Science.gov

Sample records for release direct coal liquefaction

  1. Design of generic coal conversion facilities: Process release---Direct coal liquefaction

    SciTech Connect

    Not Available

    1991-09-01

    The direct liquefaction portion of the PETC generic direct coal liquefaction process development unit (PDU) is being designed to provide maximum operating flexibility. The PDU design will permit catalytic and non-catalytic liquefaction concepts to be investigated at their proof-of-the-concept stages before any larger scale operations are attempted. The principal variations from concept to concept are reactor configurations and types. These include thermal reactor, ebullating bed reactor, slurry phase reactor and fixed bed reactor, as well as different types of catalyst. All of these operating modes are necessary to define and identify the optimum process conditions and configurations for determining improved economical liquefaction technology.

  2. Direct coal liquefaction process

    DOEpatents

    Rindt, J.R.; Hetland, M.D.

    1993-10-26

    An improved multistep liquefaction process for organic carbonaceous mater which produces a virtually completely solvent-soluble carbonaceous liquid product. The solubilized product may be more amenable to further processing than liquid products produced by current methods. In the initial processing step, the finely divided organic carbonaceous material is treated with a hydrocarbonaceous pasting solvent containing from 10% and 100% by weight process-derived phenolic species at a temperature within the range of 300 C to 400 C for typically from 2 minutes to 120 minutes in the presence of a carbon monoxide reductant and an optional hydrogen sulfide reaction promoter in an amount ranging from 0 to 10% by weight of the moisture- and ash-free organic carbonaceous material fed to the system. As a result, hydrogen is generated via the water/gas shift reaction at a rate necessary to prevent condensation reactions. In a second step, the reaction product of the first step is hydrogenated.

  3. Direct coal liquefaction process

    DOEpatents

    Rindt, John R.; Hetland, Melanie D.

    1993-01-01

    An improved multistep liquefaction process for organic carbonaceous mater which produces a virtually completely solvent-soluble carbonaceous liquid product. The solubilized product may be more amenable to further processing than liquid products produced by current methods. In the initial processing step, the finely divided organic carbonaceous material is treated with a hydrocarbonaceous pasting solvent containing from 10% and 100% by weight process-derived phenolic species at a temperature within the range of 300.degree. C. to 400.degree. C. for typically from 2 minutes to 120 minutes in the presence of a carbon monoxide reductant and an optional hydrogen sulfide reaction promoter in an amount ranging from 0 to 10% by weight of the moisture- and ash-free organic carbonaceous material fed to the system. As a result, hydrogen is generated via the water/gas shift reaction at a rate necessary to prevent condensation reactions. In a second step, the reaction product of the first step is hydrogenated.

  4. Direct liquefaction of low-rank coals

    SciTech Connect

    Rindt, J.R.; Hetland, M.D.; Knudson, C.L.; Willson, W.G.

    1988-04-01

    Co-processing of low-rank coals (LRCs) with petroleum resids under mild conditions may produce a product that extends petroleum refinery feeds with a partially coal-derived material. These co-processing products may also provide a lower-cost way to introduce coal-derived materials into the commercial market. In this staged process, the petroleum resid acts as a solvent, aiding in the solubilization of the coal during the first stage, and both the dissolved coal and the resid are upgraded during a second-stage catalytic hydrogenation. Another method of upgrading coal in a liquefaction process is the ChemCoal Process. The process uses chemical methods to transform coal into clean solid and liquid products. It features low-severity conversion of coal in a phenolic solvent, using an alkali promotor and carbon monoxide as the reductant. Oil agglomeration has been used to reduce the ash and mineral matter in bituminous coals to obtain a product with increased heating value, reduced moisture, and lower sulfur content. This method can be used to produce a clean coal feedstock for liquefaction. During agglomeration, an oil is used to preferentially wet the organic phases of the coal, and water is used to wet the minerals, resulting in a separation of ash and water from the coal. The primary objective of this project is to expand the scientific and engineering data base of LRC liquefaction by investigating direct liquefaction processes that will produce the most competitive feedstocks or liquid fuels. The work effort which was proposed for the second year of this cooperative agreement dealt primarily with co-processing and the ChemCoal Process.

  5. Advanced progress concepts for direct coal liquefaction

    SciTech Connect

    Anderson, R.; Derbyshire, F.; Givens, E.

    1995-09-01

    Given the low cost of petroleum crude, direct coal liquefaction is still not an economically viable process. The DOE objectives are to further reduce the cost of coal liquefaction to a more competitive level. In this project the primary focus is on the use of low-rank coal feedstocks. A particular strength is the use of process-derived liquids rather than model compound solvents. The original concepts are illustrated in Figure 1, where they are shown on a schematic of the Wilsonville pilot plant operation. Wilsonville operating data have been used to define a base case scenario using run {number_sign}263J, and Wilsonville process materials have been used in experimental work. The CAER has investigated: low severity CO pretreatment of coal for oxygen rejection, increasing coal reactivity and mg inhibiting the propensity for regressive reactions; the application of more active. Low-cost Fe and Mo dispersed catalysts; and the possible use of fluid coking for solids rejection and to generate an overhead product for recycle. CONSOL has investigated: oil agglomeration for coal ash rejection, for the possible rejection of ash in the recycled resid, and for catalyst addition and recovery; and distillate dewaxing to remove naphthenes and paraffins, and to generate an improved quality feed for recycle distillate hydrogenation. At Sandia, research has been concerned with the production of active hydrogen donor distillate solvent fractions produced by the hydrogenation of dewaxed distillates and by fluid coking via low severity reaction with H{sub 2}/CO/H{sub 2}O mixtures using hydrous metal oxide and other catalysts.

  6. Health and environmental effects document for direct coal liquefaction - 1981.

    SciTech Connect

    Mellinger, P.J.; Wilson, B.W.; Mahlum, D.D.; Sever, L.E.; Olsen, A.R.

    1982-09-01

    This document presents initial estimates of potential human health effects from inhalation of nonmethane hydrocarbons (NMHC) that may be released from a future hypothetical industry producing about 600,000 bb1/day of synthetic fuel by direct liquefaction of coal. The assessment approach starts wth general assumptions that are then refined in a tiered sequence that considers available epidemiological, environmental and chemical data. The uncertainties involved in such an evaluation have been quantified where possible at this early stage of health risk analysis. Many surrogate data bases were considered for application to coal liquefaction including coke oven, British gas retort, roofing tar and asphalts, and cigarette smoke. The coke oven data base was selected for this assessment because the chemical and physical nature of coke oven emissions are judged to more closely approximate potential coal liquefaction emissions. Utilizing the extensive epidemiological data base for coke oven workers as a surrogate model, health effects from release of coal liquefaction NMHC may be quantified. This method results in estimates of about 1 x 10/sup -3/ excess cancer deaths/yr to an industrial work force of 7800 persons and 5 x 10/sup -2/ excess cancer deaths/yr in the U.S. population as a whole from NMHC that boil above 600/sup 0/F. Sources of uncertainty in the estimates are listed. Using these uncertainties, it is estimated that from 2 x 10/sup -4/ to 5 x 10/sup -3/ lung cancer deaths/yr may occur in the industrial work force and from 1 x 10/sup -2/ to 2.5 x 10/sup -1/ lung cancer deaths/yr in the U.S. population as a whole. On an individual basis, the excess lifetime risk to occupationally exposed workers is estimated to be 500 times greater than to members of the U.S. public.

  7. Coal liquefaction

    DOEpatents

    Schindler, Harvey D.

    1985-01-01

    In a two-stage liquefaction wherein coal, hydrogen and liquefaction solvent are contacted in a first thermal liquefaction zone, followed by recovery of an essentially ash free liquid and a pumpable stream of insoluble material, which includes 850.degree. F.+ liquid, with the essentially ash free liquid then being further upgraded in a second liquefaction zone, the liquefaction solvent for the first stage includes the pumpable stream of insoluble material from the first liquefaction stage, and 850.degree. F.+ liquid from the second liquefaction stage.

  8. Case studies on direct liquefaction of low rank Wyoming coal

    SciTech Connect

    Adler, P.; Kramer, S.J.; Poddar, S.K.

    1995-12-31

    Previous Studies have developed process designs, costs, and economics for the direct liquefaction of Illinois No. 6 and Wyoming Black Thunder coals at mine-mouth plants. This investigation concerns two case studies related to the liquefaction of Wyoming Black Thunder coal. The first study showed that reducing the coal liquefaction reactor design pressure from 3300 to 1000 psig could reduce the crude oil equivalent price by 2.1 $/bbl provided equivalent performing catalysts can be developed. The second one showed that incentives may exist for locating a facility that liquifies Wyoming coal on the Gulf Coast because of lower construction costs and higher labor productivity. These incentives are dependent upon the relative values of the cost of shipping the coal to the Gulf Coast and the increased product revenues that may be obtained by distributing the liquid products among several nearby refineries.

  9. STUDY OF SOLVENT AND CATALYST INTERACTIONS IN DIRECT COAL LIQUEFACTION

    SciTech Connect

    Michael T. Klein

    2000-01-01

    Using a reactor in which the coal is physically separated from the solid catalyst by a porous wall permeable to the hydrogen donor solvent, it was shown that direct contact between the catalyst and the coal is not required for catalyzed coal liquefaction. This occurs however only when there is a hydrogen atmosphere, as liquefaction with catalyst participation does not occur in a nitrogen atmosphere. Liquefaction by hydrogen transfer from the donor solvent itself does occur. This suggests that there is transfer of hydrogen from the catalyst to the coal via the solvent. The character of the solvent makes a significant difference, the better solvents being good hydrogen donors. These results indicate that the role of the catalyst may be to regenerate the spent hydrogen donor solvent during the liquefaction process. The peak temperature for volatiles evolution has been shown to be a reproducible measure of the coal rank. This was shown by an excellent correlation (R2 = 0.998) between peak volatiles temperatures (by TGA) and vitrinite reflectance. Using TG/MS, the volatiles contents of coals of a wide range of ranks was determined. The low rank coals emit largely phenols and some other oxygen compounds and olefins. The higher rank coals emit largely aromatic hydrocarbons and some olefins.

  10. Direct liquefaction of plastics and coprocessing of coal with plastics

    SciTech Connect

    Huffman, G.P.; Feng, Z.; Mahajan, V.

    1995-12-31

    The objectives of this work were to optimize reaction conditions for the direct liquefaction of waste plastics and the coprocessing of coal with waste plastics. In previous work, the direct liquefaction of medium and high density polyethylene (PE), polypropylene (PPE), poly(ethylene terephthalate) (PET), and a mixed plastic waste, and the coliquefaction of these plastics with coals of three different ranks was studied. The results established that a solid acid catalyst (HZSM-5 zeolite) was highly active for the liquefaction of the plastics alone, typically giving oil yields of 80-95% and total conversions of 90-100% at temperatures of 430-450 {degrees}C. In the coliquefaction experiments, 50:50 mixtures of plastic and coal were used with a tetralin solvent (tetralin:solid = 3:2). Using approximately 1% of the HZSM-5 catalyst and a nanoscale iron catalyst, oil yields of 50-70% and total conversion of 80-90% were typical. In the current year, further investigations were conducted of the liquefaction of PE, PPE, and a commingled waste plastic obtained from the American Plastics Council (APC), and the coprocessing of PE, PPE and the APC plastic with Black Thunder subbituminous coal. Several different catalysts were used in these studies.

  11. Direct use of methane in coal liquefaction

    DOEpatents

    Sundaram, M.S.; Steinberg, M.

    1985-06-19

    This invention relates to a process for converting solid carbonaceous material, such as coal, to liquid and gaseous hydrocarbons utilizing methane, generally at a residence time of about 20 to 120 minutes at a temperature of 250 to 750/sup 0/C, preferably 350 to 450/sup 0/C, pressurized up to 6000 psi, and preferably in the 1000 to 2500 psi range, preferably directly utilizing methane 50 to 100% by volume in a mix of methane and hydrogen. A hydrogen donor solvent or liquid vehicle such as tetralin, tetrahydroquinoline, piperidine, and pyrolidine may be used in a slurry mix where the solvent feed is 0 to 100% by weight of the coal or carbonaceous feed. Carbonaceous feed material can either be natural, such as coal, wood, oil shale, petroleum, tar sands, etc., or man-made residual oils, tars, and heavy hydrocarbon residues from other processing systems. 1 fig.

  12. Direct use of methane in coal liquefaction

    DOEpatents

    Sundaram, Muthu S.; Steinberg, Meyer

    1987-01-01

    This invention relates to a process for converting solid carbonaceous material, such as coal, to liquid and gaseous hydrocarbons utilizing methane, generally at a residence time of about 20-120 minutes at a temperature of 250.degree.-750.degree. C., preferably 350.degree.-450.degree. C., pressurized up to 6000 psi, and preferably in the 1000-2500 psi range, preferably directly utilizing methane 50-100% by volume in a mix of methane and hydrogen. A hydrogen donor solvent or liquid vehicle such as tetralin, tetrahydroquinoline, piperidine, and pyrolidine may be used in a slurry mix where the solvent feed is 0-100% by weight of the coal or carbonaceous feed. Carbonaceous feed material can either be natural, such as coal, wood, oil shale, petroleum, tar sands, etc., or man-made residual oils, tars, and heavy hydrocarbon residues from other processing systems.

  13. Some thoughts on the strategy of direct coal liquefaction -- Partial liquefaction and utilization of heavy liquefaction products

    SciTech Connect

    Liu, Z.; Yang, J.

    1998-12-31

    Hydrogenation has long been the only goal of coal liquefaction. However, analysis show that partial hydrogenation along with carbon rejection may be a better strategy for coal liquefaction, which reduces hydrogen consumption and reaction severity, eliminates the necessity for expensive catalyst, and may results in better economy for overall liquefaction. The hydrogenation and carbon rejection approach can be called partial liquefaction of coal. This paper presents analysis supporting the strategy of partial coal liquefaction based on the point of view of mass and energy balance, chemical reaction kinetics, reactivity of coal constituents and possible use of the heavy liquefaction products.

  14. STUDY OF SOLVENT AND CATALYST INTERACTIONS IN DIRECT COAL LIQUEFACTION

    SciTech Connect

    Michael T. Klein; William H. Calkins; Jasna Tomic

    2000-10-04

    To provide a better understanding of the roles of a solid catalyst and the solvent in Direct Coal Liquefaction, a small reactor was equipped with a porous-walled basket which was permeable to the solvent but was not permeable to the coal or solid catalyst. With this equipment and a high volatile bituminous coal it was found that direct contact between the catalyst in the basket and the coal outside the basket is not required for catalyzed coal liquefaction. The character of the solvent in this system makes a significant difference in the conversion of the coal, the better solvents being strong donor solvents. Because of the extensive use of thermogravimetric analysis in this laboratory, it was noted that the peak temperature for volatiles evolution from coal was a reliable measure of coal rank. Because of this observation, a variety of coals of a range of ranks was investigated. It was shown in this work that measuring the peak temperature for volatiles evolution was a quite precise indicator of rank and correlated closely with the rank value obtained by measuring vitrinite reflectance, a more difficult measurement to make. This prompted the desire to know the composition of the volatile material evolved as a function of coal rank. This was then measured by coupling a TGA to a mass spectrometer using laser activation and photoionization detection TG-PI-MS. The predominant species in volatiles of low rank coal turned out to be phenols with some alkenes. As the rank increases, the relative amounts of alkene and aromatic hydrocarbons increases and the oxygenated species decrease. It was shown that these volatiles were actually pyrolytic products and not volatilization products of the coal. Solvent extraction experiments coupled with Thermogravimetric-photoionization-mass spectrometry (TG-PI-MS) indicated that the low boiling and more extractable material are essentially similar in chemical types to the non-extractable portions but apparently higher molecular weight

  15. Subtask 3.9 - Direct Coal Liquefaction Process Development

    SciTech Connect

    Aulich, Ted; Sharma, Ramesh

    2012-07-01

    The Energy and Environmental Research Center (EERC), in partnership with the U.S. Department of Energy (DOE) and Accelergy Corporation, an advanced fuels developer with technologies exclusively licensed from ExxonMobil, undertook Subtask 3.9 to design, build, and preliminarily operate a bench-scale direct coal liquefaction (DCL) system capable of converting 45 pounds/hour of pulverized, dried coal to a liquid suitable for upgrading to fuels and/or chemicals. Fabrication and installation of the DCL system and an accompanying distillation system for off-line fractionation of raw coal liquids into 1) a naphtha middle distillate stream for upgrading and 2) a recycle stream was completed in May 2012. Shakedown of the system was initiated in July 2012. In addition to completing fabrication of the DCL system, the project also produced a 500-milliliter sample of jet fuel derived in part from direct liquefaction of Illinois No. 6 coal, and submitted the sample to the Air Force Research Laboratory (AFRL) at Wright Patterson Air Force Base, Dayton, Ohio, for evaluation. The sample was confirmed by AFRL to be in compliance with all U.S. Air Force-prescribed alternative aviation fuel initial screening criteria.

  16. STUDY OF SOLVENT AND CATALYST INTERACTIONS IN DIRECT COAL LIQUEFACTION

    SciTech Connect

    Michael T. Klein

    2000-01-01

    There are several aspects of the Direct Coal Liquefaction process which are not fully understood and which if better understood might lead to improved yields and conversions. Among these questions are the roles of the catalyst and the solvent. While the solvent is known to act by transfer of hydrogen atoms to the free radicals formed by thermal breakdown of the coal in an uncatalyzed system, in the presence of a solid catalyst as is now currently practiced, the yields and conversions are higher than in an uncatalyzed system. The role of the catalyst in this case is not completely understood. DOE has funded many projects to produce ultrafine and more active catalysts in the expectation that better contact between catalyst and coal might result. This approach has met with limited success probably because mass transfer between two solids in a fluid medium i.e. the catalyst and the coal, is very poor. It is to develop an understanding of the role of the catalyst and solvent in Direct Liquefaction that this project was initiated. Specifically it was of interest to know whether direct contact between the coal and the catalyst was important. By separating the solid catalyst in a stainless steel basket permeable to the solvent but not the coal in the liquefaction reactor, it was shown that the catalyst still maintains a catalytic effect on the liquefaction process. There is apparently transfer of hydrogen atoms from the catalyst through the basket wall to the coal via the solvent. Strong hydrogen donor solvents appear to be more effective in this respect than weak hydrogen donors. It therefore appears that intimate contact between catalyst and coal is not a requirement, and that the role of the catalyst may be to restore the hydrogen donor strength to the solvent as the reaction proceeds. A range of solvents of varying hydrogen donor strength was investigated. Because of the extensive use of thermogravimetric analysis in this laboratory in was noted that the peak

  17. Cooperative research program in coal liquefaction

    SciTech Connect

    Huffman, G.P.; Sendlein, L.V.A.

    1991-01-01

    This report is a coordinated effort of the Consortium for Fossil Fuel Liquefaction Science. The topics concerning coal liquefaction discussed are: sulfate promoted metal oxides as direct coal liquefaction catalysts; low temperature depolymerization and liquefaction of premium R.S. coal samples; construction of continuous flow-through gas reactor for liquefaction investigations; generic structural characterization and liquefaction research; macerals, model compounds and iron catalyst dispersion; coal structure/liquefaction yield correlation by means of advanced NMR techniques; GC/MS of model compound mixtures; catalytic cracking, hydrogenation and liquefaction of coals under milder conditions; ENDOR investigations of coal liquefaction under mild conditions; catalytic dehydrogenation of model compounds in relation to direct coal liquefaction; surface characterization of catalyst added coal samples; computational chemistry of model compounds and molecular fragments of relevance to coal liquefaction; chemical characterization and hydrogenation reactions of single coal particles; thermolytic cleavage of selected coal-related linkages at mild temperatures; solvent sorption and FTIR studies on the effect of catalytic depolymerization reactions in coal; bioprocessing of coal; chemical routes to breaking bonds; novel liquefaction concepts cyclic olefins: novel new donors for coal liquefaction; better hydrogen transfer in coal liquefaction; catalytic hydropyrolysis and energized extraction of coals; gallium catalyst in mild coal liquefaction; potential of temperature microscope in coal liquefaction; evaluation of nitride catalysts for hydrotreatment and coal liquefaction; coprocessing and coal liquefaction with novel catalysts.

  18. Status of health and environmental research relative to direct coal liquefaction: 1976 to the present

    SciTech Connect

    Gray, R.H.; Cowser, K.E.

    1982-06-01

    This document describes the status of health and environmental research efforts, supported by the US Department of Energy (DOE), to assist in the development of environmentally acceptable coal liquefaction processes. Four major direct coal liquefaction processes are currently in (or have been investigated at) the pilot plant stage of development. Two solvent refined coal processes (SRC-I and -II), H-coal (a catalytic liquefaction process) and Exxon donor solvent (EDS). The Pacific Northwest Laboratory was assigned responsibility for evaluating SRC process materials and prepared comprehensive health and environmental effects research program plans for SRC-I and -II. A similar program plan was prepared for H-coal process materials by the Oak Ridge National Laboratory. A program has been developed for EDS process materials by Exxon Research and Engineering Co. The program includes short-term screening of coal-derived materials for potential health and ecological effects. Longer-term assays are used to evaluate materials considered most representative of potential commercial practice and with greatest potential for human exposure or release to the environment. Effects of process modification, control technologies and changing operational conditions on potential health and ecological effects are also being evaluated. These assessments are being conducted to assist in formulating cost-effective environmental research programs and to estimate health and environmental risks associated with a large-scale coal liquefaction industry. Significant results of DOE's health and environmental research efforts relative to coal liquefaction include the following: chemical characterization, health effects, ecological fate and effects, amelioration and risk assessment.

  19. Short Contact Time Direct Coal Liquefaction Using a Novel Batch Reactor

    SciTech Connect

    He Huang; Michael T. Klein; William H. Calkins

    1997-04-03

    The primary objective of this research is to optimize the design and operation of the bench scale batch reactor (SCTBR) for studying direct coal liquefaction at short contact times (.01 to 10 minutes or longer) . An additional objective is to study the kinetics of direct coal liquefaction particularly at short reaction times. Both of these objectives have been nearly achieved, however this work has shown the great importance of the liquefaction solvent characteristics and the solvent-catalyst interaction on the liquefaction process. This has prompted us to do a preliminary investigation of solvents and the solvent-catalyst systems in coal liquefaction. SUMMARY AND CONCLUSIONS 1) Conversion vs time data have been extended to 5 coals of ranks from lignite to low volatile bituminous coal. A broad range of reaction rates have been observed with a maximum in the high volatile bituminous range. 2) A series of direct coal liquefaction runs have been made using a range of nitrogen containing solvents that given high liquefaction conversions of coal. These runs are now being analyzed. 3) The coalification process has been shown by TGA to go through an intermediate stage which may account for the greater reactivity of bituminous coals in the direct coal liquefaction process. 4) It was shown that coal rank can be accurately determined by thermogravimetric analysis

  20. Novel use of residue from direct coal liquefaction process

    SciTech Connect

    Jianli Yang; Zhaixia Wang; Zhenyu Liu; Yuzhen Zhang

    2009-09-15

    Direct coal liquefaction residue (DCLR) is, commonly, designed to be used as a feed stock for gasification or combustion. Use of DCLR as a value added product is very important for improving overall economy of direct coal liquefaction processes. This study shows that the DCLR may be used as a pavement asphalt modifier. The modification ability is similar to that of Trinidad Lake Asphalt (TLA), a superior commercial modifier. Asphalts modified by two DCLRs meet the specifications of ASTM D5710 and BSI BS-3690 designated for the TLA-modified asphalts. The required addition amount for the DCLRs tested is less than that for TLA due possibly to the high content of asphaltene in DCLRs. Different compatibility was observed for the asphalts with the same penetration grade but from the different origin. Different components in the DCLR play different roles in the modification. Positive synergetic effects among the fractions were observed, which may due to the formation of the stable colloid structure. Unlike polymer-type modifier, the structure of asphalt-type modifier has a similarity with petroleum asphalts which favors the formation of a stable dispersed polar fluid (DPF) colloid structure and improves the performance of pavement asphalt. 12 refs., 1 fig., 6 tabs.

  1. SHORT CONTACT TIME DIRECT COAL LIQUEFACTION USING A NOVEL BATCH REACTOR

    SciTech Connect

    Michael T. Klein; William H. Calkins

    1997-10-29

    The overall goal of this research is to develop an understanding of the Direct Coal Liquefaction process at the molecular level. Many approaches have been used to study this process including kinetic studies, study of the liquefaction products, study of the effect of reaction variables, such as temperature, solvent type and composition, the changing nature and composition of the coal during liquefaction, and the distribution in the liquefaction products of the hydrogen consumed. While all these studies have contributed to our growing knowledge of the liquefaction process, an adequate understanding of direct liquefaction still eludes us. This is due to many reasons including: the complexity and variable nature of coal itself and the many different chemical reactions which are occurring simultaneously during direct coal liquefaction. We believe that a study of the liquefaction process at the very early stages will avoid the complexities of secondary reactions associated with free radical high temperature processes that are clearly involved in direct coal liquefaction. This prompted us to devise a reactor system which avoids long heat up and cool-down times associated with previous kinetic studies, and allows kinetic measurements even at as short as the first few seconds of the liquefaction reaction.

  2. Continuous bench-scale slurry catalyst testing direct coal liquefaction rawhide sub-bituminous coal

    SciTech Connect

    Bauman, R.F.; Coless, L.A.; Davis, S.M.

    1995-12-31

    In 1992, the Department of Energy (DOE) sponsored research to demonstrate a dispersed catalyst system using a combination of molybdenum and iron precursors for direct coal liquefaction. This dispersed catalyst system was successfully demonstrated using Black Thunder sub-bituminous coal at Wilsonville, Alabama by Southern Electric International, Inc. The DOE sponsored research continues at Exxon Research and Development Laboratories (ERDL). A six month continuous bench-scale program using ERDL`s Recycle Coal Liquefaction Unit (RCLU) is planned, three months in 1994 and three months in 1995. The initial conditions in RCLU reflect experience gained from the Wilsonville facility in their Test Run 263. Rawhide sub-bituminous coal which is similar to the Black Thunder coal tested at Wilsonville was used as the feed coal. A slate of five dispersed catalysts for direct coal liquefaction of Rawhide sub-bituminous coal has been tested. Throughout the experiments, the molybdenum addition rate was held constant at 100 wppm while the iron oxide addition rate was varied from 0.25 to 1.0 weight percent (dry coal basis). This report covers the 1994 operations and accomplishments.

  3. Preconversion processing of bituminous coals: New directions to improved direct catalytic coal liquefaction. [High temperature soaking coal in coal liquids prior to liquefaction

    SciTech Connect

    Not Available

    1992-10-01

    Soaking coal in coal liquids at 300-400[degrees]C (high-tenperature soaking) has been studied for coal dissolution prior to liquefaction in the previous task. Two high-volatile bituminous coals, Illinois No. 6 and Pittsburgh No. 8, were examined in three different coal liquids. The high-temperature soaking was effective to solubilize more than 70 wt% cf these coals. The mechanism of disintegration of coal by the high-temperature soaking was investigated under various soaking conditions. The products was also analyzed with solvent swelling. These results were rationalized that coal is solubilized primarily by physical disintegration. The derived mechanism was consistent with the new concept of coal structure: A significant portion of coal is physically associated, not three-dimensionally cross-linked. Radically-induced scission reactions were proposed to prorate breakage of coal moleculs by the combination of the high-temperature soaking before liquefaction. In this term, the effect of radical initiators were investigated under the conditions of the high-temperature soaking and liquefaction. Illinois No. 6 coal and a coal liquid derived from the same coal were used. The first section reports the effect of radical initiators on coal disintegration, and the second section reports the effect of a radical initiator on coal liquefaction. Radical initiators had a positive effect on disintegration. However, the effect was highly temperature-dependent and had a negative effect on liquefaction at high tenperatures.

  4. STUDY OF SOLVENT AND CATALYST INTERACTIONS IN DIRECT COAL LIQUEFACTION

    SciTech Connect

    Michael T. Klein

    1998-10-01

    Major objectives of the present project are to develop a better understanding of the roles of the catalyst and the liquefaction solvent in the coal liquefaction process. An open question concerning the role of the catalyst is whether intimate contact between the catalyst and the coal particles is important or required. To answer this question, it had been planned to coat an active catalyst with a porous silica coating which was found to retain catalyst activity while preventing actual contact between catalyst and coal. Consultation with people in DuPont who coat catalysts for increasing abrasion resistance have indicated that only portions of the catalyst are coated by their process (spray drying) and that sections of uncoated catalyst remain. For that reason, it was decided to suspend the catalyst in a basket separated from the coal in the reactor. The basket walls were to be permeable to the liquefaction solvent but not to the coal particles. Several such baskets were constructed of stainless steel with holes which would not permit passage of coal particles larger than 30 mesh. Liquefactions run with the coal of greater than 30 mesh size gave normal conversion of coal to liquid in the absence of catalyst in the basket, but substantially increased conversion when Ni/Mo on alumina catalyst was in the basket. While this result is interesting and suggestive of some kind of mass transfer of soluble material occurring between the catalyst and the coal, it does not eliminate the possibility of breakdown of the coal particle into particle sizes permeable to the basket. Indeed, a small amount of fine coal has been found inside the basket. To determine whether fine coal from breakdown of the coal particles is responsible for the conversion, a new basket is being prepared with 0.5{micro}m pore size.

  5. Direct coal liquefaction baseline design and system analysis

    SciTech Connect

    Not Available

    1991-04-01

    The primary objective of the study is to develop a computer model for a base line direct coal liquefaction design based on two stage direct coupled catalytic reactors. This primary objective is to be accomplished by completing the following: a base line design based on previous DOE/PETC results from Wilsonville pilot plant and other engineering evaluations; a cost estimate and economic analysis; a computer model incorporating the above two steps over a wide range of capacities and selected process alternatives; a comprehensive training program for DOE/PETC Staff to understand and use the computer model; a thorough documentation of all underlying assumptions for baseline economics; and a user manual and training material which will facilitate updating of the model in the future.

  6. Direct coal liquefaction baseline design and system analysis

    SciTech Connect

    Not Available

    1991-07-01

    The primary objective of the study is to develop a computer model for a base line direct coal liquefaction design based on two stage direct coupled catalytic reactors. This primary objective is to be accomplished by completing the following: a base line design based on previous DOE/PETC results from Wilsonville pilot plant and other engineering evaluations; a cost estimate and economic analysis; a computer model incorporating the above two steps over a wide range of capacities and selected process alternatives; a comprehensive training program for DOE/PETC Staff to understand and use the computer model; a thorough documentation of all underlying assumptions for baseline economics; and a user manual and training material which will facilitate updating of the model in the future.

  7. Direct coal liquefaction baseline design and system analysis

    SciTech Connect

    Not Available

    1991-01-01

    The primary objective of the study is to develop a computer model for a base line direct coal liquefaction design based on two stage direct coupled catalytic reactors. This primary objective is to be accomplished by completing the following: a base line design based on previous DOE/PETC results from Wilsonville pilot plant and other engineering evaluations; a cost estimate and economic analysis; a computer model incorporating the above two steps over a wide range of capacities and selected process alternatives; a comprehensive training program for DOE/PETC Staff to understand and use the computer model; a thorough documentation of all underlying assumptions for baseline economics; and a user manual and training material which will facilitate updating of the model in the future.

  8. Pretreatment of coal and recycle oil for direct liquefaction

    SciTech Connect

    Winschel, R.A.; Lancet, M.S.; Robbins, G.A.; Burke, F.P.; Kottenstette, R.J.; Stephens, H.P.

    1993-07-01

    A research and development program is being conducted by the University of Kentucky/Center for Applied Energy Research, Sandia National Laboratories, LDP Associates and CONSOL Inc. to improve current coal liquefaction technology by physical and chemical pretreatments of the coal and recycle oil. These pretreatment steps include: (1) agglomeration of the coal with ash-containing recycle oil to simultaneously reject coal ash and recycle-oil ash, (2) fluid coking of the distillation bottoms (ash-purge) stream and recycle of the coker overhead, (3) dewaxing of the distillate portion of the recycle oil, and (4) low-severity hydrotreatment of the coker overhead and dewaxed oil using hydrogen from an in-situ water-gas shift reaction. These pretreatment steps will remove the ash and unconverted coal, reducing the ash load in the system and simultaneously recovering the maximum amount of organics. Dewaxing and hydrotreatment will yield a high-quality recycle oil distillate. These pretreatment steps are being evaluated technically and economically to develop an improved conceptual liquefaction process. The baseline process to which the improved process will be compared is the Two-Stage Liquefaction Process as it was practiced at the Wilsonville, AL, USA Advanced Coal Liquefaction Test Facility.

  9. Subtask 3.3 - Feasibility of Direct Coal Liquefaction in the Modern Economic Climate

    SciTech Connect

    Benjamin Oster; Joshua Strege; Marc Kurz; Anthony Snyder; Melanie Jensen

    2009-06-15

    Coal liquefaction provides an alternative to petroleum for the production of liquid hydrocarbon-based fuels. There are two main processes to liquefy coal: direct coal liquefaction (DCL) and indirect coal liquefaction (ICL). Because ICL has been demonstrated to a greater extent than DCL, ICL may be viewed as the lower-risk option when it comes to building a coal liquefaction facility. However, a closer look, based on conversion efficiencies and economics, is necessary to determine the optimal technology. This report summarizes historical DCL efforts in the United States, describes the technical challenges facing DCL, overviews Shenhua's current DCL project in China, provides a DCL conceptual cost estimate based on a literature review, and compares the carbon dioxide emissions from a DCL facility to those from an ICL facility.

  10. Using gas chromatography to characterize a direct coal liquefaction naphtha.

    PubMed

    Omais, Badaoui; Courtiade, Marion; Charon, Nadège; Roullet, Christophe; Ponthus, Jérémie; Thiébaut, Didier

    2012-02-24

    Speciation of oxygenated compounds in direct coal liquefaction naphthas is essential considering their important roles in coal conversion reactions. This study attempts to characterize them as fully as possible using gas chromatographic systems. Firstly, GC-MS was deployed allowing the identification of a few ketones, alcohols, and phenols. This conventional analysis was complemented by the application of GC-GC-FID aiming to overcome the coelutions highlighted when using one-dimensional gas chromatography. Heart-cutting and comprehensive two-dimensional gas chromatography were used and the comprehensive system led to better performances as expected considering the complexity of the matrix. In fact, it allowed the identification of more than a hundred of oxygenated compounds belonging to five chemical families: alcohols, ketones, furans, acids and phenols. Average response factors of each of these families were determined by GC×GC-FID using calibration curves and vary from 1 (hydrocarbons) to 2.50 (carboxylic acids). Thanks to a breakthrough columns set involving a trifluoropropyl stationary phase, alcohols and phenols which represent around 14% of the sample were fully identified. A detailed quantification of these species was carried out for the first time in such matrices using the determined response factors. It was concluded that 90% (w/w) of the alcohols are aromatic (phenols), 5% (w/w) are cyclic and 5% (w/w) are linear. A quantification of hydrocarbon families was also achieved and shows that the matrix is mostly naphthenic (56%, w/w), but also contains aromatics (22%, w/w) and paraffins (8%, w/w). This detailed characterization leads to a better understanding of coal conversion processes and is essential to convert them into synthetic fuels. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Premium distillate products from direct liquefaction of coal

    SciTech Connect

    Zhou, P.Z.; Winschel, R.A.; Klunder, E.B. |

    1994-08-01

    The net liquid products from modern coal liquefaction processes are lower boiling and have much lower end points (mostly under 400{degree}C) than crude petroleum. Coal liquids have very low concentrations of heteroatoms, particularly S, and metals, and are free of resids and asphaltenes. High yields of low-S (0.01--0.03 wt %) naphtha, kerosene, and diesel fuel fractions can be obtained simply by atmospheric distillation, with a total yield of light fuel fractions ranging from 68 to 82 LV% (W260D exclusive). The coal naphtha has a low aromatics content (5--13 LV%), readily meeting projected year-2000 requirements. Its low Reid vapor pressure allows light components from other sources to be blended. The coal light distillate of in appropriate boiling range will be a good low-S blending stock for the light diesel fuel pool. The heavy distillate can be refined into a low-S No. 4 diesel fuel/fuel oil. This fraction, along with the >343{degree}C atmospheric bottoms, can be catalytically cracked or hydrocracked to make light liquid fuels. Thus, modern coal liquids should no longer be envisioned as thick liquids (or even solids) with high concentrations of aromatics and asphaltenes. Products obtained from advanced coal liquefaction technologies are more like light naphthene-base petroleum, but with lower heteroatoms and metals contents, and they are free of resids. Coal liquids are likely to be co-refined in existing petroleum refineries; and hydroprocessing of various severities would be needed for different fractions to produce quality blending stocks for refinery fuel pools.

  12. Preconversion processing of bituminous coals: New directions to improved direct catalytic coal liquefaction. [Effect of pretreatment before liquefaction

    SciTech Connect

    Not Available

    1992-07-01

    The main task of this quarter was to install reactors to conduct preconversion and liquefaction of coal. Coal and coal liquids were collected. The anaerobic chamber (Model 855-AC; Plas Labs, inc.) was procured and set up to store coal samples under an inert gas. Equipment to treat products was assembled, including Soxhlet extraction units, fractionation columns, a distillation column, and a rotary evaporator. Two gas chromatographs for analysis of gases and liquid were adjusted. Two reactor systems were installed for the experimental apparatus. One was Model 4576 high-temperature and high-pressure autoclave (Parr Instrument, 500{degrees}C and 5000 psi) (see Figure 1); the other was a 27 ml of microreactors. The autoclave was obtained from the manufacturer and assembled. The experimental set-up of microreactors are shown in Figure 2.

  13. The role of recycle oil in direct coal liquefaction process development

    SciTech Connect

    Burke, F.P.

    1995-08-01

    It has long been recognized that use of a recycle oil is a convenient and perhaps necessary feature of a practical direct coal liquefaction process. The recycle oil performs a number of important functions. It serves as a vehicle to convey coal into the liquefaction reactor and products from the reactor. It is a medium for mass and heat transfer among the solid, liquid, and gaseous components of the reactor inventory. It can act as a reactant or intermediate in the liquefaction process. Therefore, the nature of the recycle oil can have a determining effect on process configuration and performance, and the characterization of recycle oil composition and chemistry has been the subject of considerable interest. This paper discusses recycle oil characterization and its influence on the industrial development of coal liquefaction technology,

  14. Coal liquefaction and hydrogenation

    DOEpatents

    Schindler, Harvey D.; Chen, James M.

    1985-01-01

    Disclosed is a coal liquefaction process using two stages. The first stage liquefies the coal and maximizes the product while the second stage hydrocracks the remainder of the coal liquid to produce solvent.

  15. Use of ultrasound for enhanced direct coal liquefaction: Quarterly report, January 1989--March 1989

    SciTech Connect

    1989-01-01

    The objective of this project is to investigate whether high-intensity ultrasound is capable of inducing coal liquefaction under mild conditions of temperature and pressure in the presence of a solvent and in the presence or absence of a liquefaction catalyst. The role of high-intensity ultrasound in effective dispersion of solids and/or activation of catalysts will also be investigated using an appropriate liquefaction catalyst. During this quarter, work was directed towards setting up the experimental apparatus. 3 refs., 2 figs., 2 tabs.

  16. Advanced direct coal liquefaction concepts. Final report, Volume 2

    SciTech Connect

    Berger, D.J.; Parker, R.J.; Simpson, P.L.

    1994-07-01

    Integration of innovative steps into new advanced processes have the potential to reduce costs for producing liquid fuels. In this program, objective is to develop a new approach to liquefaction that generates an all distillate product slate at a reduced cost of about US$25/barrel of crude oil equivalent. A Counterflow Reactor was developed in cooperation with GfK mbH, Germany. Advantages are low hydrogen recycle rates and low feed preheating requirements. Coal/heavy oil slurry is injected into the top of the reactor while the recycle gas and make up hydrogen is introduced into the bottom; hydrogenation products are withdrawn from the top. PU study resulted in distillable oil yields up to 74 wt % on feed (dry ash free) from coprocessing feed slurries containing 40 wt % Vesta subbituminous coal and 60 wt % Cold Lake heavy vacuum tower bottoms. Technologies developed separately by CED and ARC were combined. A 1-kg/hr integrated continuous flow bench scale unit was constructed at the ARC site in Devon, Alberta, based on modifications to a unit at Nisku, Alberta (the modified unit was used in the preliminary economic evaluation).

  17. Estimating potential genotoxicity for direct coal-liquefaction materials

    SciTech Connect

    Wilson, B.W.; Pelroy, R.A.; Renne, R.A.

    1981-05-01

    Fuels derived from coal liquefaction processes are chemically complex, highly aromatic mixtures, the specific constituency of which is fairly process-dependent. Genotoxicity, when found in these materials, is generally confined to the heavy-end fractions or full boiling range materials which contain heavy ends. The moderately polar or nitrogen base fractions of these heavy-end materials are generally the most mutagenically active. In some SRC-II heavy-end bottoms and the SRC-I solid product, however, the highly polar fractions contribute substantially to the mutagenicity. Specific compounds presently recognized as contributors or potential contributors to genotoxicity of the coal liquids studied include polycyclic primary aromatic amines, and to a much lesser extent, polycyclic aromatic hydrocarbons having four or more rings, certain polycyclic nitrogen heterocycles as well as certain polycyclic sulfur heterocyclics. The degree to which a given material has been subjected to reducing conditions during production appears to be an important parameter in determining its potential genotoxicity, the more severely reduced materials tending to be less genotoxic.

  18. Cooperative research program in coal liquefaction

    SciTech Connect

    Huffman, G.P.

    1991-01-01

    This Quarterly Report on coal liquefaction research includes discussion in the areas of (1) Iron Based Catalysts for Coal Liquefaction; (2) Exploratory Research on Coal Conversion; (3) Novel Coal Liquefaction Concepts; (4) Novel Catalysts for Coal Liquefaction. (VC)

  19. Cooperative research program in coal liquefaction

    SciTech Connect

    Huffman, G.P.

    1992-01-01

    Research continues on coal liquefaction in the following areas: (1) Iron Based Catalysts for Coal Liquefaction; (2) Exploratory Research on Coal Conversion; (3) Novel Coal Liquefaction Concepts; (4) Novel Catalysts for Coal Liquefaction. (VC)

  20. Coal liquefaction quenching process

    DOEpatents

    Thorogood, Robert M.; Yeh, Chung-Liang; Donath, Ernest E.

    1983-01-01

    There is described an improved coal liquefaction quenching process which prevents the formation of coke with a minimum reduction of thermal efficiency of the coal liquefaction process. In the process, the rapid cooling of the liquid/solid products of the coal liquefaction reaction is performed without the cooling of the associated vapor stream to thereby prevent formation of coke and the occurrence of retrograde reactions. The rapid cooling is achieved by recycling a subcooled portion of the liquid/solid mixture to the lower section of a phase separator that separates the vapor from the liquid/solid products leaving the coal reactor.

  1. Investigations into coal coprocessing and coal liquefaction

    SciTech Connect

    Guffey, F.D.; Netzel, D.A.; Miknis, F.P.; Thomas, K.P.; Zhang, Tiejun; Haynes, H.W. Jr.

    1994-06-01

    The conversion of coal to liquid suitable as feedstock to a petroleum refinery is dependent upon several process variables. These variables include temperature, pressure, coal rank, catalyst type, nature of the feed to the reactor, type of process, etc. Western Research Institute (WRI) has initiated a research program in the area of coal liquefaction to address the impact of some of these variables upon the yield and quality of the coal-derived liquid. The principal goal of this research is to improve the efficiency of the coal liquefaction process. Two different approaches are currently being investigated. These include the coprocessing of a heavy liquid, such as crude oil, and coal using a dispersed catalyst and the direct liquefaction of coal using a supported catalyst. Another important consideration in coal liquefaction is the utilization of hydrogen, including both externally- and internally-supplied hydrogen. Because the incorporation of externally-supplied hydrogen during conversion of this very aromatic fossil fuel to, for example, transportation fuels is very expensive, improved utilization of internally-supplied hydrogen can lead to reducing processing costs. The objectives of this investigation, which is Task 3.3.4, Coal Coprocessing, of the 1991--1992 Annual Research Plan, are: (1) to evaluate coal/oil pretreatment conditions that are expected to improve the liquid yield through more efficient dispersion of an oil-soluble, iron-based catalyst, (2) to characterize the coke deposits on novel, supported catalysts after coal liquefaction experiments and to correlate the carbon skeletal structure parameters of the coke deposit with catalyst performance as measured by coal liquefaction product yield, and (3) to determine the modes of hydrogen utilization during coal liquefaction and coprocessing. Experimental results are discussed in this report.

  2. Conversion of Low-Rank Wyoming Coals into Gasoline by Direct Liquefaction

    SciTech Connect

    Polyakov, Oleg

    2013-12-31

    Under the cooperative agreement program of DOE and funding from Wyoming State’s Clean Coal Task Force, Western Research Institute and Thermosolv LLC studied the direct conversion of Wyoming coals and coal-lignin mixed feeds into liquid fuels in conditions highly relevant to practice. During the Phase I, catalytic direct liquefaction of sub-bituminous Wyoming coals was investigated. The process conditions and catalysts were identified that lead to a significant increase of desirable oil fraction in the products. The Phase II work focused on systematic study of solvothermal depolymerization (STD) and direct liquefaction (DCL) of carbonaceous feedstocks. The effect of the reaction conditions (the nature of solvent, solvent/lignin ratio, temperature, pressure, heating rate, and residence time) on STD was investigated. The effect of a number of various additives (including lignin, model lignin compounds, lignin-derivable chemicals, and inorganic radical initiators), solvents, and catalysts on DCL has been studied. Although a significant progress has been achieved in developing solvothermal depolymerization, the side reactions – formation of considerable amounts of char and gaseous products – as well as other drawbacks do not render aqueous media as the most appropriate choice for commercial implementation of STD for processing coals and lignins. The trends and effects discovered in DCL point at the specific features of liquefaction mechanism that are currently underutilized yet could be exploited to intensify the process. A judicious choice of catalysts, solvents, and additives might enable practical and economically efficient direct conversion of Wyoming coals into liquid fuels.

  3. Integrated coal liquefaction process

    DOEpatents

    Effron, Edward

    1978-01-01

    In a process for the liquefaction of coal in which coal liquids containing phenols and other oxygenated compounds are produced during the liquefaction step and later hydrogenated, oxygenated compounds are removed from at least part of the coal liquids in the naphtha and gas oil boiling range prior to the hydrogenation step and employed as a feed stream for the manufacture of a synthesis gas or for other purposes.

  4. Role of iron-based catalyst and hydrogen transfer in direct coal liquefaction

    SciTech Connect

    Xian Li; Shuxun Hu; Lijun Jin; Haoquan Hu

    2008-03-15

    The aim of this research is to understand the major function of iron-based catalysts on direct coal liquefaction (DCL). Pyrolysis and direct liquefaction of Shenhua bituminous coal were carried out to investigate the effect of three solvents (wash-oil from coal-tar, cycle-oil from coal liquefaction, and tetralin) in a N{sub 2} or a H{sub 2} atmosphere and with or without catalyst. The hydrogen content in the solvent and liquid product and the H{sub 2} consumption for every run were calculated to understand the hydrogen transfer approach in DCL. The results showed that the iron-based catalyst promotes the coal pyrolysis, and the dominating function of the catalyst in DCL is to promote the formation of activated hydrogen and to accelerate the secondary distribution of H in the reaction system including the gas, liquid, and solid phases. The major transfer approach of the activated hydrogen is from molecular hydrogen to solvent and then from solvent to coal, and the solvent takes on the role of a 'bridge' in the hydrogen transfer approach. 31 refs., 5 figs., 3 tabs.

  5. Coal Liquefaction Processes.

    ERIC Educational Resources Information Center

    Yen, T. F.

    1979-01-01

    Described is a graduate level engineering course offered at the University of Southern California on coal liquefaction processes. Lecture topics and course requirements are discussed. A 64-item bibliography of papers used in place of a textbook is included. (BT)

  6. Coal Liquefaction Processes.

    ERIC Educational Resources Information Center

    Yen, T. F.

    1979-01-01

    Described is a graduate level engineering course offered at the University of Southern California on coal liquefaction processes. Lecture topics and course requirements are discussed. A 64-item bibliography of papers used in place of a textbook is included. (BT)

  7. Advanced direct coal liquefaction. Quarterly technical progress report No. 2, December 1983-February 1984

    SciTech Connect

    Paranjape, A.S.

    1984-04-30

    Five Bench-Scale coal liquefaction runs were completed with Wyoming subbituminous coal in a two-stage process scheme. In this process scheme, LDAR, the lighter fraction of ash-free resid, was fed to the catalytic stage prior to its recycle to the thermal stage, whereas DAR, the heavy fraction of the deashed resid, was directly recycled to the thermal stage without any intermediate processing step. The results indicate that increasing coal space rate in the dissolver resulted in lower coal conversion and reduced distillate yield in this process configuration. The coal conversions decreased from 92 wt% to 89 wt% (MAF coal) and the distillate yield was reduced from 50 wt% to less than 40 wt% (MAF coal), as the coal space velocity increased. Attempts to duplicate the yields of Run 32, at comparable process conditions in Runs 37 and 38, were unsuccessful. Several process parameters were investigated but failed to show why the yields of Run 32 could not be duplicated. Valuable process related information was gained as a result of process parameter studies completed during these runs. At comparable process conditions, coal conversions were lower by about 3 to 4 relative percent and were only in the 87 wt% (MAF coal) range. Similarly, the distillate yield was about 40 wt% (MAF coal) which is about 10 wt% lower than observed in Run 32. Although no exact cause for these results could be determined, it appeared that the H/C atomic ratio of the solvent and possibly the flow pattern (plug-flow versus back-mixed) could have affected the coal conversion and quantity of distillate product produced. A significant decrease in coal conversion of 4 to 5 wt% was observed when the disposable catalyst (iron oxide) was removed from the reaction mixture and therefore substantiates the need for a disposable catalyst in the liquefaction of Wyoming subbituminous coal.

  8. Coal liquefaction process

    DOEpatents

    Carr, Norman L.; Moon, William G.; Prudich, Michael E.

    1983-01-01

    A C.sub.5 -900.degree. F. (C.sub.5 -482.degree. C.) liquid yield greater than 50 weight percent MAF feed coal is obtained in a coal liquefaction process wherein a selected combination of higher hydrogen partial pressure, longer slurry residence time and increased recycle ash content of the feed slurry are controlled within defined ranges.

  9. Method for coal liquefaction

    DOEpatents

    Wiser, Wendell H.; Oblad, Alex G.; Shabtai, Joseph S.

    1994-01-01

    A process is disclosed for coal liquefaction in which minute particles of coal in intimate contact with a hydrogenation catalyst and hydrogen arc reacted for a very short time at a temperature in excess of 400.degree. C. at a pressure of at least 1500 psi to yield over 50% liquids with a liquid to gaseous hydrocarbon ratio in excess of 8:1.

  10. Coal liquefaction and hydrogenation

    DOEpatents

    Schindler, Harvey D.

    1985-01-01

    The coal liquefaction process disclosed uses three stages. The first stage is a liquefaction. The second and third stages are hydrogenation stages at different temperatures and in parallel or in series. One stage is within 650.degree.-795.degree. F. and optimizes solvent production. The other stage is within 800.degree.-840.degree. F. and optimizes the C.sub.5 -850.degree. F. product.

  11. Novel supports for coal liquefaction catalysts

    SciTech Connect

    Haynes, H.W. Jr.

    1992-01-01

    This research is divided into three parts: (1) Evaluation of Alkaline-Earth-Promoted CoMo/Alumina Catalysts in a Bench Scale Hydrotreater, (2) Development of a Novel Catalytic Coal Liquefaction Microreactor (CCLM) Unit, and (3) Evaluation of Novel Catalyst Preparations for Direct Coal Liquefaction. (VC)

  12. Coal liquefaction process

    DOEpatents

    Karr, Jr., Clarence

    1977-04-19

    An improved coal liquefaction process is provided which enables conversion of a coal-oil slurry to a synthetic crude refinable to produce larger yields of gasoline and diesel oil. The process is characterized by a two-step operation applied to the slurry prior to catalytic desulfurization and hydrogenation in which the slurry undergoes partial hydrogenation to crack and hydrogenate asphaltenes and the partially hydrogenated slurry is filtered to remove minerals prior to subsequent catalytic hydrogenation.

  13. Method for coal liquefaction

    DOEpatents

    Wiser, W.H.; Oblad, A.G.; Shabtai, J.S.

    1994-05-03

    A process is disclosed for coal liquefaction in which minute particles of coal in intimate contact with a hydrogenation catalyst and hydrogen arc reacted for a very short time at a temperature in excess of 400 C at a pressure of at least 1500 psi to yield over 50% liquids with a liquid to gaseous hydrocarbon ratio in excess of 8:1. 1 figures.

  14. Coal Liquefaction desulfurization process

    DOEpatents

    Givens, Edwin N.

    1983-01-01

    In a solvent refined coal liquefaction process, more effective desulfurization of the high boiling point components is effected by first stripping the solvent-coal reacted slurry of lower boiling point components, particularly including hydrogen sulfide and low molecular weight sulfur compounds, and then reacting the slurry with a solid sulfur getter material, such as iron. The sulfur getter compound, with reacted sulfur included, is then removed with other solids in the slurry.

  15. Kinetic modeling of direct liquefaction of wyodak coal catalyzed by sulfated iron oxides

    SciTech Connect

    Prodhan, V.R.; Holder, G.D.; Wonder, I.; Tierney, J.W.

    1992-08-01

    This paper describes the kinetics of the direct liquefaction of Wyodak coal using tetralin and 1000 psig (cold) H[sub 2] were experimentally measured and mathematically modeled. Experiments were carried out in a 27-cm[sup 3] horizontally shaken autoclave microreactor at 648-698 K for reaction times of 5--120 min. Some experiments were carried out at lower temperatures to determine if the model would be accurate at such conditions. Three catalyst combinations were used, Mo/Fe[sub 2]O[sub 3]/SO[sub 4], Fe[sub 2]O[sub 3]/SO[sub 4], and Fe[sub 2]O[sub 3], each with elemental sulfur. Four reaction pathways were considered: coal to asphaltenes, coal to gas, coal to oils, and asphaltenes to oils. In each pathway (except for the conversion of coal to gas), parallel thermal and catalytic reactions were included. The conversion of coal to asphaltenes was found to be primarily thermal and conversion of asphaltenes to oils was primarily catalytic, while conversion of coal to oils had significant thermal and catalytic contributions. The frequency factor and activation energy of each significant rate constant were estimated by correlating data for all temperatures (16 parameters).

  16. Coal liquefaction process

    DOEpatents

    Wright, Charles H.

    1986-01-01

    A process for the liquefaction of coal wherein raw feed coal is dissolved in recycle solvent with a slurry containing recycle coal minerals in the presence of added hydrogen at elevated temperature and pressure. The highest boiling distillable dissolved liquid fraction is obtained from a vacuum distillation zone and is entirely recycled to extinction. Lower boiling distillable dissolved liquid is removed in vapor phase from the dissolver zone and passed without purification and essentially without reduction in pressure to a catalytic hydrogenation zone where it is converted to an essentially colorless liquid product boiling in the transportation fuel range.

  17. Coal liquefaction process

    DOEpatents

    Wright, C.H.

    1986-02-11

    A process is described for the liquefaction of coal wherein raw feed coal is dissolved in recycle solvent with a slurry containing recycle coal minerals in the presence of added hydrogen at elevated temperature and pressure. The highest boiling distillable dissolved liquid fraction is obtained from a vacuum distillation zone and is entirely recycled to extinction. Lower boiling distillable dissolved liquid is removed in vapor phase from the dissolver zone and passed without purification and essentially without reduction in pressure to a catalytic hydrogenation zone where it is converted to an essentially colorless liquid product boiling in the transportation fuel range. 1 fig.

  18. The kinetics of catalytic hydrogenation of pyrene-implications for direct coal liquefaction processing

    SciTech Connect

    Stephens, H.P.; Chapman, R.N.

    1983-01-01

    Although recycling heavy solvents has recently re-emerged as a key to cutting the cost of direct coal liquefaction, little data for the hydrogenation of heavy solvent donors have been reported. This study addresses the kinetic and thermodynamic aspects of catalytic hydrogenation of pyrene, a donor solvent precursor thought to play an important role in coal liquefaction processes that use heavy recycle solvents. In the presence of a catalyst, pyrene (Py) is hydrogenated to di- (H/sub 2/Py), tetra- (H/sub 4/Py), hexa- (H/sub 6/Py), deca- (H/sub 10/Py) and perhydro- (H/sub 16/Py) species via a complex mechanism involving a network of reversible parallel and series reactions. Though several studies have dealt with aspects of pyrene hydrogenation, including hydrocracking reactions, reaction product distributions and thermodynamic properties, the kinetics of hydrogenation have not been previously reported. Ultimate application of kinetic and thermodynamic data to direct coal liquefaction must take into consideration the conditions imposed by the particular process used. However, two generalizations may be made regarding hydrogen supplied by the dihydropyrene component of donor solvents: (1) Increasing hydrogen partial pressure increases both the rate at which H/sub 2/Py is formed and the equilibrium concentration of H/sub 2/Py. Therefore, pyrene rehydrogenation should be done at as high a pressure as is cost effective. Although an increase in temperature favors the rate of attainment of equilibrium between Py and H/sub 2/Py, the position of the equilibrium is shifted toward pyrene. Temperature must therefore be adjusted to achieve an optimum trade-off between rate of formation and maximum possible concentration of H/sub 2/Py.

  19. Advanced direct coal liquefaction. Quarterly technical progress report No. 1, September-November 1983

    SciTech Connect

    Paranjape, A.S.

    1984-02-07

    Wyoming subbituminous coal was liquefied using three different two-stage process configurations in bench-scale tests. These process configurations differed in the type of fractionated deashing resid being recycled to the individual stages. The objective of these runs was to determine whether, by recycle of specific resid streams to the thermal stage, the second stage catalyst life could be improved without detrimentally affecting distillate yield or hydrogen consumption. The results indicate that the two-stage process configuration consisting of hydrotreating the Light Deashed Resid and direct recycle of heavy Deashed Resid to the thermal stage produced the best results. This process configuration resulted in a distillate yield of 54 wt % (MAF coal basis) and overall coal conversion in the 93 to 95% range, as measured by pyridine-soluble analytical test while operating in a total distillate mode. These results are very encouraging from the lower rank Wyoming subbituminous coal. Among the three two-stage process configurations tested, the particular process configuration of hydrotreating Light Deashed Resid resulted in the least amount of catalyst deactivation. As a part of this research effort, a test procedure for quick evaluation of various resids and catalysts in terms of coke precursors was also developed. This procedure utilizing as-produced oxide-form extrudates of catalyst is able to simulate closely in a batch reactor test the performance of a presulfided and extrudate form of catalyst in a continuous reactor. The CSD unit, being able to not only deash but also fractionate the resid, greatly increased the flexibility of options for coal liquefaction. New process concepts evolved incorporating reside fractionation and selective resid recycle in coal liquefaction. 17 figures, 28 tables.

  20. Coal liquefaction process streams characterization and evaluation

    SciTech Connect

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1992-03-01

    CONSOL R D is conducting a three-year program to characterize process and product streams from direct coal liquefaction process development projects. The program objectives are two-fold: (1) to obtain and provide appropriate samples of coal liquids for the evaluation of analytical methodology, and (2) to support ongoing DOE-sponsored coal liquefaction process development efforts. The two broad objectives have considerable overlap and together serve to provide a bridge between process development and analytical chemistry.

  1. Coal liquefaction process streams characterization and evaluation

    SciTech Connect

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1991-11-01

    Consol R D is conducting a three-year program to characterize process and product streams from direct coal liquefaction process development projects. The program objectives are two-fold: (1) to obtain and provide appropriate samples of coal liquids for the evaluation of analytical methodology, and (2) to support ongoing DOE-sponsored coal liquefaction process development efforts. The two broad objectives have considerable overlap and together serve to provide a bridge between process development and analytical chemistry.

  2. Coal liquefaction process streams characterization and evaluation

    SciTech Connect

    Brandes, S.D.; Winschel, R.A.; Burke, F.P.; Robbins, G.A.

    1991-09-01

    Consol R D is conducting a three-year program to characterize process and product streams from direct coal liquefaction process development projects. The program objectives are two-fold: (1) to obtain and provide appropriate samples of coal liquids for the evaluation of analytical methodology, and (2) to support ongoing DOE-sponsored coal liquefaction process development efforts. The two broad objectives have considerable overlap and together serve to provide a bridge between process development and analytical chemistry.

  3. Coal liquefaction process

    DOEpatents

    Maa, Peter S.

    1978-01-01

    A process for liquefying a particulate coal feed to produce useful petroleum-like liquid products which comprises contacting; in a series of two or more coal liquefaction zones, or stages, graded with respect to temperature, an admixture of a polar compound; or compounds, a hydrogen donor solvent and particulate coal, the total effluent being passed in each instance from a low temperature zone, or stage to the next succeeding higher temperature zone, or stage, of the series. The temperature within the initial zone, or stage, of the series is maintained about 70.degree. F and 750.degree. F and the temperature within the final zone, or stage, is maintained between about 750.degree. F and 950.degree. F. The residence time within the first zone, or stage, ranges, generally, from about 20 to about 150 minutes and residence time within each of the remaining zones, or stages, of the series ranges, generally, from about 10 minutes to about 70 minutes. Further steps of the process include: separating the product from the liquefaction zone into fractions inclusive of a liquid solvent fraction; hydrotreating said liquid solvent fraction in a hydrogenation zone; and recycling the hydrogenated liquid solvent mixture to said coal liquefaction zones.

  4. Viscosity Depressants for Coal Liquefaction

    NASA Technical Reports Server (NTRS)

    Kalfayan, S. H.

    1983-01-01

    Proposed process modification incorporates viscosity depressants to prevent coal from solidifying during liquefaction. Depressants reduce amount of heat needed to liquefy coal. Possible depressants are metallic soaps, such as stearate, and amides, such as stearamide and dimer acid amides.

  5. Viscosity Depressants for Coal Liquefaction

    NASA Technical Reports Server (NTRS)

    Kalfayan, S. H.

    1983-01-01

    Proposed process modification incorporates viscosity depressants to prevent coal from solidifying during liquefaction. Depressants reduce amount of heat needed to liquefy coal. Possible depressants are metallic soaps, such as stearate, and amides, such as stearamide and dimer acid amides.

  6. Production and Optimization of Direct Coal Liquefaction derived Low Carbon-Footprint Transportation Fuels

    SciTech Connect

    Steven Markovich

    2010-06-30

    This report summarizes works conducted under DOE Contract No. DE-FC26-05NT42448. The work scope was divided into two categories - (a) experimental program to pretreat and refine a coal derived syncrude sample to meet transportation fuels requirements; (b) system analysis of a commercial scale direct coal liquefaction facility. The coal syncrude was derived from a bituminous coal by Headwaters CTL, while the refining study was carried out under a subcontract to Axens North America. The system analysis included H{sub 2} production cost via six different options, conceptual process design, utilities requirements, CO{sub 2} emission and overall plant economy. As part of the system analysis, impact of various H{sub 2} production options was evaluated. For consistence the comparison was carried out using the DOE H2A model. However, assumptions in the model were updated using Headwaters database. Results of Tier 2 jet fuel specifications evaluation by the Fuels & Energy Branch, US Air Force Research Laboratory (AFRL/RZPF) located at Wright Patterson Air Force Base (Ohio) are also discussed in this report.

  7. Direct coal liquefaction baseline design and system analysis. Quarterly report, January--March 1991

    SciTech Connect

    Not Available

    1991-04-01

    The primary objective of the study is to develop a computer model for a base line direct coal liquefaction design based on two stage direct coupled catalytic reactors. This primary objective is to be accomplished by completing the following: a base line design based on previous DOE/PETC results from Wilsonville pilot plant and other engineering evaluations; a cost estimate and economic analysis; a computer model incorporating the above two steps over a wide range of capacities and selected process alternatives; a comprehensive training program for DOE/PETC Staff to understand and use the computer model; a thorough documentation of all underlying assumptions for baseline economics; and a user manual and training material which will facilitate updating of the model in the future.

  8. Direct coal liquefaction baseline design and system analysis. Quarterly report, April--June 1991

    SciTech Connect

    Not Available

    1991-07-01

    The primary objective of the study is to develop a computer model for a base line direct coal liquefaction design based on two stage direct coupled catalytic reactors. This primary objective is to be accomplished by completing the following: a base line design based on previous DOE/PETC results from Wilsonville pilot plant and other engineering evaluations; a cost estimate and economic analysis; a computer model incorporating the above two steps over a wide range of capacities and selected process alternatives; a comprehensive training program for DOE/PETC Staff to understand and use the computer model; a thorough documentation of all underlying assumptions for baseline economics; and a user manual and training material which will facilitate updating of the model in the future.

  9. Direct coal liquefaction baseline design and system analysis. Quarterly report, September--December 1990

    SciTech Connect

    Not Available

    1991-01-01

    The primary objective of the study is to develop a computer model for a base line direct coal liquefaction design based on two stage direct coupled catalytic reactors. This primary objective is to be accomplished by completing the following: a base line design based on previous DOE/PETC results from Wilsonville pilot plant and other engineering evaluations; a cost estimate and economic analysis; a computer model incorporating the above two steps over a wide range of capacities and selected process alternatives; a comprehensive training program for DOE/PETC Staff to understand and use the computer model; a thorough documentation of all underlying assumptions for baseline economics; and a user manual and training material which will facilitate updating of the model in the future.

  10. Fuel-blending stocks from the hydrotreatment of a distillate formed by direct coal liquefaction

    SciTech Connect

    Andile B. Mzinyati

    2007-09-15

    The direct liquefaction of coal in the iron-catalyzed Suplex process was evaluated as a technology complementary to Fischer-Tropsch synthesis. A distinguishing feature of the Suplex process, from other direct liquefaction processes, is the use of a combination of light- and heavy-oil fractions as the slurrying solvent. This results in a product slate with a small residue fraction, a distillate/naphtha mass ratio of 6, and a 65.8 mass % yield of liquid fuel product on a dry, ash-free coal basis. The densities of the resulting naphtha (C{sub 5}-200{sup o}C) and distillate (200-400{sup o}C) fractions from the hydroprocessing of the straight-run Suplex distillate fraction were high (0.86 and 1.04 kg/L, respectively). The aromaticity of the distillate fraction was found to be typical of coal liquefaction liquids, at 60-65%, with a Ramsbottom carbon residue content of 0.38 mass %. Hydrotreatment of the distillate fraction under severe conditions (200{sup o}C, 20.3 MPa, and 0.41 g{sub feed} h{sup -1} g{sub catalyst}{sup -1}) with a NiMo/Al{sub 2}O{sub 3} catalyst gave a product with a phenol content of {lt}1 ppm, a nitrogen content {lt}200 ppm, and a sulfur content {lt}25 ppm. The temperature was found to be the main factor affecting diesel fraction selectivity when operating at conditions of WHSV = 0.41 g{sub feed} h{sup -1} g{sub catalyst}{sup -1} and PH{sub 2} = 20.3 MPa, with excessively high temperatures (T {gt} 420{sup o}C) leading to a decrease in diesel selectivity. The fuels produced by the hydroprocessing of the straight-run Suplex distillate fraction have properties that make them desirable as blending components, with the diesel fraction having a cetane number of 48 and a density of 0.90 kg/L. The gasoline fraction was found to have a research octane number (RON) of 66 and (N + 2A) value of 100, making it ideal as a feedstock for catalytic reforming and further blending with Fischer-Tropsch liquids. 44 refs., 9 figs., 12 tabs.

  11. Coal liquefaction and gas conversion: Proceedings. Volume 1

    SciTech Connect

    Not Available

    1993-12-31

    Volume I contains papers presented at the following sessions: AR-Coal Liquefaction; Gas to Liquids; and Direct Liquefaction. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  12. Apparatus development for measuring heat flux in a direct coal-liquefaction preheater

    NASA Astrophysics Data System (ADS)

    Kornosky, R. M.; Perlmutter, M.; Fuchs, W.; Ruether, J. A.

    1982-04-01

    A device is evaluated for determining heat flux in a direct coal liquefaction preheater. The heat fluxmeter determines heat flux from measurements of temperature difference across the preheater tube wall at a given plane perpendicular to the tube axis. Six fluxmeters were installed in a 5.08 m length of nominal 1 1/2 inch diameter, schedule XX pipe enclosed in stacked electric furnaces. Heat flux to a heat transfer fluid flowing through the pipe was measured and compared to values predicted by the fluxmeters. Fair agreement was observed, and the method can be used as an empirical calibration procedure for fluxmeters. A number of apparatus improvements were identified that will be incorporated in the planned experimental program.

  13. Preconversion processing of bituminous coals: New directions to improved direct catalytic coal liquefaction. Quarterly report, July 1, 1992--September 30, 1992

    SciTech Connect

    Not Available

    1992-10-01

    Soaking coal in coal liquids at 300-400{degrees}C (high-tenperature soaking) has been studied for coal dissolution prior to liquefaction in the previous task. Two high-volatile bituminous coals, Illinois No. 6 and Pittsburgh No. 8, were examined in three different coal liquids. The high-temperature soaking was effective to solubilize more than 70 wt% cf these coals. The mechanism of disintegration of coal by the high-temperature soaking was investigated under various soaking conditions. The products was also analyzed with solvent swelling. These results were rationalized that coal is solubilized primarily by physical disintegration. The derived mechanism was consistent with the new concept of coal structure: A significant portion of coal is physically associated, not three-dimensionally cross-linked. Radically-induced scission reactions were proposed to prorate breakage of coal moleculs by the combination of the high-temperature soaking before liquefaction. In this term, the effect of radical initiators were investigated under the conditions of the high-temperature soaking and liquefaction. Illinois No. 6 coal and a coal liquid derived from the same coal were used. The first section reports the effect of radical initiators on coal disintegration, and the second section reports the effect of a radical initiator on coal liquefaction. Radical initiators had a positive effect on disintegration. However, the effect was highly temperature-dependent and had a negative effect on liquefaction at high tenperatures.

  14. Cooperative research in coal liquefaction

    SciTech Connect

    Huffman, G.P.; Sendlein, L.V.A.

    1991-05-28

    Significant progress was made in the May 1990--May 1991 contract period in three primary coal liquefaction research areas: catalysis, structure-reactivity studies, and novel liquefaction processes. A brief summary of the accomplishments in the past year in each of these areas is given.

  15. Two stage liquefaction of coal

    DOEpatents

    Neuworth, Martin B.

    1981-01-01

    A two stage coal liquefaction process and apparatus comprising hydrogen donor solvent extracting, solvent deashing, and catalytic hydrocracking. Preferrably, the catalytic hydrocracking is performed in an ebullating bed hydrocracker.

  16. Advanced liquefaction using coal swelling and catalyst dispersion techniques

    SciTech Connect

    Curtis, C.W. ); Gutterman, C. ); Chander, S. )

    1991-01-01

    Research in this project centers upon developing a new approach to the direct liquefaction of coal to produce an all-distillate product slate at a sizable cost reduction over current technology. The approach integrates all aspects of the coal liquefaction process including coal selection, pretreatment, coal swelling with catalyst impregnation, coal liquefaction experimentation, product recovery with characterization, alternate bottoms processing, and a technical assessment including an economic evaluation. Work has centered upon obtaining bulk samples of feedstocks for the project, up-dating the background literature, and preparing and testing a computer program to perform material balance calculations for the continuous flow liquefaction unit.

  17. Steam pretreatment for coal liquefaction

    NASA Astrophysics Data System (ADS)

    Ivanenko, Olga

    The objectives of this work are to test the application of steam pretreatment to direct coal liquefaction, to investigate the reaction of model compounds with water, and to explore the use of zeolites in these processes. Previous work demonstrated the effectiveness of steam pretreatment in a subsequent flash pyrolysis. Apparently, subcritical steam ruptures nearly all of the ether cross links, leaving a partially depolymerized structure. It was postulated that very rapid heating of the pretreated coal to liquefaction conditions would be required to preserve the effects of such treatment. Accordingly, a method was adopted in which coal slurry is injected into a hot autoclave containing solvent. Since oxygen is capable of destroying the pretreatment effect, precautions were taken for its rigorous exclusion. Tests were conducted with Illinois No. 6 coal steam treated at 340sp°C, 750 psia for 15 minutes. Both raw and pretreated samples were liquified in deoxygenated tetralin at high severity (400sp°C, 30 min.) and low severity (a: 350sp°C, 30 min., and b: 385sp°C, 15 min.) conditions under 1500 psia hydrogen. Substantial improvement in liquid product quality was obtained and the need for rapid heating and oxygen exclusion demonstrated. Under low severity conditions, the oil yield was more than doubled, going from 12.5 to 29 wt%. Also chemistry of the pretreatment process was studied using aromatic ethers as model compounds. alpha-Benzylnaphthyl ether (alpha-BNE), alpha-naphthylmethyl phenyl (alpha-NMPE), and 9-phenoxyphenanthrene were exposed to steam and inert gas at pretreatment conditions and in some cases to liquid water at 315sp°C. alpha-BNE and alpha-NMPE showed little difference in conversion in inert gas and in steam. Hence, these compounds are poor models for coal in steam pretreatment. Thermally stable 9-phenoxyphenanthrene, however, was completely converted in one hour by liquid water at 315sp°C. At pretreatment conditions mostly rearranged starting

  18. Coal liquefaction and gas conversion contractors review conference: Proceedings

    SciTech Connect

    1995-11-01

    This volume contains 55 papers presented at the conference. They are divided into the following topical sections: Direct liquefaction; Indirect liquefaction; Gas conversion (methane conversion); and Advanced research liquefaction. Papers in this last section deal mostly with coprocessing of coal with petroleum, plastics, and waste tires, and catalyst studies. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  19. DIRECT LIQUEFACTION PROOF-OF-CONCEPT PROGRAM

    SciTech Connect

    A.G. Comolli; T.L.K. Lee; J. Hu; G. Popper; M.D. Elwell; J. Miller; D. Parfitt; P. Zhou

    1999-12-30

    This report presents the results of the bench-scale work, Bench Run PB-09, HTI Run Number 227-106, conducted under the DOE Proof-of-Concept Option Program indirect coal liquefaction at Hydrocarbon Technologies Inc. in Lawrenceville, New Jersey. Bench Run PB-09 was conducted using two types of Chinese coal, Shenhua No.2 and Shenhua No.3, and had several goals. One goal was to study the liquefaction performance of Shenhua No.2 and Shenhua No.3 with respect to coal conversion and distillate production. Another goal of Bench Run PB-09 was to study the effect of different GelCatw formulations and loadings. At the same time, the space velocity and the temperature of the fmt reactor, K-1, were varied to optimize the liquefaction of the two Chinese coals. The promoter-modified HTI GelCat{trademark} catalyst was very effective in the direct liquefaction of coal with nearly 92% maf coal conversion with Shenhua No.3 and 93% maf coal conversion with 9 Shenhua No.2. Distillate yields (CQ-524 C)varied from 52-68% maf for Shenhua No.3 coal to 54-63% maf for Shenhua No.2 coal. The primary conclusion from Bench Run PB-09 is that Shenhua No.3 coal is superior to Shenhua No.2 coal in direct liquefaction due to its greater distillate production, although coal conversion is slightly lower and C{sub 1}-C{sub 3} light gas production is higher for Shenhua No.3. The new promoter modified GelCat{trademark} proved successful in converting the two 9 Chinese coals and, under some conditions, producing good distillate yields for a coal-only bench run. Run PB-09 demonstrated significantly better performance of China Shenhua coal using HTI's coal direct liquefaction technology and GelCat{trademark} catalyst than that obtained at China Coal Research Institute (CCRI, coal conversion 88% and distillate yield 61%).

  20. Fine particle clay catalysts for coal liquefaction

    SciTech Connect

    Olson, E.S.

    1991-01-01

    The efficient production of environmentally acceptable distillate fuels requires catalysts for hydrogenation and cleavage of the coal macromolecules and removal of oxygen, nitrogen, and sulfur heteroatoms. The goal of the proposed research is to develop new catalysts for the direct liquefaction of coal. This type of catalyst consists of fine clay particles that have been treated with reagents which form pillaring structures between the aluminosilicate layers of the clay. The pillars not only hold the layers apart but also constitute the active catalytic sites for hydrogenation of the coal and solvent used in the liquefaction. The pillaring catalytic sites are composed of pyrrhotite, which has been previously demonstrated to be active for coal liquefaction. The pyrrhotite sites are generated in situ by sulfiding the corresponding oxyiron species. The size of the catalyst will be less than 40 nm in order to promote intimate contact with the coal material. Since the clays and reagents for pillaring and activating the clays are inexpensive, the catalysts can be discarded after use, rather than regenerated by a costly process. The proposed work will evaluate methods for preparing the fine particle iron-pillared clay dispersions and for activating the particles to generate the catalysts. Characterization studies of the pillared clays and activated catalysts will performed. The effectiveness of the pillared clay dispersion for hydrogenation and coal liquefaction will be determined in several types of testing. 5 refs., 1 tab.

  1. Fine particle clay catalysts for coal liquefaction

    SciTech Connect

    Olson, E.S.

    1991-01-01

    The efficient production of environmentally acceptable distillate fuels requires catalysts for hydrogenation and cleavage of the coal macromolecules and removal of oxygen, nitrogen, and sulfur heteroatoms. The goal of the proposed research is to develop new catalysts for the direct liquefaction of coal. This type of catalyst consists of fine clay particles that have been treated with reagents which form pillaring structures between the aluminosilicate layers of the clay. The pillars not only hold the layers apart but also constitute the active catalytic sites for hydrogenation of the coal and the solvent used in the liquefaction. The pillaring catalytic sites are composed of pyrrhotite, which has been previously demonstrated to be active for coal liquefaction. The pyrrhotite sites are generated in situ by sulfiding the corresponding oxyiron species. The size of the catalyst will be less than 40 nm in order to promote intimate contact with the coal material. Since the clays and reagents for pillaring and activating the clays are inexpensive, the catalysts can be discarded after use, rather than regenerated by a costly process. The proposed work will evaluate methods for preparing the fine particle iron-pillared clay dispersions and for activating the particles to generate the catalysts. Characterization studies of the pillared clays and activated catalysts will be performed. The effectiveness of the pillared clay dispersion for hydrogenation and coal liquefaction will be determined in several types of testing.

  2. Surfactant-Assisted Coal Liquefaction

    NASA Technical Reports Server (NTRS)

    Hickey, Gregory S.; Sharma, Pramod K.

    1993-01-01

    Obtaining liquid fuels from coal which are economically competitive with those obtained from petroleum based sources is a significant challenge for the researcher as well as the chemical industry. Presently, the economics of coal liquefaction are not favorable because of relatively intense processing conditions (temperatures of 430 degrees C and pressures of 2200 psig), use of a costly catalyst, and a low quality product slate of relatively high boiling fractions. The economics could be made more favorable by achieving adequate coal conversions at less intense processing conditions and improving the product slate. A study has been carried out to examine the effect of a surfactant in reducing particle agglomeration and improving hydrodynamics in the coal liquefaction reactor to increase coal conversions...

  3. Coal liquefaction process streams characterization and evaluation: The application of [sup 252]Cf-plasma desorption mass spectrometry to analysis of direct coal liquefaction heavy products

    SciTech Connect

    Larsen, J.W.; Lapucha, A.R.

    1992-10-01

    This study demonstrated the feasibility of using [sup 252]Cf PDMS, GPC, and MPLC for the examination of the tetrahydrofuran (THF)-soluble portion of distillation resid materials derived from direct coal liquefaction. The [sup 252]Cf-PDMS technique was used to determine molecular weight distributions of twenty-five THF-soluble resids. In order to detemine if [sup 252]Cf-PDMS responds differently to different chemical classes of compounds, Lehigh separated five of the samples into chemically distinct fractions by MPLC, then analyzed the parent samples, their fractions, and the re-mixed fractions by [sup 252]Cf-PDMS and GPC. Irreversible alteration of the samples upon separation was noted by Lehigh. This was confirmed by use of gas chromatographic (GC) analyses. The noted irreversible alterations prevented a direct comparison of the remixed materials and the original samples. Thus, the selective response of [sup 252]Cf-PDMS to different chemical classes of compounds could not be confirmed or ruled out. The number average molecular weights (M[sub n]) obtained by [sup 252]Cf-PDMS and GPC agreed well. However, the weight average molecular weights (M[sub w]) obtained by GPC are always higher than the corresponding [sup 252]Cf-PDMS results. Number average molecular weights and weight average molecular weights obtained with [sup 252]Cf-PDMS and GPC were compared with those obtained by field ionization mass spectrometry (FIMS), previously reported by SRI International for the parent resid samples from which the Lehigh THF-soluble samples were derived.

  4. Coal liquefaction process streams characterization and evaluation: The application of {sup 252}Cf-plasma desorption mass spectrometry to analysis of direct coal liquefaction heavy products

    SciTech Connect

    Larsen, J.W.; Lapucha, A.R.

    1992-10-01

    This study demonstrated the feasibility of using {sup 252}Cf PDMS, GPC, and MPLC for the examination of the tetrahydrofuran (THF)-soluble portion of distillation resid materials derived from direct coal liquefaction. The {sup 252}Cf-PDMS technique was used to determine molecular weight distributions of twenty-five THF-soluble resids. In order to detemine if {sup 252}Cf-PDMS responds differently to different chemical classes of compounds, Lehigh separated five of the samples into chemically distinct fractions by MPLC, then analyzed the parent samples, their fractions, and the re-mixed fractions by {sup 252}Cf-PDMS and GPC. Irreversible alteration of the samples upon separation was noted by Lehigh. This was confirmed by use of gas chromatographic (GC) analyses. The noted irreversible alterations prevented a direct comparison of the remixed materials and the original samples. Thus, the selective response of {sup 252}Cf-PDMS to different chemical classes of compounds could not be confirmed or ruled out. The number average molecular weights (M{sub n}) obtained by {sup 252}Cf-PDMS and GPC agreed well. However, the weight average molecular weights (M{sub w}) obtained by GPC are always higher than the corresponding {sup 252}Cf-PDMS results. Number average molecular weights and weight average molecular weights obtained with {sup 252}Cf-PDMS and GPC were compared with those obtained by field ionization mass spectrometry (FIMS), previously reported by SRI International for the parent resid samples from which the Lehigh THF-soluble samples were derived.

  5. Liquefaction of sub-bituminous coal

    DOEpatents

    Schindler, Harvey D.; Chen, James M.

    1986-01-01

    Sub-bituminous coal is directly liquefied in two stages by use of a liquefaction solvent containing insoluble material as well as 850.degree. F.+ material and 850.degree. F.- material derived from the second stage, and controlled temperature and conversion in the second stage. The process is in hydrogen balance.

  6. Studies of the initial reactions that occur during direct coal liquefaction

    SciTech Connect

    Stohl, F.V.

    1989-01-01

    The objectives of this work are to identify the types of compounds and process conditions that give rise to retrogressive reactions during preconversion processing. Experiments have been performed to evaluate the impacts of temperature, pressure, catalysts, mineral matter, and hydrogen donor on these reactions. Initial studies have been carried out using dibenzyl ether (DBE) because ether linkages represent one type of bonding believed to be present in coal. Previous studies have analyzed the kinetics and mechanism of thermolysis of DBE and have also used DBE to study effects of process variables in coal liquefaction. Results of thermal reactions with DBE have shown that the main reaction products are toluene, benzaldehyde, benzyl alcohol and benzene. In the presence of catalysts such as ZnCl{sub 2}, the product distributions are more complicated and can contain significant amounts of material with higher molecular weights than DBE. 8 refs., 8 figs.

  7. Steam pretreatment for coal liquefaction

    SciTech Connect

    Graff, R.A.; Balogh-Nair, V.

    1991-01-01

    Steam pretreatment is the reaction of coal with steam at temperatures well below those usually used for solubilization. The objective of the proposed work is to test the application of steam pretreatment to coal liquefaction. This quarter, a 300 ml stirred autoclave for liquefaction tests was received and installation initiated. Four coal samples were obtained from the Penn State Sample Bank. Continuous flow pretreatment procedures were reestablished. Extraction yields after pretreatment of the new sample of Illinois No. 6 coal are in agreement with previous results even though the particle size is considerably larger. Purification of the model compound {beta}-naphthylmethyl phenyl ether has been completed. However, {alpha}-naphthylmethyl phenyl ether has been found to undergo acid catalyzed rearrangement during purification on silica. An alternative method for purification is being examined. 4 refs., 3 figs., 1 tab.

  8. Surfactant-assisted coal liquefaction

    NASA Technical Reports Server (NTRS)

    Hsu, G. C.

    1977-01-01

    Improved process of coal liquefaction utilizing nonaqueous surfactant has increased oil yield from 50 to about 80%. Asphaltene molecule formation of colloid particles is prevented by surfactant. Separated molecules present more surface area for hydrogenation reaction. Lower requirements for temperature, pressure, and hydrogen lead to reduction in capital and operation costs.

  9. Surfactant-assisted coal liquefaction

    NASA Technical Reports Server (NTRS)

    Hsu, G. C.

    1977-01-01

    Improved process of coal liquefaction utilizing nonaqueous surfactant has increased oil yield from 50 to about 80%. Asphaltene molecule formation of colloid particles is prevented by surfactant. Separated molecules present more surface area for hydrogenation reaction. Lower requirements for temperature, pressure, and hydrogen lead to reduction in capital and operation costs.

  10. Coal liquefaction process streams characterization and evaluation

    SciTech Connect

    Robbins, G.A.; Winshel, R.A.; Burke, F.P.

    1990-10-01

    Consol R D is conducting a three-year program to characterize process and product streams from direct coal liquefaction process development projects. The program objectives are two-fold: (1) to obtain and provide appropriate samples of coal liquids for the evaluation of analytical methodology, and (2) to support ongoing DOE-sponsored coal liquefaction process development efforts. The first objective will utilize analytical techniques which have not been fully demonstrated; the second objective involves more previously proven methods. This quarter, two feed coals and 39 process oils from Wilsonville Run 258 were analyzed to provide information on process performance. Run 258 was operated in the thermal/catalytic Close-Coupled Integrated Two-Stage Liquefaction (CC-ITSL) mode with ash recycle. The subbituminous feed coals were from the Spring Creek Mine (Anderson and Dietz seams) and from the Black Thunder Mine (Wyodak and Anderson seams). Shell 324 catalyst was used in the second stage. Various coal samples related to Wilsonville Run 259 were analyzed for chemical and petrographic composition. These results will be given in a future report, which covers all of Run 259. 18 figs., 24 tabs.

  11. A Characterization and Evaluation of Coal Liquefaction Process Streams

    SciTech Connect

    G. A. Robbins; R. A. Winschel; S. D. Brandes

    1998-06-09

    CONSOL characterized 38 process strea m samples from HTI Run PB- 04, in which Black Thunder Mine Coal, Hondo vacuum resid, autom obile shredder residue (ASR), and virgin plastics were used as liquefaction feedstocks with dispersed catalyst. A paper on kinetic modeling of resid reactivity was presented at the DOE Coal Lique -faction and Solid Fuels Contractors Review Conference, September 3- 4, 1997, i n Pittsburgh, PA. The paper, "The Reactivity of Direct Coal Liquefaction Resids", i s appended (Appendix 1). Three papers on characterization of samples from coal/ resid/ waste p lastics co- liquefaction were presented or submitted for presen tation at conferences. Because of their similarity, only one of the papers is appended to this report. The paper, "Characterization o f Process Samples From Co- Liquefaction of Coal and Waste Polymers", (Appendix 2) was presented at the DOE Coal Liquefaction and Solid Fuels C ontractors Review Conference, September 3- 4, 1997, in Pittsburgh, PA. The paper, "Characterization of Process Stream Samples From Bench- Scale Co -Liquefaction Runs That Utilized Waste Polymers as Feedstocks" was presented at the 214th National Meeting of the Ameri can Chemical Society, September 7- 11, 1997, in Las Vegas, NV. The paper, "Characterization of Process Oils from Coal/ Waste Co- Liquefaction" wa s submitted for presentation at the 14th Japan/ U. S. Joint Technical Meeting on Coa l Liquefaction and Materials for Coal Liquefaction on October 28, 1997, in Tokyo, Japan. A joint Burns and Roe Services Corp. and CONSOL pap er on crude oil assays of product oils from HTI Run PB- 03 was presented at the DOE Coal Liquefaction and Solid Fuel s Contractors Review Conference, September 3- 4, 1997, in Pittsburgh, PA. The paper , "Characterization of Liquid Products from All- Slurry Mode Liquefaction", is appende d (Appendix 3).

  12. Iron catalyzed coal liquefaction process

    DOEpatents

    Garg, Diwakar; Givens, Edwin N.

    1983-01-01

    A process is described for the solvent refining of coal into a gas product, a liquid product and a normally solid dissolved product. Particulate coal and a unique co-catalyst system are suspended in a coal solvent and processed in a coal liquefaction reactor, preferably an ebullated bed reactor. The co-catalyst system comprises a combination of a stoichiometric excess of iron oxide and pyrite which reduce predominantly to active iron sulfide catalysts in the reaction zone. This catalyst system results in increased catalytic activity with attendant improved coal conversion and enhanced oil product distribution as well as reduced sulfide effluent. Iron oxide is used in a stoichiometric excess of that required to react with sulfur indigenous to the feed coal and that produced during reduction of the pyrite catalyst to iron sulfide.

  13. Coal liquefaction process streams characterization and evaluation

    SciTech Connect

    Mitchell, G.; Davis, A. . Energy and Fuels Research Center); Burke, F.P.; Winschel, R.A.; Brandes, S.D. . Energy and Fuels Research Center)

    1991-12-01

    This study demonstrated the use of the gold tube carbonization technique and reflectance microscopy analysis for the examination of process-derived materials from direct coal liquefaction. The carbonization technique, which was applied to coal liquefaction distillation resids, yields information on the amounts of gas plus distillate, pyridine-soluble resid, and pyridine-insoluble material formed when a coal liquid sample is heated to 450{degree}C for one hour at 5000 psi in an inert atmosphere. The pyridine-insolubles then are examined by reflectance microscopy to determine the type, amount, and optical texture of isotropic and anisotropic carbon formed upon carbonization. Further development of these analytical methods as process development tools may be justified on the basis of these results.

  14. Which route to coal liquefaction

    SciTech Connect

    Nene, R.G.

    1981-11-01

    The author compares the SRC-II process with three indirect liquefaction processes: Lurgi gasification and Mobil's methanol to gasoline (MTG) process; Shell-Koppers gasification and the Mobil MTG process; and Lurgi gasification and SASOL Fischer-Tropsch synthesis. Yields, thermal efficiencies, costs, state of development, and complexity of the processes are examined. Direct liquefaction is more thermally efficient. Investment costs are so close that the relative ranking of the process may change.

  15. Coal liquefaction with molybdenum catalysts

    SciTech Connect

    Chien, P.L.

    1983-01-01

    Coal liquefaction experiments were carried out in a stirred autoclave under nitrogen. Tetralin was employed as solvent, and the catalyst, when used, was ammonium heptamolybdate (impregnated on coal) or stannous chloride (powdered). Production of pentane soluble oil was higher in the runs with catalyst, but net hydrogen transfer from tetralin to coal was less when catalyst was used. Coal and powdered stannous chloride exhibited a marked synergistic effect on the dehydrogenation of tetralin. A free radical mechanism was suggested to explain this effect, and model experiments with bibenzyl (but no coal) gave results that were consistent with this mechanism. An apparent synergistic effect of coal and impregnated ammonium heptamolybdate was shown to be attributed simply to improved distribution (higher surface area) of the impregnated catalyst, the coal acting as a high-area support. Comparison of the results from autoclave experiments (under nitrogen) with those from tubing bomb experiments (under air) indicated major differences in coal conversion and hydrogen transfer. The conversion was 62% in the autoclave and 81% in the tubing bomb, and the hydrogen transfer was 0.7% in the autoclave and 2.93% in the tubing bomb, when 1% of Mo (based on coal) was impregnated on coal in a preliminary step.

  16. Coal liquefaction process streams characterization and evaluation

    SciTech Connect

    Campbell, J.A.; Linehan, J.C.; Robins, W.H. )

    1992-07-01

    Under contract from the DOE , and in association with CONSOL Inc., Battelle, Pacific Northwest Laboratory (PNL) evaluated four principal and several complementary techniques for the analysis of non-distillable direct coal liquefaction materials in support of process development. Field desorption mass spectrometry (FDMS) and nuclear magnetic resonance (NMR) spectroscopic methods were examined for potential usefulness as techniques to elucidate the chemical structure of residual (nondistillable) direct coal liquefaction derived materials. Supercritical fluid extraction (SFE) and supercritical fluid chromatography/mass spectrometry (SFC/MS) were evaluated for effectiveness in compound-class separation and identification of residual materials. Liquid chromatography (including microcolumn) separation techniques, gas chromatography/mass spectrometry (GC/MS), mass spectrometry/mass spectrometry (MS/MS), and GC/Fourier transform infrared (FTIR) spectroscopy methods were applied to supercritical fluid extracts. The full report authored by the PNL researchers is presented here. The following assessment briefly highlights the major findings of the project, and evaluates the potential of the methods for application to coal liquefaction materials. These results will be incorporated by CONSOL into a general overview of the application of novel analytical techniques to coal-derived materials at the conclusion of CONSOL's contract.

  17. Coal liquefaction with preasphaltene recycle

    DOEpatents

    Weimer, Robert F.; Miller, Robert N.

    1986-01-01

    A coal liquefaction system is disclosed with a novel preasphaltene recycle from a supercritical extraction unit to the slurry mix tank wherein the recycle stream contains at least 90% preasphaltenes (benzene insoluble, pyridine soluble organics) with other residual materials such as unconverted coal and ash. This subject process results in the production of asphaltene materials which can be subjected to hydrotreating to acquire a substitute for No. 6 fuel oil. The preasphaltene-predominant recycle reduces the hydrogen consumption for a process where asphaltene material is being sought.

  18. Mild coal pretreatment to improve liquefaction reactivity

    SciTech Connect

    Miller, R.L.

    1991-01-01

    This report describes work completed during the fifth quarter of a three year project to study the effects of mild chemical pretreatment on coal dissolution reactivity during low severity liquefaction or coal/oil coprocessing. The overall objective of this research is to elucidate changes in the chemical and physical structure of coal by pretreating with methanol or other simple organic solvent and a trace amount of hydrochloric acid and measure the influence of these changes on coal dissolution reactivity. Work this quarter focused on analytical characterization of untreated and treated Wyodak subbituminous coal and Illinois {number sign}6 bituminous coal. Mossbauer spectroscopy and x-ray diffraction techniques were used to study the effect of methanol/HCl pretreatment on the composition of each coal's inorganic phase. Results from these studies indicated that calcite is largely removed during pretreatment, but that other mineral species such as pyrite are unaffected. This finding is significant, since calcite removal appears to directly correlate with low severity liquefaction enhancement. Further work will be performed to study this phenomenon in more detail.

  19. Coal liquefaction process

    DOEpatents

    Skinner, Ronald W.; Tao, John C.; Znaimer, Samuel

    1985-01-01

    This invention relates to an improved process for the production of liquid carbonaceous fuels and solvents from carbonaceous solid fuels, especially coal. The claimed improved process includes the hydrocracking of the light SRC mixed with a suitable hydrocracker solvent. The recycle of the resulting hydrocracked product, after separation and distillation, is used to produce a solvent for the hydrocracking of the light solvent refined coal.

  20. EXPLORATORY RESEARCH ON NOVEL COAL LIQUEFACTION CONCEPT

    SciTech Connect

    Brandes, S.D.; Winschel, R.A.

    1998-11-30

    The report presents a summary the work performed under DOE Contract No. DE-AC22-95PC95050. Investigations performed under Task 4--Integrated Flow Sheet Testing are detailed. In this program, a novel direct coal liquefaction technology was investigated by CONSOL Inc. with the University of Kentucky Center for Applied Energy Research and LDP Associates. The process concept explored consists of a first-stage coal dissolution step in which the coal is solubilized by hydride ion donation. In the second stage, the products are catalytically upgraded to refinery feedstocks. Integrated first-stage and solids-separation steps were used to prepare feedstocks for second-stage catalytic upgrading. An engineering and economic evaluation was conducted concurrently with experimental work throughout the program. Approaches to reduce costs for a conceptual commercial plant were recommended at the conclusion of Task 3. These approaches were investigated in Task 4. The economic analysis of the process as it was defined at the conclusion of Task 4, indicates that the production of refined product (gasoline) via this novel direct liquefaction technology is higher than the cost associated with conventional two-stage liquefaction technologies.

  1. Cooperative research in coal liquefaction. Final report, May 1, 1990-- April 30, 1991

    SciTech Connect

    Huffman, G.P.

    1992-02-15

    The Consortium for Fossil Fuel Liquefaction Science (CFFLS) is currently engaged in a three year contract with the US Department of Energy investigating a range of research topics dealing with direct coal liquefaction. This report summarizes the results of this program in its second year, from May 1, 1990 to April 30, 1991. Accomplishments for this period are presented for the following tasks: Iron-based catalysts for coal liquefaction, exploratory research on coal conversion, novel coal liquefaction concepts, and novel catalysts for coal liquefaction.

  2. Catalytic coal liquefaction process

    DOEpatents

    Garg, D.; Sunder, S.

    1986-12-02

    An improved process for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a solvent comprises using as catalyst a mixture of a 1,2- or 1,4-quinone and an alkaline compound, selected from ammonium, alkali metal, and alkaline earth metal oxides, hydroxides or salts of weak acids. 1 fig.

  3. Catalytic coal liquefaction process

    DOEpatents

    Garg, Diwakar; Sunder, Swaminathan

    1986-01-01

    An improved process for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a solvent comprises using as catalyst a mixture of a 1,2- or 1,4-quinone and an alkaline compound, selected from ammonium, alkali metal, and alkaline earth metal oxides, hydroxides or salts of weak acids.

  4. Cooperative research program in coal liquefaction. Quarterly report, August 1, 1991--October 31, 1991

    SciTech Connect

    Huffman, G.P.

    1991-12-31

    This Quarterly Report on coal liquefaction research includes discussion in the areas of (1) Iron Based Catalysts for Coal Liquefaction; (2) Exploratory Research on Coal Conversion; (3) Novel Coal Liquefaction Concepts; (4) Novel Catalysts for Coal Liquefaction. (VC)

  5. Cooperative Research Program in coal liquefaction. Technical report, May 1, 1994--October 31, 1994

    SciTech Connect

    1994-12-31

    Progress reports are presented for the following tasks: coliquefaction of coal with waste materials; catalysts for coal liquefaction to clean transportation fuels; fundamental research in coal liquefaction; and in situ analytical techniques for coal liquefaction and coal liquefaction catalysts.

  6. Cooperative research program in coal liquefaction. Quarterly report, November 1, 1991--January 31, 1992

    SciTech Connect

    Huffman, G.P.

    1992-06-01

    Research continues on coal liquefaction in the following areas: (1) Iron Based Catalysts for Coal Liquefaction; (2) Exploratory Research on Coal Conversion; (3) Novel Coal Liquefaction Concepts; (4) Novel Catalysts for Coal Liquefaction. (VC)

  7. Gasification of coal liquefaction residues

    SciTech Connect

    Lancet, M. S.

    1981-02-03

    A method is described for gasifying the bottoms fraction from a coal liquefaction process. The bottoms fraction are mixed with at least one finely-divided calcium compound selected from the group consisting of calcium oxide, calcium carbonate and calcium hydroxide with the calcium compound being of a size no larger than about -200 tyler mesh and present in an amount sufficient to produce agglomerate particles upon mixing with the bottoms fraction and thereafter the resulting agglomerate particles are gasified by reacting the agglomerate particles with steam in a fluidized bed.

  8. Continuous bench-scale slurry catalyst testing: Direct coal liquefaction of rawhide sub-bituminous coal. Final topical report, June 1994--December 1994

    SciTech Connect

    Coless, L.A.; Poole, M.C.; Wen, M.Y.

    1995-11-21

    Supported catalysts, either in fixed bed or ebullating bed reactors, are subject to deactivation with time, especially if the feed contains deactivating species, such as metals and coke precursors. Dispersed catalyst systems avoid significant catalyst deactivation because there are no catalyst pores to plug, hence no pore mouth plugging, and hopefully, no relevant decline of catalyst surface area or pore volume. The tests carried out in 1994, at the Exxon Research and Development Laboratories (ERDL) for DOE covered a slate of 5 dispersed catalysts for direct coal liquefaction of Rawhide sub-bituminous coal, which is similar to the Black Thunder coal tested earlier at Wilsonville. The catalysts included three iron and two molybdenum types. The Bailey iron oxide and the two molybdenum catalysts have previously been tested in DOE-sponsored research. These known catalysts will be used to help provide a base line and tie-in to previous work. The two new catalysts, Bayferrox PK 5210 and Mach-1`s Nanocat are very finely divided iron oxides. The iron oxide addition rate was varied from 1.0 to 0.25 wt % (dry coal basis) but the molybdenum addition rate remained constant at 100 wppm throughout the experiments. The effect of changing recycle rate, sulfur and iron oxide addition rates, first stage reactor temperature, mass velocity and catalyst type were tested in the 1994 operations of ERDL`s recycle coal liquefaction unit (RCLU). DOE will use these results to update economics and plan future work. The test program will resume in mid 1995, with another 2-3 months of pilot plant testing.

  9. Advanced direct coal liquefaction concepts. Quarterly report, October 1, 1993--December 31, 1993

    SciTech Connect

    Berger, D.J.; Parker, R.J.; Simpson, P.L.

    1993-12-31

    Six runs on the bench unit were successfully completed this quarter. The runs covered twenty five different operating conditions and yield periods, and involved 336 hours of operation. In the bench unit, increased temperature of first stage operation (410{degree}C) and direct addition of the powdered solid sodium aluminate to the feed as first stage catalyst improved both coal and carbon monoxide conversion. To achieve 90%+ overall coal conversion, temperatures of 430{degree}C+ were required in the second stage. Oil yields (pentane soluble liquid product) in excess of 65 wt % based on MAF Black Thunder coal, were achieved both with iron oxide/dimethyl disulfide and ammonium molybdate/carbon disulfide second stage catalysts. C{sub l}-C{sub 3} hydrogen gas yields were modest, generally 7-8 wt % on MAF coal, and overall hydrogen consumption (including first stage shift hydrogen) was in the order of 7-8 wt % on MAF coal. The ammonium molybdate catalyst system appeared to give slightly higher oil yields and hydrogen consumption, as was expected, but the differences may not be significant.

  10. Fundamental studies of coal liquefaction

    SciTech Connect

    Not Available

    1995-01-01

    The authors have examined the pyrolysis of Argonne samples of Wyodak and Illinois No. 6 coal in argon, undecane, Tetralin, and water. The effects of the pyrolysis on individual particles of coal were monitored visually in a cell with diamond windows capable of operation to temperature and pressures in excess of 500{degrees}C and 3000 psi. The changes in the particles from ambient to 460{degrees}C were recorded in real time on video tape, and images were then taken from the tape record and analyzed. The study showed that in argon both coals developed tars at 350{degrees}-370{degrees}C. The tars then quickly evaporated, leaving core particles remarkably similar in size and shape to the initial particles. These observations suggest that coal does not melt nor become fully liquid when heated. Nor does the softened coal undergo crosslinking to generate coke. Rather the simple loss of volatiles leaves behind the core residue as coke. Contrary to the common view, there appears to be no link between the bond-breaking processes yielding tar and the interaction of the coal with H-donors leading to liquefaction. Water as a medium was surprising in its effect. Both coals began to shrink at 300{degrees}-350{degrees}C, with the effect appearing to be more of an erosion rather than a uniform loss of substance as seen in Tetralin. The Wyodak continued to shrink to 460{degrees}C to about half its initial size. With the Illinois No. 6 coal, however, the process reversed at around 420{degrees}C, and the particles appeared to grow with the evolution of a tar, continuing to 460{degrees}C. The authors submit that this final observation is evidence for hydrothermal synthesis of hydrocarbons at these conditions.

  11. Fractionally distilled SRC-I, SRC-II, EDS, H-Coal and ITSL direct coal liquefaction process materials: a comparative summary of chemical analysis and biological testing

    SciTech Connect

    Wright, C.W.; Later, D.W.; Dauble, D.D.; Wilson, B.W.

    1985-07-01

    This document reports and compares the results compiled from chemical analyses and biological testing of coal liquefaction process materials which were fractionally distilled, after production, into various comparable boiling-point range cuts. Comparative analyses were performed on solvent refined coal (SRC)-I, SRC-II, H-Coal, EDS an integrated two-stage liquefaction (ITSL) distillate materials. Mutagenicity and carcinogenicity assays were conducted in conjunction with chromatographic and mass spectrometric analyses to provide detailed, comparative, chemical and biological assessments. Where possible, results obtained from the distillate cuts are compared to those from coal liquefaction materials with limited boiling ranges. Work reported here was conducted by investigators in the Biology and Chemistry Department at the Pacific Northwest Laboratory (PNL), Richland, WA. 38 refs., 16 figs., 27 tabs.

  12. U.S. DOE indirect coal liquefaction program: An overview

    SciTech Connect

    Shen, J.; Schmetz, E.; Winslow, J.; Tischer, R.; Srivastava, R.

    1997-12-31

    Coal is the most abundant domestic energy resource in the United States. The Fossil Energy Organization within the US Department of Energy (DOE) has been supporting a coal liquefaction program to develop improved technologies to convert coal to clean and cost-effective liquid fuels to complement the dwindling supply of domestic petroleum crude. The goal of this program is to produce coal liquids that are competitive with crude at $20 to $25 per barrel. Indirect and direct liquefaction routes are the two technologies being pursued under the DOE coal liquefaction program. This paper will give an overview of the DOE indirect liquefaction program. More detailed discussions will be given to the F-T diesel and DME fuels which have shown great promises as clean burning alternative diesel fuels. The authors also will briefly discuss the economics of indirect liquefaction and the hurdles and opportunities for the early commercial deployment of these technologies. Discussions will be preceded by two brief reviews on the liquid versus gas phase reactors and the natural gas versus coal based indirect liquefaction.

  13. Preconversion processing of bituminous coals: New directions to improved direct catalytic coal liquefaction. Quarterly report, September 20, 1991--December 31, 1991

    SciTech Connect

    Not Available

    1992-07-01

    The main task of this quarter was to install reactors to conduct preconversion and liquefaction of coal. Coal and coal liquids were collected. The anaerobic chamber (Model 855-AC; Plas Labs, inc.) was procured and set up to store coal samples under an inert gas. Equipment to treat products was assembled, including Soxhlet extraction units, fractionation columns, a distillation column, and a rotary evaporator. Two gas chromatographs for analysis of gases and liquid were adjusted. Two reactor systems were installed for the experimental apparatus. One was Model 4576 high-temperature and high-pressure autoclave (Parr Instrument, 500{degrees}C and 5000 psi) (see Figure 1); the other was a 27 ml of microreactors. The autoclave was obtained from the manufacturer and assembled. The experimental set-up of microreactors are shown in Figure 2.

  14. Chemical analysis and mutational assay of distilled oils from the H-coal direct liquefaction process: a status report

    SciTech Connect

    Wilson, B.W.; Later, D.W.; Wright, C.W.; Stewart, D.L.

    1985-01-01

    Samples from the H-Coal process, a catalytic, single-stage, coal liquefaction technology, were chemically characterized and screened for microbial mutagenicity. For these investigations, a blend of light and heavy H-Coal process oils was fractionally distilled into 50/sup 0/F boiling point cuts. The chemical analyses and biological testing results presented in this status report deal primarily with the blended material and the distillate fractions boiling above 650/sup 0/F. Results from the microbial mutagenicity assays indicated that onset of biological activity in the crude materials occurred above 700/sup 0/F. Similar trends have been observed for Solvent Refined Coal (SRC) I, SRC II, Integrated Two-Stage Liquefaction (ITSL) and Exxon EDS process materials. After chemical class fractionation, the primary source of microbial mutagenicity of the crude boiling point cuts was the nitrogen-containing polycyclic aromatic compound (N-PAC) fractions. Amino polycyclic aromatic hydrocarbons (amino-PAH) were present at sufficient concentration levels in the N-PAC fractions to account for the observed mutagenic responses. In general, the chemical composition of the H-Coal materials studied was similar to that of other single-stage liquefaction materials. The degree of alkylation in these materials was determined to be greater than in the SRC and less than in the EDS process distillate cuts. 13 references, 8 figures, 11 tables.

  15. DIRECT LIQUEFACTION PROOF OF CONCEPT

    SciTech Connect

    1998-09-01

    The eighth bench scale test of POC program, Run PB-08, was successfully completed from August 8 to August 26, 1997. A total of five operating conditions were tested aiming at evaluating the reactivity of different pyrolysis oils in liquefaction of a Wyoming sub-bituminous coal (Black Thunder coal). For the first time, water soluble promoters were incorporated into the iron-based GelCat to improve the dispersion of the promoter metals in the feed blend. The concentration of the active metals, Mo and Fe, was 100 and 1000 ppm of moisture-free coal, respectively. Black Thunder coal used in this run was the same batch as tested in HTI�s Run POC-02. Similar to Runs PB-01 through 7, this run employed two back mixed slurry reactors, an interstage gas/slurry separator and a direct-coupled hydrotreater. In addition to the hot vapor from the second stage separator, the first stage separator overhead liquid was also fed to the hydrotreater, which was packed with Criterion C-411 hydrotreating catalyst. Pyrolysis oil was produced off-line from a pyrolysis unit acquired from University of Wyoming. Solids rejection was achieved by purging out pressure filter solid. The recycle solvents consisted of O-6 separator bottoms and pressure filter liquid (PFL). The Run PB-08 proceeded very smoothly without any interruptions. Coal conversion consistently above 90W% was achieved. High resid conversion and distillate yield have been obtained from co-processing of coal and 343°C+ (650°F+) pyrolysis oil. Light gas (C1-C3 ) yield was minimized and hydrogen consumption was reduced due to the introduction of pyrolysis oil, compared with conventional coal-derived solvent. Catalytic activity was improved by incorporating a promoter metal into the iron-based GelCat. It seemed that lowering the first stage temperature to 435°C might increase the hydrogenation function of the promoter metal. In comparison with previous coal-waste coprocessing run (PB-06), significant

  16. Hydrogen-donor coal liquefaction process

    DOEpatents

    Wilson, Jr., Edward L.; Mitchell, Willard N.

    1980-01-01

    Improved liquid yields are obtained during the hydrogen-donor solvent liquefaction of coal and similar carbonaceous solids by maintaining a higher concentration of material having hydrogenation catalytic activity in the downstream section of the liquefaction reactor system than in the upstream section of the system.

  17. Mild coal pretreatment to improve liquefaction reactivity

    SciTech Connect

    Miller, R.L.

    1991-01-01

    This report describes work completed during the fourth quarter of a three year project to study the effects of mild chemical pretreatment on coal dissolution reactivity during low severity liquefaction or coal/oil coprocessing. The overall objective of this research is to elucidate changes in the chemical and physical structure of coal by pretreating with methanol or other simple organic solvent and a trace amount of hydrochloric acid and measure the influence of these changes on coal dissolution reactivity. This work is part of a larger effort to develop a new coal liquefaction or coal/oil coprocessing scheme consisting of three main process steps: (1) mile pretreatment of the feed coal to enhance dissolution reactivity and dry the coal, (2) low severity thermal dissolution of the pretreated coal to obtain a very reactive coal-derived residual material amenable to upgrading, and (3) catalytic upgrading of the residual products to distillate liquids.

  18. Short contact time direct coal liquefaction using a novel batch reactor. Progress report, September 27, 1993--December 31, 1993

    SciTech Connect

    Klein, M.T.; Calkins, W.H.

    1994-01-19

    The objective for this research is to optimize the design and operation of the bench scale batch reactor (STBR) for coat liquefaction at short contact times (0.01 to 10 minutes). This reactor is simple and low enough in cost to serve as a suitable replacement for the traditional tubing-bomb reactors for coal liquefaction and other high-pressure, high-temperature reaction studies. The details of the reactor system are shown in Figure 2. The heating bath used is a Techne IFB-52 industrial fluidized sand bath, which maintains a reaction temperature of {plus_minus}2{degrees}C. The 30 cm{sup 3} reactor is capable of containing up to 17 MPa (2500 psi) pressure at temperatures up to 550{degrees}C. The tubing used for preheater and precooler was 1/4in. 316 stainless steel with wall thickness of 0.035in. The lengths of the preheater and precooler are selected based on the particular process being studied. Since a gas (e.g. hydrogen or nitrogen) is bubbled through the reaction mixture under pressure and out through a letdown valve, a small water cooled condenser above the reactor before the let-down valve is added to avoid loss of solvent or other low boiling components. Coal liquefaction runs are made by preparing slurries of coal in reagent grade tetralin. Various ratios of tetralin to coal are used, and in some cases, a catalyst such as Ni/Mo on alumina is added.

  19. Advanced liquefaction using coal swelling and catalyst dispersion techniques

    SciTech Connect

    Curtis, C.W. ); Gutterman, C. ); Chander, S. )

    1992-08-26

    Research in this project centers upon developing a new approach to the direct liquefaction of coal to produce an all-distillate product slate at a sizable cost reduction over current technology. The approach integrates all aspects of the coal liquefaction process including coal selection, pretreatment, coal swelling with catalyst impregnation, coal liquefaction experimentation, product recovery with characterization, alternate bottoms processing, and a technical assessment including an economic evaluation. The project is being carried out under contract to the United States Department of Energy. On May 28, 1992, the Department of Energy authorized starting the experimental aspects of this projects; therefore, experimentation at Amoco started late in this quarterly report period. Research contracts with Auburn University, Pennsylvania State University, and Foster Wheeler Development Corporation were signed during June, 1992, so their work was just getting underway. Their work will be summarized in future quarterly reports. A set of coal samples were sent to Hazen Research for beneficiation. The samples were received and have been analyzed. The literature search covering coal swelling has been up-dated, and preliminary coal swelling experiments were carried out. Further swelling experimentation is underway. An up-date of the literature on the liquefaction of coal using dispersed catalysts is nearing completion; it will be included in the next quarterly report.

  20. Liquefaction of coal impregnated with catalyst during preswelling

    SciTech Connect

    Brannan, C.J.; Curtis, C.W.; Cronauer, D.C.

    1994-12-31

    The effect of impregnating coal with slurry phase catalysts during solvent preswelling on coal conversion was investigated. Black Thunder subbituminous coal which was either untreated or pretreated with aqueous SO{sub 2} was used. The coal was placed into the swelling solvents, THF, methanol or isopropanol, for 96 hr prior to liquefaction. Slurry phase catalysts, Mo naphthenate, Molyvan L and Ni octoate, were introduced into the swelling solvents; catalyst uptake by coal was 90 to 95% of the catalyst introduced. Coal conversions of these impregnated coals were obtained at 410{degrees}C in reaction solvents of 1-methylnaphthalene, coal-derived V1074, and dihydroanthracene, and were compared to those obtained with swelled and nonswelled coals. The swelling solvent and the SO{sub 2} pretreatment affected the amount of coal conversion obtained. Coal conversions achieved with impregnated coals were somewhat less than those achieved when the catalyst was added directly to the reactor.

  1. Coal liquefaction process streams characterization and evaluation

    SciTech Connect

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1992-08-01

    This is the tenth Quarterly Technical Progress Report under DOE Contract DE-AC22-89PC89883. Process oils from Wilsonville Run 262 were analyzed to provide information on process performance. Run 262 was operated from July 10 through September 30, 1991, in the thermal/catalytic Close-Coupled Integrated Two-Stage Liquefaction (CC-ITSL) configuration with ash recycle. The feed coal was Black Thunder Mine subbituminous coal. The high/low temperature sequence was used. Each reactor was operated at 50% of the available reactor volume. The interstage separator was in use throughout the run. The second-stage reactor was charged with aged Criterion 324 catalyst (Ni/Mo on 1/16 inch alumina extrudate support). Slurry catalysts and sulfiding agent were fed to the first-stage reactor. Molyvan L is an organometallic compound which contains 8.1% Mo, and is commercially available as an oil-soluble lubricant additive. It was used in Run 262 as a dispersed hydrogenation catalyst precursor, primarily to alleviate deposition problems which plagued past runs with Black Thunder coal. One test was made with little supported catalyst in the second stage. The role of phenolic groups in donor solvent properties was examined. In this study, four samples from direct liquefaction process oils were subjected to O-methylation of the phenolic groups, followed by chemical analysis and solvent quality testing.

  2. Catalyst for coal liquefaction process

    DOEpatents

    Huibers, Derk T. A.; Kang, Chia-Chen C.

    1984-01-01

    An improved catalyst for a coal liquefaction process; e.g., the H-Coal Process, for converting coal into liquid fuels, and where the conversion is carried out in an ebullated-catalyst-bed reactor wherein the coal contacts catalyst particles and is converted, in addition to liquid fuels, to gas and residual oil which includes preasphaltenes and asphaltenes. The improvement comprises a catalyst selected from the group consisting of the oxides of nickel molybdenum, cobalt molybdenum, cobalt tungsten, and nickel tungsten on a carrier of alumina, silica, or a combination of alumina and silica. The catalyst has a total pore volume of about 0.500 to about 0.900 cc/g and the pore volume comprises micropores, intermediate pores and macropores, the surface of the intermediate pores being sufficiently large to convert the preasphaltenes to asphaltenes and lighter molecules. The conversion of the asphaltenes takes place on the surface of micropores. The macropores are for metal deposition and to prevent catalyst agglomeration. The micropores have diameters between about 50 and about 200 angstroms (.ANG.) and comprise from about 50 to about 80% of the pore volume, whereas the intermediate pores have diameters between about 200 and 2000 angstroms (.ANG.) and comprise from about 10 to about 25% of the pore volume, and the macropores have diameters between about 2000 and about 10,000 angstroms (.ANG.) and comprise from about 10 to about 25% of the pore volume. The catalysts are further improved where they contain promoters. Such promoters include the oxides of vanadium, tungsten, copper, iron and barium, tin chloride, tin fluoride and rare earth metals.

  3. Cooperative research in coal liquefaction infratechnology and generic technology development: Final report, October 1, 1985 to December 31, 1986

    SciTech Connect

    Sendlein, L.V.A.

    1987-06-29

    During the first year of its research program, the Consortium for Fossil Fuel Liquefaction Science has made significant progress in many areas of coal liquefaction and coal structure research. Research topics for which substantial progress has been made include integrated coal structure and liquefaction studies, investigation of differential liquefaction processes, development and application of sophisticated techniques for structural analysis, computer analysis of multivariate data, biodesulfurization of coal, catalysis studies, co-processing of coal and crude oil, coal dissolution and extraction processes, coal depolymerization, determination of the liquefaction characteristics of many US coals for use in a liquefaction database, and completion of a retrospective technology assessment for direct coal liquefaction. These and related topics are discussed in considerably more detail in the remainder of this report. Individual projects are processed separately for the data base.

  4. Experience in feeding coal into a liquefaction process development unit

    NASA Technical Reports Server (NTRS)

    Akhtar, S.; Friedman, S.; Mazzocco, N. J.; Yavorsky, P. M.

    1977-01-01

    A system for preparing coal slurry and feeding it into a high pressure liquefaction plant is described. The system was developed to provide supporting research and development for the Bureau of Mines coal liquefaction pilot plant. Operating experiences are included.

  5. Sequential low-temperature depolymerization and liquefaction of US coals

    SciTech Connect

    Shabtai, J.S.; Wiser, W.H.

    1987-01-01

    Results obtained in the studies with BS(IL) coal as feed can be summarized as follows: (1) The low-temperature depolymerization - liquefaction procedure, summarized in Figure 1, is easily adaptable and applicable to a high-sulfur, Burning Star (Illinois No. 6) coal sample. The final product obtained consists of a fully desulfurized, light hydrocarbon oil. (2)Suitable processing conditions for each step of the stepwise depolymerization - liquefaction of the above coal were determined. (3)Direct hydroprocessing of the Burning Star (Illinois No. 6) coal with sulfided catalysts is ineffective for its conversion into a light hydrocarbon product. In accordance with the research program the depolymerized, THF-soluble coal products will be subjected to detailed analysis for the purpose of deriving average molecular structures for the oil, asphaltene and asphaltol fractions. The data obtained will be used to develop a structural model for the BS(IL) coal.

  6. Advanced direct coal liquefaction concepts. Quarterly report, January 1, 1994--March 31, 1994

    SciTech Connect

    Berger, D.J.; Parker, R.J.; Simpson, P.L.

    1994-07-01

    A detailed evaluation of the bench unit data on Black Thunder feedstocks was completed. The results show that in a once-through operation using counterflow, reactor technology coal conversions in excess of 90% could be obtained, giving distillable oil yields in the range 60--65 wt % on MAF coal. The remaining non-distillable oil fraction which represents 20--25 wt % on MAF coal is a source of additional distillable oil in further processing, for example, bottoms recycle operation. C{sub 1}-C{sub 3} gas yields were generally in the order of 6--8 wt %. In autoclave studies, Illinois No. 6 coal was found to be much less reactive than Black Thunder coal, and did not respond well to solubilization with carbon monoxide/steam. Process severity was, therefore, increased for bench unit operations on Illinois No. 6 coal, and work has concentrated on the use of hydrogen rather than carbon monoxide for solubilization. Preliminary coking studies on the resid from bench unit runs on Black Thunder coal were also carried out. Distillable liquid yields of 55--60 wt % were obtained. The technical and economic study to be carried out by Kilborn Engineering Company has been initiated.

  7. Coal liquefaction process streams characterization and evaluation

    SciTech Connect

    Ibrahim, M.M.; Seehra, M.S. . Dept. of Physics)

    1992-10-01

    This study demonstrated the feasibility of using temperature-programmed electron spin resonance (ESR) and thermogravimetric analysis (TGA) for the examination of tetrahydrofuran (THF)-soluble distillation resid materials derived from direct coal liquefaction. TGA is used to quantitate volatile losses in a temperature-programmed experiment. The TGA data are used to correct the free radical densities obtained by ESR as volatile material is evolved from the samples in the temperature-programmed ESR experiment. The techniques, when employed in tandem, can be used to determine the content and nature of the free radicals in the samples at temperatures approximating those used in the liquefaction process. TGA and ESR experiments were performed in flowing nitrogen and hydrogen, at ambient pressure. No significant difference was observed in the ESR spectra in the different atmospheres, except in the case of low-rank coal-derived resids. The TGA results, however, were systematically different; mass loss in an H[sub 2] atmosphere is consistently higher than that observed in an N[sub 2] atmosphere. It was shown that temperature-programmed ESR, which can pinpoint conditions at which the free radical content is the highest, has potential to be a guide for the appropriate choice of conditions for optimum resid upgrading. Further development of these combined analytical methods as process development tools appears justified based on these results.

  8. Coal liquefaction process with enhanced process solvent

    DOEpatents

    Givens, Edwin N.; Kang, Dohee

    1984-01-01

    In an improved coal liquefaction process, including a critical solvent deashing stage, high value product recovery is improved and enhanced process-derived solvent is provided by recycling second separator underflow in the critical solvent deashing stage to the coal slurry mix, for inclusion in the process solvent pool.

  9. EXXON donor solvent coal liquefaction process

    NASA Technical Reports Server (NTRS)

    Epperly, W. R.; Swabb, L. E., Jr.; Tauton, J. W.

    1978-01-01

    A solvent coal liquefaction process to produce low-sulfur liquid products from a wide range of coals is described. An integrated program of laboratory and engineering research and development in conjunction with operation of a 250 T/D pilot plant is discussed.

  10. Coal liquefaction process research quarterly report, October-December 1979

    SciTech Connect

    Bickel, T.C.; Curlee, R.M.; Granoff, B.; Stohl, F.V.; Thomas, M.G.

    1980-03-01

    This quarterly report summarizes the activities of Sandia's continuing program in coal liquefaction process research. The overall objectives are to: (1) provide a fundamental understanding of the chemistry of coal liquefaction; (2) determine the role of catalysts in coal liquefaction; and (3) determine the mechanism(s) of catalyst deactivation. The program is composed of three major projects: short-contact-time coal liquefaction, mineral effects, and catalyst studies. These projects are interdependent and overlap significantly.

  11. Cooperative research program in coal liquefaction. Quarterly report, May 1, 1993--October 31, 1993

    SciTech Connect

    Hoffman, G.P.

    1994-07-01

    This report summarizes progress in four areas of research under the general heading of Coal Liquefaction. Results of studies concerning the coliquefaction of coal with waste organic polymers or chemical products of these polymers were reported. Secondly, studies of catalytic systems for the production of clean transportation fuels from coal were discussed. Thirdly, investigations of the chemical composition of coals and their dehydrogenated counterparts were presented. These studies were directed toward elucidation of coal liquefaction processes on the chemical level. Finally, analytical methodologies developed for in situ monitoring of coal liquefaction were reported. Techniques utilizing model reactions and methods based on XAFS, ESR, and GC/MS are discussed.

  12. Low Severity Coal Liquefaction Promoted by Cyclic Olefins

    SciTech Connect

    Christine W. Curtis

    1998-04-09

    The development of the donor solvent technology for coal liquefaction has drawn a good deal of attention over the last three decades. The search for better hydrogen donors led investigators to a class of compounds known as cyclic olefins. Cyclic olefins are analogues of the conventional hydroaromatic donor species but do not contain aromatic rings. The cyclic olefins are highly reactive compounds which readily release their hydrogen at temperatures of 200 C or higher. Considerable effort has been o expended toward understanding the process of hydrogen donation. Most of this work was conducted in bomb reactors, with product analysis being carried out after the reaction was complete. Efforts directed towards fundamental studies of these reactions in situ are rare. The current work employs a high temperature and high pressure infrared cell to monitor in situ the concentrations of reactants and products during hydrogen release from hydrogen donor compounds.

  13. Coal liquefaction with subsequent bottoms pyrolysis

    DOEpatents

    Walchuk, George P.

    1978-01-01

    In a coal liquefaction process wherein heavy bottoms produced in a liquefaction zone are upgraded by coking or a similar pyrolysis step, pyrolysis liquids boiling in excess of about 1000.degree. F. are further reacted with molecular hydrogen in a reaction zone external of the liquefaction zone, the resulting effluent is fractionated to produce one or more distillate fractions and a bottoms fraction, a portion of this bottoms fraction is recycled to the reaction zone, and the remaining portion of the bottoms fraction is recycled to the pyrolysis step.

  14. Fired heater for coal liquefaction process

    DOEpatents

    Ying, David H. S.; McDermott, Wayne T.; Givens, Edwin N.

    1985-01-01

    A fired heater for a coal liquefaction process is operated under conditions to maximize the slurry slug frequency and thereby improve the heat transfer efficiency. The operating conditions controlled are (1) the pipe diameter and pipe arrangement, (2) the minimum coal/solvent slurry velocity, (3) the maximum gas superficial velocity, and (4) the range of the volumetric flow velocity ratio of gas to coal/solvent slurry.

  15. Advanced direct coal liquefaction concepts. Quarterly report, October 1, 1992--December 31, 1992

    SciTech Connect

    Berger, D.J.; Parker, R.J.; Simpson, P.L.

    1992-12-31

    During the first quarter of FY 1993, the Project proceeded close to the Project Plan. The analysis of the feed material has been completed as far as possible. Some unplanned distillation was needed to correct the boiling range of the Black Thunder solvent used during the autoclave tests. Additional distillation will be required if the same solvent is to be used for the bench unit tests. A decision on this is still outstanding. The solvent to be used with Illinois No. 6 coal has not yet been defined. As a result, the procurement of the feed and the feed analysis is somewhat behind schedule. Agglomeration tests with Black Thunder coal indicates that small agglomerates can be formed. However, the ash removal is quite low (about 10%), which is not surprising in view of the low ash content of the coal. The first series of autoclave tests with Black Thunder coal was completed as planned. Also, additional runs are in progress as repeats of previous runs or at different operating conditions based on the data obtained so far. The results are promising indicating that almost complete solubilization (close to 90%) of Black Thunder coal can be achieved in a CO/H{sub 2}O environment at our anticipated process conditions. The design of the bench unit has been completed. In contrast to the originally planned modifications, the bench unit is now designed based on a computerized control and data acquisition system. All major items of equipment have been received, and prefabrication of assemblies and control panels is proceeding on schedule. Despite a slight delay in the erection of the structural steel, it is anticipated that the bench unit will be operational at the beginning of April 1993.

  16. The direct liquefaction proof of concept program

    SciTech Connect

    Comolli, A.G.; Lee, L.K.; Pradhan, V.R.; Stalzer, R.H.

    1995-12-31

    The goal of the Proof of Concept (POC) Program is to develop Direct Coal Liquefaction and associated transitional technologies towards commercial readiness for economically producing premium liquid fuels from coal in an environmentally acceptable manner. The program focuses on developing the two-stage liquefaction (TSL) process by utilizing geographically strategic feedstocks, commercially feasible catalysts, new prototype equipment, and testing co-processing or alternate feedstocks and improved process configurations. Other high priority objectives include dispersed catalyst studies, demonstrating low rank coal liquefaction without solids deposition, improving distillate yields on a unit reactor volume basis, demonstrating ebullated bed operations while obtaining scale-up data, demonstrating optimum catalyst consumption using new concepts (e.g. regeneration, cascading), producing premium products through on-line hydrotreating, demonstrating improved hydrogen utilization for low rank coals using novel heteroatom removal methods, defining and demonstrating two-stage product properties for upgrading; demonstrating efficient and economic solid separation methods, examining the merits of integrated coal cleaning, demonstrating co-processing, studying interactions between the preheater and first and second-stage reactors, improving process operability by testing and incorporating advanced equipment and instrumentation, and demonstrating operation with alternate coal feedstocks. During the past two years major PDU Proof of Concept runs were completed. POC-1 with Illinois No. 6 coal and POC-2 with Black Thunder sub-bituminous coal. Results from these operations are continuing under review and the products are being further refined and upgraded. This paper will update the results from these operations and discuss future plans for the POC program.

  17. Liquefaction Of Coal With Surfactant And Disposable Catalyst

    NASA Technical Reports Server (NTRS)

    Hickey, Gregory S.; Sharma, Pramod K.

    1996-01-01

    Fuels derived from coal more competitive with petroleum products. Improved coal-liquefaction process exploits synergistic effects of disposable iron oxide catalyst and cheap anionic surfactant. Efficiency of conversion achieved in significantly higher than efficiencies obtained with addition of either surfactant or catalyst alone. No costly pretreatment necessary, and increase in conversion achieved under processing conditions milder than those used heretofore in liquefaction of coal. Quality of distillates obtained after liquefaction in process expected superior to distillates obtained after liquefaction by older techniques.

  18. Advanced direct coal liquefaction concepts. Quarterly report, July 1, 1993--September 30, 1993

    SciTech Connect

    Berger, D.J.; Parker, R.J.; Simpson, P.L.

    1993-12-31

    The bench unit was operated in the two stage configuration during this quarter, and two runs (DOE-008 and DOE-009), which included eight mass balance periods were completed. Addition of potassium carbonate, although the best catalyst for promoting the shift reaction in the first stage, led to severe plugging problems particularly between the first and second stage reactors. Therefore, sodium aluminate, less effective as a shift catalyst, but better for unit operation, was used as an alternate. Ammonium tetrathiomolybdate was used throughout as a second stage catalyst, with and without sodium aluminate as shift catalyst. Overall coal conversions under the conditions studied were approximately 80% wt on MAF coal and C{sub 1}--C{sub 4} gas yields were about 10% wt. Conditions in both stages need to be optimized to improve coal conversion and maximize distillable oil yield. The results so far indicate that increased severity and better carbon monoxide shift conversion are required in the first stage, while maximum pressure ({approximately}2,500 psi) is needed in the second stage. The effects of other catalysts also need to be determined, including the establishment of optimum conditions for operation with those catalysts. Ammonium tetrathiomolybdate was shown to possess no measurable activity as a shift catalyst at the level used (600 ppM on total feed) in either the bench unit or autoclave tests. However, in autoclave tests, the addition of ammonium tetrathiomolybdate did improve asphaltene and preasphaltene conversion to oils (and therefore, product quality) in both one and two stage tests when compared with iron sulfide.

  19. Fine particle clay catalysts for coal liquefaction. Final technical report

    SciTech Connect

    Olson, E.S.

    1995-08-01

    In an effort to develop new disposable catalysts for direct coal liquefaction, several types of clay-supported pyrrhotite catalysts were prepared and tested. These included iron-pillared montmorillonite, mixed iron/alumina-pillared montmorillonite, iron-impregnated montmorillonite, and iron oxometallate-impregnated montmorillonite.

  20. Effect of hydrogen pressure on free radicals in direct coal liquefaction/coprocessing

    SciTech Connect

    Seehra, M.S.; Ibrahim, M.M.

    1995-12-31

    The objective of this study was to investigate the coprocessing of coal with waste tires and commingled plastics and to characterize the relevant catalysts, using high pressure/high temperature in-situ ESR (Electron Spin Resonance) spectroscopy. The recent results from high pressure ESR spectroscopy are emphasized. During this period, considerable progress was made in developing the high pressure capabilities in in-situ ESR spectroscopy and new results carried out in 1000 psi of H{sub 2}gas are presented. In these experiments, sapphire tubes were used to contain the high pressures at temperatures up to 500{degrees}C. Results of the experiments carried out under 1000 psi of H{sub 2} are compared with those under 1000 psi of non-interacting argon and with the earlier experiments in flowing H{sub 2} gas where the volatiles are removed by the flowing gas. In these experiments, the free radical density N of the Blind Canyon coal was measured at each temperature and pressure by double integration of the ESR signal and calibrating it against a standard. The details of the experimental apparatus and procedures have been described in earlier publications.

  1. Coal liquefaction process streams characterization and evaluation

    SciTech Connect

    Rathbone, R.F.; Hower, J.C.; Derbyshire, F.J. . Center for Applied Energy Research)

    1991-10-01

    This study demonstrated the feasibility of using fluorescence and reflectance microscopy techniques for the examination of distillation resid materials derived from direct coal liquefaction. Resid, as defined here, is the 850{degrees}F{sup +} portion of the process stream, and includes soluble organics, insoluble organics and ash. The technique can be used to determine the degree of hydrogenation and the presence of multiple phases occurring within a resid sample. It can also be used to infer resid reactivity. The technique is rapid, requiring less than one hour for sample preparation and examination, and thus has apparent usefulness for process monitoring. Additionally, the technique can distinguish differences in samples produced under various process conditions. It can, therefore, be considered a potentially useful technique for the process developer. Further development and application of this analytical method as a process development tool is justified based on these results.

  2. Low severity coal liquefaction promoted by cyclic olefins

    SciTech Connect

    Curtis, C.W.

    1991-01-01

    The objective of this project is to evaluate the efficacy of low severity coal liquefaction in the presence of highly reactive hydrogen donors, cyclic olefins. The work that was performed this quarter involved performing a literature search in which different aspects of low severity coal liquefaction were examined. In addition, two new mater's graduate students learned the fundamental differences between high severity coal liquefaction and low severity coal liquefaction by examining the literature and reading texts on coal liquefaction. The literature review presented for the first quarter's work is a compilation of the material which we have found to data involving low severity coal liquefaction. Additional review of low severity liquefaction literature is being conducted this quarter and will be reported in the next quarterly report. In addition, a summary of the work involving the reactivity of cyclic olefins in the absence and presence of coal will be presented next quarter.

  3. Low severity coal liquefaction promoted by cyclic olefins

    SciTech Connect

    Curtis, C.W.

    1991-01-01

    The objective of this project is to evaluate the efficacy of low severity coal liquefaction in the presence of highly reactive hydrogen donors, cyclic olefins. The work that was performed this quarter involved performing a literature search in which different aspects of low severity coal liquefaction were examined. In addition, two new master's graduate students learned the fundamental differences between high severity coal liquefaction and low severity coal liquefaction by examining the literature and reading texts on coal liquefaction. The literature review presented for the first quarter's work is a compilation of the material which we have found to date involving low severity coal liquefaction. Additional review of low severity liquefaction literature is being conducted this quarter and will be reported in the next quarterly report. In addition, a summary of the work involving the reactivity of cyclic olefins in the absence and presence of coal will be presented next quarter.

  4. Fundamental studies of retrograde reactions in direct liquefaction

    SciTech Connect

    Serio, M.A.; Solomon, P.R.; Bassilakis, R.; Kroo, E.

    1989-01-01

    Most of the proposed processing schemes for improving liquefaction yields involve favoring bond-breaking and radical stabilization reactions over the retrograde reactions. The retrograde reactions are often encountered before liquefaction temperatures are reached. The objective of this program is to elucidate and model the retrograde reaction chemistry in direct coal liquefaction through the application of experimental techniques and theoretical models which have been successfully employed at Advanced Fuel Research (AFR) and SRI International (a subcontractor) to understand and predict coal reaction behavior. The study of retrograde reactions is being done using an integrated approach using extensive characterization of the liquefaction chemistry of three kinds of systems: (1) model polymers; (2) coal; and (3) modified coals.

  5. Integrated coal cleaning, liquefaction, and gasification process

    DOEpatents

    Chervenak, Michael C.

    1980-01-01

    Coal is finely ground and cleaned so as to preferentially remove denser ash-containing particles along with some coal. The resulting cleaned coal portion having reduced ash content is then fed to a coal hydrogenation system for the production of desirable hydrocarbon gases and liquid products. The remaining ash-enriched coal portion is gasified to produce a synthesis gas, the ash is removed from the gasifier usually as slag, and the synthesis gas is shift converted with steam and purified to produce the high purity hydrogen needed in the coal hydrogenation system. This overall process increases the utilization of as-mined coal, reduces the problems associated with ash in the liquefaction-hydrogenation system, and permits a desirable simplification of a liquids-solids separation step otherwise required in the coal hydrogenation system.

  6. Fired heater for coal liquefaction process

    DOEpatents

    Ying, David H. S.

    1984-01-01

    A fired heater for a coal liquefaction process is constructed with a heat transfer tube having U-bends at regular intervals along the length thereof to increase the slug frequency of the multi-phase mixture flowing therethrough to thereby improve the heat transfer efficiency.

  7. Process for coal liquefaction employing selective coal feed

    DOEpatents

    Hoover, David S.; Givens, Edwin N.

    1983-01-01

    An improved coal liquefaction process is provided whereby coal conversion is improved and yields of pentane soluble liquefaction products are increased. In this process, selected feed coal is pulverized and slurried with a process derived solvent, passed through a preheater and one or more dissolvers in the presence of hydrogen-rich gases at elevated temperatures and pressures, following which solids, including mineral ash and unconverted coal macerals, are separated from the condensed reactor effluent. The selected feed coals comprise washed coals having a substantial amount of mineral matter, preferably from about 25-75%, by weight, based upon run-of-mine coal, removed with at least 1.0% by weight of pyritic sulfur remaining and exhibiting vitrinite reflectance of less than about 0.70%.

  8. A Characterization and Evaluation of Coal Liquefaction Process Streams The Kinetics of Coal Liquefaction Distillation Resid Conversion

    SciTech Connect

    Campbell, D; Nichols, D G; Pazuchanics, D J; Huang, H; Klein, M T; Winschel, R A; Brandes, S D; Wang, S; Calkins, W H

    1998-06-04

    Under subcontract from CONSOL Inc. (DOE Contract N o. DE- AC22- 94PC93054), the University of Delaware studied the mechanism and kinetics of coal liquefaction resid conversion. Th e program at Delaware was conducted be tween August 15, 1994, and April 30, 1997. It consisted of two primary tasks. The first task was to develop an empirical test to measure the reactivit y toward hydrocracking of coal- derived distillation resids. The second task was to formulate a computer model to represent the structure of the resids and a kinetic and mechanistic model of resid reactivity based on the structural representations. An Introduction and Summary of th e project authored by CONSOL and a report of the program findings authored by the University of Delaware researchers are presented here. INTRODUCTION Resid hydrocracking is a key reaction of modern (i. e., distillate- producing) coal liquefactio n processes. Coals are readily converted to resid a nd lighter products in the liquefaction process. The resid is combined with fr esh coal in a ratio often greater than 1: 1, and some vacuum gas oil and is recycled to be further converted. Understanding the chemistry of resids and resi d reactivity is important to improve direct liquefaction process design and to achieve economi c objectives for direct coal liquefaction. Computational models that predict resid conversion from the chemical characteristics of the resids and reaction conditions would be a cost- efficient way to explore process variables. Implementation of such models could aid in the design an d operation of liquefaction facilities.

  9. Direct liquefaction of low-rank coals. Annual technical report, April 1, 1987--March 31, 1988 including quarterly technical progress report, January--March 1988: Task 5.1

    SciTech Connect

    Rindt, J.R.; Hetland, M.D.; Knudson, C.L.; Willson, W.G.

    1988-04-01

    Co-processing of low-rank coals (LRCs) with petroleum resids under mild conditions may produce a product that extends petroleum refinery feeds with a partially coal-derived material. These co-processing products may also provide a lower-cost way to introduce coal-derived materials into the commercial market. In this staged process, the petroleum resid acts as a solvent, aiding in the solubilization of the coal during the first stage, and both the dissolved coal and the resid are upgraded during a second-stage catalytic hydrogenation. Another method of upgrading coal in a liquefaction process is the ChemCoal Process. The process uses chemical methods to transform coal into clean solid and liquid products. It features low-severity conversion of coal in a phenolic solvent, using an alkali promotor and carbon monoxide as the reductant. Oil agglomeration has been used to reduce the ash and mineral matter in bituminous coals to obtain a product with increased heating value, reduced moisture, and lower sulfur content. This method can be used to produce a clean coal feedstock for liquefaction. During agglomeration, an oil is used to preferentially wet the organic phases of the coal, and water is used to wet the minerals, resulting in a separation of ash and water from the coal. The primary objective of this project is to expand the scientific and engineering data base of LRC liquefaction by investigating direct liquefaction processes that will produce the most competitive feedstocks or liquid fuels. The work effort which was proposed for the second year of this cooperative agreement dealt primarily with co-processing and the ChemCoal Process.

  10. Catalytic direct liquefaction of high-sulfur coals and their blends with asphaltite in the absence of a solvent

    SciTech Connect

    Omer Gul; Parvana Gafarova; Arif Hesenov; Harold H. Schobert; Oktay Erbatur

    2007-08-15

    Two high-sulfur Turkish coals (Mengen and Kangal) and an asphaltite (Avgamasya) were liquefied with and without the catalyst precursors ammonium heptamolybdate (AHM) and ammonium tetrathiomolybdate (ATTM) at 300, 350, 400, and 450{sup o}C. Blends of these coals with the asphaltite were also liquefied using ATTM. Effective conversions of both coals into oils and into asphaltene and preasphaltene fractions were achieved with both catalyst precursors, although ATTM was more effective than AHM. Maximum conversion for Mengen coal with ATTM (89.2%) was achieved at 400{sup o}C, although the maximum yield of oils (56.9%) was obtained at 450{sup o}C. Kangal, in the presence of ATTM, gave maximum conversion (87.7%) at 400{sup o}C; the corresponding oil yield (49.6%) was not much less than that obtained at 450{sup o}C (49.9%). Some retrogressive reactions toward the formation of aromatics were observed during liquefaction at 450{sup o}C in the presence of AHM or ATTM with both coals. Also, using these catalyst precursors results in effective hydrogenation of two-ring or higher condensed aromatics and effective hydrogenolysis of the alicyclic part of hydroaromatic structures. On the other hand, these catalyst precursors do not provide effective saturation of monoaromatic rings, although the use of ATTM yielded partial reduction of these compounds. The distribution of main product fractions obtained from these reactions and the detailed analysis of oils obtained are reported. 118 refs., 4 figs., 15 tabs.

  11. Effects of coal rank on the chemical composition and toxicological activity of coal liquefaction materials

    SciTech Connect

    Wright, C.W.; Dauble, D.D.

    1986-05-01

    This report presents data from the chemical analysis and toxicological testing of coal liquefaction materials from the EDS and H-Coal processes operated using different ranks of coal. Samples of recycle solvent from the bottoms recycle mode of the EDS direct coal liquefaction process derived from bituminous, sub-bituminous, and lignite coals were analyzed. In addition, the H-Coal heavy fuel oils derived from bituminous and sub-bituminous coals were analyzed. Chemical methods of analysis included adsoprtion column chromatography, high-resolution gas chromatography, gas chromatography/mass spectrometry, and low-voltage probe-inlet mass spectrometry. The toxicological activity of selected samples was evaluated using the standard microbial mutagenicity assay, an initiation/promotion assay for mouse-skin tumorigenicity, and a static bioassy with Daphnia magna for aquatic toxicity of the water-soluble fractions. 22 refs., 16 figs., 14 tabs.

  12. Technology for advanced liquefaction processes: Coal/waste coprocessing studies

    SciTech Connect

    Cugini, A.V.; Rothenberger, K.S.; Ciocco, M.V.

    1995-12-31

    The efforts in this project are directed toward three areas: (1) novel catalyst (supported and unsupported) research and development, (2) study and optimization of major operating parameters (specifically pressure), and (3) coal/waste coprocessing. The novel catalyst research and development activity has involved testing supported catalysts, dispersed catalysts, and use of catalyst testing units to investigate the effects of operating parameters (the second area) with both supported and unsupported catalysts. Several supported catalysts were tested in a simulated first stage coal liquefaction application at 404{degrees}C during this performance period. A Ni-Mo hydrous titanate catalyst on an Amocat support prepared by Sandia National laboratories was tested. Other baseline experiments using AO-60 and Amocat, both Ni-Mo/Al{sub 2}O{sub 3} supported catalysts, were also made. These experiments were short duration (approximately 12 days) and monitored the initial activity of the catalysts. The results of these tests indicate that the Sandia catalyst performed as well as the commercially prepared catalysts. Future tests are planned with other Sandia preparations. The dispersed catalysts tested include sulfated iron oxide, Bayferrox iron oxide (iron oxide from Miles, Inc.), and Bailey iron oxide (micronized iron oxide from Bailey, Inc.). The effects of space velocity, temperature, and solvent-to-coal ratio on coal liquefaction activity with the dispersed catalysts were investigated. A comparison of the coal liquefaction activity of these catalysts relative to iron catalysts tested earlier, including FeOOH-impregnated coal, was made. These studies are discussed.

  13. Two-stage coal liquefaction process

    DOEpatents

    Skinner, Ronald W.; Tao, John C.; Znaimer, Samuel

    1985-01-01

    An improved SRC-I two-stage coal liquefaction process which improves the product slate is provided. Substantially all of the net yield of 650.degree.-850.degree. F. heavy distillate from the LC-Finer is combined with the SRC process solvent, substantially all of the net 400.degree.-650.degree. F. middle distillate from the SRC section is combined with the hydrocracker solvent in the LC-Finer, and the initial boiling point of the SRC process solvent is increased sufficiently high to produce a net yield of 650.degree.-850.degree. F. heavy distillate of zero for the two-stage liquefaction process.

  14. Quantification of progress in indirect coal liquefaction

    SciTech Connect

    Gray, D.; ElSawy, A.; Tomlinson, G.

    1991-01-01

    The objective of this study is to quantify the economic and technical impact of incorporating various advanced technologies into the indirect coal liquefaction system. These advanced technologies include entrained flow Shell gasification and slurry-phase Fischer-Tropsch (F-T) synthesis. This objective was accomplished by substituting the Shell entrained goal gasifier system for the Lurgi and the advanced slurry F-T reactor for the Synthol and ARGE F-T systems in a SASOL-type indirect liquefaction facility. 4 refs., 3 figs., 2 tabs.

  15. Pillared montmorillonite catalysts for coal liquefaction

    SciTech Connect

    Sharma, R.K.; Olson, E.S.

    1994-12-31

    Pillared clays contain large micropores and have considerable potential for catalytic hydrogenation and cleavage of coal macromolecules. Pillared montmorillonite-supported catalysts were prepared by the intercalation of polynuclear hydroxychromium cations and subsequent impregnation of nickel and molybdenum. Infrared and thermogravimetric studies of pyridine-adsorbed catalysts indicated the presence of both Lewis and Bronsted acid sites. Thus, the catalysts have both acidic properties that can aid in hydrocracking and cleavage of carbon-heteroatom bonds as well as hydrogen-activating bimetallic sites. These catalysts were applied to the hydrodesulfurization and liquefaction of coal-derived intermediates. The reactions of model organosulfur compounds and coal liquids were carried out at 300{degrees}-400{degrees}C for 3 hours in the presence of 1000 psi of molecular hydrogen. Reaction products were analyzed by GC/FT-IR/MS/AED. The catalysts have been found to be very effective in removing sulfur from model compounds as well as liquefaction products.

  16. Free-radical kinetics of coal liquefaction

    SciTech Connect

    Wang, M.; Smith, J.M.; McCoy, B.J.

    1994-07-16

    A rate expression with first- and second-order terms in the concentration of extractable compounds in solid coal particles is derived from a fundamental free-radical mechanism. The expression was suggested empirically by prior experiments for coal liquefaction in the presence of a hydrogen-donor solvent. Radical reactions are considered to occur in both coal and in solvent. The long-chain approximation justifies the neglect of initiation, hydrogen abstraction, and termination rates as quantitatively insignificant relative to propagation reaction rates.

  17. Coal liquefaction process streams characterization and evaluation. Quarterly technical progress report, April 1--June 30, 1991

    SciTech Connect

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1991-11-01

    Consol R&D is conducting a three-year program to characterize process and product streams from direct coal liquefaction process development projects. The program objectives are two-fold: (1) to obtain and provide appropriate samples of coal liquids for the evaluation of analytical methodology, and (2) to support ongoing DOE-sponsored coal liquefaction process development efforts. The two broad objectives have considerable overlap and together serve to provide a bridge between process development and analytical chemistry.

  18. Coal liquefaction process streams characterization and evaluation. Quarterly technical progresss report, January 1--March 31, 1991

    SciTech Connect

    Brandes, S.D.; Winschel, R.A.; Burke, F.P.; Robbins, G.A.

    1991-09-01

    Consol R&D is conducting a three-year program to characterize process and product streams from direct coal liquefaction process development projects. The program objectives are two-fold: (1) to obtain and provide appropriate samples of coal liquids for the evaluation of analytical methodology, and (2) to support ongoing DOE-sponsored coal liquefaction process development efforts. The two broad objectives have considerable overlap and together serve to provide a bridge between process development and analytical chemistry.

  19. Coal liquefaction process streams characterization and evaluation. Quarterly technical progress report, October 1--December 31, 1991

    SciTech Connect

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1992-03-01

    CONSOL R&D is conducting a three-year program to characterize process and product streams from direct coal liquefaction process development projects. The program objectives are two-fold: (1) to obtain and provide appropriate samples of coal liquids for the evaluation of analytical methodology, and (2) to support ongoing DOE-sponsored coal liquefaction process development efforts. The two broad objectives have considerable overlap and together serve to provide a bridge between process development and analytical chemistry.

  20. Prevention of deleterious deposits in a coal liquefaction system

    DOEpatents

    Carr, Norman L.; Prudich, Michael E.; King, Jr., William E.; Moon, William G.

    1984-07-03

    A process for preventing the formation of deleterious coke deposits on the walls of coal liquefaction reactor vessels involves passing hydrogen and a feed slurry comprising feed coal and recycle liquid solvent to a coal liquefaction reaction zone while imparting a critical mixing energy of at least 3500 ergs per cubic centimeter of reaction zone volume per second to the reacting slurry.

  1. A characterization and evaluation of coal liquefaction process streams. Quarterly technical progress report, April 1--June 30, 1996

    SciTech Connect

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.

    1997-03-01

    The objectives of this project are to support the DOE direct coal liquefaction process development program and to improve the useful application of chemical analyses to direct coal liquefaction process development. Independent analyses by well-established methods are obtained of samples produced in direct coal liquefaction processes under evaluation by DOE. Additionally, new analytical instruments and techniques to examine coal-derived samples are being evaluated. The data obtained form this study are used to guide process development and to develop an improved data base on coal and coal liquids properties. A sample bank, established and maintained for use in this project, is available for use by other researchers. The reactivity of the non-distillable resids toward hydrocracking at liquefaction conditions (i.e., resid reactivity) is being examined. From the literature and experimental data, a kinetic model of resid conversion will be constructed. Such a model will provide insights to improve process performance and the economics of direct coal liquefaction.

  2. Exploratory Research on Novel Coal Liquefaction Concept.

    SciTech Connect

    Brandes, S.D.; Winschel, R.A.

    1997-06-12

    Microautoclave tests confirmed that first-stage subbituminous coal conversions were greater in a more aromatic first-stage solvent. First-stage liquefaction tests with hydride ion `E` showed that high coal conversions can be obtained with a number of different first-stage water-gas-shift catalysts. Eight one-liter autoclave tests were completed. All tests used Black Thunder Mine subbituminous coal and Reilly Industries anthracene oil. Differences among the tests were the hydride ion reagent used, the post-run flash of water, and the shift catalyst. Filtration tests were conducted with five one-liter autoclave products of subbituminous coal. The filtration rates were slower than those that had been obtained with North Dakota lignite products, but were still within a commercially acceptable range. The influence of the first-stage shift catalyst on filtration rates is being investigated. Second-stage hydrotreating of products of tests made to simulate the British coal LSE process and the Wilsonville pilot plant preheaters had lower resid conversion and higher hydrogen uptake than the products of the hydride ion liquefaction reaction. The 300 mL second-stage reactor system went on line this quarter. Refinements in the experimental procedures are under way. A conceptual commercial plant design for the hydride ion reagent `A` case was completed. Evaluations of hydride ion reagent `D` and `E` cases were initiated, and an integrated liquefaction system balance for the hydride ion reagent `E` case was begun. A preliminary review of the final technical and economic reports from the Alberta Research Council study of low-rank coal conversion using the CO-steam process generated a number of questions on the published reports; further analysis of the reports is planned.

  3. Hydrogen donor solvent coal liquefaction process

    DOEpatents

    Plumlee, Karl W.

    1978-01-01

    An indigenous hydrocarbon product stream boiling within a range of from about C.sub.1 -700.degree. F., preferably C.sub.1 -400.degree. F., is treated to produce an upgraded hydrocarbon fuel component and a component which can be recycled, with a suitable donor solvent, to a coal liquefaction zone to catalyze the reaction. In accordance therewith, a liquid hydrocarbon fraction with a high end boiling point range up to about 700.degree. F., preferably up to about 400.degree. F., is separated from a coal liquefaction zone effluent, the separated fraction is contacted with an alkaline medium to provide a hydrocarbon phase and an aqueous extract phase, the aqueous phase is neutralized, and contacted with a peroxygen compound to convert indigenous components of the aqueous phase of said hydrocarbon fraction into catalytic components, such that the aqueous stream is suitable for recycle to the coal liquefaction zone. Naturally occurring phenols and alkyl substituted phenols, found in the aqueous phase, are converted, by the addition of hydroxyl constituents to phenols, to dihydroxy benzenes which, as disclosed in copending Application Ser. Nos. 686,813 now U.S. Pat. No. 4,049,536; 686,814 now U.S. Pat. No. 4,049,537; 686,827 now U.S. Pat. No. 4,051,012 and 686,828, K. W. Plumlee et al, filed May 17, 1976, are suitable hydrogen transfer catalysts.

  4. Coal liquefaction process streams characterization and evaluation

    SciTech Connect

    Taylor, L.T.; Hellgeth, J.W.; Sequeira, A. . Dept. of Chemistry)

    1992-01-01

    This study was designed to demonstrate the use of two different methods for the separation of direct coal liquefaction process- derived materials into defined fractions. The two methods, liquid chromatography (LC) and supercritical fluid extraction (SFE), were employed to determine if the same or complementary information could be obtained by the two methods. The primary objective was to evaluate the potential of supplementing or replacing the conventional LC method with SFE and in so doing to exploit the advantages of SFE. A solvent density gradient can be employed in SFE in much the same way that a gradient of solvent strength or polarity is employed in LC. Alternatively, modifiers or co-solvents can be used in SFE to change the extraction properties of the primary solvent. Potential advantages of SFE over LC include: a relatively low amount of solvent is necessary to effect separation, SFE solvents are usually non-flammable and non-toxic, solvent disposal problems are minimized, separation is frequently faster. (VC)

  5. Coal liquefaction process streams characterization and evaluation. Novel analytical techniques for coal liquefaction: Fluorescence microscopy

    SciTech Connect

    Rathbone, R.F.; Hower, J.C.; Derbyshire, F.J.

    1991-10-01

    This study demonstrated the feasibility of using fluorescence and reflectance microscopy techniques for the examination of distillation resid materials derived from direct coal liquefaction. Resid, as defined here, is the 850{degrees}F{sup +} portion of the process stream, and includes soluble organics, insoluble organics and ash. The technique can be used to determine the degree of hydrogenation and the presence of multiple phases occurring within a resid sample. It can also be used to infer resid reactivity. The technique is rapid, requiring less than one hour for sample preparation and examination, and thus has apparent usefulness for process monitoring. Additionally, the technique can distinguish differences in samples produced under various process conditions. It can, therefore, be considered a potentially useful technique for the process developer. Further development and application of this analytical method as a process development tool is justified based on these results.

  6. Direct liquefaction proof-of-concept facility

    SciTech Connect

    Alfred G. Comolli; Peizheng Zhou; HTI Staff

    2000-01-01

    The main objective of the U.S. DOE, Office of Fossil Energy, is to ensure the US a secure energy supply at an affordable price. An integral part of this program was the demonstration of fully developed coal liquefaction processes that could be implemented if market and supply considerations so required, Demonstration of the technology, even if not commercialized, provides a security factor for the country if it is known that the coal to liquid processes are proven and readily available. Direct liquefaction breaks down and rearranges complex hydrocarbon molecules from coal, adds hydrogen, and cracks the large molecules to those in the fuel range, removes hetero-atoms and gives the liquids characteristics comparable to petroleum derived fuels. The current processes being scaled and demonstrated are based on two reactor stages that increase conversion efficiency and improve quality by providing the flexibility to adjust process conditions to accommodate favorable reactions. The first stage conditions promote hydrogenation and some oxygen, sulfur and nitrogen removal. The second stage hydrocracks and speeds the conversion to liquids while removing the remaining sulfur and nitrogen. A third hydrotreatment stage can be used to upgrade the liquids to clean specification fuels.

  7. The effects of hydrothermal pretreatment on the liquefaction of coal

    SciTech Connect

    Ross, D.S.; Hirschon, A. )

    1990-01-01

    The effects of aqueous pretreatment on coal and the benefits that can develop for liquefaction or mild gasification are areas of current interest. Most of the work has been conducted with water vapor, and current accounts include that of Bienkowski et al, who found that water vapor pretreatment enhanced liquefaction. Their work has focused on the use of liquid water at elevated temperatures, both as a probe into coal structure, and as a pretreatment for coal liquefaction. In the work summarized here, the authors examined the effects of hydrothermal pretreatment at 250{degree}C on conversion of Illinois No. 6 coal (PSOC 1098, and Argonne Premium Coal Bank samples) in tetralin.

  8. Coal liquefaction with preasphaltene recycle

    SciTech Connect

    Weimer, R.F.; Miller, R.N.

    1986-09-02

    A process is described for solvent refining coal to yield an asphaltene-rich product stream by forming a slurry of finely divided coal and a process solvent therefor, which process comprises the steps of: (1) contacting the slurry with a hydrogen-rich gas; (2) heating the slurry in the presence of the hydrogen-rich gas. (3) permitting the heated slurry to react and to dissolve at least some of the coal. (4) adding fresh hydrogen as required to form a liquefied coal slurry; (5) passing the liquefied coal slurry to a separator in which a vapor product stream and a condensed product stream are separated; (6) passing the condensed product stream to a vacuum distillation still; (7) removing from the vacuum distillation still a residual bottoms product, wherein the residual bottoms product from the still is mixed with a suitable extractions solvent and is passed to supercritical extraction system to separate an asphaltene-rich stream comprised of pentane solubles and benzene solubles from a preasphaltene-rich stream which includes solids residue material, the preasphaltene-rich stream comprised of benzene insolubles, pyridine solubles, pyridine insolubles and ash; (8) recycling at least a portion of the preasphaltene-rich stream together with the solid residue material as process solvent, with less than 10 percent of the process solvent comprising asphaltenes; (9) withdrawing the asphaltene-rich stream and passing the asphaltene-rich stream to a solvent recovery system to yield an asphaltene-rich product stream and an extraction solvent stream.

  9. Two-stage coal liquefaction without gas-phase hydrogen

    DOEpatents

    Stephens, H.P.

    1986-06-05

    A process is provided for the production of a hydrogen-donor solvent useful in the liquefaction of coal, wherein the water-gas shift reaction is used to produce hydrogen while simultaneously hydrogenating a donor solvent. A process for the liquefaction of coal using said solvent is also provided. The process enables avoiding the use of a separate water-gas shift reactor as well as high pressure equipment for liquefaction. 3 tabs.

  10. Coal liquefaction: A research and development needs assessment: Final report, Volume I

    SciTech Connect

    Schindler, H.D.; Burke, F.P.; Chao, K.C.; Davis, B.H.; Gorbaty, M.L.; Klier, K.; Kruse, C.W.; Larsen, J.W.; Lumpkin, R.E.; McIlwain, M.E.; Wender, I.; Stewart, N.

    1989-03-01

    The DOE Coal Liquefaction Research Needs (COLIRN) Panel reviewed, developed, and assessed R and D needs for the development of coal liquefaction for the production of transportation fuels. Technical, economics, and environmental considerations were important components of the panel's deliberations. The panel examined in some depth each of the following technologies: direct liquefaction of coal, indirect liquefaction via conversion of coal-derived synthesis gas, pyrolysis, coprocessing of combined coal/oil feedstocks, and bioconversion of coal and coal-derived materials. In this assessment particular attention was given to highlighting the fundamental and applied research which has revealed new and improved liquefaction mechanisms, the potentially promising innovative processes currently emerging, and the technological and engineering improvements necessary for significant cost reductions. As the result of this assessment, the COLIRN panel developed a list of prioritized research recommendations needed to bring coal liquefaction to technical and economic readiness in the next 5--20 years. The findings and the research recommendations generated by the COLIRN panel are summarized in this publication. 107 figs., 63 tabs.

  11. Catalysts for coal liquefaction processes

    DOEpatents

    Garg, D.

    1986-10-14

    Improved catalysts for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a hydrogen donor solvent comprise a combination of zinc or copper, or a compound thereof, and a Group VI or non-ferrous Group VIII metal, or a compound thereof.

  12. Catalysts for coal liquefaction processes

    DOEpatents

    Garg, Diwakar

    1986-01-01

    Improved catalysts for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a hydrogen donor solvent comprise a combination of zinc or copper, or a compound thereof, and a Group VI or non-ferrous Group VIII metal, or a compound thereof.

  13. One-Step Coal Liquefaction

    NASA Technical Reports Server (NTRS)

    Qader, S. A.

    1984-01-01

    Steam injection improves yield and quality of product. Single step process for liquefying coal increases liquid yield and reduces hydrogen consumption. Principal difference between this and earlier processes includes injection of steam into reactor. Steam lowers viscosity of liquid product, so further upgrading unnecessary.

  14. Process for coal liquefaction in staged dissolvers

    DOEpatents

    Roberts, George W.; Givens, Edwin N.; Skinner, Ronald W.

    1983-01-01

    There is described an improved liquefaction process by which coal is converted to a low ash and low sulfur carbonaceous material that can be used as a fuel in an environmentally acceptable manner without costly gas scrubbing equipment. In the process, coal is slurried with a pasting oil, passed through a preheater and at least two dissolvers in series in the presence of hydrogen-rich gases at elevated temperatures and pressures. Solids, including mineral ash and unconverted coal macerals, are separated from the condensed reactor effluent. In accordance with the improved process, the first dissolver is operated at a higher temperature than the second dissolver. This temperature sequence produces improved product selectivity and permits the incorporation of sufficient hydrogen in the solvent for adequate recycle operations.

  15. Coal liquefaction process with increased naphtha yields

    DOEpatents

    Ryan, Daniel F.

    1986-01-01

    An improved process for liquefying solid carbonaceous materials wherein the solid carbonaceous material is slurried with a suitable solvent and then subjected to liquefaction at elevated temperature and pressure to produce a normally gaseous product, a normally liquid product and a normally solid product. The normally liquid product is further separated into a naphtha boiling range product, a solvent boiling range product and a vacuum gas-oil boiling range product. At least a portion of the solvent boiling-range product and the vacuum gas-oil boiling range product are then combined and passed to a hydrotreater where the mixture is hydrotreated at relatively severe hydrotreating conditions and the liquid product from the hydrotreater then passed to a catalytic cracker. In the catalytic cracker, the hydrotreater effluent is converted partially to a naphtha boiling range product and to a solvent boiling range product. The naphtha boiling range product is added to the naphtha boiling range product from coal liquefaction to thereby significantly increase the production of naphtha boiling range materials. At least a portion of the solvent boiling range product, on the other hand, is separately hydrogenated and used as solvent for the liquefaction. Use of this material as at least a portion of the solvent significantly reduces the amount of saturated materials in said solvent.

  16. Liquefaction of calcium-containing subbituminous coals and coals of lower rank

    DOEpatents

    Brunson, Roy J.

    1979-01-01

    An improved process for the treatment of a calcium-containing subbituminous coal and coals of lower rank to form insoluble, thermally stable calcium salts which remain within the solids portions of the residue on liquefaction of the coal, thereby suppressing the formation of scale, made up largely of calcium carbonate which normally forms within the coal liquefaction reactor (i.e., coal liquefaction zone), e.g., on reactor surfaces, lines, auxiliary equipment and the like. An oxide of sulfur, in liquid phase, is contacted with a coal feed sufficient to impregnate the pores of the coal. The impregnated coal, in particulate form, can thereafter be liquefied in a coal liquefaction reactor (reaction zone) at coal liquefaction conditions without significant formation of scale.

  17. Method to enhance the microbial liquefaction of lignite coals

    SciTech Connect

    Strandberg, G.W.; Lewis, S.N.

    1986-01-01

    There is considerable interest in the potential use of microorganisms to liquefy low-ranked coals. Although a variety of fungal species are able to form liquid products from several types of lignite coals, only one naturally occurring lignite yet tested (a North Dakota lignite) has shown consistent susceptibility to rapid and extensive liquefaction. We have described a relatively simple method to enhance the susceptibility of more recalcitrant lignites and subbituminous coals to fungal liquefaction. 7 refs., 5 tabs.

  18. Coal liquefaction process streams characterization and evaluation: The preliminary evaluation of the kinetics of coal liquefaction distillation resid conversion

    SciTech Connect

    Klein, M.T.; Calkins, W.H.; Huang, He

    1994-02-01

    This study evaluated the use of a novel laboratory-scale batch reactor, designed by the University of Delaware, to study the kinetics of coal liquefaction resid reactivity. The short time batch reactor (STBR) is capable of conducting reactions at temperatures up to 450{degrees}C and pressures up to 2500 psi at well-defined reaction times from a few seconds to 30 min or longer. Sixty experiments were conducted with the STBR in this project. The products of the resid/tetralin/hydrogen reaction were separated by solubility, and several analytical procedures were used to evaluate the reaction products, including thermogravimetric analysis (TGA), gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS). Changes were monitored in the boiling ranges of the products, as a function of process conditions (time, temperature, and tetralin donor solvent-to-resid ratio), with and without catalysts. Two distillation resid samples were studied; Sample 1 is the resid of the second stage product stream from Wilsonville Run 259 which used Pittsburgh seam coal (Ireland mine) bituminous coal, and Sample 2 is the resid of the same streak from Wilsonville Run 260 which used Wyodak and Anderson (Black Thunder Mine) subbituminous coal. It was determined that the resid reactivity was different for the two samples studied. The results demonstrate that further development of this experimental method is warranted to empirically assess resid reactivity and to provide data for use in the construction of an empirical model of coal conversion in the direct liquefaction process.

  19. Coal liquefaction process streams characterization and evaluation. Volume 1, Base program activities

    SciTech Connect

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1994-05-01

    This 4.5-year project consisted of routine analytical support to DOE`s direct liquefaction process development effort (the Base Program), and an extensive effort to develop, demonstrate, and apply new analytical methods for the characterization of liquefaction process streams (the Participants Program). The objective of the Base Program was to support the on-going DOE direct coal liquefaction process development program. Feed, process, and product samples were used to assess process operations, product quality, and the effects of process variables, and to direct future testing. The primary objective of the Participants Program was to identify and demonstrate analytical methods for use in support of liquefaction process development, and in so doing, provide a bridge between process design, and development, and operation and analytical chemistry. To achieve this objective, novel analytical methods were evaluated for application to direct coal liquefaction-derived materials. CONSOL teamed with 24 research groups in the program. Well-defined and characterized samples of coal liquefaction process-derived materials were provided to each group. CONSOL made an evaluation of each analytical technique. During the performance of this project, we obtained analyses on samples from numerous process development and research programs and we evaluated a variety of analytical techniques for their usefulness in supporting liquefaction process development. Because of the diverse nature of this program, we provide here an annotated bibliography of the technical reports, publications, and formal presentations that resulted from this program to serve as a comprehensive summary of contract activities.

  20. Coal liquefaction process streams characterization and evaluation

    SciTech Connect

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1991-07-01

    This is the third Quarterly Technical Progress Report under DOE Contract DE-AC22-89PC89883. Three major topics are reported: (1) Feed coals and process oils form Wilsonville Run 259 were analyzed to provide information on process performance. Run 259 was operated in the catalytic/catalytic Close-Coupled Integrated Two-Stage Liquefaction (CC-ITSL) mode with ash recycle. Feed coals were conventionally cleaned and deep cleaned coal from the Ireland Mine (Pittsburgh seam). The catalyst used in both reactors was Shell 324 for most of the run; Amocat IC was used for start-up and (unstable) period A. (2) A special set of samples from Wilsonville Runs 258 and 259 was analyzed to provide clues for the cause of interstage deposition problems during Run 258, which was operated with subbituminous coal. (3) Eight technical sites were visited to provide input to the Analytical Needs Assessment and to refine ideas for proposed research under the Participants Program. The site visits are summarized. 11 refs., 18 figs., 27 tabs.

  1. Systemic toxicity of coal liquefaction products: results of a 14-day dermal exposure

    SciTech Connect

    Yagminas, A.; De Vries, P.A.; Villeneuve, D.C.

    1988-03-01

    Increasing energy demands, coupled with rising prices and an unstable world oil market have stimulated international interest in developing alternative sources of fuel. Direct coal liquefaction processes (CLP) hold great potential for Canada because of its large coal reserves. The conversion of coal to liquefied fuels results in many fractions of differing hydrocarbon content and includes many toxic substances such as polynuclear aromatic hydrocarbons. Since the major route of occupational exposure would be via the dermal route and since studies of systemic toxicity following dermal exposure are lacking, preliminary studies were conducted on the toxicity of SRC-II process coal liquefaction products applied dermally to the rat. Samples of the light (L), intermediate (I), and heavy, (H) fractions produced during the SRC-II coal liquefaction process, were kindly provided by the Sandwell Beak Research Group (Mississauga, Ontario, Canada). Diesel Fuel (D) was purchased from an Esso Gasoline Station. Male and female Sprague-Dawley rats weighing 200 +/- 25 grams were used.

  2. Coal liquefaction. Quarterly report, July-September 1979

    SciTech Connect

    1980-07-01

    The status of coal liquefaction pilot plants supported by US DOE is reviewed under the following headings: company involved, location, contract, funding, process name, process description, flowsheet, history and progress during the July-September 1979 quarter. Supporting projects such as test facilities, refining and upgrading coal liquids, catalyst development, and gasification of residues from coal gasification plants are discussed similarly. (LTN)

  3. Solvent recyclability in a multistep direct liquefaction process

    SciTech Connect

    Hetland, M.D.; Rindt, J.R.

    1995-12-31

    Direct liquefaction research at the Energy & Environmental Research Center (EERC) has, for a number of years, concentrated on developing a direct liquefaction process specifically for low-rank coals (LRCs) through the use of hydrogen-donating solvents and solvents similar to coal-derived liquids, the water/gas shift reaction, and lower-severity reaction conditions. The underlying assumption of all of the research was that advantage could be taken of the reactivity and specific qualities of LRCs to produce a tetrahydrofuran (THF)-soluble material that might be easier to upgrade than the soluble residuum produced during direct liquefaction of high-rank coals. A multistep approach was taken to produce the THF-soluble material, consisting of (1) preconversion treatment to prepare the coal for solubilization, (2) solubilization of the coal in the solvent, and (3) polishing to complete solubilization of the remaining material. The product of these three steps can then be upgraded during a traditional hydrotreatment step. The results of the EERC`s research indicated that additional studies to develop this process more fully were justified. Two areas were targeted for further research: (1) determination of the recyclability of the solvent used during solubilization and (2) determination of the minimum severity required for hydrotreatment of the liquid product. The current project was funded to investigate these two areas.

  4. Coal liquefaction process streams characterization and evaluation

    SciTech Connect

    Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1992-11-01

    This is the twelfth Quarterly Technical Progress Report under DOE Contract DE-AC22-89PC89883. Major topics reported are: Summaries of the final reports produced by Lehigh University, West Virginia University, and Vander Sande Associates under the Participants Program are presented. Analytical data produced by CONSOL are provided in Appendix I for all samples employed in the Participants Program and issued with the samples to research groups in the Participants Program. A paper was presented at the 1992 US Department of Energy Pittsburgh Energy Technology Center Liquefaction Contractors' Review Conference, held in Pittsburgh September 23--24, 1992, entitled The Chemical Nature of Coal Liquid Resids and the Implications for Process Development''. It appears as Appendix 2 in this report.

  5. Coal liquefaction process streams characterization and evaluation: FT-IR methods for characterization of coal liquefaction products

    SciTech Connect

    Serio, M.A.; Teng, H.; Bassilakis, R.; Solomon, P.R. )

    1992-04-01

    This study was designed to demonstrate the use of two FTIR techniques for the analysis of direct coal liquefaction process-derived materials. The two methods were quantitative FTIR analysis and themogravimetric (TG) analysis with FTIR analysis of evolved products (TG-FTIR). The quantitative FTIR analyses of both whole resids and THF-soluble resids provided quantitation of total hydrogen, aliphatic and aromatic hydrogen, total carbon, total oxygen, hydroxyl and etheric oxygen, and ash contents. The FTIR results were usually in agreement with values derived by other, more conventional methods. However, the accuracies of specific measurements, in comparisons with results from conventional methods, ranged from good to poor. The TG-FTIR method provided approximate analyses of coals and resids. The data provided included the time dependent evolution profiles of the volatile species and the elemental composition of the char. Reproducible data of gaseous species and pyrolysis tar yields for whole resid samples larger than 10 mg were obtainable. The yields and evolution profiles of certain volatiles (tar, CO, and methane) provided structural information on the samples. There were some experimental and interpretational difficulties associated with both techniques. Optimization of the curve-resolving routine for coal-liquefaction samples would improve the quantitative FTIR accuracy. Aerosol formation limited the full application of the TG-FTIR technique with the THF-soluble resid samples. At this time, further development of these analytical methods as process development tools will be required before their use for that purpose can be recommended. The use of FTIR as an on-line analytical technique for coal liquefaction process streams requires demonstration before it can be recommended; however, such a demonstration may be warranted.

  6. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Report No. Q-01, Quarterly technical progress report, October--December 1991

    SciTech Connect

    Curtis, C.W.; Gutterman, C.; Chander, S.

    1991-12-31

    Research in this project centers upon developing a new approach to the direct liquefaction of coal to produce an all-distillate product slate at a sizable cost reduction over current technology. The approach integrates all aspects of the coal liquefaction process including coal selection, pretreatment, coal swelling with catalyst impregnation, coal liquefaction experimentation, product recovery with characterization, alternate bottoms processing, and a technical assessment including an economic evaluation. Work has centered upon obtaining bulk samples of feedstocks for the project, up-dating the background literature, and preparing and testing a computer program to perform material balance calculations for the continuous flow liquefaction unit.

  7. Enhancing low severity coal liquefaction reactivity using mild chemical pretreatment

    SciTech Connect

    Shams, K.G.; Miller, R.L.; Baldwin, R.M.

    1992-07-13

    In this paper, we describe results from a study in which mild chemical pretreatment of coal has been used to enhance low severity liquefaction reactivity. We have found that ambient pretreatment of eight Argonne coals using methanol and a trace amount of hydrochloric acid improves THF-soluble conversions 24.5 wt% (maf basis) for Wyodak subbituminous coal and 28.4 wt% for Beulah-Zap lignite with an average increase of 14.9 wt% for liquefaction of the eight coals at 623 K (350{degree}C) reaction temperature and 30 min. reaction time. Similar enhancement results occurred using, hexane or acetone in place of methanol. Pretreatment with methanol and HCI separately indicated that both reagents were necessary to achieve maximum liquefaction improvement. Acid concentration was the most important pretreatment variable studied; liquefaction reactivity increased with increasing acid concentration up to 2 vol%. No appreciable effect on reactivity was observed at higher acid concentrations. Although vapor phase alcohol/HCI mixtures have been shown to partially alkylate bituminous coals, analysis of Wyodak and Illinois {number sign}6 coal samples indicated that no organic phase alteration occurred during pretreatment; however, over 90 wt% of the calcium was removed from each coal. Calcium is thought to catalyze retrogressive reactions during coal pyrolysis, and thus calcium removal prior to low severity liquefaction minimizes the rate of THF-insoluble product formation.

  8. Coal liquefaction process streams characterization and evaluation: Electron microscopy observations of resids obtained from coal liquefaction experiments

    SciTech Connect

    Vander Sande, J.B. )

    1992-11-01

    The study demonstrated the feasibility of using scanning transmission electron microscopy (STEM) spectroscopy accompanied by energy dispersive X-ray (EDX) spectroscopy for the examination of the (THF)-insoluble portion of distillation resid materials derived from direct coal liquefaction. The technique was able to determine the distribution, morphology and elemental composition of dispersed catalyst components in the insoluble portion of the distillation resids. An attempt was made to use transmission electron microscopy (TEM) on these samples; however, detailed compositional information could not be obtained. Further development of STEM and EDX as aids to process development are justified based on these results.

  9. Microbial recovery of metals from spent coal liquefaction catalysts. Quarterly report, January 1994--March 1994

    SciTech Connect

    Sandbeck, K.A.; Cleveland, D.H.

    1994-07-01

    Mo release from spent coal liquefaction catalysts has been shown to be dependent upon many parameters, but release is dominated by microbial growth. The microbial Mo release is a rapid process requiring less than one week for 90% of the releaseable Mo to be solubilized from whole washed (THF) catalyst. It could be expected that the rates would be even greater with crushed catalyst. Efforts are now centering on optimizing the parameters that stimulate microbial growth and action.

  10. Direct liquefaction proof-of-concept program. Topical report

    SciTech Connect

    Comolli, A.G.; Lee, L.K.; Pradhan, V.R.

    1996-12-01

    This report presents the results of work conducted under the DOE Proof-of-Concept Program in direct coal liquefaction at Hydrocarbon Technologies, Inc. in Lawrenceville, New Jersey, from February 1994 through April 1995. The work includes modifications to HRI`s existing 3 ton per day Process Development Unit (PDU) and completion of the second PDU run (POC Run 2) under the Program. The 45-day POC Run 2 demonstrated scale up of the Catalytic Two-Stage Liquefaction (CTSL Process) for a subbituminous Wyoming Black Thunder Mine coal to produce distillate liquid products at a rate of up to 4 barrels per ton of moisture-ash-free coal. The combined processing of organic hydrocarbon wastes, such as waste plastics and used tire rubber, with coal was also successfully demonstrated during the last nine days of operations of Run POC-02. Prior to the first PDU run (POC-01) in this program, a major effort was made to modify the PDU to improve reliability and to provide the flexibility to operate in several alternative modes. The Kerr McGee Rose-SR{sup SM} unit from Wilsonville, Alabama, was redesigned and installed next to the U.S. Filter installation to allow a comparison of the two solids removal systems. The 45-day CTSL Wyoming Black Thunder Mine coal demonstration run achieved several milestones in the effort to further reduce the cost of liquid fuels from coal. The primary objective of PDU Run POC-02 was to scale-up the CTSL extinction recycle process for subbituminous coal to produce a total distillate product using an in-line fixed-bed hydrotreater. Of major concern was whether calcium-carbon deposits would occur in the system as has happened in other low rank coal conversion processes. An additional objective of major importance was to study the co-liquefaction of plastics with coal and waste tire rubber with coal.

  11. Coal liquefaction process streams characterization and evaluation: [sup 13]C-NMR analysis of CONSOL THF-soluble residual materials from the Wilsonville coal liquefaction process

    SciTech Connect

    Solum, M.S.; Pugmire, R.J. )

    1992-11-01

    This study demonstrated the feasibility of using CP/MAS [sup 13]C-NMR spectroscopy for the chemical structural examination of distillation resid materials derived from direct coal liquefaction. A set of twelve carbon skeletal-structure parameters and eight molecular structural descriptors were derived from the NMR data. The technique was used previously to determine these parameters for coal and char, and in the construction of a coal pyrolysis model. The method was applied successfully to the tetrahydrofuran (THF)-soluble portion of eleven 850[degrees]F[sup +] distillation resids and one 850[degrees]F[sup +] distillation resid which contained ash and insoluble organic material (IOM). The results of this study demonstrate that this analytical method can provide data for construction of a model of direct coal liquefaction. Its further development and use is justified based on these results.

  12. Coal liquefaction process streams characterization and evaluation: {sup 13}C-NMR analysis of CONSOL THF-soluble residual materials from the Wilsonville coal liquefaction process

    SciTech Connect

    Solum, M.S.; Pugmire, R.J.

    1992-11-01

    This study demonstrated the feasibility of using CP/MAS {sup 13}C-NMR spectroscopy for the chemical structural examination of distillation resid materials derived from direct coal liquefaction. A set of twelve carbon skeletal-structure parameters and eight molecular structural descriptors were derived from the NMR data. The technique was used previously to determine these parameters for coal and char, and in the construction of a coal pyrolysis model. The method was applied successfully to the tetrahydrofuran (THF)-soluble portion of eleven 850{degrees}F{sup +} distillation resids and one 850{degrees}F{sup +} distillation resid which contained ash and insoluble organic material (IOM). The results of this study demonstrate that this analytical method can provide data for construction of a model of direct coal liquefaction. Its further development and use is justified based on these results.

  13. Liquefaction of calcium-containing subbituminous coals and coals of lower rank

    DOEpatents

    Gorbaty, Martin L.; Taunton, John W.

    1980-01-01

    A process for the treatment of a calcium-containing subbituminous coal and coals of lower rank to form insoluble, thermally stable calcium salts which remain within the solids portions of the residue on liquefaction of the coal, thereby suppressing the formation scale, made up largely of calcium carbonate deposits, e.g., vaterite, which normally forms within the coal liquefaction reactor (i.e., coal liquefaction zone), e.g., on reactor surfaces, lines, auxiliary equipment and the like. A solution of a compound or salt characterized by the formula MX, where M is a Group IA metal of the Periodic Table of the Elements, and X is an anion which is capable of forming water-insoluble, thermally stable calcium compounds, is maintained in contact with a particulate coal feed sufficient to impregnate said salt or compound into the pores of the coal. On separation of the impregnated particulate coal from the solution, the coal can be liquefied in a coal liquefaction reactor (reaction zone) at coal liquefaction conditions without significant formation of vaterite or other forms of calcium carbonate on reactor surfaces, auxiliary equipment and the like; and the Group IA metal which remains within the liquefaction bottoms catalyzes the reaction when the liquefaction bottoms are subjected to a gasification reaction.

  14. Environmental risk analysis for indirect coal liquefaction

    SciTech Connect

    Barnthouse, L.W.; Suter, G.W. II; Baes, C.F. III; Bartell, S.M.; Cavendish, M.G.; Gardner, R.H.; O'Neill, R.V.; Rosen, A.E.

    1985-01-01

    This report presents an analysis of the risks to fish, water quality (due to noxious algal blooms), crops, forests, and wildlife of two technologies for the indirect liquefaction of coal: Lurgi and Koppers-Totzek gasification of coal for Fischer-Tropsch synthesis. A variety of analytical techniques were used to make maximum use of the available data to consider effects of effluents on different levels of ecological organization. The most significant toxicants to fish were found to be ammonia, cadmium, and acid gases. An analysis of whole-effluent toxicity indicated that the Lurgi effluent is more acutely toxic than the Koppers-Totzek effluent. Six effluent components appear to pose a potential threat of blue-green algal blooms, primarily because of their effects on higher trophic levels. The most important atmospheric emissions with respect to crops, forests, and wildlife were found to be the conventional combustion products SO/sub 2/ and NO/sub 2/. Of the materials deposited on the soil, arsenic, cadmium, and nickel appear of greatest concern for phytotoxicity. 147 references, 5 figures, 41 tables.

  15. Coal liquefaction process streams characterization and evaluation

    SciTech Connect

    Brandes, S.D.; Lancet, M.S.; Robbins, G.A.; Winschel, R.A.; Burke, F.P.

    1992-11-01

    This is the eleventh Quarterly Technical Progress Report under DOE Contract DE-AC22-89PC89883. Major topics reported are: (1) The results of a study designed to determine the effects of the conditions employed at the Wilsonville slurry preheater vessel on coal conversion is described. (2) Stable carbon isotope ratios were determined and used to source the carbon of three product samples from Period 49 of UOP bench-scale coprocessing Run 37. The results from this coprocessing run agree with the general trends observed in other coprocessing runs that we have studied. (3) Microautoclave tests and chemical analyses were performed to calibrate'' the reactivity of the standard coal used for determining donor solvent quality of process oils in this contract. (4) Several aspects of Wilsonville Close-Coupled Integrated Two-Stage Liquefaction (CC-ITSL) resid conversion kinetics were investigated; results are presented. Error limits associated with calculations of deactivation rate constants previously reported for Runs 258 and 261 are revised and discussed. A new procedure is described that relates the conversions of 850[degrees]F[sup +] , 1050[degrees]F[sup +], and 850 [times] 1050[degrees]F material. Resid conversions and kinetic constants previously reported for Run 260 were incorrect; corrected data and discussion are found in Appendix I of this report.

  16. Advanced concepts in coal liquefaction: Optimization of reactor configuration in coal liquefaction. Final report

    SciTech Connect

    Pradhan, V.R.; Comolli, A.G.; Lee, L.K.

    1994-11-01

    The overall objective of this Project was to find the ways to effectively reduce the cost of coal liquids to about dollar 25 per barrel of crude oil equivalent. The work described herein is primarily concerned with the testing at the laboratory scale of three reactor configuration concepts, namely (1) a fixed-bed plug-flow reactor as a ``finishing reactor`` in coal liquefaction, (2) three-stage well-mixed reactors in series, and (3) interstage stream concentration/product separation. The three reactor configurations listed above were tested during this project using a 20 cc tubing microreactor, a fixed-bed plug flow reactor, and a two-stage modified Robinson-Mahoney reactor system. The reactor schemes were first evaluated based on theoretical modelling studies, then experimentally evaluated at the microautoclave level and laboratory scale continuous operations. The fixed-bed ``finishing reactor`` concept was evaluated in both the upflow and the downflow modes of operation using a partially converted coal-solvent slurry as feed. For most of the testing of concepts at the microautoclave level, simulated coal, recycle oil, and slurry feedstocks were either specially prepared (to represent a specific state of coal/resid conversion) and/or obtained from HRI`s other ongoing bench-scale and PDU scale coal liquefaction experiments. The three-stage continuous stirred tank reactors (CSTR) and interstage product stream separation/concentration concepts were tested using a simulated three-stage CSTR system by employing a laboratory-scale ebullated-bed system and a modified version of the HRI`s existing Robinson-Mahoney fixed catalyst basket reactor system. This testing was conducted as a fourteen day long continuous run, divided into four Conditions to allow for a comparison of the new three-stage CSTR and interstage product concentration concepts with a two-stage CSTR baseline configuration.

  17. Evaluation of the solvent ability for coal liquefaction using a phenolic resin coal model

    SciTech Connect

    Tagaya, H.; Ono, T.; Chiba, K.

    1988-05-01

    Evaluation of the solvent ability for coal liquefaction was carried out using a phenolic resin coal model. The formation of product phenol increased a resin decomposition progressed. Yallourn coal conversion was correlated very well with phenol yield at 440C for 13 model liquefaction solvents. Phenol yield is found in this study to be one of the most important indicators of the quality of a coal liquefaction solvent. Furthermore, Yallourn coal conversions using a hydrogenated anthracene oil and recycle solvent were predicted from the regression line.

  18. Geological occurrence response to trace elemental migration in coal liquefaction based on SPSS: take no. 11 coalbed in Antaibao mine for example

    NASA Astrophysics Data System (ADS)

    Xia, Xiaohong; Qin, Yong; Yang, Weifeng

    2013-03-01

    Coal liquefaction is an adoptable method to transfer the solid fossil energy into liquid oil in large scale, but the dirty material in which will migrate to different step of liquefaction. The migration rule of some trace elements is response to the react activity of macerals in coal and the geological occurrence of the element nature of itself. In this paper, from the SPSS data correlation analysis and hierarchical clustering dendrogram about the trace elements with macerals respond to coal liquefaction yield, it shows the trace elements in No.11 Antaibao coal seam originated from some of lithophile and sulphophle elements. Correlation coefficient between liquefaction yield of three organic macerals and migration of the elements in liquefaction residue indicated that the lithophile are easy to transfer to residue, while sulphophle are apt to in the liquid products. The activated macerals are response to sulphophle trace elements. The conclusion is useful to the coal blending and environmental effects on coal direct liquefaction.

  19. Exploratory Research on Novel Coal Liquefaction Concept - Task 2: Evaluation of Process Steps.

    SciTech Connect

    Brandes, S.D.; Winschel, R.A.

    1997-05-01

    A novel direct coal liquefaction technology is being investigated in a program being conducted by CONSOL Inc. with the University of Kentucky, Center for Applied Energy Research and LDP Associates under DOE Contract DE-AC22-95PC95050. The novel concept consists of a new approach to coal liquefaction chemistry which avoids some of the inherent limitations of current high-temperature thermal liquefaction processes. The chemistry employed is based on hydride ion donation to solubilize coal at temperatures (350-400{degrees}C) significantly lower than those typically used in conventional coal liquefaction. The process concept being explored consists of two reaction stages. In the first stage, the coal is solubilized by hydride ion donation. In the second, the products are catalytically upgraded to acceptable refinery feedstocks. The program explores not only the initial solubilization step, but integration of the subsequent processing steps, including an interstage solids-separation step, to produce distillate products. A unique feature of the process concept is that many of the individual reaction steps can be decoupled, because little recycle around the liquefaction system is expected. This allows for considerable latitude in the process design. Furthermore, this has allowed for each key element in the process to be explored independently in laboratory work conducted under Task 2 of the program.

  20. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction

    SciTech Connect

    Song, Chunshan; Schobert, H.H.

    1993-02-01

    Development of new catalysts is a promising approach to more efficient coal liquefaction. It has been recognized that catalysts are superior to supported catalysts for primary liquefaction of coals, because the control of initial coal dissolution or depolymerization requires intimate contact between the catalyst and coal. This research is a fundamental and exploratory study on catalytic coal liquefaction, with the emphasis on the development of novel bimetallic dispersed catalysts for temperature-programmed liquefaction. The ultimate goal of the present research is to develop novel catalytic hydroliquefaction process using highly active dispersed catalysts. The primary objective of this research is to develop novel bimetallic dispersed catalysts from organometallic molecular that can be used in low precursors concentrations (< 1 %) but exhibit high activity for efficient hydroliquefaction of coals under temperature-programmed conditions. The major technical approaches are, first, to prepare the desired heteronuclear organometallic molecules as catalyst precursors that contain covalently bound, two different metal atoms and sulfur in a single molecule. Such precursors will generate finely dispersed bimetallic catalysts such as Fe-Mo, Co-Mo and Ni-Mo binary sulfides upon thermal decomposition. The second major technical approach is to perform the liquefaction of coals unpregnated with the organometallic precursors under temperature-programmed conditions, where the programmed heat-up serves as a step for both catalyst activation and coal pretreatment or preconversion. Two to three different complexes for each of the Fe-Mo, Co-Mo, and Ni-Mo combinations will be prepared. Initial catalyst screening tests will be conducted using a subbituminous coal and a bituminous coal. Effects of coal rank and solvents will be examined with the selected bimetallic catalysts which showed much higher activity than the dispersed catalysts from conventional precursors.

  1. New catalysts for coal liquefaction and new nanocrystalline catalysts synthesis methods

    SciTech Connect

    Linehan, J.C.; Matson, D.W.; Darab, J.G.

    1994-09-01

    The use of coal as a source of transportation fuel is currently economically unfavorable due to an abundant world petroleum supply and the relatively high cost of coal liquefaction. Consequently, a reduction in the cost of coal liquefaction, for example by using less and/or less costly catalysts or lower liquefaction temperatures, must be accomplished if coal is to play an significant role as a source of liquid feedstock for the petrochemical industry. The authors and others have investigated the applicability of using inexpensive iron-based catalysts in place of more costly and environmentally hazardous metal catalysts for direct coal liquefaction. Iron-based catalysts can be effective in liquefying coal and in promoting carbon-carbon bond cleavage in model compounds. The authors have been involved in an ongoing effort to develop and optimize iron-based powders for use in coal liquefaction and related petrochemical applications. Research efforts in this area have been directed at three general areas. The authors have explored ways to optimize the effectiveness of catalyst precursor species through use of nanocrystalline materials and/or finely divided powders. In this effort, the authors have developed two new nanophase material production techniques, Modified Reverse Micelle (MRM) and the Rapid Thermal Decomposition of precursors in Solution (RTDS). A second effort has been aimed at optimizing the effectiveness of catalysts by variations in other factors. To this, the authors have investigated the effect that the crystalline phase has on the capacity of iron-based oxide and oxyhydroxide powders to be effectively converted to an active catalyst phase under liquefaction conditions. And finally, the authors have developed methods to produce active catalyst precursor powders in quantities sufficient for pilot-scale testing. Major results in these three areas are summarized.

  2. Characteristics and Thermal Behaviour of Low Rank Malaysian Coals towards Liquefaction Performance via Thermogravimetric Analysis

    NASA Astrophysics Data System (ADS)

    Ishak, M. A. M.; Ismail, K.; Nawawi, W. I.; Jawad, A. H.; Abdullah, M. F.; Kasim, M. N.; Ani, A. Y.

    2016-07-01

    In this study, thermal behaviour of two low-rank Malaysian coals namely Mukah Balingian (MB) and Batu Arang (BA) were obtained under pyrolysis conditions via Thermogravimetric analysis (TGA) at a heating rate of 20°C min-1. The thermal characteristics of the coals were investigated prior to direct liquefaction in order to determine the liquefaction performance, i.e. coal conversion and oil yield. The differential weight loss (DTG) results for both coals showed that there are three main stages evolved which consists of moisture, volatile matter and heavier hydrocarbons that correspond to temperature range of 150, 200-500 and 550-800°C, respectively. Apparently, the DTG curves of BA coal reveals a similar pattern of thermal evolution profile in comparison to that of the MB coal. However, the calculated mean reactivity of BA coal is higher than that of MB, which implied that BA would probably enhance coal conversion and oil yield in comparison to MB coal. Interestingly, results showed that under the same liquefaction conditions (i.e. at 4MPa pressure and 420°C), conversion and oil yield of both coals were well correlated with their reactivity and petrofactor value obtained.

  3. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Quarterly progress report, July--September 1993

    SciTech Connect

    Curtis, C.W.; Gutterman, C.; Chander, S.

    1993-12-31

    The overall objective of this project is to develop a new approach for the direct liquefaction of coal to produce an all-distillate product slate at a sizable cost reduction over current technology. The approach integrates coal selection, pretreatment, coal swelling with catalyst impregnation, liquefaction, product recovery with characterization, alternate bottoms processing, and carrying out a technical assessment including an economic evaluation. The primary coal of this program, Black Thunder subbituminous coal, can be effectively beneficiated to about 3.5 wt % ash using aqueous sulfurous acid pretreatment. This treated coal can be further beneficiated to about 2 wt % ash using commercially available procedures. All three coals used in this study (Black Thunder, Burning Star bituminous, and Martin Lake lignite) are effectively swelled by a number of solvents. The most effective solvents are those having hetero-functionality. laboratory- and bench-scale liquefaction experimentation is underway using swelled and catalyst impregnated coal samples. Higher coal conversions were observed for the SO{sub 2}-treated subbituminous coal than the raw coal, regardless of catalyst type. Conversions of swelled coal were highest when Molyvan L, molybdenum naphthenate, and nickel octoate, respectively, were added to the liquefaction solvent. The study of bottoms processing consists of combining the ASCOT process which consists of coupling solvent deasphalting with delayed coking to maximize the production of coal-derived liquids while rejecting solids within the coke drum. The asphalt production phase has been completed; representative product has been evaluated. The solvent system for the deasphalting process has been established. Two ASCOT tests produced overall liquid yields (63.3 wt % and 61.5 wt %) that exceeded the combined liquid yields from the vacuum tower and ROSE process.

  4. Environmental studies of materials from the H-coal liquefaction process development unit

    SciTech Connect

    Cada, G.F.

    1982-12-01

    H-coal is a process for the direct liquefaction of coal to produce synthetic fuels. Its development has progressed from bench-scale testing through operation of a 2.7 Mg/d (3 ton/d) Process Development Unit. A large-scale H-Coal pilot plant is presently operating at Catlettsburg, Kentucky, and there are plans for the construction of a commercial H-Coal liquefaction facility by the end of the decade. Two of the environmental concerns of the developing direct coal liquefaction industry are accidental spills of synthetic oils and treatment/storage of solid wastes. As a means of obtaining preliminary information on the severity of these potential impacts well in advance of commercialization, samples of product oils and solid wastes were obtained from the H-Coal Process Development Unit (PDU). These samples were subjected to a battery of rapid screening tests, including chemical characterization and bioassays with a variety of aquatic and terrestrial organisms. Water-soluble fraction (WSFs) of H-Coal PDU oils had considerably higher concentrations of phenols and anilines and were commonly one to two orders of magnitude more toxic to aquatic organisms than WSFs of analogous petroleum crude oil. Whole H-Coal PDU oils were also more toxic to the cricket than petroleum-based oils, and some H-Coal samples showed evidence of teratogenicity. Leachates from H-Coal PDU solid wastes, on the other hand, had relatively low concentrations of selected elements and had essentially no acute toxicity to a variety of aquatic and terrestrial species. These studies indicate that environmental effects of product oil spills from a commercial H-Coal liquefaction plant are likely to be more severe than those of conventional petroleum spills. Product upgrading or special transportation and storage techniques may be needed to ensure environmentally sound commercialization of the H-Coal process.

  5. Exploratory research on novel coal liquefaction concept. [Quarterly report], May 24--September 30, 1995

    SciTech Connect

    Burke, F.P.; Winschel, R.A.; Brandes, S.D.; Derbyshire, F.J.; Kimber, G.; Anderson, R.K.; Carter, S.D.; Peluso, M.

    1995-11-08

    CONSOL Inc., the University of Kentucky/Center for Applied Energy Research (CAER), and LDP Associates are conducting a three-year research program to explore the technical and economic feasibility of a novel direct coal liquefaction concept. The purpose of this research program is to explore a new approach to direct coal liquefaction in which the primary coal dissolution step is effected by chemical rather than thermal cleavage of bonds in the coal. This is done at a temperature which is significantly lower than that typically used in conventional coal liquefaction. Reaction at this low temperature results in high conversion of the coal to a solubilized form, with little hydrocarbon gas make, and avoids the thermally induced retrograde reactions which are unavoidable in conventional thermal processes. In addition, for low-rank coals, a substantial portion of the oxygen in the coal is removed as CO and CO{sub 2} during the dissolution. The higher selectivity to liquid products and rejection of oxygen as carbon oxides should result in improved hydrogen utilization. The basis of the novel concept is the discovery made by CONSOL R&D that certain hydride transfer agents are very active for coal dissolution at temperatures in the range of 350{degree}C. Because of the exploratory nature of the research, the project is divided into sequential tasks that are designed to first evaluate key elements of the process is presented for the following tasks: management plan; evaluation of process steps; engineering and economic study and reporting.

  6. Coal liquefaction process streams characterization and evaluation. Volume 2, Participants program final summary evaluation

    SciTech Connect

    Brandes, S.D.; Robbins, G.A.; Winschel, R.A.; Burke, F.P.

    1994-05-01

    This 4.5-year project consisted of routine analytical support to DOE`s direct liquefaction process development effort (the Base Program), and an extensive effort to develop, demonstate, and apply new analytical methods for the characterization of liquefaction process streams (the Participants Program). The objective of the Base Program was to support the on-going DOE direct coal liquefaction process development program. Feed, process, and product samples were used to assess process operations, product quality, and the effects of process variables, and to direct future testing. The primary objective of the Participants Program was to identify and demonstrate analytical methods for use in support of liquefaction process develpment, and in so doing, provide a bridge between process design, development, and operation and analytical chemistry. To achieve this direct coal liquefaction-derived materials. CONSOL made an evaluation of each analytical technique. During the performance of this project, we obtained analyses on samples from numerous process development and research programs and we evaluated a variety of analytical techniques for their usefulness in supporting liquefaction process development. Because of the diverse nature of this program, we provide here an annotated bibliography of the technical reports, publications, and formal presentations that resulted from this program to serve as a comprehensive summary of contract activities.

  7. Coal liquefaction process streams characterization and evaluation. Characterization of coal liquefaction resids employing thermogravimetric analysis and electron spin resonance spectroscopy

    SciTech Connect

    Ibrahim, M.M.; Seehra, M.S.

    1992-10-01

    This study demonstrated the feasibility of using temperature-programmed electron spin resonance (ESR) and thermogravimetric analysis (TGA) for the examination of tetrahydrofuran (THF)-soluble distillation resid materials derived from direct coal liquefaction. TGA is used to quantitate volatile losses in a temperature-programmed experiment. The TGA data are used to correct the free radical densities obtained by ESR as volatile material is evolved from the samples in the temperature-programmed ESR experiment. The techniques, when employed in tandem, can be used to determine the content and nature of the free radicals in the samples at temperatures approximating those used in the liquefaction process. TGA and ESR experiments were performed in flowing nitrogen and hydrogen, at ambient pressure. No significant difference was observed in the ESR spectra in the different atmospheres, except in the case of low-rank coal-derived resids. The TGA results, however, were systematically different; mass loss in an H{sub 2} atmosphere is consistently higher than that observed in an N{sub 2} atmosphere. It was shown that temperature-programmed ESR, which can pinpoint conditions at which the free radical content is the highest, has potential to be a guide for the appropriate choice of conditions for optimum resid upgrading. Further development of these combined analytical methods as process development tools appears justified based on these results.

  8. Surface modified coals for enhanced catalyst and liquefaction

    SciTech Connect

    Abotsi, G.

    1997-12-31

    The aim of this work is to enhance catalyst loading and dispersion in coal for improved liquefaction by preadsorption of surfactants onto coal. Adsorption of the neutral surfactant Triton X-100 onto the coal (Illinois No. 6) followed by zeta potential measurements showed that the surfactant reduced the negative charge density on the coal surface. As was shown in the earlier reports, dodecyl dimethyl ethyl ammonium bromide (DDAB) rendered the surface positive whereas sodium dodecyl sulfate (SDS) increased the negative charge density on the coal. These findings are consistent with the fact that DDAB is cationic and SDS is anionic. Atomic force analysis of the raw coal and its samples treated with DDAB and SDS showed that the surface of the raw coal had large areas of roughness. However, adsorption of DDAB and molybdenum onto the coal resulted in the creation of a smooth surface with few isolated spots. This indicates that the surface of the coal is well covered by DDAB and may enhance the dispersion of the molybdenum catalyst. In contrast, examination of the SDS assisted molybdenum sample showed rod-like structures on the surface. Liquefaction studies showed that a total coal conversion of 96 wt.% was achieved when the coal was treated with Triton X-100 followed by molybdenum loading, compared with 89 wt% for the non-surfactant assisted molybdenum addition. The conversion of the raw, untreated coal in the absence of Triton and catalyst was 72 wt%. Thus, Triton X-100 appears to enhance the liquefaction activity of molybdenum. Liquefaction studies on DDAB and SDS samples will be conducted in subsequent experiments.

  9. Fundamental studies of retrograde reactions in direct liquefaction. Topical report, September 30, 1988--September 30, 1989

    SciTech Connect

    Serio, M.A.; Solomon, P.R.; Bassilakis, R.; Kroo, E.

    1989-12-31

    Most of the proposed processing schemes for improving liquefaction yields involve favoring bond-breaking and radical stabilization reactions over the retrograde reactions. The retrograde reactions are often encountered before liquefaction temperatures are reached. The objective of this program is to elucidate and model the retrograde reaction chemistry in direct coal liquefaction through the application of experimental techniques and theoretical models which have been successfully employed at Advanced Fuel Research (AFR) and SRI International (a subcontractor) to understand and predict coal reaction behavior. The study of retrograde reactions is being done using an integrated approach using extensive characterization of the liquefaction chemistry of three kinds of systems: (1) model polymers; (2) coal; and (3) modified coals.

  10. Fine particle clay catalysts for coal liquefaction. Quarterly technical report, May 9, 1991--August 8, 1991

    SciTech Connect

    Olson, E.S.

    1991-12-31

    The efficient production of environmentally acceptable distillate fuels requires catalysts for hydrogenation and cleavage of the coal macromolecules and removal of oxygen, nitrogen, and sulfur heteroatoms. The goal of the proposed research is to develop new catalysts for the direct liquefaction of coal. This type of catalyst consists of fine clay particles that have been treated with reagents which form pillaring structures between the aluminosilicate layers of the clay. The pillars not only hold the layers apart but also constitute the active catalytic sites for hydrogenation of the coal and the solvent used in the liquefaction. The pillaring catalytic sites are composed of pyrrhotite, which has been previously demonstrated to be active for coal liquefaction. The pyrrhotite sites are generated in situ by sulfiding the corresponding oxyiron species. The size of the catalyst will be less than 40 nm in order to promote intimate contact with the coal material. Since the clays and reagents for pillaring and activating the clays are inexpensive, the catalysts can be discarded after use, rather than regenerated by a costly process. The proposed work will evaluate methods for preparing the fine particle iron-pillared clay dispersions and for activating the particles to generate the catalysts. Characterization studies of the pillared clays and activated catalysts will be performed. The effectiveness of the pillared clay dispersion for hydrogenation and coal liquefaction will be determined in several types of testing.

  11. Solvent treatment of coal for improved liquefaction

    DOEpatents

    Appell, Herbert R.; Narain, Nand K.; Utz, Bruce R.

    1986-05-06

    Increased liquefaction yield is obtained by pretreating a slurry of solid carbonaceous material and a liquid hydrocarbonaceous solvent at a temperature above 200.degree. C. but below 350.degree. C. for a period of 10 minutes to four hours prior to exposure to liquefaction temperatures.

  12. Solvent treatment of coal for improved liquefaction

    DOEpatents

    Appell, Herbert R.; Narain, Nand K.; Utz, Bruce R.

    1986-05-06

    Increased liquefaction yield is obtained by pretreating a slurry of solid carbonaceous material and a liquid hydrocarbonaceous solvent at a temperature above 200.degree. C. but below 350.degree. C. for a period of 10 minutes to four hours prior to exposure to liquefaction temperatures.

  13. SURFACE-MODIFIED COALS FOR ENHANCED CATALYST DISPERSION AND LIQUEFACTION

    SciTech Connect

    Dr. Yaw D. Yeboah

    1999-09-01

    This is the final report of the Department of Energy Sponsored project DE-FGF22-95PC95229 entitled, surface modified coals for enhanced catalyst dispersion and liquefaction. The aims of the study were to enhance catalyst loading and dispersion in coal for improved liquefaction by preadsorption of surfactants and catalysts on the coal and to train and educate minority scientists in catalysts and separation science. Illinois No. 6 Coal (DEC-24) was selected for the study. The surfactants investigated included dodecyl dimethyl ethyl ammonium bromide (DDAB), a cationic surfactant, sodium dodecyl sulfate, an anionic surfactant, and Triton x-100, a neutral surfactant. Ammonium molybdate tetrahydrate was used as the molybdenum catalyst precursor. Zeta potential, BET, FTIR, AFM, UV-Vis and luminescence intensity measurements were undertaken to assess the surface properties and the liquefaction activities of the coal. The parent coal had a net negative surface charge over the pH range 2-12. However, in the presence of DDAB the negativity of the surface charge decreased. At higher concentrations of DDAB, a positive surface charge resulted. In contrast to the effect of DDAB, the zeta potential of the coal became more negative than the parent coal in the presence of SDS. Adsorption of Triton reduced the net negative charge density of the coal samples. The measured surface area of the coal surface was about 30 m{sup 2}/g compared to 77m{sup 2}/g after being washed with deionized water. Addition of the surfactants decreased the surface area of the samples. Adsorption of the molybdenum catalyst increased the surface area of the coal sample. The adsorption of molybdenum on the coal was significantly promoted by preadsorption of DDAB and SDS. Molybdenum adsorption showed that, over a wide range of concentrations and pH values, the DDAB treated coal adsorbed a higher amount of molybdenum than the samples treated with SDS. The infrared spectroscopy (FTIR) and the atomic force

  14. Kinetics of thermal and catalytic coal liquefaction with plastic-derived liquids as solvents

    SciTech Connect

    Ding, W.; Liang, J.; Anderson, L.L.

    1997-05-01

    Results of a kinetic study of thermal and catalytic (Fe impregnated on coal) liquefaction of DECS-6 coal with plastic-derived liquids (PDL) as solvent have been obtained. The experimental work was conducted in 27-cm{sup 3} horizontally shaken microreactors at temperatures of 360--400 C with isothermal reaction times ranging from 0 to 180 min. The reaction pressure was about 2000 psig H{sub 2}, and the solvent-to-coal weight ratio was 2:1. Experimental data were correlated by a kinetic model which assumed the reaction pathways: coal to preasphaltenes, coal to asphaltenes, coal to gas + oil, preasphaltenes to asphaltenes, preasphaltenes to gas + oil, and asphaltenes to gas + oil. It was shown that this reaction model fit experimental data reasonably well at the conditions used, and the six rate constants exhibited Arrhenius-type temperature dependence. Some reactions were also carried out at a higher temperature (420 C) to validate the model at reaction conditions other than conditions used for obtaining the kinetic parameters. Direct coal liquefaction reactions were predominant for both thermal and catalytic DECS-6 coal liquefaction with PDL as solvent, although the catalyst promoted consecutive reactions to a larger extent.

  15. Low-rank coal research: Volume 1, Control technology, liquefaction, and gasification: Final report

    SciTech Connect

    Weber, G.F.; Collings, M.E.; Schelkoph, G.L.; Steadman, E.N.; Moretti, C.J.; Henke, K.R.; Rindt, J.R.; Hetland, M.D.; Knudson, C.L.; Willson, W.G.

    1987-04-01

    Volume I contains articles on SO/sub x//NO/sub x/ control, waste management, low-rank direct liquefaction, hydrogen production from low-rank coals, and advanced wastewater treatment. These articles have been entered individually into EDB and ERA. (LTN)

  16. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Quarterly technical progress report No. 7, April 1993--June 1993

    SciTech Connect

    Curtis, C.W.; Chander, S.; Gutterman, C.

    1994-09-01

    The overall objective of this project is to develop a new approach for the direct liquefaction of coal to produce an all-distillate product slate at a sizable cost reduction over current technology. The approach integrates coal selection, pretreatment, coal swelling with catalyst impregnation, liquefaction, product recovery with characterization, alternate bottoms processing, and carrying out a technical assessment including an economic evaluation. The project is being carried out under contract to the United States Department of Energy. All three coals used in this study (Black Thunder, Burning Star bituminous, and Martin Lake lignite) are effectively swelled by a number of solvents. The most effective solvents are those having hetero-functionality. In addition, a synergistic effect has been demonstrated, in which solvent blends are more effective for coal swelling than the pure solvents alone. Therefore, it will be necessary to use only low levels of swelling agents and yet promote the impregnation of catalyst precursors. The rate of the impregnation of catalyst precursors into swollen coal increases greatly as the effectiveness of the solvent to swell the coal increases. This effect is also demonstrated by improved catalyst precursor impregnation with increased contact temperature. Laboratory- and bench-scale liquefaction experimentation is underway using swelled and catalyst impregnated coal samples. Higher coal conversions were observed for the SO{sub 2}-treated coal than the raw coal, regardless of catalyst type. Conversions of swelled coal were highest when Molyvan-L, molybdenum naphthenate, and nickel octoate, respectively, were added to the liquefaction solvent.

  17. Coal liquefaction: A research and development needs assessment: Final report, Volume II

    SciTech Connect

    Schindler, H.D.; Burke, F.P.; Chao, K.C.; Davis, B.H.; Gorbaty, M.L.; Klier, K.; Kruse, C.W.; Larsen, J.W.; Lumpkin, R.E.; McIlwain, M.E.; Wender, I.; Stewart, N.

    1989-03-01

    Volume II of this report on an assessment of research needs for coal liquefaction contains reviews of the five liquefaction technologies---direct, indirect, pyrolysis, coprocessing, and bioconversion. These reviews are not meant to be encyclopedic; several outstanding reviews of liquefaction have appeared in recent years and the reader is referred to these whenever applicable. Instead, these chapters contain reviews of selected topics that serve to support the panel's recommendations or to illustrate recent accomplishments, work in progress, or areas of major research interest. At the beginning of each of these chapters is a brief introduction and a summary of the most important research recommendations brought out during the panel discussions and supported by the material presented in the review. A review of liquefaction developments outside the US is included. 594 refs., 100 figs., 60 tabs.

  18. Cooperative research in coal liquefaction. Technical progress report, May 1, 1993--April 30, 1994

    SciTech Connect

    Huffman, G.P.

    1994-10-01

    Accomplishments for the past year are presented for the following tasks: coliquefaction of coal with waste materials; catalysts for coal liquefaction to clean transportation fuels; fundamental research in coal liquefaction; and in situ analytical techniques for coal liquefaction and coal liquefaction catalysts some of the highlights are: very promising results have been obtained from the liquefaction of plastics, rubber tires, paper and other wastes, and the coliquefaction of wastes with coal; a number of water soluble coal liquefaction catalysts, iron, cobalt, nickel and molybdenum, have been comparatively tested; mossbauer spectroscopy, XAFS spectroscopy, TEM and XPS have been used to characterize a variety of catalysts and other samples from numerous consortium and DOE liquefaction projects and in situ ESR measurements of the free radical density have been conducted at temperatures from 100 to 600{degrees}C and H{sub 2} pressures up to 600 psi.

  19. Low severity coal liquefaction promoted by cyclic olefins. Quarterly report, October 1991--December 1991

    SciTech Connect

    Curtis, C.W.

    1991-12-31

    The objective of this project is to evaluate the efficacy of low severity coal liquefaction in the presence of highly reactive hydrogen donors, cyclic olefins. The work that was performed this quarter involved performing a literature search in which different aspects of low severity coal liquefaction were examined. In addition, two new mater`s graduate students learned the fundamental differences between high severity coal liquefaction and low severity coal liquefaction by examining the literature and reading texts on coal liquefaction. The literature review presented for the first quarter`s work is a compilation of the material which we have found to data involving low severity coal liquefaction. Additional review of low severity liquefaction literature is being conducted this quarter and will be reported in the next quarterly report. In addition, a summary of the work involving the reactivity of cyclic olefins in the absence and presence of coal will be presented next quarter.

  20. Low severity coal liquefaction promoted by cyclic olefins. Quarterly report, October 1991--December 1991

    SciTech Connect

    Curtis, C.W.

    1991-12-31

    The objective of this project is to evaluate the efficacy of low severity coal liquefaction in the presence of highly reactive hydrogen donors, cyclic olefins. The work that was performed this quarter involved performing a literature search in which different aspects of low severity coal liquefaction were examined. In addition, two new master`s graduate students learned the fundamental differences between high severity coal liquefaction and low severity coal liquefaction by examining the literature and reading texts on coal liquefaction. The literature review presented for the first quarter`s work is a compilation of the material which we have found to date involving low severity coal liquefaction. Additional review of low severity liquefaction literature is being conducted this quarter and will be reported in the next quarterly report. In addition, a summary of the work involving the reactivity of cyclic olefins in the absence and presence of coal will be presented next quarter.

  1. Controlled short residence time coal liquefaction process

    DOEpatents

    Anderson, Raymond P.; Schmalzer, David K.; Wright, Charles H.

    1982-05-04

    Normally solid dissolved coal product and a distillate liquid product are produced by continuously passing a feed slurry comprising raw feed coal and a recycle solvent oil and/or slurry together with hydrogen to a preheating-reaction zone (26, alone, or 26 together with 42), the hydrogen pressure in the preheating-reaction zone being at least 1500 psig (105 kg/cm.sup.2), reacting the slurry in the preheating-reaction zone (26, or 26 with 42) at a temperature in the range of between about 455.degree. and about 500.degree. C. to dissolve the coal to form normally liquid coal and normally solid dissolved coal. A total slurry residence time is maintained in the reaction zone ranging from a finite value from about 0 to about 0.2 hour, and reaction effluent is continuously and directly contacted with a quenching fluid (40, 68) to substantially immediately reduce the temperature of the reaction effluent to below 425.degree. C. to substantially inhibit polymerization so that the yield of insoluble organic matter comprises less than 9 weight percent of said feed coal on a moisture-free basis. The reaction is performed under conditions of temperature, hydrogen pressure and residence time such that the quantity of distillate liquid boiling within the range C.sub.5 -455.degree. C. is an amount at least equal to that obtainable by performing the process under the same conditions except for a longer total slurry residence time, e.g., 0.3 hour. Solvent boiling range liquid is separated from the reaction effluent and recycled as process solvent.

  2. Mild coal pretreatment to improve liquefaction reactivity. Final technical report, September 1990--February 1994

    SciTech Connect

    Miller, R.L.; Shams, K.G.

    1994-07-01

    Recent research efforts in direct coal liquefaction are focused on lowering the level of reaction severity, identification and determination of the causes of retrogressive reactions, and improving the economics of the process. Ambient pretreatment of coals using methanol and a trace amount of hydrochloric acid was extensively studied in connection with low severity coal liquefaction. Ambient pretreatment of eight Argonne coals using methanol/HCl improved THF-soluble conversions 24.5 wt % (maf basis) for Wyodak subbituminous coal and 28.4 wt % for Beulah-Zap lignite with an average increase of 14.9 wt % for the eight Argonne coals at 623 K (350{degrees}C) reaction temperature and 30 minutes reaction time. Optimal pretreatment conditions were determined using Wyodak and Illinois No. 6 coals. Acid concentration was the most important pretreatment variable studied; liquefaction reactivity increased with increasing acid concentration up to 2 vol %. The FTIR spectra of treated and untreated Wyodak coal samples demonstrated formation of carboxylic functional groups during pretreatment, a result of divalent (Ca, Mg) cationic bridge destruction. The extent of liquefaction reactivity directly correlated with the amount of calcium removed during pretreatment, and results from calcium ``addback`` experiments supported the observation that calcium adversely affected coal reactivity at low severity reaction conditions. Model compound studies using benzyl phenyl ether demonstrated that calcium cations catalyzed retrogressive reactions, inhibited hydrogenation reactions at low severity reaction conditions, and were more active at higher reaction temperatures. Based on kinetic data, mechanisms for hydrogenation-based inhibition and base-catalyzed retrogressive reactions are proposed. The base-catalyzed retrogressive reactions are shown to occur via a hydrogen abstraction mechanism where hydrogenation inhibition reactions are shown to take place via a surface quenching mechanism.

  3. A characterization and evaluation of coal liquefaction process streams. Quarterly technical progress report, January 1, 1996--March 31, 1996

    SciTech Connect

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1996-07-01

    The objectives of this project are to support the DOE direct coal liquefaction process development program and to improve the useful application of analytical chemistry to direct coal liquefaction process development. This project builds on work performed in DOE Contract No. DE-AC22-89PC89883. Independent analyses by well-established methods are obtained of samples produced in direct coal liquefaction processes under evaluation by DOE. Additionally, analytical instruments and techniques which are currently under utilized for the purpose of examining coal-derived samples are being evaluated. The data obtained from this study is used to help guide current process development and to develop an improved data base on coal and coal liquids properties. A sample bank, established and maintained for use in this project, is available for use by other researchers. The reactivity of the non-distillable resids toward hydrocracking at liquefaction conditions (i.e., resid reactivity) is being examined. From the literature and data experimentally obtained, a mathematical kinetic model of resid conversion will be constructed. It is anticipated that such a model will provide insights useful for improving process performance and thus the economics of direct coal liquefaction.

  4. A characterization and evaluation of coal liquefaction process streams. Quarterly technical progress report, April 1--June 30, 1995

    SciTech Connect

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1995-09-01

    The objectives of this project are to support the DOE direct coal liquefaction process development program and to improve the useful application of analytical chemistry to direct coal liquefaction process development. Independent analyses by well-established methods will be obtained of samples produced in direct coal liquefaction processes under evaluation by DOE. Additionally, analytical instruments and techniques which are currently underutilized for the purpose of examining coal-derived samples will be evaluated. The data obtained from this study will be used to help guide current process development and to develop an improved data base on coal and coal liquids properties. A sample bank will be established and maintained for use in this project and will be available for use by other researchers. The reactivity of the non-distillable resids toward hydrocracking at liquefaction conditions (i.e., resid reactivity) will be examined. From the literature and data experimentally obtained, a mathematical kinetic model of resid conversion will be constructed. It is anticipated that such a model will provide insights useful for improving process performance and thus the economics of direct coal liquefaction. The paper describes activities carried out this quarter. 11 refs., 21 figs., 17 tabs.

  5. Coal liquefaction process streams characterization and evaluation: Analysis of Black Thunder coal and liquefaction products from HRI Bench Unit Run CC-15

    SciTech Connect

    Pugmire, R.J.; Solum, M.S.

    1994-02-01

    This study was designed to apply {sup 13}C-nuclear magnetic resonance (NMR) spectrometry to the analysis of direct coal liquefaction process-stream materials. {sup 13}C-NMR was shown to have a high potential for application to direct coal liquefaction-derived samples in Phase II of this program. In this Phase III project, {sup 13}C-NMR was applied to a set of samples derived from the HRI Inc. bench-scale liquefaction Run CC-15. The samples include the feed coal, net products and intermediate streams from three operating periods of the run. High-resolution {sup 13}C-NMR data were obtained for the liquid samples and solid-state CP/MAS {sup 13}C-NMR data were obtained for the coal and filter-cake samples. The {sup 1}C-NMR technique is used to derive a set of twelve carbon structural parameters for each sample (CONSOL Table A). Average molecular structural descriptors can then be derived from these parameters (CONSOL Table B).

  6. Coal Liquefaction by Using Dielectric Barrier Discharge Plasma

    NASA Astrophysics Data System (ADS)

    Wang, Qiuying; Wu, Peng; Gu, Fan

    2013-07-01

    An innovative method for coal liquefaction by using dielectric barrier discharge (DBD) plasma in a short reaction time was developed. Using tetralin as the reaction medium, DBD plasma as the energy source, and a reaction time of 10 min at 140°C, up to 10% of coal was converted to liquid material. The results showed the feasibility of coal's liquefaction by DBD plasma under relatively moderate conditions. Simultaneously, it was clarified that the effect of DBD plasma treatment was opposed to the thermal effect of heating. An acid plasma sheath could be formed on the coal powder surface in DBD conditions, liquefied reactions could be carried out in the absence of inorganic acid, and the products were nearly neutral and with low causticity.

  7. Two-stage, close coupled catalytic liquefaction of coal

    SciTech Connect

    Comolli, A.G.; Johanson, E.S.; Panvelker, S.V.; Popper, G.A.

    1990-08-01

    Research continued on two-stage close coupled catalytic coal liquefaction. During the second quarter of 1990, experimental studies were carried out in the microautoclave and Bench Units. Updating of the economics of two-stage processing continued as did process modelling activities. Bench-scale operations consisted of the completion of Run 227-66 (CC-8), an OTISCA cleaned coal evaluation, and Run CC-9, a solids separation study of delayed coking. The OTISCA Cleaned Coal Evaluation and Delayed Coking Trials were successfully concluded. The economics of Eastern US bituminous coal liquefaction were updated to a 1991 basis. For an 8400 ton/day plant, an investment of 1.6 billion is estimated. 1 fig., 13 tabs.

  8. Health effects research in direct coal liquefaction. Studies of H-coal distillates: Phase I. PDU samples - the effects of hydrotreatment

    SciTech Connect

    Epler, J.L.; Fry, R.J.M.; Larimer, F.W.

    1981-11-01

    A multi-divisional effort aimed at the integrated assessment of the health and environmental effects of various coal conversion and shale oil technologies is being carried out. The feasibility of using health effects bioassays to predict the potential biohazard of various H-Coal derived test materials is examined in a coupled chemical and biological approach. The primary focus of the research is the use of preliminary chemical characterizations and preparation for bioassay, followed by testing in short-term assays in order to rapidly ascertain the potential biohazard. Mammalian toxicological assays parallel the testing. Raw and hydrotreated product liquids from process development units of H-Coal and the pilot plant solvent refined coal process were examined for acute toxicity monitored as population growth impairment of Tetrahymena exposed to aqueous extracts and for mutagenic activity monitored as revertants of Salmonella exposed to metabolically activated chemical class fractions. Medium to high severity hydrotreatment appears to be an effective means of reducing biological activity, presumably by reducing the aromaticity and heteroatom content. Five basic mammalian, acute toxicity tests have been conducted with selected H-coal samples and shale oil derivatives. The data show that H-Coal samples are moderately toxic whereas the toxicity of shale oil derived products is slight and comparable to samples obtained from naturally occurring petroleums. No overt skin or eye toxicity was found. The present data reveal that coal-derived distillates generated by the H-coal process are highly carcinogenic to mouse skin. An extreme form of neurotoxicity associated with dermal exposure to one of the lighter, minimally carcinogenic, materials was noted. (DMC)

  9. Catalytic multi-stage liquefaction of coal. Ninth quarterly report, October 1, 1994--December 31, 1994

    SciTech Connect

    Comolli, A.G.; Johnson, E.S.; Lee, L.K.

    1995-06-01

    This quarterly report covers the activities of Catalytic Multi-Stage Liquefaction of Coal during the Period October 1 - December 31, 1994, at Hydrocarbon Research, Inc. in Lawrenceville and Princeton, New Jersey. This DOE Contract Period was from December 8, 1992 to December 7, 1994 and has been extended to September 30, 1995. The overall objective of this program is to produce liquid fuels from coal by direct liquefaction at a cost that is competitive with conventional fuels. Specifically, this continuous bench-scale program contains provisions to examine new ideas in areas such as: low temperature pretreatments, more effective catalysts, on-line hydrotreating, new coal feedstocks, other hydrogen sources, more concentrated coal feeds and other highly responsive process improvements while assessing the design and economics of the bench-scale results. This quarterly report covers work on Laboratory Scale Studies, Continuous Bench-Scale Operations, Technical Assessment and Project Management.

  10. SLURRY PHASE IRON CATALYSTS FOR INDIRECT COAL LIQUEFACTION

    SciTech Connect

    Abhaya K. Datye

    1998-11-19

    This report describes research conducted to support the DOE program in indirect coal liquefaction. Specifically, they have studied the attrition behavior of iron Fischer-Tropsch catalysts, their interaction with the silica binder and the evolution of iron phases in a synthesis gas conversion process. The results provide significant insight into factors that should be considered in the design of catalysts for converting coal based syngas into liquid fuels.

  11. Slurry Phase Iron Catalysts for Indirect Coal Liquefaction

    SciTech Connect

    Abhaya K. Datye

    1998-09-10

    This report describes research conducted to support the DOE program in indirect coal liquefaction. Specifically, we have studied the attrition behavior of Iron Fischer-Tropsch catalysts, their interaction with the silica binder and the evolution of iron phases in a synthesis gas conversion process. The results provide significant insight into factors that should be considered in the design of catalysts for the conversion of coal-derived synthesis gas into liquid fuels.

  12. Control of pyrite addition in coal liquefaction process

    DOEpatents

    Schmid, Bruce K.; Junkin, James E.

    1982-12-21

    Pyrite addition to a coal liquefaction process (22, 26) is controlled (118) in inverse proportion to the calcium content of the feed coal to maximize the C.sub.5 --900.degree. F. (482.degree. C.) liquid yield per unit weight of pyrite added (110). The pyrite addition is controlled in this manner so as to minimize the amount of pyrite used and thus reduce pyrite contribution to the slurry pumping load and disposal problems connected with pyrite produced slag.

  13. Ion exchange and adsorption on low rank coals for liquefaction

    SciTech Connect

    Vorres, K.S.

    1995-08-01

    The objectives of this program involve the study of the catalysis of liquefaction of low rank coals. Ion exchange and adsorption techniques are being used or modified to incorporate catalytically active metals into coal samples. Relative oil yields will be determined by Sandia National Laboratory and PETC collaborators to establish the effectiveness of the catalyst incorporation techniques. This report describes work done over the past 12 months of an on-going project.

  14. Toxicity of a coal liquefaction product to aquatic organisms

    SciTech Connect

    Giddings, J.M.; Parkhurst, B.R.; Gehrs, C.W.; Millemann, R.E.

    1980-07-01

    Using acute bioassay tests a representative coal liquefaction product was compared with a petroleum derived residual fuel oil and a diesel fuel. The acute toxicity of water soluble fractions of the oils to two freshwater algae and one freshwater crustacean was determined.

  15. Technical, Energetics, and Economic Comparison of NRL Oxidative Coal Liquefaction Process with some Developed Coal Liquefaction Processes.

    DTIC Science & Technology

    1980-03-05

    the synthesis step becomes two processes. synthesis CO + H2 catalyst ) methanol conversion methanol catalyst > gasoline + water Wiser states that...structure illustrates the main types of linkage between ring clusters and also some of the heteroatom forms that are found in coal. 20 APPENDIX II...used more widely as petroleum and natural gas resources are depleted and hydrogen for coal liquefaction processes will be produced predominantly from

  16. Coal liquefaction process solvent characterization and evaluation: Technical progress report, January 1, 1986--March 31, 1986

    SciTech Connect

    Winschel, R. A.; Robbins, G. A.; Burke, F. P.

    1986-07-01

    Conoco Coal research Division is characterizing samples of direct coal liquefaction process oils based on a variety of analytical techniques to provide a detailed description of the chemical composition of the oils, to more fully understand the interrelationship of process oil composition and process operations, to aid in plant operation, and to lead to process improvements. The approach taken is to obtain analyses of a large number of well-defined process oils taken during periods of known operating conditions and known process performance. A variety of coal liquefaction process oils were dewaxes by variants of commercial processes in order to improve their quality as donor solvents. Twenty-five oils were analyzed from Hydrocarbon Research Incorporated's (HRI) Catalytic Two-Stage Liquefaction (CTSL) Run 227- 27. Ten microautoclave tests were made to ''calibrate'' the reactivity of our standard coal. Nineteen samples of coal and reaction products of coal and potassium/crown ether, supplied by Purdue University, were analyzed by infrared spectroscopy to derive quantitative and qualitative structural information. 22 refs., 13 figs., 38 tabs.

  17. Rationale for continuing R&D in indirect coal liquefaction

    SciTech Connect

    Gray, D.; Tomlinson, G.

    1995-12-31

    The objective of this analysis is to use the world energy demand/supply model developed at MITRE to examine future liquid fuels supply scenarios both for the world and for the United States. This analysis has determined the probable extent of future oil resource shortages and the likely time frame in which the shortages will occur. The role that coal liquefaction could play in helping to alleviate this liquid fuels shortfall is also examined. The importance of continuing R&D to improve process performance and reduce the costs of coal-derived transportation fuel is quantified in terms of reducing the time when coal liquids will become competitive with petroleum.

  18. Coal liquefaction in an inorganic-organic medium

    DOEpatents

    Vermeulen, Theodore; Grens, II, Edward A.; Holten, Ronald R.

    1982-01-01

    Improved process for liquefaction of coal by contacting pulverized coal in an inorganic-organic medium solvent system containing a ZnCl.sub.2 catalyst, a polar solvent with the structure RX where X is one of the elements O, N, S or P, and R is hydrogen or a lower hydrocarbon radical; the solvent system can contain a hydrogen donor solvent (and must when RX is water) which is immiscible in the ZnCl.sub.2 and is a hydroaromatic hydrocarbon, selected from tetralin, dihydrophenanthrene, dihydroanthracene or a hydrogenated coal derived hydroaromatic hydrocarbon distillate fraction.

  19. A characterization and evaluation of coal liquefaction process streams. Quarterly technical progress report, October 1--December 31, 1994

    SciTech Connect

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1995-05-01

    The objectives of this project are to support the DOE direct coal liquefaction process development program and to improve the useful application of analytical chemistry to direct coal liquefaction process development. Independent analyses by well-established methods will be obtained of samples produced in direct coal liquefaction processes under evaluation by DOE. Additionally, analytical instruments and techniques which are currently underutilized for the purpose of examining coal-derived samples will be evaluated. The data obtained from this study will be used to help guide current process development and to develop an improved data base on coal and coal liquids properties. A sample bank will be established and maintained for use in this project and will be available for use by other researchers. The reactivity of the non-distillable resids toward hydrocracking at liquefaction conditions (i.e., resid reactivity) will be examined. From the literature and data experimentally obtained, a mathematical kinetic model of resid conversion will be constructed. It is anticipated that such a model will provide insights useful for improving process performance and thus the economics of direct coal liquefaction. During this quarter, analyses were completed on 65 process samples from representative periods of HRI Run POC-2 in which coal, coal/plastics, and coal/rubber were the feedstocks. A sample of the oil phase of the oil/water separator from HRI Run POC-1 was analyzed to determine the types and concentrations of phenolic compounds. Chemical analyses and microautoclave tests were performed to monitor the oxidation and measure the reactivity of the standard coal (Old Ben Mine No. 1) which has been used for the last six years to determine solvent quality of process oils analyzed in this and previous DOE contracts.

  20. SUMMARY REPORT OF THE DOE DIRECT LIQUEFACTION PROCESS DEVELOPMENT CAMPAIGN OF THE LATE TWENTIETH CENTURY

    SciTech Connect

    F.P. Burke; S.D. Brandes; D.C. McCoy; R.A. Winschel; D. Gray; G. Tomlinson

    2001-07-01

    Following the petroleum price and supply disruptions of 1973, the U.S. government began a substantial program to fund the development of alternative fuels. Direct coal liquefaction was one of the potential routes to alternative fuels. The direct coal liquefaction program was funded at substantial levels through 1982, and at much lower levels thereafter. Those processes that were of most interest during this period were designed to produce primarily distillate fuels. By 1999, U.S. government funding for the development of direct coal liquefaction ended. Now that the end of this campaign has arrived, it is appropriate to summarize the process learnings derived from it. This report is a summary of the process learnings derived from the DOE direct coal liquefaction process development campaign of the late twentieth century. The report concentrates on those process development programs that were designed to produce primarily distillate fuels and were largely funded by DOE and its predecessors in response to the petroleum supply and price disruptions of the 1970s. The report is structured as chapters written by different authors on most of the major individual DOE-funded process development programs. The focus of the report is process learnings, as opposed to, say, fundamental coal liquefaction science or equipment design. As detailed in the overview (Chapter 2), DOE's direct coal liquefaction campaign made substantial progress in improving the process yields and the quality of the distillate product. Much of the progress was made after termination by 1983 of the major demonstration programs of the ''first generation'' (SRC-II, H-Coal, EDS) processes.

  1. Donor solvent coal liquefaction with bottoms recycle at elevated pressure

    DOEpatents

    Bauman, Richard F.; Taunton, John W.; Anderson, George H.; Trachte, Ken L.; Hsia, Steve J.

    1982-01-01

    An improved process for liquefying solid carbonaceous materials wherein increased naphtha yields are achieved by effecting the liquefaction at a pressure within the range from about 1750 to about 2800 psig in the presence of recycled bottoms and a hydrogen-donor solvent containing at least 0.8 wt % donatable hydrogen. The liquefaction is accomplished at a temperature within the range from about 700.degree. to about 950.degree. F. The coal:bottoms ratio in the feed to liquefaction will be within the range from about 1:1 to about 5:1 and the solvent or diluent to total solids ratio will be at least 1.5:1 and preferably within the range from about 1.6:1 to about 3:1. The yield of naphtha boiling range materials increases as the pressure increases but generally reaches a maximum at a pressure within the range from about 2000 to about 2500 psig.

  2. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Quarterly technical progress report, April--June 1992

    SciTech Connect

    Curtis, C.W.; Gutterman, C.; Chander, S.

    1992-08-26

    Research in this project centers upon developing a new approach to the direct liquefaction of coal to produce an all-distillate product slate at a sizable cost reduction over current technology. The approach integrates all aspects of the coal liquefaction process including coal selection, pretreatment, coal swelling with catalyst impregnation, coal liquefaction experimentation, product recovery with characterization, alternate bottoms processing, and a technical assessment including an economic evaluation. The project is being carried out under contract to the United States Department of Energy. On May 28, 1992, the Department of Energy authorized starting the experimental aspects of this projects; therefore, experimentation at Amoco started late in this quarterly report period. Research contracts with Auburn University, Pennsylvania State University, and Foster Wheeler Development Corporation were signed during June, 1992, so their work was just getting underway. Their work will be summarized in future quarterly reports. A set of coal samples were sent to Hazen Research for beneficiation. The samples were received and have been analyzed. The literature search covering coal swelling has been up-dated, and preliminary coal swelling experiments were carried out. Further swelling experimentation is underway. An up-date of the literature on the liquefaction of coal using dispersed catalysts is nearing completion; it will be included in the next quarterly report.

  3. Coal liquefaction process streams characterization and evaluation. Gold tube carbonization and reflectance microscopy

    SciTech Connect

    Mitchell, G.; Davis, A.; Burke, F.P.; Winschel, R.A.; Brandes, S.D.

    1991-12-01

    This study demonstrated the use of the gold tube carbonization technique and reflectance microscopy analysis for the examination of process-derived materials from direct coal liquefaction. The carbonization technique, which was applied to coal liquefaction distillation resids, yields information on the amounts of gas plus distillate, pyridine-soluble resid, and pyridine-insoluble material formed when a coal liquid sample is heated to 450{degree}C for one hour at 5000 psi in an inert atmosphere. The pyridine-insolubles then are examined by reflectance microscopy to determine the type, amount, and optical texture of isotropic and anisotropic carbon formed upon carbonization. Further development of these analytical methods as process development tools may be justified on the basis of these results.

  4. Advanced direct liquefaction concepts for PETC generic units

    SciTech Connect

    Not Available

    1992-04-01

    In the Advance Coal Liquefaction Concept Proposal (ACLCP) carbon monoxide (CO) and water have been proposed as the primary reagents in the pretreatment process. The main objective of this project is to develop a methodology for pretreating coal under mild conditions based on a combination of existing processes which have shown great promise in liquefaction, extraction and pyrolysis studies. The aim of this pretreatment process is to partially depolymerise the coal, eliminate oxygen and diminish the propensity for retograde reactions during subsequent liquefaction. The desirable outcome of the CO pretreatment step should be: (1) enhanced liquefaction activity and/or selectivity toward products of higher quality due to chemical modification of the coal structure; (2) cleaner downstream products; (3) overall improvement in operability and process economics.

  5. Coal liquefaction. Quarterly report, January-March 1979. [US DOE supported

    SciTech Connect

    1980-01-01

    Progress in DOE-supported coal liquefaction pilot plant projects is reported: company, location, contract, funding, process description, history and progress in the current quarter. Related projects discussed are: coking and gasification of liquefaction plant residues, filtration of coal liquids and refining of coal liquids by hydrogenation. (LTN)

  6. Design, synthesis, and characterization of novel fine-particle, unsupported catalysts for coal liquefaction

    SciTech Connect

    Klein, M.T.

    1991-12-30

    The purpose of this work is to investigate the kinetics-assisted design, synthesis and characterization of fme-pardcle, unsupported catalysts for coal liquefaction. The goal is to develop a fundamental understanding of coal catalysis and catalysts that will, in turn, allow for the specification of a novel optimal catalyst for coal liquefaction.

  7. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Volume 1, Final technical report, October 1, 1991--September 30, 1994

    SciTech Connect

    Curtis, C.W.; Gutterman, C.; Chander, S.

    1994-12-31

    The overall objective of this project was to develop a new approach for the direct liquefaction of coal to produce an all-distillate product slate at a sizable cost reduction over current technology. The approach integrated coal selection, pretreatment, coal swelling with catalyst impregnation, liquefaction, product recovery with characterization, alternate bottoms processing, and a technical assessment including an economic evaluation. Heterofunctional solvents were the most effective in swelling coals. Also solvent blends such as isopropanol/water were more effective than pure solvents alone. Impregnating slurry catalysts simultaneously during coal swelling showed that better uptake was achieved with nonswelling solvent and higher impregnation temperature. Some enhancement in initial coal conversion was seen liquefying SO{sub 2}-treated Black Thunder coal with slurry catalysts, and also when hydrogen donor liquefaction solvents were used. Noncatalytic reactions showed no benefit from SO{sub 2} treatment. Coupling coal swelling and SO{sub 2} treatment with slurry catalysts was also not beneficial, although high conversion was seen with continuous operation and long residence time, however, similar high conversion was observed with untreated coal. SO{sub 2} treatment is not economically attractive unless it provides about 17% increase in coal reactivity. In most cases, the best results were obtained when the coal was untreated and the slurry catalyst was added directly into the reactor. Foster Wheeler`s ASCOT process had better average liquid yields than either Wilsonville`s vacuum tower/ROSE combination or delayed coking process. This liquid product also had good quality.

  8. A characterization and evaluation of coal liquefaction process streams. Quarterly technical progress report, July 1--September 30, 1995

    SciTech Connect

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1995-12-01

    The objectives of this project are to support the DOE direct coal liquefaction process development program and to improve the useful application of analytical chemistry to direct coal liquefaction process development. Independent analyses by well-established methods will be obtained of samples produced in direct coal liquefaction processes under evaluation by DOE. Additionally, analytical instruments and techniques which are currently underutilized for the purpose of examining coal-derived samples will be evaluated. The data obtained from this study will be used to help guide current process development and to develop an improved data base on coal and coal liquids properties. A sample bank will be established and maintained for use in this project and will be available for use by other researchers. The reactivity of the non-distillable resids toward hydrocracking at liquefaction conditions (i.e., resid reactivity) will be examined. From the literature and data experimentally obtained, a mathematical kinetic model of resid conversion will be constructed. It is anticipated that such a model will provide insights useful for improving process performance and thus the economics of direct coal liquefaction. Some of the contract activities for this quarter are: We completed many of the analyses on the 81 samples received from HTI bench-scale run CMSL-9, in which coal, coal/mixed plastics, and coal/high density polyethylene were fed; Liquid chromatographic separations of the 15 samples in the University of Delaware sample set were completed; and WRI completed CP/MAS {sup 13}C-NMR analyses on the Delaware sample set.

  9. Mild coal pretreatment to improve liquefaction reactivity. Quarterly technical progress report, September--November 1991

    SciTech Connect

    Miller, R.L.

    1991-12-31

    This report describes work completed during the fifth quarter of a three year project to study the effects of mild chemical pretreatment on coal dissolution reactivity during low severity liquefaction or coal/oil coprocessing. The overall objective of this research is to elucidate changes in the chemical and physical structure of coal by pretreating with methanol or other simple organic solvent and a trace amount of hydrochloric acid and measure the influence of these changes on coal dissolution reactivity. Work this quarter focused on analytical characterization of untreated and treated Wyodak subbituminous coal and Illinois {number_sign}6 bituminous coal. Mossbauer spectroscopy and x-ray diffraction techniques were used to study the effect of methanol/HCl pretreatment on the composition of each coal`s inorganic phase. Results from these studies indicated that calcite is largely removed during pretreatment, but that other mineral species such as pyrite are unaffected. This finding is significant, since calcite removal appears to directly correlate with low severity liquefaction enhancement. Further work will be performed to study this phenomenon in more detail.

  10. A characterization and evaluation of coal liquefaction process streams. Quarterly technical progress report, October 1--December 31, 1995

    SciTech Connect

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1996-05-01

    The objectives of this project are to support the DOE direct coal liquefaction process development program and to improve the useful application of analytical chemistry to direct coal liquefaction process development. Independent analyses by well-established methods will be obtained of samples produced in direct coal liquefaction processes under evaluation by DOE. Additionally, analytical instruments and techniques which are currently underutilized for the purpose of examining coal-derived samples will be evaluated. The data obtained from this study will be used to help guide current process development and to develop an improved data base on coal and coal liquids properties. During this reporting period, CONSOL completed analyses of 81 feed and process stream samples from HTI bench Run CMSL-9. HTI liquefaction bench unit Run CMSL-9 (227-87) was operated with all-dispersed catalyst and Black Thunder Mine (Wyodak and Anderson seam) coal, with and without mixed plastics or high density polyethylene (HDPE) as coprocessing feedstocks. The dispersed catalysts used were Molyvan A and HTI`s iron catalyst, a sulfated iron hydroxide. Results are discussed in this report.

  11. Microbial recovery of metals from spent coal liquefaction catalysts

    SciTech Connect

    Sperl, P.L.; Sperl, G.T.

    1991-01-01

    This project was initiated on October 1, 1989, for the purpose of recovering metals from spent coal liquefaction catalysts. Two catalyst types are the subject of the contract. The first is a Ni-Mo catalyst supported on alumina (Shell 324) as is used in a pilot scale coal liquefaction facility at Wilsonville, Alabama. A large sample of spent catalyst has been obtained. The second material is an unsupported ammonium molybdate catalyst used in a pilot process by the Department of energy at the Pittsburgh energy Technology Center. The object of the contract is to treat these spent catalysts with microorganisms, especially Thiobacillus ferrooxidans, but also other Thiobacillus sp. and possibly Sulfolobus, to leach and remove the metals (Ni and Mo) from the spent catalysts into a form which can be readily recovered by conventional techniques.

  12. Testing of advanced liquefaction concepts in HTI Run ALC-1: Coal cleaning and recycle solvent treatment

    SciTech Connect

    Robbins, G.A.; Winschel, R.A.; Burke, F.P.; Derbyshire, F.L.; Givens, E.N.; Hu, J.; Lee, T.L.K.; Miller, J.E.; Stephens, H.P.; Peluso, M.

    1996-09-01

    In 1991, the Department of Energy initiated the Advanced Liquefaction Concepts Program to promote the development of new and emerging technology that has potential to reduce the cost of producing liquid fuels by direct coal liquefaction. Laboratory research performed by researchers at CAER, CONSOL, Sandia, and LDP Associates in Phase I is being developed further and tested at the bench scale at HTI. HTI Run ALC-1, conducted in the spring of 1996, was the first of four planned tests. In Run ALC-1, feed coal ash reduction (coal cleaning) by oil agglomeration, and recycle solvent quality improvement through dewaxing and hydrotreatment of the recycle distillate were evaluated. HTI`s bench liquefaction Run ALC-1 consisted of 25 days of operation. Major accomplishments were: 1) oil agglomeration reduced the ash content of Black Thunder Mine coal by 40%, from 5.5% to 3.3%; 2) excellent coal conversion of 98% was obtained with oil agglomerated coal, about 3% higher than the raw Black Thunder Mine coal, increasing the potential product yield by 2-3% on an MAF coal basis; 3) agglomerates were liquefied with no handling problems; 4) fresh catalyst make-up rate was decreased by 30%, with no apparent detrimental operating characteristics, both when agglomerates were fed and when raw coal was fed (with solvent dewaxing and hydrotreating); 5) recycle solvent treatment by dewaxing and hydrotreating was demonstrated, but steady-state operation was not achieved; and 6) there was some success in achieving extinction recycle of the heaviest liquid products. Performance data have not been finalized; they will be available for full evaluation in the new future.

  13. Design and synthesis of catalysts for coal liquefaction

    SciTech Connect

    Dadyburjor, D.B.; Stinespring, C.D.; Stiller, A.H.; Zondio, J.W.

    1996-10-01

    Ferric-sulfide-based materials satisfy many of the requirements of catalysts for coal liquefaction - they are cheap enough and environmentally-benign enough to be considered {open_quotes}disposable,{close_quotes} and they can be made small enough and active enough to be considered economical. The talk will focus on the different ways in which these catalysts can be made, including hydrothermal disproportionation, in situ impregnation, and aerosol, as well as their characterization and performance.

  14. A Characterization and Evaluation of Coal Liquefaction Process Streams

    SciTech Connect

    1998-10-01

    An updated assessment of the physico-chemical analytical methodology applicable to coal-liquefaction product streams and a review of the literature dealing with the modeling of fossil-fuel resid conversion to product oils are presented in this document. In addition, a summary is provided for the University of Delaware program conducted under this contract to develop an empirical test to determine relative resid reactivity and to construct a computer model to describe resid structure and predict reactivity.

  15. A Characterization and Evaluation of Coal Liquefaction Process Streams

    SciTech Connect

    G. A. Robbins; R. A. Winschel

    1998-07-01

    This is the Technical Progress Report for the fourteenth quatier of activities under DOE Contract No. DE-AC22-94PC93054. It covers the period October 1 through December 31, 1997'. Described in this report is the following activity: o CONSOL characterized 34 process stream samples from HTI Run PB-06, in which Black Thunder Mine coal, virgin plastics, plasticiderived pyrolysis oil, and Hondo vacuum resid were used as liquefaction feedstocks with dispersed catalyst.

  16. Coal liquefaction to increase jet fuel production

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Processing concept that increases supply of jet fuel has been developed as part of study on methods for converting coal to hydrogen, methane, and jet fuel. Concept takes advantage of high aromatic content of coal-derived liquids to make high-octane gasoline, instead of destroying aromatics to make jet fuel.

  17. Coal liquefaction to increase jet fuel production

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Processing concept that increases supply of jet fuel has been developed as part of study on methods for converting coal to hydrogen, methane, and jet fuel. Concept takes advantage of high aromatic content of coal-derived liquids to make high-octane gasoline, instead of destroying aromatics to make jet fuel.

  18. Process for coal liquefaction using electrodeposited catalyst

    DOEpatents

    Moore, Raymond H.

    1978-01-01

    A process for the liquefaction of solid hydrocarbonaceous materials is disclosed. Particles of such materials are electroplated with a metal catalyst and are then suspended in a hydrocarbon oil and subjected to hydrogenolysis to liquefy the solid hydrocarbonaceous material. A liquid product oil is separated from residue solid material containing char and the catalyst metal. The catalyst is recovered from the solid material by electrolysis for reuse. A portion of the product oil can be employed as the hydrocarbon oil for suspending additional particles of catalyst coated solid carbonaceous material for hydrogenolysis.

  19. Synthetic clay-supported catalysts for coal liquefaction

    SciTech Connect

    Olson, E.S.; Sharma, R.K.

    1994-12-31

    Synthetic clays with nickel substitution in the lattice structure are highly active catalysts for hydrogenation and hydroisomerization and, consequently, have considerable promise for the catalytic upgrading of coal liquids. Nickel-substituted synthetic mica montmorillonite (NiSMM) was prepared and subsequently impregnated with molybdenum and sulfided. The reaction of model compounds with these catalysts in the presence of hydrogen has been investigated to provide mechanistic models for coal liquefaction. The results indicate that NiSMM has active Bronsted acid sites for hydrocracking and hydroisomerization. The hydrogen-activating ability of the molybdenum and nickel sulfide sites proximate to the acid sites results in effective depolymerization catalysis.

  20. Surface modified coals for enhanced catalyst dispersion and liquefaction

    SciTech Connect

    Dr. Yaw D. Yeboah

    1998-10-29

    The aim of the study is to enhance catalyst loading and dispersion in coal for improved liquefaction by preadsorption of surfactants and catalysts on to the coal. During this reporting period, zeta potential measurements were conducted to assess the surface charge on the raw, pretreated and catalyzed coal samples. The surface area, transmission spectroscopy and luminescence intensity of the raw coal and pretreated coal samples were also determined to assess the quality of the coal surface. Across a broad range of pH values, the raw coal had an overall negative charge. Coal treated with anionic surfactant SDS maintained an overall net negative surface negative charge. The interaction between the coal and cationic surfactant DDAB caused the opposite effect resulting in a more positive coal surface charge. Although one would have expected little or no effect of the neutral surfactant Triton X-100, there appears to be some difference in the results of the raw coal and the coal treated with Triton X-100. The authors believe that the Triton not only binds to the nonpolar sites but also has a strong affinity for the polar sites through electrostatic bonding and interaction between the hydrophobic tails. The addition of molybdenum to coal pretreated with DDAB caused a reduction in the positive charge of the coal surface probably due to possible ionic interaction between the coal surface, the surfactant and the catalyst. The adsorption isotherm of the coal was characteristic of isotherms for porous samples and the surface area of the coal increased from 30 m{sup 2}/g to 77 m{sup 2}/g when washed with deionized water. This suggests coal washing may be one method of increasing the surface area for surfactant adsorption. Although the transmission measurements provided valuable information about the coal it resulted in little information on the amount of adsorbed Triton. However, the maximum solid-liquid ratio for optimum surfactant loading of Triton X-100 was determined via

  1. Low severity coal liquefaction promoted by cyclic olefins

    SciTech Connect

    Curtis, C.W.

    1992-01-01

    Low severity coal liquefaction promoted by cyclic olefins offers a means of liquefying coal at low severity conditions. Lower temperature, 350[degrees]C, and lower hydrogen pressure, 500 psi, have been used to perform liquefaction reactions. The presence of the cyclic olefin, hexahydroanthracene, made a substantial difference in the conversion of Illinois No. 6 coal at these low severity conditions. The Researchperformed this quarter was a parametric evaluation of the effect of different parameters on the coal conversion and product distribution from coal. The effect of the parameters on product distribution from hexahydroanthracene was also determined. The work planned for next quarter includes combining the most effective parametric conditions for the low severity reactions and determining their effect. The second part ofthe research performed this quarter involved performing Fourier transform infrared (FTIR) spectroscopy using cyclic olefins. The objective of this study was to determine the feasibility of using FTIR and a heated cell to determine the reaction pathway that occurs in the hydrogen donation reactions from cyclic olefins. The progress made to date includes evaluating the FTIR spectra of cyclic olefins and their expected reaction products. This work is included in this progress report.

  2. Direct liquefaction proof-of-concept program. Finaltopical report, Bench Run 4 (227-95)

    SciTech Connect

    Comolli, A.G.; Pradhan, V.R.; Lee, T.L.K.

    1997-03-01

    This report presents the results of bench-scale work, Bench Run PB-04, conducted under the DOE Proof of Concept-Bench Option Program in direct coal liquefaction at Hydrocarbon Technologies, Inc. in Lawrenceville, New Jersey. The Bench Run PB-04 was the fifth of the nine runs planned in the POC Bench Option Contract between the U.S. DOE and Hydrocarbon Technologies, Inc. Bench Run PB-04 had multiple goals. These included the evaluation of the effects of dispersed slurry catalyst system on the performance of direct liquefaction of a subbituminous Wyoming Black Thunder mine coal under extinction recycle (454{degrees}C+ recycle) condition; another goal was to investigate the effects of the combined processing of automobile shredder residue (auto-fluff) with coal and other organic waste materials. PB-04 employed a two-stage, back-mixed, slurry reactor system with an interstage V/L separator and an in-line fixed-bed hydrotreater. The HTI`s newly modified P/Fe catalyst was very effective for direct liquefaction and coprocessing of Black Thunder mine subbituminous coal with Hondo resid and auto-fluff; during `coal-only` liquefaction mode, over 93% maf coal conversion was obtained with about 90% residuum conversion and as high as 67% light distillate (C{sub 4}-975 F) yield, while during `coprocessing` mode of operation, distillate yields varied between 58 and 69%; the residuum conversions varied between 74 and 89% maf. Overall, it is concluded, based upon the yield data available from PB-04, that auto-effective as MSW plastics in improving coal hydroconversion process performance. Auto-fluff did not increase light distillate yields nor decrease light gas make and chemical hydrogen consumption in coal liquefaction, as was observed to occur with MSW plastics.

  3. Sequential low-temperature depolymerization and liquefaction of US coals. Progress report No. 1, October 1--December 31, 1986

    SciTech Connect

    Shabtai, J.S.; Wiser, W.H.

    1987-01-01

    Results obtained in the studies with BS(IL) coal as feed can be summarized as follows: (1) The low-temperature depolymerization - liquefaction procedure, summarized in Figure 1, is easily adaptable and applicable to a high-sulfur, Burning Star (Illinois No. 6) coal sample. The final product obtained consists of a fully desulfurized, light hydrocarbon oil. (2)Suitable processing conditions for each step of the stepwise depolymerization - liquefaction of the above coal were determined. (3)Direct hydroprocessing of the Burning Star (Illinois No. 6) coal with sulfided catalysts is ineffective for its conversion into a light hydrocarbon product. In accordance with the research program the depolymerized, THF-soluble coal products will be subjected to detailed analysis for the purpose of deriving average molecular structures for the oil, asphaltene and asphaltol fractions. The data obtained will be used to develop a structural model for the BS(IL) coal.

  4. Ion exchange and adsorption on low rank coals for liquefaction

    SciTech Connect

    Vorres, K.S.

    1994-09-01

    The objectives of this program are to study the application of catalysts and the catalysis of liquefaction of low rank coals. Ion exchange and adsorption techniques are being used or modified to incorporate catalytically active metals (Fe, Co, Ni and Mo) in relatively small (100-2000 ppM) quantities into coal samples. Relative oil yields are being determined by PETC and Auburn University workers as collaborators to establish the effectiveness of the catalyst incorporation techniques. It is hoped that these techniques will provide highly active forms of the catalyst in low concentrations to minimize the need for metals recovery. A two step preparation of the coal is used to (1) remove material which both limits oil conversion and prepares for the addition of exchangeable catalyst, and (2) add catalytically active material which enhances the conversion of the coal matter to the oil fraction in the processing.

  5. Coal liquefaction process solvent characterization and evaluation: Third annual report, January 1--December 31, 1987

    SciTech Connect

    Winschel, R. A.; Robbins, G. A.; Burke, F. P.

    1989-03-01

    Consolidation Coal Company Research and Development Department (Consol R and D) is characterizing samples of direct coal liquefaction process oils based on a variety of analytical techniques to provide a detailed description of the chemical composition of the oils, to more fully understand the interrelationship of process oil composition and process operations, to aid in plant operation, and to lead to process improvements. The approach taken is to obtain analyses of a large number of well-defined process oils taken during periods of known operating conditions and known process performance. This quarter a set of 19 oils and 2 coals from HRI CTSL Runs 0-1 and 0-2 was analyzed to provide information on process performance. These runs were noteworthy in that they were the first tests of Appalachian basin coal in the CTSL process. Solubility fractionation analyses were repeated on oils from HRI CTSL Run 1-27. Forty-six batch liquefaction products, made by Energy International with four different ''heavy'' solvents in statistically designed test matrices of time and temperature, were analyzed to evaluate the influence of properties on the performance of ''heavy'' liquefaction solvents. The computer program used to calculate propagation of errors for our work with carbon isotope analyses was corrected. 16 refs., 17 figs., 25 tabs.

  6. Coal liquefaction process solvent characterization and evaluation: Progress report, 1 April--30 June 1986

    SciTech Connect

    Winschel, R. A.; Robbins, G. A.; Burke, F. P.

    1986-11-01

    Conoco Coal Research Division is characterizing samples of direct coal liquefaction process oils based on a variety of analytical techniques to provide a detailed description of the chemical composition of the oils to more fully understand the interrelationship of process oil composition and process operations, to aid in plant operation, and to lead to process improvements. The approach taken is to obtain analyses of a large number of well-defined process oils taken during periods of known operating conditions and known process performance. A set of thirty-one process oils from the Hydrocarbon Research, Inc. (HRI) Catalytic Two-Stage Liquefaction (CTSL) bench unit was analyzed to provide information on process performance. The Fourier-Transform infrared (FTIR) spectroscopic method for the determination of phenolics in cola liquids was further verified. A set of four tetahydrofuran-soluble products from Purdue Research Foundation's reactions of coal/potassium/crown ether, analyzed by GC/MS and FTIR, were found to consist primarily of paraffins (excluding contaminants). Characterization data (elemental analyses, /sup 1/H-NMR and phenolic concentrations) were obtained on a set of twenty-seven two-stage liquefaction oils. Two activities were begun but not completed. First, analyses were started on oils from Wilsonville Run 250 (close- coupled ITSL). Also, a carbon isotopic method is being examined for utility in determining the relative proportion of coal and petroleum products in coprocessing oils.

  7. System for analyzing coal liquefaction products

    DOEpatents

    Dinsmore, Stanley R.; Mrochek, John E.

    1984-01-01

    A system for analyzing constituents of coal-derived materials comprises three adsorption columns and a flow-control arrangement which permits separation of both aromatic and polar hydrocarbons by use of two eluent streams.

  8. Coal liquefaction technology. (Latest citations from the NTIS Bibliographic database). Published Search

    SciTech Connect

    1996-09-01

    The bibliography contains citations concerning the technologies and processes for converting coal to liquid chemicals and fuels. Topics include materials characterization of liquefaction processes, catalysis, pyrolysis, depolymerization, coprocessing, and integrated liquefaction. Also discussed are liquid fuel use in automobiles and power generation, low-temperature carbonization technology, multi-stage liquefaction, cost benefit analysis, and commercialization of liquefaction technology. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  9. Fundamental studies of retrograde reactions in direct liquefaction

    SciTech Connect

    Serio, M.A.; Solomon, P.R.; Kroo, E.; Charpenay, S.; Bassilakis, R.

    1990-01-01

    Research on coal liquefaction continued. We have tried to get definitive structural information on the C-C-O polymers, (poly(4-allylphenol)) from a variety of analytical techniques. However, in all cases the results were not conclusive. In view of the need for a better characterization of the model polymers before drawing definitive conclusions from liquefaction of pyrolysis results, we have reexamined some of the previous analyses and have conducted further characterization of the C-C-O polymers by elemental analysis and FT-IR spectroscopy. Liquefaction experiments were repeated at 400{degree}C, 10 minutes for the three raw coals. For the Zap and Illinois coals, the results at 10 minutes were significantly different when compared to the first set of experiments. Since all of these experiments were done shortly before the heater elements failed in the Fluidized Sand Bath (FSB), it was thought that this may have been a contributing factor, since the reproducibility in the past has been quite good for the 30 minute experiments ({plus minus}3%). The FSB was rebuilt and liquefaction experiments were repeated for a second time at 400{degree}C, 10 minutes for the three raw coals. The results were now in general agreement with the results of the previous set. Work continued on using the AFR FG-DVC liquefaction model to predict the results of the experiments on coals and modified coals from this program. 3 refs., 3 figs.

  10. The Dual Role of Oxygen Functions in Coal Pretreatment and Liquefaction: Crosslinking and Cleavage Reactions

    SciTech Connect

    Michael Serio; Erik Kroo; Sylvie Charpenay; Peter Solomon

    1993-09-30

    The overall objective of this project was to elucidate and model the dual role of oxygen functions in thermal pretreatment and liquefaction of low rank coals through the application of analytical techniques and theoretical models. The project was an integrated study of model polymers representative of coal structures, raw coals of primarily low rank, and selectively modified coals in order to provide specific information relevant to the reactions of real coals. The investigations included liquefaction experiments in microautoclave reactors, along with extensive analysis of intermediate solid, liquid and gaseous products. Attempts were made to incorporate the results of experiments on the different systems into a liquefaction model.

  11. Letdown valve material performance against corrosion and erosion in brown coal liquefaction process

    SciTech Connect

    Komatsu, N.; Makino, E.; Tamura, M.

    1999-07-01

    Severe erosion occurred on the trim of letdown valves used as pressure reduction in brown coal direct liquefaction 50t/d pilot plant. Corrosion which is caused by elution of cobalt as binder is recognized on the eroded trim made by tungsten carbide (WC). A little erosion and no corrosion are recognized on the trim made by tungsten carbide containing a bit of chromium. The elution of cobalt seems to be caused by the acid corrosion because cobalt has no corrosive resistance against acid and the erosion of tungsten carbide is concluded to be corrosive wear. Therefore, the addition of chromium which takes a role to strengthen electrochemically cobalt bonding phase is effective to provide tungsten carbide with corrosive resistant behavior against acid corrosive circumstance under brown coal liquefaction process.

  12. Low severity coal liquefaction promoted by cyclic olefins

    SciTech Connect

    Curtis, C.W.

    1992-07-27

    Low severity coal liquefaction allows for solubilization of coal with reduced gas make. These lower severity conditions may result in some selective bond rupture. Promotion of coal solubilization through hydrogen transfer using highly active and effective hydrogen donors is the objective of this study. The highly effective donors being tested are cyclic olefins. Representative cyclic olefins are isotetralin, which is 1,4,5,8-tetrahydronaphthalene, and 1,4,5,8,9,10-hexahydroanthracene. These compounds are hydroaromatics without aromatic rings and have been shown to be highly effective donors. The objective of the work performed in this study during this quarter was to evaluate reaction parameters for low severity liquefaction reactions using the cyclic olefin, hexahydroanthracene, and the aromatic, anthracene. These model compounds were reacted under a variety of conditions to evaluate their reactivity without coal. The reactions were performed under both thermal and catalytic conditions. Finely divided catalysts from different molybdenum precursors were used to determine their activity in promoting hydrogenation and hydrogen transfer at low severity conditions. The catalysts used were Molyvan L, sulfurized oxymolybdenum dithiocarbamate, molybdenum naphthenate, and Molyvan 822, organo molybdenum dithiocarbamate.

  13. Two-stage, closed coupled catalytic liquefaction of coal. Sixteenth quarterly report, 1 July 1992--30 September 1992

    SciTech Connect

    Comolli, A.G.; Johanson, E.S.; Karolkiewicz, W.F.; Lee, L.K.; Stalzer, R.H.

    1992-12-01

    This quarterly report covers activities of the Two-Stage, Close-Coupled Catalytic Liquefaction of Coal Program during the period of July 1--September 30, 1992, at Hydrocarbon Research, Inc., in Lawrenceville and Princeton, New Jersey. This DOE contract period is from October 1, 1998 to December 31, 1992. The overall purpose of the program is to achieve higher yields of better quality transportation and turbine fuels and to lower the capital and production costs in order to make the products from direct coal liquefaction competitive with other fossil fuel products. The quarterly report covers work on Laboratory testing, Bench Scale Studies and PDU Activities focusing on scale-up of the Catalytic Two-Stage Liquefaction (CTSL) processing of sub-bituminous Black Thunder Coal.

  14. Low severity coal liquefaction promoted by cyclic olefins. Quarterly report, July--September 1993

    SciTech Connect

    Curtis, C.W.

    1993-12-31

    Low-severity coal liquefaction allows for the solubilization of coal with reduced gas make. The idea being tested in this research is whether selective bond rupture occurs during liquefaction at low temperatures that can be satisfied by hydrogen donation from highly active hydrogen donor compounds. Promotion of coal solubilization through hydrogen transfer using highly active and effective hydrogen donors is the objective of this study. The highly effective hydrogen donors being tested are cyclic olefins. Representative cyclic olefins are isotetralin (ISO), which is 1,4,5,8-tetrahydronaphthalene, and 1,4,5,8,9, 10hexahydroanthracene (HHA). These compounds have been shown to highly effective donors (Bedell and Curtis, 1991) which release their hydrogen at fairly low temperatures, in the 200 to 300{degrees}C range. ISO has been shown to be much more effective than its hydroaromatic analogue tetralin (TET) in releasing hydrogen at low temperatures and transferring that hydrogen to an acceptor molecule or to coal (Bedell and Curtis, 1991). Likewise, at 380{degrees}C, the ability of HHA to release hydrogen in both N{sub 2} and H{sub 2} atmospheres was greater than a comparative hydroaromatic compound, dihydroanthracene (DHA). However, when an acceptor molecule or coal was present, DHA was as or more active than HHA in transferring hydrogen (Bedell et al., 1993). In another study, at equivalent reaction conditions and in the presence of anthracene (ANT) as a hydrogen acceptor, ISO released more than 200 times as much hydrogen as TET and HHA released 18 to 25 times as much hydrogen as DHA (Wang, 1992).

  15. Low severity coal liquefaction promoted by cyclic olefins. Quarterly report, April--June 1993

    SciTech Connect

    Curtis, C.W.

    1993-11-01

    Low-severity coal liquefaction allows for the solubilization of coal with reduced gas make. The idea being tested in this research is whether selective bond rupture occurs during liquefaction at low temperatures that can be satisfied by hydrogen donation from highly active hydrogen donor compounds. Promotion of coal solubilization through hydrogen transfer using highly active and effective hydrogen donors is the objective of this study. The highly effective hydrogen donors being tested are cyclic olefins. Representative cyclic olefins are isotetralin (ISO), which is 1,4,5,8-tetrahydronaphthalene, and 1,4,5,8,9,10-hexahydroanthracene (HHA). These compounds have been shown to highly effective donors (Bedell and Curtis, 1991) which release their hydrogen at fairly low temperatures, in the 200 to 300{degree}C range. ISO has been shown to be much more effective than its hydroaromatic analogue tetralin (TET) in releasing hydrogen at low temperatures and transferring that hydrogen to an acceptor molecule or to coal (Bedell and Curtis, 1991). Likewise, at 380{degree}C, the ability of HHA to release hydrogen in both N{sub 2} and H{sub 2} atmospheres was greater than a comparative hydroaromatic compound, dihydroanthracene (DHA). However, when an acceptor molecule or coal was present, DHA was as or more active than HHA in transferring hydrogen (Bedell et al., 1993). In another study, at equivalent reaction conditions and in the presence of anthracene (ANT) as a hydrogen acceptor, ISO released more than 200 times as much hydrogen as TET and HHM released 18 to 25 times as much hydrogen as DHA (Wang, 1992).

  16. Cyclic olefins as new hydrogen donor compounds for coal liquefaction

    SciTech Connect

    Bedell, M.W.; Curtis, C.W. )

    1990-01-01

    A new set of hydrogen donor compounds, cyclic olefins (CLO), has been evaluated to determine their effectiveness as hydrogen donors to coal. These cyclic olefins are hydroaromatic species which do not contain aromatic rings. The efficacy of these donors has been compared to conventional hydroaromatics. The CLO's under study are 1,4,5,8-tetrahydronaphthalene, also known as isotetralin, and 1,4,5,8,9,10-hexahydroanthracene. In this paper, the thermal and catalytic reactivity of the CLO's under nitrogen and hydrogen at coal liquefaction temperature is discussed. Results for the reactions of the CLO's and their conventional hydroaromatic analogues, e.g. tetralin, 9,10-dihydroanthracene, and octahydroanthracene, with Western Kentucky No. 9 coal are discussed.

  17. Coal liquefaction process streams characterization and evaluation: Application of liquid chromatographic separation methods to THF-soluble portions of integrated two-stage coal liquefaction resids

    SciTech Connect

    Green, J.B.; Pearson, C.D.; Young, L.L.; Green, J.A. )

    1992-05-01

    This study demonstrated the feasibility of using non-aqueous ion exchange liquid chromatography (NIELC) for the examination of the tetrahydrofuran (THF)-soluble distillation resids and THF-soluble whole oils derived from direct coal liquefaction. The technique can be used to separate the material into a number of acid, base, and neutral fractions. Each of the fractions obtained by NIELC was analyzed and then further fractionated by high-performance liquid chromatography (HPLC). The separation and analysis schemes are given in the accompanying report. With this approach, differences can be distinguished among samples obtained from different process streams in the liquefaction plant and among samples obtained at the same sampling location, but produced from different feed coals. HPLC was directly applied to one THF-soluble whole process oil without the NIELC preparation, with limited success. The direct HPLC technique used was directed toward the elution of the acid species into defined classes. The non-retained neutral and basic components of the oil were not analyzable by the direct HPLC method because of solubility limitations. Sample solubility is a major concern in the application of these techniques.

  18. Development of Highly Reactive Nanometer Fe-Based Catalysts for Coal Liquefaction

    SciTech Connect

    Franz, James A.; Linehan, John C.; Matson, Dean W.; Smurthwaite, Tricia D.; Bekhazi, Jacky; Alnajjar, Mikhail S.

    2008-03-01

    This paper describes research involving the liquefaction of coal and the removal of oxygen from coal product constituents. Subbituminous Coal and early stage coal liquefaction products contain a substantial fraction of hydroxy-substituted aromatic hydrocarbons (phenols). An important reaction for upgrading of coal-derived organic materials is to remove oxygen groups. This paper describes the hydro-deoxygenation of naphthols and the liquefaction of subbituminous Wyodak coal using a catalyst prepared by in-situ sulfidation of nanometer scale 6-line iron ferrihydrite. The FeS catalyst enables the conversion of naphthol in substantial yields to tetralin and naphthalene at 400 degrees C in 9,10-dihydrophenanthrene. The kinetics and procedures to observe coal liquefaction and hydro-deoxygenation, and the effects of in-situ sulfidation on conversion kinetics are described.

  19. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction. Final report

    SciTech Connect

    Chunshan Song; Schobert, H.H.; Parfitt, D.P.

    1997-11-01

    Development of new catalysts is a promising approach to more efficient coal liquefaction. It has been recognized that dispersed catalysts are superior to supported catalysts for primary liquefaction of coals, because the control of initial coal dissolution or depolymerization requires intimate contact between the catalyst and coal. This research is a fundamental and exploratory study on catalytic coal liquefaction, with the emphasis on exploring novel bimetallic dispersed catalysts for coal liquefaction and the effectiveness of temperature-programmed liquefaction using dispersed catalysts. The primary objective of this research was to explore novel bimetallic dispersed catalysts from organometallic molecular precursors, that could be used in low concentrations but exhibit relatively high activity for efficient hydroliquefaction of coals under temperature-programmed conditions. We have synthesized and tested various catalyst precursors in liquefaction of subbituminous and bituminous coals and in model compound studies to examine how do the composition and structure of the catalytic precursors affect their effectiveness for coal liquefaction under different reaction conditions, and how do these factors affect their catalytic functions for hydrogenation of polyaromatic hydrocarbons, for cleavage of C-C bonds in polycyclic systems such as 4-(1-naphthylmethyl)bibenzyl, for hydrogenolysis of C-O bond such as that in dinaphthylether, for hydrodeoxygenation of phenolic compounds and other oxygen-containing compounds such as xanthene, and for hydrodesulfurization of polycyclic sulfur compounds such as dibenzothiophene. The novel bimetallic and monometallic precursors synthesized and tested in this project include various Mo- and Fe-based compounds.

  20. Microbial recovery of metals from spent coal liquefaction catalysts. Final and quarterly report, July 1994--September 1994

    SciTech Connect

    Sandbeck, K.A.; Cleveland, D.

    1995-08-01

    Research is reported on the recovery of molybdenum and nickel from spent coal liquefaction catalysts. Mo release from spent coal liquefaction catalysts has been shown to be dependent upon many parameters, but release is dominated by microbial growth. The microbial Mo release is a rapid process requiring less than one week for 90% of the releaseable Mo to be solubilized from whole washed (THF) catalyst. It could be expected that the rates would be even greater with crushed catalyst. Efforts were centered on optimizing the parameters that stimulate microbial growth and action and further efforts centered on catalyst pre-treatment prior to microbial bio-leaching. Recent experiments suggest that hydrogen peroxide promises to be an effective pre-treatment wash. Hydrogen peroxide was also found to be an effective and economical agent for metals solubilization per se and could promote solubilization without subjecting the catalyst to microbial growth.

  1. Power recovery system for coal liquefaction process

    DOEpatents

    Horton, Joel R.

    1985-01-01

    Method and apparatus for minimizing energy required to inject reactant such as coal-oil slurry into a reaction vessel, using high pressure effluent from the latter to displace the reactant from a containment vessel into the reaction vessel with assistance of low pressure pump. Effluent is degassed in the containment vessel, and a heel of the degassed effluent is maintained between incoming effluent and reactant in the containment vessel.

  2. Toxicity of a coal liquefaction product to aquatic organisms

    SciTech Connect

    Giddings, J.M.; Parkhurst, B.R.; Gehrs, C.W.; Millemann, R.E.

    1980-01-01

    As coal liquefaction processes approach commercialization in the United States, there is a growing need for information on their potential environmental impacts. Past oil spill experiences will not be adequate for predicting the effects of coal-derived oils, because the latter are chemically quite different from petroleum products. Using acute bioassay tests, a representative coal liquefaction product was compared with a petroluem-derived residual fuel oil and a diesel fuel, materials whose ecological effects have been documented following actual spills over the past 15 years. The acute toxicity of water soluble fractions (WSFs) of the three oils to two freshwater algae and one freshwater crustacean was determined. The WSFs were tested instead of the whole oils because (a) the water soluble components of an oil are responsible for most of its acute toxicity; and (b) while spilled oil can be contained and often recovered, the water with which it comes in contact will affect a larger area and for a longer time.

  3. A CHARACTERIZATION AND EVALUATION OF COAL LIQUEFACTION PROCESS STREAMS

    SciTech Connect

    G.A. Robbins; S.D. Brandes; D.J. Pazuchanics; D.G. Nichols; R.A. Winschel

    1999-02-01

    This is the Technical Progress Report for the sixteenth quarter of activities under DOE Contract No. DE-AC22-94PC93054. It covers the period April 1 through June 30, 1998. Described in this report are the following activities: (1) CONSOL characterized nine process stream samples received from Exxon Recycle Coal Liquefaction Unit (RCLU) operations conducted in 1994 with Rawhide Mine Wyoming subbituminous coal and all-dispersed Fe and Mo catalysts. (2) The University of Delaware subcontract related to resid reactivity was completed with issuance of the Topical Report covering work performed by Delaware. (3) Computational studies of the coal liquefaction resid models developed at the University of Delaware were continued at CONSOL R and D. The two reaction models, consisting of the reaction optimization and reaction once-through programs, were the focus of these studies. The updated resid structure data and results were used in the reaction models to predict percent conversion values that were compared with the experimentally-measured values from the University of Delaware. (4) Small samples of high-sulfur Hondo resid and anthracene oil were shipped to John Verkade of Iowa State University at his request. Verkade is testing a desulfurization method.

  4. Coal liquefaction. Quarterly report, April-June 1979

    SciTech Connect

    1980-04-01

    DOE's program for the conversion of coal to liquid fuels was begun by two of DOE's predecessor agencies: Office of Coal Research (OCR) in 1962, and Bureau of Mines, US Department of the Interior, in the 1930's. Current work is aimed at improved process configurations for both catalytic and non-catalytic processes to provide more attractive processing economics and lower capital investment. The advantage of coal liquefaction is that the entire range of liquid products, especially boiler fuel, distillate fuel oil, and gasoline, can be produced from coal by varying the type of process and operating conditions used in the process. Furthermore, coal-derived liquids have the potential for use as chemical feedstocks. To provide efficient and practical means of utilizing coal resources, DOE is supporting the development of several conversion processes that are currently in the pilot plant stage. DOE, together with the Electric Power Research Institue, has contracted with fourteen projects are described brieflly: funding, description, status, history, and progress in the current quarter. (LTN)

  5. Surface Modified Coals for Enhanced Catalyst Dispersion and Liquefaction

    SciTech Connect

    Yaw D. Yeboah

    1998-12-04

    The aim of this study is to enhance catalyst loading and dispersion in coal for improved liquefaction by preadsorption of surfactants and catalysts on to the coal. During this reporting period, the effects of dodecyl dimethyl ethyl ammonium bromide (DDAB) (a cationic surfactant), sodium dodecyl sulfate (SDS) (an anionic surfactant), Triton X-100 (a neutral surfactant), and ferrous sulfate (as a catalyst precursor) on the coal surface charge at various pH values were determined. The results of the zeta potential measurements suggest that ferrous sulfate as catalyst precursor creates a distinctly different condition on the coal surface compared to that of molybdenum as reported in the previous progress reports. The effects of the adsorption of the surfactants also varied distinctly with the type of surfactant. With the adsorption of DDAB, the cationic surfactant, the surface charge was more positive. The opposite effect was observed for the SDS, the anionic surfactant. The coals treated with Triton X-100, the neutral surfactant, also showed an overall negative surface charge density. The adsorption of the catalyst precursor (ferrous sulfate) resulted in a net negative charge on the coal surface.

  6. Time phased alternate blending of feed coals for liquefaction

    DOEpatents

    Schweigharett, Frank; Hoover, David S.; Garg, Diwaker

    1985-01-01

    The present invention is directed to a method for reducing process performance excursions during feed coal or process solvent changeover in a coal hydroliquefaction process by blending of feedstocks or solvents over time. ,

  7. Public health hazards of Lurgi/Fischer-Tropsch coal liquefaction

    SciTech Connect

    Gasper, J.R.; Rosenberg, S.E.

    1981-01-01

    This analysis identifies the public hazards of wastes from Lurgi/Fischer-Tropsch coal liquefaction. Because data on dose-response and synergism are not available for many of the waste chemicals from this process, we evaluated hazards with a relative risk approach. This approach employs two measures of hazards. First, body burdens that result from exposure to Lurgi/Fischer-Tropsch wastes are compared to body burdens from other sources of the same chemicals. Second ambient concentrations of pollutants from Lurgi/Fischer-Tropsch operations are projected and compared to various air and water quality standards.

  8. Coal liquefaction process streams characterization and evaluation. Quarterly technical progress report, October 1--December 31, 1992

    SciTech Connect

    Brandes, S.D.; Winschel, R.A.; Burke, F.P.; Robbins, G.A.

    1993-10-01

    The Research and Development Department of CONSOL Inc. is conducted a program to characterize process and product streams from direct coal liquefaction process development projects sponsored by the Department of Energy. In this program, CONSOL obtains samples from current process development activities in coal liquefaction and coal-oil coprocessing, and characterizes them using established analytical techniques. In addition, selected samples are characterized by other analytical techniques to evaluate their potential for aiding process development. These analyses and interpretation of the results in relation to process operations are provided by the subcontractor. Major topics reported in this thirteenth quarterly report are the following: (1) Analyses were performed on three coals and eleven process oils from HRI, Inc. process development unit Run 260--03, which was the first process development unit test of Black Thunder Mine subbituminous coal, significant operating problems were encountered, and sample properties are discussed in context to the operational problems; (2) a summary of the status of the Participants Program is given; (3) summaries of the final reports produced by the University of Chicago, the University of Utah, Iowa State University, and the University of Kentucky under the Participants Program, are presented.

  9. Microbiological recovery of metals from spent coal liquefaction catalysts. Quarterly status report, January--March 1993

    SciTech Connect

    Joffe, P.; Sperl, G.T.

    1993-12-31

    The main objectives of this project are: (1) to test non-growing cells for their ability to remove metals from spent coal liquefaction catalysts; (2) to optimize time and volumes necessary for efficient metal removal from spent catalysts; (3) to perform an economic evaluation based on the best case scenario from the other tasks; and (4) to seek thermophilic bacteria which can leach metals from spent catalysts. Such organisms would undoubtedly increase rates of release. In an earlier contract the authors studied the ability of T. ferrooxidans to release metals from spent coal liquefaction catalysts (Shell 324 from the Wilsonville pilot plant). This organism was good at releasing Ni from the Ni-Mo catalyst, but the toxicity of Mo for these organisms meant large volumes of liquid were required and long periods of time. They discovered at that time that heterotrophic denitrifying bacteria were capable of releasing both Ni and Mo at high rates and efficiently at small volumes. These organisms are the target of study in this project along with other potentially interesting microorganisms.

  10. Thin layer chromatography study of heavy liquefaction products derived from two Chinese bituminous coals

    SciTech Connect

    Li, Y.; Yan, R.; Yang, J.; Liu, Z.

    1997-12-31

    Two Chinese bituminous coals, Yanzhou and Fenxi, were liquefied in the temperature range of 375--450 C and under a cold H{sub 2} pressure of 7 MPa without the presence of a solvent. An iron sulfide catalyst, prepared by in-situ precipitation, was used in the study. Heavy liquefaction products, a portion of toluene and trichloroethylene (TCE) solubles, were studied by thin layer chromatography (TLC) technique. Under most conditions, the conversions of catalytic liquefaction are about twice as much as that of thermal liquefaction. The yields to toluene solubles are similar to that of TCE solubles. The TLC results of the heavy liquefaction products are compared with petroleum derived highway asphalts and with a coal tar pitch. The results show that the liquefaction products of Yanzhou coal, under certain conditions, have similar composition as that of petroleum derived highway asphalts, but significantly different from that of coal tar pitch, paraffinic petroleum residue and building asphalt.

  11. Synthesis of model compounds for coal liquefaction research

    SciTech Connect

    Not Available

    1991-11-01

    Coal liquefaction investigations required the availability of model compounds for mechanistic investigations. Towards this end, IITRI was funded to develop an approach for the synthesis of one of the target compound. This study was carried out in several phases as outlined here. Initial synthetic investigations on obtaining 2-tetrolol was carried out using high pressure and temperature reduction with Raney nickel catalyst. The next step consisted in incorporation of a hydroxymethyelene group at the C-3 position. This was successfully carried out utilizing 2-tetrolol, formaldehyde, and calcium oxide. An alternate improved method was developed using 3-carboxyl-2-naphthol. This required less time, gave a cheer product in higher yield. Efforts at the introduction of a chloromethylene group only yielded polymeric material or starting material in spite of protection the phenolic group by various groups. They synthesis of 3, 5-dimethyl-6- bromobenzyl chloride was successfully carried out by performing the Blank reaction of 2, 4-dimethyl bromobenzene. The product was characterized by GC/MS. Purification was not possible, as it was a complex mixture. Efforts at converting it to the acetate followed by separation to was not feasible. Unlike in the case of 2- hydroxyteralol, hydroxymetylation by established procedure yielded only the starting materials. Commercially available 4-methoxy-1- maphthaldehyde was protected as the ethylene acetal. The Wittig reagent 3-chlorobenzyl phosphonium bromide was prepared and condensed with 4-methoxy-1-napthaldehyde successfully and proved that the overall synthetic approach was proceeding in the desired direction. All the necessary intermediates have been synthesized,and we have demonstrated using model compounds, that the synthetic objective can be attained.

  12. ADVANCED DIRECT LIQUEFACTION CONCEPTS FOR PETC GENERIC UNITS

    SciTech Connect

    Adam J. Berkovich

    2001-04-01

    The results of Laboratory and Bench-Scale experiments and supporting technical and economic assessments conducted under DOE Contract No. DE-AC22-91PC91040 are reported for the period January 1, 2001 to March 31 2001. This work involves the introduction into the basic two-stage liquefaction process several novel concepts, which include dispersed lower-cost catalysts, coal cleaning by oil agglomeration, and distillate hydrotreating and dewaxing. This project has been modified to include an investigation into the production of value added materials from coal using low-severity liquefaction based technologies.

  13. ADVANCED DIRECT LIQUEFACTION CONCEPTS FOR PETC GENERIC UNITS

    SciTech Connect

    Adam J. Berkovich

    2001-08-01

    The results of Laboratory and Bench-Scale experiments and supporting technical and economic assessments conducted under DOE Contract No. DE-AC22-91PC91040 are reported for the period April 1, 2001 to June 30 2001. This work involves the introduction into the basic two-stage liquefaction process several novel concepts, which include dispersed lower-cost catalysts, coal cleaning by oil agglomeration, and distillate hydrotreating and dewaxing. This project has been modified to include an investigation into the production of value added materials from coal using low-severity liquefaction based technologies.

  14. ADVANCED DIRECT LIQUEFACTION CONCEPTS FOR PETC GENERIC UNITS

    SciTech Connect

    Adam J. Berkovich

    2001-11-01

    The results of Laboratory and Bench-Scale experiments and supporting technical and economic assessments conducted under DOE Contract No. DE-AC22-91PC91040 are reported for the period July 1, 2001 to September 30 2001. This work involves the introduction into the basic two-stage liquefaction process several novel concepts, which include dispersed lower-cost catalysts, coal cleaning by oil agglomeration, and distillate hydrotreating and dewaxing. This project has been modified to include an investigation into the production of value added materials from coal using low-severity liquefaction based technologies.

  15. Cooperative research in coal liquefaction. Final report, May 1, 1991--April 30, 1992

    SciTech Connect

    Huffman, G.P.

    1996-03-01

    Extensive research continued on catalysts based on novel anion-treated (mainly sulfated) oxides and oxyhydroxides of iron [Fe{sub x}O{sub y}/SO{sub 4}]. In addition, sulfated oxides of tin as well as molybdenum promoted iron oxides were used. Incorporation of small amounts of sulfate, molybdate, or tungstate anions by wet precipitation/impregnation methods was found to increase the surface acidic character of iron oxides; more importantly, it reduced the grain sizes significantly with corresponding increases in specific surface areas. These anion-treated iron and tin oxides were more active for direct coal liquefaction and coal-heavy oil coprocessing than their untreated counterparts. With these catalyst systems, higher conversion levels are obtained as compared to the soluble precursors of iron and molybdenum at the same catalyst metalloading (3500 ppm iron and 50 ppm molybdenum with respect to coal). Sulfated iron oxides and oxyhydroxides were equally active as coal liquefaction catalysts. The sulfate, molybdate, and tungstate anions were found to have similar promotional effects on the properties and activities of iron oxides. One step in the synthesis of anion-treated iron and tin oxides is precipitation as hydroxides using either urea or ammonium hydroxide. The catalysts prepared using urea as a precipitation agent were more reproducible than those using ammonium, hydroxide in terms of activities and properties. These catalysts/catalyst precursors were characterized by several techniques to determine their physical (size and structure related) and chemical (acidity) properties. Sulfated and molybdated iron oxides were found to have grain sizes as small as 10-20 nm. An attempt was made to correlate the physicochemical properties of these catalysts with their activity for coal liquefaction.

  16. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction

    SciTech Connect

    Chunshan, Song; Kirby, S.; Schmidt, E.

    1995-12-31

    The objective of this project is to explore bimetallic dispersed catalysts for more efficient coal liquefaction. Coal liquefaction involves cleavage of methylene, dimethylene and ether bridges connecting various aromatic units and the reactions of various oxygen functional groups. This paper describes recent results on (1) hydrodeoxygenation of O-containing polycyclic model compounds using novel organometallic catalyst precursors; and (2) activity and selectivity of dispersed Fe catalysts from organometallic and inorganic precursors for hydrocracking of 4-(1-naphthylmethyl) bibenzyl. The results showed that some iron containing catalysts have higher activity in the sulfur-free form, contrary to conventional wisdom. Adding sulfur to Fe precursors with Cp-ligands decreased the activity of the resulting catalyst. This is in distinct contrast to the cases with iron pentacarbonyl and superfine Fe{sub 2}O{sub 3}, where S addition increased their catalytic activity substantially. A positive correlation between sulfur addition and increased activity can be seen, but a reversed trend between Fe cluster size and hydrocracking conversion could be observed, for carbonyl-type Fe precursors. It is apparent that the activity and selectivity of Fe catalysts for NMBB conversion depends strongly on both the type of ligand environment, the oxidation state and the number of intermetal bonds in the molecular precursor.

  17. Ball valve design for solid withdrawal service in coal liquefaction

    NASA Astrophysics Data System (ADS)

    Patton, Alexander J.

    1981-02-01

    Valves used for drawdown of the solids produced in the coal liquefaction process must be designed to operate at high temperatures and must prevent the buildup of solids within the valve internals to insure operability. Consideration must also be given to materials used for seating surfaces in terms of being able to withstand abrasion. Research into the design and materials for this application results in a new ball valve design with a special inlet port liner and O-ring seal. A prototype valve was built and put in service in a small scale, experimental coal liquefaction plant. For comparative purposes a standard design valve was also used, with both valves being subjected to over 1000 open/close cycles, after which both valves were removed, tested, and disassembled for inspection. The results of this experimental program will be presented, including process parameters, service conditions, and material evaluation. Particular emphasis will be placed on wear of seating surfaces and the effects of process material on the physical properties of seal and packing materials.

  18. Coal liquefaction process solvent characterization and evaluation: Second annual report, January 1--December 31, 1986

    SciTech Connect

    Winschel, R. A.; Robbins, G. A.; Burke, F. P.

    1987-06-01

    In 1986, work under this contract concentrated on support of the liquefaction process development activities of the Advanced Coal Liquefaction Test Facility at Wilsonville, AL, and at the Hydrocarbon Research, Inc., (HRI) process development unit (PDU) in Lawrenceville, NJ, on two potential process improvements for coal liquefaction, and on a stable carbon isotope method for quantifying the separate contributions of coal and petroleum to coprocessing products. The several most-significant results and conclusions obtained under this contract in 1986 are highlighted below. 32 refs., 12 figs., 24 tabs.

  19. A characterization and evaluation of coal liquefaction process streams. The kinetics of coal liquefaction distillation resid conversion

    SciTech Connect

    Klein, M.T.; Calkins, W.H.; Huang, H.; Wang, S.; Campbell, D.

    1998-03-01

    Under subcontract from CONSOL Inc., the University of Delaware studied the mechanism and kinetics of coal liquefaction resid conversion. The program at Delaware was conducted between August 15, 1994, and April 30, 1997. It consisted of two primary tasks. The first task was to develop an empirical test to measure the reactivity toward hydrocracking of coal-derived distillation resids. The second task was to formulate a computer model to represent the structure of the resids and a kinetic and mechanistic model of resid reactivity based on the structural representations. An introduction and Summary of the project authored by CONSOL and a report of the program findings authored by the University of Delaware researchers are presented here.

  20. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Quarterly technical progress report, January--March 1993

    SciTech Connect

    Curtis, C.W.; Gutterman, C.; Chander, S.

    1993-09-01

    The overall objective of this project is to develop a new approach for the direct liquefaction of coal to produce an all-distillate product slate at a sizable cost reduction over current technology. The approach integrates coal selection, pretreatment, coal swelling with catalyst impregnation, liquefaction, product recovery with characterization, alternate bottoms processing, and carrying out a technical assessment including an economic evaluation. The primary coal of this program, Black Thunder subbituminous coal, can be effectively beneficiated to about 4 wt% ash using aqueous sulfurous acid pretreatment. This treated coal can be further beneficiated to about 2 wt% ash using commercially available procedures. All three coals used in this study (Black Thunder, Burning Star bituminous, and Martin Lake lignite) are effectively swelled by a number of solvents. The most effective solvents are those having hetero-functionality. In addition, a synergistic effect has been demonstrated, in which solvent blends are more effective for coal swelling than the pure solvents alone. Therefore, it will be necessary to use only low levels of swelling agents and yet promote the impregnation of catalyst precursors. The rate of the impregnation of catalyst precursors into swollen coal increases greatly as the effectiveness of the solvent to swell the coal increases.

  1. Effects of low-temperature catalytic pretreatments on coal structure and reactivity in liquefaction

    SciTech Connect

    Song, C.; Saini, A.K.; Huang, L.; Wenzel, K.; Hou, L.; Hatcher, P.G.; Schobert, H.H.

    1992-08-01

    Low-temperature catalytic pretreatment is a promising approach to the development of an improved liquefaction process- This work is a fundamental study on effects of pretreatments on coal structure and reactivity in liquefaction. The main objectives of this project are to study the coal structural changes induced by low-temperature catalytic and thermal pretreatments by using spectroscopic techniques; and to clarify the pretreatment-induced changes in reactivity or convertibility of coals in the subsequent liquefaction. This report describes the recent progress of our work. Substantial progress has been made in the spectroscopic characterization of structure and pretreatment-liquefaction reactions of a Montana subbituminous Coal (DECS-9), and thermochemical analysis of three mw and reacted bituminous coals. Temperature programmed liquefaction has been performed on three low-rank coals both in the presence and absence of dispersed molybdenum sulfide catalyst. We also performed a detailed study of the effects of mild thermal pretreatment -- drying in air and in vacuum -- on thermal and catalytic liquefaction of a Wyodak subbituminous coal. Important information on structure and structure transformation during thermal pretreatment and liquefaction reactions of low-rank coals has been derived by applying solid-state CPMAS [sup 13]C NMR and flash pyrolysis-GC-MS (Py-GC-MS) for characterization of the macromolecular network of a Montana subbituminous coal and its residues from temperature-programmed and nonprogrammed liquefaction (TPL and N-PL) at final temperatures ranging from 300 to 425[degree]C in H-donor and non-donor solvents. The results revealed that this coal contains significant quantities of oxygen-bearing structures, corresponding to about 18 O-bound C per 100 C atoms and one O-bound C per every 5 to 6 aromatic C.

  2. Benefit-cost analysis of selected DOE/OHER investments in coal liquefaction.

    SciTech Connect

    Callaway, J.M.; Fillo, J.P.; Gray, R.H.; Felix, W.D.; Mahlum, D.D.

    1982-09-01

    Based in large part of the lack of specific information about the nature and magnitude of health impacts that could occur from commercialization of a coal liquefaction industry, DOE initiated a broad-based program to study the potential health and environmental fate and effects of process streams from several coal liquefaction process options. Responsibility for this research was assigned to OHER. Specific results of this research program that are important for the purpose of this analysis include findings that: the toxicity and teratogenic potential of coal liquids boiling below 450/sup 0/F is small; mutagenic and carcinogenic activity is typically expressed in coal liquids boiling above 750/sup 0/F; and mutagenic and carcinogenic activity increases markedly in coal liquids boiling above 800/sup 0/F. Based on the above findings, OHER funded research to evaluate the effect of various hydrotreatment levels on the biological activity of coal-derived liquids. Studies using the Ames assay or mammalian cell transformation assays indicated that hydrotreatment was effective in reducing biological activity of coal-derived liquids. Skin-painting studies demonstrated that carcinogenicity was also reduced by hydrotreatment. Studies in progress are evaluating the effects of hydrotreatment severity on biological activity. However, it appears reasonably clear that health risks can be reduced by hydrotreating only materials that boil above 750/sup 0/F. Materials boiling below 750/sup 0/ could be marketed directly without significant risk to individuals exposed to these products. The benefit-cost analysis presented is based on the premise that the cost differential between full and partial hydrotreatment provides the basis for approximating the potential benefits associated with the relevant OHER research investments.

  3. Characteristics of process oils from HTI coal/plastics co-liquefaction runs

    SciTech Connect

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.

    1995-12-31

    The objective of this project is to provide timely analytical support to DOE`s liquefaction development effort. Specific objectives of the work reported here are presented. During a few operating periods of Run POC-2, HTI co-liquefied mixed plastics with coal, and tire rubber with coal. Although steady-state operation was not achieved during these brief tests periods, the results indicated that a liquefaction plant could operate with these waste materials as feedstocks. CONSOL analyzed 65 process stream samples from coal-only and coal/waste portions of the run. Some results obtained from characterization of samples from Run POC-2 coal/plastics operation are presented.

  4. EXPLORATORY RESEARCH ON NOVEL COAL LIQUEFACTION CONCEPT

    SciTech Connect

    S.D. Brandes; R.A. Winschel

    1997-02-26

    Task 4 experimental testing was continued. Six first-stage one-liter autoclave tests were made at reduced severity conditions. A device to reduce the in-line filter diameter proved difficult to use and resulted in little usable filtration data. Its use was discontinued. The second-stage reactor system was overhauled and used to process Wilsonville Run 263J resid. Resid conversion and yields were commensurate with expected results. The economic and engineering evaluation of the Novel Concept process, based on Task 2 and Task 3 experimental data, was begun. The design of a conceptual commercial plant was completed. The economic and engineering evaluation illuminated components of the process operating and capital cost estimates which, if appropriately altered, could significantly reduce the cost of product (gasoline) from the process. This provided direction for the Task 4 experimental program.

  5. Mild coal pretreatment to improve liquefaction reactivity. Quarterly technical progress report, June--August 1991

    SciTech Connect

    Miller, R.L.

    1991-12-31

    This report describes work completed during the fourth quarter of a three year project to study the effects of mild chemical pretreatment on coal dissolution reactivity during low severity liquefaction or coal/oil coprocessing. The overall objective of this research is to elucidate changes in the chemical and physical structure of coal by pretreating with methanol or other simple organic solvent and a trace amount of hydrochloric acid and measure the influence of these changes on coal dissolution reactivity. This work is part of a larger effort to develop a new coal liquefaction or coal/oil coprocessing scheme consisting of three main process steps: (1) mile pretreatment of the feed coal to enhance dissolution reactivity and dry the coal, (2) low severity thermal dissolution of the pretreated coal to obtain a very reactive coal-derived residual material amenable to upgrading, and (3) catalytic upgrading of the residual products to distillate liquids.

  6. Applied research and evaluation of process concepts for liquefaction and gasification of western coals. Final report

    SciTech Connect

    Wiser, W. H.

    1980-09-01

    Fourteen sections, including five subsections, of the final report covering work done between June 1, 1975 to July 31, 1980 on research programs in coal gasification and liquefaction have been entered individually into EDB and ERA. (LTN)

  7. Automated apparatus for solvent separation of a coal liquefaction product stream

    DOEpatents

    Schweighardt, Frank K.

    1985-01-01

    An automated apparatus for the solvent separation of a coal liquefaction product stream that operates continuously and unattended and eliminates potential errors resulting from subjectivity and the aging of the sample during analysis. In use of the apparatus, metered amounts of one or more solvents are passed sequentially through a filter containing the sample under the direction of a microprocessor control means. The mixture in the filter is agitated by means of ultrasonic cavitation for a timed period and the filtrate is collected. The filtrate of each solvent extraction is collected individually and the residue on the filter element is collected to complete the extraction process.

  8. A CHARACTERIZATION AND EVALUATION OF COAL LIQUEFACTION PROCESS STREAMS

    SciTech Connect

    G.A. Robbins; S.D. Brandes; D.J. Pazuchanics; D.G. Nichols; R.A. Winschel

    1998-12-01

    This is the Technical Progress Report for the fifteenth quarter of activities under DOE Contract No. DE-AC22-94PC93054. It covers the period January 1 through March 31, 1998. Described in this report are the following activities: (1) CONSOL characterized 41 process stream samples obtained from HTI Run PB-01 (227-90), in which Black Thunder Mine coal, Hondo VTB resid, municipal solid waste (MSW) plastics, and virgin plastics were co-liquefaction feedstocks with all-dispersed Fe and Mo catalysts. (2) A request was made for samples from the Nippon Coal Oil NEDOL pilot plant in Kashima, Japan. (3) Phenols were extracted from two samples of separator overhead oil from HTI Run PB-03 Periods 10A and 10B. The phenols were converted to ethylphenyl ethers, and the ethers were distilled to produce a sample within the diesel fuel boiling range. The ethers were mixed with diesel fuel to make 1%, 5%, 10%, and 20% solutions. The four mixtures and a control sample (0% ether) were tested for diesel fuel properties by Intertek Testing Services, Caleb Brett. (4) Computational studies related to the University of Delaware's resid conversion model were continued on the Hewlett Packard Apollo HP-735 RISC workstation at CONSOL R and D. The Structure Optimization Program and the Structure Once-Through Program were used to generate physicochemical properties and structure models for the 15 coal resid samples which have been under study.

  9. Coal liquefaction process utilizing coal/CO.sub.2 slurry feedstream

    DOEpatents

    Comolli, Alfred G.; McLean, Joseph B.

    1989-01-01

    A coal hydrogenation and liquefaction process in which particulate coal feed is pressurized to an intermediate pressure of at least 500 psig and slurried with CO.sub.2 liquid to provide a flowable coal/CO.sub.2 slurry feedstream, which is further pressurized to at least 1000 psig and fed into a catalytic reactor. The coal particle size is 50-375 mesh (U.S. Sieve Series) and provides 50-80 W % coal in the coal/CO.sub.2 slurry feedstream. Catalytic reaction conditions are maintained at 650.degree.-850.degree. F. temperature, 1000-4000 psig hydrogen partial pressure and coal feed rate of 10-100 lb coal/hr ft.sup.3 reactor volume to produce hydrocarbon gas and liquid products. The hydrogen and CO.sub.2 are recovered from the reactor effluent gaseous fraction, hydrogen is recycled to the catalytic reactor, and CO.sub.2 is liquefied and recycled to the coal slurrying step. If desired, two catalytic reaction stages close coupled together in series relation can be used. The process advantageously minimizes the recycle and processing of excess hydrocarbon liquid previously needed for slurrying the coal feed to the reactor(s).

  10. Products of direct liquefaction of biomass

    SciTech Connect

    Davis, H.G.; Eames, M.A.; Figueroa, C.; Gansley, R.R.; Schaleger, L.L.; Watt, D.W.

    1982-10-01

    Several methods of characterizing products of biomass liquefaction including GC-MS, wet analysis, infrared and various forms of liquid chromatography have been tried. Of these the SESC sequential elution technique has been particularly helpful in separating whole product oils into chemically distinguishable fractions. Variations in the distribution of SESC fractions have been used to show effects of changing conditions and changing feedstocks in biomass liquefaction. They have also been used to follow the effects of catalytic hydrogenation. Liquefaction of aspen results in higher yields than liquefaction of Douglas fir. The aspen oil product is richer in SESC fractions 1-4, is more fluid and has lower oxygen content. Catalytic hydrogenation is effective in increasing the percentage of oil in the more volatile SESC fractions 1-4.

  11. Coal-derived promoters for the liquefaction of Illinois coal. Technical report, March 1--May 31, 1992

    SciTech Connect

    Carty, R.H.; Knight, R.A.

    1992-10-01

    The objective of this program is to investigate the use of liquids derived from coal either by mild gasification (MG) or supercritical extraction (SCE) to promote direct liquefaction of Illinois coal. Some organic heteroatomic compounds have been found to enhance liquefaction reactions. The approach taken in this two-year program is to use recently developed molecular probe techniques to assess the reactivity of three coal-derived liquids with respect to (A) H transfer rate, (B) C-C bond cleavage rate, (C) free radical flux, and (D) hydrocracking activity. With the IFFR liquid, the H transfer rate showed a mean increase of 21%, C-C bond cleavage selectivity increased by 34%, free radical flux showed a mean increase of 107%, and overall mean hydrocracking activity increased by 269%. For the ST/FBR liquid, H transfer rate increased 7%, C-C bond cleavage selectivity increased 27%, free radical flux increased 101%, and data indicated a 227% increase in hydrocracking activity. During the current quarter, the SCE liquid was characterized and tested. The H transfer rate did not increase, the mean free radical flux increased by 18%, and the hydrocracking activity showed a dramatic increase of 359%, which is higher than either the IFFR or ST/FBR liquids. The assessment of C-C bond cleavage with SCE is not yet completed. The SCE analysis showed much lower levels of phenols, cresols, and naphthalenes than the IFFR and ST/FBR liquids.

  12. Assessment of Long-Term Research Needs for Coal-Liquefaction Technologies

    SciTech Connect

    Penner, S.S.

    1980-03-01

    The Fossil Energy Research Working Group (FERWG), at the request of J.M. Deutch (Under Secretary of DOE), E. Frieman (Director, Office of Energy Research) and G. Fumich, Jr. (Assistant Secretary for Fossil Fuels), has studied and reviewed currently funded coal-liquefaction technologies. These studies were performed in order to provide an independent assessment of critical research areas that affect the long-term development of coal-liquefaction technologies. This report summarizes the findings and research recommendations of FERWG.

  13. Fine particle clay catalysts for coal liquefaction. Quarterly technical progress report, November 9, 1992--February 8, 1993

    SciTech Connect

    Olson, E.S.

    1995-10-01

    The mixed iron/alumina pillared clay catalysts and clay-supported iron catalysts have been shown in previous reports of this project to significantly improve yields of heptane-soluble products obtained in the liquefaction of both as received and acid-exchanged Wyodak subbituminous coal and Blind Canyon bituminous coal. In this quarter, the soluble product (LSW) obtained from the noncatalytic low-severity liquefaction of Wyodak coal was used as a feed to determine the activity of iron based catalysts for the hydrogenation and depolymerization steps. Comparison data for liquefaction of the soluble LSW with other catalysts were desired, and these data were obtained for a dispersed form of iron sulfide, prepared via iron hydroxyoxide (PETC method). The iron oxyhydroxide catalyst was directly precipitated on LSW product using either water or ethanol as the solvent. An insight into the functioning of the mixed iron/alumina pillared clay in coal liquefaction was investigated by preparing and studying an iron oxoaluminate structure. An investigation of new methods for the production of tetralin soluble iron oxometallate catalysts and the determination of their catalytic activities was continued in this quarter. The hydrogenation activity of iron oxoaluminate was investigated using pyrene and 1-methylnaphthalene as the test compounds, and results were compared with thermal reactions. In order to determine the loss of activity, recovered catalyst was recycled a second time for the hydrotreating of pyrene. Reaction of 1-methylnaphthalene with iron oxoaluminate also gave very high conversion to 1- and 5-methyltetralins and small amount of 2- and 6-methyltetralins. Liquefaction of Wyodak subbituminous and Blind Canyon bituminous coal was investigated using an in situ sulfided soluble iron oxoaluminate catalyst.

  14. Type II preliminary pilot-plant evaluation of a coal-liquefaction residue - water slurry using vaccum-tower bottoms from the H-Coal liquefaction process

    SciTech Connect

    Wu, C.M.; Robin, A.M.

    1982-09-01

    About 6.7 tons of vacuum tower bottoms (residue) which were obtained during the liquefaction of Illinois No. 6 coal from the H-Coal liquefaction process pilot plant at Catlettsburg, Kentucky were successfully gasified at Texaco's Montebello Research Laboratory. The single 9.5-hour run with H-Coal liquefaction residue-water slurry was completed at 750 to 760 psig gasifier pressure. The run consisted of two test periods, each at a different gasifier temperature. Over 99.6 percent conversion of carbon in the feed to syngas was achieved yielding 32.9 to 33.7 standard cubic feet of dry syngas per pound of residue charged. The oxygen requirement was about 1.0 pound of oxygen per pound of residue. The dry syngas contained 78.5 to 79.7 (vol.) percent carbon monoxide plus hydrogen.

  15. Catalytic multi-stage liquefaction of coal. Sixth quarterly report, 1 January 1994--31 March 1994

    SciTech Connect

    Comolli, A.G.; Lee, L.K.; Pradhan, V.R.; Stalzer, R.H.

    1994-05-01

    The overall objective of this program is to produce liquid fuels from coal by direct liquefaction at a cost that is competitive with conventional fuels. Specifically, this continuous bench-scale program contains provisions to examine new ideas in areas such as low temperature pretreatments, more effective catalysts, on-line hydrotreating, new coal feedstocks, other hydrogen sources, more concentrated coal feeds and other highly responsive process improvements while assessing the design and economics of the bench-scale results. This quarterly report covers work on Laboratory Scale Studies, Continuous Bench-Scale Operations, Technical Assessment and Project Management.

  16. Catalytic multi-stage liquefaction of coal twelth quarterly report for the period 1 July 1995--30 September 1995

    SciTech Connect

    Comolli, A.G.; Johanson, E.S.; Lee, L.K.; Pradhan, V.R.; Stalzer, R.H.

    1995-12-01

    The overall objective of this program is to produce liquid fuels from coal by direct liquefaction at a cost that is competitive with conventional fuels. Specifically, this continuous bench-scale program contains provisions to examine new ideas in areas such as: low temperature pretreatments, more effective catalysts, on-line hydrotreating, new coal feedstocks, other hydrogen sources, more concentrated coal feeds and other highly responsive process improvements while assessing the design and economics of the bench- scale results. This quarterly report covers work on Laboratory Scale Studies, Continuous Bench-Scale Operations, Technical Assessment and Project Management.

  17. Coal liquefaction process streams characterization and evaluation. Quarterly technical progress report, January 1--March 31, 1992

    SciTech Connect

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1992-08-01

    This is the tenth Quarterly Technical Progress Report under DOE Contract DE-AC22-89PC89883. Process oils from Wilsonville Run 262 were analyzed to provide information on process performance. Run 262 was operated from July 10 through September 30, 1991, in the thermal/catalytic Close-Coupled Integrated Two-Stage Liquefaction (CC-ITSL) configuration with ash recycle. The feed coal was Black Thunder Mine subbituminous coal. The high/low temperature sequence was used. Each reactor was operated at 50% of the available reactor volume. The interstage separator was in use throughout the run. The second-stage reactor was charged with aged Criterion 324 catalyst (Ni/Mo on 1/16 inch alumina extrudate support). Slurry catalysts and sulfiding agent were fed to the first-stage reactor. Molyvan L is an organometallic compound which contains 8.1% Mo, and is commercially available as an oil-soluble lubricant additive. It was used in Run 262 as a dispersed hydrogenation catalyst precursor, primarily to alleviate deposition problems which plagued past runs with Black Thunder coal. One test was made with little supported catalyst in the second stage. The role of phenolic groups in donor solvent properties was examined. In this study, four samples from direct liquefaction process oils were subjected to O-methylation of the phenolic groups, followed by chemical analysis and solvent quality testing.

  18. A CHARACTERIZATION AND EVALUATION OF COAL LIQUEFACTION PROCESS STREAMS

    SciTech Connect

    G.A. Robbins; G.W. Heunisch; R.A. Winschel; S.D. Brandes

    1998-04-01

    This is the Technical Progress Report for the eleventh quarter of activities under DOE Contract No. DE-AC22-94PC93054. It covers the period January 1 through March 31, 1997. Described in this report are the following activities: (1) CONSOL characterized process stream samples from HTI Run ALC-2, in which Black Thunder Mine coal was liquefied using four combinations of dispersed catalyst precursors. These results are described in the Results and Discussion section of this report. (2) Oil assays were completed on the HT I Run PB-05 product blend. Background information is presented in the Results and Discussion section of this report. The results are presented in Appendix 1. (3) Fractional distillation of the net product oil of HTI Run POC-1 was completed. Background information is presented in the Results and Discussion section of this report. The results are presented in Appendix 2. (4) CONSOL completed an evaluation of the potential for producing alkylphenyl ethers from coal liquefaction phenols. Those results are described briefly in the Results and Discussion section of this report. The full report is presented in Appendix 3. (5) At the request of DOE, various coal liquid samples and relevant characterization data were supplied to the University of West Virginia and the Federal Energy Technology Center. These activities are described in Appendix 4. (6) The University of Delaware is conducting resid reactivity tests and is completing the resid reaction computer model. A summary of Delaware's progress is provided in the Results and Discussion section. (7) The University of Delaware was instructed on the form in which the computer model is to be delivered to CONSOL (Appendix 5). (8) The University of Delaware submitted a paper on the resid reactivity work for presentation at the 213th National Meeting of the American Chemical Society, April 13-17, 1997 in San Francisco, California. The paper, ''Kinetics of Hydroprocessing of Coal-Derived Vacuum Resids'', is

  19. Advanced direct liquefaction concepts for PETC generic units. Final report, Phase I

    SciTech Connect

    1995-03-01

    The Advanced Concepts for Direct Coal Liquefaction program was initiated by the Department of Energy in 1991 to develop technologies that could significantly reduce the cost of producing liquid fuels by the direct liquefaction of coal. The advanced 2-stage liquefaction technology that was developed at Wilsonville over the past 10 years has contributed significantly toward decreasing the cost of producing liquids from coal to about $33/bbl. It remains, however, the objective of DOE to further reduce this cost to a level more competitive with petroleum based products. This project, among others, was initiated to investigate various alternative approaches to develop technologies that might ultimately lead to a 25 % reduction in cost of product. In this project a number of novel concepts were investigated, either individually or in a coupled configuration that had the potential to contribute toward meeting the DOE goal. The concepts included mature technologies or ones closely related to them, such as coal cleaning by oil agglomeration, fluid coking and distillate hydrotreating and dewaxing. Other approaches that were either embryonic or less developed were chemical pretreatment of coal to remove oxygen, and dispersed catalyst development for application in the 2-stage liquefaction process. This report presents the results of this project. It is arranged in four sections which were prepared by participating organizations responsible for that phase of the project. A summary of the overall project and the principal results are given in this section. First, however, an overview of the process economics and the process concepts that were developed during the course of this program is presented.

  20. Effects of low-temperature catalytic pretreatments on coal structure and reactivity in liquefaction

    SciTech Connect

    Song, C.; Saini, A.; Huang, L.; Wenzel, K.; Hatcher, P.G.; Schobert, H.H.

    1992-01-01

    Low-temperature catalytic pretreatment is a promising approach to the development of an improved liquefaction process. This work is a fundamental study on effects of pretreatments on coal structure and reactivity in liquefaction. The main objectives of this project are to study the coal structural changes induced by low-temperature catalytic and thermal pretreatments by using spectroscopic techniques; and to clarify the pretreatment-induced changes in reactivity or convertibility of coals in the subsequent liquefaction. This report describes the progress of our work during the first quarterly period. Substantial progress has been made in the spectroscopic characterization of fresh and THF-extracted samples of two subbituminous coals and fresh samples of three bituminous coals using cross-polarization magic angle spinning (CPMAS) solid state {sup 13}C NMR and pyrolysis-GC-MS techniques. CPMAS {sup 13}C NMR and pyrolysis-GC-MS provided important information on carbon distribution/functionality and molecular components/structural units, respectively, for these coal samples. Pyrolysis-GC-MS revealed that there are remarkable structural differences in structural units between the subbituminous coals and the bituminous coals. Furthermore, significant progress has been made in the pretreatments and spectroscopic characterization of catalytically and thermally pretreated as well as physically treated Wyodak subbituminous coal, and temperature-staged and temperature-programmed thermal and catalytic liquefaction of a Montana subbituminous coal.

  1. Coal liquefaction and gas conversion: Proceedings. Volume 2

    SciTech Connect

    Not Available

    1993-12-31

    Volume II contains papers presented at the following sessions: Indirect Liquefaction (oxygenated fuels); and Indirect Liquefaction (Fischer-Tropsch technology). Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  2. Evaluation of coal minerals and metal residues as coal-liquefaction catalysts

    SciTech Connect

    1982-02-01

    Under DOE Contract No. DE-AC22-79ET14806, Air Products and Chemicals, Inc., subcontracted Auburn University Coal Conversion Laboratory to perform exploratory studies on the use of minerals and by-product metallic wastes in coal liquefaction. Under this program Auburn University conducted an extensive screening program on numerous materials from which the more active or interesting ones were further investigated in the continuous process development units (PDU) at Air Products. In Volume 1 of the final report a number of the results from those tests are summarized for comparison with the PDU results. Because of the very extensive and detailed work performed at Auburn University, a portion of that work is not included in Volume 1. Therefore, in order to fulfill the requirements of the contract with DOE, a compilation of the work performed by Auburn University is submitted in Volume 2. The information from the Auburn University work was compiled from a sequence of monthly reports submitted to air Products and Chemicals, Inc., during the course of the program. Because of the very large numbers of screening runs conducted at Auburn, the overlap between these reports is minimal. This work presents in some detail the various stages of development of screening procedures and analytical methods that were developed. The reader should also find them extremely informative as to the generation of ideas that developed during this program. The work reported in this volume went beyond simple screening runs. Extensive exploratory studies as well as basic studies on the behavior of reactants and catalysts were performed. These results from the basic and exploratory studies impacted on the overall direction of this program.

  3. Phase equilibrium in coal liquefaction processes. Final report

    SciTech Connect

    Chao, K.C.

    1984-08-01

    Gas-liquid equilibrium data have been determined in simulation of coal liquefaction process conditions in mixtures of light gases + heavy hydrocarbons to add to the accumulated data previously reported in EPRI AP-1593. The mixture systems newly investigated are: methane + 9,10 dihydrophenanthrene; hydrogen + methane + 1-methylnaphthalene; hydrogen + carbon dioxide + tetralin; hydrogen + carbon dioxide + 1-methynaphthalene; hydrogen + carbon dioxide + quinoline; nitrogen + tetralin, + n-hexadecane, + 1-methylnaphthalene, + quinoline, and + m-cresol. Correlations for the solubilities of methane and carbon dioxide have been developed from the data based on the use of solubility parameter. The solubility of hydrogen was correlated in EPRI AP-1593. Two equations of state are developed for the description of both the gas solubility and the vaporization of the heavy oil. The Chain-of-Rotators (COR) equation of state explicitly accounts for the rotational molecular motion contribution to the pressure of a fluid. The Cubic-Chain-of-Rotators (CCOR) equation is obtained upon simplifying the COR equation. Interaction constants in the CCOR equation have been determined for the light gases with the heavy hydrocarbons based on data from this project, and the constants are correlated. Equilibrium flash vaporization has been experimentally determined for three coal liquids and for their mixtures with hydrogen. The data are correlated with the CCOR equation of state. 74 figures, 46 tables.

  4. A Characterization and Evaluation of Coal Liquefaction Process Streams

    SciTech Connect

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.

    1997-03-31

    This is the Technical Progress Report for the tenth quarter of activities under DOE Contract No. DE-AC22-94PC93054. It covers the period October 1 through December 31, 1996. Described in this report are the following activities: (1) CONSOL characterized two HTI coal/petroleum coprocessing samples for Ni and V concentrations, as requested by DOE. The results are reported in Appendix 1. (2) CONSOL began work to evaluate the potential for producing alkylphenyl ethers, and specifically ethylphenyl ethers, from coal liquefaction phenols. The work includes a literature review and experimentation. The status of this ongoing work is described in this report. (3) A set of samples was requested from HTI Run ALC-2 (Appendix 2). (4) The University of Delaware is conducting resid reactivity tests and is developing a kinetic mechanistic model of resid reactivity. A summary of Delaware`s progress is appended to this report (Appendix 3). (5) A paper was submitted for presentation at the 213th National Meeting of the American Chemical Society, April 13-17, 1997, in San Francisco, CA, (Appendix 4).

  5. Reactivity of heteroatom-containing organics during liquefaction of subbituminous coal: Quarterly technical progress report, March 15, 1988-June 15, 1988

    SciTech Connect

    Aulich, T.R.; Knudson, C.L.; Hawthorne, S.B.

    1988-01-01

    Deuteration of AO4 liquefaction solvent to an isotopic purity of approximately 99% was accomplished using a teflon-lined Parr bomb reactor. Tubing bomb liquefaction tests were performed using two sets of reaction conditions including coal and AO4, and coal and deuterated AO4. The THF insolubles to be used in testing the stability of the deuterated AO4 under liquefaction conditions were extracted using a Soxhlet apparatus and methylene chloride solvent. A system enabling product slurry distillation directly from the tubing bomb following completion of the liquefaction reaction was designed, constructed, and utilized to recover and quantitate volatile fractions of product slurries. The AO4 solvent was also distilled using the same equipment and procedure. Weighed amounts of eight deuterium-labeled species were added to weighed amounts of both labeled and non-labeled AO4 in preparation for the four remaining tubing bomb tests. 3 figs.

  6. ADVANCED DIRECT LIQUEFACTION CONCEPTS FOR PETC GENERIC UNITS - PHASE II

    SciTech Connect

    Unknown

    2000-07-01

    The results of Laboratory and Bench-Scale experiments and supporting technical and economic assessments conducted under DOE Contract No. DE-AC22-91PC91040 are reported for the period January 1, 1999 to March 31, 2000. This contract is with the University of Kentucky Research Foundation, which supports work with the University of Kentucky Center for Applied Energy Research, CONSOL, Inc., LDP Associates, and Hydrocarbon Technologies, Inc. This work involves the introduction into the basic two-stage liquefaction process several novel concepts, which include dispersed lower-cost catalysts, coal cleaning by oil agglomeration, and distillate hydrotreating and dewaxing. This project has been modified to include an investigation into the production of value added materials from coal using low-severity liquefaction based technologies.

  7. Kinetics assisted design of catalysts for coal liquefaction. Final report

    SciTech Connect

    Klein, M.T.; Foley, H.C.; Calkins, W.H.; Scouten, C.

    1998-02-01

    The thermal and catalytic reactions of 4-(1-naphthylmethyl)bibenzyl (NBBM), a resid and coal model compound, were examined. Catalytic reaction of NBBM was carried out at 400 C under hydrogen with a series of transition metal-based catalytic materials including Fe(CO){sub 4}PPh{sub 3}, Fe(CO){sub 3}(PPh{sub 3}){sub 2}, Fe(CO){sub 2}(PPh{sub 3}){sub 2}CS{sub 2}, Fe(CO){sub 5}, Mo(CO){sub 6}, Mn{sub 2}(CO){sub 10}, Fe{sub 2}O{sub 3} and MoS{sub 2}. Experimental findings and derived mechanistic insights were organized into molecular-level reaction models for NBBM pyrolysis and catalysis. Hydropyrolysis and catalysis reaction families occurring during NBBM hydropyrolysis at 420 C were summarized in the form of reaction matrices which, upon exhaustive application to the components of the reacting system, yielded the mechanistic reaction model. Each reaction family also had an associated linear free energy relationship (LFER) which provided an estimate of the rate constant k{sub i} given a structural property of species i or its reaction. Including the catalytic reaction matrices with those for the pyrolysis model provided a comprehensive NBBM catalytic reaction model and allowed regression of fundamental LFER parameters for the catalytic reaction families. The model also allowed specification of the property of an optimal catalyst. Iron, molybdenum and palladium were predicted to be most effective for model compound consumption. Due to the low costs associated with iron and its disposal, it is a good choice for coal liquefaction catalysis and the challenge remains to synthesize small particles able to access the full surface area of the coal macromolecule.

  8. Cooperative Research Program in Coal-Waste Liquefaction

    SciTech Connect

    Gerald Huffman

    2000-03-31

    The results of a feasibility study for a demonstration plant for the liquefaction of waste plastic and tires and the coprocessing of these waste polymers with coal are presented. The study was conducted by a committee that included nine representatives from the CFFS, six from the U.S. Department of Energy - Federal Energy Technology Center (FETC), and four from Burns and Roe, Inc. The study included: (1) An assessment of current recycling practices, particularly feedstock recycling in Germany; (2) A review of pertinent research, and a survey of feedstock availability for various types of waste polymers; and (3) A conceptual design for a demonstration plant was developed and an economic analysis for various feedstock mixes. The base case for feedstock scenarios was chosen to be 200 tons per day of waste plastic and 100 tons per day of waste tires. For this base case with oil priced at $20 per barrel, the return on investment (ROI) was found to range from 9% to 20%, using tipping fees for waste plastic and tires typical of those existing in the U.S. The most profitable feedstock appeared to waste plastic alone, with a plant processing 300 t/d of plastic yielding ROI's from 13 to 27 %, depending on the tipping fees for waste plastic. Feedstock recycling of tires was highly dependent on the price that could be obtained for recovered carbon. Addition of even relatively small amounts (20 t/d) of coal to waste plastic and/or coal feeds lowered the ROI's substantially. It should also be noted that increasing the size of the plant significantly improved all ROI's. For example, increasing plant size from 300 t/d to1200 t/d approximately doubles the estimated ROI's for a waste plastic feedstock.

  9. Exploratory research on solvent-refined-coal liquefaction. Annual technical progress report, January 1-December 31, 1980

    SciTech Connect

    1981-04-01

    This report summarizes the progress of the Exploratory Research on Solvent Refined Coal Liquefaction project by the Pittsburg and Midway Coal Mining Co.'s Merriam Laboratory during 1980. Six coals and a coal blend, representing the Interior, Rocky Mountain, Eastern and Northern Great Plains Provinces, were processed in the SRC I and SRC II modes to study the relationship between coal properties and liquefaction behavior. Disposable catalysts and specific compounds were added to Loveridge, Kaiparowits and Blacksville No. 2 coals during SRC II mode liquefaction. Kentucky 9/14, Indiana V and Loveridge coals were processed at short residence times (4 to 9 minutes) in the SRC I mode to evaluate the effects of temperature, pressure, residence time and disposable catalyst addition. Finally, coal from the Powhatan No. 1 Mine was evaluated as a feedstock for major coal liquefaction facilities.

  10. Coal liquefaction process streams characterization and evaluation. Topical report: Analytical methods for application to coal-derived resids, A literature survey

    SciTech Connect

    Brandes, S.D.

    1993-06-01

    This literature survey was conducted to address an important question: What are the methods available in the realm of analytical chemistry that may have potential usefulness to the development of coal liquefaction technology? In an attempt to answer to that question, the emphasis of this survey was directed at analytical techniques which would be applicable to the high molecular weight, non-distillable residue of coal-derived liquids. It is this material which is most problematic to the analytical investigator and the developer of direct coal liquefaction processes. A number of comprehensive analytical reviews of literature dealing with coal and other fossil fuels are available. This literature survey will (1) be limited to articles published between 1980--1991, with some exceptions; (2) be limited to the use of analytical methods for high molecular weight, primarily nondistillable, fossil fuel-derived materials, except where the application of an analytical method to coals or distillates may show promise for application to non-distillable coal-derived materials; and (3) demonstrate the potential usefulness of an analytical method by showing how the method has been applied to high molecular weight, non-distillable materials, if not specifically to coal liquids. The text is divided by type of methodology, i.e. spectroscopy, microscopy, etc. Each section will be essentially free-standing. An historical background is provided.

  11. Upgrading of coal derived oil by integrating hydrotreatment to the primary liquefaction step

    SciTech Connect

    Graeser, U.R.; Holighaus, R. ); Dohms, K.D.; Langhoff, J. )

    1988-06-01

    The coal liquefaction project in the Coal Oil Plant in Bottrop, West-Germany, pursued the following targets: demonstration of the improved Bergius-Pier hydrogenation technology on a technical scale; testing and further development of process-related and mechanical components, identification of environmental impact, development of design data base for a commercial unit, and generation of technical and operational know how. The Pilot plant in Bottrop with a capacity of 200 t maf coal/day was erected in order to meet these targets. In this project phase the program focussed on the primary conversion of coal, using liquid phase hydrogenation reactors. This procedure yielded a raw oil from coal in the boiling range of naptha and mid distillate, which was highly aromatic and had high contents of oxygen and nitrogen compounds. Secondary upgrading processes were applied in process development units, in order to convert the primary products into marketable fuels, e.g. gasoline, heating oil, kerosene and diesel fuel. Each of the different upgrading routes included severe hydrotreating as first step. For this reason, the hydrotreating reactors were in 1986 directly linked to the primary conversion system as shown in the simplified flow scheme. Contrary to the first mode of processing in which the net product fractions - naphta and middle distillate were subjected to upgrading processes in separate units, the total vaporised effluent from the liquid phase reactors including the vacuum gasoil fraction is in the integrated alternative fed to the hydrotreating stage, the so called ''gasphase reactors''.

  12. Low severity coal liquefaction promoted by cyclic olefins. Quarterly report, April--June, 1995

    SciTech Connect

    Curtis, C.W.

    1996-01-01

    The goal of this research is to develop a methodology for analyzing the reactivity of cyclic alkenes in situ in a high temperature and high pressure infrared cell. Cyclic alkenes are highly reactive donors of hydrogen to coal in low severity coal liquefaction.

  13. Heterofunctionality interaction with donor solvent coal liquefaction. Final progress report, August 1982-April 1984

    SciTech Connect

    Cronauer, D.C.

    1984-05-01

    This project was undertaken to understand the role of the coal liquefaction solvent through a study of the interaction between the hydrogen donor solvent characteristics and the heterofunctionality of the solvent. Specifically, hydroxyl- and nitrogen-containing solvents were studied and characterized. A series of coal liquefaction experiments were carried out at 450/sup 0/C in a continuous feed stirred-tank reactor (CSTR) to observe the effect of adding phenolics to anthracene oil (AO) and SRC-II recycle solvents. The addition of phenol to AO at a ratio of 5/65 resulted in a nominal increase in coal conversion to THF solubles, but the amount of asphaltenes more than doubled resulting in a sizable net loss of solvent. The addition of m-cresol to both AO and SRC-II solvents had a positive effect on coal conversion to both THF and pentane solubles (oils). The partial removal of an OH-concentrate from SRC-II solvent was carried out using Amberlyst IRA-904 ion exchange resin. The resin-treated oil was only marginally better than raw SRC-II recycle solvent for coal liquefaction. Hydroaromatics having nitrogen functionality should be good solvents for coal liquefaction considering their effective solvent power, ability to penetrate and swell coal, and their ability to readily transfer hydrogen, particularly in the presence of oxygen functionality. However, these benefits are overshadowed by the strong tendency of the nitrogen-containing species to adduct with themselves and coal-derived materials.

  14. Design, synthesis, and characterization of novel fine-particle, unsupported catalysts for coal liquefaction

    SciTech Connect

    Klein, M.T.

    1991-02-22

    The first task in our proposed study of catalysts for coal liquefaction was to prepare ultrafine dispersed metal sulfide particles by reactive precipitation from solutions of appropriate metal precursors. At this point, equipment to allow us to prepare these air-sensitive materials in an anaerobic environment has been acquired and assembled. Initial experiments aimed at synthesizing iron sulfide particles have been initiated. As part of the investigation of short contact time catalytic coal liquefaction, initial efforts focused on the noncatalytic pyrolysis reactions of coal and a model compound, Dibenzyl ether (DBE). Two different reactor configurations were examined; catalytic experiments are planned for the coming month.

  15. The Wilsonville Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama

    SciTech Connect

    Not Available

    1990-05-01

    This reports presents the operating results for Run 252 at the Advanced Coal Liquefaction R D Facility in Wilsonville, Alabama. This run operated in the Close-Coupled Integrated Two-Stage Liquefaction mode (CC-ITSL) using Illinois No. 6 bituminous coal. The primary run objective was demonstration of unit and system operability in the CC-ITSL mode with catalytic-catalytic reactors and with ash recycle. Run 252 began on 26 November 1986 and continued through 3 February 1987. During this period 214.4 MF tons of Illinois No. 6 coal were fed in 1250 hours of operation. 3 refs., 29 figs., 18 tabs.

  16. Low severity coal liquefaction promoted by cyclic olefins. Quarterly report, April 1994--June 1994

    SciTech Connect

    Curtis, C.W.

    1994-10-01

    New ways to improve the coal liquefaction process continue to be sought with the goal being to find the least expensive method to achieve the greatest coal conversion and the best product slate. Low severity is at logical route taken with this goal in mind. Low severity reduces the need for expensive high-pressure valves, pumps and fittings and reduces the problems of construction and handling of severe slurries. However, because of the often diminished conversion of liquefaction reactions at lower temperatures and pressures, methods must be found to increase reactivity of the coal. The basis for this study is the increase of coal liquefaction reactivity through the combination of the use of cyclic olefins with pretreatment to remove cations.

  17. Low severity coal liquefaction promoted by cyclic olefins. Quarterly report, July--September, 1994

    SciTech Connect

    Curtis, C.W.

    1994-12-31

    Previous research indicates that the cyclic olefin, 1,4,5,8,9,10-hexahydroanthracene (HHA), is one of the most effective hydrogen donors tested under low severity conditions. A mild acidic pretreatment of the coal prior to liquefaction has proven to be significant in increasing conversion of low rank coals under low severity conditions as well. Coal conversion can also be improved by employing hydrotreating catalysts. In this study, reactions with coal mild acidic pretreatment were performed with cyclic olefins with and without catalysts. These reactions provided the data to prove whether catalysts are effective under low severity conditions. Evaluating the effect of these three factors (mild acidic pretreatment, hydrogen donation by cyclic olefins, and the use of slurry phase catalysts) on the reactivity of low severity coal liquefaction was the basis of this study. By examining the results, it is clear that the combination of all of the most favorable factors produced coal conversions of more than 50%. The effectiveness of HHA was tested by performing reactions without a cyclic olefin which produced substantially lower coal conversion, thus proving how effective hydrogen donation by cyclic olefins is in low severity coal liquefaction. The mild acidic pretreatment demonstrated its effectiveness on increasing the conversion low rank coals. By promoting higher conversion for the lignite than for the subbituminous coal, suggested that the lower the rank is, the better mild acidic pretreatment works. The catalyst MoNaph proved its effectiveness in low severity coal liquefaction, too, although the reactions with the other slurry phase catalysts NiOct was not effective. Also, synergy among the mild acid pretreatment, HHA and MoNaph occurred yielding high coal conversions for both coals.

  18. Nitrogen release during coal combustion

    SciTech Connect

    Baxter, L.L.; Mitchell, R.E.; Fletcher, T.H.; Hurt, R.H.

    1995-02-01

    Experiments in entrained flow reactors at combustion temperatures are performed to resolve the rank dependence of nitrogen release on an elemental basis for a suite of 15 U.S. coals ranging from lignite to low-volatile bituminous. Data were obtained as a function of particle conversion, with overall mass loss up to 99% on a dry, ash-free basis. Nitrogen release rates are presented relative to both carbon loss and overall mass loss. During devolatilization, fractional nitrogen release from low-rank coals is much slower than fractional mass release and noticeably slower than fractional carbon release. As coal rank increases, fractional nitrogen release rate relative to that of carbon and mass increases, with fractional nitrogen release rates exceeding fractional mass and fractional carbon release rates during devolatilization for high-rank (low-volatile bituminous) coals. At the onset of combustion, nitrogen release rates increase significantly. For all coals investigated, cumulative fractional nitrogen loss rates relative to those of mass and carbon passes through a maximum during the earliest stages of oxidation. The mechanism for generating this maximum is postulated to involve nascent thermal rupture of nitrogen-containing compounds and possible preferential oxidation of nitrogen sites. During later stages of oxidation, the cumulative fractional loss of nitrogen approaches that of carbon for all coals. Changes in the relative release rates of nitrogen compared to those of both overall mass and carbon during all stages of combustion are attributed to a combination of the chemical structure of coals, temperature histories during combustion, and char chemistry.

  19. Determination of unconverted HDPE in coal/plastics co-liquefaction stream samples

    SciTech Connect

    Robbins, G.A.; Winschel, R.A.; Burke, F.P.

    1996-12-31

    In several coal/plastics liquefaction runs performed by Hydrocarbon Technologies, Inc. (HTI), a substantial amount of incompletely converted high-density polyethylene (HDPE) was present in ash-free recycle resid streams when either the ROSE-SR unit was used in Run POC-2, or the pressure filter unit was used in Runs CMSL-8 and CMSL-9. This indicates that the HDPE is less reactive than coal at the liquefaction conditions used. In these ash-free streams, there is no solid organic or inorganic material arising from the coal, and the incompletely converted HDPE can be recovered by extraction and filtration with tetrahydrofuran (THF) at room temperature. The HDPE (or HDPE-like material, which could also consist of heavy waxes) is THF insoluble. However, in ashy streams, there are both inorganic ({open_quotes}ash{close_quotes}) and organic (unconverted coal) components present from liquefaction of the coal, that interfere with an easy and clean separation of the HDPE from the coal/plastics liquefaction stream sample. Therefore, CONSOL developed an analytical procedure for HDPE in the ashy stream samples based on extraction of HDPE from the sample using hot (150{degrees}C) decalin (decahydronaphthalene), in which the HDPE is soluble. The decalin extraction is both preceded and succeeded by extractions and washes with THF at room temperature, to remove the coal-derived components from the sample.

  20. Evaluation of two conceptual wastewater treatment schemes for a Lurgi-based indirect coal liquefaction plant

    SciTech Connect

    Villiers-Fisher, J.F.; Singh, S.P.N.

    1984-09-01

    The objective of this study was to evaluate two conceptual treatment schemes for decontaminating the wastewaters likely to be generated in a conceptual dry-ash Lurgi-based indirect coal liquefaction plant. The conceptual indirect coal liquefaction plant is an integrated (i.e., all utilities generated onsite) facility designed to convert 15,000 tons of moisture- and ash-free coal per stream day to motor gasoline using dry-ash Lurgi coal gasification, Imperial Chemical Industries' methanol synthesis, and Mobil's methanol-to-gasoline processes. The conceptual plant is premised to be located at a generic site in the eastern United States and processes a generic Interior Basin high-sulfur bituminous coal. The following conclusions can be drawn from this assessment: (1) On paper, wastewater treatment facilities can be designed that are projected to treat the indirect coal liquefaction plant wastewaters to a level where the effluent will likely meet the current regulations for aqueous effluents for allied industries such as coke ovens and petroleum refineries. (2) The estimated capital investments, in 1983 US dollars, for the Case I (surface-discharge) and Case II (zero-aqueous-discharge) schemes are approximately $440 million and $550 million, respectively. These costs represent about 15 and 20% of the estimated capital investment for the integrated indirect coal liquefaction plant. (3) Case II (zero-aqueous-discharge) wastewater treatment is likely to result in the accumulation of approximately 1 million tons of toxic solid wastes during the 30 years of plant operation.

  1. Bimetallic promotion of cooperative hydrogen transfer and heteroatom removal in coal liquefaction

    SciTech Connect

    Eisch, J.J.

    1991-10-01

    The ultimate objective of this research is to uncover new catalytic processes for the liquefaction of coal and for upgrading coal-derived fuels by removing undesirable organosulfur, organonitrogen and organooxygen constituents. Basic to both the liquefaction of coal and the purification of coal liquids is the transfer of hydrogen from such sources as dihydrogen, metal hydrides or partially reduced aromatic hydrocarbons to the extensive aromatic rings in coal itself or to aromatic sulfides, amines or ethers. Accordingly, this study is exploring how such crucial hydrogen-transfer processes might be catalyzed by soluble, low-valent transition metal complexes and/or Lewis acids under moderate conditions of temperature and pressure. By learning the mechanism whereby H{sub 2}, metal hydrides or partially hydrogenated aromatics do transfer hydrogen to model aromatic compounds, with the aid of homogeneous, bimetallic catalysts, we hope to identify new methods for producing superior fuels from coal.

  2. Coal liquefaction process streams characterization and evaluation: High performance liquid chromatography (HPLC) of coal liquefaction process streams using normal-phase separation with uv diode array detection

    SciTech Connect

    Clifford, D.J.; McKinney, D.E.; Hou, Lei; Hatcher, P.G.

    1994-01-01

    This study demonstrated the considerable potential of using two-dimensional, high performance liquid chromatography (HPLC) with normal-phase separation and ultraviolet (UV) diode array detection for the examination of filtered process liquids and the 850{degrees}F{sup {minus}} distillate materials derived from direct coal liquefaction process streams. A commercially available HPLC column (Hypersil Green PAH-2) provided excellent separation of the complex mixture of polynuclear aromatic hydrocarbons (PAHs) found in coal-derived process streams process. Some characteristics of the samples delineated by separation could be attributed to processing parameters. Mass recovery of the process derived samples was low (5--50 wt %). Penn State believes, however, that, improved recovery can be achieved. High resolution mass spectrometry and gas chromatography/mass spectrometry (GC/MS) also were used in this study to characterize the samples and the HPLC fractions. The GC/MS technique was used to preliminarily examine the GC-elutable portion of the samples. The GC/MS data were compared with the data from the HPLC technique. The use of an ultraviolet detector in the HPLC work precludes detecting the aliphatic portion of the sample. The GC/MS allowed for identification and quantification of that portion of the samples. Further development of the 2-D HPLC analytical method as a process development tool appears justified based on the results of this project.

  3. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction. Technical progress report, October 1995--December 1995

    SciTech Connect

    Song, C.; Cooke, W.S.; Schmidt, E.; Schobert, H.H.

    1996-02-01

    Coal liquefaction involves cleavage of methylene, dimethylene and ether bridges connecting polycyclic aromatic units and the reactions of various oxygen functional groups. Here in this quarterly, we report on the catalytic effects of several molybdenum-, cobalt-, and iron-containing compounds in the reactions of dibenzothiophene (DBT) with hydrogen under conditions related to coal liquefaction. The catalytic effects of several molybdenum-, cobalt-, and iron-containing compounds have been examined in the hydrogenation and hydrodesulfurization reactions of dibenzothiophene (DBT) under conditions related to coal liquefaction. The metal compounds are candidate catalyst precursors for direct coal liquefaction. The reactions were carried out in batch microautoclave reactors at 400{degrees}C for 30 minutes with 6.9 MPa (cold) hydrogen pressure, and tridecane solvent. A metal loading of 0.5 mol% resulted in low conversion and only hydrogenation. Addition of sulfur in 4:1 molar ratio led only to a minor increase in conversion and hydrodesulfurization. The use of a higher boiling solvent (octadecane vs. tridecane) was beneficial in providing increased conversion, hydrodesulfurization, and hydrogenation. An increase in metal compound loading to 36.2 mol% led to a dramatic increase in conversion, hydrodesulfurization, and hydrocracking. Molybdenum hexacarbonyl at 36 mol% loading, with added sulfur at 6:1 ratio and octadecane solvent, gave 100% conversion of dibenzothiophene to other products with 100% hydrodesulfurization. Ammonium tetrathiomolybdate and molybdenum(III) chloride are less active under similar conditions. A cobalt-molybdenum thiocubane complex gave unexpectedly low conversions. Iron and cobalt carbonyls also provided very low conversions, even with added sulfur.

  4. Proceedings of the seventh annual EPRI contractors' conference on coal liquefaction

    SciTech Connect

    Not Available

    1982-11-01

    On May 12, 13, and 14, 1982, EPRI sponsored the Seventh Annual EPRI Contractors' Conference on Coal Liquefaction. The conference was organized by the EPRI Clean Liquid and Solid Fuels Program of the Advanced Fossil Power Systems Department. Presentations were made by both EPRI contractors and distinguished invited guests on their work in the following topical areas: Operation of large coal liquefaction pilot plants, two-stage liquefaction, and liquefaction-related research. The conferees discussed the operations of the large pilot plants, which are testing the H-Coal, Exxon Donor Solvent, and VEBA/OEL technologies. Three different configurations of two-stage liquefaction were presented by Kerr-McGee Corp. and Wilsonville, Lummus Co., and Chevron Research Company. R and D results were discussed by representatives of University of Wyoming, Kerr-McGee, Virginia Polytechnic Institute and State University, Conoco Inc., and Chem Systems Inc. These papers represent the current and much of the future possibilities for coal liquids. Fifteen papers have been entered individually with EDB and ERA. (LTN)

  5. A Characterization and Evaluation of Coal Liquefaction Process Streams. Results of Inspection Tests on Nine Coal-Derived Distillation Cuts in the Jet Fuel Boiling Range

    SciTech Connect

    S. D. Brandes; R. A. Winschel

    1999-12-30

    This report describes the assessment of the physical and chemical properties of the jet fuel (180-300 C) distillation fraction of nine direct coal liquefaction products and compares those properties to the corresponding specifications for aviation turbine fuels. These crude coal liquids were compared with finished fuel specifications specifically to learn what the refining requirements for these crudes will be to make them into finished fuels. The properties of the jet fuel fractions were shown in this work to require extensive hydrotreating to meet Jet A-1 specifications. However, these materials have a number of desirable qualities as feedstocks for the production of high energy-density jet fuels.

  6. Fundamental studies of retrograde reactions in direct liquefaction

    SciTech Connect

    Serio, M.A.; Solomon, P.R.; Kroo, E.; Charpenay, S.; Bassilakis, R.

    1991-12-17

    The overall objective of the program was to improve the understanding of retrograde reactions and their dependencies on coal rank and structure, and/or coal modifications and reaction conditions. Because retrograde reactions are competitive with bond breaking reactions, an understanding of both is required to shift the competition in favor of the latter. Related objectives were to clarify the conflicting observations reported in literature on such major topics as the role of oxygen groups in retrograde reactions and to provide a bridge from very fundamental studies on pure compounds to phenomenological studies on actual coal. This information was integrated into the FG-DVC model, which was improved and extended to the liquefaction context.

  7. [A Quick Quantitative Analysis for Group Composition of Coal Liquefaction Oil by Ultraviolet Spectroscopy].

    PubMed

    Fan, Wen-jun; Wu, Mei-xiang; Hao, Jian-shu; Feng, Jie; Li, Wen-ying

    2015-07-01

    Gas chromatography is now the primary analysis method for the coal liquefaction oil. However, a simple and rapid quantification/qualification of the coal liquefaction oil can hardly be realized, because the coal liquefaction oil is in a heterogeneous state with a long boiling range. The aim of this study was to establish a rapid and accurate method for the quantification of phenolic compounds, aromatics and aliphatic hydrocarbons in coal liquefaction oil. A representative composition of coal liquefaction light oil, i.e., the distillate fractions of the boiling point range 180-200 degrees C, was chosen as the investigated object. The characteristic absorption peaks of the samples in the UV spectra (200-400 nm) were examined, using three kinds of solvents, cyclohexane, ethanol, 50 Wt% NaOH/ethanol mixture. Among them, the mixture solvent provided the best performance, where the aromatics interfered minimally with the quantification of phenolic compounds by avoiding the peak overlapping problem. By comparison of the UV absorption standard curves between the standard compounds (phenol, m-cresol, p-cresol and o-cresol) and the phenolic mixtures in coal liquefaction oil, m-cresol was selected for the quantification of phenolic compounds in coal liquefaction oil. The content of phenolic compounds was determined to be 32.14% according to the calibration curve of m-cresol at 290 nm, and this result is largely consistent with that determined by weighing after separation. Based on UV and GC analysis of the dephenolized oil, the standard curve of tetrahydronaphthalene at 266 nm was used for the quantification of aromatic hydrocarbons in coal liquefaction oil. The contents of aromatic and aliphatic hydrocarbons were determined to be 44.91% and 22.95%, respectively. To verify the accuracy of the method, recovery of added standards in the oil samples was determined and found to be 104.3%-110.75% and 84.3%-91.75% for phenolic compounds and aromatics, respectively. These results

  8. Catalyst system and process for benzyl ether fragmentation and coal liquefaction

    DOEpatents

    Zoeller, J.R.

    1998-04-28

    Dibenzyl ether can be readily cleaved to form primarily benzaldehyde and toluene as products, along with minor amounts of bibenzyl and benzyl benzoate, in the presence of a catalyst system comprising a Group 6 metal, preferably molybdenum, a salt, and an organic halide. Although useful synthetically for the cleavage of benzyl ethers, this cleavage also represents a key model reaction for the liquefaction of coal; thus this catalyst system and process should be useful in coal liquefaction with the advantage of operating at significantly lower temperatures and pressures.

  9. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction. Technical progress report, April--June 1996

    SciTech Connect

    Kirby, S.R.; Martin, S.C.; Song, Chunshan; Schobert, H.H.

    1996-08-01

    This quarterly report describes our recent work on two related subjects: effect of using organometallic catalyst precursor on hydrodeoxygenation under coal liquefaction conditions, and the effect of mineral matters in liquefaction reactions of coals. Oxygen functionalities, especially phenols, are undesirable components of coal derived liquids. Removal of these compounds from the products of coal liquefaction is required. A beneficial alternative would be the removal of these functionalities, or the prevention of their formation, during the liquefaction process. Organometallic precursors of Co, Ni and Mo have been studied as catalysts. To ascertain the hydrodeoxygenation properties of these catalysts under liquefaction conditions, model compounds were investigated. Anthrone, Dibutylmethyl phenol, dinaphthyl ether and xanthene were studied to provide a comparison of conversions to deoxygenated products. Studies of the deoxygenating abilities of these catalyst precursors in coal liquefaction systems have also been performed. Improvements in conversion and product quality are observed. Both these factors are dependent on the coal used. It is also considered that some mineral matters in coal may have catalytic actions. Demineralization by successive HCl/HF treatments of a low rank coal has demonstrated that removal of the inherent mineral matter imparts no serious detrimental effect upon low temperature liquefaction. It appears that elimination of such species allows for better access for gaseous H{sub 2}, as suggested by previous studies.

  10. Heavy recycle solvent studies in two-stage coal liquefaction. Final technical report, September 1, 1982-December 30, 1983

    SciTech Connect

    Longanbach, J. R.

    1984-01-10

    The objective of this program has been to study the chemistry of the components with high boiling points in a direct coal liquefaction recycle solvent and to identify those components which lead to higher overall yields and improved product stability in the initial coal dissolution step of direct coal liquefaction processes. The major conclusions are: -454 C recycle solvent is primarily aromatic hydrocarbons (73%) and contains almost no asphaltenes; +454 C recycle solvent is primarily asphaltenes and aromatic hydrocarbons; recycle solvent also contains aliphatic hydrocarbons, N-containing aromatics and O-containing aromatics; heteroatoms in coal derived materials seem to be grouped by type, i.e. acidic O and basic N and sulfur occur together; under helium a small net amount of hydrogen and more CO and CO/sub 2/ are produced than under hydrogen; under hydrogen the amounts of H/sub 2/S and hydrocarbon gases are increased and a small amount of hydrogen gas is usually consumed; overall coal conversions to THF solubles are improved by adding more -454 C solvent but decreased by adding +454 C solvent; for added fractions of -454 C solvent the pecent conversion to THF solubles increases in the order aromatic hydrocarbons (+7.2) > aliphatic hydrocarbons (+0.8) > no added solvent (0.0) > N-containing aromatics (-0.9) > O-containing aromatics (-22.1); percent conversion to THF solubles using -454 C solvent with +454 C solvent fractions added decrease in the order aliphatics (+3.7) > aromatic hydrocarbons (+3.0) > no added solvent (0.0) > O-containing aromatics (-9.3) > N-containing aromatics (-13.3); of the +454 C solvent components, aromatic hydrocarbons and aliphatic hydrocarbons are beneficial but total only approx. 25% of the +454 C recycle solvent; and steric effects may be important in determining the effectiveness of the heavier solvent components as liquefaction solvents. 28 references, 25 figures, 31 tables.

  11. Short residence time coal liquefaction process including catalytic hydrogenation

    DOEpatents

    Anderson, Raymond P.; Schmalzer, David K.; Wright, Charles H.

    1982-05-18

    Normally solid dissolved coal product and a distillate liquid product are produced by continuously passing a feed slurry comprising raw feed coal and a recycle solvent oil and/or slurry together with hydrogen to a preheating-reaction zone (26, alone, or 26 together with 42), the hydrogen pressure in the preheating-reaction zone being at least 1500 psig (105 kg/cm.sup.2), reacting the slurry in the preheating-reaction zone (26, or 26 with 42) at a temperature in the range of between about 455.degree. and about 500.degree. C. to dissolve the coal to form normally liquid coal and normally solid dissolved coal. A total slurry residence time is maintained in the reaction zone ranging from a finite value from about 0 to about 0.2 hour, and reaction effluent is continuously and directly contacted with a quenching fluid (40, 68) to substantially immediately reduce the temperature of the reaction effluent to below 425.degree. C. to substantially inhibit polymerization so that the yield of insoluble organic matter comprises less than 9 weight percent of said feed coal on a moisture-free basis. The reaction is performed under conditions of temperature, hydrogen pressure and residence time such that the quantity of distillate liquid boiling within the range C.sub.5 -454.degree. C. is an amount at least equal to that obtainable by performing the process under the same condition except for a longer total slurry residence time, e.g., 0.3 hour. Solvent boiling range liquid is separated from the reaction effluent (83) and recycled as process solvent (16). The amount of solvent boiling range liquid is sufficient to provide at least 80 weight percent of that required to maintain the process in overall solvent balance.

  12. Short residence time coal liquefaction process including catalytic hydrogenation

    DOEpatents

    Anderson, R.P.; Schmalzer, D.K.; Wright, C.H.

    1982-05-18

    Normally solid dissolved coal product and a distillate liquid product are produced by continuously passing a feed slurry comprising raw feed coal and a recycle solvent oil and/or slurry together with hydrogen to a preheating-reaction zone, the hydrogen pressure in the preheating-reaction zone being at least 1,500 psig (105 kg/cm[sup 2]), reacting the slurry in the preheating-reaction zone at a temperature in the range of between about 455 and about 500 C to dissolve the coal to form normally liquid coal and normally solid dissolved coal. A total slurry residence time is maintained in the reaction zone ranging from a finite value from about 0 to about 0.2 hour, and reaction effluent is continuously and directly contacted with a quenching fluid to substantially immediately reduce the temperature of the reaction effluent to below 425 C to substantially inhibit polymerization so that the yield of insoluble organic matter comprises less than 9 weight percent of said feed coal on a moisture-free basis. The reaction is performed under conditions of temperature, hydrogen pressure and residence time such that the quantity of distillate liquid boiling within the range C[sub 5]-454 C is an amount at least equal to that obtainable by performing the process under the same condition except for a longer total slurry residence time, e.g., 0.3 hour. Solvent boiling range liquid is separated from the reaction effluent and recycled as process solvent. The amount of solvent boiling range liquid is sufficient to provide at least 80 weight percent of that required to maintain the process in overall solvent balance. 6 figs.

  13. Advanced Direct Liquefaction Concepts for PETC Generic Units - Phase II

    SciTech Connect

    1997-02-01

    Reported here are the results of Laboratory and Bench-Scale experiments and supporting technical and economic assessments conducted under DOE Contract No. DE-AC22-91PC9104O during the period October 1, 1996 to December 31, 1996. This contract is with the University of Kentucky Research Foundation which supports work with the University of Kentucky Center for Applied Energy Research, CONSOI+ Inc., LDP Associates, and Hydrocarbon Technologies, Inc. This work invoives the introduction into the basic two stage liquefaction process several novel concepts which include dispersed lower-cost catalysts, coal cleaning by oil agglomeration, and distillate hydrotreating and dewaxing.

  14. ADVANCED DIRECT LIQUEFACTION CONCEPTS FOR PETC GENERIC UNITS

    SciTech Connect

    Adam J. Berkovich

    2000-03-01

    The results of Laboratory and Bench-Scale experiments and supporting technical and economic assessments conducted under DOE Contract No. DE-AC22-91PC91040 is reported for the period April 1, 1998 to June 30, 1998. This contract is with the University of kentucky Research Foundation, which supports work with the University of Kentucky Center for Applied Energy Researc, CONSOL, Inc., LDP Associates, and Hydrocarbon Technologies, Inc. This work involves the introduction into the basic two-stage liquefaction process several novel concepts, which include dispersed lower-cost catalysts, coal cleaning by oil agglomeration, and distillate hydrotreating and dewaxing.

  15. Release of heavy metals from sediment bed under wave-induced liquefaction.

    PubMed

    Sun, Zhenhong; Xu, Guohui; Hao, Ting; Huang, Zhe; Fang, Hongru; Wang, Gang

    2015-08-15

    Sediments in lakes and coasts can release metals into water via static diffusion and especially resuspension. The resuspension under sediment liquefaction may severely affect the concentrations of metals in water. In this study, flume experiments were carried out twice to study the release of two metal combinations (Zn and Pb; Zn and Cu), respectively. Each experiment included three phases: consolidation; non-liquefaction and liquefaction. Results showed that total Zn concentration at liquefaction phase increased by a maximum rate of 26 compared with the consolidation phase. The concentration of particulate Zn at liquefaction phase increased by a maximum rate of 8.30 compared with the non-liquefaction phase. The average concentration of dissolved Zn at the liquefaction phase increased up to 0.24 times from the consolidation phase. Total Zn concentration at the non-liquefaction phase increased by several times compared with the consolidation phase. Metals were homogeneously distributed in the liquefaction layer through wave actions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Steam pretreatment for coal liquefaction. Second quarterly report, 1 January 1991--31 March 1991

    SciTech Connect

    Balogh-Nair, V.

    1991-12-31

    Steam pretreatment is the reaction of coal with steam at temperatures well below those usually used for solubilization. The objective of the proposed work is to test the application of steam pretreatment to coal liquefaction. This quarter, a 300 ml stirred autoclave for liquefaction tests was received and installation initiated. Four coal samples were obtained from the Penn State Sample Bank. Continuous flow pretreatment procedures were reestablished. Extraction yields after pretreatment of the new sample of Illinois No. 6 coal are in agreement with previous results even though the particle size is considerably larger. Purification of the model compound B-naphthylmethyl phenyl ether has been completed. However, {alpha}-naphthylmethyl phenyl ether has been found to undergo acid catalyzed rearrangement during purification on silica. An alternative method for purification is being examined.

  17. Steam pretreatment for coal liquefaction. Final report, September 26, 1990--March 18, 1995

    SciTech Connect

    Graff, R.A.; Balogh-Nair, V.; Ivanenko, O.; Brathwaite, C.

    1995-10-16

    The objective of this study is to demonstrate the use of subcritical steam to pretreat coal for slurry liquefaction, allowing liquefaction to be carried out at lower severity and improving product yield and quality. Samples of Illinois No. 6 coal were pretreated in 750 psia steam at 340{degree}C for 15 minutes. These samples, as well as raw coal, were liquefied at high (400{degree}C, 30 min.) and low (385{degree}C, 15 min.) severity conditions under 1500 psia hydrogen with tetralin as the donor solvent. Improved yields were obtained at both conditions. (Improved yields were not obtained at a liquefaction temperature of 350{degree}C as that put the sample into the region of retrogressive reactions). The deleterious effects of slow heating and exposure of the sample to air were demonstrated. Under low severity conditions, steam pretreatment more that doubled the oil yield, increasing it from 12.5 to 29 wt %. Tests were also conducted with aromatic ethers as model compounds. These were exposed to inert gas and steam at pretreatment conditions and in some cases to liquid water at 315{degree}C. {alpha}-Benzylnaphthyl ether and {alpha}- naphthylmethyl phenyl ether show little difference in conversion and product distribution when the thermolysis atmosphere is changed from inert gas to steam. However when these compounds were reacted in the presence of 5 {angstrom} zeolite, the yields of the thermolysis products improved. Zeolite proved effective in suppressing isomerization of the starting materials. These results suggested that zeolites might be beneficial in steam pretreatment of coal and in coal liquefaction. Pretreatment and liquefaction of mixtures of coal and zeolites increases yields of asphaltenes and preasphaltenes.

  18. Highly dispersed catalysts for coal liquefaction. Quarterly report No. 9, August 23, 1993--November 22, 1993

    SciTech Connect

    Hirschon, A.S.; Wilson, R.B.

    1994-02-15

    We analyzed two sets of liquefaction experiments, one involved the liquefaction of Black Thunder Coal with the corresponding recycle vehicle, and the second set of liquefaction runs involved the liquefaction of Argonne North Dakota Lignite. We compared coal conversions of Black Thunder coal and recycle solvent using Fe(CO){sub 5} and carbon monoxide/hydrogen atmospheres and a MolyVanL molybdenum catalyst under a hydrogen atmosphere. We also continued our investigation of the effect of water on the conversions. We found that addition of water seemed to decrease the amount of oils; we determined the effect of water with the recycle solvent alone, (no coal added) under similar conditions, and again produced a decrease in oil yields. FIMS analyses of the hexane and toluene soluble fractions seem to indicate that in the experiment when water was added, a considerable amount of light material remained behind in the toluene layer, suggesting that somehow the addition of water decreased the amount of extracted material, perhaps by increasing the amount of polarity of the product. When the conversion was conducted with the MolyVanL molybdenum catalyst a good quality product in terms of lower viscosity was produced; however, conversions to THF soluble material was not increased. We believe the molybdenum catalyst hydrogenated the recycle vehicle rather than effectively converted the coal. In order to eliminate the effect of solvent we have often conducted experiments in an inert solvent with Argonne coals. We conducted several coal conversions experiments using an Argonne North Dakota lignite. We compared several dispersed Fe catalysts and in addition, a nickel catalyst. We investigated nickel as a catalyst since we believe this metal may be more effective in decarboxylating low rank coals. Consistent with this premise we found that the nickel catalyst gave the highest conversions.

  19. Coal liquefaction and hydrogenation: Processes and equipment. (Latest citations from the US Patent database). Published Search

    SciTech Connect

    Not Available

    1993-07-01

    The bibliography contains citations of selected patents concerning methods, processes, and apparatus for coal liquefaction and hydrogenation. Included are patents for catalytic two-stage, catalytic single-step, fixed-bed, hydrogen-donor, internal heat transfer, and multi-phase processes. Topics also include catalyst production, catalyst recovery, desulfurization, pretreatment of coals, energy recovery processes, solvent product separation, hydrogenating gases, and pollution control. (Contains 250 citations and includes a subject term index and title list.)

  20. Solvent tailoring in coal liquefaction. Quarterly report, April-June 1984

    SciTech Connect

    Tarrer, A.R.; Curtis, C.W.; Guin, J.A.; Williams, D.C.

    1984-07-01

    Although the numerous functions of the solvent during liquefaction are not completely understood, the provision for (and the maintenance of) an effective process solvent is necessary for effective coal liquefaction. In this project, the function of the process solvent regarding vapor-liquid equilibrium, hydrogen donation, and catalyst activity has been explored. In previously reported work, a number of donor compounds were evaluated for their relative efficiency in converting coal to cresol solubles. Attempts to correlate the relative efficiency of the various donor compounds were made on the basis of thermodynamic stability and structural features of the molecules. Currently, work is underway with selected donor compounds to determine if the chemical nature of the compound influences the product distribution obtained during coal liquefaction as well as affecting the amount of conversion obtained. The product distribution, which is being used to evaluate the liquefaction products, is based upon extraction of the products into different solvents. The products are divided into oil, pentane soluble material; asphaltenes, pentane insoluble, benzene soluble material; preasphaltenes, benzene insoluble, methylene chloride/methanol soluble material; and insoluble organic matter, methylene chloride/methanol insoluble material. The effectiveness of the hydrogen donor solvent will be measured by the amount of higher quality material (oil and asphaltenes) obtained as well as by the amount of coal converted.

  1. Separating liquid and solid products of liquefaction of coal or like carbonaceous materials

    DOEpatents

    Malek, John M.

    1979-06-26

    Slurryform products of coal liquefaction are treated with caustic soda in presence of H.sub.2 O in an inline static mixer and then the treated product is separated into a solids fraction and liquid fractions, including liquid hydrocarbons, by gravity settling preferably effected in a multiplate settling separator with a plurality of settling spacings.

  2. Method for separating liquid and solid products of liquefaction of coal or like carbonaceous materials

    DOEpatents

    Malek, John M.

    1978-04-18

    A method of improving the quality of slurry products taken from coal liquefaction reactors comprising subjecting the slurry to treatment with an alkaline compound such as caustic soda in the presence of steam in order to decompose the phenolic and acidic materials present in the slurry, and to also lower the slurry viscosity to allow separation of solid particles by sedimentation.

  3. Advanced direct liquefaction concepts for PETC generic units

    SciTech Connect

    Not Available

    1991-01-01

    A laser pyrolysis technique has been used to produce ultrafine particles of iron carbide with diameters ranging from 2 to 20 nm. Catalysis using iron carbide was investigated in the liquefaction of Wyodak subbituminous coal; yields were determined. A study was carried out to examine the possibility of using an ultrasonic extraction technique as a rapid method of product work-up of samples following pretreatment or liquefaction experiments. A similar study had shown that extraction of coal-derived products by an ultrasonic method was rapid and gave yields and product distributions comparable to those obtained by Soxhlet extraction. On another project, three different types of supported catalysts were used to test activity for the combined water-gas shift hydrogenation of a synthetic donor solvent. The three catalysts tested were: (1) Alumina supported NiMo catalyst-Shell 324m; (2) Bulk hydrous TiO NiMo catalyst; (3) Thin film hydrous TiO catalyst supported on silica beads.

  4. Surface modified coals for enhanced catalyst dispersion and liquefaction. Semiannual progress report, September 1, 1995--February 29, 1996

    SciTech Connect

    Abotsi, G.M.K.

    1996-10-01

    The aim of this work is to enhance catalyst loading and dispersion in coal for improved liquefaction by preadsorption of surfactants onto coal. The application of surfactants to coal beneficiation and coal-water slurry preparation is well known. However, the effects of surfactants on catalyst loading and dispersion prior to coal liquefaction have not been investigated. The current work is focused on the influence of the cationic surfactant dodecyl dimethyl ethyl ammonium bromide (DDAB) and sodium dodecyl sulfate (SDS, anionic) on the surface properties of a bituminous coal and its molybdenum uptake from solution. The results show that DDAB created positively charged sites on the coal and increased molybdenum loading compared to the original coal. In contrast, SDS rendered the coal surface negative and reduced molybdenum uptake. The results show that efficient loading of molybdenum catalyst onto coal can be achieved by pretreatment of the coal with dodecyl dimethyl ethyl ammonium bromide.

  5. Advanced direct liquefaction concepts for PETC generic units. Quarterly technical progress report, January--March 1992

    SciTech Connect

    Not Available

    1992-04-01

    In the Advance Coal Liquefaction Concept Proposal (ACLCP) carbon monoxide (CO) and water have been proposed as the primary reagents in the pretreatment process. The main objective of this project is to develop a methodology for pretreating coal under mild conditions based on a combination of existing processes which have shown great promise in liquefaction, extraction and pyrolysis studies. The aim of this pretreatment process is to partially depolymerise the coal, eliminate oxygen and diminish the propensity for retograde reactions during subsequent liquefaction. The desirable outcome of the CO pretreatment step should be: (1) enhanced liquefaction activity and/or selectivity toward products of higher quality due to chemical modification of the coal structure; (2) cleaner downstream products; (3) overall improvement in operability and process economics.

  6. Coal liquefaction process streams characterization and evaluation: Estimation of total phenol concentrations in coal liquefaction resids by [sup 31]P NMR spectroscopy

    SciTech Connect

    Mohan, J.T.; Verkade, J.G. )

    1992-11-01

    In this study, Iowa State University researchers used [sub 31]P-tagged reagents to derivatize the labile hydrogen functional groups in the THF-soluble portion of 850[degrees]F[sup +] distillation resid materials and the THF-soluble portion of process oils derived from direct coal liquefaction.[sup 31]P-NMR was used to analyze the derivatized samples. NMR peak assignments can be made by comparison to model compounds similarly derivatized. Species can be quantified by integration of the NMR signals. Different [sup 31]P-NMR tagged reagents can be used to produce different degrees of peak resolution in the NMR spectrum. This, in turn, partially dictates the degree of speciation and/or quantification of species, or classes of compounds, that can be accomplished. Iowa State chose a [sup 31]P-tagged reagent (ClPOCMe[sub 2]CMe[sub 2]O) which was shown previously to be particularly useful in the derivatization of phenols. The derivatized samples all exhibited a small group of peaks attributed to amines and a broad group of peaks in the phenol region. The presence of paramagnetic species in the samples caused the NMR signals to broaden. Electron paramagnetic resonance (EPR) spectra confirmed the presence of paramagnetic organic free radicals in selected samples. Various methods were employed to process the NMR data. The complexity and broadness of the phenol peak, however, made speciation of the phenols impractical.

  7. Coal liquefaction process streams characterization and evaluation: Estimation of total phenol concentrations in coal liquefaction resids by {sup 31}P NMR spectroscopy

    SciTech Connect

    Mohan, J.T.; Verkade, J.G.

    1992-11-01

    In this study, Iowa State University researchers used {sub 31}P-tagged reagents to derivatize the labile hydrogen functional groups in the THF-soluble portion of 850{degrees}F{sup +} distillation resid materials and the THF-soluble portion of process oils derived from direct coal liquefaction.{sup 31}P-NMR was used to analyze the derivatized samples. NMR peak assignments can be made by comparison to model compounds similarly derivatized. Species can be quantified by integration of the NMR signals. Different {sup 31}P-NMR tagged reagents can be used to produce different degrees of peak resolution in the NMR spectrum. This, in turn, partially dictates the degree of speciation and/or quantification of species, or classes of compounds, that can be accomplished. Iowa State chose a {sup 31}P-tagged reagent (ClPOCMe{sub 2}CMe{sub 2}O) which was shown previously to be particularly useful in the derivatization of phenols. The derivatized samples all exhibited a small group of peaks attributed to amines and a broad group of peaks in the phenol region. The presence of paramagnetic species in the samples caused the NMR signals to broaden. Electron paramagnetic resonance (EPR) spectra confirmed the presence of paramagnetic organic free radicals in selected samples. Various methods were employed to process the NMR data. The complexity and broadness of the phenol peak, however, made speciation of the phenols impractical.

  8. Liquid fuels by direct liquefaction of biomass

    SciTech Connect

    Davis, H.G.; Figueroa, C.; Schaleger, L.L.

    1982-03-01

    Conversion of Douglas fir wood chips to a crude fuel oil, under an atmosphere of carbon monoxide, hydrogen and steam has been accomplished by at least two proceses. An oil-wood-flour slurry (oil recycle) process has been operated smoothly at DOE's process development unit (PDU) in Albany, Oregon. Operability was achieved at the cost of extremely high recycle ratio of product oil (about 19/1) and of effluent water. A single pass, water-slurry process, originally developed at the Lawrence Berkeley Laboratory (LBL), has also been tested at Albany. LBL is currently operating a bench-scale continuous liquefaction unit. The feedstock has been an aqueous slurry of prehydrolyzed Douglas fir wood chips. Yields of oil product are higher than was estimated from the Albany experience but are consistently lower than achieved by the recycle process. The difference is real, and is caused by a greater formation of water-soluble products such as carboxylic acids in the water-slurry process. In work to date at LBL, no significant difference in either oil yield or product analysis has been found when the CO-H/sub 2/ reactant gas mixture is replaced by either CO or H/sub 2/ alone. Since CO feed largely reacts to form H/sub 2/ and CO/sub 2/ by shift reaction, it is economically desirable to use a hydrogen-rich reaction gas. The product oil is a crude material, feedable as a heavy liquid fuel oil at temperatures somewhat above ambient, very low in sulfur and nitrogen, but containing 10 to 19% oxygen, largely as phenols. The crude product has been shown to be capable of replacing number 6 fuel oil in the test boiler at the Pittsburgh Energy Technology Center. Process flow sheets, stoichiometry, operating problems, and methods of product characterization are discussed, as well as possibilities for an improved process.

  9. Direct liquefaction of wood using nickel catalysts

    SciTech Connect

    Boocock, D.G.B.; Mackay, D.; Franco, H.

    1980-01-01

    In most the studies hydrogen has been used as a reducing agent and Raney nickel has been employed as catalyst, but in view of the low hydrogen uptake observed with mature catalyst some experiments were performed in the absence of hydrogen and these have yielded very encouraging results. An earlier paper described the complete liquefaction and gasification of fast-growing hybrid poplar. The wood (< 0.5 mm mesh) was suspended in water and treated with hydrogen in a well stirred and sparged autoclave using an initial pressure (24/sup 0/C) of 10.3 MPa and reaction temperatures of 325 to 375/sup 0/C. In all cases Raney-nickel was used as catalyst. In these single batch reactions hydrogen uptake was high and considerable wood gasification occurred. For example, for the highest catalyst/wood mass ratio of 0.2, 50g of wood at 350/sup 0/C consumed 3.8g of hydrogen and produced 1.3g of carbon dioxide, 16.0g of methane, 4.4g of saturated C/sub 2/ to C/sub 4/ alkanes and 8.0g of oil. No carbon monoxide was produced. The oil products contained 10 to 12 per cent oxygen and had viscosities of 700 to 2200 MPa.s at room temperature and heating values of 37 to 41 MJ.kg/sup -1/. The beneficial effect of prolonged use of the catalyst in extended batch reactions has now been examined. Reported are some results from these extended batch reactions and from runs in which hydrogen was not used. Also addressed is the problem of the wood feed system for possible commercial application.

  10. Two-stage coal liquefaction process materials from the Wilsonville Facility operated in the nonintegrated and integrated modes: chemical analyses and biological testing

    SciTech Connect

    Later, D.W.

    1985-01-01

    This document reports the results from chemical analyses and biological testing of process materials sampled during operation of the Wilsonville Advanced Coal Liquefaction Research and Development Facility (Wilsonville, Alabama) in both the noncoupled or nonintegrated (NTSL Run 241) and coupled or integrated (ITSL Run 242) two-stage liquefaction operating modes. Mutagenicity and carcinogenicity assays were conducted in conjunction with chromatographic and mass spectrometric analyses to provide detailed, comparative chemical and biological assessments of several NTSL and ITSL process materials. In general, the NTSL process materials were biologically more active and chemically more refractory than analogous ITSL process materials. To provide perspective, the NTSL and ITSL results are compared with those from similar testing and analyses of other direct coal liquefaction materials from the solvent refined coal (SRC) I, SRC II and EDS processes. Comparisons are also made between two-stage coal liquefaction materials from the Wilsonville pilot plant and the C.E. Lummus PDU-ITSL Facility in an effort to assess scale-up effects in these two similar processes. 36 references, 26 figures, 37 tables.

  11. Wilsonville Advanced Coal Liquefaction Research and Development Facility, Wilsonville, Alabama. Technical progress report, Run 243 with Illinois 6 coal

    SciTech Connect

    Not Available

    1984-02-01

    This report presents the operating results for Run 243 at the Advanced Coal Liquefaction R and D Facility in Wilsonville, Alabama. This run was made in an Integrated Two-Stage Liquefaction (ITSL) mode using Illinois 6 coal from the Burning Star mine. The primary objective was to demonstrate the effect of a dissolver on the ITSL product slate, especially on the net C/sub 1/-C/sub 5/ gas production and hydrogen consumption. Run 243 began on 3 February 1983 and continued through 28 June 1983. During this period, 349.8 tons of coal was fed in 2947 hours of operation. Thirteen special product workup material balances were defined, and the results are presented herein. 29 figures, 19 tables.

  12. Catalytic multi-stage liquefaction of coal at HTI: Bench-scale studies in coal/waste plastics coprocessing

    SciTech Connect

    Pradhan, V.R.; Lee, L.K.; Stalzer, R.H.

    1995-12-31

    The development of Catalytic Multi-Stage Liquefaction (CMSL) at HTI has focused on both bituminous and sub-bituminous coals using laboratory, bench and PDU scale operations. The crude oil equivalent cost of liquid fuels from coal has been curtailed to about $30 per barrel, thus achieving over 30% reduction in the price that was evaluated for the liquefaction technologies demonstrated in the late seventies and early eighties. Contrary to the common belief, the new generation of catalytic multistage coal liquefaction process is environmentally very benign and can produce clean, premium distillates with a very low (<10ppm) heteroatoms content. The HTI Staff has been involved over the years in process development and has made significant improvements in the CMSL processing of coals. A 24 month program (extended to September 30, 1995) to study novel concepts, using a continuous bench scale Catalytic Multi-Stage unit (30kg coal/day), has been initiated since December, 1992. This program consists of ten bench-scale operations supported by Laboratory Studies, Modelling, Process Simulation and Economic Assessments. The Catalytic Multi-Stage Liquefaction is a continuation of the second generation yields using a low/high temperature approach. This paper covers work performed between October 1994- August 1995, especially results obtained from the microautoclave support activities and the bench-scale operations for runs CMSL-08 and CMSL-09, during which, coal and the plastic components for municipal solid wastes (MSW) such as high density polyethylene (HDPE)m, polypropylene (PP), polystyrene (PS), and polythylene terphthlate (PET) were coprocessed.

  13. Effects of low-temperature catalytic pretreatments on coal structure and reactivity in liquefaction

    SciTech Connect

    Song, C.; Saini, A.K.; Hatcher, P.G.; Schobert, H.H.

    1992-05-01

    Low-temperature catalytic pretreatment is a promising approach to the development of an improved liquefaction process. This work is a fundamental study on effects of pretreatments on coal structure and reactivity in liquefaction. The main objectives of this project are to study the coal structural changes induced by low-temperature catalytic and thermal pretreatments by using spectroscopic techniques; and to clarify the pretreatment-induced changes in reactivity or convertibility of coals in the subsequent liquefaction. This report describes the progress of our work during the second quarterly period. Significant progress has been made in the spectroscopic characterization of fresh and THF-extracted samples of Wyodak subbituminous coals, catalytic and thermal low-temperature pretreatments in the absence and presence of hydrogen-donor and non-donor solvents, and the spectroscopic characterization of thermally and catalytically pretreated coals using cross-polarization magic angle spinning (CPMAS) solid-state {sup 13}C NMR, pyrolysis-GC-MS and FT-IR techniques.

  14. Ion exchange and absorption techniques to apply catalysts for liquefaction of lower rank coals

    SciTech Connect

    Vorres, K.S.; Cronauer, D.C.; Curtis, C.W.; Brannan, C.J.

    1994-07-01

    Samples of Beulah-zap lignite, Black Thunder and Wyodak subbituminous, and Illinois No. 6 high volatile bituminous coals have been prepared by acid treatment to remove exchangeable cations. Subsequent treatments were made with solutions of catalytic metals including iron or cobalt or nickel to exchange with the acid sites, or with molybdate to adsorb on the surface. Samples were then subjected to liquefaction conditions in microautoclave tubular microreactors and solvent extraction was used to establish total conversion or yields of oils, asphaltenes and preasphaltenes. Results of the liquefaction experiments are compared with the catalyst loadings.

  15. Method for controlling boiling point distribution of coal liquefaction oil product

    DOEpatents

    Anderson, R.P.; Schmalzer, D.K.; Wright, C.H.

    1982-12-21

    The relative ratio of heavy distillate to light distillate produced in a coal liquefaction process is continuously controlled by automatically and continuously controlling the ratio of heavy distillate to light distillate in a liquid solvent used to form the feed slurry to the coal liquefaction zone, and varying the weight ratio of heavy distillate to light distillate in the liquid solvent inversely with respect to the desired weight ratio of heavy distillate to light distillate in the distillate fuel oil product. The concentration of light distillate and heavy distillate in the liquid solvent is controlled by recycling predetermined amounts of light distillate and heavy distillate for admixture with feed coal to the process in accordance with the foregoing relationships. 3 figs.

  16. Method for controlling boiling point distribution of coal liquefaction oil product

    DOEpatents

    Anderson, Raymond P.; Schmalzer, David K.; Wright, Charles H.

    1982-12-21

    The relative ratio of heavy distillate to light distillate produced in a coal liquefaction process is continuously controlled by automatically and continuously controlling the ratio of heavy distillate to light distillate in a liquid solvent used to form the feed slurry to the coal liquefaction zone, and varying the weight ratio of heavy distillate to light distillate in the liquid solvent inversely with respect to the desired weight ratio of heavy distillate to light distillate in the distillate fuel oil product. The concentration of light distillate and heavy distillate in the liquid solvent is controlled by recycling predetermined amounts of light distillate and heavy distillate for admixture with feed coal to the process in accordance with the foregoing relationships.

  17. Materials performance at the Wilsonville Coal Liquefaction Facility, 1989--1991

    SciTech Connect

    Keiser, J.R. ); Patko, A.J. . Southern Clean Fuels Div.)

    1991-01-01

    The Advanced Coal Liquefaction Research and Development Facility in Wilsonville, Alabama, is funded by the US Department of Energy (DOE), the Electric Power Research Institute (EPRI), and Amoco Corporation. On behalf of these organizations, Southern Company Services manages and Southern Clean Fuels Division of Southern Electric International operates the Wilsonville facility. Oak Ridge National Laboratory (ORNL) receives funding from DOE to provide materials technical support to the Wilsonville operators. For the period July 1987 through November 1990 the plant was operated with two reactors a thermal reactor and a catalytic reactor in a close-coupled integrated two-stage liquefaction mode. Coal processed was obtained from several seams including Ohio No. 6, Illinois No. 6, and Pittsburgh No. 8, as well as Texas lignite and several subbituminous coals. Corrosion samples which were removed for examination at the end of this period were exposed in the vacuum distillation tower, the atmospheric distillation tower, the high pressure separator, and first stage reactor.

  18. Non-catalytic liquefaction of coal with bagasse, a biomass waste

    SciTech Connect

    Rafiqul, I.; Lugang, B.; Yan, Y.; Li, T.

    1999-07-01

    Liquefaction of a Chinese bituminous coal with bagasse, a kind of biomass waste, have been carried out in an autoclave of 300 ml capacity at a temperature range of 350--450 C, reaction time 15--45 min and cool hydrogen pressure 300--700 PSIG (2.04 4.76 MPa). Optimization of the co-liquefaction process was done with respect to oil yield by Factorial Experiment Design Method. Oil yield reached 48% at optimum conditions of temperature: 420 C, cool hydrogen pressure: 500 PSIG and reaction time: 40 min. A polynomial mathematical model, a second order response surface model, has been obtained for correlating the oil yield response factor as well as conversion with the major process variables. The equation derived by the authors holds good in determining the effect of process variables on response factors for any regime conditions in the range of the Planned Experimental Design. Experimental data were also correlated by a kinetic model. The model is based on coal and bagasse, undergoing thermal cracking, is first converted parallel to form preasphaltene and asphaltene and low molecular gaseous products; then consecutively oil is formed from preasphaltene and asphaltene. Activation energies for these three reactions are 32.51 KJ/mol, 75.14 KJ/mol and 44.65 KJ/mol, respectively. These values are lower than that of liquefaction of coal alone. It justifies that the addition of bagasse is effective in enhancing the process of co-liquefaction and giving higher yield of oil than for liquefaction of coal alone. Calculated values from this model fairly agree with the experimental data.

  19. Mild acidic pretreatment to enhance low severity coal liquefaction promoted by cyclic olefins. Quarterly report, July 1995--September 1995

    SciTech Connect

    Curtis, C.W.

    1996-03-01

    Research continued on low severity coal liquefaction. Research using high temperature infrared of cyclic olefins progressed well during this quarter. Several fluorinated solvents were found that provide a high temperature medium for isotetralin and its aromatic and aliphatic analogues.

  20. "An Economic Process for Coal Liquefaction to Liquid Fuels" SBIR Phase II -- Final Scientific/Technical Report

    SciTech Connect

    Ganguli, Partha Sarathi

    2009-02-19

    The current commercial processes for direct coal liquefaction utilize expensive backmix-flow reactor system and conventional catalysts resulting in incomplete and retrogressive reactions that produce low distillate liquid yield and high gas yield, with high hydrogen consumption. The new process we have developed, which uses a less expensive reactor system and highly active special catalysts, resulted in high distillate liquid yield, low gas yield and low hydrogen consumption. The new reactor system using the special catalyst can be operated smoothly for direct catalytic coal liquefaction. Due to high hydrogenation and hydrocracking activities of the special catalysts, moderate temperatures and high residence time in each stage of the reactor system resulted in high distillate yield in the C4-650°F range with no 650°F+ product formed except for the remaining unconverted coal residue. The C4-650°F distillate is more valuable than the light petroleum crude. Since there is no 650°F+ liquid product, simple reforming and hydrotreating of the C4-650°F product will produce the commercial grade light liquid fuels. There is no need for further refinement using catalytic cracking process that is currently used in petroleum refining. The special catalysts prepared and used in the experimental runs had surface area between 40-155 m2/gm. The liquid distillate yield in the new process is >20 w% higher than that in the current commercial process. Coal conversion in the experimental runs was moderate, in the range of 88 - 94 w% maf-coal. Though coal conversion can be increased by adjustment in operating conditions, the purpose of limiting coal conversion to moderate amounts in the process was to use the remaining unconverted coal for hydrogen production by steam reforming. Hydrogen consumption was in the range of 4.0 - 6.0 w% maf-coal. A preliminary economic analysis of the new coal liquefaction process was

  1. Coal liquefaction in an inorganic-organic medium. [DOE patent application

    DOEpatents

    Vermeulen, T.; Grens, E.A. II; Holten, R.R.

    Improved process for liquefaction of coal by contacting pulverized coal in an inorganic-organic medium solvent system containing a ZnCl/sub 2/ catalyst, a polar solvent with the structure RX where X is one of the elements O, N, S, or P, and R is hydrogen or a lower hydrocarbon radical; the solvent system can contain a hydrogen donor solvent (and must when RX is water) which is immiscible in the ZnCl/sub 2/ and is a hydroaromatic hydrocarbon selected from tetralin, dihydrophenanthrene, dihydroanthracene or a hydrogenated coal derived hydroaromatic hydrocarbon distillate fraction.

  2. Reactivity of coal in direct hydrogenation processes: Final report

    SciTech Connect

    Baldwin, R. M.; Miller, R. L.

    1989-07-01

    This research program consisted of two facets dealing with fundamental and applied studies on coal reactivity under direct hydroliquefaction conditions. The first facet was concerned with an investigation of the relationship between coal reactivity and coal properties. Data on the rate and extent of direct coal hydroliquefaction for 5 bituminous coals from the Argonne Premium Sample Bank were measured. Data on rate of conversion of coal to THF and toluene solubles were modeled with a simple reversible rate expression, and activation energies for conversion to each solvent solubility class determined. Data on carbon and proton distribution in the coals were obtained by /sup 1/H-NMR and /sup 13/C-NMR. A strong correlation of activation energy with the aliphatic hydrogen content of the coal was found for conversion to THF solubles. The second facet of the program dealt with a mechanistic study of the effect of hydrogen on the rate and extent of coal liquefaction. The objective was to investigate the effect of radical quenching by aromatic and hydroaromatic vehicles on the activity and selectivity of hydrogen under conditions relevant to direct coal hydroliquefaction. The experimental portion of the program consisted of a series of runs on a model compound system, followed by experiments utilizing 5 bituminous coals from the Argonne Premium Coal sample bank. 45 refs., 14 figs., 17 tabs.

  3. Development of an extruder-feeder biomass direct liquefaction process

    SciTech Connect

    White, D.H.; Wolf, D. . Dept. of Chemical Engineering)

    1991-10-01

    As an abundant, renewable, domestic energy resource, biomass could help the United States reduce its dependence on imported oil. Biomass is the only renewable energy technology capable of addressing the national need for liquid transportation fuels. Thus, there is an incentive to develop economic conversion processes for converting biomass, including wood, into liquid fuels. Through research sponsored by the US DOE's Biomass Thermochemical Conversion Program, the University of Arizona has developed a unique biomass direct liquefaction system. The system features a modified single-screw extruder capable of pumping solid slurries containing as high as 60 wt% wood flour in wood oil derived vacuum bottoms at pressures up to 3000 psi. The extruder-feeder has been integrated with a unique reactor by the University to form a system which offers potential for improving high pressure biomass direct liquefaction technology. The extruder-feeder acts simultaneously as both a feed preheater and a pumping device for injecting wood slurries into a high pressure reactor in the biomass liquefaction process. An experimental facility was constructed and following shakedown operations, wood crude oil was produced by mid-1985. By July 1988, a total of 57 experimental continuous biomass liquefaction runs were made using White Birch wood feedstock. Good operability was achieved at slurry feed rates up to 30 lb/hr, reactor pressures from 800 to 3000 psi and temperatures from 350{degree}C to 430{degree}C under conditions covering a range of carbon monoxide feed rates and sodium carbonate catalyst addition. Crude wood oils containing as little as 6--10 wt% residual oxygen were produced. 38 refs., 82 figs., 26 tabs.

  4. Development of an extruder-feeder biomass direct liquefaction process

    SciTech Connect

    White, D.H.; Wolf, D. . Dept. of Chemical Engineering)

    1991-10-01

    As an abundant, renewable, domestic energy resource, biomass could help the United States reduce its dependence on imported oil. Biomass is the only renewable energy technology capable of addressing the national need for liquid transportation fuels. Thus, there is an incentive to develop economic conversion processes for converting biomass, including wood, into liquid fuels. Through research sponsored by the US DOE's Biomass Thermochemical Conversion Program, the University of Arizona has developed a unique biomass direct liquefaction system. The system features a modified single-screw extruder capable of pumping solid slurries containing as high as 60 wt % wood flour in wood oil derived vacuum bottoms at pressures up to 3,000 psi. By comparison, conventional pumping systems are capable of pumping slurries containing only 10--20 wt % wood flour in wood oil under similar conditions. The extruder-feeder has been integrated with a unique reactor to form a system which offers potential for improving high pressure biomass direct liquefaction technology. The extruder-feeder acts simultaneously as both a feed preheater and a pumping device for injecting wood slurries into a 3,000 psi pressure reactor in the biomass liquefaction process. An experimental facility was constructed during 1983--84. Following shakedown operations, wood crude oil was produced by mid-1985. During the period January 1985 through July 1988, a total of 57 experimental continuous biomass liquefaction runs were made using White Birch wood feedstock. Good operability was achieved at slurry feed rates up to 30 lb/hr, reactor pressures from 800 to 3,000 psi and temperatures from 350{degrees}C to 430{degrees}C under conditions covering a range of carbon monoxide feed rates and sodium carbonate catalyst addition. Crude wood oils containing as little as 6--10 wt % residual oxygen were produced. 43 refs., 81 figs., 52 tabs.

  5. Low severity coal liquefaction promoted by cyclic olefins. Quarterly report, January--March 1994

    SciTech Connect

    Curtis, C.W.

    1994-06-01

    Previous research has suggested that using a more effective hydrogen donor solvent in the low severity coal liquefaction reaction improves coal conversion. In order to understand the results of these methods, both independently and combined, a factorial experiment was designed. Pretreating coal with hydrochloric and sulfurous acid solutions in both water and methanol is compared with pretreating coal using only methanol and with no pretreatment. The effects of these pretreatments on coal liquefaction behavior are contrasted with the ammonium acetate pretreatment. Within each of these, individual reactions are performed with the hydroaromatic 1,2,3,4-tetrahydronaphthalene (tetralin, TET) and the cyclic olefin 1,4,5,8-tetrahydronaphthalene (isotetralin, ISO). The final aspect of the factorial experiment is the comparison of Wyodak subbituminous coal (WY) from the Argonne Premium Sample Bank and Black Thunder subbituminous coal (BT) provided by Amoco. Half of the reactions in the matrix have now been completed. In all but one case, Black Thunder-HCl/H{sub 2}O, the ISO proved to be more reactive than TET. After the other four reactions using this combination are complete, the average conversion may be greater with the cyclic olefin. The second part of this paper describes the current and future work with Fourier transform infrared spectroscopy. The objective of this work is to determine the kinetics of reaction of isotetralin at high temperatures and pressures. This quarter combinations of three products typically produced from isotetralin were used in spectral subtraction.

  6. Catalytic coal liquefaction with treated solvent and SRC recycle

    DOEpatents

    Garg, D.; Givens, E.N.; Schweighardt, F.K.

    1986-12-09

    A process is described for the solvent refining of coal to distillable, pentane soluble products using a dephenolated and denitrogenated recycle solvent and a recycled, pentane-insoluble, solvent-refined coal material, which process provides enhanced oil-make in the conversion of coal. 2 figs.

  7. Catalytic coal liquefaction with treated solvent and SRC recycle

    DOEpatents

    Garg, Diwakar; Givens, Edwin N.; Schweighardt, Frank K.

    1986-01-01

    A process for the solvent refining of coal to distillable, pentane soluble products using a dephenolated and denitrogenated recycle solvent and a recycled, pentane-insoluble, solvent-refined coal material, which process provides enhanced oil-make in the conversion of coal.

  8. Coal liquefaction process using pretreatment with a binary solvent mixture

    DOEpatents

    Miller, Robert N.

    1986-01-01

    An improved process for thermal solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a hydrogen donor solvent comprises pretreating the coal with a binary mixture of an aromatic hydrocarbon and an aliphatic alcohol at a temperature below 300.degree. C. before the hydroliquefaction step. This treatment generally increases both conversion of coal and yields of oil.

  9. Enhancing low severity coal liquefaction reactivity using mild chemical pretreatment. Quarterly technical progress report, December 1991--February 1992

    SciTech Connect

    Shams, K.G.; Miller, R.L.; Baldwin, R.M.

    1992-07-13

    In this paper, we describe results from a study in which mild chemical pretreatment of coal has been used to enhance low severity liquefaction reactivity. We have found that ambient pretreatment of eight Argonne coals using methanol and a trace amount of hydrochloric acid improves THF-soluble conversions 24.5 wt% (maf basis) for Wyodak subbituminous coal and 28.4 wt% for Beulah-Zap lignite with an average increase of 14.9 wt% for liquefaction of the eight coals at 623 K (350{degree}C) reaction temperature and 30 min. reaction time. Similar enhancement results occurred using, hexane or acetone in place of methanol. Pretreatment with methanol and HCI separately indicated that both reagents were necessary to achieve maximum liquefaction improvement. Acid concentration was the most important pretreatment variable studied; liquefaction reactivity increased with increasing acid concentration up to 2 vol%. No appreciable effect on reactivity was observed at higher acid concentrations. Although vapor phase alcohol/HCI mixtures have been shown to partially alkylate bituminous coals, analysis of Wyodak and Illinois {number_sign}6 coal samples indicated that no organic phase alteration occurred during pretreatment; however, over 90 wt% of the calcium was removed from each coal. Calcium is thought to catalyze retrogressive reactions during coal pyrolysis, and thus calcium removal prior to low severity liquefaction minimizes the rate of THF-insoluble product formation.

  10. Non-catalytic transfer hydrogenation in supercritical CO2 for coal liquefaction

    NASA Astrophysics Data System (ADS)

    Elhussien, Hussien

    This thesis presents the results of the investigation on developing and evaluating a low temperature (<150°C) non - catalytic process using a hydrogen transfer agent (instead of molecu-lar hydrogen) for coal dissolution in supercritical CO2. The main idea behind the thesis was that one hydrogen atom from water and one hydrogen atom from the hydrogen transfer agent (HTA) were used to hydrogenate the coal. The products of coal dissolution were non-polar and polar while the supercritical CO2, which enhanced the rates of hydrogenation and dissolution of the non-polar molecules and removal from the reaction site, was non-polar. The polar modifier (PM) for CO2 was added to the freed to aid in the dissolution and removal of the polar components. The addition of a phase transfer agent (PTA) allowed a seamless transport of the ions and by-product between the aqueous and organic phases. DDAB, used as the PTA, is an effective phase transfer catalyst and showed enhancement to the coal dissolution process. COAL + DH- +H 2O → COAL.H2 + DHO-- This process has a great feature due to the fact that the chemicals were obtained without requir-ing to first convert coal to CO and H2 units as in indirect coal liquefaction. The experiments were conducted in a unique reactor set up that can be connected through two lines. one line to feed the reactor with supercritical CO 2 and the other connected to gas chromatograph. The use of the supercritical CO2 enhanced the solvent option due to the chemical extraction, in addition to the low environmental impact and energy cost. In this thesis the experiment were conducted at five different temperatures from atmos-pheric to 140°C, 3000 - 6000 psi with five component of feed mixture, namely water, HTA, PTA, coal, and PM in semi batch vessels reactor system with a volume of 100 mL. The results show that the chemicals were obtained without requiring to first convert coal to CO and H2 units as in indirect coal liquefaction. The results show that

  11. Design, synthesis, and characterization of novel fine-particle, unsupported catalysts for coal liquefaction. Technical progress report, October 25, 1990--October 24, 1991: Draft

    SciTech Connect

    Klein, M.T.

    1991-12-30

    The purpose of this work is to investigate the kinetics-assisted design, synthesis and characterization of fme-pardcle, unsupported catalysts for coal liquefaction. The goal is to develop a fundamental understanding of coal catalysis and catalysts that will, in turn, allow for the specification of a novel optimal catalyst for coal liquefaction.

  12. Coal liquefaction catalyst development. Quarterly progress report No. 3, October 1-December 31, 1979

    SciTech Connect

    Kim, D. K.; Pellet, R. J.; Mahoney, J. A.

    1980-01-01

    Catalytic baseline runs continued with HDS-1442A in order to improve our baseline statistics as well as to monitor batch reactor performance. Testing of several new catalyst formulations was completed. No promising candidates for testing in the continuous aging unit were identified. The new SRC-II slurry oil was evaluated as a hydrogen donor liquefaction solvent. Our data indicates that the SRC-II heavy distillate oil is not as effective a hydrogen donor solvent as the hydrogenated anthracene oil. It is possible that the catalyst plays a key role in the thermal liquefaction reactions by improving the hydrogen donor properties of the slurry oil through in-situ hydrogenation. The differences in liquefaction behavior between Illinois No. 6 and Wyodak coal were determined. A major portion of our effort was concerned with ascertaining the liquefaction behavior of a Western coal such as Wyodak with AMOCAT type catalysts. A two-month program to determine the feasibility of using the Amoco continuous aging unit for SRC-I product upgrading was outlined.

  13. Fundamental studies of coal liquefaction. Quarterly report No. 7, April 1--July 1, 1993

    SciTech Connect

    Ross, D.S.

    1993-07-14

    In our last report we discussed observations in our cell concerning the behavior or Illinois No. 6 coal in tetralin to 460{degrees}C. We noted that there were possibly two distinct types of particles comprising the organic phase, reacting respectively at 420{degrees}--430{degrees}C, and at 450{degrees}--460{degrees}C. Alternatively we could interpret the data as describing a range of reactivity bounded by those temperatures. As evidenced by the contraction of the particles, the reactions were rapid. The particles lost half of their substance within 1 min, and we suggested that the rates were too fast to be accommodated by the commonly held scheme for coal liquefaction involving thermolytic scission of weak, bibenzyl-like bonds. Our analyses were aided by our use of Adobe Photoshop, which allows us to store, digitized versions of our recorded images. The images can then be manipulated at will to provide quantitative data on morphological changes. We noted in our last report that printer limitations prevented us from presenting images with the desirable quality, and we are at present attempting to find access to equipment which will provide satisfactory figures. Accordingly our progress will be described here without any photographs, and we expect to present a more complete account of our work in our next report. The work reported here includes studies of Illinois No. 6 coal with water as the medium, and a control run with argon as medium. Our temperature ramping was like that used last time, 25{degrees}C/min to 250{degrees}C, and then 10{degrees}C/min to 450{degrees}C. The results from the earlier work and the data presented here can therefore be directly compared.

  14. Exploratory research on solvent refined coal liquefaction. Quarterly technical progress report, April 1-June 30, 1979

    SciTech Connect

    1980-07-01

    This report summarizes the progress of the Exploratory Research on Solvent Refined Coal Liquefaction project by The Pittsburgh and Midway Coal Mining Company's Merriam Laboratory for the period April 1, 1979 through June 30, 1979. Experimental work included a number of short residence time runs, but discussion of that work has been delayed until a later report. Experimental work reported focuses on an investigation of the decline in solvent quality experienced by the Wilsonville Pilot Plant during runs in support of the SRC I Demonstration Plant. A four run series was initiated with Wilsonville solvent; both the coal used at Wilsonville (Kentucky 6/11 - Pyro Mine) and Kentucky 9/14 coal from the Colonial Mine were used. The effect of pyrite addition to the Pyro Mine coal was investigated. No solvent quality or coking problems were experienced in the Merriam runs. Significant changes in solvent composition were apparent and equilibrated solvent samples were returned to Wilsonville for solvent quality testing.

  15. Microbial recovery of metals from spent coal liquefaction catalysts. Quarterly report, April--June 1991

    SciTech Connect

    Sperl, P.L.; Sperl, G.T.

    1991-12-31

    This project was initiated on October 1, 1989, for the purpose of recovering metals from spent coal liquefaction catalysts. Two catalyst types are the subject of the contract. The first is a Ni-Mo catalyst supported on alumina (Shell 324) as is used in a pilot scale coal liquefaction facility at Wilsonville, Alabama. A large sample of spent catalyst has been obtained. The second material is an unsupported ammonium molybdate catalyst used in a pilot process by the Department of energy at the Pittsburgh energy Technology Center. The object of the contract is to treat these spent catalysts with microorganisms, especially Thiobacillus ferrooxidans, but also other Thiobacillus sp. and possibly Sulfolobus, to leach and remove the metals (Ni and Mo) from the spent catalysts into a form which can be readily recovered by conventional techniques.

  16. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction. Technical progress report, April--June 1995

    SciTech Connect

    Kirby, S.; Song, Chunshan; Schobert, H.H.

    1995-09-01

    Coal liquefaction involves cleavage of methylene, dimethylene and ether bridges connecting polycyclic aromatic units and the reactions of various oxygen functional groups. Here in this quarterly, we report on our continued effort on hydrodeoxygenation of O-containing polycyclic model compounds using novel organometallic catalyst precursors. Compounds containing oxygen functional groups, especially phenols, are undesirable components of coal-derived liquids. Removal of these compounds from the products of coal liquefaction is required. A beneficial alternative would be the removal of these compounds, or the prevention of their formation, during the liquefaction reaction itself, rather than as a separate processing step. A novel organometallic catalyst precursor containing Co and Mo has been studied as a potential hydrogenation catalyst for coal liquefaction. To ascertain the hydrodeoxygenation activity of this catalyst under liquefaction conditions, model compounds were investigated. Anthrone, 2,6-di-t-butyl-4-methyl-phenol, dinaphthyl ether, and xanthene were reacted in the presence of the Co-Mo catalyst precursor and a precursor containing only Mo over a range of temperatures, providing a comparison of conversions to deoxygenated products. These conversions give an indication of the hydrodeoxygenating abilities of organometallic catalyst precursors within a coal liquefaction system. For example, at 400{degrees}C dinaphthylether was converted 100% (4.5% O-containing products) in the presence of the Co-Mo organometallic precursor, compared to 76.5% conversion (7.4% O-products) in the presence of the Mo catalyst.

  17. Coal liquefaction process using pretreatment with a binary solvent mixture

    DOEpatents

    Miller, R.N.

    1986-10-14

    An improved process for thermal solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a hydrogen donor solvent comprises pretreating the coal with a binary mixture of an aromatic hydrocarbon and an aliphatic alcohol at a temperature below 300 C before the hydroliquefaction step. This treatment generally increases both conversion of coal and yields of oil. 1 fig.

  18. Study on microwave induced pyrolysis of low metamorphic coal and liquefaction residue

    NASA Astrophysics Data System (ADS)

    Li, Zhao; Wu, Kunyao; Cao, Jing; Wang, Yongfeng

    2017-05-01

    This paper mainly studies pyrolysis characteristic in the different heating of microwave of low metamorphic coal and Liquefaction Residue, which was focused on the effects of particle sizes, pyrolysis reaction time, and microwave powers. The product are analyzed by Gas chromatography- mass spectrometry (GC-MS), etc. The results showed that when heating time is 40 min and 800 W, yield of tar is about 15.51%.

  19. Potential terrestrial fate and effects on soil biota of a coal liquefaction product spill

    SciTech Connect

    Strayer, R.F.; Edwards, N.T.; Walton, B.T.; Charles-Shannon, V.

    1983-01-01

    Contaminated soil samples collected from the site of a coal liquefaction product spill were used to study potential fates and effects of this synthetic fuel. Simulated weathering in the laboratory caused significant changes in residual oil composition. Soil column leachates contained high phenol levels that decreased exponentially over time. Toxicity tests demonstrated that the oil-contaminated soil was phytotoxic and caused embryotoxic and teratogenic effects on eggs of the cricket Acheta domesticus.

  20. Advanced Direct Liquefaction Concepts for PETC Generic Units - Phase II

    SciTech Connect

    1997-12-01

    The results of Laboratory and Bench-Scale experiments and supporting technical and economic assessments conducted under DOE Contract No. DE-AC22-91PC91040 are reported for the period July 1, 1997 to September 30, 1997. This contract is with the University of Kentucky Research Foundation which supports work with the University of Kentucky Center for Applied Energy Research, CONSOL, Inc., LDP Associates, and Hydrocarbon Technologies, Inc. This work involves the introduction into the basic two stage liquefaction process several novel concepts which include dispersed lower-cost catalysts, coal cleaning by oil agglomeration, and distillate hydrotreating and dewaxing. Results are reported from experiments in which various methods were tested to activate dispersed Mo precursors. Several oxothiomolybdates precursors having S/Mo ratios from two to six were prepared. Another having a S/Mo ratio of eleven was also prepared that contained an excess of sulfur. In the catalyst screening test, none of these precursors exhibited an activity enhancement that might suggest that adding sulfur into the structure of the Mo precursors would be beneficial to the process. In another series of experiments, AHM impregnated coal slurried in the reaction mixture was pretreated withH S/H under pressure and successively heated for 30 min at 120, 250 2 2 and 360 C. THF conversions in the catalyst screening test were not affected while resid conversions o increased such that pretreated coals impregnated with 100 ppm Mo gave conversions equivalent to untreated coals impregnated with 300 ppm fresh Mo. Cobalt, nickel and potassium phosphomolybdates were prepared and tested as bimetallic precursors. The thermal stability of these compounds was evaluated in TG/MS to determine whether the presence of the added metal would stabilize the Keggin structure at reaction temperature. Coals impregnated with these salts showed the Ni and Co salts gave the same THF conversion as PMA while the Ni salt gave higher

  1. Relationship of liquefaction behavior of a set of high-sulfur coals to chemical structural characteristics

    SciTech Connect

    Neill, P.H.

    1985-01-01

    The aim of this research project was to use empirical mathematical relationships to formulate a better understanding of the processes involved in the liquefaction of a set of medium rank high sulfur coals. These coals were chosen because previous work had shown that similar samples tended to exhibit high liquefaction yields. Additionally it appeared that rank, organic and pyritic sulfur were important structural parameters in the liquefaction process. About 50 structural parameters and yields of product classes were determined. The structural parameters included distribution of acids produced by oxidation with trifluoroperoxyacetic acid, aromaticity as determined by CP/MAS TC nmr spectroscopy, intensity of aliphatic and aromatic C-H absorptions measured by FTIR, infrared absorption due to carbonyl in acetylated coals, and the high and low temperature ash yields. The product classes determined included total conversion, conversion to asphaltenes, oils, and gases. The gases were further analyzed by gas chromatography for hydrocarbons, CO, CO2, H2S and hydrocarbons, and the hexane-soluble oils were separated into saturate, aromatic and polar fractions by HPLC.

  2. Effects of the components of coal hydro-liquefaction residue on its rheological characteristics

    SciTech Connect

    Ren, Y.; Jin, S.; Xu, Y.; Wei, A.; Zhang, D.; Gao, J.

    2009-07-01

    Four kinds of typical coal liquefaction residue samples, coming from Shenhua coal liquefaction pilot plant, were used to investigate the effects of components of residue, separation time, and temperature on its rheological characteristics. Coal liquefaction residue is a non-Newtonian pseudoplastic fluid whose apparent viscosity decreases with increasing shear rate. Moreover, the residue has high viscosity at the initial softening temperature, and its viscosity drops greatly with increasing temperature. The oil content in residue has a great effect on the decline of the apparent viscosity of residue. The asphaltene can increase the apparent viscosity at lower temperatures but decrease it at higher temperatures. However, the solid only increases the apparent viscosity as it can be neither softened nor dissolved to become fluid. After simulating the separation condition, it is found that prolonging the separation time and enhancing the separation temperature will increase the apparent viscosity of residue, which is bad for preventing pipes from being blocked. So choosing the right separation time and separation temperature is necessary to actual industrial production.

  3. Liquefaction and desulfurization of coal using synthesis gas

    DOEpatents

    Fu, Yuan C.

    1977-03-08

    A process for desulfurizing and liquefying coal by heating said coal at a temperature of 375.degree.-475.degree. C in the presence of a slurry liquid, hydrogen, carbon monoxide, steam, and a catalyst comprising a desulfurization catalyst and an alkali metal salt.

  4. Novel nanodispersed coal liquefaction catalysts: Molecular design via microemulsion-based synthesis

    SciTech Connect

    Osseo-Asare, K.; Radovic, L.R.

    1991-07-01

    The objective of this project is to pursue the development of highly dispersed and inexpensive catalysts for improved coal solubilization and upgrading of coal liquids. A novel study of the synthesis of liquefaction catalysts of nanometer size will be carried out. It is based on the molecular design of reverse micelles (microemulsions). These surfactant-stabilized, metal-bearing microdrops offer unique opportunities for synthesizing very small particles by providing a cage-like effect that limits particle nucleation, growth and agglomeration. The emphasis will be on iron- and molybdenum-based catalysts, but the techniques to be developed should also be generally applicable. (VC)

  5. Novel nanodispersed coal liquefaction catalysts: Molecular design via microemulsion-based synthesis

    SciTech Connect

    Osseo-Asare, K.; Radovic, L.R.

    1991-02-01

    The objective of this project is to pursue the development of highly dispersed and inexpensive catalysts for improved coal solubilization and upgrading of coal liquids. A novel study of the synthesis of liquefaction catalysts of nanometer size will be carried out. It is based on the molecular design of reverse micelles (microemulsions). These surfactant-stabilized, metal-bearing microdrops offer unique opportunities for synthesizing very small particles by providing a cage-like effects that limits particle nucleation, growth and agglomeration. The emphasis will be on iron- and molybdenum-based catalysts, but the techniques to be developed should also be generally applicable.

  6. Novel nanodispersed coal liquefaction catalysts: Molecular design via microemulsion-based synthesis

    SciTech Connect

    Osseo-Asare, K.; Boakye, E.; Vaidyanathan, N.; Radovic, L.R.

    1992-04-01

    The objective of this project is to pursue the development of highly dispersed and inexpensive catalysts for improved coal solubilization and upgrading of coal liquids. A novel study of the synthesis of liquefaction catalysts of nanometer size will be carried out. It is based on the molecular design of reverse micelles (microemulsions). These surfactant-stabilized, metal-bearing microdrops offer unique opportunities for synthesizing very small particles by providing a cage-like effect that limits particle nucleation, growth and agglomeration. The emphasis will be on iron- and molybdenum-based catalysts, but the techniques to be developed should also be generally applicable. (VC)

  7. Mutagenicity of products from coal gasification and liquefaction in the Salmonella/microsome assay.

    PubMed

    Schoeny, R; Warshawsky, D; Hollingsworth, L; Hund, M; Moore, G

    1981-01-01

    As a first step in the assessment of their possible bio-effects, coal-related materials were tested for mutagenicity in the Salmonella/microsome assay. Of three coal gasification by-products tested, only a tar was mutagenic for any of four Salmonella strains. The following liquefaction materials were mutagenic for strains TA1538, TA98, and/or TA100: A liquefaction vehicle oil and coal hydrogenation filtered liquid, separated bottoms, vacuum overhead, and vacuum bottoms. Neither powdered coal nor water produced as a by-product of the hydrogenation process was positive in the Salmonella test. No coal-related material was mutagenic for the missense mutant TA1535 or for any strain in the absence of metabolic activation provided by rat hepatic homogenates (S9). In all but one instance Aroclor 1254-induced S9 provided the maximum activation for mutagenesis. Fractionation of all samples was undertaken by serial extraction with organic solvents of increasing polarity (hexane, toluene, methylene chloride, acetonitrile). Highly mutagenic materials were found in fractions of the hydrogenation filtered liquid, vacuum overhead, and vacuum bottoms. Thus far non-mutagenic samples have not yielded mutagenic components upon fractionation.

  8. Low severity coal liquefaction promoted by cyclic olefins. Quarterly report, October--December 1992

    SciTech Connect

    Curtis, C.W.

    1992-12-31

    Low severity coal liquefaction promoted by cyclic olefins offers a means of liquefying coal at low severity conditions. Lower temperature, 350{degrees}C, and lower hydrogen pressure, 500 psi, have been used to perform liquefaction reactions. The presence of the cyclic olefin, hexahydroanthracene, made a substantial difference in the conversion of Illinois No. 6 coal at these low severity conditions. The Researchperformed this quarter was a parametric evaluation of the effect of different parameters on the coal conversion and product distribution from coal. The effect of the parameters on product distribution from hexahydroanthracene was also determined. The work planned for next quarter includes combining the most effective parametric conditions for the low severity reactions and determining their effect. The second part ofthe research performed this quarter involved performing Fourier transform infrared (FTIR) spectroscopy using cyclic olefins. The objective of this study was to determine the feasibility of using FTIR and a heated cell to determine the reaction pathway that occurs in the hydrogen donation reactions from cyclic olefins. The progress made to date includes evaluating the FTIR spectra of cyclic olefins and their expected reaction products. This work is included in this progress report.

  9. Studies of the effect of selected nondonor solvents on coal liquefaction yields

    SciTech Connect

    Jolley, R. L.; Rodgers, B. R.; Benjamin, B. M.; Poutsma, M. L.; Douglas, E. C.; McWhirter, D. A.

    1983-09-01

    The objective of this research program was to evaluate the effectiveness of selected nondonor solvents (i.e., solvents that are not generally considered to have hydrogen available for hydrogenolysis reactions) for the solubilization of coals. Principal criteria for selection of candidate solvents were that the compound should be representative of a major chemical class, should be present in reasonable concentration in coal liquid products, and should have the potential to participate in hydrogen redistribution reactions. Naphthalene, phenanthrene, pyrene, carbazole, phenanthridine, quinoline, 1-naphthol, and diphenyl ether were evaluated to determine their effect on coal liquefaction yields and were compared with phenol and two high-quality process solvents, Wilsonville SRC-I recycle solvent and Lummus ITSL heavy oil solvent. The high conversion efficacy of 1-naphthol may be attributed to its condensation to binaphthol and the consequent availability of hydrogen. The effectiveness of both the nitrogen heterocycles and the polycyclic aromatic hydrocarbon (PAH) compounds may be due to their polycyclic aromatic nature (i.e., possible hydrogen shuttling or transfer agents) and their physical solvent properties. The relative effectiveness for coal conversion of the Lummus ITSL heavy oil solvent as compared with the Wilsonville SRC-I process solvent may be attributed to the much higher concentration of 3-, 4-, and 5-ring PAH and hydroaromatic constituents in Lummus solvent. The chemistry of coal liquefaction and the development of recycle, hydrogen donor, and nondonor solvents are reviewed. The experimental methodology for tubing-bomb tests is outlined, and experimental problem areas are discussed.

  10. (Pittsburgh Energy Technology Center): Quarterly technical progress report for the period ending June 30, 1987. [Advanced Coal Research and Technology Development Programs

    SciTech Connect

    1988-02-01

    Research programs on coal and coal liquefaction are presented. Topics discussed are: coal science, combustion, kinetics, surface science; advanced technology projects in liquefaction; two stage liquefaction and direct liquefaction; catalysts of liquefaction; Fischer-Tropsch synthesis and thermodynamics; alternative fuels utilization; coal preparation; biodegradation; advanced combustion technology; flue gas cleanup; environmental coordination, and technology transfer. Individual projects are processed separately for the data base. (CBS)

  11. Cooperative research in coal liquefaction. Final report, May 1, 1992--April 30, 1993

    SciTech Connect

    Huffman, G.P.

    1996-03-01

    Research on sulfate and metal (Mo, Sn) promoted Fe{sub 2}O{sub 3} catalysts in the current year focused on optimization of conditions. Parameters varied included temperature, solvent, solvent-to-coal ratio, and the effect of presulfiding versus in situ sulfiding. Oil yields were found to increase approximately proportionately with both temperature and solvent-to-coal ratio. The donor solvent, tetralin, proved to give better total conversion and oil yields than either 1-methylnaphthalene or Wilsonville recycle oil. A significant enhancement of both total liquefaction yields and oil yields from lignites and subbituminous coals has been achieved by incorporating iron into the coal matrix by cation exchange. A study has been conducted on the synthesis of iron, molybdenum, and tungsten catalysts using a laser pyrolysis technique.

  12. Indirect liquefaction of coal. [Coal gasification plus Fischer-Tropsch, methanol or Mobil M-gasoline process

    SciTech Connect

    1980-06-30

    The most important potential environmental problems uniquely associated with indirect liquefaction appear to be related to the protection of occupational personnel from the toxic and carcinogenic properties of process and waste stream constituents, the potential public health risks from process products, by-products and emissions and the management of potentially hazardous solid wastes. The seriousness of these potential problems is related partially to the severity of potential effects (i.e., human mortality and morbidity), but even more to the uncertainty regarding: (1) the probable chemical characteristics and quantities of process and waste streams; and (2) the effectiveness and efficiencies of control technologies not yet tested on a commercial scale. Based upon current information, it is highly improbable that these potential problems will actually be manifested or pose serious constraints to the development of indirect liquefaction technologies, although their potential severity warrants continued research and evaluation. The siting of indirect liquefaction facilities may be significantly affected by existing federal, state and local regulatory requirements. The possibility of future changes in environmental regulations also represents an area of uncertainty that may develop into constraints for the deployment of indirect liquefaction processes. Out of 20 environmental issues identified as likely candidates for future regulatory action, 13 were reported to have the potential to impact significantly the commercialization of coal synfuel technologies. These issues are listed.

  13. Novel nanodispersed coal liquefaction catalysts: Molecular design via microemulsion-based synthesis. Final technical report, October 1990--December 1994

    SciTech Connect

    Osseo-Asare, K.; Boakye, E.; Vittal, M.

    1995-04-01

    This report described the synthesis of Molybdenum Sulfides in microemulsions by acidification of ammonium tetrathiomolybdate. Molybdenum Sulfides have been shown to be potential coal liquefaction catalysts. The importance of particle size, temperature effects, and coal surface chemistry to impregnation are discussed.

  14. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction. Technical progress report, October--December 1992

    SciTech Connect

    Song, Chunshan; Schobert, H.H.

    1993-02-01

    Development of new catalysts is a promising approach to more efficient coal liquefaction. It has been recognized that catalysts are superior to supported catalysts for primary liquefaction of coals, because the control of initial coal dissolution or depolymerization requires intimate contact between the catalyst and coal. This research is a fundamental and exploratory study on catalytic coal liquefaction, with the emphasis on the development of novel bimetallic dispersed catalysts for temperature-programmed liquefaction. The ultimate goal of the present research is to develop novel catalytic hydroliquefaction process using highly active dispersed catalysts. The primary objective of this research is to develop novel bimetallic dispersed catalysts from organometallic molecular that can be used in low precursors concentrations (< 1 %) but exhibit high activity for efficient hydroliquefaction of coals under temperature-programmed conditions. The major technical approaches are, first, to prepare the desired heteronuclear organometallic molecules as catalyst precursors that contain covalently bound, two different metal atoms and sulfur in a single molecule. Such precursors will generate finely dispersed bimetallic catalysts such as Fe-Mo, Co-Mo and Ni-Mo binary sulfides upon thermal decomposition. The second major technical approach is to perform the liquefaction of coals unpregnated with the organometallic precursors under temperature-programmed conditions, where the programmed heat-up serves as a step for both catalyst activation and coal pretreatment or preconversion. Two to three different complexes for each of the Fe-Mo, Co-Mo, and Ni-Mo combinations will be prepared. Initial catalyst screening tests will be conducted using a subbituminous coal and a bituminous coal. Effects of coal rank and solvents will be examined with the selected bimetallic catalysts which showed much higher activity than the dispersed catalysts from conventional precursors.

  15. Fundamental Kinetics of Supercritical Coal Liquefaction: Effect of Catalysts and Hydrogen-Donor Solvents

    SciTech Connect

    McCoy, Ben J; Madras, Girodhar; Smith, J M; Kodera, Yoichi

    1997-04-16

    This is the quarterly report on our recent progress toward the overall objective to understand the supercritical fluid extraction of hydrocarbons from coal. Our strategy is to simulate coal as a high molecular-weight polymeric material by studying the degradation of polymers under various conditions. The hypothesis we are testing is that degradation of such macromolecules is applicable to the decomposition (depolymerization) of the coal network. Polymer degradation and coal liquefaction are influenced strongly by the solvent in the reaction. This motivated our investigation of the effect of hydrogen donor solvents on polymer degradation. In particular, we obtained new experimental data to show how a hydrogen donor, 6-hydroxy tetralin, influences the degradation rate of polystyrene. We also developed a detailed radical mechanism for hydrogen donation based on the Rice-Herzfeld chain reaction concept with the elementary steps of initiation, depropagation, hydrogen abstraction, and termination. Expressions for the degradation rate parameters were obtained by applying continuous distribution kinetics to the MWD of the reacting polymer. The theory explains the different influences of the hydrogen donor solvent on the degradation rate coefficients for different polymers. Though developed for the degradation of polymers, the mechanism and the theory are potentially applicable for chain scission and addition reactions among distributions of paraffins, olefins, and radicals of all chain lengths. The concepts can, in principle, be extended to examine the effect of hydrogen donors on coal liquefaction and on the complex mixture of liquefaction compounds. Based on this work, a research paper titled "Effect of Hydrogen Donors on Polymer Degradation", has been submitted for publication. Our research paper entitled, "Molecular weight effect on the dynamics of polystyrene degradation", has been accepted for publication by the journal, Industrial and Engineering Chemistry Research.

  16. Coal liquefaction process streams characterization and evaluation. Chromatographic and spectroscopic techniques

    SciTech Connect

    Taylor, L.T.; Hellgeth, J.W.; Sequeira, A.

    1992-01-01

    This study was designed to demonstrate the use of two different methods for the separation of direct coal liquefaction process- derived materials into defined fractions. The two methods, liquid chromatography (LC) and supercritical fluid extraction (SFE), were employed to determine if the same or complementary information could be obtained by the two methods. The primary objective was to evaluate the potential of supplementing or replacing the conventional LC method with SFE and in so doing to exploit the advantages of SFE. A solvent density gradient can be employed in SFE in much the same way that a gradient of solvent strength or polarity is employed in LC. Alternatively, modifiers or co-solvents can be used in SFE to change the extraction properties of the primary solvent. Potential advantages of SFE over LC include: a relatively low amount of solvent is necessary to effect separation, SFE solvents are usually non-flammable and non-toxic, solvent disposal problems are minimized, separation is frequently faster. (VC)

  17. Quarterly report: Pumps-status of slurry pumps in coal liquefaction processes. Third quarter - CY 1981

    SciTech Connect

    1996-07-01

    This paper summarizes recent slurry pumps (centrifugal and reciprocal) operating experience in the liquefaction pilot plants. In addition, the activities concerning slurry pumps conducted in supporting research facilities are also noted. The purpose of the summary is to concentrate on the critical component problems common to all the liquefaction plants to avoid duplication of efforts, and to help provide timely solutions to the pump problems. The summary information used in this paper was obtained primarily from the Critical Component and Materials Meetings which are sponsored by the Office of Coal Processing of the Fossil Energy. The Department of Energy. Information from various Technical Reports published by the liquefaction plant personnel are also reviewed based on availability and relevance to topics covered in this report. It is intended that this report will be followed by updates as pertinent information concerning problem pumps becomes available. The following section s of the paper will provide a brief outline of early slurry pump experience as background material followed by a summary of recent slurry pump operating experience at liquefaction pilot plants.

  18. The dual role of oxygen functions in coal pretreatment and liquefaction: Crosslinking and cleavage reactions. First annual report, April 1, 1991--March 31, 1992

    SciTech Connect

    Serio, M.A.; Kroo, E.; Teng, H.; Charpenay, S.; Solomon, P.R.

    1992-08-01

    The overall objective of this project is elucidate and model the dual role of oxygen functions in thermal pretreatment and liquefaction of low rank coals through the application of analytical techniques and theoretical models. The project will be an integrated study of model polymers representative of coal structures, raw coals of primarily low rank, and selectivity modified coals in order to provide specific information relevant to the reactions of real coals. The investigations will include liquefaction experiments in microautoclave reactors along with extensive analysis of intermediate solid, liquid and gaseous products. Attempts will be made to incorporate the results of experiments on the different systems into a liquefaction model.

  19. Effect of coal liquefaction conditions on the composition of the product oil

    SciTech Connect

    Karaca, H.

    2006-12-15

    Two methods, catalyst physically mixing method (method I) and catalyst impregnation method (method II) were employed for Beypazari and Tuncbilek lignites liquefaction. Fe{sub 2}O{sub 3} and Mo(CO){sub 6} were used as the catalysts. Oils obtained at the end of the catalytic coal liquefaction were qualitatively analyzed by gas chromatography (GC). With solvent/coal ratio increase, compounds with straight chain and high molecular weight were formed. Likewise, as the reaction time and catalyst concentration were increased, the number and the intensity of the compounds in the oils increased partially. Due to the increase in the reaction time, temperature and catalyst concentration, the oils were enriched in straight chain alkanes and aromatic polycyclic compounds. However, alkanes with straight chain were reduced by the effect of pyrolysis at temperatures over 400{sup o}C. Retention times of the compounds obtained by method II were higher than those of the compounds obtained by method I. Respectively, the compounds in the oils obtained by method II were found to have been composed by high quantities of high molecular straight chain alkanes and aromatic polycyclic compounds. Our data gave us ground to presume that the oils from both lignites were composed by straight chain alkanes and aromatic polycyclic compounds (tetralin, naphthalene and their derivatives, phenols, xylenols, biphenyl, naphthols, etc.). The oil compositions were strongly influenced by the liquefaction conditions.

  20. Advanced direct liquefaction concepts for PETC generic units. Quarterly technical progress report, October 1992--December 1992

    SciTech Connect

    Not Available

    1993-02-01

    The reactivity of the THF insoluble fraction of the ashy resid component of Wilsonville recycle oil (WRO) during liquefaction of Black Thunder coal in tetralin was determined at 415{degrees}C and 60 minutes. The liquefaction runs were made by combining this material with Black Thunder coal at the same ratio used in the WRO coal runs. THF conversion and product distribution from liquefaction in tetralin in the presence of the THF insoluble fraction of the ashy resid were similar to results from liquefaction in WRO. THF conversion was greater than loot with an oil yield that was somewhat higher than in WRO. Differences in HC gas yield and H{sub 2} consumption were slight, while conversion and product distribution from liquefaction of Black Thunder coal in tetralin or in the WRO distillate were quite different. In both these solvents the 85--86% THF conversions were less than for runs in which the THF insoluble fraction of the ashy resid was present. This establishes that the THF insoluble fraction of the ashy resid is the reactive fraction of the WRO.

  1. Low severity coal liquefaction promoted by cyclic olefins. Quarterly report, April--June 1992

    SciTech Connect

    Curtis, C.W.

    1992-07-27

    Low severity coal liquefaction allows for solubilization of coal with reduced gas make. These lower severity conditions may result in some selective bond rupture. Promotion of coal solubilization through hydrogen transfer using highly active and effective hydrogen donors is the objective of this study. The highly effective donors being tested are cyclic olefins. Representative cyclic olefins are isotetralin, which is 1,4,5,8-tetrahydronaphthalene, and 1,4,5,8,9,10-hexahydroanthracene. These compounds are hydroaromatics without aromatic rings and have been shown to be highly effective donors. The objective of the work performed in this study during this quarter was to evaluate reaction parameters for low severity liquefaction reactions using the cyclic olefin, hexahydroanthracene, and the aromatic, anthracene. These model compounds were reacted under a variety of conditions to evaluate their reactivity without coal. The reactions were performed under both thermal and catalytic conditions. Finely divided catalysts from different molybdenum precursors were used to determine their activity in promoting hydrogenation and hydrogen transfer at low severity conditions. The catalysts used were Molyvan L, sulfurized oxymolybdenum dithiocarbamate, molybdenum naphthenate, and Molyvan 822, organo molybdenum dithiocarbamate.

  2. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Volume 2, appendices. Final technical report, October 1, 1991--September 30, 1994

    SciTech Connect

    Curtis, C.W.; Chander, S.; Gutterman, C.

    1995-04-01

    Liquefaction experiments were undertaken using subbituminous Black Thunder mine coal to observe the effects of aqueous SO{sub 2} coal beneficiation and the introduction of various coal swelling solvents and catalyst precursors. Aqueous SO{sub 2} beneficiation of Black Thunder coal removed alkali metals and alkaline earth metals, increased the sulfur content and increased the catalytic liquefaction conversion to THF solubles compared to untreated Black Thunder coal. The liquefaction solvent had varying effects on coal conversion, depending upon the type of solvent added. The hydrogen donor solvent, dihydroanthracene, was most effective, while a coal-derived Wilsonville solvent promoted more coal conversion than did relatively inert 1-methylnaphthalene. Swelling of coal with hydrogen bonding solvents tetrahydrofuran (THF), isopropanol, and methanol, prior to reaction resulted in increased noncatalytic conversion of both untreated and SO{sub 2} treated Black Thunder coals, while dimethylsulfoxide (DMSO), which was absorbed more into the coal than any other swelling solvent, was detrimental to coal conversion. Swelling of SO{sub 2} treated coal before liquefaction resulted in the highest coal conversions; however, the untreated coal showed the most improvements in catalytic reactions when swelled in either THF, isopropanol, or methanol prior to liquefaction. The aprotic solvent DMSO was detrimental to coal conversion.

  3. Bimetallic promotion of cooperative hydrogen transfer and heteroatom removal in coal liquefaction. Quarterly summary, June 1, 1991--August 31, 1991

    SciTech Connect

    Eisch, J.J.

    1991-10-01

    The ultimate objective of this research is to uncover new catalytic processes for the liquefaction of coal and for upgrading coal-derived fuels by removing undesirable organosulfur, organonitrogen and organooxygen constituents. Basic to both the liquefaction of coal and the purification of coal liquids is the transfer of hydrogen from such sources as dihydrogen, metal hydrides or partially reduced aromatic hydrocarbons to the extensive aromatic rings in coal itself or to aromatic sulfides, amines or ethers. Accordingly, this study is exploring how such crucial hydrogen-transfer processes might be catalyzed by soluble, low-valent transition metal complexes and/or Lewis acids under moderate conditions of temperature and pressure. By learning the mechanism whereby H{sub 2}, metal hydrides or partially hydrogenated aromatics do transfer hydrogen to model aromatic compounds, with the aid of homogeneous, bimetallic catalysts, we hope to identify new methods for producing superior fuels from coal.

  4. Exploratory research on solvent refined coal liquefaction. Quarterly technical progress report, January 1, 1980-March 31, 1980

    SciTech Connect

    Not Available

    1982-01-01

    This report summarizes the progress of the Exploratory Research on Solvent Refined Coal Liquefaction project by The Pittsburg and Midway Coal Mining Co.'s Merriam Laboratory for the period January 1, 1980 through March 31, 1980. A series of experiments was conducted with three western coals to study the relationship between coal properties and liquefaction behavior. All three coals were low in iron (0.2 to 0.4%, dry coal basis) and processing in both the SRC I and SRC II modes does not appear to be feasible at normal conditions without added catalyst. Adding 1 to 2% pyrite to the feed slurry increased oil yields considerably while reducing SRC and IOM yields and improved operability. Product quality was also generally improved by the catalyst. Operability and oil yields were generally found to be better at 450/sup 0/C than at 465/sup 0/C.

  5. DOE Contracts to Demonstrate Coal Liquefaction Adequately Protect Government Interests.

    DTIC Science & Technology

    1981-08-17

    aed AGendes , COmn~ OnApC"a~n Haus Of Rpsnale II DOECOracts -Dofemntte Coal .okwit Refined Coal I and Solvent Refined CodII mwe processes for converting...79ET10104 and DE-AC01-79ET14800, with the provision that the minimum contractor rights set forth in the demonstration con- tract and the foreign...procedures set forth in the SRC II demonstration contract. Under the second option, the contractor would receive no return from the Government of any of its

  6. A structural investigation of the effect of catalysis on the liquefaction products of a brown and a bituminous Australian Coal

    SciTech Connect

    Strachan, M.G.; Johns, R.B.; Vassallo, A.M.

    1983-01-01

    The paper reports a study comparing the effects of a single catalyst, Co/Mo, on two Australian coals of different rank at their uncatalyzed optimal oil yield temperatures under donor solvent conditions. It was considered more appropriate to compare the products from the two coals at their respective optimal oil yield temperatures rather than at the same temperature. The former accounts and compensates for differing thermal reactivities with rank, thereby allowing a direct comparison of product qualities to be made. The coals used for the study were a Victorian brown coal, LY1277, from the Loy Yang Field, a medium-light lithotype, and a N.S.W. high volatile bituminous coal from the Liddell Field. They were chosen because of their known liquefaction potential. They were reacted at 375/sup 0/C and 425/sup 0/C respectively, in batch autoclaves using a solvent (tetralin) coal ratio of 2:1, a catalyst concentration of 10% w/w coal and were reacted for 2 hours at temperature. The total liquid product (TLP) (defined as CH/sub 2/Cl/sub 2/ solubles) was fractionated by a separation method designed specifically to separate by functionality into chemically defined classes viz. acids, bases and neutrals. This method utilizes a sequence of ion-exchange resins and silica adsorption chromatography. A feature of the method is that it does not remove the donor solvent until all the polar material is absent, hence alleviating the risk of thermal alteration of the samples as may occur with an initial dissolution step. The method is very effective in class separation.

  7. DIRECT LIQUEFACTION PROOF-OF-CONCEPT PROGRAM - BENCH RUN PB-10 (HTI 227-109)

    SciTech Connect

    Unknown

    1999-12-30

    This report presents the results of the bench-scale test, PB-10, performed at HTI's facilities under DOE contract (HTI Run No. 227-109). This bench test continues the work that was started in PDU testing 260-007. Previous bench test (PB-09, HTI 227-106) was performed on different seams of Chinese coal (Shenhua Ningtiaota Coal No.2 and No.3). Since another coal, Shangwan coal was selected for the liquefaction plant, PB-10 was made as approved by DOE/COR. The objective of this test was to evaluate the liquefaction performance of Shangwan coal utilizing various backend processing and recycle schemes. Additionally, this test was to collect available process data to allow for the best scale-up process design possible from this particular unit.

  8. Coal liquefaction process streams characterization and evaluation. Characterization of coal-derived materials by field desorption mass spectrometry, two-dimensional nuclear magnetic resonance, supercritical fluid extraction, and supercritical fluid chromatography/mass spectrometry

    SciTech Connect

    Campbell, J.A.; Linehan, J.C.; Robins, W.H.

    1992-07-01

    Under contract from the DOE , and in association with CONSOL Inc., Battelle, Pacific Northwest Laboratory (PNL) evaluated four principal and several complementary techniques for the analysis of non-distillable direct coal liquefaction materials in support of process development. Field desorption mass spectrometry (FDMS) and nuclear magnetic resonance (NMR) spectroscopic methods were examined for potential usefulness as techniques to elucidate the chemical structure of residual (nondistillable) direct coal liquefaction derived materials. Supercritical fluid extraction (SFE) and supercritical fluid chromatography/mass spectrometry (SFC/MS) were evaluated for effectiveness in compound-class separation and identification of residual materials. Liquid chromatography (including microcolumn) separation techniques, gas chromatography/mass spectrometry (GC/MS), mass spectrometry/mass spectrometry (MS/MS), and GC/Fourier transform infrared (FTIR) spectroscopy methods were applied to supercritical fluid extracts. The full report authored by the PNL researchers is presented here. The following assessment briefly highlights the major findings of the project, and evaluates the potential of the methods for application to coal liquefaction materials. These results will be incorporated by CONSOL into a general overview of the application of novel analytical techniques to coal-derived materials at the conclusion of CONSOL`s contract.

  9. Letdown valve (anti eroded type for slurry use) on 150 t/d coal liquefaction pilot plant

    SciTech Connect

    Kamada, Mitsushi; Kobayashi, Masatoshi; Yoshida, Haruhiko; Yamagiwa, Hisashi

    1999-07-01

    The letdown valve developed by NEDO has been tested on the 150 t/d coal liquefaction pilot plant using the NEDOL process for more than 6,000 hours of on-coal operation. Several factors affecting the damage of the letdown valve that handled a fluid containing coal-derived oil, catalyst and residue including ash have been evaluated. The countermeasure for the damage has been studied to develop an advanced letdown valve to be used demonstration plant.

  10. Catalytic coal liquefaction. Quarterly report, October-December 1982

    SciTech Connect

    Weller, S.W.

    1983-01-01

    The catalysis of hydrogen transfer from tetralin to coal has been investigated in a tubing bomb and in an autoclave, in the absence of added hydrogen gas. On the basis of naphthalene production in tubing bomb experiments, many metals apparently increase hydrogen transfer from tetralin. Blank experiments with powdered catalyst but no coal indicate that only stannous chloride and ammonium heptamolybdate have a large effect. In the case of the molybdenum catalyst, even this effect is suspect, because blank runs with molybdate dispersed on an alumina carrier (itself non-catalytic) result in greatly increased dissociation of tetralin to naphthalene and gaseous hydrogen. Coal acts as a high-area carrier for impregnated catalyst. Thermodynamic considerations of tetralin dissociation are helpful in understanding significant differences between tubing bomb and autoclave results. When the gas:liquid volume ratio is relatively high, as in a tubing bomb, tetralin dissociation will be relatively small and equilibrium hydrogen pressure relatively high. The reverse may be true in an autoclave. Both factors lead to the expectation of higher coal conversion in a tubing bomb, in agreement with experiment.

  11. Slurry Phase Iron Catalysts for Indirect Coal LIquefaction.

    SciTech Connect

    Datye, A.K.

    1997-08-08

    This report covers the fourth six month period of this three year grant under the University Coal Research program. During this period, we have begun the synthesis of precipitated catalysts using a bench-top spray dryer. The influence of binders on particle strength was also studied using the ultrasonic fragmentation approach to derive particle breaking stress. A similar approach was used to derive particle strength of catalysts obtained from Mr. Robert Gormley at FETC. Over the next six month period, this work will be continued while the catalysts prepared here will be examined by TPR to determine reducibility and the extent of adverse iron-silica interactions. A fundamental study of Fe/silica interactions has been performed using temperature programmed reaction and TEM to provide understanding of how the silica binders influence the activity of Fe catalysts. To understand differences in the reducibility of the iron phase caused by silica, we have set up a temperature programmed reduction facility. TPR in H, as well as in CO was performed of Fe/ SiO, catalysts prepared by impregnation as well as by precipitation. What is unique about these studies is that high resolution TEM was performed on samples removed from the reactor at various stages of reduction. This helps provide direct evidence for the phase changes that are detected by TPR. We have continued the analysis of catalysts received from slurry reactor runs at Texas A&M university (TAMU) and the University of Kentucky Center for Applied Energy Research (CAER) by x-ray diffraction. The purpose of the XRD analysis was to determine the phase composition of catalysts derived from a slurry reaction run using Fe Fischer-Tropsch catalysts. We had previously described how catalyst removed in the hot wax may oxidize to magnetite if the wax is air-exposed. We have now received catalysts from CAER that were removed under a protective inert blanket, and we are in the process of analyzing them, but preliminary work

  12. Catalytic reforming of naphtha from liquefaction of coal produced in the Kansko-Achinsk basin

    SciTech Connect

    Grozshtein, A.Y.; Maryshev, V.B.; Petrov, Y.I.; Shapiro, R.N.; Yulin, M.K.; Zharkov, B.B.

    1986-03-01

    The results obtained in reforming the coal and petroleum naptha cuts in a laboratory single-pass flow unit are presented. The tests were performed with commercial KR-108 polymetallic catalyst, catalyst charge 4 cm/sup 3/, pressure 1 MPa, feedstock space velocity 4 h/sup -1/, and hydrogen feed 1000 liters/liter of feed. The higher yield of reformate with the hydrotreated feed from coal liquefaction is explained by the higher contents of aromatic and naphthenic hydrocarbons in this naphtha. In reforming petroleum and coal naphtha cuts with identical distillation curves, this difference would be more pronounced. The wide-cut distillate was hydrotreated on commercial alumina-cobalt-molybdenum catalyst in a two-section reactor.

  13. Catalytic two-stage coal liquefaction process having improved nitrogen removal

    DOEpatents

    Comolli, Alfred G.

    1991-01-01

    A process for catalytic multi-stage hydrogenation and liquefaction of coal to produce high yields of low-boiling hydrocarbon liquids containing low concentrations of nitogen compounds. First stage catalytic reaction conditions are 700.degree.-800.degree. F. temperature, 1500-3500 psig hydrogen partial pressure, with the space velocity maintained in a critical range of 10-40 lb coal/hr ft.sup.3 catalyst settled volume. The first stage catalyst has 0.3-1.2 cc/gm total pore volume with at least 25% of the pore volume in pores having diameters of 200-2000 Angstroms. Second stage reaction conditions are 760.degree.-870.degree. F. temperature with space velocity exceeding that in the first stage reactor, so as to achieve increased hydrogenation yield of low-boiling hydrocarbon liquid products having at least 75% removal of nitrogen compounds from the coal-derived liquid products.

  14. Process for coal liquefaction by separation of entrained gases from slurry exiting staged dissolvers

    DOEpatents

    Givens, Edwin N.; Ying, David H. S.

    1983-01-01

    There is described an improved liquefaction process by which coal is converted to a low ash and low sulfur carbonaceous material that can be used as a fuel in an environmentally acceptable manner without costly gas scrubbing equipment. In the process, coal is slurried with a solvent, passed through a preheater and at least two dissolvers in series in the presence of hydrogen-rich gases at elevated temperatures and pressures. Solids, including mineral ash and unconverted coal macerals are separated from the condensed dissolver effluent. In accordance with the improved process, fresh hydrogen is fed to each dissolver and the entrained gas from each dissolver is separated from the slurry phase and removed from the reactor system before the condensed phase is passed to the next dissolver in the series. In accordance with another process, the feeds to the dissolvers are such that the top of each downstream dissolver is used as a gas-liquid separator.

  15. A characterization and evaluation of coal liquefaction process streams. Quarterly report, January 1--March 31, 1997

    SciTech Connect

    Robbins, G.A.; Brandes, S.D.; Heunisch, G.W.; Winschel, R.A.

    1998-08-01

    Described in this report are the following activities: CONSOL characterized process stream samples from HTI Run ALC-2, in which Black Thunder Mine coal was liquefied using four combinations of dispersed catalyst precursors. Oil assays were completed on the HTI Run PB-05 product blend. Fractional distillation of the net product oil of HTI Run POC-1 was completed. CONSOL completed an evaluation of the potential for producing alkylphenyl ethers from coal liquefaction phenols. At the request of DOE, various coal liquid samples and relevant characterization data were supplied to the University of West Virginia and the Federal Energy Technology Center. The University of Delaware is conducting resid reactivity tests and is completing the resid reaction computer model. The University of Delaware was instructed on the form in which the computer model is to be delivered to CONSOL.

  16. Solvent tailoring in coal liquefaction based on critical properties of physical solvating agents and hydrogen donors, August 1, 1980-July 31, 1981

    SciTech Connect

    Williams, D.C.; Guin, J.A.; Curtis, C.W.; Tarrer, A.R.

    1981-01-01

    Solvent properties are very important factors in the liquefaction process. The solvent serves a three-fold purpose. It acts as a solvent for indan. The compound 1,4-DHN appears to be significantly more active than the 1,2 isomer in the presence of coal. The order of decreasing reactivity for the model H-donor species is THQ approx. = 1,4-DHN approx. = 9,10-DHA > 9,10-DHP > 1,2-DHN approx. = THA/sub c/ > IND. Table 7 presents the data for conversion of coal to cresol/THF solubles in the presence of several model donor species. The order of reactivity corresponds approximately to that of Table 6. The g of H transferred per g of maf coal (total), when multiplied by 100, gives the amount of H transferred on a wt % of maf coal feed basis, and varies from a low of 0.049 for indan to a high of 0.661 for 9,10-DHA. The amount of coal conversion is seen to correlate fairly well with the amount of H transferred as a percent of maf coal feed. Some significant conclusions are outlined; for a blank reaction without coal, the decreasing order of reactivity of hydroaromatics is 1,4-DHN > 9,10-DHA > 1,2-DHN > IND > 9,10-DHP = TET > THQ > THA/sub c/ > OHA; the decreasing reactivity of hydroaromatics in the presence of coal is THQ > 1,4-DHN > 9,10-DHA > 9,10-DHP > 1,2-DHN > THA/sub c/ > TET > IND; with respect to coal conversion, the order of decreasing effectiveness of the hydroaromatics tested is 9,10-DHA > THQ > 1,4-DHN > 1,2-DHN > 9,10-DHP > THA/sub c/ > OHA > TET > IND; and the amount of coal liquefaction is directly proportional to the amount of hydrogen transferred for several different hydroaromatic species.

  17. Highly Dispersed Pseudo-Homogeneous and Heterogeneous Catalysts Synthesized via Inverse Micelle Solutions for the Liquefaction of Coal

    SciTech Connect

    Hampden-Smith, M.; Kawola, J.S.; Martino, A.; Sault, A.G.; Yamanaka, S.A.

    1999-01-05

    The mission of this project was to use inverse micelle solutions to synthesize nanometer sized metal particles and test the particles as catalysts in the liquefaction of coal and other related reactions. The initial focus of the project was the synthesis of iron based materials in pseudo-homogeneous form. The frost three chapters discuss the synthesis, characterization, and catalyst testing in coal liquefaction and model coal liquefaction reactions of iron based pseudo-homogeneous materials. Later, we became interested in highly dispersed catalysts for coprocessing of coal and plastic waste. Bifunctional catalysts . to hydrogenate the coal and depolymerize the plastic waste are ideal. We began studying, based on our previously devised synthesis strategies, the synthesis of heterogeneous catalysts with a bifunctional nature. In chapter 4, we discuss the fundamental principles in heterogeneous catalysis synthesis with inverse micelle solutions. In chapter 5, we extend the synthesis of chapter 4 to practical systems and use the materials in catalyst testing. Finally in chapter 6, we return to iron and coal liquefaction now studied with the heterogeneous catalysts.

  18. Improved Fischer-Tropsch catalysts for indirect coal liquefaction

    SciTech Connect

    Wilson, R.B. Jr.; Tong, G.T.; Chan, Y.W.; Huang, H.W.; McCarty, J.G.

    1989-02-01

    The Fischer-Tropsch synthesis (FTS)reaction is the established technology for the production of liquid fuels from coal by an indirect route using coal-derived syngas (CO + H{sub 2}). Modern FTS catalysts are potassium- and copper-promoted iron preparations. These catalysts exhibit moderate activity with carbon monoxide-rich feedstocks such as the syngas produced by advanced coal gasification processes. However, the relatively large yields of by-product methane and high-molecular-weight hydrocarbon waxes detract from the production of desired liquid products in the C{sub 5}-C{sub 16} range needed for motor and aviation fuel. The goal of this program is to decrease undesirable portions of the FTS hydrocarbon yield by altering the Schultz-Flory polymerization product distribution through design and formulation of improved catalysts. Two approaches were taken: (1) reducing the yield of high-molecular-weight hydrocarbon waxes by using highly dispersed catalysts produced from surface-confined multiatomic clusters on acid supports and (2) suppressing methane production by uniformly pretreating active, selective conventional FTS catalysts with submonolayer levels of sulfur.

  19. Direct liquefaction proof-of-concept program: Final topical report, Bench Run 03 (227-93)

    SciTech Connect

    Comolli, A.G.; Pradhan, V.R.; Lee, T.L.K.; Karolkiewicz, W.F.; Popper, G.

    1996-12-01

    This report presents the results of bench-scale work, Bench Run PB-03, conducted under the DOE Proof of Concept--Bench Option Program in direct coal liquefaction at Hydrocarbon Technologies, Inc. in Lawrenceville, New Jersey. The Bench Run PB-03 was the third of the nine runs planned in the POC Bench Option Contract between the US DOE and Hydrocarbon Technologies, Inc. The Bench Run PB-03 had multiple goals. These included the evaluation of the effects of dispersed slurry catalyst loadings and types on the performance of two-stage direct coal liquefaction, the effect of HTI`s new iron catalyst, modified with phosphorus, and the evaluation of the effect of recycle solvent hydrotreatment on the overall process performance. PB-03 employed a close-coupled (no interstage separator) configuration of hydroconversion reactors. Other features of PB-03 included the use of an in-line fixed bed hydrotreater for the net product. No significant effects on process performance was found by changing the loadings of iron and molybdenum in the ranges of 1,000--5,000 ppm for iron and 50--100 ppm for molybdenum. However, the modification of HTI`s iron-based gel catalyst with 100 ppm of phosphorous improved the process performance significantly. A newly tested Mo-Carbon dispersed catalyst was not found to be any better than Molyvan-A, which was used during all but one condition of PB-03. Hydrotreatment of part of the recycle solvent was found to have a positive influence on the overall performance.

  20. Assessment of long-term research needs for coal-liquefaction technologies: FERWG-2

    SciTech Connect

    Penner, S.S.

    1980-03-01

    The Fossil Energy Research Working Group (FERWG), at the request of J.M. Deutch (Under Secretary of DOE), E. Frieman (Director, Officeof Energy Research) and G. Fumich, Jr. (Assistant Secretary for Fossil Fuels), has studied and reviewed currently funded coal-liquefaction technologies. These studies were performed in order to provide an independent assessment of critical research areas that affect the long-term development of coal-liquefaction technologies. The research needs identified by FERWG are generally consistent with research needs recognized by DOE contractors. Process research needs often refer to urgent practical difficulties that are best resolved by studies performed at contractor organizations in conjunction with current development programs. Our listing does not indicate priorities and we have not attempted to assign appropriate budgetary requirements. While needs and deficiencies identified by FERWG in ongoing programs have greatly influenced our selection of research recommendations summarized in Chapter 2, the basic studies which we recommend have a larger focus than the resolution of ongoing programmatic difficulties. Research on coal science, just as basic research in other fields, should be of such a scope that its effective prosecution will yield results that will be useful in applications that are not now defined while serving, at the same time, as a repository of knowledge that may serve to resolve or ameliorate ongoing programmatic difficulties.

  1. A characterization and evaluation of coal liquefaction process streams. Status assessment

    SciTech Connect

    Brandes, S.D.

    1995-07-01

    A review of the literature dealing with the modeling of fossil-fuel resid conversion to product oils and an updated assessment of the physico-chemical analytical methodology applicable to coal-liquefaction product streams is presented in this document. Analytical methodologies included here are either those which are different than those previously surveyed or are improvements on, or significantly different applications of methods previously surveyed. The literature cited spans the time period from 1991 to the present. The literature was examined from the 1960s through the present. When possible, for each model described, the methodology for deriving the model and the relative quality of the kinetic parameters derived is discussed. Proposed reaction schemes used for constructing coal-conversion models, in many cases, include the conversion of a resid intermediate to light products. These models are, therefore, also of interest, and are included here. Analytical techniques were identified that were shown to be useful for providing physico-chemical information of coal-liquefaction resids. These techniques are nuclear magnetic resonance spectroscopy, mass spectrometry (especially the technique of field ionization mass spectrometry), electron spin resonance spectroscopy coupled to thermogravimetric analysis, and a suite of petroleum inspection tests. It is recommended that these techniques be used in the present contract. 76 refs.

  2. Additive effect of waste tire on the hydrogenolysis reaction of coal liquefaction residue

    SciTech Connect

    Motoyuki Sugano; Daigorou Onda; Kiyoshi Mashimo

    2006-12-15

    A numerous amount of waste tire is landfilled or dumped all over the world, which causes environmental problems, such as destruction of natural places and the risk of fires. On the other hand, the coal liquefaction residue (CLR) is produced in 30% yield through the process supporting unit (PSU) of the NEDOL coal liquefaction process. Therefore, the investigation on an effective method for utilization of waste tire and CLR is required. In this study, the simultaneous hydrogenolysis of CLR and pulverized waste tire was carried out by using tetralin. The yields in the simultaneous hydrogenolysis were compared with algebraic sum of the yields of the individual hydrogenolyses of waste tire alone and coal alone. In the simultaneous hydrogenolysis, the synergistic effects to upgrading, such as an increase in the yield of the oil constituent and a decrease in the yield of the asphaltene constituent, occurred because of the stabilization of asphaltenic radicals from CLR with aliphatic radicals from tire. The decrease in asphaltene yield in the simultaneous hydrogenolysis was pronounced with the increase in the tire:CLR ratio because the solvent effects of liquefied tire, such as stabilization of radicals, hydrogen shuttling, and heat transfer, were enhanced. Accordingly, it is estimated that the simultaneous hydrogenolysis of CLR and waste tire is an effective method for processing both materials. 15 refs., 3 figs., 2 tabs.

  3. Direct liquefaction proof-of-concept program: POC bench option run 01 (227-90). Final report

    SciTech Connect

    Comolli, A.G.; Pradhan, V.R.; Lee, T.L.K.; Karolkiewicz, W.F.; Popper, G.

    1996-05-01

    This report presents the results of bench-scale work, Bench Run PB-01, conducted under the DOE Proof of Concept-Bench Option Program in direct coal liquefaction at Hydrocarbon Technologies, Inc. in Lawrenceville, New Jersey. The Bench Run PB-01 was the first of nine runs planned under the POC Bench Option Contract between the US DOE and Hydrocarbon Technologies, Inc. The primary goal of this bench run was to evaluate the most successful of the process improvements concepts, evolving out of the earlier CMSL Project, for conventional direct liquefaction as well as coprocessing of a sub-bituminous Black Thunder mine coal with waste organics such as waste plastics and heavy resid. The interstage separation of light ends and gases was indeed found to reduce the overall light gas-make from the liquefaction process. The organic waste feeds such as mixed plastics and vacuum resid, employed during Bench Run PB-01, in combined processing with coal, resulted in making the overall process more hydrogen efficient by virtue of reducing the light gas make and also decreasing the hydrogen consumption from the process, while at the same time improving the yields and quality of the distillate products. A definite synergy was found during the combined processing of coal with mixtures of vacuum resid and mixed waste plastics. The application of an all dispersed catalyst conversion reactor resulted in higher feed throughput at equivalent process performance, but also necessitated the use of an in-line hydrotreater for improving the quality of IBP-400{degrees}C distillate products. The combination of HTI`s iron gel catalyst and Molyvan-A was found very effective in achieving high levels of process performance; although, in recycled form, these catalysts were not as effective as the freshly added precursors.

  4. The use of mixed pyrrhotite/pyrite catalysts for co-liquefaction of coal and waste rubber tires

    SciTech Connect

    Dadyburjor, D.B.; Zondlo, J.W.; Sharma, R.K.

    1995-12-31

    The overall objective of this research program is to determine the optimum processing conditions for tire/coal co-liquefaction. The catalysts used will be a ferric-sulfide-based materials, as well as promising catalysts from other consortium laboratories. The intent here is to achieve the maximum coal+tire conversion at the mildest conditions of temperature and pressure. Specific objectives include an investigation of the effects of time, temperature, pressure, catalyst and co-solvent on the conversion and product slate of the co-liquefaction. Accomplishments and conclusions are discussed.

  5. Chemistry and morphology of coal liquefaction. Quarterly report, October 1-December 31, 1981

    SciTech Connect

    Heinemann, H.

    1981-12-01

    Progress reports are presented for the following six tasks: (1) selective synthesis of gasoline range components from synthesis gas; (2) electron microscopy studies of coal during hydrogenation; (3) catalysed low temperature hydrogenation of coal; (4) selctive hydrogenation, hydrogenolysis and alkylation of coal and coal liquids by organo-metallic systems; (5) chemistry of coal solubilization and liquefaction; (6) coal conversion catalysts-deactivation studies. Highlights are as follows: (1) In the presence of hydrogen and the absence of base, using the catalyst RuCl/sub 2/ (CO)/sub 2/ (phi/sub 3/ P)/sub 2/ excellent yields of reduced polynuclear heteroaromatic nitrogen compound were produced with 100% selectivity for the N-containing ring. (2) A careful gas chromatographic analysis of Fischer-Tropsch products has shown that major peaks, previously thought to be single compounds are composites of two or more compounds. Resolution of these peaks will enable one to establish a rational grouping of n/i and paraffin/olefin ratios. (3) Addition of iron or rhodium to potassium impregnated graphite did not result in the production of heavier hydrocarbons than methane from the graphite-steam reaction at low temperature. However, small amounts of iron enhanced the methane production. (ATT)

  6. Exploratory research on solvent refined coal liquefaction. Annual technical progress report, January 1-December 31, 1979

    SciTech Connect

    1980-09-01

    This report summarizes the progress of the Exploratory Research on Solvent Refined Coal Liquefaction project by The Pittsburg and Midway Coal Mining Co.'s Merriam Laboratory during 1979. In a series of experiments with varying feed gas composition, low levels (5 to 10 mole %) of carbon monoxide had little effect on the SRC II processing of Pittsburgh Seam coal (Powhatan No. 5 Mine) while higher levels (20 to 40 mole %) resulted in a general degradation of operability and reduced oil yields. Addition of finely divided (approx. 1 ..mu..m) pyrite to the reactive Powhatan coal had little effect on oil yields although the molecular weight of the distillation residue was apparently decreased. When finely divided pyrite and magnetite were added to the less reactive coals from the Loveridge and Blacksville No. 1 Mines (also Pittsburgh Seam), however, substantial increases in oil yields and product quality were obtained. In a comparison of upflow and downflow dissolver configurations with Powhatan coal in the SRC II mode, there was no difference in yields or product quality. A study characterizing specific reactors revealed a significantly higher conversion in the SRC I mode with a reactor approximating plug flow conditions compared to a completely backmixed reactor. In the SRC II mode there was only a slightly higher oil yield with the plug flow reactor.

  7. Low severity coal liquefaction promoted by cyclic olefins. Quarterly report, October--December 1993

    SciTech Connect

    Curtis, C.W.

    1993-12-31

    Acid pretreatment removes those alkaline metal and alkaline earth cations which inhibit coal reactivity and hydrogen transfer. Shams et al. (1992) found that through this pretreatment a large portion of the calcium present in coal was removed. Hydrochloric acid was used in that study, but sulfurous acid, if similar results are achieved, would be a much more suitable acid for processing. Another pretreatment method to remove these cations is one using ammonium acetate (Hengel and Walker, 1984). This study will evaluate the effect of combining these two principles, acid pretreatment of coal and rapid hydrogen transfer, for improving hydrogen transfer under low severity conditions. The acid pretreatment methods showed more success with low rank, subbituminous coals and lignite. Therefore, Wyodak subbituminous coal (WY) from the Argonne Premium Sample Bank and Black Thunder subbituminous coal (BT) from Amoco are being used and compared in this study. The cyclic olefin, 1,4,5,8-tetrahydronaphthalene (isotetralin, ISO) and its analogue, 1,2,3,4-tetrahydronaphthalene (tetralin, TET), will also be used and compared in this study. The efficacy of the two-ringed ISO can then be compared with the previously studied three-ringed HHA. Dr. James Hool, Professor of Industrial Engineering and an expert in statistics and experimental design, assisted in formulating the four-dimensional experimental matrix found in Figure 1. It is through this parametric analysis that the effect of each factor in this pretreatment and low severity liquefaction system will be determined.

  8. Characteristics of process oils from HTI coal/plastics co-liquefaction runs

    SciTech Connect

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1995-12-31

    The objective of this project is to provide timely analytical support to DOE`s liquefaction development effort. Specific objectives of the work reported here are: (1) to determine the fate of the plastics feedstocks, relative to coal-only operation; (2) to determine the conversion of the feedstocks; (3) to determine the product streams to which the feedstocks are converted (bottoms vs. distillate); (4) to determine interactions of feedstocks; (5) to determine how use of plastics feedstocks affect product quality; and (6) to determine to what degree property differences reflect feedstock differences vs. other (process) condition changes, such as unit operations, space velocity, and catalyst age.

  9. Selective enrichment of phenols from coal liquefaction oil by solid phase extraction method

    SciTech Connect

    Tian, M.; Feng, J.

    2009-07-01

    This study focuses on the solid phase extraction method for the enrichment and separation of phenol from coal liquefaction oil. The phenols' separation efficiency was compared on different solid phase extraction (SPE) cartridges, and the effect of solvents with different polarity and solubility parameter on amino-bonded silica was compared for selection of optimal elution solution. The result showed that amino-bonded silica has the highest selectivity and best extraction capability due to two factors, weak anion exchange adsorption and polar attraction adsorption.

  10. Advanced direct liquefaction concepts for PETC generic units. Quarterly technical progress report, April 1993--June 1993

    SciTech Connect

    Not Available

    1993-08-01

    Section 1 contains a report of the progress by the University of Kentucky Center for Applied Energy Research on the following tasks: laboratory support (liquefaction in dewaxed and hydrotreated dewaxed solvent); CO pretreatment (effect of process variables on CO pretreatment, CO-pretreated product characterization, and liquefaction results); and iron based dispersed catalysts (production, characterization and testing of sulfated hematites and reaction model development). Section 2 contains a progress report by CONSOL, Inc. on the following tasks: laboratory support; pretreatment work on dewaxing; pretreatment work on agglomeration; and economic evaluation. Progress by Sandia National Laboratories is reported in Section 3 on the following: laboratory support (TGA methods) and solvent pretreatment (coker tar hydrogenation and coal liquefaction results). Section 4 gives a preliminary technical assessment by LDP Associates on the following: baseline economic assessment; assessment of improved coal conversion; and fluid coking.

  11. Low severity coal liquefaction promoted by cyclic olefins. Quarterly report, January--March 1993

    SciTech Connect

    Curtis, C.W.

    1993-07-01

    The combination of some of these methods could further improve low severity conversion. It seems logical that a combination of a proven pretreatment technique with a good dissolution catalyst or a good hydrogen donor would increase reactivity. The importance of surface chemistry with yield and nature of reactions shown in early research indicates the physical importance of pretreatment. Swelling of the coal with an organic solvent improves the contact. This good contact is also important to slowing retrogressive reactions. The best conversions come when the initial products of liquefaction are preserved. In addition to the physical importance of pretreatment, there is a chemical advantage. Shams saw not only the effect of minimization of organic oxygen coupling reactions, but with his process there also seemed to be a demineralization. The minerals removed the catalysts for retrogressive reactions. The chemistry of liquefaction is still not well understood. Stansberry`s attempt to determine whether catalysts liberate species or just further decomposition was largely inconclusive. There was improvement in conversion so the catalysts seemingly assisted in bond breakage. These good catalytic effects were also seen in the work involving coprocessing. The most compelling factor in each of these procedures, is the ability of the coal to receive the hydrogen that it needs to be liquefied. Bedell and Curtis (1991) found that cyclic olefins gave their hydrogen up much more readily than did hydroaromatics. The coal conversion was a significantly improved. The combination of retrogressive reaction suppression and good hydrogen donability should provide for good coal conversion. It was this reasoning that influenced the decision to investigate a combination of the HCl/methanol pretreatment and the usage of cyclic olefins as hydrogen donors. The increased reactivity of the pretreated coal should enhance the effect of the hydrogen donability of the cyclic olefins.

  12. A CHARACTERIZATION AND EVALUATION OF COAL LIQUEFACTION PROCESS STREAMS

    SciTech Connect

    G.A. Robbins; R.A. Winschel; S.D. Brandes

    1999-05-01

    This is the first Annual Technical Report of activities under DOE Contract No. DE-AC22-94PC93054. Activities from the first three quarters of the fiscal 1998 year were reported previously as Quarterly Technical Progress Reports (DOE/PC93054-57, DOE/PC93054-61, and DOE/PC93054-66). Activities for the period July 1 through September 30, 1998, are reported here. This report describes CONSOL's characterization of process-derived samples obtained from HTI Run PB-08. These samples were derived from operations with Black Thunder Mine Wyoming subbituminous coal, simulated mixed waste plastics, and pyrolysis oils derived from waste plastics and waste tires. Comparison of characteristics among the PB-08 samples was made to ascertain the effects of feed composition changes. A comparison also was made to samples from a previous test (Run PB-06) made in the same processing unit, with Black Thunder Mine coal, and in one run condition with co-fed mixed plastics.

  13. Role of non-ferrous coal minerals and by-product metallic wastes in coal liquefaction. Technical progress report, 1 March 1980-31 May 1980

    SciTech Connect

    Garg, D; Schweighardt, F K; Givens, E N; Clinton, J H; Tarrer, A R; Guin, J A; Curtis, C W; Huang, S M

    1980-06-01

    This report describes work done in a study of the role of coal minerals and by-product metallic wastes in coal liquefaction. The thermal behavior of various minerals and metallic by-product wastes was evaluated by thermal gravimetric analysis and differential thermal analysis in the presence of hydrogen, nitrogen, and air. The CPDU was operated for 220 hours to obtain baseline data and provide information on the catalytic activity of Robena pyrite in solvent hydrogenation and coal liquefaction. A number of minerals were screened for catalytic activity toward coal liquefaction in a tubing-bomb reactor. The catalytic activity of the minerals was assessed by comparing the product distributions both in the presence of minerals and their absence. The use of a Bronson Sonifier was initiated in March to accelerate and improve the solvent separation technique. The addition of lime to the reaction mixture practically killed the liquefaction reaction. The addition of dolomite, rutile, illite, quartz, zircon, and calcite to the reaction mixture showed no significant improvement over that of a no additive run. The addition of zinc oxide and ilmenite showed slight improvement. Robena pyrite and Co-Mo-Al showed significant improvement in coal conversion and production of benzene solubles and gases. Iron oxide (Fe/sub 2/O/sub 3/) gave the highest conversion of coal and production of benzene solubles among all the minerals tested so far.

  14. Synthesis of model compounds for coal liquefaction research. Final report, April 15, 1990--April 14, 1991

    SciTech Connect

    Not Available

    1991-11-01

    Coal liquefaction investigations required the availability of model compounds for mechanistic investigations. Towards this end, IITRI was funded to develop an approach for the synthesis of one of the target compound. This study was carried out in several phases as outlined here. Initial synthetic investigations on obtaining 2-tetrolol was carried out using high pressure and temperature reduction with Raney nickel catalyst. The next step consisted in incorporation of a hydroxymethyelene group at the C-3 position. This was successfully carried out utilizing 2-tetrolol, formaldehyde, and calcium oxide. An alternate improved method was developed using 3-carboxyl-2-naphthol. This required less time, gave a cheer product in higher yield. Efforts at the introduction of a chloromethylene group only yielded polymeric material or starting material in spite of protection the phenolic group by various groups. They synthesis of 3, 5-dimethyl-6- bromobenzyl chloride was successfully carried out by performing the Blank reaction of 2, 4-dimethyl bromobenzene. The product was characterized by GC/MS. Purification was not possible, as it was a complex mixture. Efforts at converting it to the acetate followed by separation to was not feasible. Unlike in the case of 2- hydroxyteralol, hydroxymetylation by established procedure yielded only the starting materials. Commercially available 4-methoxy-1- maphthaldehyde was protected as the ethylene acetal. The Wittig reagent 3-chlorobenzyl phosphonium bromide was prepared and condensed with 4-methoxy-1-napthaldehyde successfully and proved that the overall synthetic approach was proceeding in the desired direction. All the necessary intermediates have been synthesized,and we have demonstrated using model compounds, that the synthetic objective can be attained.

  15. Selective solvent absorption in coal conversion

    SciTech Connect

    Larsen, J.W.; Lapucha, A.; Lazarov, L.; Amui, J.

    1992-04-01

    The objectives of this project are: (1) to determine the importance of the presence of added hydrogen donor compounds within the coal in the first stage of direct liquefaction processes; and (2) to determine the composition of the solvent absorbed by and present within the coal in the first stage of direct coal liquefaction.

  16. EDS Coal Liquefaction Process Development. Phase V. Laboratory evaluation of the characteristics of EDS Illinois bottoms

    SciTech Connect

    Lao, T C; Levasseur, A A

    1984-02-01

    This interim report documents work carried out by Combustion Engineering, Inc. under a contract to Exxon Research and Engineering Company to develop a conceptual Hybrid Boiler design fueled by the vacuum distillation residue (vacuum bottoms) derived from Illinois No. 6 coal in the EDS Coal Liquefaction Process. This report was prepared by Combustion Engineering, Inc., and is the first of two reports on the predevelopment phase of the Hybrid Boiler program. This report covers the results of a laboratory investigation to assess the fuel and ash properties of EDS vacuum bottoms. The results of the laboratory testing reported here were used in conjunction with Combustion Engineering's design experience to predict fuel performance and to develop appropriate boiler design parameters. These boiler design parameters were used to prepare the engineering design study reported in EDS Interim Report FE-2893-113, the second of the two reports on the predevelopment phase of the Hybrid Boiler Program. 46 figures, 29 tables.

  17. Liquefaction/solubilization of low-rank Turkish coals by white-rot fungus (Phanerochaete chrysosporium)

    SciTech Connect

    Elbeyli, I.Y.; Palantoken, A.; Piskin, S.; Kuzu, H.; Peksel, A.

    2006-08-15

    Microbial coal liquefaction/solubilization of three low-rank Turkish coals (Bursa-Kestelek, Kutahya-Seyitomer and Mugla-Yatagan lignite) was attempted by using a white-rot fungus (Phanerochaete chrysosporium DSM No. 6909); chemical compositions of the products were investigated. The lignite samples were oxidized by nitric acid under moderate conditions and then oxidized samples were placed on the agar medium of Phanerochaete chrysosporium. FTIR spectra of raw lignites, oxidized lignites and liquid products were recorded, and the acetone-soluble fractions of these samples were identified by GC-MS technique. Results show that the fungus affects the nitro and carboxyl/carbonyl groups in oxidized lignite sample, the liquid products obtained by microbial effects are the mixture of water-soluble compounds, and show limited organic solubility.

  18. Low severity coal liquefaction promoted by cyclic olefins. Quarterly technical progress report, April--June 1996

    SciTech Connect

    Curtis, C.W.

    1997-12-31

    The goal of this research is to develop a methodology for analyzing the reactivity of cyclic olefins in situ in a high temperature and high pressure infrared cell. Cyclic olefins, such as 1,4,5,8-tetrahydronaphthalene (isotetralin) and 1,4,5,8,9,10-hexahydroanthracene (HHA), are highly reactive donor compounds that readily donate their hydrogen to coal and model acceptors when heated to temperatures of 200{degrees}C and above. These donors are active donors in the low severity liquefaction of coal at 350{degrees}C as shown in the research performed in this project. The infrared studies are being performed in a high temperature infrared cell that was obtained from AABSPEC. Modifications to that cell have been made and have been reported in previous progress reports.

  19. Microbial recovery of metals from spent coal liquefaction catalysts. Final report

    SciTech Connect

    Sperl, P.L.; Sperl, G.T.

    1995-07-01

    This project was initiated on October 1, 1989, for the purpose of recovering metals from spent coal liquefaction catalysts. Two catalyst types were the subject of the contract. The first was a Ni-No catalyst support on alumina (Shell 324), the catalyst used in a pilot scale coal liquefaction facility at Wilsonville, Alabama. The second material was an unsupported ammonium molybdate catalyst used in a pilot process by the Department of Energy at the Pittsburgh Energy Technology Center. This material was obtained in late February 1990 but has not been pursued since the Mo content of this particular sample was too low for the current studies and the studies at the Pittsburgh Energy Technology Center have been discontinued. The object of the contract was to treat these spent catalysts with microorganisms, especially Thiobacillus ferrooxidans , but also other Thiobacillus spp. and possibly Sulfolobus and other potential microorganisms, to leach and remove the metals (Ni and Mo) from the spent catalysts into a form which could be readily recovered by conventional techniques.

  20. EDS coal liquefaction process development. Phase V. Quarterly technical progress report, July 1-September 30, 1980

    SciTech Connect

    1981-02-01

    This report is the tenth Quarterly Technical Progress Report for US Department of Energy Cooperative Agreement No. DE-FC01-77ET10069 (formerly EF-77-A-01-2893) for Exxon Donor Solvent (EDS) Coal Liquefaction Process Development - Phase V. The Laboratory Process Research and Development studies were conducted at various Exxon Research and Engineering Co. (ER and E) facilities: Research and Development Division at Baytown, Texas; Products Research Division at Linden, New Jersey; and the Exxon Research and Development Laboratories at Baton Rouge, Louisiana. The Engineering Research and Development studies were performed at the Synthetic Fuels Engineering and Exxon Engineering Technology Departments of ER and E at Florham Park, New Jersey. The information dealing with the Management, Detailed Engineering, and Procurement activities related to revamp of the FLEXICOKING Prototype Unit was generated at Exxon Company, USA, Houston, Texas, and Exxon Engineering - Project Management Department of ER and E, Florham Park, New Jersey. The information dealing with operation of the 250 T/D Exxon Coal Liquefaction Pilot Plant (ECLP) was generated at Exxon Company, USA, Houston, Texas.

  1. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Quarterly technical progress report, July--September 1992

    SciTech Connect

    Curtis, C.W.; Gutterman, C.; Chander, S.

    1992-12-31

    The experimental study of coal swelling ratios have been determined with a wide variety of solvents. Only marginal levels of coal swelling were observed for the hydrocarbon solvents, but high levels were found with solvents having heteroatom functionality. Blends were superior to pure solvents. The activity of various catalyst precursors for pyrene hydrogenation and coal conversion was measured. Higher coal conversions were observed for the S0{sub 2}-treated coal than the raw coal, regardless of catalyst type. Coal conversions were highest for Molyvan-L, molybdenum naphthenate, and nickel octoate, respectively. Bottoms processing consists of a combination of the ASCOT process coupling solvent deasphalting with delayed coking. Initial results indicate that a blend of butane and pentane used near the critical temperature of butane is the best solvent blend for producing a yield/temperature relationship of proper sensitivity and yet retaining an asphalt phase of reasonable viscosity. The literature concerning coal swelling, both alone and in combination with coal liquefaction, and the use of dispersed or unsupported catalysts in coal liquefaction has been updated.

  2. The mechanism of hydrogen incorporation in coal liquefaction. Final report

    SciTech Connect

    1995-11-01

    The purpose of the research was to determine the detailed molecular mechanism for the introduction of hydrogen into coal when it is heated in an atmosphere of H{sub 2} in the absence of catalysts and to use this information as a baseline for the study of catalyzed processes. The plan was to study the reaction of model compounds with D{sub 2} in a glass-lined reactor of the authors` design and, by determining the distribution of D atoms in the reaction products, to deduce the reaction mechanism(s). As of the date of this report (Nov. 1995), the authors have, they believe conclusively, demonstrated the mechanism of the thermal process. They have studied several gas-phase reactions and, recently, have extended these to surface-immobilized models. The data are consistent in their support of the proposed sequence. Within the past year, they have begun to look at catalyzed hydrothermolysis and, while the work is at an early stage, they can draw a few significant conclusions, presented in the report.

  3. Dispersed catalysts for co-processing and coal liquefaction

    SciTech Connect

    Bockrath, B.; Parfitt, D.; Miller, R.

    1995-12-31

    The basic goal is to improve dispersed catalysts employed in the production of clean fuels from low value hydrocarbons. The immediate objective is to determine how the properties of the catalysts may be altered to match the demands placed on them by the properties of the feedstock, the qualities of the desired end products, and the economic constraints put upon the process. Several interrelated areas of the application of dispersed catalysts to co-processing and coal conversion are under investigation. The first involves control of the selectivity of MoS{sub 2} catalysts for HDN, HDS, and hydrogenation of aromatics. A second area of research is the development and use of methods to evaluate dispersed catalysts by means of activity and selectivity tests. A micro-flow reactor has been developed for determining intrinsic reactivities using model compounds, and will be used to compare catalysts prepared in different ways. Micro-autoclaves will also be used to develop data in batch experiments at higher partial pressures of hydrogen. The third area under investigation concerns hydrogen spillover reactions between MoS{sub 2} catalysts and carbonaceous supports. Preliminary results obtained by monitoring H{sub 2}/D{sub 2} exchange reactions with a pulse-flow microreactor indicate the presence of spillover between MoS{sub 2} and a graphitic carbon. A more complete study will be made at a later stage of the project. Accomplishments and conclusions are discussed.

  4. Advanced direct liquefaction concepts for PETC generic units. Quarterly technical progress report, April 1994--June 1994

    SciTech Connect

    1994-09-01

    The technical approach of the contract has been expanded to provide additional economic evaluation of related process options. Additional data will be developed in the following areas to facilitate these evaluations. The effect of several modified pretreatments on liquefaction will be investigated. These include catalytic and thermal dewaxing of distillate solvents, the effect that adding light resid to distillate solvent has on hydrotreating and dewaxing, the liquefaction behavior of dense-media separated low-rank coals, and methods of selectively removing oxygen from low-rank coals. Additional chemical, physical, and performance information on improved first-stage catalysts will be developed. Upgrading of ash concentrate to recover catalysts and improve low-rank coals will be assessed. The conversion of residual fractions to distillate by hydropyrolysis will be evaluated. The economic impact of these processes will be determined.

  5. Thiophenic Sulfur Compounds Released During Coal Pyrolysis

    PubMed Central

    Xing, Mengwen; Kong, Jiao; Dong, Jie; Jiao, Haili; Li, Fan

    2013-01-01

    Abstract Thiophenic sulfur compounds are released during coal gasification, carbonization, and combustion. Previous studies indicate that thiophenic sulfur compounds degrade very slowly in the environment, and are more carcinogenic than polycyclic aromatic hydrocarbons and nitrogenous compounds. Therefore, it is very important to study the principle of thiophenic sulfur compounds during coal conversion, in order to control their emission and promote clean coal utilization. To realize this goal and understand the formation mechanism of thiophenic sulfur compounds, this study focused on the release behavior of thiophenic sulfur compounds during coal pyrolysis, which is an important phase for all coal thermal conversion processes. The pyrolyzer (CDS-5250) and gas chromatography–mass spectrometry (Focus GC-DSQII) were used to analyze thiophenic sulfur compounds in situ. Several coals with different coal ranks and sulfur contents were chosen as experimental samples, and thiophenic sulfur compounds of the gas produced during pyrolysis under different temperatures and heating rates were investigated. Levels of benzothiophene and dibenzothiophene were obtained during pyrolysis at temperatures ranging from 200°C to 1300°C, and heating rates ranging from 6°C/ms to 14°C/ms and 6°C/s to 14°C/s. Moreover, the relationship between the total amount of benzothiophene and dibenzothiophene released during coal pyrolysis and the organic sulfur content in coal was also discussed. This study is beneficial for understanding the formation and control of thiophenic sulfur compounds, since it provides a series of significant results that show the impact that operation conditions and organic sulfur content in coal have on the amount and species of thiophenic sulfur compounds produced during coal pyrolysis. PMID:23781126

  6. Thiophenic Sulfur Compounds Released During Coal Pyrolysis.

    PubMed

    Xing, Mengwen; Kong, Jiao; Dong, Jie; Jiao, Haili; Li, Fan

    2013-06-01

    Thiophenic sulfur compounds are released during coal gasification, carbonization, and combustion. Previous studies indicate that thiophenic sulfur compounds degrade very slowly in the environment, and are more carcinogenic than polycyclic aromatic hydrocarbons and nitrogenous compounds. Therefore, it is very important to study the principle of thiophenic sulfur compounds during coal conversion, in order to control their emission and promote clean coal utilization. To realize this goal and understand the formation mechanism of thiophenic sulfur compounds, this study focused on the release behavior of thiophenic sulfur compounds during coal pyrolysis, which is an important phase for all coal thermal conversion processes. The pyrolyzer (CDS-5250) and gas chromatography-mass spectrometry (Focus GC-DSQII) were used to analyze thiophenic sulfur compounds in situ. Several coals with different coal ranks and sulfur contents were chosen as experimental samples, and thiophenic sulfur compounds of the gas produced during pyrolysis under different temperatures and heating rates were investigated. Levels of benzothiophene and dibenzothiophene were obtained during pyrolysis at temperatures ranging from 200°C to 1300°C, and heating rates ranging from 6°C/ms to 14°C/ms and 6°C/s to 14°C/s. Moreover, the relationship between the total amount of benzothiophene and dibenzothiophene released during coal pyrolysis and the organic sulfur content in coal was also discussed. This study is beneficial for understanding the formation and control of thiophenic sulfur compounds, since it provides a series of significant results that show the impact that operation conditions and organic sulfur content in coal have on the amount and species of thiophenic sulfur compounds produced during coal pyrolysis.

  7. Novel nanodispersed coal liquefaction catalysts: Molecular design via microemulsion-based synthesis

    SciTech Connect

    Osseo-Asare, K.; Radovic, L.R.

    1991-04-01

    The objective of this project is to pursue the development of highly dispersed and inexpensive catalysts for improved coal solubilization and upgrading of coal liquids. A novel study of the synthesis of liquefaction catalysts of nanometer size will be carried out. It is based on the molecular design of reverse micelles (microemulsions). These surfactant-stabilized, metal bearing microdrops offer unique opportunities for synthesizing very small particles by providing a cage-like effect that limits particle nucleation, growth and agglomeration. The emphasis will be on iron- and molybdenum-based catalysts, but the techniques to be developed should also be generally applicable. The size of these very small and monodispersed particles will be accurately determined both separately and after in situ and ex situ coal impregnation. The as-prepared nanoparticles as well as the catalyst-impregnated coal or char matrix will be characterized using the following techniques: dynamic light scattering, x-ray diffraction, x-ray photoelectron spectroscopy, scanning and/or transmission electron microscopy, and selective chemisorption.

  8. Novel nanodispersed coal liquefaction catalysts: Molecular design via microemulsion-based synthesis

    SciTech Connect

    Osseo-Asare, K.; Boakye, E.; Vaidyanathan, N.; Radovic, L.R.

    1991-10-01

    The objective of this project is to pursue the development of highly dispersed and inexpensive catalysts for improved coal solubilization and upgrading of coal liquids. A novel study of the synthesis of liquefaction catalysts of nanometer size will be carried out. It is based on the molecular design of reverse micelles (microemulsions). These surfactant-stabilized, metalbearing microdrops offer unique opportunities for synthesizing very small particles by providing a cage-like effect that limits particle nucleation, growth and agglomeration. The emphasis will be on iron- and molybdenum-based catalysts, but the techniques to be developed should also be generally applicable. The size of these very small and monodispersed particles will be accurately determined both separately and after in situ and ex situ coal impregnation. The as-prepared nanoparticles as well as the catalyst-impregnated coal or char matrix will be characterized using the following techniques: dynamic light scattering, x-ray diffraction, x-ray photoelectron spectroscopy, scanning and/or transmission electron microscopy, and selective chemisorption.

  9. Low severity coal liquefaction promoted by cyclic olefins. Quarterly report, October 1994--December 1994

    SciTech Connect

    Curtis, C.W.

    1995-05-01

    The research performed during the October to December 1994 quarter centered on two areas. The first area involved the writing of a paper based on research performed on this project concerning the mild acidic pretreatment of low rank coals and their liquefaction behavior in the presence of hydrogen donors with different reactivities. The second area that was worked on during the quarter was the high temperature infrared analysis of cyclic olefins. The work is ongoing and is currently involving a considerable amount of equipment and technique development. Cyclic olefins, such as 1,4,5,8-tetrahydronaphthalene (isotetralin) and 1,4,5,8,9,10-hexahydroanthracene (HHA), are highly reactive hydrogen donor compounds that readily donate their hydrogen to coal and model acceptors when heated. Numerous reactions have been performed using these cyclic olefins with high rank and low rank coals as well as with model acceptors. In each case the cyclic olefins have proven themselves to be active donors. Further evaluation of the reactivity of these donors with pretreated low rank coals and at different temperatures is described more fully in this report.

  10. Effects of low-temperature catalytic pretreatments on coal structure and reactivity in liquefaction. Technical progress report, August 1992--July 1992

    SciTech Connect

    Song, C.; Saini, A.K.; Huang, L.; Wenzel, K.; Hou, L.; Hatcher, P.G.; Schobert, H.H.

    1992-08-01

    Low-temperature catalytic pretreatment is a promising approach to the development of an improved liquefaction process- This work is a fundamental study on effects of pretreatments on coal structure and reactivity in liquefaction. The main objectives of this project are to study the coal structural changes induced by low-temperature catalytic and thermal pretreatments by using spectroscopic techniques; and to clarify the pretreatment-induced changes in reactivity or convertibility of coals in the subsequent liquefaction. This report describes the recent progress of our work. Substantial progress has been made in the spectroscopic characterization of structure and pretreatment-liquefaction reactions of a Montana subbituminous Coal (DECS-9), and thermochemical analysis of three mw and reacted bituminous coals. Temperature programmed liquefaction has been performed on three low-rank coals both in the presence and absence of dispersed molybdenum sulfide catalyst. We also performed a detailed study of the effects of mild thermal pretreatment -- drying in air and in vacuum -- on thermal and catalytic liquefaction of a Wyodak subbituminous coal. Important information on structure and structure transformation during thermal pretreatment and liquefaction reactions of low-rank coals has been derived by applying solid-state CPMAS {sup 13}C NMR and flash pyrolysis-GC-MS (Py-GC-MS) for characterization of the macromolecular network of a Montana subbituminous coal and its residues from temperature-programmed and nonprogrammed liquefaction (TPL and N-PL) at final temperatures ranging from 300 to 425{degree}C in H-donor and non-donor solvents. The results revealed that this coal contains significant quantities of oxygen-bearing structures, corresponding to about 18 O-bound C per 100 C atoms and one O-bound C per every 5 to 6 aromatic C.

  11. Fine particle clay catalysts for coal liquefaction. Quarterly technical progress report, February 9, 1993--May 8, 1993

    SciTech Connect

    Olson, E.S.

    1995-10-01

    An investigation of new methods for the production and utilization of tetralin-soluble iron oxometallate precursors for coal liquefaction catalysts was continued in this quarter. Further descriptions of the catalytic activities of the sulfided forms were obtained. The hydrogenation activities of catalysts derived from iron oxotitanate and cobalt oxoaluminate were investigated using pyrene as a the test compound, and results were compared with thermal reactions. The hydrogenation activity of iron oxotitanate was superior to other catalysts including iron oxoaluminate. The hydrogenation activity of cobalt oxoaluminate was similar to that of iron oxoaluminate reported in previous quarterly report. The liquefaction of Wyodak subbituminous coal was investigated using in situ sulfided iron oxotitanate catalyst. In order to improve the usefulness of iron oxoaluminate as a liquefaction catalyst, iron oxoaluminate was supported on acid-treated montmorillonite (K-10). Supporting the iron oxoaluminate on an acidic support significantly improved the hydrogenation activity of iron oxoaluminate. The hydrocracking activity was increased by a large factor. Thus the aluminate and titanate structures surrounding the pyrrhotite that forms during sulfidation have a beneficial effect in preventing deactivation of the iron sites, and the presence of the acidic sites in the clay results in effective catalytic synergism between catalyst and support. These clay-supported iron oxometallates are highly promising catalysts for coal liquefaction. Iron oxyhydroxide and triiron supported on acid-treated montmorillonite (K-10) were tested for the liquefaction of ion-exchanged Wyodak (IEW) to minimize effects of the coal mineral matter. Both sulfided catalysts gave very high conversions of coal to THF-soluble and heptane-soluble (oils) products.

  12. Comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry of coal liquids produced during a coal liquefaction process

    SciTech Connect

    Jacqui F. Hamilton; Alistair. C. Lewis; Marcos Millan; Keith D. Bartle; Alan A. Herod; Rafael Kandiyoti

    2007-01-15

    Comprehensive two-dimensional gas chromatography (GC) coupled to time-of-flight mass spectrometry (MS) has been applied to the analysis of coal-derived liquids from the former British Coal Point-of-Ayr coal liquefaction plant. The feed to the hydrocracker and the resulting product were analyzed. The results refer almost exclusively to the plant-derived recycle solvent, known as the liquefaction solvent; the molecular mass range of the GC does not exceed that of the solvent. The method allows for the resolution of the numerous structural isomers of tetralin and methyl indan, one pair of hydrogen-donor (necessary for the dissolution of coal) and isomeric nondonor (that reduce the hydrogen donors) components of the recycle solvent. In addition, the n-alkanes that concentrate in the recycle solvent are easily observed in comparison with the results from one-dimensional GC-MS. 24 refs., 6 figs., 1 tab.

  13. Coal liquefaction processes and development requirements analysis for synthetic fuels production

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Focus of the study is on: (1) developing a technical and programmatic data base on direct and indirect liquefaction processes which have potential for commercialization during the 1980's and beyond, and (2) performing analyses to assess technology readiness and development trends, development requirements, commercial plant costs, and projected synthetic fuel costs. Numerous data sources and references were used as the basis for the analysis results and information presented.

  14. Applications of polymer extrusion technology to coal processing

    NASA Technical Reports Server (NTRS)

    Lewis, D. W.

    1981-01-01

    Upon heating, many of the middle-aged bituminous coals exhibit a plasticity very similar to polyethylene for a few minutes. Plastic coal can be extruded, pelletized or molded using common plastics technology and equipment. Investigations concerning the plastic state of coals are conducted with the objective to develop techniques which will make useful commercial applications of this property possible. Experiments which show the characteristics of plastic-state coal are discussed, and problems related to a continuous extrusion of coal are considered. Probably the most significant difference between the continuous extrusion of coal and the extrusion of a thermoplastic polymer is that volatiles are continuously being released from the coal. Attention is given to aspects of dragflow, solids feeding, and melt pumping. Application potentials for plastic coal extrusion might be related to coal gasification, direct liquefaction, and coal combustion.

  15. Optimization of reactor configuration in coal liquefaction. Seventh quarterly report for the period 1 April--30 June 1993. Final report

    SciTech Connect

    Comolli, A.G.; Johanson, E.S.; Lee, L.K.; Pradhan, V.R.; Stalzer, R.H.

    1993-08-01

    This quarterly report covers activities of Optimization of Reactor Configuration in Coal Liquefaction during the period April 1 - June 30, 1993, at Hydrocarbon Research, Inc. in Lawrenceville and Princeton, New Jersey. This DOE contract period is from October 1, 1991 to September 30, 1993 and has been extended to December 31, 1993. The overall objective of the program is to achieve a new approach to liquefaction that generates an all distillates product slate at reduced cost of about $25 per barrel of crude oil equivalent. The quarterly report covers work on Laboratory Support, Laboratory Scale Operations, Technical Assessment, and Project Management.

  16. [The mechanisms of hydrogen incorporation in coal liquefaction

    SciTech Connect

    Guthrie, R.

    1993-01-28

    In earlier reports we have describe d our efforts to understand the mechanism of deuterium incorporation during the thermolysis of 1,2-diphenylethane and 2,2,5,5-tetramethyl-3,4-diphenylhexane under D[sub 2] gas in a glass vessel. We have reported that in both of these cases, there is substantial deuterium incorporation. A summary of our conclusions follows: Conclusions previously reported for the 1,2-diphenylethane (DPE) system. 1. Benzyl radicals produced in the thermolysis react mainly with DPE to extract a hydrogen atom and produce undeuterated toluene. 2. The 1,2-diphenylethyl radicals produced are mainly responsible for the reaction with D[sub 2] to give D atoms. 3. D atoms then react with aromatic rings to form adduct radicals which are, at least in part, reconverted to D-substituted aromatics in termination steps. 4.2-Phenylethyl radicals react in a less discriminating manner, 1/3 to 1/2 of the events probably involving direct reaction with D[sub 2]. 5. A reasonable match to major product distribution can be accomplished using a model consisting of the set of ten reactions.

  17. Advanced direct liquefaction concepts for PETC generic units, Phase 2. Quarterly technical progress report, January--March 1996

    SciTech Connect

    1996-05-01

    The aims of this research program are to advance to bench-scale testing, concepts that have the potential for making net reductions in direct coal liquefaction process costs. The research involves a teaming arrangement between the University of Kentucky Center for Applied Energy Research (CAER), Consolidation Coal Company (CONSOL), Sandia National Laboratories (SNL), and LDP Associates. Progress reports are presented for: Task 2.1.1 development of a catalyst screening test (UK/CAER); Task 2.1.2 activation of impregnated catalysts (UK/CAER); Task 2.2 laboratory support (CONSOL); Task 3 continuous operations/parametric studies (Hydrocarbon Technologies, Inc.) and; Task 4.4 conceptual design, preliminary technical assessment (LDP Associates).

  18. EDS coal liquefaction process development: Phase V. Final technical progress report, Volume I

    SciTech Connect

    1984-02-01

    All objectives in the EDS Cooperative Agreement for Phases III-B through V have been achieved for the RCLU pilot plants. EDS operations have been successfully demonstrated in both the once-through and bottoms recycle modes for coals of rank ranging from bituminous to lignitic. An extensive data base detailing the effects of process variable changes on yields, conversions and product qualities for each coal has been established. Continuous bottoms recycle operations demonstrated increased overall conversion and improved product slate flexibility over once-through operations. The hydrodynamics of the liquefaction reactor in RCLU were characterized through tests using radioactive tracers in the gas and slurry phases. RCLU was shown to have longer liquid residence times than ECLP. Support work during ECLP operations contributed to resolving differences between ECLP conversions and product yields and those of the small pilot plants. Solvent hydrogenation studies during Phases IIIB-V of the EDS program focused on long term activity maintenance of the Ni-MO-10 catalyst. Process variable studies for solvents from various coals (bituminous, subbituminous, and lignitic), catalyst screening evaluations, and support of ECLP solvent hydrogenation operations. Product quality studies indicate that highly cyclic EDS naphthas represent unique and outstanding catalytic reforming feedstocks. High volumes of high octane motor gasoline blendstock are produced while liberating a considerable quantity of high purity hydrogen.

  19. Chemistry and morphology of coal liquefaction. Annual report, October 1, 1979-September 30, 1980

    SciTech Connect

    Heinemann, H.

    1980-09-01

    The present annual report summarizes quarterly reports and includes work performed during the last quarter of fiscal 1980. The first year of this project has just been completed and much of the time and effort has been concentrated on equipment building, assembling, testing, and on staffing. This, of course, has been more true in the areas of work with spectroscopic and high pressure equipment than in organic chemical reactions. More experimental results are therefore reported in the areas of hydrogen transfer mechanisms and catalysis and organo-metallic chemistry. A few of the significant results in these and other areas are the evidence for catalysis in hydrogen transfer from tetralin; a novel and possibly very important new synthesis of alkyl aromatics from benzene, carbon monoxide, and hydrogen; the study of coals in the transmission electron microscope identifying coal macerals, minerals and metals, and leading to the possibility of observing location of and catalytic influences on pyrolysis and hydrogenation at elevated temperatures; the finding that scales formed on deactivated cobalt-molybdena-alumina-hydrogenation catalysts contain not only metals from the liquid feedstocks, but also molybdenum sulfide which must derive from migration from the catalyst interior to and beyond the surface. Insights gained in mechanisms of pyrolysis, hydrogenation, hydrogen transfer, and indirect liquefaction of coal promise to lead to improving technology by defining problem areas and showing routes to by-pass problems.

  20. Analysis of toxicity of leachates from coal liquefaction wastewater treatment sludge

    SciTech Connect

    Dahlberg, M.D.; Ruppel, T.C.

    1985-03-01

    The disposal requirements for wastewater treatment sludge from coal liquefaction plants will be determined by toxicity tests established by the Environmental Protection Agency (EPA) to enforce the Resource Conservation and Recovery Act (RCRA). Concentrations of eight elements in samples from a noncommercial plant were well below the standards used in the EP (extraction procedure) test of the EPA. Toxicity bioassays with Daphnia magna supported the results of the EP tests. Leachates generated according to the American Society for Testing and Materials extraction procedure (ASTM D-3987) were also tested. Concentrations of RCRA elements were frequently below the minimum detectable concentrations, and no differences in toxicity of the EP and ASTM extracts were evident. 17 references, 3 tables.

  1. Steam pretreatment for coal liquefaction. [Monthly report], August 1, 1993--August 31, 1993

    SciTech Connect

    1993-09-10

    Rapid heating liquefaction of steam pretreated Illinois No.6 coal mixed with 13X zeolite was carried out this month. The pores of this zeolite retain pyridine during drying, but not enough to account for the low apparent yield of pyridine extract. Soxhlet extraction analysis of the product showed a significantly lower oil yield compared with 5A zeolite. This might be caused by retention of tetralin in 13x zeolite pores. Tetralin retention will be determined subsequently. A test of 4A zeolite is planned for next month. Aquathermolysis of model compound {beta}-benzylnaphthyl ether was carried out this month at high pressure (liquid water conditions). Analysis of the recovered products are now in progress.

  2. Coal liquefaction process streams characterization and evaluation. Quarterly technical progress report, July 1--September 30, 1992

    SciTech Connect

    Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1992-11-01

    This is the twelfth Quarterly Technical Progress Report under DOE Contract DE-AC22-89PC89883. Major topics reported are: Summaries of the final reports produced by Lehigh University, West Virginia University, and Vander Sande Associates under the Participants Program are presented. Analytical data produced by CONSOL are provided in Appendix I for all samples employed in the Participants Program and issued with the samples to research groups in the Participants Program. A paper was presented at the 1992 US Department of Energy Pittsburgh Energy Technology Center Liquefaction Contractors` Review Conference, held in Pittsburgh September 23--24, 1992, entitled ``The Chemical Nature of Coal Liquid Resids and the Implications for Process Development``. It appears as Appendix 2 in this report.

  3. Chemical Compositional Analysis of Catalytic Hydroconversion Products of Heishan Coal Liquefaction Residue

    PubMed Central

    Wu, Yajun; Zhang, Shuangquan; Yang, Xiaoqin; Wei, Xianyong

    2017-01-01

    Liquefaction residue of Heishan bituminous coal (HLR) was subject to two hydroconversion reactions under 5 MPa initial pressure of hydrogen at 300°C for 3 h, without catalyst and with acid supported catalyst (ASC), respectively. The reaction products were analyzed with gas chromatography/mass spectrometer (GC/MS). The results show that 222 organic compounds were detected totally in the products and they can be divided into alkanes, aromatic hydrocarbons (AHCs), phenols, ketones, ethers, and other species (OSs). The yield of hydroconversion over the ASC is much higher than that without catalyst. The most abundant products are aromatic hydrocarbons in the reaction products from both catalytic and noncatalytic reactions of HLR. The yield of aromatic hydrocarbons in the reaction product from hydroconversion with the ACS is considerably higher than that from hydroconversion without a catalyst. PMID:28250770

  4. Bimetallic promotion of cooperative hydrogen transfer and heteroatom removal in coal liquefaction

    SciTech Connect

    Eisch, J.J.

    1992-04-07

    The ultimate objective of this research has been to uncover novel reagents and experimental conditions for heteroatom removal and hydrogen transfer processes, which would be applicable to the liquefaction of coal under low-severity conditions. To this end, one phase of this research has investigated the cleavage of carbon-heteroatom bonds involving sulfur, oxygen, nitrogen and halogen by subvalent transition-metal complexes. A second phase of the study has assessed the capability of the same transition-metal complexes or of organoaluminum Lewis acids to catalyze the cleavage of carbon-hydrogen bonds in aromatics and hence to promote hydrogen shuttling. Finally, a third phase of our work has uncovered a remarkable synergistic effect of combinations of transition metals with organoaluminum Lewis acids on hydrogen shuttling between aromatics and hydroaromatics. (VC)

  5. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Quarterly technical progress report, October--December 1992

    SciTech Connect

    Curtis, C.W.; Gutterman, C.; Chander, S.

    1992-12-31

    The evaluation of various catalyst pre or pyrene coal conversion continued. Higher coal conversions were observed for the S0{sub 2}-treated coal than the raw coal, regardless of catalyst type. Coal conversions were highest for Molyvan-L, molybdenum naphthenate, and nickel octoate. A technique to measure the effect of coal swelling and catalyst impregnation upon coal liquefaction has been developed, and experimentation is under way. Reactivity tests have been performed using S0{sub 2}-treated and untreated swelled Black Thunder Coal. Thermal reactions with swelled coals yielded much less coal conversion and pyrene conversion than did the swelled coal reactions with Molyvan-L. The study of bottoms processing consists of coupling solvent deasphalting with delayed coking to maximize the production of coal-derived liquids while rejecting solids within the coke drum. The batch deasphalting screening tests have been completed. While n-butane/pentane solvent blends initially appeared best, pentane alone at 380{degree}F provided an oil yield (63.6 wt%) that was desired for subsequent tests. The production of asphalt for the transport tests is underway. The target deasphalted oil yields are 40, 50 and 60 wt% of feed. This would produce asphalt with ash levels ranging from 20 to 30 wt% with which to run the transport tests.

  6. Coal liquefaction process streams characterization and evaluation. Quarterly technical progress report, January 1--March 31, 1993

    SciTech Connect

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1993-12-01

    Process oil samples from HRI Catalytic Two-Stage Liquefaction (CTSL) Bench Unit Run CC-16 (227-76) were analyzed to provide information on process performance. Run CC-16 was operated in December 1992 with Burning Star 2 Mine (Illinois 6 seam) coal to test and validate Akzo EXP-AO-60 Ni/Mo catalyst (1/16 in. extrudate). Results were compared with those of four previous HRI CTSL bench unit runs made with Ni/Mo catalysts. Major conclusions from this work are summarized. (1) Akzo EXP-AO-60 gave process oil characteristics in Run CC-16 similar to those of other Ni/Mo catalysts tested in Runs I-13, I-16, I-17, and I-18 (by our analytical and empirical test methods). No distinct performance advantage for any of the catalysts emerges from the process oil characteristics and plant performance. Thus, for commercial coal liquefaction, a number of equivalent catalysts are available from competitive commercial sources. The similarity of run performance and process oil characteristics indicates consistent performance of HRI`s bench unit operations over a period of several years; (2) Dominant effects on process oil properties in Run CC-16 were catalyst age and higher temperature operation in Periods 10--13 (Condition 2). Properties affected were the aromaticities and phenolic -OH concentrations of most streams and the asphaltene and preasphaltene concentrations of the pressure-filter liquid (PFL) 850{degrees}F{sup +} resid. The trends reflect decreasing hydrogenation and defunctionalization of the process streams with increasing catalyst age. Operation at higher temperature conditions seems to have partially offset the effects of catalyst age.

  7. Coal liquefaction process wherein jet fuel, diesel fuel and/or ASTM No. 2 fuel oil is recovered

    DOEpatents

    Bauman, Richard F.; Ryan, Daniel F.

    1982-01-01

    An improved process for the liquefaction of coal and similar solid carbonaceous materials wherein a hydrogen donor solvent or diluent derived from the solid carbonaceous material is used to form a slurry of the solid carbonaceous material and wherein the naphthenic components from the solvent or diluent fraction are separated and used as jet fuel components. The extraction increases the relative concentration of hydroaromatic (hydrogen donor) components and as a result reduces the gas yield during liquefaction and decreases hydrogen consumption during said liquefaction. The hydrogenation severity can be controlled to increase the yield of naphthenic components and hence the yield of jet fuel and in a preferred embodiment jet fuel yield is maximized while at the same time maintaining solvent balance.

  8. Environmental and economic aspects of indirect coal liquefaction processes: a report emphasizing the relationship between product mix and efficiency

    SciTech Connect

    Hoffman, L.

    1981-09-01

    This report covers environmental and economic aspects of three indirect liquefaction processes. Specifically, the following are addressed: U.S. coal resources; the Lurgi/Methanol, Lurgi/Methanol/Mobil M, and the Lurgi/Fischer-Tropsch indirect coal liquefaction processes; and environmental and economic aspects associated with the considered processes. Even though our coal resources are considered very large, the life expectancy of currently defined reserves would be quite limited if we were to derive an appreciable part of our fossil-fuel-derived energy from coal. The conservation of coal resources would be affected by conversion efficiencies, which vary with process and product mix. For the processes considered, for similar liquid-to-gas ratio values (product mix), the coal-to-methanol is the most efficient while the Fischer-Tropsch is the least efficient. For these processes, the cost per Btu of product at reasonable equivalent liquid/gas ratios is greatest for Fischer-Tropsch and the least for the coal-to-methanol process.

  9. Solvent tailoring in coal liquefaction. Quarterly report, February 1982-May 1982. [In many cases the simple organic compounds listed were hydrogenated

    SciTech Connect

    Tarrer, A.R.; Guin, J.A.; Curtis, C.W.; Williams, D.C.

    1982-01-01

    Twenty-three model donor solvents were used to rank their efficacy for the dissolution of Western Kentucky No. 9/14 coal. The transfer of hydrogen from the solvent to the coal fragments, as measured by coal conversion, was examined at three levels of available hydrogen. The hydrogen donors are ranked according to their ability to convert coal to THF solubles. Aromatic analogs of the model donors showed little ability to convert coal to THF solubles. Factors which influence hydrogen donation include the presence of heteroatoms or substituents both internal and external to the aromatic or hydroaromatic rings, the degree of hydrogenation, the aromaticity or nonaromaticity of the hydroaromatics, and the presence of five-membered rings. A relationship between heats of formation and hydrogen donor ability was shown for hydroaromatics within two ring or three ring homologous series. A model hydrogen acceptor, benzophenone, was also used to rank model donors and a comparison was made with the model donor ranking by coal conversion. The ranking of hydrogen donors at the same donatable hydrogen level for their ability to convert coal to THF solubles demonstrates that different donors have different abilities to liquefy coal. The presence of donatable hydrogen constitutes a necessary and important factor in coal conversion as evidenced by comparison with the conversion aromatic analogs. However, properties of the model donors other than the concentration of available hydrogen can affect THF solubles. The ease with which hydrogen is abstracted from a particular donor, as well as the functional groups and heteroatoms present, are significant factors affecting reactivity of the hydrogen donors during liquefaction. Ranking of hydrogen donor reactivity by coal conversion and by model acceptor experiments shows no direct correlation between the two.

  10. Assessment of trace contaminants from a model indirect liquefaction facility. Volume V. Occupational chemical hazards of Lurgi/Fischer-Tropsch coal liquefaction

    SciTech Connect

    Walsh, P.J.; Gasper, J.R.

    1982-01-01

    This analysis investigates the potential for occupational exposure to toxic chemicals during Lurgi/Fischer-Tropsch coal liquefaction. The reference plant is a commercial-scale facility that processes 28,000 tons of coal per day. Because no such facility currently operates in the United States, much of our data is from foreign commercial-scale facilities and US pilot plants. No definitive assessment of occupational hazards can be made until US commercial-scale data is available. However, by extrapolating available data, we identify major chemical hazards of specific Lurgi/Fischer-Tropsch process streams through inhalation and dermal exposure routes. We also identify which workers are at risk and summarize procedures for mitigating potential exposures. Chemicals of interest are carbon monoxide, methane, hydrogen sulfides, tars, and oils. 11 references, 1 figure, 8 tables.

  11. Effects of low-temperature catalytic pretreatments on coal structure and reactivity in liquefaction. Technical progress report, October 1991--December 1991

    SciTech Connect

    Song, C.; Saini, A.; Huang, L.; Wenzel, K.; Hatcher, P.G.; Schobert, H.H.

    1992-01-01

    Low-temperature catalytic pretreatment is a promising approach to the development of an improved liquefaction process. This work is a fundamental study on effects of pretreatments on coal structure and reactivity in liquefaction. The main objectives of this project are to study the coal structural changes induced by low-temperature catalytic and thermal pretreatments by using spectroscopic techniques; and to clarify the pretreatment-induced changes in reactivity or convertibility of coals in the subsequent liquefaction. This report describes the progress of our work during the first quarterly period. Substantial progress has been made in the spectroscopic characterization of fresh and THF-extracted samples of two subbituminous coals and fresh samples of three bituminous coals using cross-polarization magic angle spinning (CPMAS) solid state {sup 13}C NMR and pyrolysis-GC-MS techniques. CPMAS {sup 13}C NMR and pyrolysis-GC-MS provided important information on carbon distribution/functionality and molecular components/structural units, respectively, for these coal samples. Pyrolysis-GC-MS revealed that there are remarkable structural differences in structural units between the subbituminous coals and the bituminous coals. Furthermore, significant progress has been made in the pretreatments and spectroscopic characterization of catalytically and thermally pretreated as well as physically treated Wyodak subbituminous coal, and temperature-staged and temperature-programmed thermal and catalytic liquefaction of a Montana subbituminous coal.

  12. Gasification of residual materials from coal liquefaction. Type III extended pilot plant evaluation of a pelletized and ground Kerr McGee mineral ash residue from SRC-I coal liquefaction process

    SciTech Connect

    Wu, C.M.; Robin, A.M.

    1984-02-01

    A Type III extended pilot plant evaluation of pelletized and ground Kerr McGee mineral ash residue, which was obtained from the liquefaction of Illinois No. 6 coal at the SRC-I coal liquefaction process pilot plant at Wilsonville, Alabama, was successfully completed at Texaco's Montebello Research Laboratory (MRL). A total of 60 tons of residue was gasified during three runs which were carried out at 950 psig in the MRL High Pressure Solids Gasification Unit II gasifier. The oxygen-to-residue ratio was varied to determine optimum operating conditions. The runs lasted from 6.9 hours to 56.3 hours and a total of 72.9 hours of on-stream time was accumulated. This work was authorized by DOE Delivery Order Number 9 under DOE contract DEAC-01-76ET-10137. It is part of a continuing project to evaluate residual materials from various DOE sponsored coal liquefaction projects to determine their suitability for conversion to hydrogen using one of the Texaco gasification processes. 5 figures, 5 tables.

  13. Novel nanodispersed coal liquefaction catalysts: Molecular design via microemulsion-based synthesis. Technical progress report, January 1993--March 1993

    SciTech Connect

    Boakye, E.; Vittal, M.; Osseo-Asare, K.

    1993-04-01

    The objective of this project is to pursue the development of highly dispersed and inexpensive catalysts for improved coal solubilization and upgrading of coal liquids. A novel study of the synthesis of liquefaction catalysts of manometer size is being carried out. It is based on the molecular design of reverse micelles (microemulsions). These surfactant-stabilized, metal-bearing microdrops offer unique opportunities for synthesizing very small particles by providing a cage-like effect that limits particle nucleation, growth and agglomeration. The emphasis is on molybdenum- and iron-based catalysts, but the techniques being developed should also be generally applicable. The size of these very small and monodispersed particles will be accurately determined both separately and after in situ and ex situ coal impregnation. The as-prepared nanoparticles as well as the catalyst-impregnated coal or char matrix are characterized using a battery of techniques, including dynamic light scattering, x-ray diffraction and transmission electron microscopy. Catalytic activity tests are conducted under standardized coal liquefaction conditions. The effect of particle size of these unsupported catalysts on the product yield and distribution during conversion of a bituminous and a subbituminous coal are being determined. This quarter, the solubilization of ammonium tetrathiomolybdate and the synthesis of molybdenum sulfide in several microemulsion systems is discussed.

  14. Novel nanodispersed coal liquefaction catalysts: Molecular design via microemulsion-based synthesis. Technical progress report, October 1992--December 1992

    SciTech Connect

    Boakye, E.; Vittal, M.; Osseo-Asare, K.

    1993-02-01

    The objective of this project is to pursue the development of highly dispersed and inexpensive catalysts for improved coal solubilization and upgrading of coal liquids. A novel study of the synthesis of liquefaction catalysts of manometer size is being carried out. It is based on the molecular design of reverse micelles (microemulsions). These surfactant-stabilized, metal-bearing microdrops offer unique opportunities for synthesizing very small particles by providing a cage-like effect that limits particle nucleation, growth and agglomeration. The emphasis is on molybdenum- and iron-based catalysts, but the techniques being developed should also be generally applicable. The size of these very small and monodispersed particles will be accurately determined both separately and after in situ and ex situ coal impregnation. The as-prepared nanoparticles as well as the catalyst-impregnated coal or char matrix are characterized using a battery of techniques, including dynamic light scattering, x-ray diffraction and transmission electron microscopy. Catalytic activity tests are conducted under standardized coal liquefaction conditions. The effect of particle size of these unsupported catalysts on the product yield and distribution during conversion of a bituminous and a subbituminous coal are being determined.In this quarter, the synthesis of molybdenum sulfide in a microemulsion system with an alcohol-to-surfactant mass ratio of 3.5 is reported.

  15. Novel nanodispersed coal liquefaction catalysts: Molecular design via microemulsion-based synthesis. Technical progress report, July--September 1993

    SciTech Connect

    Boakye, E.; Vittal, M.; Osseo-Asare, K.

    1993-10-01

    The objective of this project is to pursue the development of highly dispersed and inexpensive catalysts for improved coal solubilization and upgrading of coal liquids. A novel study of the synthesis of liquefaction catalysts of manometer size is being carried out. It is based on the molecular design of inverse micelles (microemulsions). These surfactant-stabilized, metal-bearing microdrops offer unique opportunities for synthesizing very small particles by providing a cage-like effect that limits particle nucleation, growth and agglomeration. The emphasis is on molybdenum- and iron-based catalysts, but the techniques being developed should also be generally applicable. The size of these very small and monodispersed particles will be accurately determined both separately and after in situ and ex situ coal impregnation. The as-prepared nanoparticles as well as the catalyst-impregnated coal matrix are characterized using a battery of techniques, including dynamic light scattering, x-ray diffraction and transmission electron microscopy. Catalytic activity tests are conducted under standardized coal liquefaction conditions. The effects of particle size of these unsupported catalysts on the product yield and distribution during conversion of a bituminous and a subbituminous coal are being determined.

  16. Novel nanodispersed coal liquefaction catalysts: Molecular design via microemulsion-based synthesis. Technical progress report, April 1993--June 1993

    SciTech Connect

    Boakye, E.; Vittal, M.; Osseo-Asare, K.

    1993-07-01

    The objective of this project is to pursue the development of highly dispersed and inexpensive catalysts for improved coal solubilization and upgrading of coal liquids. A novel study of the synthesis of liquefaction catalysts of manometer size is being carried out. It is based on the molecular design of inverse micelles (microemulsions). These surfactant-stabilized, metal-bearing microdrops offer unique opportunities for synthesizing very small particles by providing a cage-like effect that limits particle nucleation, growth and agglomeration. The emphasis is on molybdenum- and iron-based catalysts, but the techniques being developed should also be generally applicable. The size of these very small and monodispersed particles will be accurately determined both separately and after in situ and ex situ coal impregnation. The as-prepared nanoparticles as well as the catalyst-impregnated coal matrix are characterized using a battery of techniques, including g dynamic light scattering, x-ray diffraction and transmission electron microscopy. Catalytic activity tests are conducted under standardized coal liquefaction conditions. The effects of particle size of these unsupported catalysts on the product yield and distribution during conversion of a bituminous and a subbituminous coal are being determined. This report discusses molybdenum sulfide particle synthesis, characterization, and microemulsion characterization.

  17. EDS coal liquefaction process development: Phase V. Quarterly technical progress report, January 1-March 31, 1984

    SciTech Connect

    1984-07-01

    This report is the twenty-first Quarterly Technical Progress Report for US Department of Energy Cooperative Agreement No. DE-FC05-77ET10069 for EDS Coal Liquefaction Process Development Phase V. A detailed comparison of RCLU, CLPP, and ECLP yields has been initiated. This study builds off previous yield modeling results, which found that RCLU, CLPP, and ECLP yields were generally consistent given the scatter of the data, although some differences were noted. These pilot unit yield differences have now been quantified, and operating/configurational differences which account for some of them have been identified. Preliminary yield comparison results after correcting for these known process differences between the pilot plants indicate that: RCLU and CLPP yields are generally consistent; ECLP's conversion is about 5 lb/100 lb DAF coal lower than RCLU/CLPP at comparable operating conditions; and work has been initiated to define the EDS slurry preheater feed system design (based on slurry distributor manifold guidelines and coking correlation predictions, which influence furnace pass control issues such as slurry flow measurement). EDS hydrotreated naphtha showed a low level of systemic toxicity to rats exposed to the vapor six hours per day, five days per week for thirteen weeks.

  18. Coal liquefaction process streams characterization and evaluation. Quarterly technical progress report, April 1--June 30, 1992

    SciTech Connect

    Brandes, S.D.; Lancet, M.S.; Robbins, G.A.; Winschel, R.A.; Burke, F.P.

    1992-11-01

    This is the eleventh Quarterly Technical Progress Report under DOE Contract DE-AC22-89PC89883. Major topics reported are: (1) The results of a study designed to determine the effects of the conditions employed at the Wilsonville slurry preheater vessel on coal conversion is described. (2) Stable carbon isotope ratios were determined and used to source the carbon of three product samples from Period 49 of UOP bench-scale coprocessing Run 37. The results from this coprocessing run agree with the general trends observed in other coprocessing runs that we have studied. (3) Microautoclave tests and chemical analyses were performed to ``calibrate`` the reactivity of the standard coal used for determining donor solvent quality of process oils in this contract. (4) Several aspects of Wilsonville Close-Coupled Integrated Two-Stage Liquefaction (CC-ITSL) resid conversion kinetics were investigated; results are presented. Error limits associated with calculations of deactivation rate constants previously reported for Runs 258 and 261 are revised and discussed. A new procedure is described that relates the conversions of 850{degrees}F{sup +} , 1050{degrees}F{sup +}, and 850 {times} 1050{degrees}F material. Resid conversions and kinetic constants previously reported for Run 260 were incorrect; corrected data and discussion are found in Appendix I of this report.

  19. Low severity coal liquefaction promoted by cyclic olefins. Quarterly report, January--March 1996

    SciTech Connect

    Curtis, C.W.

    1996-05-01

    The goal of this research is to develop a methodology for analyzing the reactivity of cyclic olefins in situ in a high temperature and high pressure infrared cell. Cyclic olefins, such as 1,4,5,8-tetrahydronaphthalene (isotetralin) and 1,4,5,8,9, 10-hexahydroanthracene (HHA), are highly reactive donor compounds that readily donate their hydrogen to coal and model acceptors when heated to temperatures of 200 C and above. These donors are active donors in the low severity liquefaction of coal at 350 C as shown in the research performed in this project. The infrared studies are being performed in a high temperature infrared cell that was obtained from AABSPEC. Modifications to that cell have been made and have been reported in previous progress reports. Previous studies had shown that naphthalene was quite stable at temperatures up to 230 C, but a more definitive stability study was conducted to confirm this observation. Stability studies also confirmed the non-reactivity of decaline and tetralin at elevated temperatures up to 230 C. High temperature FTIR analysis of isotetralin showed that isotetralin reacted at temperatures of 100 C and higher to 230 C. This quarter, the reaction product spectrum was analyzed to determine the primary product.

  20. Low severity coal liquefaction promoted by cyclic olefins. Quarterly report, July--September 1996

    SciTech Connect

    Curtis, C.W.

    1997-05-01

    The goal of this research is to develop a methodology for analyzing the reactivity of cyclic olefins in situ in a high temperature and high pressure infrared cell. Cyclic olefins, such as 1,4,5,8-tetrahydronaphthalene (isotetralin) and 1,4,5,8,9,10-hexahydroanthracene (HHA), are highly reactive donor compounds that readily donate their hydrogen to coal and model acceptors when heated to temperatures of 200 C and above. These donors are active donors in the low severity liquefaction of coal at 350 C as shown in the research performed in this project. The infrared studies are being performed in a high temperature infrared cell that was obtained from AABSPEC. Modifications to that cell have been made and have been reported in previous progress reports. The useful temperature range of the high temperature infrared cell has been extended to 230 C through the use of a high-boiling perfluorocarbon solvent. High temperature infrared analyses have been performed using isotetralin, tetralin, naphthalene, 1,4-dihydronaphthalene and 1,2-dihydronaphthalene. Stability studies have shown that naphthalene was quite stable at temperatures up to 230 C, as were tetralin, decalin and 1,4-dihydronaphthalene. High temperature FTIR analysis of isotetralin and 1,2-dihydronaphthalene reacted at elevated temperatures forming tetralin and 1,4-dihydronaphthalene, respectively. The results of stability studies are reported.