Touzani, Omar; Foster, Alan C; Fieschi, Cesare; Sette, Giuliano; McCulloch, James
2005-09-01
The expression of corticotrophin-releasing factor (CRF) receptors in cerebral arteries and arterioles suggests that CRF may modulate cerebral blood flow (CBF). In the present study, the effects of CRF, CRF-like peptides and the CRF broad spectrum antagonist DPhe-CRF on CBF have been investigated under normal physiologic conditions and in the margins of focal ischaemic insult. The experiments were carried out in anaesthetised and ventilated rats. Changes in CBF after subarachnoid microapplication of CRF and related peptides were assessed with a laser-Doppler flowmetry (LDF) probe. In the ischaemic animals, agents were injected approximately 60 minutes after permanent middle cerebral artery occlusion (MCAo). Microapplication of CRF and related peptides in normal rats into the subarachnoid space produced sustained concentration-dependent increases in CBF. This effect was attenuated by co-application with DPhe-CRF, which did not alter CBF itself. A second microapplication of CRF 30 min after the first failed to produce increases in CBF in normal animals. Microapplication of CRF in the subarachnoid space overlying the ischaemic cortex effected minor increases in CBF whereas D-Phe-CRF had no significant effect on CBF. Activation of the CRF peptidergic system increases CBF in the rat. Repeated activation of CRF receptors results in tachyphylaxis of the vasodilator response. CRF vasodilator response is still present after MCAo in the ischaemic penumbra, suggesting that the CRF peptidergic system may modulate CBF in ischaemic stroke.
Effects of Classroom Ventilation Rate and Temperature on Students' Test Scores.
Haverinen-Shaughnessy, Ulla; Shaughnessy, Richard J
2015-01-01
Using a multilevel approach, we estimated the effects of classroom ventilation rate and temperature on academic achievement. The analysis is based on measurement data from a 70 elementary school district (140 fifth grade classrooms) from Southwestern United States, and student level data (N = 3109) on socioeconomic variables and standardized test scores. There was a statistically significant association between ventilation rates and mathematics scores, and it was stronger when the six classrooms with high ventilation rates that were indicated as outliers were filtered (> 7.1 l/s per person). The association remained significant when prior year test scores were included in the model, resulting in less unexplained variability. Students' mean mathematics scores (average 2286 points) were increased by up to eleven points (0.5%) per each liter per second per person increase in ventilation rate within the range of 0.9-7.1 l/s per person (estimated effect size 74 points). There was an additional increase of 12-13 points per each 1°C decrease in temperature within the observed range of 20-25°C (estimated effect size 67 points). Effects of similar magnitude but higher variability were observed for reading and science scores. In conclusion, maintaining adequate ventilation and thermal comfort in classrooms could significantly improve academic achievement of students.
Effects of Classroom Ventilation Rate and Temperature on Students’ Test Scores
2015-01-01
Using a multilevel approach, we estimated the effects of classroom ventilation rate and temperature on academic achievement. The analysis is based on measurement data from a 70 elementary school district (140 fifth grade classrooms) from Southwestern United States, and student level data (N = 3109) on socioeconomic variables and standardized test scores. There was a statistically significant association between ventilation rates and mathematics scores, and it was stronger when the six classrooms with high ventilation rates that were indicated as outliers were filtered (> 7.1 l/s per person). The association remained significant when prior year test scores were included in the model, resulting in less unexplained variability. Students’ mean mathematics scores (average 2286 points) were increased by up to eleven points (0.5%) per each liter per second per person increase in ventilation rate within the range of 0.9–7.1 l/s per person (estimated effect size 74 points). There was an additional increase of 12–13 points per each 1°C decrease in temperature within the observed range of 20–25°C (estimated effect size 67 points). Effects of similar magnitude but higher variability were observed for reading and science scores. In conclusion, maintaining adequate ventilation and thermal comfort in classrooms could significantly improve academic achievement of students. PMID:26317643
Airway Strain during Mechanical Ventilation in an Intact Animal Model
Sinclair, Scott E.; Molthen, Robert C.; Haworth, Steve T.; Dawson, Christopher A.; Waters, Christopher M.
2007-01-01
Rationale: Mechanical ventilation with large tidal volumes causes ventilator-induced lung injury in animal models. Little direct evidence exists regarding the deformation of airways in vivo during mechanical ventilation, or in the presence of positive end-expiratory pressure (PEEP). Objectives: To measure airway strain and to estimate airway wall tension during mechanical ventilation in an intact animal model. Methods: Sprague-Dawley rats were anesthetized and mechanically ventilated with tidal volumes of 6, 12, and 25 cm3/kg with and without 10–cm H2O PEEP. Real-time tantalum bronchograms were obtained for each condition, using microfocal X-ray imaging. Images were used to calculate circumferential and longitudinal airway strains, and on the basis of a simplified mathematical model we estimated airway wall tensions. Measurements and Main Results: Circumferential and longitudinal airway strains increased with increasing tidal volume. Levels of mechanical strain were heterogeneous throughout the bronchial tree. Circumferential strains were higher in smaller airways (less than 800 μm). Airway size did not influence longitudinal strain. When PEEP was applied, wall tensions increased more rapidly than did strain levels, suggesting that a “strain limit” had been reached. Airway collapse was not observed under any experimental condition. Conclusions: Mechanical ventilation results in significant airway mechanical strain that is heterogeneously distributed in the uninjured lung. The magnitude of circumferential but not axial strain varies with airway diameter. Airways exhibit a “strain limit” above which an abrupt dramatic rise in wall tension is observed. PMID:17626911
Talbot, Thomas R; Carr, Devin; Parmley, C Lee; Martin, Barbara J; Gray, Barbara; Ambrose, Anna; Starmer, Jack
2015-11-01
The effectiveness of practice bundles on reducing ventilator-associated pneumonia (VAP) has been questioned. To implement a comprehensive program that included a real-time bundle compliance dashboard to improve compliance and reduce ventilator-associated complications. DESIGN Before-and-after quasi-experimental study with interrupted time-series analysis. SETTING Academic medical center. In 2007 a comprehensive institutional ventilator bundle program was developed. To assess bundle compliance and stimulate instant course correction of noncompliant parameters, a real-time computerized dashboard was developed. Program impact in 6 adult intensive care units (ICUs) was assessed. Bundle compliance was noted as an overall cumulative bundle adherence assessment, reflecting the percentage of time all elements were concurrently in compliance for all patients. The VAP rate in all ICUs combined decreased from 19.5 to 9.2 VAPs per 1,000 ventilator-days following program implementation (P<.001). Bundle compliance significantly increased (Z100 score of 23% in August 2007 to 83% in June 2011 [P<.001]). The implementation resulted in a significant monthly decrease in the overall ICU VAP rate of 3.28/1,000 ventilator-days (95% CI, 2.64-3.92/1,000 ventilator-days). Following the intervention, the VAP rate decreased significantly at a rate of 0.20/1,000 ventilator-days per month (95% CI, 0.14-0.30/1,000 ventilator-days per month). Among all adult ICUs combined, improved bundle compliance was moderately correlated with monthly VAP rate reductions (Pearson correlation coefficient, -0.32). A prevention program using a real-time bundle adherence dashboard was associated with significant sustained decreases in VAP rates and an increase in bundle compliance among adult ICU patients.
Gas exchange and intrapulmonary distribution of ventilation during continuous-flow ventilation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vettermann, J.; Brusasco, V.; Rehder, K.
1988-05-01
In 12 anesthetized paralyzed dogs, pulmonary gas exchange and intrapulmonary inspired gas distribution were compared between continuous-flow ventilation (CFV) and conventional mechanical ventilation (CMV). Nine dogs were studied while they were lying supine, and three dogs were studied while they were lying prone. A single-lumen catheter for tracheal insufflation and a double-lumen catheter for bilateral endobronchial insufflation (inspired O2 fraction = 0.4; inspired minute ventilation = 1.7 +/- 0.3 (SD) 1.kg-1.min-1) were evaluated. Intrapulmonary gas distribution was assessed from regional 133Xe clearances. In dogs lying supine, CO2 elimination was more efficient with endobronchial insufflation than with tracheal insufflation, but themore » alveolar-arterial O2 partial pressure difference was larger during CFV than during CMV, regardless of the type of insufflation. By contrast, endobronchial insufflation maintained both arterial PCO2 and alveolar-arterial O2 partial pressure difference at significantly lower levels in dogs lying prone than in dogs lying supine. In dogs lying supine, the dependent lung was preferentially ventilated during CMV but not during CFV. In dogs lying prone, gas distribution was uniform with both modes of ventilation. The alveolar-arterial O2 partial pressure difference during CFV in dogs lying supine was negatively correlated with the reduced ventilation of the dependent lung, which suggests that increased ventilation-perfusion mismatching was responsible for the increase in alveolar-arterial O2 partial pressure difference. The more efficient oxygenation during CFV in dogs lying prone suggests a more efficient matching of ventilation to perfusion, presumably because the distribution of blood flow is also nearly uniform.« less
Fuller, Brian M.; Ferguson, Ian T.; Mohr, Nicholas M.; Drewry, Anne M.; Palmer, Christopher; Wessman, Brian T.; Ablordeppey, Enyo; Keeperman, Jacob; Stephens, Robert J.; Briscoe, Cristopher C.; Kolomiets, Angelina A.; Hotchkiss, Richard S.; Kollef, Marin H.
2017-01-01
Objective To evaluate the impact of an emergency department (ED) mechanical ventilation protocol on clinical outcomes and adherence to lung-protective ventilation in patients with acute respiratory distress syndrome (ARDS). Design Quasi-experimental, before-after trial. Setting ED and intensive care units (ICU) of an academic center. Patients Mechanically ventilated ED patients experiencing ARDS while in the ED or after admission to the ICU. Interventions An ED ventilator protocol which targeted parameters in need of quality improvement, as identified by prior work: 1) lung-protective tidal volume; 2) appropriate setting of positive end-expiratory pressure (PEEP); 3) oxygen weaning; and 4) head-of-bed elevation. Measurements and Main Results A total of 229 patients (186 pre-intervention group, 43 intervention group) were studied. In the ED, the intervention was associated with significant changes (P < 0.01 for all) in tidal volume, PEEP, respiratory rate, oxygen administration, and head-of-bed elevation. There was a reduction in ED tidal volume from 8.1 mL/kg PBW (7.0 – 9.1) to 6.4 mL/kg PBW (6.1 – 6.7), and an increase in lung-protective ventilation from 11.1% to 61.5%, P < 0.01. The intervention was associated with a reduction in mortality from 54.8% to 39.5% (OR 0.38, 95% CI 0.17 – 0.83, P = 0.02), and a 3.9 day increase in ventilator-free days, P = 0.01. Conclusions This before-after study of mechanically ventilated patients with ARDS demonstrates that implementing a mechanical ventilator protocol in the ED is feasible, and associated with improved clinical outcomes. PMID:28157140
Mechanical ventilation interacts with endotoxemia to induce extrapulmonary organ dysfunction
O'Mahony, D Shane; Liles, W Conrad; Altemeier, William A; Dhanireddy, Shireesha; Frevert, Charles W; Liggitt, Denny; Martin, Thomas R; Matute-Bello, Gustavo
2006-01-01
Introduction Multiple organ dysfunction syndrome (MODS) is a common complication of sepsis in mechanically ventilated patients with acute respiratory distress syndrome, but the links between mechanical ventilation and MODS are unclear. Our goal was to determine whether a minimally injurious mechanical ventilation strategy synergizes with low-dose endotoxemia to induce the activation of pro-inflammatory pathways in the lungs and in the systemic circulation, resulting in distal organ dysfunction and/or injury. Methods We administered intraperitoneal Escherichia coli lipopolysaccharide (LPS; 1 μg/g) to C57BL/6 mice, and 14 hours later subjected the mice to 6 hours of mechanical ventilation with tidal volumes of 10 ml/kg (LPS + MV). Comparison groups received ventilation but no LPS (MV), LPS but no ventilation (LPS), or neither LPS nor ventilation (phosphate-buffered saline; PBS). Results Myeloperoxidase activity and the concentrations of the chemokines macrophage inflammatory protein-2 (MIP-2) and KC were significantly increased in the lungs of mice in the LPS + MV group, in comparison with mice in the PBS group. Interestingly, permeability changes across the alveolar epithelium and histological changes suggestive of lung injury were minimal in mice in the LPS + MV group. However, despite the minimal lung injury, the combination of mechanical ventilation and LPS resulted in chemical and histological evidence of liver and kidney injury, and this was associated with increases in the plasma concentrations of KC, MIP-2, IL-6, and TNF-α. Conclusion Non-injurious mechanical ventilation strategies interact with endotoxemia in mice to enhance pro-inflammatory mechanisms in the lungs and promote extra-pulmonary end-organ injury, even in the absence of demonstrable acute lung injury. PMID:16995930
Fuller, Brian M; Ferguson, Ian T; Mohr, Nicholas M; Drewry, Anne M; Palmer, Christopher; Wessman, Brian T; Ablordeppey, Enyo; Keeperman, Jacob; Stephens, Robert J; Briscoe, Cristopher C; Kolomiets, Angelina A; Hotchkiss, Richard S; Kollef, Marin H
2017-04-01
To evaluate the impact of an emergency department mechanical ventilation protocol on clinical outcomes and adherence to lung-protective ventilation in patients with acute respiratory distress syndrome. Quasi-experimental, before-after trial. Emergency department and ICUs of an academic center. Mechanically ventilated emergency department patients experiencing acute respiratory distress syndrome while in the emergency department or after admission to the ICU. An emergency department ventilator protocol which targeted variables in need of quality improvement, as identified by prior work: 1) lung-protective tidal volume, 2) appropriate setting of positive end-expiratory pressure, 3) oxygen weaning, and 4) head-of-bed elevation. A total of 229 patients (186 preintervention group, 43 intervention group) were studied. In the emergency department, the intervention was associated with significant changes (p < 0.01 for all) in tidal volume, positive end-expiratory pressure, respiratory rate, oxygen administration, and head-of-bed elevation. There was a reduction in emergency department tidal volume from 8.1 mL/kg predicted body weight (7.0-9.1) to 6.4 mL/kg predicted body weight (6.1-6.7) and an increase in lung-protective ventilation from 11.1% to 61.5%, p value of less than 0.01. The intervention was associated with a reduction in mortality from 54.8% to 39.5% (odds ratio, 0.38; 95% CI, 0.17-0.83; p = 0.02) and a 3.9 day increase in ventilator-free days, p value equals to 0.01. This before-after study of mechanically ventilated patients with acute respiratory distress syndrome demonstrates that implementing a mechanical ventilator protocol in the emergency department is feasible and associated with improved clinical outcomes.
2013-01-01
Introduction Polytrauma often results in significant hypoxemia secondary to direct lung contusion or indirectly through atelectasis, systemic inflammatory response, large volume fluid resuscitation and blood product transfusion. In addition to causing hypoxemia, atelectasis and acute lung injury can lead to right ventricular failure through an acute increase in pulmonary vascular resistance. Mechanical ventilation is often applied, accompanied with recruitment maneuvers and positive end-expiratory pressure in order to recruit alveoli and reverse atelectasis, while preventing excessive alveolar damage. This strategy should lead to the reversal of the hypoxemic condition and the detrimental heart–lung interaction that may occur. However, as described in this case report, hemodynamic instability and intractable alveolar atelectasis sometimes do not respond to conventional ventilation strategies. Case presentation We describe the case of a 21-year-old Caucasian man with severe chest trauma requiring surgical interventions, who developed refractory hypoxemia and overt right ventricular failure. After multiple failed attempts of recruitment using conventional ventilation, the patient was ventilated with high-frequency oscillatory ventilation. This mode of ventilation allowed the reversal of the hemodynamic effects of severe hypoxemia and of the acute cor pulmonale. We use this case report to describe the physiological advantages of high-frequency oscillatory ventilation in patients with chest trauma, and formulate the arguments to explain the positive effect observed in our patient. Conclusions High-frequency oscillatory ventilation can be used in the context of a blunt chest trauma accompanied by severe hypoxemia due to atelectasis. The positive effect is due to its capacity to recruit the collapsed alveoli and, as a result, the relief of increased pulmonary vascular resistance and subsequently the reversal of acute cor pulmonale. This approach may represent an alternative in case of failure of the conventional ventilation strategy. PMID:23855954
Contal, Olivier; Vignaux, Laurence; Combescure, Christophe; Pepin, Jean-Louis; Jolliet, Philippe; Janssens, Jean-Paul
2012-02-01
Current bilevel positive-pressure ventilators for home noninvasive ventilation (NIV) provide physicians with software that records items important for patient monitoring, such as compliance, tidal volume (Vt), and leaks. However, to our knowledge, the validity of this information has not yet been independently assessed. Testing was done for seven home ventilators on a bench model adapted to simulate NIV and generate unintentional leaks (ie, other than of the mask exhalation valve). Five levels of leaks were simulated using a computer-driven solenoid valve (0-60 L/min) at different levels of inspiratory pressure (15 and 25 cm H(2)O) and at a fixed expiratory pressure (5 cm H(2)O), for a total of 10 conditions. Bench data were compared with results retrieved from ventilator software for leaks and Vt. For assessing leaks, three of the devices tested were highly reliable, with a small bias (0.3-0.9 L/min), narrow limits of agreement (LA), and high correlations (R(2), 0.993-0.997) when comparing ventilator software and bench results; conversely, for four ventilators, bias ranged from -6.0 L/min to -25.9 L/min, exceeding -10 L/min for two devices, with wide LA and lower correlations (R(2), 0.70-0.98). Bias for leaks increased markedly with the importance of leaks in three devices. Vt was underestimated by all devices, and bias (range, 66-236 mL) increased with higher insufflation pressures. Only two devices had a bias < 100 mL, with all testing conditions considered. Physicians monitoring patients who use home ventilation must be aware of differences in the estimation of leaks and Vt by ventilator software. Also, leaks are reported in different ways according to the device used.
Kim, Christopher; Gao, Yu-Tang; Xiang, Yong-Bing; Barone-Adesi, Francesco; Zhang, Yawei; Hosgood, H Dean; Ma, Shuangge; Shu, Xiao-ou; Ji, Bu-Tian; Chow, Wong-Ho; Seow, Wei Jie; Bassig, Bryan; Cai, Qiuyin; Zheng, Wei; Rothman, Nathaniel; Lan, Qing
2015-02-01
Indoor air pollution (IAP) caused by cooking has been associated with lung cancer risk in retrospective case-control studies in developing and rural countries. We report the association of cooking conditions, fuel use, oil use, and risk of lung cancer in a developed urban population in a prospective cohort of women in Shanghai. A total of 71,320 never smoking women were followed from 1996 through 2009 and 429 incident lung cancer cases were identified. Questionnaires collected information on household living and cooking practices for the three most recent residences and utilization of cooking fuel and oil, and ventilation conditions. Cox proportional hazards regression estimated the association for kitchen ventilation conditions, cooking fuels, and use of cooking oils for the risk of lung cancer by hazard ratios (HR) with 95% confidence intervals (95% CI). Ever poor kitchen ventilation was associated with a 49% increase in lung cancer risk (HR: 1.49; 95% CI: 1.15-1.95) compared to never poor ventilation. Ever use of coal was not significantly associated. However, ever coal use with poor ventilation (HR: 1.69; 95% CI: 1.22-2.35) and 20 or more years of using coal with poor ventilation (HR: 2.03; 95% CI: 1.35-3.05) was significantly associated compared to no exposure to coal or poor ventilation. Cooking oil use was not significantly associated. These results demonstrate that IAP from poor ventilation of coal combustion increases the risk of lung cancer and is an important public health issue in cities across China where people may have lived in homes with inadequate kitchen ventilation. © 2014 UICC.
Bloos, F; Müller, S; Harz, A; Gugel, M; Geil, D; Egerland, K; Reinhart, K; Marx, G
2009-08-01
Adherence to guidelines to avoid complications associated with mechanical ventilation is often incomplete. The goal of this study was to assess whether staff training in pre-defined interventions (bundle) improves the quality of care in mechanically ventilated patients. This study was performed on a 50-bed intensive care unit of a tertiary care university hospital. Application of a ventilator bundle consisting of semirecumbent positioning, lung protective ventilation in patients with acute lung injury (ALI), ulcer prophylaxis, and deep vein thrombosis prophylaxis (DVTP) was assessed before and after staff training in post-surgical patients requiring mechanical ventilation for at least 24 h. A total of 133 patients before and 141 patients after staff training were included. Overall bundle adherence increased from 15 to 33.8% (P<0.001). Semirecumbent position was achieved in 24.9% of patient days before and 46.9% of patient days after staff training (P<0.001). Administration of DVTP increased from 89.5 to 91.5% (P=0.048). Ulcer prophylaxis of >90% was achieved in both groups. Median tidal volume in patients with ALI remained unaltered. Days on mechanical ventilation were reduced from 6 (interquartile range 2.0-15.0) to 4 (2.0-9.0) (P=0.017). Rate of ventilator-associated pneumonia (VAP), ICU length of stay, and ICU mortality remained unaffected. In patients with VAP, the median ICU length of stay was reduced by 9 days (P=0.04). Staff training by an ICU change team improved compliance to a pre-defined ventilator bundle. This led to a reduction in the days spent on mechanical ventilation, despite incomplete bundle implementation.
Hamaekers, A E W; Götz, T; Borg, P A J; Enk, D
2010-03-01
Needle cricothyrotomy and subsequent transtracheal jet ventilation (TTJV) is one of the last options to restore oxygenation while managing an airway emergency. However, in cases of complete upper airway obstruction, conventional TTJV is ineffective and dangerous. We transformed a small, industrial ejector into a simple, manual ventilator providing expiratory ventilation assistance (EVA). An ejector pump was modified to allow both insufflation of oxygen and jet-assisted expiration through an attached 75 mm long transtracheal catheter (TTC) with an inner diameter (ID) of 2 mm by alternately occluding and releasing the gas outlet of the ejector pump. In a lung simulator, the modified ejector pump was tested at different compliances and resistances. Inspiration and expiration times were measured and achievable minute volumes (MVs) were calculated to determine the effect of EVA. The modified ejector pump shortened the expiration time and an MV up to 6.6 litre min(-1) could be achieved through a 2 mm ID TTC in a simulated obstructed airway. The principle of ejector-based EVA seems promising and deserves further evaluation.
Itagaki, Taiga; Gubin, Tatyana A; Sayal, Puneet; Jiang, Yandong; Kacmarek, Robert M; Anderson, Thomas Anthony
2016-02-01
We hypothesized that anesthetized, apneic children could be ventilated equivalently or more efficiently by nasal mask ventilation (NMV) than face mask ventilation (FMV). The aim of this randomized controlled study was to test this hypothesis by comparing the expiratory tidal volume (Vte) between NMV and FMV. After the induction of anesthesia, 41 subjects, 3-17 years of age without anticipated difficult mask ventilation, were randomly assigned to receive either NMV or FMV with neck extension. Both groups were ventilated with pressure control ventilation (PCV) at 20 cmH2 O of peak inspiratory pressure (PIP) with positive end-expiratory pressure (PEEP) levels of 0, 5, and 10 cmH2 O. An additional mouth closing maneuver (MCM) was applied for the NMV group. The Vte was higher in the FMV group compared with the NMV group (median difference [95% CI]: 8.4 [5.5-11.6] ml·kg(-1) ; P < 0.001) when MCM was not applied. NMV achieved less PEEP than FMV (median difference [95% CI]: 5.0 [4.3-5.3] cmH2 O at 10 cmH2 O; P < 0.001) though both groups achieved the set PIP level. In the NMV group, MCM markedly increased Vte (median increase [95% CI]: 5.9 [2.5-9.0] ml·kg(-1) ; P < 0.005) and PEEP (median increase [95% CI]: 5.0 [0.6-8.6] cmH2 O at 10 cmH2 O; P < 0.005); however, PEEP was highly variable and lower than that of FMV (median difference [95% CI]: 2.5 [0.8-8.5] cmH2 O at 10 cmH2 O; P < 0.05). In anesthetized, apneic children greater than 2 years of age ventilated with an anesthesia ventilator and neck extension, FMV established a greater Vte than NMV regardless of mouth status. NMV could not maintain the set PEEP level due to an air leak from the mouth. The MCM increased the Vte and PEEP. © 2016 John Wiley & Sons Ltd.
Johnson, Pamela L; Popa, Daniel A; Prisk, G Kim; Edwards, Natalie; Sullivan, Colin E
2010-02-01
Overnight oxyhaemoglobin desaturation is related to AMS. AMS can be debilitating and may require descent. Positive pressure ventilation during sleep at high altitude may prevent AMS and therefore be useful in people travelling to high altitude, who are known to suffer from AMS. Ascent to high altitude results in hypobaric hypoxia and some individuals will develop acute mountain sickness (AMS), which has been shown to be associated with low oxyhaemoglobin saturation during sleep. Previous research has shown that positive end-expiratory pressure by use of expiratory valves in a face mask while awake results in a reduction in AMS symptoms and higher oxyhaemoglobin saturation. We aimed to determine whether positive pressure ventilation would prevent AMS by increasing oxygenation during sleep. We compared sleeping oxyhaemoglobin saturation and the incidence and severity of AMS in seven subjects sleeping for two consecutive nights at 3800 m above sea level using either non-invasive positive pressure ventilation that delivered positive inspiratory and expiratory airway pressure via a face mask, or sleeping without assisted ventilation. The presence and severity of AMS were assessed by administration of the Lake Louise questionnaire. We found significant increases in the mean and minimum sleeping oxyhaemoglobin saturation and decreases in AMS symptoms in subjects who used positive pressure ventilation during sleep. Mean and minimum sleeping SaO2 was lower in subjects who developed AMS after the night spent without positive pressure ventilation. The use of positive pressure ventilation during sleep at 3800 m significantly increased the sleeping oxygen saturation; we suggest that the marked reduction in symptoms of AMS is due to this higher sleeping SaO2. We agree with the findings from previous studies that the development of AMS is associated with a lower sleeping oxygen saturation.
Tsai, Chen-Liang; Lin, Yu-Huei; Wang, Meng-Ting; Chien, Li-Nien; Jeng, Chii; Chian, Chih-Feng; Perng, Wann-Cherng; Chiang, Chi-Huei; Chiou, Hung-Yi
2015-03-24
Gastro-oesophageal reflux disease (GORD) is common among chronic obstructive pulmonary disease (COPD) patients and may have a deleterious effect on COPD prognosis. However, few studies have investigated whether GORD increases the risk of severe outcomes such as intensive care unit (ICU) admittance or mechanical ventilator use among COPD patients. Propensity score matching by age, sex, comorbidities and COPD severity was used to match the 1,210 COPD patients with GORD sourced in this study to 2,420 COPD patients without GORD. The Kaplan-Meier method was used to explore the incidence of ICU admittance and machine ventilation with the log rank test being used to test for differences. Cox regression analysis was used to explore the risk of ICU admittance and mechanical ventilation use for patients with and without GORD. During the 12-month follow-up, GORD patients and non-GORD patients had 5.22 and 3.01 ICU admittances per 1000 person-months, and 4.34 and 2.41 mechanical ventilation uses per 1000 person-month, respectively. The log rank test revealed a difference in the incidence of ICU admittance and machine ventilation between the two cohorts. GORD was found to be an independent predicator of ICU admittance (adjusted hazard ratio (HRadj) 1.75, 95% confidence interval (CI) 1.28-2.38) and mechanical ventilation (HRadj 1.92, 95% CI 1.35-2.72). This is the first investigation to detect a significantly higher incidence rate and independently increased risk of admission to an ICU and mechanical ventilation use among COPD patients who subsequently developed GORD during the first year following their GORD diagnosis than COPD patients who did not develop GORD.
Optimization of Ventilation Energy Demands and Indoor Air Quality in High-Performance Homes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hun, Diana E; Jackson, Mark C; Shrestha, Som S
2014-01-01
High-performance homes require that ventilation energy demands and indoor air quality (IAQ) be simultaneously optimized. We attempted to bridge these two areas by conducting tests in a research house located in Oak Ridge, TN, that was 20 months old, energy-efficient (i.e., expected to consume 50% less energy than a house built per the 2006 IRC), tightly-built (i.e., natural ventilation rate ~0.02 h-1), unoccupied, and unfurnished. We identified air pollutants of concern in the test home that could generally serve as indicators of IAQ, and conduced field experiments and computer simulations to determine the effectiveness and energy required by various techniquesmore » that lessened the concentration of these contaminants. Formaldehyde was selected as the main pollutant of concern among the contaminants that were sampled in the initial survey because it was the only compound that showed concentrations that were greater than the recommended exposure levels. Field data indicate that concentrations were higher during the summer primarily because emissions from sources rise with increases in temperature. Furthermore, supply ventilation and gas-phase filtration were effective means to reduce formaldehyde concentrations; however, exhaust ventilation had minimal influence on this pollutant. Results from simulations suggest that formaldehyde concentrations obtained while ventilating per ASHRAE 62.2-2010 could be decreased by about 20% from May through September through three strategies: 1) increasing ASHRAE supply ventilation by a factor of two, 2) reducing the thermostat setpoint from 76 to 74 F, or 3) running a gas-phase filtration system while decreasing supply ventilation per ASHRAE by half. In the mixed-humid climate of Oak Ridge, these strategies caused increases in electricity cost of ~$5 to ~$15/month depending on outdoor conditions.« less
Kakiuchi, Kenta; Matsuda, Kenichi; Harii, Norikazu; Sou, Keitaro; Aoki, Junko; Takeoka, Shinji
2015-09-01
Micro/nano-bubbles are practical nanomaterials designed to increase the gas content in liquids. We attempted to use oxygen micro/nano-bubble dispersions as an oxygen-rich liquid as a means for total liquid ventilation. To determine the oxygen content in the bubble dispersion, a new method based on a spectrophotometric change between oxy- and deoxy-hemoglobin was established. The oxygen micro/nano-bubble dispersion was supplied to an experimental total ventilation liquid in anesthetic rats. Though the amount of dissolving oxygen was as low as 6 mg/L in physiological saline, the oxygen content in the oxygen micro/nano-bubble dispersion was increased to 45 mg/L. The positive correlation between the oxygen content and the life-saving time under liquid ventilation clearly indicates that the life-saving time is prolonged by increasing the oxygen content in the oxygen micro/nano-bubble dispersion. This is the first report indicating that the oxygen micro/nano-bubbles containing a sufficient amount of oxygen are useful in producing oxygen-rich liquid for the process of liquid ventilation.
González-Castro, A; Alsasua, A; Peñasco, Y; Rodríguez, J C; Duerto, J
2017-05-01
The development of nosocomial infections by germs resistant to carbapenems inherently increases mortality, and causes an increase in health spending. The knowledge and study of these infections is important in improving epidemiological and therapeutic performance protocols. We present a descriptive study of eight patients diagnosed with tracheobronchitis (TAVM) and pneumonia (NAVM) associated with mechanical ventilation Chryseobacterium indologenes (CBI), over a period of five years. CBI isolation occurred at 11 days on average (rank 7-18) of remaining patients connected to mechanical ventilation. The average length of patients on mechanical ventilation was 36 days (range 10-140). The average ICU stay was 49 days (range 14-180). There was no death at 28 days, but the intra-hospital mortality was 2 cases (25%). Nosocomial respiratory infection secondary to CBI in mechanically ventilated patients has increased in recent years, so that should be included in the differential diagnostic of NAMV. Copyright © 2017 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.
Nurses’ Role in the Joint Theater Trauma System
2008-12-01
elevation, etc) and input for ventilator-associated pneumonia and infection control CPGs. In addition, a methicillin - resistant Staphylococcus aureus and...Standard Form 298 (Rev. 8-98) Prescribed by ANSI-Std Z39-18 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden...MONITORING AGENCY REPORT NUMBER 12. DISTRIBUTION AVAILABILITY STATEMENT Distribution A: Approved for public release; distribution is
2013-01-01
Introduction The ability of standard operating procedures to improve pre-hospital critical care by changing pre-hospital physician behaviour is uncertain. We report data from a prospective quality control study of the effect on pre-hospital critical care anaesthesiologists’ behaviour of implementing a standard operating procedure for pre-hospital controlled ventilation. Materials and methods Anaesthesiologists from eight pre-hospital critical care teams in the Central Denmark Region prospectively registered pre-hospital advanced airway-management data according to the Utstein-style template. We collected pre-intervention data from February 1st 2011 to January 31st 2012, implemented the standard operating procedure on February 1st 2012 and collected post intervention data from February 1st 2012 until October 31st 2012. We included transported patients of all ages in need of controlled ventilation treated with pre-hospital endotracheal intubation or the insertion of a supraglottic airways device. The objective was to evaluate whether the development and implementation of a standard operating procedure for controlled ventilation during transport could change pre-hospital critical care anaesthesiologists’ behaviour and thereby increase the use of automated ventilators in these patients. Results The implementation of a standard operating procedure increased the overall prevalence of automated ventilator use in transported patients in need of controlled ventilation from 0.40 (0.34-0.47) to 0.74 (0.69-0.80) with a prevalence ratio of 1.85 (1.57-2.19) (p = 0.00). The prevalence of automated ventilator use in transported traumatic brain injury patients in need of controlled ventilation increased from 0.44 (0.26-0.62) to 0.85 (0.62-0.97) with a prevalence ratio of 1.94 (1.26-3.0) (p = 0.0039). The prevalence of automated ventilator use in patients transported after return of spontaneous circulation following pre-hospital cardiac arrest increased from 0.39 (0.26-0.48) to 0.69 (0.58-0.78) with a prevalence ratio of 1.79 (1.36-2.35) (p = 0.00). Conclusion We have shown that the implementation of a standard operating procedure for pre-hospital controlled ventilation can significantly change pre-hospital critical care anaesthesiologists’ behaviour. PMID:24308781
2013 R&D 100 Award: DNATrax could revolutionize air quality detection and tracking
Farquar, George
2018-01-16
A team of LLNL scientists and engineers has developed a safe and versatile material, known as DNA Tagged Reagents for Aerosol Experiments (DNATrax), that can be used to reliably and rapidly diagnose airflow patterns and problems in both indoor and outdoor venues. Until DNATrax particles were developed, no rapid or safe way existed to validate air transport models with realistic particles in the range of 1-10 microns. Successful DNATrax testing was conducted at the Pentagon in November 2012 in conjunction with the Pentagon Force Protection Agency. This study enhanced the team's understanding of indoor ventilation environments created by heating, ventilation and air conditioning (HVAC) systems. DNATrax are particles comprised of sugar and synthetic DNA that serve as a bar code for the particle. The potential for creating unique bar-coded particles is virtually unlimited, thus allowing for simultaneous and repeated releases, which dramatically reduces the costs associated with conducting tests for contaminants. Among the applications for the new material are indoor air quality detection, for homes, offices, ships and airplanes; urban particulate tracking, for subway stations, train stations, and convention centers; environmental release tracking; and oil and gas uses, including fracking, to better track fluid flow.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasegawa, H.K.; Staggs, K.J.; Doughty, S.M.
1992-12-01
As a result of a DOE (Tiger Team) Technical Safety Appraisal (November 1990) of the Radiochemical Engineering Development Center (REDC), ORNL Building 7920, a number of fire protection concerns were identified. The primary concern was the perceived loss of ventilation system containment due to the thermal destruction and/or breaching of the prefilters and/or high-efficiency particulate air filters (HEPA `s) and the resultant radioactive release to the external environment. The following report describes the results of an extensive fire test program performed by the Fire Research Discipline (FRD) of the Special Projects Division of Lawrence Livermore National Lab (LLNL) and fundedmore » by ORNL to address these concerns. Full scale mock-ups of a REDC hot cell tank pit, adjacent cubicle pit, and associated ventilation system were constructed at LLNL and 13 fire experiments were conducted to specifically answer the questions raised by the Tiger Team. Our primary test plan was to characterize the burning of a catastrophic solvent spill (kerosene) of 40 liters and its effect on the containment ventilation system prefilters and HEPA filters. In conjunction with ORNL and Lockwood Greene we developed a test matrix that assessed the fire performance of the prefilters and HEPA filters; evaluated the fire response of the fiber reinforced plastic (FRP) epoxy ventilation duct work; the response and effectiveness of the fire protection system, the effect of fire in a cubicle on the vessel off-gas (VOG) elbow, and other fire safety questions.« less
Hetland, Breanna; Guttormson, Jill; Tracy, Mary Fran; Chlan, Linda
2018-05-01
Critical care nurses are responsible for administering sedative medications to mechanically ventilated patients. With significant advancements in the understanding of the impact of sedative exposure on physiological and psychological outcomes of ventilated patients, updated practice guidelines for assessment and management of pain, agitation, and delirium in the intensive care unit were released in 2013. The primary aim of this qualitative study was to identify and describe themes derived from critical care nurses' comments regarding sedation administration practices with mechanically ventilated patients. This is a qualitative content analysis of secondary text data captured through a national electronic survey of members of the American Association of Critical-Care Nurses. A subsample (n = 67) of nurses responded to a single, open-ended item at the end of a survey that evaluated nurses' perceptions of current sedation administration practices. Multiple factors guided sedation administration practices, including individual patient needs, nurses' synthesis of clinical evidence, application of best practices, and various personal and professional practice perspectives. Our results also indicated nurses desire additional resources to improve their sedation administration practices including more training, better communication tools, and adequate staffing. Critical care nurses endorse recommendations to minimise sedation administration when possible, but a variety of factors, including personal perspectives, impact sedation administration in the intensive care unit and need to be considered. Critical care nurses continue to encounter numerous challenges when assessing and managing sedation of mechanically ventilated patients. Copyright © 2018 Australian College of Critical Care Nurses Ltd. Published by Elsevier Ltd. All rights reserved.
Enhanced deep ocean ventilation and oxygenation with global warming
NASA Astrophysics Data System (ADS)
Froelicher, T. L.; Jaccard, S.; Dunne, J. P.; Paynter, D.; Gruber, N.
2014-12-01
Twenty-first century coupled climate model simulations, observations from the recent past, and theoretical arguments suggest a consistent trend towards warmer ocean temperatures and fresher polar surface oceans in response to increased radiative forcing resulting in increased upper ocean stratification and reduced ventilation and oxygenation of the deep ocean. Paleo-proxy records of the warming at the end of the last ice age, however, suggests a different outcome, namely a better ventilated and oxygenated deep ocean with global warming. Here we use a four thousand year global warming simulation from a comprehensive Earth System Model (GFDL ESM2M) to show that this conundrum is a consequence of different rates of warming and that the deep ocean is actually better ventilated and oxygenated in a future warmer equilibrated climate consistent with paleo-proxy records. The enhanced deep ocean ventilation in the Southern Ocean occurs in spite of increased positive surface buoyancy fluxes and a constancy of the Southern Hemisphere westerly winds - circumstances that would otherwise be expected to lead to a reduction in deep ocean ventilation. This ventilation recovery occurs through a global scale interaction of the Atlantic Meridional Overturning Circulation undergoing a multi-centennial recovery after an initial century of transient decrease and transports salinity-rich waters inform the subtropical surface ocean to the Southern Ocean interior on multi-century timescales. The subsequent upwelling of salinity-rich waters in the Southern Ocean strips away the freshwater cap that maintains vertical stability and increases open ocean convection and the formation of Antarctic Bottom Waters. As a result, the global ocean oxygen content and the nutrient supply from the deep ocean to the surface are higher in a warmer ocean. The implications for past and future changes in ocean heat and carbon storage will be discussed.
Gionfriddo, Ashley; Nonoyama, Mika L; Laussen, Peter C; Cox, Peter N; Clarke, Megan; Floh, Alejandro A
2018-06-01
To promote standardization, the Centers for Disease Control and Prevention introduced a new ventilator-associated pneumonia classification, which was modified for pediatrics (pediatric ventilator-associated pneumonia according to proposed criteria [PVAP]). We evaluated the frequency of PVAP in a cohort of children diagnosed with ventilator-associated pneumonia according to traditional criteria and compared their strength of association with clinically relevant outcomes. Retrospective cohort study. Tertiary care pediatric hospital. Critically ill children (0-18 yr) diagnosed with ventilator-associated pneumonia between January 2006 and December 2015 were identified from an infection control database. Patients were excluded if on high frequency ventilation, extracorporeal membrane oxygenation, or reintubated 24 hours following extubation. None. Patients were assessed for PVAP diagnosis. Primary outcome was the proportion of subjects diagnosed with PVAP. Secondary outcomes included association with intervals of care. Two hundred seventy-seven children who had been diagnosed with ventilator-associated pneumonia were eligible for review; 46 were excluded for being ventilated under 48 hours (n = 16), on high frequency ventilation (n = 12), on extracorporeal membrane oxygenation (n = 8), ineligible bacteria isolated from culture (n = 8), and other causes (n = 4). ICU admission diagnoses included congenital heart disease (47%), neurological (16%), trauma (7%), respiratory (7%), posttransplant (4%), neuromuscular (3%), and cardiomyopathy (3%). Only 16% of subjects (n = 45) met the new PVAP definition, with 18% (n = 49) having any ventilator-associated condition. Failure to fulfill new definitions was based on inadequate increase in mean airway pressure in 90% or FIO2 in 92%. PVAP was associated with prolonged ventilation (median [interquartile range], 29 d [13-51 d] vs 16 d [8-34.5 d]; p = 0.002), ICU (median [interquartile range], 40 d [20-100 d] vs 25 d [14-61 d]; p = 0.004) and hospital length of stay (median [interquartile range], 81 d [40-182 d] vs 54 d [31-108 d]; p = 0.04), and death (33% vs 16%; p = 0.008). Few children with ventilator-associated pneumonia diagnosis met the proposed PVAP criteria. PVAP was associated with increased morbidity and mortality. This work suggests that additional study is required before new definitions for ventilator-associated pneumonia are introduced for children.
Allen, Scott G; Brewer, Lara; Gillis, Erik S; Pace, Nathan L; Sakata, Derek J; Orr, Joseph A
2017-09-01
Research has shown that increased breathing frequency during cardiopulmonary resuscitation is inversely correlated with systolic blood pressure. Rescuers often hyperventilate during cardiopulmonary resuscitation (CPR). Current American Heart Association advanced cardiac life support recommends a ventilation rate of 8-10 breaths/min. We hypothesized that a small, turbine-driven ventilator would allow rescuers to adhere more closely to advanced cardiac life support (ACLS) guidelines. Twenty-four ACLS-certified health-care professionals were paired into groups of 2. Each team performed 4 randomized rounds of 2-min cycles of CPR on an intubated mannikin, with individuals altering between compressions and breaths. Two rounds of CPR were performed with a self-inflating bag, and 2 rounds were with the ventilator. The ventilator was set to deliver 8 breaths/min, pressure limit 22 cm H 2 O. Frequency, tidal volume (V T ), peak inspiratory pressure, and compression interruptions (hands-off time) were recorded. Data were analyzed with a linear mixed model and Welch 2-sample t test. The median (interquartile range [IQR]) frequency with the ventilator was 7.98 (7.98-7.99) breaths/min. Median (IQR) frequency with the self-inflating bag was 9.5 (8.2-10.7) breaths/min. Median (IQR) ventilator V T was 0.5 (0.5-0.5) L. Median (IQR) self-inflating bag V T was 0.6 (0.5-0.7) L. Median (IQR) ventilator peak inspiratory pressure was 22 (22-22) cm H 2 O. Median (IQR) self-inflating bag peak inspiratory pressure was 30 (27-35) cm H 2 O. Mean ± SD hands-off times for ventilator and self-inflating bag were 5.25 ± 2.11 and 6.41 ± 1.45 s, respectively. When compared with a ventilator, volunteers ventilated with a self-inflating bag within ACLS guidelines. However, volunteers ventilated with increased variation, at higher V T levels, and at higher peak pressures with the self-inflating bag. Hands-off time was also significantly lower with the ventilator. (ClinicalTrials.gov registration NCT02743299.). Copyright © 2017 by Daedalus Enterprises.
Home energy efficiency and radon related risk of lung cancer: modelling study
Milner, James; Shrubsole, Clive; Das, Payel; Jones, Benjamin; Ridley, Ian; Chalabi, Zaid; Hamilton, Ian; Armstrong, Ben; Davies, Michael
2014-01-01
Objective To investigate the effect of reducing home ventilation as part of household energy efficiency measures on deaths from radon related lung cancer. Design Modelling study. Setting England. Intervention Home energy efficiency interventions, motivated in part by targets for reducing greenhouse gases, which entail reduction in uncontrolled ventilation in keeping with good practice guidance. Main outcome measures Modelled current and future distributions of indoor radon levels for the English housing stock and associated changes in life years due to lung cancer mortality, estimated using life tables. Results Increasing the air tightness of dwellings (without compensatory purpose-provided ventilation) increased mean indoor radon concentrations by an estimated 56.6%, from 21.2 becquerels per cubic metre (Bq/m3) to 33.2 Bq/m3. After the lag in lung cancer onset, this would result in an additional annual burden of 4700 life years lost and (at peak) 278 deaths. The increases in radon levels for the millions of homes that would contribute most of the additional burden are below the threshold at which radon remediation measures are cost effective. Fitting extraction fans and trickle ventilators to restore ventilation will help offset the additional burden but only if the ventilation related energy efficiency gains are lost. Mechanical ventilation systems with heat recovery may lower radon levels and the risk of cancer while maintaining the advantage of energy efficiency for the most airtight dwellings but there is potential for a major adverse impact on health if such systems fail. Conclusion Unless specific remediation is used, reducing the ventilation of dwellings will improve energy efficiency only at the expense of population wide adverse impact on indoor exposure to radon and risk of lung cancer. The implications of this and other consequences of changes to ventilation need to be carefully evaluated to ensure that the desirable health and environmental benefits of home energy efficiency are not compromised by avoidable negative impacts on indoor air quality. PMID:24415631
Chatterjee, Kshitij; Goyal, Abhinav; Kakkera, Krishna; Harrington, Sarah; Corwin, Howard L
2018-05-04
Patients requiring mechanical ventilation have high morbidity and mortality. Providing palliative care services has been suggested as a way to improve comprehensive management of critically ill patients. We examined the trend in the utilization of palliative care among adults who require prolonged mechanical ventilation. Primary objectives were to determine the trend in palliative care utilization over time, predictors for palliative care utilization, and palliative care impact on hospital length of stay. Retrospective, cross-sectional study. The National Inpatient Sample data between 2009 and 2013 was used for this study. Adults (age ≥ 18 yr) who underwent prolonged mechanical ventilation (≥ 96 consecutive hr) were studied. Palliative care and mechanical ventilation were identified using the corresponding International Classification of Diseases, 9th revision, Clinical Modification, codes. A total of 1,751,870 hospitalizations with prolonged mechanical ventilation were identified between 2009 and 2013. The utilization of palliative care increased yearly from 6.5% in 2009 to 13.1% in 2013 (p < 0.001). Among the mechanically ventilated patients who died, palliative care increased from 15.9% in 2009 to 33.3% in 2013 (p < 0.001). Median hospital length of stay for patients with and without palliative care was 13 and 17 days, respectively (p < 0.001). Patients discharged to either short- or long-term care facilities had a shorter length of stay if palliative care was provided (15 vs 19 d; p < 0.001). The factors associated with a higher palliative care utilization included older age, malignancy, larger hospitals in urban areas, and teaching hospitals. Non-Caucasian race was associated with lower palliative care utilization. Among patients who undergo prolonged mechanical ventilation, palliative care utilization is increasing, particularly in patients who die during hospitalization. Using palliative care for mechanically ventilated patients who are discharged to either short- or long-term care facilities is associated with a shorter hospital length of stay.
West, N H; Burggren, W W
1982-02-01
Gill ventilation frequency (fG), the pressure amplitude (PBC) and stroke volume (VS) of buccal ventilation cycles, the frequency of air breaths (fL), water flow over the gills (VW), gill oxygen uptake (MGO2), oxygen utilization (U), and heart frequency (fH) have been measured in unanaesthetized, air breathing Rana catesbeiana tadpoles (stage XVI-XIX). The animals were unrestrained except for ECG leads or cannulae, and were able to surface voluntarily for air breathing. They were subjected to aquatic normoxia, hyperoxia and three levels of aquatic hypoxia, and their respiratory responses recorded in the steady state. The experiments were performed at 20 +/- 0.5 degrees C. In hyperoxia there was an absence of air breathing, and fG, PBC and VW fell from the normoxic values, while U increased, resulting in no significant change in MGO2. Animals in normoxia showed a very low fL which increased in progressively more hypoxic states. VW increased from the normoxic value in mild hypoxia (PO2 = 96 +/- 2 mm Hg), but fell, associated with a reduction in PBC, in moderate (PO2 = 41 +/- 1 mm Hg) and severe (PO2 = 21 +/- 3 mm Hg) hypoxia in the presence of lung ventilation. Gill MGO2 was not significantly different from the normoxic value in mild hypoxia but fell in moderate hypoxia, while in severe hypoxia oxygen was lost to the ventilating water from the blood perfusing the gills. There was no significant change in fH from the normoxic value in either hypoxia or hyperoxia. These data indicate, that in the bimodally breathing bullfrog tadpole, aquatic PO2 exerts a strong control over both gill and lung ventilation. Furthermore, there is an interaction between gill and lung ventilation such that the onset of a high frequency of lung ventilation in moderate and severe hypoxia promotes a suppression of gill ventilation cycles.
Jones, D R; Becker, R M; Hoffmann, S C; Lemasters, J J; Egan, T M
1997-07-01
Lungs harvested from cadaveric circulation-arrested donors may increase the donor pool for lung transplantation. To determine the degree and time course of ischemia-reperfusion injury, we evaluated the effect of O2 ventilation on capillary permeability [capillary filtration coefficient (Kfc)], cell viability, and total adenine nucleotide (TAN) levels in in situ circulation-arrested rat lungs. Kfc increased with increasing postmortem ischemic time (r = 0.88). Lungs ventilated with O2 1 h postmortem had similar Kfc and wet-to-dry ratios as controls. Nonventilated lungs had threefold (P < 0.05) and sevenfold (P < 0.0001) increases in Kfc at 30 and 60 min postmortem compared with controls. Cell viability decreased in all groups except for 30-min postmortem O2-ventilated lungs. TAN levels decreased with increasing ischemic time, particularly in nonventilated lungs. Loss of adenine nucleotides correlated with increasing Kfc values (r = 0.76). This study indicates that lungs retrieved 1 h postmortem may have normal Kfc with preharvest O2 ventilation. The relationship between Kfc and TAN suggests that vascular permeability may be related to lung TAN levels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Less, Brennan; Walker, Iain; Tang, Yihuan
2014-06-01
Smart ventilation systems use controls to ventilate more during those periods that provide either an energy or IAQ advantage (or both) and less during periods that provide a dis advantage. Using detailed building simulations, this study addresses one of the simplest and lowest cost types of smart controllers —outdoor temperature- based control. If the outdoor temperature falls below a certain cut- off, the fan is simply turned off. T he main principle of smart ventilation used in this study is to shift ventilation from time periods with large indoor -outdoor temperature differences, to periods where these differences are smaller, andmore » their energy impacts are expected to be less. Energy and IAQ performance are assessed relative to a base case of a continuously operated ventilation fan sized to comply with ASHRAE 62.2-2013 whole house ventilation requirements. In order to satisfy 62.2-2013, annual pollutant exposure must be equivalent between the temperature controlled and continuous fan cases. This requires ventilation to be greater than 62.2 requirements when the ventilation system operates. This is achieved by increasing the mechanical ventilation system air flow rates.« less
Nakamura, Maria Aparecida Miyuki; Costa, Eduardo Leite Vieira; Carvalho, Carlos Roberto Ribeiro; Tucci, Mauro Roberto
2014-01-01
Discomfort and noncompliance with noninvasive ventilation (NIV) interfaces are obstacles to NIV success. Total face masks (TFMs) are considered to be a very comfortable NIV interface. However, due to their large internal volume and consequent increased CO2 rebreathing, their orifices allow proximal leaks to enhance CO2 elimination. The ventilators used in the ICU might not adequately compensate for such leakage. In this study, we attempted to determine whether ICU ventilators in NIV mode are suitable for use with a leaky TFM. This was a bench study carried out in a university research laboratory. Eight ICU ventilators equipped with NIV mode and one NIV ventilator were connected to a TFM with major leaks. All were tested at two positive end-expiratory pressure (PEEP) levels and three pressure support levels. The variables analyzed were ventilation trigger, cycling off, total leak, and pressurization. Of the eight ICU ventilators tested, four did not work (autotriggering or inappropriate turning off due to misdetection of disconnection); three worked with some problems (low PEEP or high cycling delay); and one worked properly. The majority of the ICU ventilators tested were not suitable for NIV with a leaky TFM.
Variable tidal volumes improve lung protective ventilation strategies in experimental lung injury.
Spieth, Peter M; Carvalho, Alysson R; Pelosi, Paolo; Hoehn, Catharina; Meissner, Christoph; Kasper, Michael; Hübler, Matthias; von Neindorff, Matthias; Dassow, Constanze; Barrenschee, Martina; Uhlig, Stefan; Koch, Thea; de Abreu, Marcelo Gama
2009-04-15
Noisy ventilation with variable Vt may improve respiratory function in acute lung injury. To determine the impact of noisy ventilation on respiratory function and its biological effects on lung parenchyma compared with conventional protective mechanical ventilation strategies. In a porcine surfactant depletion model of lung injury, we randomly combined noisy ventilation with the ARDS Network protocol or the open lung approach (n = 9 per group). Respiratory mechanics, gas exchange, and distribution of pulmonary blood flow were measured at intervals over a 6-hour period. Postmortem, lung tissue was analyzed to determine histological damage, mechanical stress, and inflammation. We found that, at comparable minute ventilation, noisy ventilation (1) improved arterial oxygenation and reduced mean inspiratory peak airway pressure and elastance of the respiratory system compared with the ARDS Network protocol and the open lung approach, (2) redistributed pulmonary blood flow to caudal zones compared with the ARDS Network protocol and to peripheral ones compared with the open lung approach, (3) reduced histological damage in comparison to both protective ventilation strategies, and (4) did not increase lung inflammation or mechanical stress. Noisy ventilation with variable Vt and fixed respiratory frequency improves respiratory function and reduces histological damage compared with standard protective ventilation strategies.
Death by acid rain: VAP or EXIT?
Thorburn, Kentigern; Darbyshire, Andrew
2009-01-01
Ventilator-associated pneumonia (VAP) is a new (nosocomial) lower respiratory tract infection diagnosed in mechanically ventilated patients 48 or more hours after intubation. There is no gold standard for establishing the diagnosis and its pathogenesis is iatrogenic and multifactorial. Gastro-oesophageal reflux is common in mechanically ventilated children, but its role in VAP remains speculative. VAP is associated with increased mortality and morbidity, prolonged duration of ventilation and hospital stay, and escalated costs of hospitalisation. VAP 'bundles' are championed as the antidote.
Kuwabara, Kazuaki; Matsuda, Shinya; Fushimi, Kiyohide; Ishikawa, Koichi B; Horiguchi, Hiromasa; Fujimori, Kenji
2012-01-01
Public health emergencies like earthquakes and tsunamis underscore the need for an evidence-based approach to disaster preparedness. Using the Japanese administrative database and the geographical information system (GIS), the interruption of hospital-based mechanical ventilation administration by a hypothetical disaster in three areas of the southeastern mainland (Tokai, Tonankai, and Nankai) was simulated and the repercussions on ventilator care in the prefectures adjacent to the damaged prefectures was estimated. Using the database of 2010 including 3,181,847 hospitalized patients among 952 hospitals, the maximum daily ventilator capacity in each hospital was calculated and the number of patients who were administered ventilation on October xx was counted. Using GIS and patient zip code, the straight-line distances among the damaged hospitals, the hospitals in prefectures nearest to damaged prefectures, and ventilated patients' zip codes were measured. The authors simulated that ventilated patients were transferred to the closest hospitals outside damaged prefectures. The increase in the ventilator operating rates in three areas was aggregated. One hundred twenty-four and 236 patients were administered ventilation in the damaged hospitals and in the closest hospitals outside the damaged prefectures of Tokai, 92 and 561 of Tonankai, and 35 and 85 of Nankai, respectively. The increases in the ventilator operating rates among prefectures ranged from 1.04 to 26.33-fold in Tokai; 1.03 to 1.74-fold in Tonankai, and 1.00 to 2.67-fold in Nankai. Administrative databases and GIS can contribute to evidenced-based disaster preparedness and the determination of appropriate receiving hospitals with available medical resources.
Alroumi, Fahad; Sarwar, Akmal; Grgurich, Philip E; Lei, Yuxiu; Hudcova, Jana; Craven, Donald E
2012-02-01
Ventilator-associated pneumonia is associated with significant patient morbidity, mortality, and increased health care costs. In the current economic climate, it is crucial to implement cost-effective prevention strategies that have proven efficacy. Multiple prevention measures have been proposed by various expert panels. Global strategies have focused on infection control, and reduction of lower airway colonization with bacterial pathogens, intubation, duration of mechanical ventilation, and length of stay in the intensive care unit. Routine use of the Institute for Healthcare Improvement ventilator care bundle is widespread, and has been clearly demonstrated to be an effective method for reducing the incidence of ventilator-associated pneumonia. In this article, we examine specific aspects of the Institute for Healthcare Improvement bundle, better-designed endotracheal tubes, use of antibiotics and probiotics, and treatment of ventilator-associated tracheobronchitis to prevent ventilator-associated pneumonia.
Simvastatin attenuates neutrophil recruitment in one-lung ventilation model in rats.
Leite, Camila Ferreira; Marangoni, Fábio André; Camargo, Enilton Aparecido; Braga, Angélica de Fátima de Assunção; Toro, Ivan Felizardo Contrera; Antunes, Edson; Landucci, Elen Cristina Tiezem; Mussi, Ricardo Kalaf
2013-04-01
To investigate the anti-inflammatory effects of simvastatin in rats undergoing one-lung ventilation (OLV) followed by lung re-expansion. Male Wistar rats (n=30) were submitted to 1-h OLV followed by 1-h lung re-expansion. Treated group received simvastatin (40 mg/kg for 21 days) previous to OLV protocol. Control group received no treatment or surgical/ventilation interventions. Measurements of pulmonary myeloperoxidase (MPO) activity, pulmonary protein extravasation, and serum levels of cytokines and C-reactive protein (CRP) were performed. OLV significantly increased the MPO activity in the collapsed and continuously ventilated lungs (31% and 52% increase, respectively) compared with control (p<0.05). Treatment with simvastatin significantly reduced the MPO activity in the continuously ventilated lung but had no effect on lung edema after OLV. The serum IL-6 and CRP levels were markedly higher in OLV group, but simvastatin treatment failed to affect the production of these inflammatory markers. Serum levels of IL-1β, TNF-α and IL-10 remained below the detection limit in all groups. In an experimental one-lung ventilation model pre-operative treatment with simvastatin reduces remote neutrophil infiltration in the continuously ventilated lung. Our findings suggest that simvastatin may be of therapeutic value in OLV-induced pulmonary inflammation deserving clinical investigations.
Coexistence of Ureaplasma and chorioamnionitis is associated with prolonged mechanical ventilation.
Jung, Euiseok; Choi, Chang Won; Kim, Su Yeong; Sung, Tae-Jung; Kim, Haeryoung; Park, Kyoung Un; Kim, Han-Suk; Kim, Beyong Il; Choi, Jung-Hwan
2017-01-01
Both histologic chorioamnionitis (HCAM) and Ureaplasma infection are considered important contributors to perinatal lung injury. We tested the hypothesis that coexistence of maternal HCAM and perinatal Ureaplasma exposure increases the risk of prolonged mechanical ventilation in extremely low-birthweight (ELBW) infants. A retrospective cohort study was carried out of all ELBW infants born between January 2008 and December 2013 at a single academic center. Placental pathology and gastric fluid Ureaplasma data were available for all infants. Culture and polymerase chain reaction were used to detect Ureaplasma in gastric fluid. Prolonged mechanical ventilation was defined as mechanical ventilation that began within 28 days after birth and continued. Of 111 ELBW infants enrolled, 84 survived beyond 36 weeks of postmenstrual age (PMA) and were included in the analysis. Eighteen infants (21.4%) had both HCAM and Ureaplasma exposure. Seven infants (8.3%) required mechanical ventilation beyond 36 weeks of PMA. Coexistence of HCAM and Ureaplasma in gastric fluid was significantly associated with prolonged mechanical ventilation after adjustment for gestational age, sex, mode of delivery, and use of macrolide antibiotics (OR, 8.7; 95%CI: 1.1-67.2). Coexistence of maternal HCAM and perinatal Ureaplasma exposure significantly increases the risk of prolonged mechanical ventilation in ELBW infants. © 2016 Japan Pediatric Society.
Kotani, Toru; Katayama, Shinshu; Miyazaki, Yuya; Fukuda, Satoshi; Sato, Yoko; Ohsugi, Koichi
2017-01-01
The risk factors for the mortality rate of Pneumocystis jirovecii pneumonia (PCP) who required mechanical ventilation (MV) remained unknown. A retrospective chart review was performed of all PCP patients admitted to our intensive care unit and treated for acute hypoxemic respiratory failure to assess the risk factors for the high mortality. Twenty patients without human immunodeficiency virus infection required mechanical ventilation; 19 received noninvasive ventilation; and 11 were intubated. PEEP was incrementally increased and titrated to maintain FIO 2 as low as possible. No mandatory ventilation was used. Sixteen patients (80%) survived. Pneumothorax developed in one patient with rheumatoid arthritis (RA). Median PEEP level in the first 5 days was 10.0 cmH 2 O and not associated with death. Multivariate analysis showed the association of incidence of interstitial lung disease and increase in serum KL-6 with 90-day mortality. We found MV strategies to prevent pneumothorax including liberal use of noninvasive ventilation, and PEEP titration and disuse of mandatory ventilation may improve mortality in this setting. Underlying disease of interstitial lung disease was a risk factor and KL-6 may be a useful predictor associated with mortality in patients with RA. These findings will need to be validated in larger studies.
Dargaville, P A; South, M; McDougall, P N
1997-12-01
To test the hypothesis that conventional mechanical ventilation (CV) provides a greater stimulus to secretion of pulmonary surfactant than high frequency oscillatory ventilation (HFO). Sequential examination of surfactant indices in lung lavage fluid in a group of six infants with severe lung disease (group 1), ventilated with HFO and then converted back to CV as their lung disease recovered. A similar group of 10 infants (group 2) ventilated conventionally throughout the course of their illness were studied for comparison. In groups 1 and 2, two sequential tracheal aspirate samples were taken, the first once lung disease was noted to be improving, and the second 48-72 h later. Group 1 infants had converted from HFO to CV during this time. A marked increase in concentration of total surfactant phospholipid (PL) and disaturated phosphatidylcholine (DSPC) was seen in group 1 after transition from HFO to CV; the magnitude of this increase was significantly greater than that sequentially observed in group II (total PL: 9.4-fold increase in group 1 vs 1.8-fold in group 2, P = 0.006; DSPC: group 1 6.4-fold increase vs. group 2 1.7-fold, P = 0.02). These findings suggest that intermittent lung inflation during CV produces more secretion of surfactant phospholipid than continuous alveolar distension on HFO, and raise the possibility that conservation and additional maturation of surfactant elements may occur when the injured lung is ventilated with HFO.
Moodie, Lisa; Reeve, Julie; Elkins, Mark
2011-01-01
Does inspiratory muscle training improve inspiratory muscle strength and endurance, facilitate weaning, improve survival, and reduce the rate of reintubation and tracheostomy in adults receiving mechanical ventilation? Systematic review of randomised or quasi-randomised controlled trials. Adults over 16 years of age receiving mechanical ventilation. Inspiratory muscle training versus sham or no inspiratory muscle training. Data were extracted regarding inspiratory muscle strength and endurance, the duration of unassisted breathing periods, weaning success and duration, reintubation and tracheostomy, survival, adverse effects, and length of stay. Three studies involving 150 participants were included in the review. The studies varied in time to commencement of the training, the device used, the training protocol, and the outcomes measured. Inspiratory muscle training significantly increased inspiratory muscle strength over sham or no training (weighted mean difference 8 cmH(2)O, 95% CI 6 to 9). There were no statistically significant differences between the groups in weaning success or duration, survival, reintubation, or tracheostomy. Inspiratory muscle training was found to significantly increase inspiratory muscle strength in adults undergoing mechanical ventilation. Despite data from a substantial pooled cohort, it is not yet clear whether the increase in inspiratory muscle strength leads to a shorter duration of mechanical ventilation, improved weaning success, or improved survival. Further large randomised studies are required to clarify the impact of inspiratory muscle training on patients receiving mechanical ventilation. PROSPERO CRD42011001132. Copyright © 2011 Australian Physiotherapy Association. Published by .. All rights reserved.
Effect of mechanical ventilation on regional variation of pleural liquid thickness in rabbits.
Wang, P M; Lai-Fook, S J
1997-01-01
We studied the effect of ventilation on the regional distribution of pleural liquid thickness in anesthetized rabbits. Three transparent pleural windows were made between the second and eight intercostal space along the midaxillary line of the right chest. Fluorescein isothiocyanate-labeled dextran (1 ml) was injected into the pleural space through a rib capsule and allowed to mix with the pleural liquid. The light emitted from the pleural space beneath the windows was measured by fluorescence videomicroscopy at a constant tidal volume (20 ml) and two ventilation frequencies (20 and 40 breaths/min). Pleural liquid thickness was determined from the light measurements after in vitro calibration of pleural liquid collected postmortem. At 20 breaths/min, pleural liquid thickness increased with a cranial-caudal distance from 5 microns at the second to third intercostal space to 30 microns at the sixth through eighth intercostal space. At 40 breaths/min, pleural space thickness was unchanged at the second to third intercostal space but increased to 46 microns at the sixth through eighth intercostal space. To determine this effect on pleural liquid shear stress, we measured relative lung velocity from videomicroscopic images of the lung surface through the windows. Lung velocity amplitude increased with cranial-caudal distance and with ventilation frequency. Calculated shear stress amplitude was constant with cranial-caudal distance but increased with ventilation frequency. Thus, pleural liquid thickness is matched to the relative lung motion so as to maintain a spatially uniform shear stress amplitude in pleural liquid during mechanical ventilation.
Sinuff, Tasnim; Muscedere, John; Cook, Deborah J; Dodek, Peter M; Anderson, William; Keenan, Sean P; Wood, Gordon; Tan, Richard; Haupt, Marilyn T; Miletin, Michael; Bouali, Redouane; Jiang, Xuran; Day, Andrew G; Overvelde, Janet; Heyland, Daren K
2013-01-01
Ventilator-associated pneumonia is an important cause of morbidity and mortality in critically ill patients. Evidence-based clinical practice guidelines for the prevention, diagnosis, and treatment of ventilator-associated pneumonia may improve outcomes, but optimal methods to ensure implementation of guidelines in the intensive care unit are unclear. Hence, we determined the effect of educational sessions augmented with reminders, and led by local opinion leaders, as strategies to implement evidence-based ventilator-associated pneumonia guidelines on guideline concordance and ventilator-associated pneumonia rates. Two-year prospective, multicenter, time-series study conducted between June 2007 and December 2009. Eleven ICUs (ten in Canada, one in the United States); five academic and six community ICUs. At each site, 30 adult patients mechanically ventilated >48 hrs were enrolled during four data collection periods (baseline, 6, 15, and 24 months). Guideline recommendations for the prevention, diagnosis, and treatment of ventilator-associated pneumonia were implemented using a multifaceted intervention (education, reminders, local opinion leaders, and implementation teams) directed toward the entire multidisciplinary ICU team. Clinician exposure to the intervention was assessed at 6, 15, and 24 months after the introduction of this intervention. The main outcome measure was aggregate concordance with the 14 ventilator-associated pneumonia guideline recommendations. One thousand three hundred twenty patients were enrolled (330 in each study period). Clinician exposure to the multifaceted intervention was high and increased during the study: 86.7%, 93.3%, 95.8%, (p < .001), as did aggregate concordance (mean [SD]): 50.7% (6.1), 54.4% (7.1), 56.2% (5.9), 58.7% (6.7) (p = .007). Over the study period, ventilator-associated pneumonia rates decreased (events/330 patients): 47 (14.2%), 34 (10.3%), 38 (11.5%), 29 (8.8%) (p = .03). A 2-yr multifaceted intervention to enhance ventilator-associated pneumonia guideline uptake was associated with a significant increase in guideline concordance and a reduction in ventilator-associated pneumonia rates.
Using spacecraft trace contaminant control systems to cure sick building syndrome
NASA Technical Reports Server (NTRS)
Graf, John C.
1994-01-01
Many residential and commercial buildings with centralized, recirculating, heating ventilation and air conditioning systems suffer from 'Sick Building Syndrome.' Ventilation rates are reduced to save energy costs, synthetic building materials off-gas contaminants, and unsafe levels of volatile organic compounds (VOC's) accumulate. These unsafe levels of contaminants can cause irritation of eyes and throat, fatigue and dizziness to building occupants. Increased ventilation, the primary method of treating Sick Building Syndrome is expensive (due to increased energy costs) and recently, the effectiveness of increased ventilation has been questioned. On spacecraft venting is not allowed, so the primary methods of air quality control are; source control, active filtering, and destruction of VOC's. Four non-venting contaminant removal technologies; strict material selection to provide source control, ambient temperature catalytic oxidation, photocatalytic oxidation, and uptake by higher plants, may have potential application for indoor air quality control.
NASA Astrophysics Data System (ADS)
Sikes, E. L.; Allen, K. A.; Lund, D. C.
2016-12-01
The end of the last ice age was marked by rapid increases in atmospheric CO2 and changes in ocean circulation and seawater δ13C and Δ14C, suggesting that enhanced ventilation of the deep ocean may have released sequestered CO2 to the atmosphere. Here we compare depth transects of Δ14C and high-resolution Cibicidoides sp. δ13C and δ18O records from the Southwest Pacific and the Southwest Atlantic to gain insight into the changing extent and composition of water masses in the Southern Hemisphere. Our vertical transects document that during the Last Glacial Maximum (LGM), water mass properties and boundaries in the Southwest Atlantic and Pacific were very different from one another and from their respective modern profiles. The shallow to deep δ13C difference (Δδ13C, 660- 2500 m) in the Pacific was 1.7‰, more than double the Holocene value ( 0.7‰) and a deep watermass boundary was situated above 1600m. LGM Δδ13C in the Atlantic was similar to the Pacific, but the deep geochemical front was situated at 2500 m (as observed previously; e.g. Hoffman and Lund, 2012). At the onset of Heinrich Stadial 1 (HS1; 18 - 14.5 ka), changes in the shallow isotope records (< 1500 m) from the two basins differed, indicating independent controls on intermediate water composition/formation in these two ocean basins. During HS1 in the Pacific, rapid δ13C and Δ14C enrichment above 1600 m coincided with δ13C depletion in Atlantic waters between 1500 m and 2500 m. Benthic δ13C below 2500 m in both basins and D14C in the Pacific remained depleted until the Antarctic Cold Reversal (ACR; 14.7 to 12.7 ka). During the ACR, Pacific Δ14C below 1600 m increased while both the Atlantic and Pacific experienced a rapid increase in δ13C and decrease in δ18O below 2500 m. These simultaneous isotopic shifts in the Pacific and Atlantic support the idea of a widespread pulse of deep-water ventilation driven by the resumption of North Atlantic Deep Water formation during the ACR. Overall, early shallow to intermediate ventilation differed between the two basins and simultaneous deep ventilation occurred later in the deglaciation, coincident with the reinitiation of deep overturning circulation during the Bølling-Allerød.
ERIC Educational Resources Information Center
Ahmed, Gehan EL Nabawy; Abosamra, Omyma Mostafa
2015-01-01
Ventilator associated pneumonia (VAP) is a costly, preventable, and often fatal consequence of medical therapy that increases hospital and intensive care stays in mechanically ventilated patients. The prevention of VAP is primarily the responsibility of the bedside nurse whose knowledge, beliefs, and practices influence the health outcome of ICU…
Evaluation of a turbine flow meter (Ventilometer Mark 2) in the measurement of ventilation.
Cooper, C B; Harris, N D; Howard, P
1990-01-01
We have evaluated a turbine flow meter (Ventilometer Mark 2, PK Morgan, Kent, UK) at low flow rates and levels of ventilation which are likely to be encountered during exercise in patients with chronic respiratory disease. Pulsatile flows were generated from a volume-cycled mechanical ventilator, the flow wave-form was modified by damping to simulate a human breathing pattern. Comparative measurements of ventilation were made whilst varying tidal volume (VT) from 0.22 to 1.131 and respiratory rate (fR) from 10 to 35 min-1. At lower levels of ventilation the instrument tended to underread especially with increasing fR. The calibration factor must be adjusted to match the level of ventilation if the measurement errors are to be within 5%.
Lajoie, P; Aubin, D; Gingras, V; Daigneault, P; Ducharme, F; Gauvin, D; Fugler, D; Leclerc, J-M; Won, D; Courteau, M; Gingras, S; Héroux, M-È; Yang, W; Schleibinger, H
2015-12-01
A randomized controlled trial was carried out to measure the impact of an intervention on ventilation, indoor air contaminants, and asthma symptoms of children. Eighty-three asthmatic children living in low-ventilated homes were followed over 2 years. Several environmental parameters were measured during the summer, fall, and winter. The children were randomized after Year 1 (43 Intervention; 40 Control). The intervention included the installation of either a Heat Recovery Ventilator (HRV) or Energy Recovery Ventilator (ERV). During the fall and winter seasons, there was a significant increase in the mean ventilation rate in the homes of the intervention group. A statistically significant reduction in mean formaldehyde, airborne mold spores, toluene, styrene, limonene, and α-pinene concentrations was observed in the intervention group. There was no significant group difference in change in the number of days with symptoms per 14 days. However, there was a significant decrease in the proportion of children who experienced any wheezing (≥1 episode) and those with ≥4 episodes in the 12-month period in the intervention group. This study indicates that improved ventilation reduces air contaminants and may prevent wheezing. Due to lack of power, a bigger study is needed. Positive findings from this study include the fact that, upon recruitment, most of the single family homes with asthmatic children were already equipped with a mechanical ventilation system and had relatively good indoor air quality. However, the 8-h indoor guideline for formaldehyde (50 μg/m3) was frequently exceeded and the ventilation rates were low in most of the homes, even those with a ventilation system. Both ERVs and HRVs were equally effective at increasing air exchange rates above 0.30 ACH and at preventing formaldehyde concentrations from exceeding the 50 μg/m3 guideline during the fall and winter seasons. Furthermore, the ERVs were effective at preventing excessively low relative humidities in the homes. Based on observed difference of risk, intervention to increase ventilation in five sample homes and children would prevent 1 home to exceed the indoor air long-term formaldehyde guideline and prevent 1 asthmatic child experiencing at least one episode of wheezing over a year. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Wang, Aijun
The health, safety and comfort of passengers during flight inspired this research into cabin air quality, which is closely related to its airflow distribution, ventilation effectiveness and airborne pollutant transport. The experimental facility is a full-scale aircraft cabin mockup. A volumetric particle tracking velocimetry (VPTV) technique was enhanced by incorporating a self-developed streak recognition algorithm. Two stable recirculation regions, the reverse flows above the seats and the main air jets from the air supply inlets formed the complicated airflow patterns inside the cabin mockup. The primary air flow was parallel to the passenger rows. The small velocity component in the direction of the cabin depth caused less net air exchange between the passenger rows than that parallel to the passenger rows. Different total air supply rate changed the developing behaviors of the main air jets, leading to different local air distribution patterns. Two indices, Local mean age of air and ventilation effectiveness factor (VEF), were measured at five levels of air supply rate and two levels of heating load. Local mean age of air decreased linearly with an increase in the air supply rate, while the VEF remained consistent when the air supply rate varied. The thermal buoyancy force from the thermal plume generated the upside plume flow, opposite to the main jet flow above the boundary seats and thus lowered the local net air exchange. The airborne transport dynamics depends on the distance between the source and the receptors, the relative location of pollutant source, and air supply rate. Exposure risk was significantly reduced with increased distance between source and receptors. Another possible way to decrease the exposure risk was to position the release source close to the exhaust outlets. Increasing the air supply rate could be an effective solution under some emergency situations. The large volume of data regarding the three-dimensional air velocities was visualized in the CAVE virtual environment. ShadowLight, a virtual reality application was used to import and navigate the velocity vectors through the virtual airspace. A real world demonstration and an active interaction with the three-dimensional air velocity data have been established.
International Space Station Crew Quarters Ventilation and Acoustic Design Implementation
NASA Technical Reports Server (NTRS)
Broyan, James L., Jr.; Cady, Scott M; Welsh, David A.
2010-01-01
The International Space Station (ISS) United States Operational Segment has four permanent rack sized ISS Crew Quarters (CQs) providing a private crew member space. The CQs use Node 2 cabin air for ventilation/thermal cooling, as opposed to conditioned ducted air-from the ISS Common Cabin Air Assembly (CCAA) or the ISS fluid cooling loop. Consequently, CQ can only increase the air flow rate to reduce the temperature delta between the cabin and the CQ interior. However, increasing airflow causes increased acoustic noise so efficient airflow distribution is an important design parameter. The CQ utilized a two fan push-pull configuration to ensure fresh air at the crew member's head position and reduce acoustic exposure. The CQ ventilation ducts are conduits to the louder Node 2 cabin aisle way which required significant acoustic mitigation controls. The CQ interior needs to be below noise criteria curve 40 (NC-40). The design implementation of the CQ ventilation system and acoustic mitigation are very inter-related and require consideration of crew comfort balanced with use of interior habitable volume, accommodation of fan failures, and possible crew uses that impact ventilation and acoustic performance. Each CQ required 13% of its total volume and approximately 6% of its total mass to reduce acoustic noise. This paper illustrates the types of model analysis, assumptions, vehicle interactions, and trade-offs required for CQ ventilation and acoustics. Additionally, on-orbit ventilation system performance and initial crew feedback is presented. This approach is applicable to any private enclosed space that the crew will occupy.
Effects of hyperthermia on ventilation and metabolism during hypoxia in conscious mice.
Iwase, Michiko; Izumizaki, Masahiko; Kanamaru, Mitsuko; Homma, Ikuo
2004-02-01
Hyperthermia and hypoxia influence ventilation and metabolism; however, their synergistic effects remain unanswered. We hypothesized that an enhancement of ventilation induced by hyperthermia is competitive with hypoxic hypometabolism. We then examined the relationship of body temperature, hypoxia, and respiration in conscious mice, measuring minute ventilation (VE), aerobic metabolism, and arterial blood gases. All parameters were measured at two different body temperatures (BTs), approximately 37 degrees C (normothermia) and 39 degrees C (hyperthermia), under both normoxia (room air inhalation) and hypoxia (7% O2 inhalation). Under normoxia, VE and O2 consumption (VO2) were lower at hyperthermia than at normothermia, and the VE-VO2 ratio remained constant. PaCO2 values were normal at both BTs under normoxia. Hypoxic gas inhalation increased VE, which reached a peak in 2 min, then decreased at both BTs. VE remained at a higher level during hyperthermia than during normothermia throughout the 10 min experiment. VO2 decreased during hypoxia at both BTs. Hypoxia increased the VE-VO2 ratio because of relatively high VE with respect to the decreased VO2, which means hyperventilation. At hypoxia under hyperthermia, serious hyperventilation occurred with a further increase in VE. The augmented ventilation may be due to the thermal stimulus and a lowered thermoregulatory set point for hypoxia. Thus hyperthermia reduces ventilation and metabolism to maintain normocapnia; as a result, thermogenesis is reduced under normoxia. Hyperthermia augments hyperventilation induced by hypoxia, leading to severe hypoxic hypocapnia. Thermal stimuli may impair the adjustment of ventilation and metabolism when O2 is limited.
Quantitative Risk Analysis on the Transport of Dangerous Goods Through a Bi-Directional Road Tunnel.
Caliendo, Ciro; De Guglielmo, Maria Luisa
2017-01-01
A quantitative risk analysis (QRA) regarding dangerous goods vehicles (DGVs) running through road tunnels was set up. Peak hourly traffic volumes (VHP), percentage of heavy goods vehicles (HGVs), and failure of the emergency ventilation system were investigated in order to assess their impact on the risk level. The risk associated with an alternative route running completely in the open air and passing through a highly populated urban area was also evaluated. The results in terms of social risk, as F/N curves, show an increased risk level with an increase the VHP, the percentage of HGVs, and a failure of the emergency ventilation system. The risk curves of the tunnel investigated were found to lie both above and below those of the alternative route running in the open air depending on the type of dangerous goods transported. In particular, risk was found to be greater in the tunnel for two fire scenarios (no explosion). In contrast, the risk level for the exposed population was found to be greater for the alternative route in three possible accident scenarios associated with explosions and toxic releases. Therefore, one should be wary before stating that for the transport of dangerous products an itinerary running completely in the open air might be used if the latter passes through a populated area. The QRA may help decisionmakers both to implement additional safety measures and to understand whether to allow, forbid, or limit circulation of DGVs. © 2016 Society for Risk Analysis.
Hannink, J D C; van Hees, H W H; Dekhuijzen, P N R; van Helvoort, H A C; Heijdra, Y F
2014-02-01
Systemic inflammation in patients with chronic obstructive pulmonary disease (COPD) has been related to the development of comorbidities. The level of systemic inflammatory mediators is aggravated as a response to exercise in these patients. The aim of this study was to investigate whether unloading of the respiratory muscles attenuates the inflammatory response to exercise in COPD patients. In a cross-over design, eight muscle-wasted stable COPD patients performed 40 W constant work-rate cycle exercise with and without non-invasive ventilation support (NIV vs control). Patients exercised until symptom limitation for maximally 20 min. Blood samples were taken at rest and at isotime or immediately after exercise. Duration of control and NIV-supported exercise was similar, both 12.9 ± 2.8 min. Interleukin- 6 (IL-6) plasma levels increased significantly by 25 ± 9% in response to control exercise, but not in response to NIV-supported exercise. Leukocyte concentrations increased similarly after control and NIV-supported exercise by ∼15%. Plasma concentrations of C-reactive protein, carbonylated proteins, and production of reactive oxygen species by blood cells were not affected by both exercise modes. This study demonstrates that NIV abolishes the IL-6 response to exercise in muscle-wasted patients with COPD. These data suggest that the respiratory muscles contribute to exercise-induced IL-6 release in these patients. © 2012 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Inhibition of HMGCoA reductase by simvastatin protects mice from injurious mechanical ventilation.
Manitsopoulos, Nikolaos; Orfanos, Stylianos E; Kotanidou, Anastasia; Nikitopoulou, Ioanna; Siempos, Ilias; Magkou, Christina; Dimopoulou, Ioanna; Zakynthinos, Spyros G; Armaganidis, Apostolos; Maniatis, Nikolaos A
2015-02-14
Mortality from severe acute respiratory distress syndrome exceeds 40% and there is no available pharmacologic treatment. Mechanical ventilation contributes to lung dysfunction and mortality by causing ventilator-induced lung injury. We explored the utility of simvastatin in a mouse model of severe ventilator-induced lung injury. Male C57BL6 mice (n = 7/group) were pretreated with simvastatin or saline and received protective (8 mL/kg) or injurious (25 mL/kg) ventilation for four hours. Three doses of simvastatin (20 mg/kg) or saline were injected intraperitoneally on days -2, -1 and 0 of the experiment. Lung mechanics, (respiratory system elastance, tissue damping and airway resistance), were evaluated by forced oscillation technique, while respiratory system compliance was measured with quasi-static pressure-volume curves. A pathologist blinded to treatment allocation scored hematoxylin-eosin-stained lung sections for the presence of lung injury. Pulmonary endothelial dysfunction was ascertained by bronchoalveolar lavage protein content and lung tissue expression of endothelial junctional protein Vascular Endothelial cadherin by immunoblotting. To assess the inflammatory response in the lung, we determined bronchoalveolar lavage fluid total cell content and neutrophil fraction by microscopy and staining in addition to Matrix-Metalloprotease-9 by ELISA. For the systemic response, we obtained plasma levels of Tumor Necrosis Factor-α, Interleukin-6 and Matrix-Metalloprotease-9 by ELISA. Statistical hypothesis testing was undertaken using one-way analysis of variance and Tukey's post hoc tests. Ventilation with high tidal volume (HVt) resulted in significantly increased lung elastance by 3-fold and decreased lung compliance by 45% compared to low tidal volume (LVt) but simvastatin abrogated lung mechanical alterations of HVt. Histologic lung injury score increased four-fold by HVt but not in simvastatin-pretreated mice. Lavage pleocytosis and neutrophilia were induced by HVt but were significantly attenuated by simvastatin. Microvascular protein permeability increase 20-fold by injurious ventilation but only 4-fold with simvastatin. There was a 3-fold increase in plasma Tumor Necrosis Factor-α, a 7-fold increase in plasma Interleukin-6 and a 20-fold increase in lavage fluid Matrix-Metalloprotease-9 by HVt but simvastatin reduced these levels to control. Lung tissue vascular endothelial cadherin expression was significantly reduced by injurious ventilation but remained preserved by simvastatin. High-dose simvastatin prevents experimental hyperinflation lung injury by angioprotective and anti-inflammatory effects.
Neuschwander, Arthur; Futier, Emmanuel; Jaber, Samir; Pereira, Bruno; Eurin, Mathilde; Marret, Emmanuel; Szymkewicz, Olga; Beaussier, Marc; Paugam-Burtz, Catherine
2016-04-01
During high-risk abdominal surgery the use of a multi-faceted lung protective ventilation strategy composed of low tidal volumes, positive end-expiratory pressure (PEEP) and recruitment manoeuvres, has been shown to improve clinical outcomes. It has been speculated, however, that mechanical ventilation using PEEP might increase intraoperative bleeding during liver resection. To study the impact of mechanical ventilation with PEEP on bleeding during hepatectomy. Post-hoc analysis of a randomised controlled trial. Seven French university teaching hospitals from January 2011 to August 2012. Patients scheduled for liver resection surgery. In the Intraoperative Protective Ventilation trial, patients scheduled for major abdominal surgery were randomly assigned to mechanical ventilation using low tidal volume, PEEP between 6 and 8 cmH2O and recruitment manoeuvres (lung protective ventilation strategy) or higher tidal volume, zero PEEP and no recruitment manoeuvres (non-protective ventilation strategy). The primary endpoint was intraoperative blood loss volume. A total of 79 (19.8%) patients underwent liver resections (41 in the lung protective and 38 in the non-protective group). The median (interquartile range) amount of intraoperative blood loss was 500 (200 to 800) ml and 275 (125 to 800) ml in the non-protective and lung protective ventilation groups, respectively (P = 0.47). Fourteen (35.0%) and eight (21.5%) patients were transfused in the non-protective and lung protective groups, respectively (P = 0.17), without a statistically significant difference in the median (interquartile range) number of red blood cells units transfused [2.5 (2 to 4) units and 3 (2 to 6) units in the two groups, respectively; P = 0.54]. During hepatic surgery, mechanical ventilation using PEEP within a multi-faceted lung protective strategy was not associated with increased bleeding compared with non-protective ventilation using zero PEEP. The current study was not registered. The original Intraoperative Protective Ventilation study was registered on clinicaltrials.gov; number NCT01282996.
Association Between Noninvasive Ventilation and Mortality Among Older Patients With Pneumonia
Valley, Thomas S.; Walkey, Allan J.; Lindenauer, Peter K.; Wiener, Renda Soylemez; Cooke, Colin R.
2016-01-01
Objective Despite increasing use, evidence is mixed as to the appropriate use of noninvasive ventilation in patients with pneumonia. We aimed to determine the relationship between receipt of noninvasive ventilation and outcomes for patients with pneumonia in a real-world setting. Design, Setting, Patients We performed a retrospective cohort study of Medicare beneficiaries (aged > 64 yr) admitted to 2,757 acute-care hospitals in the United States with pneumonia, who received mechanical ventilation from 2010 to 2011. Exposures Noninvasive ventilation versus invasive mechanical ventilation. Measurement and Main Results The primary outcome was 30-day mortality with Medicare reimbursement as a secondary outcome. To account for unmeasured confounding associated with noninvasive ventilation use, an instrumental variable was used—the differential distance to a high noninvasive ventilation use hospital. All models were adjusted for patient and hospital characteristics to account for measured differences between groups. Among 65,747 Medicare beneficiaries with pneumonia who required mechanical ventilation, 12,480 (19%) received noninvasive ventilation. Patients receiving noninvasive ventilation were more likely to be older, male, white, rural-dwelling, have fewer comorbidities, and were less likely to be acutely ill as measured by organ failures. Results of the instrumental variable analysis suggested that, among marginal patients, receipt of noninvasive ventilation was not significantly associated with differences in 30-day mortality when compared with invasive mechanical ventilation (54% vs 55%; p = 0.92; 95% CI of absolute difference, –13.8 to 12.4) but was associated with significantly lower Medicare spending ($18,433 vs $27,051; p = 0.02). Conclusions Among Medicare beneficiaries hospitalized with pneumonia who received mechanical ventilation, noninvasive ventilation use was not associated with a real-world mortality benefit. Given the wide CIs, however, substantial harm associated with noninvasive ventilation could not be excluded. The use of noninvasive ventilation for patients with pneumonia should be cautioned, but targeted enrollment of marginal patients with pneumonia could enrich future randomized trials. PMID:27749319
Oppenheim-Eden, A; Cohen, Y; Weissman, C; Pizov, R
2001-08-01
To assess in vitro the performance of five mechanical ventilators-Siemens 300 and 900C (Siemens-Elma; Solna, Sweden), Puritan Bennett 7200 (Nellcor Puritan Bennett; Pleasanton, CA), Evita 4 (Dragerwerk; Lubeck, Germany), and Bear 1000 (Bear Medical Systems; Riverside CA)-and a bedside sidestream spirometer (Datex CS3 Respiratory Module; Datex-Ohmeda; Helsinki, Finland) during ventilation with helium-oxygen mixtures. In vitro study. ICUs of two university-affiliated hospitals. Each ventilator was connected to 100% helium through compressed air inlets and then tested at three to six different tidal volume (VT) settings using various helium-oxygen concentrations (fraction of inspired oxygen [FIO(2)] of 0.2 to 1.0). FIO(2) and VT were measured with the Datex CS3 spirometer, and VT was validated with a water-displacement spirometer. The Puritan Bennett 7200 ventilator did not function with helium. With the other four ventilators, delivered FIO(2) was lower than the set FIO(2). For the Siemens 300 and 900C ventilators, this difference could be explained by the lack of 21% oxygen when helium was connected to the air supply port, while for the other two ventilators, a nonlinear relation was found. The VT of the Siemens 300 ventilator was independent of helium concentration, while for the other three ventilators, delivered VT was greater than the set VT and was dependent on helium concentration. During ventilation with 80% helium and 20% oxygen, VT increased to 125% of set VT for the Siemens 900C ventilator, and more than doubled for the Evita 4 and Bear 1000 ventilators. Under the same conditions, the Datex CS3 spirometer underestimated the delivered VT by about 33%. At present, no mechanical ventilator is calibrated for use with helium. This investigation offers correction factors for four ventilators for ventilation with helium.
Hetland, Breanna; Lindquist, Ruth; Chlan, Linda L.
2015-01-01
Background Mechanical ventilation (MV) causes many distressing symptoms. Weaning, the gradual decrease in ventilator assistance leading to termination of MV, increases respiratory effort, which may exacerbate symptoms and prolong MV. Music, a non-pharmacological intervention without side effects may benefit patients during weaning from mechanical ventilatory support. Methods A narrative review of OVID Medline, PsychINFO, and CINAHL databases was conducted to examine the evidence for the use of music intervention in MV and MV weaning. Results Music intervention had a positive impact on ventilated patients; 16 quantitative and 2 qualitative studies were identified. Quantitative studies included randomized clinical trials (10), case controls (3), pilot studies (2) and a feasibility study. Conclusions Evidence supports music as an effective intervention that can lesson symptoms related to MV and promote effective weaning. It has potential to reduce costs and increase patient satisfaction. However, more studies are needed to establish its use during MV weaning. PMID:26227333
Occult pneumothorax in the mechanically ventilated trauma patient
Ball, Chad G.; Hameed, S. Morad; Evans, Dave; Kortbeek, John B.; Kirkpatrick, Andrew W.
2003-01-01
The term occult pneumothorax (OP) describes a pneumothorax that is not suspected on the basis of clinical examination or plain radiography but is ultimately detected with thoracoabdominal computed tomography (CT). This situation is increasingly common in trauma care with the increased use of CT. The rate is approximately 5% in injured people presenting to hospital, with CT revealing at least twice as many pneumothoraces as suspected on plain radiography. Whereas pneumothorax is a common and treatable cause of mortality and morbidity, there is substantial disagreement regarding the appropriate treatment of OP. The greatest controversy is in patients in the critical care unit who require positive-pressure ventilation. There is little current evidence to direct the proper management of ventilated trauma patients with OP, and no studies have focussed specifically on these patients. Future randomized trials will need to consider the potential effects of OP on pulmonary mechanics and potential influences on the known risks of ventilator-induced lung injury associated with mechanical ventilation. PMID:14577712
[Pediatric home ventilation--practical approach].
Rath-Wacenovsky, Regina
2015-09-01
Out-of-hospital ventilation represents only a marginal area of paediatric therapeutic concepts. In Austria, the proportion of children to be supplied with invasive and non-invasive ventilation increases significantly, together with the challenges of caring for their long-term demands. Neuromuscular diseases accounted for almost the sole indication group. Premature and newborn infants with persistent respiratory failures are an increasing group, needing more extensive care due to additional comorbidities. Children with congenital disorder have often been tracheotomised in order to secure their airway, and non-invasive ventilation as a bridge- or long-term therapy gains in importance more and more. Usually, infants with primary or secondary CNS disorders suffer from respiratory complications and eventually from chronic respiratory insufficiencies during adolescence or young adulthood. Here, invasive or non-invasive ventilation can contribute both to a significant stabilisation of health status and also quality of life. Spirit of research, experience, appropriate support structures, and appropriate networking constitute the most relevant quality- and success criteria for home care.
Nakamura, Maria Aparecida Miyuki; Costa, Eduardo Leite Vieira; Carvalho, Carlos Roberto Ribeiro; Tucci, Mauro Roberto
2014-01-01
Objective: Discomfort and noncompliance with noninvasive ventilation (NIV) interfaces are obstacles to NIV success. Total face masks (TFMs) are considered to be a very comfortable NIV interface. However, due to their large internal volume and consequent increased CO2 rebreathing, their orifices allow proximal leaks to enhance CO2 elimination. The ventilators used in the ICU might not adequately compensate for such leakage. In this study, we attempted to determine whether ICU ventilators in NIV mode are suitable for use with a leaky TFM. Methods: This was a bench study carried out in a university research laboratory. Eight ICU ventilators equipped with NIV mode and one NIV ventilator were connected to a TFM with major leaks. All were tested at two positive end-expiratory pressure (PEEP) levels and three pressure support levels. The variables analyzed were ventilation trigger, cycling off, total leak, and pressurization. Results: Of the eight ICU ventilators tested, four did not work (autotriggering or inappropriate turning off due to misdetection of disconnection); three worked with some problems (low PEEP or high cycling delay); and one worked properly. Conclusions: The majority of the ICU ventilators tested were not suitable for NIV with a leaky TFM. PMID:25029653
Kim, Christopher; Gao, Yu-Tang; Xiang, Yong-Bing; Barone-Adesi, Francesco; Zhang, Yawei; Hosgood, H. Dean; Ma, Shuangge; Shu, Xiao-ou; Ji, Bu-Tian; Chow, Wong-Ho; Seow, Wei Jie; Bassig, Bryan; Cai, Qiuyin; Zheng, Wei; Rothman, Nathaniel; Lan, Qing
2014-01-01
Indoor air pollution (IAP) caused by cooking has been associated with lung cancer risk in retrospective case-control studies in developing and rural countries. We report the association of cooking conditions, fuel use, oil use and risk of lung cancer in a developed urban population in a prospective cohort of women in Shanghai. A total of 71,320 never smoking women were followed from 1996 through 2009 and 429 incident lung cancer cases were identified. Questionnaires collected information on household living and cooking practices for the women’s three most recent residences and utilization of cooking fuel and oil, and ventilation conditions. Cox proportional hazards regression estimated the association for kitchen ventilation conditions, cooking fuels, and use of cooking oils for the risk of lung cancer by hazard ratios (HR) with 95% confidence intervals (95% CI). Ever poor kitchen ventilation was associated with a 49% increase in lung cancer risk (HR: 1.49; 95% CI: 1.15–1.95) compared to never poor ventilation. Ever use of coal was not significantly associated. However, ever coal use with poor ventilation (HR: 1.69; 95% CI: 1.22–2.35) and twenty or more years of using coal (HR: 2.03; 95% CI: 1.35–3.05) was significantly associated compared to no exposure to coal or poor ventilation. Cooking oil use was not significantly associated. These results demonstrate that IAP from poor ventilation of coal combustion increases the risk of lung cancer and is an important public health issue in cities across China where people may have lived in homes with inadequate kitchen ventilation. PMID:24917360
Sensor-based demand controlled ventilation
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Almeida, A.T.; Fisk, W.J.
In most buildings, occupancy and indoor pollutant emission rates vary with time. With sensor-based demand-controlled ventilation (SBDCV), the rate of ventilation (i.e., rate of outside air supply) also varies with time to compensate for the changes in pollutant generation. In other words, SBDCV involves the application of sensing, feedback and control to modulate ventilation. Compared to ventilation without feedback, SBDCV offers two potential advantages: (1) better control of indoor pollutant concentrations; and (2) lower energy use and peak energy demand. SBDCV has the potential to improve indoor air quality by increasing the rate of ventilation when indoor pollutant generation ratesmore » are high and occupants are present. SBDCV can also save energy by decreasing the rate of ventilation when indoor pollutant generation rates are low or occupants are absent. After providing background information on indoor air quality and ventilation, this report provides a relatively comprehensive discussion of SBDCV. Topics covered in the report include basic principles of SBDCV, sensor technologies, technologies for controlling air flow rates, case studies of SBDCV, application of SBDCV to laboratory buildings, and research needs. SBDCV appears to be an increasingly attractive technology option. Based on the review of literature and theoretical considerations, the application of SBDCV has the potential to be cost-effective in applications with the following characteristics: (a) a single or small number of dominant pollutants, so that ventilation sufficient to control the concentration of the dominant pollutants provides effective control of all other pollutants; (b) large buildings or rooms with unpredictable temporally variable occupancy or pollutant emission; and (c) climates with high heating or cooling loads or locations with expensive energy.« less
Resistive pressure of a condenser humidifier in mechanically ventilated patients.
Manthous, C A; Schmidt, G A
1994-11-01
Heat and moisture exchangers (or "nose" humidifiers) are commonly used to aid in the humidification of inspired gases of mechanically ventilated patients. These devices add resistance to the ventilator circuit that has heretofore not been quantified in critically ill patients. Accordingly, we determined the resistive pressures associated with new and old (but < 24 hrs in the circuit) humidifiers in 23 critically ill, mechanically ventilated patients. Prospective study. Adult medical and surgical intensive care units at a university center. Twenty-three critically ill, mechanically ventilated patients using a condenser humidifier between the wye and the endotracheal tube. Peak and plateau airway pressures were determined with the humidifier in place. These measurements were repeated without the humidifier, then after insertion of a fresh humidifier into the circuit. In five patients, measurements were repeated after humidifiers had remained in place for a full 24 hrs. The new humidifiers increased the resistive pressure of the ventilator circuit by 4.8 +/- 2.6 cm H2O compared with no humidifier (p < .01) and had a mean resistance of 4.2 +/- 1.5 cm H2O/L/sec. Old humidifiers increased resistive pressure by 6.3 +/- 3.6 cm H2O compared with no humidifier (p < .01) and had a mean resistance of 5.1 +/- 1.8 cm H2O/L/sec. The resistive pressure doubled from 3.4 +/- 1.2 to 7.0 +/- 1.8 cm H2O (p < .01) in five patients in whom the humidifiers were left in the ventilator circuit for a full 24 hrs. The humidifier adds a significant resistance to the ventilator circuit which may lead to incorrect assessment of respiratory system mechanics, to inappropriate therapy (e.g., bronchodilators), or to difficulty in weaning from mechanical ventilation.
Güldner, Andreas; Kiss, Thomas; Serpa Neto, Ary; Hemmes, Sabrine N T; Canet, Jaume; Spieth, Peter M; Rocco, Patricia R M; Schultz, Marcus J; Pelosi, Paolo; Gama de Abreu, Marcelo
2015-09-01
Postoperative pulmonary complications are associated with increased morbidity, length of hospital stay, and mortality after major surgery. Intraoperative lung-protective mechanical ventilation has the potential to reduce the incidence of postoperative pulmonary complications. This review discusses the relevant literature on definition and methods to predict the occurrence of postoperative pulmonary complication, the pathophysiology of ventilator-induced lung injury with emphasis on the noninjured lung, and protective ventilation strategies, including the respective roles of tidal volumes, positive end-expiratory pressure, and recruitment maneuvers. The authors propose an algorithm for protective intraoperative mechanical ventilation based on evidence from recent randomized controlled trials.
CPAP of 4 cm H(2)O Has no short-term benefit at term in infants with BPD.
Sandberg, Kenneth L; Hjalmarson, Ola
2012-01-01
Lung development and function is compromised at term in infants with bronchopulmonary dysplasia (BPD), characterized by reduced functional residual capacity (FRC) and impaired gas-mixing efficiency in distal airways. To determine whether continuous positive airway pressure (CPAP) improves FRC, ventilation, distal airway function, and gas exchange in spontaneously breathing infants with BPD. Twenty-one infants with BPD (median birth weight 0.72 kg (range 0.50-1.27) and median gestational age 26 weeks (range 23-28)) were studied before and after CPAP of 4 cm H(2)O was applied by a facemask system. A multiple-breath nitrogen washout method was used to assess FRC, ventilation, and gas-mixing efficiency. Moment analysis and lung clearance index was calculated from the nitrogen-decay curve for assessment of gas-mixing efficiency. Transcutaneous (Tc) PO(2)/PCO(2) was monitored during stable infant conditions before each washout test. When CPAP was raised from 0 to 4 cm H(2)O, FRC increased significantly together with a significant increase in moment ratios (M(1)/M(0) and M(2)/M(0)). Tc PO(2) decreased significantly and the breathing pattern changed, with significantly reduced respiratory rate, minute ventilation, and alveolar ventilation. There was also an increase in tidal volume and dead space. CPAP of 4 cm H(2)O applied with a facemask at term to infants with BPD did not improve ventilation, gas-mixing efficiency in distal airways, or oxygenation despite an increase in FRC. We speculate that instead of promoting recruitment of unventilated lung volumes, increasing the end-expiratory pressure in infants with BPD may lead to an overexpansion of already ventilated parts of the lung, causing further compromise of lung function. Copyright © 2012 S. Karger AG, Basel.
Lung-protective ventilation in abdominal surgery.
Futier, Emmanuel; Jaber, Samir
2014-08-01
To provide the most recent and relevant clinical evidence regarding the use of prophylactic lung-protective mechanical ventilation in abdominal surgery. Evidence is accumulating, suggesting an association between intraoperative mechanical ventilation strategy and postoperative pulmonary complications in patients undergoing abdominal surgery. Nonprotective ventilator settings, especially high tidal volume (>10-12 ml/kg), very low level of positive end-expiratory pressure (PEEP, <5 cm H2O), or no PEEP, may cause alveolar overdistension and repetitive tidal recruitment leading to ventilator-associated lung injury in patients with healthy lungs. Stimulated by the previous findings in patients with acute respiratory distress syndrome, the use of lower tidal volume ventilation is becoming increasingly more common in the operating room. However, lowering tidal volume, though important, is only part of the overall multifaceted approach of lung-protective mechanical ventilation. Recent data provide compelling evidence that prophylactic lung-protective mechanical ventilation using lower tidal volume (6-8 ml/kg of predicted body weight), moderate PEEP (6-8 cm H2O), and recruitment maneuvers is associated with improved functional or physiological and clinical postoperative outcome in patients undergoing abdominal surgery. The use of prophylactic lung-protective ventilation can help in improving the postoperative outcome.
Effects of elevated carbon dioxide concentrations on broiler chicken performance from 28 to 49 days
USDA-ARS?s Scientific Manuscript database
Improvements in modern broiler housing have substantially reduced air leakage, making proper operation of ventilation systems critical to maintaining a suitable environment. Fuel prices have increased in recent years, leading to reduced minimum ventilation in order to conserve fuel which increases ...
Comparison of Methane Control Methods in Polish and Vietnamese Coal Mines
NASA Astrophysics Data System (ADS)
Borowski, Marek; Kuczera, Zbigniew
2018-03-01
Methane hazard often occurs in hard coal mines and causes very serious accidents and can be the reason of methane or methane and coal dust explosions. History of coal mining shows that methane released from the rock mass to the longwall area was responsible for numerous mining disasters. The main source of methane are coal deposits because it is autochthonous gas and is closely related with carbonification and forming of coal deposits. Degree of methane saturation in coal deposits depends on numerous factors; mainly on presence or lack of insulating layers in cover deposit that allow or do not on degasification and easily methane outflow into surroundings. Hence in coal mining there are coal deposits that contain only low degree of methane saturation in places where is lack of insulating layers till high in methane coal deposits occurring in insulating claystones or in shales. Conducting mining works in coal deposits of high methane hazard without using of special measures to combat (ventilation, methane drainage) could be impossible. Control of methane hazard depends also on other co-occuring natural dangers for which used preventive actions eliminate methane hazard. Safety in mines excavating coal deposits saturated with methane depends on the correct estimation of methane hazard, drawn up forecasts, conducted observations, hazard control as well as undertaken prevention measures. Methane risk prevention includes identification and control methods of methane hazards as well as means of combating the explosive accumulation of methane in longwall workings. The main preventive actions in underground coal mines are: effective ventilation that prevents forming of methane fuses or placed methane accumulation in headings ventilated by airflow created by main fans and in headings with auxiliary ventilation, methane drainage using drain holes that are drilled from underground headings or from the surface, methanometry control of methane concentration in the air; location of the sensors is defined by law, additional ventilation equipment used in places of lower intensity of ventilation and places where methane is concentrated.
Smuder, Ashley J; Sollanek, Kurt J; Min, Kisuk; Nelson, W Bradley; Powers, Scott K
2015-05-01
Mechanical ventilation is a lifesaving measure for patients with respiratory failure. However, prolonged mechanical ventilation results in diaphragm weakness, which contributes to problems in weaning from the ventilator. Therefore, identifying the signaling pathways responsible for mechanical ventilation-induced diaphragm weakness is essential to developing effective countermeasures to combat this important problem. In this regard, the forkhead boxO family of transcription factors is activated in the diaphragm during mechanical ventilation, and forkhead boxO-specific transcription can lead to enhanced proteolysis and muscle protein breakdown. Currently, the role that forkhead boxO activation plays in the development of mechanical ventilation-induced diaphragm weakness remains unknown. This study tested the hypothesis that mechanical ventilation-induced increases in forkhead boxO signaling contribute to ventilator-induced diaphragm weakness. University research laboratory. Young adult female Sprague-Dawley rats. Cause and effect was determined by inhibiting the activation of forkhead boxO in the rat diaphragm through the use of a dominant-negative forkhead boxO adeno-associated virus vector delivered directly to the diaphragm. Our results demonstrate that prolonged (12 hr) mechanical ventilation results in a significant decrease in both diaphragm muscle fiber size and diaphragm-specific force production. However, mechanically ventilated animals treated with dominant-negative forkhead boxO showed a significant attenuation of both diaphragm atrophy and contractile dysfunction. In addition, inhibiting forkhead boxO transcription attenuated the mechanical ventilation-induced activation of the ubiquitin-proteasome system, the autophagy/lysosomal system, and caspase-3. Forkhead boxO is necessary for the activation of key proteolytic systems essential for mechanical ventilation-induced diaphragm atrophy and contractile dysfunction. Collectively, these results suggest that targeting forkhead boxO transcription could be a key therapeutic target to combat ventilator-induced diaphragm dysfunction.
Investigation of induced recirculation during planned ventilation system maintenance
Pritchard, C.J.; Scott, D.F.; Noll, J.D.; Voss, B.; Leonis, D.
2015-01-01
The Office of Mine Safety and Health Research (OMSHR) investigated ways to increase mine airflow to underground metal/nonmetal (M/NM) mine working areas to improve miners’ health and safety. One of those areas is controlled recirculation. Because the quantity of mine air often cannot be increased, reusing part of the ventilating air can be an effective alternative, if implemented properly, until the capacity of the present system is improved. The additional airflow can be used to provide effective dilution of contaminants and higher flow velocities in the underground mine environment. Most applications of controlled recirculation involve taking a portion of the return air and passing it back into the intake to increase the air volume delivered to the desired work areas. OMSHR investigated a Nevada gold mine where shaft rehabilitation was in progress and one of the two main fans was shut down to allow reduced air velocity for safe shaft work. Underground booster fan operating pressures were kept constant to maintain airflow to work areas, inducing controlled recirculation in one work zone. Investigation into system behavior and the effects of recirculation on the working area during times of reduced primary ventilation system airflow would provide additional information on implementation of controlled recirculation into the system and how these events affect M/NM ventilation systems. The National Institute for Occupational Safety and Health monitored the ventilation district when both main fans were operating and another scenario with one of the units turned off for maintenance. Airflow and contaminants were measured to determine the exposure effects of induced recirculation on miner health. Surveys showed that 19% controlled recirculation created no change in the overall district airflow distribution and a small reduction in district fresh air intake. Total dust levels increased only modestly and respirable dust levels were also low. Diesel particulate matter (DPM) levels showed a high increase in district intake mass flow, but minor increases in exposure levels related to the recirculation percentage. Utilization of DPM mass flow rates allows input into ventilation modeling programs to better understand and plan for ventilation changes and district recirculation effects on miners’ health. PMID:26190862
Castellanos, Ixchel; Martin, Marcus; Kraus, Stefan; Bürkle, Thomas; Prokosch, Hans-Ulrich; Schüttler, Jürgen; Toddenroth, Dennis
2018-02-01
To investigate long-term effects of staff training and electronic clinical decision support (CDS) on adherence to lung-protective ventilation recommendations. In 2012, group instructions and workshops at two surgical intensive care units (ICUs) started, focusing on standardized protocols for mechanical ventilation and volutrauma prevention. Subsequently implemented CDS functions continuously monitor ventilation parameters, and from 2015 triggered graphical notifications when tidal volume (V T ) violated individual thresholds. To estimate the effects of these educational and technical interventions, we retrospectively analyzed nine years of V T records from routine care. As outcome measures, we calculated relative frequencies of settings that conform to recommendations, case-specific mean excess V T , and total ICU survival. Assessing 571,478 V T records from 10,241 ICU cases indicated that adherence during pressure-controlled ventilation improved significantly after both interventions; the share of conforming V T records increased from 61.6% to 83.0% and then 86.0%. Despite increasing case severity, ICU survival remained nearly constant over time. Staff training effectively improves adherence to lung-protective ventilation strategies. The observed CDS effect seemed less pronounced, although it can easily be adapted to new recommendations. Both interventions, which futures studies could deploy in combination, promise to improve the precision of mechanical ventilation. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Regional ventilation-perfusion distribution is more uniform in the prone position
NASA Technical Reports Server (NTRS)
Mure, M.; Domino, K. B.; Lindahl, S. G.; Hlastala, M. P.; Altemeier, W. A.; Glenny, R. W.
2000-01-01
The arterial blood PO(2) is increased in the prone position in animals and humans because of an improvement in ventilation (VA) and perfusion (Q) matching. However, the mechanism of improved VA/Q is unknown. This experiment measured regional VA/Q heterogeneity and the correlation between VA and Q in supine and prone positions in pigs. Eight ketamine-diazepam-anesthetized, mechanically ventilated pigs were studied in supine and prone positions in random order. Regional VA and Q were measured using fluorescent-labeled aerosols and radioactive-labeled microspheres, respectively. The lungs were dried at total lung capacity and cubed into 603-967 small ( approximately 1.7-cm(3)) pieces. In the prone position the homogeneity of the ventilation distribution increased (P = 0.030) and the correlation between VA and Q increased (correlation coefficient = 0.72 +/- 0.08 and 0.82 +/- 0.06 in supine and prone positions, respectively, P = 0.03). The homogeneity of the VA/Q distribution increased in the prone position (P = 0.028). We conclude that the improvement in VA/Q matching in the prone position is secondary to increased homogeneity of the VA distribution and increased correlation of regional VA and Q.
Bahreini, Rassol; Currie, Robert W
2015-10-01
The objective of this study was to manipulate ventilation rate to characterize interactions between stocks of honey bees (Apis mellifera L.) and ventilation setting on varroa mite (Varroa destructor Anderson and Trueman) mortality in honey bee colonies kept indoors over winter. The first experiment used colonies established from stock selected locally for wintering performance under exposure to varroa (n = 6) and unselected bees (n = 6) to assess mite and bee mortality and levels of carbon dioxide (CO2) and oxygen (O2) in the bee cluster when kept under a simulated winter condition at 5°C. The second experiment, used colonies from selected bees (n = 10) and unselected bees (n = 12) that were exposed to either standard ventilation (14.4 liter/min per hive) or restricted ventilation (0.24 liter/min per hive, in a Plexiglas ventilation chamber) during a 16-d treatment period to assess the influence of restricted air flow on winter mortality rates of varroa mites and honey bees. Experiment 2 was repeated in early, mid-, and late winter. The first experiment showed that under unrestricted ventilation with CO2 concentrations averaging <2% there was no correlation between CO2 and varroa mite mortality when colonies were placed under low temperature. CO2 was negatively correlated with O2 in the bee cluster in both experiments. When ventilation was restricted, mean CO2 level (3.82 ± 0.31%, range 0.43-8.44%) increased by 200% relative to standard ventilation (1.29 ± 0.31%; range 0.09-5.26%) within the 16-d treatment period. The overall mite mortality rates and the reduction in mean abundance of varroa mite over time was greater under restricted ventilation (37 ± 4.2%) than under standard ventilation (23 ± 4.2%) but not affected by stock of bees during the treatment period. Selected bees showed overall greater mite mortality relative to unselected bees in both experiments. Restricting ventilation increased mite mortality, but did not affect worker bee mortality relative to that for colonies under standard ventilation. Restricted ventilation did not affect the overall level of Nosema compared with the control. However, there was an interaction between stock, season, and time of the trial. Unselected stock showed an increase in Nosema over time in the late winter trial that did not occur in the selected stock. In conclusion, these findings suggested that restricted ventilation has potential to suppress varroa mite in overwintering honey bee colonies via a low-cost and environmentally friendly measure. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Singh, Paramveer; Idowu, Olakunle; Malik, Imrana; Nates, Joseph L
2015-10-01
Magnesium is known to act at the neuromuscular junction by inhibiting the presynaptic release of acetylcholine and desensitizing the postsynaptic membrane. Because of these effects, magnesium has been postulated to potentiate neuromuscular weakness. We describe the case of a 62-year-old woman with myasthenia gravis and a metastatic thymoma who was admitted to our intensive care unit for management of a myasthenic crisis. The patient's neuromuscular weakness worsened in association with standard intravenous magnesium replacement, and the exacerbated respiratory failure necessitated intubation, mechanical ventilation, and an extended stay in the intensive care unit. The effect of magnesium replacement on myasthenia gravis patients has not been well documented, and we present this case to increase awareness and stimulate research. In addition, we discuss the relevant medical literature.
Alves, Joana; Alp, Emine; Koulenti, Despoina; Zhang, Zhongheng; Ehrmann, Stephan; Blot, Stijn; Bassetti, Matteo; Conway-Morris, Andrew; Reina, Rosa; Teran, Enrique; Sole-Lleonart, Candela; Ruiz-Rodríguez, Maria; Rello, Jordi
2018-04-01
2017 ESCMID practice guidelines reported safety concerns and weak evidence of benefit supporting use of aerosolized antibiotics in mechanically ventilated patients. Our primary goal was to assess current patterns of aerosolized antibiotic prescription in mechanically ventilated patients. A sequential global survey was performed prior to the release of the ESCMID guidelines, from the 1st of February to the 30th of April 2017, using an electronic platform. Responses were analyzed comparing geographical regions. A total of 410 units responded, with 261 (177 from Europe) being eligible for the full survey. 26.8% of units reported not using aerosolized antibiotics. The two major indications amongst prescribing units were ventilator-associated pneumonia and ventilator-associated tracheobronchitis (74.3% and 49.4%, respectively). 63.6% of units indicated prescription solely in response to multi-drug resistant organisms. In comparison with a survey undertaken in 2014, there was a significant reduction in use of aerosolized antibiotics for prophylaxis (50.6% vs 7.7%, p < 0.05) and colonization (52.9% vs 25.3%, p < 0.05). The large majority of units (91.7%) reported only prescribing in patients with positive pulmonary cultures. Asia appeared to be an outlier, with 53.3% of units reporting empirical use. The most commonly used device was the jet nebulizer. The most commonly prescribed drugs were colistin methanesulfonate (57.6%), colistin base (41.9%) and amikacin (31.4%), although there was considerable heterogeneity across geographical areas. A significant gap exists between ESCMID clinical practice recommendations and the use of aerosolized antibiotics in clinical practice. Our findings indicate an urgent need for high-quality education to bring practice into line with evidence-based guidelines.
Jain, Sumeet V; Kollisch-Singule, Michaela; Satalin, Joshua; Searles, Quinn; Dombert, Luke; Abdel-Razek, Osama; Yepuri, Natesh; Leonard, Antony; Gruessner, Angelika; Andrews, Penny; Fazal, Fabeha; Meng, Qinghe; Wang, Guirong; Gatto, Louis A; Habashi, Nader M; Nieman, Gary F
2017-12-01
Acute respiratory distress syndrome causes a heterogeneous lung injury with normal and acutely injured lung tissue in the same lung. Improperly adjusted mechanical ventilation can exacerbate ARDS causing a secondary ventilator-induced lung injury (VILI). We hypothesized that a peak airway pressure of 40 cmH 2 O (static strain) alone would not cause additional injury in either the normal or acutely injured lung tissue unless combined with high tidal volume (dynamic strain). Pigs were anesthetized, and heterogeneous acute lung injury (ALI) was created by Tween instillation via a bronchoscope to both diaphragmatic lung lobes. Tissue in all other lobes was normal. Airway pressure release ventilation was used to precisely regulate time and pressure at both inspiration and expiration. Animals were separated into two groups: (1) over-distension + high dynamic strain (OD + H DS , n = 6) and (2) over-distension + low dynamic strain (OD + L DS , n = 6). OD was caused by setting the inspiratory pressure at 40 cmH 2 O and dynamic strain was modified by changing the expiratory duration, which varied the tidal volume. Animals were ventilated for 6 h recording hemodynamics, lung function, and inflammatory mediators followed by an extensive necropsy. In normal tissue (N T ), OD + L DS caused minimal histologic damage and a significant reduction in BALF total protein (p < 0.05) and MMP-9 activity (p < 0.05), as compared with OD + H DS . In acutely injured tissue (ALI T ), OD + L DS resulted in reduced histologic injury and pulmonary edema (p < 0.05), as compared with OD + H DS . Both N T and ALI T are resistant to VILI caused by OD alone, but when combined with a H DS , significant tissue injury develops.
Energy Use Consequences of Ventilating a Net-Zero Energy House
Ng, Lisa C.; Payne, W. Vance
2016-01-01
A Net-Zero Energy Residential Test Facility (NZERTF) has been constructed at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland to demonstrate that a home similar in size, aesthetics, and amenities to those in the surrounding communities can achieve net-zero energy use over the course of a year while meeting the average electricity and water use needs of a family of four in the United States. The facility incorporates renewable energy and energy efficient technologies, including an air-to-air heat pump system, a solar photovoltaic system, a solar thermal domestic hot water system, and a heat recovery ventilation system sized to meet American Society of Heating, Refrigeration, and Air-Conditioning Engineers (ASHRAE) Standard 62.2-2010 ventilation requirements. The largest energy end use within the home was space conditioning, which included heat loss through the building envelope, ventilation air supplied by the heat recovery ventilator (HRV), and internal loads. While HRVs are often described as being able to save energy when compared to ventilating without heat recovery, there have been no studies using a full year of measured data that determine the thermal load and energy impacts of HRV-based ventilation on the central heating and cooling system. Over the course of a year, continuous operation of the HRV at the NZERTF resulted in an annual savings of 7 % in heat pump energy use compared with the hypothetical case of ventilating without heat recovery. The heat pump electrical use varied from an increase of 5 % in the cooling months to 36 % savings in the heating months compared with ventilation without heat recovery. The increase in the cooling months occurred when the outdoor temperature was lower than the indoor temperature, during which the availability of an economizer mode would have been beneficial. Nevertheless, the fan energy required to operate the selected HRV at the NZERTF paid for itself in the heat pump energy saved compared with ventilation without heat recovery. PMID:26903776
Energy Use Consequences of Ventilating a Net-Zero Energy House.
Ng, Lisa C; Payne, W Vance
2016-03-05
A Net-Zero Energy Residential Test Facility (NZERTF) has been constructed at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland to demonstrate that a home similar in size, aesthetics, and amenities to those in the surrounding communities can achieve net-zero energy use over the course of a year while meeting the average electricity and water use needs of a family of four in the United States. The facility incorporates renewable energy and energy efficient technologies, including an air-to-air heat pump system, a solar photovoltaic system, a solar thermal domestic hot water system, and a heat recovery ventilation system sized to meet American Society of Heating, Refrigeration, and Air-Conditioning Engineers (ASHRAE) Standard 62.2-2010 ventilation requirements. The largest energy end use within the home was space conditioning, which included heat loss through the building envelope, ventilation air supplied by the heat recovery ventilator (HRV), and internal loads. While HRVs are often described as being able to save energy when compared to ventilating without heat recovery, there have been no studies using a full year of measured data that determine the thermal load and energy impacts of HRV-based ventilation on the central heating and cooling system. Over the course of a year, continuous operation of the HRV at the NZERTF resulted in an annual savings of 7 % in heat pump energy use compared with the hypothetical case of ventilating without heat recovery. The heat pump electrical use varied from an increase of 5 % in the cooling months to 36 % savings in the heating months compared with ventilation without heat recovery. The increase in the cooling months occurred when the outdoor temperature was lower than the indoor temperature, during which the availability of an economizer mode would have been beneficial. Nevertheless, the fan energy required to operate the selected HRV at the NZERTF paid for itself in the heat pump energy saved compared with ventilation without heat recovery.
[Non-invasive mechanical ventilation in the pre- and intraoperative period and difficult airway].
Esquinas, A M; Jover, J L; Úbeda, A; Belda, F J
2015-11-01
Non-invasive mechanical ventilation is a method of ventilatory assistance aimed at increasing alveolar ventilation, thus achieving, in selected subjects, the avoidance of endotracheal intubation and invasive mechanical ventilation, with the consequent improvement in survival. There has been a systematic review and study of the technical, clinical experiences, and recommendations concerning the application of non-invasive mechanical ventilation in the pre- and intraoperative period. The use of prophylactic non-invasive mechanical ventilation before surgery that involves significant alterations in the ventilatory function may decrease the incidence of postoperative respiratory complications. Its intraoperative use will mainly depend on the type of surgery, type of anaesthetic technique, and the clinical status of the patient. Its use allows greater anaesthetic depth without deterioration of oxygenation and ventilation of patients. Copyright © 2015 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.
Lucas, Rebekah A I; Pearson, James; Schlader, Zachary J; Crandall, Craig G
2015-11-01
What is the central question of this study? Does baroreceptor unloading during passive hyperthermia contribute to increases in ventilation and decreases in end-tidal carbon dioxide during that exposure? What is the main finding and its importance? Hyperthermic hyperventilation is not mitigated by expanding central blood volume and reloading the cardiopulmonary baroreceptors via rapid saline infusion or by reloading the arterial baroreceptors via phenylephrine administration. The absence of a reduction in ventilation upon reloading the baroreceptors to pre-hyperthermic levels indicates that cardiopulmonary and arterial baroreceptor unloading with hyperthermia is unlikely to contribute to hyperthermic hyperventilation in humans. This study tested the hypothesis that baroreceptor unloading during passive hyperthermia contributes to increases in ventilation and decreases in end-tidal partial pressure of carbon dioxide (P ET ,CO2) during that exposure. Two protocols were performed, in which healthy subjects underwent passive hyperthermia (increasing intestinal temperature by ∼1.8°C) to cause a sustained increase in ventilation and reduction in P ET ,CO2. Upon attaining hyperthermic hyperventilation, in protocol 1 (n = 10; three females) a bolus (19 ± 2 ml kg(-1) ) of warm (∼38°C) isotonic saline was rapidly (5-10 min) infused intravenously to restore reductions in central venous pressure, whereas in protocol 2 (n = 11; five females) phenylephrine was infused intravenously (60-120 μg min(-1) ) to return mean arterial pressure to normothermic levels. In protocol 1, hyperthermia increased ventilation (by 2.2 ± 1.7 l min(-1) , P < 0.01), while reducing P ET ,CO2 (by 4 ± 3 mmHg, P = 0.04) and central venous pressure (by 5 ± 1 mmHg, P <0.01). Saline infusion increased central venous pressure by 5 ± 1 mmHg (P < 0.01), restoring it to normothermic values, but did not change ventilation or P ET ,CO2 (P > 0.05). In protocol 2, hyperthermia increased ventilation (by 5.0 ± 2.7 l min(-1) , P <0.01) and reduced P ET ,CO2 (by 5 ± 2 mmHg, P < 0.01) and mean arterial pressure (by 9 ± 7 mmHg, P <0.01). Phenylephrine infusion increased mean arterial pressure by 12 ± 3 mmHg (P < 0.01), restoring it to normothermic values, but did not change ventilation or P ET ,CO2 (P > 0.05). The absence of a reduction in ventilation upon reloading the cardiopulmonary and arterial baroreceptors to pre-hyperthermic levels indicates that baroreceptor unloading with hyperthermia is unlikely to contribute to hyperthermic hyperventilation in humans. © 2015 The Authors. Experimental Physiology © 2015 The Physiological Society.
Lai, Tian-Shun; Wang, Zhi-Hong; Cai, Shao-Xi
2015-01-01
Background: Subsequent neutrophil (polymorphonuclear neutrophil [PMN])-predominant inflammatory response is a predominant feature of ventilator-induced lung injury (VILI), and mesenchymal stem cell (MSC) can improve mice survival model of endotoxin-induced acute lung injury, reduce lung impairs, and enhance the repair of VILI. However, whether MSC could attenuate PMN-predominant inflammatory in the VILI is still unknown. This study aimed to test whether MSC intervention could attenuate the PMN-predominate inflammatory in the mechanical VILI. Methods: Sprague-Dawley rats were ventilated for 2 hours with large tidal volume (20 mL/kg). MSCs were given before or after ventilation. The inflammatory chemokines and gas exchange were observed and compared dynamically until 4 hours after ventilation, and pulmonary pathological change and activation of PMN were observed and compared 4 hours after ventilation. Results: Mechanical ventilation (MV) caused significant lung injury reflected by increasing in PMN pulmonary sequestration, inflammatory chemokines (tumor necrosis factor-alpha, interleukin-6 and macrophage inflammatory protein 2) in the bronchoalveolar lavage fluid, and injury score of the lung tissue. These changes were accompanied with excessive PMN activation which reflected by increases in PMN elastase activity, production of radical oxygen series. MSC intervention especially pretreatment attenuated subsequent lung injury, systemic inflammation response and PMN pulmonary sequestration and excessive PMN activation initiated by injurious ventilation. Conclusions: MV causes profound lung injury and PMN-predominate inflammatory responses. The protection effect of MSC in the VILI rat model is related to the suppression of the PMN activation. PMID:25635432
Francis, Colin Anthony; Hoffer, Joaquín Andrés; Reynolds, Steven
2016-01-01
Mechanical ventilation is associated with atrophy and weakness of the diaphragm. Ultrasound is an easy noninvasive way to track changes in thickness of the diaphragm. To validate ultrasound as a means of tracking thickness of the diaphragm in patients undergoing mechanical ventilation by evaluating interobserver and interoperator reliability and to collect initial data on the relationship of mode of ventilation to changes in the diaphragm. Daily ultrasound images of the quadriceps and the right side of the diaphragm were acquired in 8 critically ill patients receiving various modes of mechanical ventilation. Thickness of the diaphragm and the quadriceps was measured, and changes with time were noted. Interoperator and interobserver reliability were measured. Intraclass correlation coefficients between operators and between observers for thickness of the diaphragm and quadriceps were greater than 0.95, indicating excellent interoperator and interobserver reliability. Patients receiving assist-control ventilation (n = 4) showed a mean decline in diaphragm thickness of 4.7% per day. Patients receiving pressure support ventilation (n = 8) showed a mean increase in diaphragm thickness of 1.5% per day. Quadriceps thickness declined in all participants (n = 8) at a mean rate of 2.0% per day. Use of ultrasound to measure thickness of the diaphragm in 8 intensive care patients undergoing various modes of mechanical ventilation was feasible and yielded reproducible results. Ultrasound tracking of changes in thickness of the diaphragm in this small sample indicated that the thickness decreased during assist-control mode and increased during pressure support mode. ©2016 American Association of Critical-Care Nurses.
Na, Ji Ung; Han, Sang Kuk; Choi, Pil Cho; Shin, Dong Hyuk
2017-01-01
Metronome guidance is a feasible and effective feedback technique to improve the quality of cardiopulmonary resuscitation (CPR). The rate of the metronome should be set between 100 to 120 ticks/minute and the speed of ventilation may have crucial effect on the quality of ventilation. We compared three different metronome rates (100, 110, 120 ticks/minute) to investigate its effect on the quality of ventilation during metronome-guided 30:2 CPR. This is a prospective, randomized, crossover observational study using a RespiTrainer○ r . To simulate 30 chest compressions, one investigator counted from 1 to 30 in cadence with the metronome rate (1 count for every 1 tick), and the participant performed 2 consecutive ventilations immediately following the counting of 30. Thirty physicians performed 5 sets of 2 consecutive (total 10) bag-mask ventilations for each metronome rate. Participants were instructed to squeeze the bag over 2 ticks (1.0 to 1.2 seconds depending on the rate of metronome) and deflate the bag over 2 ticks. The sequence of three different metronome rates was randomized. Mean tidal volume significantly decreased as the metronome rate was increased from 110 ticks/minute to 120 ticks/minute (343±84 mL vs. 294±90 mL, P =0.004). Peak airway pressure significantly increased as metronome rate increased from 100 ticks/minute to 110 ticks/minute (18.7 vs. 21.6 mmHg, P =0.006). In metronome-guided 30:2 CPR, a higher metronome rate may adversely affect the quality of bag-mask ventilations. In cases of cardiac arrest where adequate ventilation support is necessary, 100 ticks/minute may be better than 110 or 120 ticks/minute to deliver adequate tidal volume during audio tone guided 30:2 CPR.
Na, Ji Ung; Han, Sang Kuk; Choi, Pil Cho; Shin, Dong Hyuk
2017-01-01
BACKGROUND: Metronome guidance is a feasible and effective feedback technique to improve the quality of cardiopulmonary resuscitation (CPR). The rate of the metronome should be set between 100 to 120 ticks/minute and the speed of ventilation may have crucial effect on the quality of ventilation. We compared three different metronome rates (100, 110, 120 ticks/minute) to investigate its effect on the quality of ventilation during metronome-guided 30:2 CPR. METHODS: This is a prospective, randomized, crossover observational study using a RespiTrainer○r. To simulate 30 chest compressions, one investigator counted from 1 to 30 in cadence with the metronome rate (1 count for every 1 tick), and the participant performed 2 consecutive ventilations immediately following the counting of 30. Thirty physicians performed 5 sets of 2 consecutive (total 10) bag-mask ventilations for each metronome rate. Participants were instructed to squeeze the bag over 2 ticks (1.0 to 1.2 seconds depending on the rate of metronome) and deflate the bag over 2 ticks. The sequence of three different metronome rates was randomized. RESULTS: Mean tidal volume significantly decreased as the metronome rate was increased from 110 ticks/minute to 120 ticks/minute (343±84 mL vs. 294±90 mL, P=0.004). Peak airway pressure significantly increased as metronome rate increased from 100 ticks/minute to 110 ticks/minute (18.7 vs. 21.6 mmHg, P=0.006). CONCLUSION: In metronome-guided 30:2 CPR, a higher metronome rate may adversely affect the quality of bag-mask ventilations. In cases of cardiac arrest where adequate ventilation support is necessary, 100 ticks/minute may be better than 110 or 120 ticks/minute to deliver adequate tidal volume during audio tone guided 30:2 CPR. PMID:28458759
Hong, Caron M; Xu, Da-Zhong; Lu, Qi; Cheng, Yunhui; Pisarenko, Vadim; Doucet, Danielle; Brown, Margaret; Aisner, Seena; Zhang, Chunxiang; Deitch, Edwin A; Delphin, Ellise
2010-06-01
Protective mechanical ventilation with low tidal volume (Vt) and low plateau pressure reduces mortality and decreases the length of mechanical ventilation in patients with acute respiratory distress syndrome. Mechanical ventilation that will protect normal lungs during major surgical procedures of long duration may improve postoperative outcomes. We performed an animal study comparing 3 ventilation strategies used in the operating room in normal lungs. We compared the effects on pulmonary mechanics, inflammatory mediators, and lung tissue injury. Female pigs were randomized into 3 groups. Group H-Vt/3 (n = 6) was ventilated with a Vt of 15 mL/kg predicted body weight (PBW)/positive end-expiratory pressure (PEEP) of 3 cm H(2)O, group L-Vt/3 (n = 6) with a Vt of 6 mL/kg PBW/PEEP of 3 cm H(2)O, and group L-Vt/10 (n = 6) with a Vt of 6 mL/kg PBW/PEEP of 10 cm H(2)O, for 8 hours. Hemodynamics, airway mechanics, arterial blood gases, and inflammatory markers were monitored. Bronchoalveolar lavage (BAL) was analyzed for inflammatory markers and protein concentration. The right lower lobe was assayed for mRNA of specific cytokines. The right lower lobe and right upper lobe were evaluated histologically. In contrast to groups H-Vt/3 and L-Vt/3, group L-Vt/10 exhibited a 6-fold increase in inflammatory mediators in BAL (P < 0.001). Cytokines in BAL were similar in groups H-Vt/3 and L-Vt/3. Group H-Vt/3 had a significantly lower lung injury score than groups L-Vt/3 and L-Vt/10. Comparing intraoperative strategies, ventilation with high PEEP resulted in increased production of inflammatory markers. Low PEEP resulted in lower levels of inflammatory markers. High Vt/low PEEP resulted in less histologic lung injury.
Spadaro, Savino; Grasso, Salvatore; Karbing, Dan Stieper; Fogagnolo, Alberto; Contoli, Marco; Bollini, Giacomo; Ragazzi, Riccardo; Cinnella, Gilda; Verri, Marco; Cavallesco, Narciso Giorgio; Rees, Stephen Edward; Volta, Carlo Alberto
2018-03-01
Arterial oxygenation is often impaired during one-lung ventilation, due to both pulmonary shunt and atelectasis. The use of low tidal volume (VT) (5 ml/kg predicted body weight) in the context of a lung-protective approach exacerbates atelectasis. This study sought to determine the combined physiologic effects of positive end-expiratory pressure and low VT during one-lung ventilation. Data from 41 patients studied during general anesthesia for thoracic surgery were collected and analyzed. Shunt fraction, high V/Q and respiratory mechanics were measured at positive end-expiratory pressure 0 cm H2O during bilateral lung ventilation and one-lung ventilation and, subsequently, during one-lung ventilation at 5 or 10 cm H2O of positive end-expiratory pressure. Shunt fraction and high V/Q were measured using variation of inspired oxygen fraction and measurement of respiratory gas concentration and arterial blood gas. The level of positive end-expiratory pressure was applied in random order and maintained for 15 min before measurements. During one-lung ventilation, increasing positive end-expiratory pressure from 0 cm H2O to 5 cm H2O and 10 cm H2O resulted in a shunt fraction decrease of 5% (0 to 11) and 11% (5 to 16), respectively (P < 0.001). The PaO2/FIO2 ratio increased significantly only at a positive end-expiratory pressure of 10 cm H2O (P < 0.001). Driving pressure decreased from 16 ± 3 cm H2O at a positive end-expiratory pressure of 0 cm H2O to 12 ± 3 cm H2O at a positive end-expiratory pressure of 10 cm H2O (P < 0.001). The high V/Q ratio did not change. During low VT one-lung ventilation, high positive end-expiratory pressure levels improve pulmonary function without increasing high V/Q and reduce driving pressure.
Johannes, Amélie; Zollhoefer, Bernd; Eujen, Ulrike; Kredel, Markus; Rauch, Stefan; Roewer, Norbert; Muellenbach, Ralf M
2013-04-01
Oxygenation during high-frequency oscillatory ventilation is secured by a high level of mean airway pressure. Our objective was to identify a pressure difference between the airway opening of the respiratory circuit and the trachea during application of different oscillatory frequencies. Six female Pietrain pigs (57.1 ± 3.6 kg) were first ventilated in a conventional mechanical ventilation mode. Subsequently, the animals were switched to high-frequency oscillatory ventilation by setting mean airway opening pressure 5 cmH(2)O above the one measured during controlled mechanical ventilation. Measurements at the airway opening and at tracheal levels were performed in healthy lungs and after induction of acute lung injury by surfactant depletion. During high-frequency oscillatory ventilation, the airway opening pressure was set at a constant level. The pressure amplitude was fixed at 90 cmH(2)O. Starting from an oscillatory frequency of 3 Hz, the frequency was increased in steps of 3 Hz to 15 Hz and then decreased accordingly. At each frequency, measurements were performed in the trachea through a side-lumen of the endotracheal tube and the airway opening pressure was recorded. The pressure difference was calculated. At every oscillatory frequency, a pressure loss towards the trachea could be shown. This pressure difference increased with higher oscillatory frequencies (3 Hz 2.2 ± 2.1 cmH(2)O vs. 15 Hz 7.5 ± 1.8 cmH(2)O). The results for healthy and injured lungs were similar. Tracheal pressures decreased with higher oscillatory frequencies. This may lead to pulmonary derecruitment. This has to be taken into consideration when increasing oscillatory frequencies and differentiated pressure settings are mandatory.
Clark, T J; Godfrey, S
1969-05-01
1. Ventilation was measured while subjects were made to rebreathe from a bag containing CO(2) and O(2) in order to expose them to a steadily rising CO(2) tension (P(CO2)). The object of the experiments was to determine the effect of a variety of stimuli upon the increase in ventilation and fall in breath-holding time which occurs in response to the rising P(CO2).2. Steady-state exercise at 200 kg.m/min resulted in a small fall in the slope of the ventilation-CO(2) response curve (S(V)) and a small, though not statistically significant, fall in the P(CO2) at which ventilation would be zero by extrapolation (B(V)). There was a marked fall in the slope of the breath-holding-CO(2) response curve (S(BH)) and an increase in the P(CO2) at which breath-holding time became zero by extrapolation (B(BH)).3. These results have been interpreted with the aid of a model of the control of breath-holding and it is suggested that there is no change in CO(2) sensitivity on exercise, either during rebreathing or breath-holding.4. An increase in the resistance to breathing caused a marked reduction in S(V) and B(V), but no change in the breath-holding-CO(2) response curve. These findings suggest that the flattening of the ventilation-CO(2) response curve is mechanical in origin and acute airway obstruction produces no change in CO(2) sensitivity.5. On the basis of these results, we suggest that more information about CO(2) sensitivity can be obtained by a combination of ventilation and breath-holding-CO(2) response curves.
Altered respiratory response to substance P in capsaicin-treated rats.
Towle, A C; Mueller, R A; Breese, G R; Lauder, J
1985-01-01
The present investigation sought to examine the importance of substance P in the altered respiratory activity after neonatal capsaicin administration. Halothane-anesthetized adult rats given capsaicin neonatally exhibit a decreased basal minute ventilation with PaCO2 equal to and PaO2 greater than vehicle injected controls. In addition, the minute ventilation-PaCO2 curve was displaced to the right. Acute bilateral cervical vagotomy severely blunted the minute ventilation response to PaCO2 and abolished the differences in ventilation between capsaicin treated and control rats. Neonatal capsaicin significantly reduced pons-medulla substance P content but not TRH, serotonin or 5-hydroxyindole acetic acid. Immunohistochemical studies revealed that substance P fibers of the trigeminal spinal nucleus were the most severely affected in the brain stem and that substance P fibers in the lung were totally absent. The intracerebroventricular administration of substance P increased minute ventilation similarly in both control and capsaicin treated rats, largely as a result of increases in tidal volume. The minute ventilation-PaCO2 curve was similar in both groups after substance P administration. Simultaneous administration of the peptidase inhibitor captopril with substance P increased the respiratory response to substance P in normal rats. Administration of captopril to capsaicin treated rats restored the ventilation-PaCO2 curve to the position observed in normal rats. The hypotensive response to intracerebroventricular captopril alone in control rats was less profound in rats given neonatal capsaicin. These results are consistent with the thesis that respiratory depression after capsaicin treatment is at least in part due to the loss of substance P primary afferent nerve terminals in the brain stem, suggesting that substance P fibers in the brain stem may participate in the normal modulation of respiratory activity.
Gonzalez, Isabel; Jimenez, Pilar; Valdivia, Jorge; Esquinas, Antonio
2017-08-01
The two most commonly used types of humidifiers are heated humidifiers and heat and moisture exchange humidifiers. Heated humidifiers provide adequate temperature and humidity without affecting the respiratory pattern, but overdose can cause high temperatures and humidity resulting in condensation, which increases the risk of bacteria in the circuit. These devices are expensive. Heat and moisture exchanger filter is a new concept of humidification, increasing the moisture content in inspired gases. This study aims to determine the effectiveness of the heat and moisture exchanger (HME)-Booster system to humidify inspired air in patients under mechanical ventilation. We evaluated the humidification provided by 10 HME-Booster for tracheostomized patients under mechanical ventilation using Servo I respirators, belonging to the Maquet company and Evita 4. There was an increase in the inspired air humidity after 1 h with the humidifier. The HME-Booster combines the advantages of heat and moisture exchange minimizing the negatives. It increases the amount of moisture in inspired gas in mechanically ventilated tracheostomized patients. It is easy and safe to use. The type of ventilator used has no influence on the result.
Increased ventilation of Antarctic deep water during the warm mid-Pliocene.
Zhang, Zhongshi; Nisancioglu, Kerim H; Ninnemann, Ulysses S
2013-01-01
The mid-Pliocene warm period is a recent warm geological period that shares similarities with predictions of future climate. It is generally held the mid-Pliocene Atlantic Meridional Overturning Circulation must have been stronger, to explain a weak Atlantic meridional δ(13)C gradient and large northern high-latitude warming. However, climate models do not simulate such stronger Atlantic Meridional Overturning Circulation, when forced with mid-Pliocene boundary conditions. Proxy reconstructions allow for an alternative scenario that the weak δ(13)C gradient can be explained by increased ventilation and reduced stratification in the Southern Ocean. Here this alternative scenario is supported by simulations with the Norwegian Earth System Model (NorESM-L), which simulate an intensified and slightly poleward shifted wind field off Antarctica, giving enhanced ventilation and reduced stratification in the Southern Ocean. Our findings challenge the prevailing theory and show how increased Southern Ocean ventilation can reconcile existing model-data discrepancies about Atlantic Meridional Overturning Circulation while explaining fundamental ocean features.
Increased ventilation of Antarctic deep water during the warm mid-Pliocene
Zhang, Zhongshi; Nisancioglu, Kerim H.; Ninnemann, Ulysses S.
2013-01-01
The mid-Pliocene warm period is a recent warm geological period that shares similarities with predictions of future climate. It is generally held the mid-Pliocene Atlantic Meridional Overturning Circulation must have been stronger, to explain a weak Atlantic meridional δ13C gradient and large northern high-latitude warming. However, climate models do not simulate such stronger Atlantic Meridional Overturning Circulation, when forced with mid-Pliocene boundary conditions. Proxy reconstructions allow for an alternative scenario that the weak δ13C gradient can be explained by increased ventilation and reduced stratification in the Southern Ocean. Here this alternative scenario is supported by simulations with the Norwegian Earth System Model (NorESM-L), which simulate an intensified and slightly poleward shifted wind field off Antarctica, giving enhanced ventilation and reduced stratification in the Southern Ocean. Our findings challenge the prevailing theory and show how increased Southern Ocean ventilation can reconcile existing model-data discrepancies about Atlantic Meridional Overturning Circulation while explaining fundamental ocean features. PMID:23422667
Ventilator-associated pneumonia: the importance of oral care in intubated adults.
Stonecypher, Karen
2010-01-01
Ventilator-associated pneumonia (VAP) occurs within 24 hours of intubation and mechanical ventilation. Health care costs related to increased patient mortality, extended length of stay, and patient well-being make treatment of VAP a priority in all health care settings. The Institute for Healthcare Improvements has developed the Ventilator Bundle as a group of interventions linked to ventilator care with demonstrated outcome improvements; removal of subglottic secretions is one of these recommendations. Dental plaque and bacterial colonization of pathogens is directly related to microaspiration of bacteria into the lungs. A moist environment in the mouth maintains normal oropharyngeal bacteria, preventing overgrowth of pathogenic bacteria. Frequent oral care to include twice-a-day brushing of the teeth found a 69% reduction in respiratory tract infections.
Virgincar, Rohan S.; Cleveland, Zackary I.; Kaushik, S. Sivaram; Freeman, Matthew S.; Nouls, John; Cofer, Gary P.; Martinez-Jimenez, Santiago; He, Mu; Kraft, Monica; Wolber, Jan; McAdams, H. Page; Driehuys, Bastiaan
2013-01-01
In this study, hyperpolarized (HP) 129Xe MR ventilation and 1H anatomical images were obtained from 3 subject groups: young healthy volunteers (HV), subjects with chronic obstructive pulmonary disease (COPD), and age-matched control subjects (AMC). Ventilation images were quantified by 2 methods: an expert reader-based ventilation defect score percentage (VDS%) and a semi-automatic segmentation-based ventilation defect percentage (VDP). Reader-based values were assigned by two experienced radiologists and resolved by consensus. In the semi-automatic analysis, 1H anatomical images and 129Xe ventilation images were both segmented following registration, to obtain the thoracic cavity volume (TCV) and ventilated volume (VV), respectively, which were then expressed as a ratio to obtain the VDP. Ventilation images were also characterized by generating signal intensity histograms from voxels within the TCV, and heterogeneity was analyzed using the coefficient of variation (CV). The reader-based VDS% correlated strongly with the semi-automatically generated VDP (r = 0.97, p < 0.0001), and with CV (r = 0.82, p < 0.0001). Both 129Xe ventilation defect scoring metrics readily separated the 3 groups from one another and correlated significantly with FEV1 (VDS%: r = -0.78, p = 0.0002; VDP: r = -0.79, p = 0.0003; CV: r = -0.66, p = 0.0059) and other pulmonary function tests. In the healthy subject groups (HV and AMC), the prevalence of ventilation defects also increased with age (VDS%: r = 0.61, p = 0.0002; VDP: r = 0.63, p = 0.0002). Moreover, ventilation histograms and their associated CVs distinguished between COPD subjects with similar ventilation defect scores but visibly different ventilation patterns. PMID:23065808
State of the Art: Neonatal Non-invasive Respiratory Support: Physiological Implications
Shaffer, Thomas H.; Alapati, Deepthi; Greenspan, Jay S.; Wolfson, Marla R.
2013-01-01
Summary The introduction of assisted ventilation for neonatal pulmonary insufficiency has resulted in the successful treatment of many previously fatal diseases. During the past three decades, refinement of invasive mechanical ventilation techniques has dramatically improved survival of many high-risk neonates. However, as with many advances in medicine, while mortality has been reduced, morbidity has increased in the surviving high-risk neonate. In this regard, introduction of assisted ventilation has been associated with chronic lung injury, also known as bronchopulmonary dysplasia. This disease, unknown prior to the appearance of mechanical ventilation, has produced a population of patients characterized by ventilator or oxygen dependence with serious accompanying pulmonary and neurodevelopmental morbidity. The purpose of this article is to review non-invasive respiratory support methodologies to address the physiologic mechanisms by which these methods may prevent the pathophysiologic effects of invasive mechanical ventilation. PMID:22777738
A miniature mechanical ventilator for newborn mice.
Kolandaivelu, K; Poon, C S
1998-02-01
Transgenic/knockout mice with pre-defined mutations have become increasingly popular in biomedical research as models of human diseases. In some instances, the resulting mutation may cause cardiorespiratory distress in the neonatal or adult animals and may necessitate resuscitation. Here we describe the design and testing of a miniature and versatile ventilator that can deliver varying ventilatory support modes, including conventional mechanical ventilation and high-frequency ventilation, to animals as small as the newborn mouse. With a double-piston body chamber design, the device circumvents the problem of air leakage and obviates the need for invasive procedures such as endotracheal intubation, which are particularly important in ventilating small animals. Preliminary tests on newborn mice as early as postnatal day O demonstrated satisfactory restoration of pulmonary ventilation and the prevention of respiratory failure in mutant mice that are prone to respiratory depression. This device may prove useful in the postnatal management of transgenic/knockout mice with genetically inflicted respiratory disorders.
Design and Development of a Regenerative Blower for EVA Suit Ventilation
NASA Technical Reports Server (NTRS)
Izenson, Michael G.; Chen, Weibo; Hill, Roger W.; Phillips, Scott D.; Paul, Heather L.
2011-01-01
Ventilation subsystems in future space suits require a dedicated ventilation fan. The unique requirements for the ventilation fan - including stringent safety requirements and the ability to increase output to operate in buddy mode - combine to make a regenerative blower an attractive choice. This paper describes progress in the design, development, and testing of a regenerative blower designed to meet requirements for ventilation subsystems in future space suits. We have developed analysis methods for the blower s complex, internal flows and identified impeller geometries that enable significant improvements in blower efficiency. We verified these predictions by test, measuring aerodynamic efficiencies of 45% at operating conditions that correspond to the ventilation fan s design point. We have developed a compact motor/controller to drive the blower efficiently at low rotating speed (4500 rpm). Finally, we have assembled a low-pressure oxygen test loop to demonstrate the blower s reliability under prototypical conditions.
The sources of Antarctic bottom water in a global ice ocean model
NASA Astrophysics Data System (ADS)
Goosse, Hugues; Campin, Jean-Michel; Tartinville, Benoı̂t
Two mechanisms contribute to the formation of Antarctic bottom water (AABW). The first, and probably the most important, is initiated by the brine released on the Antarctic continental shelf during ice formation which is responsible for an increase in salinity. After mixing with ambient water at the shelf break, this salty and dense water sinks along the shelf slope and invades the deepest part of the global ocean. For the second one, the increase of surface water density is due to strong cooling at the ocean-atmosphere interface, together with a contribution from brine release. This induces deep convection and the renewal of deep waters. The relative importance of these two mechanisms is investigated in a global coupled ice-ocean model. Chlorofluorocarbon (CFC) concentrations simulated by the model compare favourably with observations, suggesting a reasonable deep water ventilation in the Southern Ocean, except close to Antarctica where concentrations are too high. Two artificial passive tracers released at surface on the Antarctic continental shelf and in the open-ocean allow to show clearly that the two mechanisms contribute significantly to the renewal of AABW in the model. This indicates that open-ocean convection is overestimated in our simulation. Additional experiments show that the amount of AABW production due to the export of dense shelf waters is quite sensitive to the parameterisation of the effect of downsloping and meso-scale eddies. Nevertheless, shelf waters always contribute significantly to deep water renewal. Besides, increasing the P.R. Gent, J.C. McWilliams [Journal of Physical Oceanography 20 (1990) 150-155] thickness diffusion can nearly suppress the AABW formation by open-ocean convection.
Andersson, B; Lundin, S; Lindgren, S; Stenqvist, O; Odenstedt Hergès, H
2011-02-01
Continuous positive airway pressure (CPAP) has been shown to improve oxygenation and a number of different CPAP systems are available. The aim of this study was to assess lung volume and ventilation distribution using three different CPAP techniques. A high-flow CPAP system (HF-CPAP), an ejector-driven system (E-CPAP) and CPAP using a Servo 300 ventilator (V-CPAP) were randomly applied at 0, 5 and 10 cmH₂O in 14 volunteers. End-expiratory lung volume (EELV) was measured by N₂ dilution at baseline; changes in EELV and tidal volume distribution were assessed by electric impedance tomography. Higher end-expiratory and mean airway pressures were found using the E-CPAP vs. the HF-CPAP and the V-CPAP system (P<0.01). EELV increased markedly from baseline, 0 cmH₂O, with increased CPAP levels: 1110±380, 1620±520 and 1130±350 ml for HF-, E- and V-CPAP, respectively, at 10 cmH₂O. A larger fraction of the increase in EELV occurred for all systems in ventral compared with dorsal regions (P<0.01). In contrast, tidal ventilation was increasingly directed toward dorsal regions with increasing CPAP levels (P<0.01). The increase in EELV as well as the tidal volume redistribution were more pronounced with the E-CPAP system as compared with both the HF-CPAP and the V-CPAP systems (P<0.05) at 10 cmH₂O. EELV increased more in ventral regions with increasing CPAP levels, independent of systems, leading to a redistribution of tidal ventilation toward dorsal regions. Different CPAP systems resulted in different airway pressure profiles, which may result in different lung volume expansion and tidal volume distribution. © 2010 The Authors. Journal compilation © 2010 The Acta Anaesthesiologica Scandinavica Foundation.
Mechanisms of breathing instability in patients with obstructive sleep apnea.
Younes, Magdy; Ostrowski, Michele; Atkar, Raj; Laprairie, John; Siemens, Andrea; Hanly, Patrick
2007-12-01
The response to chemical stimuli (chemical responsiveness) and the increases in respiratory drive required for arousal (arousal threshold) and for opening the airway without arousal (effective recruitment threshold) are important determinants of ventilatory instability and, hence, severity of obstructive apnea. We measured these variables in 21 obstructive apnea patients (apnea-hypopnea index 91 +/- 24 h(-1)) while on continuous-positive-airway pressure. During sleep, pressure was intermittently reduced (dial down) to induce severe hypopneas. Dial downs were done on room air and following approximately 30 s of breathing hypercapneic and/or hypoxic mixtures, which induced a range of ventilatory stimulation before dial down. Ventilation just before dial down and flow during dial down were measured. Chemical responsiveness, estimated as the percent increase in ventilation during the 5(th) breath following administration of 6% CO(2) combined with approximately 4% desaturation, was large (187 +/- 117%). Arousal threshold, estimated as the percent increase in ventilation associated with a 50% probability of arousal, ranged from 40% to >268% and was <120% in 12/21 patients, indicating that in many patients arousal occurs with modest changes in chemical drive. Effective recruitment threshold, estimated as percent increase in pre-dial-down ventilation associated with a significant increase in dial-down flow, ranged from zero to >174% and was <110% in 12/21 patients, indicating that in many patients reflex dilatation occurs with modest increases in drive. The two thresholds were not correlated. In most OSA patients, airway patency may be maintained with only modest increases in chemical drive, but instability results because of a low arousal threshold and a brisk increase in drive following brief reduction in alveolar ventilation.
Rackes, A; Ben-David, T; Waring, M S
2018-07-01
This article presents an outcome-based ventilation (OBV) framework, which combines competing ventilation impacts into a monetized loss function ($/occ/h) used to inform ventilation rate decisions. The OBV framework, developed for U.S. offices, considers six outcomes of increasing ventilation: profitable outcomes realized from improvements in occupant work performance and sick leave absenteeism; health outcomes from occupant exposure to outdoor fine particles and ozone; and energy outcomes from electricity and natural gas usage. We used the literature to set low, medium, and high reference values for OBV loss function parameters, and evaluated the framework and outcome-based ventilation rates using a simulated U.S. office stock dataset and a case study in New York City. With parameters for all outcomes set at medium values derived from literature-based central estimates, higher ventilation rates' profitable benefits dominated negative health and energy impacts, and the OBV framework suggested ventilation should be ≥45 L/s/occ, much higher than the baseline ~8.5 L/s/occ rate prescribed by ASHRAE 62.1. Only when combining very low parameter estimates for profitable impacts with very high ones for health and energy impacts were all outcomes on the same order. Even then, however, outcome-based ventilation rates were often twice the baseline rate or more. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Zosky, Graeme R; Cannizzaro, Vincenzo; Hantos, Zoltan; Sly, Peter D
2009-11-01
The degree to which mechanical ventilation induces ventilator-associated lung injury is dependent on the initial acute lung injury (ALI). Viral-induced ALI is poorly studied, and this study aimed to determine whether ALI induced by a clinically relevant infection is exacerbated by protective mechanical ventilation. Adult female BALB/c mice were inoculated with 10(4.5) plaque-forming units of influenza A/Mem/1/71 in 50 microl of medium or medium alone. This study used a protective ventilation strategy, whereby mice were anesthetized, tracheostomized, and mechanically ventilated for 2 h. Lung mechanics were measured periodically throughout the ventilation period using a modification of the forced oscillation technique to obtain measures of airway resistance and coefficients of tissue damping and tissue elastance. Thoracic gas volume was measured and used to obtain specific airway resistance, tissue damping, and tissue elastance. At the end of the ventilation period, a bronchoalveolar lavage sample was collected to measure inflammatory cells, macrophage inflammatory protein-2, IL-6, TNF-alpha, and protein leak. Influenza infection caused significant increases in inflammatory cells, protein leak, and deterioration in lung mechanics that were not exacerbated by mechanical ventilation, in contrast to previous studies using bacterial and mouse-specific viral infection. This study highlighted the importance of type and severity of lung injury in determining outcome following mechanical ventilation.
Downregulated Smad4 Affects Extracellular Matrix Remodeling in Ventilator-induced Lung Injury.
Huang, Xiaofang; Zhou, Wei; Ding, Shifang
2016-09-01
To explore the effect of Smad4 on the extracellular matrix remodeling in ventilator-induced lung injury (VILI). We randomized 24 C57BL/6 mice to 4 groups for treatment (n=6/group): control, ventilation, non-targeted (scramble) lentivirus transfection plus ventilation, and Smad4 small interfering RNA (siRNA) lentivirus transfection plus ventilation. Lentivirus was delivered by intranasal instillation. Four weeks later, the 3 ventilated groups underwent high tidal volume (VT 40mL/kg) ventilation to induce lung injury. After 72 hours, lungs were collected from the anesthetized live mice. Histological changes in lungs were evaluated by hematoxylin and eosin and Masson's staining. The expression of α-smooth muscle actin (α-SMA) was determined by immunohistochemistry, and the mRNA and protein levels of Smad4, α-SMA, and collagen I and III were detected by quantitative real-time PCR and western blotting analysis. Smad4 siRNAs significantly knocked down Smad4 expression (P<.05), which was increased with ventilation, thereby alleviating inflammatory cell infiltration. It also inhibited accumulation of α-SMA-positive myofibroblasts and pulmonary fibrosis, as seen by reduced collagen I and III expression (P<.05), induced by ventilation. Scramble siRNA treatment had no effect (P>.05). Smad4 gene silencing may be a therapeutic target for treating ventilator-induced lung injury and pulmonary fibrosis. © 2016 by the Association of Clinical Scientists, Inc.
Oral mask ventilation is more effective than face mask ventilation after nasal surgery.
Yazicioğlu, Dilek; Baran, Ilkay; Uzumcugil, Filiz; Ozturk, Ibrahim; Utebey, Gulten; Sayın, M Murat
2016-06-01
To evaluate and compare the face mask (FM) and oral mask (OM) ventilation techniques during anesthesia emergence regarding tidal volume, leak volume, and difficult mask ventilation (DMV) incidence. Prospective, randomized, crossover study. Operating room, training and research hospital. American Society of Anesthesiologists physical status I and II adult patients scheduled for nasal surgery. Patients in group FM-OM received FM ventilation first, followed by OM ventilation, and patients in group OM-FM received OM ventilation first, followed by FM ventilation, with spontaneous ventilation after deep extubation. The FM ventilation was applied with the 1-handed EC-clamp technique. The OM was placed only over the mouth, and the 1-handed EC-clamp technique was used again. A child's size FM was used for the OM ventilation technique, the mask was rotated, and the inferior part of the mask was placed toward the nose. The leak volume (MVleak), mean airway pressure (Pmean), and expired tidal volume (TVe) were assessed with each mask technique for 3 consecutive breaths. A mask ventilation grade ≥3 was considered DMV. DMV occurred more frequently during FM ventilation (75% with FM vs 8% with OM). In the FM-first sequence, the mean TVe was 249±61mL with the FM and 455±35mL with the OM (P=.0001), whereas in the OM-first sequence, it was 276±81mL with the FM and 409±37mL with the OM (P=.0001). Regardless of the order used, the OM technique significantly decreased the MVleak and increased the TVe when compared to the FM technique. During anesthesia emergence after nasal surgery the OM may offer an effective ventilation method as it decreases the incidence of DMV and the gas leak around the mask and provides higher tidal volume delivery compared with FM ventilation. Copyright © 2016 Elsevier Inc. All rights reserved.
Effects of movement and work load in patients with congenital central hypoventilation syndrome.
Hager, Alfred; Koch, Walter; Stenzel, Heike; Hess, John; Schöber, Johannes
2007-04-01
Patients with congenital central hypoventilation syndrome lack ventilatory chemosensitivity and depend at least in part on the ergoreceptor function during exercise. In these patients a substantial increase of ventilation has been reported for passive movement during sleep as well as active movement on a treadmill. The aim of the study was to investigate ventilatory response to an increasing work load with constant movement. Eighteen patients and 17 healthy volunteers performed a cardiopulmonary exercise test on a bicycle pedaling at a constant rate of about 60 revolutions per minute throughout the entire test. The patients were able to exercise adequately and showed normal peak oxygen uptake. There was a steep rise in minute ventilation in both groups at the start of exercise, yet there was only a minor increase in both groups during the increase of workload up to the anaerobic threshold. After the anaerobic threshold, there was again an increase in ventilation in both groups, but the increase was less prominent in the patient group. Ventilation in patients with congenital central hypoventilation syndrome is increased during exercise caused both by movement (mechanoreceptors) and by anaerobic workload. This facilitates a normal ventilatory drive up to the anaerobic threshold and a normal exercise capacity in these patients.
Laferrière, André; Moss, Immanuela Ravé
2004-10-12
Respiratory responses to single intermittent hypoxia (5 min 21% O(2), 5 min 8% O(2) X6) in 5-6, 10-11, 21-22 and 26-27 day-old piglets, and to recurrent six daily intermittent hypoxia in 10-11 and 26-27 day-old piglets were assessed. Substance P binding in the piglets' brainstem immediately after the last hypoxic episode was measured. All piglets hyperventilated during hypoxia. Weight adjusted inspired ventilation, tidal volume and instantaneous flow decreased with age. The oldest piglets uniquely displayed attenuated ventilation and tidal volume during the sixth versus first hypoxic episode with single intermittent hypoxia, and reduced inspired ventilation and tidal volume during the first hypoxic episode on the sixth daily hypoxia compared to single hypoxia. By contrast, substance P binding was greatly reduced in the solitary, hypoglossal, paraambigual and lateral reticular brainstem nuclei of both younger and older piglets following either single or recurrent intermittent hypoxia. Thus, the reduction in membrane-bound neurokinin receptors by intermittent hypoxia, presumably consequent to endogenously released substance P, does not exclusively determine whether the ventilatory response to that hypoxia will be attenuated or not.
Fuzzy logic assisted control of inspired oxygen in ventilated newborn infants.
Sun, Y.; Kohane, I.; Stark, A. R.
1994-01-01
The control of oxygen delivery to mechanically ventilated newborn infants is a time intensive process that must balance adequate tissue oxygenation against possible toxic effects of oxygen exposure. Investigation in computer assisted control of mechanical ventilation is increasing, although very few studies involve newborn infants. We have implemented a fuzzy controller for the adjustment of inspired oxygen concentration (FIO2) in ventilated newborns. The controller utilizes rules produced by neonatologists, and operates in real-time. A clinical trial of this controller is currently taking place in the neonatal intensive care unit (NICU) of Children's Hospital, Boston, MA. PMID:7950026
An Investigation Into Ventilation And Dust Issues For The Joint Light Tactical Vehicle (JLTV)
2012-05-01
testing at Yuma and other places, the JLTV is filling up with dust and people are having a difficult time seeing and breathing. Obviously, a bad ...2012 Approved for public release; distribution is unlimited. NOTICES Disclaimers The...Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the use thereof. Destroy this report when it is
Study of Fallout Shelter Ventilation Kit Placement Design
1980-05-01
all this Rop.def APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED 17. DISTRSIGUTION STATEMENT (of the obol,atel ".r, sdg ~n Block 20, It 4lforI9...plans Kfor each shelter facility in that host area have been completed. ~In addition, alternative systems for distributing shelter supplies from the...alternative systems for distributing shelter supplies from Jthe host-area county seat to individual shelter faciiities were evaluated. Analysis of
Echocardiographic evaluation during weaning from mechanical ventilation.
Schifelbain, Luciele Medianeira; Vieira, Silvia Regina Rios; Brauner, Janete Salles; Pacheco, Deise Mota; Naujorks, Alexandre Antonio
2011-01-01
Echocardiographic, electrocardiographic and other cardiorespiratory variables can change during weaning from mechanical ventilation. To analyze changes in cardiac function, using Doppler echocardiogram, in critical patients during weaning from mechanical ventilation, using two different weaning methods: pressure support ventilation and T-tube; and comparing patient subgroups: success vs. failure in weaning. Randomized crossover clinical trial including patients under mechanical ventilation for more than 48 h and considered ready for weaning. Cardiorespiratory variables, oxygenation, electrocardiogram and Doppler echocardiogram findings were analyzed at baseline and after 30 min in pressure support ventilation and T-tube. Pressure support ventilation vs. T-tube and weaning success vs. failure were compared using ANOVA and Student's t-test. The level of significance was p<0.05. Twenty-four adult patients were evaluated. Seven patients failed at the first weaning attempt. No echocardiographic or electrocardiographic differences were observed between pressure support ventilation and T-tube. Weaning failure patients presented increases in left atrium, intraventricular septum thickness, posterior wall thickness and diameter of left ventricle and shorter isovolumetric relaxation time. Successfully weaned patients had higher levels of oxygenation. No differences were observed between Doppler echocardiographic variables and electrocardiographic and other cardiorespiratory variables during pressure support ventilation and T-tube. However cardiac structures were smaller, isovolumetric relaxation time was larger, and oxygenation level was greater in successfully weaned patients.
Uchiyama, Akinori; Yoshida, Takeshi; Yamanaka, Hidenori; Fujino, Yuji
2013-07-01
The resistance of the endotracheal tube (ETT), the heat and moisture exchanger (HME), and the ventilator may affect the patient's respiratory status. Although previous studies examined the inspiratory work of breathing (WOB), investigation of WOB in the expiratory phase is rare. We estimated tracheal pressure at the tip of the ETT (Ptrach) and calculated expiratory WOB imposed by the ETT, the HME, and the expiratory valve. We examined imposed expiratory WOB in patients under a continuous mandatory ventilation (CMV) mode and during spontaneous breathing trials (SBTs). We hypothesized that imposed expiratory WOB would increase with heightened ventilatory demand. We measured airway pressure (Paw) and respiratory flow (V). We estimated Ptrach using the equation Ptrach = Paw - K1 × V(K2) - 2.70 × V(L/s)(1.42). K1 and K2 were determined by the inner diameter (ID) of the ETT. Imposed expiratory WOB was calculated from the area of Ptrach above PEEP versus lung volume. We examined imposed expiratory WOB and imposed expiratory resistance in relation to mean expiratory flow. We examined 28 patients under CMV mode, and 29 during SBT. During both CMV and SBT, as mean expiratory flow increased, imposed expiratory WOB increased. The regression curves between mean expiratory flow (x) (L/s) and imposed expiratory WOB (y) (J/L) were y = 1.35x(0.83) (R(2) = 0.79) for 7 mm ID ETT under CMV, y = 1.12x(0.82) (R(2) = 0.73) for 8 mm ID ETT under CMV, y = 1.07x(1.04) (R(2) = 0.85) for 7 mm ID ETT during SBT, and y = 0.84x(0.93) (R(2) = 0.75) for 8 mm ID ETT during SBT. Levels of imposed expiratory WOB were affected by ETT diameter and ventilator mode. The reason for increasing imposed expiratory WOB was an increase in expiratory resistance imposed by the ETT and HME. Under mechanical ventilation, imposed expiratory WOB should be considered in patients with higher minute ventilation.
Houses need to breathe--right?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sherman, Max H.
2004-10-01
Houses need to breathe, but we can no longer leave the important functions associated with ventilation to be met accidentally. A designed ventilation system must be considered as much a part of a home as its heating system. Windows are a key part of that system because they allow a quick increase in ventilation for unusual events, but neither they nor a leaky building shell can be counted on to provide minimum levels.
Lv, Jinze; Zhu, Lizhong
2013-03-01
Central ventilation and air conditioner systems are widely utilized nowadays in public places for air exchange and temperature control, which significantly influences the transfer of pollutants between indoors and outdoors. To study the effect of central ventilation and air conditioner systems on the concentration and health risk from airborne pollutants, a spatial and temporal survey was carried out using polycyclic aromatic hydrocarbons (PAHs) as agent pollutants. During the period when the central ventilation system operated without air conditioning (AC-off period), concentrations of 2-4 ring PAHs in the model supermarket were dominated by outdoor levels, due to the good linearity between indoor air and outdoor air (r(p) > 0.769, p < 0.05), and the slopes (1.2-4.54) indicated that ventilating like the model supermarket increased the potential health risks from low molecular weight PAHs. During the period when the central ventilation and air conditioner systems were working simultaneously (AC-on period), although the total levels of PAHs were increased, the concentrations and percentage of the particulate PAHs indoors declined significantly. The BaP equivalency (BaPeq) concentration indicated that utilization of air conditioning reduced the health risks from PAHs in the model supermarket.
Miles, Lachlan F; Bailey, Michael; Young, Paul; Pilcher, David V
2012-03-01
To define the relationship between worsening oxygenation status (worst PaO(2)/FiO(2) ratio in the first 24 hours after intensive care unit admission) and mortality in immunosuppressed and immunocompetent ICU patients in the presence and absence of mechanical ventilation. Retrospective cohort study. Data were extracted from the Australian and New Zealand Intensive Care Society Adult Patient Database. Adult patients admitted to 129 ICUs in Australasia, 2000-2010. In hospital and ICU mortality; relationship between mortality and declining PaO(2)/FiO(2) ratio by ventilation status and immune status. 457 750 patient records were analysed. Worsening oxygenation status was associated with increasing mortality in all groups. Higher mortality was seen in immunosuppressed patients than immunocompetent patients. After multivariate analysis, in mechanically ventilated patients, declining PaO(2)/FiO(2) ratio in the first 24 hours of ICU admission was associated with a more rapidly rising mortality rate in immunosuppressed patients than non-immunosuppressed patients. Immunosuppression did not affect the relationship between oxygenation status and mortality in non-ventilated patients. Immunosuppression increases the risk of mortality with progressively worsening oxygenation status, but only in the presence of mechanical ventilation. Further research into the impact of mechanical ventilation in immunosuppressed patients is required.
Automated Weaning from Mechanical Ventilation after Off-Pump Coronary Artery Bypass Grafting.
Fot, Evgenia V; Izotova, Natalia N; Yudina, Angelika S; Smetkin, Aleksei A; Kuzkov, Vsevolod V; Kirov, Mikhail Y
2017-01-01
The discontinuation of mechanical ventilation after coronary surgery may prolong and significantly increase the load on intensive care unit personnel. We hypothesized that automated mode using INTELLiVENT-ASV can decrease duration of postoperative mechanical ventilation, reduce workload on medical staff, and provide safe ventilation after off-pump coronary artery bypass grafting (OPCAB). The primary endpoint of our study was to assess the duration of postoperative mechanical ventilation during different modes of weaning from respiratory support (RS) after OPCAB. The secondary endpoint was to assess safety of the automated weaning mode and the number of manual interventions to the ventilator settings during the weaning process in comparison with the protocolized weaning mode. Forty adult patients undergoing elective OPCAB were enrolled into a prospective single-center study. Patients were randomized into two groups: automated weaning ( n = 20) using INTELLiVENT-ASV mode with quick-wean option; and protocolized weaning ( n = 20), using conventional synchronized intermittent mandatory ventilation (SIMV) + pressure support (PS) mode. We assessed the duration of postoperative ventilation, incidence and duration of unacceptable RS, and the load on medical staff. We also performed the retrospective analysis of 102 patients (standard weaning) who were weaned from ventilator with SIMV + PS mode based on physician's experience without prearranged algorithm. Realization of the automated weaning protocol required change in respiratory settings in 2 patients vs. 7 (5-9) adjustments per patient in the protocolized weaning group. Both incidence and duration of unacceptable RS were reduced significantly by means of the automated weaning approach. The FiO 2 during spontaneous breathing trials was significantly lower in the automated weaning group: 30 (30-35) vs. 40 (40-45) % in the protocolized weaning group ( p < 0.01). The average time until tracheal extubation did not differ in the automated weaning and the protocolized weaning groups: 193 (115-309) and 197 (158-253) min, respectively, but increased to 290 (210-411) min in the standard weaning group. The automated weaning system after off-pump coronary surgery might provide postoperative ventilation in a more protective way, reduces the workload on medical staff, and does not prolong the duration of weaning from ventilator. The use of automated or protocolized weaning can reduce the duration of postoperative mechanical ventilation in comparison with non-protocolized weaning based on the physician's decision.
Constant-flow ventilation in canine experimental pulmonary emphysema.
Hachenberg, T; Wendt, M; Meyer, J; Struckmeier, O; Lawin, P
1989-07-01
The efficacy of constant-flow ventilation (CFV) was investigated in eight mongrel dogs before (control-phase) and after development of papain-induced panlobular emphysema (PLE-phase). For CFV, heated, humidified and oxygen-enriched air was continuously delivered via two catheters positioned within each mainstem bronchus at flow rates (V) of 0.33, 0.5 and 0.66 l/s. Data obtained during intermittent positive pressure ventilation (IPPV) served as reference. In the control-phase, Pao2 was lower (P less than or equal to 0.05) and alveolo-arterial O2 difference (P(A-a)O2) was higher (P less than or equal to 0.01) during CFV at all flow rates when compared with IPPV. This may be due to inhomogeneities of intrapulmonary gas distribution and increased ventilation-perfusion (VA/Q) mismatching. Paco2 and V showed a hyperbolic relationship; constant normocapnia (5.3 kPa) was achieved at 0.48 +/- 0.21 l/s (V53). Development of PLE resulted in an increase of functional residual capacity (FRC), residual volume (RV) and static compliance (Cstat) (P less than or equal to 0.05). PaO2 had decreased and P(A-a)O2 had increased (P less than or equal to 0.05), indicating moderate pulmonary dysfunction. Oxygenation during CFV was not significantly different in the PLE-phase when compared with the control-phase. Paco2 and V showed a hyperbolic relationship and V5.3 was even lower than in the control-group (0.42 +/- 0.13 l/s). In dogs with emphysematous lungs CFV maintains sufficient gas exchange. This may be due to preferential ventilation of basal lung units, thereby counterbalancing the effects of impaired lung morphometry and increased airtrapping. Conventional mechanical ventilation is more effective in terms of oxygenation and CO2-elimination.
A preliminary investigation of the drag and ventilation characteristics of livestock haulers
NASA Technical Reports Server (NTRS)
Hoffman, J. A.; Sandin, D. R.
1983-01-01
A wind tunnel evaluation of the drag and ventilation characteristics of a conventional (unmodified) and five modified subscale model livestock haulers at 0 deg yaw angle has been made. The unmodified livestock hauler has a relatively high drag coefficient, and a low velocity recirculation region exists in the forward portion of the hauler. The use of a streamlined forebody and enclosed gap reduced the drag coefficient of one model by 42% and improved the rate at which contaminants can be flushed from the cargo compartment by a factor of 2.5. From the limited data obtained, any increase in the fraction of open area of the trailer sides was found to improve the trailer ventilation. The use of a ram air inlet can improve the ventilation within the hauler and remove the low velocity recirculation region at the expense of a modest increase in the truck's drag coefficient. A mathematical model for vehicles with ram air or NACA submerged inlets was developed and appears to adequately predict the ventilation characteristics of livestock haulers.
Functional differences in bi-level pressure preset ventilators.
Highcock, M P; Shneerson, J M; Smith, I E
2001-02-01
The performance of four bilevel positive pressure preset ventilators was compared. The ventilators tested were; BiPAP ST30 (Respironics); Nippy2 (B + D Electrical); Quantum PSV (Healthdyne); and Sullivan VPAP H ST (Resmed). A patient simulator was used to determine the sensitivity of the triggering mechanisms and the responses to a leak within the patient circuit, and to changes in patient effort. Significant differences (p <0.05) between the devices were seen in the trigger delay time and inspiratory trigger pressure. When a leak was introduced into the patient circuit, the fall in tidal volume (VT) was less than ten per cent for each ventilator. The addition of patient effort produced a number of changes in the ventilation delivered. Patient efforts of 0.25 s induced a variable fall in VT. An increase in VT was seen with some ventilators with patient efforts of 1 s but the effect was variable. Trigger failures and subsequent falls in minute volume were seen with the BiPAP and the Nippy2 at the highest respiratory frequency. Differences in the responses of the ventilators are demonstrated that may influence the selection of a ventilator, particularly in the treatment of breathless patients with ventilatory failure.
Hassan, Anwar; Rajamani, Arvind; Fitzsimons, Fiona
2017-10-01
Prospective quality improvement project to evaluate the impact of a training programme to promote nurse-led mobilisation of intubated critically ill patients. This project involved an educational programme to upskill nurses and overcome the barriers/challenges to nurse-led mobilisation. Initial strategies focused on educating and upskilling nurses to attain competency in active mobilisation. Subsequent strategies focused on positive reinforcement to achieve a culture shift. A pre- and post-intervention audit was used to evaluate its effectiveness. A baseline audit showed that ∼9% of ventilated patients were mobilised. Several barriers were identified. Twenty-three nurses underwent training in actively mobilising ventilated patients. This increased their confidence levels and there was reduction in reported barriers. However, the rate of active mobilisation remained low (9.7%). Subsequently, a programme of positive reinforcement with rewards and visual reminders was introduced, which saw an increase in the number of nurse-led mobilisations of both ventilated patients (from 9.7% to 34.8%; p=0.0003), and non-ventilated patients (29.5% versus 62.9%; p=<0.0001). It is safe and feasible to train nurses to perform active mobilisation of ventilated patients. However, to promote a culture change, training and competency must be combined with a multi-pronged approach including reminders, positive reinforcement and rewards. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Quantification of Age-Related Lung Tissue Mechanics under Mechanical Ventilation.
Kim, JongWon; Heise, Rebecca L; Reynolds, Angela M; Pidaparti, Ramana M
2017-09-29
Elderly patients with obstructive lung diseases often receive mechanical ventilation to support their breathing and restore respiratory function. However, mechanical ventilation is known to increase the severity of ventilator-induced lung injury (VILI) in the elderly. Therefore, it is important to investigate the effects of aging to better understand the lung tissue mechanics to estimate the severity of ventilator-induced lung injuries. Two age-related geometric models involving human bronchioles from generation G10 to G23 and alveolar sacs were developed. The first is for a 50-year-old (normal) and second is for an 80-year old (aged) model. Lung tissue mechanics of normal and aged models were investigated under mechanical ventilation through computational simulations. Results obtained indicated that lung tissue strains during inhalation (t = 0.2 s) decreased by about 40% in the alveolar sac (G23) and 27% in the bronchiole (G20), respectively, for the 80-year-old as compared to the 50-year-old. The respiratory mechanics parameters (work of breathing per unit volume and maximum tissue strain) over G20 and G23 for the 80-year-old decreased by about 64% (three-fold) and 80% (four-fold), respectively, during the mechanical ventilation breathing cycle. However, there was a significant increase (by about threefold) in lung compliance for the 80-year-old in comparison to the 50-year-old. These findings from the computational simulations demonstrated that lung mechanical characteristics are significantly compromised in aging tissues, and these effects were quantified in this study.
Pragliola, Claudio; Di Michele, Sara; Galzerano, Domenico
2017-06-07
A 56-year old male with ischemic heart disease and an unremarkable preoperative echocardiogram underwent surgical coronary revascularization. An intraoperative post pump trans-esophageal echocardiogram (TOE) performed while the patient was being ventilated at a positive end expiratory pressure (PEEP) of 8 cm H 2 O demonstrated a right to left interatrial shunt across a patent foramen ovale (PFO). Whereas oxygen saturation was normal, a reduction of the PEEP to 3 cm H 2 O led to the complete resolution of the shunt with no change in arterial blood gases. Attempts to increase the PEEP level above 3 mmHg resulted in recurrence of the interatrial shunt. The remaining of the TEE was unremarkable. Mechanical ventilation, particularly with PEEP, causes an increase in intrathoracic pressure. The resulting rise in right atrial pressure, mostly during inspiration, may unveil and pop open an unrecognized PFO, thus provoking a right to left shunt across a seemingly intact interatrial septum. This phenomenon increases the risk of paradoxical embolism and can lead to hypoxemia. The immediate management would be to adjust the ventilatory settings to a lower PEEP level. A routine search for a PFO should be performed in ventilated patients who undergo a TEE.
Pleural tissue hyaluronan produced by postmortem ventilation in rabbits.
Wang, P M; Lai-Fook, S J
2000-01-01
We developed a method that used Alcian blue bound to hyaluronan to measure pleural hyaluronan in rabbits postmortem. Rabbits were killed, then ventilated with 21% O2--5% CO2--74% N2 for 3 h. The pleural liquid was removed by suction and 5 ml Alcian blue stock solution (0.33 mg/ml, 3.3 pH) was injected into each chest cavity. After 10 min, the Alcian blue solution was removed and the unbound Alcian blue solution (supernatant) separated by centrifugation and filtration. The supernatant transmissibility (T) was measured spectrophotometrically at 613 nm. Supernatant Alcian blue concentration (Cab) was obtained from a calibration curve of T versus dilutions of stock solution Cab. Alcian blue bound to pleural tissue hyaluronan was obtained by subtracting supernatant Cab from stock solution Cab. Pleural tissue hyaluronan was obtained from a calibration curve of hyaluronan versus Alcian blue bound to hyaluronan. Compared with control rabbits, pleural tissue hyaluronan (0.21 +/- 0.04 mg/kg) increased twofold, whereas pleural liquid volume decreased by 30% after 3 h of ventilation. Pleural effusions present 3 h postmortem without ventilation did not change pleural tissue hyaluronan from control values. Thus ventilation-induced pleural liquid shear stress, not increased filtration, was the stimulus for the increased hyaluronan produced from pleural mesothelial cells.
Nano-metal oxides: Exposure and engineering control assessment.
Garcia, Alberto; Eastlake, Adrienne; Topmiller, Jennifer L; Sparks, Christopher; Martinez, Kenneth; Geraci, Charles L
2017-09-01
In January 2007, the National Institute for Occupational Safety and Health (NIOSH) conducted a field study to evaluate process specific emissions during the production of ENMs. This study was performed using the nanoparticle emission assessment technique (NEAT). During this study, it was determined that ENMs were released during production and cleaning of the process reactor. Airborne concentrations of silver, nickel, and iron were found both in the employee's personal breathing zone and area samples during reactor cleaning. At the completion of this initial survey, it was suggested that a flanged attachment be added to the local exhaust ventilation system. NIOSH re-evaluated the facility in December 2011 to assess worker exposures following an increase in production rates. This study included a fully comprehensive emissions, exposure, and engineering control evaluation of the entire process. This study made use of the nanoparticle exposure assessment technique (NEAT 2.0). Data obtained from filter-based samples and direct reading instruments indicate that reactor cleanout increased the overall particle concentration in the immediate area. However, it does not appear that these concentrations affect areas outside of the production floor. As the distance between the reactor and the sample location increased, the observed particle number concentration decreased, creating a concentration gradient with respect to the reactor. The results of this study confirm that the flanged attachment on the local exhaust ventilation system served to decrease exposure potential. Given the available toxicological data of the metals evaluated, caution is warranted. One should always keep in mind that occupational exposure levels were not developed specifically for nanoscale particles. With data suggesting that certain nanoparticles may be more toxic than the larger counterparts of the same material; employers should attempt to control emissions of these particles at the source, to limit the potential for exposure.
Sandoval Moreno, L M; Casas Quiroga, I C; Wilches Luna, E C; García, A F
2018-02-02
To evaluate the efficacy of respiratory muscular training in the weaning of mechanical ventilation and respiratory muscle strength in patients on mechanical ventilation of 48hours or more. Randomized controlled trial of parallel groups, double-blind. Ambit: Intensive Care Unit of a IV level clinic in the city of Cali. 126 patients in mechanical ventilation for 48hours or more. The experimental group received daily a respiratory muscle training program with treshold, adjusted to 50% of maximal inspiratory pressure, additional to standard care, conventional received standard care of respiratory physiotherapy. MAIN INTEREST VARIABLES: weaning of mechanical ventilation. Other variables evaluated: respiratory muscle strength, requirement of non-invasive mechanical ventilation and frequency of reintubation. intention-to-treat analysis was performed with all variables evaluated and analysis stratified by sepsis condition. There were no statistically significant differences in the median weaning time of the MV between the groups or in the probability of extubation between groups (HR: 0.82 95% CI: 0.55-1.20 P=.29). The maximum inspiratory pressure was increased in the experimental group on average 9.43 (17.48) cmsH20 and in the conventional 5.92 (11.90) cmsH20 (P=.48). The difference between the means of change in maximal inspiratory pressure was 0.46 (P=.83 95%CI -3.85 to -4.78). respiratory muscle training did not demonstrate efficacy in the reduction of the weaning period of mechanical ventilation nor in the increase of respiratory muscle strength in the study population. Registered study at ClinicalTrials.gov (NCT02469064). Copyright © 2017 Elsevier España, S.L.U. y SEMICYUC. All rights reserved.
Wallon, G; Bonnet, A; Guérin, C
2013-06-01
Tidal volume (V(T)) must be accurately delivered by anaesthesia ventilators in the volume-controlled ventilation mode in order for lung protective ventilation to be effective. However, the impact of fresh gas flow (FGF) and lung mechanics on delivery of V(T) by the newest anaesthesia ventilators has not been reported. We measured delivered V(T) (V(TI)) from four anaesthesia ventilators (Aisys™, Flow-i™, Primus™, and Zeus™) on a pneumatic test lung set with three combinations of lung compliance (C, ml cm H2O(-1)) and resistance (R, cm H2O litre(-1) s(-2)): C60R5, C30R5, C60R20. For each CR, three FGF rates (0.5, 3, 10 litre min(-1)) were investigated at three set V(T)s (300, 500, 800 ml) and two values of PEEP (0 and 10 cm H2O). The volume error = [(V(TI) - V(Tset))/V(Tset)] ×100 was computed in body temperature and pressure-saturated conditions and compared using analysis of variance. For each CR and each set V(T), the absolute value of the volume error significantly declined from Aisys™ to Flow-i™, Zeus™, and Primus™. For C60R5, these values were 12.5% for Aisys™, 5% for Flow-i™ and Zeus™, and 0% for Primus™. With an increase in FGF, absolute values of the volume error increased only for Aisys™ and Zeus™. However, in C30R5, the volume error was minimal at mid-FGF for Aisys™. The results were similar at PEEP 10 cm H2O. Under experimental conditions, the volume error differed significantly between the four new anaesthesia ventilators tested and was influenced by FGF, although this effect may not be clinically relevant.
Budesonide ameliorates lung injury induced by large volume ventilation.
Ju, Ying-Nan; Yu, Kai-Jiang; Wang, Guo-Nian
2016-06-04
Ventilation-induced lung injury (VILI) is a health problem for patients with acute respiratory dysfunction syndrome. The aim of this study was to investigate the effectiveness of budesonide in treating VILI. Twenty-four rats were randomized to three groups: a ventilation group, ventilation/budesonide group, and sham group were ventilated with 30 ml/kg tidal volume or only anesthesia for 4 hor saline or budesonide airway instillation immediately after ventilation. The PaO2/FiO2and wet-to-dry weight ratios, protein concentration, neutrophil count, and neutrophil elastase levels in bronchoalveolar lavage fluid (BALF) and the levels of inflammation-related factors were examined. Histological evaluation of and apoptosis measurement inthe lung were conducted. Compared with that in the ventilation group, the PaO2/FiO2 ratio was significantly increased by treatment with budesonide. The lung wet-to-dry weight ratio, total protein, neutrophil elastase level, and neutrophilcount in BALF were decreased in the budesonide group. The BALF and plasma tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, intercellular adhesion molecule (ICAM)-1, and macrophage inflammatory protein (MIP)-2 levels were decreased, whereas the IL-10 level was increased in the budesonide group. The phosphorylated nuclear factor (NF)-kBlevels in lung tissue were inhibited by budesonide. The histological changes in the lung and apoptosis were reduced by budesonide treatment. Bax, caspase-3, and cleaved caspase-3 were down-regulated, and Bcl-2 was up-regulated by budesonide. Budesonide ameliorated lung injury induced by large volume ventilation, likely by improving epithelial permeability, decreasing edema, inhibiting local and systemic inflammation, and reducing apoptosis in VILI.
McWilliams, David; Weblin, Jonathan; Atkins, Gemma; Bion, Julian; Williams, Jenny; Elliott, Catherine; Whitehouse, Tony; Snelson, Catherine
2015-02-01
Prolonged periods of mechanical ventilation are associated with significant physical and psychosocial adverse effects. Despite increasing evidence supporting early rehabilitation strategies, uptake and delivery of such interventions in Europe have been variable. The objective of this study was to evaluate the impact of an early and enhanced rehabilitation program for mechanically ventilated patients in a large tertiary referral, mixed-population intensive care unit (ICU). A new supportive rehabilitation team was created within the ICU in April 2012, with a focus on promoting early and enhanced rehabilitation for patients at high risk for prolonged ICU and hospital stays. Baseline data on all patients invasively ventilated for at least 5 days in the previous 12 months (n = 290) were compared with all patients ventilated for at least 5 days in the 12 months after the introduction of the rehabilitation team (n = 292). The main outcome measures were mobility level at ICU discharge (assessed via the Manchester Mobility Score), mean ICU, and post-ICU length of stay (LOS), ventilator days, and in-hospital mortality. The introduction of the ICU rehabilitation team was associated with a significant increase in mobility at ICU discharge, and this was associated with a significant reduction in ICU LOS (16.9 vs 14.4 days, P = .007), ventilator days (11.7 vs 9.3 days, P < .05), total hospital LOS (35.3 vs 30.1 days, P < .001), and in-hospital mortality (39% vs 28%, P < .05). A quality improvement strategy to promote early and enhanced rehabilitation within this European ICU improved levels of mobility at critical care discharge, and this was associated with reduced ICU and hospital LOS and reduced days of mechanical ventilation. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Bordes, Julien; Mazzeo, Cecilia; Gourtobe, Philippe; Cungi, Pierre Julien; Antonini, Francois; Bourgoin, Stephane; Kaiser, Eric
2015-01-01
Background: Extraperitoneal laparoscopy has become a common technique for many surgical procedures, especially for inguinal hernia surgery. Investigations of physiological changes occurring during extraperitoneal carbon dioxide (CO2) insufflation mostly focused on blood gas changes. To date, the impact of extraperitoneal CO2 insufflation on respiratory mechanics remains unknown, whereas changes in respiratory mechanics have been extensively studied in intraperitoneal insufflation. Objectives: The aim of this study was to investigate the effects of extraperitoneal CO2 insufflation on respiratory mechanics. Patients and Methods: A prospective and observational study was performed on nine patients undergoing laparoscopic inguinal hernia repair. Anesthetic management and intraoperative care were standardized. All patients were mechanically ventilated with a tidal volume of 8 mL/kg using an Engström Carestation ventilator (GE Healthcare). Ventilation distribution was assessed by electrical impedance tomography (EIT). End-expiratory lung volume (EELV) was measured by a nitrogen wash-out/wash-in method. Ventilation distribution, EELV, ventilator pressures and hemodynamic parameters were assessed before extraperitoneal insufflation, and during insufflation with a PEEP of 0 cmH2O, 5 cmH20 and of 10 cmH20. Results: EELV and thoracopulmonary compliance were significantly decreased after extraperitoneal insufflation. Ventilation distribution was significantly higher in ventral lung regions during general anesthesia and was not modified after insufflation. A 10 cmH20 PEEP application resulted in a significant increase in EELV, and a shift of ventilation toward the dorsal lung regions. Conclusions: Extraperitoneal insufflation decreased EELV and thoracopulmonary compliance. Application of a 10 cmH20 PEEP increased EELV and homogenized ventilation distribution. This preliminary clinical study showed that extraperitoneal insufflation worsened respiratory mechanics, which may justify further investigations to evaluate the clinical impact. PMID:25789238
The Effect of Gas Density on Gas Transport during High Frequency Oscillation
1985-04-04
found that as alveolar ventilation increased the rate of uptake of halothane increased. Papper and Kitz (1963) used conventiot~al positive pressure...coefficient (halothane) = 2.3 ( Papper and Kitz, 1963; Wylie and Churchill-Davidson, 1972; Eger, 1976) [ 11] v2 =Volume (L), (310)(22.4)/ 273...there is an increase in alveolar concentration of halothane with conventional ventilation (Kety, 1951; Papper and Kitz, 1963). Our halothane uptake
Muscedere, John; Rewa, Oleksa; McKechnie, Kyle; Jiang, Xuran; Laporta, Denny; Heyland, Daren K
2011-08-01
Aspiration of secretions containing bacterial pathogens into the lower respiratory tract is the main cause of ventilator-associated pneumonia. Endotracheal tubes with subglottic secretion drainage can potentially reduce this and, therefore, the incidence of ventilator-associated pneumonia. New evidence on subglottic secretion drainage as a preventive measure for ventilator-associated pneumonia has been recently published and to consider the evidence in totality, we conducted an updated systematic review and meta-analysis. We searched computerized databases, reference lists, and personal files. We included randomized clinical trials of mechanically ventilated patients comparing standard endotracheal tubes to those with subglottic secretion drainage and reporting on the occurrence of ventilator-associated pneumonia. Studies were meta-analyzed for the primary outcome of ventilator-associated pneumonia and secondary clinical outcomes. We identified 13 randomized clinical trials that met the inclusion criteria with a total of 2442 randomized patients. Of the 13 studies, 12 reported a reduction in ventilator-associated pneumonia rates in the subglottic secretion drainage arm; in meta-analysis, the overall risk ratio for ventilator-associated pneumonia was 0.55 (95% confidence interval, 0.46-0.66; p < .00001) with no heterogeneity (I = 0%). The use of subglottic secretion drainage was associated with reduced intensive care unit length of stay (-1.52 days; 95% confidence interval, -2.94 to -0.11; p = .03); decreased duration of mechanically ventilated (-1.08 days; 95% confidence interval, -2.04 to -0.12; p = .03), and increased time to first episode of ventilator-associated pneumonia (2.66 days; 95% confidence interval, 1.06-4.26; p = .001). There was no effect on adverse events or on hospital or intensive care unit mortality. In those at risk for ventilator-associated pneumonia, the use of endotracheal tubes with subglottic secretion drainage is effective for the prevention of ventilator-associated pneumonia and may be associated with reduced duration of mechanical ventilation and intensive care unit length of stay.
Sharpe, Tim; Farren, Paul; Howieson, Stirling; Tuohy, Paul; McQuillan, Jonathan
2015-07-21
The need to reduce carbon emissions and fuel poverty has led to increased building envelope air tightness, intended to reduce uncontrolled ventilation heat losses. Ventilation strategies in dwellings still allow the use of trickle ventilators in window frames for background ventilation. The extent to which this results in "healthy" Indoor Air Quality (IAQ) in recently constructed dwellings was a concern of regulators in Scotland. This paper describes research to explore this. First a review of literature was conducted, then data on occupant interactions with ventilation provisions (windows, doors, trickle vents) gathered through an interview-based survey of 200 recently constructed dwellings, and measurements made on a sample of 40 of these. The main measured parameter discussed here is CO2 concentration. It was concluded after the literature review that 1000 ppm absolute was a reasonable threshold to use for "adequate" ventilation. The occupant survey found that there was very little occupant interaction with the trickle ventilators e.g., in bedrooms 63% were always closed, 28% always open, and in only 9% of cases occupants intervened to make occasional adjustments. In the measured dwellings average bedroom CO2 levels of 1520 ppm during occupied (night time) hours were observed. Where windows were open the average bedroom CO2 levels were 972 ppm. With windows closed, the combination of "trickle ventilators open plus doors open" gave an average of 1021 ppm. "Trickle ventilators open" gave an average of 1571 ppm. All other combinations gave averages of 1550 to 2000 ppm. Ventilation rates and air change rates were estimated from measured CO2 levels, for all dwellings calculated ventilation rate was less than 8 L/s/p, in 42% of cases calculated air change rate was less than 0.5 ach. It was concluded that trickle ventilation as installed and used is ineffective in meeting desired ventilation rates, evidenced by high CO2 levels reported across the sampled dwellings. Potential implications of the results are discussed.
Minute ventilation of cyclists, car and bus passengers: an experimental study.
Zuurbier, Moniek; Hoek, Gerard; van den Hazel, Peter; Brunekreef, Bert
2009-10-27
Differences in minute ventilation between cyclists, pedestrians and other commuters influence inhaled doses of air pollution. This study estimates minute ventilation of cyclists, car and bus passengers, as part of a study on health effects of commuters' exposure to air pollutants. Thirty-four participants performed a submaximal test on a bicycle ergometer, during which heart rate and minute ventilation were measured simultaneously at increasing cycling intensity. Individual regression equations were calculated between heart rate and the natural log of minute ventilation. Heart rates were recorded during 280 two hour trips by bicycle, bus and car and were calculated into minute ventilation levels using the individual regression coefficients. Minute ventilation during bicycle rides were on average 2.1 times higher than in the car (individual range from 1.3 to 5.3) and 2.0 times higher than in the bus (individual range from 1.3 to 5.1). The ratio of minute ventilation of cycling compared to travelling by bus or car was higher in women than in men. Substantial differences in regression equations were found between individuals. The use of individual regression equations instead of average regression equations resulted in substantially better predictions of individual minute ventilations. The comparability of the gender-specific overall regression equations linking heart rate and minute ventilation with one previous American study, supports that for studies on the group level overall equations can be used. For estimating individual doses, the use of individual regression coefficients provides more precise data. Minute ventilation levels of cyclists are on average two times higher than of bus and car passengers, consistent with the ratio found in one small previous study of young adults. The study illustrates the importance of inclusion of minute ventilation data in comparing air pollution doses between different modes of transport.
NASA Technical Reports Server (NTRS)
Saltzman, E. J.
1983-01-01
Better aerodynamics and ventilation increases fuel efficiency and decreases shipping losses. Trailer is ventilated and cooled by inlet ports in front of rig and outlet ports in middle and rear. Rounded cab and fairing reduce drag by creating an attached airflow.
Mechanical ventilation for severe asthma.
Leatherman, James
2015-06-01
Acute exacerbations of asthma can lead to respiratory failure requiring ventilatory assistance. Noninvasive ventilation may prevent the need for endotracheal intubation in selected patients. For patients who are intubated and undergo mechanical ventilation, a strategy that prioritizes avoidance of ventilator-related complications over correction of hypercapnia was first proposed 30 years ago and has become the preferred approach. Excessive pulmonary hyperinflation is a major cause of hypotension and barotrauma. An appreciation of the key determinants of hyperinflation is essential to rational ventilator management. Standard therapy for patients with asthma undergoing mechanical ventilation consists of inhaled bronchodilators, corticosteroids, and drugs used to facilitate controlled hypoventilation. Nonconventional interventions such as heliox, general anesthesia, bronchoscopy, and extracorporeal life support have also been advocated for patients with fulminant asthma but are rarely necessary. Immediate mortality for patients who are mechanically ventilated for acute severe asthma is very low and is often associated with out-of-hospital cardiorespiratory arrest before intubation. However, patients who have been intubated for severe asthma are at increased risk for death from subsequent exacerbations and must be managed accordingly in the outpatient setting.
Prevention of ventilator-associated pneumonia.
Oliveira, J; Zagalo, C; Cavaco-Silva, P
2014-01-01
Invasive mechanical ventilation (IMV) represents a risk factor for the development of ventilator-associated pneumonia (VAP), which develops at least 48h after admission in patients ventilated through tracheostomy or endotracheal intubation. VAP is the most frequent intensive-care-unit (ICU)-acquired infection among patients receiving IMV. It contributes to an increase in hospital mortality, duration of MV and ICU and length of hospital stay. Therefore, it worsens the condition of the critical patient and increases the total cost of hospitalization. The introduction of preventive measures has become imperative, to ensure control and to reduce the incidence of VAP. Preventive measures focus on modifiable risk factors, mediated by non-pharmacological and pharmacological evidence based strategies recommended by guidelines. These measures are intended to reduce the risk associated with endotracheal intubation and to prevent microaspiration of pathogens to the lower airways. Copyright © 2013 Sociedade Portuguesa de Pneumologia. Published by Elsevier España. All rights reserved.
Poleward Shift in Ventilation of the North Atlantic Subtropical Underwater
NASA Astrophysics Data System (ADS)
Yu, Lisan; Jin, Xiangze; Liu, Hao
2018-01-01
We report the findings that the sea surface salinity maximum (SSS-max) in the North Atlantic has poleward expanded in recent decades and that the expansion is a main driver of the decadal changes in subtropical underwater (STUW). We present observational evidence that the STUW ventilation zone (marked by the location of the 36.7 isohaline) has been displaced northward by1.2 ± 0.36° latitude for the 34 year (1979-2012) period. As a result of the redistribution of the SSS-max water, the ventilation zone has shifted northward and expanded westward into the Sargasso Sea. The ventilation rate of STUW has increased, which is attributed to the increased lateral induction of the sloping mixed layer. STUW has become broader, deeper, and saltier, and the changes are most pronounced on the northern and western edges of the high-saline core.
A new device for 100 per cent humidification of inspired air
Larsson, Anders; Gustafsson, Ann; Svanborg, Lennart
2000-01-01
Introduction: Devices for active humidification of the inspired air in mechanically ventilated patients cause water condensation in the ventilator tubing, which may become contaminated or interfere with the function of the ventilator. The present study describes and tests the performance of a new humidifier, which is designed to eliminate water condensation. Objectives: To test the performance of the new humidifier at different ventilator settings in a lung model, and to compare this new humidifier with a conventional active humidifier in ventilator-treated critically ill patients. Materials and methods: The humidifier (Humid-Heat; Louis Gibeck AB, Upplands Väsby, Sweden) consists of a supply unit with a microprocessor and a water pump, and a humidification device, which is placed between the Y-piece and the endotracheal tube. The humidification device is based on a hygroscopic heat-moisture exchanger (HME), which absorbs the expired heat and moisture and releases it into the inspired gas. External heat and water are then added to the patient side of the HME, so the inspired gas should reach 100% humidity at 37°C (44 mg H2O/l air). The external water is delivered to the humidification device via a pump onto a wick and then evaporated into the inspired air by an electrical heater. The microprocessor controls the water pump and the heater by an algorithm using the minute ventilation (which is fed into the microprocessor) and the airway temperature measured by a sensor mounted in the flex-tube on the patient side of the humidification device. The performance characteristics were tested in a lung model ventilated with a constant flow (inspiratory:expiratory ratio 1:2, rate 12–20 breaths/min and a minute ventilation of 3–25 l/min) or with a decelerating flow (inspiratory:expiratory ratio 1:2, rate 12–15 breaths/min and a minute ventilation of 4.7–16.4 l/min). The device was also tested prospectively and in a randomized order compared with a conventional active humidifier (Fisher & Paykel MR730, Auckland, New Zealand) in eight mechanically ventilated, endotracheally intubated patients in the intensive care unit. The test period with each device was 24 h. The amount of fluid consumed and the amount of water in the water traps were measured. The number of times that the water traps were emptied, changes of machine filters, the suctions and quality of secretions, nebulizations, and the amount of saline instillations and endotracheal tube obstruction were recorded. In order to evaluate increased expiratory resistance due to the device, the airway pressure was measured at the end of a prolonged end-expiratory pause at 1 h of use and at the end of the test, and was compared with the corresponding pressure before the experiment. The body temperature of the patient was measured before and after the test of each device. Results: Both with constant flow and decelerating flow, the Humid-Heat gave an absolute humidity of 41–44 mgH2O/l at 37°C, with the lower level at the highest ventilation. In the patients, both Humid-Heat and the conventional active humidifier (MR730) maintained temperatures, indicating that they provided the intended heat and moisture to the inspired air. With both devices, the body temperature was maintained during the test period. There was no difference in the amount of secretions, the quality of the secretions and the frequency of suctions, saline instillations or nebulizations between the test periods with the two devices. There was no endotracheal tube obstruction, and after 1 h of use and at the end of the test no increased airway resistance was found with either device. When the MR730 was used, however, the water traps needed to be emptied six to 14 (mean eight) times (total amount of fluid in the traps was 100–300 ml) and the machine filters were changed two to six (mean four) times due to an excessive amount of condensed water with flow obstruction. No condensation of water was found in the tubing with the Humid-Heat. The water consumption was 23–65 ml/h (mean 30 ml/h) with the MR730 and 4–8 ml/h (mean 6 ml/h) with the Humid-Heat (P < 0.0008). The same relations were found when the water consumption was corrected for differences in minute ventilation. Discussion: The new humidifier, the Humid-Heat, gave an absolute humidity of 41–44 mg/l at 37°C in the bench tests. The tests in ventilated patients showed that the device was well tolerated and that condensation in the tubing was eliminated. There was no need to empty water traps. The test period was too short to evaluate whether the new device had any other advantages or disadvantages compared with conventional humidifiers. PMID:11056746
Simulation of deep ventilation in Crater Lake, Oregon, 1951–2099
Wood, Tamara M.; Wherry, Susan A.; Piccolroaz, Sebastiano; Girdner, Scott F
2016-05-04
The frequency of deep ventilation events in Crater Lake, a caldera lake in the Oregon Cascade Mountains, was simulated in six future climate scenarios, using a 1-dimensional deep ventilation model (1DDV) that was developed to simulate the ventilation of deep water initiated by reverse stratification and subsequent thermobaric instability. The model was calibrated and validated with lake temperature data collected from 1994 to 2011. Wind and air temperature data from three general circulation models and two representative concentration pathways were used to simulate the change in lake temperature and the frequency of deep ventilation events in possible future climates. The lumped model air2water was used to project lake surface temperature, a required boundary condition for the lake model, based on air temperature in the future climates.The 1DDV model was used to simulate daily water temperature profiles through 2099. All future climate scenarios projected increased water temperature throughout the water column and a substantive reduction in the frequency of deep ventilation events. The least extreme scenario projected the frequency of deep ventilation events to decrease from about 1 in 2 years in current conditions to about 1 in 3 years by 2100. The most extreme scenario considered projected the frequency of deep ventilation events to be about 1 in 7.7 years by 2100. All scenarios predicted that the temperature of the entire water column will be greater than 4 °C for increasing lengths of time in the future and that the conditions required for thermobaric instability induced mixing will become rare or non-existent.The disruption of deep ventilation by itself does not provide a complete picture of the potential ecological and water quality consequences of warming climate to Crater Lake. Estimating the effect of warming climate on deep water oxygen depletion and water clarity will require careful modeling studies to combine the physical mixing processes affected by the atmosphere with the multitude of factors affecting the growth of algae and corresponding water clarity.
The effect of closed system suction on airway pressures when using the Servo 300 ventilator.
Frengley, R W; Closey, D N; Sleigh, J W; Torrance, J M
2001-12-01
To measure airway pressures during closed system suctioning with the ventilator set to three differing modes of ventilation. Closed system suctioning was conducted in 16 patients following cardiac surgery. Suctioning was performed using a 14 French catheter with a vacuum level of -500 cmH2O through an 8.0 mm internal diameter endotracheal tube. The lungs were mechanically ventilated with a Servo 300 ventilator set to one of three ventilation modes: volume-control, pressure-control or CPAP/pressure support. Airway pressures were measured via a 4 French electronic pressure transducer in both proximal and distal airways. Following insertion of the suction catheter, end-expiratory pressure increased significantly (p < 0.001) in both pressure-control and volume-control ventilation. This increase was greatest (p = 0.018) in volume-control mode (2.7 +/- 1.7 cmH2O). On performing a five second suction, airway pressure decreased in all modes, however the lowest airway pressure in volume-control mode (-4.9 +/- 4.0 cmH2O) was significantly (p = 0.001) less than the lowest airway pressure recorded in either pressure-control (0.8 +/- 1.9 cmH2O) or CPAP/pressure support (0.4 +/- 2.8 cmH2O) modes. In CPAP/pressure support mode, 13 of the 16 patients experienced a positive pressure 'breath' at the end of suctioning with airway pressures rising to 21 +/- 1.6 cmH2O. Closed system suctioning in volume control ventilation may result in elevations of end-expiratory pressure following catheter insertion and subatmospheric airway pressures during suctioning. Pressure control ventilation produces less elevation of end-expiratory pressure following catheter insertion and is less likely to be associated with subatmospheric airway pressures during suctioning. CPAP/pressure support has no effect on end-expiratory pressure following catheter insertion and subatmospheric airway pressures are largely avoided during suctioning.
Reiss, Lucy Kathleen; Kowallik, Anke; Uhlig, Stefan
2011-01-01
Introduction Mechanical ventilation (MV) of mice is increasingly required in experimental studies, but the conditions that allow stable ventilation of mice over several hours have not yet been fully defined. In addition, most previous studies documented vital parameters and lung mechanics only incompletely. The aim of the present study was to establish experimental conditions that keep these parameters within their physiological range over a period of 6 h. For this purpose, we also examined the effects of frequent short recruitment manoeuvres (RM) in healthy mice. Methods Mice were ventilated at low tidal volume VT = 8 mL/kg or high tidal volume VT = 16 mL/kg and a positive end-expiratory pressure (PEEP) of 2 or 6 cmH2O. RM were performed every 5 min, 60 min or not at all. Lung mechanics were followed by the forced oscillation technique. Blood pressure (BP), electrocardiogram (ECG), heart frequency (HF), oxygen saturation and body temperature were monitored. Blood gases, neutrophil-recruitment, microvascular permeability and pro-inflammatory cytokines in bronchoalveolar lavage (BAL) and blood serum as well as histopathology of the lung were examined. Results MV with repetitive RM every 5 min resulted in stable respiratory mechanics. Ventilation without RM worsened lung mechanics due to alveolar collapse, leading to impaired gas exchange. HF and BP were affected by anaesthesia, but not by ventilation. Microvascular permeability was highest in atelectatic lungs, whereas neutrophil-recruitment and structural changes were strongest in lungs ventilated with high tidal volume. The cytokines IL-6 and KC, but neither TNF nor IP-10, were elevated in the BAL and serum of all ventilated mice and were reduced by recurrent RM. Lung mechanics, oxygenation and pulmonary inflammation were improved by increased PEEP. Conclusions Recurrent RM maintain lung mechanics in their physiological range during low tidal volume ventilation of healthy mice by preventing atelectasis and reduce the development of pulmonary inflammation. PMID:21935418
Humidification during invasive and noninvasive mechanical ventilation: 2012.
Restrepo, Ruben D; Walsh, Brian K
2012-05-01
We searched the MEDLINE, CINAHL, and Cochrane Library databases for articles published between January 1990 and December 2011. The update of this clinical practice guideline is based on 184 clinical trials and systematic reviews, and 10 articles investigating humidification during invasive and noninvasive mechanical ventilation. The following recommendations are made following the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) scoring system: 1. Humidification is recommended on every patient receiving invasive mechanical ventilation. 2. Active humidification is suggested for noninvasive mechanical ventilation, as it may improve adherence and comfort. 3. When providing active humidification to patients who are invasively ventilated, it is suggested that the device provide a humidity level between 33 mg H(2)O/L and 44 mg H(2)O/L and gas temperature between 34°C and 41°C at the circuit Y-piece, with a relative humidity of 100%. 4. When providing passive humidification to patients undergoing invasive mechanical ventilation, it is suggested that the HME provide a minimum of 30 mg H(2)O/L. 5. Passive humidification is not recommended for noninvasive mechanical ventilation. 6. When providing humidification to patients with low tidal volumes, such as when lung-protective ventilation strategies are used, HMEs are not recommended because they contribute additional dead space, which can increase the ventilation requirement and P(aCO(2)). 7. It is suggested that HMEs are not used as a prevention strategy for ventilator-associated pneumonia.
Lee, Peggy Siu-Pik; Lee, Kar Lung; Betts, James A; Law, Kin Ip
2017-08-01
This study identified the difference in energy expenditure and substrate utilization of patients during and upon liberation from mechanical ventilation. Patients under intensive care who were diagnosed with septic shock and dependent on mechanical ventilation were recruited. Indirect calorimetry measurements were performed during and upon liberation from mechanical ventilation. Thirty-five patients were recruited (20 men and 15 women; mean age, 69 ± 10 years). Measured energy expenditures during ventilation and upon liberation were 2090 ± 489 kcal·d -1 and 1910 ± 579 kcal·d -1 , respectively ( P < .05). Energy intake was provided at 1148 ± 495 kcal·d -1 and differed significantly from all measured energy expenditures ( P < .05). Mean carbohydrate utilization was 0.19 ± 0.1 g·min -1 when patients were on mechanical ventilation compared with 0.15 ± 0.09 g·min -1 upon liberation ( P < .05). Mean lipid oxidation was 0.08 ± 0.05 g·min -1 during and 0.09 ± 0.07 g·min -1 upon liberation from mechanical ventilation ( P > .05). Measured energy expenditure was higher during than upon liberation from mechanical ventilation. This could be the increase in work of breathing from the continuous positive pressure support, repeated weaning cycles from mechanical ventilation, and/or the asynchronization between patients' respiration and ventilator support. Future studies should examine whether more appropriately matching energy expenditure with energy intake would promote positive health outcomes.
Samransamruajkit, Rujipat; Jirapaiboonsuk, Suree; Siritantiwat, Sirirush; Tungsrijitdee, Ornanong; Deerojanawong, Jitladda; Sritippayawan, Suchada; Prapphal, Nuanchan
2010-03-01
Ventilator-associated pneumonia (VAP) is associated with significant morbidity and mortality in pediatric intensive care unit (PICU). Our purpose was to evaluate the effects of ventilator circuit change on the rate of VAP in the PICU. A prospective randomized controlled trial was conducted at a university hospital PICU. Children (younger than 18 years) who received mechanical ventilation from December 2006 to November 2007 were randomly assigned to receive ventilator circuit changes every 3 or 7 days. Of 176 patients, 88 were assigned to receive ventilator circuit every 3 days and 88 patients had a change weekly. The rate of VAP was 13.9/1000 ventilator days for the 3-day circuit change (n = 12) vs 11.5/1000 ventilator days (n = 10) for the 7-day circuit change (odds ratio, 0.8; confidence interval, 0.3-1.9; P = .6). There was a trend toward decreased PICU stay and mortality rate in 7-day change group compared to 3-day change group but did not reach statistical significance. Furthermore, switching from a 3-day to a 7-day change policy could save costs up to US $22,000/y. The 7-day ventilator circuit change did not contribute to increased rates of VAP in our PICU. Thus, it may be used as a guide to save workload and supply costs. Crown Copyright 2010. Published by Elsevier Inc. All rights reserved.
Garner, S; Barbour, M E
2015-07-01
Chlorhexidine (CHX) is in widespread use as a topical antimicrobial agent. Within the field of oral medicine, it is used in the prevention of ventilator-associated pneumonia as well as in the treatment of oral candidosis and microbial-associated lichenoid reactions. The objective of this study was to develop a strategy for controlled, sustained topical delivery of CHX using nanoparticle technology. Chlorhexidine was applied to hydroxyapatite, selected as a tooth analogue, as conventional CHX digluconate solutions and as aqueous suspensions of CHX hexametaphosphate nanoparticles with total CHX concentrations of 1, 2.2 and 5 mM. Soluble CHX release from the treated hydroxyapatite was monitored over a period of 7 days. A repeated-measures ANOVA with post hoc LSD test indicated that CHX release was 2-3× greater, and sustained for longer, when CHX was delivered as CHX hexametaphosphate nanoparticles than in aqueous solution with 2.2 and 5 mM CHX (P = 0.020 and 0.013, respectively), but there was no statistically significant difference at 1 mM CHX (P = 0.172). Chlorhexidine hexametaphosphate nanoparticles increased both the local dose and duration of soluble CHX delivery when applied to hydroxyapatite surfaces. This may provide a means to deliver a sustained dose of CHX with less frequent interventions. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Epidemiology of Weaning Outcome according to a New Definition. The WIND Study.
Béduneau, Gaëtan; Pham, Tài; Schortgen, Frédérique; Piquilloud, Lise; Zogheib, Elie; Jonas, Maud; Grelon, Fabien; Runge, Isabelle; Nicolas Terzi; Grangé, Steven; Barberet, Guillaume; Guitard, Pierre-Gildas; Frat, Jean-Pierre; Constan, Adrien; Chretien, Jean-Marie; Mancebo, Jordi; Mercat, Alain; Richard, Jean-Christophe M; Brochard, Laurent
2017-03-15
The weaning process concerns all patients receiving mechanical ventilation. A previous classification into simple, prolonged, and difficult weaning ignored weaning failure and presupposed the use of spontaneous breathing trials. To describe the weaning process, defined as starting with any attempt at separation from mechanical ventilation and its prognosis, according to a new operational classification working for all patients under ventilation. This was a multinational prospective multicenter observational study over 3 months of all patients receiving mechanical ventilation in 36 intensive care units, with daily collection of ventilation and weaning modalities. Pragmatic definitions of separation attempt and weaning success allowed us to allocate patients in four groups. A total of 2,729 patients were enrolled. Although half of them could not be classified using the previous definition, 99% entered the groups on the basis of our new definition as follows: 24% never started a weaning process, 57% had a weaning process of less than 24 hours (group 1), 10% had a difficult weaning of more than 1 day and less than 1 week (group 2), and 9% had a prolonged weaning duration of 1 week or more (group 3). Duration of ventilation, intensive care unit stay, and mortality (6, 17, and 29% for the three groups, respectively) all significantly increased from one group to the next. The unadjusted risk of dying was 19% after the first separation attempt and increased to 37% after 10 days. A new classification allows us to categorize all weaning situations. Every additional day without a weaning success after the first separation attempt increases the risk of dying.
Vergeire-Dalmacion, Godofreda Ruiz; Itable, Jill Rafols; Baja, Emmanuel Saporna
2016-11-24
Hospital-acquired infections (HAIs) are associated with increased morbidity and mortality, especially in developing countries. However, limited information is available about the risk of HAIs in naturally ventilated wards (NVWs) and mechanically ventilated intensive care units (MVICUs) of public hospitals in the Philippines. We aimed to assess the association between HAIs and type of ventilation in an urban tertiary care hospital in the Philippines. A cross-sectional point-prevalence survey of infections was done in NVWs and MVICUs of a tertiary care hospital in December 2013. Multivariate analyses were done to examine the associations between HAIs and type of ventilation and other risk factors. Of the 224 patients surveyed, 63 (28%) patients had 69 HAIs. Pneumonia was the most common HAI (35%). Wards near areas with high vehicular activity had more respiratory HAI cases. Being immunocompromised is a risk factor for HAI for pediatric and adult patients. Among pediatric patients, staying in MVICUs had a lower risk for HAIs (adjusted odds ratio [AOR]: 0.33; 95% confidence interval [CI]: 0.10-1.08) compared to staying in NVWs. For adult patients, a higher risk for HAIs (AOR: 2.41; 95% CI: 0.29-18.20) was observed in MVICUs compared to NVWs. Type of ventilation is not a risk factor for HAIs. Patients who are immunocompromised may be at a higher risk for HAI. Indoor air pollution, proximity to congested main thoroughfare, and increased human foot traffic may contribute to the susceptibility of patients to HAIs. Hospital layout should be considered in infection control.
NASA Astrophysics Data System (ADS)
Kanaani, Hussein; Hargreaves, Megan; Ristovski, Zoran; Morawska, Lidia
Particle deposition indoors is one of the most important factors that determine the effect of particle exposure on human health. While many studies have investigated the particle deposition of non-biological aerosols, few have investigated biological aerosols and even fewer have studied fungal spore deposition indoors. The purpose of this study was, for the first time, to investigate the deposition rates of fungal particles in a chamber of 20.4 m 3 simulating indoor environments by: (1) releasing fungal particles into the chamber, in sufficient concentrations so the particle deposition rates can be statistically analysed; (2) comparing the obtained deposition rates with non-bioaerosol particles of similar sizes, investigated under the same conditions; and (3) investigating the effects of ventilation on the particle deposition rates. The study was conducted for a wide size range of particle sizes (0.54-6.24 μm), at three different air exchange rates (0.009, 1.75 and 2.5 h -1). An Ultraviolet Aerodynamic Particle Sizer Spectrometer (UVAPS) was used to monitor the particle concentration decay rate. The study showed that the deposition rates of fungal spores ( Aspergillus niger and Penicillium species) and the other aerosols (canola oil and talcum powder) were similar, especially at very low air exchange rates (in the order of 0.009). Both the aerosol and the bioaerosol deposition rates were found to be a function of particle size. The results also showed increasing deposition rates with increasing ventilation rates, for all particles under investigation. These conclusions are important in understanding the dynamics of fungal spores in the air.
NASA Technical Reports Server (NTRS)
Dinh, Khanh
1994-01-01
Air-conditioner provides ventilation designed to be used alone or incorporated into cooling or heating system operates efficiently only by recirculating stale air within building. Energy needed to operate overall ventilating cooling or heating system slightly greater than operating nonventilating cooling or heating system. Helps to preserve energy efficiency while satisfying need for increased forced ventilation to prevent accumulation of undesired gases like radon and formaldehyde. Provides fresh treated air to variety of confined spaces: hospital surgeries, laboratories, clean rooms, and printing shops and other places where solvents used. In mobile homes and portable classrooms, eliminates irritant chemicals exuded by carpets, panels, and other materials, ensuring healthy indoor environment for occupants.
Assessing Respiratory System Mechanical Function.
Restrepo, Ruben D; Serrato, Diana M; Adasme, Rodrigo
2016-12-01
The main goals of assessing respiratory system mechanical function are to evaluate the lung function through a variety of methods and to detect early signs of abnormalities that could affect the patient's outcomes. In ventilated patients, it has become increasingly important to recognize whether respiratory function has improved or deteriorated, whether the ventilator settings match the patient's demand, and whether the selection of ventilator parameters follows a lung-protective strategy. Ventilator graphics, esophageal pressure, intra-abdominal pressure, and electric impedance tomography are some of the best-known monitoring tools to obtain measurements and adequately evaluate the respiratory system mechanical function. Copyright © 2016 Elsevier Inc. All rights reserved.
Hydraulic fluids and jet engine oil: pyrolysis and aircraft air quality.
van Netten, C; Leung, V
2001-01-01
Incidents of smoke in aircraft cabins often result from jet engine oil and/or hydraulic fluid that leaks into ventilation air, which can be subjected to temperatures that exceed 500 degrees C. Exposed flight-crew members have reported symptoms, including dizziness, nausea, disorientation, blurred vision, and tingling in the legs and arms. In this study, the authors investigated pyrolysis products of one jet engine oil and two hydraulic fluids at 525 degrees C. Engine oil was an important source of carbon monoxide. Volatile agents and organophosphate constituents were released from all the agents tested; however, the neurotoxin trimethyl propane phosphate was not found. The authors hypothesized that localized condensation of pyrolysis products in ventilation ducts, followed by mobilization when cabin heat demand was high, accounted for mid-flight incidents. The authors recommended that carbon monoxide data be logged continuously to capture levels during future incidents.
Mathai, Ss; Datta, Karuna; Adhikari, Km
2012-01-01
Nasal modes of respiratory support cause variable amounts of gastric dilatation which may increase gastro-oesophageal reflux (GER) in preterms. To compare the incidence of GER in nasally ventilated, preterm babies with controls (babies not on ventilation). A prospective, observational comparative study. Twenty-three preterm babies of gestational age 28-36 weeks and weight ranging between 1,000 g and < 2,500 g on either nasal continuous positive airway pressure (nCPAP) or nasal intermittent positive pressure venti-lation (nIPPV) were assessed for GER. They were compared with controls not on ventilation some of who were test babies when off ventilation (subgroup A) and some were unrelated babies not on ventilator but matched for gestational age and weight with test babies (subgroup B). All babies were subjected to continuous, oesophageal pH monitoring with dual sensor (upper and lower oesophageal) catheters. Reflux index (RI) was calculated as the percentage of study time the lower oesophageal pH was < 4. Primary outcome was the RI in the test and controls groups. Secondary outcome was the temporal relation of the reflux with symptoms if any. Numerical data were shown as mean with standard deviation and statistical comparisons were done using the χ(2)-test, Fischer test, and t-test wherever applicable. The RI was higher in ventilated babies as compared to the control group, particularly in the subgroup A, where test babies formed their own controls. Grade IV reflux (7 cases) was seen only in the ventilated babies. There was no difference in the incidence of GER in babies on nCPAP as compared with nIPPV. Grade IV reflux could not be reliably predicted by RI alone. No definite temporal relation between episodes of reflux and symptoms could be determined in this study. There is an increase in GER in preterms on nasal modes of ventilation. A combination of upper (pharyngeal) and lower oesophageal sensors are preferred to a single lower oesophageal sensor when assessing GER by oesophageal pHmetry in neonates.
Echocardiographic evaluation during weaning from mechanical ventilation
Schifelbain, Luciele Medianeira; Vieira, Silvia Regina Rios; Brauner, Janete Salles; Pacheco, Deise Mota; Naujorks, Alexandre Antonio
2011-01-01
INTRODUCTION: Echocardiographic, electrocardiographic and other cardiorespiratory variables can change during weaning from mechanical ventilation. OBJECTIVES: To analyze changes in cardiac function, using Doppler echocardiogram, in critical patients during weaning from mechanical ventilation, using two different weaning methods: pressure support ventilation and T‐tube; and comparing patient subgroups: success vs. failure in weaning. METHODS: Randomized crossover clinical trial including patients under mechanical ventilation for more than 48 h and considered ready for weaning. Cardiorespiratory variables, oxygenation, electrocardiogram and Doppler echocardiogram findings were analyzed at baseline and after 30 min in pressure support ventilation and T‐tube. Pressure support ventilation vs. T‐tube and weaning success vs. failure were compared using ANOVA and Student's t‐test. The level of significance was p<0.05. RESULTS: Twenty‐four adult patients were evaluated. Seven patients failed at the first weaning attempt. No echocardiographic or electrocardiographic differences were observed between pressure support ventilation and T‐tube. Weaning failure patients presented increases in left atrium, intraventricular septum thickness, posterior wall thickness and diameter of left ventricle and shorter isovolumetric relaxation time. Successfully weaned patients had higher levels of oxygenation. CONCLUSION: No differences were observed between Doppler echocardiographic variables and electrocardiographic and other cardiorespiratory variables during pressure support ventilation and T‐tube. However cardiac structures were smaller, isovolumetric relaxation time was larger, and oxygenation level was greater in successfully weaned patients. PMID:21437445
Does oral alprazolam affect ventilation? A randomised, double-blind, placebo-controlled trial.
Carraro, G E; Russi, E W; Buechi, S; Bloch, Konrad E
2009-05-01
The respiratory effects of benzodiazepines have been controversial. This investigation aimed to study the effects of oral alprazolam on ventilation. In a randomised, double-blind cross-over protocol, 20 healthy men ingested 1 mg of alprazolam or placebo in random order, 1 week apart. Ventilation was unobtrusively monitored by inductance plethysmography along with end-tidal PCO(2) and pulse oximetry 60-160 min after drug intake. Subjects were encouraged to keep their eyes open. Mean +/- SD minute ventilation 120 min after alprazolam and placebo was similar (6.21 +/- 0.71 vs 6.41 +/- 1.12 L/min, P = NS). End-tidal PCO(2) and oxygen saturation did also not differ between treatments. However, coefficients of variation of minute ventilation after alprazolam exceeded those after placebo (43 +/- 23% vs 31 +/- 13%, P < 0.05). More encouragements to keep the eyes open were required after alprazolam than after placebo (5.2 +/- 5.7 vs 1.3 +/- 2.3 calls, P < 0.05). In a multiple regression analysis, higher coefficients of variation of minute ventilation after alprazolam were related to a greater number of calls. Oral alprazolam in a mildly sedative dose has no clinically relevant effect on ventilation in healthy, awake men. The increased variability of ventilation on alprazolam seems related to vigilance fluctuations rather than to a direct drug effect on ventilation.
Dixon, Barry; Schultz, Marcus J; Smith, Roger; Fink, James B; Santamaria, John D; Campbell, Duncan J
2010-01-01
Prolonged mechanical ventilation has the potential to aggravate or initiate pulmonary inflammation and cause lung damage through fibrin deposition. Heparin may reduce pulmonary inflammation and fibrin deposition. We therefore assessed whether nebulized heparin improved lung function in patients expected to require prolonged mechanical ventilation. Fifty patients expected to require mechanical ventilation for more than 48 hours were enrolled in a double-blind randomized placebo-controlled trial of nebulized heparin (25,000 U) or placebo (normal saline) 4 or 6 hourly, depending on patient height. The study drug was continued while the patient remained ventilated to a maximum of 14 days from randomization. Nebulized heparin was not associated with a significant improvement in the primary end-point, the average daily partial pressure of oxygen to inspired fraction of oxygen ratio while mechanically ventilated, but was associated with improvement in the secondary end-point, ventilator-free days amongst survivors at day 28 (22.6 ± 4.0 versus 18.0 ± 7.1, treatment difference 4.6 days, 95% CI 0.9 to 8.3, P = 0.02). Heparin administration was not associated with any increase in adverse events. Nebulized heparin was associated with fewer days of mechanical ventilation in critically ill patients expected to require prolonged mechanical ventilation. Further trials are required to confirm these findings. The Australian Clinical Trials Registry (ACTR-12608000121369).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yun, Geun Young; Steemers, Koen
2010-07-15
This paper investigates occupant behaviour of window-use in night-time naturally ventilated offices on the basis of a pilot field study, conducted during the summers of 2006 and 2007 in Cambridge, UK, and then demonstrates the effects of employing night-time ventilation on indoor thermal conditions using predictive models of occupant window-use. A longitudinal field study shows that occupants make good use of night-time natural ventilation strategies when provided with openings that allow secure ventilation, and that there is a noticeable time of day effect in window-use patterns (i.e. increased probability of action on arrival and departure). We develop logistic models ofmore » window-use for night-time naturally ventilated offices, which are subsequently applied to a behaviour algorithm, including Markov chains and Monte Carlo methods. The simulations using the behaviour algorithm demonstrate a good agreement with the observational data of window-use, and reveal how building design and occupant behaviour collectively affect the thermal performance of offices. They illustrate that the provision of secure ventilation leads to more frequent use of the window, and thus contributes significantly to the achievement of a comfortable indoor environment during the daytime occupied period. For example, the maximum temperature for a night-time ventilated office is found to be 3 C below the predicted value for a daytime-only ventilated office. (author)« less
Modeling the Progression of Epithelial Leak Caused by Overdistension
Hamlington, Katharine L.; Ma, Baoshun; Smith, Bradford J.; Bates, Jason H. T.
2016-01-01
Mechanical ventilation is necessary for treatment of the acute respiratory distress syndrome but leads to overdistension of the open regions of the lung and produces further damage. Although we know that the excessive stresses and strains disrupt the alveolar epithelium, we know little about the relationship between epithelial strain and epithelial leak. We have developed a computational model of an epithelial monolayer to simulate leak progression due to overdistension and to explain previous experimental findings in mice with ventilator-induced lung injury. We found a nonlinear threshold-type relationship between leak area and increasing stretch force. After the force required to initiate the leak was reached, the leak area increased at a constant rate with further increases in force. Furthermore, this rate was slower than the rate of increase in force, especially at end-expiration. Parameter manipulation changed only the leak-initiating force; leak area growth followed the same trend once this force was surpassed. These results suggest that there is a particular force (analogous to ventilation tidal volume) that must not be exceeded to avoid damage and that changing cell physical properties adjusts this threshold. This is relevant for the development of new ventilator strategies that avoid inducing further injury to the lung. PMID:26951764
Effectiveness of Humidification with Heat and Moisture Exchanger-booster in Tracheostomized Patients
Gonzalez, Isabel; Jimenez, Pilar; Valdivia, Jorge; Esquinas, Antonio
2017-01-01
Background: The two most commonly used types of humidifiers are heated humidifiers and heat and moisture exchange humidifiers. Heated humidifiers provide adequate temperature and humidity without affecting the respiratory pattern, but overdose can cause high temperatures and humidity resulting in condensation, which increases the risk of bacteria in the circuit. These devices are expensive. Heat and moisture exchanger filter is a new concept of humidification, increasing the moisture content in inspired gases. Aims: This study aims to determine the effectiveness of the heat and moisture exchanger (HME)-Booster system to humidify inspired air in patients under mechanical ventilation. Materials and Methods: We evaluated the humidification provided by 10 HME-Booster for tracheostomized patients under mechanical ventilation using Servo I respirators, belonging to the Maquet company and Evita 4. Results: There was an increase in the inspired air humidity after 1 h with the humidifier. Conclusion: The HME-Booster combines the advantages of heat and moisture exchange minimizing the negatives. It increases the amount of moisture in inspired gas in mechanically ventilated tracheostomized patients. It is easy and safe to use. The type of ventilator used has no influence on the result. PMID:28904484
Increased ventilatory variability and complexity in patients with hyperventilation disorder.
Bokov, Plamen; Fiamma, Marie-Noëlle; Chevalier-Bidaud, Brigitte; Chenivesse, Cécile; Straus, Christian; Similowski, Thomas; Delclaux, Christophe
2016-05-15
It has been hypothesized that hyperventilation disorders could be characterized by an abnormal ventilatory control leading to enhanced variability of resting ventilation. The variability of tidal volume (VT) often depicts a nonnormal distribution that can be described by the negative slope characterizing augmented breaths formed by the relationship between the probability density distribution of VT and VT on a log-log scale. The objectives of this study were to describe the variability of resting ventilation [coefficient of variation (CV) of VT and slope], the stability in respiratory control (loop, controller and plant gains characterizing ventilatory-chemoresponsiveness interactions) and the chaotic-like dynamics (embedding dimension, Kappa values characterizing complexity) of resting ventilation in patients with a well-defined dysfunctional breathing pattern characterized by air hunger and constantly decreased PaCO2 during a cardiopulmonary exercise test. Compared with 14 healthy subjects with similar anthropometrics, 23 patients with hyperventilation were characterized by increased variability of resting tidal ventilation (CV of VT median [interquartile]: 26% [19-35] vs. 36% [28-48], P = 0.020; slope: -6.63 [-7.65; -5.36] vs. -3.88 [-5.91; -2.66], P = 0.004) that was not related to increased chemical drive (loop gain: 0.051 [0.039-0.221] vs. 0.044 [0.012-0.087], P = 0.149) but that was related to an increased ventilatory complexity (Kappa values, P < 0.05). Plant gain was decreased in patients and correlated with complexity (with Kappa 5 - degree 5: Rho = -0.48, P = 0.006). In conclusion, well-defined patients suffering from hyperventilation disorder are characterized by increased variability of their resting ventilation due to increased ventilatory complexity with stable ventilatory-chemoresponsiveness interactions. Copyright © 2016 the American Physiological Society.
Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean
NASA Astrophysics Data System (ADS)
Polyakov, Igor V.; Pnyushkov, Andrey V.; Alkire, Matthew B.; Ashik, Igor M.; Baumann, Till M.; Carmack, Eddy C.; Goszczko, Ilona; Guthrie, John; Ivanov, Vladimir V.; Kanzow, Torsten; Krishfield, Richard; Kwok, Ronald; Sundfjord, Arild; Morison, James; Rember, Robert; Yulin, Alexander
2017-04-01
Arctic sea-ice loss is a leading indicator of climate change and can be attributed, in large part, to atmospheric forcing. Here, we show that recent ice reductions, weakening of the halocline, and shoaling of the intermediate-depth Atlantic Water layer in the eastern Eurasian Basin have increased winter ventilation in the ocean interior, making this region structurally similar to that of the western Eurasian Basin. The associated enhanced release of oceanic heat has reduced winter sea-ice formation at a rate now comparable to losses from atmospheric thermodynamic forcing, thus explaining the recent reduction in sea-ice cover in the eastern Eurasian Basin. This encroaching “atlantification” of the Eurasian Basin represents an essential step toward a new Arctic climate state, with a substantially greater role for Atlantic inflows.
Gadre, Shruti K.; Duggal, Abhijit; Mireles-Cabodevila, Eduardo; Krishnan, Sudhir; Wang, Xiao-Feng; Zell, Katrina; Guzman, Jorge
2018-01-01
Abstract There are limited data on the epidemiology of acute respiratory failure necessitating mechanical ventilation in patients with severe chronic obstructive pulmonary disease (COPD). The prognosis of acute respiratory failure requiring invasive mechanical ventilation is believed to be grim in this population. The purpose of this study was to illustrate the epidemiologic characteristics and outcomes of patients with underlying severe COPD requiring mechanical ventilation. A retrospective study of patients admitted to a quaternary referral medical intensive care unit (ICU) between January 2008 and December 2012 with a diagnosis of severe COPD and requiring invasive mechanical ventilation for acute respiratory failure. We evaluated 670 patients with an established diagnosis of severe COPD requiring mechanical ventilation for acute respiratory failure of whom 47% were male with a mean age of 63.7 ± 12.4 years and Acute physiology and chronic health evaluation (APACHE) III score of 76.3 ± 27.2. Only seventy-nine (12%) were admitted with a COPD exacerbation, 27(4%) had acute respiratory distress syndrome (ARDS), 78 (12%) had pneumonia, 78 (12%) had sepsis, and 312 (47%) had other causes of respiratory failure, including pulmonary embolism, pneumothorax, etc. Eighteen percent of the patients received a trial of noninvasive positive pressure ventilation. The median duration of mechanical ventilation was 3 days (interquartile range IQR 2–7); the median duration for ICU length of stay (LOS) was 5 (IQR 2–9) days and the median duration of hospital LOS was 12 (IQR 7–22) days. The overall ICU mortality was 25%. Patients with COPD exacerbation had a shorter median duration of mechanical ventilation (2 vs 4 days; P = .04), ICU (3 vs 5 days; P = .01), and hospital stay (10 vs 13 days; P = .01). The ICU mortality (9% vs 27%; P < .001), and the hospital mortality (17% vs 32%; P = .004) for mechanically ventilated patients with an acute exacerbation of severe COPD were lower than those with other etiologies of acute respiratory failure. A 1-unit increase in the APACHE III score was associated with a 1% decrease and having an active cancer was associated with a 45% decrease in ICU survival (P < .001). A discharge home at the time of index admission was associated an increased overall survival compared with any other discharge location (P < .001). We report good early outcomes, but significant long-term morbidity in patients with severe COPD requiring invasive mechanical ventilation for acute respiratory failure. A higher APACHE score and presence of active malignancy are associated with a decrease in ICU survival, whereas a discharge home is associated with an increase in the overall survival. PMID:29703009
Gadre, Shruti K; Duggal, Abhijit; Mireles-Cabodevila, Eduardo; Krishnan, Sudhir; Wang, Xiao-Feng; Zell, Katrina; Guzman, Jorge
2018-04-01
There are limited data on the epidemiology of acute respiratory failure necessitating mechanical ventilation in patients with severe chronic obstructive pulmonary disease (COPD). The prognosis of acute respiratory failure requiring invasive mechanical ventilation is believed to be grim in this population. The purpose of this study was to illustrate the epidemiologic characteristics and outcomes of patients with underlying severe COPD requiring mechanical ventilation.A retrospective study of patients admitted to a quaternary referral medical intensive care unit (ICU) between January 2008 and December 2012 with a diagnosis of severe COPD and requiring invasive mechanical ventilation for acute respiratory failure.We evaluated 670 patients with an established diagnosis of severe COPD requiring mechanical ventilation for acute respiratory failure of whom 47% were male with a mean age of 63.7 ± 12.4 years and Acute physiology and chronic health evaluation (APACHE) III score of 76.3 ± 27.2. Only seventy-nine (12%) were admitted with a COPD exacerbation, 27(4%) had acute respiratory distress syndrome (ARDS), 78 (12%) had pneumonia, 78 (12%) had sepsis, and 312 (47%) had other causes of respiratory failure, including pulmonary embolism, pneumothorax, etc. Eighteen percent of the patients received a trial of noninvasive positive pressure ventilation. The median duration of mechanical ventilation was 3 days (interquartile range IQR 2-7); the median duration for ICU length of stay (LOS) was 5 (IQR 2-9) days and the median duration of hospital LOS was 12 (IQR 7-22) days. The overall ICU mortality was 25%. Patients with COPD exacerbation had a shorter median duration of mechanical ventilation (2 vs 4 days; P = .04), ICU (3 vs 5 days; P = .01), and hospital stay (10 vs 13 days; P = .01). The ICU mortality (9% vs 27%; P < .001), and the hospital mortality (17% vs 32%; P = .004) for mechanically ventilated patients with an acute exacerbation of severe COPD were lower than those with other etiologies of acute respiratory failure. A 1-unit increase in the APACHE III score was associated with a 1% decrease and having an active cancer was associated with a 45% decrease in ICU survival (P < .001). A discharge home at the time of index admission was associated an increased overall survival compared with any other discharge location (P < .001).We report good early outcomes, but significant long-term morbidity in patients with severe COPD requiring invasive mechanical ventilation for acute respiratory failure. A higher APACHE score and presence of active malignancy are associated with a decrease in ICU survival, whereas a discharge home is associated with an increase in the overall survival.
MO-A-BRD-05: Evaluation of Composed Lung Ventilation with 4DCT and Image Registration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, K; Bayouth, J; Reinhardt, J
Purpose: Regional pulmonary function can be derived using fourdimensional computed tomography (4DCT) combined with deformable image registration. However, only peak inhale and exhale phases have been used thus far while the lung ventilation during intermediate phases is not considered. In our previous work, we have investigated the spatiotemporal heterogeneity of lung ventilation and its dependence on respiration effort. In this study, composed ventilation is introduced using all inspiration phases and compared to direct ventilation. Both methods are evaluated against Xe-CT derived ventilation. Methods: Using an in-house tissue volume preserving deformable image registration, unlike the direct ventilation method, which computes frommore » end expiration to end inspiration, Jacobian ventilation maps were computed from one inhale phase to the next and then composed from all inspiration steps. The two methods were compared in both patients prior to RT and mechanically ventilated sheep subjects. In addition, they wereassessed for the correlation with Xe-CT derived ventilation in sheep subjects. Annotated lung landmarks were used to evaluate the accuracy of original and composed deformation field. Results: After registration, the landmark distance for composed deformation field was always higher than that for direct deformation field (0IN to 100IN average in human: 1.03 vs 1.53, p=0.001, and in sheep: 0.80 vs0.94, p=0.009), and both increased with longer phase interval. Direct and composed ventilation maps were similar in both sheep (gamma pass rate 87.6) and human subjects (gamma pass rate 71.9),and showed consistent pattern from ventral to dorsal when compared to Xe-CT derived ventilation. Correlation coefficient between Xe-CT and composed ventilation was slightly better than the direct method but not significant (average 0.89 vs 0.85, p=0.135). Conclusion: More strict breathing control in sheep subjects may explain higher similarity between direct and composed ventilation. When compared to Xe-CT ventilation, no significant difference was found for the composed method. NIH Grant: R01 CA166703.« less
Summary of human responses to ventilation.
Seppänen, O A; Fisk, W J
2004-01-01
It is known that ventilation is necessary to remove indoor-generated pollutants from indoor air or dilute their concentration to acceptable levels. But as the limit values of all pollutants are not known the exact determination of required ventilation rates based on pollutant concentrations is seldom possible. The selection of ventilation rates has to be based also on epidemiological research, laboratory and field experiments and experience. The existing literature indicates that ventilation has a significant impact on several important human outcomes including: (1) communicable respiratory illnesses; (2) sick building syndrome symptoms; (3) task performance and productivity, and (4) perceived air quality (PAQ) among occupants or sensory panels (5) respiratory allergies and asthma. In many studies, prevalence of sick building syndrome symptoms has also been associated with characteristics of HVAC-systems. Often the prevalence of SBS symptoms is higher in air-conditioned buildings than in naturally ventilated buildings. The evidence suggests that better hygiene, commissioning, operation and maintenance of air handling systems may be particularly important for reducing the negative effects of HVAC systems. Ventilation may also have harmful effects on indoor air quality and climate if not properly designed, installed, maintained and operated. Ventilation may bring indoors harmful substances or deteriorate indoor environment. Ventilation interacts also with the building envelope and may deteriorate the structures of the building. Ventilation changes the pressure differences across the structures of building and may cause or prevent infiltration of pollutants from structures or adjacent spaces. Ventilation is also in many cases used to control the thermal environment or humidity in buildings. The paper summarises the current knowledge on positive and negative effects of ventilation on health and other human responses. The focus is on office-type working environment and residential buildings. The review shows that ventilation has various positive impacts on health and productivity of building occupants. Ventilation reduces the prevalence of airborne infectious diseases and thus the number of sick leave days. In office environment a ventilation rate up to 20-25 L/s per person seem to decrease the prevalence of SBS-symptoms. Air conditioning systems may increase the prevalence of SBS-symptoms relative to natural ventilation if not clean. In residential buildings the air change rate in cold climates should not be below app. 0.5 ach. Ventilation systems may cause pressure differences over the building envelope and bring harmful pollutants indoors.
Cost containment and mechanical ventilation in the United States.
Cohen, I L; Booth, F V
1994-08-01
In many ICUs, admission and discharge hinge on the need for intubation and ventilatory support. As few as 5% to 10% of ICU patients require prolonged mechanical ventilation, and this patient group consumes > or = 50% of ICU patient days and ICU resources. Prolonged ventilatory support and chronic ventilator dependency, both in the ICU and non-ICU settings, have a significant and growing impact on healthcare economics. In the United States, the need for prolonged mechanical ventilation is increasingly recognized as separate and distinct from the initial diagnosis and/or procedure that leads to hospitalization. This distinction has led to improved reimbursement under the prospective diagnosis-related group (DRG) system, and demands more precise accounting from healthcare providers responsible for these patients. Using both published and theoretical examples, mechanical ventilation in the United States is discussed, with a focus on cost containment. Included in the discussion are ventilator teams, standards of care, management protocols, stepdown units, rehabilitation units, and home care. The expanding role of total quality management (TQM) is also presented.
Zhang, Zhongheng; Gu, Wan-Jie; Chen, Kun; Ni, Hongying
2017-01-01
Conventionally, a substantial number of patients with acute respiratory failure require mechanical ventilation (MV) to avert catastrophe of hypoxemia and hypercapnia. However, mechanical ventilation per se can cause lung injury, accelerating the disease progression. Extracorporeal membrane oxygenation (ECMO) provides an alternative to rescue patients with severe respiratory failure that conventional mechanical ventilation fails to maintain adequate gas exchange. The physiology behind ECMO and its interaction with MV were reviewed. Next, we discussed the timing of ECMO initiation based on the risks and benefits of ECMO. During the running of ECMO, the protective ventilation strategy can be employed without worrying about catastrophic hypoxemia and carbon dioxide retention. There is a large body of evidence showing that protective ventilation with low tidal volume, high positive end-expiratory pressure, and prone positioning can provide benefits on mortality outcome. More recently, there is an increasing popularity on the use of awake and spontaneous breathing for patients undergoing ECMO, which is thought to be beneficial in terms of rehabilitation.
Gu, Wan-Jie; Chen, Kun; Ni, Hongying
2017-01-01
Conventionally, a substantial number of patients with acute respiratory failure require mechanical ventilation (MV) to avert catastrophe of hypoxemia and hypercapnia. However, mechanical ventilation per se can cause lung injury, accelerating the disease progression. Extracorporeal membrane oxygenation (ECMO) provides an alternative to rescue patients with severe respiratory failure that conventional mechanical ventilation fails to maintain adequate gas exchange. The physiology behind ECMO and its interaction with MV were reviewed. Next, we discussed the timing of ECMO initiation based on the risks and benefits of ECMO. During the running of ECMO, the protective ventilation strategy can be employed without worrying about catastrophic hypoxemia and carbon dioxide retention. There is a large body of evidence showing that protective ventilation with low tidal volume, high positive end-expiratory pressure, and prone positioning can provide benefits on mortality outcome. More recently, there is an increasing popularity on the use of awake and spontaneous breathing for patients undergoing ECMO, which is thought to be beneficial in terms of rehabilitation. PMID:28127231
Characterizing the chaotic nature of ocean ventilation
NASA Astrophysics Data System (ADS)
MacGilchrist, Graeme A.; Marshall, David P.; Johnson, Helen L.; Lique, Camille; Thomas, Matthew
2017-09-01
Ventilation of the upper ocean plays an important role in climate variability on interannual to decadal timescales by influencing the exchange of heat and carbon dioxide between the atmosphere and ocean. The turbulent nature of ocean circulation, manifest in a vigorous mesoscale eddy field, means that pathways of ventilation, once thought to be quasi-laminar, are in fact highly chaotic. We characterize the chaotic nature of ventilation pathways according to a nondimensional "filamentation number," which estimates the reduction in filament width of a ventilated fluid parcel due to mesoscale strain. In the subtropical North Atlantic of an eddy-permitting ocean model, the filamentation number is large everywhere across three upper ocean density surfaces—implying highly chaotic ventilation pathways—and increases with depth. By mapping surface ocean properties onto these density surfaces, we directly resolve the highly filamented structure and confirm that the filamentation number captures its spatial variability. These results have implications for the spreading of atmospherically-derived tracers into the ocean interior.
Wu, Nan-Chun; Liao, Fan-Ting; Cheng, Hao-Min; Sung, Shih-Hsien; Yang, Yu-Chun; Wang, Jiun-Jr
2017-07-26
Positive-pressure mechanical ventilation is essential in assisting patients with respiratory failure in the intensive care unit and facilitating oxygenation in the operating room. However, it was also recognized as a primary factor leading to hospital-acquired pulmonary dysfunction, in which pulmonary oxidative stress and lung inflammation had been known to play important roles. Cu/Zn superoxide dismutase (SOD) is an important antioxidant, and possesses anti-inflammatory capacity. In this study, we aimed to study the efficacy of Cu/Zn SOD, administered intravenously during high tidal volume (HTV) ventilation, to prevent impairment of lung function. Thirty-eight male Sprague-Dawley rats were divided into 3 groups: 5 h ventilation with (A) low tidal volume (LTV; 8 mL/kg; n = 10), (B) high tidal volume (HTV; 18 mL/kg; n = 14), or (C) HTV and intravenous treatment of Cu/Zn SOD at a dose of 1000 U/kg/h (HTV + SOD; n = 14). Lung function was evaluated both at baseline and after 5-h ventilation. Lung injury was assessed by histological examination, lung water and protein contents in the bronchoalveolar lavage fluid (BALF). Pulmonary oxidative stress was examined by concentrations of methylguanidine (MG) and malondialdehyde (MDA) in BALF, and antioxidative activity by protein expression of glutathione peroxidase-1 (GPx-1) in the lung. Severity of lung inflammation was evaluated by white blood cell and differential count in BALF, and protein expression of inducible nitric oxide synthase (iNOS), intercellular adhesion molecule-1 (ICAM-1), tumor necrosis factor-α (TNF-α), matrix metalloproteinase-9 (MMP-9), and mRNA expression of nuclear factor-κB (NF-κB) in the lung. We also examined protein expression of surfactant protein (SP)-A and D and we measured hourly changes in serum nitric oxide (NO) level. Five hours of LTV ventilation did not induce a major change in lung function, whereas 5 h of HTV ventilation induced apparent combined restrictive and obstructive lung disorder, together with increased pulmonary oxidative stress, decreased anti-oxidative activity and increased lung inflammation (P < 0.05). HTV ventilation also decreased SP-A and SP-D expression and suppressed serum NO level during the time course of ventilation. Cu/Zn SOD administered intravenously during HTV ventilation effectively reversed associated pulmonary oxidative stress and lung inflammation (P < 0.05); moreover, it preserved SP-A and SP-D expressions in the lung and increased serum nitric oxide (NO) level, enhancing vascular NO bioavailability. HTV ventilation can induce combined restrictive and obstructive lung disorders. Intravenous administration of Cu/Zn SOD during HTV ventilation can prevent lung function impairment and lung injury via reducing pulmonary oxidative stress and lung inflammation, preserving pulmonary surfactant expression, and enhancing vascular NO bioavailability.
Mask Ventilation during Induction of General Anesthesia: Influences of Obstructive Sleep Apnea.
Sato, Shin; Hasegawa, Makoto; Okuyama, Megumi; Okazaki, Junko; Kitamura, Yuji; Sato, Yumi; Ishikawa, Teruhiko; Sato, Yasunori; Isono, Shiroh
2017-01-01
Depending on upper airway patency during anesthesia induction, tidal volume achieved by mask ventilation may vary. In 80 adult patients undergoing general anesthesia, the authors tested a hypothesis that tidal volume during mask ventilation is smaller in patients with sleep-disordered breathing priorly defined as apnea hypopnea index greater than 5 per hour. One-hand mask ventilation with a constant ventilator setting (pressure-controlled ventilation) was started 20 s after injection of rocuronium and maintained for 1 min during anesthesia induction. Mask ventilation efficiency was assessed by the breath number needed to initially exceed 5 ml/kg ideal body weight of expiratory tidal volume (primary outcome) and tidal volumes (secondary outcomes) during initial 15 breaths (UMIN000012494). Tidal volume progressively increased by more than 70% in 1 min and did not differ between sleep-disordered breathing (n = 42) and non-sleep-disordered breathing (n = 38) patients. In post hoc subgroup analyses, the primary outcome breath number (mean [95% CI], 5.7 [4.1 to 7.3] vs. 1.7 [0.2 to 3.2] breath; P = 0.001) and mean tidal volume (6.5 [4.6 to 8.3] vs. 9.6 [7.7 to 11.4] ml/kg ideal body weight; P = 0.032) were significantly smaller in 20 sleep-disordered breathing patients with higher apnea hypopnea index (median [25th to 75th percentile]: 21.7 [17.6 to 31] per hour) than in 20 non-sleep disordered breathing subjects with lower apnea hypopnea index (1.0 [0.3 to 1.5] per hour). Obesity and occurrence of expiratory flow limitation during one-hand mask ventilation independently explained the reduction of efficiency of mask ventilation, while the use of two hands effectively normalized inefficient mask ventilation during one-hand mask ventilation. One-hand mask ventilation is difficult in patients with obesity and severe sleep-disordered breathing particularly when expiratory flow limitation occurs during mask ventilation.
Walsh, Brian K; Smallwood, Craig; Rettig, Jordan; Kacmarek, Robert M; Thompson, John; Arnold, John H
2017-03-01
The systematic implementation of evidence-based practice through the use of guidelines, checklists, and protocols mitigates the risks associated with mechanical ventilation, yet variation in practice remains prevalent. Recent advances in software and hardware have allowed for the development and deployment of an enhanced visualization tool that identifies mechanical ventilation goal variance. Our aim was to assess the utility of daily goal establishment and a computer-aided visualization of variance. This study was composed of 3 phases: a retrospective observational phase (baseline) followed by 2 prospective sequential interventions. Phase I intervention comprised daily goal establishment of mechanical ventilation. Phase II intervention was the setting and monitoring of daily goals of mechanical ventilation with a web-based data visualization system (T3). A single score of mechanical ventilation was developed to evaluate the outcome. The baseline phase evaluated 130 subjects, phase I enrolled 31 subjects, and phase II enrolled 36 subjects. There were no differences in demographic characteristics between cohorts. A total of 171 verbalizations of goals of mechanical ventilation were completed in phase I. The use of T3 increased by 87% from phase I. Mechanical ventilation score improved by 8.4% in phase I and 11.3% in phase II from baseline ( P = .032). The largest effect was in the low risk V T category, with a 40.3% improvement from baseline in phase I, which was maintained at 39% improvement from baseline in phase II ( P = .01). mechanical ventilation score was 9% higher on average in those who survived. Daily goal formation and computer-enhanced visualization of mechanical ventilation variance were associated with an improvement in goal attainment by evidence of an improved mechanical ventilation score. Further research is needed to determine whether improvements in mechanical ventilation score through a targeted, process-oriented intervention will lead to improved patient outcomes. (ClinicalTrials.gov registration NCT02184208.). Copyright © 2017 by Daedalus Enterprises.
Gao, Shugeng; Zhang, Zhongheng; Brunelli, Alessandro; Chen, Chang; Chen, Chun; Chen, Gang; Chen, Haiquan; Chen, Jin-Shing; Cassivi, Stephen; Chai, Ying; Downs, John B; Fang, Wentao; Fu, Xiangning; Garutti, Martínez I; He, Jianxing; He, Jie; Hu, Jian; Huang, Yunchao; Jiang, Gening; Jiang, Hongjing; Jiang, Zhongmin; Li, Danqing; Li, Gaofeng; Li, Hui; Li, Qiang; Li, Xiaofei; Li, Yin; Li, Zhijun; Liu, Chia-Chuan; Liu, Deruo; Liu, Lunxu; Liu, Yongyi; Ma, Haitao; Mao, Weimin; Mao, Yousheng; Mou, Juwei; Ng, Calvin Sze Hang; Petersen, René H; Qiao, Guibin; Rocco, Gaetano; Ruffini, Erico; Tan, Lijie; Tan, Qunyou; Tong, Tang; Wang, Haidong; Wang, Qun; Wang, Ruwen; Wang, Shumin; Xie, Deyao; Xue, Qi; Xue, Tao; Xu, Lin; Xu, Shidong; Xu, Songtao; Yan, Tiansheng; Yu, Fenglei; Yu, Zhentao; Zhang, Chunfang; Zhang, Lanjun; Zhang, Tao; Zhang, Xun; Zhao, Xiaojing; Zhao, Xuewei; Zhi, Xiuyi; Zhou, Qinghua
2017-09-01
Patients undergoing lobectomy are at significantly increased risk of lung injury. One-lung ventilation is the most commonly used technique to maintain ventilation and oxygenation during the operation. It is a challenge to choose an appropriate mechanical ventilation strategy to minimize the lung injury and other adverse clinical outcomes. In order to understand the available evidence, a systematic review was conducted including the following topics: (I) protective ventilation (PV); (II) mode of mechanical ventilation [e.g., volume controlled (VCV) versus pressure controlled (PCV)]; (III) use of therapeutic hypercapnia; (IV) use of alveolar recruitment (open-lung) strategy; (V) pre-and post-operative application of positive end expiratory pressure (PEEP); (VI) Inspired Oxygen concentration; (VII) Non-intubated thoracoscopic lobectomy; and (VIII) adjuvant pharmacologic options. The recommendations of class II are non-intubated thoracoscopic lobectomy may be an alternative to conventional one-lung ventilation in selected patients. The recommendations of class IIa are: (I) Therapeutic hypercapnia to maintain a partial pressure of carbon dioxide at 50-70 mmHg is reasonable for patients undergoing pulmonary lobectomy with one-lung ventilation; (II) PV with a tidal volume of 6 mL/kg and PEEP of 5 cmH 2 O are reasonable methods, based on current evidence; (III) alveolar recruitment [open lung ventilation (OLV)] may be beneficial in patients undergoing lobectomy with one-lung ventilation; (IV) PCV is recommended over VCV for patients undergoing lung resection; (V) pre- and post-operative CPAP can improve short-term oxygenation in patients undergoing lobectomy with one-lung ventilation; (VI) controlled mechanical ventilation with I:E ratio of 1:1 is reasonable in patients undergoing one-lung ventilation; (VII) use of lowest inspired oxygen concentration to maintain satisfactory arterial oxygen saturation is reasonable based on physiologic principles; (VIII) Adjuvant drugs such as nebulized budesonide, intravenous sivelestat and ulinastatin are reasonable and can be used to attenuate inflammatory response.
Modes of mechanical ventilation for the operating room.
Ball, Lorenzo; Dameri, Maddalena; Pelosi, Paolo
2015-09-01
Most patients undergoing surgical procedures need to be mechanically ventilated, because of the impact of several drugs administered at induction and during maintenance of general anaesthesia on respiratory function. Optimization of intraoperative mechanical ventilation can reduce the incidence of post-operative pulmonary complications and improve the patient's outcome. Preoxygenation at induction of general anaesthesia prolongs the time window for safe intubation, reducing the risk of hypoxia and overweighs the potential risk of reabsorption atelectasis. Non-invasive positive pressure ventilation delivered through different interfaces should be considered at the induction of anaesthesia morbidly obese patients. Anaesthesia ventilators are becoming increasingly sophisticated, integrating many functions that were once exclusive to intensive care. Modern anaesthesia machines provide high performances in delivering the desired volumes and pressures accurately and precisely, including assisted ventilation modes. Therefore, the physicians should be familiar with the potential and pitfalls of the most commonly used intraoperative ventilation modes: volume-controlled, pressure-controlled, dual-controlled and assisted ventilation. Although there is no clear evidence to support the advantage of any one of these ventilation modes over the others, protective mechanical ventilation with low tidal volume and low levels of positive end-expiratory pressure (PEEP) should be considered in patients undergoing surgery. The target tidal volume should be calculated based on the predicted or ideal body weight rather than on the actual body weight. To optimize ventilation monitoring, anaesthesia machines should include end-inspiratory and end-expiratory pause as well as flow-volume loop curves. The routine administration of high PEEP levels should be avoided, as this may lead to haemodynamic impairment and fluid overload. Higher PEEP might be considered during surgery longer than 3 h, laparoscopy in the Trendelenburg position and in patients with body mass index >35 kg/m(2). Large randomized trials are warranted to identify subgroups of patients and the type of surgery that can potentially benefit from specific ventilation modes or ventilation settings. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zhang, Zhongheng; Brunelli, Alessandro; Chen, Chang; Chen, Chun; Chen, Gang; Chen, Haiquan; Chen, Jin-Shing; Cassivi, Stephen; Chai, Ying; Downs, John B.; Fang, Wentao; Fu, Xiangning; Garutti, Martínez I.; He, Jianxing; Hu, Jian; Huang, Yunchao; Jiang, Gening; Jiang, Hongjing; Jiang, Zhongmin; Li, Danqing; Li, Gaofeng; Li, Hui; Li, Qiang; Li, Xiaofei; Li, Yin; Li, Zhijun; Liu, Chia-Chuan; Liu, Deruo; Liu, Lunxu; Liu, Yongyi; Ma, Haitao; Mao, Weimin; Mao, Yousheng; Mou, Juwei; Ng, Calvin Sze Hang; Petersen, René H.; Qiao, Guibin; Rocco, Gaetano; Ruffini, Erico; Tan, Lijie; Tan, Qunyou; Tong, Tang; Wang, Haidong; Wang, Qun; Wang, Ruwen; Wang, Shumin; Xie, Deyao; Xue, Qi; Xue, Tao; Xu, Lin; Xu, Shidong; Xu, Songtao; Yan, Tiansheng; Yu, Fenglei; Yu, Zhentao; Zhang, Chunfang; Zhang, Lanjun; Zhang, Tao; Zhang, Xun; Zhao, Xiaojing; Zhao, Xuewei; Zhi, Xiuyi; Zhou, Qinghua
2017-01-01
Patients undergoing lobectomy are at significantly increased risk of lung injury. One-lung ventilation is the most commonly used technique to maintain ventilation and oxygenation during the operation. It is a challenge to choose an appropriate mechanical ventilation strategy to minimize the lung injury and other adverse clinical outcomes. In order to understand the available evidence, a systematic review was conducted including the following topics: (I) protective ventilation (PV); (II) mode of mechanical ventilation [e.g., volume controlled (VCV) versus pressure controlled (PCV)]; (III) use of therapeutic hypercapnia; (IV) use of alveolar recruitment (open-lung) strategy; (V) pre-and post-operative application of positive end expiratory pressure (PEEP); (VI) Inspired Oxygen concentration; (VII) Non-intubated thoracoscopic lobectomy; and (VIII) adjuvant pharmacologic options. The recommendations of class II are non-intubated thoracoscopic lobectomy may be an alternative to conventional one-lung ventilation in selected patients. The recommendations of class IIa are: (I) Therapeutic hypercapnia to maintain a partial pressure of carbon dioxide at 50–70 mmHg is reasonable for patients undergoing pulmonary lobectomy with one-lung ventilation; (II) PV with a tidal volume of 6 mL/kg and PEEP of 5 cmH2O are reasonable methods, based on current evidence; (III) alveolar recruitment [open lung ventilation (OLV)] may be beneficial in patients undergoing lobectomy with one-lung ventilation; (IV) PCV is recommended over VCV for patients undergoing lung resection; (V) pre- and post-operative CPAP can improve short-term oxygenation in patients undergoing lobectomy with one-lung ventilation; (VI) controlled mechanical ventilation with I:E ratio of 1:1 is reasonable in patients undergoing one-lung ventilation; (VII) use of lowest inspired oxygen concentration to maintain satisfactory arterial oxygen saturation is reasonable based on physiologic principles; (VIII) Adjuvant drugs such as nebulized budesonide, intravenous sivelestat and ulinastatin are reasonable and can be used to attenuate inflammatory response. PMID:29221302
Yoshida, Takeshi; Uchiyama, Akinori; Matsuura, Nariaki; Mashimo, Takashi; Fujino, Yuji
2012-05-01
We investigated whether potentially injurious transpulmonary pressure could be generated by strong spontaneous breathing and exacerbate lung injury even when plateau pressure is limited to <30 cm H2O. Prospective, randomized, animal study. University animal research laboratory. Thirty-two New Zealand White rabbits. Lavage-injured rabbits were randomly allocated to four groups to receive low or moderate tidal volume ventilation, each combined with weak or strong spontaneous breathing effort. Inspiratory pressure for low tidal volume ventilation was set at 10 cm H2O and tidal volume at 6 mL/kg. For moderate tidal volume ventilation, the values were 20 cm H2O and 7-9 mL/kg. The groups were: low tidal volume ventilation+spontaneous breathingweak, low tidal volume ventilation+spontaneous breathingstrong, moderate tidal volume ventilation+spontaneous breathingweak, and moderate tidal volume ventilation+spontaneous breathingstrong. Each group had the same settings for positive end-expiratory pressure of 8 cm H2O. Respiratory variables were measured every 60 mins. Distribution of lung aeration and alveolar collapse were histologically evaluated. Low tidal volume ventilation+spontaneous breathingstrong showed the most favorable oxygenation and compliance of respiratory system, and the best lung aeration. By contrast, in moderate tidal volume ventilation+spontaneous breathingstrong, the greatest atelectasis with numerous neutrophils was observed. While we applied settings to maintain plateau pressure at <30 cm H2O in all groups, in moderate tidal volume ventilation+spontaneous breathingstrong, transpulmonary pressure rose >33 cm H2O. Both minute ventilation and respiratory rate were higher in the strong spontaneous breathing groups. Even when plateau pressure is limited to <30 cm H2O, combined with increased respiratory rate and tidal volume, high transpulmonary pressure generated by strong spontaneous breathing effort can worsen lung injury. When spontaneous breathing is preserved during mechanical ventilation, transpulmonary pressure and tidal volume should be strictly controlled to prevent further lung injury.
Nagano, Osamu; Yumoto, Tetsuya; Nishimatsu, Atsunori; Kanazawa, Shunsuke; Fujita, Takahisa; Asaba, Sunao; Yamanouchi, Hideo
2018-04-19
Bias flow (BF) is essential to maintain mean airway pressure (MAP) and to washout carbon dioxide (CO 2 ) from the oscillator circuit during high-frequency oscillatory ventilation (HFOV). If the BF rate is inadequate, substantial CO 2 rebreathing could occur and ventilation efficiency could worsen. With lower ventilation efficiency, the required stroke volume (SV) would increase in order to obtain the same alveolar ventilation with constant frequency. The aim of this study was to assess the effect of BF rate on ventilation efficiency during adult HFOV. The R100 oscillator (Metran, Japan) was connected to an original lung model internally equipped with a simulated bronchial tree. The actual SV was measured with a flow sensor placed at the Y-piece. Carbon dioxide (CO 2 ) was continuously insufflated into the lung model ([Formula: see text]CO 2 ), and the partial pressure of CO 2 (PCO 2 ) in the lung model was monitored. Alveolar ventilation ([Formula: see text]A) was estimated as [Formula: see text]CO 2 divided by the stabilized value of PCO 2 . [Formula: see text]A was evaluated by setting SV from 80 to 180 mL (10 mL increments, n = 5) at a frequency of 8 Hz, a MAP of 25 cmH 2 O, and a BF of 10, 20, 30, and 40 L/min (study 1). Ventilation efficiency was calculated as [Formula: see text]A divided by the actual minute volume. The experiment was also performed with an actual SV of 80, 100, and 120 mL and a BF from 10 to 60 L/min (10 L/min increments: study 2). Study 1: With the same setting SV, the [Formula: see text]A with a BF of 20 L/min or more was significantly higher than that with a BF of 10 L/min. Study 2: With the same actual SV, the [Formula: see text]A and the ventilation efficiency with a BF of 30 L/min or more were significantly higher than those with a BF of 10 or 20 L/min. Increasing BF up to 30 L/min or more improved ventilation efficiency in the R100 oscillator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilcox, Brian; May, Doug; Howlett, Don
2013-07-01
Whiteshell Laboratories (WL) is a nuclear research establishment owned by the Canadian government and operated by Atomic Energy of Canada Limited (AECL) since the early 1960's. WL is currently under a decommissioning license and the mandate is to remediate the nuclear legacy liabilities in a safe and cost effective manner. The WL Project is the first major nuclear decommissioning project in Canada. A major initiative underway is to decommission and demolish the main R and D Laboratory complex. The Building 300 R and D complex was constructed to accommodate laboratories and offices which were mainly used for research and developmentmore » associated with organic-cooled reactors, nuclear fuel waste management, reactor safety, advanced fuel cycles and other applications of nuclear energy. Building 300 is a three storey structure of approximately 16,000 m{sup 2}. In order to proceed with building demolition, the contaminated systems inside the building have to be characterized, removed, and the waste managed. There is a significant focus on volume reduction of radioactive waste for the WL project. The active ventilation system is one of the significant contaminated systems in Building 300 that requires decommissioning and removal. The active ventilation system was designed to manage hazardous fumes and radioactivity from ventilation devices (e.g., fume hoods, snorkels and glove boxes) and to prevent the escape of airborne hazardous material outside of the laboratory boundary in the event of an upset condition. The system includes over 200 ventilation devices and 32 active exhaust fan units and high efficiency particulate air (HEPA) filters. The strategy to remove the ventilation system was to work from the laboratory end back to the fan/filter system. Each ventilation duct was radiologically characterized. Fogging was used to minimize loose contamination. Sections of the duct were removed by various cutting methods and bagged for temporary storage prior to disposition. Maintenance of building heating, ventilation and air conditioning (HVAC) balancing was critical to ensure proper airflow and worker safety. Approximately 103 m{sup 3} of equipment and materials were recovered or generated by the project. Low level waste accounted for approximately 37.4 m{sup 3}. Where possible, ducting was free released for metal recycling. Contaminated ducts were compacted into B-1000 containers and stored in a Shielded Modular Above-Ground Storage Facility (SMAGS) on the WL site awaiting final disposition. The project is divided into three significant phases, with Phases 1 and 2 completed. Lessons learned during the execution of Phases 1 and 2 have been incorporated into the current ventilation removal. (authors)« less
Susceptibility to ventilator induced lung injury is increased in senescent rats
2013-01-01
Introduction The principal mechanisms of ventilator induced lung injury (VILI) have been investigated in numerous animal studies. However, prospective data on the effect of old age on VILI are limited. Under the hypothesis that susceptibility to VILI is increased in old age, we investigated the pulmonary and extrapulmonary effects of mechanical ventilation with high tidal volume (VT) in old compared to young adult animals. Interventions Old (19.1 ± 3.0 months) and young adult (4.4 ± 1.3 months) male Wistar rats were anesthetized and mechanically ventilated (positive end-expiratory pressure 5 cmH2O, fraction of inspired oxygen 0.4, respiratory rate 40/minute) with a tidal volume (VT) of either 8, 16 or 24 ml/kg for four hours. Respiratory and hemodynamic variables, including cardiac output, and markers of systemic inflammation were recorded throughout the ventilation period. Lung histology and wet-to-dry weight ratio, injury markers in lung lavage and respiratory system pressure-volume curves were assessed post mortem. Basic pulmonary characteristics were assessed in non-ventilated animals. Results Compared to young adult animals, high VT (24 ml/kg body weight) caused more lung injury in old animals as indicated by decreased oxygenation (arterial oxygen tension (PaO2): 208 ± 3 vs. 131 ± 20 mmHg; P <0.05), increased lung wet-to-dry-weight ratio (5.61 ± 0.29 vs. 7.52 ± 0.27; P <0.05), lung lavage protein (206 ± 52 mg/l vs. 1,432 ± 101; P <0.05) and cytokine (IL-6: 856 ± 448 vs. 3,283 ± 943 pg/ml; P <0.05) concentration. In addition, old animals ventilated with high VT had more systemic inflammation than young animals (IL-1β: 149 ± 44 vs. 272 ± 36 pg/ml; P <0.05 - young vs. old, respectively). Conclusions Ventilation with unphysiologically large tidal volumes is associated with more lung injury in old compared to young rats. Aggravated pulmonary and systemic inflammation is a key finding in old animals developing VILI. PMID:23710684
Loer, S A; Tarnow, J
2001-06-01
Hydrochloric acid aspiration increases pulmonary microvascular permeability. The authors tested the hypothesis that partial liquid ventilation has a beneficial effect on filtration coefficients in acute acid-induced lung injury. Isolated blood-perfused rabbit lungs were assigned randomly to one of four groups. Group 1 (n = 6) served as a control group without edema. In group 2 (n = 6), group 3 (n = 6), and group 4 (n = 6), pulmonary edema was induced by intratracheal instillation of hydrochloric acid (0.1 N, 2 ml/kg body weight). Filtration coefficients were determined 30 min after this injury (by measuring loss of perfusate after increase of left atrial pressure). Group 2 lungs were gas ventilated, and group 3 lungs received partial liquid ventilation (15 ml perfluorocarbon/kg body weight). In group 4 lungs, the authors studied the immediate effects of bronchial perfluorocarbon instillation on ongoing filtration. Intratracheal instillation of hydrochloric acid markedly increased filtration coefficients when compared with non-injured control lungs (2.3 +/- 0.7 vs. 0.31 +/- 0.08 ml.min(-1). mmHg(-1).100 g(-1) wet lung weight, P < 0.01). Partial liquid ventilation reduced filtration coefficients of the injured lungs (to 0.9 +/- 0.3 ml.min(-1).mmHg(-1).100 g(-1) wet lung weight, P = 0.022). Neither pulmonary artery nor capillary pressures (determined by simultaneous occlusion of inflow and outflow of the pulmonary circulation) were changed by hydrochloric acid instillation or by partial liquid ventilation. During ongoing filtration, bronchial perfluorocarbon instillation (5 ml/kg body weight) immediately reduced the amount of filtered fluid by approximately 50% (P = 0.027). In the acute phase after acid injury, partial liquid ventilation reduced pathologic fluid filtration. This effect started immediately after bronchial perfluorocarbon instillation and was not associated with changes in mean pulmonary artery, capillary, or airway pressures. The authors suggest that in the early phase of acid injury, reduction of fluid filtration contributes to the beneficial effects of partial liquid ventilation on gas exchange and lung mechanics.
Ventilation-perfusion distribution in normal subjects.
Beck, Kenneth C; Johnson, Bruce D; Olson, Thomas P; Wilson, Theodore A
2012-09-01
Functional values of LogSD of the ventilation distribution (σ(V)) have been reported previously, but functional values of LogSD of the perfusion distribution (σ(q)) and the coefficient of correlation between ventilation and perfusion (ρ) have not been measured in humans. Here, we report values for σ(V), σ(q), and ρ obtained from wash-in data for three gases, helium and two soluble gases, acetylene and dimethyl ether. Normal subjects inspired gas containing the test gases, and the concentrations of the gases at end-expiration during the first 10 breaths were measured with the subjects at rest and at increasing levels of exercise. The regional distribution of ventilation and perfusion was described by a bivariate log-normal distribution with parameters σ(V), σ(q), and ρ, and these parameters were evaluated by matching the values of expired gas concentrations calculated for this distribution to the measured values. Values of cardiac output and LogSD ventilation/perfusion (Va/Q) were obtained. At rest, σ(q) is high (1.08 ± 0.12). With the onset of ventilation, σ(q) decreases to 0.85 ± 0.09 but remains higher than σ(V) (0.43 ± 0.09) at all exercise levels. Rho increases to 0.87 ± 0.07, and the value of LogSD Va/Q for light and moderate exercise is primarily the result of the difference between the magnitudes of σ(q) and σ(V). With known values for the parameters, the bivariate distribution describes the comprehensive distribution of ventilation and perfusion that underlies the distribution of the Va/Q ratio.
Fietze, Ingo; Blau, Alexander; Glos, Martin; Theres, Heinz; Baumann, Gert; Penzel, Thomas
2008-08-01
Nocturnal positive pressure ventilation (PPV) has been shown to be effective in patients with impaired left ventricular ejection fraction (LVEF) and Cheyne-Stokes respiration (CSR). We investigated the effect of a bi-level PPV and adaptive servo ventilation on LVEF, CSR, and quantitative sleep quality. Thirty-seven patients (New York heart association [NYHA] II-III) with LVEF<45% and CSR were investigated by electrocardiography (ECG), echocardiography and polysomnography. The CSR index (CSRI) was 32.3+/-16.2/h. Patients were randomly treated with bi-level PPV using the standard spontaneous/timed (S/T) mode or with adaptive servo ventilation mode (AutoSetCS). After 6 weeks, 30 patients underwent control investigations with ECG, echocardiography, and polysomnography. The CSRI decreased significantly to 13.6+/-13.4/h. LVEF increased significantly after 6 weeks of ventilation (from 25.1+/-8.5 to 28.8+/-9.8%, p<0.01). The number of respiratory-related arousals decreased significantly. Other quantitative sleep parameters did not change. The Epworth sleepiness score improved slightly. Daytime blood pressure and heart rate did not change. There were some differences between bi-level PPV and adaptive servo ventilation: the CSRI decreased more in the AutoSetCS group while the LVEF increased more in the bi-level PPV group. Administration of PPV can successfully attenuate CSA. Reduced CSA may be associated with improved LVEF; however, this may depend on the mode of PPV. Changed LVEF is evident even in the absence of significant changes in blood pressure.
Johnson, PL; Popa, DA; Prisk, GK; Sullivan, CE; Edwards, N
2014-01-01
Background and objectives Ascent to high altitude results in hypobaric hypoxia and some individuals will develop Acute Mountain Sickness, which has been shown to be associated with low oxyhemoglobin saturation during sleep. Previous research has shown that positive end-expiratory pressure by use of expiratory valves in a face mask while awake, results in a reduction in AMS symptoms and higher oxyhemoglobin saturation. We aimed to test whether pressure ventilation during sleep would prevent AMS by keeping oxyhaemoglobin higher during sleep. Methods We compared sleeping oxyhemoglobin saturation and the incidence and severity of Acute Mountain Sickness in seven subjects sleeping for two consecutive nights at 3800m above sea level using either non-invasive positive pressure ventilation that delivered positive inspiratory and expiratory airway pressure via a face mask, or sleeping without assisted ventilation. The presence and severity of Acute Mountain Sickness was assessed by administration of the Lake Louise questionnaire. Results We found significant increases in the mean and minimum sleeping oxyhemoglobin saturation and decreases in AMS symptoms in subjects who used positive pressure ventilation during sleep. Mean and minimum sleeping SaO2 was lower in subjects who developed AMS after the night spent without positive pressure ventilation. Conclusion The use of positive pressure ventilation during sleep at 3800m significantly increased the sleeping oxygen saturation; we suggest that the marked reduction in symptoms of AMS is due to this higher sleeping SaO2. We agree with the findings from previous studies that the development of AMS is associated with a lower sleeping oxygen saturation. PMID:20051046
Volume-controlled Ventilation Does Not Prevent Injurious Inflation during Spontaneous Effort.
Yoshida, Takeshi; Nakahashi, Susumu; Nakamura, Maria Aparecida Miyuki; Koyama, Yukiko; Roldan, Rollin; Torsani, Vinicius; De Santis, Roberta R; Gomes, Susimeire; Uchiyama, Akinori; Amato, Marcelo B P; Kavanagh, Brian P; Fujino, Yuji
2017-09-01
Spontaneous breathing during mechanical ventilation increases transpulmonary pressure and Vt, and worsens lung injury. Intuitively, controlling Vt and transpulmonary pressure might limit injury caused by added spontaneous effort. To test the hypothesis that, during spontaneous effort in injured lungs, limitation of Vt and transpulmonary pressure by volume-controlled ventilation results in less injurious patterns of inflation. Dynamic computed tomography was used to determine patterns of regional inflation in rabbits with injured lungs during volume-controlled or pressure-controlled ventilation. Transpulmonary pressure was estimated by using esophageal balloon manometry [Pl(es)] with and without spontaneous effort. Local dependent lung stress was estimated as the swing (inspiratory change) in transpulmonary pressure measured by intrapleural manometry in dependent lung and was compared with the swing in Pl(es). Electrical impedance tomography was performed to evaluate the inflation pattern in a larger animal (pig) and in a patient with acute respiratory distress syndrome. Spontaneous breathing in injured lungs increased Pl(es) during pressure-controlled (but not volume-controlled) ventilation, but the pattern of dependent lung inflation was the same in both modes. In volume-controlled ventilation, spontaneous effort caused greater inflation and tidal recruitment of dorsal regions (greater than twofold) compared with during muscle paralysis, despite the same Vt and Pl(es). This was caused by higher local dependent lung stress (measured by intrapleural manometry). In injured lungs, esophageal manometry underestimated local dependent pleural pressure changes during spontaneous effort. Limitation of Vt and Pl(es) by volume-controlled ventilation could not eliminate harm caused by spontaneous breathing unless the level of spontaneous effort was lowered and local dependent lung stress was reduced.
Allardet-Servent, Jérôme; Bregeon, Fabienne; Delpierre, Stéphane; Steinberg, Jean-Guillaume; Payan, Marie-José; Ravailhe, Sylvie; Papazian, Laurent
2008-01-01
To test the effects of high-frequency percussive ventilation (HFPV) compared with high-frequency oscillatory ventilation (HFOV) and low-volume conventional mechanical ventilation (LVCMV), on lung injury course in a gastric juice aspiration model. Prospective, randomized, controlled, in-vivo animal study. University animal research laboratory. Forty-three New Zealand rabbits. Lung injury was induced by intratracheal instillation of human gastric juice in order to achieve profound hypoxaemia (PaO2/FIO2< or =50). Animals were ventilated for 4h after randomization in one of the following four groups: HFPV (median pressure 15cmH2O); LVCMV (VT 6mlkg(-1) and PEEP set to reach 15cmH2O plateau pressure); HFOV (mean pressure 15cmH2O); and a high-volume control group HVCMV (VT 12ml kg(-1) and ZEEP). Static respiratory compliance increased after the ventilation period in the HFPV, LVMCV and HFOV groups, in contrast with the HVCMV group. PaO2/FIO2 improved similarly in the HFPV, LVCMV and HFOV groups, and remained lower in the HVCMV group than in the three others. Lung oedema, myeloperoxidase and histological lung injury score were higher in the HVCMV group, but not different among all others. Arterial lactate markedly increased after 4h of ventilation in the HVCMV group, while lower but similar levels were observed in the three other groups. HFPV, like HFOV and protective CMV, improves respiratory mechanics and oxygenation, and attenuates lung damage. The HFPV provides attractive lung protection, but further studies should confirm these results before introducing HFPV into the clinical arena.
Mechanical stress induces lung fibrosis by epithelial-mesenchymal transition.
Cabrera-Benítez, Nuria E; Parotto, Matteo; Post, Martin; Han, Bing; Spieth, Peter M; Cheng, Wei-Erh; Valladares, Francisco; Villar, Jesús; Liu, Mingayo; Sato, Masaaki; Zhang, Haibo; Slutsky, Arthur S
2012-02-01
Many mechanically ventilated patients with acute respiratory distress syndrome develop pulmonary fibrosis. Stresses induced by mechanical ventilation may explain the development of fibrosis by a number of mechanisms (e.g., damage the alveolar epithelium, biotrauma). The objective of this study was t test the hypothesis that mechanical ventilation plays an important role in the pathogenesis of lung fibrosis. C57BL/6 mice were randomized into four groups: healthy controls; hydrochloric acid aspiration alone; vehicle control solution followed 24 hrs later by mechanical ventilation (peak inspiratory pressure 22 cm H(2)O and positive end-expiratory pressure 2 cm H(2)O for 2 hrs); and acid aspiration followed 24 hrs later by mechanical ventilation. The animals were monitored for up to 15 days after acid aspiration. To explore the direct effects of mechanical stress on lung fibrotic formation, human lung epithelial cells (BEAS-2B) were exposed to mechanical stretch for up to 48 hrs. Impaired lung mechanics after mechanical ventilation was associated with increased lung hydroxyproline content, and increased expression of transforming growth factor-β, β-catenin, and mesenchymal markers (α-smooth muscle actin and vimentin) at both the gene and protein levels. Expression of epithelial markers including cytokeratin-8, E-cadherin, and prosurfactant protein B decreased. Lung histology demonstrated fibrosis formation and potential epithelia-mesenchymal transition. In vitro direct mechanical stretch of BEAS-2B cells resulted in similar fibrotic and epithelia-mesenchymal transition formation. Mechanical stress induces lung fibrosis, and epithelia-mesenchymal transition may play an important role in mediating the ventilator-induced lung fibrosis.
Leasure, A Renee; Stirlen, Joan; Lu, Shu Hua
2012-01-01
Ventilator-associated pneumonia (VAP) is a subset of hospital-acquired pneumonias and is a serious, sometimes fatal, complication in patients who need mechanical ventilation. In addition, pay-for-performance initiative has placed increased emphasis on preventing nosocomial infections including VAP. Facilities may not be reimbursed for costs associated with prevalence infections. This article presents a review and meta-analysis of the prevention of VAP through the aspiration of subglottic secretion.
Chikata, Yusuke; Imanaka, Hideaki; Onishi, Yoshiaki; Ueta, Masahiko; Nishimura, Masaji
2009-08-01
High-frequency oscillation ventilation (HFOV) is an accepted ventilatory mode for acute respiratory failure in neonates. As conventional mechanical ventilation, inspiratory gas humidification is essential. However, humidification during HFOV has not been clarified. In this bench study, we evaluated humidification during HFOV in the open circumstance of ICU. Our hypothesis is that humidification during HFOV is affected by circuit design and ventilatory settings. We connected a ventilator with HFOV mode to a neonatal lung model that was placed in an infant incubator set at 37 degrees C. We set a heated humidifier (Fisher & Paykel) to obtain 37 degrees C at the chamber outlet and 40 degrees C at the distal temperature probe. We measured absolute humidity and temperature at the Y-piece using a rapid-response hygrometer. We evaluated two types of ventilator circuit: a circuit with inner heating wire and another with embedded heating element. In addition, we evaluated three lengths of the inspiratory limb, three stroke volumes, three frequencies, and three mean airway pressures. The circuit with embedded heating element provided significantly higher absolute humidity and temperature than one with inner heating wire. As an extended tube lacking a heating wire was shorter, absolute humidity and temperature became higher. In the circuit with inner heating wire, absolute humidity and temperature increased as stroke volume increased. Humidification during HFOV is affected by circuit design and ventilatory settings.
Schibler, Andreas; Pham, Trang M T; Moray, Amol A; Stocker, Christian
2013-10-01
Electrical impedance tomography (EIT) can determine ventilation and perfusion relationship. Most of the data obtained so far originates from experimental settings and in healthy subjects. The aim of this study was to demonstrate that EIT measures the perioperative changes in pulmonary blood flow after repair of a ventricular septum defect in children with haemodynamic relevant septal defects undergoing open heart surgery. In a 19 bed intensive care unit in a tertiary children's hospital ventilation and cardiac related impedance changes were measured using EIT before and after surgery in 18 spontaneously breathing patients. The EIT signals were either filtered for ventilation (ΔZV) or for cardiac (ΔZQ) related impedance changes. Impedance signals were then normalized (normΔZV, normΔZQ) for calculation of the global and regional impedance related ventilation perfusion relationship (normΔZV/normΔZQ). We observed a trend towards increased normΔZV in all lung regions, a significantly decreased normΔZQ in the global and anterior, but not the posterior lung region. The normΔZV/normΔZQ was significantly increased in the global and anterior lung region. Our study qualitatively validates our previously published modified EIT filtration technique in the clinical setting of young children with significant left-to-right shunt undergoing corrective open heart surgery, where perioperative assessment of the ventilation perfusion relation is of high clinical relevance.
Measured values of coal mine stopping resistance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oswald, N.; Prosser, B.; Ruckman, R.
2008-12-15
As coal mines become larger, the number of stoppings in the ventilation system increases. Each stopping represents a potential leakage path which must be adequately represented in the ventilation model. Stopping resistance can be calculated using two methods, the USBM method, used to determine a resistance for a single stopping, and the MVS technique, in which an average resistance is calculated for multiple stoppings. Through MVS data collected from ventilation surveys of different subsurface coal mines, average resistances for stoppings were determined for stopping in poor, average, good, and excellent conditions. The calculated average stoppings resistance were determined for concretemore » block and Kennedy stopping. Using the average stopping resistance, measured and calculated using the MVS method, provides a ventilation modeling tool which can be used to construct more accurate and useful ventilation models. 3 refs., 3 figs.« less
Neto, Ary Serpa; Hemmes, Sabrine N T; Barbas, Carmen S V; Beiderlinden, Martin; Fernandez-Bustamante, Ana; Futier, Emmanuel; Gajic, Ognjen; El-Tahan, Mohamed R; Ghamdi, Abdulmohsin A Al; Günay, Ersin; Jaber, Samir; Kokulu, Serdar; Kozian, Alf; Licker, Marc; Lin, Wen-Qian; Maslow, Andrew D; Memtsoudis, Stavros G; Reis Miranda, Dinis; Moine, Pierre; Ng, Thomas; Paparella, Domenico; Ranieri, V Marco; Scavonetto, Federica; Schilling, Thomas; Selmo, Gabriele; Severgnini, Paolo; Sprung, Juraj; Sundar, Sugantha; Talmor, Daniel; Treschan, Tanja; Unzueta, Carmen; Weingarten, Toby N; Wolthuis, Esther K; Wrigge, Hermann; Amato, Marcelo B P; Costa, Eduardo L V; de Abreu, Marcelo Gama; Pelosi, Paolo; Schultz, Marcus J
2016-04-01
Protective mechanical ventilation strategies using low tidal volume or high levels of positive end-expiratory pressure (PEEP) improve outcomes for patients who have had surgery. The role of the driving pressure, which is the difference between the plateau pressure and the level of positive end-expiratory pressure is not known. We investigated the association of tidal volume, the level of PEEP, and driving pressure during intraoperative ventilation with the development of postoperative pulmonary complications. We did a meta-analysis of individual patient data from randomised controlled trials of protective ventilation during general anesthaesia for surgery published up to July 30, 2015. The main outcome was development of postoperative pulmonary complications (postoperative lung injury, pulmonary infection, or barotrauma). We included data from 17 randomised controlled trials, including 2250 patients. Multivariate analysis suggested that driving pressure was associated with the development of postoperative pulmonary complications (odds ratio [OR] for one unit increase of driving pressure 1·16, 95% CI 1·13-1·19; p<0·0001), whereas we detected no association for tidal volume (1·05, 0·98-1·13; p=0·179). PEEP did not have a large enough effect in univariate analysis to warrant inclusion in the multivariate analysis. In a mediator analysis, driving pressure was the only significant mediator of the effects of protective ventilation on development of pulmonary complications (p=0·027). In two studies that compared low with high PEEP during low tidal volume ventilation, an increase in the level of PEEP that resulted in an increase in driving pressure was associated with more postoperative pulmonary complications (OR 3·11, 95% CI 1·39-6·96; p=0·006). In patients having surgery, intraoperative high driving pressure and changes in the level of PEEP that result in an increase of driving pressure are associated with more postoperative pulmonary complications. However, a randomised controlled trial comparing ventilation based on driving pressure with usual care is needed to confirm these findings. None. Copyright © 2016 Elsevier Ltd. All rights reserved.
Salinity and hypoxia in the Baltic Sea since A.D. 1500
NASA Astrophysics Data System (ADS)
Hansson, Daniel; Gustafsson, Erik
2011-03-01
Over the past century, large salinity variability and deteriorating oxygen conditions have been observed in the Baltic Sea. These long-term changes were investigated in the central Baltic Sea using an ocean climate model with meteorological forcing based on seasonal temperature and pressure reconstructions covering the period 1500-1995. The results indicate that the salinity has slowly increased by 0.5 salinity units since 1500, peaking in the middle eighteenth century. Oxygen concentration is negatively correlated with salinity in the major part of the water column, indicating improved ventilation during a fresher state of the Baltic Sea. It is suggested that anoxic conditions have occurred in the deep water several times per century since 1500. However, since the middle twentieth century, increased oxygen consumption that is most likely the effect of anthropogenic nutrient release has resulted in a persistent oxygen deficiency in the water below 125 m. Within the limitations of our model formulation we suggest that the contemporary severe oxygen conditions are unprecedented since 1500.
Cantón-Bulnes, María Luisa; González-García, María Ascensión; García-Sánchez, Manuela; Arenzana-Seisdedos, Ángel; Garnacho-Montero, José
2018-02-05
The main objective was to determine whether ventilator-associated tracheobronchitis (VAT) is related to increased length of ICU stay. Secondary endpoints included prolongation of hospital stay, as well as, ICU and hospital mortality. A retrospective matched case-control study. Each case was matched with a control for duration of ventilation (± 2 days until development of ventilator-associated tracheobronchitis), disease severity (Acute Physiology and Chronic Health Evaluation II) at admission ± 3, diagnostic category and age ±10 years. Critically ill adults admitted to a polyvalent 30-beds ICU with the diagnosis of VAT in the period 2013-2016. We identified 76 cases of VAT admitted to our ICU during the study period. No adequate controls were found for 3 patients with VAT. There were no significant differences in demographic characteristics, reasons for admission and comorbidities. Patients with VAT had a longer ICU length of stay, median 22 days (14-35), compared to controls, median 15 days (8-27), p=.02. Ventilator days were also significantly increased in VAT patients, median 18 (9-28) versus 9 days (5-16), p=.03. There was no significant difference in total hospital length of stay 40 (28-61) vs. 35days (23-54), p=.32; ICU mortality (20.5 vs. 31.5% p=.13) and hospital mortality (30.1 vs. 43.8% p=.09). We performed a subanalysis of patients with microbiologically proven VAT receiving adequate antimicrobial treatment and did not observe significant differences between cases and the corresponding controls. VAT is associated with increased length of intensive care unit stay and longer duration of mechanical ventilation. This effect disappears when patients receive appropriate empirical treatment. Copyright © 2018 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.
Effects of MDMA on body temperature in humans
Liechti, Matthias E
2014-01-01
Hyperthermia is a severe complication associated with the recreational use of 3,4-methylenedioxymethamphetamine (MDMA, Ecstasy). In this review, the clinical laboratory studies that tested the effects of MDMA on body temperature are summarized. The mechanisms that underlie the hyperthermic effects of MDMA in humans and treatment of severe hyperthermia are presented. The data show that MDMA produces an acute and dose-dependent rise in core body temperature in healthy subjects. The increase in body temperature is in the range of 0.2-0.8°C and does not result in hyperpyrexia (>40°C) in a controlled laboratory setting. However, moderately hyperthermic body temperatures >38.0°C occur frequently at higher doses, even in the absence of physical activity and at room temperature. MDMA primarily releases serotonin and norepinephrine. Mechanistic clinical studies indicate that the MDMA-induced elevations in body temperature in humans partially depend on the MDMA-induced release of norepinephrine and involve enhanced metabolic heat generation and cutaneous vasoconstriction, resulting in impaired heat dissipation. The mediating role of serotonin is unclear. The management of sympathomimetic toxicity and associated hyperthermia mainly includes sedation with benzodiazepines and intravenous fluid replacement. Severe hyperthermia should primarily be treated with additional cooling and mechanical ventilation. PMID:27626046
Alternating versus synchronous ventilation of left and right lungs in piglets.
Versprille, A; Hrachovina, V; Jansen, J R
1995-12-01
We tested whether alternating ventilation (AV) of each lung (i.e. with a phase difference of half a ventilatory cycle) would decrease central venous pressure and so increase cardiac output when compared with simultaneous ventilation (SV) of both lungs. If, during AV, the inflated lung expands partly via compression of the opposite lung, mean lung volume will be smaller during AV than SV. As a consequence, mean intrathoracic pressure (as cited in the literature), and therefore, central venous pressure will be smaller. The experiments were performed in seven anaesthetized and paralyzed piglets using a double-piston ventilator. Minute ventilation was the same during AV and SV. Starting at SV, we alternated three times between AV and SV for periods of 10 min. During AV, central venous pressure was decreased by 0.7 mmHg and cardiac output was increased by 10 +/- 4.4% (mean, +/-SD) compared with SV. AV also resulted in increased arterial pressure. During one-sided inflation with closed outlet of the opposite lung, a pressure rise occurred in the opposite lung, indicating compression. The higher cardiac output during AV than SV can be explained by the fact that central venous pressure is lower during AV. This lower central venous pressure is very probably due to the lower mean intrathoracic pressure caused by compression of the opposite lung during unilateral inflation.
Zhu, Jian Hua; Lee, Heow Pueh; Lim, Kian Meng; Gordon, Bruce R; Wang, De Yun
2012-08-15
We evaluated, by CFD simulation, effects of accessory ostium (AO) on maxillary sinus ventilation. A three-dimensional nasal model was constructed from an adult CT scan with two left maxillary AOs (sinus I) and one right AO (sinus II), then compared to an identical control model with all AOs sealed (sinuses III and IV). Transient simulations of quiet inspiration and expiration at 15 L/min, and nasal blow at 48 L/min, were calculated for both models using low-Reynolds-number turbulent analysis. At low flows, ventilation rates in sinuses with AOs (I ≈ 0.46 L/min, II ≈ 0.54 L/min), were both more than a magnitude higher than sinuses without AOs (II I ≈ 0.019 L/min, IV ≈ 0.020 L/min). Absence of AO almost completely prevented sinus ventilation. Increased ventilation of sinuses with AOs is complex. Under high flow conditions mimicking nose blowing, in sinuses II, III, and IV, the sinus flow rate increased. In contrast, the airflow direction through sinus I reversed between inspiration and expiration, while it remained almost constant throughout the respiration cycle in sinus II. CFD simulation demonstrated that AOs markedly increase maxillary sinus airflow rates and alter sinus air circulation patterns. Whether these airflow changes impact maxillary sinus physiology or pathophysiology is unknown. Copyright © 2012 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hult, Erin L.; Willem, Henry; Price, Phillip N.
2014-10-01
Measurements were taken in new US residences to assess the extent to which ventilation and source control can mitigate formaldehyde exposure. Increasing ventilation consistently lowered indoor formaldehyde concentrations. However, at a reference air exchange rate of 0.35 h -1, increasing ventilation was up to 60% less effective than would be predicted if the emission rate were constant. This is consistent with formaldehyde emission rates decreasing as air concentrations increase, as observed in chamber studies. In contrast, measurements suggest acetaldehyde emission was independent of ventilation rate. To evaluate the effectiveness of source control, formaldehyde concentrations were measured in Leadership in Energymore » and Environmental Design (LEED) certified/Indoor airPLUS homes constructed with materials certified to have low emission rates of volatile organic compounds (VOC). At a reference air exchange rate of 0.35 h -1, and adjusting for home age, temperature and relative humidity, formaldehyde concentrations in homes built with low-VOC materials were 42% lower on average than in reference new homes with conventional building materials. Without adjustment, concentrations were 27% lower in the low-VOC homes. The mean and standard deviation of formaldehyde concentration were 33 μg m-3 and 22 μg m -3 for low-VOC homes and 45 μg m -3 and 30 μg m -3 for conventional.« less
Leclerc, Lara; Merhie, Amira El; Navarro, Laurent; Prévôt, Nathalie; Durand, Marc; Pourchez, Jérémie
2015-10-15
We investigated the impact of vibrating acoustic airflow, the high frequency (f≥100 Hz) and the low frequency (f≤45 Hz) sound waves, on the enhancement of intrasinus drug deposition. (81m)Kr-gas ventilation study was performed in a plastinated human cast with and without the addition of vibrating acoustic airflow. Similarly, intrasinus drug deposition in a nasal replica using gentamicin as a marker was studied with and without the superposition of different modes of acoustic airflow. Ventilation experiments demonstrate that no sinus ventilation was observed without acoustic airflow although sinus ventilation occurred whatever the modes of acoustic airflow applied. Intrasinus drug deposition experiments showed that the high frequency acoustic airflow led to 4-fold increase in gentamicin deposition into the left maxillary sinus and to 2-fold deposition increase into the right maxillary sinus. Besides, the low frequency acoustic airflow demonstrated a significant increase of 4-fold and 2-fold in the right and left maxillary sinuses, respectively. We demonstrated the benefit of different modes of vibrating acoustic airflow for maxillary sinus ventilation and intrasinus drug deposition. The degree of gentamicin deposition varies as a function of frequency of the vibrating acoustic airflow and the geometry of the ostia. Copyright © 2015 Elsevier B.V. All rights reserved.
Rationale and Description of Right Ventricle-Protective Ventilation in ARDS.
Paternot, Alexis; Repessé, Xavier; Vieillard-Baron, Antoine
2016-10-01
Pulmonary vascular dysfunction is associated with ARDS and leads to increased right-ventricular afterload and eventually right-ventricular failure, also called acute cor pulmonale. Interest in acute cor pulmonale and its negative impact on outcome in patients with ARDS has grown in recent years. Right-ventricular function in these patients should be closely monitored, and this is helped by the widespread use of echocardiography in intensive care units. Because mechanical ventilation may worsen right-ventricular failure, the interaction between the lungs and the right ventricle appears to be a key factor in the ventilation strategy. In this review, a rationale for a right ventricle-protective ventilation approach is provided, and such a strategy is described, including the reduction of lung stress (ie, the limitation of plateau pressure and driving pressure), the reduction of PaCO2 , and the improvement of oxygenation. Prone positioning seems to be a crucial part of this strategy by protecting both the lungs and the right ventricle, resulting in increased survival of patients with ARDS. Further studies are required to validate the positive impact on prognosis of right ventricle-protective mechanical ventilation. Copyright © 2016 by Daedalus Enterprises.
A unified approach for EIT imaging of regional overdistension and atelectasis in acute lung injury.
Gómez-Laberge, Camille; Arnold, John H; Wolf, Gerhard K
2012-03-01
Patients with acute lung injury or acute respiratory distress syndrome (ALI/ARDS) are vulnerable to ventilator-induced lung injury. Although this syndrome affects the lung heterogeneously, mechanical ventilation is not guided by regional indicators of potential lung injury. We used electrical impedance tomography (EIT) to estimate the extent of regional lung overdistension and atelectasis during mechanical ventilation. Techniques for tidal breath detection, lung identification, and regional compliance estimation were combined with the Graz consensus on EIT lung imaging (GREIT) algorithm. Nine ALI/ARDS patients were monitored during stepwise increases and decreases in airway pressure. Our method detected individual breaths with 96.0% sensitivity and 97.6% specificity. The duration and volume of tidal breaths erred on average by 0.2 s and 5%, respectively. Respiratory system compliance from EIT and ventilator measurements had a correlation coefficient of 0.80. Stepwise increases in pressure could reverse atelectasis in 17% of the lung. At the highest pressures, 73% of the lung became overdistended. During stepwise decreases in pressure, previously-atelectatic regions remained open at sub-baseline pressures. We recommend that the proposed approach be used in collaborative research of EIT-guided ventilation strategies for ALI/ARDS.
In-flight cabin smoke control.
Eklund, T I
1996-12-31
Fatal accidents originating from in-flight cabin fires comprise only about 1% of all fatal accidents in the civil jet transport fleet. Nevertheless, the impossibility of escape during flight accentuates the hazards resulting from low visibility and toxic gases. Control of combustion products in an aircraft cabin is affected by several characteristics that make the aircraft cabin environment unique. The aircraft fuselage is pressurized in flight and has an air distribution system which provides ventilation jets from the ceiling level air inlets running along the cabin length. A fixed quantity of ventilation air is metered into the cabin and air discharge is handled primarily by pressure controlling outflow valves in the rear lower part of the fuselage. Earlier airplane flight tests on cabin smoke control used generators producing minimally buoyant smoke products that moved with and served as a telltales for overall cabin ventilation flows. Analytical studies were done with localized smoke production to predict the percent of cabin length that would remain smoke-free during continuous generation. Development of a buoyant smoke generator allowed simulation of a fire plume with controllable simulated temperature and heat release rates. Tests on a Boeing 757, modified to allow smoke venting out through the top of the cabin, showed that the buoyant smoke front moved at 0.46m/s (1.5ft/sec) with and 0.27m/sec (0.9ft/sec) against, the axial ventilation airflow. Flight tests in a modified Boeing 727 showed that a ceiling level counterflow of about 0.55m/sec (1.8ft/sec) was required to arrest the forward movement of buoyant smoke. A design goal of 0.61m/s (2ft/sec) axial cabin flow would require a flow rate of 99m3/min (3500ft3/min) in a furnished Boeing 757. The current maximum fresh air cabin ventilation flow is 78m3/min (2756 ft3/min). Experimental results indicate that buoyancy effects cause smoke movement behaviour that is not predicted by traditional design analyses and flight test methodologies. Augmenting available ventilation for smoke control remains a design and safety challenge.
Ye, Yanping; Zhu, Bo; Jiang, Li; Jiang, Qi; Wang, Meiping; Hua, Lin; Xi, Xiuming
2017-07-01
To evaluate the contemporary practice, outcomes, and costs related to mechanical ventilation among ICUs in China. A prospective observational cohort study. Fourteen ICUs among 13 hospitals in Beijing, China. Seven hundred ninety-three patients who received at least 24 hours of mechanical ventilation within the first 48 hours of ICU stay. None. The mean age was 64 years. Sixty-three percent were male. New acute respiratory failure accounted for 85.5% of mechanical ventilation cases. Only 4.7% of the patients received mechanical ventilation for acute exacerbation of chronic obstructive pulmonary disease. The most widely used ventilation mode was the combination of synchronized intermittent mandatory ventilation and pressure support (43.6%). Use of lung-protective ventilation is widespread with tidal volumes of 7.1 mL/kg (2.1 mL/kg). The ICU/hospital mortality was 27.6%/29.3%, respectively (8.5%/9.7% for surgical patients and 41.3%/43.2% for medical patients, respectively). The mean level of ICU/hospital cost per patient was $15,271 (18,940)/$22,946 (25,575), respectively. The mean daily ICU cost per patient was $1,212. For the first time, we obtained a preliminary epidemiology data of mechanical ventilation in Beijing, China, through the study. Compared with the other nations, our patients are older, predominantly male, and treated according to prevailing international guidelines yet at a relatively high cost and high mortality. The expanding elderly population predicts increase demand for mechanical ventilation that must be met by continuous improvement in quality and efficiency of critical care services.
Mayr, Ulrich; Karsten, Eugen; Lahmer, Tobias; Rasch, Sebastian; Thies, Philipp; Henschel, Benedikt; Fischer, Gerrit; Schmid, Roland M.
2018-01-01
Introduction Appropriate mechanical ventilation and prevention of alveolar collaps is mainly dependent on transpulmonary pressure TPP. TPP is assessed by measurement of esophageal pressure EP, largely influenced by pleural and intraabdominal pressure IAP. Consecutively, TPP-guided ventilation might be particularly useful in patients with high IAP. This study investigates the impact of large volume paracentesis LVP on TPP, EP, IAP as well as on hemodynamic and respiratory function in patients with liver cirrhosis and tense ascites. Material and methods We analysed 23 LVP-procedures in 11 cirrhotic patients ventilated with the AVEA Viasys respirator (CareFusion, USA) which is capable to measure EP via an esophageal tube. Results LVP of a mean volume of 4826±1276 mL of ascites resulted in marked increases in inspiratory (17.9±8.9 vs. 5.4±13.3 cmH2O; p<0.001) as well as expiratory TPP (-3.0±4.7 vs. -15.9±10.9 cmH2O; p<0.001; primary endpoint). In parallel, the inspiratory (2.4±8.7 vs. 14.1±14.5 cmH2O; p<0.001) and expiratory EP (12.4±6.0 vs. 24.9±11.3 cmH2O; p<0.001) significantly decreased. The effects were most pronounced for the release of the first 500 mL of ascites. LVP evoked substantial decreases in IAP and central venous pressure CVP. By contrast, mean arterial pressure, cardiac index, global end-diastolic volume index, extravascular lung water index and systemic vascular resistance index did not change. Among the respiratory parameters we observed an increase in paO2/FiO2 (247.7±60.9 vs. 208.3±46.8 mmHg; p<0.001) and a decrease in Oxygenation Index OI (4.8±2.0 vs. 5.8±3.1 cmH2O/mmHg; p = 0.002). Tidal volume (510±100 vs. 452±113 mL; p = 0.008) and dynamic respiratory system compliance Cdyn (46.8±15.9 vs. 35.1±14.6 mL/cmH20; p<0.001) increased, whereas paCO2 (47.3±10.7 vs. 51.2±12.3mmHg; p = 0.046) and the respiratory rate decreased (17.1±7.3 vs. 19.6±7.8 min-1; p = 0.010). Conclusions In mechanically ventilated patients with decompensated cirrhosis, intraabdominal hypertension resulted in a substantially decreased TPP despite PEEP-setting according to the ARDSNet. In these patients LVP markedly increased TPP and improved respiratory function in parallel with a decline of EP. Furthermore, LVP induced a decrease in IAP and CVP, while other hemodynamic parameters did not change. PMID:29538440
Akkanti, Bindu; Rajagopal, Keshava; Patel, Kirti P; Aravind, Sangeeta; Nunez-Centanu, Emmanuel; Hussain, Rahat; Shabari, Farshad Raissi; Hofstetter, Wayne L; Vaporciyan, Ara A; Banjac, Igor S; Kar, Biswajit; Gregoric, Igor D; Loyalka, Pranav
2017-06-01
Extracorporeal carbon dioxide removal (ECCO 2 R) permits reductions in alveolar ventilation requirements that the lungs would otherwise have to provide. This concept was applied to a case of hypercapnia refractory to high-level invasive mechanical ventilator support. We present a case of an 18-year-old man who developed post-pneumonectomy acute respiratory distress syndrome (ARDS) after resection of a mediastinal germ cell tumor involving the left lung hilum. Hypercapnia and hypoxemia persisted despite ventilator support even at traumatic levels. ECCO 2 R using a miniaturized system was instituted and provided effective carbon dioxide elimination. This facilitated establishment of lung-protective ventilator settings and lung function recovery. Extracorporeal lung support increasingly is being applied to treat ARDS. However, conventional extracorporeal membrane oxygenation (ECMO) generally involves using large cannulae capable of carrying high flow rates. A subset of patients with ARDS has mixed hypercapnia and hypoxemia despite high-level ventilator support. In the absence of profound hypoxemia, ECCO 2 R may be used to reduce ventilator support requirements to lung-protective levels, while avoiding risks associated with conventional ECMO.
Numerical investigation of pulmonary drug delivery under mechanical ventilation conditions
NASA Astrophysics Data System (ADS)
Banerjee, Arindam; van Rhein, Timothy
2012-11-01
The effects of mechanical ventilation waveform on fluid flow and particle deposition were studied in a computer model of the human airways. The frequency with which aerosolized drugs are delivered to mechanically ventilated patients demonstrates the importance of understanding the effects of ventilation parameters. This study focuses specifically on the effects of mechanical ventilation waveforms using a computer model of the airways of patient undergoing mechanical ventilation treatment from the endotracheal tube to generation G7. Waveforms were modeled as those commonly used by commercial mechanical ventilators. Turbulence was modeled with LES. User defined particle force models were used to model the drag force with the Cunningham correction factor, the Saffman lift force, and Brownian motion force. The endotracheal tube (ETT) was found to be an important geometric feature, causing a fluid jet towards the right main bronchus, increased turbulence, and a recirculation zone in the right main bronchus. In addition to the enhanced deposition seen at the carinas of the airway bifurcations, enhanced deposition was also seen in the right main bronchus due to impaction and turbulent dispersion resulting from the fluid structures created by the ETT. Authors acknowledge financial support through University of Missouri Research Board Award.
Impact of whole-body rehabilitation in patients receiving chronic mechanical ventilation.
Martin, Ubaldo J; Hincapie, Luis; Nimchuk, Mark; Gaughan, John; Criner, Gerard J
2005-10-01
To evaluate the prevalence and magnitude of weakness in patients receiving chronic mechanical ventilation and the impact of providing aggressive whole-body rehabilitation on conventional weaning variables, muscle strength, and overall functional status. Retrospective analysis of 49 consecutive patients. Multidisciplinary ventilatory rehabilitation unit in an academic medical center. Forty-nine consecutive chronic ventilator-dependent patients referred to a tertiary care hospital ventilator rehabilitation unit. None. Patients were 58 +/- 7 yrs old with multiple etiologies for respiratory failure. On admission, all patients were bedridden and had severe weakness of upper and lower extremities measured by a 5-point muscle strength score and a 7-point Functional Independence Measurement. Postrehabilitation, patients had increases in upper and lower extremity strength (p < .05) and were able to stand and ambulate. All weaned from mechanical ventilation, but three required subsequent intermittent support. Six patients died before hospital discharge. Upper extremity strength on admission inversely correlated with time to wean from mechanical ventilation (R = .72, p < .001). : Patients receiving chronic ventilation are weak and deconditioned but respond to aggressive whole-body and respiratory muscle training with an improvement in strength, weaning outcome, and functional status. Whole-body rehabilitation should be considered a significant component of their therapy.
Clinical review: Long-term noninvasive ventilation
Robert, Dominique; Argaud, Laurent
2007-01-01
Noninvasive positive ventilation has undergone a remarkable evolution over the past decades and is assuming an important role in the management of both acute and chronic respiratory failure. Long-term ventilatory support should be considered a standard of care to treat selected patients following an intensive care unit (ICU) stay. In this setting, appropriate use of noninvasive ventilation can be expected to improve patient outcomes, reduce ICU admission, enhance patient comfort, and increase the efficiency of health care resource utilization. Current literature indicates that noninvasive ventilation improves and stabilizes the clinical course of many patients with chronic ventilatory failure. Noninvasive ventilation also permits long-term mechanical ventilation to be an acceptable option for patients who otherwise would not have been treated if tracheostomy were the only alternative. Nevertheless, these results appear to be better in patients with neuromuscular/-parietal disorders than in chronic obstructive pulmonary disease. This clinical review will address the use of noninvasive ventilation (not including continuous positive airway pressure) mainly in diseases responsible for chronic hypoventilation (that is, restrictive disorders, including neuromuscular disease and lung disease) and incidentally in others such as obstructive sleep apnea or problems of central drive. PMID:17419882
Hering, Rudolf; Kreyer, Stefan; Putensen, Christian
2017-10-27
Lung protective mechanical ventilation with limited peak inspiratory pressure has been shown to affect cardiac output in patients with ARDS. However, little is known about the impact of lung protective mechanical ventilation on regional perfusion, especially when associated with moderate permissive respiratory acidosis. We hypothesized that lung protective mechanical ventilation with limited peak inspiratory pressure and moderate respiratory acidosis results in an increased cardiac output but unequal distribution of blood flow to the different organs of pigs with oleic-acid induced ARDS. Twelve pigs were enrolled, 3 died during instrumentation and induction of lung injury. Thus, 9 animals received pressure controlled mechanical ventilation with a PEEP of 5 cmH 2 O and limited peak inspiratory pressure (17 ± 4 cmH 2 O) versus increased peak inspiratory pressure (23 ± 6 cmH 2 O) in a crossover-randomized design and were analyzed. The sequence of limited versus increased peak inspiratory pressure was randomized using sealed envelopes. Systemic and regional hemodynamics were determined by double indicator dilution technique and colored microspheres, respectively. The paired student t-test and the Wilcoxon test were used to compare normally and not normally distributed data, respectively. Mechanical ventilation with limited inspiratory pressure resulted in moderate hypercapnia and respiratory acidosis (PaCO 2 71 ± 12 vs. 46 ± 9 mmHg, and pH 7.27 ± 0.05 vs. 7.38 ± 0.04, p < 0.001, respectively), increased cardiac output (140 ± 32 vs. 110 ± 22 ml/min/kg, p<0.05) and regional blood flow in the myocardium, brain and spinal cord, adrenal and thyroid glands, the mucosal layers of the esophagus and jejunum, the muscularis layers of the esophagus and duodenum, and the gall and urinary bladders. Perfusion of kidneys, pancreas, spleen, hepatic arterial bed, and the mucosal and muscularis blood flow to the other evaluated intestinal regions remained unchanged. In this porcine model of ARDS mechanical ventilation with limited peak inspiratory pressure resulting in moderate respiratory acidosis was associated with an increase in cardiac output. However, the better systemic blood flow was not uniformly directed to the different organs. This observation may be of clinical interest in patients, e.g. with cardiac, renal and cerebral pathologies.
Endothelin B receptor blockade attenuates pulmonary vasodilation in oxygen-ventilated fetal lambs.
Ivy, D Dunbar; Lee, Dong-Seok; Rairigh, Robyn L; Parker, Thomas A; Abman, Steven H
2004-01-01
Endothelin-1 (ET-1) contributes to the regulation of pulmonary vascular tone in the normal ovine fetus and in models of perinatal pulmonary hypertension. In the fetal lamb lung, the effects of ET-1 depend on the balance of at least two endothelin receptor subtypes: ETA and ETB. ETA receptors are located on smooth muscle cells and mediate vasoconstriction and smooth muscle proliferation. Stimulation of endothelial ETB receptors causes vasodilation through release of nitric oxide and also functions to remove ET-1 from the circulation. However, whether activation of ETB receptors contributes to the fall in pulmonary vascular tone at birth is unknown. To determine the role of acute ETB receptor blockade in pulmonary vasodilation in response to birth-related stimuli, we studied the hemodynamic effects of selective ETB receptor blockade with BQ-788 during mechanical ventilation with low (<10%) and high FiO2 (100%) in near-term fetal sheep. Intrapulmonary infusion of BQ-788 did not change left pulmonary artery (LPA) blood flow and pulmonary vascular resistance (PVR) at baseline. In comparison with controls, BQ-788 treatment attenuated the rise in LPA flow with low and high FiO2 ventilation (p <0.001 vs. control for each FiO2 concentration). PVR progressively decreased during mechanical ventilation with low and high FiO2 in both groups, but PVR remained higher after BQ-788 treatment throughout the study period (p <0.001). We conclude that selective ETB receptor blockade attenuates pulmonary vasodilation at birth. We speculate that ETB receptor stimulation contributes to pulmonary vasodilation at birth in the ovine fetus.
Sperber, Jesper; Lipcsey, Miklós; Larsson, Anders; Larsson, Anders; Sjölin, Jan; Castegren, Markus
2015-05-10
Protective ventilation with lower tidal volume (VT) and higher positive end-expiratory pressure (PEEP) reduces the negative additive effects of mechanical ventilation during systemic inflammatory response syndrome. We hypothesised that protective ventilation during surgery would affect the organ-specific immune response in an experimental animal model of endotoxin-induced sepsis-like syndrome. 30 pigs were laparotomised for 2 hours (h), after which a continuous endotoxin infusion was started at 0.25 micrograms × kg(-1) × h(-1) for 5 h. Catheters were placed in the carotid artery, hepatic vein, portal vein and jugular bulb. Animals were randomised to two protective ventilation groups (n = 10 each): one group was ventilated with VT 6 mL × kg(-1) during the whole experiment while the other group was ventilated during the surgical phase with VT of 10 mL × kg(-1). In both groups PEEP was 5 cmH2O during surgery and increased to 10 cmH2O at the start of endotoxin infusion. A control group (n = 10) was ventilated with VT of 10 mL × kg(-1) and PEEP 5 cm H20 throughout the experiment. In four sample locations we a) simultaneously compared cytokine levels, b) studied the effect of protective ventilation initiated before and during endotoxemia and c) evaluated protective ventilation on organ-specific cytokine levels. TNF-alpha levels were highest in the hepatic vein, IL-6 levels highest in the artery and jugular bulb and IL-10 levels lowest in the artery. Protective ventilation initiated before and during endotoxemia did not differ in organ-specific cytokine levels. Protective ventilation led to lower levels of TNF-alpha in the hepatic vein compared with the control group, whereas no significant differences were seen in the artery, portal vein or jugular bulb. Variation between organs in cytokine output was observed during experimental sepsis. We see no implication from cytokine levels for initiating protective ventilation before endotoxemia. However, during endotoxemia protective ventilation attenuates hepatic inflammatory cytokine output contributing to a reduced total inflammatory burden.
Raby, Graham D.; Wilson, Samantha M.; Patterson, David A.; Hinch, Scott G.; Clark, Timothy D.; Farrell, Anthony P.; Cooke, Steven J.
2015-01-01
Capture of fish in commercial and recreational fisheries causes disruption to their physiological homeostasis and can result in delayed mortality for fish that are released. For fish that are severely impaired, it may be desirable to attempt revival prior to release to reduce the likelihood of post-release mortality. In this study, male sockeye salmon (Oncorhynchus nerka) undergoing their upriver migration were used to examine short-term physiological changes during the following three revival treatments after beach seine capture and air exposure: a pump-powered recovery box that provided ram ventilation at one of two water flow rates; and a cylindrical, in-river recovery bag, which ensured that fish were oriented into the river flow. Beach seine capture followed by a 3 min air exposure resulted in severe impairment of reflexes such that fish could not maintain positive orientation or properly ventilate. All three revival treatments resulted in significant reductions in reflex impairment within 15 min, with full recovery of reflex responses observed within 60–120 min. For most variables measured, including plasma lactate, cortisol and osmolality, there were no significant differences among revival treatments. There was some evidence for impaired recovery in the low-flow recovery box, in the form of higher haematocrit and plasma sodium. These data mirror published recovery profiles for a recovery box study in the marine environment where a survival benefit occurred, suggesting that the methods tested here are viable options for reviving salmon caught in freshwater. Importantly, with most of the benefit to animal vitality accrued in the first 15 min, prolonging recovery when fish become vigorous may not provide added benefit because the confinement itself is likely to serve as a stressor. PMID:27293700
Gregson, Rachael K; Shannon, Harriet; Stocks, Janet; Cole, Tim J; Peters, Mark J; Main, Eleanor
2012-03-01
This study aimed to quantify the specific effects of manual lung inflations with chest compression-vibrations, commonly used to assist airway clearance in ventilated patients. The hypothesis was that force applied during the compressions made a significant additional contribution to increases in peak expiratory flow and expiratory to inspiratory flow ratio over and above that resulting from accompanying increases in inflation volume. Prospective observational study. Cardiac and general pediatric intensive care. Sedated, fully ventilated children. Customized force-sensing mats and a commercial respiratory monitor recorded force and respiration during physiotherapy. Percentage changes in peak expiratory flow, peak expiratory to inspiratory flow ratios, inflation volume, and peak inflation pressure between baseline and manual inflations with and without compression-vibrations were calculated. Analysis of covariance determined the relative contribution of changes in pressure, volume, and force to influence changes in peak expiratory flow and peak expiratory to inspiratory flow ratio. Data from 105 children were analyzed (median age, 1.3 yrs; range, 1 wk to 15.9 yrs). Force during compressions ranged from 15 to 179 N (median, 46 N). Peak expiratory flow increased on average by 76% during compressions compared with baseline ventilation. Increases in peak expiratory flow were significantly related to increases in inflation volume, peak inflation pressure, and force with peak expiratory flow increasing by, on average, 4% for every 10% increase in inflation volume (p < .001), 5% for every 10% increase in peak inflation pressure (p = .005), and 3% for each 10 N of applied force (p < .001). By contrast, increase in peak expiratory to inspiratory flow ratio was only related to applied force with a 4% increase for each 10 N of force (p < .001). These results provide evidence of the unique contribution of compression forces in increasing peak expiratory flow and peak expiratory to inspiratory flow ratio bias over and above that related to accompanying changes from manual hyperinflations. Force generated during compression-vibrations was the single significant factor in multivariable analysis to explain the increases in expiratory flow bias. Such increases in the expiratory bias provide theoretically optimal physiological conditions for cephalad mucus movement in fully ventilated children.
Endoscopic management of chronic otitis media and tympanoplasty.
Tarabichi, Muaaz; Ayache, Stéphane; Nogueira, João Flávio; Al Qahtani, Munahi; Pothier, David D
2013-04-01
The endoscope allows for better inspection for cholesteatoma in cases with chronic otitis media, better access to selective epitympanic poor ventilation and secondary selective chronic otitis media, better visualization of anterior poor ventilation of the mesotympanum (reestablishing adequate ventilation to the mesotympanum), better visualization and reconstruction of anterior tympanic membrane perforations, allows use of Sheehy's lateral graft tympanoplasty through a transcanal approach, and increases the odds of preoperative detection of ossicular chain disruption associated with perforations. Copyright © 2013 Elsevier Inc. All rights reserved.
Pássaro, Caroline P; Silva, Pedro L; Rzezinski, Andréia F; Abrantes, Simone; Santiago, Viviane R; Nardelli, Liliane; Santos, Raquel S; Barbosa, Carolina M L; Morales, Marcelo M; Zin, Walter A; Amato, Marcelo B P; Capelozzi, Vera L; Pelosi, Paolo; Rocco, Patricia R M
2009-03-01
To investigate the effects of low and high levels of positive end-expiratory pressure (PEEP), without recruitment maneuvers, during lung protective ventilation in an experimental model of acute lung injury (ALI). Prospective, randomized, and controlled experimental study. University research laboratory. Wistar rats were randomly assigned to control (C) [saline (0.1 mL), intraperitoneally] and ALI [paraquat (15 mg/kg), intraperitoneally] groups. After 24 hours, each group was further randomized into four groups (six rats each) at different PEEP levels = 1.5, 3, 4.5, or 6 cm H2O and ventilated with a constant tidal volume (6 mL/kg) and open thorax. Lung mechanics [static elastance (Est, L) and viscoelastic pressure (DeltaP2, L)] and arterial blood gases were measured before (Pre) and at the end of 1-hour mechanical ventilation (Post). Pulmonary histology (light and electron microscopy) and type III procollagen (PCIII) messenger RNA (mRNA) expression were measured after 1 hour of mechanical ventilation. In ALI group, low and high PEEP levels induced a greater percentage of increase in Est, L (44% and 50%) and DeltaP2, L (56% and 36%) in Post values related to Pre. Low PEEP yielded alveolar collapse whereas high PEEP caused overdistension and atelectasis, with both levels worsening oxygenation and increasing PCIII mRNA expression. In the present nonrecruited ALI model, protective mechanical ventilation with lower and higher PEEP levels than required for better oxygenation increased Est, L and DeltaP2, L, the amount of atelectasis, and PCIII mRNA expression. PEEP selection titrated for a minimum elastance and maximum oxygenation may prevent lung injury while deviation from these settings may be harmful.
Yuan, Ye; Luo, Zhiwen; Liu, Jing; Wang, Yaowu; Lin, Yaoyu
2018-06-01
China is confronted with serious PM 2.5 pollution, especially in the capital city of Beijing. Exposure to PM 2.5 could lead to various negative health impacts including premature mortality. As people spend most of their time indoors, the indoor exposure to PM 2.5 from both indoor and outdoor origins constitutes the majority of personal exposure to PM 2.5 pollution. Different building interventions have been introduced to mitigate indoor PM 2.5 exposure, but always at the cost of energy expenditure. In this study, the health and economic benefits of different ventilation intervention strategies for reducing indoor PM 2.5 exposure are modeled using a representative urban residence in Beijing, with consideration of different indoor PM 2.5 emission strengths and outdoor pollution. Our modeling results show that the increase of envelope air-tightness can achieve significant economic benefits when indoor PM 2.5 emissions are absent; however, if an indoor PM 2.5 source is present, the benefits only increase slightly in mechanically ventilated buildings, but may show negative benefit without mechanical ventilation. Installing mechanical ventilation in Beijing can achieve annual economic benefits ranging from 200yuan/capita to 800yuan/capita if indoor PM 2.5 sources exist. If there is no indoor emission, the annual benefits above 200yuan/capita can be achieved only when the PM 2.5 filtration efficiency is no <90% and the envelope air-tightness is above Chinese National Standard Level 7. Introducing mechanical ventilation with low PM 2.5 filtration efficiency to current residences in urban Beijing will increase the indoor PM 2.5 exposure and result in excess costs to the residents. Copyright © 2018 Elsevier B.V. All rights reserved.
Liu, Hongliang; Zhang, Lei; Feng, Lihong; Wang, Fei; Xue, Zhiming
2009-09-01
To assess the effect of air quality of cleaning and disinfection on central air-conditioning ventilation systems. 102 air-conditioning ventilation systems in 46 public facilities were sampled and investigated based on Hygienic assessment criterion of cleaning and disinfection of public central air-conditioning systems. Median dust volume decreased from 41.8 g/m2 to 0.4 g/m2, and the percentage of pipes meeting the national standard for dust decreased from 17.3% (13/60) to 100% (62/62). In the dust, median aerobic bacterial count decreased from 14 cfu/cm2 to 1 cfu/cm2. Median aerobic fungus count decreased from 10 cfu/cm2 to 0 cfu/cm2. The percentage of pipes with bacterial and fungus counts meeting the national standard increased from 92.4% (171/185) and 82.2% (152/185) to 99.4% (165/166) and 100% (166/166), respectively. In the ventilation air, median aerobic bacterial count decreased from 756 cfu/m3 to 229 cfu/m3. Median aerobic fungus count decreased from 382 cfu/m3 to 120 cfu/m3. The percentage of pipes meeting the national standard for ventilation air increased from 33.3% (81/243) and 62.1% (151/243) to 79.8% (292/366) and 87.7% (242/276), respectively. But PM10 rose from 0.060 mg/m3 to 0.068 mg/m3, and the percentage of pipes meeting the national standard for PM10 increased from 74.2% (13/60) to 90.2% (46/51). The cleaning and disinfection of central air-conditioning ventilation systems could have a beneficial effect of air quality.
Sobotka, Kristina S.; Hooper, Stuart B.; Crossley, Kelly J.; Ong, Tracey; Schmölzer, Georg M.; Barton, Samantha K.; McDougall, Annie R. A.; Miller, Suzie L.; Tolcos, Mary; Klingenberg, Claus; Polglase, Graeme R.
2016-01-01
Background A sustained inflation (SI) rapidly restores cardiac function in asphyxic, bradycardic newborns but its effects on cerebral haemodynamics and brain injury are unknown. We determined the effect of different SI strategies on carotid blood flow (CaBF) and cerebral vascular integrity in asphyxiated near-term lambs. Methods Lambs were instrumented and delivered at 139 ± 2 d gestation and asphyxia was induced by delaying ventilation onset. Lambs were randomised to receive 5 consecutive 3 s SI (multiple SI; n = 6), a single 30 s SI (single SI; n = 6) or conventional ventilation (no SI; n = 6). Ventilation continued for 30 min in all lambs while CaBF and respiratory function parameters were recorded. Brains were assessed for gross histopathology and vascular leakage. Results CaBF increased more rapidly and to a greater extent during a single SI (p = 0.01), which then decreased below both other groups by 10 min, due to a higher cerebral oxygen delivery (p = 0.01). Blood brain barrier disruption was increased in single SI lambs as indicated by increased numbers of blood vessel profiles with plasma protein extravasation (p = 0.001) in the cerebral cortex. There were no differences in CaBF or cerebral oxygen delivery between the multiple SI and no SI lambs. Conclusions Ventilation with an initial single 30 s SI improves circulatory recovery, but is associated with greater disruption of blood brain barrier function, which may exacerbate brain injury suffered by asphyxiated newborns. This injury may occur as a direct result of the initial SI or to the higher tidal volumes delivered during subsequent ventilation. PMID:26765258
Effect of Ventilation Strategies on Residential Ozone Levels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, Iain S.; Sherman, Max H.
Elevated outdoor ozone levels are associated with adverse health effects. Because people spend the vast majority of their time indoors, reduction in indoor levels of ozone of outdoor origin would lower population exposures and might also lead to a reduction in ozone-associated adverse health effects. In most buildings, indoor ozone levels are diminished with respect to outdoor levels to an extent that depends on surface reactions and on the degree to which ozone penetrates the building envelope. Ozone enters buildings from outdoors together with the airflows that are driven by natural and mechanical means, including deliberate ventilation used to reducemore » concentrations of indoor-generated pollutants. When assessing the effect of deliberate ventilation on occupant health one should consider not only the positive effects on removing pollutants of indoor origin but also the possibility that enhanced ventilation might increase indoor levels of pollutants originating outdoors. This study considers how changes in residential ventilation that are designed to comply with ASHRAE Standard 62.2 might influence indoor levels of ozone. Simulation results show that the building envelope can contribute significantly to filtration of ozone. Consequently, the use of exhaust ventilation systems is predicted to produce lower indoor ozone concentrations than would occur with balanced ventilation systems operating at the same air-exchange rate. We also investigated a strategy for reducing exposure to ozone that would deliberately reduce ventilation rates during times of high outdoor ozone concentration while still meeting daily average ventilation requirements.« less
Intraoperative mechanical ventilation: state of the art.
Ball, Lorenzo; Costantino, Federico; Orefice, Giulia; Chandrapatham, Karthikka; Pelosi, Paolo
2017-10-01
Mechanical ventilation is a cornerstone of the intraoperative management of the surgical patient and is still mandatory in several surgical procedures. In the last decades, research focused on preventing postoperative pulmonary complications (PPCs), both improving risk stratification through the use of predictive scores and protecting the lung adopting so-called protective ventilation strategies. The aim of this review was to give an up-to-date overview of the currently suggested intraoperative ventilation strategies, along with their pathophysiologic rationale, with a focus on challenging conditions, such as obesity, one-lung ventilation and cardiopulmonary bypass. While anesthesia and mechanical ventilation are becoming increasingly safe practices, the contribution to surgical mortality attributable to postoperative lung injury is not negligible: for these reasons, the prevention of PPCs, including the use of protective mechanical ventilation is mandatory. Mechanical ventilation should be optimized providing an adequate respiratory support while minimizing unwanted negative effects. Due to the high number of surgical procedures performed daily, the impact on patients' health and healthcare costs can be relevant, even when new strategies result in an apparently small improvement of outcome. A protective intraoperative ventilation should include a low tidal volume of 6-8 mL/kg of predicted body weight, plateau pressures ideally below 16 cmH2O, the lowest possible driving pressure, moderate-low PEEP levels except in obese patients, laparoscopy and long surgical procedures that might benefit of a slightly higher PEEP. The work of the anesthesiologist should start with a careful preoperative visit to assess the risk, and a close postoperative monitoring.
Effects of ventilation behaviour on indoor heat load based on test reference years.
Rosenfelder, Madeleine; Koppe, Christina; Pfafferott, Jens; Matzarakis, Andreas
2016-02-01
Since 2003, most European countries established heat health warning systems to alert the population to heat load. Heat health warning systems are based on predicted meteorological conditions outdoors. But the majority of the European population spends a substantial amount of time indoors, and indoor thermal conditions can differ substantially from outdoor conditions. The German Meteorological Service (Deutscher Wetterdienst, DWD) extended the existing heat health warning system (HHWS) with a thermal building simulation model to consider heat load indoors. In this study, the thermal building simulation model is used to simulate a standardized building representing a modern nursing home, because elderly and sick people are most sensitive to heat stress. Different types of natural ventilation were simulated. Based on current and future test reference years, changes in the future heat load indoors were analyzed. Results show differences between the various ventilation options and the possibility to minimize the thermal heat stress during summer by using an appropriate ventilation method. Nighttime ventilation for indoor thermal comfort is most important. A fully opened window at nighttime and the 2-h ventilation in the morning and evening are more sufficient to avoid heat stress than a tilted window at nighttime and the 1-h ventilation in the morning and the evening. Especially the ventilation in the morning seems to be effective to keep the heat load indoors low. Comparing the results for the current and the future test reference years, an increase of heat stress on all ventilation types can be recognized.
Effects of ventilation behaviour on indoor heat load based on test reference years
NASA Astrophysics Data System (ADS)
Rosenfelder, Madeleine; Koppe, Christina; Pfafferott, Jens; Matzarakis, Andreas
2016-02-01
Since 2003, most European countries established heat health warning systems to alert the population to heat load. Heat health warning systems are based on predicted meteorological conditions outdoors. But the majority of the European population spends a substantial amount of time indoors, and indoor thermal conditions can differ substantially from outdoor conditions. The German Meteorological Service (Deutscher Wetterdienst, DWD) extended the existing heat health warning system (HHWS) with a thermal building simulation model to consider heat load indoors. In this study, the thermal building simulation model is used to simulate a standardized building representing a modern nursing home, because elderly and sick people are most sensitive to heat stress. Different types of natural ventilation were simulated. Based on current and future test reference years, changes in the future heat load indoors were analyzed. Results show differences between the various ventilation options and the possibility to minimize the thermal heat stress during summer by using an appropriate ventilation method. Nighttime ventilation for indoor thermal comfort is most important. A fully opened window at nighttime and the 2-h ventilation in the morning and evening are more sufficient to avoid heat stress than a tilted window at nighttime and the 1-h ventilation in the morning and the evening. Especially the ventilation in the morning seems to be effective to keep the heat load indoors low. Comparing the results for the current and the future test reference years, an increase of heat stress on all ventilation types can be recognized.
Initial parametric study of the flammability of plume releases in Hanford waste tanks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antoniak, Z.I.; Recknagle, K.P.
This study comprised systematic analyses of waste tank headspace flammability following a plume-type of gas release from the waste. First, critical parameters affecting plume flammability were selected, evaluated, and refined. As part of the evaluation the effect of ventilation (breathing) air inflow on the convective flow field inside the tank headspace was assessed, and the magnitude of the so-called {open_quotes}numerical diffusion{close_quotes} on numerical simulation accuracy was investigated. Both issues were concluded to be negligible influences on predicted flammable gas concentrations in the tank headspace. Previous validation of the TEMPEST code against experimental data is also discussed, with calculated results inmore » good agreements with experimental data. Twelve plume release simulations were then run, using release volumes and flow rates that were thought to cover the range of actual release volumes and rates. The results indicate that most plume-type releases remain flammable only during the actual release ends. Only for very large releases representing a significant fraction of the volume necessary to make the entire mixed headspace flammable (many thousands of cubic feet) can flammable concentrations persist for several hours after the release ends. However, as in the smaller plumes, only a fraction of the total release volume is flammable at any one time. The transient evolution of several plume sizes is illustrated in a number of color contour plots that provide insight into plume mixing behavior.« less
Barry, Rachel A; Fink, Daniel S; Pourciau, Dusty Cole; Hayley, Kasey; Lanius, Rachael; Hayley, Schuylor; Sims, Eddy; McWhorter, Andrew J
2017-09-01
Objective Jet ventilation has been used for >30 years as an anesthetic modality for laryngotracheal surgery. Concerns exist over increased risk with elevated body mass index (BMI). We reviewed our experience using jet ventilation for laryngotracheal stenosis to assess for complication rates with substratification by BMI. Study Design Case series with chart review. Setting Tertiary care center. Subjects and Methods A total of 126 procedures with jet ventilation were identified from October 2006 to December 2014. Complications were recorded, including intubation, unplanned admission, readmission, dysphonia, oral trauma, pneumothorax, pneumomediastinum, and tracheostomy. Lowest intraoperative oxygen saturation and maximum end-tidal CO 2 (ETCO 2 ) levels were recorded. Results Among 126 patients, 43, 77, and 6 had BMIs of <25, 25-35, and 36-45, respectively. In the BMI <25 group, there was 1 unplanned intubation. Mean maximum ETCO 2 was 36.51 with no hypoxemia observed. In the BMI 25-35 group, 2 patients required intubation, and 1 sustained minor oral trauma. The mean maximum ETCO 2 was 38.85, with 4 patients having oxygen saturation <90%. In the BMI 36-45 group, 2 patients required intubation. The mean maximum ETCO 2 was 41 with no hypoxemia observed. BMI and length of stenosis were statistically significant variables associated with incidence of intraoperative intubation. Conclusion Increased BMI was associated with an increase in highest ETCO 2 intraoperatively. However, this was not associated with an increase in major complications. Jet ventilation was performed without significant adverse events in this sample, and it is a viable option if used with an experienced team in the management of laryngotracheal stenosis.
Effect of sedation with detomidine and butorphanol on pulmonary gas exchange in the horse.
Nyman, Görel; Marntell, Stina; Edner, Anna; Funkquist, Pia; Morgan, Karin; Hedenstierna, Göran
2009-05-07
Sedation with alpha2-agonists in the horse is reported to be accompanied by impairment of arterial oxygenation. The present study was undertaken to investigate pulmonary gas exchange using the Multiple Inert Gas Elimination Technique (MIGET), during sedation with the alpha2-agonist detomidine alone and in combination with the opioid butorphanol. Seven Standardbred trotter horses aged 3-7 years and weighing 380-520 kg, were studied. The protocol consisted of three consecutive measurements; in the unsedated horse, after intravenous administration of detomidine (0.02 mg/kg) and after subsequent butorphanol administration (0.025 mg/kg). Pulmonary function and haemodynamic effects were investigated. The distribution of ventilation-perfusion ratios (VA/Q) was estimated with MIGET. During detomidine sedation, arterial oxygen tension (PaO2) decreased (12.8 +/- 0.7 to 10.8 +/- 1.2 kPa) and arterial carbon dioxide tension (PaCO2) increased (5.9 +/- 0.3 to 6.1 +/- 0.2 kPa) compared to measurements in the unsedated horse. Mismatch between ventilation and perfusion in the lungs was evident, but no increase in intrapulmonary shunt could be detected. Respiratory rate and minute ventilation did not change. Heart rate and cardiac output decreased, while pulmonary and systemic blood pressure and vascular resistance increased. Addition of butorphanol resulted in a significant decrease in ventilation and increase in PaCO2. Alveolar-arterial oxygen content difference P(A-a)O2 remained impaired after butorphanol administration, the VA/Q distribution improved as the decreased ventilation and persistent low blood flow was well matched. Also after subsequent butorphanol no increase in intrapulmonary shunt was evident. The results of the present study suggest that both pulmonary and cardiovascular factors contribute to the impaired pulmonary gas exchange during detomidine and butorphanol sedation in the horse.
Source Term Model for Fine Particle Resuspension from Indoor Surfaces
2008-02-01
0.144: calcula 5.16: c Particle Lycopodium spores Bacillus atrophaeus spores Latex particles dp (μm) 27.8 0.91 0.509, 1.019 ρp (kg/m3) 1000 1000...and transport, spreading of crop diseases by fungal spores , cleaning of electronic chips, handling of toxic powders, transmission of human dis- eases...governmental functions. Airborne CB agents released in one section of a building travel via the building’s heating, ventilating, and air-conditioning ( HVAC
Interior pathways of the North Atlantic meridional overturning circulation.
Bower, Amy S; Lozier, M Susan; Gary, Stefan F; Böning, Claus W
2009-05-14
To understand how our global climate will change in response to natural and anthropogenic forcing, it is essential to determine how quickly and by what pathways climate change signals are transported throughout the global ocean, a vast reservoir for heat and carbon dioxide. Labrador Sea Water (LSW), formed by open ocean convection in the subpolar North Atlantic, is a particularly sensitive indicator of climate change on interannual to decadal timescales. Hydrographic observations made anywhere along the western boundary of the North Atlantic reveal a core of LSW at intermediate depths advected southward within the Deep Western Boundary Current (DWBC). These observations have led to the widely held view that the DWBC is the dominant pathway for the export of LSW from its formation site in the northern North Atlantic towards the Equator. Here we show that most of the recently ventilated LSW entering the subtropics follows interior, not DWBC, pathways. The interior pathways are revealed by trajectories of subsurface RAFOS floats released during the period 2003-2005 that recorded once-daily temperature, pressure and acoustically determined position for two years, and by model-simulated 'e-floats' released in the subpolar DWBC. The evidence points to a few specific locations around the Grand Banks where LSW is most often injected into the interior. These results have implications for deep ocean ventilation and suggest that the interior subtropical gyre should not be ignored when considering the Atlantic meridional overturning circulation.
Reaerosolization of Fluidized Spores in Ventilation Systems▿
Krauter, Paula; Biermann, Arthur
2007-01-01
This project examined dry, fluidized spore reaerosolization in a heating, ventilating, and air conditioning duct system. Experiments using spores of Bacillus atrophaeus, a nonpathogenic surrogate for Bacillus anthracis, were conducted to delineate the extent of spore reaerosolization behavior under normal indoor airflow conditions. Short-term (five air-volume exchanges), long-term (up to 21,000 air-volume exchanges), and cycled (on-off) reaerosolization tests were conducted using two common duct materials. Spores were released into the test apparatus in turbulent airflow (Reynolds number, 26,000). After the initial pulse of spores (approximately 1010 to 1011 viable spores) was released, high-efficiency particulate air filters were added to the air intake. Airflow was again used to perturb the spores that had previously deposited onto the duct. Resuspension rates on both steel and plastic duct materials were between 10−3 and 10−5 per second, which decreased to 10 times less than initial rates within 30 min. Pulsed flow caused an initial spike in spore resuspension concentration that rapidly decreased. The resuspension rates were greater than those predicted by resuspension models for contamination in the environment, a result attributed to surface roughness differences. There was no difference between spore reaerosolization from metal and that from plastic duct surfaces over 5 hours of constant airflow. The spores that deposited onto the duct remained a persistent source of contamination over a period of several hours. PMID:17293522
Ventilator-associated pneumonia: clinical significance and implications for nursing.
Grap, M J; Munro, C L
1997-01-01
Pneumonia is the second most common nosocomial infection in the United States and the leading cause of death from nosocomial infections. Intubation and mechanical ventilation greatly increase the risk of bacterial pneumonia. Ventilator-associated pneumonia (VAP) occurs in a patient treated with mechanical ventilation, and it is neither present nor developing at the time of intubation; it is a serious problem--with significant morbidity and mortality rates. Aspiration of bacteria from the oropharynx, leakage of contaminated secretions around the endotracheal tube, patient position, and cross-contamination from respiratory equipment and health care providers are important factors in the development of VAP. Nurses caring for patients treated with mechanical ventilation must recognize risk factors and include strategies for reducing these factors as part of their nursing care. This article summarizes the literature related to VAP: its incidence, associated factors, diagnosis, and current therapies, with an emphasis on nursing implications in the care of these patients.
Müller-Redetzky, Holger C; Will, Daniel; Hellwig, Katharina; Kummer, Wolfgang; Tschernig, Thomas; Pfeil, Uwe; Paddenberg, Renate; Menger, Michael D; Kershaw, Olivia; Gruber, Achim D; Weissmann, Norbert; Hippenstiel, Stefan; Suttorp, Norbert; Witzenrath, Martin
2014-04-14
Ventilator-induced lung injury (VILI) contributes to morbidity and mortality in acute respiratory distress syndrome (ARDS). Particularly pre-injured lungs are susceptible to VILI despite protective ventilation. In a previous study, the endogenous peptide adrenomedullin (AM) protected murine lungs from VILI. We hypothesized that mechanical ventilation (MV) contributes to lung injury and sepsis in pneumonia, and that AM may reduce lung injury and multiple organ failure in ventilated mice with pneumococcal pneumonia. We analyzed in mice the impact of MV in established pneumonia on lung injury, inflammation, bacterial burden, hemodynamics and extrapulmonary organ injury, and assessed the therapeutic potential of AM by starting treatment at intubation. In pneumococcal pneumonia, MV increased lung permeability, and worsened lung mechanics and oxygenation failure. MV dramatically increased lung and blood cytokines but not lung leukocyte counts in pneumonia. MV induced systemic leukocytopenia and liver, gut and kidney injury in mice with pneumonia. Lung and blood bacterial burden was not affected by MV pneumonia and MV increased lung AM expression, whereas receptor activity modifying protein (RAMP) 1-3 expression was increased in pneumonia and reduced by MV. Infusion of AM protected against MV-induced lung injury (66% reduction of pulmonary permeability p < 0.01; prevention of pulmonary restriction) and against VILI-induced liver and gut injury in pneumonia (91% reduction of AST levels p < 0.05, 96% reduction of alanine aminotransaminase (ALT) levels p < 0.05, abrogation of histopathological changes and parenchymal apoptosis in liver and gut). MV paved the way for the progression of pneumonia towards ARDS and sepsis by aggravating lung injury and systemic hyperinflammation leading to liver, kidney and gut injury. AM may be a promising therapeutic option to protect against development of lung injury, sepsis and extrapulmonary organ injury in mechanically ventilated individuals with severe pneumonia.
Carbon dioxide rebreathing during non-invasive ventilation delivered by helmet: a bench study.
Mojoli, Francesco; Iotti, Giorgio A; Gerletti, Maddalena; Lucarini, Carlo; Braschi, Antonio
2008-08-01
To define how to monitor and limit CO(2) rebreathing during helmet ventilation. Physical model study. Laboratory in a university teaching hospital. We applied pressure-control ventilation to a helmet mounted on a physical model. In series 1 we increased CO(2) production (V'CO(2)) from 100 to 550 ml/min and compared mean inhaled CO(2) (iCO(2),mean) with end-inspiratory CO(2) at airway opening (eiCO(2)), end-tidal CO(2) at Y-piece (yCO(2)) and mean CO(2) inside the helmet (hCO(2)). In series 2 we observed, at constant V'CO(2), effects on CO(2) rebreathing of inspiratory pressure, respiratory mechanics, the inflation of cushions inside the helmet and the addition of a flow-by. In series 1, iCO(2),mean linearly related to V'CO(2). The best estimate of CO(2) rebreathing was provided by hCO(2): differences between iCO(2),mean and hCO(2), yCO(2) and eiCO(2) were 0.0+/-0.1, 0.4+/-0.2 and -1.3+/-0.5%. In series 2, hCO(2) inversely related to the total ventilation (MVtotal) delivered to the helmet-patient unit. The increase in inspiratory pressure significantly increased MVtotal and lowered hCO(2). The low lung compliance halved the patient:helmet ventilation ratio but led to minor changes in MVtotal and hCO(2). Cushion inflation, although it decreased the helmet's internal volume by 33%, did not affect rebreathing. A 8-l/min flow-by effectively decreased hCO(2). During helmet ventilation, rebreathing can be assessed by measuring hCO(2) or yCO(2), but not eiCO(2). It is directly related to V'CO(2), inversely related to MVtotal and can be lowered by increasing inspiratory pressure or adding a flow-by.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Traynor, G.W.; Talbott, J.M.; Moses, D.O.
Building ventilation consumes about 5.8 exajoules of energy each year in the US The annual cost of this energy, used for commercial building fans (1.6 exajoules) and the heating and cooling of outside air (4.2 exajoules), is about $US 33 billion per year. Energy conservation measures that reduce heating and cooling season ventilation rates 15 to 35% in commercial and residential buildings can result in a national savings of about 0.6 to 1.5 exajoules ($US 3-8 billion) per year assuming no reduction of commercial building fan energy use. The most significant adverse environmental impact of reduced ventilation and infiltration ismore » the potential degradation of the buildings indoor air quality. Potential benefits to the US from the implementation of sound indoor air quality and building ventilation reduction policies include reduced building-sector energy consumption; reduced indoor, outdoor, and global air pollution; reduced product costs; reduced worker absenteeism; reduced health care costs; reduced litigation; increased worker well-being and productivity; and increased product quality and competitiveness.« less
High tidal volume ventilation in infant mice.
Cannizzaro, Vincenzo; Zosky, Graeme R; Hantos, Zoltán; Turner, Debra J; Sly, Peter D
2008-06-30
Infant mice were ventilated with either high tidal volume (V(T)) with zero end-expiratory pressure (HVZ), high V(T) with positive end-expiratory pressure (PEEP) (HVP), or low V(T) with PEEP. Thoracic gas volume (TGV) was determined plethysmographically and low-frequency forced oscillations were used to measure the input impedance of the respiratory system. Inflammatory cells, total protein, and cytokines in bronchoalveolar lavage fluid (BALF) and interleukin-6 (IL-6) in serum were measured as markers of pulmonary and systemic inflammatory response, respectively. Coefficients of tissue damping and tissue elastance increased in all ventilated mice, with the largest rise seen in the HVZ group where TGV rapidly decreased. BALF protein levels increased in the HVP group, whereas serum IL-6 rose in the HVZ group. PEEP keeps the lungs open, but provides high volumes to the entire lungs and induces lung injury. Compared to studies in adult and non-neonatal rodents, infant mice demonstrate a different response to similar ventilation strategies underscoring the need for age-specific animal models.
Non-invasive ventilation in amyotrophic lateral sclerosis.
Vrijsen, Bart; Testelmans, Dries; Belge, Catharina; Robberecht, Wim; Van Damme, Philip; Buyse, Bertien
2013-03-01
Abstract Non-invasive ventilation (NIV) is widely used to improve alveolar hypoventilation in amyotrophic lateral sclerosis. Several studies indicate a better survival when NIV is used, certainly in patients with none to moderate bulbar dysfunction. Data on quality of life (QoL) are rather disputable. Overall QoL is shown to be equivalent in patients with or without NIV, although health-related QoL is shown to be increased in patients with none to moderate bulbar dysfunction. NIV improves sleep quality, although patient-ventilator asynchronies are demonstrated. FVC < 50%, seated or supine, has been widely applied as threshold to initiate NIV. Today, measurements of respiratory muscle strength, nocturnal gas exchange and symptomatic complaints are used as indicators to start NIV. Being compliant with NIV therapy increases QoL and survival. Cough augmentation has an important role in appropriate NIV. Patients have today more technical options and patients with benefit from these advances are growing in number. Tracheal ventilation needs to be discussed when NIV seems impossible or becomes insufficient.
Fuller, Brian M; Ferguson, Ian T; Mohr, Nicholas M; Drewry, Anne M; Palmer, Christopher; Wessman, Brian T; Ablordeppey, Enyo; Keeperman, Jacob; Stephens, Robert J; Briscoe, Cristopher C; Kolomiets, Angelina A; Hotchkiss, Richard S; Kollef, Marin H
2017-09-01
We evaluated the efficacy of an emergency department (ED)-based lung-protective mechanical ventilation protocol for the prevention of pulmonary complications. This was a quasi-experimental, before-after study that consisted of a preintervention period, a run-in period of approximately 6 months, and a prospective intervention period. The intervention was a multifaceted ED-based mechanical ventilator protocol targeting lung-protective tidal volume, appropriate setting of positive end-expiratory pressure, rapid oxygen weaning, and head-of-bed elevation. A propensity score-matched analysis was used to evaluate the primary outcome, which was the composite incidence of acute respiratory distress syndrome and ventilator-associated conditions. A total of 1,192 patients in the preintervention group and 513 patients in the intervention group were included. Lung-protective ventilation increased by 48.4% in the intervention group. In the propensity score-matched analysis (n=490 in each group), the primary outcome occurred in 71 patients (14.5%) in the preintervention group compared with 36 patients (7.4%) in the intervention group (adjusted odds ratio 0.47; 95% confidence interval [CI] 0.31 to 0.71). There was an increase in ventilator-free days (mean difference 3.7; 95% CI 2.3 to 5.1), ICU-free days (mean difference 2.4; 95% CI 1.0 to 3.7), and hospital-free days (mean difference 2.4; 95% CI 1.2 to 3.6) associated with the intervention. The mortality rate was 34.1% in the preintervention group and 19.6% in the intervention group (adjusted odds ratio 0.47; 95% CI 0.35 to 0.63). Implementing a mechanical ventilator protocol in the ED is feasible and is associated with significant improvements in the delivery of safe mechanical ventilation and clinical outcome. Copyright © 2017 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.
Anekwe, David; de Marchie, Michel; Spahija, Jadranka
2017-06-01
Pressure support ventilation (PSV) may be used for exercise training in chronic obstructive pulmonary disease (COPD), but its acute effect on maximum exercise capacity is not fully known. The objective of this study was to evaluate the effect of 10 cm H 2 O PSV and a fixed PSV level titrated to patient comfort at rest on maximum exercise workload (WLmax), breathing pattern and metabolic parameters during a symptom-limited incremental bicycle test in individuals with COPD. Eleven individuals with COPD (forced expiratory volume in one second: 49 ± 16%; age: 64 ± 7 years) performed three exercise tests: without a ventilator, with 10 cm H 2 O of PSV and with a fixed level titrated to comfort at rest, using a SERVO-i ventilator. Tests were performed in randomized order and at least 48 hours apart. The WLmax, breathing pattern, metabolic parameters, and mouth pressure (Pmo) were compared using repeated measures analysis of variance. Mean PSV during titration was 8.2 ± 4.5 cm H 2 O. There was no difference in the WLmax achieved during the three tests. At rest, PSV increased the tidal volume, minute ventilation, and mean inspiratory flow with a lower end-tidal CO 2 ; this was not sustained at peak exercise. Pmo decreased progressively (decreased unloading) with PSV at workloads close to peak, suggesting the ventilator was unable to keep up with the increased ventilatory demand at high workloads. In conclusion, with a Servo-i ventilator, 10 cm H 2 O of PSV and a fixed level of PSV established by titration to comfort at rest, is ineffective for the purpose of achieving higher exercise workloads as the acute physiological effects may not be sustained at peak exercise.
Neumann, Roland P; Pillow, Jane J; Thamrin, Cindy; Larcombe, Alexander N; Hall, Graham L; Schulzke, Sven M
2015-01-01
Ventilated preterm infant lungs are vulnerable to overdistension and underinflation. The optimal ventilator-delivered tidal volume (VT) in these infants is unknown and may depend on the extent of alveolarisation at birth. We aimed to calculate respiratory dead space (VD) from the molar mass (MM) signal of an ultrasonic flowmeter (VD,MM) in very preterm infants on volume-targeted ventilation (VT target, 4-5 ml/kg) and to study the association between gestational age (GA) and VD,MM-to-VT ratio (VD,MM/VT), alveolar tidal volume (VA) and alveolar minute volume (AMV). This was a single-centre, prospective, observational, cohort study in a neonatal intensive care unit. Tidal breathing analysis was performed in ventilated very preterm infants (GA range 23-32 weeks) on day 1 of life. Valid measurements were obtained in 43/51 (87%) infants. Tidal breathing variables were analysed using multivariable linear regression. VD,MM/VT was negatively associated with GA after adjusting for birth weight Z score (p < 0.001, R(2) = 0.26). This association was primarily influenced by the appliance dead space. Despite similar VT/kg and VA/kg across all studied infants, respiratory rate and AMV/kg increased with GA. VD,app rather than anatomical VD is the major factor influencing increased VD,MM/VT at a younger GA. A volume guarantee setting of 4-5 ml/kg in the Dräger Babylog® 8000 plus ventilator may be inappropriate as a universal target across the GA range of 23-32 weeks. Differences between measured and set VT and the dependence of this difference on GA require further investigation. © 2014 S. Karger AG, Basel.
Bavis, Ryan W.; van Heerden, Eliza S.; Brackett, Diane G.; Harmeling, Luke H.; Johnson, Stephen M.; Blegen, Halward J.; Logan, Sarah; Nguyen, Giang N.; Fallon, Sarah C.
2014-01-01
Newborn rats chronically exposed to moderate hyperoxia (60% O2) exhibit abnormal respiratory control, including decreased eupneic ventilation. To further characterize this plasticity and explore its proximate mechanisms, rats were exposed to either 21% O2 (Control) or 60% O2 (Hyperoxia) from birth until studied at 3 – 14 days of age (P3 – P14). Normoxic ventilation was reduced in Hyperoxia rats when studied at P3, P4, and P6-7 and this was reflected in diminished arterial O2 saturations; eupneic ventilation spontaneously recovered by P13-14 despite continuous hyperoxia, or within 24 h when Hyperoxia rats were returned to room air. Normoxic metabolism was also reduced in Hyperoxia rats but could be increased by raising inspired O2 levels (to 60% O2) or by uncoupling oxidative phosphorylation within the mitochondrion (2, 4-dinitrophenol). In contrast, moderate increases in inspired O2 had no effect on sustained ventilation which indicates that hypoventilation can be dissociated from hypometabolism. The ventilatory response to abrupt O2 inhalation was diminished in Hyperoxia rats at P4 and P6-7, consistent with smaller contributions of peripheral chemoreceptors to eupneic ventilation at these ages. Finally, the spontaneous respiratory rhythm generated in isolated brainstem-spinal cord preparations was significantly slower and more variable in P3-4 Hyperoxia rats than in age-matched Controls. We conclude that developmental hyperoxia impairs both peripheral and central components of eupneic ventilatory drive. Although developmental hyperoxia diminishes metabolism as well, this appears to be a regulated hypometabolism and contributes little to the observed changes in ventilation. PMID:24703970
Brain caspase-3 and intestinal FABP responses in preterm and term rats submitted to birth asphyxia.
Figueira, R L; Gonçalves, F L; Simões, A L; Bernardino, C A; Lopes, L S; Castro E Silva, O; Sbragia, L
2016-06-23
Neonatal asphyxia can cause irreversible injury of multiple organs resulting in hypoxic-ischemic encephalopathy and necrotizing enterocolitis (NEC). This injury is dependent on time, severity, and gestational age, once the preterm babies need ventilator support. Our aim was to assess the different brain and intestinal effects of ischemia and reperfusion in neonate rats after birth anoxia and mechanical ventilation. Preterm and term neonates were divided into 8 subgroups (n=12/group): 1) preterm control (PTC), 2) preterm ventilated (PTV), 3) preterm asphyxiated (PTA), 4) preterm asphyxiated and ventilated (PTAV), 5) term control (TC), 6) term ventilated (TV), 7) term asphyxiated (TA), and 8) term asphyxiated and ventilated (TAV). We measured body, brain, and intestine weights and respective ratios [(BW), (BrW), (IW), (BrW/BW) and (IW/BW)]. Histology analysis and damage grading were performed in the brain (cortex/hippocampus) and intestine (jejunum/ileum) tissues, as well as immunohistochemistry analysis for caspase-3 and intestinal fatty acid-binding protein (I-FABP). IW was lower in the TA than in the other terms (P<0.05), and the IW/BW ratio was lower in the TA than in the TAV (P<0.005). PTA, PTAV and TA presented high levels of brain damage. In histological intestinal analysis, PTAV and TAV had higher scores than the other groups. Caspase-3 was higher in PTAV (cortex) and TA (cortex/hippocampus) (P<0.005). I-FABP was higher in PTAV (P<0.005) and TA (ileum) (P<0.05). I-FABP expression was increased in PTAV subgroup (P<0.0001). Brain and intestinal responses in neonatal rats caused by neonatal asphyxia, with or without mechanical ventilation, varied with gestational age, with increased expression of caspase-3 and I-FABP biomarkers.
Brain caspase-3 and intestinal FABP responses in preterm and term rats submitted to birth asphyxia
Figueira, R.L.; Gonçalves, F.L.; Simões, A.L.; Bernardino, C.A.; Lopes, L.S.; Castro e Silva, O.; Sbragia, L.
2016-01-01
Neonatal asphyxia can cause irreversible injury of multiple organs resulting in hypoxic-ischemic encephalopathy and necrotizing enterocolitis (NEC). This injury is dependent on time, severity, and gestational age, once the preterm babies need ventilator support. Our aim was to assess the different brain and intestinal effects of ischemia and reperfusion in neonate rats after birth anoxia and mechanical ventilation. Preterm and term neonates were divided into 8 subgroups (n=12/group): 1) preterm control (PTC), 2) preterm ventilated (PTV), 3) preterm asphyxiated (PTA), 4) preterm asphyxiated and ventilated (PTAV), 5) term control (TC), 6) term ventilated (TV), 7) term asphyxiated (TA), and 8) term asphyxiated and ventilated (TAV). We measured body, brain, and intestine weights and respective ratios [(BW), (BrW), (IW), (BrW/BW) and (IW/BW)]. Histology analysis and damage grading were performed in the brain (cortex/hippocampus) and intestine (jejunum/ileum) tissues, as well as immunohistochemistry analysis for caspase-3 and intestinal fatty acid-binding protein (I-FABP). IW was lower in the TA than in the other terms (P<0.05), and the IW/BW ratio was lower in the TA than in the TAV (P<0.005). PTA, PTAV and TA presented high levels of brain damage. In histological intestinal analysis, PTAV and TAV had higher scores than the other groups. Caspase-3 was higher in PTAV (cortex) and TA (cortex/hippocampus) (P<0.005). I-FABP was higher in PTAV (P<0.005) and TA (ileum) (P<0.05). I-FABP expression was increased in PTAV subgroup (P<0.0001). Brain and intestinal responses in neonatal rats caused by neonatal asphyxia, with or without mechanical ventilation, varied with gestational age, with increased expression of caspase-3 and I-FABP biomarkers. PMID:27356106
Associations between classroom CO2 concentrations and student attendance in Washington and Idaho.
Shendell, D G; Prill, R; Fisk, W J; Apte, M G; Blake, D; Faulkner, D
2004-10-01
Student attendance in American public schools is a critical factor in securing limited operational funding. Student and teacher attendance influence academic performance. Limited data exist on indoor air and environmental quality (IEQ) in schools, and how IEQ affects attendance, health, or performance. This study explored the association of student absence with measures of indoor minus outdoor carbon dioxide concentration (dCO(2)). Absence and dCO(2) data were collected from 409 traditional and 25 portable classrooms from 22 schools located in six school districts in the states of Washington and Idaho. Study classrooms had individual heating, ventilation, and air conditioning (HVAC) systems, except two classrooms without mechanical ventilation. Classroom attributes, student attendance and school-level ethnicity, gender, and socioeconomic status (SES) were included in multivariate modeling. Forty-five percent of classrooms studied had short-term indoor CO(2) concentrations above 1000 p.p.m. A 1000 p.p.m. increase in dCO(2) was associated (P < 0.05) with a 0.5-0.9% decrease in annual average daily attendance (ADA), corresponding to a relative 10-20% increase in student absence. Annual ADA was 2% higher (P < 0.0001) in traditional than in portable classrooms. This study provides motivation for larger school studies to investigate associations of student attendance, and occupant health and student performance, with longer term indoor minus outdoor CO(2) concentrations and more accurately measured ventilation rates. If our findings are confirmed, improving classroom ventilation should be considered a practical means of reducing student absence. Adequate or enhanced ventilation may be achieved, for example, with educational training programs for teachers and facilities staff on ventilation system operation and maintenance. Also, technological interventions such as improved automated control systems could provide continuous ventilation during occupied times, regardless of occupant thermal comfort demands.
Effect of Heliox on Respiratory Outcomes during Rigid Bronchoscopy in Term Lambs.
Sowder, Justin C; Dahl, Mar Janna; Zuspan, Kaitlin R; Albertine, Kurt H; Null, Donald M; Barneck, Mitchell D; Grimmer, J Fredrik
2018-03-01
Objective To (1) compare physiologic changes during rigid bronchoscopy during spontaneous and mechanical ventilation and (2) evaluate the efficacy of a helium-oxygen (heliox) gas mixture as compared with room air during rigid bronchoscopy. Study Design Crossover animal study evaluating physiologic parameters during rigid bronchoscopy. Outcomes were compared with predicted computational fluid analysis. Setting Simulated ventilation via computational fluid dynamics analysis and term lambs undergoing rigid bronchoscopy. Methods Respiratory and physiologic outcomes were analyzed in a lamb model simulating bronchoscopy during foreign body aspiration to compare heliox with room air. The main outcome measures were blood oxygen saturation, heart rate, blood pressure, partial pressure of oxygen, and partial pressure of carbon dioxide. Computational fluid dynamics analysis was performed with SOLIDWORKS within a rigid pediatric bronchoscope during simulated ventilation comparing heliox with room air. Results For room air, lambs desaturated within 3 minutes during mechanical ventilation versus normal oxygen saturation during spontaneous ventilation ( P = .01). No improvement in respiratory outcomes was seen between heliox and room air during mechanical ventilation. Computational fluid dynamics analysis demonstrates increased turbulence within size 3.5 bronchoscopes when comparing heliox and room air. Meaningful comparisons could not be made due to the intolerance of the lambs to heliox in vivo. Conclusion During mechanical ventilation on room air, lambs desaturate more quickly during rigid bronchoscopy on settings that should be adequate. Heliox does not improve ventilation during rigid bronchoscopy.
Huang, Tzu-Ting; Peng, Ji-Ming
2010-06-01
To explore the underlying theoretical framework for the role adaptation of family caregivers for ventilator-dependent patients after transferring from respiratory care ward to home. The number of ventilator-dependent patients has been increasing worldwide. Under Taiwan's National Health Insurance policy, if ventilator-dependent patients are stable, they should be transferred from an acute care hospital to a subacute unit or home. A qualitative design based on grounded theory was adopted for this study. One-on-one, in-depth interviews were conducted with a purposive sample of 15 family caregivers who were caretaking ventilator-dependent patients at their home two months after hospital discharge. Theoretical sampling was used until concepts emerging in data analysis were saturated. Analysis of audio-taped interview transcripts generated a process of role adaptation for family caregivers of a ventilator-dependent patient. The caregiver's transition to the care-giving role is a dynamic process with consequences that are impacted by level of support from the family, affective rewards from the patient, patient's health condition and a balanced life schedule for the caregiver. The results of this study can provide respiratory care professionals with skills to assess the needs of caregivers for ventilator-dependent patients and individualise interventions to caregivers' specific needs. The findings of this study contribute to nurses' understanding and promotion of role adaptation for family caregivers among ventilator-dependent patients.
Integrated Stress Response Mediates Epithelial Injury in Mechanical Ventilation.
Dolinay, Tamas; Himes, Blanca E; Shumyatcher, Maya; Lawrence, Gladys Gray; Margulies, Susan S
2017-08-01
Ventilator-induced lung injury (VILI) is a severe complication of mechanical ventilation that can lead to acute respiratory distress syndrome. VILI is characterized by damage to the epithelial barrier with subsequent pulmonary edema and profound hypoxia. Available lung-protective ventilator strategies offer only a modest benefit in preventing VILI because they cannot impede alveolar overdistension and concomitant epithelial barrier dysfunction in the inflamed lung regions. There are currently no effective biochemical therapies to mitigate injury to the alveolar epithelium. We hypothesize that alveolar stretch activates the integrated stress response (ISR) pathway and that the chemical inhibition of this pathway mitigates alveolar barrier disruption during stretch and mechanical ventilation. Using our established rat primary type I-like alveolar epithelial cell monolayer stretch model and in vivo rat mechanical ventilation that mimics the alveolar overdistension seen in acute respiratory distress syndrome, we studied epithelial responses to mechanical stress. Our studies revealed that the ISR signaling pathway is a key modulator of epithelial permeability. We show that prolonged epithelial stretch and injurious mechanical ventilation activate the ISR, leading to increased alveolar permeability, cell death, and proinflammatory signaling. Chemical inhibition of protein kinase RNA-like endoplasmic reticulum kinase, an upstream regulator of the pathway, resulted in decreased injury signaling and improved barrier function after prolonged cyclic stretch and injurious mechanical ventilation. Our results provide new evidence that therapeutic targeting of the ISR can mitigate VILI.
Cordioli, Ricardo Luiz; Park, Marcelo; Costa, Eduardo Leite Vieira; Gomes, Susimeire; Brochard, Laurent; Amato, Marcelo Britto Passos; Azevedo, Luciano Cesar Pontes
2014-12-01
The aim of this study was to explore if positive-pressure ventilation delivered by a conventional ICU ventilator at a moderately high frequency (HFPPV) allows a safe reduction of tidal volume (V T) below 6 mL/kg in a porcine model of severe acute respiratory distress syndrome (ARDS) and at a lower mean airway pressure than high-frequency oscillatory ventilation (HFOV). This is a prospective study. In eight pigs (median weight 34 [29,36] kg), ARDS was induced by pulmonary lavage and injurious ventilation. The animals were ventilated with a randomized sequence of respiratory rates: 30, 60, 90, 120, 150, followed by HFOV at 5 Hz. At each step, V T was adjusted to allow partial pressure of arterial carbon dioxide (PaCO2) to stabilize between 57 and 63 mmHg. Data are shown as median [P25th,P75th]. After lung injury, the PaO2/FiO2 (P/F) ratio was 92 [63,118] mmHg, pulmonary shunt 26 [17,31]%, and static compliance 11 [8,14] mL/cmH2O. Positive end-expiratory pressure (PEEP) was 14 [10,17] cmH2O. At 30 breaths/min, V T was higher than 6 (7.5 [6.8,10.2]) mL/kg, but at all higher frequencies, V T could be reduced and PaCO2 maintained, leading to reductions in plateau pressures and driving pressures. For frequencies of 60 to 150/min, V T progressively fell from 5.2 [5.1,5.9] to 3.8 [3.7,4.2] mL/kg (p < 0.001). There were no detrimental effects in terms of lung mechanics, auto-PEEP generation, hemodynamics, or gas exchange. Mean airway pressure was maintained constant and was increased only during HFOV. During protective mechanical ventilation, HFPPV delivered by a conventional ventilator in a severe ARDS swine model safely allows further tidal volume reductions. This strategy also allowed decreasing airway pressures while maintaining stable PaCO2 levels.
Zhang, Xianming; Wu, Weiliang; Zhu, Yongcheng; Jiang, Ying; Du, Juan; Chen, Rongchang
2016-01-01
It has proved that muscle paralysis was more protective for injured lung in severe acute respiratory distress syndrome (ARDS), but the precise mechanism is not clear. The purpose of this study was to test the hypothesis that abdominal muscle activity during mechanically ventilation increases lung injury in severe ARDS. Eighteen male Beagles were studied under mechanical ventilation with anesthesia. Severe ARDS was induced by repetitive oleic acid infusion. After lung injury, Beagles were randomly assigned into spontaneous breathing group (BIPAPSB) and abdominal muscle paralysis group (BIPAPAP). All groups were ventilated with BIPAP model for 8h, and the high pressure titrated to reached a tidal volume of 6ml/kg, the low pressure was set at 10 cmH2O, with I:E ratio 1:1, and respiratory rate adjusted to a PaCO2 of 35-60 mmHg. Six Beagles without ventilator support comprised the control group. Respiratory variables, end-expiratory volume (EELV) and gas exchange were assessed during mechanical ventilation. The levels of Interleukin (IL)-6, IL-8 in lung tissue and plasma were measured by qRT-PCR and ELISA respectively. Lung injury scores were determined at end of the experiment. For the comparable ventilator setting, as compared with BIPAPSB group, the BIPAPAP group presented higher EELV (427±47 vs. 366±38 ml) and oxygenation index (293±36 vs. 226±31 mmHg), lower levels of IL-6(216.6±48.0 vs. 297.5±71.2 pg/ml) and IL-8(246.8±78.2 vs. 357.5±69.3 pg/ml) in plasma, and lower express levels of IL-6 mRNA (15.0±3.8 vs. 21.2±3.7) and IL-8 mRNA (18.9±6.8 vs. 29.5±7.9) in lung tissues. In addition, less lung histopathology injury were revealed in the BIPAPAP group (22.5±2.0 vs. 25.2±2.1). Abdominal muscle activity during mechanically ventilation is one of the injurious factors in severe ARDS, so abdominal muscle paralysis might be an effective strategy to minimize ventilator-induce lung injury.
Becher, Tobias; Schädler, Dirk; Pulletz, Sven; Freitag-Wolf, Sandra; Weiler, Norbert; Frerichs, Inéz
2013-01-01
Introduction Lung-protective ventilation aims at using low tidal volumes (VT) at optimum positive end-expiratory pressures (PEEP). Optimum PEEP should recruit atelectatic lung regions and avoid tidal recruitment and end-inspiratory overinflation. We examined the effect of VT and PEEP on ventilation distribution, regional respiratory system compliance (CRS), and end-expiratory lung volume (EELV) in an animal model of acute lung injury (ALI) and patients with ARDS by using electrical impedance tomography (EIT) with the aim to assess tidal recruitment and overinflation. Methods EIT examinations were performed in 10 anaesthetized pigs with normal lungs ventilated at 5 and 10 ml/kg body weight VT and 5 cmH2O PEEP. After ALI induction, 10 ml/kg VT and 10 cmH2O PEEP were applied. Afterwards, PEEP was set according to the pressure-volume curve. Animals were randomized to either low or high VT ventilation changed after 30 minutes in a crossover design. Ventilation distribution, regional CRS and changes in EELV were analyzed. The same measures were determined in five ARDS patients examined during low and high VT ventilation (6 and 10 (8) ml/kg) at three PEEP levels. Results In healthy animals, high compared to low VT increased CRS and ventilation in dependent lung regions implying tidal recruitment. ALI reduced CRS and EELV in all regions without changing ventilation distribution. Pressure-volume curve-derived PEEP of 21±4 cmH2O (mean±SD) resulted in comparable increase in CRS in dependent and decrease in non-dependent regions at both VT. This implied that tidal recruitment was avoided but end-inspiratory overinflation was present irrespective of VT. In patients, regional CRS differences between low and high VT revealed high degree of tidal recruitment and low overinflation at 3±1 cmH2O PEEP. Tidal recruitment decreased at 10±1 cmH2O and was further reduced at 15±2 cmH2O PEEP. Conclusions Tidal recruitment and end-inspiratory overinflation can be assessed by EIT-based analysis of regional CRS. PMID:23991138
Randomized clinical trial of extended use of a hydrophobic condenser humidifier: 1 vs. 7 days.
Thomachot, Laurent; Leone, Marc; Razzouk, Karim; Antonini, François; Vialet, Renaud; Martin, Claude
2002-01-01
To determine whether extended use (7 days) would affect the efficiency on heat and water preservation of a hydrophobic condenser humidifier as well as the rate of ventilation-acquired pneumonia, compared with 1 day of use. Prospective, controlled, randomized, not blinded, clinical study. Twelve-bed intensive care unit of a university hospital. One hundred and fifty-five consecutive patients undergoing mechanical ventilation for > or = 48 hrs. After randomization, patients were allocated to one of the two following groups: a) heat and moisture exchangers (HMEs) changed every 24 hrs; b) HMEs changed only once a week. Devices in both groups could be changed at the discretion of the staff when signs of occlusion or increased resistance were identified. Efficient airway humidification and heating were assessed by clinical variables (numbers of tracheal suctionings and instillations required, peak and mean airway pressures). The frequency rates of bronchial colonization and ventilation-acquired pneumonia were evaluated by using clinical and microbiological criteria. Endotracheal tube occlusion, ventilatory support variables, duration of mechanical ventilation, length of intensive care, acquired multiorgan dysfunction, and mortality rates also were recorded. The two groups were similar at the time of randomization. Endotracheal tube occlusion never occurred. In the targeted population (patients ventilated for > or = 7 days), the frequency rate of ventilation-acquired pneumonia was 24% in the HME 1-day group and 17% in the HME 7-day group (p > .05, not significant). Ventilation-acquired pneumonia rates per 1000 ventilatory support days were 16.4/1000 in the HME 1-day group and 12.4/1000 in the HME 7-day group (p > .05, not significant). No statistically significant differences were found between the two groups for duration of mechanical ventilation, intensive care unit length of stay, acquired organ system derangements, and mortality rate. There was indirect evidence of very little, if any, change in HME resistance. Changing the studied hydrophobic HME after 7 days did not affect efficiency, increase resistance, or altered bacterial colonization. The frequency rate of ventilation-acquired pneumonia was also unchanged. Use of HMEs for > 24 hrs and up to 7 days is safe.
NASA Astrophysics Data System (ADS)
Yang, Wei; Zhang, Guoqiang
2008-05-01
A thermal comfort field study has been carried out in five cities in the humid subtropical climate zone in China. The survey was performed in naturally ventilated and air-conditioned buildings during the summer season in 2006. There were 229 occupants from 111 buildings who participated in this study and 229 questionnaire responses were collected. Thermal acceptability assessment reveals that the indoor environment in naturally ventilated buildings could not meet the 80% acceptability criteria prescribed by ASHRAE Standard 55, and people tended to feel more comfortable in air-conditioned buildings with the air-conditioned occupants voting with higher acceptability (89%) than the naturally ventilated occupants (58%). The neutral temperatures in naturally ventilated and air-conditioned buildings were 28.3°C and 27.7°C, respectively. The range of accepted temperature in naturally ventilated buildings (25.0˜31.6°C) was wider than that in air-conditioned buildings (25.1˜30.3°C), which suggests that occupants in naturally ventilated buildings seemed to be more tolerant of higher temperatures. Preferred temperatures were 27.9°C and 27.3°C in naturally ventilated and air-conditioned buildings, respectively, both of which were 0.4°C cooler than neutral temperatures. This result suggests that people of hot climates may use words like “slightly cool” to describe their preferred thermal state. The relationship between draught sensation and indoor air velocity at different temperature ranges indicates that indoor air velocity had a significant influence over the occupants’ comfort sensation, and air velocities required by occupants increased with the increasing of operative temperatures. Thus, an effective way of natural ventilation which can create the preferred higher air movement is called for. Finally, the indoor set-point temperature of 26°C or even higher in air-conditioned buildings was confirmed as making people comfortable, which supports the regulation in China that in public and office buildings the set-point temperature of air-conditioning system should not be lower than 26°C.
Ivanov, Vadim A
2016-02-01
The reduction of instrumental dead space is a recognized approach to preventing ventilation-induced lung injury in premature infants. However, there are no published data regarding the effectiveness of instrumental dead-space reduction in endotracheal tube (ETT) connectors. We tested the impact of the Y-piece/ETT connector pairs with reduced instrumental dead space on CO2 elimination in a model of the premature neonate lung. The standard ETT connector was compared with a low-dead-space ETT connector and with a standard connector equipped with an insert. We compared the setups by measuring the CO2 elimination rate in an artificial lung ventilated via the connectors. The lung was connected to a ventilator via a standard circuit, a 2.5-mm ETT, and one of the connectors under investigation. The ventilator was run in volume-controlled continuous mandatory ventilation mode. The low-dead-space ETT connector/Y-piece and insert-equipped standard connector/Y-piece pairs had instrumental dead space reduced by 36 and 67%, respectively. With set tidal volumes (VT) of 2.5, 5, and 10 mL, in comparison with the standard ETT connector, the low-dead-space connector reduced CO2 elimination time by 4.5% (P < .05), 4.4% (P < .01), and 7.1% (not significant), respectively. The insert-equipped standard connector reduced CO2 elimination time by 13.5, 25.1, and 16.1% (all P < .01). The low-dead-space connector increased inspiratory resistance by 17.8% (P < .01), 9.6% (P < .05), and 5.0% (not significant); the insert-equipped standard connector increased inspiratory resistance by 9.1, 8.4, and 5.9% (all not significant). The low-dead-space connector decreased expiratory resistance by 6.8% (P < .01) and 1.8% (not significant) and increased it by 1.4% (not significant); the insert-equipped standard connector decreased expiratory resistance by 1.5 and 1% and increased it by 1% (all not significant). The low-dead-space connector increased work of breathing by 4.7% (P < .01), 3.8% (P < .01), and 2.5% (not significant); the insert-equipped standard connector increased it by 0.8% (not significant), 2.5% (P < .01), and 2.8% (P < .01). Both methods of instrumental dead-space reduction led to improvements in artificial lung ventilation. Negative effects on resistance and work of breathing appeared minimal. Further testing in vivo should be performed to confirm the lung model results and, if successful, translated into clinical practice. Copyright © 2016 by Daedalus Enterprises.
Thakur, P; Lemons, B G; Ballard, S; Hardy, R
2015-08-01
The environmental impact of the February 14, 2014 radiation release from the nation's only deep geologic nuclear waste repository, the Waste Isolation Pilot Plant (WIPP) was assessed using monitoring data from an independent monitoring program conducted by the Carlsbad Environmental Monitoring & Research Center (CEMRC). After almost 15 years of safe and efficient operations, the WIPP had one of its waste drums rupture underground resulting in the release of moderate levels of radioactivity into the underground air. A small amount of radioactivity also escaped to the surface through the ventilation system and was detected above ground. It was the first unambiguous release from the WIPP repository. The dominant radionuclides released were americium and plutonium, in a ratio that matches the content of the breached drum. The accelerated air monitoring campaign, which began following the accident, indicates that releases were low and localized, and no radiation-related health effects among local workers or the public would be expected. The highest activity detected was 115.2 μBq/m(3) for (241)Am and 10.2 μBq/m(3) for (239+240)Pu at a sampling station located 91 m away from the underground air exhaust point and 81.4 μBq/m(3) of (241)Am and 5.8 μBq/m(3) of (239+240)Pu at a monitoring station located approximately one kilometer northwest of the WIPP facility. CEMRC's recent monitoring data show that the concentration levels of these radionuclides have returned to normal background levels and in many instances, are not even detectable, demonstrating no long-term environmental impacts of the recent radiation release event at the WIPP. This article presents an evaluation of almost one year of environmental monitoring data that informed the public that the levels of radiation that got out to the environment were very low and did not, and will not harm anyone or have any long-term environmental consequence. In terms of radiological risk at or in the vicinity of the WIPP site, the increased risk from the WIPP releases is exceedingly small, approaching zero. Copyright © 2015 Elsevier Ltd. All rights reserved.
Urban ventilation corridors mapping using surface morphology data based GIS analysis
NASA Astrophysics Data System (ADS)
Wicht, Marzena; Wicht, Andreas; Osińska-Skotak, Katarzyna
2017-04-01
This paper describes deriving the most appropriate method for mapping urban ventilation corridors, which, if properly designed, reduce heat stress, air pollution and increase air quality, as well as increase the horizontal wind speed. Urban areas are - in terms of surface texture - recognized as one of the roughest surfaces, which results in wind obstruction and decreased ventilation of densely built up areas. As urban heat islands, private household and traffic emissions or large scale industries occur frequently in many cities, both in temperate and tropical regions. A proper ventilation system has been suggested as an appropriate mitigation mean [1] . Two concepts of morphometric analyses of the urban environment are used on the example of Warsaw, representing a dense, urban environment, located in the temperate zone. The utilized methods include firstly a roughness mapping calculation [2] , which analyses zero plane displacement height (zd) and roughness length (z0) and their distribution for the eight (inter-)cardinal wind directions and secondly a grid-based frontal area index mapping approach [3] , which uses least cost path analysis. Utilizing the advantages and minimizing the disadvantages of those two concepts, we propose a hybrid approach. All concepts are based on a 3D building database obtained from satellite imagery, aided by a cadastral building database. Derived areas (ventilation corridors), that facilitate the ventilation system, should be considered by the local authorities as worth preserving, if not expanding, in order to improve the air quality in the city. The results also include designation of the problematic areas, which greatly obscure the ventilation and might be investigated as to reshape or rebuilt to introduce the air flow in particularly dense areas like city centers. Keywords: roughness mapping; GIS; ventilation corridors; frontal area index Rizwan, A. M., Dennis, L. Y., & Chunho, L. I. U. (2008). A review on the generation, determination and mitigation of Urban Heat Island. Journal of Environmental Sciences, 20(1), 120-128. Gál, T., & Unger, J. (2009). Detection of ventilation paths using high-resolution roughness parameter mapping in a large urban area. Building and Environment, 44(1), 198-206. Wong, M. S., Nichol, J. E., To, P. H., & Wang, J. (2010). A simple method for designation of urban ventilation corridors and its application to urban heat island analysis. Building and Environment, 45(8), 1880-1889.
Effects of quantum noise in 4D-CT on deformable image registration and derived ventilation data
NASA Astrophysics Data System (ADS)
Latifi, Kujtim; Huang, Tzung-Chi; Feygelman, Vladimir; Budzevich, Mikalai M.; Moros, Eduardo G.; Dilling, Thomas J.; Stevens, Craig W.; van Elmpt, Wouter; Dekker, Andre; Zhang, Geoffrey G.
2013-11-01
Quantum noise is common in CT images and is a persistent problem in accurate ventilation imaging using 4D-CT and deformable image registration (DIR). This study focuses on the effects of noise in 4D-CT on DIR and thereby derived ventilation data. A total of six sets of 4D-CT data with landmarks delineated in different phases, called point-validated pixel-based breathing thorax models (POPI), were used in this study. The DIR algorithms, including diffeomorphic morphons (DM), diffeomorphic demons (DD), optical flow and B-spline, were used to register the inspiration phase to the expiration phase. The DIR deformation matrices (DIRDM) were used to map the landmarks. Target registration errors (TRE) were calculated as the distance errors between the delineated and the mapped landmarks. Noise of Gaussian distribution with different standard deviations (SD), from 0 to 200 Hounsfield Units (HU) in amplitude, was added to the POPI models to simulate different levels of quantum noise. Ventilation data were calculated using the ΔV algorithm which calculates the volume change geometrically based on the DIRDM. The ventilation images with different added noise levels were compared using Dice similarity coefficient (DSC). The root mean square (RMS) values of the landmark TRE over the six POPI models for the four DIR algorithms were stable when the noise level was low (SD <150 HU) and increased with added noise when the level is higher. The most accurate DIR was DD with a mean RMS of 1.5 ± 0.5 mm with no added noise and 1.8 ± 0.5 mm with noise (SD = 200 HU). The DSC values between the ventilation images with and without added noise decreased with the noise level, even when the noise level was relatively low. The DIR algorithm most robust with respect to noise was DM, with mean DSC = 0.89 ± 0.01 and 0.66 ± 0.02 for the top 50% ventilation volumes, as compared between 0 added noise and SD = 30 and 200 HU, respectively. Although the landmark TRE were stable with low noise, the differences between ventilation images increased with noise level, even when the noise was low, indicating ventilation imaging from 4D-CT was sensitive to image noise. Therefore, high quality 4D-CT is essential for accurate ventilation images.
Ventilation noise and its effects on annoyance and performance
NASA Astrophysics Data System (ADS)
Landstrom, Ulf
2004-05-01
In almost every room environment, ventilation acts as a more or less prominent part of the noise exposure. The contribution to the overall sound environment is a question not only of the way in which the ventilation system itself functions, but also a question of the prominence of other contemporary sound sources such as speech, equipment, machines, and external noises. Hazardous effects due to ventilation noise are most prominent in offices, hospitals, control rooms, classrooms, conference rooms, and other types of silent areas. The effects evoked by ventilation noise have also been found to be related to the type of activity being conducted. Annoyance and performance thus not only seemed to be linked to the physical character of exposure, i.e., noise level, frequency characteristics, and length of exposure, but also mental and manual activity, complexity, and monotony of the work. The effects can be described in terms of annoyance, discomfort, and fatigue, with consequences on performance and increased mental load. The silent areas where ventilation noise may be most frequently experienced are often synonymous with areas and activities most sensitive to the exposure.
The use of mechanical ventilation in the ED.
Easter, Benjamin D; Fischer, Christopher; Fisher, Jonathan
2012-09-01
Although EDs are responsible for the initial care of critically ill patients and the amount of critical care provided in the ED is increasing, there are few data examining mechanical ventilation (MV) in the ED. In addition, characteristics of ED-based ventilation may affect planning for ventilator shortages during pandemic influenza or bioterrorist events. The study examined the epidemiology of MV in US EDs, including demographic, clinical, and hospital characteristics; indications for MV; ED length of stay (LOS); and in-hospital mortality. This study was a retrospective review of the 1993 to 2007 National Hospital Ambulatory Medical Care Survey ED data sets. Ventilated patients were compared with ED patients admitted to the intensive care unit (ICU) and to all other ED visits. There were 3.6 million ED MV visits (95% confidence interval [CI], 3.2-4.0 million) over the study period. Sex, age, race, and payment source were similar for mechanically ventilated and ICU patients (P > .05 for all). Approximately 12.5% of ventilated patients underwent cardiopulmonary resuscitation compared with 1.7% of ICU admissions and 0.2% of all other ED visits (P < .0001). Accordingly, in-hospital mortality was significantly higher for ventilated patients (24%; 95% CI, 13.1%-34.9%) than both comparison groups (9.3% and 2.5%, respectively). Median LOS for ventilated patients was 197 minutes (interquartile range, 112-313 minutes) compared with 224 minutes for ICU admissions and 140 minutes for all other ED visits. Patients undergoing ED MV have particularly high in-hospital mortality rates, but their ED LOS is sufficient for implementation of evidence-based ventilator interventions. Copyright © 2012 Elsevier Inc. All rights reserved.
Kallet, Richard H; Campbell, Andre R; Dicker, Rochelle A; Katz, Jeffrey A; Mackersie, Robert C
2006-01-01
To assess the effects of step-changes in tidal volume on work of breathing during lung-protective ventilation in patients with acute lung injury (ALI) or the acute respiratory distress syndrome (ARDS). Prospective, nonconsecutive patients with ALI/ARDS. Adult surgical, trauma, and medical intensive care units at a major inner-city, university-affiliated hospital. Ten patients with ALI/ARDS managed clinically with lung-protective ventilation. Five patients were ventilated at a progressively smaller tidal volume in 1 mL/kg steps between 8 and 5 mL/kg; five other patients were ventilated at a progressively larger tidal volume from 5 to 8 mL/kg. The volume mode was used with a flow rate of 75 L/min. Minute ventilation was maintained constant at each tidal volume setting. Afterward, patients were placed on continuous positive airway pressure for 1-2 mins to measure their spontaneous tidal volume. Work of breathing and other variables were measured with a pulmonary mechanics monitor (Bicore CP-100). Work of breathing progressively increased (0.86 +/- 0.32, 1.05 +/- 0.40, 1.22 +/- 0.36, and 1.57 +/- 0.43 J/L) at a tidal volume of 8, 7, 6, and 5 mL/kg, respectively. In nine of ten patients there was a strong negative correlation between work of breathing and the ventilator-to-patient tidal volume difference (R = -.75 to -.998). : The ventilator-delivered tidal volume exerts an independent influence on work of breathing during lung-protective ventilation in patients with ALI/ARDS. Patient work of breathing is inversely related to the difference between the ventilator-delivered tidal volume and patient-generated tidal volume during a brief trial of unassisted breathing.
New insight into the assessment of asthma using xenon ventilation computed tomography.
Jung, Jae-Woo; Kwon, Jae-Woo; Kim, Tae-Wan; Lee, So-Hee; Kim, Kyung-Mook; Kang, Hye-Ryun; Park, Heung-Woo; Lee, Chang-Hyun; Goo, Jin-Mo; Min, Kyung-Up; Cho, Sang-Heon
2013-08-01
Image analyses include computed tomography (CT), magnetic resonance imaging, and xenon ventilation CT, which is new modality to evaluate pulmonary functional imaging. To examine the usefulness of dual-energy xenon ventilation CT in asthmatic patients. A total of 43 patients 18 years or older who were nonsmokers were included in the study. Xenon CT images in wash-in and wash-out phases were obtained at baseline and after inhalation of methacholine and salbutamol. The degrees of ventilation defects and xenon trappings were evaluated through visual analysis. Ventilation defects and xenon trapping were significantly increased and decreased after methacholine challenge and salbutamol inhalation, respectively (P < .005). The ventilation abnormalities were not significantly related to the percentage of forced expiratory volume in 1 second (FEV1) or the ratio of FEV1 to forced vital capacity. Xenon trappings after salbutamol inhalation were negatively related to the scores of the asthma control test, wheezing, or night symptoms, with statistical significance (P < .05), whereas, FEV1 showed no significant correlation with symptom scores. Baseline FEV1 was significantly lower and dyspnea and wheezing were more severe in the non-full reversal group than in the full reversal group after salbutamol inhalation in xenon CT (P < .05). The degree of ventilation defects were positively correlated with FEV1 improvement after 3 months of treatment (P = .02). The results of this study suggest that xenon ventilation CT can be used as a new method to assess ventilation abnormalities in asthma, and these ventilation abnormalities can be used as novel parameters that reflect the status of asthma control and symptom severity. Copyright © 2013 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Isoflurane increases cardiorespiratory coordination in rats
NASA Astrophysics Data System (ADS)
Kabir, Muammar M.; Beig, Mirza I.; Nalivaiko, Eugene; Abbott, Derek; Baumert, Mathias
2008-12-01
Anesthetics such as isoflurane adversely affect heart rate. In this study we analysed the interaction between heart rhythm and respiration at different concentrations of isoflurane and ventilation rates. In two rats, the electrocardiogram (ECG) and respiratory signals were recorded under the influence of isoflurane. For the assessment of cardiorespiratory coordination, we analysed the phase locking between heart rate, computed from the R-R intervals of body surface ECG, and respiratory rate, computed from impedance changes, using Hilbert transform. The changes in heart rate, percentage of synchronization and duration of synchronized epochs at different isoflurane concentrations and ventilation rates were assessed using linear regression model. From this study it appears that the amount of phase locking between cardiac and respiratory rates increases with the increase in concentration of isoflurane. Heart rate and duration of synchronized epochs increased significantly with the increase in the level of isoflurane concentration while respiratory rate was not significantly affected. Cardiorespiratory coordination also showed a considerable increase at the ventilation rates of 50- 55 cpm in both the rats, suggesting that the phase-locking between the cardiac and respiratory oscillators can be increased by breathing at a particular respiratory frequency.
Rapidly locating and characterizing pollutant releases in buildings.
Sohn, Michael D; Reynolds, Pamela; Singh, Navtej; Gadgil, Ashok J
2002-12-01
Releases of airborne contaminants in or near a building can lead to significant human exposures unless prompt response measures are taken. However, possible responses can include conflicting strategies, such as shutting the ventilation system off versus running it in a purge mode or having occupants evacuate versus sheltering in place. The proper choice depends in part on knowing the source locations, the amounts released, and the likely future dispersion routes of the pollutants. We present an approach that estimates this information in real time. It applies Bayesian statistics to interpret measurements of airborne pollutant concentrations from multiple sensors placed in the building and computes best estimates and uncertainties of the release conditions. The algorithm is fast, capable of continuously updating the estimates as measurements stream in from sensors. We demonstrate the approach using a hypothetical pollutant release in a five-room building. Unknowns to the interpretation algorithm include location, duration, and strength of the source, and some building and weather conditions. Two sensor sampling plans and three levels of data quality are examined. Data interpretation in all examples is rapid; however, locating and characterizing the source with high probability depends on the amount and quality of data and the sampling plan.
USDA-ARS?s Scientific Manuscript database
Endotoxin (LPS)-induced sepsis increases circulating cytokines which have been associated with skeletal muscle catabolism. During critical illness, it has been postulated that muscle wasting associated with mechanical ventilation (MV) occurs due to inactivity. We hypothesize that MV and sepsis promo...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendell, Mark J.; Apte, Mike G.
This report considers the question of whether the California Energy Commission should incorporate the ASHRAE 62.1 ventilation standard into the Title 24 ventilation rate (VR) standards, thus allowing buildings to follow the Indoor Air Quality Procedure. This, in contrast to the current prescriptive standard, allows the option of using ventilation rate as one of several strategies, which might include source reduction and air cleaning, to meet specified targets of indoor air concentrations and occupant acceptability. The research findings reviewed in this report suggest that a revised approach to a ventilation standard for commercial buildings is necessary, because the current prescriptivemore » ASHRAE 62.1 Ventilation Rate Procedure (VRP) apparently does not provide occupants with either sufficiently acceptable or sufficiently healthprotective air quality. One possible solution would be a dramatic increase in the minimum ventilation rates (VRs) prescribed by a VRP. This solution, however, is not feasible for at least three reasons: the current need to reduce energy use rather than increase it further, the problem of polluted outdoor air in many cities, and the apparent limited ability of increasing VRs to reduce all indoor airborne contaminants of concern (per Hodgson (2003)). Any feasible solution is thus likely to include methods of pollutant reduction other than increased outdoor air ventilation; e.g., source reduction or air cleaning. The alternative 62.1 Indoor Air Quality Procedure (IAQP) offers multiple possible benefits in this direction over the VRP, but seems too limited by insufficient specifications and inadequate available data to provide adequate protection for occupants. Ventilation system designers rarely choose to use it, finding it too arbitrary and requiring use of much non-engineering judgment and information that is not readily available. This report suggests strategies to revise the current ASHRAE IAQP to reduce its current limitations. These strategies, however, would make it more complex and more prescriptive, and would require substantial research. One practical intermediate strategy to save energy would be an alternate VRP, allowing VRs lower than currently prescribed, as long as indoor VOC concentrations were no higher than with VRs prescribed under the current VRP. This kind of hybrid, with source reduction and use of air cleaning optional but permitted, could eventually evolve, as data, materials, and air-cleaning technology allowed gradual lowering of allowable concentrations, into a fully developed IAQP. Ultimately, it seems that VR standards must evolve to resemble the IAQP, especially in California, where buildings must achieve zero net energy use within 20 years.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, Wanyu R.; Sidheswaran, Meera; Cohn, Sebastian
2014-02-01
This field study measured ventilation rates and indoor air quality parameters in 21 visits to retail stores in California. The data was collected to guide the development of new, science-based commercial building ventilation rate standards that balance the dual objectives of increasing energy efficiency and maintaining acceptable indoor air quality. Data collection occurred between September 2011 and March 2013. Three types of stores participated in this study: grocery stores, furniture/hardware stores, and apparel stores. Ventilation rates and indoor air contaminant concentrations were measured on a weekday, typically between 9 am and 6 pm. Ventilation rates measured using a tracer gasmore » decay method exceeded the minimum requirement of California’s Title 24 Standard in all but one store. Even though there was adequate ventilation according to Title 24, concentrations of formaldehyde, acetaldehyde, and acrolein exceeded the most stringent chronic health guidelines. Other indoor air contaminants measured included carbon dioxide (CO{sub 2}), carbon monoxide (CO), ozone (O{sub 3}), and particulate matter (PM). Concentrations of CO{sub 2} were kept low by adequate ventilation, and were assumed low also because the sampling occurred on a weekday when retail stores were less busy. CO concentrations were also low. The indoor-outdoor ratios of O{sub 3} showed that the first-order loss rate may vary by store trade types and also by ventilation mode (mechanical versus natural). Analysis of fine and ultrafine PM measurements showed that a substantial portion of the particle mass in grocery stores with cooking-related emissions was in particles less than 0.3 μm. Stores without cooking as an indoor source had PM size distributions that were more similar indoors and outdoors. The whole-building emission rates of volatile organic compounds (VOCs) and PM were estimated from the measured ventilation rates and indoor and outdoor contaminant concentrations. Mass balance models were then used to determine the ventilation rates, filtration strategies, or source reductions needed to maintain indoor contaminant concentrations below reference levels. Several scenarios of potential concern were considered: (i) formaldehyde levels in furniture/hardware stores, (ii) contaminants associated with cooking (e.g., PM, acrolein, and acetaldehyde) in grocery stores, and (iii) outdoor contaminants (e.g., PM and O{sub 3}) impacting stores that use natural ventilation. Estimated formaldehyde emission rates suggest that retail stores would need to ventilate at levels far exceeding the current Title 24 requirement to lower indoor concentrations below California’s stringent formaldehyde reference level. Given the high costs of providing ventilation but only modest chronic health benefit is expected, effective source control is an attractive alternative, as demonstrated by some retail stores in this study. Predictions showed that grocery stores need MERV 13 air filters, instead of MERV 8 filters that are more commonly used, to maintain indoor PM at levels that meet the chronic health standards for PM. Exposure to acrolein is a potential health concern in grocery stores, and should be addressed by increasing the use of kitchen range hoods or improving their contaminant removal efficiency. In stores that rely on natural ventilation, indoor PM can be a health concern if the stores are located in areas with high outdoor PM. This concern may be addressed by switching to mechanical ventilation when the outdoor air quality is poor, while continuing natural ventilation when outdoor air quality is good.« less
Liu, Zhen; Liu, Xiaowen; Huang, Yuguang; Zhao, Jing
2016-01-01
Postoperative pulmonary complications (PPCs), which are not uncommon in one-lung ventilation, are among the main causes of postoperative death after lung surgery. Intra-operative ventilation strategies can influence the incidence of PPCs. High tidal volume (V T) and increased airway pressure may lead to lung injury, while pressure-controlled ventilation and lung-protective strategies with low V T may have protective effects against lung injury. In this meta-analysis, we aim to investigate the effects of different ventilation strategies, including pressure-controlled ventilation (PCV), volume-controlled ventilation (VCV), protective ventilation (PV) and conventional ventilation (CV), on PPCs in patients undergoing one-lung ventilation. We hypothesize that both PV with low V T and PCV have protective effects against PPCs in one-lung ventilation. A systematic search (PubMed, EMBASE, the Cochrane Library, and Ovid MEDLINE; in May 2015) was performed for randomized trials comparing PCV with VCV or comparing PV with CV in one-lung ventilation. Methodological quality was evaluated using the Cochrane tool for risk. The primary outcome was the incidence of PPCs. The secondary outcomes included the length of hospital stay, intraoperative plateau airway pressure (Pplateau), oxygen index (PaO2/FiO2) and mean arterial pressure (MAP). In this meta-analysis, 11 studies (436 patients) comparing PCV with VCV and 11 studies (657 patients) comparing PV with CV were included. Compared to CV, PV decreased the incidence of PPCs (OR 0.29; 95 % CI 0.15-0.57; P < 0.01) and intraoperative Pplateau (MD -3.75; 95 % CI -5.74 to -1.76; P < 0.01) but had no significant influence on the length of hospital stay or MAP. Compared to VCV, PCV decreased intraoperative Pplateau (MD -1.46; 95 % CI -2.54 to -0.34; P = 0.01) but had no significant influence on PPCs, PaO2/FiO2 or MAP. PV with low V T was associated with the reduced incidence of PPCs compared to CV. However, PCV and VCV had similar effects on the incidence of PPCs.
Conti, Giorgio; Gregoretti, Cesare; Spinazzola, Giorgia; Festa, Olimpia; Ferrone, Giuliano; Cipriani, Flora; Rossi, Marco; Piastra, Marco; Costa, Roberta
2015-04-01
In adults and children, patient-ventilator synchrony is strongly dependent on both the ventilator settings and interface used in applying positive pressure to the airway. The aim of this bench study was to determine whether different interfaces and ventilator settings may influence patient-ventilator interaction in pediatric models of normal and mixed obstructive and restrictive respiratory conditions. A test lung, connected to a pediatric mannequin using different interfaces (endotracheal tube [ETT], face mask, and helmet), was ventilated in pressure support ventilation mode testing 2 ventilator settings (pressurization time [Timepress]50%/cycling-off flow threshold [Trexp]25%, Timepress80%/Trexp60%), randomly applied. The test lung was set to simulate one pediatric patient with a healthy respiratory system and another with a mixed obstructive and restricted respiratory condition, at different breathing frequencies (f) (30, 40, and 50 breaths/min). We measured inspiratory trigger delay, pressurization time, expiratory trigger delay, and time of synchrony. At each breathing frequency, the helmet showed the longest inspiratory trigger delay compared with the ETT and face mask. At f30, the ETT had a reduced Tpress. The helmet had the shortest Tpress in the simulated child with a mixed obstructive and restricted respiratory condition, at f40 during Timepress50%/Trexp25% and at f50 during Timepress80%/Trexp60%. In the simulated child with a normal respiratory condition, the ETT presented the shortest Tpress value at f50 during Timepress80%/Trexp60%. Concerning the expiratory trigger delay, the helmet showed the best interaction at f30, but the worst at f40 and at f50. The helmet showed the shortest time of synchrony during all ventilator settings. The choice of the interface can influence patient-ventilator synchrony in a pediatric model breathing at increased f, thus making it more difficult to set the ventilator, particularly during noninvasive ventilation. The helmet demonstrated the worst interaction, suggesting that the face mask should be considered as the first choice for delivering noninvasive ventilation in a pediatric model. Copyright © 2015 by Daedalus Enterprises.
Impact of varying area of polluting surface materials on perceived air quality.
Sakr, W; Knudsen, H N; Gunnarsen, L; Haghighat, F
2003-06-01
A laboratory study was performed to investigate the impact of the concentration of pollutants in the air on emissions from building materials. Building materials were placed in ventilated test chambers. The experimental set-up allowed the concentration of pollution in the exhaust air to be changed either by diluting exhaust air with clean air (changing the dilution factor) or by varying the area of the material inside the chamber when keeping the ventilation rate constant (changing the area factor). Four different building materials and three combinations of two or three building materials were studied in ventilated small-scale test chambers. Each individual material and three of their combinations were examined at four different dilution factors and four different area factors. An untrained panel of 23 subjects assessed the air quality from the chambers. The results show that a certain increase in dilution improves the perceived air quality more than a similar decrease in area. The reason for this may be that the emission rate of odorous pollutants increases when the concentration in the chamber decreases. The results demonstrate that, in some cases the effect of increased ventilation on the air quality may be less than expected from a simple dilution model.
Pfleger, A; Steinbacher, M; Schwantzer, G; Weinhandl, E; Wagner, M; Eber, E
2015-09-01
Lung clearance index (LCI) is increasingly used as a study endpoint for therapeutic interventions in cystic fibrosis (CF) patients. We set out to assess the effect of chest physiotherapy on ventilation inhomogeneity in clinically stable patients with CF lung disease of varying severity. In 29 CF patients (7.3-43.7 years) N2MBW (nitrogen multiple breath washout), plethysmography, and spirometry measurements were conducted, followed by 30 min of supervised PEP mask chest physiotherapy and repeated measurements 30 min after therapy. We observed a mean change in LCI after physiotherapy from 15.00 to 14.80 (range, -4.84 to 3.37; p=0.578). In seven patients, LCI decreased, and in ten patients, LCI increased by ≥1. For the whole group, statistically significant improvements were seen in Reff, FEV1, FVC, and MEF50. By opening up previously poorly ventilated lung regions, physiotherapy may either increase or decrease ventilation inhomogeneity; the short-term effect of physiotherapy on LCI appears to be unpredictable. Copyright © 2015 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.
Zhang, J H; Luo, Q; Zhang, H J; Chen, R C
2017-06-12
Objective: To investigate the effect of noninvasive proportional assist ventilation (PAV) on respiratory work in chronic obstructive pulmonary disease(COPD) patients, in comparison to noninvasive pressure support ventilation(PSV). Methods: Ten severe COPD patients with hypercapnia during acute exacerbation were examined. The baseline inspiratory pressure of PSV (PS) and the assistance level of PAV(PA) were titrated by patients' tolerance. In addition to the baseline PS and PA, an additional decrease by 25% (PS-=75% PS, PA-=75% PA) or increase by 25% (PS+ =125% PS, PA+ =125% PA) of the assist level were applied to the patients. After the assessment of unassisted spontaneous breathing (SB), the patient was placed on the 6 levels of noninvasive-PSV and noninvasive-PAV in random sequence. Each level lasted at least 20 minutes. Respiratory rate (RR), tidal volume (Vt), and respiratory work(Wex, Wip and Wv) were measured. Asynchrony index (AI) was calculated. Results: During ventilation, Vt was significantly higher with each assist level than with SB. The Vt was significant increased with PS+ than with PA+ . An increase in expiratory work(Wex) and decrease in inspiratory work(Wip) were observed respectively, with the increasing assist level. The inspiratory muscles assessed by Wip were more unloaded at PS compared with PA [PS: (1.59±1.27) J/min vs PA: (4.99±3.48) J/min P <0.01]. However, the Wex was significantly higher with PS+ than with PA+ [PS+ : (1.17±0.54) J/min vs PA+ : (0.49±0.56)J/min, P <0.01]. The AI was increased with the increasing assist level of PSV [PS-: (0.46±0.57)%, PS: (1.36±1.24)% PS+ : (5.26±4.77)]. No asynchrony events were observed at PA- and PA. "Runaway" (expiratory asynchrony) was observed during PA+ [AI: (2.62±2.72)%]. Conclusions: Noninvasive-PAV can increase the Vt and decrease the Wip of the COPD patients with hypercapnia and avoid the over-assistance. The "Runaway" will occur at assist level higher than that set by tolerance. Physiological data can monitor the patient's responses and the ventilator-patient interaction, which may provide objective criteria for ventilator setting.
Dawson, T J; Munn, A J; Blaney, C E; Krockenberger, A; Maloney, S K
2000-01-01
We studied ventilation in kangaroos from mesic and arid environments, the eastern grey kangaroo (Macropus giganteus) and the red kangaroo (Macropus rufus), respectively, within the range of ambient temperatures (T(a)) from -5 degrees to 45 degrees C. At thermoneutral temperatures (Ta=25 degrees C), there were no differences between the species in respiratory frequency, tidal volume, total ventilation, or oxygen extraction. The ventilatory patterns of the kangaroos were markedly different from those predicted from the allometric equation derived for placentals. The kangaroos had low respiratory frequencies and higher tidal volumes, even when adjustment was made for their lower basal metabolism. At Ta>25 degrees C, ventilation was increased in the kangaroos to facilitate respiratory water loss, with percent oxygen extraction being markedly lowered. Ventilation was via the nares; the mouth was closed. Differences in ventilation between the two species occurred at higher temperatures, and at 45 degrees C were associated with differences in respiratory evaporative heat loss, with that of M. giganteus being higher. Panting in kangaroos occurred as a graded increase in respiratory frequency, during which tidal volume was lowered. When panting, the desert red kangaroo had larger tidal volumes and lower respiratory frequencies at equivalent T(a) than the eastern grey kangaroo, which generally inhabits mesic forests. The inference made from this pattern is that the red kangaroo has the potential to increase respiratory evaporative heat loss to a greater level.
Particle emissions from laboratory activities involving carbon nanotubes
NASA Astrophysics Data System (ADS)
Lo, Li-Ming; Tsai, Candace S.-J.; Heitbrink, William A.; Dunn, Kevin H.; Topmiller, Jennifer; Ellenbecker, Michael
2017-08-01
This site study was conducted in a chemical laboratory to evaluate nanomaterial emissions from 20-30-nm-diameter bundles of single-walled carbon nanotubes (CNTs) during product development activities. Direct-reading instruments were used to monitor the tasks in real time, and airborne particles were collected using various methods to characterize released nanomaterials using electron microscopy and elemental carbon (EC) analyses. CNT clusters and a few high-aspect-ratio particles were identified as being released from some activities. The EC concentration (0.87 μg/m3) at the source of probe sonication was found to be higher than other activities including weighing, mixing, centrifugation, coating, and cutting. Various sampling methods all indicated different levels of CNTs from the activities; however, the sonication process was found to release the highest amounts of CNTs. It can be cautiously concluded that the task of probe sonication possibly released nanomaterials into the laboratory and posed a risk of surface contamination. Based on these results, the sonication of CNT suspension should be covered or conducted inside a ventilated enclosure with proper filtration or a glovebox to minimize the potential of exposure.
The influence of mechanical ventilation on physiological parameters in ball pythons (Python regius).
Jakobsen, Sashia L; Williams, Catherine J A; Wang, Tobias; Bertelsen, Mads F
2017-05-01
Mechanical ventilation is widely recommended for reptiles during anesthesia, and while it is well-known that their low ectothermic metabolism requires much lower ventilation than in mammals, very little is known about the influence of ventilation protocol on the recovery from anesthesia. Here, 15 ball pythons (Python regius) were induced and maintained with isoflurane for 60min at one of three ventilation protocols (30, 125, or 250mlmin -1 kg -1 body mass) while an arterial catheter was inserted, and ventilation was then continued on 100% oxygen at the specified rate until voluntary extubation. Mean arterial blood pressure and heart rate (HR) were measured, and arterial blood samples collected at 60, 80, 180min and 12 and 24h after intubation. In all three groups, there was evidence of a metabolic acidosis, and snakes maintained at 30mlmin -1 kg -1 experienced an additional respiratory acidosis, while the two other ventilation protocols resulted in normal or low arterial PCO 2 . In general, normal acid-base status was restored within 12h in all three protocols. HR increased by 143±64% during anesthesia with high mechanical ventilation (250mlmin -1 kg -1 ) in comparison with recovered values. Recovery times after mechanical ventilation at 30, 125, or 250mlmin -1 kg -1 were 289±70, 126±16, and 68±7min, respectively. Mild overventilation may result in a faster recovery, and the associated lowering of arterial PCO 2 normalised arterial pH in the face of metabolic acidosis. Copyright © 2017 Elsevier Inc. All rights reserved.
Mechanical ventilation in abdominal surgery.
Futier, E; Godet, T; Millot, A; Constantin, J-M; Jaber, S
2014-01-01
One of the key challenges in perioperative care is to reduce postoperative morbidity and mortality. Patients who develop postoperative morbidity but survive to leave hospital have often reduced functional independence and long-term survival. Mechanical ventilation provides a specific example that may help us to shift thinking from treatment to prevention of postoperative complications. Mechanical ventilation in patients undergoing surgery has long been considered only as a modality to ensure gas exchange while allowing maintenance of anesthesia with delivery of inhaled anesthetics. Evidence is accumulating, however, suggesting an association between intraoperative mechanical ventilation strategy and postoperative pulmonary function and clinical outcome in patients undergoing abdominal surgery. Non-protective ventilator settings, especially high tidal volume (VT) (>10-12mL/kg) and the use of very low level of positive end-expiratory pressure (PEEP) (PEEP<5cmH2O) or no PEEP, may cause alveolar overdistension and repetitive tidal recruitment leading to ventilator-associated lung injury in patients with healthy lungs. Stimulated by previous findings in patients with acute respiratory distress syndrome, the use of lower tidal volume ventilation is becoming increasingly more common in the operating room. However, lowering tidal volume, though important, is only part of the overall multifaceted approach of lung protective mechanical ventilation. In this review, we aimed at providing the most recent and relevant clinical evidence regarding the use of mechanical ventilation in patients undergoing abdominal surgery. Copyright © 2014 Société française d’anesthésie et de réanimation (Sfar). Published by Elsevier SAS. All rights reserved.
Shendell, D G; Winer, A M; Weker, R; Colome, S D
2004-06-01
The prevalence of prefabricated, portable classrooms (portables) for United States public schools has increased; in California, approximately one of three students learn inside portables. Limited research has been conducted on indoor air and environmental quality in American schools, and almost none in portables. Available reports and conference proceedings suggest problems from insufficient ventilation due to poor design, operation, and/or maintenance of heating, ventilation and air conditioning (HVAC) systems; most portables have one mechanical, wall-mounted HVAC system. A pilot assessment was conducted in Los Angeles County, including measurements of integrated ventilation rates based on a perfluorocarbon tracer gas technique and continuous monitoring of temperature (T) and relative humidity (RH). Measured ventilation rates were low [mean school day integrated average 0.8 per hour (range: 0.1-2.9 per hour)]. Compared with relevant standards, results suggested adequate ventilation and associated conditioning of indoor air for occupant comfort were not always provided to these classrooms. Future school studies should include integrated and continuous measurements of T, RH, and ventilation with appropriate tracer gas methods, and other airflow measures. Adequate ventilation has the potential to mitigate concentrations of chemical pollutants, particles, carbon dioxide, and odors in portable and traditional classrooms, which should lead to a reduction in reported health outcomes, e.g., symptoms of 'sick building syndrome', allergies, asthma. Investigations of school indoor air and environmental quality should include continuous temperature and relative humidity data with inexpensive instrumentation as indicators of thermal comfort, and techniques to measure ventilation rates.
Nebulized antibiotics in mechanically ventilated patients: roadmap and challenges.
Poulakou, G; Siakallis, G; Tsiodras, S; Arfaras-Melainis, A; Dimopoulos, G
2017-03-01
Nebulized antibiotics use has become common practice in the therapeutics of pneumonia in cystic fibrosis patients. There is an increasing interest in their use for respiratory infections in mechanically ventilated (MV) patients in order to a) overcome pharmacokinetic issues in the lung compartment with traditional systemic antibiotic use and b) prevent the emergence of multi-drug-resistant (MDR) pathogens. Areas covered: The beneficial effects of antibiotic nebulization in MV patients e.g. increasing efficacy, reduced toxicity and prevention of resistance are described. Physicochemical parameters of optimal lung deposition, characteristics of currently available nebulizers, practical aspects of the procedure, including drug preparation and adjustments of ventilator and circuit parameter are presented. Antibiotics used in nebulized route, along with efficacy in various clinical indications and safety issues are reviewed. Expert commentary: The safety of nebulization of antibiotics has been proven in numerous studies; efficacy as adjunctive treatment to intravenous regimens or as monotherapy has been demonstrated in ventilator-associated pneumonia or ventilator-associated tracheobronchitis due to MDR or susceptible pathogens. However, due to the heterogeneity of studies, multiple meta-analyses fail to demonstrate a clear effect. Clarification of indications, standardization of technique and implementation of clinical practice guidelines, based on new large-scale trials will lead to the optimal use of nebulized antibiotics.
Wilhelm, Michelle; Ritz, Beate
2013-01-01
Objectives. The purpose of our study was to examine the effects of indoor residential air quality on preterm birth and term low birth weight (LBW). Methods. We evaluated 1761 nonsmoking women from a case-control survey of mothers who delivered a baby in 2003 in Los Angeles County, California. In multinomial logistic regression models adjusted for maternal age, education, race/ethnicity, parity and birthplace, we evaluated the effects of living with smokers or using personal or household products that may contain volatile organic compounds and examined the influence of household ventilation. Results. Compared with unexposed mothers, women exposed to secondhand smoke (SHS) at home had increased odds of term LBW (adjusted odds ratio [OR] = 1.36; 95% confidence interval [CI] = 0.85, 2.18) and preterm birth (adjusted OR = 1.27; 95% CI = 0.95, 1.70), although 95% CIs included the null. No increase in risk was observed for SHS-exposed mothers reporting moderate or high window ventilation. Associations were also observed for product usage, but only for women reporting low or no window ventilation. Conclusions. Residential window ventilation may mitigate the effects of indoor air pollution among pregnant women in Los Angeles County, California. PMID:23409879
Duiverman, Marieke L; Huberts, Anouk S; van Eykern, Leo A; Bladder, Gerrie; Wijkstra, Peter J
2017-01-01
Introduction High-intensity noninvasive ventilation (NIV) has been shown to improve outcomes in stable chronic obstructive pulmonary disease patients. However, there is insufficient knowledge about whether with this more controlled ventilatory mode optimal respiratory muscle unloading is provided without an increase in patient–ventilator asynchrony (PVA). Patients and methods Ten chronic obstructive pulmonary disease patients on home mechanical ventilation were included. Four different ventilatory settings were investigated in each patient in random order, each for 15 min, varying the inspiratory positive airway pressure and backup breathing frequency. With surface electromyography (EMG), activities of the intercostal muscles, diaphragm, and scalene muscles were determined. Furthermore, pressure tracings were derived simultaneously in order to assess PVA. Results Compared to spontaneous breathing, the most pronounced decrease in EMG activity was achieved with the high-pressure settings. Adding a high breathing frequency did reduce EMG activity per breath, while the decrease in EMG activity over 1 min was comparable with the high-pressure, low-frequency setting. With high backup breathing frequencies less breaths were pressure supported (25% vs 97%). PVAs occurred more frequently with the low-frequency settings (P=0.017). Conclusion High-intensity NIV might provide optimal unloading of respiratory muscles, without undue increases in PVA. PMID:28138234
Wientjes, C J; Grossman, P; Gaillard, A W
1998-09-01
Assessment of multiple respiratory measures may provide insight into how behavioral demands affect the breathing pattern. This is illustrated by data from a study among 44 subjects, in which tidal volume, respiration rate, minute ventilation and indices of central drive and timing mechanisms were assessed via inductive plethysmography, in addition to end-tidal PCO2. After a baseline, three conditions of a memory comparison task were presented. The first two conditions differed only with regard to the presence or absence of feedback of performance (NFB and FB). In the third 'all-or-nothing' (AON) condition, subjects only received a monetary bonus, if their performance exceeded that of the previous two conditions. Minute ventilation increased from baseline to all task conditions, and from NFB and FB to AON. Respiration rate increased in all task conditions, but there were no differences between task conditions. Tidal volume decreased during NFB, but was equal to baseline during FB and AON. Of the respiratory control indices, inspiratory flow rate covaried much more closely with minute ventilation than duty cycle. The task performance induced a minor degree of hyperventilation. The discussion focusses on how behavioral demands affect respiratory control processes to produce alterations in breathing pattern and ventilation.
Duiverman, Marieke L; Huberts, Anouk S; van Eykern, Leo A; Bladder, Gerrie; Wijkstra, Peter J
2017-01-01
High-intensity noninvasive ventilation (NIV) has been shown to improve outcomes in stable chronic obstructive pulmonary disease patients. However, there is insufficient knowledge about whether with this more controlled ventilatory mode optimal respiratory muscle unloading is provided without an increase in patient-ventilator asynchrony (PVA). Ten chronic obstructive pulmonary disease patients on home mechanical ventilation were included. Four different ventilatory settings were investigated in each patient in random order, each for 15 min, varying the inspiratory positive airway pressure and backup breathing frequency. With surface electromyography (EMG), activities of the intercostal muscles, diaphragm, and scalene muscles were determined. Furthermore, pressure tracings were derived simultaneously in order to assess PVA. Compared to spontaneous breathing, the most pronounced decrease in EMG activity was achieved with the high-pressure settings. Adding a high breathing frequency did reduce EMG activity per breath, while the decrease in EMG activity over 1 min was comparable with the high-pressure, low-frequency setting. With high backup breathing frequencies less breaths were pressure supported (25% vs 97%). PVAs occurred more frequently with the low-frequency settings ( P =0.017). High-intensity NIV might provide optimal unloading of respiratory muscles, without undue increases in PVA.