Science.gov

Sample records for releases encapsulated hydrophobic

  1. Multifunctional Nanocapsules for Simultaneous Encapsulation of Hydrophilic and Hydrophobic Compounds and On-Demand Release

    PubMed Central

    Hu, Shang-Hsiu; Chen, San-Yuan; Gao, Xiaohu

    2012-01-01

    Cocktail therapy by delivering multiple drugs to diseased cells can elicit synergistic therapeutic effects and better modulate the complex cell signaling network. Besides selection of drug combinations, a difficulty in delivery is how to encapsulate drugs with various solubility into a common vehicle, particularly when both hydrophobic and hydrophilic compounds are involved. Furthermore, it is highly desirable that the drug release profile can be controlled in an on-demand fashion for balanced therapeutic and side effects. Based on a simple and scalable double-emulsion approach, we report a new class of nanocapsules that can solve these problems simultaneously. Further linking the nanocapsules with peptides targeting cell surface integrins leads to significantly enhanced cell uptake of the nanocapsules. Intracellular drug release triggered by external stimuli has also been achieved without affecting cell viability. Further development of this technology should open exciting opportunities in treating tough diseases such as cancer, cardiovascular diseases, neurological disorders, and infectious diseases. PMID:22339040

  2. Hydrophobic encapsulation of hydrocarbon gases.

    PubMed

    Leontiev, Alexander V; Saleh, Anas W; Rudkevich, Dmitry M

    2007-04-26

    [reaction: see text] Encapsulation data for hydrophobic hydrocarbon gases within a water-soluble hemicarcerand in aqueous solution are reported. It is concluded that hydrophobic interactions serve as the primary driving force for the encapsulation, which can be used for the design of gas-separating polymers with intrinsic inner cavities.

  3. Nanoparticle encapsulation and controlled release of a hydrophobic kinase inhibitor: Three stage mathematical modeling and parametric analysis.

    PubMed

    Lucero-Acuña, Armando; Guzmán, Roberto

    2015-10-15

    A mathematical model of drug release that incorporates the simultaneous contributions of initial burst, nanoparticle degradation-relaxation and diffusion was developed and used to effectively describe the release of a kinase inhibitor and anticancer drug, PHT-427. The encapsulation of this drug into PLGA nanoparticles was performed by following the single emulsion-solvent evaporation technique and the release was determined in phosphate buffer pH 7.4 at 37 °C. The size of nanoparticles was obtained in a range of 162-254 nm. The experimental release profiles showed three well defined phases: an initial fast drug release, followed by a nanoparticle degradation-relaxation slower release and then a diffusion release phase. The effects of the controlled release most relevant parameters such as drug diffusivity, initial burst constant, nanoparticle degradation-relaxation constant, and the time to achieve a maximum rate of drug release were evaluated by a parametrical analysis. The theoretical release studies were corroborated experimentally by evaluating the cytotoxicity effectiveness of the inhibitor AKT/PDK1 loaded nanoparticles over BxPC-3 pancreatic cancer cells in vitro. These studies show that the encapsulated inhibitor AKT/PDK1 in the nanoparticles is more accessible and thus more effective when compared with the drug alone, indicating their potential use in chemotherapeutic applications.

  4. Hydrophobic lapatinib encapsulated dextran-chitosan nanoparticles using a toxic solvent free method: fabrication, release property & in vitro anti-cancer activity.

    PubMed

    Mobasseri, Rezvan; Karimi, Mahdi; Tian, Lingling; Naderi-Manesh, Hossein; Ramakrishna, Seeram

    2017-05-01

    Dextran sulfate-chitosan (DS-CS) nanoparticles, which possesses properties such as nontoxicity, biocompatibility and biodegradability have been employed as drug carriers in cancer therapy. In this study, DS-CS nanoparticles were synthesized and their sizes were controlled by a modification of the divalent cations cross-linkers (Ca(2+), Zn(2+) or Mg(2+)). Based on the optimized processing parameters, lapatinib encapsulated nanoparticles were developed and characterized by Dynamics Light Scattering (DLS) measurements, Fourier Transform Infrared Spectroscopy (FT-IR) and Scanning Electron Microscopy (SEM). Calcium chloride (CaCl2) facilitated the formation of bare (100.3±0.80nm) and drug-loaded nanoparticles (134.3±1.3nm) with narrow size distributions being the best cross-linker. The surface potential of drug-loaded nanoparticles was -16.8±0.47mV and its entrapment and loading efficiency were 76.74±1.73% and 47.36±1.27%, respectively. Cellular internalization of nanoparticles was observed by fluorescence microscopy and MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) assay was used to determine cytotoxicity of bare and drug-loaded nanoparticles in comparison to the free drug lapatinib. The MTT assay showed that drug-loaded nanoparticles had comparable anticancer activity to free drug within a duration of 48h. The aforementioned results showed that the DS-CS nanoparticles were able to entrap, protect and release the hydrophobic drug, lapatinib in a controlled pattern and could further serve as a suitable drug carrier for cancer therapy.

  5. Nanocarriers from GRAS Zein Proteins to Encapsulate Hydrophobic Actives.

    PubMed

    Weissmueller, Nikolas T; Lu, Hoang D; Hurley, Amanda; Prud'homme, Robert K

    2016-11-14

    One factor limiting the expansion of nanomedicines has been the high cost of the materials and processes required for their production. We present a continuous, scalable, low cost nanoencapsulation process, Flash Nanoprecipitation (FNP) that enables the production of nanocarriers (NCs) with a narrow size distribution using zein corn proteins. Zein is a low cost, GRAS protein (having the FDA status of "Generally Regarded as Safe") currently used in food applications, which acts as an effective encapsulant for hydrophobic compounds using FNP. The four-stream FNP configuration allows the encapsulation of very hydrophobic compounds in a way that is not possible with previous precipitation processes. We present the encapsulation of several model active compounds with as high as 45 wt % drug loading with respect to zein concentration into ∼100 nm nanocarriers. Three examples are presented: (1) the pro-drug antioxidant, vitamin E-acetate, (2) an anticholera quorum-sensing modulator CAI-1 ((S)-3-hydroxytridecan-4-one; CAI-1 that reduces Vibrio cholerae virulence by modulating cellular communication), and (3) hydrophobic fluorescent dyes with a range of hydrophobicities. The specific interaction between zein and the milk protein, sodium caseinate, provides stabilization of the NCs in PBS, LB medium, and in pH 2 solutions. The stability and size changes in the three media provide information on the mechanism of assembly of the zein/active/casein NC.

  6. Injectable Self-Assembling Peptide Hydrogel: Effects of Hydrophobic Drug Encapsulation and Delivery

    NASA Astrophysics Data System (ADS)

    Sun, Jessie; Stewart, Brandon; Litan, Alisa; Langhans, Sigrid; Schneider, Joel P.; Pochan, Darrin J.

    2015-03-01

    We successfully encapsulated and continuously delivered a hydrophobic drug over the course of a month at effective, significant concentrations in a beta-hairpin peptide network that self-assembles into a shear-thinning injectable solid with immediate rehealing behavior. The peptidic network of the hydrogel is a result of the entangled and branched fibrillar nanostructure. This nanostructure protects the hydrophobic drug in an aqueous environment, while still maintaining original hydrogel network structures and properties. The characterization of the location and effect of the drug on the overall hydrogel properties over time are important to understand for future encapsulations of similarly hydrophobic payloads. The characterization techniques used to better understand the release and properties of the drug-gel constructs include rheology, small angle x-ray and neutron scattering, and in vitro methods.

  7. Dextran vesicular carriers for dual encapsulation of hydrophilic and hydrophobic molecules and delivery into cells.

    PubMed

    Pramod, P S; Takamura, Kathryn; Chaphekar, Sonali; Balasubramanian, Nagaraj; Jayakannan, M

    2012-11-12

    Dextran vesicular nanoscaffolds were developed based on polysaccharide and renewable resource alkyl tail for dual encapsulation of hydrophilic and hydrophobic molecules (or drugs) and delivery into cells. The roles of the hydrophobic segments on the molecular self-organization of dextran backbone into vesicles or nanoparticles were investigated in detail. Dextran vesicles were found to be a unique dual carrier in which water-soluble molecules (like Rhodamine-B, Rh-B) and polyaromatic anticancer drug (camptothecin, CPT) were selectively encapsulated in the hydrophilic core and hydrophobic layer, respectively. The dextran vesicles were capable of protecting the plasma-sensitive CPT lactone pharmacophore against the hydrolysis by 10× better than the CPT alone in PBS. The aliphatic ester linkage connecting the hydrophobic tail with dextran was found to be cleaved by esterase under physiological conditions for fast releasing of CPT or Rh-B. Cytotoxicity of the dextran vesicle and its drug conjugate were tested on mouse embryonic fibroblast cells (MEFs) using MTT assay. The dextran vesicular scaffold was found to be nontoxic to living cells. CPT loaded vesicles were found to be 2.5-fold more effective in killing fibroblasts compared to that of CPT alone in PBS. Confocal microscopic images confirmed that both Rh-B and CPT loaded vesicles to be taken up by fibroblasts compared to CPT alone, showing a distinctly perinuclear localization in cells. The custom designed dextran vesicular provides new research opportunities for dual loading and delivering of hydrophilic and hydrophobic drug molecules.

  8. A facile method to prepare superparamagnetic iron oxide and hydrophobic drug-encapsulated biodegradable polyurethane nanoparticles

    PubMed Central

    Cheng, Kuo-Wei; Hsu, Shan-hui

    2017-01-01

    Superparamagnetic iron oxide nanoparticles (SPIO NPs) have a wide range of biomedical applications such as in magnetic resonance imaging, targeting, and hyperthermia therapy. Aggregation of SPIO NPs can occur because of the hydrophobic surface and high surface energy of SPIO NPs. Here, we developed a facile method to encapsulate SPIO NPs in amphiphilic biodegradable polymer. Anionic biodegradable polyurethane nanoparticles (PU NPs) with ~35 nm size and different chemistry were prepared by waterborne processes. SPIO NPs were synthesized by chemical co-precipitation. SPIO NPs were then added to the aqueous dispersion of PU NPs, followed by application of high-frequency (~20 kHz) ultrasonic vibration for 3 min. This method rendered SPIO-PU hybrid NPs (size ~110 nm) suspended in water. SPIO-PU hybrid NPs contained ~50–60 wt% SPIO and retained the superparamagnetic property (evaluated by a magnetometer) as well as high contrast in magnetic resonance imaging. SPIO-PU NPs also showed the ability to provide cell hyperthermic treatment. Using the same ultrasonic method, hydrophobic drug (Vitamin K3 [VK3]) or (9-(methylaminomethyl) anthracene [MAMA]) could also be encapsulated in PU NPs. The VK3-PU or MAMA-PU hybrid NPs had ~35 nm size and different release profiles for PUs with different chemistry. The encapsulation efficiency for VK3 and MAMA was high (~95%) without burst release. The encapsulation mechanism may be attributed to the low glass transition temperature (Tg) and good mechanical compliance of PU NPs. The new encapsulation method involving waterborne biodegradable PU NPs is simple, rapid, and effective to produce multimodular NP carriers. PMID:28280341

  9. Encapsulation of PEG-modified myoglobin in hydrophobic mesoporous silica as studied by optical waveguide spectroscopy.

    PubMed

    Arafune, Hiroyuki; Yamaguchi, Akira; Hotta, Kazuhiro; Itoh, Tetsuji; Teramae, Norio

    2013-01-01

    The purpose of this study is to apply optical waveguide (OWG) spectroscopy to characterize the encapsulation behavior of enzymes modified with polyethylene glycol (PEG), i.e. pegylation, in a hydrophobic mesoporous silica film. For that purpose, pegylated myoglobin (PEG-Mb) was introduced into the silica mesopores modified with octadecylsilyl (ODS) groups and studied by OWG spectroscopy. OWG spectroscopy confirmed that the hydrophobic interaction between the PEG group and the surface ODS group promoted the encapsulation of PEG-Mb into the hydrophobic silica mesopores. The surface density of ODS affected the adsorbed amount of PEG-Mb and the higher surface density of the ODS group resulted in the suppression of adsorption and diffusion of PEG-Mb inside the pore. Since the desorption rate of PEG-Mb was found to be much slower than the adsorption rate, the pegylation of an enzyme could be effective for the enzyme encapsulation into the hydrophobic mesoporous silica host.

  10. Oil-in-microgel strategy for enzymatic-triggered release of hydrophobic drugs.

    PubMed

    Busatto, C A; Labie, H; Lapeyre, V; Auzely-Velty, R; Perro, A; Casis, N; Luna, J; Estenoz, D A; Ravaine, V

    2017-05-01

    Polymer microgels have received considerable attention due to their great potential in the biomedical field as drug delivery systems. Hyaluronic acid (HA) is a naturally occurring glycosaminoglycan composed of N-acetyl-d-glucosamine and d-glucuronic acid. This polymer is biodegradable, nontoxic, and can be chemically modified. In this work, a co-flow microfluidic strategy for the preparation of biodegradable HA microgels encapsulating hydrophobic drugs is presented. The approach relies on: (i) generation of a primary oil-in-water (O/W) nanoemulsion by the ultrasonication method, (ii) formation of a double oil-in-water-in-oil emulsion (O/W/O) using microfluidics, and (iii) cross-linking of microgels by photopolymerization of HA precursors modified with methacrylate groups (HA-MA) present in the aqueous phase of the droplets. The procedure is used for the encapsulation and controlled release of progesterone. Degradability and encapsulation/release studies in PBS buffer at 37°C in presence of different concentrations of hyaluronidase are performed. It is demonstrated that enzymatic degradation can be used to trigger the release of progesterone from microgels. This method provides precise control of the release system and can be applied for the encapsulation and controlled release of different types of hydrophobic drugs.

  11. Self-degrading niosomes for encapsulation of hydrophilic and hydrophobic drugs: An efficient carrier for cancer multi-drug delivery.

    PubMed

    Sharma, Varsha; Anandhakumar, Sundaramurthy; Sasidharan, Manickam

    2015-11-01

    In this study, we have examined the encapsulation and release of hydrophilic and hydrophobic drugs in self-degrading niosomes as a unique method for anticancer therapy. Niosomes were prepared by amphiphilic self-assembly of Tween 80 and cholesterol through film hydration method. Encapsulation studies with two active molecules curcumin and doxorubicin hydrochloride (Dox) showed that curcumin is supposed to accumulate in the shell whereas Dox accumulates in the inner aqueous core of the niosome. Confocal studies indicated that nile red adsorbs preferentially to the head group of the Tween 80 and forms two separate layers in the shell. It was also seen that the niosomes undergo self-degradation in PBS through a sequential process, forming interconnected pores followed by complete collapse after 1week. The release profile shows two phases: i) initial Dox release in the first two days, followed by ii) curcumin release over 7days. Enhanced (synergistic) cytotoxicity was observed for dual-drug loaded niosomes against HeLa cell lines. Thus these niosomes are shown to offer a promising delivery system for hydrophobic and hydrophilic drugs collectively.

  12. In vitro release properties of encapsulated blueberry (Vaccinium ashei) extracts.

    PubMed

    Flores, Floirendo P; Singh, Rakesh K; Kerr, William L; Phillips, Dennis R; Kong, Fanbin

    2015-02-01

    We aimed to determine the effect of encapsulation on the release properties of blueberry extracts during simulated gastrointestinal digestion. An ethanolic pomace extract was microencapsulated with whey protein isolate via spray drying. The in vitro release of monomeric anthocyanins, phenolics and ferric reducing antioxidant activity of the microcapsules (W) were evaluated for the microcapsules and two non-encapsulated systems: ethanolic pomace extract (P) and freeze-dried juice (F). Concentrations of anthocyanin and phenolics were normalised prior to digestion. Results showed that antioxidant activity was in the order of: F>W>P. Regardless of encapsulation, more phenolics were released from W and P than F. Anthocyanin concentration decreased after intestinal digestion for W, but remained constant for P and F. MALDI-MS showed similar spectra for P and F but not for W. The spray-dried product has comparable release characteristics to freeze-dried juice, and may be investigated for food applications.

  13. Acceleration of Amide Bond Rotation by Encapsulation in the Hydrophobic Interior of a Water-Soluble Supramolecular Assembly

    SciTech Connect

    Pluth, Michael D.; Bergman, Robert G.; Raymond, Kenneth N.

    2008-04-08

    The hydrophobic interior cavity of a self-assembled supramolecular assembly exploits the hydrophobic effect for the encapsulation of tertiary amides. Variable temperature 1H NMR experiments reveal that the free energy barrier for rotation around the C-N amide bond is lowered by up to 3.6 kcal/mol upon encapsulation. The hydrophobic cavity of the assembly is able to stabilize the less polar transition state of the amide rotation process. Carbon-13 labeling studies showed that the {sup 13}C NMR carbonyl resonance increases with temperature for the encapsulated amides which suggests that the assembly is able to favor a twisted for of the amide.

  14. Encapsulation-free controlled release: Electrostatic adsorption eliminates the need for protein encapsulation in PLGA nanoparticles

    PubMed Central

    Pakulska, Malgosia M.; Elliott Donaghue, Irja; Obermeyer, Jaclyn M.; Tuladhar, Anup; McLaughlin, Christopher K.; Shendruk, Tyler N.; Shoichet, Molly S.

    2016-01-01

    Encapsulation of therapeutic molecules within polymer particles is a well-established method for achieving controlled release, yet challenges such as low loading, poor encapsulation efficiency, and loss of protein activity limit clinical translation. Despite this, the paradigm for the use of polymer particles in drug delivery has remained essentially unchanged for several decades. By taking advantage of the adsorption of protein therapeutics to poly(lactic-co-glycolic acid) (PLGA) nanoparticles, we demonstrate controlled release without encapsulation. In fact, we obtain identical, burst-free, extended-release profiles for three different protein therapeutics with and without encapsulation in PLGA nanoparticles embedded within a hydrogel. Using both positively and negatively charged proteins, we show that short-range electrostatic interactions between the proteins and the PLGA nanoparticles are the underlying mechanism for controlled release. Moreover, we demonstrate tunable release by modifying nanoparticle concentration, nanoparticle size, or environmental pH. These new insights obviate the need for encapsulation and offer promising, translatable strategies for a more effective delivery of therapeutic biomolecules. PMID:27386554

  15. Probiotic encapsulation technology: from microencapsulation to release into the gut.

    PubMed

    Gbassi, Gildas K; Vandamme, Thierry

    2012-02-06

    Probiotic encapsulation technology (PET) has the potential to protect microorgansisms and to deliver them into the gut. Because of the promising preclinical and clinical results, probiotics have been incorporated into a range of products. However, there are still many challenges to overcome with respect to the microencapsulation process and the conditions prevailing in the gut. This paper reviews the methodological approach of probiotics encapsulation including biomaterials selection, choice of appropriate technology, in vitro release studies of encapsulated probiotics, and highlights the challenges to be overcome in this area.

  16. Probiotic Encapsulation Technology: From Microencapsulation to Release into the Gut

    PubMed Central

    Gbassi, Gildas K.; Vandamme, Thierry

    2012-01-01

    Probiotic encapsulation technology (PET) has the potential to protect microorgansisms and to deliver them into the gut. Because of the promising preclinical and clinical results, probiotics have been incorporated into a range of products. However, there are still many challenges to overcome with respect to the microencapsulation process and the conditions prevailing in the gut. This paper reviews the methodological approach of probiotics encapsulation including biomaterials selection, choice of appropriate technology, in vitro release studies of encapsulated probiotics, and highlights the challenges to be overcome in this area. PMID:24300185

  17. Rapid magnetic catch-and-release purification by hydrophobic interactions.

    PubMed

    Iijima, Motoyuki; Mikami, Yuzuru; Yoshioka, Tomohiko; Kim, Shokaku; Kamiya, Hidehiro; Chiba, Kazuhiro

    2009-09-15

    A reversible, conventional, and rapid purification method of hydrophobically tagged products using hydrophobic magnetic nanoparticles was developed. The reversible purification system entails simply controlling the polarity of solvents. First, for the catching procedure, poor solvents were added into a well-dispersed system of magnetic nanoparticles and tagged products. Once the poor solvents were added to the system, the products were recrystallized among the nanoparticles and the aggregation of magnetic nanoparticles occurred due to hydrophobic interactions. These aggregates with the products contained within them were able to be collected rapidly by magnets. Then, the releasing procedure can be easily performed by redispersing the collected aggregates into good solvents. The availability of this purification protocol was confirmed by using a hydrophobically tagged fluorescent model product. Furthermore, this rapid purification method was successfully applied to a peptide elongation reaction system which enabled the synthesis of peptides such as Leu-Enkephalin in high purity, in high yield, and in a short time.

  18. Study on Supercooling Release in Encapsulated Ice System

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Yooko; Hasagawa, Hiromi; Iwatsubo, Tetsushiro

    As regards the super cooling phenomena which is important matter in encapsulated ice system, the system efficient suffering from the super cooling release of water was estimated and the performance of release reagent was determined. The following conclusions were reached. (1) It was clear that the COP of heat storing of the system fell by 3% with decreasing release temperature by 1 degree centigrade. (2) As a result of determinations about release reagents, Xanthomonas campestris (ice nuclei bacteria) was very effective in release the super cooling state, and the performance was maintained in continuous application of freezing and melting.

  19. Sol-gel encapsulation for controlled drug release and biosensing

    NASA Astrophysics Data System (ADS)

    Fang, Jonathan

    The main focus of this dissertation is to investigate the use of sol-gel encapsulation of biomolecules for controlled drug release and biosensing. Controlled drug release has advantages over conventional therapies in that it maintains a constant, therapeutic drug level in the body for prolonged periods of time. The anti-hypertensive drug Captopril was encapsulated in sol-gel materials of various forms, such as silica xerogels and nanoparticles. The primary objective was to show that sol-gel silica materials are promising drug carriers for controlled release by releasing Captopril at a release rate that is within a therapeutic range. We were able to demonstrate desired release for over a week from Captopril-doped silica xerogels and overall release from Captopril-doped silica nanoparticles. As an aside, the antibiotic Vancomycin was also encapsulated in these porous silica nanoparticles and desired release was obtained for several days in-vitro. The second part of the dissertation focuses on immobilizing antibodies and proteins in sol-gel to detect various analytes, such as hormones and amino acids. Sol-gel competitive immunoassays on antibody-doped silica xerogels were used for hormone detection. Calibration for insulin and C-peptide in standard solutions was obtained in the nM range. In addition, NASA-Ames is also interested in developing a reagentless biosensor using bacterial periplasmic binding proteins (bPBPs) to detect specific biomarkers, such as amino acids and phosphate. These bPBPs were doubly labeled with two different fluorophores and encapsulated in silica xerogels. Ligand-binding experiments were performed on the bPBPs in solution and in sol-gel. Ligand-binding was monitored by fluorescence resonance energy transfer (FRET) between the two fluorophores on the bPBP. Titration data show that one bPBP has retained its ligand-binding properties in sol-gel.

  20. 5-Fluorouracil-lipid conjugate: potential candidate for drug delivery through encapsulation in hydrophobic polyester-based nanoparticles.

    PubMed

    Ashwanikumar, N; Kumar, Nisha Asok; Nair, S Asha; Kumar, G S Vinod

    2014-11-01

    The encapsulation of 5-fluorouracil (5-FU) in hydrophobic polymeric materials is made feasible by a lipid-based prodrug approach. A lipid-5-FU conjugate of 5-FU with palmitic acid was synthesized in two-step process. A synthesized dipalmitoyl derivative (5-FUDIPAL) was characterized using Fourier transform infrared spectroscopy and (1)H-nuclear magnetic resonance. The 5-FUDIPAL was encapsulated in polyester-based polymers by the double emulsion-solvent evaporation method. The nanoparticles were characterized by scanning electron microscopy, transmission electron microscopy and dynamic light scattering. The thermal stability was assessed by differential scanning calorimetry data. In vitro release kinetics measurements of the drug from nanoparticles showed the controlled release pattern over a period of time. Cytotoxicity measurements by MTT assay confirmed that dipalmitoyl derivative in nano formulation successfully inhibited the cell growth. Thus the combined physical and biological evaluation of the different polyester-based nanoparticle containing the modified drug showed a facile approach to delivering 5-FU to the tumour site with enhanced efficacy.

  1. Influence of hydrophobe on the release behavior of vinyl acetate miniemulsion polymerization.

    PubMed

    Park, Soo-Jin; Kim, Ki-Seok

    2005-11-25

    Poly(vinyl acetate) (PVAc) nanoparticles containing antibiotic have been prepared by miniemulsion polymerization. To compare the effect of hydrophobe types, hexadecane and poly(vinyl acetate) were used as hydrophobe. The particle characteristics as the manufacturing condition were examined by particle size analyzer. As a result, the diameter of PVAc latexes was adjusted between 80 and 260 nm by homogenization conditions and amounts of surfactant. Also, the miniemulsion by using hexadecane showed the more long shelf stability and led to the more small particle size after polymerization, as compared with the case of using poly(vinyl acetate). This indicated that the use of poly(vinyl acetate) as a hydrophobe could not make the stable emulsion, but it could avoid volatile organic chemical problems in the final product. From the release profile of drug through UV spectra, the drug release was very slow and it could be seen that the release of drug encapsulated with PVAc was occurred with the polymer degradation.

  2. Targeted Mesoporous Iron Oxide Nanoparticles-Encapsulated Perfluorohexane and a Hydrophobic Drug for Deep Tumor Penetration and Therapy

    PubMed Central

    Su, Yu-Lin; Fang, Jen-Hung; Liao, Chia-Ying; Lin, Chein-Ting; Li, Yun-Ting; Hu, Shang-Hsiu

    2015-01-01

    A magneto-responsive energy/drug carrier that enhances deep tumor penetration with a porous nano-composite is constructed by using a tumor-targeted lactoferrin (Lf) bio-gate as a cap on mesoporous iron oxide nanoparticles (MIONs). With a large payload of a gas-generated molecule, perfluorohexane (PFH), and a hydrophobic anti-cancer drug, paclitaxel (PTX), Lf-MIONs can simultaneously perform bursting gas generation and on-demand drug release upon high-frequency magnetic field (MF) exposure. Biocompatible PFH was chosen and encapsulated in MIONs due to its favorable phase transition temperature (56 °C) and its hydrophobicity. After a short-duration MF treatment induces heat generation, the local pressure increase via the gasifying of the PFH embedded in MION can substantially rupture the three-dimensional tumor spheroids in vitro as well as enhance drug and carrier penetration. As the MF treatment duration increases, Lf-MIONs entering the tumor spheroids provide an intense heat and burst-like drug release, leading to superior drug delivery and deep tumor thermo-chemo-therapy. With their high efficiency for targeting tumors, Lf-MIONs/PTX-PFH suppressed subcutaneous tumors in 16 days after a single MF exposure. This work presents the first study of using MF-induced PFH gasification as a deep tumor-penetrating agent for drug delivery. PMID:26379789

  3. Release characteristics of encapsulated formulations incorporating plant growth factors.

    PubMed

    Wybraniec, Slawomir; Schwartz, Liliana; Wiesman, Zeev; Markus, Arie; Wolf, David

    2002-05-01

    The release characteristics of encapsulated formulations containing a combination of plant growth factors (PGF)--plant hormones (IBA, paclobutrazol), nutrients (fertilizers, microelements), and fungicide (prochloraz)--were studied. The formulations were prepared by encapsulating the active ingredients in a polyethylene matrix and, in some cases, subsequently coating the product with polyurethane. Dissolution experiments were carried out with both coated and non-coated formulations to determine the sustained release patterns of the active ingredients. The PGF controlled-release systems obtained have been shown to promote development of root systems, vegetative growth, and reproductive development in cuttings, potted plants, or garden plants of various plant species. These beneficial effects are attributable to the lasting and balanced PGF availability provided by these systems.

  4. Encapsulation, protection, and release of hydrophilic active components: potential and limitations of colloidal delivery systems.

    PubMed

    McClements, David Julian

    2015-05-01

    There have been major advances in the development of edible colloidal delivery systems for hydrophobic bioactives in recent years. However, there are still many challenges associated with the development of effective delivery systems for hydrophilic bioactives. This review highlights the major challenges associated with developing colloidal delivery systems for hydrophilic bioactive components that can be utilized in foods, pharmaceuticals, and other products intended for oral ingestion. Special emphasis is given to the fundamental physicochemical phenomena associated with encapsulation, stabilization, and release of these bioactive components, such as solubility, partitioning, barriers, and mass transport processes. Delivery systems suitable for encapsulating hydrophilic bioactive components are then reviewed, including liposomes, multiple emulsions, solid fat particles, multiple emulsions, biopolymer particles, cubosomes, and biologically-derived systems. The advantages and limitations of each of these delivery systems are highlighted. This information should facilitate the rational selection of the most appropriate colloidal delivery systems for particular applications in the food and other industries.

  5. Spreading, encapsulation and transition to arrested shapes during drop impact onto hydrophobic powders.

    PubMed

    Supakar, T; Moradiafrapoli, M; Christopher, G F; Marston, J O

    2016-04-15

    We present findings from an experimental study of the impact of liquid droplets onto powder surfaces, where the particulates are hydrophobic. We vary both the size of the drop and impact speed coupled with the size range of the powder in order to assess the critical conditions for the formation of liquid marbles, where the drop becomes completely encapsulated by the powder, and arrested shapes where the drop cannot regain its spherical shape. By using different hydrophobization agents we find that a lower particle mobility may aid in promoting liquid marble formation at lower impact kinetic energies. From observations of the arrested shape formations, we propose that simple surface tensions may be inadequate to describe deformation dynamics in liquid marbles.

  6. Triggered Release of Encapsulated Cargo from Photoresponsive Polyelectrolyte Nanocomplexes

    PubMed Central

    2016-01-01

    Combining the numerous advantages of using light as a stimulus, simple free radical random copolymerization, and the easy, all-aqueous preparation of polyelectrolyte complexes (PECs), we prepared photolabile PEC nanoparticles and demonstrated their rapid degradation under UV light. As a proof of concept demonstration, the dye Nile Red was encapsulated in the PECs and successfully released into the surrounding solution as the polyelectrolyte nanocomplex carriers dissolved upon light irradiation. PMID:27526052

  7. Application of Electrostatic Extrusion – Flavour Encapsulation and Controlled Release

    PubMed Central

    Manojlovic, Verica; Rajic, Nevenka; Djonlagic, Jasna; Obradovic, Bojana; Nedovic, Viktor; Bugarski, Branko

    2008-01-01

    The subject of this study was the development of flavour alginate formulations aimed for thermally processed foods. Ethyl vanilline was used as the model flavour compound. Electrostatic extrusion was applied for the encapsulation of ethyl vanilline in alginate gel microbeads. The obtained microbeads with approx. 10 % w/w of ethyl vanilline encapsulated in about 2 % w/w alginate were uniformly sized spheres of about 450 μm. Chemical characterization by H-NMR spectroscopy revealed that the alginate used in this study had a high content (67 %) of guluronic residues and was rich in GG diad blocks (FGG = 55%) and thus presented a high-quality immobilisation matrix. The thermal behaviour of alginate beads encapsulating ethyl vanilline was investigated by thermogravimetric (TG) and differential scanning calorimetry measurements (TG-DSC) under heating conditions which mimicked usual food processing to provide information about thermal decomposition of alginate matrix and kinetics of aroma release. Two well resolved weight losses were observed. The first one was in the 50-150 °C temperature range with the maximum at approx. 112 °C, corresponding to the dehydration of the polymer network. The second loss in the 220-325 °C temperature range, with a maximum at ∼ 247 °C corresponded to the release of vanilline. The obtained results indicate that up to 230 °C most of the vanilline remained intacta, while prolonged heating at elevated temperatures led to the entire loss of the aroma compound. PMID:27879775

  8. Steric environment around acetylcholine head groups of bolaamphiphilic nanovesicles influences the release rate of encapsulated compounds

    PubMed Central

    Stern, Avital; Guidotti, Matteo; Shaubi, Eleonora; Popov, Mary; Linder, Charles; Heldman, Eliahu; Grinberg, Sarina

    2014-01-01

    Two bolaamphiphilic compounds with identical acetylcholine (ACh) head groups, but with different lengths of an alkyl chain pendant adjacent to the head group, as well as differences between their hydrophobic skeleton, were investigated for their ability to self-assemble into vesicles that release their encapsulated content upon hydrolysis of their head groups by acetylcholinesterase (AChE). One of these bolaamphiphiles, synthesized from vernolic acid, has an alkyl chain pendant of five methylene groups, while the other, synthesized from oleic acid, has an alkyl chain pendant of eight methylene groups. Both bolaamphiphiles formed stable spherical vesicles with a diameter of about 130 nm. The ACh head groups of both bolaamphiphiles were hydrolyzed by AChE, but the hydrolysis rate was significantly faster for the bolaamphiphile with the shorter aliphatic chain pendant. Likewise, upon exposure to AChE, vesicles made from the bolaamphiphile with the shorter alkyl chain pendant released their encapsulated content faster than vesicles made from the bolaamphiphile with the longer alkyl chain pendant. Our results suggest that the steric environment around the ACh head group of bolaamphiphiles is a major factor affecting the hydrolysis rate of the head groups by AChE. Attaching an alkyl chain to the bolaamphiphile near the ACh head group allows self-assembled vesicles to form with a controlled release rate of the encapsulated materials, whereas shorter alkyl chains enable a faster head group hydrolysis, and consequently faster release, than longer alkyl chains. This principle may be implemented in the design of bolaamphiphiles for the formation of vesicles for drug delivery with desired controlled release rates. PMID:24531296

  9. Hydrophobic Drug Encapsulation Mechanisms of an Injectable Self-Assembling Peptide Hydrogel

    NASA Astrophysics Data System (ADS)

    Sun, Jessie E. P.; Schneider, Joel P.; Pochan, Darrin J.

    2012-02-01

    We examined a beta-hairpin peptide network that is a shear thinning injectable solid with immediate rehealing behavior. These rheological properties result from the entangled and branched fibrillar nanostructure of the hydrogel networks. The fibrils are formed by the intramolecular folding and subsequent intermolecular assembly of the self-assembling peptides. Taking advantage of the nanofibrillar peptide structures, the hydrogel can be used to encapsulate curcumin, a hydrophobic, natural anticancer agent and indian spice. The hydrogel shields curcumin from the environment while depositing it exactly where it is intended through syringe injection, taking advantage of the hydrogel shear thinning and rehealing behavior. How the network envelopes and interacts with the curcumin is examined using fluoresence and electron microscopy methods to better understand the exact mechanisms and behaviors of the gel itself and the gel-curcumin construct.

  10. Silk fibroin/copolymer composite hydrogels for the controlled and sustained release of hydrophobic/hydrophilic drugs.

    PubMed

    Zhong, Tianyi; Jiang, Zhijuan; Wang, Peng; Bie, Shiyu; Zhang, Feng; Zuo, Baoqi

    2015-10-15

    In the present study, a composite system for the controlled and sustained release of hydrophobic/hydrophilic drugs is described. Composite hydrogels were prepared by blending silk fibroin (SF) with PLA-PEG-PLA copolymer under mild aqueous condition. Aspirin and indomethacin were incorporated into SF/Copolymer hydrogels as two model drugs with different water-solubility. The degradation of composite hydrogels during the drug release was mainly caused by the hydrolysis of copolymers. SF with stable β-sheet-rich structure was not easily degraded which maintained the mechanical integrity of composite hydrogel. The hydrophobic/hydrophilic interactions of copolymers with model drugs would significantly alter the morphological features of composite hydrogels. Various parameters such as drug load, concentration ratio, and composition of copolymer were considered in vitro drug release. Aspirin as a hydrophilic drug could be controlled release from composite hydrogel at a constant rate for 5 days. Its release was mainly driven by diffusion-based mechanism. Hydrophobic indomethacin could be encapsulated in copolymer nanoparticles distributing in the composite hydrogel. Its sustained release was mainly degradation controlled which could last up to two weeks. SF/Copolymer hydrogel has potential as a useful composite system widely applying for controlled and sustained release of various drugs.

  11. Hydrogels of sodium alginate in cationic surfactants: Surfactant dependent modulation of encapsulation/release toward Ibuprofen.

    PubMed

    Jabeen, Suraya; Chat, Oyais Ahmad; Maswal, Masrat; Ashraf, Uzma; Rather, Ghulam Mohammad; Dar, Aijaz Ahmad

    2015-11-20

    The interaction of cetyltrimethylammoium bromide (CTAB) and its gemini homologue (butanediyl-1,4-bis (dimethylcetylammonium bromide), 16-4-16 with biocompatible polymer sodium alginate (SA) has been investigated in aqueous medium. Addition of K2CO3 influences viscoelastic properties of surfactant impregnated SA via competition between electrostatic and hydrophobic interactions. Viscosity of these polymer-surfactant systems increases with increase in concentration of K2CO3, and a cryogel is formed at about 0.5M K2CO3 concentration. The thermal stability of gel (5% SA+0.5M K2CO3) decreases with increase in surfactant concentration, a minimum is observed with increase in 16-4-16 concentration. The impact of surfactant addition on the alginate structure vis-à-vis its drug loading capability and release thereof was studied using Ibuprofen (IBU) as the model drug. The hydrogel with 16-4-16 exhibits higher IBU encapsulation and faster release in comparison to the one containing CTAB. This higher encapsulation-cum-faster release capability has been related to micelle mediated solubilization and greater porosity of the hydrogel with gemini surfactant.

  12. Gelatin-encapsulated iron oxide nanoparticles for platinum (IV) prodrug delivery, enzyme-stimulated release and MRI.

    PubMed

    Cheng, Ziyong; Dai, Yunlu; Kang, Xiaojiao; Li, Chunxia; Huang, Shanshan; Lian, Hongzhou; Hou, Zhiyao; Ma, Pingan; Lin, Jun

    2014-08-01

    A facile method for transferring hydrophobic iron oxide nanoparticles (IONPs) from chloroform to aqueous solution via encapsulation of FITC-modified gelatin based on the hydrophobic-hydrophobic interaction is described in this report. Due to the existence of large amount of active groups such as amine groups in gelatin, the fluorescent labeling molecules of fluorescein isothiocyanate (FITC) and platinum (IV) prodrug functionalized with carboxylic groups can be conveniently conjugated on the IONPs. The nanoparticles carrying Pt(IV) prodrug exhibit good anticancer activities when the Pt(IV) complexes are reduced to Pt(II) in the intracellular environment, while the pure Pt(IV) prodrug only presents lower cytotoxicity on cancer cells. Meanwhile, fluorescence of FITC on the surface of nanoparticles was completely quenched due to the possible Förster Resonance Energy Transfer (FRET) mechanism and showed a fluorescence recovery after gelatin release and detachment from IONPs. Therefore FITC as a fluorescence probe can be used for identification, tracking and monitoring the drug release. In addition, adding pancreatic enzyme can effectively promote the gelatin release from IONPs owing to the degradation of gelatin. Noticeable darkening in magnetic resonance image (MRI) was observed at the tumor site after in situ injection of nanoparticles, indicating the IONPs-enhanced T2-weighted imaging. Our results suggest that the gelatin encapsulated Fe3O4 nanoparticles have potential applications in multi-functional drug delivery system for disease therapy, MR imaging and fluorescence sensor.

  13. Floating-pulsatile release multiparticulate system for chronopharmacotherapy: effect of some hydrophobic additives on the buoyancy and release behavior of particles.

    PubMed

    Maghsoodi, M

    2014-01-01

    A blend of floating and pulsatile principles of a drug delivery system would have the advantage that a drug can be released in the upper gastrointestinal (GI) tract after a lag period, which is anticipated for chronotherapy. In this study, microballoons were prepared by an emulsion solvent diffusion technique using Eudragit S100, and hydrophobic additive (magnesium stearate, stearic acid or talc) for time- and site-specific drug release of piroxicam. The effect of hydrophobic additives on the production yield of floating microparticles, buoyant ability for 8 h, release of drug in simulated GI fluids (simulated gastric fluid [SGF] and simulated intestinal fluid [SIF]), mean particle size, apparent particle density, encapsulation efficiency of drug and physical state of incorporated drug were studied. Both production yield and buoyancy of the microballoons were affected by additives in the following order: magnesium stearate, stearic acid>free-additive>talc. The observed difference in yield and the buoyancy of the microballoons could be attributed to the hydrophobic character of the additives and the shell rigidity of the obtained microballoons. Incorporation of hydrophobic additives in the microballoons was found to impart the desired release properties to the microballoons by providing a 2-phase release pattern with initial slow release (5-6%) through 8 h in SGF followed by rapid pulse release (>92%) in SIF through 15 min. The microballoons co-formulated with magnesium stearate or stearic acid, combining excellent buoyancy and suitable drug release pattern of piroxicam, could be useful in chronopharmacotherapy in arthritis.

  14. Syntheses and self-assembly of novel asparagine-derived amphiphiles: Applications in the encapsulation of proteins, hydrophobic, and hydrophilic drug models

    NASA Astrophysics Data System (ADS)

    Mfuh, Adelphe Mbufung

    This thesis focuses mainly on the synthesis, characterization, and self-assembly of a novel series of asparagine-derived amphiphiles and their use in the preparation and stabilization of nano and microcapsules for the encapsulation of proteins, and hydrophilic and hydrophobic drug models. Chapter 1 gives a brief literature overview of lipid molecular assembly, which covers some aspects of morphological analyses, encapsulation of chemical entity and some reported characterization techniques of supramolecular assemblies. It introduces the scope of this dissertation and contains some information on stimulus responsive liposomal systems for controlled release of drug models. Chapter 2 introduces a novel asparagine-derived lipid bearing two fatty chains (C11 and C17) and a tetrahydropyrimidinone head group. It presents information on the synthesis and characterization of this lipid and describes the self-assembly and effects of this lipid in distearoyl phosphatidyl choline bilayer. Chapter 3 presents the synthesis and characterization of a series of ALAn,m (where n and m represent the length of the hydrocarbon chains on the asparagine-derived, heterocyclic head group). It contains data on the effect of chain length, solvent media and head group ionization on the conformational equilibrium about a tertiary amide bond in ALAn,m. The chapter also examines the influence of chain length on ALAn,m on the colloidal stability of DSPC liposomes. Chapter 4 presents the first example of an N,N-acetal linkage in a novel pH responsive nanocarrier system obtained from the cyclocondensation of dodecanal with sodium asparaginate. Data is presented on the spontaneous self-assembly, encapsulation studies and morphological characterization of the nano-systems with the inclusion of cholesterol as additive. Chapter 5 presents the development of a photoresponsive nanocarrier via the self- assembly of an asparagine-derived lipid containing a coumarin unit in the hydrophobic domain. The

  15. High loading fragrance encapsulation based on a polymer-blend: preparation and release behavior.

    PubMed

    Sansukcharearnpon, Aurapan; Wanichwecharungruang, Supason; Leepipatpaiboon, Natchanun; Kerdcharoen, Teerakiat; Arayachukeat, Sunatda

    2010-05-31

    The six fragrances, camphor, citronellal, eucalyptol, limonene, menthol and 4-tert-butylcyclohexyl acetate, which represent different chemical functionalities, were encapsulated with a polymer-blend of ethylcellulose (EC), hydroxypropyl methylcellulose (HPMC) and poly(vinyl alcohol) (PV(OH)) using solvent displacement (ethanol displaced by water). The process gave >or=40% fragrance loading capacity with >or=80% encapsulation efficiency at the fragrance to polymer weight ratio of 1:1 and at initial polymer concentrations of 2000-16,000 ppm and the obtained fragrance-encapsulated spheres showed hydrodynamic diameters of less than 450 nm. The release profile of the encapsulated fragrances, evaluated by both thermal gravimetric and electronic nose techniques, indicated different release characteristics amongst the six encapsulated fragrances. Limonene showed the fastest release with essentially no retention by the nanoparticles, while eucalyptol and menthol showed the slowest release.

  16. Laser-triggered release of encapsulated molecules from polylactic-co-glycolic acid microcapsules

    NASA Astrophysics Data System (ADS)

    Ariyasu, Kazumasa; Ishii, Atsuhiro; Umemoto, Taiga; Terakawa, Mitsuhiro

    2016-08-01

    The controlled release of encapsulated molecules from a microcapsule is a promising method of targeted drug delivery. Laser-triggered methods for the release of encapsulated molecules have the advantage of spatial and temporal controllability. In this study, we demonstrated the release of encapsulated molecules from biodegradable polymer-based microcapsules using near-infrared femtosecond laser pulses. The polylactic-co-glycolic acid microcapsules encapsulating fluorescein isothiocyanate-dextran molecules were fabricated using a dual-coaxial nozzle system. Irradiation of femtosecond laser pulses enhanced the release of the molecules from the microcapsules, which was accompanied by a decrease in the residual ratio of the microcapsules. The laser-induced modification of the surface of the shell of the microcapsules indicated the potential for sustained release as well as burst release.

  17. PEG-b-PPS diblock copolymer aggregates for hydrophobic drug solubilization and release: cyclosporin A as an example.

    PubMed

    Velluto, Diana; Demurtas, Davide; Hubbell, Jeffrey A

    2008-01-01

    Micelles formed from amphiphilic block copolymers have been explored in recent years as carriers for hydrophobic drugs. In an aqueous environment, the hydrophobic blocks form the core of the micelle, which can host lipophilic drugs, while the hydrophilic blocks form the corona or outer shell and stabilize the interface between the hydrophobic core and the external medium. In the present work, mesophase behavior and drug encapsulation were explored in the AB block copolymeric amphiphile composed of poly(ethylene glycol) (PEG) as a hydrophile and poly(propylene sulfide) PPS as a hydrophobe, using the immunosuppressive drug cyclosporin A (CsA) as an example of a highly hydrophobic drug. Block copolymers with a degree of polymerization of 44 on the PEG and of 10, 20 and 40 on the PPS respectively (abbreviated as PEG44-b-PPS10, PEG44-b-PPS20, PEG44-b-PPS40) were synthesized and characterized. Drug-loaded polymeric micelles were obtained by the cosolvent displacement method as well as the remarkably simple method of dispersing the warm polymer melt, with drug dissolved therein, in warm water. Effective drug solubility up to 2 mg/mL in aqueous media was facilitated by the PEG- b-PPS micelles, with loading levels up to 19% w/w being achieved. Release was burst-free and sustained over periods of 9-12 days. These micelles demonstrate interesting solubilization characteristics, due to the low glass transition temperature, highly hydrophobic nature, and good solvent properties of the PPS block.

  18. Biodegradable polymer based encapsulation of neem oil nanoemulsion for controlled release of Aza-A.

    PubMed

    Jerobin, Jayakumar; Sureshkumar, R S; Anjali, C H; Mukherjee, Amitava; Chandrasekaran, Natarajan

    2012-11-06

    Azadirachtin a biological compound found in neem have medicinal and pesticidal properties. The present work reports on the encapsulation of neem oil nanoemulsion using sodium alginate (Na-Alg) by cross linking with glutaraldehyde. Starch and polyethylene glycol (PEG) were used as coating agents for smooth surface of beads. The SEM images showed beads exhibited nearly spherical shape. Swelling of the polymeric beads reduced with coating which in turn decreased the rate of release of Aza-A. Starch coated encapsulation of neem oil nanoemulsion was found to be effective when compared to PEG coated encapsulation of neem oil nanoemulsion. The release rate of neem Aza-A from the beads into an aqueous environment was analyzed by UV-visible spectrophotometer (214 nm). The encapsulated neem oil nanoemulsion have the potential for controlled release of Aza-A. Neem oil nanoemulsion encapsulated beads coated with PEG was found to be toxic in lymphocyte cells.

  19. Demonstrating Encapsulation and Release: A New Take on Alginate Complexation and the Nylon Rope Trick

    ERIC Educational Resources Information Center

    Friedli, Andrienne C.; Schlager, Inge R.; Wright, Stephen W.

    2005-01-01

    Three variations on a classroom demonstration of the encapsulation of droplets and evidence for release of the interior solution are described. The first two demonstrations mimic biocompatible applications of encapsulation. Reversible formation of capsules from aqueous solutions of sodium alginate, a negatively charged polysaccharide derived from…

  20. Effects of Particle Hydrophobicity, Surface Charge, Media pH Value and Complexation with Human Serum Albumin on Drug Release Behavior of Mitoxantrone-Loaded Pullulan Nanoparticles

    PubMed Central

    Tao, Xiaojun; Jin, Shu; Wu, Dehong; Ling, Kai; Yuan, Liming; Lin, Pingfa; Xie, Yongchao; Yang, Xiaoping

    2015-01-01

    We prepared two types of cholesterol hydrophobically modified pullulan nanoparticles (CHP) and carboxyethyl hydrophobically modified pullulan nanoparticles (CHCP) substituted with various degrees of cholesterol, including 3.11, 6.03, 6.91 and 3.46 per polymer, and named CHP−3.11, CHP−6.03, CHP−6.91 and CHCP−3.46. Dynamic laser light scattering (DLS) showed that the pullulan nanoparticles were 80–120 nm depending on the degree of cholesterol substitution. The mean size of CHCP nanoparticles was about 160 nm, with zeta potential −19.9 mV, larger than CHP because of the carboxyethyl group. A greater degree of cholesterol substitution conferred greater nanoparticle hydrophobicity. Drug-loading efficiency depended on nanoparticle hydrophobicity, that is, nanoparticles with the greatest degree of cholesterol substitution (6.91) showed the most drug encapsulation efficiency (90.2%). The amount of drug loading increased and that of drug release decreased with enhanced nanoparticle hydrophobicity. Nanoparticle surface-negative charge disturbed the amount of drug loading and drug release, for an opposite effect relative to nanoparticle hydrophobicity. The drug release in pullulan nanoparticles was higher pH 4.0 than pH 6.8 media. However, the changed drug release amount was not larger for negative-surface nanoparticles than CHP nanoparticles in the acid release media. Drug release of pullulan nanoparticles was further slowed with human serum albumin complexation and was little affected by nanoparticle hydrophobicity and surface negative charge. PMID:28344259

  1. Granular encapsulation of light hydrophobic liquids (LHL) in LHL-salt water systems: Particle induced densification with quartz sand.

    PubMed

    Boglaienko, Daria; Tansel, Berrin; Sukop, Michael C

    2016-02-01

    Addition of granular materials to floating crude oil slicks can be effective in capturing and densifying the floating hydrophobic phase, which settles by gravity. Interaction of light hydrophobic liquids (LHL) with quartz sand was investigated in LHL-salt water systems. The LHLs studied were decane, tetradecane, hexadecane, benzene, toluene, ethylbenzene, m-xylene, and 2-cholorotoluene. Experiments were conducted with fine quartz sand (passing sieve No. 40 with openings 0.425 mm). Each LHL was dyed with few crystals of Sudan IV dye for ease of visual observation. A volume of 0.5 mL of each LHL was added to 100 mL salt water (34 g/L). Addition of one gram of quartz sand to the floating hydrophobic liquid layer resulted in formation of sand-encapsulated globules, which settled due to increased density. All LHLs (except for a few globules of decane) formed globules covered with fine sand particles that were heavy enough to settle by gravity. The encapsulated globules were stable and retained their shape upon settling. Polarity of hydrophobic liquids as the main factor of aggregation with minerals was found to be insufficient to explain LHL aggregation with sand. Contact angle measurements were made by submerging a large quartz crystal with the LHL drop on its surface into salt water. A positive correlation was observed between the wetting angle of LHL and the LHL volume captured (r = 0.75). The dependence of the globule density on globule radius was analyzed in relation to the coverage (%) of globule surface (LHL-salt water interface) by fine quartz particles.

  2. Protein-based emulsion electrosprayed micro- and submicroparticles for the encapsulation and stabilization of thermosensitive hydrophobic bioactives.

    PubMed

    Gómez-Mascaraque, Laura G; López-Rubio, Amparo

    2016-03-01

    This work shows the potential of emulsion electrospraying of proteins using food-grade emulsions for the microencapsulation and enhanced protection of a model thermosensitive hydrophobic bioactive. Specifically, gelatin, a whey protein concentrate (WPC) and a soy protein isolate (SPI) were compared as emulsion stabilizers and wall matrices for encapsulation of α-linolenic acid. In a preliminary stage, soy bean oil was used as the hydrophobic component for the implementation of the emulsion electrospraying process, investigating the effect of protein type and emulsion protocol used (i.e. with or without ultrasound treatment) on colloidal stability. This oil was then substituted by the ω-3 fatty acid and the emulsions were processed by electrospraying and spray-drying, comparing both techniques. While the latter resulted in massive bioactive degradation, electrospraying proved to be a suitable alternative, achieving microencapsulation efficiencies (MEE) of up to ∼70%. Although gelatin yielded low MEEs due to the need of employing acetic acid for its processing by electrospraying, SPI and WPC achieved MEEs over 60% for the non-sonicated emulsions. Moreover, the degradation of α-linolenic acid at 80°C was significantly delayed when encapsulated within both matrices. Whilst less than an 8% of its alkene groups were detected after 27h of thermal treatment for free α-linolenic acid, up to 43% and 67% still remained intact within the electrosprayed SPI and WPC capsules, respectively.

  3. Study of the mechanisms of laser-induced release of liposome-encapsulated dye

    SciTech Connect

    Khoobehi, B.; Char, C.A.; Peyman, G.A.; Schuele, K.M. )

    1990-01-01

    To differentiate the contributing factors (blood or encapsulated dye) leading to the release of encapsulated dyes from liposomes after laser exposure, we initiated an in vitro experimental study. The release of encapsulated calcein was quantified under various experimental conditions in whole blood and in buffered solution containing high-density lipoprotein. Generally, the amount of dye release improved with an increase in laser power, with a maximum release of approximately 80% of encapsulated dye. Because the laser exposure was not continuous, only 80% of each sample was actually exposed. Therefore, 80% release may be thought of as total release. In a lipoprotein/buffer mixture, the 488 nm wavelength caused greater dye release than the 577 nm wavelength, because the maximum absorption of calcein is near 488 nm. The laser wavelength at 577 nm, however, caused greater release in the blood mixture, reflecting the peak absorption of hemoglobin at near 577 nm. At a 3 x higher liposome concentration, the differences in the effects of wavelengths on the release of dye from liposomes were insignificant. Although the 577 nm wavelength is an optimum wavelength for dye and drug delivery in the presence of blood, the 488 nm wavelength might also be suitable for the release of dye from the liposomes.

  4. Optimization of Stability, Encapsulation, Release, and Cross-Priming of Tumor Antigen-Containing PLGA Nanoparticles

    PubMed Central

    Prasad, Shashi; Cody, Virginia; Saucier-Sawyer, Jennifer K.; Fadel, Tarek R.; Edelson, Richard L.; Birchall, Martin A.

    2014-01-01

    Purpose In order to investigate Poly (lactic-co-glycolic acid) (PLGA) nanoparticles (NP) as potential vehicles for efficient tumor antigen (TA) delivery to dendritic cells (DC), this study aimed to optimize encapsulation/release kinetics before determining immunogenicity of antigen-containing NP. Methods Various techniques were used to liberate TA from cell lines. Single (gp100) and multiple (B16-tumor lysate containing gp100) antigens were encapsulated within differing molecular weight PLGA co-polymers. Differences in morphology, encapsulation/release and biologic potency were studied. Findings were adopted to encapsulate fresh tumor lysate from patients with advanced tumors and compare stimulation of tumor infiltrating lymphocytes (TIL) against that achieved by soluble lysate. Results Four cycles of freeze-thaw + 15 s sonication resulted in antigen-rich lysates without the need for toxic detergents or protease inhibitors. The 80KDa polymer resulted in maximal release of payload and favorable production of immunostimulatory IL-2 and IFN-γ. NP-mediated antigen delivery led to increased IFN-γ and decreased immunoinhibitory IL-10 synthesis when compared to soluble lysate. Conclusions Four cycles of freeze-thaw followed by 15 s sonication is the ideal technique to obtain complex TA for encapsulation. The 80KDa polymer has the most promising combination of release kinetics and biologic potency. Encapsulated antigens are immunogenic and evoke favorable TIL-mediated anti-tumor responses. PMID:22798259

  5. Encapsulation and Controlled Release of Heparin from Electrospun Poly(L-Lactide-co-ε-Caprolactone) Nanofibers.

    PubMed

    Su, Yan; Li, Xiaoqiang; Liu, Yinan; Su, Qianqian; Qiang, Marcus Lim Wei; Mo, Xiumei

    2011-01-01

    Poly(L-lactide-co-ε-caprolactone) nanofibers with heparin incorporated were successfully fabricated by coaxial electrospinning. The morphologies of electrospun nanofibers were studied by scanning electron microscopy (SEM), and a significant decrease in fiber diameter was observed with increasing heparin concentration. The transmission electron microscopy (TEM) images indicated that coaxial electrospinning could generate core-shell structure nanofibers which have the potential to encapsulate drugs (heparin in this study) into the core part of nanofibers. Approximately 80% of the encapsulated heparin was sustainedly and stably released from the fibrous composite in 14 days by a diffusion/erosion coupled mechanism. The release behavior of heparin from blend electrospun nanofibers was also studied and showed an obvious burst release in the initial stage. An in vitro proliferation test was conducted to study the effect of heparin released from nanofibers, and the results suggest that the heparin maintains its bioactivity after encapsulating with and delivery through coaxially electrospun fibers.

  6. Preparation and characterization of zein/chitosan complex for encapsulation of α-tocopherol, and its in vitro controlled release study.

    PubMed

    Luo, Yangchao; Zhang, Boce; Whent, Monica; Yu, Liangli Lucy; Wang, Qin

    2011-07-01

    Chitosan (CS) nanoparticles coated with zein has been newly demonstrated as a promising encapsulation and delivery system for hydrophilic nutrient with enhanced bioactivities in our previous study. In this study, a hydrophobic nutrient, α-tocopherol (TOC), was successfully encapsulated into zein/CS complex. The fabrication parameters, including zein concentration, zein/CS weight ratio, and TOC loading percentage, were systematically investigated. The physicochemical and structural analysis showed that the electrostatic interactions and hydrogen bonds were major forces responsible for complex formation. The scanning electron microscopy study revealed the spherical nature with smooth surface of complex. TOC encapsulation was also evidenced by differential scanning calorimetry. The particle size and zeta potential of the complex varied from 200 to 800 nm and +22.8 to +40.9 mV, respectively. The kinetic release profile of the TOC showed burst effect followed by slow release. Compared with zein nanoparticles, zein/CS complex provided better protection of TOC release against gastrointestinal conditions, due to CS coatings. Zein/CS complex is believed to be a promising delivery system for supplementation or treatment of hydrophobic nutrients or drugs.

  7. Encapsulation of eugenyl acetate in PHBV using SEDS technique and in vitro release evaluation.

    PubMed

    Loss, Raquel A; Pereira, Gabriela N; Boschetto, Daiane L; Aguiar, Gean S P; Machado, Juliana R; Chaves, Lorenzo M P C; Silva, Maria J A; Oliveira, Débora; Oliveira, J Vladimir

    2016-10-01

    Eugenyl acetate obtained via enzymatic esterification using Lipozyme TL IM enzyme was encapsulated in biopolymer poly(3-hydroxybutyrate-co-hydroxyvalerate) (PHBV) through solution-enhanced dispersion by supercritical fluids (SEDS). Produced particles were characterized by SEM and confocal microscopy techniques and in addition in vitro release assays were performed in isopropanol and ethyl acetate. Experimental micronization conditions comprised 8 and 10 MPa, 308 and 313 K and eugenyl acetate concentration ranging from 5 to 20 mg mL(-1), keeping PHBV concentration constant (20 mg mL(-1) in dichloromethane). The maximum encapsulation efficiency was 58.0 % for 5 mg mL(-1)of eugenyl acetate at 8 MPa and 308 K. The morphology of the encapsulated particles for most of the trials was spherical, with particle size ranging from 0.061 to 0.276 μm. Regarding the release in ethyl acetate and isopropanol solvents the higher the affinity of the encapsulated ester of these solvents, the faster the release was observed. These results demonstrate the importance of essential clove oil esterification reaction and encapsulation of the ester by SEDS method so that this encapsulated ester can be used in different industrial applications.

  8. Osmotic pressure-dependent release profiles of payloads from nanocontainers by co-encapsulation of simple salts

    NASA Astrophysics Data System (ADS)

    Behzadi, Shahed; Rosenauer, Christine; Kappl, Michael; Mohr, Kristin; Landfester, Katharina; Crespy, Daniel

    2016-06-01

    The encapsulation of payloads in micro- to nano-scale capsules allows protection of the payload from the surrounding environment and control of its release profile. Herein, we program the release of hydrophilic payloads from nanocontainers by co-encapsulating simple inorganic salts for adjusting the osmotic pressure. The latter either leads to a burst release at high concentrations of co-encapsulated salts or a sustained release at lower concentrations. Osmotic pressure causes swelling of the nanocapsule's shell and therefore sustained release profiles can be adjusted by crosslinking it. The approach presented allows for programing the release of payloads by co-encapsulating inexpensive salts inside nanocontainers without the help of stimuli-responsive materials.The encapsulation of payloads in micro- to nano-scale capsules allows protection of the payload from the surrounding environment and control of its release profile. Herein, we program the release of hydrophilic payloads from nanocontainers by co-encapsulating simple inorganic salts for adjusting the osmotic pressure. The latter either leads to a burst release at high concentrations of co-encapsulated salts or a sustained release at lower concentrations. Osmotic pressure causes swelling of the nanocapsule's shell and therefore sustained release profiles can be adjusted by crosslinking it. The approach presented allows for programing the release of payloads by co-encapsulating inexpensive salts inside nanocontainers without the help of stimuli-responsive materials. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01882c

  9. Pegylated protein encapsulated multivesicular liposomes: a novel approach for sustained release of interferon alpha.

    PubMed

    Vyas, S P; Rawat, M; Rawat, A; Mahor, S; Gupta, P N

    2006-07-01

    Hepatitis C viral chemotherapy suffers from a relatively short half-life of the interferon alpha-2a (IFN alpha). To address this issue, we investigated the effects of polyethylene glycol modification and their subsequent encapsulation in multivesicular liposomes (MVLs), on the release properties of IFN alpha. In the present study, interferon-alpha was conjugated with methoxy-polyethylene glycol (mPEG, MW 5000). Prepared IFN alpha-mPEG5000 conjugate (IFN alpha-mPEG5000) was purified with size exclusion chromatography. The relative in vitro anti-viral activity of pegylated interferon alpha-2a was found to 87.9% of the unmodified IFN alpha. Pegylated IFN alpha encapsulated multivesicular liposomes were prepared by double emulsification technique followed by evaporation of organic solvents from chloroform ether spherules suspended in water. Prepared MVLs were then characterized for shape, size, vesicle count, encapsulation efficiency, and in vitro release rate. In process stability studies of pegylated IFN alpha protein exhibited better stability when exposed to chloroform: diethyl ether (1:1 ratio) mixture as well as variable vortexing time as compared to native IFN alpha. Relatively high percentage of encapsulation of protein ( approximately 75%) was achieved. In vitro release profile of pegylated IFN alpha-mPEG5000 containing MVLs in the PBS showed lower initial burst release with sustained and incomplete release over a period of 1 week. In contrast, native IFN alpha entrapped MVLs were observed as higher initial burst release, i.e., nearly 35% followed by almost complete release. The results confirmed the possibility of multivesicular liposomes as a long-acting or sustained-release delivery system using a combination of pegylation and encapsulation technique for controlled delivery of interferon alpha.

  10. Voltage-Responsive Controlled Release Film with Cargo Release Self-Monitoring Property Based on Hydrophobicity Switching.

    PubMed

    Jiao, Xiangyu; Li, Yanan; Li, Fengyu; Sun, Ruijuan; Wang, Wenqian; Wen, Yongqiang; Song, Yanlin; Zhang, Xueji

    2017-03-16

    Herein, voltage-responsive controlled release film was constructed by grafting ferrocene on the mesoporous inverse opal photonic crystal (mIOPC). The film achieved free-blockage controlled release and realized the monitoring of cargo release without external indicator. Free-blockage was attributed to the voltage switchable nanovalves which undergo hydrophobic-to-hydrophilic transition when applying voltage. Monitoring of cargo release was attributed to the optical property of mIOPC, the bandgap of mIOPC had a red shift when the solution invaded in. The film was hydrophobic enough to stop solution intrusion. Once the voltage was applied, the film became hydrophilic, leading to invasion of the solution. As a result, the cargos were released and the bandgap of mIOPC was red-shifted. Therefore, in this paper both a free-blockage controlled release film and a release sensing system was prepared. The study provides new insights into highly effective controlled release and release sensing without indicator.

  11. Controlled-release NPK fertilizer encapsulated by polymeric membranes.

    PubMed

    Jarosiewicz, Anna; Tomaszewska, Maria

    2003-01-15

    The commercial granular fertilizer NPK6-20-30 was coated using polysulfone (PSF), polyacrylonitrile (PAN), and cellulose acetate (CA). The coatings were formed from the polymer solutions by the phase inversion technique. Measurements of the thickness and porosity of the prepared coatings and a microphotographic observation of the coatings were performed. The physical properties of the coatings influence the release rate of macronutrients which are present in the core of the coated fertilizer. In the case of PAN coating with 60.45% porosity, prepared from a 16% polymer solution, 100% of NH(4)(+) and P(2)O(5) was released after 4 h of test and 99.7% of K(+) after 5 h of test, whereas in the case of coating with 48.8% porosity, 31.8% of NH(4)(+), 16.7% of P(2)O(5), and 11.6% of K(+) was released after 5 h. In all experiments, different selectivities of the coatings in terms of the release of components were observed. The release of potassium through the coatings made of PSF and PAN was the slowest. The same tendency was observed for the release of nitrogen through a coating of CA. The release of fertilizer active components was the slowest in the case of PSF. The lowest porosity coating was prepared from the 18% PSF solution.

  12. Study on encapsulation of chlorine dioxide in gelatin microsphere for reducing release rate

    PubMed Central

    Ci, Ying; Wang, Lin; Guo, Yanchuan; Sun, Ruixue; Wang, Xijie; Li, Jinyou

    2015-01-01

    Objective: This study aims to explore the effects of encapsulation of chlorine dioxide in a hydrophilic biodegradable polymer gelatin to reduce its release rate. Methods: An emulsification-coacervation method was adopted. The characterizations of chlorine dioxide-gelatin microspheres were described. Using UV-vis spectrophotometer the λmax of chlorine dioxide was observed at 358 nm. The particle size and distribution of chlorine oxide-gelatin microspheres was measured by a dynamic light scattering (DLS) method, the diameter was (1400~1900) nm. The entrapment of chlorine dioxide-gelatin microspheres was confirmed by IR. The surface morphology, size, and shape of chlorine dioxide-gelatin microspheres were analyzed using Scanning electron microscope (SEM). Results: It showed that the encapsulated microspheres size was around 2000 nm with uniform distribution. The percentage entrapment of chlorine dioxide in the encapsulated samples was about 80~85%. A slow release study of chlorine dioxide from the encapsulated biopolymer (gelatin) in air was also carried out, which showed continuous release up to ten days. Conclusions: It can be concluded that it is possible to make a slow release formulation of ClO2 by entrapped in a hydrophilic biodegradable polymer gelatin. ClO2-gelatin microspheres can stable release low concentration ClO2 gas over an extended period. PMID:26550151

  13. Electronic nose screening of limonene release from multicomponent essential oils encapsulated in pectin gels.

    PubMed

    Monge, María Eugenia; Bulone, Donatella; Giacomazza, Daniela; Negri, Martín; Bernik, Delia L

    2004-06-01

    Multicomponent essential oils Tagetes Minuta and Poleo as well as pure limonene were encapsulated in Tween doped-high methoxylated pectin gels. Optical microscopy reveals that the obtained gels containing limonene consisted in a highly heterogeneous oil-in-water emulsion stabilised by the gelled medium. The influence of limonene encapsulation in pectin gelation kinetics and the gel structural properties were followed by dynamic rheological measurements. An electronic nose device developed in our laboratory was used to follow the flavour release of the three systems in order to discriminate the samples according to the main components released to the headspace. PCA and Neural Network Analysis allowed us to discriminate Tagetes Minuta from Poleo due to the difference in their limonene content. It is remarkable that the fingerprints of encapsulated complex mixtures differ from those obtained for the non-encapsulated oils, showing a preferential release of some components. In the case of limonene, the effect of the encapsulated concentration on the detected odour was also studied.

  14. ATPase-coupled release control from polyion complex capsules encapsulating muscle proteins.

    PubMed

    Sugiura, Kousuke; Ohkawa, Kousaku; Hirai, Toshihiro; Fujii, Toshihiro

    2007-04-10

    In the present study, a muscle contractile protein complex, actomyosin, has been successfully encapsulated into gellan-chitosan polyion complex (PIC) capsules. The recovery of the myosin-ATPase activity is approximately 50% and the Mg2+-ATPase activity is stimulated by the presence of F-actin, which implies the formation of the actomyosin complex inside the capsule. Furthermore, encapsulation could protect the myosin, F-actin, and actomyosin inside from hydrolysis by proteases. Two small proteins, myoglobin and cytochrome c, have been used in the release tests. The release of myoglobin is not affected by the ionic strength of the external solution, while the release of cytochrome c increases with increasing ionic strength. The maximal releases are found in the external pH solution close to the isoelectric points of each protein. The Mg2+-ATP complex itself reduces the release percentages of the small proteins from the PIC capsule. The release amounts further decrease when coexisting with Mg2+-ATP and the encapsulated actomyosin, which indicates the release regulation by actomyosin. The present study suggests that the ATPase-coupled sliding motion of the myosin-F-actin filaments modifies the pore size of the polymer networks in the PIC capsule membranes.

  15. Improving the encapsulation efficiency and sustained release behaviour of chitosan/β-lactoglobulin double-coated microparticles by palmitic acid grafting.

    PubMed

    Yang, Han-Joo; Lee, Pei Sia; Choe, Jaehyeog; Suh, Seokjin; Ko, Sanghoon

    2017-04-01

    Chitosan (CS) was grafted with 0.1 and 0.5% (w/v) palmitic acid (PA) to improve its encapsulation efficiency (EE) and sustained release characteristics when forming CS microparticles. Thereafter, PA-grafted CS (PA-CS) microparticles were coated with denatured β-lactoglobulin (βlg), which forms an outer protective layer. The possibility of hydrophobic interaction with the hydrophobic substances in the CS microparticles increased as the proportion of the grafted PA increased. EE was measured as 64.79, 83.72, and 85.00% for the non-grafted, 0.1, and 0.5% PA-CS microparticles, respectively. In simulated small intestinal conditions, 4.66 and 17.55% of the core material release in the PA-CS microparticles were sustained after 180min by 0.1, and 0.5% PA grafting, respectively. PA grafting enables the sustained release in simulated gastrointestinal fluids by enhancing the hydrophobic interaction between CS and the hydrophobic core material.

  16. Inhibitory effect of super-hydrophobicity on silver release and antibacterial properties of super-hydrophobic Ag/TiO2 nanotubes.

    PubMed

    Zhang, Licheng; Zhang, Lihai; Yang, Yun; Zhang, Wei; Lv, Houchen; Yang, Fei; Lin, Changjian; Tang, Peifu

    2016-07-01

    The antibacterial properties of super-hydrophobic silver (Ag) on implant surface have not yet to be fully illuminated. In our study, we investigate the protective effects of super-hydrophobic coating of silver/titanium dioxide (Ag/TiO2 ) nanotubes against bacterial pathogens, as well as its pattern of Ag release. Ag/TiO2 nanotubes are prepared by a combination of electrochemical anodization and pulse electrodeposition. The super-hydrophobic coating is prepared by modifying the surface of Ag/TiO2 nanotubes with 1H, 1H, 2H, 2H-perfluorooctyl-triethoxysilane (PTES). Surface features and Ag release are examined by SEM, X-ray photoelectron spectroscopy, contact-angle measurement, and inductively coupled plasma-mass spectrometry (ICP-MS). The antibacterial activity of super-hydrophobic coating Ag/TiO2 nanotubes is investigated both in vitro and in vivo. Consequently, the super-hydrophobic coating on Ag/TiO2 nanotubes shows a regularly arranged structure; and nano-Ag particles (10-30 nm) are evenly distributed on the surface or inside the nanotubes. The contact angles of water on the super-hydrophobic coating Ag/TiO2 nanotubes are all above 150°. In addition, the super-hydrophobic character displays a certain conserved effect that contributes to the sustained release of Ag. The super-hydrophobic Ag/TiO2 nanotubes are also effective in inhibiting bacterial adhesion, killing the adhering bacteria and preventing postoperative infection in rabbits. Therefore, it is expected that the super-hydrophobic Ag/TiO2 nanotubes which can contain the release of Ag, leading to stable release, may show a consistent surface antibacterial capability. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1004-1012, 2016.

  17. Electric impedance method for evaluation of the release property of calcein-encapsulated liposomes.

    PubMed

    Chen, Guoming; Jiang, Zhongwei; Yoshimoto, Makoto; Wei, Yunlong

    2009-11-01

    This paper is concerned with the study on development of a novel method for evaluation of the liposomes release property by measuring the electric impedance changes of liposome suspensions. Calcein/NaOH encapsulated liposomes (calcein-liposomes) were prepared with deionized water and were treated with ultrasonic irradiation in order to investigate the release property of the liposomes. To validate the proposed impedance measuring method, the calcein release rates were evaluated both by the impedance changes and the fluorescence intensity changes in calcein-liposome suspensions. With the comparison of these results obtained by the two methods, it is shown that the impedance method has much wider detecting concentration range than the fluorescence one. Furthermore, the impedance method can be efficiently used for evaluation of the release property on various ionic substances encapsulated within liposomes.

  18. Microspheres Assembled from Chitosan-Graft-Poly(lactic acid) Micelle-Like Core-Shell Nanospheres for Distinctly Controlled Release of Hydrophobic and Hydrophilic Biomolecules.

    PubMed

    Niu, Xufeng; Liu, Zhongning; Hu, Jiang; Rambhia, Kunal J; Fan, Yubo; Ma, Peter X

    2016-07-01

    To simultaneously control inflammation and facilitate dentin regeneration, a copolymeric micelle-in-microsphere platform is developed in this study, aiming to simultaneously release a hydrophobic drug to suppress inflammation and a hydrophilic biomolecule to enhance odontogenic differentiation of dental pulp stem cells in a distinctly controlled fashion. A series of chitosan-graft-poly(lactic acid) copolymers is synthesized with varying lactic acid and chitosan weight ratios, self-assembled into nanoscale micelle-like core-shell structures in an aqueous system, and subsequently crosslinked into microspheres through electrostatic interaction with sodium tripolyphosphate. A hydrophobic biomolecule either coumarin-6 or fluocinolone acetonide (FA) is encapsulated into the hydrophobic cores of the micelles, while a hydrophilic biomolecule either bovine serum albumin or bone morphogenetic protein 2 (BMP-2) is entrapped in the hydrophilic shells and the interspaces among the micelles. Both hydrophobic and hydrophilic biomolecules are delivered with distinct and tunable release patterns. Delivery of FA and BMP-2 simultaneously suppresses inflammation and enhances odontogenesis, resulting in significantly enhanced mineralized tissue regeneration. This result also demonstrates the potential for this novel delivery system to deliver multiple therapeutics and to achieve synergistic effects.

  19. Surfactants modify the release from tablets made of hydrophobically modified poly (acrylic acid)☆

    PubMed Central

    Knöös, Patrik; Onder, Sebla; Pedersen, Lina; Piculell, Lennart; Ulvenlund, Stefan; Wahlgren, Marie

    2013-01-01

    Many novel pharmaceutically active substances are characterized by a high hydrophobicity and a low water solubility, which present challenges for their delivery as drugs. Tablets made from cross-linked hydrophobically modified poly (acrylic acid) (CLHMPAA), commercially available as Pemulen™, have previously shown promising abilities to control the release of hydrophobic model substances. This study further investigates the possibility to use CLHMPAA in tablet formulations using ibuprofen as a model substance. Furthermore, surfactants were added to the dissolution medium in order to simulate the presence of bile salts in the intestine. The release of ibuprofen is strongly affected by the presence of surfactant and/or buffer in the dissolution medium, which affect both the behaviour of CLHMPAA and the swelling of the gel layer that surrounds the disintegrating tablets. Two mechanisms of tablet disintegration were observed under shear, namely conventional dissolution of a soluble tablet matrix and erosion of swollen insoluble gel particles from the tablet. The effects of surfactant in the surrounding medium can be circumvented by addition of surfactant to the tablet. With added surfactant, tablets that may be insusceptible to the differences in bile salt level between fasted or fed states have been produced, thus addressing a central problem in controlled delivery of hydrophobic drugs. In other words CLHMPAA is a potential candidate to be used in tablet formulations for controlled release with poorly soluble drugs. PMID:25755999

  20. Encapsulation and Residency of a Hydrophobic Dye within the Water-Filled Interior of a PAMAM Dendrimer Molecule.

    PubMed

    Koley, Somnath; Ghosh, Subhadip

    2017-03-02

    Tightly confined water within a small droplet behaves differently from bulk water. This notion is obtained on the basis of several reports showing unusual behaviors of water droplet residing at the core of a reverse micelle. In this study, we have shown a well-known hydrophobic dye, coumarin 153 (C153), which prefers to reside at the water-rich region inside the dendrimer molecule. Optical density (OD) measurement at the absorption peak of C153 shows that it is almost insoluble in bulk water but highly soluble in aqueous dendrimer solution. The OD of C153 increases several times in the latter case as compared to that in the former. We found the most interesting observation when we compared the data from fluorescence correlation spectroscopy (FCS) with the fluorescence anisotropy decay of C153 in aqueous dendrimer solution. The FCS measurement reveals a much slower translational diffusion time (τD) of C153 attached to a dendrimer molecule as compared to that of free C153 in bulk water in the absence of dendrimer. The slower τD in the former case is commensurate with the size of the dendrimer molecule. This is possible only when C153 is encapsulated by the dendrimer molecule. In contrast to the FCS study, the fluorescence anisotropy decay of C153 in water remains largely invariant after addition of the dendrimer. This can happen if a bulk-water-like environment at the C153 surroundings is preserved within the C153-dendrimer complex. This supports our institutive expectation that C153 resides within the water-rich peripheral cavities of the dendrimer molecule. A more expected binding of C153 to the hydrophobic core of dendrimer may not be possible here because of an inadequate size of the dendrimer core.

  1. Release of a Poorly Soluble Drug from Hydrophobically Modified Poly (Acrylic Acid) in Simulated Intestinal Fluids

    PubMed Central

    Knöös, Patrik

    2015-01-01

    A large part of new pharmaceutical substances are characterized by a poor solubility and high hydrophobicity, which might lead to a difference in drug adsorption between fasted and fed patients. We have previously evaluated the release of hydrophobic drugs from tablets based on Pemulen TR2 and showed that the release can be manipulated by adding surfactants. Here we further evaluate the possibility to use Pemulen TR2 in controlled release tablet formulations containing a poorly soluble substance, griseofulvin. The release is evaluated in simulated intestinal media that model the fasted state (FaSSIF medium) or fed state (FeSSIF). The rheology of polymer gels is studied in separate experiments, in order to gain more information on possible interactions. The release of griseofulvin in tablets without surfactant varied greatly and the slowest release were observed in FeSSIF. Addition of SDS to the tablets eliminated the differences and all tablets showed a slow linear release, which is of obvious relevance for robust drug delivery. Comparing the data from the release studies and the rheology experiment showed that the effects on the release from the different media could to a large extent be rationalised as a consequence of the interactions between the polymer and the surfactants in the media. The study shows that Pemulen TR2 is a candidate for controlled release formulations in which addition of surfactant provides a way to eliminate food effects on the release profile. However, the formulation used needs to be designed to give a faster release rate than the tablets currently investigated. PMID:26473964

  2. Coaxial electrospinning for encapsulation and controlled release of fragile water-soluble bioactive agents.

    PubMed

    Jiang, Hongliang; Wang, Liqun; Zhu, Kangjie

    2014-11-10

    Coaxial electrospinning is a robust technique for one-step encapsulation of fragile, water-soluble bioactive agents, including growth factors, DNA and even living organisms, into core-shell nanofibers. The coaxial electrospinning process eliminates the damaging effects due to direct contact of the agents with organic solvents or harsh conditions during emulsification. The shell layer serves as a barrier to prevent the premature release of the water-soluble core contents. By varying the structure and composition of the nanofibers, it is possible to precisely modulate the release of the encapsulated agents. Promising work has been done with coaxially electrospun non-woven mats integrated with bioactive agents for use in tissue engineering, in local delivery and in wound healing, etc. This paper reviews the origins of the coaxial electrospinning method, its updated status and potential future developments for controlled release of the class of fragile, water-soluble bioactive agents.

  3. Use of dika fat in the formulation of sustained release frusemide encapsulated granules.

    PubMed

    Ofoefule, S I; Chukwu, A; Okore, V C; Ugwah, M O

    1997-11-01

    Sustained release frusemide granules were formulated with Dika fat, a vegetable oil extracted from the kernels of Irvingia gabonesis Var excelcia. Granules containing 60% w/w, of Dika fat and 200% w/w frusemide and lactose were prepared using the fusion method. Prepared granules (passed through 0.600 micron stainless steel sieve) were encapsulated such that each capsule contained frusemide granules equivalent to 75mg of the pure drug. Granules of same size fraction containing 10% w/w maize starch, or alginic acid and 60, 20, and 10% w/w of Dika fat, frusemide and lactose respectively were similarly prepared and encapsulated. Dissolution profiles of the encapsulated granules were assessed in 0.1 sodium hydroxide, simulated gastric fluid (SGF) and simulated intestinal fluid (SIF) without enzymes. Results obtained indicated sustained release of frusemide in the presence of Dika fat. The presence of maize starch modulated the release of frusemide while the presence of alginic acid could not show significant (P < 0.05) enhancement on frusemide release. Dissolution of frusemide was greatest in 0.1N NaOH and least in SGF. Drug release from the matrices was of mixed order with diffusion controlled mechanism and leaching process occurring together to a greater extent.

  4. Mesoporous Silica Nanoparticles with Large Pores for the Encapsulation and Release of Proteins.

    PubMed

    Tu, Jing; Boyle, Aimee L; Friedrich, Heiner; Bomans, Paul H H; Bussmann, Jeroen; Sommerdijk, Nico A J M; Jiskoot, Wim; Kros, Alexander

    2016-11-30

    Mesoporous silica nanoparticles (MSNs) have been explored extensively as solid supports for proteins in biological and medical applications. Small (<200 nm) MSNs with ordered large pores (>5 nm), capable of encapsulating therapeutic small molecules suitable for delivery applications in vivo, are rare however. Here we present small, elongated, cuboidal, MSNs with average dimensions of 90 × 43 nm that possess disk-shaped cavities, stacked on top of each other, which run parallel to the short axis of the particle. Amine functionalization was achieved by modifying the MSN surface with 3-aminopropyltriethoxysilane or 3-[2-(2-aminoethylamino)ethylamino]propyltrimethoxysilane (AP-MSNs and AEP-MSNs) and were shown to have similar dimensions to the nonfunctionalized MSNs. The dimensions of these particles, and their large surface areas as measured by nitrogen adsorption-desorption isotherms, make them ideal scaffolds for protein encapsulation and delivery. We therefore investigated the encapsulation and release behavior for seven model proteins (α-lactalbumin, ovalbumin, bovine serum albumin, catalase, hemoglobin, lysozyme, and cytochrome c). It was discovered that all types of MSNs used in this study allow rapid encapsulation, with a high loading capacity, for all proteins studied. Furthermore, the release profiles of the proteins were tunable. The variation in both rate and amount of protein uptake and release was found to be determined by the surface chemistry of the MSNs, together with the isoelectric point (pI), and molecular weight of the proteins, as well as by the ionic strength of the buffer. These MSNs with their large surface area and optimal dimensions provide a scaffold with a high encapsulation efficiency and controllable release profiles for a variety of proteins, enabling potential applications in fields such as drug delivery and protein therapy.

  5. A microgel construction kit for bioorthogonal encapsulation and pH-controlled release of living cells.

    PubMed

    Steinhilber, Dirk; Rossow, Torsten; Wedepohl, Stefanie; Paulus, Florian; Seiffert, Sebastian; Haag, Rainer

    2013-12-16

    pH-Cleavable cell-laden microgels with excellent long-term viabilities were fabricated by combining bioorthogonal strain-promoted azide-alkyne cycloaddition (SPAAC) and droplet-based microfluidics. Poly(ethylene glycol)dicyclooctyne and dendritic poly(glycerol azide) served as bioinert hydrogel precursors. Azide conjugation was performed using different substituted acid-labile benzacetal linkers that allowed precise control of the microgel degradation kinetics in the interesting pH range between 4.5 and 7.4. By this means, a pH-controlled release of the encapsulated cells was achieved upon demand with no effect on cell viability and spreading. As a result, the microgel particles can be used for temporary cell encapsulation, allowing the cells to be studied and manipulated during the encapsulation and then be isolated and harvested by decomposition of the microgel scaffolds.

  6. Novel Solid Encapsulation of Ethylene Gas Using Amorphous α-Cyclodextrin and the Release Characteristics.

    PubMed

    Ho, Binh T; Bhandari, Bhesh R

    2016-05-04

    This research investigated the encapsulation of ethylene gas into amorphous α-cyclodextrins (α-CDs) at low (LM) and high (HM) moisture contents at 1.0-1.5 MPa for 24-120 h and its controlled release characteristics at 11.2-52.9% relative humidity (RH) for 1-168 h. The inclusion complexes (ICs) were characterized using X-ray diffractometry (XRD), nuclear magnetic resonance spectroscopy (CP-MAS (13)C NMR), and scanning electron microscopy (SEM). Ethylene concentrations in the ICs were from 0.45 to 0.87 mol of ethylene/mol CD and from 0.42 to 0.54 mol of ethylene/mol CD for LM and HM α-CDs, respectively. Ethylene gas released from the encapsulated powder at higher rates with increasing RH. An analysis of release kinetics using Avrami's equation showed that the LM and HM amorphous α-CDs were not associated with significant differences in release constant k and parameter n for any given RH condition. NMR spectra showed the presence of the characteristic carbon-carbon double bond of ethylene gas in the encapsulated α-CD powder.

  7. The synergistic effect of nanotopography and sustained dual release of hydrophobic and hydrophilic neurotrophic factors on human mesenchymal stem cell neuronal lineage commitment.

    PubMed

    Teo, Benjamin Kim Kiat; Tan, Guo-Dong Sean; Yim, Evelyn K F

    2014-08-01

    A combination of nanotopography and controlled release is a potential platform for neuronal tissue engineering applications. Previous studies showed that combining both physical and chemical guidance was more effective than individual cues in the directional promotion of neurite outgrowth. Nanotopography can direct human mesenchymal stem cells (hMSCs) into neuronal lineage, while controlled release of neurotrophic factors can deliver temporally controlled biochemical signals. Hypothesizing that the synergistic effect will enhance neuronal lineage commitment of hMSCs, a fabrication method for multiple neurotrophic factors delivery from a single nanopatterned (350 nm gratings), poly-ɛ-caprolactone (PCL) film was developed and evaluated. Our results showed a synergistic effect on hMSC differentiation cultured on substrates with both nanotopographical and biochemical cues. The protein/drug encapsulation into PCL nanopatterned films was first optimized using a hydrophilic model protein, bovine serum albumin. The hydrophobic retinoic acid (RA) molecule was directly incorporated into PCL films. To achieve sustained release, hydrophilic nerve growth factor (NGF) was first encapsulated within polyelectrolyte complexation fibers before they were embedded within the nanopatterned PCL film. Our results showed that nanotopography on the fabricated polymer films remained intact, while release of bioactive RA and NGF was sustained over a period of 3 weeks. Under the combinatorial effect of physical and biochemical cues, we observed an enhanced upregulation of neuronal genes such as microtubule-associated protein 2 (MAP2) and neurofilament light (NFL) as compared with sustained delivery of individual cues and bolus delivery. Quantitative polymerase chain reaction analysis showed that MAP2 and NFL gene upregulation in hMSCs was most pronounced on the nanogratings with sustained release of both RA and NGF. The fabricated platforms supported the sustained delivery of multiple

  8. In vitro release of metoclopramide from hydrophobic matrix tablets. influence of hydrodynamic conditions on kinetic release parameters.

    PubMed

    Frutos, P; Pabón, C; Lastres, J L; Frutos, G

    2001-10-01

    There has been growing interest in the subject of drug delivery and the design and evaluation of controlled-release systems. The simplest way to control the release of an active agent is to disperse it in an inert polymeric matrix. Controlled-release systems are of interest because they are technologically simple, relatively cheap, and practically unaffected by physiological changes. In this study, a new matrix system was formed by an active principle, metoclopramide hydrochloride, scattered into a biocompatible hydrophobic polymerical mesh, polyamide 12, to achieve sustained and controlled delivery of metoclopramide hydrochloride. This research was conducted to investigate the in vitro drug release behavior from these new inert polymeric matrix tablets. The drug release process was investigated both experimentally and by means of mathematical models. Different models were applied for the evaluation of drug release data. On the basis of our results, a biexponential equation was proposed, Q=Qfast(1)(1 - e(-Kfast t)) + Qslow(2)(1 - e(-Kslow t)), in an attempt to explain the mechanism responsible for the release process. Additionally, the influence of the experimental conditions of the dissolution devices, such as rate of flow and pH of dissolution medium, on the parameters that characterize the release mechanism was studied, and it was found that the main factor was the hydrodynamic condition of rate of flow.

  9. Encapsulation and release studies of strawberry polyphenols in biodegradable chitosan nanoformulation.

    PubMed

    Pulicharla, Rama; Marques, Caroline; Das, Ratul Kumar; Rouissi, Tarek; Brar, Satinder Kaur

    2016-07-01

    Polyphenols (negative groups) of strawberry extract interacts with positively protonated amino groups of chitosan which helps in maximum encapsulation. This approach can improve the bioavailability and sustained release of phytochemicals having lower bioavailability. The optimum mass ratio of chitosan-tripolyphosphate and polyphenols (PPs) loading was investigated to be 3:1 and 0.5mg/ml of strawberry extract, respectively. Prepared nanoformulation were characterized by UV-vis spectroscopy, Fourier transform infrared spectroscopy and scanning electron microscopy. The formed particles size ranged between 300 and 600nm and polydispersity index (PDI) of≈0.5. The optimized formulation showed encapsulation efficiency of 58.09% at 36.47% of polyphenols loading. Initial burst and continuous release of PPs was observed at pH 7.4 of in vitro release studies. PPs release profile at this pH was found to be non-Fickian analomous diffusion and the release was followed first order kinetics. And at pH 1.4, diffusion-controlled Fickian release of PPs was observed.

  10. Encapsulation and controlled release of hydrophilic pesticide in shell cross-linked nanocapsules containing aqueous core.

    PubMed

    Sun, Chuxiang; Shu, Ke; Wang, Wei; Ye, Zhao; Liu, Ting; Gao, Yuxiang; Zheng, Hua; He, Guanghua; Yin, Yihua

    2014-03-10

    In this study, amphiphilic biocopolymers, synthesized by mixing azidobenzaldehyde (Az) and an aqueous solution of carboxymethyl chitosan (CMCS), which self-assemble into nanocapsules with a aqueous core (ACN) in aqueous media followed by photo-cross-linking to obtain shell cross-linked nanocapsules, were used to develop a controlled release pesticide system. The system was characterized by TEM and DLS. Its encapsulation efficiency was determined. The obtained result showed that it is efficient to encapsulate methomyl reaching encapsulation efficiency as high as 90% in an aqueous medium at pH 4.0, which is mainly attributed to the hydrogen bonding adsorption between methomyl molecules and the inner surface of nanocapsules. Release profiles of methomyl from methomyl-loaded nanocapsules in an aqueous solution at pH 6.0 were shown to be diffusion controlled with a half-release time (t(½)) of 36.3-69.5h from different samples. The shell cross-linking and its degree of cross-linking are assumed to be responsible for this diffusion behavior. The insecticidal activity test in laboratory showed that the control efficacy of methomyl-loaded nanocapsules against the armyworm larvae was significantly superior to the original. The relative control efficacy still maintained 100% over 7 days.

  11. Calcium-Alginate Hydrogel-Encapsulated Fibroblasts Provide Sustained Release of Vascular Endothelial Growth Factor

    PubMed Central

    Hunt, Nicola C.; Shelton, Richard M.; Henderson, Deborah J.

    2013-01-01

    Vascularization of engineered or damaged tissues is essential to maintain cell viability and proper tissue function. Revascularization of the left ventricle (LV) of the heart after myocardial infarction is particularly important, since hypoxia can give rise to chronic heart failure due to inappropriate remodeling of the LV after death of cardiomyocytes (CMs). Fibroblasts can express vascular endothelial growth factor (VEGF), which plays a major role in angiogenesis and also acts as a chemoattractant and survival factor for CMs and cardiac progenitors. In this in vitro model study, mouse NIH 3T3 fibroblasts encapsulated in 2% w/v Ca-alginate were shown to remain viable for 150 days. Semiquantitative reverse transcription–polymerase chain reaction and immunohistochemistry demonstrated that over 21 days of encapsulation, fibroblasts continued to express VEGF, while enzyme-linked immunosorbent assay showed that there was sustained release of VEGF from the Ca-alginate during this period. The scaffold degraded gradually over the 21 days, without reduction in volume. Cells released from the Ca-alginate at 7 and 21 days as a result of scaffold degradation were shown to retain viability, to adhere to fibronectin in a normal manner, and continue to express VEGF, demonstrating their potential to further contribute to maintenance of cardiac function after scaffold degradation. This model in vitro study therefore demonstrates that fibroblasts encapsulated in Ca-alginate provide sustained release of VEGF. PMID:23082964

  12. Hydrocolloid-based nutraceutical delivery systems: Effect of counter-ions on the encapsulation and release

    PubMed Central

    Polowsky, Patrick J.; Janaswamy, Srinivas

    2014-01-01

    Nutraceuticals provide health benefits, especially for the prevention and treatment of chronic diseases such as diabetes, obesity, cardiovascular disease and cancer. Their incorporation in food supplements, functional foods and medicinal foods is a major technological challenge due to lower water solubility, instability during processing and storage conditions. Carriers that can effectively overcome these predicaments and protect them during product development, consumption and delivery are in high demand. Toward this end, our research approach is to entrap nutraceuticals in the ordered networks of hydrocolloids. We have examined the effect cations in regulating the encapsulated amounts and release characteristics. Iota-carrageenan and eugenol have been chosen as models of hydrocolloid and nutraceutical, respectively, in the presence of Na and Ca ions. The results suggest that carrageenan maintains its network organization even after encapsulating the eugenol molecules. Increased eugenol amounts are found in the Na carrageenan complex compared to the Ca complex, and the release rate is faster from the former but it is more controlled from the latter. These differences highlight the vital role of cations on the encapsulation efficiency and release profiles of hydrocolloid-based nutraceutical carriers. The outcome offers an elegant opportunity for developing novel and value-added food systems employing low-in-cost, nontoxic and heavily consumed food grade hydrocolloids. PMID:25419030

  13. The production of volvox spheres and their potential application in multi-drugs encapsulation and release.

    PubMed

    Teong, Benjamin; Chang, Shwu Jen; Chuang, Chin Wen; Kuo, Shyh Ming; Manousakas, Ioannis

    2013-12-01

    Volvox sphere is a bio-mimicking concept of an innovative biomaterial structure of a sphere that contains smaller microspheres which then encapsulate chemicals, drugs and/or cells. The volvox spheres were produced via a high-voltage electrostatic field system, using alginate as the primary material. Encapsulated materials tested in this study include staining dyes, nuclear fast red and trypan blue, and model drugs, bovine serum albumin (BSA) and cytochrome c (CytC). The external morphology of the volvox spheres was observed via electron microscopy whereas the internal structure of the volvox spheres was observed via an optical microscope with the aid of the staining dyes, since alginate is colorless and transparent. The diameter of the microspheres was about 200 to 300 μm, whereas the diameter of the volvox spheres was about 1500 μm. Volvox spheres were durable, retaining about 95% of their mass after 4 weeks. Factors affecting entrapment efficiency, such as temperature and concentration of the bivalent cross-linker, were compared followed by a 7-day in vitro release study. The encapsulation efficiency of CytC within the microspheres was higher at cold (~4°C) and warm (~50°C) temperatures whereas temperature has no obvious effect on the BSA encapsulation. High crosslinking concentration (25% w/v) of calcium chloride has resulted higher entrapment efficiency for BSA but not for CytC. Furthermore, volvox spheres showed a different release pattern of BSA and CytC when compared to microspheres encapsulating BSA and CytC. Despite the fact that the mechanisms behind remain unclear and further investigation is required, this study demonstrates the potential of the volvox spheres for drug delivery.

  14. Comparison of the Fouling Release Properties of Hydrophobic Fluorinated and Hydrophilic PEGylated Block Copolymer Surfaces

    SciTech Connect

    Krishnan,S.; Wang, N.; Ober, C.; Finlay, J.; Callow, M.; Callow, J.; Hexemer, A.; Sohn, K.; Kramer, E.; Fischer, D.

    2006-01-01

    To understand the role of surface wettability in adhesion of cells, the attachment of two different marine algae was studied on hydrophobic and hydrophilic polymer surfaces. Adhesion of cells of the diatom Navicula and sporelings (young plants) of the green macroalga Ulva to an underwater surface is mainly by interactions between the surface and the adhesive exopolymers, which the cells secrete upon settlement and during subsequent colonization and growth. Two types of block copolymers, one with poly(ethylene glycol) side-chains and the other with liquid crystalline, fluorinated side-chains, were used to prepare the hydrophilic and hydrophobic surfaces, respectively. The formation of a liquid crystalline smectic phase in the latter inhibited molecular reorganization at the surface, which is generally an issue when a highly hydrophobic surface is in contact with water. The adhesion strength was assessed by the fraction of settled cells (Navicula) or biomass (Ulva) that detached from the surface in a water flow channel with a wall shear stress of 53 Pa. The two species exhibited opposite adhesion behavior on the same sets of surfaces. While Navicula cells released more easily from hydrophilic surfaces, Ulva sporelings showed higher removal from hydrophobic surfaces. This highlights the importance of differences in cell-surface interactions in determining the strength of adhesion of cells to substrates.

  15. Improving the dissolution rate of hydrophobic drugs through encapsulation in porous lactose as a new biocompatible porous carrier.

    PubMed

    Ebrahimi, Amirali; Saffari, Morteza; Langrish, Timothy

    2017-04-15

    T he dissolution rates of indomethacin (IMC) and nifedipine (NIF) as poorly water-soluble model drugs have been significantly improved by encapsulating their molecules in the porous structure of engineered-particles of lactose as a new biocompatible porous carrier. The formulation method used in this study utilized a template-based spray-drying technique for in-situ production of porous lactose followed by two solvent-based drug-loading methods: (i) adsorption from organic solution, and (ii) incipient wetness impregnation to incorporate the drugs inside the porous lactose. In both cases, the results of DSC and XRD have revealed the deposition of nano-sized crystals of drugs inside the nanopores due to the nanoconfinement phenomenon. Greater extents of drug loadings have been achieved during the indomethacin adsorption due to the hydrogen-bonding interaction with the surface of lactose, as determined by FTIR spectroscopy. The in vitro release studies in simulated gastric fluid (SGF) have shown faster release rates for the impregnated particles compared with drug-loaded particles via the adsorption method.

  16. Encapsulation of methotrexate loaded magnetic microcapsules for magnetic drug targeting and controlled drug release

    NASA Astrophysics Data System (ADS)

    Chakkarapani, Prabu; Subbiah, Latha; Palanisamy, Selvamani; Bibiana, Arputha; Ahrentorp, Fredrik; Jonasson, Christian; Johansson, Christer

    2015-04-01

    We report on the development and evaluation of methotrexate magnetic microcapsules (MMC) for targeted rheumatoid arthritis therapy. Methotrexate was loaded into CaCO3-PSS (poly (sodium 4-styrenesulfonate)) doped microparticles that were coated successively with poly (allylamine hydrochloride) and poly (sodium 4-styrenesulfonate) by layer-by-layer technique. Ferrofluid was incorporated between the polyelectrolyte layers. CaCO3-PSS core was etched by incubation with EDTA yielding spherical MMC. The MMC were evaluated for various physicochemical, pharmaceutical parameters and magnetic properties. Surface morphology, crystallinity, particle size, zeta potential, encapsulation efficiency, loading capacity, drug release pattern, release kinetics and AC susceptibility studies revealed spherical particles of ~3 μm size were obtained with a net zeta potential of +24.5 mV, 56% encapsulation and 18.6% drug loading capacity, 96% of cumulative drug release obeyed Hixson-Crowell model release kinetics. Drug excipient interaction, surface area, thermal and storage stability studies for the prepared MMC was also evaluated. The developed MMC offer a promising mode of targeted and sustained release drug delivery for rheumatoid arthritis therapy.

  17. Direct encapsulation of water-soluble drug into silica microcapsules for sustained release applications

    SciTech Connect

    Wang Jiexin; Wang Zhihui; Chen Jianfeng Yun, Jimmy

    2008-12-01

    Direct encapsulation of water-soluble drug into silica microcapsules was facilely achieved by a sol-gel process of tetraethoxysilane (TEOS) in W/O emulsion with hydrochloric acid (HCl) aqueous solution containing Tween 80 and drug as well as cyclohexane solution containing Span 80. Two water-soluble drugs of gentamicin sulphate (GS) and salbutamol sulphate (SS) were chosen as model drugs. The characterization of drug encapsulated silica microcapsules by scanning electronic microscopy (SEM), FTIR, thermogravimetry (TG) and N{sub 2} adsorption-desorption analyses indicated that drug was successfully entrapped into silica microcapsules. The as-prepared silica microcapsules were uniform spherical particles with hollow structure, good dispersion and a size of 5-10 {mu}m, and had a specific surface area of about 306 m{sup 2}/g. UV-vis and thermogravimetry (TG) analyses were performed to determine the amount of drug encapsulated in the microcapsules. The BJH pore size distribution (PSD) of silica microcapsules before and after removing drug was examined. In vitro release behavior of drug in simulated body fluid (SBF) revealed that such system exhibited excellent sustained release properties.

  18. Uniform encapsulation of stable protein nanoparticles produced by spray freezing for the reduction of burst release.

    PubMed

    Leach, W Thomas; Simpson, Dale T; Val, Tibisay N; Anuta, Efemona C; Yu, Zhongshui; Williams, Robert O; Johnston, Keith P

    2005-01-01

    Stable protein nanostructured particles, produced by spray freezing into liquid (SFL) nitrogen, were encapsulated uniformly into microspheres to reduce the burst release over the first 24 h. The denaturation and aggregation of these bovine serum albumin (BSA) high-surface area particles were minimal due to ultra-rapid freezing and the absence of a liquid-air interface. Upon sonication, these friable highly porous, solid protein particle aggregates broke up into submicron particles. These particles were encapsulated into DL-lactide/glycolide copolymer (PLGA) and poly(lactic acid) (PLA) microspheres by anhydrous solid-in-oil-in-oil (s/o/o) techniques. For 5% loading of protein, the burst release after 24 h was only 2.5-4.1%, that is, values fivefold to tenfold lower than those observed for larger more conventional BSA particles. At a loading of 10%, the burst was only 6 and 13% for PLGA and PLA, respectively, and at 15% loading it was only 12% for PLGA. As shown with confocal and scanning electron microscopy (SEM), the low burst is consistent with a uniform distribution of protein nanoparticles, which were about 100 times smaller than the microspheres. Changes in aggregation and secondary structure, which were monitored by size exclusion chromatography and FTIR, respectively, indicated only slight monomer loss (3.9%) and high structural integrity (38% alpha-helix) in the encapsulated protein.

  19. Encapsulation of volatiles in nanofibrous polysaccharide membranes for humidity-triggered release.

    PubMed

    Mascheroni, Erika; Fuenmayor, Carlos Alberto; Cosio, Maria Stella; Di Silvestro, Giuseppe; Piergiovanni, Luciano; Mannino, Saverio; Schiraldi, Alberto

    2013-10-15

    A single-step electrospinning process will be applied to a blend of edible carbohydrate polymers (pullulan and β-cyclodextrin) to encapsulate bioactive aroma compounds and allow a humidity-triggered release. The encapsulation is rapid and efficient and the final product is an active nanofibrous membrane that can be directly used for food or active packaging applications. The membrane hosts small and homogeneously dispersed crystals of cyclodextrin-aroma complexes which are formed during the electrospinning. With this type of structure, the release of aroma compound is negligible at ambient conditions (23 °C and 55% UR) even at high temperature (up to 230 °C), and it occurs beyond a given relative humidity threshold (90%), useful for food packaging applications. The mass fraction of free aroma released is directly related to the water activity of the system, namely, φ=aW(n)/(aW(n)+Kapp) explaining the observed key role played by the relative humidity on the release of the aroma compounds.

  20. Optimizing indomethacin-loaded chitosan nanoparticle size, encapsulation, and release using Box-Behnken experimental design.

    PubMed

    Abul Kalam, Mohd; Khan, Abdul Arif; Khan, Shahanavaj; Almalik, Abdulaziz; Alshamsan, Aws

    2016-06-01

    Indomethacin chitosan nanoparticles (NPs) were developed by ionotropic gelation and optimized by concentrations of chitosan and tripolyphosphate (TPP) and stirring time by 3-factor 3-level Box-Behnken experimental design. Optimal concentration of chitosan (A) and TPP (B) were found 0.6mg/mL and 0.4mg/mL with 120min stirring time (C), with applied constraints of minimizing particle size (R1) and maximizing encapsulation efficiency (R2) and drug release (R3). Based on obtained 3D response surface plots, factors A, B and C were found to give synergistic effect on R1, while factor A has a negative impact on R2 and R3. Interaction of AB was negative on R1 and R2 but positive on R3. The factor AC was having synergistic effect on R1 and on R3, while the same combination had a negative effect on R2. The interaction BC was positive on the all responses. NPs were found in the size range of 321-675nm with zeta potentials (+25 to +32mV) after 6 months storage. Encapsulation, drug release, and content were in the range of 56-79%, 48-73% and 98-99%, respectively. In vitro drug release data were fitted in different kinetic models and pattern of drug release followed Higuchi-matrix type.

  1. β-Cyclodextrin polymer brushes decorated magnetic colloidal nanocrystal clusters for the release of hydrophobic drugs

    NASA Astrophysics Data System (ADS)

    Lv, Shaonan; Zhao, Meiqin; Cheng, Changjing; Zhao, Zhigang

    2014-05-01

    β-Cyclodextrin (β-CD) polymer brushes decorated magnetic Fe3O4 colloidal nanocrystal clusters (Fe3O4@PG-CD) were fabricated by a combination of surface-initiated atom transfer radical polymerization on the surface of Br-anchored Fe3O4 colloidal nanocrystal clusters (Fe3O4-Br) and ring-opening reaction of epoxy groups. The resulted Fe3O4@PG-CD hybrid nanoparticles were characterized by several methods including Fourier transform infrared, transmission electron microscope, dynamic light scattering instrument, X-ray diffraction, thermogravimetric analysis, and vibrating sample magnetometer. Moreover, the potential of as-synthesized Fe3O4@PG-CD as a carrier of hydrophobic anticancer drug 5-fluorouracil (5-FU) was also investigated. The results showed that the prepared Fe3O4@PG-CD have core/shell structure and high saturated magnetism. 5-FU could be loaded into the Fe3O4@PG-CD via the formation of β-CD/5-FU inclusion complex. Furthermore, the Fe3O4@PG-CD displayed a high loading capacity and pH-dependent release behavior for 5-FU. The release behavior demonstrated a simple Fickian diffusion in the acidic environment (pH 2.0 and 4.0) but neither non-Fickian nor anomalous when neutral. The results reveal that this nanosystem seems to be a very promising vehicle for the hydrophobic drugs for pH-dependent controlled release.

  2. Promoting fertilizer use via controlled release of a bacteria-encapsulated film bag.

    PubMed

    Wu, Chin-San

    2010-05-26

    A phosphate-solubilizing bacterium ( Burkholderia cepacia isolate) encapsulated in maleic anhydride (MA) grafted onto poly(butylene succinate adipate) (PBSA) and then combined with starch as film bag material (PBSA-g-MA/starch) incubated in a saline solution required approximately 20 days to deplete the starch in the film bags. Thereafter, the cell concentration in the saline solution increased significantly because of the release of cells from the severely destroyed film bags and also their growth by use of depolymerized PBSA-g-MA fragments as a substrate. The incubation proceeded for 60 days, by which time the PBSA-g-MA/starch composite had suffered a >80% weight loss. For practical application, effectiveness of the above-mentioned film bags was demonstrated because it could improve the absorbability of a fertilizer for plants and promote the growth of plants. As a result, it can avoid the accumulation of the phosphate in excess fertilizer that lead to the phenomenon of poor soils. These results demonstrate that PBSA-g-MA/starch can be used to encapsulate cells of an indigenous phosphate-solubilizing bacterium ( B. cepacia isolate) to form a controlled release of bacteria-encapsulated film bag (BEFB). The B. cepacia isolate was able to degrade the film bags material, causing cell release. Biodegradability of the film bags depended upon the type of material used, because the PBSA film bags were also degraded but to a lesser degree. The addition of starch made the film bags more biodegradable. The decrease in intrinsic viscosity was also higher for the starch composite, suggesting a strong connection between the biodegradability and these characteristics. The results suggest that the release of fertilizer-promoted bacteria might be controllable via a suitable film bag material formulation. In addition, this work adopted live bacteria to promote the absorption of phosphate, which is superior to the phosphate used in the traditional way.

  3. Nanospheres Encapsulating Anti-Leishmanial Drugs for Their Specific Macrophage Targeting, Reduced Toxicity, and Deliberate Intracellular Release

    PubMed Central

    Shukla, Anil Kumar; Patra, Sanjukta

    2012-01-01

    Abstract The current work focuses on the study of polymeric, biodegradable nanoparticles (NPs) for the encapsulation of doxorubicin and mitomycin C (anti-leishmanial drugs), and their efficient delivery to macrophages, the parasite's home. The biodegradable polymer methoxypoly-(ethylene glycol)-b-poly (lactic acid) (MPEG-PLA) was used to prepare polymeric NPs encapsulating doxorubicin and mitomycin C. The morphology, mean diameter, and surface area of spherical NPs were determined by transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), and BET surface area analysis. X-ray diffraction was performed to validate drug encapsulation. An in vitro release profile of the drugs suggested a fairly slow release. These polymeric NPs were efficiently capable of releasing drug inside macrophages at a slower pace than the free drug, which was monitored by epi-fluorescence microscopy. Encapsulation of doxorubicin and mitomycin C into NPs also decreases cellular toxicity in mouse macrophages (J774.1A). PMID:22925019

  4. Encapsulation and controlled release of active DNA from uncrosslinked gelatin microspheres

    NASA Astrophysics Data System (ADS)

    Hardin, James Otey, IV

    This thesis work investigates the encapsulation of DNA in gelatin microspheres (GMS) and the subsequent temperature controlled release of the encapsulated DNA from these GMS. DNA-loaded GMS were then used as templates for colloidal satellite assemblies and the released DNA was shown to competitively displace the original partner strands of immobilized DNA on the surface of the assemblies. To support these investigations, hybridization of DNA at colloidal surfaces was also investigated using in situ measurements. DNA hybridization is of particular interest as means of controlling the functionality of colloidal structures because it is uniquely reversible and tunable as well as biocompatible. Gelatin was chosen as the encapsulation matrix for its superior biocompatibility, convenient gel to liquid phase transition at ˜35°C, and economical availability. This thesis is divided into five chapters. Chapter 1 covers the motivation of this work and provides a general background for the materials used. Chapter 2 details the synthesis of GMS and the use of these uncrosslinked GMS as controlled release matrices for active DNA. Bare GMS were not found to be able to inhibit DNA release on their own. With the addition of a polyelectrolyte bilayer, however, clear inhibition of DNA release at room temperature and permitted release at 37 °C was observed. Chapter 3 is an investigation of the thermodynamics and kinetics of primary and secondary DNA hybridization at colloidal surfaces. Flow cytometry was used to quantify the hybridization reaction in situ and compare it to more conventional measurement protocols involving washing steps. The post washing results illuminated the importance of the toehold region and demonstrated changes in kinetics with changing toehold length which are consistent with published solution studies of toehold-mediated strand displacement. The in situ studies enabled the measurement of primary hybridization rate as well as secondary hybridization rate

  5. Protein encapsulation in and release from monodisperse double-wall polymer microspheres

    PubMed Central

    Xia, Yujie; Xu, Qingxing; Wang, Chi-Hwa; Pack, Daniel W.

    2014-01-01

    Biodegradable polymer double-wall microspheres (DWMS) are promising vehicles for macromolecular therapeutics such as proteins and peptides. Using precision particle fabrication (PPF) technology, uniform DWMS with outer diameter ~55 μm were fabricated comprising poly(lactide-co-glycolide) cores encapsulating bovine serum albumin (BSA) and ~10 μm thick, drug-free, poly(lactic acid) shells of varying PLA molecular weight. Also, monolithic single-wall microspheres (SWMS) were fabricated to mimic the BSA-loaded core. The use of relatively fast extracting ethyl acetate and slowly extracting dichloromethane as shell- and core-phase solvents, respectively, was found to produce DWMS with well-defined core-shell structure, high BSA encapsulation efficiency, and the desired localization of protein in the particle core. Initial protein distribution, particle erosion, and in vitro protein release from DWMS and SWMS were examined. The presence of a BSA-free shell in DWMS decreased the protein release rate and extended the duration of release from ~50 days to 70-80 days, demonstrating the capacity of such DWMS to provide enhanced control of protein delivery rates. PMID:23529836

  6. Hydrophobic polymers modification of mesoporous silica with large pore size for drug release

    NASA Astrophysics Data System (ADS)

    Zhu, Shenmin; Zhang, Di; Yang, Na

    2009-04-01

    Mesostructure cellular foam (MCF) materials were modified with hydrophobic polyisoprene (PI) through free radical polymerization in the pores network, and the resulting materials (MCF-PI) were investigated as matrices for drug storage. The successful synthesis of PI inside MCF was characterized by Fourier transform infrared (FT-IR), hydrogen nuclear magnetic resonance (1H NMR), X-ray diffraction patterns (XRD) and nitrogen adsorption/desorption measurements. It was interesting to find the resultant system held a relatively large pore size (19.5 nm) and pore volume (1.02 cm3 g-1), which would benefit for drug storage. Ibuprofen (IBU) and vancomycin were selected as model drugs and loaded onto unmodified MCF and modified MCF (MCF-PI). The adsorption capacities of these model drugs on MCF-PI were observed increase as compared to that of on pure MCF, due to the trap effects induced by polyisoprene chains inside the pores. The delivery system of MCF-PI was found to be more favorable for the adsorption of IBU (31 wt%, IBU/silica), possibly attributing to the hydrophobic interaction between IBU and PI formed on the internal surface of MCF matrix. The release of drug through the porous network was investigated by measuring uptake and release of IBU.

  7. Studies on Fragrance Delivery from Inorganic Nanocontainers: Encapsulation, Release and Modeling Studies

    NASA Astrophysics Data System (ADS)

    Ghodke, Shailesh Adinath; Sonawane, Shirish Hari; Bhanvase, Bharat Apparao; Mishra, Satyendra; Joshi, Kalpana Shrikant

    2015-04-01

    The present work deals with encapsulation of fragrance molecule in inorganic nanocontainers substrate and investigation of its prolonged release at different pH condition. The nanocontainers used were aluminosilicate clay (Halloysite) having cylindrical shape with outside diameter in the range of 30-50 nm, 15 nm lumen and length equal to 800 ± 300 nm. Rosewater absolute was used as a sample fragrance for loading in nanocontainer and delivery purpose. The fragrance loaded nanocontainers were coated with a thin layer of polyelectrolyte i.e. Polyacrylic Acid (PAA). The structural characteristics of prepared nanocontainers were determined by using Fourier Transform Intra-red Spectroscopy (FTIR), Thermal Gravimetric Analysis (TGA) and UV spectroscopy analysis. Release of fragrance molecules in the aqueous medium was monitored for 24 h. The fragrance release was found to be responsive as the amount of fragrance release increases with increase in pH value from 3 to 7. Fragrance release has been studied by using various permeation kinetic models such as zero order, first order, Hixson-Crowell, Higuchi, Korsmeyer-Peppas and Hopfenberg models. Korsemyer-Peppas shows the best fit (R2 = 0.9544) compared to other kinetic model for the release of fragrance from nanocontainers.

  8. Hollow superparamagnetic iron oxide nanoshells as a hydrophobic anticancer drug carrier: intracelluar pH-dependent drug release and enhanced cytotoxicity.

    PubMed

    Zhu, Xiao-Ming; Yuan, Jing; Leung, Ken Cham-Fai; Lee, Siu-Fung; Sham, Kathy W Y; Cheng, Christopher H K; Au, Doris W T; Teng, Gao-Jun; Ahuja, Anil T; Wang, Yi-Xiang J

    2012-09-21

    With curcumin and doxorubicin (DOX) base as model drugs, intracellular delivery of hydrophobic anticancer drugs by hollow structured superparamagnetic iron oxide (SPIO) nanoshells (hydrodynamic diameter: 191.9 ± 2.6 nm) was studied in glioblastoma U-87 MG cells. SPIO nanoshell-based encapsulation provided a stable aqueous dispersion of the curcumin. After the SPIO nanoshells were internalized by U-87 MG cells, they localized at the acidic compartments of endosomes and lysosomes. In endosome/lysosome-mimicking buffers with a pH of 4.5-5.5, pH-dependent drug release was observed from curcumin or DOX loaded SPIO nanoshells (curcumin/SPIO or DOX/SPIO). Compared with the free drug, the intracellular curcumin content delivered via curcumin/SPIO was 30 fold higher. Increased intracellular drug content for DOX base delivered via DOX/SPIO was also confirmed, along with a fast intracellular DOX release that was attributed to its protonation in the acidic environment. DOX/SPIO enhanced caspase-3 activity by twofold compared with free DOX base. The concentration that induced 50% cytotoxic effect (CC(50)) was 0.05 ± 0.03 μg ml(-1) for DOX/SPIO, while it was 0.13 ± 0.02 μg ml(-1) for free DOX base. These results suggested SPIO nanoshells might be a promising intracellular carrier for hydrophobic anticancer drugs.

  9. Betamethasone-in-cyclodextrin-in-liposome: the effect of cyclodextrins on encapsulation efficiency and release kinetics.

    PubMed

    Piel, Géraldine; Piette, Marie; Barillaro, Valery; Castagne, Delphine; Evrard, Brigitte; Delattre, Luc

    2006-04-07

    Lipophilic drugs have limited solubility in phospholipid systems, hence maximum entrapment levels in liposomes are known to be low. "Drugs-in-cyclodextrin-in-liposome" systems were previously proposed to overcome this drawback but studies were limited to betaCD and HPbetaCD. In some cases, other cyclodextrins may be more interesting than betaCD or HPbetaCD, such as methylated cyclodextrins. However, these cyclodextrins are known to extract lipid components from the lipid membrane, which may destabilize liposomes. We tested the influence of several cyclodextrins (betaCD, gammaCD, Dimeb, Trimeb, Crysmeb, Rameb, HPbetaCD and HPgammaCD) on the aqueous solubility of betamethasone by phase solubility diagrams and on the encapsulation efficiency in liposomes. The release kinetics of betamethasone was studied using Franz diffusion cells. We showed that release kinetics are directly correlated with encapsulation efficiency, which is closely related to betamethasone concentration in cyclodextrin complex solution. No liposome destruction was observed, even with the testing of methylated cyclodextrins at the highest concentration (40 mM). This can be explained by the fact that these cyclodextrins have a higher affinity for betamethasone than for cholesterol. This was proved by the comparison of phase solubility diagrams of both betamethasone and cholesterol.

  10. Chemical treatment and chitosan coating of yeast cells to improve the encapsulation and controlled release of bovine serum albumin.

    PubMed

    Shi, Guorong; Liu, Yating; He, Zijun; Zhou, Jihen

    2016-08-10

    We investigate the encapsulation of bovine serum albumin (BSA) in chemical-treated and chitosan-coated yeast cells, Saccharomyces cerevisiae (S. cerevisiae), for the controlled release of BSA. The chemical treatment can sufficiently enlarge the small-sized cell-wall cavities and/or break the integrity for the entrance of BSA to the interior of yeast cells, and the additional chitosan coating can well prevent the rapid release of encapsulated BSA from the yeast-derived microcapsules. The sodium hydroxide pretreated S. cerevisiae gives a maximum encapsulation yield of (10.1 ± 0.2)% for BSA. An additional coating of S. cerevisiae with chitosan can reduce the initial burst release of BSA and extend the release period from 24 h in the chitosan-free case to 48 h in phosphate buffer at pH 7.4. The prepared microcapsules can well keep the shapes and sizes of yeast cells and thus show uniform sizes of 3.85 ± 0.81 μm. The encapsulated BSA well retains its pristine ultraviolet spectroscopic and chromatographic behaviors. The present microencapsulation protocol has the advantages of convenient and mild operation, high encapsulation efficiency, and organic solvent-free nature, which is of reference value for establishing high-performance controllable biomacromolecule-delivery systems.

  11. Doxorubicin encapsulated in stealth liposomes conferred with light-triggered drug release.

    PubMed

    Luo, Dandan; Carter, Kevin A; Razi, Aida; Geng, Jumin; Shao, Shuai; Giraldo, Daniel; Sunar, Ulas; Ortega, Joaquin; Lovell, Jonathan F

    2016-01-01

    Stealth liposomes can be used to extend the blood circulation time of encapsulated therapeutics. Inclusion of 2 molar % porphyrin-phospholipid (PoP) imparted optimal near infrared (NIR) light-triggered release of doxorubicin (Dox) from conventional sterically stabilized stealth liposomes. The type and amount of PoP affected drug loading, serum stability and drug release induced by NIR light. Cholesterol and PEGylation were required for Dox loading, but slowed light-triggered release. Dox in stealth PoP liposomes had a long circulation half-life in mice of 21.9 h and was stable in storage for months. Following intravenous injection and NIR irradiation, Dox deposition increased ∼ 7 fold in treated subcutaneous human pancreatic xenografts. Phototreatment induced mild tumor heating and complex tumor hemodynamics. A single chemophototherapy treatment with Dox-loaded stealth PoP liposomes (at 5-7 mg/kg Dox) eradicated tumors while corresponding chemo- or photodynamic therapies were ineffective. A low dose 3 mg/kg Dox phototreatment with stealth PoP liposomes was more effective than a maximum tolerated dose of free (7 mg/kg) or conventional long-circulating liposomal Dox (21 mg/kg). To our knowledge, Dox-loaded stealth PoP liposomes represent the first reported long-circulating nanoparticle capable of light-triggered drug release.

  12. Yoctowells as a simple model system for the encapsulation and controlled release of bioactive molecules

    PubMed Central

    Bhosale, Sheshanath V.; Bhosale, Sidhanath V.

    2013-01-01

    The development of nanosized drug delivery systems to transport drugs to target cells, are promising tools to improve the drug therapeutic index. Transport systems should have a simple design to control the release of loaded drug to the target areas, thereby increasing concentration and prolonging retention. Herein, we demonstrate the use of yoctoliter wells (1 yL = 10−24 L) as simple model systems for the encapsulation and release of biologically active molecules, by manipulating pH. The drug molecule employed here is doxorubicin, which diffuses into the bottom of yoctowells from a bulk solution at pH 7. Capping of the yoctowells is achieved by addition of an anionic-porphyrin by electrostatic interaction. Furthermore, controlled release of the Doxorubcin and capping agent from the yoctowells is achieved by pH control. The effectiveness of the sustain release of the bioactive molecule from yoctowells, provides potential for development of a new generation of drug-delivery system for practical application. PMID:23760359

  13. Engineering of poly(epsilon-caprolactone) microcarriers to modulate protein encapsulation capability and release kinetic.

    PubMed

    Coccoli, Valentina; Luciani, Alessia; Orsi, Silvia; Guarino, Vincenzo; Causa, Filippo; Netti, Paolo Antonio

    2008-04-01

    Drug delivery applications using biodegradable polymeric microspheres are becoming an important means of delivering therapeutic agents. The aim of this work was to modulate the microporosity of poly(epsilon-caprolactone) (PCL) microcarriers to control protein loading capability and release profile. PCL microparticles loaded with BSA (bovine serum albumin) have been de novo synthesized with double emulsion solvent evaporation technique transferred and adapted for different polymer concentrations (1.7 and 3% w/v) and stabilizer present in the inner aqueous phase (0.05, 0.5 and 1% w/v). SEM (scanning electron microscope) and CLSM (confocal laser scanning microscope) analysis map the drug distribution in homogeneously distributed cavities inside the microspheres with dimensions that can be modulated by varying double emulsion process parameters. The inner structure of BSA-loaded microspheres is greatly affected by the surfactant concentration in the internal aqueous phase, while a slight influence of polymer concentration in the oil phase was observed. The surfactant concentration mainly determines microspheres morphology, as well as drug release kinetics, as confirmed by our in-vitro BSA release study. Moreover, the entrapped protein remained unaltered during the protein encapsulation process, retaining its bio-activity and structure, as shown through a dedicated gel chromatographic analytical method.

  14. Release Properties and Electrochemical Characterization of Encapsulated Corrosion Inhibitors for Environmentally Friendly Smart Coatings

    NASA Technical Reports Server (NTRS)

    Pearman, B. P.; Calle, L. M.; Zhang, X.; Li, W.; Buhrow, J. W.; Johnsey, M. N.; Montgomery, E. L.; Fitzpatrick, L.; Surma, J. M.

    2015-01-01

    The NASA Kennedy Space Center's Corrosion Technology Lab at the Kennedy Space Center in Florida, U.S.A. has been developing multifunctional smart coatings based on the microencapsulation of environmentally friendly corrosion indicators, inhibitors and self-healing agents. This allows for the incorporation of autonomous corrosion control functionalities, such as corrosion detection and inhibition as well as the self-healing of mechanical damage, into coatings. This paper presents technical details on the characterization of inhibitor-containing particles and their corrosion inhibitive effects using electrochemical and mass loss methods. Three organic environmentally friendly corrosion inhibitors were encapsulated in organic microparticles that are compatible with desired coatings. The total inhibitor content and the release of one of the inhibitors from the microparticles in basic solution was measured. Particles with inhibitor contents of up 60 wt% were synthesized. Fast release, for immediate corrosion protection, as well as long-term release for continued protection, was observed. The inhibition efficacy of the inhibitors, both as the pure materials and in microparticles, on carbon steel was evaluated. Polarization curves and mass loss measurements showed that, in the case of 2MBT, its corrosion inhibition effectiveness was greater when it was delivered from microparticles.

  15. Chitosan crosslinked microparticles with encapsulated polyphenols: Water sorption and release properties.

    PubMed

    Trifković, Kata; Milašinović, Nikola; Djordjević, Verica; Zdunić, Gordana; Kalagasidis Krušić, Melina; Knežević-Jugović, Zorica; Šavikin, Katarina; Nedović, Viktor; Bugarski, Branko

    2015-11-01

    Chitosan-glutaraldehyde microparticles were produced by emulsion crosslinking method to be used as drug delivery system for polyphenols from Thymus serpyllum L. aqueous extract. The effect of preparation conditions, chitosan concentration (1.5-3% w/v), and glutaraldehyde/chitosan (GA/Ch) mass ratio (0.15-1.20) on water and polyphenols transport properties was investigated. Swelling ratio of dry particles (68-230 µm) in water ranged from 280% to 530%, depending on the formulation. The decrease in swelling was observed with increased GA/Ch mass ratio (i.e. crosslinking degree) at the same chitosan concentration, or with increased chitosan concentration at the same GA/Ch mass ratio. The increase in GA/Ch mass ratio was also manifested by increased particle compactness i.e. decreased size and reduced surface roughness. The sorption capacity for polyphenols seems to be a complex interplay of swelling behaviour and interactions chitosan-glutaraldehyde-polyphenols identified by Fourier transmission infrared analysis. An increase in crystallinity of chitosan was observed upon crosslinking with glutaraldehyde and encapsulation of polyphenols, as observed by X-ray diffraction analysis. The results obtained from release kinetics of selected polyphenolic compounds (caffeic acid, rosmarinic acid, total flavonoids, and total phenol content) showed that polyphenols were released at a lower amount (2-4 times) in water, but more rapidly (45-120 min) in comparison with the release in gastric followed by intestinal simulated fluid (SGF-SIF) (120-240 min). The experimental results of the time-dependent swelling in water and polyphenols release in both, water and SGF-SIF, were analyzed with several mathematical models. The results depicted Fickian diffusion as the water transport mechanism. In the case of polyphenols, only empirical Weibull model could be suggested for describing release kinetics.

  16. A free-blockage controlled release system based on the hydrophobic/hydrophilic conversion of mesoporous silica nanopores.

    PubMed

    Wang, Wenqian; Chen, Linfeng; Xu, Li-Ping; Du, Hongwu; Wen, Yongqiang; Song, Yanlin; Zhang, Xueji

    2015-02-02

    A pH-responsive free-blockage release system was achieved through controlling the hydrophobic/hydrophilic conversion of mesoporous silica nanopores. This system further presented pulsatile release with changing pH values between 4.0 and 7.0 for several cycles. This free-blockage release system could also release antitumor agents to induce cell death after infecting tumor cells and could have the ability of continuous infection to tumor cells with high drug-delivery efficiency and few side effects.

  17. The spherical nanoparticle-encapsulated chlorhexidine enhances anti-biofilm efficiency through an effective releasing mode and close microbial interactions

    PubMed Central

    Li, Xuan; Wong, Chi-Hin; Ng, Tsz-Wing; Zhang, Cheng-Fei; Leung, Ken Cham-Fai; Jin, Lijian

    2016-01-01

    We reported two forms (sphere and wire) of newly fabricated chlorhexidine (CHX)-loaded mesoporous silica nanoparticles (MSNs), and investigated their releasing capacities and anti-biofilm efficiencies. The interactions of the blank MSNs with planktonic oral microorganisms were assessed by field emission scanning electron microscopy. The anti-biofilm effects of the two forms of nanoparticle-encapsulated CHX were examined by 2,3-bis (2-methoxy- 4-nitro-5-sulfo-phenyl)-2H-tetrazolium-5-carboxanilide. The profiles of biofilm penetration were analyzed by fluorescent-labeled MSNs using confocal microscopy and ImageJ. The spherical MSNs with an average diameter of 265 nm exhibited a larger surface area and faster CHX-releasing rate than the MSN wires. The field emission scanning electron microscopy images showed that both shaped MSNs enabled to attach and further fuse with the surfaces of testing microbes. Meanwhile, the nanoparticle-encapsulated CHX could enhance the anti-biofilm efficiency with reference to its free form. Notably, the spherical nanoparticle-encapsulated CHX presented with a greater anti-biofilm capacity than the wire nanoparticle-encapsulated CHX, partly due to their difference in physical property. Furthermore, the relatively even distribution and homogeneous dispersion of spherical MSNs observed in confocal images may account for the enhanced penetration of spherical nanoparticle-encapsulated CHX into the microbial biofilms and resultant anti-biofilm effects. These findings reveal that the spherical nanoparticle-encapsulated CHX could preferably enhance its anti-biofilm efficiency through an effective releasing mode and close interactions with microbes. PMID:27330290

  18. The spherical nanoparticle-encapsulated chlorhexidine enhances anti-biofilm efficiency through an effective releasing mode and close microbial interactions.

    PubMed

    Li, Xuan; Wong, Chi-Hin; Ng, Tsz-Wing; Zhang, Cheng-Fei; Leung, Ken Cham-Fai; Jin, Lijian

    2016-01-01

    We reported two forms (sphere and wire) of newly fabricated chlorhexidine (CHX)-loaded mesoporous silica nanoparticles (MSNs), and investigated their releasing capacities and anti-biofilm efficiencies. The interactions of the blank MSNs with planktonic oral microorganisms were assessed by field emission scanning electron microscopy. The anti-biofilm effects of the two forms of nanoparticle-encapsulated CHX were examined by 2,3-bis (2-methoxy- 4-nitro-5-sulfo-phenyl)-2H-tetrazolium-5-carboxanilide. The profiles of biofilm penetration were analyzed by fluorescent-labeled MSNs using confocal microscopy and ImageJ. The spherical MSNs with an average diameter of 265 nm exhibited a larger surface area and faster CHX-releasing rate than the MSN wires. The field emission scanning electron microscopy images showed that both shaped MSNs enabled to attach and further fuse with the surfaces of testing microbes. Meanwhile, the nanoparticle-encapsulated CHX could enhance the anti-biofilm efficiency with reference to its free form. Notably, the spherical nanoparticle-encapsulated CHX presented with a greater anti-biofilm capacity than the wire nanoparticle-encapsulated CHX, partly due to their difference in physical property. Furthermore, the relatively even distribution and homogeneous dispersion of spherical MSNs observed in confocal images may account for the enhanced penetration of spherical nanoparticle-encapsulated CHX into the microbial biofilms and resultant anti-biofilm effects. These findings reveal that the spherical nanoparticle-encapsulated CHX could preferably enhance its anti-biofilm efficiency through an effective releasing mode and close interactions with microbes.

  19. Effect of hydrophobic scaffold on the cellular uptake and gene transfection activities of DNA-encapsulating liposomal nanoparticles via intracerebroventricular administration.

    PubMed

    Akita, Hidetaka; Nakatani, Taichi; Kuroki, Kimiko; Maenaka, Katsumi; Tange, Kota; Nakai, Yuta; Harashima, Hideyoshi

    2015-07-25

    Efficient DNA carriers are needed as a gene medication for curing brain disorders. In the present study, the function of a neutral lipid envelope-type nanoparticle (LNP) encapsulating pDNA was evaluated after intracerebroventricular administration. The lipid envelope was composed of a series of SS-cleavable and pH-activated lipid like materials (ssPalm) including myristic acid, vitamin A and vitamin E in the hydrophobic scaffold (LNPssPalmM, LNPssPalmA, LNPssPalmE, respectively). The LNPssPalmA and LNPssPalmE were extensively distributed in the corpus callosum, and then gene expression occurred mainly astrocytes in this region, while not in LNPssPalmM. The recombinant human ApoE3-dependent enhancement of the uptake into an astrocyte-derived cell line (KT-5) was observed in LNPssPalmA and LNPssPalmE. Thus, ApoE in the brain plays a key role in the cellular uptake of these particles by astrocytes, and this uptake is dependent on the structure of the hydrophobic scaffold.

  20. The effective encapsulation of a hydrophobic lipid-insoluble drug in solid lipid nanoparticles using a modified double emulsion solvent evaporation method.

    PubMed

    Nabi-Meibodi, Mohsen; Vatanara, Alireza; Najafabadi, Abdolhossein Rouholamini; Rouini, Mohammad Reza; Ramezani, Vahid; Gilani, Kambiz; Etemadzadeh, Seyed Mohammad Hossein; Azadmanesh, Kayhan

    2013-12-01

    Raloxifene HCl (RH), a selective estrogen receptor modulator (SERM), is indicated for the prophylaxis or treatment of postmenopausal osteoporosis. RH shows extremely poor bioavailability due to limited solubility and an extensive intestinal/hepatic first-pass metabolism. Solid lipid nanoparticles (SLNs) are valuable carriers that can enhance drug bioavailability. However, in the case of RH, the encapsulation of the drug in SLNs remains a challenge because of its poor solubility in both water and lipids. In this study, a series of RH-containing SLNs (RH-SLNs) were generated using a modified double emulsion solvent evaporation (DESE) method. Briefly, RH with various drug/lipid ratios was solubilized in the inner core of a double emulsion using different water/organic solvent mixtures. Our best formulation was achieved with the formation of negatively charged nanoparticles, 180nm in diameter, with an encapsulation and loading efficiency of 85% and 4.5%, respectively. It also showed a Fickian mechanism of the drug release in the basic dissolution media. Thermal analysis revealed a distinct decrease in the crystallinity of lipids and RH in comparison with the unprocessed materials. The results of a cell viability assay also showed a better antiproliferative effect of the drug-loaded SLNs versus the free drug solution. Thus, these results indicated that the modified DESE method could be proposed for the effective encapsulation of RH in SLNs with appropriate physicochemical and biological properties.

  1. Design and evaluation of hydrophobic coated buoyant core as floating drug delivery system for sustained release of cisapride

    PubMed Central

    Jacob, Shery; Nair, Anroop B; Patil, Pandurang N

    2010-01-01

    An inert hydrophobic buoyant coated–core was developed as floating drug delivery system (FDDS) for sustained release of cisapride using direct compression technology. Core contained low density, porous ethyl cellulose, which was coated with an impermeable, insoluble hydrophobic coating polymer such as rosin. It was further seal coated with low viscosity hydroxypropyl methyl cellulose (HPMC E15) to minimize moisture permeation and better adhesion with an outer drug layer. It was found that stable buoyant core was sufficient to float the tablet more than 8 h without the aid of sodium bicarbonate and citric acid. Sustained release of cisapride was achieved with HPMC K4M in the outer drug layer. The floating lag time required for these novel FDDS was found to be zero, however it is likely that the porosity or density of the core is critical for floatability of these tablets. The in vitro release pattern of these tablets in simulated gastric fluid showed the constant and controlled release for prolonged time. It can be concluded that the hydrophobic coated buoyant core could be used as FDDS for gastroretentive delivery system of cisapride or other suitable drugs. PMID:24825997

  2. Encapsulation of lemongrass oil with cyclodextrins by spray drying and its controlled release characteristics.

    PubMed

    Phunpee, Sarunya; Ruktanonchai, Uracha Rangsadthong; Yoshii, Hidefumi; Assabumrungrat, Suttichai; Soottitantawat, Apinan

    2017-04-01

    Inclusion of the two isomers of citral (E-citral and Z-citral), components of lemongrass oil, was investigated within the confines of various cyclodextrin (α-CD, β-CD and γ-CD) host molecules. Aqueous complex formation constants for E-citral with α-CD, β-CD and γ-CD were determined to be 123, 185, and 204 L/mol, respectively, whereas Z-citral exhibited stronger affinities (157, 206, and 253 L/mol, respectively). The binding trend γ-CD > β-CD > α-CD is a reflection of the more favorable geometrical accommodation of the citral isomers with increasing cavity size. Encapsulation of lemongrass oil within CDs was undertaken through shaking citral:CD (1:1, 1.5:1, and 2:1 molar ratio) mixtures followed by spray drying. Maximum citral retention occurred at a 1:1 molar ratio with β-CD and α-CD demonstrating the highest levels of total E-citral and Z-citral retention, respectively. Furthermore, the β-CD complex demonstrated the slowest release rate of all inclusion complex powders.

  3. UV and dark-triggered repetitive release and encapsulation of benzophenone-3 from biocompatible ZnO nanoparticles potential for skin protection.

    PubMed

    Huang, Xiao; Wang, Xiaoying; Wang, Sichun; Yang, Jiawen; Zhong, Li; Pan, Jun

    2013-06-21

    The present study reports a UV and dark-triggered highly intelligent drug delivery system for skin protection. ZnO nanoparticles (NPs), a UV filter, were synthesized and characterized to be the carrier for benzophenone-3 (Bp-3), a UV-absorption medicine, by varying the molar ratio of ZnO NPs to Bp-3 ranging from 300 : 1 to 20 : 1. The drug release under three cycles of UV and dark stimulation (each for two hours) and its cytotoxicity to human keratinocyte cells and skin fibroblasts were investigated. SEM studies showed the diameter of ZnO was around 30 to 40 nm, which assembled into loose and large NPs ranging from 500 to 1400 nm. Contact angle tests showed ZnO NPs switched to a more hydrophilic and back to a more hydrophobic state under two hours of UV and dark exposure. The optimized encapsulation efficiency and loading capacity of Bp-3 were 53.68 ± 0.13% and 133.61 ± 0.20% when the molar ratio of ZnO NPs to Bp-3 was 150 : 1 and 80 : 1. The Bp-3 was almost completely released from ZnO NPs under 2 hours of UV radiation and was mostly encapsulated in after 2 hours of dark stay in three cycles of UV and dark exposure. The Bp-3 loaded ZnO NPs showed low cytotoxicity to human keratinocyte cells and human skin fibroblasts. Overall, a UV and dark-triggered repetitively on-demand drug delivery system biocompatible to skin cells and potential for skin protection from UV radiation was developed.

  4. A Conserved Hydrophobic Core in Gαi1 Regulates G Protein Activation and Release from Activated Receptor.

    PubMed

    Kaya, Ali I; Lokits, Alyssa D; Gilbert, James A; Iverson, T M; Meiler, Jens; Hamm, Heidi E

    2016-09-09

    G protein-coupled receptor-mediated heterotrimeric G protein activation is a major mode of signal transduction in the cell. Previously, we and other groups reported that the α5 helix of Gαi1, especially the hydrophobic interactions in this region, plays a key role during nucleotide release and G protein activation. To further investigate the effect of this hydrophobic core, we disrupted it in Gαi1 by inserting 4 alanine amino acids into the α5 helix between residues Gln(333) and Phe(334) (Ins4A). This extends the length of the α5 helix without disturbing the β6-α5 loop interactions. This mutant has high basal nucleotide exchange activity yet no receptor-mediated activation of nucleotide exchange. By using structural approaches, we show that this mutant loses critical hydrophobic interactions, leading to significant rearrangements of side chain residues His(57), Phe(189), Phe(191), and Phe(336); it also disturbs the rotation of the α5 helix and the π-π interaction between His(57) and Phe(189) In addition, the insertion mutant abolishes G protein release from the activated receptor after nucleotide binding. Our biochemical and computational data indicate that the interactions between α5, α1, and β2-β3 are not only vital for GDP release during G protein activation, but they are also necessary for proper GTP binding (or GDP rebinding). Thus, our studies suggest that this hydrophobic interface is critical for accurate rearrangement of the α5 helix for G protein release from the receptor after GTP binding.

  5. Evaluation of extended-release applications for solid dispersion hot-melt fluid bed coatings utilizing hydrophobic coating agents.

    PubMed

    Kennedy, J P; Niebergall, P J

    1998-02-01

    A new hot-melt fluid bed coating method was evaluated for potential extended-release applications. Chlorpheniramine maleate (CPM) USP was chosen as a model drug. The assays for drug release and content uniformity were dictated by the USP Official Monograph for a Chlorpheniramine Maleate Extended-Release Capsule. The fluid bed chamber was charged with CPM-loaded nonpareils and hydrophobic coating agents in the solid state. The method consists of four processing stages: (a) warming, (b) preheating, (c) melting-spreading, and (d) cooling-congealing. Various hydrophobic coating agent candidates were evaluated for extended-release potential by a preliminary screen at a coating agent level of 1.5% (w/w). A beeswax coating agent was identified as the most promising candidate of the preliminary screen. After the level of beeswax was increased to 2.0%, the dissolution profile met all of the specifications of the USP Drug Release Test 1 for a CPM Extended-Release Capsule. The potency and content uniformity remained unchanged by the process. Dual coatings demonstrated a cumulative extension of release superior to the capability of a single coat. The new method is a viable alternative to hot-melt spray-coating methodologies. Organic solvents, spraying equipment, steam jackets, and/or heating tape are eliminated from the process. A reduction of equipment costs, setup time, and cleanup time may be realized. The method has demonstrated extended-release capabilities. No excessive attrition of potency or content uniformity has been noted. Additive, multiple coatings that have a cumulative effect on release retardation are feasible.

  6. Formulation and Evaluation of a Sustained-Release Tablets of Metformin Hydrochloride Using Hydrophilic Synthetic and Hydrophobic Natural Polymers

    PubMed Central

    Wadher, K. J.; Kakde, R. B.; Umekar, M. J.

    2011-01-01

    Metformin hydrochloride has relatively short plasma half-life, low absolute bioavailability. The need for the administration two to three times a day when larger doses are required can decrease patient compliance. Sustained release formulation that would maintain plasma level for 8-12 h might be sufficient for daily dosing of metformin. Sustained release products are needed for metformin to prolong its duration of action and to improve patient compliances. The overall objective of this study was to develop an oral sustained release metformin hydrochloride tablet by using hydrophilic Eudragit RSPO alone or its combination with hydrophobic natural polymers Gum copal and gum damar as rate controlling factor. The tablets were prepared by wet granulation method. The in vitro dissolution study was carried out using USP 22 apparatus I, paddle method and the data was analysed using zero order, first order, Higuchi, Korsmeyer and Hixson-Crowell equations. The drug release study revealed that Eudragit RSPO alone was unable to sustain the drug release. Combining Eudragit with gum Copal and gum Damar sustained the drug release for more than 12 h. Kinetic modeling of in vitro dissolution profiles revealed the drug release mechanism ranges from diffusion controlled or Fickian transport to anomalous type or non-Fickian transport. Fitting the in vitro drug release data to Korsmeyer equation indicated that diffusion along with erosion could be the mechanism of drug release. PMID:22303065

  7. Formulation and evaluation of a sustained-release tablets of metformin hydrochloride using hydrophilic synthetic and hydrophobic natural polymers.

    PubMed

    Wadher, K J; Kakde, R B; Umekar, M J

    2011-03-01

    Metformin hydrochloride has relatively short plasma half-life, low absolute bioavailability. The need for the administration two to three times a day when larger doses are required can decrease patient compliance. Sustained release formulation that would maintain plasma level for 8-12 h might be sufficient for daily dosing of metformin. Sustained release products are needed for metformin to prolong its duration of action and to improve patient compliances. The overall objective of this study was to develop an oral sustained release metformin hydrochloride tablet by using hydrophilic Eudragit RSPO alone or its combination with hydrophobic natural polymers Gum copal and gum damar as rate controlling factor. The tablets were prepared by wet granulation method. The in vitro dissolution study was carried out using USP 22 apparatus I, paddle method and the data was analysed using zero order, first order, Higuchi, Korsmeyer and Hixson-Crowell equations. The drug release study revealed that Eudragit RSPO alone was unable to sustain the drug release. Combining Eudragit with gum Copal and gum Damar sustained the drug release for more than 12 h. Kinetic modeling of in vitro dissolution profiles revealed the drug release mechanism ranges from diffusion controlled or Fickian transport to anomalous type or non-Fickian transport. Fitting the in vitro drug release data to Korsmeyer equation indicated that diffusion along with erosion could be the mechanism of drug release.

  8. Nano-encapsulation of isolated lactoferrin from camel milk by calcium alginate and evaluation of its release.

    PubMed

    Raei, Masoomeh; Rajabzadeh, Ghadir; Zibaei, Saeid; Jafari, Seid Mahdi; Sani, Ali Mohammad

    2015-08-01

    Lactoferrin is a glycoprotein, playing several biological roles. The main goal of our work was to nanoencapsulate the isolated lactoferrin from camel milk through alginate nanocapsuls. We studied the influence of alginate concentration (0.2 and 0.5 w/w%) and encapsulation method (thermal vs. non-thermal treatment) on the encapsulation efficiency, zeta potential, particle size and release of lactoferrin from nanocapsuls. Our results revealed in 0.8 and 0.9 M NaCl fractions, lactoperoxidase was present. So these fractions were not passed to further experiments. On average, we measured the lactoferrin content to be 0.5 g/l within the original camel milk. In general, higher alginate concentration resulted in higher encapsulation efficiency and nanocapsuls prepared with thermal treatment had a higher efficiency (almost 100%) along with smaller particle sizes (mostly<100 nm). By evaluating the release of lactoferrin from nanocapsuls, it was revealed that there was no release at the first 30 min in both pH values (2 and 7). This could be particularly useful since lactoferrin would be maintained intact within stomach conditions and it can reach lower gastrointestinal tract to be delivered safely into the body.

  9. Co-encapsulation of amyloglucosidase with starch and Saccharomyces cerevisiae as basis for a long-lasting CO2 release.

    PubMed

    Humbert, Pascal; Vemmer, Marina; Giampà, Marco; Bednarz, Hanna; Niehaus, Karsten; Patel, Anant V

    2017-04-01

    CO2 is known as a major attractant for many arthropod pests which can be exploited for pest control within novel attract-and-kill strategies. This study reports on the development of a slow-release system for CO2 based on calcium alginate beads containing granular corn starch, amyloglucosidase and Saccharomyces cerevisiae. Our aim was to evaluate the conditions which influence the CO2 release and to clarify the biochemical reactions taking place within the beads. The amyloglucosidase was immobilized with a high encapsulation efficiency of 87% in Ca-alginate beads supplemented with corn starch and S. cerevisiae biomass. The CO2 release from the beads was shown to be significantly affected by the concentration of amyloglucosidase and corn starch within the beads as well as by the incubation temperature. Beads prepared with 0.1 amyloglucosidase units/g matrix solution led to a long-lasting CO2 emission at temperatures between 6 and 25 °C. Starch degradation data correlated well with the CO2 release from beads during incubation and scanning electron microscopy micrographs visualized the degradation of corn starch granules by the co-encapsulated amyloglucosidase. By implementing MALDI-ToF mass spectrometry imaging for the analysis of Ca-alginate beads, we verified that the encapsulated amyloglucosidase converts starch into glucose which is immediately consumed by S. cerevisiae cells. When applied into the soil, the beads increased the CO2 concentration in soil significantly. Finally, we demonstrated that dried beads showed a CO2 production in soil comparable to the moist beads. The long-lasting CO2-releasing beads will pave the way towards novel attract-and-kill strategies in pest control.

  10. Controlled release of antibiotics encapsulated in the electrospinning polylactide nanofibrous scaffold and their antibacterial and biocompatible properties

    NASA Astrophysics Data System (ADS)

    Wang, Shu-Dong; Zhang, Sheng-Zhong; Liu, Hua; Zhang, You-Zhu

    2014-04-01

    In this research, the drug loaded polylactide nanofibers are fabricated by electrospinning. Morphology, microstructure and mechanical properties are characterized. Properties and mechanism of the controlled release of the nanofibers are investigated. The results show that the drug loaded polylactide nanofibers do not show dispersed phase, and there is a good compatibility between polylactide and drugs. FTIR spectra show that drugs are encapsulated inside the polylactide nanofibers, and drugs do not break the structure of polylcatide. Flexibility of drug loaded polylactide scaffolds is higher than that of the pure polylactide nanofibers. Release rate of the drug loaded nanofibers is significantly slower than that of the drug powder. Release rate increases with the increase of the drugs’ concentration. The research mechanism suggests a typical diffusion-controlled release of the three loaded drugs. Antibacterial and cell culture show that drug loaded nanofibers possess effective antibacterial activity and biocompatible properties.

  11. Surfactant free preparation of biodegradable dendritic polyglycerol nanogels by inverse nanoprecipitation for encapsulation and release of pharmaceutical biomacromolecules.

    PubMed

    Steinhilber, Dirk; Witting, Madeleine; Zhang, Xuejiao; Staegemann, Michael; Paulus, Florian; Friess, Wolfgang; Küchler, Sarah; Haag, Rainer

    2013-08-10

    In this paper we report a novel approach to generate biodegradable polyglycerol nanogels on different length scales. We developed a mild, surfactant free inverse nanoprecipitation process to template hydrophilic polyglycerol nanoparticles. In situ crosslinking of the precipitated nanoparticles by bioorthogonal copper catalyzed click chemistry allows us to obtain size defined polyglycerol nanogels (100-1000nm). Biodegradability was achieved by the introduction of benzacetal bonds into the net points of the nanogel. Interestingly, the polyglycerol nanogels quickly degraded into low molecular weight fragments at acidic pH values, which are present in inflamed and tumor tissues as well as intracellular organelles, and they remained stable at physiological pH values for a long time. This mild approach to biodegradable polyglycerol nanogels allows us to encapsulate labile biomacromolecules such as proteins, including the therapeutic relevant enzyme asparaginase, into the protein resistant polyglycerol network. Enzymes were encapsulated with an efficacy of 100% and after drug release, full enzyme activity and structural integrity were retained. This new inverse nanoprecipitation procedure allows the efficient encapsulation and release of various biomacromolecules including proteins and could find many applications in polymer therapeutics and nanomedicine.

  12. Conjugated polymer and drug co-encapsulated nanoparticles for Chemo- and Photo-thermal Combination Therapy with two-photon regulated fast drug release

    NASA Astrophysics Data System (ADS)

    Yuan, Youyong; Wang, Zuyong; Cai, Pingqiang; Liu, Jie; Liao, Lun-De; Hong, Minghui; Chen, Xiaodong; Thakor, Nitish; Liu, Bin

    2015-02-01

    The spatial-temporal synchronization of photothermal therapy and chemotherapy is highly desirable for an efficient cancer treatment with synergistic effect. Herein, we developed a chemotherapeutic drug doxorubicin (DOX) and photothermal conjugated polymer (CP) co-loaded nanoplatform using a near-infrared (NIR) laser responsive amphiphilic brush copolymer as the encapsulation matrix. The obtained nanoparticles (NPs) exhibit good monodispersity and excellent stability, which can efficiently convert laser energy into thermal energy for photothermal therapy. Moreover, the hydrophobic polymer matrix bearing a number of 2-diazo-1,2-naphthoquinones (DNQ) moieties could be transformed to a hydrophilic one upon NIR two-photon laser irradiation, which leads to fast drug release. Furthermore, the surface modification of the NPs with cyclic arginine-glycine-aspartic acid (cRGD) tripeptide significantly enhances the accumulation of the NPs within integrin αvβ3 overexpressed cancer cells. The half-maximal inhibitory concentration (IC50) of the combination therapy is 13.7 μg mL-1, while the IC50 for chemotherapy and photothermal therapy alone is 147.8 μg mL-1 and 36.2 μg mL-1, respectively. The combination index (C.I.) is 0.48 (<1), which indicates the synergistic effect for chemotherapy and PTT. These findings provide an excellent NIR laser regulated nanoplatform for combined cancer treatment with synergistic effect due to the synchronous chemo- and photo-thermal therapy.

  13. Amino Acid Transporters and Release of Hydrophobic Amino Acids in the Heterocyst-Forming Cyanobacterium Anabaena sp. Strain PCC 7120

    PubMed Central

    Pernil, Rafael; Picossi, Silvia; Herrero, Antonia; Flores, Enrique; Mariscal, Vicente

    2015-01-01

    Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium that can use inorganic compounds such as nitrate or ammonium as nitrogen sources. In the absence of combined nitrogen, it can fix N2 in differentiated cells called heterocysts. Anabaena also shows substantial activities of amino acid uptake, and three ABC-type transporters for amino acids have been previously characterized. Seven new loci encoding predicted amino acid transporters were identified in the Anabaena genomic sequence and inactivated. Two of them were involved in amino acid uptake. Locus alr2535-alr2541 encodes the elements of a hydrophobic amino acid ABC-type transporter that is mainly involved in the uptake of glycine. ORF all0342 encodes a putative transporter from the dicarboxylate/amino acid:cation symporter (DAACS) family whose inactivation resulted in an increased uptake of a broad range of amino acids. An assay to study amino acid release from Anabaena filaments to the external medium was set up. Net release of the alanine analogue α-aminoisobutyric acid (AIB) was observed when transport system N-I (a hydrophobic amino acid ABC-type transporter) was engaged in the uptake of a specific substrate. The rate of AIB release was directly proportional to the intracellular AIB concentration, suggesting leakage from the cells by diffusion. PMID:25915115

  14. Amino Acid Transporters and Release of Hydrophobic Amino Acids in the Heterocyst-Forming Cyanobacterium Anabaena sp. Strain PCC 7120.

    PubMed

    Pernil, Rafael; Picossi, Silvia; Herrero, Antonia; Flores, Enrique; Mariscal, Vicente

    2015-04-23

    Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium that can use inorganic compounds such as nitrate or ammonium as nitrogen sources. In the absence of combined nitrogen, it can fix N2 in differentiated cells called heterocysts. Anabaena also shows substantial activities of amino acid uptake, and three ABC-type transporters for amino acids have been previously characterized. Seven new loci encoding predicted amino acid transporters were identified in the Anabaena genomic sequence and inactivated. Two of them were involved in amino acid uptake. Locus alr2535-alr2541 encodes the elements of a hydrophobic amino acid ABC-type transporter that is mainly involved in the uptake of glycine. ORF all0342 encodes a putative transporter from the dicarboxylate/amino acid:cation symporter (DAACS) family whose inactivation resulted in an increased uptake of a broad range of amino acids. An assay to study amino acid release from Anabaena filaments to the external medium was set up. Net release of the alanine analogue α-aminoisobutyric acid (AIB) was observed when transport system N-I (a hydrophobic amino acid ABC-type transporter) was engaged in the uptake of a specific substrate. The rate of AIB release was directly proportional to the intracellular AIB concentration, suggesting leakage from the cells by diffusion.

  15. Slow-released NPK fertilizer encapsulated by NaAlg-g-poly(AA-co-AAm)/MMT superabsorbent nanocomposite.

    PubMed

    Rashidzadeh, Azam; Olad, Ali

    2014-12-19

    A novel slow released NPK fertilizer encapsulated by superabsorbent nanocomposite was prepared via in-situ free radical polymerization of sodium alginate, acrylic acid, acrylamide, and montmorillonite in the presence of fertilizer compounds. Evidence of grafting and component interactions, superabsorbent nanocomposite structure and morphology was obtained by a FT-IR, XRD and SEM techniques. The water absorbency behavior of superabsorbent nanocomposite was investigated. After those characterizations, the potential application was verified through the study of fertilizer release from prepared formulations. Results indicated that the presence of the montmorillonite caused the system to liberate the nutrient in a more controlled manner than that with the neat superabsorbent. The good slow release fertilizer property as well as good water retention capacity showed that this formulation is potentially viable for application in agriculture as a fertilizer carrier vehicle.

  16. New type of chitosan/2-hydroxypropyl-β-cyclodextrin composite membrane for gallic acid encapsulation and controlled release.

    PubMed

    Paun, Gabriela; Neagu, Elena; Tache, Andreia; Radu, G L

    2014-01-01

    A new type of chitosan/2-hydroxypropyl-β-cyclodextrin composite membrane have been developed for the encapsulation and controlled release of gallic acid. The morphology of the composite membrane was investigated by infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM), whereas swelling gallic acid and release properties were investigated by UV-visible spectroscopy. The release behavior with pH changes was also explored. The composite membrane based on chitosan/2-hydroxypropyl-β-cyclodextrin with gallic acid included showed improved antioxidant capacities compared to plain chitosan membrane. The information obtained in this study will facilitate the design and preparation of composite membrane based on chitosan and could open a wide range of applications, particularly its use as an antioxidant in food, food packaging, biomedical (biodegradable soft porous scaffolds for enhance the surrounding tissue regeneration), pharmaceutical and cosmetics industries.

  17. Redox-responsive gels with tunable hydrophobicity for controlled solubilization and release of organics.

    PubMed

    Akhoury, Abhinav; Bromberg, Lev; Hatton, T Alan

    2011-04-01

    The hydrophobicity of the chemical environment within a redox-responsive polymer gel synthesized by copolymerization of hydroxybutyl methacrylate (HBMA) and vinylferrocene (VF) can be controlled by tuning the oxidation state of the redox-responsive moiety, ferrocene. When ferrocene is in the uncharged reduced state, the gel is hydrophobic and selectively extracts butanol from aqueous solution. Upon oxidation to ferricenium ions, charge is induced at the ferrocene sites making the gel hydrophilic, with a reduced capacity for butanol relative to water. Equilibrium distribution coefficients and separation factors provide quantitative evidence for this changing preference for butanol depending on oxidation state. The selection of the monomer constituting the polymer backbone, HBMA, was based on an initial screening using the Hansen solubility parameters of commercially available monomers. The effect of the various constituents of the gel on the gel's butanol extraction ability has been ascertained experimentally.

  18. Controlled release of tyrosol and ferulic acid encapsulated in chitosan-gelatin films after electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Benbettaïeb, Nasreddine; Assifaoui, Ali; Karbowiak, Thomas; Debeaufort, Frédéric; Chambin, Odile

    2016-01-01

    This work deals with the study of the release kinetics of antioxidants (ferulic acid and tyrosol) incorporated into chitosan-gelatin edible films after irradiation processes. The aim was to determine the influence of electron beam irradiation (at 60 kGy) on the retention of antioxidants in the film, their release in water (pH=7) at 25 °C, in relation with the barrier and mechanical properties of biopolymer films. The film preparation process coupled to the irradiation induced a loss of about 20% of tyrosol but did not affect the ferulic acid content. However, 27% of the ferulic acid remained entrapped in the biopolymer network during the release experiments whereas all tyrosol was released. Irradiation induced a reduction of the release rate for both compounds, revealing that cross-linking occurred during irradiation. This was confirmed by the mechanical properties enhancement which tensile strength value significantly increased and by the reduction of permeabilities. Although molecular weights, molar volume and molecular radius of the two compounds are very similar, the effective diffusivity of tyrosol was 40 times greater than that of ferulic acid. The much lower effective diffusion coefficient of ferulic acid as determined from the release kinetics was explained by the interactions settled between ferulic acid molecules and the gelatin-chitosan matrix. As expected, the electron beam irradiation allowed modulating the retention and then the release of antioxidants encapsulated.

  19. The coating and the encapsulation of an interactive powder mixture and its application to sustained release preparations.

    PubMed

    Yoshizawa, H; Koishi, M

    1990-10-01

    Fine cohesive isoprenaline HCl particles adhered to the surface of coarser potato starch particles to form interactive mixtures. These were coated with magnesium stearate by dry mixing. To check if there was a lowering of homogeneity in the latter stage, the degree of mixing was investigated before and after adding magnesium stearate. The surface appearance of magnesium stearate-coated interactive mixtures became smoother as mixing time increased or the temperature of the powder bed during mixing was raised. Ultimately, the magnesium stearate encapsulated the particles of interactive mixture. The coated interactive mixtures improved sustained release of isoprenaline HCl over the starch mixtures alone, the effect depending on the density of the magnesium stearate. Only in encapsulated mixtures was the release rate of drug decreased as the amount of magnesium stearate increased. The release of isoprenaline HCl from the interactive mixtures followed first-order kinetics. A linear relationship existed between the first-order rate constant and the reciprocal thickness of the magnesium stearate film, indicating a diffusion-controlled system with the film having some pores.

  20. Encapsulation of a model compound in pectin delays its release from a biobased polymeric material

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A model compound was encapsulated in pectin and then extruded with thermoplastic starch to form a composite. The intended product was a food-contact tray made of biobased polymers infused with an anti-microbial agent; however, caffeine was used as the model compound in the preliminary work. The mode...

  1. Maximizing the encapsulation efficiency and the bioavailability of controlled-release cetirizine microspheres using Draper–Lin small composite design

    PubMed Central

    El-Say, Khalid Mohamed

    2016-01-01

    This study was aimed at developing a controlled-release cetirizine hydrochloride (CTZ)-loaded polymethacrylate microsphere by optimization technique using software-based response surface methodology. The emulsion solvent evaporation method was utilized in the preparation of microspheres. Four process variables were selected, namely, Eudragit RLPO loading percentage in total polymer, the emulsifier hydrophilic lipophilic balance (HLB), the antitacking percentage, and the dispersed phase volume. The desired responses were particle size, angle of repose, production yield, encapsulation efficiency, loading capacity, initial drug release, and the time for 85% of drug release from the microspheres. Optimization was carried out by fitting the experimental data to the software program (Statgraphics Centurion XV). Moreover, 18 batches were subjected to various characterization tests required for the production of dosage form. The pharmacokinetic parameters were evaluated after the oral administration of 10 mg CTZ in both optimized formulation and commercial product on healthy human volunteers using a double-blind, randomized, cross-over design. The optimized formulation showed satisfactory yield (84.43%) and drug encapsulation efficiency (87.1%). Microspheres were of spherical shape, smooth surface, and good flowability with an average size of 142.3 μm. The developed optimized batch of microspheres ensured 28.87% initial release after 2 hours, and the release of CTZ extended for >12 hours. In addition, the relative bioavailability of the optimized formulation was 165.5% with respect to the marketed CTZ tablets indicating a significant enhancement of CTZ bioavailability. Thus, there is an expectation to decrease the administered dose and the frequency of administration, and subsequently minimize the adverse effects that are faced by the patient during the treatment. PMID:26966353

  2. Maximizing the encapsulation efficiency and the bioavailability of controlled-release cetirizine microspheres using Draper-Lin small composite design.

    PubMed

    El-Say, Khalid Mohamed

    2016-01-01

    This study was aimed at developing a controlled-release cetirizine hydrochloride (CTZ)-loaded polymethacrylate microsphere by optimization technique using software-based response surface methodology. The emulsion solvent evaporation method was utilized in the preparation of microspheres. Four process variables were selected, namely, Eudragit RLPO loading percentage in total polymer, the emulsifier hydrophilic lipophilic balance (HLB), the antitacking percentage, and the dispersed phase volume. The desired responses were particle size, angle of repose, production yield, encapsulation efficiency, loading capacity, initial drug release, and the time for 85% of drug release from the microspheres. Optimization was carried out by fitting the experimental data to the software program (Statgraphics Centurion XV). Moreover, 18 batches were subjected to various characterization tests required for the production of dosage form. The pharmacokinetic parameters were evaluated after the oral administration of 10 mg CTZ in both optimized formulation and commercial product on healthy human volunteers using a double-blind, randomized, cross-over design. The optimized formulation showed satisfactory yield (84.43%) and drug encapsulation efficiency (87.1%). Microspheres were of spherical shape, smooth surface, and good flowability with an average size of 142.3 μm. The developed optimized batch of microspheres ensured 28.87% initial release after 2 hours, and the release of CTZ extended for >12 hours. In addition, the relative bioavailability of the optimized formulation was 165.5% with respect to the marketed CTZ tablets indicating a significant enhancement of CTZ bioavailability. Thus, there is an expectation to decrease the administered dose and the frequency of administration, and subsequently minimize the adverse effects that are faced by the patient during the treatment.

  3. Efficient anti-tumor effect of photodynamic treatment with polymeric nanoparticles composed of polyethylene glycol and polylactic acid block copolymer encapsulating hydrophobic porphyrin derivative.

    PubMed

    Ogawara, Ken-ichi; Shiraishi, Taro; Araki, Tomoya; Watanabe, Taka-ichi; Ono, Tsutomu; Higaki, Kazutaka

    2016-01-20

    To develop potent and safer formulation of photosensitizer for cancer photodynamic therapy (PDT), we tried to formulate hydrophobic porphyrin derivative, photoprotoporphyrin IX dimethyl ester (PppIX-DME), into polymeric nanoparticles composed of polyethylene glycol and polylactic acid block copolymer (PN-Por). The mean particle size of PN-Por prepared was around 80nm and the zeta potential was determined to be weakly negative. In vitro phototoxicity study for PN-Por clearly indicated the significant phototoxicity of PN-Por for three types of tumor cells tested (Colon-26 carcinoma (C26), B16BL6 melanoma and Lewis lung cancer cells) in the PppIX-DME concentration-dependent fashion. Furthermore, it was suggested that the release of PppIX-DME from PN-Por would gradually occur to provide the sustained release of PppIX-DME. In vivo pharmacokinetics of PN-Por after intravenous administration was evaluated in C26 tumor-bearing mice, and PN-Por exhibited low affinity to the liver and spleen and was therefore retained in the blood circulation for a long time, leading to the efficient tumor disposition of PN-Por. Furthermore, significant and highly effective anti-tumor effect was confirmed in C26 tumor-bearing mice with the local light irradiation onto C26 tumor tissues after PN-Por injection. These findings indicate the potency of PN-Por for the development of more efficient PDT-based cancer treatments.

  4. Optimization of synthesis process of thermally-responsive poly-n-isopropylacrylamide nanoparticles for controlled release of antimicrobial hydrophobic compounds

    NASA Astrophysics Data System (ADS)

    Hill, Laura E.; Gomes, Carmen L.

    2014-12-01

    The goal of this study was to develop an effective method to synthesize poly-n-isopropylacrylamide (PNIPAAM) nanoparticles with entrapped cinnamon bark extract (CBE) to improve its delivery to foodborne pathogens and control its release with temperature stimuli. CBE was used as a model for hydrophobic natural antimicrobials. A top-down procedure using crosslinked PNIPAAM was compared to a bottom-up procedure using NIPAAM monomer. Both processes relied on self-assembly of the molecules into micelles around the CBE at 40 °C. Processing conditions were compared including homogenization time of the polymer, hydration time prior to homogenization, lyophilization, and the effect of particle ultrafiltration. The top-down versus bottom-up synthesis methods yielded particles with significantly different characteristics, especially their release profiles and antimicrobial activities. The synthesis methods affected particle size, with the bottom-up procedure resulting in smaller (P < 0.05) diameters than the top-down procedure. The controlled release profile of CBE from nanoparticles was dependent on the release media temperature. A faster, burst release was observed at 40 °C and a slower, more sustained release was observed at lower temperatures. PNIPAAM particles containing CBE were analyzed for their antimicrobial activity against Salmonella enterica serovar Typhimurium LT2 and Listeria monocytogenes Scott A. The PNIPAAM particles synthesized via the top-down procedure had a much faster release, which led to a greater (P < 0.05) antimicrobial activity. Both of the top-down nanoparticles performed similarly, therefore the 7 min homogenization time nanoparticles would be the best for this application, as the process time is shorter and little improvement was seen by using a slightly longer homogenization.

  5. Cationic vesicles based on biocompatible diacyl glycerol-arginine surfactants: physicochemical properties, antimicrobial activity, encapsulation efficiency and drug release.

    PubMed

    Tavano, L; Pinazo, A; Abo-Riya, M; Infante, M R; Manresa, M A; Muzzalupo, R; Pérez, L

    2014-08-01

    Physicochemical characteristics of cationic vesicular systems prepared from biocompatible diacyl glycerol-arginine surfactants are investigated. These systems form stable cationic vesicles by themselves and the average diameter of the vesicles decreases as the alkyl chain length of the surfactant increases. The addition of DPPC also modifies the physicochemical properties of these vesicles. Among the drugs these cationic formulations can encapsulate, we have considered Ciprofloxacin and 5-Fluorouracil (5-FU). We show that the percentage of encapsulated drug depends on both the physicochemical properties of the carrier and the type of drug. The capacity of these systems to carry different molecules was evaluated performing in vitro drug release studies. Finally, the antimicrobial activity of empty and Ciprofloxacin-loaded vesicles against Gram-positive and Gram-negative bacteria has been determined. Three bacteria were tested: Escherichia coli, Staphylococcus aureus and Klebsiella pneumoniae. The in vitro drug release from all formulations was effectively delayed. Empty cationic vesicles showed antimicrobial activity and Ciprofloxacin-loaded vesicles showed similar or higher antimicrobial activity than the free drug solution. These results suggest that our formulations represent a great innovation in the pharmaceutical field, due to their dual pharmacological function: one related to the nature of the vehiculated drug and the other related to the innate antibacterial properties of the surfactant-based carriers.

  6. Evaluation of fluorescence in situ hybridization to detect encapsulated Bacillus pumilus SAFR-032 spores released from poly(methylmethacrylate).

    PubMed

    Mohapatra, Bidyut R; La Duc, Myron T

    2012-01-01

    Bacillus pumilus SAFR-032 spores originally isolated from the Jet Propulsion Laboratory spacecraft assembly facility clean room are extremely resistant to UV radiation, H(2)O(2), desiccation, chemical disinfection and starvation compared to spores of other Bacillus species. The resistance of B. pumilus SAFR-032 spores to standard industrial clean room sterilization practices is not only a major concern for medical, pharmaceutical and food industries, but also a threat to the extraterrestrial environment during search for life via spacecraft. The objective of the present study was to investigate the potential of Alexa-FISH (fluorescence in situ hybridization with Alexa Fluor® 488 labeled oligonucleotide) method as a molecular diagnostic tool for enumeration of multiple sterilant-resistant B. pumilus SAFR-032 spores artificially encapsulated in, and released via organic solvent from, a model polymeric material: poly(methylmethacrylate) (Lucite, Plexiglas). Plexiglas is used extensively in various aerospace applications and in medical, pharmaceutical and food industries. Alexa-FISH signals were not detected from spores via standard methods for vegetative bacterial cells. Optimization of a spore permeabilization protocol capitalizing on the synergistic action of proteinase-K, lysozyme, mutanolysin and Triton X-100 facilitated efficient spore detection by Alexa-FISH microscopy. Neither of the Alexa-probes tested gave rise to considerable levels of Lucite- or solvent-associated background autofluorescence, demonstrating the immense potential of Alexa-FISH for rapid quantification of encapsulated B. pumilus SAFR-032 spores released from poly(methylmethacrylate).

  7. Encapsulation and controlled release of rapamycin from polycaprolactone nanoparticles prepared by membrane micromixing combined with antisolvent precipitation.

    PubMed

    Othman, Rahimah; Vladisavljevic, Goran T; Nagy, Zoltan K; Holdich, Richard Graham

    2016-09-30

    Rapamycin loaded polycaprolactone nanoparticles (RAPA-PCL NPs) with a low polydispersity index of 0.006-0.073 were produced by anti-solvent precipitation using a ringed stainless steel membrane with 10-μm diameter laser-drilled pores. The organic phase composed of 6 g L(-1) of PCL and 0.6-3.0 g L(-1) of RAPA in acetone was injected through the membrane at 140 L m(-2) h(-1) into 0.2 wt% aqueous polyvinyl alcohol solution stirred at 1300 rpm, resulting in a Z-average mean of 189-218 nm, a drug encapsulation efficiency of 98.8-98.9 % and a drug loading in the NPs of 9-33 %. The encapsulation of RAPA was confirmed by UV-Vis spectroscopy, XRD, DSC, and ATR-FTIR. The disappearance of sharp characteristic peaks of crystalline RAPA in the XRD pattern of RAPA-PCL NPs revealed that the drug was molecularly dispersed in the polymer matrix or present in individual amorphous domains. The rate of drug release in pure water was negligible due to low aqueous solubility of RAPA. RAPA-PCL NPs released more than 91 % of their drug cargo after 2.5 h in the release medium composed of 0.78-1.5 M of the hydrotropic agent N,N-diethylnicotinamide (DENA), 10 vol% of ethanol, and 2 vol% of Tween 20 in phosphate buffered saline. The release rate of RAPA was faster when the concentra-tion of DENA in the dissolution medium was higher. The dissolution of RAPA was slower when the drug was embedded in the PCL matrix of the NPs than dispersed in the form of pure RAPA nanocrystals.

  8. Coaxial electrospinning of (fluorescein isothiocyanate-conjugated bovine serum albumin)-encapsulated poly(epsilon-caprolactone) nanofibers for sustained release.

    PubMed

    Zhang, Y Z; Wang, X; Feng, Y; Li, J; Lim, C T; Ramakrishna, S

    2006-04-01

    As an aim toward developing biologically mimetic and functional nanofiber-based tissue engineering scaffolds, we demonstrated the encapsulation of a model protein, fluorescein isothiocyanate-conjugated bovine serum albumin (fitcBSA), along with a water-soluble polymer, poly(ethylene glycol) (PEG), within the biodegradable poly(epsilon-caprolactone) (PCL) nanofibers using a coaxial electrospinning technique. By variation of the inner flow rates from 0.2 to 0.6 mL/h with a constant outer flow rate of 1.8 mL/h, fitcBSA loadings of 0.85-2.17 mg/g of nanofibrous membranes were prepared. Variation of flow rates also resulted in increases of fiber sizes from ca. 270 nm to 380 nm. The encapsulation of fitcBSA/PEG within PCL was subsequently characterized by laser confocal scanning microscopy, transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) analysis. In vitro release studies were conducted to evaluate sustained release potential of the core-sheath-structured composite nanofiber PCL-r-fitcBSA/PEG. As a negative control, composite nanofiber PCL/fitcBSA/PEG blend was prepared from a normal electrospinning method. It was found that core-sheath nanofibers PCL-r-fitcBSA/PEG pronouncedly alleviated the initial burst release for higher protein loading and gave better sustainability compared to that of PCL/fitcBSA/PEG nanofibers. The present study would provide a basis for further design and optimization of processing conditions to control the nanostructure of core-sheath composite nanofibers and ultimately achieve desired release kinetics of bioactive proteins (e.g., growth factors) for practical tissue engineering applications.

  9. Effect of pH changes on water release values in hydrophobic interaction chromatographic systems.

    PubMed

    Xia, Fang; Nagrath, Deepak; Cramer, Steven M

    2005-06-24

    The effect on pH on protein binding in HIC systems was investigated. Isocratic experiments were carried out to determine the capacity factors of various proteins as a function of temperature, pH and salt type. This paper presents a framework based on the Maxwell linkage function for estimating the number of released water molecules during the adsorption/desorption process due to a change of buffer pH. This approach also enables one to predict the effect of pH change on the water released values upon binding at any temperature condition. The results indicate that the total number of released water molecules (delta nu) for a pH change increased more on aromatic surfaces (phenyl Sepharose) than on aliphatic resins (butyl Sepharose). The results also indicate that the total number of released water molecules (deltanu) for a pH change increased with salt concentration and when changing from chaotropic to kosmotropic salts. The (deltanu) values also increased as the buffer pH approached the protein's pI, and decreased away from its pI. This work helps to establish a framework for the investigation of pH effects on protein selectivity in HIC systems.

  10. Brain changes in Alzheimer's disease patients with implanted encapsulated cells releasing nerve growth factor.

    PubMed

    Ferreira, Daniel; Westman, Eric; Eyjolfsdottir, Helga; Almqvist, Per; Lind, Göran; Linderoth, Bengt; Seiger, Ake; Blennow, Kaj; Karami, Azadeh; Darreh-Shori, Taher; Wiberg, Maria; Simmons, Andrew; Wahlund, Lars-Olof; Wahlberg, Lars; Eriksdotter, Maria

    2015-01-01

    New therapies with disease-modifying effects are urgently needed for treating Alzheimer's disease (AD). Nerve growth factor (NGF) protein has demonstrated regenerative and neuroprotective effects on basal forebrain cholinergic neurons in animal studies. In addition, AD patients treated with NGF have previously shown improved cognition, EEG activity, nicotinic binding, and glucose metabolism. However, no study to date has analyzed brain atrophy in patients treated with NGF producing cells. In this study we present MRI results of the first clinical trial in patients with AD using encapsulated NGF biodelivery to the basal forebrain. Six AD patients received the treatment during twelve months. Patients were grouped as responders and non-responders according to their twelve-months change in MMSE. Normative values were created from 131 AD patients from ADNI, selecting 36 age- and MMSE-matched patients for interpreting the longitudinal changes in MMSE and brain atrophy. Results at baseline indicated that responders showed better clinical status and less pathological levels of cerebrospinal fluid (CSF) Aβ1-42. However, they showed more brain atrophy, and neuronal degeneration as evidenced by higher CSF levels of T-tau and neurofilaments. At follow-up, responders showed less brain shrinkage and better progression in the clinical variables and CSF biomarkers. Noteworthy, two responders showed less brain shrinkage than the normative ADNI group. These results together with previous evidence supports the idea that encapsulated biodelivery of NGF might have the potential to become a new treatment strategy for AD with both symptomatic and disease-modifying effects.

  11. Nano-encapsulation of olive leaf phenolic compounds through WPC-pectin complexes and evaluating their release rate.

    PubMed

    Mohammadi, Adeleh; Jafari, Seid Mahdi; Assadpour, Elham; Faridi Esfanjani, Afshin

    2016-01-01

    In this study, W/O micro-emulsions as primary emulsions and a complex of whey protein concentrate (WPC) and pectin in the external aqueous phase were used to produce W/O/W emulsions. Average droplet size of primary W/O emulsion and multiple emulsions stabilized by WPC or WPC-pectin after one day of production was 6.16, 675.7 and 1443 nm, respectively, which achieved to 22.97, 347.7 and, 1992.4 nm after 20 days storage without any sedimentation. The encapsulation efficiency of phenolic compounds for stabilized W/O/W emulsions with WPC and WPC-pectin were 93.34% and 96.64%, respectively, which was decreased to 72.73% and 88.81% at 20th storage day. The lowest release of phenolics observed in multiple emulsions of WPC-pectin. These results suggest that nano-encapsulation of olive leaf extract within inner aqueous phase of W/O/W emulsions was successful, and there could be a high potential for the application of olive leaf extract in fortification of food products.

  12. Encapsulants for protecting MEMS devices during post-packaging release etch

    DOEpatents

    Peterson, Kenneth A.

    2005-10-18

    The present invention relates to methods to protect a MEMS or microsensor device through one or more release or activation steps in a "package first, release later" manufacturing scheme: This method of fabrication permits wirebonds, other interconnects, packaging materials, lines, bond pads, and other structures on the die to be protected from physical, chemical, or electrical damage during the release etch(es) or other packaging steps. Metallic structures (e.g., gold, aluminum, copper) on the device are also protected from galvanic attack because they are protected from contact with HF or HCL-bearing solutions.

  13. Morphological changes in vesicles and release of an encapsulated compound triggered by a photoresponsive Malachite Green leuconitrile derivative.

    PubMed

    Uda, Ryoko M; Hiraishi, Eri; Ohnishi, Ryo; Nakahara, Yoshio; Kimura, Keiichi

    2010-04-20

    Photoinduced morphological changes in phosphatidylcholine vesicles are triggered by a Malachite Green leuconitrile derivative dissolved in the lipidic membrane, and are observed at Malachite Green derivative/lipid ratios <5 mol %. This Malachite Green derivative is a photoresponsive compound that undergoes ionization to afford a positive charge on the molecule by UV irradiation. The Malachite Green derivative exhibits amphiphilicity when ionized photochemically, whereas it behaves as a lipophilic compound under dark conditions. Cryo-transmission electron microscopy was used to determine vesicle morphology. The effects of the Malachite Green derivative on vesicles were studied by dynamic light scattering and fluorescence resonance energy transfer. Irradiation of vesicles containing the Malachite Green derivative induces nonspherical vesicle morphology, fusion of vesicles, and membrane solubilization, depending on conditions. Furthermore, irradiation of the Malachite Green derivative induces the release of a vesicle-encapsulated compound.

  14. Controlled release and reversal of multidrug resistance by co-encapsulation of paclitaxel and verapamil in solid lipid nanoparticles.

    PubMed

    Baek, Jong-Suep; Cho, Cheong-Weon

    2015-01-30

    Paclitaxel (PTX) has been used in the treatment of wide range of cancers but its entry into cancer cell is restricted by p-glycoprotein (p-gp). Also, it was reported that verapamil (VP) could inhibit p-gp efflux. Hence, three kinds of solid lipid nanoparticles (SLN) such as PVS (PTX and VP co-loaded SLN), PSV (PTX loaded SLN, later added VP) and PVSV (PTX and VP co-loaded SLN, later added VP) were prepared to overcome MDR by combination of PTX and VP. PVS was the SLN loaded with both PTX and VP at the same time. PSV was the SLN loaded with PTX and then modified with VP - complexed hydroxypropyl-β-cylcodextrin (HPCD). Finally, PVSV was the SLN loaded with PTX and half of VP at the same time subsequently, modified with half of VP - complexed HPCD. The physicochemical characterizations of PVS, PSV or PVSV such as particle size, zeta potential, encapsulation efficiency or in vitro PTX release were examined. PVSV showed that release of VP was higher than PTX solution in first 15h and sustained release of both VP and PTX. PVSV showed significantly higher cytotoxicity and cellular uptake than that of the PTX solution in MCF-7/ADR resistant cells. Furthermore, PVSV significantly down regulated the expression of p-gp than the PTX solution in MCF-7/ADR resistant cells. Based on these findings, this study indicated that the PVSV exhibited great potential for breast cancer therapy.

  15. Photo‐Cross‐Linked Dual‐Responsive Hollow Capsules Mimicking Cell Membrane for Controllable Cargo Post‐Encapsulation and Release

    PubMed Central

    Liu, Xiaoling; Wei, Qiang

    2016-01-01

    Multifunctional and responsive hollow capsules are ideal candidates to establish highly sophisticated compartments mimicking cell membranes for controllable bio‐inspired functions. For this purpose pH and temperature dual‐responsive and photo‐cross‐linked hollow capsules, based on silica‐templated layer‐by‐layer approach by using poly(N‐isopropyl acrylamide)‐block‐polymethacrylate) and polyallylamine, have been prepared to use them for the subsequent and easily available post‐encapsulation process of protein‐like macromolecules at room temperature and pH 7.4 and their controllable release triggered by stimuli. The uptake and release properties of the hollow capsules for cargos are highly affected by changes in the external stimuli temperature (25, 37, or 45 °C) and internal stimuli pH of the phosphate‐containing buffer solution (5.5 or 7.4), by the degree of photo‐cross‐linking, and the size of cargo. The photo‐cross‐linked and dual stimuli‐responsive hollow capsules with different membrane permeability can be considered as attractive material for mimicking cell functions triggered by controllable uptake and release of different up to 11 nm sized biomolecules. PMID:28331784

  16. Antimicrobial performance of mesoporous titania thin films: role of pore size, hydrophobicity, and antibiotic release

    PubMed Central

    Atefyekta, Saba; Ercan, Batur; Karlsson, Johan; Taylor, Erik; Chung, Stanley; Webster, Thomas J; Andersson, Martin

    2016-01-01

    Implant-associated infections are undesirable complications that might arise after implant surgery. If the infection is not prevented, it can lead to tremendous cost, trauma, and even life threatening conditions for the patient. Development of an implant coating loaded with antimicrobial substances would be an effective way to improve the success rate of implants. In this study, the in vitro efficacy of mesoporous titania thin films used as a novel antimicrobial release coating was evaluated. Mesoporous titania thin films with pore diameters of 4, 6, and 7 nm were synthesized using the evaporation-induced self-assembly method. The films were characterized and loaded with antimicrobial agents, including vancomycin, gentamicin, and daptomycin. Staphylococcus aureus and Pseudomonas aeruginosa were used to evaluate their effectiveness toward inhibiting bacterial colonization. Drug loading and delivery were studied using a quartz crystal microbalance with dissipation monitoring, which showed successful loading and release of the antibiotics from the surfaces. Results from counting bacterial colony-forming units showed reduced bacterial adhesion on the drug-loaded films. Interestingly, the presence of the pores alone had a desired effect on bacterial colonization, which can be attributed to the documented nanotopographical effect. In summary, this study provides significant promise for the use of mesoporous titania thin films for reducing implant infections. PMID:27022263

  17. Antimicrobial performance of mesoporous titania thin films: role of pore size, hydrophobicity, and antibiotic release.

    PubMed

    Atefyekta, Saba; Ercan, Batur; Karlsson, Johan; Taylor, Erik; Chung, Stanley; Webster, Thomas J; Andersson, Martin

    2016-01-01

    Implant-associated infections are undesirable complications that might arise after implant surgery. If the infection is not prevented, it can lead to tremendous cost, trauma, and even life threatening conditions for the patient. Development of an implant coating loaded with antimicrobial substances would be an effective way to improve the success rate of implants. In this study, the in vitro efficacy of mesoporous titania thin films used as a novel antimicrobial release coating was evaluated. Mesoporous titania thin films with pore diameters of 4, 6, and 7 nm were synthesized using the evaporation-induced self-assembly method. The films were characterized and loaded with antimicrobial agents, including vancomycin, gentamicin, and daptomycin. Staphylococcus aureus and Pseudomonas aeruginosa were used to evaluate their effectiveness toward inhibiting bacterial colonization. Drug loading and delivery were studied using a quartz crystal microbalance with dissipation monitoring, which showed successful loading and release of the antibiotics from the surfaces. Results from counting bacterial colony-forming units showed reduced bacterial adhesion on the drug-loaded films. Interestingly, the presence of the pores alone had a desired effect on bacterial colonization, which can be attributed to the documented nanotopographical effect. In summary, this study provides significant promise for the use of mesoporous titania thin films for reducing implant infections.

  18. Preparation and characterization of slow-release fertilizer encapsulated by starch-based superabsorbent polymer.

    PubMed

    Qiao, Dongling; Liu, Hongsheng; Yu, Long; Bao, Xianyang; Simon, George P; Petinakis, Eustathios; Chen, Ling

    2016-08-20

    To enhance the effectiveness of fertilizers, a novel double-coated slow-release fertilizer was developed using ethyl cellulose (EC) as inner coating and starch-based superabsorbent polymer (starch-SAP) as outer coating. For starch-SAPs synthesized by a twin-roll mixer using starches from three botanical origins, a reduced grid size and an increased fractal gel size on nano-scale (i.e., increased stretch of 3D network) contributed to increasing the water absorbing capacity with a reduced absorbing rate and thus improving the slow-release property of fertilizer. The fertilizer particles coated with starch-SAP displayed well slow-release behaviors. In soil, compared to urea particles without and with EC coating, the particles further coated with starch-SAP showed reduced nitrogen release rate, and in particular, those with potato starch-SAP coating exhibited a steady release behavior for a period longer than 96h. Therefore, this work has demonstrated the potential of this new slow-release fertilizer system for improving the effectiveness of fertilizers.

  19. Relationship between Surface Properties and In Vitro Drug Release from Compressed Matrix Containing Polymeric Materials with Different Hydrophobicity Degrees

    PubMed Central

    Yarce, Cristhian J.; Echeverri, Juan D.; Palacio, Mario A.; Rivera, Carlos A.; Salamanca, Constain H.

    2017-01-01

    This work is the continuation of a study focused on establishing relations between surface thermodynamic properties and in vitro release mechanisms using a model drug (ampicillin trihydrate), besides analyzing the granulometric properties of new polymeric materials and thus establishing the potential to be used in the pharmaceutical field as modified delivery excipients. To do this, we used copolymeric materials derived from maleic anhydride with decreasing polarity corresponding to poly(isobutylene-alt-maleic acid) (hydrophilic), sodium salt of poly(maleic acid-alt-octadecene) (amphiphilic), poly(maleic anhydride-alt-octadecene) (hydrophobic) and the reference polymer hydroxyl-propyl-methyl-cellulose (HPMC). Each material alone and in blends underwent spectroscopic characterization by FTIR, thermal characterization by DSC and granulometric characterization using flow and compaction tests. Each tablet was prepared at different polymer ratios of 0%, 10%, 20%, 30% and 40%, and the surface properties were determined, including the roughness by micro-visualization, contact angle and water absorption rate by the sessile drop method and obtaining Wadh and surface free energy (SFE) using the semi-empirical models of Young–Dupré and  Owens-Wendt-Rabel-Käelbe (OWRK), respectively. Dissolution profiles were determined simulating physiological conditions in vitro, where the kinetic models of order-zero, order-one, Higuchi and Korsmeyer–Peppas were evaluated. The results showed a strong relationship between the proportion and nature of the polymer to the surface thermodynamic properties and kinetic release mechanism. PMID:28125020

  20. Intrinsic Tween 20 improves release and antilisterial properties of co-encapsulated nisin and thymol.

    PubMed

    Xiao, Dan; Gömmel, Christina; Davidson, P Michael; Zhong, Qixin

    2011-09-14

    Antimicrobial delivery systems have been proposed as potential solutions to improve effectiveness of antimicrobials in food matrixes by shielding antimicrobials from contacting food matrix components and releasing them continuously. In this work, spray-dried capsules were produced from zein solutions with the same concentrations of nisin and thymol but with varying Tween 20 contents for characterization of release kinetics of antimicrobials and antilisterial properties. At intermediate levels of Tween 20, sustained and more complete release of antimicrobials was observed at pH 6.0 and 8.0. Most capsule samples were more effective than free antimicrobials against Listeria monocytogenes in 2% reduced fat milk, and the best capsule treatment reduced the bacterial population by 2 log CFU/mL more than comparable free antimicrobials after 4 h incubation at 25 °C. Our work demonstrated that nonionic surfactant can be conveniently used to modulate characteristics of delivery systems to effectively improve antimicrobial functions in food systems.

  1. Release of PLGA–encapsulated dexamethasone from microsphere loaded porous surfaces

    PubMed Central

    Fratila-Apachitei, L. E.; Necula, B. S.; Apachitei, I.; Witkamp, G. J.; Duszczyk, J.

    2009-01-01

    The aim of the present study was to investigate the morphology and function of a drug eluting metallic porous surface produced by the immobilization of poly lactide-co-glycolide microspheres bearing dexamethasone onto plasma electrolytically oxidized Ti–6Al–7Nb medical alloy. Spheres of 20 μm diameter were produced by an oil-in-water emulsion/solvent evaporation method and thermally immobilized onto titanium discs. The scanning electron microscopy investigations revealed that the size distribution and morphology of the attached spheres had not changed significantly. The drug release profiles following degradation in phosphate buffered saline for 1000 h showed that, upon immobilisation, the spheres maintained a sustained release, with a triphasic profile similar to the non-attached system. The only significant change was an increased release rate during the first 100 h. This difference was attributed to the effect of thermal attachment of the spheres to the surface. PMID:19669866

  2. Development of antibacterial and high light transmittance bulk materials: Incorporation and sustained release of hydrophobic or hydrophilic antibiotics.

    PubMed

    Wang, Bailiang; Liu, Huihua; Zhang, Binjun; Han, Yuemei; Shen, Chenghui; Lin, Quankui; Chen, Hao

    2016-05-01

    Infection associated with medical devices is one of the most frequent complications of modern medical biomaterials. Bacteria have a strong ability to attach on solid surfaces, forming colonies and subsequently biofilms. In this work, a novel antibacterial bulk material was prepared through combining poly(dimethyl siloxane) (PDMS) with either hydrophobic or hydrophilic antibiotics (0.1-0.2 wt%). Scanning electron microscopy, water contact angle and UV-vis spectrophotometer were used to measure the changes of surface topography, wettability and optical transmission. For both gentamicin sulfate (GS) and triclosan (TCA), the optical transmission of the PDMS-GS and PDMS-TCA blend films was higher than 90%. Drug release studies showed initial rapid release and later sustained release of GS or TCA under aqueous physiological conditions. The blend films demonstrated excellent bactericidal and sufficient biofilm inhibition functions against Gram-positive bacteria (Staphylococcus aureus, S. aureus) measured by LIVE/DEAD bacterial viability kit staining method. Kirby-Bauer method showed that there was obvious zone of inhibition (7.5-12.5mm). Cytocompatibility assessment against human lens epithelial cells (HLECs) revealed that the PDMS-GS blend films had good cytocompatibility. However, the PDMS-TCA blend films showed certain cytotoxicity against HLECs. The PDMS-0.2 wt% GS blend films were compared to native PDMS in the rabbit subcutaneous S. aureus infection model. The blend films yielded a significantly lower degree of infection than native PDMS at day 7. The achievement of the PDMS-drug bulk materials with high light transmittance, excellent bactericidal function and good cytocompatibility can potentially be widely used as bio-optical materials.

  3. Poly(ethylene glycol)-poly(lactic-co-glycolic acid) core-shell microspheres with enhanced controllability of drug encapsulation and release rate.

    PubMed

    Cha, Chaenyung; Jeong, Jae Hyun; Kong, Hyunjoon

    2015-01-01

    Poly(lactic-co-glycolic acid) (PLGA) microspheres have been widely used as drug carriers for minimally invasive, local, and sustained drug delivery. However, their use is often plagued by limited controllability of encapsulation efficiency, initial burst, and release rate of drug molecules, which cause unsatisfactory outcomes and several side effects including inflammation. This study presents a new strategy of tuning the encapsulation efficiency and the release rate of protein drugs from a PLGA microsphere by filling the hollow core of the microsphere with poly(ethylene glycol) (PEG) hydrogels of varying cross-linking density. The PEG gel cores were prepared by inducing in situ cross-linking reactions of PEG monoacrylate solution within the PLGA microspheres. The resulting PEG-PLGA core-shell microspheres exhibited (1) increased encapsulation efficiency, (2) decreased initial burst, and (3) a more sustained release of protein drugs, as the cross-linking density of the PEG gel core was increased. In addition, implantation of PEG-PLGA core-shell microspheres encapsulated with vascular endothelial growth factor (VEGF) onto a chicken chorioallantoic membrane resulted in a significant increase in the number of new blood vessels at an implantation site, while minimizing inflammation. Overall, this strategy of introducing PEG gel into PLGA microspheres will be highly useful in tuning release rates and ultimately in improving the therapeutic efficacy of a wide array of protein drugs.

  4. Drying of micro-encapsulated lactic acid bacteria — Effects of trehalose and immobilization on cell survival and release properties

    NASA Astrophysics Data System (ADS)

    Li, Xiaoyan; Chen, Xiguang

    2009-03-01

    Lactic acid bacteria (LAB) were encapsulated with alginate, gelatin and trehalose additives by the extrusion method and dried at 4 °C. The microcapsules were generally spherical and had a wrinkled surface with a size of 1.7 mm ± 0.2 mm. Trehalose as a carbohydrate source in the culture medium could reduce acid production and performed no function in the positive proliferation of LAB. Using trehalose as a carbohydrate source and protective medium simultaneously had a benefit in the protection of LAB cells during the storage at 4 °C. The density of live LAB cells could be 107 CFU g-1 after 8 weeks of storage. Cells of LAB could be continuously released from the capsules from the acidic (pH 1.2) to neutral conditions (pH 6.8). The release amounts and proliferation speeds of LAB cells in neutral medium were much larger and faster than those in acidic conditions. Additionally, immobilization of LAB could improve the survival of cells when they were exposed to acidic medium (pH 1.2) with a survival rate of 76 %.

  5. The parameters influencing the morphology of poly(ɛ-caprolactone) microspheres and the resulting release of encapsulated drugs.

    PubMed

    Bile, Jessica; Bolzinger, Marie-Alexandrine; Vigne, Charlène; Boyron, Olivier; Valour, Jean-Pierre; Fessi, Hatem; Chevalier, Yves

    2015-10-15

    Polymer microparticles used for drug encapsulation and delivery have various surface morphologies depending on the type of formulation ingredients and parameters of the manufacture process. This works aims at investigating the critical parameters governing the morphology of microparticles and to underline the influence of their surface state on the drug release. The classical fabrication process by the "emulsion-solvent evaporation" is addressed using poly(ɛ-caprolactone) as the polymer and methylene chloride as the volatile organic solvent. The typical surfactants poly(vinyl alcohol) and polysorbate 80 have been considered. Scanning electron microscopy observations showed the various surface morphologies mainly depending on the stirring rate, the viscosity of the oil phase and by the presence of inappropriate surfactants. Because of arrested coalescence during solvent evaporation, the evaporation of the organic solvent causing particles hardening is the most important parameter that controls the morphology. Indeed, slow evaporation allows partial coalescence of the soft particles swollen by the organic solvent, whereas the particles morphology is frozen rapidly upon fast evaporation, thus preventing damaged surface states. Moreover, an effective stabilizing system for the primary emulsion is also a determining factor to control the final morphology. The morphology of the particles has a definite influence on the drug delivery of cholecalciferol. The surface morphology should be taken into consideration in the design of polymer microparticles because it allows a control over the drug release kinetics.

  6. A parsimonious model for the release of volatile organic compounds (VOCs) encapsulated in products

    NASA Astrophysics Data System (ADS)

    Huang, Lei; Jolliet, Olivier

    2016-02-01

    Studies have demonstrated that near-field chemical intakes may exceed environmentally mediated exposures and are therefore essential to be considered when assessing chemical emissions across a product's life cycle. VOCs encapsulated in materials/products can be a major emission source in the use phase. Previous models describing such emissions require complex analytical or numerical solutions, which poses a great computational burden and lack transparency for use in high-throughput screening of chemicals. In the present study, we adapted a model which describes VOC emissions from building materials and subsequent removal by ventilation, and decoupled the material and air governing equations by assuming a pseudo-steady-state between emission and loss. Results of this decoupled model show good agreement with the original more complex model and the experimental data. The solution of this decoupled model for mass fraction emitted, which still consists of an infinite sum of exponential terms, is further reduced to a sum of only two exponentials with parameters which can be predicted from physiochemical properties using explicit equations. Results of this simple two-exponential model agree well with the original full model over a 15-year time period with R-square greater than 0.99 for a wide range of compounds and material thicknesses. Moreover, the chemical concentration at the material surface can be simply calculated from the derivative of this two-exponential model, which also agrees well with the surface concentration calculated using the original full model. The present parsimonious approach greatly reduces the computational burden, and can be easily implemented for high-throughput screening.

  7. Effect of Polyethylene Glycol on Properties and Drug Encapsulation-Release Performance of Biodegradable/Cytocompatible Agarose-Polyethylene Glycol-Polycaprolactone Amphiphilic Co-Network Gels.

    PubMed

    Chandel, Arvind K Singh; Kumar, Chinta Uday; Jewrajka, Suresh K

    2016-02-10

    We synthesized agarose-polycaprolactone (Agr-PCL) bicomponent and Agr-polyethylene glycol-PCL (Agr-PEG-PCL) tricomponent amphiphilic co-network (APCN) gels by the sequential nucleophilic substitution reaction between amine-functionalized Agr and activated halide terminated PCL or PCL-b-PEG-b-PCL copolymer for the sustained and localized delivery of hydrophilic and hydrophobic drugs. The biodegradability of the APCNs was confirmed using lipase and by hydrolytic degradation. These APCN gels displayed good cytocompatibility and blood compatibility. Importantly, these APCN gels exhibited remarkably high drug loading capacity coupled with sustained and triggered release of both hydrophilic and hydrophobic drugs. PEG in the APCNs lowered the degree of phase separation and enhanced the mechanical property of the APCN gels. The drug loading capacity and the release kinetics were also strongly influenced by the presence of PEG, the nature of release medium, and the nature of the drug. Particularly, PEG in the APCN gels significantly enhanced the 5-fluorouracil loading capacity and lowered its release rate and burst release. Release kinetics of highly water-soluble gemcitabine hydrochloride and hydrophobic prednisolone acetate depended on the extent of water swelling of the APCN gels. Cytocompatibility/blood compatibility and pH and enzyme-triggered degradation together with sustained release of drugs show great promise for the use of these APCN gels in localized drug delivery and tissue engineering applications.

  8. The Binding And Release of Oxygen And Hydrogen Peroxide are Directed 1 By a Hydrophobic Tunnel in Cholesterol Oxidase

    SciTech Connect

    Chen, L.; Lyubimov, A.Y.; Brammer, L.; Vrielink, A.; Sampson, N.S.

    2009-05-12

    The usage by enzymes of specific binding pathways for gaseous substrates or products is debated. The crystal structure of the redox enzyme cholesterol oxidase, determined at sub-angstrom resolution, revealed a hydrophobic tunnel that may serve as a binding pathway for oxygen and hydrogen peroxide. This tunnel is formed by a cascade of conformational rearrangements and connects the active site with the exterior surface of the protein. To elucidate the relationship between this tunnel and gas binding and release, three mutant enzymes were constructed to block the tunnel or its putative gate. Mutation of the proposed gating residue Asn485 to Asp or tunnel residue Phe359 or Gly347 to Trp or Asn reduces the catalytic efficiency of oxidation. The K mO 2 increases from 300 +/- 35 microM for the wild-type enzyme to 617 +/- 15 microM for the F359W mutant. The k cat for the F359W mutant-catalyzed reaction decreases 13-fold relative to that of the wild-type-catalyzed reaction. The N485D and G347N mutants could not be saturated with oxygen. Transfer of hydride from the sterol to the flavin prosthetic group is no longer rate-limiting for these tunnel mutants. The steady-state kinetics of both wild-type and tunnel mutant enzymes are consistent with formation of a ternary complex of steroid and oxygen during catalysis. Furthermore, kinetic cooperativity with respect to molecular oxygen is observed with the tunnel mutants, but not with the wild-type enzyme. A rate-limiting conformational change for binding and release of oxygen and hydrogen peroxide, respectively, is consistent with the cooperative kinetics. In the atomic-resolution structure of F359W, the indole ring of the tryptophan completely fills the tunnel and is observed in only a single conformation. The size of the indole is proposed to limit conformational rearrangement of residue 359 that leads to tunnel opening in the wild-type enzyme. Overall, these results substantiate the functional importance of the tunnel for

  9. The binding and release of oxygen and hydrogen peroxide are directed by a hydrophobic tunnel in cholesterol oxidase†

    PubMed Central

    Chen, Lin; Lyubimov, Artem Y.; Brammer, Leighanne; Vrielink, Alice; Sampson, Nicole S.

    2008-01-01

    The usage by enzymes of specific binding pathways for gaseous substrates or products is debated. The crystal structure of the redox enzyme cholesterol oxidase, solved at sub-Ångstrom resolution, revealed a hydrophobic tunnel that may serve as a binding pathway for oxygen and hydrogen peroxide. This tunnel is formed by a cascade of conformational rearrangements and connects the active site with the exterior surface of the protein. To understand the relationship between this tunnel and gas binding and release, three mutant enzymes were constructed to block the tunnel or its putative gate. Mutation of the proposed gating residue Asn485 to Asp or the tunnel residues Phe359 or Gly347 to Trp or Asn, reduces the catalytic efficiency of oxidation. The KmO2 increases from 300 ± 35 μM for the wild-type enzyme to 617 ± 15 μM for the F359W mutant. The kcat for the F359W mutant catalyzed reaction decreases 13-fold relative to the wild-type catalyzed reaction. The N485D and G347N mutants could not be saturated with oxygen. Hydride transfer from the sterol to the flavin prosthetic group is no longer rate limiting for these tunnel mutants. The steady-state kinetics of both wild-type and tunnel-mutant enzymes are consistent with formation of a ternary complex of steroid and oxygen during catalysis. Furthermore, kinetic cooperativity with respect to molecular oxygen is observed with the tunnel mutants, but not with the wild-type enzyme. A rate-limiting conformational change for binding and release of oxygen and hydrogen peroxide, respectively are consistent with the cooperative kinetics. In the atomic resolution structure of F359W, the indole ring of the tryptophan completely fills the tunnel and is only observed in a single conformation. The size of the indole is proposed to limit conformational rearrangement of residue 359 that leads to tunnel opening in the wild-type enzyme. Overall, these results substantiate the functional importance of the tunnel for substrate binding and

  10. Monodisperse nanoparticles from self-assembling amphiphilic cyclodextrins: modulable tools for the encapsulation and controlled release of pharmaceuticals.

    PubMed

    Mendez-Ardoy, Alejandro; Gómez-García, Marta; Gèze, Annabelle; Putaux, Jean-Luc; Wouessidjewe, Denis; Ortiz Mellet, Carmen; Defaye, Jacques; García Fernández, José M; Benito, Juan M

    2012-07-01

    Selective chemical functionalization of cyclodextrins (CDs) is a readily amenable methodology to produce amphiphilic macromolecules endowed with modulable self-organizing capabilities. Herein, the synthesis of well-defined amphiphilic CD derivatives, with a "skirt-type" architecture, that incorporate long-chain fatty esters at the secondary hydroxyl rim and a variety of chemical functionalities (e. g. iodo, bromo, azido, cysteaminyl or isothiocyanato) at the primary hydroxyls rim is reported. Nanoprecipitation of the new CD facial amphiphiles, or binary mixtures of them, resulted in nanoparticles with average hydrodynamic diameters ranging from 100 to 240 nm that were stable in suspension for several months. The precise size, zeta potential and topology of the nanoparticles are intimately dependent on the functionalization pattern at the CD scaffold. Highly efficient molecular encapsulation capabilities of poorly bioavailable drugs such as diazepam (DZ) were demonstrated for certain derivatives, the drug release profile being dependent on the type of formulation (nanospheres or nanocapsules). The efficiency and versatility of the synthetic strategy, together with the possibility of exploiting the reactivity of the functional groups at the nanoparticle surface, offer excellent opportunities to further manipulate the carrier capabilities of this series of amphiphilic CDs from a bottom-up approach.

  11. Visualized intravesical floating hydrogel encapsulating vaporized perfluoropentane for controlled drug release.

    PubMed

    Zhu, Guanchen; Zhang, Yifan; Wang, Kaikai; Zhao, Xiaozhi; Lian, Huibo; Wang, Wei; Wang, Haoran; Wu, Jinhui; Hu, Yiqiao; Guo, Hongqian

    2016-10-01

    Intravesical drug delivery is the main strategy for the treatment of bladder disorders. To reduce the relief arising from frequent intravesical instillation, mucoadhesive hydrogel was used for the controlled release of the drug. However, the viscosity of mucoadhesive gel might cause severe urinary obstruction and bladder irritation. To solve all these problems, a floating hydrogel delivery system was developed using perfluoropentane (PFP) as the floating agent. After intravesical instillation of the floating hydrogel, the increased temperature in bladder vaporized PFP, resulting in the generation of microbubbles in the hydrogel. Then, it can float in urine to avoid the urinary obstruction and bladder irritation. In this study, systematic experiments were conducted to investigate the influences of PFP vaporization on the morphology and floating ability of hydrogels. The floating process is much milder and safer than other floating methods published before. In addition, PFP had been used as contrast agent, which affiliated the monitoring of gels during the operation. Therefore, this new drug delivery system addresses the problems of conventional intravesical instillation and is promising for clinic use.

  12. Effect of hydrophobicity of core on the anticancer efficiency of micelles as drug delivery carriers.

    PubMed

    Sun, Chun-Yang; Ma, Yin-Chu; Cao, Zi-Yang; Li, Dong-Dong; Fan, Feng; Wang, Jun-Xia; Tao, Wei; Yang, Xian-Zhu

    2014-12-24

    Recently, micelles, which are self-assembled by amphiphilic copolymers, have attracted tremendous attention as promising drug delivery systems for cancer treatment. Thus, the hydrophobic core of the micelles, which could efficiently encapsulate small molecular drug, will play a significant role for the anticancer efficiency. Unfortunately, the effect of hydrophobicity of micellar core on its anticancer efficiency was rarely reported. Herein, the amphiphilic diblock polymers of poly(ethylene glycol) and polyphosphoester with different side groups (butyl, hexyl, octyl) were synthesized to tune the hydrophobicity of the micellar core. We found that the in vitro cytotoxicity of the DOX-loaded micelles decreased with the increasing hydrophobicity of micellar core due to the drug release rate. However, following systemic delivery, the DOX-loaded micelles with the most hydrophobic core exhibited the most significant inhibition of tumor growth in a MDA-MB-231 tumor model, indicating the importance of hydrophobicity of core on the antitumor efficacy of drug delivery systems.

  13. The interaction of a binary/ternary interactive mixture of hydrophobic-hydrophilic materials on the drug distribution and drug release performance in the tablet formulation

    NASA Astrophysics Data System (ADS)

    Ainurofiq, A.; Choiri, S.

    2017-02-01

    The aim of this research was to optimize and determine an interaction of a binary/ternary mixture of hydrophobic-hydrophilic materials (H-HM) on the drug distribution, tablet characteristics, and drug release performance. The interactive mixture (IM) between carrier and H-HM was conducted using a carrier, Pruv and Cab-O-Sil as hydrophilic materials, magnesium stearate as a hydrophobic material, and a micronized nifedipine as a drug model. These interactions between binary and ternary mixtures of H-HM were assessed by a simplex centroid design (SCD) approach. The homogeneity of IM between drug and carrier was achieved at more time of mixing time. Unique effects and interactions of H-HM were observed on the drug distribution and drug release. Furthermore, the SCD had successfully determined the optimum design space of IM in the ternary mixture of H-HM.

  14. In situ formation of poly(vinyl alcohol)–heparin hydrogels for mild encapsulation and prolonged release of basic fibroblast growth factor and vascular endothelial growth factor

    PubMed Central

    Roberts, Justine J; Farrugia, Brooke L; Green, Rylie A; Rnjak-Kovacina, Jelena; Martens, Penny J

    2016-01-01

    Heparin-based hydrogels are attractive for controlled growth factor delivery, due to the native ability of heparin to bind and stabilize growth factors. Basic fibroblast growth factor and vascular endothelial growth factor are heparin-binding growth factors that synergistically enhance angiogenesis. Mild, in situ encapsulation of both basic fibroblast growth factor and vascular endothelial growth factor and subsequent bioactive dual release has not been demonstrated from heparin-crosslinked hydrogels, and the combined long-term delivery of both growth factors from biomaterials is still a major challenge. Both basic fibroblast growth factor and vascular endothelial growth factor were encapsulated in poly(vinyl alcohol)-heparin hydrogels and demonstrated controlled release. A model cell line, BaF32, was used to show bioactivity of heparin and basic fibroblast growth factor released from the gels over multiple days. Released basic fibroblast growth factor promoted higher human umbilical vein endothelial cell outgrowth over 24 h and proliferation for 3 days than the poly(vinyl alcohol)-heparin hydrogels alone. The release of vascular endothelial growth factor from poly(vinyl alcohol)-heparin hydrogels promoted human umbilical vein endothelial cell outgrowth but not significant proliferation. Dual-growth factor release of basic fibroblast growth factor and vascular endothelial growth factor from poly(vinyl alcohol)-heparin hydrogels resulted in a synergistic effect with significantly higher human umbilical vein endothelial cell outgrowth compared to basic fibroblast growth factor or vascular endothelial growth factor alone. Poly(vinyl alcohol)-heparin hydrogels allowed bioactive growth factor encapsulation and provided controlled release of multiple growth factors which is beneficial toward tissue regeneration applications. PMID:27895888

  15. Effect of solid lipid's structure on nanostructured lipid carriers encapsulated with sun filter: characterisation, photo-stability and in vitro release.

    PubMed

    Wang, Ke; Zhang, Qian-Jie; Miao, Yu-Lian; Luo, Shao-Qiang; Wang, Hong-Cai; Zhang, Wan-Ping

    2017-02-01

    Three series of solid lipid are formulated in nanostructured lipid carriers (NLC) system, which encapsulated with sun filter to evaluate the effect on the physicochemical properties of the nanocarriers. Production is performed by ultrasonication-homogenisation, analysis by particle size, zeta potential (ZP), transmission electron microscope, Fourier transform infrared spectroscopy, differential scanning calorimetry (DSC), X-ray diffraction (XRD). Moreover, the encapsulation efficiency, ultraviolet performance and in vitro release are also investigated. The particle sizes of NLCs are between 185 and 225 nm and the polydispersity index is lower than 0.4, ZP from -56.4 to -78.6 mV, and the particles are spherical and in homogenous shading. All prepared NCLs encapsulated the sun filter and the EE are higher than 73%. DSC analysis revealed α- to β-polymorphic modification existed in the system of fatty alcohol and fatty acid. However, α, β and β'-polymorphic modifications are exist in the system of cetyl palmitate (PC). Compared with conventional emulsion, all NLCs displayed perfect photo-protective property, especially for the alcohol system. The photo-stability studies showed that the all NLCs have the ability to improve the photo-stability of sunscreens. The in vitro release study suggested all three NLCs displayed sustained release profile and they were fit well with Higuchi equation.

  16. Characterization Methods of Encapsulates

    NASA Astrophysics Data System (ADS)

    Zhang, Zhibing; Law, Daniel; Lian, Guoping

    Food active ingredients can be encapsulated by different processes, including spray drying, spray cooling, spray chilling, spinning disc and centrifugal co-extrusion, extrusion, fluidized bed coating and coacervation (see Chap. 2 of this book). The purpose of encapsulation is often to stabilize an active ingredient, control its release rate and/or convert a liquid formulation into a solid which is easier to handle. A range of edible materials can be used as shell materials of encapsulates, including polysaccharides, fats, waxes and proteins (see Chap. 3 of this book). Encapsulates for typical industrial applications can vary from several microns to several millimetres in diameter although there is an increasing interest in preparing nano-encapsulates. Encapsulates are basically particles with a core-shell structure, but some of them can have a more complex structure, e.g. in a form of multiple cores embedded in a matrix. Particles have physical, mechanical and structural properties, including particle size, size distribution, morphology, surface charge, wall thickness, mechanical strength, glass transition temperature, degree of crystallinity, flowability and permeability. Information about the properties of encapsulates is very important to understanding their behaviours in different environments, including their manufacturing processes and end-user applications. E.g. encapsulates for most industrial applications should have desirable mechanical strength, which should be strong enough to withstand various mechanical forces generated in manufacturing processes, such as mixing, pumping, extrusion, etc., and may be required to be weak enough in order to release the encapsulated active ingredients by mechanical forces at their end-user applications, such as release rate of flavour by chewing. The mechanical strength of encapsulates and release rate of their food actives are related to their size, morphology, wall thickness, chemical composition, structure etc. Hence

  17. Encapsulation of R. planticola Rs-2 from alginate-starch-bentonite and its controlled release and swelling behavior under simulated soil conditions.

    PubMed

    Wu, Zhansheng; Guo, Lina; Qin, Shaohua; Li, Chun

    2012-02-01

    The plant growth-promoting bacteria (PGPR) Raoultella planticola Rs-2 was encapsulated with the various blends of alginate, starch, and bentonite for development of controlled-release formulations. The stability and release characteristics of these different capsule formulations were evaluated. The entrapment efficiency of Rs-2 in the beads (capsules) was more than 99%. The diameter of dry beads ranged from 0.98 to 1.41 mm. The bacteria release efficiency, swelling ratio, and biodegradability of the different bead formulations were enhanced by increasing the starch or alginate contents, but were impeded by higher bentonite content. The release kinetics of viable cells from capsules and the swelling ratio of capsules were studied in simulated soil media of varying temperature, moisture, pH, and salt content. The release of loaded Rs-2 cells and swelling of capsules are greatly affected by moisture, temperature, pH and salt content of the release medium. The release of viable Rs-2 cells from capsules was positively associated with the swelling properties of the capsules. The release of Rs-2 cells occurred through a Case II diffusion mechanism. In summary, this work indicates that alginate-starch-bentonite blends are a viable option for the development of efficient controlled-release formulations of Rs-2 biofertilizer, and which could have a promising application in natural field conditions.

  18. Electronic nose screening of ethanol release during sol-gel encapsulation. A novel non-invasive method to test silica polymerisation.

    PubMed

    Lovino, Magalí; Cardinal, M Fernanda; Zubiri, Diana B V; Bernik, Delia L

    2005-12-15

    Porous silica matrices prepared by sol-gel process yield biocompatible materials adequate for encapsulation of biomolecules or drugs. The procedure is simple and fast, but when alkoxyde precursors like tetraethoxysilane (TEOS) are used the polymerisation reaction leads to the formation of alcohol as a by-product, which can produce undesirable effects on the activity of entrapped enzymes or modify a drug release kinetic. Therefore, it is critical to determine that no remnant ethanol is left prior using or storing the obtained biomaterial. In this regard, the technique used in the alcohol determination should be non-invasive and non-destructive to preserve the encapsulation device intact and ready to use. In this work we have successfully used a portable electronic nose (e-nose) for the screening of silica polymerisation process during theophylline encapsulation. TEOS reaction was "smelt" since precursor pre-hydrolysis until the end of ethanol release, sensed directly at the headspace of matrices slabs. Measurements showed that ethanol was negligible since 10th day in polymeric slabs of 10 mm width and 2 cm diameter. This first use of e-nose following a polymerisation reaction opens a wide number of putative applications in pharmaceutical and biochemical fields.

  19. Evaluation of biodegradable polymers as encapsulating agents for the development of a urea controlled-release fertilizer using biochar as support material.

    PubMed

    González, M E; Cea, M; Medina, J; González, A; Diez, M C; Cartes, P; Monreal, C; Navia, R

    2015-02-01

    Biochar constitutes a promising support material for the formulation of controlled-release fertilizers (CRFs). In this study we evaluated the effect of different polymeric materials as encapsulating agents to control nitrogen (N) leaching from biochar based CRFs. Nitrogen impregnation onto biochar was performed in a batch reactor using urea as N source. The resulting product was encapsulated by using sodium alginate (SA), cellulose acetate (CA) and ethyl cellulose (EC). Leaching potential was studied in planted and unplanted soil columns, monitoring nitrate, nitrite, ammonium and urea concentrations. After 90 days, plants were removed from the soil columns and plant yield was evaluated. It was observed that the ammonium concentration in leachates presented a maximum concentration for all treatments at day 22. The highest concentration of N in the leachates was the nitrate form. The crop yield was negatively affected by all developed CRFs using biochar compared with the traditional fertilization.

  20. Evaluating the Properties of Poly(lactic-co-glycolic acid) Nanoparticle Formulations Encapsulating a Hydrophobic Drug by Using the Quality by Design Approach.

    PubMed

    Kozaki, Masato; Kobayashi, Shin-Ichiro; Goda, Yukihiro; Okuda, Haruhiro; Sakai-Kato, Kumiko

    2017-01-01

    We applied the Quality by Design (QbD) approach to the development of poly(lactic-co-glycolic acid) (PLGA) nanoparticle formulations encapsulating triamcinolone acetonide, and the critical process parameters (CPPs) were identified to clarify the correlations between critical quality attributes and CPPs. Quality risk management was performed by using an Ishikawa diagram and experiments with a fractional factorial design (ANOVA). The CPPs for particle size were PLGA concentration and rotation speed, and the CPP for relative drug loading efficiency was the poor solvent to good solvent volume ratio. By assessing the mutually related factors in the form of ratios, many factors could be efficiently considered in the risk assessment. We found a two-factor interaction between rotation speed and rate of addition of good solvent by using a fractional factorial design with resolution V. The system was then extended by using a central composite design, and the results obtained were visualized by using the response surface method to construct a design space. Our research represents a case study of the application of the QbD approach to pharmaceutical development, including formulation screening, by taking actual production factors into consideration. Our findings support the feasibility of using a similar approach to nanoparticle formulations under development. We could establish an efficient method of analyzing the CPPs of PLGA nanoparticles by using a QbD approach.

  1. Novel glucometer-based immunosensing strategy suitable for complex systems with signal amplification using surfactant-responsive cargo release from glucose-encapsulated liposome nanocarriers.

    PubMed

    Tang, Juan; Huang, Yapei; Liu, Huiqiong; Zhang, Cengceng; Tang, Dianping

    2016-05-15

    Methods based on surfactant-responsive controlled release systems of cargoes from nanocontainers have been developed for bioanalytical applications, but most were utilized for drug delivery and a few reports were focused on immunoassays. Herein we design an in situ amplified immunoassay protocol for high-efficient detection of aflatoxins (aflatoxin B1, AFB1 used in this case) based on surfactant-responsive cargo release from glucose-encapsulated liposome nanocarriers with sensitivity enhancement. Initially, biotinylated liposome nanocarrier encapsulated with glucose was synthesized using a reverse-phase evaporation method. Thereafter, the nanocarrier was utilized as the signal-generation tag on capture antibody-coating microplate through classical biotin-avidin linkage after reaction with biotinylated detection antibody. Upon addition of buffered surfactant (1X PBS-Tween 20 buffer) into the medium, the surfactant immediately hydrolyzed the conjugated liposome, and released the encapsulated glucose from the nanocarriers, which could be quantitatively determined by using a low-cost personal glucometer (PGM). The detectable signal increased with the increment of target analyte. Under the optimal conditions, the assay could allow PGM detection toward target AFB1 as low as 0.6 pg mL(-1) (0.6 ppt). Moreover, the methodology also showed good reproducibility and high specificity toward target AFB1 against other mycotoxins and proteins, and was applicable for quantitatively monitoring target AFB1 in the complex systems, e.g., naturally contaminated/spiked peanut samples and serum specimens, with the acceptable results. Taking these advantages of simplification, low cost, universality and sensitivity, our design provides a new horizon for development of advanced immunoassays in future point-of-care testing.

  2. Enhanced drug encapsulation and extended release profiles of calcium-alginate nanoparticles by using tannic acid as a bridging cross-linking agent.

    PubMed

    Abulateefeh, Samer R; Taha, Mutasem O

    2015-01-01

    Calcium alginate nanoparticles (NPs) suffer from sub-optimal stability in bio-relevant media leading to low drug encapsulation efficiency and uncontrolled release profiles. To sort out these drawbacks, a novel approach is proposed herein based on introducing tannic acid into these NPs to act as a bridging cross-linking aid agent. Calcium-alginate NPs were prepared by the ionotropic gelation method and loaded with diltiazem hydrochloride as a model drug. These NPs were characterized in terms of particle size, zeta potential, and morphology, and results were explained in accordance with Fourier-transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC). The incorporation of tannic acid led to more than four folds increase in drug encapsulation efficiency (i.e. from 15.3% to 69.5%) and reduced burst drug release from 44% to around 10% within the first 30 min. These findings suggest the possibility of improving the properties of Ca-alginate NPs by incorporating cross-linking aid agents under mild conditions.

  3. Amphiphilic surface active triblock copolymers with mixed hydrophobic and hydrophilic side chains for tuned marine fouling-release properties.

    PubMed

    Park, Daewon; Weinman, Craig J; Finlay, John A; Fletcher, Benjamin R; Paik, Marvin Y; Sundaram, Harihara S; Dimitriou, Michael D; Sohn, Karen E; Callow, Maureen E; Callow, James A; Handlin, Dale L; Willis, Carl L; Fischer, Daniel A; Kramer, Edward J; Ober, Christopher K

    2010-06-15

    Two series of amphiphilic triblock surface active block copolymers (SABCs) were prepared through chemical modification of two polystyrene-block-poly(ethylene-ran-butylene)-block-polyisoprene ABC triblock copolymer precursors. The methyl ether of poly(ethylene glycol) [M(n) approximately 550 g/mol (PEG550)] and a semifluorinated alcohol (CF(3)(CF(2))(9)(CH(2))(10)OH) [F10H10] were attached at different molar ratios to impart both hydrophobic and hydrophilic groups to the isoprene segment. Coatings on glass slides consisting of a thin layer of the amphiphilic SABC deposited on a thicker layer of an ABA polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene thermoplastic elastomer were prepared for biofouling assays with algae. Dynamic water contact angle analysis, X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) measurements were utilized to characterize the surfaces. Clear differences in surface structure were realized as the composition of attached side chains was varied. In biofouling assays, the settlement (attachment) of zoospores of the green alga Ulva was higher for surfaces incorporating a large proportion of the hydrophobic F10H10 side chains, while surfaces with a large proportion of the PEG550 side chains inhibited settlement. The trend in attachment strength of sporelings (young plants) of Ulva did not show such an obvious pattern. However, amphiphilic SABCs incorporating a mixture of PEG550 and F10H10 side chains performed the best. The number of cells of the diatom Navicula attached after exposure to flow decreased as the content of PEG550 to F10H10 side chains increased.

  4. Amphiphilic Surface Active Triblock Copolymers with Mixed Hydrophobic and Hydrophilic Side Chains for Tuned Marine Fouling-Release Properties

    SciTech Connect

    Park, D.; Weinman, C; Finlay, J; Fletcher, B; Paik, M; Sundaram, H; Dimitriou, M; Sohn, K; Callow, M; et al.

    2010-01-01

    Two series of amphiphilic triblock surface active block copolymers (SABCs) were prepared through chemical modification of two polystyrene-block-poly(ethylene-ran-butylene)-block-polyisoprene ABC triblock copolymer precursors. The methyl ether of poly(ethylene glycol) [M{sub n} {approx} 550 g/mol (PEG550)] and a semifluorinated alcohol (CF{sub 3}(CF{sub 2}){sub 9}(CH{sub 2}){sub 10}OH) [F10H10] were attached at different molar ratios to impart both hydrophobic and hydrophilic groups to the isoprene segment. Coatings on glass slides consisting of a thin layer of the amphiphilic SABC deposited on a thicker layer of an ABA polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene thermoplastic elastomer were prepared for biofouling assays with algae. Dynamic water contact angle analysis, X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) measurements were utilized to characterize the surfaces. Clear differences in surface structure were realized as the composition of attached side chains was varied. In biofouling assays, the settlement (attachment) of zoospores of the green alga Ulva was higher for surfaces incorporating a large proportion of the hydrophobic F10H10 side chains, while surfaces with a large proportion of the PEG550 side chains inhibited settlement. The trend in attachment strength of sporelings (young plants) of Ulva did not show such an obvious pattern. However, amphiphilic SABCs incorporating a mixture of PEG550 and F10H10 side chains performed the best. The number of cells of the diatom Navicula attached after exposure to flow decreased as the content of PEG550 to F10H10 side chains increased.

  5. Biodegradable core-shell carriers for simultaneous encapsulation of synergistic actives.

    PubMed

    Windbergs, Maike; Zhao, Yuanjin; Heyman, John; Weitz, David A

    2013-05-29

    Simultaneous encapsulation of multiple active substances in a single carrier is essential for therapeutic applications of synergistic combinations of drugs. However, traditional carrier systems often lack efficient encapsulation and release of incorporated substances, particularly when combinations of drugs must be released in concentrations of a prescribed ratio. We present a novel biodegradable core-shell carrier system fabricated in a one-step, solvent-free process on a microfluidic chip; a hydrophilic active (doxorubicin hydrochloride) is encapsulated in the aqueous core, while a hydrophobic active (paclitaxel) is encapsulated in the solid shell. Particle size and composition can be precisely controlled, and core and shell can be individually loaded with very high efficiency. Drug-loaded particles can be dried and stored as a powder. We demonstrate the efficacy of this system through the simultaneous encapsulation and controlled release of two synergistic anticancer drugs using two cancer-derived cell lines. This solvent-free platform technology is also of high potential value for encapsulation of other active ingredients and chemical reagents.

  6. ENCAPSULATED AEROSOLS

    DTIC Science & Technology

    acetate, polymerized rapidly and produced some polymer film encapsulation of the aerosol droplets. A two-stage microcapsule generator was designed...encapsulating material, the generator also produced microcapsules of dibutyl phosphite in polyethylene, nitrocellulose, and natural rubber.

  7. Photo activation of HPPH encapsulated in “Pocket” liposomes triggers multiple drug release and tumor cell killing in mouse breast cancer xenografts

    PubMed Central

    Sine, Jessica; Urban, Cordula; Thayer, Derek; Charron, Heather; Valim, Niksa; Tata, Darrell B; Schiff, Rachel; Blumenthal, Robert; Joshi, Amit; Puri, Anu

    2015-01-01

    We recently reported laser-triggered release of photosensitive compounds from liposomes containing dipalmitoylphosphatidylcholine (DPPC) and 1,2 bis(tricosa-10,12-diynoyl)-sn-glycero-3-phosphocholine (DC8,9PC). We hypothesized that the permeation of photoactivated compounds occurs through domains of enhanced fluidity in the liposome membrane and have thus called them “Pocket” liposomes. In this study we have encapsulated the red light activatable anticancer photodynamic therapy drug 2-(1-Hexyloxyethyl)-2-devinyl pyropheophorbide-a (HPPH) (Ex/Em410/670 nm) together with calcein (Ex/Em490/517 nm) as a marker for drug release in Pocket liposomes. A mole ratio of 7.6:1 lipid:HPPH was found to be optimal, with >80% of HPPH being included in the liposomes. Exposure of liposomes with a cw-diode 660 nm laser (90 mW, 0–5 minutes) resulted in calcein release only when HPPH was included in the liposomes. Further analysis of the quenching ratios of liposome-entrapped calcein in the laser treated samples indicated that the laser-triggered release occurred via the graded mechanism. In vitro studies with MDA-MB-231-LM2 breast cancer cell line showed significant cell killing upon treatment of cell-liposome suspensions with the laser. To assess in vivo efficacy, we implanted MDA-MB-231-LM2 cells containing the luciferase gene along the mammary fat pads on the ribcage of mice. For biodistribution experiments, trace amounts of a near infrared lipid probe DiR (Ex/Em745/840 nm) were included in the liposomes. Liposomes were injected intravenously and laser treatments (90 mW, 0.9 cm diameter, for an exposure duration ranging from 5–8 minutes) were done 4 hours postinjection (only one tumor per mouse was treated, keeping the second flank tumor as control). Calcein release occurred as indicated by an increase in calcein fluorescence from laser treated tumors only. The animals were observed for up to 15 days postinjection and tumor volume and luciferase expression was measured. A

  8. Hydrophobic-Core Microcapsules and Their Formation

    NASA Technical Reports Server (NTRS)

    Calle, Luz M. (Inventor); Li, Wenyan (Inventor); Buhrow, Jerry W. (Inventor); Jolley, Scott T. (Inventor)

    2016-01-01

    Hydrophobic-core microcapsules and methods of their formation are provided. A hydrophobic-core microcapsule may include a shell that encapsulates a hydrophobic substance with a core substance, such as dye, corrosion indicator, corrosion inhibitor, and/or healing agent, dissolved or dispersed therein. The hydrophobic-core microcapsules may be formed from an emulsion having hydrophobic-phase droplets, e.g., containing the core substance and shell-forming compound, dispersed in a hydrophilic phase. The shells of the microcapsules may be capable of being broken down in response to being contacted by an alkali, e.g., produced during corrosion, contacting the shell.

  9. Preparation of uniform-sized exenatide-loaded PLGA microspheres as long-effective release system with high encapsulation efficiency and bio-stability.

    PubMed

    Qi, Feng; Wu, Jie; Fan, Qingze; He, Fan; Tian, Guifang; Yang, Tingyuan; Ma, Guanghui; Su, Zhiguo

    2013-12-01

    Exenatide-loaded poly(d,l-lactic-co-glycolic acid) (PLGA) microspheres hold great potential as a drug delivery system to treat type 2 diabetes mellitus (T2DM) because they can overcome the shortcoming of exenatide's short half-life and realize sustained efficacy. However, conventional preparation methods often lead to microspheres with a broad size distribution, which in turn would cause poor preparation repeatability, drug efficacy and so forth. In this study, we used Shirasu Porous Glass (SPG) premix membrane emulsification technique characterized with high trans-membrane flux and size controllability to prepare uniform-sized PLGA microspheres. By optimizing trans-membrane pressure and PVA concentration in external aqueous phase, uniform-sized PLGA microspheres with large size (around 20μm) were successfully obtained. To achieve high encapsulation efficiency (EE) and improve in vitro release behavior, we have carefully examined the process parameters. Our results show that using ultrasonication to form primary emulsion, microspheres with high EE were easily obtained, but the rate of in vitro release was very slow. Instead, high EE and appropriate in vitro release were achieved when homogenization with optimized time and speed were employed. Besides, we also systematically investigated the effect of formulations on loading efficiency (LE) as well as the relationship between the resultant size of the microspheres and pore size of the membrane. Finally, through RP-HPLC and CD spectra analysis, we have demonstrated that the bio-stability of exenatide in microspheres was preserved during the preparation process.

  10. PELA microspheres with encapsulated arginine-chitosan/pBMP-2 nanoparticles induce pBMP-2 controlled-release, transfected osteoblastic progenitor cells, and promoted osteogenic differentiation.

    PubMed

    Xu, Xiaolong; Qiu, Sujun; Zhang, Yuxian; Yin, Jie; Min, Shaoxiong

    2017-03-01

    Repair of the bone injury remains a challenge in clinical practices. Recent progress in tissue engineering and therapeutic gene delivery systems have led to promising new strategies for successful acceleration of bone repair process. The aim of this study was to create a controlled-release system to slowly release the arginine-chitosan/plasmid DNA nanoparticles encoding BMP-2 gene (Arg-CS/pBMP-2 NPs), efficiently transfect osteoblastic progenitor cells, secrete functional BMP-2 protein, and promote osteogenic differentiation. In this study, chitosan was conjugated with arginine to generate arginine-chitosan polymer (Arg-CS) for gene delivery. Mix the Arg-CS with pBMP-2 to condense pBMP-2 into nano-sized particles. In vitro transfection assays demonstrated that the transfection efficiency of Arg-CS/pBMP-2 nanoparticles and the expression level of BMP-2 was obviously exceed control groups. Further, PELA microspheres as the controlled-release carrier for the nanoparticles were used to encapsulate Arg-CS/pBMP-2 NPs. We demonstrated that the Arg-CS/pBMP-2 NPs could slowly release from the PELA microspheres at least for 42 d. During the co-culture with the PELA microspheres, the content of BMP-2 protein secreted by MC3T3-E1 reached the peak at 7 d. After 21d, the secretion of BMP-2 protein still maintain a higher level. The alkaline phosphatase activity, alizarin red staining, and osteogenesis-related gene expression by real-time quantitative PCR analysis all showed the PELA microspheres entrapping with Arg-CS/pBMP-2 NPs can obviously induce the osteogenic differentiation. The results indicated that the Arg-CS is a suitable gene vector which can promote the gene transfection. And the novel PELA microspheres-nanoparticle controlled-release system has potential clinical application in the future after further research.

  11. Self-assembled sorbitol-derived supramolecular hydrogels for the controlled encapsulation and release of active pharmaceutical ingredients.

    PubMed

    Howe, Edward J; Okesola, Babatunde O; Smith, David K

    2015-05-01

    A simple supramolecular hydrogel based on 1,3:2,4-di(4-acylhydrazide)benzylidene sorbitol (DBS-CONHNH2), is able to extract acid-functionalised anti-inflammatory drugs via directed interactions with the self-assembled gel nanofibres. Two-component hydrogel-drug hybrid materials can be easily formed by mixing and exhibit pH-controlled drug release.

  12. Pharmacokinetics and Behavioral Effects of an Extended-Release, Liposome-Encapsulated Preparation of Oxymorphone in Rhesus Macaques

    PubMed Central

    Krugner-Higby, Lisa; KuKanich, Butch; Schmidt, Brynn; Heath, Timothy D.; Brown, Carolyn; Smith, Lesley J.

    2009-01-01

    The objectives of the study were to determine the pharmacokinetics of oxymorphone (oxy) and of ammonium sulfate-loaded, liposome-encapsulated oxymorphone (LE-ASG oxy) and to evaluate the behavioral effects of both opioid preparations by using ethographic evaluation specific to rhesus monkeys. Rhesus monkeys (n = 8) were injected with 2.0 mg/kg LE-ASG oxy s.c.. Blood samples were collected at serial time points up to 144 h in six monkeys and up to 456 h in two monkeys. Separate groups of monkeys were injected with 0.1 mg/kg oxy s.c. (n = 4) or i.v. (n = 5). Blood samples were collected at serial time points up to 24 h after injection. Pharmacokinetic parameters were calculated by using commercially available software. Behavior was recorded in a different group of 10 monkeys administered LE-ASG oxy (2.0 mg/kg s.c.) or oxy (0.1 mg/kg s.c.) on separate occasions. Behavioral evaluations were made at serial time points while monkeys were in an extended cage with a compatible stimulus animal. Oxymorphone was rapidly eliminated from the serum in the oxy group. Measurable drug was present in serum for up to 4 h after oxy was administered subcutaneously or intravenously. LE-ASG oxy was present in serum in measurable concentrations for more than 2 weeks. Neither oxy nor LE-ASG oxy produced observable sedation. LE-ASG oxy decreased some environmentally directed behaviors, but this drug formulation increased watchfulness, decreased self-directed and elimination behaviors, increased nonspecific social contact, and decreased threat behaviors. LE-ASG oxy persisted for an extended period in rhesus monkey serum and produced behavioral changes consistent with this opioid. PMID:19351868

  13. Micro-Encapsulation of Probiotics

    NASA Astrophysics Data System (ADS)

    Meiners, Jean-Antoine

    Micro-encapsulation is defined as the technology for packaging with the help of protective membranes particles of finely ground solids, droplets of liquids or gaseous materials in small capsules that release their contents at controlled rates over prolonged periods of time under the influences of specific conditions (Boh, 2007). The material encapsulating the core is referred to as coating or shell.

  14. Encapsulation of biocides by cyclodextrins: toward synergistic effects against pathogens

    PubMed Central

    Nardello-Rataj, Véronique

    2014-01-01

    Summary Host–guest chemistry is useful for the construction of nanosized objects. Some of the widely used hosts are probably the cyclodextrins (CDs). CDs can form water-soluble complexes with numerous hydrophobic compounds. They have been widespread used in medicine, drug delivery and are of interest for the biocides encapsulation. Indeed, this enables the development of more or less complex systems that release antimicrobial agents with time. In this paper, the general features of CDs and their applications in the field of biocides have been reviewed. As the key point is the formation of biocide–CD inclusion complexes, this review deals with this in depth and the advantages of biocide encapsulation are highlighted throughout several examples from the literature. Finally, some future directions of investigation have been proposed. We hope that scientists studying biocide applications receive inspiration from this review to exploit the opportunities offered by CDs in their respective research areas. PMID:25550722

  15. Encapsulation of biocides by cyclodextrins: toward synergistic effects against pathogens.

    PubMed

    Nardello-Rataj, Véronique; Leclercq, Loïc

    2014-01-01

    Host-guest chemistry is useful for the construction of nanosized objects. Some of the widely used hosts are probably the cyclodextrins (CDs). CDs can form water-soluble complexes with numerous hydrophobic compounds. They have been widespread used in medicine, drug delivery and are of interest for the biocides encapsulation. Indeed, this enables the development of more or less complex systems that release antimicrobial agents with time. In this paper, the general features of CDs and their applications in the field of biocides have been reviewed. As the key point is the formation of biocide-CD inclusion complexes, this review deals with this in depth and the advantages of biocide encapsulation are highlighted throughout several examples from the literature. Finally, some future directions of investigation have been proposed. We hope that scientists studying biocide applications receive inspiration from this review to exploit the opportunities offered by CDs in their respective research areas.

  16. The influence of HLB on the encapsulation of oils by complex coacervation.

    PubMed

    Rabisková, M; Valásková, J

    1998-01-01

    Microcapsules are used for the formulation of drug controlled release and drug targeting dosage forms. Encapsulated hydrophobic drugs are often applied as their solutions in plant oils. The uptake of the oils in the complex coacervate microcapsules can be improved by the addition of surfactants. In this study, soybean, olive and peanut oils were chosen as the representatives of plant oils. The well characterized complex coacervation of gelatin and acacia has been used to produce the microcapsules. The amount of encapsulated oil has been determined gravimetrically. The encapsulation of the oils was high (75-80%). When the surfactants with HLB values from 1.8 to 6.7 were used, the amount of encapsulated oil was high (65-85%). A significant decrease of the oil content in the microcapsules was found when Tween 61 with HLB = 9.6 had been added into the mixture. No oil was found inside the microcapsules from the coacervate emulsion mixture containing Tween 81 (HLB = 10) and Tween 80 (HLB = 15), respectively. The results of the experiment confirm the dependence of hydrophobic substance encapsulation on the HLB published recently for Squalan.

  17. Encapsulation of aggregated gold nanoclusters in a metal-organic framework for real-time monitoring of drug release.

    PubMed

    Cao, Fangfang; Ju, Enguo; Liu, Chaoqun; Li, Wei; Zhang, Yan; Dong, Kai; Liu, Zhen; Ren, Jinsong; Qu, Xiaogang

    2017-03-10

    Gold nanoclusters (AuNCs), which have stable luminescence and negligible biotoxicity, are a promising candidate in biological fields. However, their low photoluminescence (PL) efficiency is unsatisfactory. Herein, aggregated gold nanoclusters (aAuNCs) were confined in a metal-organic framework (MOF) to maintain their aggregation, restrict the rotation of their ligands, and further improve their quantum yield (QY) to 7.74%. The aAuNCs-MOF exhibited high luminescence and good biocompatibility. More importantly, in addition to its pH-dependent luminescence and external porosity, the complex was applied for the first time in real-time monitoring of drug release.

  18. Slow-release of methanogenic inhibitors derived from encapsulated calcium carbide using paraffin wax and/or rosin: matrix optimization and diffusion characteristics.

    PubMed

    Tiantao, Zhao; Youcai, Zhao; Lijie, Zhang; Haoquan, Chen; Feng, Shi; Haiyan, Zhou

    2011-11-01

    Acetylene has been found to significantly inhibit biological activity of methanogens and thus might be applicable for reducing the generation and emission of methane from municipal solid waste landfills. However, acetylene is gaseous and so it is considered physically infeasible to directly apply this gas to waste in landfill conditions. In the present study, a novel acetylene release mechanism was tested, using a matrix of acetylene entrapped in high hydrophobic paraffin wax and/or rosin and calcium carbide capsules with a ratio of 1.0 g g(-1) matrix and a diameter of 10 mm to facilitate the gradual release of acetylene. A diffusion mechanism model (Q = &b.gamma; × t (0.5)) for the matrix was derived based on the T. Higuchi equation, and the effective diffusion coefficients (D(e)) were acquired by linear fitting. Additionally, it was found that D(e) remained constant when the rosin content was up to more than 20% g g(-1) matrix.

  19. Injectable micellar supramolecular hydrogel for delivery of hydrophobic anticancer drugs.

    PubMed

    Fu, CuiXiang; Lin, XiaoXiao; Wang, Jun; Zheng, XiaoQun; Li, XingYi; Lin, ZhengFeng; Lin, GuangYong

    2016-04-01

    In this paper, an injectable micellar supramolecular hydrogel composed of α-cyclodextrin (α-CD) and monomethoxy poly(ethylene glycol)-b-poly(ε-caplactone) (MPEG5000-PCL5000) micelles was developed by a simple method for hydrophobic anticancer drug delivery. By mixing α-CD aqueous solution and MPEG5000-PCL5000 micelles, an injectable micellar supramolecular hydrogel could be formed under mild condition due to the inclusion complexation between α-CD and MPEG segment of MPEG5000-PCL5000 micelles. The resultant supramolecular hydrogel was thereafter characterized by X-ray diffraction (XRD) and Scanning electron microscopy (SEM). The effect of α-CD amount on the gelation time, mechanical strength and thixotropic property was studied by a rheometer. Payload of hydrophobic paclitaxel (PTX) to supramolecular hydrogel was achieved by encapsulation of PTX into MPEG5000-PCL5000 micelles prior mixing with α-CD aqueous solution. In vitro release study showed that the release behavior of PTX from hydrogel could be modulated by change the α-CD amount in hydrogel. Furthermore, such supramolecular hydrogel could enhance the biological activity of encapsulated PTX compared to free PTX, as indicated by in vitro cytotoxicity assay. All these results indicated that the developed micellar supramolecular hydrogel might be a promising injectable drug delivery system for anticancer therapy.

  20. MWNT-hybrided supramolecular hydrogel for hydrophobic camptothecin delivery.

    PubMed

    Mu, Shansong; Liang, Yuanyuan; Chen, Shuaijun; Zhang, Liming; Liu, Tao

    2015-05-01

    To encapsulate the hydrophobic camptothecin (CPT) into hydrogel matrix with a high loading amount, a supramolecular hydrogel hybrided with multi-walled carbon nanotubes (MWNTs) was developed by the host-guest interactions and used for loading and delivering CPT. Firstly, carboxylated MWNTs were modified by polyethylene glycol monomethyl ether (MPEG), which resulted in the water-dispersed MPEG-MWNTs. Then α-cyclodextrin (α-CD) was mixed with MPEG-MWNTs and the hybrid supramolecular hydrogel was fabricated by the inclusion interactions between α-CD and MPEG. The used MPEG not only dispersed MWNTs in aqueous solution, but also functioned as hydrogel matrix by interacting with α-CD. The gelation time for the sol-gel transition and rheological properties of the resultant hydrogels were studied. Due to the excellent application of MWNTs in drug delivery, hydrophobic CPT could be loaded into the hydrogel matrix by a higher amount compared with micelles. By in vitro release and cell viability tests, it was found that the encapsulated CPT could exhibit a controlled and sustained release behavior as well as sustained antitumor efficacy.

  1. Solid lipid nanoparticles comprising internal Compritol 888 ATO, tripalmitin and cacao butter for encapsulating and releasing stavudine, delavirdine and saquinavir.

    PubMed

    Kuo, Yung-Chih; Chung, Chiu-Yen

    2011-12-01

    Solid lipid nanoparticles (SLNs) with complex internal phase were fabricated for formulating stavudine (D4T), delavirdine (DLV), and saquinavir (SQV). The lipids including Compritol 888 ATO, tripalmitin, and cacao butter were stabilized by L-α-phospatidylcholine, cholesteryl hemisuccinate, and taurocholate to form SLNs. The results revealed that the morphology of SLNs was spheroidal with shallow surface pits. An increase in the weight percentage of Compritol 888 ATO increased the average diameter of D4T-entrapping SLNs and decreased that of DLV- and SQV-entrapping SLNs. Preservation at 4°C over 6 weeks slightly enhanced the size of SLNs. For a specific drug, an increase in the entrapment efficiency enlarged the nanocarriers. The order of drug in the average particle diameter and in the entrapment efficiency was SQV>DLV>D4T, in general. In addition, the dissolution of the three drugs from SLNs showed the characteristics of sustained release. The order of drug in the cumulative release percentage was D4T>DLV>SQV. SLNs containing Compritol 888 ATO, tripalmitin, and cacao butter are efficient in carrying antiretroviral agents for medicinal application.

  2. Preparation of novel silicone multicompartment particles by multiple emulsion templating and their use as encapsulating systems.

    PubMed

    Vilanova, Neus; Solans, Conxita; Rodríguez-Abreu, Carlos

    2013-12-10

    Multicompartment poly(dimethylsiloxane) particles were produced for the first time using water-in-oil-in-water (W1/O/W2) emulsions as templates. Multiple silicone W1/O/W2 emulsions were successfully prepared by using silicone precursors with a low viscosity. Several formulation parameters were studied to determine their effect on the properties of emulsions and derived particles. It was observed that the mass fraction of the inner aqueous phase (φ(W1)) and the concentration of both the hydrophobic and hydrophilic surfactants played a crucial role in the morphology and stability of the emulsions. Thus, the derived silicone porous particles also showed different characteristics depending on the emulsion formulation because of the templating effect. At low φ(W1) or high concentrations of the hydrophobic surfactant, particles showed smaller pore sizes as a result of more stable inner droplets. On the other hand, high concentrations of the hydrophobic surfactant resulted in an increase in the size of the derived particles, whereas high concentrations of the hydrophilic surfactant caused the opposite effect. In addition, fluorescein was encapsulated into the hydrophobic particles during the synthesis process and released in a controlled manner. The possibility to encapsulate simultaneously but independently two different hydrophilic components inside the same globule was also tested. On the basis of these results, the obtained silicone porous particles are envisioned to have applications in several advanced fields, for instance, as hydrophobic delivery systems.

  3. Theoretical prediction of the host-guest interactions between novel photoresponsive nanorings and C60: a strategy for facile encapsulation and release of fullerene.

    PubMed

    Yuan, Kun; Dang, Jing-Shuang; Guo, Yi-Jun; Zhao, Xiang

    2015-03-30

    A series of photoresponsive-group-containing nanorings hosts with 12∼14 Å in diameter is designed by introducing different number of azo groups as the structural composition units. And the host-guest interactions between fullerene C60 and those nanoring hosts were investigated theoretically at M06-2X/6-31G(d)//M06-L/MIDI! and wB97X-D/6-31G(d) levels. Analysis on geometrical characteristics and host-guest binding energies revealed that the designed nanoring molecule (labeled as 7) which is composed by seven azo groups and seven phenyls is the most feasible host for encapsulation of C60 guest among all candidates. Moreover, inferring from the simulated UV-vis-NIR spectroscopy, the C60 guest could be facilely released from the cavity of the host 7 via configuration transformation between trans-form and cis-form of the host under the 563 nm photoirradiation. Additionally, the frontier orbital features, weak interaction regions, infrared, and NMR spectra of the C60@7 host-guest complex have also been investigated theoretically.

  4. Transplant of polymer-encapsulated cells genetically engineered to release nerve growth factor allows a normal functional development of the visual cortex in dark-reared rats.

    PubMed

    Pizzorusso, T; Porciatti, V; Tseng, J L; Aebischer, P; Maffei, L

    1997-09-01

    Visual experience is necessary for the normal development of the visual system. Dark-reared mammals show abnormal vision when reintroduced into a normal environment. The absence of visual experience during the critical period results in reduced and/or inappropriate neural responses in visual cortical neurons. The change in electrical activity induced by dark rearing is probably reflected by the modulation of specific unknown molecules. Neurotrophins are present in the developing visual cortex and their production depends on visually driven electrical activity. Recent findings support the possibility that an important link between electrical activity in the visual pathway and correct development of visual properties is represented by neurotrophins. We advance the hypothesis that the visual abnormalities present in dark-reared animals could be due to a decreased production of a neurotrophin secondary to the lack of visual stimulation. We report that some properties of visual cortical response such as receptive field size, orientation selectivity, adaptation to repeated stimulation, response latency and visual acuity are virtually normal in dark-reared rats transplanted with polymer-encapsulated baby hamster kidney cells genetically engineered to release nerve growth factor.

  5. Controlled-release of Bacillus thurigiensis formulations encapsulated in light-resistant colloidosomal microcapsules for the management of lepidopteran pests of Brassica crops

    PubMed Central

    Bashir, Oumar; Lemoyne, Pierre

    2016-01-01

    Bacillus thuringiensis (B. t.) based formulations have been widely used to control lepidopteran pests in agriculture and forestry. One of their weaknesses is their short residual activity when sprayed in the field. Using Pickering emulsions, mixtures of spores and crystals from three B. t. serovars were successfully encapsulated in colloïdosomal microparticles (50 μm) using innocuous chemicals (acrylic particles, sunflower oil, iron oxide nanoparticles, ethanol and water). A pH trigger mechanism was incorporated within the particles so that B. t. release occurred only at pH > 8.5 which corresponds to the midgut pH of the target pests. Laboratory assays performed on Trichoplusia ni (T. ni) larvae demonstrated that the microencapsulation process did not impair B. t. bioactivity. The best formulations were field-tested on three key lepidopteran pests that attack Brassica crops, i.e., the imported cabbageworm, the cabbage looper and the diamondback moth. After 12 days, the mean number of larvae was significantly lower in microencapsulated formulations than in a commercial B. t. formulation, and the effect of microencapsulated formulations was comparable to a chemical pesticide (lambda-cyhalothrin). Therefore, colloïdosomal microcapsule formulations successfully extend the bioactivity of B. t. for the management of lepidopteran pests of Brassica crops. PMID:27761325

  6. Controlled-release of Bacillus thurigiensis formulations encapsulated in light-resistant colloidosomal microcapsules for the management of lepidopteran pests of Brassica crops.

    PubMed

    Bashir, Oumar; Claverie, Jerome P; Lemoyne, Pierre; Vincent, Charles

    2016-01-01

    Bacillus thuringiensis (B. t.) based formulations have been widely used to control lepidopteran pests in agriculture and forestry. One of their weaknesses is their short residual activity when sprayed in the field. Using Pickering emulsions, mixtures of spores and crystals from three B. t. serovars were successfully encapsulated in colloïdosomal microparticles (50 μm) using innocuous chemicals (acrylic particles, sunflower oil, iron oxide nanoparticles, ethanol and water). A pH trigger mechanism was incorporated within the particles so that B. t. release occurred only at pH > 8.5 which corresponds to the midgut pH of the target pests. Laboratory assays performed on Trichoplusia ni (T. ni) larvae demonstrated that the microencapsulation process did not impair B. t. bioactivity. The best formulations were field-tested on three key lepidopteran pests that attack Brassica crops, i.e., the imported cabbageworm, the cabbage looper and the diamondback moth. After 12 days, the mean number of larvae was significantly lower in microencapsulated formulations than in a commercial B. t. formulation, and the effect of microencapsulated formulations was comparable to a chemical pesticide (lambda-cyhalothrin). Therefore, colloïdosomal microcapsule formulations successfully extend the bioactivity of B. t. for the management of lepidopteran pests of Brassica crops.

  7. Preliminary evaluation of the encapsulation of new antidiabetic sulphonylhydrazone and antitumor N-acylhydrazone derivatives using PLGA nanoparticles

    NASA Astrophysics Data System (ADS)

    Costa, F. N.; Ibiapino, A. L.; de Figueiredo, L. P.; Barreiro, E. J.; Lima, L. M.; do Amaral, D. N.; de Castro, C. E.; Giacomelli, F. C.; Ferreira, F. F.

    2015-05-01

    It has been demonstrated the feasibly of using PLGA nanoparticles to promote the encapsulation of novel anti-diabetic sulphonylhydrazone and antitumor N-acylhydrazone derivatives. The motivation is to further demonstrate the possibility of long-term release of anti-diabetic as well as higher accumulation of the antitumor derivative by using the nanotechnology-based production. The produced nanoparticles were obtained by the nanoprecipitation method, which revealed to be effective in the encapsulation of the bioactive compounds. The determined sizes were in the range of ∼100 nm, which are supposed to be suitable for both potential applications. The preliminary experimental data demonstrated the formation of stable nanosystems and further experiments are underway in order to determine the loading content, encapsulation efficiency and release profile of the hydrophobic bioactive compounds.

  8. Encapsulation of amylase in colloidosomes.

    PubMed

    Keen, Polly H R; Slater, Nigel K H; Routh, Alexander F

    2014-03-04

    Aqueous core colloidosomes encapsulating the enzyme amylase were manufactured with a shell comprising polymer latex particles of diameter 153 nm. The colloidosomes were sealed with calcium carbonate by precipitation between an inner phase of Na2CO3 and an outer phase of CaCl2. This seal allowed the retention of small molecules, such as dyes, as well as larger enzyme molecules, for several months. The encapsulated material could be released by dissolution of the CaCO3 with acid, upon a large dilution in water, or by applying a sufficient shear. The degree of release could be controlled since the greater the mass of CaCO3 precipitated onto the colloidosome shell, the greater the dilution or shear required to achieve release. The calcium carbonate seal protected encapsulated amylase from the detrimental effects of components in a liquid laundry detergent for several months so that, on triggered release, the enzyme retained its high activity.

  9. Release Kinetics of Paclitaxel and Cisplatin from Two and Three Layered Gold Nanoparticles

    PubMed Central

    England, Christopher G.; Miller, M. Clarke; Kuttan, Ashani; Trent, John O.; Frieboes, Hermann B.

    2015-01-01

    Gold nanoparticles functionalized with biologically-compatible layers may achieve stable drug release while avoiding adverse effects in cancer treatment. We study cisplatin and paclitaxel release from gold cores functionalized with hexadecanethiol (TL) and phosphatidylcholine (PC) to form two-layer nanoparticles, or TL, PC, and high density lipoprotein (HDL) to form three-layer nanoparticles. Drug release was monitored for 14 days to assess long term effects of the core surface modifications on release kinetics. Release profiles were fitted to previously developed kinetic models to differentiate possible release mechanisms. The hydrophilic drug (cisplatin) showed an initial (5-hr.) burst, followed by a steady release over 14 days. The hydrophobic drug (paclitaxel) showed a steady release over the same time period. Two layer nanoparticles released 64.0 ± 2.5% of cisplatin and 22.3 ± 1.5% of paclitaxel, while three layer nanoparticles released the entire encapsulated drug. The Korsmeyer-Peppas model best described each release scenario, while the simplified Higuchi model also adequately described paclitaxel release from the two layer formulation. We conclude that functionalization of gold nanoparticles with a combination of TL and PC may help to modulate both hydrophilic and hydrophobic drug release kinetics, while the addition of HDL may enhance long term release of hydrophobic drug. PMID:25753197

  10. Comb-like amphiphilic copolymers bearing acetal-functionalized backbones with the ability of acid-triggered hydrophobic-to-hydrophilic transition as effective nanocarriers for intracellular release of curcumin.

    PubMed

    Zhao, Junqiang; Wang, Haiyang; Liu, Jinjian; Deng, Liandong; Liu, Jianfeng; Dong, Anjie; Zhang, Jianhua

    2013-11-11

    The pH-responsive micelles have enormous potential as nanosized drug carriers for cancer therapy due to their physicochemical changes in response to the tumor intracellular acidic microenvironment. Herein, a series of comb-like amphiphilic copolymers bearing acetal-functionalized backbone were developed based on poly[(2,4,6-trimethoxybenzylidene-1,1,1-tris(hydroxymethyl) ethane methacrylate-co-poly(ethylene glycol) methyl ether methacrylate] [P(TTMA-co-mPEGMA)] as effective nanocarriers for intracellular curcumin (CUR) release. P(TTMA-co-mPEGMA) copolymers with different hydrophobic-hydrophilic ratios were prepared by one-step reversible addition fragmentation chain transfer (RAFT) copolymerization of TTMA and mPEGMA. Their molecular structures and chemical compositions were confirmed by (1)H NMR, Fourier transform infrared spectroscopy (FT-IR) and gel permeation chromatography (GPC). P(TTMA-co-mPEGMA) copolymers could self-assemble into nanosized micelles in aqueous solution and displayed low critical micelle concentration (CMC). All P(TTMA-co-mPEGMA) micelles displayed excellent drug loading capacity, due to the strong π-π conjugate action and hydrophobic interaction between the PTTMA and CUR. Moreover, the hydrophobic PTTMA chain could be selectively hydrolyzed into a hydrophilic backbone in the mildly acidic environment, leading to significant swelling and final disassembly of the micelles. These morphological changes of P(TTMA-co-mPEGMA) micelles with time at pH 5.0 were determined by DLS and TEM. The in vitro CUR release from the micelles exhibited a pH-dependent behavior. The release rate of CUR was significantly accelerated at mildly acidic pH of 4.0 and 5.0 compared to that at pH 7.4. Toxicity test revealed that the P(TTMA-co-mPEGMA) copolymers exhibited low cytotoxicity, whereas the CUR-loaded micelles maintained high cytotoxicity for HepG-2 and EC-109 cells. The results indicated that the novel P(TTMA-co-mPEGMA) micelles with low CMC, small and tunable

  11. Enhanced Bioactivity of α-Tocopheryl Succinate Based Block Copolymer Nanoparticles by Reduced Hydrophobicity.

    PubMed

    Palao-Suay, Raquel; Aguilar, María Rosa; Parra-Ruiz, Francisco J; Maji, Samarendra; Hoogenboom, Richard; Rohner, Nathan A; Thomas, Susan N; Román, Julio San

    2016-12-01

    Well-structured amphiphilic copolymers are necessary to obtain self-assembled nanoparticles (NPs) based on synthetic polymers. Highly homogeneous and monodispersed macromolecules obtained by controlled polymerization have successfully been used for this purpose. However, disaggregation of the organized macromolecules is desired when a bioactive element, such as α-tocopheryl succinate, is introduced in self-assembled NPs and this element must be exposed or released to exert its action. The aim of this work is to demonstrate that the bioactivity of synthetic NPs based on defined reversible addition-fragmentation chain transfer polymerization copolymers can be enhanced by the introduction of hydrophilic comonomers in the hydrophobic segment. The amphiphilic terpolymers are based on poly(ethylene glycol) (PEG) as hydrophilic block, and a hydrophobic block based on a methacrylic derivative of α-tocopheryl succinate (MTOS) and small amounts of 2-hydroxyethyl methacrylate (HEMA) (PEG-b-poly(MTOS-co-HEMA)). The introduction of HEMA reduces hydrophobicity and introduces "disorder" both in the homogeneous blocks and the compact core of the corresponding NPs. These NPs are able to encapsulate additional α-tocopheryl succinate (α-TOS) with high efficiency and their biological activity is much higher than that described for the unmodified copolymers, proposedly due to more efficient degradation and release of α-TOS, demonstrating the importance of the hydrophilic-hydrophobic balance.

  12. Novel biocompatible nanocapsules for slow release of fragrances on the human skin.

    PubMed

    Hosseinkhani, Baharak; Callewaert, Chris; Vanbeveren, Nelleke; Boon, Nico

    2015-01-25

    There is a growing demand for fragranced products, but due to the poor aqueous solubility and instability of fragrance molecules, their use is limited. Nowadays, fragrance encapsulation in biocompatible nanocontainer material is emerging as a novel strategy to overcome the evaporation of volatile molecules and to prolong the sensory characteristics of fragrance molecules and the longevity of perfumes. The objective of this study was to develop an innovative sustained release system of perfume, by entrapping fragrance molecules in a polymeric nanocarrier; the impact of this strategy on the human axillary microbiome was further assessed. Stabilised poly-l-lactic acid nanocapsules (PLA-NCs) with a diameter of approximately 115 nm were prepared through nanoprecipitation. Size and morphology of the capsules were evaluated using Transmission Electron Microscopy (TEM) and Dynamic Light Scattering (DLS). Two model hydrophobic compounds, chlorobenzene and fluorescein, representing two different types of functionalised molecules, were encapsulated in PLA-NCs with an efficiency rate of 50%. Different release behaviours were seen, dependent on hydrophobicity. For hydrophobic compounds, a steady release was observed over 48hours. The polymeric nanocarriers did not impact the human axillary microbiome. Because of the slow and sustained release of fragrances, encapsulation of molecules in biocompatible NCs can represent a revolutionary contribution to the future of toiletries, body deodorant products, and in washing and cleaning sectors.

  13. A hydrotropic β-cyclodextrin grafted hyperbranched polyglycerol co-polymer for hydrophobic drug delivery.

    PubMed

    Zhang, Xuejiao; Zhang, Xinge; Wu, Zhongming; Gao, Xiujun; Cheng, Cui; Wang, Zhen; Li, Chaoxing

    2011-02-01

    The development of successful formulations for poorly water soluble drugs remains a longstanding, critical, and challenging issue in cancer therapy. A β-cyclodextrin (CD) functionalized hyperbranched polyglycerol (HPG) has been prepared as a potential water insoluble drug carrier. The HPG-g-CD molecules could self-assemble into multimolecular spherical micelles in water, the size of which ranged from 200 to 300 nm, with good dispersity. A high loading capacity and high encapsulation efficiency of paclitaxel, as a model, were obtained. The release profiles of different co-polymer compositions showed a burst release followed by continuous extended release. Furthermore, MTT analysis showed that HPG-g-CD had good biocompatibility, indicating that HPG-g-CD may be considered a promising hydrophobic drug delivery system.

  14. Liposome-encapsulated actinomycin for cancer chemotherapy

    DOEpatents

    Rahman, Yueh-Erh; Cerny, Elizabeth A.

    1976-01-01

    An improved method is provided for chemotherapy of malignant tumors by injection of antitumor drugs. The antitumor drug is encapsulated within liposomes and the liposomes containing the encapsulated drug are injected into the body. The encapsulated drug penetrates into the tumor cells where the drug is slowly released and induces degeneration and death of the tumor cells, while any toxicity to the host body is reduced. Liposome encapsulation of actinomycin D has been found to be particularly effective in treating cancerous abdominal tumors, while drastically reducing the toxicity of actinomycin D to the host.

  15. Antitumor Activity of Peptide Amphiphile Nanofiber-Encapsulated Camptothecin

    SciTech Connect

    Soukasene, Stephen; Toft, Daniel J.; Moyer, Tyson J.; Lu, Hsuming; Lee, Hyung-Kun; Standley, Stephany M.; Cryns, Vincent L.; Stupp, Samuel I.

    2012-04-02

    Self-assembling peptide amphiphile (PA) nanofibers were used to encapsulate camptothecin (CPT), a naturally occurring hydrophobic chemotherapy agent, using a solvent evaporation technique. Encapsulation by PA nanofibers was found to improve the aqueous solubility of the CPT molecule by more than 50-fold. PAs self-assembled into nanofibers in the presence of CPT as demonstrated by transmission electron microscopy. Small-angle X-ray scattering results suggest a slight increase in diameter of the nanofiber to accommodate the hydrophobic cargo. In vitro studies using human breast cancer cells show an enhancement in antitumor activity of the CPT when encapsulated by the PA nanofibers. In addition, using a mouse orthotopic model of human breast cancer, treatment with PA nanofiber-encapsulated CPT inhibited tumor growth. These results highlight the potential of this model PA system to be adapted for delivery of hydrophobic therapies to treat a variety of diseases including cancer.

  16. The Hydrophobic Effect.

    ERIC Educational Resources Information Center

    Huque, Entazul M.

    1989-01-01

    Discusses the physical basis and current understanding of hydrophobic effects. The thermodynamic background of the effects, hydrophobic hydration, and hydrophobic interactions are described. Four existing controversies are outlined. (YP)

  17. Preparation and characterization of hydrophobic superparamagnetic gel.

    SciTech Connect

    Liu, X.; Kaminski, M. D.; Guan, Y.; Chen, H.; Liu, H.; Rosengart, A. J.; Chemical Engineering; Univ. of Chicago; Pritzker School of Medicine; Chinese Academy of Sciences

    2006-01-01

    The present study describes the preparation and analysis of a highly concentrated hydrophobic oleic acid-coated magnetite gel. By contrast to conventional techniques to prepare magnetic fluids, herein the oleic acid was introduced as a reactant during the initial crystallization phase of magnetite that was obtained by the co-precipitation of Fe(II) and Fe(III) salts by addition of ammonium hydroxide. The resulting gelatinous hydrophobic magnetite was characterized in terms of morphology, particle size, magnetic properties, crystal structure, and hydrophobicity/hydrophilicity. This magnetic gel exhibited superparamagnetism with a saturation magnetization of 46.0 emu/g at room temperature and could be well dispersed both in polar and nonpolar carrier liquids. This protocol produced highly concentrated hydrophobic magnetic gel for biopolymer encapsulations.

  18. Encapsulation of Organic Chemicals within a Starch Matrix.

    ERIC Educational Resources Information Center

    Wing, R. E.; Shasha, B. S.

    1983-01-01

    Three experiments demonstrating the feasibility of encapsulating liquids within a starch matrix are described, including encapsulation of linseed oil using the zanthate method and of turpentine and butylate using the calcium adduct procedure. Encapsulated materials, including pesticides, are slowly released from the resulting matrix. Considers…

  19. Formation of controllable hydrophilic/hydrophobic drug delivery systems by electrospinning of vesicles.

    PubMed

    Li, Wei; Luo, Tian; Yang, Yanjuan; Tan, Xiuniang; Liu, Lifei

    2015-05-12

    Novel multifunctional poly(ethylene oxide) (PEO) nanofibrous membrane, which contains vesicles constructed by mixed surfactant cetyltrimethylammonium bromide (CTAB)/sodium dodecylbenzenesulfonate (SDBS), has been designed as dual drug-delivery system and fabricated via the electrospinning process. 5-FU and paeonolum, which are hydrophilic and hydrophobic anticancer model drugs, can be dissolved in vesicle solution's bond water and lipid bilayer membranes, respectively. The physicochemical properties of the electrospun nanofibrous membrane were systematically studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR), and X-ray diffraction (XRD). Drug release behaviors of the electrospun nanofibrous membrane fabricated with different molar ratio of CTAB/SDBS vesicle solution were investigated. The result showed that the releasing amount of hydrophilic drug presented an ascending release manner, while the hydrophobic one showed a descending release behavior with increasing of the molar ratio of CTAB/SDBS. Moreover, the release amount of drugs from drug delivery system can be controlled by the molar ratio of CTAB/SDBS in the vesicle solution easily and conveniently. The distinct properties can be utilized to encapsulate environmental demanding and quantificational materials.

  20. Preparation and characterization of succinic acid deamidated wheat gluten microspheres for encapsulation of fish oil.

    PubMed

    Liao, Lan; Luo, Yangchao; Zhao, Mouming; Wang, Qin

    2012-04-01

    Succinic acid deamidated wheat gluten (SDWG) microspheres for encapsulation of fish oil (FO) via O/W/O double-emulsion followed by heat-polymerization of emulsified SDWG was reported. Different SWDG concentrations (16.8-67.2 mg/ml) and FO/SDWG ratios (1:3-4:3, w/w) were studied. To optimize the process, particle size and Zeta potential of SDWG-FO emulsion and encapsulation efficiency (EE) of FO were analyzed. The most efficient condition was obtained at 50.4 mg/ml for SDWG and 3:3 (w/w) for FO/SDWG ratio, with an EE of 81.8%. In this condition, confocal microscopy showed FO well encapsulated in SDWG microspheres. Scanning electron microscope (SEM) showed sunken pores and fractures inside microspheres after FO was extracted, confirming the presence of FO in microspheres. FTIR and electrophoresis showed during microspheres formation dramatically elevated SWDG aggregation resulted in intermolecular-crosslinking and enhanced interactions (hydrogen bonds and hydrophobic interactions) between SDWG and FO. In the evaluations of in vitro experiments in simulated gastric fluid and oxidation stability during storage, results indicated that SDWG matrix protected it from both oxygen and gastric fluid, resulting in improved storage stability and release property. Therefore, it is foreseen that SDWG can be used to encapsulate FO or other sensitive nutraceuticals in the applications of supplementation and functional foods.

  1. A free-standing, sheet-shaped, "hydrophobic" biomaterial containing polymeric micelles formed from poly(ethylene glycol)-poly(lactic acid) block copolymer for possible incorporation/release of "hydrophilic" compounds.

    PubMed

    Moroishi, Hitomi; Yoshida, Chikara; Murakami, Yoshihiko

    2013-02-01

    Sheet-shaped materials with a large contact area relative to the drug targeting site lead to advantages over conventional particle-shaped drug carriers and have several advantages for their biomedical applications. The present study proposes a methodology for preparing a novel sheet-shaped "hydrophobic" and biocompatible biomaterial in which polymeric micelles are uniformly dispersed for the incorporation of "hydrophilic" compounds into the sheet. The methoxy-terminated poly(ethylene glycol)-block-poly(lactic acid) block copolymer (CH(3)O-PEG-b-PLA) was successfully synthesized by means of the anionic ring-opening polymerization of both ethylene oxide and dl-lactide. CH(3)O-PEG-b-PLA was self-assembled and formed stable micelle-like w/o emulsion with a hydrophilic inner core in organic solvents. A sheet-shaped material containing a hydrophilic inner space for incorporating hydrophilic compounds was obtained by spin-coating both the micelle solution and a sheet-forming polymer. Fluorescent images of the sheet proved that polymeric micelles providing hydrophilic spaces were uniformly dispersed in the hydrophobic sheet. The facile technique presented in this paper can be a tool for fabricating sheet-shaped biomaterials that have a hydrophilic inner core and, consequently, that are suitable for the sustained release of hydrophilic compounds.

  2. Non-covalent assembly of meso-tetra-4-pyridyl porphine with single-stranded DNA to form nano-sized complexes with hydrophobicity-dependent DNA release and anti-tumor activity

    PubMed Central

    Ghosh, Supratim; Ucer, Kamil B.; D’Agostino, Ralph; Grant, Ken; Sirintrapun, Joseph; Thomas, Michael J.; Hantgan, Roy; Bharadwaj, Manish; Gmeiner, William H.

    2013-01-01

    DNA and porphyrin based therapeutics are important for anti-cancer treatment. The present studies demonstrate single-stranded DNA (ssDNA) assembles with meso-tetra-4-pyridyl porphine (MTP) forming porphyrin:DNA nano-complexes (PDN) that are stable in aqueous solution under physiologically relevant conditions and undergo dissociation with DNA release in hydrophobic environments, including cell membranes. PDN formation is DNA-dependent with the ratio of porphyrin:DNA being approximately two DNA nucleobases per porphyrin. PDN produce reactive oxygen species (ROS) in a light-dependent manner under conditions that favor nano-complex dissociation in the presence of hydrophobic solvents. PDN induce light-dependent cytotoxicity in vitro and anti-tumor activity towards bladder cancer xenografts in vivo. Light-dependent, PDN-mediated cell death results from ROS-mediated localized membrane damage due to lipid peroxidation with mass spectrometry indicating the generation of the lipid peroxidation products 9- and 13-hydroxy octadecanoic acid. Our results demonstrate that PDN have properties useful for therapeutic applications, including cancer treatment. PMID:23988714

  3. Physicochemical Characteristics and Slow Release Performances of Chlorpyrifos Encapsulated by Poly(butyl acrylate-co-styrene) with the Cross-Linker Ethylene Glycol Dimethacrylate.

    PubMed

    Wang, Yu; Gao, Zideng; Shen, Feng; Li, Yang; Zhang, Sainan; Ren, Xueqin; Hu, Shuwen

    2015-06-03

    Chlorpyrifos' application and delivery to the target substrate needs to be controlled to improve its use. Herein, poly(butyl acrylate-co-styrene) (poly(BA/St)) and poly(BA/St/ethylene glycol dimethacrylate (EGDMA)) microcapsules loaded with chlorpyrifos as a slow release formulation were prepared by emulsion polymerization. The effects of structural characteristics on the chlorpyrifos microcapsule particle size, entrapment rate (ER), pesticide loading (PL), and release behaviors in ethyl alcohol were investigated. Fourier transform infrared and thermogravimetric analysis confirmed the successful entrapment of chlorpyrifos. The ER and PL varied with the BA/St monomer ratio, chlorpyrifos/monomer core-to-shell ratio, and EGDMA cross-linker content with consequence that suitable PL was estimated to be smaller than 3.09% and the highest ER was observed as 96.74%. The microcapsule particle size (88.36-101.8 nm) remained mostly constant. The extent of sustainable release decreased with increasing content of BA, St, or chlorpyrifos in the oil phase. Specifically, an adequate degree of cross-linking with EGMDA (0.5-2.5%) increased the extent of sustainable release considerably. However, higher levels of cross-linking with EGDMA (5-10%) reduced the extent of sustainable release. Chlorpyrifos release from specific microcapsules (monomer ratio 1:2 with 0.5% EGDMA or 5 g chlopyrifos) tended to be a diffusion-controlled process, while for others, the kinetics probably indicated the initial rupture release.

  4. Reversible carbon dioxide gels: Synthesis and characterization of energetic ionic liquids; Synthesis and characterization of tetrazole monomers and polymers; Encapsulation of sodium azide for controlled release

    NASA Astrophysics Data System (ADS)

    Samanta, Susnata

    Hydrazine and monomethylhydrazine are widely used as propellants in aerospace and defense industries. However these chemicals are volatile, carcinogenic, and sensitive to impact, which impose serious threats during their usage. In this thesis, we have demonstrated two novel ways to immobilize hydrazine chemicals. In one approach hydrazine, monomethylhydrazine have been gelled using carbon dioxide. Chemical and structural properties of these gels are studied by NMR (1H, 15N, 13C), diffusion-ordered NMR spectroscopy, and Cryo-HRSEM. Thermal reversibility of these gels is also demonstrated. In another approach, hydrazine, monomethylhydrazine and 1, 1-dimethylhydrazine are reacted with 5-methyltetrazole to form ionic liquids. Synthesis of novel tetrazole monomers and polymers, and new method for encapsulating sodium azide have also reported in this thesis.

  5. Influence of hydrophobic modification in alginate-based hydrogels for biomedical applications

    NASA Astrophysics Data System (ADS)

    Choudhary, Soumitra

    Alginate has been exploited commercially for decades in foods, textiles, paper, pharmaceutical industries, and also as a detoxifier for removing heavy metals. Alginate is also popular in cell encapsulation because of its relatively mild gelation protocol and simple chemistry with which biological active entities can be immobilized. Surface modification of alginate gels has been explored to induce desired cell interactions with the gel matrix. These modifications alter the bulk properties, which strongly determine on how cells feel and response to the three-dimensional microenvironment. However, there is a need to develop strategies to engineer functionalities into bulk alginate hydrogels that not only preserve their inherent qualities but are also less toxic. In this thesis, our main focus was to optimize the mechanical properties of alginate-based hydrogels, and by doing so control the performance of the biomaterials. In the first scheme, we used alginate and hydrophobically modified ethyl hydroxy ethyl cellulose as components in interpenetrating polymer network (IPN) gels. The second network was used to control gelation time and rheological properties. We believe these experiments also may provide insight into the mechanical and structural properties of more complex biopolymer gels and naturally-occurring IPNs. Next, we worked on incorporating a hydrophobic moiety directly into the alginate chain, resulting in materials for extended release of hydrophobic drugs. We successfully synthesized hydrophobically modified alginate (HMA) by attaching octylamine groups onto the alginate backbone by standard carbodiimide based amide coupling reaction. Solubility of several model hydrophobic drugs in dilute HMA solutions was found to be increased by more than an order of magnitude. HMA hydrogels, prepared by crosslinking the alginate chains with calcium ions, were found to exhibit excellent mechanical properties (modulus ˜100 kPa) with release extended upto 5 days. Ability

  6. Two-stage desorption-controlled release of fluorescent dye and vitamin from solution-blown and electrospun nanofiber mats containing porogens.

    PubMed

    Khansari, S; Duzyer, S; Sinha-Ray, S; Hockenberger, A; Yarin, A L; Pourdeyhimi, B

    2013-12-02

    In the present work, a systematic study of the release kinetics of two embedded model drugs (one completely water soluble and one partially water soluble) from hydrophilic and hydrophobic nanofiber mats was conducted. Fluorescent dye Rhodamine B was used as a model hydrophilic drug in controlled release experiments after it was encapsulated in solution-blown soy-protein-containing hydrophilic nanofibers as well as in electrospun hydrophobic poly(ethylene terephthalate) (PET)-containing nanofibers. Vitamin B2 (riboflavin), a partially water-soluble model drug, was also encapsulated in hydrophobic PET-containing nanofiber mats, and its release kinetics was studied. The nanofiber mats were submerged in water, and the amount of drug released was tracked by fluorescence intensity. It was found that the release process saturates well below 100% release of the embedded compound. This is attributed to the fact that desorption is the limiting process in the release from biopolymer-containing nanofibers similar to the previously reported release from petroleum-derived polymer nanofibers. Release from monolithic as well as core-shell nanofibers was studied in the present work. Moreover, to facilitate the release and ultimately to approach 100% release, we also incorporated porogens, for example, poly(ethylene glycol), PEG. It was also found that the release rate can be controlled by the porogen choice in nanofibers. The effect of nanocracks created by leaching porogens on drug release was studied experimentally and evaluated theoretically, and the physical parameters characterizing the release process were established. The objective of the present work is a detailed experimental and theoretical investigation of controlled drug release from nanofibers facilitated by the presence of porogens. The novelty of this work is in forming nanofibers containing biodegradable and biocompatible soy proteins to facilitate controlled drug release as well as in measuring detailed

  7. Encapsulation of proteins in hydrogel carrier systems for controlled drug delivery: influence of network structure and drug size on release rate.

    PubMed

    Bertz, Andreas; Wöhl-Bruhn, Stefanie; Miethe, Sebastian; Tiersch, Brigitte; Koetz, Joachim; Hust, Michael; Bunjes, Heike; Menzel, Henning

    2013-01-20

    Novel hydrogels based on hydroxyethyl starch modified with polyethylene glycol methacrylate (HES-P(EG)₆MA) were developed as delivery system for the controlled release of proteins. Since the drug release behavior is supposed to be related to the pore structure of the hydrogel network the pore sizes were determined by cryo-SEM, which is a mild technique for imaging on a nanometer scale. The results showed a decreasing pore size and an increase in pore homogeneity with increasing polymer concentration. Furthermore, the mesh sizes of the hydrogels were calculated based on swelling data. Pore and mesh size were significantly different which indicates that both structures are present in the hydrogel. The resulting structural model was correlated with release data for bulk hydrogel cylinders loaded with FITC-dextran and hydrogel microspheres loaded with FITC-IgG and FITC-dextran of different molecular size. The initial release depended much on the relation between hydrodynamic diameter and pore size while the long term release of the incorporated substances was predominantly controlled by degradation of the network of the much smaller meshes.

  8. The role of hyaluronic acid inclusion on the energetics of encapsulation and release of a protein molecule from chitosan-based nanoparticles.

    PubMed

    Al-Qadi, Sonia; Alatorre-Meda, Manuel; Martin-Pastor, Manuel; Taboada, Pablo; Remuñán-López, Carmen

    2016-05-01

    The synergistic effects of the polysaccharides chitosan (CS) and hyaluronic acid (HA) formulated into hybrid nanoparticles are promising for drug delivery. In the present work, we performed a detailed analysis of the molecular interactions involved in the TPP-assisted ionotropic gelation of CS hybrid nanoparticles with the objective of investigating the impact of HA inclusion on the particle formulation and on the in vitro release of insulin (INS) as a protein cargo. To do that, an in-depth thermodynamic study was carried out by isothermal titration calorimetry (ITC), nuclear magnetic resonance (NMR) and differential scanning calorimetry (DSC) techniques. Such analysis allowed us to elucidate the type and extent of interactions established by INS within the hybrid nanoparticles and to get further knowledge on the nature of its release mechanism in vitro. Overall, INS release from the CS nanoparticles was thermodynamically driven, and when including HA a weaker INS binding to the nanoparticles, hence, a faster release rate in vitro were observed. As a negative polyelectrolyte, HA might have sterically blocked the activated sites of CS, such as the amino groups, through chain entanglement, thereby, attenuating the competitive binding interactions of INS. As a consequence, INS might have experienced a spatial exclusion onto the surface of the hybrid nanoparticles to a greater extent which, in turn, would explain its initial abrupt release.

  9. Stabilization and encapsulation of photosensitive resveratrol within yeast cell.

    PubMed

    Shi, Guorong; Rao, Liqun; Yu, Huazhong; Xiang, Hua; Yang, Hua; Ji, Runa

    2008-02-12

    The photosensitive resveratrol was successfully encapsulated in yeast cells for the first time, as characterized by FT-IR spectra, fluorescence and confocal micrographs of the yeast cells, resveratrol and microcapsules. The release characteristic of the obtained yeast-encapsulated resveratrol in simulated gastric fluid was evaluated, and its storage stability as a powder was investigated at 25 degrees C/75% relative humidity (RH), 25 degrees C/90% RH and 60 degrees C under the laboratory fluorescent lighting conditions (ca. 300 lx) or in the dark. Also, the scavenging capacity of yeast-encapsulated resveratrol on DPPH radical was compared with that of non-encapsulated resveratrol. It could be demonstrated clearly that no chemical changes occurred during the encapsulation. Besides, the DPPH radical-scavenging activity increased after the encapsulation. In addition, the yeast-encapsulated resveratrol exhibited good stability, and its bioavailability was enhanced as a result of increased solubility of resveratrol and sustained releasing.

  10. Hydrophobically modified inulin as an amphiphilic carbohydrate polymer for micellar delivery of paclitaxel for intravenous route.

    PubMed

    Muley, Pratik; Kumar, Sunny; El Kourati, Fadoua; Kesharwani, Siddharth S; Tummala, Hemachand

    2016-03-16

    Micellization offers several advantages for the delivery of water insoluble drugs including a nanoparticulate 'core-shell' delivery system for drug targeting. Recently, hydrophobically modified polysaccharides (HMPs) are gaining recognition as micelle forming polymers to encapsulate hydrophobic drugs. In this manuscript, for the first time, we have evaluated the self-assembling properties of a lauryl carbamate derivative of the poly-fructose natural polymer inulin (Inutec SP1(®) (INT)) to form paclitaxel (PTX) loaded micelles. INT self-assembled into well-defined micellar structures in aqueous environment with a low critical micellar concentration of 27.8 μg/ml. INT micelles exhibited excellent hemocompatibility and low toxicity to cultured cells. PTX loaded INT micelles exhibited a mean size of 256.37 ± 10.45 nm with excellent drug encapsulation efficiency (95.66 ± 2.25%) and loading (8.69 ± 0.22%). PTX loaded micelles also displayed sustained release of PTX and enhanced anti-cancer efficacy in-vitro in mouse melanoma cells (B16F10) compared to Taxol formulation with Cremophor EL as solvent. In addition, PTX loaded INT micelles exhibited comparable in-vivo antitumor activity in B16F10 allograft mouse model at half the dose of Taxol. In conclusion, INT offers safe, inexpensive and natural alternative to widely used PEG-modified polymers for the formulation of micellar delivery systems for paclitaxel.

  11. A Controlled Release Codelivery System of MSCs Encapsulated in Dextran/Gelatin Hydrogel with TGF-β3-Loaded Nanoparticles for Nucleus Pulposus Regeneration

    PubMed Central

    Xu, Yuan; Luo, Xiangdong

    2016-01-01

    Mesenchymal stem cell- (MSC-) based therapy is regarded as a potential tissue engineering strategy to achieve nucleus pulposus (NP) regeneration for the treatment of intervertebral disc degeneration (IDD). However, it is still a challenge to induce MSC differentiation in NP-like cells when MSCs are implanted into the NP. The purpose of this study was to construct poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles as carriers for TGF-β3 controlled release and establish a codelivery system of a dextran/gelatin hydrogel with the nanoparticles for long-term processing of discogenesis differentiation. TGF-β3-loaded PLGA nanoparticles were prepared by the double-emulsion solvent evaporation method and seeded uniformly into the hydrogel. Morphological observations, an assessment of the release kinetics of TGF-β3, a cytotoxic assay, a cell proliferation test, a biochemical content assay, qRT-PCR, and immunohistological analyses of the codelivery system were conducted in the study. The results showed that the TGF-β3-loaded nanoparticles could release TGF-β3 gradually. The codelivery system exhibited favorable cytocompatibility, and the TGF-β3 that was released could induce MSCs to NP-like cells while promoting ECM-related biosynthesis. These results suggest this codelivery system may be employed as a promising carrier for discogenesis of MSCs in situ. PMID:27774108

  12. A Controlled Release Codelivery System of MSCs Encapsulated in Dextran/Gelatin Hydrogel with TGF-β3-Loaded Nanoparticles for Nucleus Pulposus Regeneration.

    PubMed

    Gan, Yibo; Li, Sukai; Li, Pei; Xu, Yuan; Wang, Liyuan; Zhao, Chen; Ouyang, Bin; Tu, Bing; Zhang, Chengmin; Luo, Lei; Luo, Xiangdong; Mo, Xiumei; Zhou, Qiang

    2016-01-01

    Mesenchymal stem cell- (MSC-) based therapy is regarded as a potential tissue engineering strategy to achieve nucleus pulposus (NP) regeneration for the treatment of intervertebral disc degeneration (IDD). However, it is still a challenge to induce MSC differentiation in NP-like cells when MSCs are implanted into the NP. The purpose of this study was to construct poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles as carriers for TGF-β3 controlled release and establish a codelivery system of a dextran/gelatin hydrogel with the nanoparticles for long-term processing of discogenesis differentiation. TGF-β3-loaded PLGA nanoparticles were prepared by the double-emulsion solvent evaporation method and seeded uniformly into the hydrogel. Morphological observations, an assessment of the release kinetics of TGF-β3, a cytotoxic assay, a cell proliferation test, a biochemical content assay, qRT-PCR, and immunohistological analyses of the codelivery system were conducted in the study. The results showed that the TGF-β3-loaded nanoparticles could release TGF-β3 gradually. The codelivery system exhibited favorable cytocompatibility, and the TGF-β3 that was released could induce MSCs to NP-like cells while promoting ECM-related biosynthesis. These results suggest this codelivery system may be employed as a promising carrier for discogenesis of MSCs in situ.

  13. Liposome encapsulation of chelating agents

    DOEpatents

    Rahman, Yueh Erh

    1976-01-13

    A method for transferring a chelating agent across a cellular membrane by encapsulating the charged chelating agent within liposomes and carrying the liposome-encapsulated chelating agent to the cellular membrane where the liposomes containing the chelating agent will be taken up by the cells, thereby transferring the chelating agent across the cellular membrane. A chelating agent can be introduced into the interior of a cell of a living organism wherein the liposomes will be decomposed, releasing the chelating agent to the interior of the cell. The released chelating agent will complex intracellularly deposited toxic heavy metals, permitting the more soluble metal complex to transfer across the cellular membrane from the cell and subsequently be removed from the living organism.

  14. Drug loading and release on tumor cells using silk fibroin-albumin nanoparticles as carriers

    NASA Astrophysics Data System (ADS)

    Subia, B.; Kundu, S. C.

    2013-01-01

    Polymeric and biodegradable nanoparticles are frequently used in drug delivery systems. In this study silk fibroin-albumin blended nanoparticles were prepared using the desolvation method without any surfactant. These nanoparticles are easily internalized by the cells, reside within perinuclear spaces and act as carriers for delivery of the model drug methotrexate. Methotrexate loaded nanoparticles have better encapsulation efficiency, drug loading ability and less toxicity. The in vitro release behavior of methotrexate from the nanoparticles suggests that about 85% of the drug gets released after 12 days. The encapsulation and loading of a drug would depend on factors such as size, charge and hydrophobicity, which affect drug release. MTT assay and conjugation of particles with FITC demonstrate that the silk fibroin-albumin nanoparticles do not affect the viability and biocompatibility of cells. This blended nanoparticle, therefore, could be a promising nanocarrier for the delivery of drugs and other bioactive molecules.

  15. α-Tocopheryl linolenate solid lipid nanoparticles for the encapsulation, protection, and release of the omega-3 polyunsaturated fatty acid: in vitro anti-melanoma activity evaluation.

    PubMed

    Cassano, Roberta; Mellace, Silvia; Marrelli, Mariangela; Conforti, Filomena; Trombino, Sonia

    2017-03-01

    The main target of this study was the preparation, characterization and antioxidant activity evaluation of α-tocopheryl linolenate based solid lipid nanoparticles (SLNs-TL), able to incorporate omega-3 α-linolenic acid, useful for the treatment of melanoma, a type of skin cancer. In particular, α-linolenic acid was successfully derivatized with α-tocopherol and the obtained compound was characterized by Fourier transform infrared (FT-IR) and by (1)H NMR to confirm the ester linkage. Both the empty SLNs-TL that SLNs-TL-LIN, containing omega-3-linolenic acid, were prepared through the technique of the microemulsion. The nanoparticles were characterized for entrapment efficiency, size and shape. Their antioxidant activity was investigated in rat liver microsomal membranes in inhibiting the lipid peroxidation induced by tert-butyl hydroperoxide (tert-BOOH), which endogenously produces alkoxyl radicals by Fenton reactions. The obtained results indicate that the α-tocopherol, linked by ester bond to α-linolenic acid, maintains an excellent antioxidant activity. The encapsulation efficiency was equal to 77% and the polydispersity index 0.198 indicating a good dimensional distribution. Furthermore, the nanoparticles were tested in vitro for their cytotoxic activity against human melanoma cancer cell line C32. Both empty SLNs-TL and loaded SLNs-TL-LIN showed a high biological activity, being more effective than α-linolenic acid and α-tocopherol. The results indicated that these nanoparticles could provide the delivery and the protection of unstable molecules, such as α-linolenic acid, from degradation induced by mechanisms of oxidative stress.

  16. Modulating Drug Release from Gastric-Floating Microcapsules through Spray-Coating Layers

    PubMed Central

    Tan, Chaoyang Nicholas; Loo, Say Chye Joachim

    2014-01-01

    Floating dosage forms with prolonged gastric residence time have garnered much interest in the field of oral delivery. However, studies had shown that slow and incomplete release of hydrophobic drugs during gastric residence period would reduce drug absorption and cause drug wastage. Herein, a spray-coated floating microcapsule system was developed to encapsulate fenofibrate and piroxicam, as model hydrophobic drugs, into the coating layers with the aim of enhancing and tuning drug release rates. Incorporating fenofibrate into rubbery poly(caprolactone) (PCL) coating layer resulted in a complete and sustained release for up to 8 h, with outermost non-drug-holding PCL coating layer serving as a rate-controlling membrane. To realize a multidrug-loaded system, both hydrophilic metformin HCl and hydrophobic fenofibrate were simultaneously incorporated into these spray-coated microcapsules, with metformin HCl and fenofibrate localized within the hollow cavity of the capsule and coating layer, respectively. Both drugs were observed to be completely released from these coated microcapsules in a sustained manner. Through specific tailoring of coating polymers and their configurations, piroxicam loaded in both the outer polyethylene glycol and inner PCL coating layers was released in a double-profile manner (i.e. an immediate burst release as the loading dose, followed by a sustained release as the maintenance dose). The fabricated microcapsules exhibited excellent buoyancy in simulated gastric fluid, and provided controlled and sustained release, thus revealing its potential as a rate-controlled oral drug delivery system. PMID:25470374

  17. Encapsulation of gallic acid/cyclodextrin inclusion complex in electrospun polylactic acid nanofibers: Release behavior and antioxidant activity of gallic acid.

    PubMed

    Aytac, Zeynep; Kusku, Semran Ipek; Durgun, Engin; Uyar, Tamer

    2016-06-01

    Cyclodextrin-inclusion complexes (CD-ICs) possess great prominence in food and pharmaceutical industries due to their enhanced ability for stabilization of active compounds during processing, storage and usage. Here, CD-IC of gallic acid (GA) with hydroxypropyl-beta-cyclodextrin (GA/HPβCD-IC) was prepared and then incorporated into polylactic acid (PLA) nanofibers (PLA/GA/HPβCD-IC-NF) using electrospinning technique to observe the effect of CD-ICs in the release behavior of GA into three different mediums (water, 10% ethanol and 95% ethanol). The GA incorporated PLA nanofibers (PLA/GA-NFs) were served as control. Phase solubility studies showed an enhanced solubility of GA with increasing amount of HPβCD. The detailed characterization techniques (XRD, TGA and (1)H-NMR) confirmed the formation of inclusion complex between GA and HPβCD. Computational modeling studies indicated that the GA made an efficient complex with HPβCD at 1:1 either in vacuum or aqueous system. SEM images revealed the bead-free and uniform morphology of PLA/GA/HPβCD-IC-NF. The release studies of GA from PLA/GA/HPβCD-IC-NF and PLA/GA-NF were carried out in water, 10% ethanol and 95% ethanol, and the findings revealed that PLA/GA/HPβCD-IC-NF has released much more amount of GA in water and 10% ethanol system when compared to PLA/GA-NF. In addition, GA was released slowly from PLA/GA/HPβCD-IC-NF into 95% ethanol when compared to PLA/GA-NF. It was also observed that electrospinning process had no negative effect on the antioxidant activity of GA when GA was incorporated in PLA nanofibers.

  18. In vitro controlled release of clove essential oil in self-assembly of amphiphilic polyethylene glycol-block-polycaprolactone.

    PubMed

    Thonggoom, O; Punrattanasin, N; Srisawang, N; Promawan, N; Thonggoom, R

    2016-05-01

    In this study, a micellar delivery system with an amphiphilic diblock copolymer of poly (ethylene glycol) and poly (ɛ-caprolactone) was synthesised and used to incorporate hydrophobic clove essential oil (CEO). To determine an optimal delivery system, the effects of the copolymer's hydrophobic block length and the CEO-loading content on the encapsulation of CEO were investigated. Percentages of entrapment efficiency (%EE), CEO loading (%CEO), and in vitro release profiles were determined. The size, size distribution, zeta potential, and morphology of the obtained micelles were determined by DLS, FE-SEM, and TEM. The %EE, %CEO, and in vitro release profiles of CEO incorporated in micelles were analysed by HPLC. The study revealed a sustained release profile of CEO from CEO-loaded micelles. The results indicate the successful formulation of CEO-loaded PEG-b-PCL micelle nanoparticles. It is suggested that this micelle system has considerably potential applications in the sustained release of CEO in intravascular drug delivery.

  19. Module encapsulation technology

    NASA Technical Reports Server (NTRS)

    Willis, P.

    1986-01-01

    The identification and development techniques for low-cost module encapsulation materials were reviewed. Test results were displayed for a variety of materials. The improved prospects for modeling encapsulation systems for life prediction were reported.

  20. Triple Emulsion Drops with An Ultrathin Water Layer: High Encapsulation Efficiency and Enhanced Cargo Retention in Microcapsules.

    PubMed

    Choi, Chang-Hyung; Lee, Hyomin; Abbaspourrad, Alireza; Kim, June Hwan; Fan, Jing; Caggioni, Marco; Wesner, Chris; Zhu, Taotao; Weitz, David A

    2016-05-01

    Triple emulsion drops with an ultrathin water layer are developed to achieve high encapsulation efficiency of hydrophobic cargo in a hydrophobic polymeric shell, directly dispersed in water. Furthermore, enhanced retention of volatile hydrophobic cargo is achieved by forming a hydrogel network within this water layer that serves as a physical barrier.

  1. Design and testing of polymeric implants for the long-term release of dopamine

    SciTech Connect

    Saltzman, W.M.; Radomsky, M. . Dept. of Chemical Engineering); Freese, A.; Langer, R. )

    1988-01-01

    Hydrophobic, biocompatible polymers can be used for the encapsulation and subsequent controlled release of many water-soluble, bioactive molecules. The authors developed general methods for fabricating biocompatible implants and mathematical models for predicting the rate of drug release from the polymer implant based on measurable microstructural parameters. These models apply equally well for small molecules and macromolecules (e.g. proteins). Since polymeric implants may be useful in the treatment of many diseases-including neurological disorders-they now demonstrate the utility of these transport models for designing implantable devices for use in the brain.

  2. Triggered Release from Polymer Capsules

    SciTech Connect

    Esser-Kahn, Aaron P.; Odom, Susan A.; Sottos, Nancy R.; White, Scott R.; Moore, Jeffrey S.

    2011-07-06

    Stimuli-responsive capsules are of interest in drug delivery, fragrance release, food preservation, and self-healing materials. Many methods are used to trigger the release of encapsulated contents. Here we highlight mechanisms for the controlled release of encapsulated cargo that utilize chemical reactions occurring in solid polymeric shell walls. Triggering mechanisms responsible for covalent bond cleavage that result in the release of capsule contents include chemical, biological, light, thermal, magnetic, and electrical stimuli. We present methods for encapsulation and release, triggering methods, and mechanisms and conclude with our opinions on interesting obstacles for chemically induced activation with relevance for controlled release.

  3. Synthesis and characterization of pullulan-polycaprolactone core-shell nanospheres encapsulated with ciprofloxacin.

    PubMed

    Shady, Sally Fouad; Gaines, Peter; Garhwal, Rahul; Leahy, Charles; Ellis, Edward; Crawford, Kathryn; Schmidt, Daniel F; McCarthy, Stephen P

    2013-09-01

    Nanosphere-encapsulated drugs offer a means to overcome many drug delivery limitations by localizing the site of delivery and providing controlled release. This research details the synthesis and encapsulation of ciprofloxacin in pullulan-polycaprolactone (PCL) core shell nanospheres and the characterization of these materials by 1H-NMR, UV spectroscopy, dynamic light scattering (DLS) and scanning electron microscopy (SEM).1H-NMR results confirm that the pullulan-PCL grafted copolymer was successfully synthesized. UV spectroscopy showed that the ciprofloxacin loaded nanospheres contain 35-40% ciprofloxacin by weight. DLS and SEM results indicate that the loaded nanospheres are spherical in shape and approximately 142+/-12 nm in size. Under in vitro test conditions, approximately 20% of the ciprofloxacin is released in the first 4 hours, with additional release over 10 days. The nanoparticles demonstrate bioactivity against Escheria coli and do not affect the proliferation of two human cell lines. These results demonstrate the potential of pullulan-PCL core-shell nanospheres as delivery vehicles of hydrophobic drugs, including antibiotics for localized treatments applicable to a wide-range of human bacterial infections.

  4. Functionalized nanoscale oil bodies for targeted delivery of a hydrophobic drug

    NASA Astrophysics Data System (ADS)

    Chiang, Chung-Jen; Lin, Che-Chin; Lu, Tzu-Li; Wang, Hesin-Fu

    2011-10-01

    Effective formulations of hydrophobic drugs for cancer therapies are challenging. To address this issue, we have sought to nanoscale artificial oil bodies (NOBs) as an alternative. NOBs are lipid-based particles which consist of a central oil space surrounded by a monolayer of oleosin (Ole)-embedded phospholipids (PLs). Ole was first fused with the anti-HER2/neu affibody (Ole-ZH2), and the resulting hybrid protein was overproduced in Escherichia coli. ZH2-displayed NOBs were then assembled by sonicating the mixture containing plant oil, PLs, and isolated Ole-ZH2 in one step. To illustrate their usefulness, functionalized NOBs were employed to encapsulate a hydrophobic anticancer drug, Camptothecin (CPT). As a result, these CPT-loaded NOBs remained stable in serum and the release of CPT at the non-permissive condition exhibited a sustained and prolonged profile. Moreover, plain NOBs were biocompatible whereas CPT-loaded NOBs exerted a strong cytotoxic effect on HER2/neu-positive cells in vitro. Administration of xenograft nude mice with CPT-loaded NOBs also led to the regression of solid tumors in an effective way. Overall, the result indicates the potential of NOBs for targeted delivery of hydrophobic drugs.

  5. Dry powders based on PLGA nanoparticles for pulmonary delivery of antibiotics: modulation of encapsulation efficiency, release rate and lung deposition pattern by hydrophilic polymers.

    PubMed

    Ungaro, Francesca; d'Angelo, Ivana; Coletta, Ciro; d'Emmanuele di Villa Bianca, Roberta; Sorrentino, Raffaella; Perfetto, Brunella; Tufano, Maria Antonietta; Miro, Agnese; La Rotonda, Maria Immacolata; Quaglia, Fabiana

    2012-01-10

    Although few experimental studies have been handled so far to exploit the potential of poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) in the production of dry powders for antibiotic inhalation, there has been no comprehensive study on the role played by NP composition. In this work, we try to shed light on this aspect by designing and developing a pulmonary delivery system for antibiotics, such as tobramycin (Tb), based on PLGA NPs embedded in an inert microcarrier made of lactose, referred to as nano-embedded micro-particles (NEM). At nanosize level, helper hydrophilic polymers were used to impart the desired surface, bulk and release properties to PLGA NPs prepared by a modified emulsion-solvent diffusion technique. Results showed that poly(vinyl alcohol) (PVA) and chitosan (CS) are essential to optimise the size and modulate the surface properties of Tb-loaded PLGA NPs, whereas the use of alginate (Alg) allows efficient Tb entrapment within NPs and its release up to one month. Optimized formulations display good in vitro antimicrobial activity against P. aeruginosa planktonic cells. Furthermore, spray-drying of the NPs with lactose yielded NEM with peculiar but promising flow and aerosolization properties, while preserving the peculiar NP features. Nonetheless, in vivo biodistribution studies showed that PVA-modified Alg/PLGA NPs reached the deep lung, while CS-modified NPs were found in great amounts in the upper airways, lining lung epithelial surfaces. In conclusion, PLGA NP composition appears to play a crucial role in determining not only the technological features of NPs but, once processed in the form of NEM, also their in vitro/in vivo deposition pattern.

  6. Photochemical mechanisms of light-triggered release from nanocarriers

    PubMed Central

    Fomina, Nadezda; Sankaranarayanan, Jagadis; Almutairi, Adah

    2012-01-01

    Over the last three decades, a handful of photochemical mechanisms have been applied to a large number of nanoscale assemblies that encapsulate a payload to afford spatio-temporal and remote control over activity of the encapsulated payload. Many of these systems are designed with an eye towards biomedical applications, as spatio-temporal and remote control of bioactivity would advance research and clinical practice. This review covers five underlying photochemical mechanisms that govern the activity of the majority of photoresponsive nanocarriers: 1. photo driven isomerization and oxidation, 2. surface plasmon absorption and photothermal effects, 3. photo driven hydrophobicity changes, 4. photo driven polymer backbone fragmentation and 5. photo driven de-crosslinking. The ways in which these mechanisms have been incorporated into nanocarriers and how they affect release is detailed, as well as the advantages and disadvantages of each system. PMID:22386560

  7. High pressure-assisted encapsulation of vitamin D2 in reassembled casein micelles

    NASA Astrophysics Data System (ADS)

    Menéndez-Aguirre, O.; Stuetz, W.; Grune, T.; Kessler, A.; Weiss, J.; Hinrichs, J.

    2011-03-01

    For the encapsulation of vitamin D2, native casein micelles and vitamin D2 with or without additional Ca2+-Pi were treated at 600 MPa and 37 °C for 60 min. The pressure release rate was set at 20 or 600 MPa/min. Vitamin D2 was quantified by reversed-phase high-performance liquid chromatography, and physical properties of the micelles were analysed by photon correlation spectroscopy. The results demonstrate that simultaneous application of Ca2+-Pi and high pressure treatment with a fast release rate significantly increased loading of vitamin D2 per casein by 6.9-fold. The addition of Ca2+-Pi enhanced micelle aggregation and the vitamin was entrapped within the formed aggregates. However, high pressure treatment without Ca2+-Pi with a slow pressure release rate revealed similar results, increasing vitamin D2 per casein by 6.7-fold. The vitamin D2 loading in reassembled casein micelles is supposed to be due to hydrophobic interactions between the hydrophobic domains of the micelles.

  8. Drug release behavior of poly (lactic-glycolic acid) grafting from sodium alginate (ALG-g-PLGA) prepared by direct polycondensation.

    PubMed

    Shi, Gang; Ding, Yuanyuan; Zhang, Xin; Wu, Luyan; He, Fei; Ni, Caihua

    2015-01-01

    Hydrophobically modified sodium alginate, poly (lactic-glycolic acid) grafting from sodium alginate (ALG-g-PLGA), was successfully synthesized through direct one-step polymerization of sodium alginate, glycolic acid, and lactic acid. ALG-g-PLGA self-assembled to colloidal nanoparticles and subsequently hydrogel microspheres were obtained by crosslinking ALG-g-PLGA nanoparticles in the solution of calcium chloride. The modified hydrogel microspheres could be used as the drug delivery vehicles for a hydrophobic ibuprofen. Compared with sodium alginate, ALG-g-PLGA demonstrated an improved drug loading rate, encapsulation efficiency, and prolonged release speed. The products, as novel and highly promising biomaterials, have potential applications.

  9. Encapsulation in the food industry: a review.

    PubMed

    Gibbs, B F; Kermasha, S; Alli, I; Mulligan, C N

    1999-05-01

    Encapsulation involves the incorporation of food ingredients, enzymes, cells or other materials in small capsules. Applications for this technique have increased in the food industry since the encapsulated materials can be protected from moisture, heat or other extreme conditions, thus enhancing their stability and maintaining viability. Encapsulation in foods is also utilized to mask odours or tastes. Various techniques are employed to form the capsules, including spray drying, spray chilling or spray cooling, extrusion coating, fluidized bed coating, liposome entrapment, coacervation, inclusion complexation, centrifugal extrusion and rotational suspension separation. Each of these techniques is discussed in this review. A wide variety of foods is encapsulated--flavouring agents, acids bases, artificial sweeteners, colourants, preservatives, leavening agents, antioxidants, agents with undesirable flavours, odours and nutrients, among others. The use of encapsulation for sweeteners such as aspartame and flavours in chewing gum is well known. Fats, starches, dextrins, alginates, protein and lipid materials can be employed as encapsulating materials. Various methods exist to release the ingredients from the capsules. Release can be site-specific, stage-specific or signalled by changes in pH, temperature, irradiation or osmotic shock. In the food industry, the most common method is by solvent-activated release. The addition of water to dry beverages or cake mixes is an example. Liposomes have been applied in cheese-making, and its use in the preparation of food emulsions such as spreads, margarine and mayonnaise is a developing area. Most recent developments include the encapsulation of foods in the areas of controlled release, carrier materials, preparation methods and sweetener immobilization. New markets are being developed and current research is underway to reduce the high production costs and lack of food-grade materials.

  10. Photosensitive cross-linked block copolymers with controllable release.

    PubMed

    Yu, Lili; Lv, Cong; Wu, LiZhu; Tung, ChenHo; Lv, WanLiang; Li, ZhongJin; Tang, XinJing

    2011-01-01

    We intend to form photosensitive block copolymer micelles for controllable release of encapsulated substances. Here, we designed and synthesized a new photocleavable cross-linker (2-nitrophenyl ethylene glycol dimethacrylate) for methyl methacrylate (MMA) atom transfer radical polymerization. Four different ratios (0:1, 1:26, 1:16, 1:8.8) of the photocleavable cross-linker to MMA monomer were used and four block copolymers (P0, P1, P2, P3) were synthesized with PEO-Br as the macroinitiator. Gel permeation chromatography and (1) H NMR studies showed that linear polymer molecules could be cross-linked by the photocleavable linker. The fluorescence studies of the encapsulated Nile Red (NR) showed that there were lower critical micelle concentrations for the polymer P1, P2 and P3 than polymer P0. And dynamic light scattering and SEM confirmed the formation of polymer micelles. Photolysis experiments demonstrated that NR encapsulated in the polymer micelles could be released upon UV irradiation (365 nm, 11 mW cm(-2)) due to the breakage of the photocleavable linker and the generation of more hydrophilic acid moieties, which destabilized polymer micelles. Our study shows a new strategy for the possibility of photocontrollable drug release for hydrophobic drugs.

  11. Stability of niosomes with encapsulated vitamin D3 and ferrous sulfate generated using a novel supercritical carbon dioxide method.

    PubMed

    Wagner, Michael E; Spoth, Katherine A; Kourkoutis, Lena F; Rizvi, Syed S H

    2016-12-01

    Niosomes were prepared using a novel supercritical carbon dioxide based method to simultaneously encapsulate ferrous sulfate and vitamin D3 as hydrophilic and hydrophobic cargo, respectively. Vesicle particle size was determined to be bimodal with peak diameters of 1.44 ± 0.16 μm and 7.21 ± 0.64 μm, with the smaller peak comprising 98.8% of the total niosomal volume. Encapsulation efficiency of ferrous sulfate was 25.1 ± 0.2% and encapsulation efficiency of vitamin D3 was 95.9 ± 1.47%. Physical stability of the produced niosomes was assessed throughout a storage period of 21 days. Niosomes showed good physical stability at 20 °C, but storage at 4 °C showed an initial burst release, indicating possible rupture of the niosomal membrane. The Korsmeyer-Peppas equation was used to model the release of ferrous sulfate over time at both storage temperatures.

  12. Silymarin encapsulated poly(D,L-lactic-co-glycolic acid) nanoparticles: a prospective candidate for prostate cancer therapy.

    PubMed

    Snima, K S; Arunkumar, P; Jayakumar, R; Lakshmanan, Vinoth-Kumar

    2014-04-01

    Silymarin, a clinically proved hepato-protective herbal drug having significant anti-cancerous property towards prostate cancer, is inadequately utilized for cancer therapy due to its hydrophobic nature and poor bioavailability. In this work, we have developed silymarin Poly(D,L-lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) in order to improve the therapeutic efficacy of silymarin towards prostate cancer by single emulsion solvent evaporation technique. The prepared nanoparticles had an encapsulation efficiency of 60% and a loading efficiency of 13%. The silymarin-PLGA NPs (SNPs) characterization, using DLS and SEM analysis revealed its size as less than 300 nm. FT-IR analysis confirmed encapsulation of silymarin by the SNPs, whereas XRD and TGA proved amorphous nature of the SNPs. In vitro drug release study demonstrated a slow and sustained release of encapsulated drug from the SNPs in physiological conditions. The hemocompatibility of the SNPs was established by in vitro hemolysis and coagulation assays. In vitro cell viability studies revealed preferential toxicity of SNPs towards prostate cancer cells (PC-3) compared to normal cells (Vero) in a dose dependant way. Cell uptake studies using confocal microscopy confirmed internalization of the SNPs by PC-3 cells. Furthermore, in vitro cell migration assay showed a concentration and time dependent inhibitory effect of SNPs on PC-3 cell migration. Finally, flow-cytometry based apoptosis assay suggested induction of apoptosis mediated death in PC-3 cells by the SNPs. Overall, the prepared SNPs proved as a promising candidate for prostate cancer therapy.

  13. Preparation of hydrophobic coatings

    DOEpatents

    Branson, Eric D.; Shah, Pratik B.; Singh, Seema; Brinker, C. Jeffrey

    2009-02-03

    A method for preparing a hydrophobic coating by preparing a precursor sol comprising a metal alkoxide, a solvent, a basic catalyst, a fluoroalkyl compound and water, depositing the precursor sol as a film onto a surface, such as a substrate or a pipe, heating, the film and exposing the film to a hydrophobic silane compound to form a hydrophobic coating with a contact angle greater than approximately 150.degree.. The contact angle of the film can be controlled by exposure to ultraviolet radiation to reduce the contact angle and subsequent exposure to a hydrophobic silane compound to increase the contact angle.

  14. Recent advances in amphiphilic polymers for simultaneous delivery of hydrophobic and hydrophilic drugs.

    PubMed

    Martin, Chloe; Aibani, Noorjahan; Callan, John F; Callan, Bridgeen

    2016-01-01

    Nanomedicine has evolved with the use of biological compounds such as proteins, peptides and DNA. These hydrophilic and often highly charged compounds require a delivery system to allow effective transport and release at the site of action. These new biological therapeutics have not replaced the more traditional smaller molecule, but instead are working synergistically to the benefit of the end user. To that end, drug delivery systems are now required to encapsulate both larger hydrophilic compounds as well as the smaller and generally more hydrophobic compound. This review highlights the emerging role in drug delivery of amphiphilic polymers that by their very nature can associate with compounds of differing physicochemical properties, in particular the role of micelles, polymersomes and nanocapsules.

  15. Controlled Release from Core-Shell Nanoporous Silica Particles for Corrosion Inhibition of Aluminum Alloys

    DOE PAGES

    Jiang, Xingmao; Jiang, Ying-Bing; Liu, Nanguo; ...

    2011-01-01

    Ceriumore » m (Ce) corrosion inhibitors were encapsulated into hexagonally ordered nanoporous silica particles via single-step aerosol-assisted self-assembly. The core/shell structured particles are effective for corrosion inhibition of aluminum alloy AA2024-T3. Numerical simulation proved that the core-shell nanostructure delays the release process. The effective diffusion coefficient elucidated from release data for monodisperse particles in water was 1.0 × 10 − 14  m 2 s for Ce 3+ compared to 2.5 × 10 − 13  m 2 s for NaCl. The pore size, pore surface chemistry, and the inhibitor solubility are crucial factors for the application. Microporous hydrophobic particles encapsulating a less soluble corrosion inhibitor are desirable for long-term corrosion inhibition.« less

  16. Cell encapsulation via microtechnologies.

    PubMed

    Kang, AhRan; Park, JiSoo; Ju, Jongil; Jeong, Gi Seok; Lee, Sang-Hoon

    2014-03-01

    The encapsulation of living cells in a variety of soft polymers or hydrogels is important, particularly, for the rehabilitation of functional tissues capable of repairing or replacing damaged organs. Cellular encapsulation segregates cells from the surrounding tissue to protect the implanted cell from the recipient's immune system after transplantation. Diverse hydrogel membranes have been popularly used as encapsulating materials and permit the diffusion of gas, nutrients, wastes and therapeutic products smoothly. This review describes a variety of methods that have been developed to achieve cellular encapsulation using microscale platform. Microtechnologies have been adopted to precisely control the encapsulated cell number, size and shape of a cell-laden polymer structure. We provide a brief overview of recent microtechnology-based cell encapsulation methods, with a detailed description of the relevant processes. Finally, we discuss the current challenges and future directions likely to be taken by cell microencapsulation approaches toward tissue engineering and cell therapy applications.

  17. Germanium detector vacuum encapsulation

    NASA Technical Reports Server (NTRS)

    Madden, N. W.; Malone, D. F.; Pehl, R. H.; Cork, C. P.; Luke, P. N.; Landis, D. A.; Pollard, M. J.

    1991-01-01

    This paper describes an encapsulation technology that should significantly improve the viability of germanium gamma-ray detectors for a number of important applications. A specialized vacuum chamber has been constructed in which the detector and the encapsulating module are processed in high vacuum. Very high vacuum conductance is achieved within the valveless encapsulating module. The detector module is then sealed without breaking the chamber vacuum. The details of the vacuum chamber, valveless module, processing, and sealing method are presented.

  18. Solar cell encapsulation

    NASA Technical Reports Server (NTRS)

    Gupta, Amitava (Inventor); Ingham, John D. (Inventor); Yavrouian, Andre H. (Inventor)

    1983-01-01

    A polymer syrup for encapsulating solar cell assemblies. The syrup includes uncrosslinked poly(n-butyl)acrylate dissolved in n-butyl acrylate monomer. Preparation of the poly(n-butyl)acrylate and preparation of the polymer syrup is disclosed. Methods for applying the polymer syrup to solar cell assemblies as an encapsulating pottant are described. Also included is a method for solar cell construction utilizing the polymer syrup as a dual purpose adhesive and encapsulating material.

  19. Hybrid encapsulation structures based on β-carotene-loaded nanoliposomes within electrospun fibers.

    PubMed

    de Freitas Zômpero, Rafael Henrique; López-Rubio, Amparo; de Pinho, Samantha Cristina; Lagaron, José María; de la Torre, Lucimara Gaziola

    2015-10-01

    Hybrid encapsulation structures based on β-carotene-loaded nanoliposomes incorporated within the polymeric ultrathin fibers produced through electrospinning were developed to improve the photostability of the antioxidant. These novel materials were intended to incorporate β-carotene into water-based food formulations, overcoming the existing limitations associated with its hydrophobic character. Initially, both empty and antioxidant-loaded nanoliposomes were developed and incorporated into polyvinyl alcohol (PVOH) and polyethylene oxide (PEO) solutions. The changes in the solution properties were evaluated to determine their effects on the electrospinning processing. The mixed polymer solutions were subsequently electrospun to produce hybrid nanoliposome-loaded ultrathin fibers. FTIR analysis confirmed the presence of phospholipid molecules inside the electrospun fibers. These ultrathin fibers were evaluated regarding their morphology, diameter, internal β-carotene distribution and stability against UV irradiation. Liposomal release studies from the electrospun fibers were also undertaken, confirming the presence of the liposomal structures after dissolving the electrospun fibers in water.

  20. Biodegradable self-assembled PEG-PCL-PEG micelles for hydrophobic honokiol delivery: I. Preparation and characterization

    NASA Astrophysics Data System (ADS)

    Gong, ChangYang; Wei, XiaWei; Wang, XiuHong; Wang, YuJun; Guo, Gang; Mao, YongQiu; Luo, Feng; Qian, ZhiYong

    2010-05-01

    This study aims to develop self-assembled poly(ethylene glycol)-poly(ɛ-caprolactone)-poly(ethylene glycol) (PEG-PCL-PEG, PECE) micelles to encapsulate hydrophobic honokiol (HK) in order to overcome its poor water solubility and to meet the requirement of intravenous administration. Honokiol loaded micelles (HK-micelles) were prepared by self-assembly of PECE copolymer in aqueous solution, triggered by its amphiphilic characteristic assisted by ultrasonication without any organic solvents, surfactants and vigorous stirring. The particle size of the prepared HK-micelles measured by Malvern laser particle size analyzer were 58 nm, which is small enough to be a candidate for an intravenous drug delivery system. Furthermore, the HK-micelles could be lyophilized into powder without any adjuvant, and the re-dissolved HK-micelles are stable and homogeneous with particle size about 61 nm. Furthermore, the in vitro release profile showed a significant difference between the rapid release of free HK and the much slower and sustained release of HK-micelles. Moreover, the cytotoxicity results of blank micelles and HK-micelles showed that the PECE micelle was a safe carrier and the encapsulated HK retained its potent antitumor effect. In short, the HK-micelles were successfully prepared by an improved method and might be promising carriers for intravenous delivery of HK in cancer chemotherapy, being effective, stable, safe (organic solvent and surfactant free), and easy to produce and scale up.

  1. Stability of lipid encapsulated ferulic acid particles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Encapsulation of bioactive compounds by a solid lipid matrix provides stability and a mechanism for controlled release in formulated products. Phenolic compounds exhibit antioxidant and antimicrobial activities and have applications as functional food and feed additives. Ferulic acid, a common pheno...

  2. Methodology for Evaluating Encapsulated Beneficial Uses of Coal Combustion Residuals

    EPA Pesticide Factsheets

    The primary purpose of this document is to present an evaluation methodology developed by the EPA for making determinations about environmental releases from encapsulated products containing coal combustion residuals.

  3. Influence of elastomeric seal plate surface chemistry on interface integrity in biofouling-prone systems: Evaluation of a hydrophobic "easy-release" silicone-epoxy coating for maintaining water seal integrity of a sliding neoprene/steel interface

    NASA Astrophysics Data System (ADS)

    Andolina, Vincent L.

    The scientific hypothesis of this work is that modulation of the properties of hard materials to exhibit abrasion-reducing and low-energy surfaces will extend the functional lifetimes of elastomeric seals pressed against them in abrasive underwater systems. The initial motivation of this work was to correct a problem noted in the leaking of seals at major hydropower generating facilities subject to fouling by abrasive zebra mussel shells and extensive corrosion. Similar biofouling-influenced problems can develop at seals in medical devices and appliances from regulators in anesthetic machines and SCUBA diving oxygen supply units to autoclave door seals, injection syringe gaskets, medical pumps, drug delivery components, and feeding devices, as well as in food handling equipment like pasteurizers and transfer lines. Maritime and many other heavy industrial seal interfaces could also benefit from this coating system. Little prior work has been done to elucidate the relationship of seal plate surface properties to the friction and wear of elastomeric seals during sliding contacts of these articulating materials, or to examine the secondary influence of mineralized debris within the contacting interfaces. This investigation utilized the seal materials relevant to the hydropower application---neoprene elastomer against carbon steel---with and without the application of a silicone-epoxy coating (WearlonRTM 2020.98) selected for its wear-resistance, hydrophobicity, and "easy-release" capabilities against biological fouling debris present in actual field use. Analytical techniques applied to these materials before and after wear-producing processes included comprehensive Contact Angle measurements for Critical Surface Tension (CA-CST) determination, Scanning Electron Microscopic inspections, together with Energy Dispersive X-ray Spectroscopy (SEM-EDS) and X-Ray Fluorescence (XRF) measurements for determination of surface texture and inorganic composition, Multiple

  4. Hyperbranched Polyester Hydrogels with Controlled Drug Release and Cell Adhesion Properties

    PubMed Central

    Zhang, Hongbin; Patel, Alpesh; Gaharwar, Akhilesh K.; Mihaila, Silvia M.; Iviglia, Giorgio; Mukundan, Shilpaa; Bae, Hojae; Yang, Huai; Khademhosseini, Ali

    2013-01-01

    Hyperbranched polyesters (HPE) have a high efficiency to encapsulate bioactive agents, including drugs, genes and proteins, due to their globe-like nanostructure. However, the use of these highly branched polymeric systems for tissue engineering applications has not been broadly investigated. Here, we report synthesis and characterization of photocrosslinkable HPE hydrogels with sustained drug release characteristics for cellular therapies. These HPE can encapsulate hydrophobic drug molecules within the HPE cavities, due to the presence of hydrophobic inner structure that is otherwise difficult to achieve in conventional hydrogels. The functionalization of HPE with photocrosslinkable acrylate moieties renders the formation of hydrogels with highly porous interconnected structure, and mechanically tough network. The compressive modulus of HPE hydrogels was tunable by changing the crosslinking density. The feasibility of using these HPE networks for cellular therapies was investigated by evaluating cell adhesion, spreading and proliferation on hydrogel surface. Highly crosslinked and mechanically stiff HPE hydrogels have higher cell adhesion, spreading, proliferation compared to soft and complaint HPE hydrogels. Overall, we showed that hydrogels made from HPE could be used for biomedical applications that require control cell adhesion and control release of hydrophobic clues. PMID:23394067

  5. Encapsulation Thermogenic Preadipocytes for Transplantation into Adipose Tissue Depots

    PubMed Central

    Xu, Lu; Shen, Qiwen; Mao, Zhongqi; Lee, L. James; Ziouzenkova, Ouliana

    2015-01-01

    Cell encapsulation was developed to entrap viable cells within semi-permeable membranes. The engrafted encapsulated cells can exchange low molecular weight metabolites in tissues of the treated host to achieve long-term survival. The semipermeable membrane allows engrafted encapsulated cells to avoid rejection by the immune system. The encapsulation procedure was designed to enable a controlled release of bioactive compounds, such as insulin, other hormones, and cytokines. Here we describe a method for encapsulation of catabolic cells, which consume lipids for heat production and energy dissipation (thermogenesis) in the intra-abdominal adipose tissue of obese mice. Encapsulation of thermogenic catabolic cells may be potentially applicable to the prevention and treatment of obesity and type 2 diabetes. Another potential application of catabolic cells may include detoxification from alcohols or other toxic metabolites and environmental pollutants. PMID:26066392

  6. Fluoroalkyl and alkyl chains have similar hydrophobicities in binding to the "hydrophobic wall" of carbonic anhydrase.

    PubMed

    Mecinović, Jasmin; Snyder, Phillip W; Mirica, Katherine A; Bai, Serena; Mack, Eric T; Kwant, Richard L; Moustakas, Demetri T; Héroux, Annie; Whitesides, George M

    2011-09-07

    The hydrophobic effect, the free-energetically favorable association of nonpolar solutes in water, makes a dominant contribution to binding of many systems of ligands and proteins. The objective of this study was to examine the hydrophobic effect in biomolecular recognition using two chemically different but structurally similar hydrophobic groups, aliphatic hydrocarbons and aliphatic fluorocarbons, and to determine whether the hydrophobicity of the two groups could be distinguished by thermodynamic and biostructural analysis. This paper uses isothermal titration calorimetry (ITC) to examine the thermodynamics of binding of benzenesulfonamides substituted in the para position with alkyl and fluoroalkyl chains (H(2)NSO(2)C(6)H(4)-CONHCH(2)(CX(2))(n)CX(3), n = 0-4, X = H, F) to human carbonic anhydrase II (HCA II). Both alkyl and fluoroalkyl substituents contribute favorably to the enthalpy and the entropy of binding; these contributions increase as the length of chain of the hydrophobic substituent increases. Crystallography of the protein-ligand complexes indicates that the benzenesulfonamide groups of all ligands examined bind with similar geometry, that the tail groups associate with the hydrophobic wall of HCA II (which is made up of the side chains of residues Phe131, Val135, Pro202, and Leu204), and that the structure of the protein is indistinguishable for all but one of the complexes (the longest member of the fluoroalkyl series). Analysis of the thermodynamics of binding as a function of structure is compatible with the hypothesis that hydrophobic binding of both alkyl and fluoroalkyl chains to hydrophobic surface of carbonic anhydrase is due primarily to the release of nonoptimally hydrogen-bonded water molecules that hydrate the binding cavity (including the hydrophobic wall) of HCA II and to the release of water molecules that surround the hydrophobic chain of the ligands. This study defines the balance of enthalpic and entropic contributions to the

  7. SEQUESTRATION OF HYDROPHOBIC ORGANIC CONTAMINANTS BY GEOSORBENTS. (R822626)

    EPA Science Inventory

    The chemical interactions of hydrophobic organic contaminants (HOCs) with soils and sediments (geosorbents) may result in strong binding and slow subsequent release rates that significantly affect remediation rates and endpoints. The underlying physical and chemical phenomena ...

  8. Temperature responsive hydroxypropyl cellulose for encapsulation

    SciTech Connect

    Heitfeld, Kevin A.; Guo, Tingtai; Yang, George; Schaefer, Dale W.

    2009-08-26

    This work focuses on the use of temperature responsive gels (TRGs) (polymeric hydrogels with a large temperature-dependent change in volume) for flavor retention at cooking temperatures. Specifically, we have studied a gel with a lower critical solution temperature (LCST) that swells at low temperatures and collapses at high temperatures. In the collapsed state, the polymer acts as a transport barrier, keeping the volatile flavors inside. We have successfully synthesized a cellulose gel that exhibits this volume change and have encapsulated an oil phase inside the gel. The flavor-loaded encapsulated oil exhibited an increased release time when compared to similar gelatin capsules.

  9. Electrospun chitosan microspheres for complete encapsulation of anionic proteins: controlling particle size and encapsulation efficiency.

    PubMed

    Choi, Ji Suk; Kim, Younghee; Kang, Jihyun; Jeong, Seo Young; Yoo, Hyuk Sang

    2013-06-01

    Electrospinning was employed to fabricate chitosan microspheres by a single-step encapsulation of proteins without organic solvents. Chitosan in acetic acid was electrospun toward a grounded sodium carbonate solution at various electric potential and feeding rates. Electrospun microspheres became insoluble and solidified in the sodium carbonate solution by neutralization of chitosan acetate. When the freeze-dried microspheres were examined by scanning electron microscopy, the small particle size was obtained at higher voltages. This is explained by the chitosan droplet size at the electrospinning needle was clearly controllable by the electric potential. The recovery yield of chitosan microspheres was dependent on the concentration of chitosan solution due to the viscosity is the major factor affecting formation of chitosan droplet during curling of the electrospinning jets. For protein encapsulation, fluorescently labeled bovine serum albumin (BSA) was codissolved with chitosan in the solution and electrospun. At higher concentration of sodium carbonate solution and longer solidification time in the solution, the encapsulation efficiency of the protein was confirmed to be significantly high. The high encapsulation efficiency was achievable by instant solidification of microspheres and electrostatic interactions between chitosan and BSA. Release profiles of BSA from the microspheres showed that the protein release was faster in acidic solution due to dissolution of chitosan. Reversed-phase chromatography of the released fractions confirmed that exposure of BSA to acidic solution during the electrospinning did not result in structural changes of the encapsulated protein.

  10. Strategies for encapsulation of small hydrophilic and amphiphilic drugs in PLGA microspheres: State-of-the-art and challenges.

    PubMed

    Ramazani, Farshad; Chen, Weiluan; van Nostrum, Cornelis F; Storm, Gert; Kiessling, Fabian; Lammers, Twan; Hennink, Wim E; Kok, Robbert J

    2016-02-29

    Poly(lactide-co-glycolide) (PLGA) microspheres are efficient delivery systems for controlled release of low molecular weight drugs as well as therapeutic macromolecules. The most common microencapsulation methods are based on emulsification procedures, in which emulsified droplets of polymer and drug solidify into microspheres when the solvent is extracted from the polymeric phase. Although high encapsulation efficiencies have been reported for hydrophobic small molecules, encapsulation of hydrophilic and/or amphiphilic small molecules is challenging due to the partitioning of drug from the polymeric phase into the external phase before solidification of the particles. This review addresses formulation-related aspects for efficient encapsulation of small hydrophilic/amphiphilic molecules into PLGA microspheres using conventional emulsification methods (e.g., oil/water, water/oil/water, solid/oil/water, water/oil/oil) and highlights novel emulsification technologies such as microfluidics, membrane emulsification and other techniques including spray drying and inkjet printing. Collectively, these novel microencapsulation technologies afford production of this type of drug loaded microspheres in a robust and well controlled manner.

  11. Encapsulation of honokiol into self-assembled pectin nanoparticles for drug delivery to HepG2 cells.

    PubMed

    Zhang, Yuxia; Chen, Tong; Yuan, Pei; Tian, Rui; Hu, Wenjing; Tang, Yalan; Jia, Yuntao; Zhang, Liangke

    2015-11-20

    Self-assembled pectin nanoparticles was prepared and evaluated for delivering the hydrophobic drug, honokiol (HK), to HepG2 cells. These hydrophobic drug-loaded nanoparticles were developed without using any surfactant and organic solvent. Hydroxypropyl-β-cyclodextrin (HCD) was used to fabricate an inclusion complex with HK (HKHCD) to increase the solubility of the drug and thus facilitate its encapsulation and dispersion in the pectin nanoparticles. Investigation of the in vitro release indicated that the drug-loaded nanoparticles exhibited a higher drug release rate than free honokiol and an effective sustained-release. Cytotoxicity, cell apoptosis and cellular uptake studies further confirmed that the pectin nanoparticles with galactose residues generated higher cytotoxicity than free honokiol on HepG2 cells which highly expressed asialoglycoprotein receptors (ASGR). Nevertheless, these findings were not observed in ASGR-negative A549 cells under similar condition. Therefore, pectin nanoparticles demonstrated a specific active targeting ability to ASGR-positive HepG2 cells and could be used as a potential drug carrier for treatment of liver-related tumors.

  12. Ultrasonic encapsulation - A review.

    PubMed

    Leong, Thomas S H; Martin, Gregory J O; Ashokkumar, Muthupandian

    2017-03-01

    Encapsulation of materials in particles dispersed in water has many applications in nutritional foods, imaging, energy production and therapeutic/diagnostic medicine. Ultrasonic technology has been proven effective at creating encapsulating particles and droplets with specific physical and functional properties. Examples include highly stable emulsions, functional polymeric particles with environmental sensitivity, and microspheres for encapsulating drugs for targeted delivery. This article provides an overview of the primary mechanisms arising from ultrasonics responsible for the formation of these materials, highlighting examples that show promise particularly in the development of foods and bioproducts.

  13. On-demand microfluidic droplet manipulation using hydrophobic ferrofluid as a continuous-phase.

    PubMed

    Zhang, Kai; Liang, Qionglin; Ai, Xiaoni; Hu, Ping; Wang, Yiming; Luo, Guoan

    2011-04-07

    Multiple essential microdroplet operation units, including splitting, dispensing, oil-phase exchange, trapping, release and demulsification, were successfully implemented by combining hydrophobic ferrofluid with microfluidic chips.

  14. Hydrophobic Gentamicin-Loaded Nanoparticles Are Effective against Brucella melitensis Infection in Mice

    PubMed Central

    Imbuluzqueta, Edurne; Gamazo, Carlos; Lana, Hugo; Campanero, Miguel Ángel; Salas, David; Gil, Ana Gloria; Elizondo, Elisa; Ventosa, Nora; Veciana, Jaume

    2013-01-01

    The clinical management of human brucellosis is still challenging and demands in vitro active antibiotics capable of targeting the pathogen-harboring intracellular compartments. A sustained release of the antibiotic at the site of infection would make it possible to reduce the number of required doses and thus the treatment-associated toxicity. In this study, a hydrophobically modified gentamicin, gentamicin-AOT [AOT is bis(2-ethylhexyl) sulfosuccinate sodium salt], was either microstructured or encapsulated in poly(lactic-co-glycolic acid) (PLGA) nanoparticles. The efficacy of the formulations developed was studied both in vitro and in vivo. Gentamicin formulations reduced Brucella infection in experimentally infected THP-1 monocytes (>2-log10 unit reduction) when using clinically relevant concentrations (18 mg/liter). Moreover, in vivo studies demonstrated that gentamicin-AOT-loaded nanoparticles efficiently targeted the drug both to the liver and the spleen and maintained an antibiotic therapeutic concentration for up to 4 days in both organs. This resulted in an improved efficacy of the antibiotic in experimentally infected mice. Thus, while 14 doses of free gentamicin did not alter the course of the infection, only 4 doses of gentamicin-AOT-loaded nanoparticles reduced the splenic infection by 3.23 logs and eliminated it from 50% of the infected mice with no evidence of adverse toxic effects. These results strongly suggest that PLGA nanoparticles containing chemically modified hydrophobic gentamicin may be a promising alternative for the treatment of human brucellosis. PMID:23650167

  15. Double emulsion solvent evaporation techniques used for drug encapsulation.

    PubMed

    Iqbal, Muhammad; Zafar, Nadiah; Fessi, Hatem; Elaissari, Abdelhamid

    2015-12-30

    Double emulsions are complex systems, also called "emulsions of emulsions", in which the droplets of the dispersed phase contain one or more types of smaller dispersed droplets themselves. Double emulsions have the potential for encapsulation of both hydrophobic as well as hydrophilic drugs, cosmetics, foods and other high value products. Techniques based on double emulsions are commonly used for the encapsulation of hydrophilic molecules, which suffer from low encapsulation efficiency because of rapid drug partitioning into the external aqueous phase when using single emulsions. The main issue when using double emulsions is their production in a well-controlled manner, with homogeneous droplet size by optimizing different process variables. In this review special attention has been paid to the application of double emulsion techniques for the encapsulation of various hydrophilic and hydrophobic anticancer drugs, anti-inflammatory drugs, antibiotic drugs, proteins and amino acids and their applications in theranostics. Moreover, the optimized ratio of the different phases and other process parameters of double emulsions are discussed. Finally, the results published regarding various types of solvents, stabilizers and polymers used for the encapsulation of several active substances via double emulsion processes are reported.

  16. Cells as factories for humanized encapsulation.

    PubMed

    Mao, Zhengwei; Cartier, Regis; Hohl, Anja; Farinacci, Maura; Dorhoi, Anca; Nguyen, Tich-Lam; Mulvaney, Paul; Ralston, John; Kaufmann, Stefan H E; Möhwald, Helmuth; Wang, Dayang

    2011-05-11

    Biocompatibility is of paramount importance for drug delivery, tumor labeling, and in vivo application of nanoscale bioprobes. Until now, biocompatible surface processing has typically relied on PEGylation and other surface coatings, which, however, cannot minimize clearance by macrophages or the renal system but may also increase the risk of chemical side effects. Cell membranes provide a generic and far more natural approach to the challenges of encapsulation and delivery in vivo. Here we harness for the first time living cells as "factories" to manufacture cell membrane capsules for encapsulation and delivery of drugs, nanoparticles, and other biolabels. Furthermore, we demonstrate that the built-in protein channels of the new capsules can be utilized for controlled release of encapsulated reagents.

  17. The encapsulation of an amphiphile into polystyrene microspheres of narrow size distribution.

    PubMed

    Pellach, Michal; Margel, Shlomo

    2011-12-06

    Encapsulation of compounds into nano- or microsized organic particles of narrow size distribution is of increasing importance in fields of advanced imaging and diagnostic techniques and drug delivery systems. The main technology currently used for encapsulation of molecules within uniform template particles while retaining their size distribution is based on particle swelling methodology, involving penetration of emulsion droplets into the particles. The swelling method, however, is efficient for encapsulation only of hydrophobic compounds within hydrophobic template particles. In order to be encapsulated, the molecules must favor the hydrophobic phase of an organic/aqueous biphasic system, which is not easily achieved for molecules of amphiphilic character.The following work overcomes this difficulty by presenting a new method for encapsulation of amphiphilic molecules within uniform hydrophobic particles. We use hydrogen bonding of acid and base, combined with a pseudo salting out effect, for the entrapment of the amphiphile in the organic phase of a biphasic system. Following the entrapment in the organic phase, we demonstrated, using fluorescein and (antibiotic) tetracycline as model molecules, that the swelling method usually used only for hydrophobes can be expanded and applied to amphiphilic molecules.

  18. Development of Cy5.5-Labeled Hydrophobically Modified Glycol Chitosan Nanoparticles for Protein Delivery

    NASA Astrophysics Data System (ADS)

    Chin, Amanda

    , Cy5.5, was used to label the glycol chitosan nanoparticles to enable the noninvasive imaging of living cells. A model protein (bovine serum albumin, BSA) was encapsulated within the glycol chitosan nanoparticles, and its loading efficiency was calculated to be 88%. Release profile of the BSA showed that only 4% (cumulative mass) was achieved by day 7. Minimal cytotoxicity was observed after delivery of the chitosan vehicle alone. To test degradation kinetics, the BSA-loaded nanoparticles were incubated with lysozyme for up to 3 hours and were applied in SDS-PAGE to determine if enzyme-catalyzed degradation triggered premature release of the encapsulated protein. Confocal laser scanning microscopy was used to visualize the spatiotemporal distribution of FITC-BSA-loaded glycol chitosan nanoparticles after delivery to the rat osteosarcoma (ROS17/2.8) and mouse calvaria-derived (MC3T3-E1) cells.

  19. Encapsulation with structured triglycerides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lipids provide excellent materials to encapsulate bioactive compounds for food and pharmaceutical applications. Lipids are renewable, biodegradable, and easily modified to provide additional chemical functionality. The use of structured lipids that have been modified with photoactive properties are ...

  20. Hydrophobic properties of a fluoropolymer film covering gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Safonov, A. I.; Starinskii, S. V.; Sulyaeva, V. S.; Timoshenko, N. I.; Gatapova, E. Ya.

    2017-02-01

    Thin fluoropolymer films were deposited on gold nanoparticles with different diameters by the hot-wire chemical-vapor-deposition method. The contact angles of wetting of samples with water and CH2I2 were determined using a DSA-100 KRUSS device, and the free surface energy of the coated surface was also determined. The influence of encapsulated gold particles on the hydrophobic properties of the obtained coatings was determined.

  1. Design and construction of polymerized-chitosan coated Fe3O4 magnetic nanoparticles and its application for hydrophobic drug delivery.

    PubMed

    Ding, Yongling; Shen, Shirley Z; Sun, Huadong; Sun, Kangning; Liu, Futian; Qi, Yushi; Yan, Jun

    2015-03-01

    In this study, a novel hydrogel, chitosan (CS) crosslinked carboxymethyl-β-cyclodextrin (CM-β-CD) polymer modified Fe3O4 magnetic nanoparticles was synthesized for delivering hydrophobic anticancer drug 5-fluorouracil (CS-CDpoly-MNPs). Carboxymethyl-β-cyclodextrin being grafted on the Fe3O4 nanoparticles (CDpoly-MNPs) contributed to an enhancement of adsorption capacities because of the inclusion abilities of its hydrophobic cavity with insoluble anticancer drugs through host-guest interactions. Experimental results indicated that the amounts of crosslinking agent and bonding times played a crucial role in determining morphology features of the hybrid nanocarriers. The nanocarriers exhibited a high loading efficiency (44.7±1.8%) with a high saturation magnetization of 43.8emu/g. UV-Vis spectroscopy results showed that anticancer drug 5-fluorouracil (5-Fu) could be successfully included into the cavities of the covalently linked CDpoly-MNPs. Moreover, the free carboxymethyl groups could enhance the bonding interactions between the covalently linked CDpoly-MNPs and anticancer drugs. In vitro release studies revealed that the release behaviors of CS-CDpoly-MNPs carriers were pH dependent and demonstrated a swelling and diffusion controlled release. A lower pH value led to swelling effect and electrostatic repulsion contributing to the protonation amine impact of NH3(+), and thus resulted in a higher release rate of 5-Fu. The mechanism of 5-Fu encapsulated into the magnetic chitosan nanoparticles was tentatively proposed.

  2. Reversible Hydrophobic Ion-Paring Complex Strategy to Minimize Acylation of Octreotide during Long-Term Delivery from PLGA Microparticles

    PubMed Central

    Vaishya, Ravi D.; Mandal, Abhirup; Gokulgandhi, Mitan; Patel, Sulabh; Mitra, Ashim K.

    2015-01-01

    Acylation of peptide has been reported for a number of peptides and proteins during release from polymers comprising of lactide and glycolide. We hypothesize that reversible hydrophobic ion-pairing (HIP) complex may minimize octreotide acylation during release. Sodium dodecyl sulfate (SDS), dextran sulfate A (DSA, Mw 9–20kDa) and dextran sulfate B (DSB, Mw 36–50kDa) were selected as ion-pairing agents to prepare reversible HIP complex with octreotide. Complexation efficiency was optimized with respect to the mole ratio of ion-pairing agent to octreotide to achieve 100% complexation of octreotide. Dissociation studies suggested that DSA-octreotide and DSB-octreotide complexes dissociate completely at physiological pH in presence of counter ions unlike SDS-octreotide complex. DSA-octreotide and DSB-octreotide complex encapsulated PLGA microparticles (DSAMPs and DSBMPs) were prepared using the S/O/W emulsion method. Entrapment efficiencies for DSAMPs and DSBMPs were 74.7±8.4% and 81.7±6.3%, respectively. In vitro release of octreotide was performed by suspending MPs in gel. A large fraction of peptide was released in chemically intact form and <7% was acylated from DSAMPs and DSBMPs in gel over 55 days. Therefore, HIP complexation could be a viable strategy to minimize acylation of peptides and proteins during extended release from lactide and glycolide based polymers. PMID:25940041

  3. Encapsulated particles attached on electrospun fibers by in situ combination of electrospinning and coaxial electrospraying.

    PubMed

    Bae, Harim; Lee, Jonghwi

    2014-10-01

    Electrohydrodynamic jetting has been widely used as a promising strategy for the development of functionalized scaffolds to mimic natural extracellular matrix. The current electrospun scaffolds achieve functionality through additional mechanical or chemical treatments, and their life-time depends on fiber degradation. An innovative in situ approach used to attach core-shell poly(D,L-lactide-co-glycolide) (PLGA) particles on fibrous mats is described here. This particle/fiber composite was prepared by electrohydrodynamic jetting of countercharged nozzles (EJC) based on neutralization between electrospun nanofibers and coaxial electrosprayed droplets. The PLGA particles were successfully attached onto both water-soluble polyvinylpyrrolidone and hydrophobic poly(L-lactide-co-D,L-lactide). The resulting release rates of encapsulated model compounds were independently controlled by fiber degradation. Encapsulation efficiency and the dimensions of particles and fibers were easily engineered by changing solvents. The particle/fiber composite prepared by EJC could be a superior material for developing future biomaterials with architectured biological and mechanical properties.

  4. A biodegradable hydrogel system containing curcumin encapsulated in micelles for cutaneous wound healing.

    PubMed

    Gong, ChangYang; Wu, QinJie; Wang, YuJun; Zhang, DouDou; Luo, Feng; Zhao, Xia; Wei, YuQuan; Qian, ZhiYong

    2013-09-01

    A biodegradable in situ gel-forming controlled drug delivery system composed of curcumin loaded micelles and thermosensitive hydrogel was prepared and applied for cutaneous wound repair. Curcumin is believed to be a potent antioxidant and anti-inflammatory agent. Due to its high hydrophobicity, curcumin was encapsulated in polymeric micelles (Cur-M) with high drug loading and encapsulation efficiency. Cur-M loaded thermosensitive hydrogel (Cur-M-H) was prepared and applied as wound dressing to enhance the cutaneous wound healing. Cur-M-H was a free-flowing sol at ambient temperature and instantly converted into a non-flowing gel at body temperature. In vitro studies suggested that Cur-M-H exhibited well tissue adhesiveness and could release curcumin in an extended period. Furthermore, linear incision and full-thickness excision wound models were employed to evaluate the in vivo wound healing activity of Cur-M-H. In incision model, Cur-M-H-treated group showed higher tensile strength and thicker epidermis. In excision model, Cur-M-H group exhibited enhancement of wound closure. Besides, in both models, Cur-M-H-treated groups showed higher collagen content, better granulation, higher wound maturity, dramatic decrease in superoxide dismutase, and slight increase in catalase. Histopathologic examination also implied that Cur-M-H could enhance cutaneous wound repair. In conclusion, biodegradable Cur-M-H composite might have great application for wound healing.

  5. [Supramolecular nanomachines for sugar responsive insulin release systems].

    PubMed

    Egawa, Yuya; Seki, Toshinobu

    2013-01-01

    Cyclodextrins (CyDs) are cyclic oligosaccharides composed of 6, 7, or 8 glucopyranoside units, named α-, β-, or γ-CD, respectively. CyDs consist of a hydrophobic cavity in which hydrophobic molecules are encapsulated to form an inclusion complex. CyDs are widely used in pharmaceutical applications because they function as nanocapsules to improve the stability and solubility of drugs. Recently, CyDs have attracted much attention as for use as components of supramolecular nanostructures that are particularly attractive because of their unique structures. We modified CyDs with phenylboronic acid (PBA), which forms covalent bonds with the diol groups of sugar, and used the resulting PBA-CyDs to prepare supramolecular nanomachines that undergo structural transformation in the presence of a chemical signal in the form of a sugar. PBA-α-CyD formed a supramolecular polymer that showed consecutive intermolecular interactions between PBA and the cavity of another PBA-α-CyD, whereas PBA-β-CyD formed head-to-head dimers in which one PBA moiety was encapsulated in the other. These supramolecular nanostructures disintegrated in the presence of sugars because of the structural change in the PBA moiety and loss of the driving force of the supramolecular assembly. These features of disintegration can be potentially used to prepare a nanomachine that would act as a sugar-responsive insulin release system. Currently, we are studying sugar-responsive nanomachines composed of PEGylated insulin and PBA-γ-CyD.

  6. Hydrophobic, Porous Battery Boxes

    NASA Technical Reports Server (NTRS)

    Bragg, Bobby J.; Casey, John E., Jr.

    1995-01-01

    Boxes made of porous, hydrophobic polymers developed to contain aqueous potassium hydroxide electrolyte solutions of zinc/air batteries while allowing air to diffuse in as needed for operation. Used on other types of batteries for in-cabin use in which electrolytes aqueous and from which gases generated during operation must be vented without allowing electrolytes to leak out.

  7. Design documentation: Krypton encapsulation preconceptual design

    SciTech Connect

    Knecht, D.A.

    1994-10-01

    US EPA regulations limit the release of Krypton-85 to the environment from commercial facilities after January 1, 1983. In order to comply with these regulations, Krypton-85, which would be released during reprocessing of commercial nuclear fuel, must be collected and stored. Technology currently exists for separation of krypton from other inert gases, and for its storage as a compressed gas in steel cylinders. The requirements, which would be imposed for 100-year storage of Krypton-85, have led to development of processes for encapsulation of krypton within a stable solid matrix. The objective of this effort was to provide preconceptual engineering designs, technical evaluations, and life cycle costing data for comparison of two alternate candidate processes for encapsulation of Krypton-85. This report has been prepared by The Ralph M. Parsons Company for the US Department of Energy.

  8. Electrospun biodegradable nanofiber nonwovens for controlled release of proteins.

    PubMed

    Maretschek, Sascha; Greiner, Andreas; Kissel, Thomas

    2008-04-21

    Electrospinning of emulsions composed of an organic poly(l-lactide) solution and an aqueous protein solution yielded protein containing nanofiber nonwovens (NNs) having a mean fiber diameter of approximately 350 nm. Cytochrome C was chosen as a hydrophilic model protein for encapsulation. SEM imaging and gas adsorption measurements were carried out to determine morphology and surface characteristics of the different nanofiber nonwovens. Transmission electron microscopy was used to clarify the localization of the protein within the NN. PLLA NNs exhibited a highly hydrophobic surface which led to a slow wetting. It was shown that the protein release was dependent on the surface tension of the release medium. Electrospinning of emulsions consisting of an organic solution of PLLA and an aqueous solution of hydrophilic polymers yielded fibers composed of a polymer blend. The resulting NNs exhibited a less hydrophobic surface, which gave us the opportunity to tailor the release profile via this technology. Furthermore it was investigated how the addition of different amounts of hydrophilic polymer to the aqueous phase influenced the morphology of the resulting NNs.

  9. Amphiphilic chitosan derivatives-based liposomes: synthesis, development, and properties as a carrier for sustained release of salidroside.

    PubMed

    Peng, Hailong; Li, Wenjian; Ning, Fangjian; Yao, Lihua; Luo, Mei; Zhu, Xuemei; Zhao, Qiang; Xiong, Hua

    2014-01-22

    A novel amphiphilic chitosan derivative of N,N-dimethylhexadecyl carboxymethyl chitosan (DCMCs) was synthesized. The structure of DCMCs was confirmed via FT-IR and (1)H NMR, and the critical micelle concentration (CMC) was investigated by fluorescence spectroscopy. The results indicated that DCMCs has hydrophilic carboxyl and hydrophobic methylene groups and the CMC value was 23.00 mg·L(-1). The polymeric liposomes (DCMCs/cholesterol liposomes, DC-Ls) were developed, and its properties were evaluated. The DC-Ls exhibited multilamellar spheres with positive charge (+73.30 mV), narrow size distribution (PDI = 0.277), and good crystal properties. Salidroside was first to encapsulate into DC-Ls. Compared with traditional liposomes (phosphatidylcholine/cholesterol liposome, PC-Ls), DC-Ls showed higher encapsulation efficiency (82.46%) and slower sustained release rate. The in vitro salidroside release from DC-Ls was governed by two distinct stages (i.e., burst release and sustained release) and was dependent on the pH of the release medium. The case II transport and case I Fichian diffusion were the main release mechanisms for the entire release procedure. These results indicated that DC-Ls may be a potential carrier system for the production of functional foods that contain salidroside or other bioactive food ingredients.

  10. Electrospun micelles/drug-loaded nanofibers for time-programmed multi-agent release.

    PubMed

    Yang, Guang; Wang, Jie; Li, Long; Ding, Shan; Zhou, Shaobing

    2014-07-01

    Combined therapy with drugs of different therapeutic effects is an effective way in the treatment of diseases and damaged tissues or organs. However, how to precisely control the release order, dose, and time of the drugs using vehicles is still a challenging task. In this work, for the first time, a study to develop a nanoscale multi-drug delivery system based on polymer micelle-enriched electrospun nanofibers is presented. The multi-drug delivery system is achieved, first, by the fabrication of hydrophobic curcumin encapsulated micelles assembled from biodegradable mPEG-PCL copolymer and, second, by the blending of the micelle powder with hydrophilic doxorubicin in polyvinyl alcohol solution, followed by simply electrospinning this combination. Due to the different domains of the two drugs within the nanofibers, the release behaviors show a time-programmed release, and can be temporally and spatially regulated. In vitro tumor cell inhibition assay indicates that the delivery system possesses great potential in cancer chemotherapy.

  11. Diffusion and Controlled Localized Drug Release from an Injectable Solid Self-Assembling Peptide Hydrogel

    NASA Astrophysics Data System (ADS)

    Sun, Jessie E. P.; Stewart, Brandon; Langhans, Sigrid; Stewart, Joel P.; Pochan, Darrin J.

    2014-03-01

    We use an injectable solid peptide hydrogel (first assembled into a solid hydrogel, can shear-thin flow and immediately reheal on cessation of shear) as a drug delivery vehicle for sustained and active drug release. The triggered intramolecular peptide folding into a beta-hairpin leads to intermolecular assmebly of the peptides into the entangled and branched nanofibrillar hydrogel network responsible for its advantageous rheological properties. The hydrogel is used to encapsulate a highly effective chemotherapeutic, vincristine, with hydrophobic behavior. We show that we are able to constantly maintain drug release in low but still potent concentrations after the shear-thinning injection process. Similarly, the mechanical and morphoogical properties of the gels remains identical after injection. Characterization of the hydrogel construct is through tritiated vincristine release, TEM, confocal microscopy, and in vitro methods.

  12. Review of encapsulation technologies

    SciTech Connect

    Shaulis, L.

    1996-09-01

    The use of encapsulation technology to produce a compliant waste form is an outgrowth from existing polymer industry technology and applications. During the past 12 years, the Department of Energy (DOE) has been researching the use of this technology to treat mixed wastes (i.e., containing hazardous and radioactive wastes). The two primary encapsulation techniques are microencapsulation and macroencapsulation. Microencapsulation is the thorough mixing of a binding agent with a powdered waste, such as incinerator ash. Macroencapsulation coats the surface of bulk wastes, such as lead debris. Cement, modified cement, and polyethylene are the binding agents which have been researched the most. Cement and modified cement have been the most commonly used binding agents to date. However, recent research conducted by DOE laboratories have shown that polyethylene is more durable and cost effective than cements. The compressive strength, leachability, resistance to chemical degradation, etc., of polyethylene is significantly greater than that of cement and modified cement. Because higher waste loads can be used with polyethylene encapsulant, the total cost of polyethylene encapsulation is significantly less costly than cement treatment. The only research lacking in the assessment of polyethylene encapsulation treatment for mixed wastes is pilot and full-scale testing with actual waste materials. To date, only simulated wastes have been tested. The Rocky Flats Environmental Technology Site had planned to conduct pilot studies using actual wastes during 1996. This experiment should provide similar results to the previous tests that used simulated wastes. If this hypothesis is validated as anticipated, it will be clear that polyethylene encapsulation should be pursued by DOE to produce compliant waste forms.

  13. Enhanced encapsulation of metoprolol tartrate with carbon nanotubes as adsorbent

    NASA Astrophysics Data System (ADS)

    Garala, Kevin; Patel, Jaydeep; Patel, Anjali; Dharamsi, Abhay

    2011-12-01

    A highly water-soluble antihypertensive drug, metoprolol tartrate (MT), was selected as a model drug for preparation of multi-walled carbon nanotubes (MWCNTs)-impregnated ethyl cellulose (EC) microspheres. The present investigation was aimed to increase encapsulation efficiency of MT with excellent adsorbent properties of MWCNTs. The unique surface area, stiffness, strength and resilience of MWCNTs have drawn much anticipation as carrier for highly water-soluble drugs. Carbon nanotubes drug adsorbate (MWCNTs:MT)-loaded EC microspheres were further optimized by the central composite design of the experiment. The effects of independent variables (MWCNTs:MT and EC:adsorbate) were evaluated on responses like entrapment efficiency (EE) and t 50 (time required for 50% drug release). The optimized batch was compared with drug alone EC microspheres. The results revealed high degree of improvement in encapsulation efficiency for MWCNTs:MT-loaded EC microspheres. In vitro drug release study exhibited complete release form drug alone microspheres within 15 h, while by the same time only 50-60% drug was released for MWCNTs-impregnated EC microspheres. The optimized batch was further characterized by various instrumental analyses such as scanning electron microscopy, powder X-ray diffraction and differential scanning calorimetry. The results endorse encapsulation of MWCNTs:MT adsorbate inside the matrix of EC microspheres, which might have resulted in enhanced encapsulation and sustained effect of MT. Hence, MWCNTs can be utilized as novel carriers for extended drug release and enhanced encapsulation of highly water-soluble drug, MT.

  14. Encapsulation materials research

    NASA Technical Reports Server (NTRS)

    Willis, P. B.

    1984-01-01

    Encapsulation materials for solar cells were investigated. The different phases consisted of: (1) identification and development of low cost module encapsulation materials; (2) materials reliability examination; and (3) process sensitivity and process development. It is found that outdoor photothermal aging devices (OPT) are the best accelerated aging methods, simulate worst case field conditions, evaluate formulation and module performance and have a possibility for life assessment. Outdoor metallic copper exposure should be avoided, self priming formulations have good storage stability, stabilizers enhance performance, and soil resistance treatment is still effective.

  15. Stretchability of encapsulated electronics

    NASA Astrophysics Data System (ADS)

    Wu, J.; Liu, Z. J.; Song, J.; Huang, Y.; Hwang, K.-C.; Zhang, Y. W.; Rogers, J. A.

    2011-08-01

    Stretchable and flexible electronics offer the performance of conventional wafer-based systems but can be stretched like a rubber band, twisted like a rope, and bent over a pencil. Such a technology offers new application opportunities, in areas of surgical and diagnostic implements that naturally integrate with the human body to provide advanced capabilities, to curvilinear devices such as hemispherical "eyeball" cameras. In practice, stretchable and flexible electronic systems require encapsulation layers to provide mechanical and environmental protection. This paper establishes a simple, analytical model for the optimal design of encapsulation.

  16. Hydrophobic sugar holograms

    NASA Astrophysics Data System (ADS)

    Mejias-Brizuela, N. Y.; Olivares-Pérez, A.; Páez-Trujillo, G.; Hernández-Garay, M. P.; Fontanilla-Urdaneta, R.; Fuentes-Tapia, I.

    2008-02-01

    The sugar matrix is used to record of phase holograms; it was modified with the purpose of obtaining a hydrophobic material to improve the stability of the registered image and to stimulate the photosensitivity of the sugar. The new material is formed by a sugar, pectin and vanillin dissolution. The diffraction efficiency parameter increases in comparison with only the sugar matrix, obtaining already of 10%.

  17. Encapsulation materials research

    NASA Technical Reports Server (NTRS)

    Willis, P.

    1985-01-01

    The successful use of outdoor mounting racks as an accelerated aging technique (these devices are called optal reactors); a beginning list of candidate pottant materials for thin-film encapsulation, which process at temperatures well below 100 C; and description of a preliminary flame retardant formulation for ethylene vinyl acetate which could function to increase module flammability ratings are presented.

  18. Wet Winding Improves Coil Encapsulation

    NASA Technical Reports Server (NTRS)

    Hill, A. J.

    1987-01-01

    Wet-winding process encapsulates electrical coils more uniformily than conventional processes. Process requires no vacuum pump and adapts easily to existing winding machines. Encapsulant applied to each layer of wire as soon as added to coil. Wet-winding process eliminates voids, giving more uniformly encapsulated coil.

  19. Encapsulation of bioactive whey peptides in soy lecithin-derived nanoliposomes: Influence of peptide molecular weight.

    PubMed

    Mohan, Aishwarya; McClements, David Julian; Udenigwe, Chibuike C

    2016-12-15

    Encapsulation of peptides can be used to enhance their stability, delivery and bioavailability. This study focused on the effect of the molecular weight range of whey peptides on their encapsulation within soy lecithin-derived nanoliposomes. Peptide molecular weight did not have a major impact on encapsulation efficiency or liposome size. However, it influenced peptide distribution amongst the surface, core, and bilayer regions of the liposomes, as determined by electrical charge (ζ-potential) and FTIR analysis. The liposome ζ-potential depended on peptide molecular weight, suggesting that the peptide charged groups were in different locations relative to the liposome surfaces. FTIR analysis indicated that the least hydrophobic peptide fractions interacted more strongly with choline on the liposome surfaces. The results suggested that the peptides were unequally distributed within the liposomes, even at the same encapsulation efficiency. These findings are important for designing delivery systems for commercial production of encapsulated peptides with improved functional attributes.

  20. Elevating bioavailability of curcumin via encapsulation with a novel formulation of artificial oil bodies.

    PubMed

    Chang, Ming-Tsung; Tsai, Tong-Rong; Lee, Chun-Yann; Wei, Yu-Sheng; Chen, Ying-Jie; Chen, Chun-Ren; Tzen, Jason T C

    2013-10-09

    Utilization of curcumin has been limited due to its poor oral bioavailability. Oral bioavailability of hydrophobic compounds might be elevated via encapsulation in artificial seed oil bodies. This study aimed to improve oral bioavailability of curcumin via this encapsulation. Unfortunately, curcumin was indissoluble in various seed oils. A mixed dissolvent formula was used to dissolve curcumin, and the admixture was successfully encapsulated in artificial oil bodies stabilized by recombinant sesame caleosin. The artificial oil bodies of relatively small sizes (150 nm) were stably solidified in the forms of powder and tablet. Oral bioavailability of curcumin with or without encapsulation in artificial oil bodies was assessed in Sprague-Dawley male rats. The results showed that encapsulation of curcumin significantly elevated its bioavailability and provided the highest maximum whole blood concentration (Cmax), 37 ± 28 ng/mL, in the experimental animals 45 ± 17 min (t(max)) after oral administration. Relative bioavailability calculated on the basis of the area under the plasma concentration-time curve (AUC) was increased by 47.7 times when curcumin was encapsulated in the artificial oil bodies. This novel formulation of artificial oil bodies seems to possess great potential to encapsulate hydrophobic drugs for oral administration.

  1. Micellar Polymer Encapsulation of Enzymes.

    PubMed

    Besic, Sabina; Minteer, Shelley D

    2017-01-01

    Although enzymes are highly efficient and selective catalysts, there have been problems incorporating them into fuel cells. Early enzyme-based fuel cells contained enzymes in solution rather than immobilized on the electrode surface. One problem utilizing an enzyme in solution is an issue of transport associated with long diffusion lengths between the site of bioelectrocatalysis and the electrode. This issue drastically decreases the theoretical overall power output due to the poor electron conductivity. On the other hand, enzymes immobilized at the electrode surface have eliminated the issue of poor electron conduction due to close proximity of electron transfer between electrode and the biocatalyst. Another problem is inefficient and short term stability of catalytic activity within the enzyme that is suspended in free flowing solution. Enzymes in solutions are only stable for hours to days, whereas immobilized enzymes can be stable for weeks to months and now even years. Over the last decade, there has been substantial research on immobilizing enzymes at electrode surfaces for biofuel cell and sensor applications. The most commonly used techniques are sandwich or wired. Sandwich techniques are powerful and successful for enzyme immobilization; however, the enzymes optimal activity is not retained due to the physical distress applied by the polymer limiting its applications as well as the non-uniform distribution of the enzyme and the diffusion of analyte through the polymer is slowed significantly. Wired techniques have shown to extend the lifetime of an enzyme at the electrode surface; however, this technique is very hard to master due to specific covalent bonding of enzyme and polymer which changes the three-dimensional configuration of enzyme and with that decreases the optimal catalytic activity. This chapter details encapsulation techniques where an enzyme will be immobilized within the pores/pockets of the hydrophobically modified micellar polymers such as

  2. Cell as a factory for humanized encapsulation

    NASA Astrophysics Data System (ADS)

    Mao, Zhengwei; Wang, Dayang

    2012-03-01

    Variety efforts are being made to develop colloidal based drug delivery systems (DDSs), which encapsulate cytotoxic drug in a vehicle and release them in a controlled manner. However, the synthetic carriers developed thus far are hampered by rapidly clearance in the body, for example by phagocytes, possibly due to the non-natural surface characteristics in terms of chemistry, morphology, and mechanics. To circumvent this important challenge, we have exploited living mammalian cells as factories to encapsulate drugs in "natural vesicles". These natural vesicles are termed cell membrane capsules (CMCs), because they maintain the major membrane structure and functions as well as cytosolic proteins of the parental cells. We demonstrate that CMCs act as unique delivery vehicles, in which encapsulated substances can be processed stepwise by cellular enzymes and then be selectively released through protein channels built-in the membrane, in a controlled and sustained manner. The preliminary study investigating the macrophage response to CMCs indicated the potential of CMCs to avoid attack by the immune system.

  3. Encapsulation of 10-hydroxy camptothecin in supramolecular hydrogel as an injectable drug delivery system.

    PubMed

    Li, Ruixin; Shu, Chang; Wang, Wei; Wang, Xiaoliang; Li, Hui; Xu, Danke; Zhong, Wenying

    2015-07-01

    10-Hydroxy camptothecin (HCPT) has been proven to be a cell cycle-specific chemotherapeutic agent, which is a necessary choice to inhibit tumor residue growth and prevent tumor metastasis after surgery. But it suffers from light decomposition, poor solubility, relatively low bioavailability, and some side effects, which are the major obstacles toward its clinical use. Integration of hydrophobic HCPT with hydrophilic hydrogel is a facile approach to change the disadvantageous situation of HCPT. In this study, a novel supramolecular hydrogelator with improved synthetic strategy was triggered by chemical hydrolysis, and then self-assembled to hydrogel. Taking advantage of the high-equilibrium solubility of HCPT in hydrogelator solution, this hydrogel was utilized to load HCPT via encapsulation as an effective carrier. HCPT hydrogels were characterized by several techniques including transmission electronic microscopy, rheology, and UV spectroscopy. In vitro release experiment indicated HCPT hydrogel could maintain long term and sustained release of HCPT at high accumulated rate. 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay showed that HCPT hydrogel had an optimized anticancer efficacy. Besides, with prominent physical properties of carrier, HCPT hydrogel possessed satisfactory stability, syringeability, and recoverability, demonstrating itself as a potential localized injectable drug delivery system.

  4. Preparation and Characterization of Nateglinide Loaded Hydrophobic Biocompatible Polymer Nanoparticles

    NASA Astrophysics Data System (ADS)

    Naik, Jitendra; Lokhande, Amolkumar; Mishra, Satyendra; Kulkarni, Ravindra

    2016-09-01

    The aim of the present study was to develop sustained release Nateglinide loaded Ethylcellulose nanoparticles and characterize the properties of recovered nanoparticles. The sustained release nanoparticles were prepared by oil in water single emulsion solvent evaporation method. The developed nanoparticles were characterised for their particle size, morphology, encapsulation efficiency, drug polymer compatibility and in vitro drug release. The drug polymer compatibility was investigated by XRPD. Imaging of particles was performed by field emission scanning electron microscopy. The highest particle size and encapsulation efficiency of recovered nanoparticles were 248.37 nm and 91.16 % respectively. The recovered nanoparticles are spherical in nature and uniform in size. Developed nanoparticles have low crystallinity than the pure Nateglinide. The highest drug-polymer ratio formulation showed drug release 61.1 ± 1.76 % up to 24 h.

  5. Photovoltaic encapsulation materials

    NASA Technical Reports Server (NTRS)

    Baum, B.; Willis, P. W.; Cuddihy, E. C.

    1981-01-01

    Candidate materials for the construction of cost-effective solar cell flat array modules are reviewed. Fabrication goals include electricity production at $.70/W with a lifetime of 20 yr. Research is currently directed toward low cost encapsulants and substrates for the cells, and outer covers which resist weathering. Ethylene/vinyl acetate copolymer (EVA) at $.09/sq ft has displayed the most promising results as the encapsulant laminate when subjected to peroxide cross-linking to prevent melting. EVA accepts the addition of antioxidants, quenchers, absorbers, and stabilizers. Wood is favored as the rigid substrate due to cost, while top covers in substrate modules comprise candidate acrylic and polyvinyl fluoride films and a copolymer. Finally, fiberglass mat is placed between the substrate and the EVA pottant as a mechanical support and for electrical insulation.

  6. Encapsulation of Volatile Compounds in Silk Microparticles.

    PubMed

    Elia, Roberto; Guo, Jin; Budijono, Stephanie; Normand, Valery; Benczédi, Daniel; Omenetto, Fiorenzo; Kaplan, David L

    2015-07-01

    Various techniques have been employed to entrap fragrant oils within microcapsules or microparticles in the food, pharmaceutical, and chemical industries for improved stability and delivery. In the present work we describe the use of silk protein microparticles for encapsulating fragrant oils using ambient processing conditions to form an all-natural biocompatible matrix. These microparticles are stabilized via physical crosslinking, requiring no chemical agents, and are prepared with aqueous and ambient processing conditions using polyvinyl alcohol-silk emulsions. The particles were loaded with fragrant oils via direct immersion of the silk particles within an oil bath. The oil-containing microparticles were coated using alternating silk and polyethylene oxide layers to control the release of the oil from the microspheres. Particle morphology and size, oil loading capacity, release rates as well as silk-oil interactions and coating treatments were characterized. Thermal analysis demonstrated that the silk coatings can be tuned to alter both retention and release profiles of the encapsulated fragrance. These oil containing particles demonstrate the ability to adsorb and controllably release oils, suggesting a range of potential applications including cosmetic and fragrance utility.

  7. New trends in encapsulation of liposoluble vitamins.

    PubMed

    Gonnet, M; Lethuaut, L; Boury, F

    2010-09-15

    Liposoluble vitamins (A, D, E, and K) and carotenoids have many benefits on health. They are provided mainly by foods. At pharmacological doses, they can also be used to treat skin diseases, several types of cancer or decrease oxidative stress. These molecules are sensitive to oxidation, thus encapsulation might constitute an appropriate mean to preserve their properties during storage and enhance their physiological potencies. Formulation processes have been adapted for sensitive molecule, limiting their exposure to high temperature, light or oxygen. Each administration pathway, oral, systemic, topical, transdermal and local, requires different particle sizes and release profile. Encapsulation can lead to greater efficiency allowing smaller administration doses thus diminishing potential hypervitaminosis syndrome appearance and side effects. Carrier formulation can be based on vitamin dissolution in lipid media and its stabilization by surfactant mixture, on its entrapment in a matrix or molecular system. Suitability of each type of carrier will be discussed for each pathway.

  8. The Role of Acoustic Cavitation in Ultrasound-triggered Drug Release from Echogenic Liposomes

    NASA Astrophysics Data System (ADS)

    Kopechek, Jonathan A.

    to release encapsulated agents completely. Also, sham samples without Triton X-100 or ultrasound exposure were used as negative controls. Color Doppler ultrasound did not release encapsulated calcein or papaverine from ELIP even though there was a complete loss of echogenicity. In subsequent experiments, calcein and rosiglitazone, a hydrophobic anti-diabetic drug, were separately encapsulated in ELIP and exposed to pulsed Doppler ultrasound in a flow system while monitoring cavitation. Samples were exposed to ultrasound pressures above and below cavitation thresholds. In addition, Triton X-100 was used for positive control samples and sham samples were also tested without ultrasound exposure. Adding Triton X-100 resulted in complete release of encapsulated calcein or rosiglitzone. However, Doppler ultrasound exposure did not induce calcein or rosiglitazone release from ELIP in the flow system even when there was persistent cavitation activity and a loss of echogenicity. The results of this dissertation indicate that cavitation of encapsulated bubbles in ELIP solutions is not sufficient to induce drug release. It is possible that ultrasoundmediated thermal processes may have a stronger effect on ELIP permeability than cavitation activity. Perhaps ultrasound-triggered drug release will be possible by improving the ELIP formulation or encapsulating a different gas instead of air. However, cavitation is not a reliable indicator of ultrasound-mediated drug release with the ELIP formulations used in this dissertation.

  9. Fluoroalkyl and Alkyl Chains Have Similar Hydrophobicities in Binding to the “Hydrophobic Wall” of Carbonic Anhydrase

    PubMed Central

    Mecinović, Jasmin; Snyder, Phillip W.; Mirica, Katherine A.; Bai, Serena; Mack, Eric T.; Kwant, Richard L.; Moustakas, Demetri T.; Heroux, Annie; Whitesides, George M.

    2011-01-01

    The hydrophobic effect—the free-energetically favorable association of non-polar solutes in water—makes a dominant contribution to binding of many systems of ligands and proteins. The objective of this study was to examine the hydrophobic effect in biomolecular recognition using two chemically different, but structurally similar hydrophobic groups—aliphatic hydrocarbons and aliphatic fluorocarbons—and to determine whether the hydrophobicity of the two groups could be distinguished by thermodynamic and biostructural analysis. This paper uses isothermal titration calorimetry (ITC) to examine the thermodynamics of binding of benzenesulfonamides substituted in the para position with alkyl and fluoroalkyl chains (H2NSO2C6H4-CONHCH2(CX2)nCX3, n = 0–4, X = H, F) to human carbonic anhydrase II (HCA II). Both alkyl and fluoroalkyl substituents contribute favorably to the enthalpy and the entropy of binding; these contributions increase as the length of chain of the hydrophobic substituent increases. Crystallography of the protein-ligand complexes indicates that the benzenesulfonamide groups of all ligands examined bind with similar geometry, that the tail groups associate with the hydrophobic wall of HCA II (which is made up of the side chains of residues Phe131, Val135, Pro202, and Leu204), and that the structure of the protein is indistinguishable for all but one of the complexes (the longest member of the fluoroalkyl series). Analysis of the thermodynamics of binding as a function of structure is compatible with the hypothesis that hydrophobic binding of both alkyl and fluoroalkyl chains to hydrophobic surface of carbonic anhydrase is due primarily to the release of non-optimally hydrogen-bonded water molecules that hydrate the binding cavity (including the hydrophobic wall) of HCA II and to the release of water molecules that surround the hydrophobic chain of the ligands. This study defines the balance of enthalpic and entropic contributions to the hydrophobic

  10. Fluoroalkyl and Alkyl Chains Have Similar Hydrophobicities in Binding to the “Hydrophobic Wall” of Carbonic Anhydrase

    SciTech Connect

    J Mecinovic; P Snyder; K Mirica; S Bai; E Mack; R Kwant; D Moustakas; A Heroux; G Whitesides

    2011-12-31

    The hydrophobic effect, the free-energetically favorable association of nonpolar solutes in water, makes a dominant contribution to binding of many systems of ligands and proteins. The objective of this study was to examine the hydrophobic effect in biomolecular recognition using two chemically different but structurally similar hydrophobic groups, aliphatic hydrocarbons and aliphatic fluorocarbons, and to determine whether the hydrophobicity of the two groups could be distinguished by thermodynamic and biostructural analysis. This paper uses isothermal titration calorimetry (ITC) to examine the thermodynamics of binding of benzenesulfonamides substituted in the para position with alkyl and fluoroalkyl chains (H{sub 2}NSO{sub 2}C{sub 6}H{sub 4}-CONHCH{sub 2}(CX{sub 2}){sub n}CX{sub 3}, n = 0-4, X = H, F) to human carbonic anhydrase II (HCA II). Both alkyl and fluoroalkyl substituents contribute favorably to the enthalpy and the entropy of binding; these contributions increase as the length of chain of the hydrophobic substituent increases. Crystallography of the protein-ligand complexes indicates that the benzenesulfonamide groups of all ligands examined bind with similar geometry, that the tail groups associate with the hydrophobic wall of HCA II (which is made up of the side chains of residues Phe131, Val135, Pro202, and Leu204), and that the structure of the protein is indistinguishable for all but one of the complexes (the longest member of the fluoroalkyl series). Analysis of the thermodynamics of binding as a function of structure is compatible with the hypothesis that hydrophobic binding of both alkyl and fluoroalkyl chains to hydrophobic surface of carbonic anhydrase is due primarily to the release of nonoptimally hydrogen-bonded water molecules that hydrate the binding cavity (including the hydrophobic wall) of HCA II and to the release of water molecules that surround the hydrophobic chain of the ligands. This study defines the balance of enthalpic and

  11. Gentamicin sulphate release from a modified commercial acrylic surgical radiopaque bone cement. I. Influence of the gentamicin concentration on the release process mechanism.

    PubMed

    Díez-Peña, Eva; Frutos, Gloria; Frutos, Paloma; Barrales-Rienda, José Manuel

    2002-09-01

    The purpose of the present work was the study of the gentamicin sulphate (GS) release from a commercial acrylic bone cement CMW-1 with the aims of establishing the influence of the slabs preparation as well as the release mechanism and kinetics. The effect of the amount of GS on the release kinetic parameters has been also investigated. In vitro release studies were performed in a buffered saline solution at pH 7.4 and 37 degrees C. The GS concentration was determined using an indirect spectrophotometric method with an o-phthaldialdehyde as a derivatizing reagent. A commercial and three modified samples were tested. The free and fractured surfaces of the GS cement slabs before and after the release studies were observed by means of scanning electron microscopy (SEM). For low GS concentration loading the release was very incomplete because most of the GS beads were encapsulated by the hydrophobic PMMA matrix. A higher amount of antibiotic was released from cement that has a higher amount incorporated. A model and therefore a mechanism of release based on this model have been proposed. It has allowed us to explain the changes in dissolution kinetics of an acrylic matrix type controlled release system up to 12% GS loading. The cumulative amount of GS released M(t)/M(i), was fitted as a function of time. For lower amounts of GS, the regression analysis (R(2)>0.99) revealed that the release is most adequately represented by M(t)/M(i)=b+kt(n), where b represents a burst effect. The goodness of fit decreases as the amount of GS increases. The influence of some other type of release mechanism for higher amounts of GS must be taken into account and a second model for the release, M(t)/M(i)=b+k x [1-exp(-kt)], is proposed.

  12. Effect of noncovalent interaction on the self-assembly of a designed peptide and its potential use as a carrier for controlled bFGF release

    PubMed Central

    Liu, Yanfei; Zhang, Ling; Wei, Wei

    2017-01-01

    Peptide self-assembly is one of the promising bottom-up approaches for creating synthetic supermolecular architectures. Noncovalent interactions such as hydrophobic packing, electrostatic interaction, and polypeptide chain entropy (ΔSC) are the most relevant factors that affect the folding and self-assembly of peptides and the stability of supermolecular structures. The GVGV tetrapeptide is an abundant repeat in elastin, an extracellular matrix protein. In this study, four GVGV-containing peptides were designed with the aim of understanding the effects of these weak interactions on peptide self-assembly. Transmission electron microscopy, circular dichroism spectroscopy, dynamic light scattering measurements, and rheometry assays were used to study the structural features of the peptides. Because self-assembling peptides with different amino acid sequences may significantly affect protein release, basic fibroblast growth factor (bFGF) was used as a model molecule and encapsulated within the P2 (RLDLGVGVRLDLGVGV) hydrogel to study the release kinetics. The results showed that the balance among hydrophobic effects, electrostatic interactions, and chain entropy determined the molecular state and self-assembly of the peptide. Moreover, encapsulation of bFGF within the P2 hydrogel allowed its sustained release without causing changes in the secondary structure. The release profiles could be tuned by adjusting the P2 hydrogel concentration. Cell Counting Kit-8 and Western blot assays demonstrated that the encapsulated and released bFGFs were biologically active and capable of promoting the proliferation of murine fibroblast NIH-3T3 cells, most likely due to the activation of downstream signaling pathways. PMID:28176898

  13. Selective total encapsulation of the sulfate anion by neutral nano-jars.

    PubMed

    Fernando, Isurika R; Surmann, Stuart A; Urech, Alexander A; Poulsen, Alexander M; Mezei, Gellert

    2012-07-11

    Nano-sized toroidal copper(II)-hydroxide/pyrazolate assemblies, lined by H-bond donors on the inside and hydrophobic on the outside, selectively extract sulfate from mixtures with nitrate or perchlorate. Tetrabutylammonium "lids" seal the "nano-jars" and render the encapsulated sulfate anion completely buried and inaccessible, so that it is not precipitated by Ba(2+) ions.

  14. Characterization of rheology and release profiles of olanzapine-loaded lipid-core nanocapsules in thermosensitive hydrogel.

    PubMed

    Dimer, F A; Pohlmann, A R; Guterres, S S

    2013-12-01

    In this study we developed a new drug delivery system for olanzanpine comprised of drug-loaded lipid-core nanocapsules incorporated in a thermosensitive hydrogel, intended to sustain the drug release. Firstly, olanzapine, a hydrophobic drug, was loaded in poly(epsilon-caprolactone) lipid core nanocapsules prepared by interfacial deposition of preformed polymer. The effects of the presence of ethanol and the amounts of sorbitan monostearate and medium-chain triglycerides on the particle size, zeta potential, polydispersity index, presence of microparticles and encapsulation efficiency were investigated using a 2(3) factorial design. The optimized nanocapsules were incorporated into a hydrophilic polymer (Poloxamer 407) dispersion in order to obtain a thermosensitive gel. The formulation containing 0.077 g of sorbitan monostearate, 0.22 ml of medium-chain triglycerides, 3 ml of ethanol and 18% of the thermosensitive polymer was selected according to the physicochemical properties. The rheology and release profiles of the mixed hydrophobic and hydrophilic delivery system were successfully characterized and revealed its great potential for the administration of hydrophobic drugs such as olanzapine with sustained in situ drug release.

  15. Low-melting elemental metal or fusible alloy encapsulated polymerization initiator for delayed initiation

    DOEpatents

    Hermes, Robert E.

    2015-12-22

    An encapsulated composition for polymerization includes an initiator composition for initiating a polymerization reaction, and a capsule prepared from an elemental metal or fusible alloy having a melting temperature from about 20.degree. C. to about 200.degree. C. A fluid for polymerization includes the encapsulated composition and a monomer. When the capsule melts or breaks open, the initiator is released.

  16. Selective encapsulation by Janus particles

    SciTech Connect

    Li, Wei; Ruth, Donovan; Gunton, James D.; Rickman, Jeffrey M.

    2015-06-28

    We employ Monte Carlo simulation to examine encapsulation in a system comprising Janus oblate spheroids and isotropic spheres. More specifically, the impact of variations in temperature, particle size, inter-particle interaction range, and strength is examined for a system in which the spheroids act as the encapsulating agents and the spheres as the encapsulated guests. In this picture, particle interactions are described by a quasi-square-well patch model. This study highlights the environmental adaptation and selectivity of the encapsulation system to changes in temperature and guest particle size, respectively. Moreover, we identify an important range in parameter space where encapsulation is favored, as summarized by an encapsulation map. Finally, we discuss the generalization of our results to systems having a wide range of particle geometries.

  17. Glyco-Nanoparticles Made from Self-Assembly of Maltoheptaose-block-Poly(methyl methacrylate): Micelle, Reverse Micelle, and Encapsulation.

    PubMed

    Zepon, Karine M; Otsuka, Issei; Bouilhac, Cécile; Muniz, Edvani C; Soldi, Valdir; Borsali, Redouane

    2015-07-13

    The synthesis and the solution-state self-assembly of the "hybrid" diblock copolymers, maltoheptaose-block-poly(methyl methacrylate) (MH-b-PMMA), into large compound micelles (LCMs) and reverve micelle-type nanoparticles, are reported in this paper. The copolymers were self-assembled in water and acetone by direct dissolution method, and the morphologies of the nanoparticles were investigated by dynamic light scattering (DLS), nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), atomic force microscopy (AFM), proton nuclear magnetic resonance ((1)H NMR), and fluorescence spectroscopy as a function of the volume fraction of the copolymer hydrophobic block, copolymer concentration, stirring speed, and solvent polarity. The DLS measurements and TEM images showed that the hydrodynamic radius (Rh) of the LCMs obtained in water increases with the copolymer concentration. Apart from that, increasing the stirring speed leads to polydispersed aggregations of the LCMs. On the other hand, in acetone, the copolymers self-assembled into reverse micelle-type nanoparticles having Rh values of about 6 nm and micellar aggregates, as revealed the results obtained from DLS, AFM, and (1)H NMR analyses. The variation in micellar structure, that is, conformational inversion from LCMs to reverse micelle-type structures in response to polarity of the solvent, was investigated by apparent water contact angle (WCA) and (1)H NMR analyses. This conformational inversion of the nanoparticles was further confirmed by encapsulation and release of hydrophobic guest molecule, Nile red, characterized by fluorescence spectroscopy.

  18. Encapsulation of graphene in Parylene

    NASA Astrophysics Data System (ADS)

    Skoblin, Grigory; Sun, Jie; Yurgens, August

    2017-01-01

    Graphene encapsulated between flakes of hexagonal boron nitride (hBN) demonstrates the highest known mobility of charge carriers. However, the technology is not scalable to allow for arrays of devices. We are testing a potentially scalable technology for encapsulating graphene where we replace hBN with Parylene while still being able to make low-ohmic edge contacts. The resulting encapsulated devices show low parasitic doping and a robust Quantum Hall effect in relatively low magnetic fields <5 T.

  19. JPL encapsulation task

    NASA Technical Reports Server (NTRS)

    Willis, P.

    1986-01-01

    A detailed summary of the diverse encapsulation materials and techniques that evolved to meet the cost goals of the Flat-plate Solar Array (FSA) Project is presented. A typical solar cell now consists of low iron glass, two layers of ethylene vinyl acetate (EVA) polymers, a porous space, primers/adhesives, a back cover of Tedlar, and a gasket/seal for a volume cost of $1.30/sq ft. This compares well with the project goal of $1.40/sq ft.

  20. Foam encapsulated targets

    DOEpatents

    Nuckolls, John H.; Thiessen, Albert R.; Dahlbacka, Glen H.

    1983-01-01

    Foam encapsulated laser-fusion targets wherein a quantity of thermonuclear fuel is embedded in low density, microcellular foam which serves as an electron conduction channel for symmetrical implosion of the fuel by illumination of the target by one or more laser beams. The fuel, such as DT, is contained within a hollow shell constructed of glass, for example, with the foam having a cell size of preferably no greater than 2 .mu.m, a density of 0.065 to 0.6.times.10.sup.3 kg/m.sup.3, and external diameter of less than 200 .mu.m.

  1. Effects of encapsulation of microorganisms on product formation during microbial fermentations.

    PubMed

    Westman, Johan O; Ylitervo, Päivi; Franzén, Carl Johan; Taherzadeh, Mohammad J

    2012-12-01

    This paper reviews the latest developments in microbial products by encapsulated microorganisms in a liquid core surrounded by natural or synthetic membranes. Cells can be encapsulated in one or several steps using liquid droplet formation, pregel dissolving, coacervation, and interfacial polymerization. The use of encapsulated yeast and bacteria for fermentative production of ethanol, lactic acid, biogas, L-phenylacetylcarbinol, 1,3-propanediol, and riboflavin has been investigated. Encapsulated cells have furthermore been used for the biocatalytic conversion of chemicals. Fermentation, using encapsulated cells, offers various advantages compared to traditional cultivations, e.g., higher cell density, faster fermentation, improved tolerance of the cells to toxic media and high temperatures, and selective exclusion of toxic hydrophobic substances. However, mass transfer through the capsule membrane as well as the robustness of the capsules still challenge the utilization of encapsulated cells. The history and the current state of applying microbial encapsulation for production processes, along with the benefits and drawbacks concerning productivity and general physiology of the encapsulated cells, are discussed.

  2. Sustained Dye Release Using Poly(urea-urethane)/Cellulose Nanocrystal Composite Microcapsules.

    PubMed

    Yoo, Youngman; Martinez, Carlos; Youngblood, Jeffrey P

    2017-02-14

    The aim of this study is to develop methods to reinforce polymeric microspheres with cellulose nanocrystals (CNCs) to make eco-friendly microcapsules for a variety of applications such as medicines, perfumes, nutrients, pesticides, and phase change materials. Surface hydrophobization treatments for CNCs were performed by grafting poly(lactic acid) oligomers and fatty acids (FAs) to enhance the dispersion of nanoparticles in the polymeric shell. Then, a straightforward process is demonstrated to design sustained release microcapsules by the incorporation of the modified CNCs (mCNCs) in the shell structure. The combination of the mCNC dispersion with subsequent interfacial polyurea (PU) to form composite capsules as well as their morphology, composition, mechanical properties, and release rates were examined in this study. The PU microcapsules embedded with the mCNC were characterized by Fourier transform infrared spectroscopy (FT-IR) and thermogravimetric analysis (TGA). The morphologies of the microcapsules were characterized by optical microscopy (OM) and scanning electron microscope (SEM). The rupture stress and failure behavior of the microcapsules were determined through single-capsule compression tests. Oil-soluble Sudan II dye solution in mineral oil was utilized as a model hydrophobic fill, representing other latent fills with low partition coefficients, and their encapsulation efficiency was measured spectroscopically. The release rates of the encapsulated dye from the microcapsules were examined spectroscopically by both ethanol and 2-ethyl-1-hexanol medium at room temperature. The concentration of released dye was determined by using UV-vis absorption spectrometry (UV-vis). The mCNC embedded poly(urea-urethane) capsules have strong and dense walls, which function as excellent barriers against leakage due to their extended diffusion path length and ensure enough mechanical strength from rupture for handling or postprocessing.

  3. Hydrophobic meshes for oil spill recovery devices.

    PubMed

    Deng, Da; Prendergast, Daniel P; MacFarlane, John; Bagatin, Roberto; Stellacci, Francesco; Gschwend, Philip M

    2013-02-01

    Widespread use of petrochemicals often leads to accidental releases in aquatic environments, occasionally with disastrous results. We have developed a hydrophobic and oleophilic mesh that separates oil from water continuously in situ via capillary action, providing a means of recovering spilt oil from surface waters. Steel mesh is dip-coated in a xylene solution of low-density polyethylene, creating a hydrophobic surface with tunable roughness and opening size. The hydrophobic mesh allows oil to pass through the openings while preventing the concomitant passage of water. A bench-top prototype demonstrated the efficacy of such an oil recovery device and allowed us to quantify the factors governing the ability of the mesh to separate oil and water. Preliminary data analysis suggested that the oleophilic openings behave somewhat like capillary tubes: the oil flux is inversely proportional to oil viscosity, and directly proportional to the size of the mesh openings. An unpinned meniscus model was found to predict the water intrusion pressure successfully, which increased as the opening size decreased. The trade-off between water intrusion and oil flow rate suggests an optimal pore size for given oil properties and sea conditions.

  4. Voltage-Gated Hydrophobic Nanopores

    SciTech Connect

    Lavrik, Nickolay V

    2011-01-01

    Hydrophobicity is a fundamental property that is responsible for numerous physical and biophysical aspects of molecular interactions in water. Peculiar behavior is expected for water in the vicinity of hydrophobic structures, such as nanopores. Indeed, hydrophobic nanopores can be found in two distinct states, dry and wet, even though the latter is thermodynamically unstable. Transitions between these two states are kinetically hindered in long pores but can be much faster in shorter pores. As it is demonstrated for the first time in this paper, these transitions can be induced by applying a voltage across a membrane with a single hydrophobic nanopore. Such voltage-induced gating in single nanopores can be realized in a reversible manner through electrowetting of inner walls of the nanopores. The resulting I-V curves of such artificial hydrophobic nanopores mimic biological voltage-gated channels.

  5. [Encapsulating hepatocytes with chitosan in physiological conditions].

    PubMed

    Zhu, Jianhang; Zhang, Bao; Yan, Xiluan; Lao, Xuejun; Yu, Hanry

    2006-10-01

    Prepared from 15.3% N-acetylated chitosan (FNC), half N-acetylated chitosan (HNC) possesses a good solubility in a weak basic solution, guaranteeing the formation of microcapsules by the coacervating reaction between HNC and methacrylic acid (MAA)-hydroxyethyl methacrylate (HEMA)-methyl methacrylate (MMA) (MAA-HEMA-MMA) terpolymer under physiological conditions. When hepatocytes were encapsulated in such 3-dimensional microenvironment, as compared to monolayer culture, cell functions, including P450 activity, urea production and albumin release, were well supported. The prepared microcapsules have good mechanical stability and permeability.

  6. Changing water affinity from hydrophobic to hydrophilic in hydrophobic channels.

    PubMed

    Ohba, Tomonori; Yamamoto, Shotaro; Kodaira, Tetsuya; Hata, Kenji

    2015-01-27

    The behavior of water at hydrophobic interfaces can play a significant role in determining chemical reaction outcomes and physical properties. Carbon nanotubes and aluminophosphate materials have one-dimensional hydrophobic channels, which are entirely surrounded by hydrophobic interfaces. Unique water behavior was observed in such hydrophobic channels. In this article, changes in the water affinity in one-dimensional hydrophobic channels were assessed using water vapor adsorption isotherms at 303 K and grand canonical Monte Carlo simulations. Hydrophobic behavior of water adsorbed in channels wider than 3 nm was observed for both adsorption and desorption processes, owing to the hydrophobic environment. However, water showed hydrophilic properties in both adsorption and desorption processes in channels narrower than 1 nm. In intermediate-sized channels, the hydrophobic properties of water during the adsorption process were seen to transition to hydrophilic behavior during the desorption process. Hydrophilic properties in the narrow channels for both adsorption and desorption processes are a result of the relatively strong water-channel interactions (10-15 kJ mol(-1)). In the 2-3 nm channels, the water-channel interaction energy of 4-5 kJ mol(-1) was comparable to the thermal translational energy. The cohesive water interaction was approximately 35 kJ mol(-1), which was larger than the others. Thus, the water affinity change in the 2-3 nm channels for the adsorption and desorption processes was attributed to weak water-channel interactions and strong cohesive interactions. These results are inherently important to control the properties of water in hydrophobic environments.

  7. Design, synthesis, and in vitro evaluation of new amphiphilic cyclodextrin-based nanoparticles for the incorporation and controlled release of acyclovir.

    PubMed

    Perret, Florent; Duffour, Marine; Chevalier, Yves; Parrot-Lopez, Hélène

    2013-01-01

    Acyclovir possesses low solubility in water and in lipid bilayers, so that its dosage forms do not allow suitable drug levels at target sites following oral, local, or parenteral administration. In order to improve this lack of solubility, new cyclodextrin-based amphiphilic derivatives have been designed to form nanoparticles, allowing the efficient encapsulation of this hydrophobic antiviral agent. The present work first describes the synthesis and characterization of five new O-2,O-3 permethylated O-6 alkylthio- and perfluoroalkyl-propanethio-amphiphilic β-cyclodextrins. These derivatives have been obtained with good overall yields. The capacity of these molecules to form nanoparticles in water and to encapsulate acyclovir has then been studied. The nanoparticles prepared from the new β-cyclodextrin derivatives have been characterized by dynamic light scattering and have an average size of 120nm for the fluorinated derivatives and 220nm for the hydrogenated analogs. They all allowed high loading and sustained release of acyclovir.

  8. Biodegradable polycaprolactone (PCL) nanosphere encapsulating superoxide dismutase and catalase enzymes.

    PubMed

    Singh, Sushant; Singh, Abhay Narayan; Verma, Anil; Dubey, Vikash Kumar

    2013-12-01

    Biodegradable polycaprolactone (PCL) nanosphere encapsulating superoxide dismutase (SOD) and catalase (CAT) were successfully synthesized using double emulsion (w/o/w) solvent evaporation technique. Characterization of the nanosphere using dynamic light scattering, field emission scanning electron microscope, and Fourier transform infrared spectroscopy revealed a spherical-shaped nanosphere in a size range of 812 ± 64 nm with moderate protein encapsulation efficiency of 55.42 ± 3.7 % and high in vitro protein release. Human skin HaCat cells were used for analyzing antioxidative properties of SOD- and CAT-encapsulated PCL nanospheres. Oxidative stress condition in HaCat cells was optimized with exposure to hydrogen peroxide (H2O2; 1 mM) as external stress factor and verified through reactive oxygen species (ROS) analysis using H2DCFDA dye. PCL nanosphere encapsulating SOD and CAT together indicated better antioxidative defense against H2O2-induced oxidative stress in human skin HaCat cells in comparison to PCL encapsulating either SOD or CAT alone as well as against direct supplement of SOD and CAT protein solution. Increase in HaCat cells SOD and CAT activities after treatment hints toward uptake of PCL nanosphere into the human skin HaCat cells. The result signifies the role of PCL-encapsulating SOD and CAT nanosphere in alleviating oxidative stress.

  9. Drug encapsulated aerosolized microspheres as a biodegradable, intelligent glioma therapy.

    PubMed

    Floyd, J Alaina; Galperin, Anna; Ratner, Buddy D

    2016-02-01

    The grim prognosis for patients diagnosed with malignant gliomas necessitates the development of new therapeutic strategies for localized and sustained drug delivery to combat tumor drug resistance and regrowth. Here we introduce drug encapsulated aerosolized microspheres as a biodegradable, intelligent glioma therapy (DREAM BIG therapy). DREAM BIG therapy is envisioned to deliver three chemotherapeutics, temporally staged over one year, via a bioadhesive, biodegradable spray directly to the brain surgical site after tumor excision. In this proof-of-principle article exploring key components of the DREAM BIG therapy prototype, rhodamine B (RB) encapsulated poly(lactic-co-glycolic acid) and immunoglobulin G (IgG) encapsulated poly(lactic acid) microspheres were formulated and characterized. The encapsulation efficiency of RB and IgG and the release kinetics of the model drugs from the microspheres were elucidated in addition to the release kinetics of RB from poly(lactic-co-glycolic acid) microspheres formulated in a degradable poly(N-isopropylacrylamide) solution. The successful aerosolized application onto brain tissue ex-vivo demonstrated the conformal adhesion of the RB encapsulated poly(lactic-co-glycolic acid) microspheres to the convoluted brain surface mediated by the thermoresponsive carrier, poly(N-isopropylacrylamide). These preliminary results suggest the potential of the DREAM BIG therapy for future use with multiple chemotherapeutics and microsphere types to combat gliomas at a localized site.

  10. Polymer encapsulation of amoxicillin microparticles by SAS process.

    PubMed

    Montes, A; Baldauf, E; Gordillo, M D; Pereyra, C M; Martínez de la Ossa, E J

    2014-01-01

    Encapsulation of amoxicillin (AMC) with ethyl cellulose (EC) by a supercritical antisolvent process (SAS) was investigated. AMC microparticles obtained previously by an SAS process were used as host particles and EC, a biodegradable polymer used for the controlled release of drugs, was chosen as the coating material. In this work, a suspension of AMC microparticles in a solution of ethyl cellulose in dichloromethane (DCM) was sprayed through a nozzle into supercritical CO2. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and HPLC analyses were carried out. The effects of AMC:EC ratio, the initial polymer concentration of the solution, temperature and pressure on the encapsulation process were investigated. Although all the experiments led to powder precipitation, the AMC encapsulation was achieved in only half of the cases, particularly when the lower drug:polymer ratios were assayed. In general, it was observed that the percentages of AMC present in the precipitates were higher on increasing the AMC:EC ratio. In these cases composites rather than encapsulates were obtained. The in vitro release profiles of the resulting materials were evaluated in order to ascertain whether composites can be used as encapsulated systems for drug delivery systems.

  11. Doxycycline-encapsulated nanotube-modified dentin adhesives.

    PubMed

    Feitosa, S A; Palasuk, J; Kamocki, K; Geraldeli, S; Gregory, R L; Platt, J A; Windsor, L J; Bottino, M C

    2014-12-01

    This article presents details of fabrication, biological activity (i.e., anti-matrix metalloproteinase [anti-MMP] inhibition), cytocompatibility, and bonding characteristics to dentin of a unique doxycycline (DOX)-encapsulated halloysite nanotube (HNT)-modified adhesive. We tested the hypothesis that the release of DOX from the DOX-encapsulated nanotube-modified adhesive can effectively inhibit MMP activity. We incorporated nanotubes, encapsulated or not with DOX, into the adhesive resin of a commercially available bonding system (Scotchbond Multi-Purpose [SBMP]). The following groups were tested: unmodified SBMP (control), SBMP with nanotubes (HNT), and DOX-encapsulated nanotube-modified adhesive (HNT+DOX). Changes in degree of conversion (DC) and microtensile bond strength were evaluated. Cytotoxicity was examined on human dental pulp stem cells (hDPSCs). To prove the successful encapsulation of DOX within the adhesives-but, more important, to support the hypothesis that the HNT+DOX adhesive would release DOX at subantimicrobial levels-we tested the antimicrobial activity of synthesized adhesives and the DOX-containing eluates against Streptococcus mutans through agar diffusion assays. Anti-MMP properties were assessed via β-casein cleavage assays. Increasing curing times (10, 20, 40 sec) led to increased DC values. There were no statistically significant differences (p > .05) in DC within each increasing curing time between the modified adhesives compared to SBMP. No statistically significant differences in microtensile bond strength were noted. None of the adhesives eluates were cytotoxic to the human dental pulp stem cells. A significant growth inhibition of S. mutans by direct contact illustrates successful encapsulation of DOX into the experimental adhesive. More important, DOX-containing eluates promoted inhibition of MMP-1 activity when compared to the control. Collectively, our findings provide a solid background for further testing of encapsulated MMP

  12. Doxycycline-Encapsulated Nanotube-Modified Dentin Adhesives

    PubMed Central

    Feitosa, S.A.; Palasuk, J.; Kamocki, K.; Geraldeli, S.; Gregory, R.L.; Platt, J.A.; Windsor, L.J.; Bottino, M.C.

    2014-01-01

    This article presents details of fabrication, biological activity (i.e., anti–matrix metalloproteinase [anti-MMP] inhibition), cytocompatibility, and bonding characteristics to dentin of a unique doxycycline (DOX)–encapsulated halloysite nanotube (HNT)–modified adhesive. We tested the hypothesis that the release of DOX from the DOX-encapsulated nanotube-modified adhesive can effectively inhibit MMP activity. We incorporated nanotubes, encapsulated or not with DOX, into the adhesive resin of a commercially available bonding system (Scotchbond Multi-Purpose [SBMP]). The following groups were tested: unmodified SBMP (control), SBMP with nanotubes (HNT), and DOX-encapsulated nanotube-modified adhesive (HNT+DOX). Changes in degree of conversion (DC) and microtensile bond strength were evaluated. Cytotoxicity was examined on human dental pulp stem cells (hDPSCs). To prove the successful encapsulation of DOX within the adhesives—but, more important, to support the hypothesis that the HNT+DOX adhesive would release DOX at subantimicrobial levels—we tested the antimicrobial activity of synthesized adhesives and the DOX-containing eluates against Streptococcus mutans through agar diffusion assays. Anti-MMP properties were assessed via β-casein cleavage assays. Increasing curing times (10, 20, 40 sec) led to increased DC values. There were no statistically significant differences (p > .05) in DC within each increasing curing time between the modified adhesives compared to SBMP. No statistically significant differences in microtensile bond strength were noted. None of the adhesives eluates were cytotoxic to the human dental pulp stem cells. A significant growth inhibition of S. mutans by direct contact illustrates successful encapsulation of DOX into the experimental adhesive. More important, DOX-containing eluates promoted inhibition of MMP-1 activity when compared to the control. Collectively, our findings provide a solid background for further testing of

  13. Encapsulation of small ionic molecules within alpha-cyclodextrins.

    PubMed

    Rodriguez, Javier; Elola, M Dolores

    2009-02-05

    Results from molecular dynamics experiments pertaining to the encapsulation of ClO4- within the hydrophobic cavity of an aqueous alpha-cyclodextrin (alpha-CD) are presented. Using a biased sampling procedure, we constructed the Gibbs free energy profile associated with the complexation process. The profile presents a global minimum at the vicinity of the primary hydroxyl groups, where the ion remains tightly coordinated to four water molecules via hydrogen bonds. Our estimate for the global free energy of encapsulation yields DeltaGenc approximately -2.5 kBT. The decomposition of the average forces acting on the trapped ion reveals that the encapsulation is controlled by Coulomb interactions between the ion and OH groups in the CD, with a much smaller contribution from the solvent molecules. Changes in the previous results, arising from the partial methylation of the host CD and modifications in the charge distribution of the guest molecule are also discussed. The global picture that emerges from our results suggests that the stability of the ClO4- encapsulation involves not only the individual ion but also its first solvation shell.

  14. Encapsulation of Aroma

    NASA Astrophysics Data System (ADS)

    Zuidam, Nicolaas Jan; Heinrich, Emmanuel

    Flavor is one of the most important characteristics of a food product, since people prefer to eat only food products with an attractive flavor (Voilley and Etiévant 2006). Flavor can be defined as a combination of taste, smell and/or trigeminal stimuli. Taste is divided into five basic ones, i.e. sour, salty, sweet, bitter and umami. Components that trigger the so-called gustatory receptors for these tastes are in general not volatile, in contrast to aroma. Aroma molecules are those that interact with the olfactory receptors in the nose cavity (Firestein 2001). Confusingly, aroma is often referred to as flavor. Trigeminal stimuli cause sensations like cold, touch, and prickling. The current chapter only focuses on the encapsulation of the aroma molecules.

  15. Folic acid-targeted disulfide-based cross-linking micelle for enhanced drug encapsulation stability and site-specific drug delivery against tumors

    PubMed Central

    Zhang, Yumin; Zhou, Junhui; Yang, Cuihong; Wang, Weiwei; Chu, Liping; Huang, Fan; Liu, Qiang; Deng, Liandong; Kong, Deling; Liu, Jianfeng; Liu, Jinjian

    2016-01-01

    Although the shortcomings of small molecular antitumor drugs were efficiently improved by being entrapped into nanosized vehicles, premature drug release and insufficient tumor targeting demand innovative approaches that boost the stability and tumor responsiveness of drug-loaded nanocarriers. Here, we show the use of the core cross-linking method to generate a micelle with enhanced drug encapsulation ability and sensitivity of drug release in tumor. This kind of micelle could increase curcumin (Cur) delivery to HeLa cells in vitro and improve tumor accumulation in vivo. We designed and synthesized the core cross-linked micelle (CCM) with polyethylene glycol and folic acid-polyethylene glycol as the hydrophilic units, pyridyldisulfide as the cross-linkable and hydrophobic unit, and disulfide bond as the cross-linker. CCM showed spherical shape with a diameter of 91.2 nm by the characterization of dynamic light scattering and transmission electron microscope. Attributed to the core cross-linking, drug-loaded CCM displayed higher Nile Red or Cur-encapsulated stability and better sensitivity to glutathione than noncross-linked micelle (NCM). Cellular uptake and in vitro antitumor studies proved the enhanced endocytosis and better cytotoxicity of CCM-Cur against HeLa cells, which had a high level of glutathione. Meanwhile, the folate receptor-mediated drug delivery (FA-CCM-Cur) further enhanced the endocytosis and cytotoxicity. Ex vivo imaging studies showed that CCM-Cur and FA-CCM-Cur possessed higher tumor accumulation until 24 hours after injection. Concretely, FA-CCM-Cur exhibited the highest tumor accumulation with 1.7-fold of noncross-linked micelle Cur and 2.8-fold of free Cur. By combining cross-linking of the core with active tumor targeting of FA, we demonstrated a new and effective way to design nanocarriers for enhanced drug encapsulation, smart tumor responsiveness, and elevated tumor accumulation. PMID:27051287

  16. Disulfide cross-linked phosphorylcholine micelles for triggered release of camptothecin

    PubMed Central

    McRae Page, Samantha; Martorella, Molly; Parelkar, Sangram; Kosif, Irem

    2013-01-01

    A series of block copolymers based on 2-methacryloyloxyethyl phosphorylcholine (MPC) were synthesized by reversible addition fragmentation chain transfer (RAFT) polymerization. Incorporation of dihydrolipoic acid (DHLA) into the hydrophobic block led to formation of block copolymer micelles in water. The micelles were between 15 and 30 nm in diameter, as characterized by dynamic light scattering (DLS), with some size control achieved by adjusting the hydrophobic/hydrophilic balance. Cross-linked micelles were prepared by disulfide formation, and observed to be stable in solution for weeks. The micelles proved amenable to disassembly when treated with a reducing agent, such as dithiothreitol (DTT), and represent a potential delivery platform for chemotherapeutic agents. As a proof-of-concept, camptothecin (CPT) was conjugated to the polymer scaffold through a disulfide linkage, and release of the drug from the micelle was monitored by fluorescence spectroscopy. These CPT-loaded prodrug micelles showed a reduction in release rate compared to physically encapsulated CPT. The use of disulfide conjugation facilitated drug release under reducing conditions, with a half-life (t1/2) of 5.5 hours in the presence of 3 mM DTT, compared to 28 hours in PBS. The toxicity of the micellar prodrugs was evaluated in cell culture against human breast (MCF7) and colorectal (COLO205) cancer cell lines. PMID:23742055

  17. Catalytic activity and thermal stability of horseradish peroxidase encapsulated in self-assembled organic nanotubes.

    PubMed

    Lu, Qin; Kim, Youngchan; Bassim, Nabil; Raman, Nisha; Collins, Greg E

    2016-04-07

    Horseradish peroxidase (HRP) was encapsulated in self-assembled lithocholic acid (LCA) based organic nanotubes and its catalytic activity before and after thermal treatment was measured for comparison with free HRP. The apparent kcat (kcat/Km) for nanotube encapsulated HRP remained almost the same before and after thermal treatment, reporting an average value of 3.7 ± 0.4 μM(-1) s(-1). The apparent kcat value for free HRP decreased from 14.8 ± 1.3 μM(-1) s(-1) for samples stored at 4 °C to 2.4 ± 0.1 μM(-1) s(-1) after thermal treatment for 8 h at 55 °C. The Michaelis-Menten constants, Km, determined for encapsulated HRP and free HRP were relatively unperturbed by storage conditions at 4 °C or thermally treated at 55 °C for varying time periods from 2-8 h, with encapsulated HRP having a slightly higher Km than free HRP (13.4 ± 0.9 μM versus 11.7 ± 0.4 μM). The amount of HRP encapsulated in LCA nanotubes increased dramatically when the mixture of HRP and LCA nanotubes was brought to an elevated temperature. Within 4 h of thermal treatment at 55 °C, the amount of HRP encapsulated by the LCA nanotubes was more than 4 times the amount of HRP encapsulated when equilibrated at 4 °C for 7 days. Molecular dynamics (MD) simulations show that the higher degree of exposure of hydrophobic residues in HRP at elevated temperatures enhances the hydrophobic interaction between HRP and the nanotube wall, resulting in the increased amount of HRP surface adsorption and, hence, the overall amount of encapsulation inside the nanotubes.

  18. Method for producing hydrophobic aerogels

    DOEpatents

    Hrubesh, Lawrence W.; Poco, John F.; Coronado, Paul R.

    1999-01-01

    A method for treating a dried monolithic aerogel containing non-dispersed particles, with an organometallic surface modifying agent to produce hydrophobic aerogels. The dried, porous hydrophobic aerogels contain a protective layer of alkyl groups, such as methyl groups, on the modified surfaces of the pores of the aerogel. The alkyl groups at the aerogel surface typically contain at least one carbon-metal bond per group.

  19. Differential encapsulation of trans-2-[4-(dimethylamino)styryl] benzothiazole in cyclodextrin hosts: Application towards nanotubular suprastructure formation

    NASA Astrophysics Data System (ADS)

    Purkayastha, Pradipta; Das, Debasmita; Syed Jaffer, S.

    2008-12-01

    The guest size dependent extent of encapsulation by cyclodextrins (CDs) of different sizes ( viz., α-, β-, and γ-) has been studied using cyclic voltammetry and fluorescence spectroscopy. Electrochemical and chemical oxidation methods have been used to understand the extent to which trans-2-[4-(dimethylamino)styryl]benzothiazole (DMASBT) gets encapsulated in the cyclodextrin cavities. The guest molecule can induce the formation of nanocapsules with cyclodextrin hosts due to hydrophobic interaction leading to the formation of nanotubes followed by suprastructures. The electrochemically obtained results were confirmed using chemical method. The differential encapsulation of DMASBT in the CDs may define the architecture of the nanotubes.

  20. Controlled release properties of zein-fatty acid blend films for multiple bioactive compounds.

    PubMed

    Arcan, Iskender; Yemenicioğlu, Ahmet

    2014-08-13

    To develop edible films having controlled release properties for multiple bioactive compounds, hydrophobicity and morphology of zein films were modified by blending zein with oleic (C18:1)Δ⁹, linoleic (C18:2)Δ(9,12), or lauric (C₁₂) acids in the presence of lecithin. The blend zein films showed 2-8.5- and 1.6-2.9-fold lower initial release rates for the model active compounds, lysozyme (LYS) and (+)-catechin (CAT), than the zein control films, respectively. The change of fatty acid chain length affected both CAT and LYS release rates while the change of fatty acid double bond number affected only the CAT release rate. The film morphologies suggested that the blend films owe their controlled release properties mainly to the microspheres formed within their matrix and encapsulation of active compounds. The blend films showed antilisterial activity and antioxidant activity up to 81 μmol Trolox/cm². The controlled release of multiple bioactive compounds from a single film showed the possibility of combining application of active and bioactive packaging technologies and improving not only safety and quality but also health benefits of packed food.

  1. Effect of encapsulation in the anion receptor pocket of sub-domain IIA of human serum albumin on the modulation of pKa of warfarin and structurally similar acidic guests: a possible implication on biological activity.

    PubMed

    Datta, Shubhashis; Halder, Mintu

    2014-01-05

    Supramolecular and bio-supramolecular host assisted pKa shift of biologically relevant acidic guests, warfarin and coumarin 343, has been monitored using both steady-state and time resolved fluorescence spectroscopy. The anion receptors present in sub-domain IIA of human serum albumin (HSA) stabilize the anionic form of the guest and thereby shift pKa towards acidic range. On the other hand, the preferential binding of the neutral form of guests in the non-polar hydrophobic cavity of β-cyclodextrin results in up-shifted pKa. This shifting of pKa of drugs like warfarin, etc., whose therapeutic activity depends on the position of the acid-base equilibrium in human system, is of great importance in pharmacokinetics. The release of the active form of such drugs from macrocyclic carrier and subsequent distribution through the carrier protein should depend on the modulation of the overall pKa window brought about by the encapsulation in these hosts. Present work also suggests that properly optimized encapsulation in appropriate receptor pocket can enhance the bioavailability of drugs. This work also opens up the possibility to use HSA as encapsulator, instead of traditional cyclodextrins or other polymeric hosts, since such system may overcome toxicity as well as biocompatibility issues.

  2. Liposomal Encapsulated Rhodomyrtone: A Novel Antiacne Drug

    PubMed Central

    Chorachoo, Julalak; Amnuaikit, Thanaporn; Voravuthikunchai, Supayang P.

    2013-01-01

    Rhodomyrtone isolated from the leaves of Rhodomyrtus tomentosa possesses antibacterial, anti-inflammatory, and anti-oxidant activities. Since rhodomyrtone is insoluble in water, it is rather difficult to get to the target sites in human body. Liposome exhibited ability to entrap both hydrophilic and hydrophobic compounds and easily penetrate to the target site. The present study aimed to develop a novel liposomal encapsulated rhodomyrtone formulations. In addition, characterization of liposome, stability profiles, and their antiacne activity were performed. Three different formulations of total lipid concentrations 60, 80, and 100 μmol/mL were used. Formulation with 60 μmol/mL total lipid (phosphatidylcholine from soybean and cholesterol from lanolin in 4 : 1, w/w) exhibited the highest rhodomyrtone encapsulation efficacy (65.47 ± 1.7%), average particle size (209.56 ± 4.8 nm), and ζ-potential (–41.19 ± 1.3 mV). All formulations demonstrated good stability when stored for 2 months in dark at 4°C as well as room temperature. Minimal inhibitory concentration and minimal bactericidal concentration values of liposomal formulation against 11 clinical bacterial isolates and reference strains ranged from 1 to 4 and from 4 to 64 μg/mL, respectively, while those of rhodomyrtone were 0.25–1 and 0.5–2 μg/mL, respectively. The MIC and MBC values of liposome formulation were more effective than topical drugs against Staphylococcus aureus and Staphylococcus epidermidis. PMID:23762104

  3. Liposomal encapsulated rhodomyrtone: a novel antiacne drug.

    PubMed

    Chorachoo, Julalak; Amnuaikit, Thanaporn; Voravuthikunchai, Supayang P

    2013-01-01

    Rhodomyrtone isolated from the leaves of Rhodomyrtus tomentosa possesses antibacterial, anti-inflammatory, and anti-oxidant activities. Since rhodomyrtone is insoluble in water, it is rather difficult to get to the target sites in human body. Liposome exhibited ability to entrap both hydrophilic and hydrophobic compounds and easily penetrate to the target site. The present study aimed to develop a novel liposomal encapsulated rhodomyrtone formulations. In addition, characterization of liposome, stability profiles, and their antiacne activity were performed. Three different formulations of total lipid concentrations 60, 80, and 100  μ mol/mL were used. Formulation with 60  μ mol/mL total lipid (phosphatidylcholine from soybean and cholesterol from lanolin in 4 : 1, w/w) exhibited the highest rhodomyrtone encapsulation efficacy (65.47 ± 1.7%), average particle size (209.56 ± 4.8 nm), and ζ -potential (-41.19 ± 1.3 mV). All formulations demonstrated good stability when stored for 2 months in dark at 4°C as well as room temperature. Minimal inhibitory concentration and minimal bactericidal concentration values of liposomal formulation against 11 clinical bacterial isolates and reference strains ranged from 1 to 4 and from 4 to 64  μ g/mL, respectively, while those of rhodomyrtone were 0.25-1 and 0.5-2  μ g/mL, respectively. The MIC and MBC values of liposome formulation were more effective than topical drugs against Staphylococcus aureus and Staphylococcus epidermidis.

  4. Chitosan-alginate nanocapsules for encapsulation of turmeric oil.

    PubMed

    Lertsutthiwong, P; Rojsitthisak, P

    2011-12-01

    Turmeric oil is widely used in pharmaceutical and cosmetic applications because of its antibacterial, antifungal, antioxidant, and insect-repellent properties. However, turmeric oil is volatile, insoluble in water and unstable in certain environments, which causes difficulties with formulation development and stability of new products. One approach to overcome these problems is to encapsulate turmeric oil in carriers formed from naturally occurring polysaccharides. Among such polysaccharides, chitosan and alginate have been widely used as particulate carriers for encapsulation and controlled release of bioactive compounds. The potential for size reduction of the carriers to the nanometer scale is of particular interest for delivery systems. In this review, we provide an overview of the versatile properties of turmeric oil and discuss the use of alginate and chitosan for capsule formation and encapsulation of turmeric oil in chitosan-alginate nanocapsules. We also discuss the in vitro skin permeation of turmeric oil from nanocapsules.

  5. Evaluation of Encapsulated Inhibitor for Autonomous Corrosion Protection

    NASA Technical Reports Server (NTRS)

    Johnsey, M. N.; Li, W.; Buhrow, J. W.; Calle, L. M.; Pearman, B. P.; Zhang, X.

    2015-01-01

    This work concerns the development of smart coating technologies based on microencapsulation for the autonomous control of corrosion. Microencapsulation allows the incorporation of corrosion inhibitors into coating which provides protection through corrosion-controlled release of these inhibitors.One critical aspect of a corrosion protective smart coating is the selection of corrosion inhibitor for encapsulation and comparison of the inhibitor function before and after encapsulation. For this purpose, a systematic approach is being used to evaluate free and encapsulated corrosion inhibitors by salt immersion. Visual, optical microscope, and Scanning Electron Microscope (with low-angle backscatter electron detector) are used to evaluate these inhibitors. It has been found that the combination of different characterization tools provide an effective method for evaluation of early stage localized corrosion and the effectiveness of corrosion inhibitors.

  6. Enhancing the oral bioavailability of biochanin A by encapsulation in mixed micelles containing Pluronic F127 and Plasdone S630

    PubMed Central

    Wu, Xiaoyan; Ge, Weihong; Shao, Tengfei; Wu, Weijun; Hou, Jian; Cui, Li; Wang, Jing; Zhang, Zhenghai

    2017-01-01

    Biochanin A (BCA), a natural dietary isoflavone, has been reported to show anticancer activities. However, its low biological availability and poor aqueous solubility limit its usefulness as a chemotherapeutic agent. We developed BCA-loaded micelles with Pluronic F127 and Plasdone S630 (BCA-FS). The optimized, spherical-shaped BCA-FS was obtained at a ratio of 1:1 (F127:S630). The particle size was 25.17±1.2 nm, and the zeta potential was −10.9±0.24 mV. BCA solubility in water increased to 5.0 mg/mL after encapsulation, and the drug-loading efficiency was 5.88%±0.76%. In vitro release experiments showed a delayed release of BCA from the mixed micelles. Furthermore, the BCA absorption permeability across a Caco-2 cell monolayer from the apical side to the basolateral side increased by 54% in BCA-FS. A pharmacokinetics evaluation showed a 2.16-fold increase in the relative oral bioavailability of BCA-FS compared with raw BCA, indicating that the mixed micelles may promote absorption in the gastrointestinal tract. A gastrointestinal safety assay was used to assess the reliability and safety of BCA-FS. On the basis of these findings, we conclude that this simple nanomicelle system could be leveraged to deliver BCA and other hydrophobic drugs. PMID:28260893

  7. Enhancing the oral bioavailability of biochanin A by encapsulation in mixed micelles containing Pluronic F127 and Plasdone S630.

    PubMed

    Wu, Xiaoyan; Ge, Weihong; Shao, Tengfei; Wu, Weijun; Hou, Jian; Cui, Li; Wang, Jing; Zhang, Zhenghai

    2017-01-01

    Biochanin A (BCA), a natural dietary isoflavone, has been reported to show anticancer activities. However, its low biological availability and poor aqueous solubility limit its usefulness as a chemotherapeutic agent. We developed BCA-loaded micelles with Pluronic F127 and Plasdone S630 (BCA-FS). The optimized, spherical-shaped BCA-FS was obtained at a ratio of 1:1 (F127:S630). The particle size was 25.17±1.2 nm, and the zeta potential was -10.9±0.24 mV. BCA solubility in water increased to 5.0 mg/mL after encapsulation, and the drug-loading efficiency was 5.88%±0.76%. In vitro release experiments showed a delayed release of BCA from the mixed micelles. Furthermore, the BCA absorption permeability across a Caco-2 cell monolayer from the apical side to the basolateral side increased by 54% in BCA-FS. A pharmacokinetics evaluation showed a 2.16-fold increase in the relative oral bioavailability of BCA-FS compared with raw BCA, indicating that the mixed micelles may promote absorption in the gastrointestinal tract. A gastrointestinal safety assay was used to assess the reliability and safety of BCA-FS. On the basis of these findings, we conclude that this simple nanomicelle system could be leveraged to deliver BCA and other hydrophobic drugs.

  8. A novel approach for antibody nanocarriers development through hydrophobic ion-pairing complexation

    PubMed Central

    Patel, Ashaben; Gaudana, Ripal; Mitra, Ashim K.

    2015-01-01

    IgG-Fab fragment, a model antibody protein was hydrophobically modified by a novel approach of ion-pairing complexation. Three different sulphated ion-pairing agents were utilised including sodium dodecyl sulphate, taurocholic acid and dextran sulphate (DS). The formations of hydrophobic ion-pairing (HIP) complexes were dependant on pH and molar ratio of ion-pairing agent to Fab. Aqueous solubilities of HIP complexes were very low compared to Fab alone. In particular, when dextran sulphate was added as ion-pairing agent, formed Fab:DS HIP complexes were least soluble in water. Further, nanoparticles (NPs) loaded with drug and Fab:DS HIP complex were prepared and characterised with respect to encapsulation efficiency and size. We observed significant improvement in encapsulation efficiency for Fab:DS HIP complex-loaded nanoparticles. This study demonstrates a novel approach of formulating antibody-loaded nanoparticles which can also be employed for delivery of large antibodies. PMID:24697179

  9. Sclerosing Encapsulating Peritonitis

    PubMed Central

    Machado, Norman O.

    2016-01-01

    Sclerosing encapsulating peritonitis (SEP) is a rare chronic inflammatory condition of the peritoneum with an unknown aetiology. Also known as abdominal cocoon, the condition occurs when loops of the bowel are encased within the peritoneal cavity by a membrane, leading to intestinal obstruction. Due to its rarity and non-specific clinical features, it is often misdiagnosed. The condition presents with recurrent episodes of small bowel obstruction and can be idiopathic or secondary; the latter is associated with predisposing factors such as peritoneal dialysis or abdominal tuberculosis. In the early stages, patients can be managed conservatively; however, surgical intervention is necessary for those with advanced stage intestinal obstruction. A literature review revealed 118 cases of SEP; the mean age of these patients was 39 years and 68.0% were male. The predominant presentation was abdominal pain (72.0%), distension (44.9%) or a mass (30.5%). Almost all of the patients underwent surgical excision (99.2%) without postoperative complications (88.1%). PMID:27226904

  10. Gravity Probe B Encapsulated

    NASA Technical Reports Server (NTRS)

    2004-01-01

    In this photo, the Gravity Probe B (GP-B) space vehicle is being encapsulated atop the Delta II launch vehicle. The GP-B is the relativity experiment developed at Stanford University to test two extraordinary predictions of Albert Einstein's general theory of relativity. The experiment will measure, very precisely, the expected tiny changes in the direction of the spin axes of four gyroscopes contained in an Earth-orbiting satellite at a 400-mile altitude. So free are the gyroscopes from disturbance that they will provide an almost perfect space-time reference system. They will measure how space and time are very slightly warped by the presence of the Earth, and, more profoundly, how the Earth's rotation very slightly drags space-time around with it. These effects, though small for the Earth, have far-reaching implications for the nature of matter and the structure of the Universe. GP-B is among the most thoroughly researched programs ever undertaken by NASA. This is the story of a scientific quest in which physicists and engineers have collaborated closely over many years. Inspired by their quest, they have invented a whole range of technologies that are already enlivening other branches of science and engineering. Launched April 20, 2004 , the GP-B program was managed for NASA by the Marshall Space Flight Center. Development of the GP-B is the responsibility of Stanford University along with major subcontractor Lockheed Martin Corporation. (Image credit to Russ Underwood, Lockheed Martin Corporation).

  11. Encapsulated microsensors for reservoir interrogation

    DOEpatents

    Scott, Eddie Elmer; Aines, Roger D.; Spadaccini, Christopher M.

    2016-03-08

    In one general embodiment, a system includes at least one microsensor configured to detect one or more conditions of a fluidic medium of a reservoir; and a receptacle, wherein the receptacle encapsulates the at least one microsensor. In another general embodiment, a method include injecting the encapsulated at least one microsensor as recited above into a fluidic medium of a reservoir; and detecting one or more conditions of the fluidic medium of the reservoir.

  12. Comparative studies on osmosis based encapsulation of sodium diclofenac in porcine and outdated human erythrocyte ghosts.

    PubMed

    Bukara, Katarina; Drvenica, Ivana; Ilić, Vesna; Stančić, Ana; Mišić, Danijela; Vasić, Borislav; Gajić, Radoš; Vučetić, Dušan; Kiekens, Filip; Bugarski, Branko

    2016-12-20

    The objective of our study was to develop controlled drug delivery system based on erythrocyte ghosts for amphiphilic compound sodium diclofenac considering the differences between erythrocytes derived from two readily available materials - porcine slaughterhouse and outdated transfusion human blood. Starting erythrocytes, empty erythrocyte ghosts and diclofenac loaded ghosts were compared in terms of the encapsulation efficiency, drug releasing profiles, size distribution, surface charge, conductivity, surface roughness and morphology. The encapsulation of sodium diclofenac was performed by an osmosis based process - gradual hemolysis. During this process sodium diclofenac exerted mild and delayed antihemolytic effect and increased potassium efflux in porcine but not in outdated human erythrocytes. FTIR spectra revealed lack of any membrane lipid disorder and chemical reaction with sodium diclofenac in encapsulated ghosts. Outdated human erythrocyte ghosts with detected nanoscale damages and reduced ability to shrink had encapsulation efficiency of only 8%. On the other hand, porcine erythrocyte ghosts had encapsulation efficiency of 37% and relatively slow drug release rate. More preserved structure and functional properties of porcine erythrocytes related to their superior encapsulation and release performances, define them as more appropriate for the usage in sodium diclofenac encapsulation process.

  13. Hydrophobic gating in ion channels.

    PubMed

    Aryal, Prafulla; Sansom, Mark S P; Tucker, Stephen J

    2015-01-16

    Biological ion channels are nanoscale transmembrane pores. When water and ions are enclosed within the narrow confines of a sub-nanometer hydrophobic pore, they exhibit behavior not evident from macroscopic descriptions. At this nanoscopic level, the unfavorable interaction between the lining of a hydrophobic pore and water may lead to stochastic liquid-vapor transitions. These transient vapor states are "dewetted", i.e. effectively devoid of water molecules within all or part of the pore, thus leading to an energetic barrier to ion conduction. This process, termed "hydrophobic gating", was first observed in molecular dynamics simulations of model nanopores, where the principles underlying hydrophobic gating (i.e., changes in diameter, polarity, or transmembrane voltage) have now been extensively validated. Computational, structural, and functional studies now indicate that biological ion channels may also exploit hydrophobic gating to regulate ion flow within their pores. Here we review the evidence for this process and propose that this unusual behavior of water represents an increasingly important element in understanding the relationship between ion channel structure and function.

  14. Technology of mammalian cell encapsulation.

    PubMed

    Uludag, H; De Vos, P; Tresco, P A

    2000-08-20

    Entrapment of mammalian cells in physical membranes has been practiced since the early 1950s when it was originally introduced as a basic research tool. The method has since been developed based on the promise of its therapeutic usefulness in tissue transplantation. Encapsulation physically isolates a cell mass from an outside environment and aims to maintain normal cellular physiology within a desired permeability barrier. Numerous encapsulation techniques have been developed over the years. These techniques are generally classified as microencapsulation (involving small spherical vehicles and conformally coated tissues) and macroencapsulation (involving larger flat-sheet and hollow-fiber membranes). This review is intended to summarize techniques of cell encapsulation as well as methods for evaluating the performance of encapsulated cells. The techniques reviewed include microencapsulation with polyelectrolyte complexation emphasizing alginate-polylysine capsules, thermoreversible gelation with agarose as a prototype system, interfacial precipitation and interfacial polymerization, as well as the technology of flat sheet and hollow fiber-based macroencapsulation. Four aspects of encapsulated cells that are critical for the success of the technology, namely the capsule permeability, mechanical properties, immune protection and biocompatibility, have been singled out and methods to evaluate these properties were summarized. Finally, speculations regarding future directions of cell encapsulation research and device development are included from the authors' perspective.

  15. A Transient Cell-shielding Method for Viable MSC Delivery Within Hydrophobic Scaffolds Polymerized in situ

    DTIC Science & Technology

    2015-03-27

    fastdegrading, oxidized alginate beads prior to mixing with the hydrophobic precursors. Cells survived the polymerization at >70% viability , and rapid disso...water, filtered, and lyophilized [28]. A concentration of 4 w/v% of o-Alg was utilized to generate hydrogel beads. 2.4. Encapsulation of cells in...DPBS, Corning, Corning, NY), and stained with the Cytotoxicity Kit (Live/Dead® Viability /Cytotoxicity Kit for mammalian cells , Invi- trogen). An

  16. Potential for plastics to transport hydrophobic contaminants.

    PubMed

    Teuten, Emma L; Rowland, Steven J; Galloway, Tamara S; Thompson, Richard C

    2007-11-15

    Plastic debris litters marine and terrestrial habitats worldwide. It is ingested by numerous species of animals, causing deleterious physical effects. High concentrations of hydrophobic organic contaminants have also been measured on plastic debris collected from the environment, but the fate of these contaminants is poorly understood. Here, we examine the uptake and subsequent release of phenanthrene by three plastics. Equilibrium distribution coefficients for sorption of phenanthrene from seawater onto the plastics varied by more than an order of magnitude (polyethylene > polypropylene > polyvinyl chloride (PVC)). In all cases, sorption to plastics greatly exceeded sorption to two natural sediments. Desorption rates of phenanthrene from the plastics or sediments back into solution spanned several orders of magnitude. As expected, desorption occurred more rapidly from the sediments than from the plastics. Using the equilibrium partitioning method, the effects of adding very small quantities of plastic with sorbed phenanthrene to sediment inhabited by the lugworm (Arenicola marina) were evaluated. We estimate that the addition of as little as 1 microg of contaminated polyethylene to a gram of sediment would give a significant increase in phenanthrene accumulation by A. marina. Thus, plastics may be important agents in the transport of hydrophobic contaminants to sediment-dwelling organisms.

  17. Subphthalocyanines: addressing water-solubility, nano-encapsulation, and activation for optical imaging of B16 melanoma cells.

    PubMed

    Bernhard, Yann; Winckler, Pascale; Chassagnon, Remi; Richard, Philippe; Gigot, Élodie; Perrier-Cornet, Jean-Marie; Decréau, Richard A

    2014-11-21

    Water-soluble disulfonato-subphthalocyanines (SubPcs) or hydrophobic nano-encapsulated SubPcs are efficient probes for the fluorescence imaging of cells. 20 nm large liposomes (TEM and DLS) incorporated about 13% SubPc. Moreover, some of these fluorophores were found to be pH activatable.

  18. Analysis of Double-encapsulated Fuel Rods

    SciTech Connect

    Hales, Jason Dean; Medvedev, Pavel G; Novascone, Stephen Rhead; Perez, Danielle Marie; Williamson, Richard L

    2014-09-01

    In an LWR fuel rod, the cladding encapsulates the fuel, contains fission products, and transfers heat directly to the water coolant. In some situations, it may be advantageous to separate the cladding from the coolant through use of a secondary cladding or capsule. This may be done to increase confidence that the fuel or fission products will not mix with the coolant, to provide a mechanism for controlling the rod temperature, or to place multiple experimental rodlets within a single housing. With an axisymmetric assumption, it is possible to derive closed-form expressions for the temperature profile in a fuel rod using radially-constant thermal conductivity in the fuel. This is true for both a traditional fuel-cladding rod and a double-encapsulated fuel (fuel, cladding, capsule) configuration. Likewise, it is possible to employ a fuel performance code to analyse both a traditional and a double-encapsulated fuel. In the case of the latter, two sets of gap heat transfer conditions must be imposed. In this work, we review the equations associated with radial heat transfer in a cylindrical system, present analytic and computational results for a postulated power and gas mixture history for IFA-744, and describe the analysis of the AFC-2A, 2B metallic fuel alloy experiments at the Advanced Test Reactor, including the effect of a release of fission products into the cladding-capsule gap. The computational results for these two cases were obtained using BISON, a fuel performance code under development at Idaho National Laboratory.

  19. Antibody-conjugated soybean oil-filled calcium phosphate nanoshells for targetted delivery of hydrophobic molecules.

    PubMed

    Schmidt, H T; Kroczynski, M; Maddox, J; Chen, Y; Josephs, R; Ostafin, A E

    2006-11-01

    Hollow calcium phosphate nanoparticles capable of encapsulating poorly water-soluble molecules were produced by self-assembly. Previously reported were solid calcium phosphate nanoparticles and water-filled calcium phosphate nanocapsules suited for encapsulating mostly hydrophilic, but not hydrophobic compounds. Here, calcium phosphate was deposited around 100 nm diameter, 1,2-dioleoyl-sn-glycero-3-phosphate stabilized soybean oil nanoemulsions using either calcium chloride or NaOH titrations to achieve shell thickness between 20-70 nm. The surface was functionalized with carboxylic acid via the addition of carboxyethylphosphonic acid to attach Molecular Probes AB-594C antibody using sulpho-n-hydroxysuccinimide and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride with an efficiency of approximately 70%, while retaining near complete antibody function. Hydrophobic pyrene was encapsulated with an efficiency of 95%, at concentrations much higher than its water solubility limit, and exhibited spectral features characteristic of a hydrophobic environment. These materials can be used in the targeted delivery of many useful, yet poorly water-soluble pharmaceutical and nutraceutical compounds.

  20. Self-immolative polymersomes for high-efficiency triggered release and programmed enzymatic reactions.

    PubMed

    Liu, Guhuan; Wang, Xiaorui; Hu, Jinming; Zhang, Guoying; Liu, Shiyong

    2014-05-21

    Stimuli-triggered disassembly of block copolymer vesicles or polymersomes has been conventionally achieved via solubility switching of the bilayer-forming block, requiring cooperative changes of most of the repeating units. Herein we report an alternative approach by incorporating hydrophobic blocks exhibiting stimuli-triggered head-to-tail cascade depolymerization features. Amphiphilic block copolymers bearing this motif self-assemble into self-immolative polymersomes (SIPsomes). By modular design of terminal capping moieties, visible light, UV light, and reductive milieu can be utilized to actuate SIPsomes disintegration into water-soluble small molecules and hydrophilic blocks. The design of SIPsomes allows for triggered drug co-release and controllable access toward protons, oxygen, and enzymatic substrates. We also demonstrate programmed (OR-, AND-, and XOR-type logic) enzymatic reactions by integrating SIPsome encapsulation and trigger/capping moiety-selective cascade depolymerization events.

  1. Formation mechanism of highly luminescent silica capsules incorporating multiple hydrophobic quantum dots with various emission wavelengths.

    PubMed

    Li, Chunliang; Murase, Norio

    2013-12-01

    A synthesis process was reconsidered for encapsulating hydrophobic quantum dots (QDs) into silica capsules with high photoluminescent (PL) efficiency. The process comprises three steps: silanization of QD surfaces, seed formation by assembly of the QDs, and coating of the QD seeds with a silica shell. Analysis of the encapsulation mechanism enabled this process to be adapted for application to CdSe-based core-shell QDs with various organic ligands such as oleic acid and with various emission wavelengths. Formation of the seeds is the key step in synthesizing the silica capsules, so that they have high PL efficiency. Due to the differences in QD size and in the affinity of the ligands on their surfaces, the concentration of QDs used in the synthesis must be optimized to maximize emission efficiency. Contrary to an initial assumption, several ligands remained on the QD surfaces even after the QDs were transferred from organic solution to water. This greatly affected the size and PL efficiency of the seeds. Judicious selection of the conditions for seed and silica capsule synthesis resulted in seeds with PL efficiency greater than 70% and in silica capsules encapsulating multiple CdSe/CdZnS QDs with PL efficiency as high as 41%. Silica capsules incorporating QDs with various emission peak wavelengths from green to red were also prepared. The process presented serves as a guideline for encapsulating various types of hydrophobic QDs into silica capsules for biological tagging applications.

  2. How the hydrophobic factor drives protein folding.

    PubMed

    Baldwin, Robert L; Rose, George D

    2016-11-01

    How hydrophobicity (HY) drives protein folding is studied. The 1971 Nozaki-Tanford method of measuring HY is modified to use gases as solutes, not crystals, and this makes the method easy to use. Alkanes are found to be much more hydrophobic than rare gases, and the two different kinds of HY are termed intrinsic (rare gases) and extrinsic (alkanes). The HY values of rare gases are proportional to solvent-accessible surface area (ASA), whereas the HY values of alkanes depend on special hydration shells. Earlier work showed that hydration shells produce the hydration energetics of alkanes. Evidence is given here that the transfer energetics of alkanes to cyclohexane [Wolfenden R, Lewis CA, Jr, Yuan Y, Carter CW, Jr (2015) Proc Natl Acad Sci USA 112(24):7484-7488] measure the release of these shells. Alkane shells are stabilized importantly by van der Waals interactions between alkane carbon and water oxygen atoms. Thus, rare gases cannot form this type of shell. The very short (approximately picoseconds) lifetime of the van der Waals interaction probably explains why NMR efforts to detect alkane hydration shells have failed. The close similarity between the sizes of the opposing energetics for forming or releasing alkane shells confirms the presence of these shells on alkanes and supports Kauzmann's 1959 mechanism of protein folding. A space-filling model is given for the hydration shells on linear alkanes. The model reproduces the n values of Jorgensen et al. [Jorgensen WL, Gao J, Ravimohan C (1985) J Phys Chem 89:3470-3473] for the number of waters in alkane hydration shells.

  3. How the hydrophobic factor drives protein folding

    PubMed Central

    Baldwin, Robert L.; Rose, George D.

    2016-01-01

    How hydrophobicity (HY) drives protein folding is studied. The 1971 Nozaki–Tanford method of measuring HY is modified to use gases as solutes, not crystals, and this makes the method easy to use. Alkanes are found to be much more hydrophobic than rare gases, and the two different kinds of HY are termed intrinsic (rare gases) and extrinsic (alkanes). The HY values of rare gases are proportional to solvent-accessible surface area (ASA), whereas the HY values of alkanes depend on special hydration shells. Earlier work showed that hydration shells produce the hydration energetics of alkanes. Evidence is given here that the transfer energetics of alkanes to cyclohexane [Wolfenden R, Lewis CA, Jr, Yuan Y, Carter CW, Jr (2015) Proc Natl Acad Sci USA 112(24):7484–7488] measure the release of these shells. Alkane shells are stabilized importantly by van der Waals interactions between alkane carbon and water oxygen atoms. Thus, rare gases cannot form this type of shell. The very short (approximately picoseconds) lifetime of the van der Waals interaction probably explains why NMR efforts to detect alkane hydration shells have failed. The close similarity between the sizes of the opposing energetics for forming or releasing alkane shells confirms the presence of these shells on alkanes and supports Kauzmann's 1959 mechanism of protein folding. A space-filling model is given for the hydration shells on linear alkanes. The model reproduces the n values of Jorgensen et al. [Jorgensen WL, Gao J, Ravimohan C (1985) J Phys Chem 89:3470–3473] for the number of waters in alkane hydration shells. PMID:27791131

  4. Application of nano-encapsulated olive leaf extract in controlling the oxidative stability of soybean oil.

    PubMed

    Mohammadi, Adeleh; Jafari, Seid Mahdi; Esfanjani, Afshin Faridi; Akhavan, Sahar

    2016-01-01

    Our objective was to evaluate the antioxidant activity of olive leave extract (OLE) encapsulated by nano-emulsions in soybean oil. The average droplet size one day after production was 6.16 nm for primary W/O nano-emulsion and, 675 nm and 1443 nm for multiple emulsions stabilized by WPC alone and complex of WPC-pectin, respectively. The antioxidant activity of these emulsions containing three concentrations of 100, 200 and 300 mg OLE during storage was evaluated in soybean oil by peroxide value, TBA value and rancimat thermal stability test and was compared with blank (non-encapsulated) OLE and synthetic TBHQ antioxidant. Nano-encapsulated OLE was capable of controlling peroxide value better than unencapsulated OLE. But because of blocking phenolic compounds within dispersed emulsions droplets, thermal stability of encapsulated OLE was lower. To summarize, with increased solubility and controlled release of olive leaf phenolic compounds through their nano-encapsulation, a higher antioxidant activity was achieved.

  5. Hydrophobic pocket targeting probes for enteroviruses

    NASA Astrophysics Data System (ADS)

    Martikainen, Mari; Salorinne, Kirsi; Lahtinen, Tanja; Malola, Sami; Permi, Perttu; Häkkinen, Hannu; Marjomäki, Varpu

    2015-10-01

    , the probe may be released upon virus uncoating. Our results collectively thus show that the gold and fluorescently labeled probes may be used to track and visualize the studied enteroviruses during the early phases of infection opening new avenues to follow virus uncoating in cells.Visualization and tracking of viruses without compromising their functionality is crucial in order to understand virus targeting to cells and tissues, and to understand the subsequent subcellular steps leading to virus uncoating and replication. Enteroviruses are important human pathogens causing a vast number of acute infections, and are also suggested to contribute to the development of chronic diseases like type I diabetes. Here, we demonstrate a novel method to target site-specifically the hydrophobic pocket of enteroviruses. A probe, a derivative of Pleconaril, was developed and conjugated to various labels that enabled the visualization of enteroviruses under light and electron microscopes. The probe mildly stabilized the virus particle by increasing the melting temperature by 1-3 degrees, and caused a delay in the uncoating of the virus in the cellular endosomes, but could not however inhibit the receptor binding, cellular entry or infectivity of the virus. The hydrophobic pocket binding moiety of the probe was shown to bind to echovirus 1 particle by STD and tr-NOESY NMR methods. Furthermore, binding to echovirus 1 and Coxsackievirus A9, and to a lesser extent to Coxsackie virus B3 was verified by using a gold nanocluster labeled probe by TEM analysis. Molecular modelling suggested that the probe fits the hydrophobic pockets of EV1 and CVA9, but not of CVB3 as expected, correlating well with the variations in the infectivity and stability of the virus particles. EV1 conjugated to the fluorescent dye labeled probe was efficiently internalized into the cells. The virus-fluorescent probe conjugate accumulated in the cytoplasmic endosomes and caused infection starting from 6 hours

  6. Molecular origins of fluorocarbon hydrophobicity

    PubMed Central

    Dalvi, Vishwanath H.; Rossky, Peter J.

    2010-01-01

    We have undertaken atomistic molecular simulations to systematically determine the structural contributions to the hydrophobicity of fluorinated solutes and surfaces compared to the corresponding hydrocarbon, yielding a unified explanation for these phenomena. We have transformed a short chain alkane, n-octane, to n-perfluorooctane in stages. The free-energy changes and the entropic components calculated for each transformation stage yield considerable insight into the relevant physics. To evaluate the effect of a surface, we have also conducted contact-angle simulations of water on self-assembled monolayers of hydrocarbon and fluorocarbon thiols. Our results, which are consistent with experimental observations, indicate that the hydrophobicity of the fluorocarbon, whether the interaction with water is as solute or as surface, is due to its “fatness.” In solution, the extra work of cavity formation to accommodate a fluorocarbon, compared to a hydrocarbon, is not offset by enhanced energetic interactions with water. The enhanced hydrophobicity of fluorinated surfaces arises because fluorocarbons pack less densely on surfaces leading to poorer van der Waals interactions with water. We find that interaction of water with a hydrophobic solute/surface is primarily a function of van der Waals interactions and is substantially independent of electrostatic interactions. This independence is primarily due to the strong tendency of water at room temperature to maintain its hydrogen bonding network structure at an interface lacking hydrophilic sites. PMID:20643968

  7. Hydrophobic Solvation: Aqueous Methane Solutions

    ERIC Educational Resources Information Center

    Konrod, Oliver; Lankau, Timm

    2007-01-01

    A basic introduction to concept of a solvation shell around an apolar solute as well as its detection is presented. The hydrophobic solvation of toluene is found to be a good teaching example which connects macroscopic, phenomenological thermodynamic results with an atomistic point of view.

  8. Composite block copolymer stabilized nanoparticles: simultaneous encapsulation of organic actives and inorganic nanostructures.

    PubMed

    Gindy, Marian E; Panagiotopoulos, Athanassios Z; Prud'homme, Robert K

    2008-01-01

    We describe the preparation and characterization of hybrid block copolymer nanoparticles (NPs) for use as multimodal carriers for drugs and imaging agents. Stable, water-soluble, biocompatible poly(ethylene glycol)-block-poly(epsilon-caprolactone) NPs simultaneously co-encapsulating hydrophobic organic actives (beta-carotene) and inorganic imaging nanostructures (Au) are prepared using the flash nanoprecipitation process in a multi-inlet vortex mixer. These composite nanoparticles (CNPs) are produced with tunable sizes between 75 nm and 275 nm, narrow particle size distributions, high encapsulation efficiencies, specified component compositions, and long-term stability. The process is tunable and flexible because it relies on the control of mixing and aggregation timescales. It is anticipated that the technique can be applied to a variety of hydrophobic active compounds, fluorescent dyes, and inorganic nanostructures, yielding CNPs for combined therapy and multimodal imaging applications.

  9. Application of supercritical antisolvent method in drug encapsulation: a review

    PubMed Central

    Kalani, Mahshid; Yunus, Robiah

    2011-01-01

    The review focuses on the application of supercritical fluids as antisolvents in the pharmaceutical field and demonstrates the supercritical antisolvent method in the use of drug encapsulation. The main factors for choosing the solvent and biodegradable polymer to produce fine particles to ensure effective drug delivery are emphasized and the effect of polymer structure on drug encapsulation is illustrated. The review also demonstrates the drug release mechanism and polymeric controlled release system, and discusses the effects of the various conditions in the process, such as pressure, temperature, concentration, chemical compositions (organic solvents, drug, and biodegradable polymer), nozzle geometry, CO2 flow rate, and the liquid phase flow rate on particle size and its distribution. PMID:21796245

  10. Application of supercritical antisolvent method in drug encapsulation: a review.

    PubMed

    Kalani, Mahshid; Yunus, Robiah

    2011-01-01

    The review focuses on the application of supercritical fluids as antisolvents in the pharmaceutical field and demonstrates the supercritical antisolvent method in the use of drug encapsulation. The main factors for choosing the solvent and biodegradable polymer to produce fine particles to ensure effective drug delivery are emphasized and the effect of polymer structure on drug encapsulation is illustrated. The review also demonstrates the drug release mechanism and polymeric controlled release system, and discusses the effects of the various conditions in the process, such as pressure, temperature, concentration, chemical compositions (organic solvents, drug, and biodegradable polymer), nozzle geometry, CO(2) flow rate, and the liquid phase flow rate on particle size and its distribution.

  11. Chloramphenicol encapsulated in poly-ε-caprolactone–pluronic composite: nanoparticles for treatment of MRSA-infected burn wounds

    PubMed Central

    Kalita, Sanjeeb; Devi, Banasmita; Kandimalla, Raghuram; Sharma, Kaustav Kalyan; Sharma, Arup; Kalita, Kasturi; Kataki, Amal Chandra; Kotoky, Jibon

    2015-01-01

    The emergence of methicillin-resistant Staphylococcus aureus (MRSA) infection has increased precipitously over the past several decades, with far-reaching health care and societal costs. MRSA infections in the context of burn wounds lead to invasive disease that could potentially cause mortality. Chloramphenicol is a well-known broad-spectrum bacteriostatic antibiotic that has been used since 1949, but due to its hydrophobicity, poor penetration in skin, fast degradation, and toxicity, its application has been hindered. Furthermore, it has been demonstrated that old antibiotics such as chloramphenicol remained active against a large number of currently prevalent resistant bacterial isolates due to their low-level use in the past. Recently, the novel nanoparticulate drug-delivery system has been used and reported to be exceptionally useful for topical therapeutics, due to its distinctive physical characteristics such as a high surface-to-volume ratio and minuscule size. It helps to achieve better hydrophilicity, bioavailability, and controlled delivery with enhanced therapeutic index, which has resulted in decreased toxicity levels compared to the crude drug. Here, we report a novel chloramphenicol loaded with poly(ε-caprolactone) (PCL)-pluronic composite nanoparticles (CAM-PCL-P NPs), physicochemical characterizations, and its bioactivity evaluation in a MRSA-infected burn-wound animal model. CAM-PCL-P NPs could encapsulate 98.3% of the drug in the nanoparticles and release 81% of the encapsulated drug over 36 days with a time to 50% drug release of 72 hours (51%). Nanoparticle suspensions maintained the initial properties with respect to size and encapsulation efficiency, even after 6 months of storage at 4°C and 25°C, respectively (P>0.05). Significant reduction in the level of toxicity was observed for CAM-PCL-P NPs compared with that of free drug as confirmed from hemolytic activity against human blood erythrocytes and cytotoxicity assay against an MCF-7

  12. Encapsulated liquid sorbents for carbon dioxide capture.

    PubMed

    Vericella, John J; Baker, Sarah E; Stolaroff, Joshuah K; Duoss, Eric B; Hardin, James O; Lewicki, James; Glogowski, Elizabeth; Floyd, William C; Valdez, Carlos A; Smith, William L; Satcher, Joe H; Bourcier, William L; Spadaccini, Christopher M; Lewis, Jennifer A; Aines, Roger D

    2015-02-05

    Drawbacks of current carbon dioxide capture methods include corrosivity, evaporative losses and fouling. Separating the capture solvent from infrastructure and effluent gases via microencapsulation provides possible solutions to these issues. Here we report carbon capture materials that may enable low-cost and energy-efficient capture of carbon dioxide from flue gas. Polymer microcapsules composed of liquid carbonate cores and highly permeable silicone shells are produced by microfluidic assembly. This motif couples the capacity and selectivity of liquid sorbents with high surface area to facilitate rapid and controlled carbon dioxide uptake and release over repeated cycles. While mass transport across the capsule shell is slightly lower relative to neat liquid sorbents, the surface area enhancement gained via encapsulation provides an order-of-magnitude increase in carbon dioxide absorption rates for a given sorbent mass. The microcapsules are stable under typical industrial operating conditions and may be used in supported packing and fluidized beds for large-scale carbon capture.

  13. Interactions between Surfactants in Solution and Electrospun Protein Fibers: Effects on Release Behavior and Fiber Properties.

    PubMed

    Stephansen, Karen; García-Díaz, María; Jessen, Flemming; Chronakis, Ioannis S; Nielsen, Hanne M

    2016-03-07

    Intermolecular interaction phenomena occurring between endogenous compounds, such as proteins and bile salts, and electrospun compounds are so far unreported, despite the exposure of fibers to such biorelevant compounds when applied for biomedical purposes, e.g., tissue engineering, wound healing, and drug delivery. In the present study, we present a systematic investigation of how surfactants and proteins, as physiologically relevant components, interact with insulin-loaded fish sarcoplasmic protein (FSP) electrospun fibers (FSP-Ins fibers) in solution and thereby affect fiber properties such as accessible surface hydrophilicity, physical stability, and release characteristics of an encapsulated drug. Interactions between insulin-loaded protein fibers and five anionic surfactants (sodium taurocholate, sodium taurodeoxycholate, sodium glycocholate, sodium glycodeoxycholate, and sodium dodecyl sulfate), a cationic surfactant (benzalkonium chloride), and a neutral surfactant (Triton X-100) were studied. The anionic surfactants increased the insulin release in a concentration-dependent manner, whereas the neutral surfactant had no significant effect on the release. Interestingly, only minute amounts of insulin were released from the fibers when benzalkonium chloride was present. The FSP-Ins fibers appeared dense after incubation with this cationic surfactant, whereas high fiber porosity was observed after incubation with anionic or neutral surfactants. Contact angle measurements and staining with the hydrophobic dye 8-anilino-1-naphthalenesulfonic acid indicated that the FSP-Ins fibers were hydrophobic, and showed that the fiber surface properties were affected differently by the surfactants. Bovine serum albumin also affected insulin release in vitro, indicating that also proteins may affect the fiber performance in an in vivo setting.

  14. Insertion and confinement of hydrophobic metallic powder in water: The bubble-marble effect

    NASA Astrophysics Data System (ADS)

    Meir, Yehuda; Jerby, Eli

    2014-09-01

    Metallic powders such as thermite are known as efficient fuels also applicable in oxygen-free environments. However, due to their hydrophobicity, they hardly penetrate into water. This paper presents an effect that enables the insertion and confinement of hydrophobic metallic powders in water, based on encapsulating an air bubble surrounded by a hydrophobic metallic shell. This effect, regarded as an inverse of the known liquid-marble effect, is named here "bubble marble" (BM). The sole BM is demonstrated experimentally as a stable, maneuverable, and controllable soft-solid-like structure, in a slightly deformed hollow spherical shape of ˜1-cm diameter. In addition to experimental and theoretical BM aspects, this paper also demonstrates its potential for underwater applications, such as transportation of solid objects within BM and underwater combustion of thermite BM by localized microwaves. Hence, the BM phenomena may open new possibilities for heat and thrust generation, as well as material processing and mass transfer underwater.

  15. Encapsulation in alginate-skim milk microspheres improves viability of Lactobacillus bulgaricus in stimulated gastrointestinal conditions.

    PubMed

    Pan, Ling-Xia; Fang, Xiu-Juan; Yu, Zhen; Xin, Yang; Liu, Xiao-Ying; Shi, Lu-E; Tang, Zhen-Xing

    2013-05-01

    Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus) was encapsulated in alginate-skim milk microspheres. Characteristics of encapsulated L. bulgaricus, such as pH stability, bile stability, storage stability and release property, were studied in this paper. The viability of free L. bulgaricus was not observed after 1 min in simulated gastric fluids (SGF) at pH 2.5 or 2.0. Compared with that of free L. bulgaricus, the viability of encapsulated L. bulgaricus only decreased 0.7 log CFU/g and 2 log CFU/g after 2.0 h incubation in SGF at pH 2.5 and pH 2.0, respectively. L. bulgaricus was also sensitive to bile solution. The viability of free L. bulgaricus was fully lost after 1 h incubation in 1 and 2% bile solution, while the viability of encapsulated L. bulgaricus was only lost 2 log CFU/g and 2.6 log CFU/g in 1 and 2% bile solution at the same time, respectively. Encapsulated L. bulgaricus could be completely released from microspheres in simulated intestinal fluid (pH 6.8) within 2 h. The viability of encapsulated L. bulgaricus retained around 8 log CFU/g when stored at 4°C for 30 days. The current encapsulation technique enables a large proportion of L. bulgaricus to remain good bioactive in a simulated gastrointestinal tract environment.

  16. Tensile properties of epoxy encapsulants

    SciTech Connect

    Guess, T.R.; Wischmann, K.B.; Stavig, M.E.

    1993-02-01

    Tensile properties were measured for nineteen different formulations of epoxy encapsulating materials. Formulations were of different combinations of two neat resins (Epon 828 and Epon 826, with and without CTBN modification), three fillers (ALOX, GNM and mica) and four hardeners (Z, DEA, DETDA-SA and ANH-2). Five of the formulations were tested at -55, -20, 20 and 60C, one formulation at -55, 20 and 71C; and the remaining formulations at 20C. Complete stress-strain curves are presented along with tables of tensile strength, initial modulus and Poisson's ratio. The stress-strain responses are nonlinear and are temperature dependent. The reported data provide information for comparing the mechanical properties of encapsulants containing the suspected carcinogen Shell Z with the properties of encapsulants containing noncarcinogenic hardeners. Also, calculated shear moduli, based on measured tensile moduli and Poisson's ratio, are in very good agreement with reported shear moduli from experimental torsional pendulum tests.

  17. Tensile properties of epoxy encapsulants

    SciTech Connect

    Guess, T.R.; Wischmann, K.B.; Stavig, M.E.

    1993-02-01

    Tensile properties were measured for nineteen different formulations of epoxy encapsulating materials. Formulations were of different combinations of two neat resins (Epon 828 and Epon 826, with and without CTBN modification), three fillers (ALOX, GNM and mica) and four hardeners (Z, DEA, DETDA-SA and ANH-2). Five of the formulations were tested at -55, -20, 20 and 60C, one formulation at -55, 20 and 71C; and the remaining formulations at 20C. Complete stress-strain curves are presented along with tables of tensile strength, initial modulus and Poisson`s ratio. The stress-strain responses are nonlinear and are temperature dependent. The reported data provide information for comparing the mechanical properties of encapsulants containing the suspected carcinogen Shell Z with the properties of encapsulants containing noncarcinogenic hardeners. Also, calculated shear moduli, based on measured tensile moduli and Poisson`s ratio, are in very good agreement with reported shear moduli from experimental torsional pendulum tests.

  18. Tumor homing indocyanine green encapsulated micelles for near infrared and photoacoustic imaging of tumors.

    PubMed

    Uthaman, Saji; Bom, Joon-suk; Kim, Hyeon Sik; John, Johnson V; Bom, Hee-Seung; Kim, Seon-Jong; Min, Jung-Joon; Kim, Il; Park, In-Kyu

    2016-05-01

    Photoacoustic imaging (PAI) is an emerging analytical modality that is under intense preclinical development for the early diagnosis of various medical conditions, including cancer. However, the lack of specific tumor targeting by various contrast agents used in PAI obstructs its clinical applications. In this study, we developed indocyanine green (ICG)-encapsulated micelles specific for the CD 44 receptor and used in near infrared and photoacoustic imaging of tumors. ICG was hydrophobically modified prior to loading into hyaluronic acid (HA)-based micelles utilized for CD 44 based-targeting. We investigated the physicochemical characteristics of prepared HA only and ICG-encapsulated HA micelles (HA-ICG micelles). After intravenous injection of tumor-bearing mice, the bio-distribution and in vivo photoacoustic images of ICG-encapsulated HA micelles accumulating in tumors were also investigated. Our study further encourages the application of this HA-ICG-based nano-platform as a tumor-specific contrast agent for PAI.

  19. Organically modified titania nanoparticles for sustained drug release applications.

    PubMed

    Sethi, Komal; Roy, Indrajit

    2015-10-15

    In this paper, we report the synthesis, characterization of drug-doped organically modified titania nanoparticles, and their applications in sustained drug release. The drug-doped nanoparticles were synthesized in the hydrophobic core of oil-in-water microemulsion medium. Structural aspects obtained through TEM and FESEM depicted that organically modified titania nanoparticles are monodispersed with spherical morphology, with an average size of around 200 nm. Their polymorphic forms and porosity were determined using powder XRD and BET, respectively, which showed that they are present in the anatase form, with a surface area of 136.5 m(2)/g and pore-diameter of 5.23 nm. After synthesis and basic structural characterizations, optical properties were studied for both fluorophore and drug encapsulated nanoparticles. The results showed that though the optical properties of the fluorophore are partially diminished upon nanoencapsulation, it became more stable against chemical quenching. The nanoparticles showed pH-dependent drug release pattern. In vitro studies showed that the nanoparticles were efficiently uptaken by cells. Cell viability assay results showed that though the placebo nanoparticles are non-cytotoxic, the drug-doped nanoparticles show drug-induced toxicity. Therefore, such porous nanoparticles can be used in non-toxic drug delivery applications.

  20. 21 CFR 584.700 - Hydrophobic silicas.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...: (i) Amorphous fumed hydrophobic silica: Not less than 99.0 percent silicon dioxide after ignition... dichlorodimethylsilane. (ii) Precipated hydrophobic silica: Not less than 94.0 percent silicon dioxide after...

  1. 21 CFR 584.700 - Hydrophobic silicas.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...: (i) Amorphous fumed hydrophobic silica: Not less than 99.0 percent silicon dioxide after ignition... dichlorodimethylsilane. (ii) Precipated hydrophobic silica: Not less than 94.0 percent silicon dioxide after...

  2. 21 CFR 584.700 - Hydrophobic silicas.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...: (i) Amorphous fumed hydrophobic silica: Not less than 99.0 percent silicon dioxide after ignition... dichlorodimethylsilane. (ii) Precipated hydrophobic silica: Not less than 94.0 percent silicon dioxide after...

  3. Sequestration of hydrophobic organic contaminants by geosorbents

    USGS Publications Warehouse

    Luthy, Richard G.; Aiken, George R.; Brusseau, Mark L.; Cunningham, Scott D.; Gschwend, Philip M.; Pignatello, Joseph J.; Reinhard, Martin; Traina, Samuel J.; Weber, Walter J.; Westall, John C.

    1997-01-01

    The chemical interactions of hydrophobic organic contaminants (HOCs) with soils and sediments (geosorbents) may result in strong binding and slow subsequent release rates that significantly affect remediation rates and endpoints. The underlying physical and chemical phenomena potentially responsible for this apparent sequestration of HOCs by geosorbents are not well understood. This challenges our concepts for assessing exposure and toxicity and for setting environmental quality criteria. Currently there are no direct observational data revealing the molecular-scale locations in which nonpolar organic compounds accumulate when associated with natural soils or sediments. Hence macroscopic observations are used to make inferences about sorption mechanisms and the chemical factors affecting the sequestration of HOCs by geosorbents. Recent observations suggest that HOC interactions with geosorbents comprise different inorganic and organic surfaces and matrices, and distinctions may be drawn along these lines, particularly with regard to the roles of inorganic micropores, natural sorbent organic matter components, combustion residue particulate carbon, and spilled organic liquids. Certain manipulations of sorbates or sorbent media may help reveal sorption mechanisms, but mixed sorption phenomena complicate the interpretation of macroscopic data regarding diffusion of HOCs into and out of different matrices and the hysteretic sorption and aging effects commonly observed for geosorbents. Analytical characterizations at the microscale, and mechanistic models derived therefrom, are needed to advance scientific knowledge of HOC sequestration, release, and environmental risk.

  4. Hydrophobic effect at aqueous interfaces

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew

    2005-01-01

    Conceptual basis for hydrophobic effects in bulk water and at aqueous interfaces have similar conceptual basis but often manifests itself differently. Using a wide range of computer simulations as the basis, I will review different forms of hydrophobic effects at a variety of interfaces starting from simple liquid-vapor and water-oil interfaces and progressing to water-membrane interfaces. I will start with discussing how water is organized at different interfaces, stressing both similarities and differences. The main thread is that, as in the bulk liquid, hydrophobic effects have profound influence on conformational equilibria and organization of both small molecules and macromolecules, but the result of this influence is quite different. Specifically, it will be shown that many small, but not necessarily amphiphilic molecules tend to accumulate at the interface and, and this tendency will be explained. Furthermore, I will show that many short peptides that are disordered in water spontaneously fold into well-defined structures in the interfacial environment. Biological implications of this self-organizing effect will be discussed.

  5. Tests of Solar-Array Encapsulants

    NASA Technical Reports Server (NTRS)

    Liang, R. H.; Oda, K. L.; Chung, S. Y.; Smith, M. V.; Gupta, A.

    1986-01-01

    Materials tested for degradation by heat and light. Report presents early results of continuing series of photothermal aging tests of some candidate encapsulating materials for solar photovoltaic modules. Objectives of testing program: contribute to development of durable, low-cost encapsulants and predict lifetimes of encapsulated photovoltaic modules placed outdoors. Toward these ends, tests designed to reveal physical and chemical degradation mechanisms that affect encapsulants.

  6. Asbestos: The Case for Encapsulation.

    ERIC Educational Resources Information Center

    Russek, William F.

    1980-01-01

    Encapsulation has proven to be the safest, surest, and most permanent method of treating sprayed asbestos on ceilings and walls. Federal aid is available to help pay for inspection of school buildings for asbestos and for asbestos removal. (Author/MLF)

  7. Microbes encapsulated within crosslinkable polymers

    DOEpatents

    Chidambaram, Devicharan; Liu, Ying; Rafailovich, Miriam H

    2013-02-05

    The invention relates to porous films comprising crosslinked electrospun hydrogel fibers. Viable microbes are encapsulated within the crosslinked electrospun hydrogel fibers. The crosslinked electrospun hydrogel fibers are water insoluble and permeable. The invention also relates to methods of making and using such porous films.

  8. Multilayer Capsules of Bovine Serum Albumin and Tannic Acid for Controlled Release by Enzymatic Degradation.

    PubMed

    Lomova, Maria V; Brichkina, Anna I; Kiryukhin, Maxim V; Vasina, Elena N; Pavlov, Anton M; Gorin, Dmitry A; Sukhorukov, Gleb B; Antipina, Maria N

    2015-06-10

    With the purpose to replace expensive and significantly cytotoxic positively charged polypeptides in biodegradable capsules formed via Layer-by-Layer (LbL) assembly, multilayers of bovine serum albumin (BSA) and tannic acid (TA) are obtained and employed for encapsulation and release of model drugs with different solubility in water: hydrophilic-tetramethylrhodamine-isothiocyanate-labeled BSA (TRITC-BSA) and hydrophobic 3,4,9,10-tetra-(hectoxy-carbonyl)-perylene (THCP). Hydrogen bonding is proposed to be predominant within thus formed BSA/TA films. The TRITC-BSA-loaded capsules comprising 6 bilayers of the protein and polyphenol are benchmarked against the shells composed of dextran sulfate (DS) and poly-l-arginine (PARG) on degradability by two proteolytic enzymes with different cleavage site specificity (i.e., α-chymotrypsin and trypsin) and toxicity for murine RAW264.7 macrophage cells. Capsules of both types possess low cytotoxicity taken at concentrations equal or below 50 capsules per cell, and evident susceptibility to α-chymotrypsin resulted in release of TRITC-BSA. While the BSA/TA-based capsules clearly display resistance to treatment with trypsin, the assemblies of DS/PARG extensively degrade. Successful encapsulation of THCP in the TRITC-BSA/TA/BSA multilayer is confirmed, and the release of the model drug is observed in response to treatment with α-chymotrypsin. The thickness, surface morphology, and enzyme-catalyzed degradation process of the BSA/TA-based films are investigated on a planar multilayer comprising 40 bilayers of the protein and polyphenol deposited on a silicon wafer. The developed BSA/TA-based capsules with a protease-specific degradation mechanism are proposed to find applications in personal care, pharmacology, and the development of drug delivery systems including those intravenous injectable and having site-specific release capability.

  9. Development of biopolymer nanocomposite for silver nanoparticles and Ciprofloxacin controlled release.

    PubMed

    Islan, German A; Mukherjee, Arup; Castro, Guillermo R

    2015-01-01

    Screening of biopolymeric gel beads containing Silver NanoParticles (Ag-NPs) stabilized in Guar Gum Alkyl Amine (GGAA) and Ciprofloxacin (Cip) was carried out in order to obtain a novel nanocomposite with controlled release profile of both antimicrobians. The selected matrix composed of Alginate/High Methoxyl Pectin (HMP)/GGAA (4:4:1) was able to co-incorporate Ag-NPs and Cip with encapsulation efficiency higher than 70%. SEM images revealed good cohesivity and compatibility between the biopolymers and the cargos. Beads provided protection against Ag-NPs degradation at acidic pHs and HMP would played a key role providing hydrophobic regions. While Cip release profile showed a pH independent diffusional process, Ag-NPs release was restricted to matrix erodability. Calcium quelating agents and/or alginate degrading enzymes could modulate the release profile. The bactericidal activity of beads was tested in liquid medium, showing cooperative effects between the antimicrobials against Pseudomonas aeruginosa, Escherichia coli, Bacillus cereus and Staphylococcus aureus. TEM images confirmed interaction of Ag-NPs with bacterial surfaces followed by membrane damage. Results suggested the nanocomposite matrix as a promising system for oral treatment of intestinal infectious diseases caused by multidrug resistant and unknown microorganisms, since both Cip and Ag-NPs would be able to reach intestine in the active form.

  10. Efficiencies in alginate encapsulation of vegetative explants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The goal of this study was to improve a non-mechanized bulk encapsulation technique to standardize encapsulation procedures and reduce the labor time compared to encapsulating individual nodes. Four mm-long nodal segments from Stage II cultures of Hibiscus moscheutos L. ‘Lord Baltimore’ were encapsu...

  11. Recommended practices for encapsulating high voltage assemblies

    NASA Technical Reports Server (NTRS)

    Tankisley, E. W.

    1974-01-01

    Preparation and encapsulation of high voltage assemblies are considered. Related problems in encapsulating are brought out in these instructions. A test sampling of four frequently used encapsulating compounds is shown in table form. The purpose of this table is to give a general idea of the working time available and the size of the container required for mixing and de-aerating.

  12. Evaluation of different buffers on plasmid DNA encapsulation into PLGA microparticles.

    PubMed

    Tse, Man Tsuey; Blatchford, Chris; Oya Alpar, H

    2009-03-31

    Double emulsion solvent evaporation is a widely used method to prepare poly(dl-lactide-co-glycolide) (PLGA) microparticles encapsulating plasmid DNA. There are inherent problems associated with preparing plasmid DNA in this form, in particular the DNA is liable to degrade during manufacture and the resulting powder has low encapsulation efficiencies. This study compares the use of two buffers, 0.1M NaHCO(3) and 0.07M Na(2)HPO(4) and the effect these have on the encapsulation efficiency and other critical parameters associated with these encapsulated DNA materials. Both buffers preserved the conformation of the original plasmid DNA during the homogenization process, but those made with 0.07M Na(2)HPO(4) had higher encapsulation efficiencies, as well as smaller diameters, compared with those made with 0.1M NaHCO(3) (encapsulation efficiencies of 40.72-45.65%, and mean volume diameters of 2.96-4.45microm). Buffers with a range of pH from 5 to 12 were investigated, and it was demonstrated that pH 9 was the point at which the highest amount of supercoiled DNA was balanced with the highest encapsulation efficiency. To simulate in vitro release, it was shown that microparticles made with 0.07M Na(2)HPO(4) had lower DNA release rates than those made with 0.1M NaHCO(3). These results demonstrate that the use of different buffers can aid in retaining the conformation of plasmid DNA, and can also modulate the amount of DNA encapsulated and the release profiles of microparticles.

  13. Encapsulated boron as an osteoinductive agent for bone scaffolds.

    PubMed

    Gümüşderelioğlu, Menemşe; Tunçay, Ekin Ö; Kaynak, Gökçe; Demirtaş, Tolga T; Aydın, Seda Tığlı; Hakkı, Sema S

    2015-01-01

    The aim of this study was to develop boron (B)-releasing polymeric scaffold to promote regeneration of bone tissue. Boric acid-doped chitosan nanoparticles with a diameter of approx. 175 nm were produced by tripolyphosphate (TPP)-initiated ionic gelation process. The nanoparticles strongly attached via electrostatic interactions into chitosan scaffolds produced by freeze-drying with approx. 100 μm pore diameter. According to the ICP-OES results, following first 5h initial burst release, fast release of B from scaffolds was observed for 24h incubation period in conditioned medium. Then, slow release of B was performed over 120 h. The results of the cell culture studies proved that the encapsulated boron within the scaffolds can be used as an osteoinductive agent by showing its positive effects on the proliferation and differentiation of MC3T3-E1 preosteoblastic cells.

  14. Improvement of Stability and Antioxidant Activities by Using Phycocyanin - Chitosan Encapsulation Technique

    NASA Astrophysics Data System (ADS)

    Suzery, Meiny; Hadiyanto; Majid, Dian; Setyawan, Deny; Sutanto, Heri

    2017-02-01

    Encapsulation is a coating process to improve the stability of bioactive compounds. Phycocyanin with high antioxidant activity has been encapsulated with chitosan in microcapsules form. In this study aims to determine the best conditions in the encapsulation process using the extrusion method, characterization of the physicochemical properties of the microcapsules, antioxidant activity test using DPPH, in vitro release performance and evaluate the storage stability against temperature. The results of the encapsulation process is obtained: Na-TPP is better than Na-citrate as crosslinker and chitosan content 3% as a coating with ratio of chitosan to phycocyanin ratio 1: 1. Test of antioxidant activity also showed encapsulation with chitosan content 3% has the highest antioxidant activity. Morphological analysis microcapsules were found to have compact spherical shape with diameter range 900-1000 µm. In vitro release testing showed a quick release in an acidic environment (SGF) for 2 hours and slowly release under alkaline conditions (SIF) for 8 hours under mechanical stirring at 37°C. Phycocyanin much more stable against temperature during storage in microcapsules.

  15. Characterization of Encapsulated Corrosion Inhibitors Containing Microparticles for Environmentally Friendly Smart Coatings

    NASA Technical Reports Server (NTRS)

    Pearman, Benjamin Pieter; Calle, Luz M.

    2015-01-01

    This poster presents the results obtained from experiments designed to evaluate the release properties, as well as the corrosion inhibition effectiveness, of several encapsulated corrosion inhibitors. Microencapsulation has been used in the development of environmentally friendly multifunctional smart coatings. This technique enables the incorporation of autonomous corrosion detection, inhibition and self-healing functionalities into many commercially available coating systems. Select environmentally friendly corrosion inhibitors were encapsulated in organic and inorganic pH-sensitive microparticles and their release in basic solutions was studied. The release rate results showed that the encapsulation can be tailored from fast, for immediate corrosion protection, to slow, which will provide continued long-term corrosion protection. The incorporation of several corrosion inhibitor release profiles into a coating provides effective corrosion protection properties. To investigate the corrosion inhibition efficiency of the encapsulated inhibitors, electrochemical techniques were used to obtain corrosion potential, polarization curve and polarization resistance data. These measurements were performed using the free as well as the encapsulated inhibitors singly or in combinations. Results from these electrochemical tests will be compared to those obtained from weight loss and other accelerated corrosion experiments.

  16. Evaluating Potential Exposures to Ecological Receptors Due to Transport of Hydrophobic Organic Contaminants in Subsurface Systems (Final Report)

    EPA Science Inventory

    EPA's Ecological Risk Assessment Support Center (ERASC) announced the release of the final report, Evaluating Potential Exposures to Ecological Receptors Due to Transport of Hydrophobic Organic Contaminants in Subsurface Systems. This technical paper recommends several ty...

  17. Deconvoluting the Effect of the Hydrophobic and Hydrophilic Domains of an Amphiphilic Integral Membrane Protein in Lipid Bicontinuous Cubic Mesophases.

    PubMed

    van 't Hag, Leonie; Shen, Hsin-Hui; Lu, Jingxiong; Hawley, Adrian M; Gras, Sally L; Drummond, Calum J; Conn, Charlotte E

    2015-11-10

    Lipidic bicontinuous cubic mesophases with encapsulated amphiphilic proteins are widely used in a range of biological and biomedical applications, including in meso crystallization, as drug delivery vehicles for therapeutic proteins, and as biosensors and biofuel cells. However, the effect of amphiphilic protein encapsulation on the cubic phase nanostructure is not well-understood. In this study, we illustrate the effect of incorporating the bacterial amphiphilic membrane protein Ag43, and its individual hydrophobic β(43) and hydrophilic α(43) domains, in bicontinuous cubic mesophases. For the monoolein, monoalmitolein, and phytantriol cubic phases with and without 8% w/w cholesterol, the effect of the full length amphiphilic protein Ag43 on the cubic phase nanostructure was more significant than the sum of the individual hydrophobic β(43) and hydrophilic α(43) domains. Several factors were found to potentially influence the impact of the hydrophobic β(43) domain on the cubic phase internal nanostructure. These include the size of the hydrophobic β(43) domain relative to the thickness of the lipid bilayer, as well as its charge and diameter. The size of the hydrophilic α(43) domain relative to the water channel radius of the cubic mesophase was also found to be important. The secondary structure of the Ag43 proteins was affected by the hydrophobic thickness and physicochemical properties of the lipid bilayer and the water channel diameter of the cubic phase. Such structural changes may be small but could potentially affect membrane protein function.

  18. Method of making thermally removable polymeric encapsulants

    DOEpatents

    Small, James H.; Loy, Douglas A.; Wheeler, David R.; McElhanon, James R.; Saunders, Randall S.

    2001-01-01

    A method of making a thermally-removable encapsulant by heating a mixture of at least one bis(maleimide) compound and at least one monomeric tris(furan) or tetrakis(furan) compound at temperatures from above room temperature to less than approximately 90.degree. C. to form a gel and cooling the gel to form the thermally-removable encapsulant. The encapsulant can be easily removed within approximately an hour by heating to temperatures greater than approximately 90.degree. C., preferably in a polar solvent. The encapsulant can be used in protecting electronic components that may require subsequent removal of the encapsulant for component repair, modification or quality control.

  19. Hydrophobic Compounds Reshape Membrane Domains

    PubMed Central

    Barnoud, Jonathan; Rossi, Giulia; Marrink, Siewert J.; Monticelli, Luca

    2014-01-01

    Cell membranes have a complex lateral organization featuring domains with distinct composition, also known as rafts, which play an essential role in cellular processes such as signal transduction and protein trafficking. In vivo, perturbations of membrane domains (e.g., by drugs or lipophilic compounds) have major effects on the activity of raft-associated proteins and on signaling pathways, but they are difficult to characterize because of the small size of the domains, typically below optical resolution. Model membranes, instead, can show macroscopic phase separation between liquid-ordered and liquid-disordered domains, and they are often used to investigate the driving forces of membrane lateral organization. Studies in model membranes have shown that some lipophilic compounds perturb membrane domains, but it is not clear which chemical and physical properties determine domain perturbation. The mechanisms of domain stabilization and destabilization are also unknown. Here we describe the effect of six simple hydrophobic compounds on the lateral organization of phase-separated model membranes consisting of saturated and unsaturated phospholipids and cholesterol. Using molecular simulations, we identify two groups of molecules with distinct behavior: aliphatic compounds promote lipid mixing by distributing at the interface between liquid-ordered and liquid-disordered domains; aromatic compounds, instead, stabilize phase separation by partitioning into liquid-disordered domains and excluding cholesterol from the disordered domains. We predict that relatively small concentrations of hydrophobic species can have a broad impact on domain stability in model systems, which suggests possible mechanisms of action for hydrophobic compounds in vivo. PMID:25299598

  20. The association of low-molecular-weight hydrophobic compounds with native casein micelles in bovine milk

    PubMed Central

    Cheema, M.; Mohan, M. S.; Campagna, S. R.; Jurat-Fuentes, J. L.; Harte, F. M.

    2015-01-01

    The agreed biological function of the casein micelles in milk is to carry minerals (calcium, magnesium, and phosphorus) from mother to young along with amino acids for growth and development. Recently, native and modified casein micelles were used as encapsulating and delivery agents for various hydrophobic low-molecular-weight probes. The ability of modified casein micelles to bind certain probes may derive from the binding affinity of native casein micelles. Hence, a study with milk from single cows was conducted to further elucidate the association of hydrophobic molecules into native casein micelles and further understand their biological function. Hydrophobic and hydrophilic extraction followed by ultraperformance liquid chromatography-high resolution mass spectrometry analysis were performed over protein fractions obtained from size exclusion fractionation of raw skim milk. Hydrophobic compounds, including phosphatidylcholine, lyso-phosphatidylcholine, phosphatidylethanolamine, and sphingomyelin, showed strong association exclusively to casein micelles as compared with whey proteins, whereas hydrophilic compounds did not display any preference for their association among milk proteins. Further analysis using liquid chromatography-tandem mass spectrometry detected 42 compounds associated solely with the casein-micelles fraction. Mass fragments in tandem mass spectrometry identified 4 of these compounds as phosphatidylcholine with fatty acid composition of 16:0/18:1, 14:0/16:0, 16:0/16:0, and 18:1/18:0. These results support that transporting low-molecular-weight hydrophobic molecules is also a biological function of the casein micelles in milk. PMID:26074238

  1. The association of low-molecular-weight hydrophobic compounds with native casein micelles in bovine milk.

    PubMed

    Cheema, M; Mohan, M S; Campagna, S R; Jurat-Fuentes, J L; Harte, F M

    2015-08-01

    The agreed biological function of the casein micelles in milk is to carry minerals (calcium, magnesium, and phosphorus) from mother to young along with amino acids for growth and development. Recently, native and modified casein micelles were used as encapsulating and delivery agents for various hydrophobic low-molecular-weight probes. The ability of modified casein micelles to bind certain probes may derive from the binding affinity of native casein micelles. Hence, a study with milk from single cows was conducted to further elucidate the association of hydrophobic molecules into native casein micelles and further understand their biological function. Hydrophobic and hydrophilic extraction followed by ultraperformance liquid chromatography-high resolution mass spectrometry analysis were performed over protein fractions obtained from size exclusion fractionation of raw skim milk. Hydrophobic compounds, including phosphatidylcholine, lyso-phosphatidylcholine, phosphatidylethanolamine, and sphingomyelin, showed strong association exclusively to casein micelles as compared with whey proteins, whereas hydrophilic compounds did not display any preference for their association among milk proteins. Further analysis using liquid chromatography-tandem mass spectrometry detected 42 compounds associated solely with the casein-micelles fraction. Mass fragments in tandem mass spectrometry identified 4 of these compounds as phosphatidylcholine with fatty acid composition of 16:0/18:1, 14:0/16:0, 16:0/16:0, and 18:1/18:0. These results support that transporting low-molecular-weight hydrophobic molecules is also a biological function of the casein micelles in milk.

  2. Enhanced dispersibility and bioactivity of curcumin by encapsulation in casein nanocapsules.

    PubMed

    Pan, Kang; Zhong, Qixin; Baek, Seung Joon

    2013-06-26

    In this work, a novel encapsulation method was studied by spray-drying a warm aqueous ethanol solution with codissolved sodium caseinate (NaCas) and lipophilic food components, using curcumin as a model compound. The encapsulation caused the loss of crystallinity of curcumin. After hydration of spray-dried powder and centrifugation, 137 μg/mL curcumin was dispersed in the transparent dispersion, which was 4 decades higher than its water solubility. Dynamic light scattering and atomic force microscopy results showed that curcumin-loaded casein nanoparticles were bigger than those of NaCas processed at encapsulation conditions but were smaller than those of the native NaCas. The increased nanoparticle dimension, together with fluorescence and FTIR spectroscopy results, suggested that curcumin was entrapped in the nanoparticle core through hydrophobic interactions. The curcumin encapsulated in casein nanoparticles had higher biological activity, as assessed by antioxidant and cell proliferation assays, than pristine curcumin, likely due to the improved dispersibility. This simple approach may be applied to encapsulate various lipophilic bioactive compounds.

  3. A Transient Cell-Shielding Method for Viable MSC Delivery within Hydrophobic Scaffolds Polymerized In Situ

    PubMed Central

    Guo, Ruijing; Ward, Catherine L.; Davidson, Jeffrey M.; Duvall, Craig L.; Wenke, Joseph C.

    2015-01-01

    Cell-based therapies have emerged as promising approaches for regenerative medicine. Hydrophobic poly(ester urethane)s offer the advantages of robust mechanical properties, cell attachment without the use of peptides, and controlled degradation by oxidative and hydrolytic mechanisms. However, the application of injectable hydrophobic polymers to cell delivery is limited by the challenges of protecting cells from reaction products and creating a macroporous architecture post-cure. We designed injectable carriers for cell delivery derived from reactive, hydrophobic polyisocyanate and polyester triol precursors. To overcome cell death caused by reaction products from in situ polymerization, we encapsulated bone marrow-derived stem cells (BMSCs) in fast-degrading, oxidized alginate beads prior to mixing with the hydrophobic precursors. Cells survived the polymerization at >70% viability, and rapid dissolution of oxidized alginate beads after the scaffold cured created interconnected macropores that facilitated cellular adhesion to the scaffold in vitro. Applying this injectable system to deliver BMSCs to rat excisional skin wounds showed that the scaffolds supported survival of transplanted cells and infiltration of host cells, which improved new tissue formation compared to both implanted, pre-formed scaffolds seeded with cells and acellular controls. Our design is the first to enable injectable delivery of settable, hydrophobic scaffolds where cell encapsulation provides a mechanism for both temporary cytoprotection during polymerization and rapid formation of macropores post-polymerization. This simple approach provides potential advantages for cell delivery relative to hydrogel technologies, which have weaker mechanical properties and require incorporation of peptides to achieve cell adhesion and degradability. PMID:25907036

  4. Cell-selective encapsulation in hydrogel sheaths via biospecific identification and biochemical cross-linking.

    PubMed

    Sakai, Shinji; Liu, Yang; Sengoku, Mikako; Taya, Masahito

    2015-01-01

    Selective encapsulation of a particular cell population from heterogeneous cell populations has potential applications such as studies in cell-to-cell communication, regenerative medicine, and cell therapies. However, there are no versatile methods for realizing this. Here we report a method based on biospecific identification of the target cells through antigen-antibody reaction and subsequent enzymatic hydrogel sheath formation on the cell surfaces by horseradish peroxidase (HRP). Human hepatoma cell line HepG2 cells were selectively encapsulated in alginate-based hydrogel sheath from the mixture with mouse embryo fibroblast-like cell line 10T1/2 fibroblasts using anti-human CD326 antibody conjugated with HRP. The viability of the encapsulated cells was 93%. The cells released at 6 days of the encapsulation by degrading the sheath using alginate lyase grew almost the same as those free from encapsulation. The versatility of the method was confirmed using another antibody, cells, and hydrogel sheath material: Only human vein endothelial cells were encapsulated in gelatin-based hydrogel sheath from the mixture with 10T1/2 fibroblasts using anti-human CD31 antibody conjugated with HRP. The cell-selective encapsulation was also achieved by a system using a primary antibody with a secondary antibody conjugated with HRP.

  5. Encapsulation of new active ingredients.

    PubMed

    Onwulata, C I

    2012-01-01

    The organic construct consumed as food comes packaged in units that carry the active components and protect the entrapped active materials until delivered to targeted human organs. The packaging and delivery role is mimicked in the microencapsulation tools used to deliver active ingredients in processed foods. Microencapsulation efficiency is balanced against the need to access the entrapped nutrients in bioavailable forms. Encapsulated ingredients boosted with bioactive nutrients are intended for improved health and well-being and to prevent future health problems. Presently, active ingredients are delivered using new techniques, such as hydrogels, nanoemulsions, and nanoparticles. In the future, nutraceuticals and functional foods may be tailored to individual metabolic needs and tied to each person's genetic makeup. Bioactive ingredients provide health-enhancing nutrients and are protected through encapsulation processes that shield the active ingredients from deleterious environments.

  6. Photovoltaic module bypass diode encapsulation

    NASA Technical Reports Server (NTRS)

    Shepard, N. J., Jr.

    1983-01-01

    The design and processing techniques necessary to incorporate bypass diodes within the module encapsulant are presented. The Semicon PN junction diode cells were selected. Diode junction to heat spreader thermal resistance measurements, performed on a variety of mounted diode chip types and sizes, have yielded values which are consistently below 1 deg C per watt, but show some instability when thermally cycled over the temperature range from -40 to 150 deg C. Three representative experimental modules, each incorporating integral bypass diode/heat spreader assemblies of various sizes, were designed. Thermal testing of these modules enabled the formulation of a recommended heat spreader plate sizing relationship. The production cost of three encapsulated bypass diode/heat spreader assemblies were compared with similarly rated externally mounted packaged diodes. It is concluded that, when proper designed and installed, these bypass diode devices will improve the overall reliability of a terrestrial array over a 20 year design lifetime.

  7. Encapsulant materials and associated devices

    DOEpatents

    Kempe, Michael D; Thapa, Prem

    2011-03-08

    Compositions suitable for use as encapsulants are described. The inventive compositions include a high molecular weight polymeric material, a curing agent, an inorganic compound, and a coupling agent. Optional elements include adhesion promoting agents, colorants, antioxidants, and UV absorbers. The compositions have desirable diffusivity properties, making them suitable for use in devices in which a substantial blocking of moisture ingress is desired, such as photovoltaic (PV) modules.

  8. Encapsulant materials and associated devices

    SciTech Connect

    Kempe, Michael D; Thapa, Prem

    2012-05-22

    Compositions suitable for use as encapsulants are described. The inventive compositions include a high molecular weight polymeric material, a curing agent, an inorganic compound, and a coupling agent. Optional elements include adhesion promoting agents, colorants, antioxidants, and UV absorbers. The compositions have desirable diffusivity properties, making them suitable for use in devices in which a substantial blocking of moisture ingress is desired, such as photovoltaic (PV) modules.

  9. Hydrophobin-Encapsulated Quantum Dots.

    PubMed

    Taniguchi, Shohei; Sandiford, Lydia; Cooper, Maggie; Rosca, Elena V; Ahmad Khanbeigi, Raha; Fairclough, Simon M; Thanou, Maya; Dailey, Lea Ann; Wohlleben, Wendel; von Vacano, Bernhard; de Rosales, Rafael T M; Dobson, Peter J; Owen, Dylan M; Green, Mark

    2016-02-01

    The phase transfer of quantum dots to water is an important aspect of preparing nanomaterials that are suitable for biological applications, and although numerous reports describe ligand exchange, very few describe efficient ligand encapsulation techniques. In this report, we not only report a new method of phase transferring quantum dots (QDs) using an amphiphilic protein (hydrophobin) but also describe the advantages of using a biological molecule with available functional groups and their use in imaging cancer cells in vivo and other imaging applications.

  10. Characterization of Encapsulated Corrosion Inhibitors for Environmentally Friendly Smart Coatings

    NASA Technical Reports Server (NTRS)

    Pearman, Benjamin Pieter; Li, Wenyan; Buhrow, Jerry; Zhang, Xuejun; Surma, Jan; Fitzpatrick, Lilly; Montgomery, Eliza; Calle, Luz Marina

    2014-01-01

    Research efforts are under way to replace current corrosion inhibitors with more environmentally friendly alternatives. However, problems with corrosion inhibition efficiency, coating compatibility and solubility have hindered the use of many of these materials as simple pigment additives.This paper will present technical details on how the Corrosion Technology Lab at NASAs Kennedy Space Center (KSC) has addressed these issues by encapsulating environmentally friendly inhibitors into organic and inorganic microparticles and microcapsules. The synthetic process for polymer particles was characterized and post-synthesis analysis was performed to determine the interactions between the inhibitors and the encapsulation material. The pH-controlled release of inhibitors from various particle formulations in aqueous base was monitored and compared to both electrochemical and salt immersion accelerated corrosion experiment. Furthermore, synergistic corrosion inhibition effects observed during the corrosion testing of several inhibitor combinations will be presented.

  11. A double-targeted magnetic nanocarrier with potential application in hydrophobic drug delivery.

    PubMed

    Ding, Guobin; Guo, Yi; Lv, Yanyun; Liu, Xiaofeng; Xu, Li; Zhang, Xuezhong

    2012-03-01

    A double-targeted magnetic nanocarrier based with potential applications in the delivery of hydrophobic drugs has been developed. It consists of magnetite (Fe(3)O(4)) nanoparticles encapsulated in self-assembled micelles of the amphiphilic copolymer MPEG-PLGA [methoxy poly (ethylene glycol)-poly (d,l-lactide-co-glycolide)], and was fabricated using the solvent-evaporation technique. The magnetic nanocarrier has a very stable core-shell structure and is superparamagnetic. Its cytotoxicity was evaluated using the MTT assay with three cell lines-HeLa, MCF-7, and HT1080; it exhibited no cytotoxicity against any tested line at concentrations of up to 400 μg/mL after incubation for 24 h. Its cellular uptake was studied by Prussian blue staining and by fluorescence microscopy after encapsulating a fluorescent probe (hydrophobic quantum dots) into the nanocarrier. Finally, the magnetic targeting property of the magnetic nanocarrier was confirmed by an in vitro test. Overall, the results obtained demonstrate the potential of the double-targeted nanocarrier for the intracellular delivery of hydrophobic drugs.

  12. Hydrophobic Organic Skin as a Protective Shield for Moisture-Sensitive Phosphor-Based Optoelectronic Devices.

    PubMed

    Arunkumar, Paulraj; Kim, Yoon Hwa; Kim, Ha Jun; Unithrattil, Sanjith; Im, Won Bin

    2017-03-01

    A moisture-stable, red-emitting fluoride phosphor with an organic hydrophobic skin is reported. A simple strategy was employed to form a metal-free, organic, passivating skin using oleic acid (OA) as a hydrophobic encapsulant via solvothermal treatment. Unlike other phosphor coatings that suffer from initial efficiency loss, the OA-passivated K2SiF6:Mn(4+) (KSF-OA) phosphor exhibited the unique property of stable emission efficiency. Control of thickness and a highly transparent passivating layer helped to retain the emission efficiency of the material after encapsulation. A moisture-stable KSF-OA phosphor could be synthesized because of the exceptionally hydrophobic nature of OA and the formation of hydrogen bonds (F···H) resulting from the strong interactions between the fluorine in KSF and hydrogen in OA. The KSF-OA phosphor exhibited excellent moisture stability and maintained 85% of its emission intensity even after 450 h at high temperature (85 °C) and humidity (85%). As a proof-of-concept, this strategy was used for another moisture-sensitive SrSi2O2N2:Eu(2+) phosphor which showed enhanced moisture stability, retaining 85% of emission intensity after 500 h under the same conditions. White light-emitting devices were fabricated using surface-passivated KSF and Y3Al5O12:Ce(3+) which exhibited excellent color rendering index of 86, under blue LED excitation.

  13. Potential Effect of Liposomes and Liposome-Encapsulated Botulinum Toxin and Tacrolimus in the Treatment of Bladder Dysfunction.

    PubMed

    Janicki, Joseph J; Chancellor, Michael B; Kaufman, Jonathan; Gruber, Michele A; Chancellor, David D

    2016-03-18

    Bladder drug delivery via catheter instillation is a widely used treatment for recurrence of superficial bladder cancer. Intravesical instillation of liposomal botulinum toxin has recently shown promise in the treatment of overactive bladder and interstitial cystitis/bladder pain syndrome, and studies of liposomal tacrolimus instillations show promise in the treatment of hemorrhagic cystitis. Liposomes are lipid vesicles composed of phospholipid bilayers surrounding an aqueous core that can encapsulate hydrophilic and hydrophobic drug molecules to be delivered to cells via endocytosis. This review will present new developments on instillations of liposomes and liposome-encapsulated drugs into the urinary bladder for treating lower urinary tract dysfunction.

  14. Is Br2 hydration hydrophobic?

    NASA Astrophysics Data System (ADS)

    Alcaraz-Torres, A.; Gamboa-Suárez, A.; Bernal-Uruchurtu, M. I.

    2017-02-01

    The spectroscopic properties of bromine in aqueous systems suggest it can behave as either hydrophilic or hydrophobic solute. In small water clusters, the halogen bond and the hydrogen-halogen interaction are responsible for its specific way of binding. In water hydrates, it is efficiently hosted by two different cages forming the crystal structure and it has been frequently assumed that there is little or no interaction between the guest and the host. Bromine in liquid solution poses a challenging question due to its non-negligible solubility and the large blue shift measured in its absorption spectra. Using a refined semi-empirical force field, PM3-PIF, we performed a Born-Oppenheimer molecular dynamics study of bromine in liquid water. Here we present a detailed study in which we retrieved the most representative hydration structures in terms of the most frequent positions around bromine and the most common water orientations. Albeit being an approximate description of the total hydration phenomenon, it captures the contribution of the leading molecular interactions in form of the recurrent structures. Our findings confirm that the spectroscopic signature is mainly caused by the closest neighbors. The dynamics of the whole first hydration shell strongly suggests that the external molecules in that structure effectively isolate the bulk from the presence of bromine. The solvation structure fluctuates from a hydrophilic to a hydrophobic-like environment along the studied trajectory.

  15. Preparation of hydrophobic organic aeorgels

    DOEpatents

    Baumann, Theodore F.; Satcher, Jr., Joe H.; Gash, Alexander E.

    2007-11-06

    Synthetic methods for the preparation of hydrophobic organics aerogels. One method involves the sol-gel polymerization of 1,3-dimethoxybenzene or 1,3,5-trimethoxybenzene with formaldehyde in non-aqueous solvents. Using a procedure analogous to the preparation of resorcinol-formaldehyde (RF) aerogels, this approach generates wet gels that can be dried using either supercritical solvent extraction to generate the new organic aerogels or air dried to produce an xerogel. Other methods involve the sol-gel polymerization of 1,3,5 trihydroxy benzene (phloroglucinol) or 1,3 dihydroxy benzene (resorcinol) and various aldehydes in non-aqueous solvents. These methods use a procedure analogous to the one-step base and two-step base/acid catalyzed polycondensation of phloroglucinol and formaldehyde, but the base catalyst used is triethylamine. These methods can be applied to a variety of other sol-gel precursors and solvent systems. These hydrophobic organics aerogels have numerous application potentials in the field of material absorbers and water-proof insulation.

  16. Preparation of hydrophobic organic aeorgels

    DOEpatents

    Baumann, Theodore F.; Satcher, Jr., Joe H.; Gash, Alexander E.

    2004-10-19

    Synthetic methods for the preparation of hydrophobic organics aerogels. One method involves the sol-gel polymerization of 1,3-dimethoxybenzene or 1,3,5-trimethoxybenzene with formaldehyde in non-aqueous solvents. Using a procedure analogous to the preparation of resorcinol-formaldehyde (RF) aerogels, this approach generates wet gels that can be dried using either supercritical solvent extraction to generate the new organic aerogels or air dried to produce an xerogel. Other methods involve the sol-gel polymerization of 1,3,5 trihydroxy benzene (phloroglucinol) or 1,3 dihydroxy benzene (resorcinol) and various aldehydes in non-aqueous solvents. These methods use a procedure analogous to the one-step base and two-step base/acid catalyzed polycondensation of phloroglucinol and formaldehyde, but the base catalyst used is triethylamine. These methods can be applied to a variety of other sol-gel precursors and solvent systems. These hydrophobic organics aerogels have numerous application potentials in the field of material absorbers and water-proof insulation.

  17. Process for Encapsulating Protein Crystals

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R.; Mosier, Benjamin

    2003-01-01

    A process for growing protein crystals encapsulated within membranes has been invented. This process begins with the encapsulation of a nearly saturated aqueous protein solution inside semipermeable membranes to form microcapsules. The encapsulation is effected by use of special formulations of a dissolved protein and a surfactant in an aqueous first liquid phase, which is placed into contact with a second, immiscible liquid phase that contains one or more polymers that are insoluble in the first phase. The second phase becomes formed into the semipermeable membranes that surround microglobules of the first phase, thereby forming the microcapsules. Once formed, the microcapsules are then dehydrated osmotically by exposure to a concentrated salt or polymer solution. The dehydration forms supersaturated solutions inside the microcapsules, thereby enabling nucleation and growth of protein crystals inside the microcapsules. By suitable formulation of the polymer or salt solution and of other physical and chemical parameters, one can control the rate of transport of water out of the microcapsules through the membranes and thereby create physicochemical conditions that favor the growth, within each microcapsule, of one or a few large crystals suitable for analysis by x-ray diffraction. The membrane polymer can be formulated to consist of low-molecular-weight molecules that do not interfere with the x-ray diffraction analysis of the encapsulated crystals. During dehydration, an electrostatic field can be applied to exert additional control over the rate of dehydration. This protein-crystal-encapsulation process is expected to constitute the basis of protein-growth experiments to be performed on the space shuttle and the International Space Station. As envisioned, the experiments would involve the exposure of immiscible liquids to each other in sequences of steps under microgravitational conditions. The experiments are expected to contribute to knowledge of the precise

  18. Thermal modeling of an epoxy encapsulation process

    SciTech Connect

    Baca, R.G.; Schutt, J.A.

    1991-01-01

    The encapsulation of components is a widely used process at Sandia National Laboratories for packaging components to withstand structural loads. Epoxy encapsulants are also used for their outstanding dielectric strength characteristics. The production of high voltage assemblies requires the encapsulation of ceramic and electrical components (such as transformers). Separation of the encapsulant from internal contact surfaces or voids within the encapsulant itself in regions near the mold base have caused high voltage breakdown failures during production testing. In order to understand the failure mechanisms, a methodology was developed to predict both the thermal response and gel front progression of the epoxy the encapsulation process. A thermal model constructed with PATRAN Plus (1) and solved with the P/THERMAL (2) analysis system was used to predict the thermal response of the encapsulant. This paper discusses the incorporation of an Arrhenius kinetics model into Q/TRAN (2) to model the complex volumetric heat generation of the epoxy during the encapsulation process. As the epoxy begins to cure, it generates heat and shrinks. The total cure time of the encapsulant (transformation from a viscous liquid to solid) is dependent on both the initial temperature and the entire temperature history. Because the rate of cure is temperature dependent, the cure rate accelerates with a temperature increase and, likewise, the cure rate is quenched if the temperature is reduced. The temperature and conversion predictions compared well against experimental data. The thermal simulation results were used to modify the temperature cure process of the encapsulant and improve production yields.

  19. Expulsion of ions from hydrophobic hydration shells.

    PubMed

    Rankin, Blake M; Ben-Amotz, Dor

    2013-06-19

    Raman spectroscopy is combined with multivariate curve resolution to quantify interactions between ions and molecular hydrophobic groups in water. The molecular solutes in this study all have similar structures, with a trimethyl hydrophobic domain and a polar or charged headgroup. Our results imply that aqueous sodium and fluoride ions are strongly expelled from the first hydration shells of the hydrophobic (methyl) groups, while iodide ions are found to enter the hydrophobic hydration shell, to an extent that depends on the methyl group partial charge. However, our quantitative estimates of the corresponding ion binding equilibrium constants indicate that the iodide concentration in the first hydrophobic hydration shell is generally lower than that in the surrounding bulk water, and so an iodide ion cannot be viewed as having a true affinity for the molecular hydrophobic interface, but rather is less strongly expelled from such an interface than fluoride.

  20. Characterisation of nanomaterial hydrophobicity using engineered surfaces

    NASA Astrophysics Data System (ADS)

    Desmet, Cloé; Valsesia, Andrea; Oddo, Arianna; Ceccone, Giacomo; Spampinato, Valentina; Rossi, François; Colpo, Pascal

    2017-03-01

    Characterisation of engineered nanomaterials (NMs) is of outmost importance for the assessment of the potential risks arising from their extensive use. NMs display indeed a large variety of physico-chemical properties that drastically affect their interaction with biological systems. Among them, hydrophobicity is an important property that is nevertheless only slightly covered by the current physico-chemical characterisation techniques. In this work, we developed a method for the direct characterisation of NM hydrophobicity. The determination of the nanomaterial hydrophobic character is carried out by the direct measurement of the affinity of the NMs for different collectors. Each collector is an engineered surface designed in order to present specific surface charge and hydrophobicity degrees. Being thus characterised by a combination of surface energy components, the collectors enable the NM immobilisation with surface coverage in relation to their hydrophobicity. The experimental results are explained by using the extended DLVO theory, which takes into account the hydrophobic forces acting between NMs and collectors.

  1. Stability of proteins inside a hydrophobic cavity

    NASA Astrophysics Data System (ADS)

    Radhakrishna, Mithun; Sharma, Sumit; Kumar, Sanat K.

    2011-03-01

    Previous studies have shown that enclosing a protein in an athermal cavity stabilizes the protein against reversible unfolding by virtue of eliminating many open chain conformations. Examples of such confined spaces include pores in chromatographic columns, Anfinsen's cage in Chaperonins, interiors of Ribosomes or regions of steric occlusion inside cells. However, the situation is more complex inside a hydrophobic cavity. The protein has a tendency to adsorb on the surface of the hydrophobic cavity, but at the same time it loses conformational entropy because of confinement. We study this system using a simple Hydrophobic Polar (HP) lattice protein model. Canonical Monte Carlo (MC) simulations at different temperatures and surface hydrophobicity show that proteins are stabilized at low and moderate hydrophobicity upon adsorption. The range of surface hydrophobicity over which a protein is stable increases with a decrease in radius of the cavity.

  2. How specific halide adsorption varies hydrophobic interactions.

    PubMed

    Stock, Philipp; Müller, Melanie; Utzig, Thomas; Valtiner, Markus

    2016-03-11

    Hydrophobic interactions (HI) are driven by the water structure around hydrophobes in aqueous electrolytes. How water structures at hydrophobic interfaces and how this influences the HI was subject to numerous studies. However, the effect of specific ion adsorption on HI and hydrophobic interfaces remains largely unexplored or controversial. Here, the authors utilized atomic force microscopy force spectroscopy at well-defined nanoscopic hydrophobic interfaces to experimentally address how specific ion adsorption of halide ions as well as NH4 (+), Cs(+), and Na(+) cations alters interaction forces across hydrophobic interfaces. Our data demonstrate that iodide adsorption at hydrophobic interfaces profoundly varies the hydrophobic interaction potential. A long-range and strong hydration repulsion at distances D > 3 nm, is followed by an instability which could be explained by a subsequent rapid ejection of adsorbed iodides from approaching hydrophobic interfaces. In addition, the authors find only a weakly pronounced influence of bromide, and as expected no influence of chloride. Also, all tested cations do not have any significant influence on HI. Complementary, x-ray photoelectron spectroscopy and quartz-crystal-microbalance with dissipation monitoring showed a clear adsorption of large halide ions (Br(-)/I(-)) onto hydrophobic self-assembled monolayers (SAMs). Interestingly, iodide can even lead to a full disintegration of SAMs due to specific and strong interactions of iodide with gold. Our data suggest that hydrophobic surfaces are not intrinsically charged negatively by hydroxide adsorption, as it was generally believed. Hydrophobic surfaces rather interact strongly with negatively charged large halide ions, leading to a surface charging and significant variation of interaction forces.

  3. Structural and oxidative stabilization of spray dried fish oil microencapsulates with gum arabic and sage polyphenols: Characterization and release kinetics.

    PubMed

    Binsi, P K; Nayak, Natasha; Sarkar, P C; Jeyakumari, A; Muhamed Ashraf, P; Ninan, George; Ravishankar, C N

    2017-03-15

    The synergistic efficacy of gum arabic and sage polyphenols in stabilising capsule wall and protecting fish oil encapsulates from heat induced disruption and oxidative deterioration during spray drying was assessed. The emulsions prepared with sodium caseinate as wall polymer, gum arabic as wall co-polymer and sage extract as wall stabiliser was spray dried using a single fluid nozzle. Fish oil encapsulates stabilised with gum arabic and sage extract (SOE) exhibited significantly higher encapsulation efficiency compared to encapsulates containing gum arabic alone (FOE). Scanning electron microscopic and atomic force microscopic images revealed uniform encapsulates with good sphericity and smooth surface for SOE, compared to FOE powder. In vitro oil release of microencapsulates indicated negligible oil release in buffered saline whereas more than 80% of the oil loaded in encapsulates were released in simulated GI fluids. The encapsulates containing sage extract showed a lower rate of lipid oxidation during storage.

  4. Method for making nanoporous hydrophobic coatings

    DOEpatents

    Fan, Hongyou; Sun, Zaicheng

    2013-04-23

    A simple coating method is used to form nanoporous hydrophobic films that can be used as optical coatings. The method uses evaporation-induced self-assembly of materials. The coating method starts with a homogeneous solution comprising a hydrophobic polymer and a surfactant polymer in a selective solvent. The solution is coated onto a substrate. The surfactant polymer forms micelles with the hydrophobic polymer residing in the particle core when the coating is dried. The surfactant polymer can be dissolved and selectively removed from the separated phases by washing with a polar solvent to form the nanoporous hydrophobic film.

  5. The physical origin of hydrophobic effects

    NASA Astrophysics Data System (ADS)

    Sun, Qiang

    2017-03-01

    From the structural studies on water and air/water interface, hydration free energy is derived, and used to investigate the origin of hydrophobic effects. As a solute is dissolved into water, hydration free energy increases, and is divided into initial and hydrophobic solvation processes. In the initial process, hydration free energy is dominated by hydrogen bonding in interfacial water (topmost water layer at solute/water interface). For hydrophobic process, hydration free energy is related to the hydrogen bonding in bulk and interfacial water. Therefore, hydrophobic effects originate from the structural competition between hydrogen bonding in bulk water and that in interfacial water.

  6. Hydrophobic coatings for MEMS applications

    NASA Astrophysics Data System (ADS)

    Doms, M.; Feindt, H.; Kuipers, W. J.; Shewtanasoontorn, D.; Matar, A. S.; Brinkhues, S.; Welton, R. H.; Mueller, J.

    2008-05-01

    Different kinds of thin-film coatings were investigated with regard to their applicability as hydrophobic coatings for MEMS. The films were deposited onto silicon and borosilicate glass substrates by spincoating of Dyneon™ PTFE and PFA, plasmapolymerization of HMDS-N and C4F8 as well as liquid-phase and vapor-phase coating of SAMs from DDMS, FDTS, FOTS and Geleste Aquaphobe™ CM. The layer properties were analyzed using profilometry, FTIR, SEM and contact angle measurements. Furthermore, the adhesion of the layers to the substrates was determined in an acetone ultrasonic bath. The influence of various deposition process parameters on the properties of the films was investigated. As these layers can be used in microfluidic systems, as water-repellent layers and as anti-stiction coatings, they are suited for versatile fields of application.

  7. Flavor retention of peppermint (Mentha piperita L.) essential oil spray-dried in modified starches during encapsulation and storage.

    PubMed

    Baranauskiene, Renata; Bylaite, Egle; Zukauskaite, Jurate; Venskutonis, Rimantas P

    2007-04-18

    The effect of different commercial modified food starch carrier materials on the flavor retention of the essential oil (EO) of peppermint (Mentha piperita L.) during spray drying and storage was evaluated. The obtained results revealed that the emulsification and encapsulation efficiencies of peppermint EO were higher for all n-octenyl succinic anhydride (OSAN)-modified starches as compared to those of hydrolyzed starches (dextrins). The compositions of pure, emulsified, and encapsulated peppermint EOs in different matrices were quite similar; however, some changes in the percentages of some individual compounds were observed. Larger differences in the compositions of surface oils from various encapsulation products were obtained. Flavor components were released at different rates by each of the encapsulated products. The aroma binding capacity of different modified starch matrices to lock EO droplets depends on the water activity, and the leakage of aromas from encapsulated powder products during storage increased with increasing water activity.

  8. Encapsulation of lactase (β-galactosidase) into κ-carrageenan-based hydrogel beads: Impact of environmental conditions on enzyme activity.

    PubMed

    Zhang, Zipei; Zhang, Ruojie; Chen, Long; McClements, David Julian

    2016-06-01

    Encapsulation of enzymes in hydrogel beads may improve their utilization and activity in foods. In this study, the potential of carrageenan hydrogel beads for encapsulating β-galactosidase was investigated. Hydrogel beads were fabricated by injecting an aqueous solution, containing β-galactosidase (26 U) and carrageenan (1 wt%), into a hardening solution (5% potassium chloride). Around 63% of the β-galactosidase was initially encapsulated in the hydrogel beads. Encapsulated β-galactosidase had a higher activity than that of the free enzyme over a range of pH and thermal conditions, which was attributed to the stabilization of the enzyme structure by K(+) ions within the carrageenan beads. Release of the enzyme from the beads was observed during storage in aqueous solutions, which was attributed to the relatively large pore size of the hydrogel matrix. Our results suggest that carrageenan hydrogel beads may be useful encapsulation systems, but further work is needed to inhibit enzyme leakage.

  9. Sperm Encapsulation from 1985 to Date: Technology Evolution and New Challenges in Swine Reproduction.

    PubMed

    Perteghella, S; Vigani, B; Crivelli, B; Spinaci, M; Galeati, G; Bucci, D; Vigo, D; Torre, M L; Chlapanidas, T

    2015-07-01

    In the last 30 years, encapsulation technology has been applied to different species to minimize the loss of spermatozoa after artificial insemination. In particular, the vehiculation of boar sperm cells in barium alginate membrane has proved a valid strategy to reduce the risk of polyspermy and optimize in vivo fertilizing yields. Controlled release of male gametes into the female genital tract has reduced the minimum fertilizing dose of spermatozoa. Notwithstanding these results, encapsulation has not yet reached commercial application, largely due to the additional costs of production. However, encapsulation could be useful in advanced reproductive technology, such as sex sorting, to store sorted boar semen. The controlled release of flow cytometrically sorted spermatozoa could be a promising strategy to reduce the number of cells necessary for each insemination and hence allow the widescale use of sex sorting in this species.

  10. Kinetics and Antioxidant Capacity of Proanthocyanidins Encapsulated in Zein Electrospun Fibers by Cyclic Voltammetry.

    PubMed

    Wang, Hualin; Hao, Lilan; Niu, Baicheng; Jiang, Suwei; Cheng, Junfeng; Jiang, Shaotong

    2016-04-20

    The proanthocyanidins encapsulated in zein (zein-PA) fibers was via electrospinning technique. The kinetics and antioxidant capacity of PA from zein fibers was investigated by cyclic voltammetry. Circular dichroism was used to investigate the secondary structure change of zein and its influence on the shape of fibers. The addition of PA caused a significant increase in viscosity and made fibers wider. These hydrogen bonds between zein and PA molecules would favor the α-helix change and decrease the β-folds of zein in electrospinning solutions, leading to a round-shaped tendency of fibers and enhancing the thermal properties slightly. Zein-PA fibers showed high encapsulation efficiency close to 100%, and the encapsulated PA retained its antioxidant capacity in fibers. Zein-PA fibers showed a good controlled release toward PA, and the predominant release of PA from fibers was Fickian diffusion, which could be well described by first-order model and Hixson-Crowell model.

  11. Encapsulation methods for organic electrical devices

    DOEpatents

    Blum, Yigal D.; Chu, William Siu-Keung; MacQueen, David Brent; Shi, Yijian

    2013-06-18

    The disclosure provides methods and materials suitable for use as encapsulation barriers in electronic devices. In one embodiment, for example, there is provided an electroluminescent device or other electronic device encapsulated by alternating layers of a silicon-containing bonding material and a ceramic material. The encapsulation methods provide, for example, electronic devices with increased stability and shelf-life. The invention is useful, for example, in the field of microelectronic devices.

  12. Encapsulation of Homogeneous Catalysts in Porous Polymer Nanocapsules Produces Fast-Acting Selective Nanoreactors.

    PubMed

    Dergunov, Sergey A; Khabiyev, Alibek T; Shmakov, Sergey N; Kim, Mariya D; Ehterami, Nasim; Weiss, Mary Clare; Birman, Vladimir B; Pinkhassik, Eugene

    2016-12-27

    Nanoreactors were created by entrapping homogeneous catalysts in hollow nanocapsules with 200 nm diameter and semipermeable nanometer-thin shells. The capsules were produced by the polymerization of hydrophobic monomers in the hydrophobic interior of the bilayers of self-assembled surfactant vesicles. Controlled nanopores in the shells of nanocapsules ensured long-term retention of the catalysts coupled with the rapid flow of substrates and products in and out of nanocapsules. The study evaluated the effect of encapsulation on the catalytic activity and stability of five different catalysts. Comparison of kinetics of five diverse reactions performed in five different solvents revealed the same reaction rates for free and encapsulated catalysts. Identical reaction kinetics confirmed that placement of catalysts in the homogeneous interior of polymer nanocapsules did not compromise catalytic efficiency. Encapsulated organometallic catalysts showed no loss of metal ions from nanocapsules suggesting stabilization of the complexes was provided by nanocapsules. Controlled permeability of the shells of nanocapsules enabled size-selective catalytic reactions.

  13. Biodegradable m-PEG/PCL Core-Shell Micelles: Preparation and Characterization as a Sustained Release Formulation for Curcumin

    PubMed Central

    Danafar, Hossein; Davaran, Soodabeh; Rostamizadeh, Kobra; Valizadeh, Hadi; Hamidi, Mehrdad

    2014-01-01

    Purpose: Among the potent anticancer agents, curcumin is known as a very efficacious against many different types of cancer cells, but its clinical applications has been limited because of hydrophobicity, low gastrointestinal absorption, poor bioavailability and rapid metabolism. In this way, a novel micellar delivery system with mPEG–PCL was synthesized and the release profile of the curcumin from the drug-loaded micelles was evaluated. Methods: In this study, curcumin was encapsulated within monomethoxypoly(ethylene glycol)-poly(ε-caprolactone) (mPEG-PCL) micelles through a single-step nano-precipitation method, leading to creation of curcumin-loaded mPEG-PCL (Cur/mPEG-PCL) micelles. Di-block mPEG-PCL copolymers were synthesized and used to prepare micelles. mPEG-PCL copolymer was characterized in vitro by HNMR, FTIR, DSC and GPC techniques. Then, mPEG–PCL copolymers with curcumin were self-assembled into micelles in aqueous solution. The resulting micelles were characterized further by various techniques such as dynamic light scattering (DLS) and atomic force microscopy (AFM). Results: The findings showed the successful formation of smooth and spherical curcumin-loaded micelles. The encapsulation efficiency of curcumin was 88 ± 3.32%. The results of AFM revealed that the micelles have spherical shapes with size of 73.8 nm. The release behavior of curcumin from micelles was compared in different media. In vitro release of curcumin from curcumin-entrapped micelles was followed remarkably sustained profile. The sustained release of drug was hypothetically due to the entrapment of curcumin in core of micelles. Conclusion: The results indicate the successful formulation of curcumin loaded m-PEG/PCL micelles. From the results, iIt can be concluded that curcumin m-PEG-PCL micelles may be considered as an effective treatment strategy for cancer in the future. PMID:25671181

  14. An Information Theory of Hydrophobic Effects

    NASA Astrophysics Data System (ADS)

    Pratt, Lawrence R.

    1998-03-01

    The hydrophobic effect is a central concept in rationalizing the structure and stability of proteins in solution. However, a consensus has not been achieved on a molecular scale physical theory explaining the broad array of hydrophobic effects. Here we present an information theory designed to achieve consensus by identifying and limiting the physical information and assumptions sufficient to predict hydrophobic effects. The information theory is based upon the study of the probabilities of occupancy by water molecule centers of molecular scale volumes observed in neat liquid water. Predictions for hydrophobic effects can be extracted from this probability distribution. Simulation results show that this probability distribution is accurately predicted by a maximum entropy model using the two moments that are obtained from the experimental liquid density and the experimental radial distribution of oxygen atoms. We show the role of solvent molecule correlation functions of higher order than pairs. We show that this two moment model predicts known atomic scale hydrophobic effects: hydrophobic solubilities, potentials of mean force, and hydrophobic effects on conformational equilibria. We comment on the kinship between the two moment maximum entropy model and the earlier Pratt-Chandler theory of hydrophobic effects. We show that the model predicts the entropy convergence emphasized by high sensitivity calorimetry on the thermal denaturation of globular proteins and explains why this entropy convergence is insensitive to solute molecular details within the broad category of hydrophobic solutes. Finally, we consider the pressure denaturation of globular proteins and discuss the perspective that emerges from the information theory treatment: increasing pressure squeezes water molecules into the protein globule eventually separating hydrophobic components analogously to the separation of hydrophobic solutes in formation of clathrate hydrates.

  15. Laboratory evaluation of PCBs encapsulation method ...

    EPA Pesticide Factsheets

    Effectiveness and limitations of the encapsulation method for reducing polychlorinated biphenyls (PCBs) concentrations in indoor air and contaminated surface have been evaluated in the laboratory study. Ten coating materials such as epoxy and polyurethane coatings, latex paint, and petroleum-based paint were tested in small environmental chambers to rank the encapsulants by their resistance to PCB sorption and estimate the key parameters required by a barrier model. Wipe samples were collected from PCB contaminated surface encapsulated with the coating materials to rank the encapsulants by their resistance to PCB migration from the source. A barrier model was used to calculate the PCB concentrations in the sources and the encapsulant layers, and at the exposed surfaces of the encapsulant and in the room air at different times. The performance of the encapsulants was ranked by those concentrations and PCB percent reductions. Overall, the three epoxy coatings performed better than the other coatings. Both the experimental results and the mathematical modeling showed that selecting proper encapsulants can effectively reduce the PCB concentrations at the exposed surfaces. The encapsulation method is most effective for contaminated surfaces that contain low levels of PCBs. This study answers some of these questions by using a combination of laboratory testing and mathematical modeling. The results should be useful to mitigation engineers, building owners and managers

  16. Modulation of the carotenoid bioaccessibility through liposomal encapsulation.

    PubMed

    Tan, Chen; Zhang, Yating; Abbas, Shabbar; Feng, Biao; Zhang, Xiaoming; Xia, Shuqin

    2014-11-01

    The low bioaccessibility of carotenoids is currently a challenge to their incorporation in pharmaceutics, nutraceuticals and functional foods. The aim of this study was to evaluate the modulating effects of liposome encapsulation on the bioaccessibility, and its relationship with carotenoid structure and incorporated concentration. The physical stability of liposomes, lipid digestibility, carotenoids release and bioaccessibility were investigated during incubation in a simulated gastrointestinal tract. Analysis on the liposome size and morphology showed that after digestion, the majority of particles maintained spherical shape with only an increase of size in liposomes loading β-carotene or lutein. However, a large proportion of heterogeneous particles were visible in the micelle phase of liposomes loading lycopene or canthaxanthin. It was also found that the release of lutein and β-carotene from liposomes was inhibited in a simulated gastric fluid, while was slow and sustained in a simulated intestinal fluid. By contrast, lycopene and canthaxanthin exhibited fast and considerable release in the gastrointestinal media. Both carotenoid bioaccessibility and micellization content decreased with the increase of incorporated concentration. Anyway, the bioaccessibility of carotenoids after encapsulated in liposomes was in the following order: lutein>β-carotene>lycopene>canthaxanthin. Bivariate correlation analysis revealed that carotenoid bioaccessibility depended strongly on the incorporating ability of carotenoids into a lipid bilayer, loading content, and nature of the system.

  17. Encapsulated guest-host dynamics: guest rotational barriers and tumbling as a probe of host interior cavity space.

    PubMed

    Mugridge, Jeffrey S; Szigethy, Géza; Bergman, Robert G; Raymond, Kenneth N

    2010-11-17

    The supramolecular host assembly [Ga(4)L(6)](12-) (1; L = 1,5-bis[2,3-dihydroxybenzamido]naphthalene) encapsulates cationic guest molecules within its hydrophobic cavity and catalyzes a variety of chemical transformations within its confined interior space. Despite the well-defined structure, the host ligand framework and interior cavity are very flexible and 1 can accommodate a wide range of guest shapes and sizes. These observations raise questions about the steric effects of confinement within 1 and how encapsulation fundamentally changes the motions of guest molecules. Here we examine the motional dynamics (guest bond rotation and tumbling) of encapsulated guest molecules to probe the steric consequences of encapsulation within host 1. Encapsulation is found to increase the Ph-CH(2) bond rotational barrier for ortho-substituted benzyl phosphonium guest molecules by 3 to 6 kcal/mol, and the barrier is found to depend on both guest size and shape. The tumbling dynamics of guests encapsulated in 1 were also investigated, and here it was found that longer, more prolate-shaped guest molecules tumble more slowly in the host cavity than larger but more spherical guest molecules. The prolate guests reduce the host symmetry from T to C(1) in solution at low temperatures, and the distortion of the host framework that is in part responsible for this symmetry reduction is observed directly in the solid state. Analysis of guest motional dynamics is a powerful method for interrogating host structure and fundamental host-guest interactions.

  18. Exploring Hydrophobic Binding Surfaces Using Comfa and Flexible Hydrophobic Ligands

    NASA Astrophysics Data System (ADS)

    Thakkar, Shraddha; Sanchez, Rosa. I.; Bhuveneswaran, Chidambaram; Compadre, Cesar M.

    2011-06-01

    Cysteine proteinases are a very important group of enzymes involved in a variety of physiological and pathological processes including cancer metastasis and rheumatoid arthritis. In this investigation we used 3D-Quantitative Structure Activity Relationships (3D-QSAR) techniques to model the binding of a variety of substrates to two cysteine proteinases, papain, and cathepsin B. The analysis was performed using Comparative Molecular Field Analysis (CoMFA). The molecules were constructed using standard bond angles and lengths, minimized and aligned. Charges were calculated using the PM3 method in MOPAC. The CoMFA models derived for the binding of the studied substrates to the two proteinases were compared with the expected results from the experimental X-ray crystal structures of the same proteinases. The results showed the value of CoMFA modeling of flexible hydrophobic ligands to analyze ligand binding to protein receptors, and could also serve as the basis to design specific inhibitors of cysteine proteinases with potential therapeutic value.

  19. Composite, nanostructured, super-hydrophobic material

    DOEpatents

    D'Urso, Brian R.; Simpson, John T.

    2007-08-21

    A hydrophobic disordered composite material having a protrusive surface feature includes a recessive phase and a protrusive phase, the recessive phase having a higher susceptibility to a preselected etchant than the protrusive phase, the composite material having an etched surface wherein the protrusive phase protrudes from the surface to form a protrusive surface feature, the protrusive feature being hydrophobic.

  20. Hydrophobic Silsesquioxane Nanoparticles and Nanocomposite Surfaces (POSTPRINT)

    DTIC Science & Technology

    2006-05-04

    Fluorinated Polyhedral Oligomeric Silsesquioxanes are hydrophobic nanoparticles. One compound, FD8T8, is ultrahydrophobic, possessing a water contact ... angle of 154 deg. This is believed to be the most hydrophobic and lowest surface tension crystalline substance known. Analysis of the x-ray crystal

  1. Encapsulating darunavir nanocrystals within Eudragit L100 using coaxial electrospraying.

    PubMed

    Nguyen, Duong Nhat; Clasen, Christian; Van den Mooter, Guy

    2017-04-01

    Electrospraying is renowned for its simplicity and versatility, and which can effectively produce particles with well-controlled size, size distribution, particle shape, morphology and microstructure at the nano/microscale. In this study, coaxial electrospraying was used to investigate its feasibility for preparing nanoparticles made up of nanocrystals encapsulated within a polymer shell. Firstly, aqueous nanosuspensions of darunavir were prepared by wet media milling. Then the nanosuspension and solutions of an enteric polymer, Eudragit L100, were used as the inner/core liquid and outer/shell liquid in a coaxial electrospraying setup, respectively. As long as a sufficiently high voltage was applied, a stable Taylor cone-jet mode was obtained to produce very fine core-shell structure nanoparticles with high darunavir encapsulation efficiency of approximately 90%. The influence of the starting nanosuspension and the flow rates on the characteristics of the final electrosprayed particles was also evaluated. Using an optimized nanosuspension with reasonable size, size distribution and flow rates, the enteric coating layer reduced the percentage of DRV release in acidic medium in the in vitro dissolution test to ca. 20%. This study indicates that coaxial electrospraying is a potential and unique technique for encapsulating drug nanocrystals within a polymeric shell.

  2. Silica-F127 nanohybrid-encapsulated manganese oxide nanoparticles for optimized T1 magnetic resonance relaxivity

    NASA Astrophysics Data System (ADS)

    Wei Hsu, Benedict You; Wang, Miao; Zhang, Yu; Vijayaragavan, Vimalan; Wong, Siew Yee; Yuang-Chi Chang, Alex; Bhakoo, Kishore Kumar; Li, Xu; Wang, John

    2013-12-01

    To properly engineer MnO nanoparticles (MONPs) of high r1 relaxivity, a nanohybrid coating consisting of silica and F127 (PEO106PPO70PEO106) is designed to encapsulate MONPs. Achieved by an interfacial templating scheme, the nanohybrid encapsulating layer is highly permeable and hydrophilic to allow for an optimal access of water molecules to the encapsulated manganese oxide core. Hence, the efficacy of MONPs as MRI contrast agents is significantly improved, as demonstrated by an enhancement of the MR signal measured with a pre-clinical 7.0 T MRI scanner. The nanohybrid encapsulation strategy also confers high colloidal stability to the hydrophobic MONPs by the surface decoration of PEO chains and a small overall diameter (<100 nm) of the PEO-SiO2 nanohybrid-encapsulated MONPs (PEOMSNs). The PEOMSNs are not susceptible to Mn-ion leaching, and their biocompatibility is affirmed by a low toxicity profile. Moreover, these hybrid nanocapsules exhibit a nano-rattle structure, which would favor the facile loading of various therapeutic reagents for theranostic applications.To properly engineer MnO nanoparticles (MONPs) of high r1 relaxivity, a nanohybrid coating consisting of silica and F127 (PEO106PPO70PEO106) is designed to encapsulate MONPs. Achieved by an interfacial templating scheme, the nanohybrid encapsulating layer is highly permeable and hydrophilic to allow for an optimal access of water molecules to the encapsulated manganese oxide core. Hence, the efficacy of MONPs as MRI contrast agents is significantly improved, as demonstrated by an enhancement of the MR signal measured with a pre-clinical 7.0 T MRI scanner. The nanohybrid encapsulation strategy also confers high colloidal stability to the hydrophobic MONPs by the surface decoration of PEO chains and a small overall diameter (<100 nm) of the PEO-SiO2 nanohybrid-encapsulated MONPs (PEOMSNs). The PEOMSNs are not susceptible to Mn-ion leaching, and their biocompatibility is affirmed by a low toxicity profile

  3. Why are water-hydrophobic interfaces charged?

    PubMed

    Kudin, Konstantin N; Car, Roberto

    2008-03-26

    We report ab initio molecular dynamics simulations of hydroxide and hydronium ions near a hydrophobic interface, indicating that both ions behave like amphiphilic surfactants that stick to a hydrophobic hydrocarbon surface with their hydrophobic side. We show that this behavior originates from the asymmetry of the molecular charge distribution which makes one end of the ions strongly hydrophobic while the other end is even more hydrophilic than the regular water (H2O) molecules. The effect is more pronounced for the hydroxide than for the hydronium. Our results are consistent with several experimental observations and explain why hydrophobic surfaces in contact with water acquire a net negative charge, a phenomenon that has important implications for biology and polymer science.

  4. Enthalpic and Entropic Contributions to Hydrophobicity

    PubMed Central

    2016-01-01

    Hydrophobic hydration plays a key role in a vast variety of biological processes, ranging from the formation of cells to protein folding and ligand binding. Hydrophobicity scales simplify the complex process of hydration by assigning a value describing the averaged hydrophobic character to each amino acid. Previously published scales were not able to calculate the enthalpic and entropic contributions to the hydrophobicity directly. We present a new method, based on Molecular Dynamics simulations and Grid Inhomogeneous Solvation Theory, that calculates hydrophobicity from enthalpic and entropic contributions. Instead of deriving these quantities from the temperature dependence of the free energy of hydration or as residual of the free energy and the enthalpy, we directly obtain these values from the phase space occupied by water molecules. Additionally, our method is able to identify regions with specific enthalpic and entropic properties, allowing to identify so-called “unhappy water” molecules, which are characterized by weak enthalpic interactions and unfavorable entropic constraints. PMID:27442443

  5. Properties of Lactobacillus reuteri chitosan-calcium-alginate encapsulation under simulated gastrointestinal conditions.

    PubMed

    Huang, Hui-Ying; Tang, Yi-Ju; King, V An-Erl; Chou, Jen-Wei; Tsen, Jen-Horng

    2015-03-01

    The protective effects of encapsulation on the survival of Lactobacillus reuteri and the retention of the bacterium's probiotic properties under simulated gastrointestinal conditions were investigated. Viable counts and the remaining probiotic properties of calcium (Ca)-alginate encapsulated (A group), chitosan-Ca-alginate encapsulated (CA group), and unencapsulated, free L. reuteri (F group) were determined. Encapsulation improved the survival of L. reuteri subjected to simulated gastrointestinal conditions, with the greatest protective effect achieved in the CA group. The degree of cell membrane injury increased with increasing bile salt concentrations at constant pH, but the extent of injury was less in the encapsulated than in the free cells. Adherence rates were, in descending order: CA (0.524%)>A (0.360%)>F (0.275%). Lactobacillus reuteri cells retained their antagonistic activity toward Listeria monocytogenes even after incubation of the lactobacilli under simulated gastrointestinal conditions. Displacement of the pathogen by cells released from either of the encapsulation matrices was higher than that by free cells. The safety of L. reuteri was demonstrated in an in vitro invasion assay.

  6. Encapsulation of the ethylene inhibitor 1-Methylcyclopropene by cucurbit[6]uril.

    PubMed

    Zhang, Quan; Zhen, Zeng; Jiang, Hong; Li, Xue-Gang; Liu, Jun-An

    2011-10-12

    1-Methylcyclopropene (1-MCP) is an excellent safe and commercially available ethylene antagonist for the preservation of horticultural products. However 1-MCP has to be stored in absorbents due to its gaseous and unstable characteristics. In this paper cucurbit[6]uril (CB[6]) was used as the absorbent to encapsulate 1-MCP, and the resultant inclusion complex was characterized by IR, powder X-ray diffraction, thermal analysis, and fluorescent spectra. The effects of encapsulation conditions on the formation of inclusion complex were also investigated. The amount of 1-MCP encapsulated by CB[6] was about 4.5% by weight when the initial concentration of 1-MCP, encapsulation temperature, CB[6] concentration, and encapsulation time were set at 75 mL/L, 20 °C, 30 mM, and 8 h, respectively. Furthermore, the release of 1-MCP from the complex can be realized with different solutions such as sodium bicarbonate, benzoic acid, and distilled water. CB[6] can be used as an excellent absorbent for encapsulation of 1-MCP.

  7. Effects of particle uptake, encapsulation, and localization in cancer cells on intracellular applications.

    PubMed

    Gal, N; Massalha, S; Samuelly-Nafta, O; Weihs, D

    2015-05-01

    Endocytosis is a normal process in living cells, often used to internalize drug-containing particles and probes for intracellular mechanics. The cell type, and especially malignancy, may affect particle internalization and transport. Specifically, membrane-encapsulation following internalization can affect particle interaction with the cell interior. Hence, particle-tracking measurements that reveal intracellular mechanics and dynamics require determination of effects of encapsulation. Here, we compare closely related, breast-cancer cell lines with high- and low-metastatic potential (MP) and benign, control cells. We evaluate time-dependent particle internalization, localization with endocytotic-pathway organelles, and membrane encapsulation at 2, 6, 24, and 48 h after initial cell exposure to particles. High MP cells internalize particles more rapidly and in larger amounts than low MP and benign cells. Moreover, while only cells at the edge of two-dimensional colonies of benign cells internalized particles, all cancer cells uniformly internalize particles. Particles mostly colocalize with late endosomes (>80%), yet surprisingly, overall membrane encapsulation decreases with time, indicating release into the cytoplasm; encapsulation at 48 h is <35% in all three cell types. We discuss implications to drug delivery and show that encapsulation does not significantly affect intracellular particle-tracking experiments, showing the applicability of endocytosis.

  8. Encapsulation of curcumin in polyelectrolyte nanocapsules and their neuroprotective activity

    NASA Astrophysics Data System (ADS)

    Szczepanowicz, Krzysztof; Jantas, Danuta; Piotrowski, Marek; Staroń, Jakub; Leśkiewicz, Monika; Regulska, Magdalena; Lasoń, Władysław; Warszyński, Piotr

    2016-09-01

    Poor water solubility and low bioavailability of lipophilic drugs can be potentially improved with the use of delivery systems. In this study, encapsulation of nanoemulsion droplets was utilized to prepare curcumin nanocarriers. Nanosize droplets containing the drug were encapsulated in polyelectrolyte shells formed by the layer-by-layer (LbL) adsorption of biocompatible polyelectrolytes: poly-L-lysine (PLL) and poly-L-glutamic acid (PGA). The size of synthesized nanocapsules was around 100 nm. Their biocompatibility and neuroprotective effects were evaluated on the SH-SY5Y human neuroblastoma cell line using cell viability/toxicity assays (MTT reduction, LDH release). Statistically significant toxic effect was clearly observed for PLL coated nanocapsules (reduction in cell viability about 20%-60%), while nanocapsules with PLL/PGA coating did not evoke any detrimental effects on SH-SY5Y cells. Curcumin encapsulated in PLL/PGA showed similar neuroprotective activity against hydrogen peroxide (H2O2)-induced cell damage, as did 5 μM curcumin pre-dissolved in DMSO (about 16% of protection). Determination of concentration of curcumin in cell lysate confirmed that curcumin in nanocapsules has cell protective effect in lower concentrations (at least 20 times) than when given alone. Intracellular mechanisms of encapsulated curcumin-mediated protection engaged the prevention of the H2O2-induced decrease in mitochondrial membrane potential (MMP) but did not attenuate Reactive Oxygen Species (ROS) formation. The obtained results indicate the utility of PLL/PGA shell nanocapsules as a promising, alternative way of curcumin delivery for neuroprotective purposes with improved efficiency and reduced toxicity.

  9. Encapsulation of curcumin in polyelectrolyte nanocapsules and their neuroprotective activity.

    PubMed

    Szczepanowicz, Krzysztof; Jantas, Danuta; Piotrowski, Marek; Staroń, Jakub; Leśkiewicz, Monika; Regulska, Magdalena; Lasoń, Władysław; Warszyński, Piotr

    2016-09-02

    Poor water solubility and low bioavailability of lipophilic drugs can be potentially improved with the use of delivery systems. In this study, encapsulation of nanoemulsion droplets was utilized to prepare curcumin nanocarriers. Nanosize droplets containing the drug were encapsulated in polyelectrolyte shells formed by the layer-by-layer (LbL) adsorption of biocompatible polyelectrolytes: poly-L-lysine (PLL) and poly-L-glutamic acid (PGA). The size of synthesized nanocapsules was around 100 nm. Their biocompatibility and neuroprotective effects were evaluated on the SH-SY5Y human neuroblastoma cell line using cell viability/toxicity assays (MTT reduction, LDH release). Statistically significant toxic effect was clearly observed for PLL coated nanocapsules (reduction in cell viability about 20%-60%), while nanocapsules with PLL/PGA coating did not evoke any detrimental effects on SH-SY5Y cells. Curcumin encapsulated in PLL/PGA showed similar neuroprotective activity against hydrogen peroxide (H2O2)-induced cell damage, as did 5 μM curcumin pre-dissolved in DMSO (about 16% of protection). Determination of concentration of curcumin in cell lysate confirmed that curcumin in nanocapsules has cell protective effect in lower concentrations (at least 20 times) than when given alone. Intracellular mechanisms of encapsulated curcumin-mediated protection engaged the prevention of the H2O2-induced decrease in mitochondrial membrane potential (MMP) but did not attenuate Reactive Oxygen Species (ROS) formation. The obtained results indicate the utility of PLL/PGA shell nanocapsules as a promising, alternative way of curcumin delivery for neuroprotective purposes with improved efficiency and reduced toxicity.

  10. Alkaline phosphatase encapsulated in gellan-chitosan hybrid capsules.

    PubMed

    Fujii, Toshihiro; Ogiwara, Daisuke; Ohkawa, Kousaku; Yamamoto, Hiroyuki

    2005-05-23

    Alkaline phosphatase (ALP) was encapsulated in gellan-chitosan polyion complex (PIC) capsules using a convenient procedure. The recovery of ALP was about 50% when the capsules were prepared by dropping a solution of ALP and gellan mixture (ALP/gellan) into a chitosan solution. When p-nitrophenyl phosphate (p-NPP) and 5-bromo-4-chloro-3-indolyl phosphate (BCIP) were incubated with ALP/gellan-chitosan capsules as substrates for ALP, the transparent colorless capsules changed to yellow and blue, respectively. The encapsulation of ALP into the PIC capsules was also confirmed by SDS-PAGE and immunoblot analyses. The ALP and polypeptides of more than 30 kDa remained without release even after incubation at 4 degrees C for 14 d. The biochemical properties of the encapsulated ALP activity were similar to those of the intact enzyme. When the solution containing p-NPP was loaded on a column packed with ALP/gellan-chitosan capsules at 27 degrees C, approximately 75% of p-NPP was hydrolyzed by passing through the column. No significant leakage of ALP was observed during the procedure, indicating that the capsules were resistant to pressure in the chromatographic operation. Furthermore, 70% of the hydrolytic activity of the packed capsules remained after storage at 4 degrees C for one month. These results suggest that the polyion complex capsules could be useful materials for protein fixation without chemical modification. [Diagram: see text] Encapsulation of ALP into PIC capsules and the morphological changes seen in the absence of the ALP substrate and in the presence of p-NPP and BICP.

  11. The Influence of Pluronic F68 and F127 Nanocarrier on Physicochemical Properties, In vitro Release, and Antiproliferative Activity of Thymoquinone Drug

    PubMed Central

    Shaarani, Salwa; Hamid, Shahrul Sahul; Mohd Kaus, Noor Haida

    2017-01-01

    Background: This study reports on hydrophobic drug thymoquinone (TQ), an active compound found in the volatile oil of Nigella sativa that exhibits anticancer activities. Nanoformulation of this drug could potentially increase its bioavailability to specific target cells. Objective: The aim of this study was to formulate TQ into polymer micelle, Pluronic F127 (5.0 wt %) and Pluronic F68 (0.1 wt %), as a drug carrier to enhance its solubility and instability in aqueous media. Materials and Methods: Polymeric micelles encapsulated TQ were prepared by the microwave-assisted solvent evaporation technique. Fourier transform infrared spectroscopy and ultraviolet-visible spectrophotometer were utilized for qualitative confirmation of micelles encapsulation. The surface morphology and mean particle size of the prepared micelles were determined by using transmission electron microscopy (TEM). Cytotoxicity effect was studied using 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS) assay. Results: Dynamic laser light scattering (DLS) technique showed hydrodynamic size distribution of optimized micelles of 50 nm, which was in close agreement with the mean particle size obtained from TEM of about 51 nm. Drug release study showed the maximum percentage of TQ release at 61% after 72 h, while the entrapment efficiency of TQ obtained was 46% using PF127. The cytotoxic effect of PF127-encapsulated TQ was considerably higher compared to PF68-encapsulated TQ against MCF7 cells, as they exhibited IC50value of 8 μM and 18 μM, respectively. Conclusion: This study suggests higher molecular weight Pluronic polymer micelles (F127) with hydrophilic-hydrophobic segments which could be used as a suitable candidate for sustainable delivery of TQ. However, comprehensive studies should be carried out to establish the suitability of Pluronic F127 as a carrier for other drugs with similar challenges as TQ. SUMMARY There is a rising interest

  12. Snapshot in surgery: intraperitoneal encapsulated fat necrosis

    PubMed Central

    Oh, Han Boon; Arab, Nahlah; Teo, Lynette; Lieske, Bettina

    2015-01-01

    Key Clinical Message A 66-year-old man with rectal cancer was found to have an incidental ring-like lesion in the left rectovesical pouch. Histology revealed an encapsulated fat necrosis. Intraperitoneal encapsulated fat necroses are postulated to be a result of infarcted epiploic appendages resulting in a free-floating lesion. PMID:25767714

  13. Use of a passive equilibration methodology to encapsulate cisplatin into preformed thermosensitive liposomes.

    PubMed

    Woo, Janet; Chiu, Gigi N C; Karlsson, Göran; Wasan, Ellen; Ickenstein, Ludger; Edwards, Katarina; Bally, Marcel B

    2008-02-12

    A conventional, cholesterol-containing liposome formulation of cisplatin has demonstrated insignificant activity in clinical trials, due in part, to insufficient release of encapsulated content following localization within solid tumors. For this reason, the development of a triggered release liposome formulation is desirable. In this report, cisplatin was encapsulated into lysolipid-containing thermosensitive liposomes (LTSL) using a novel technique, which relies on the equilibration of cisplatin across the liposomal membrane at temperatures above the gel-to-liquid crystalline phase transition temperature (TC) of the bulk phospholipid. Mild heating and drug loading into LTSL did not induce morphological changes of the liposomes. In vitro data demonstrated that >95% of encapsulated cisplatin was released from LTSL within 5 min following mild heating at 42 degrees C, while <5% was released at 37 degrees C. Under similar conditions, lysolipid-free thermosensitive liposomes exhibited 70% release of cisplatin at 42 degrees C, and cholesterol-containing liposomes exhibited negligible drug release at 42 degrees C. The pharmacokinetic profiles of LTSL- and TSL-cisplatin indicated that these formulations were rapidly eliminated from circulation (terminal t(1/2) of 1.09 and 2.83 h, respectively). The therapeutic utility of LTSL-cisplatin formulation will be based on strategies where hyperthermia is applied prior to the administration of the liposomal drug-a strategy similar to that used in the clinical assessment of LTSL-doxorubicin formulation.

  14. Effect of cyclodextrins on alpha-chymotrypsin stability and loading in PLGA microspheres upon S/O/W encapsulation.

    PubMed

    Castellanos, Ingrid J; Flores, Giselle; Griebenow, Kai

    2006-04-01

    The potential of cyclodextrins to stabilize alpha-chymotrypsin upon encapsulation in Poly(lactic-co-glycolic) acid (PLGA) microspheres using a solid-in-oil-in-water (s/o/w) technique was investigated. Two cyclodextrins, hydroxyl-propyl-beta-cyclodextrin (HPbetaCD) and methyl-beta-cyclodextrin (MbetaCD), one insoluble and the other soluble in methylene chloride, were used. The results demonstrate that HPbetaCD failed to stabilize alpha-chymotrypsin upon encapsulation. Specifically, 19% of the protein was aggregated and the specific activity of the enzyme was reduced to ca. 50% of that prior to encapsulation. In contrast, MbetaCD significantly decreased the formation of aggregates to 3% and the retained specific activity of the enzyme was approximately 90%. The co-lyophilization of alpha-chymotrypsin with MbetaCD prior to encapsulation was a requisite to preserve the protein stability in microspheres. Furthermore, MbetaCD prevented the loss of protein during the preparation of microspheres and the encapsulation efficiency was improved to 90%. Release experiments showed the use of MbetaCD modified the release profile: the burst release decreased from 54% (in the absence of the excipient) to 36%. The results suggest that MbetaCD might be a suitable excipient to improve protein stability in s/o/w encapsulation procedures.

  15. Encapsulation of CO2 into amorphous alpha-cyclodextrin powder at different moisture contents - Part 1: Encapsulation capacity and stability of inclusion complexes.

    PubMed

    Ho, Thao M; Howes, Tony; Bhandari, Bhesh R

    2016-07-15

    This study investigated the effects of water-induced crystallization of amorphous alpha-cyclodextrin (α-CD) powder on CO2 encapsulation at 0.4-1.6 MPa pressure for 1-72 h through the addition of water (to reach to 13, 15 and 17% wet basis, w.b.) into amorphous α-CD powder prior to the encapsulation. The results showed that the α-CD encapsulation capacity was over 1 mol CO2/mol α-CD after pressurizing for longer than 48 h. The encapsulated CO2 concentration by the addition of water was considerably higher (p<0.05) than that of amorphous α-CD powder (5.51% MC, w.b.) without an addition of water and that of crystalline α-CD powders under the same MC and encapsulation conditions. A comparison of CO2 release properties (75% relative humidity, 25 °C) from complexed powders prepared from amorphous and crystalline α-CD powders under the same conditions is also presented.

  16. Liposome-Encapsulated Bacteriophages for Enhanced Oral Phage Therapy against Salmonella spp.

    PubMed Central

    Colom, Joan; Cano-Sarabia, Mary; Otero, Jennifer; Cortés, Pilar

    2015-01-01

    Bacteriophages UAB_Phi20, UAB_Phi78, and UAB_Phi87 were encapsulated in liposomes, and their efficacy in reducing Salmonella in poultry was then studied. The encapsulated phages had a mean diameter of 309 to 326 nm and a positive charge between +31.6 and +35.1 mV (pH 6.1). In simulated gastric fluid (pH 2.8), the titer of nonencapsulated phages decreased by 5.7 to 7.8 log units, whereas encapsulated phages were significantly more stable, with losses of 3.7 to 5.4 log units. The liposome coating also improved the retention of bacteriophages in the chicken intestinal tract. When cocktails of the encapsulated and nonencapsulated phages were administered to broilers, after 72 h the encapsulated phages were detected in 38.1% of the animals, whereas the nonencapsulated phages were present in only 9.5%. The difference was significant. In addition, in an in vitro experiment, the cecal contents of broilers promoted the release of the phages from the liposomes. In broilers experimentally infected with Salmonella, the daily administration of the two cocktails for 6 days postinfection conferred similar levels of protection against Salmonella colonization. However, once treatment was stopped, protection by the nonencapsulated phages disappeared, whereas that provided by the encapsulated phages persisted for at least 1 week, showing the enhanced efficacy of the encapsulated phages in protecting poultry against Salmonella over time. The methodology described here allows the liposome encapsulation of phages of different morphologies. The preparations can be stored for at least 3 months at 4°C and could be added to the drinking water and feed of animals. PMID:25956778

  17. Boar sperm changes after sorting and encapsulation in barium alginate membranes.

    PubMed

    Spinaci, M; Bucci, D; Chlapanidas, T; Vallorani, C; Perteghella, S; Communod, R; Vigo, D; Tamanini, C; Galeati, G; Faustini, M; Torre, M L

    2013-09-15

    A routine use of boar-sexed semen is limited by the long sorting time necessary to obtain an adequate number of sexed spermatozoa for artificial insemination and by the high susceptibility of spermatozoa of this species to damages induced by sorting procedure and subsequent cryopreservation. The aim of this work was to study the impact of encapsulation in barium alginate membrane on sorted boar spermatozoa by evaluating membrane integrity, chlortetracycline staining patterns, protein tyrosine phosphorylation, and Hsp70 immunolocalization during storage over 72 hours in liquid or encapsulated form. The encapsulation procedure significantly (P < 0.05) decreased the overall membrane integrity of control unsorted semen (81.8 vs. 57.4, CTR vs. CPS), but did not negatively affect the overall viability and the chlortetracycline staining patterns of sorted encapsulated cells. Moreover, encapsulation significantly decreased (P < 0.05) the overall phosphotyrosin A pattern cell percentage in unsorted (98.4 vs. 92.6, CTR vs. CPS) but not in sorted semen (64.0 vs. 74.2; SORT CTR vs. SORT CPS). As for Hsp70, the overall percentage of cells displaying the different patterns was significantly influenced (P < 0.05) by treatment but not by storage time. The sorting procedure seems to induce the major changes, whereas encapsulation tends to exert a protective effect on sorted semen by increasing the percentage of spermatozoa displaying the T pattern (2.8 vs. 24.3; SORT CTR vs. SORT CPS). In conclusion, our data confirm that the damaging impact of the encapsulation in barium alginate capsules seems to be limited when compared with that of the sorting procedure and, moreover, the association of the two procedures does not result in an algebraic sum of the negative effects. These results suggest the possibility of a future utilization of the encapsulation technology in order to store sorted spermatozoa and permit their controlled release in the female genital tract.

  18. Liposome-Encapsulated Bacteriophages for Enhanced Oral Phage Therapy against Salmonella spp.

    PubMed

    Colom, Joan; Cano-Sarabia, Mary; Otero, Jennifer; Cortés, Pilar; Maspoch, Daniel; Llagostera, Montserrat

    2015-07-01

    Bacteriophages UAB_Phi20, UAB_Phi78, and UAB_Phi87 were encapsulated in liposomes, and their efficacy in reducing Salmonella in poultry was then studied. The encapsulated phages had a mean diameter of 309 to 326 nm and a positive charge between +31.6 and +35.1 mV (pH 6.1). In simulated gastric fluid (pH 2.8), the titer of nonencapsulated phages decreased by 5.7 to 7.8 log units, whereas encapsulated phages were significantly more stable, with losses of 3.7 to 5.4 log units. The liposome coating also improved the retention of bacteriophages in the chicken intestinal tract. When cocktails of the encapsulated and nonencapsulated phages were administered to broilers, after 72 h the encapsulated phages were detected in 38.1% of the animals, whereas the nonencapsulated phages were present in only 9.5%. The difference was significant. In addition, in an in vitro experiment, the cecal contents of broilers promoted the release of the phages from the liposomes. In broilers experimentally infected with Salmonella, the daily administration of the two cocktails for 6 days postinfection conferred similar levels of protection against Salmonella colonization. However, once treatment was stopped, protection by the nonencapsulated phages disappeared, whereas that provided by the encapsulated phages persisted for at least 1 week, showing the enhanced efficacy of the encapsulated phages in protecting poultry against Salmonella over time. The methodology described here allows the liposome encapsulation of phages of different morphologies. The preparations can be stored for at least 3 months at 4°C and could be added to the drinking water and feed of animals.

  19. Biocompatible long-sustained release oil-core polyelectrolyte nanocarriers: From controlling physical state and stability to biological impact.

    PubMed

    Szczepanowicz, Krzysztof; Bazylińska, Urszula; Pietkiewicz, Jadwiga; Szyk-Warszyńska, Lilianna; Wilk, Kazimiera A; Warszyński, Piotr

    2015-08-01

    It has been generally expected that the most applicable drug delivery system (DDS) should be biodegradable, biocompatible and with incidental adverse effects. Among many micellar aggregates and their mediated polymeric systems, polyelectrolyte oil-core nanocarriers have been found to successfully encapsulate hydrophobic drugs in order to target cells and avoid drug degradation and toxicity as well as to improve drug efficacy, its stability, and better intracellular penetration. This paper reviews recent developments in the formation of polyelectrolyte oil-core nanocarriers by subsequent multilayer adsorption at micellar structures, their imaging, physical state and stability, drug encapsulation and applications, in vitro release profiles and in vitro biological evaluation (cellular uptake and internalization, biocompatibility). We summarize the recent results concerning polyelectrolyte/surfactant interactions at interfaces, fundamental to understand the mechanisms of formation of stable polyelectrolyte layered structures on liquid cores. The fabrication of emulsion droplets stabilized by synergetic surfactant/polyelectrolyte complexes, properties, and potential applications of each type of polyelectrolyte oil-core nanocarriers, including stealth nanocapsules with pegylated shell, are discussed and evaluated.

  20. Encapsulation of probiotic bacteria in biopolymeric system.

    PubMed

    Huq, Tanzina; Khan, Avik; Khan, Ruhul A; Riedl, Bernard; Lacroix, Monique

    2013-01-01

    Encapsulation of probiotic bacteria is generally used to enhance the viability during processing, and also for the target delivery in gastrointestinal tract. Probiotics are used with the fermented dairy products, pharmaceutical products, and health supplements. They play a great role in maintaining human health. The survival of these bacteria in the human gastrointestinal system is questionable. In order to protect the viability of the probiotic bacteria, several types of biopolymers such as alginate, chitosan, gelatin, whey protein isolate, cellulose derivatives are used for encapsulation and several methods of encapsulation such as spray drying, extrusion, emulsion have been reported. This review focuses on the method of encapsulation and the use of different biopolymeric system for encapsulation of probiotics.

  1. Limonene encapsulation in freeze dried gellan systems.

    PubMed

    Evageliou, Vasiliki; Saliari, Dimitra

    2017-05-15

    The encapsulation of limonene in freeze-dried gellan systems was investigated. Surface and encapsulated limonene content was determined by measurement of the absorbance at 252nm. Gellan matrices were both gels and solutions. For a standard gellan concentration (0.5wt%) gelation was induced by potassium or calcium chloride. Furthermore, gellan solutions of varying concentrations (0.25-1wt%) were also studied. Limonene was added at two different concentrations (1 and 2mL/100g sample). Gellan gels encapsulated greater amounts of limonene than solutions. Among all gellan gels, the KCl gels had the greater encapsulated limonene content. However, when the concentration of limonene was doubled in these KCl gels, the encapsulated limonene decreased. The surface limonene content was significant, especially for gellan solutions. The experimental conditions and not the mechanical properties of the matrices were the dominant factor in the interpretation of the observed results.

  2. Quantification of hydrophobic interaction affinity of colloids

    NASA Astrophysics Data System (ADS)

    Saini, G.; Nasholm, N.; Wood, B. D.

    2009-12-01

    Colloids play an important role in a wide variety of disciplines, including water and wastewater treatment, subsurface transport of metals and organic contaminants, migration of fines in oil reservoirs, biocolloid (virus and bacteria) transport in subsurface, and are integral to laboratory transport studies. Although the role of hydrophobicity in adhesion and transport of colloids, particularly bacteria, is well known; there is scarcity of literature regarding hydrophobicity measurement of non-bacterial colloids and other micron-sized particles. Here we detail an experimental approach based on differential partitioning of colloids between two liquid phases (hydrocarbon and buffer) as a measure of the hydrophobic interaction affinity of colloids. This assay, known as Microbial adhesion to hydrocarbons or MATH, is frequently used in microbiology and bacteriology for quantifying the hydrophobicity of microbes. Monodispersed colloids and particles, with sizes ranging from 1 micron to 33 micron, were used for the experiments. A range of hydrophobicity values were observed for different particles. The hydrophobicity results are also verified against water contact angle measurements of these particles. This liquid-liquid partitioning assay is quick, easy-to-perform and requires minimal instrumentation. Estimation of the hydrophobic interaction affinity of colloids would lead to a better understanding of their adhesion to different surfaces and subsequent transport in porous media.

  3. Design, analysis and test verification of advanced encapsulation systems

    NASA Technical Reports Server (NTRS)

    Garcia, A., III; Kallis, J. M.; Trucker, D. C.

    1983-01-01

    Analytical models were developed to perform optical, thermal, electrical and structural analyses on candidate encapsulation systems. From these analyses several candidate encapsulation systems were selected for qualification testing.

  4. Improved Hepatoprotective Effect of Liposome-Encapsulated Astaxanthin in Lipopolysaccharide-Induced Acute Hepatotoxicity

    PubMed Central

    Chiu, Chun-Hung; Chang, Chun-Chao; Lin, Shiang-Ting; Chyau, Charng-Cherng; Peng, Robert Y.

    2016-01-01

    Lipopolysaccharide (LPS)-induced acute hepatotoxicity is significantly associated with oxidative stress. Astaxanthin (AST), a xanthophyll carotenoid, is well known for its potent antioxidant capacity. However, its drawbacks of poor aqueous solubility and low bioavailability have limited its utility. Liposome encapsulation is considered as an effective alternative use for the improvement of bioavailability of the hydrophobic compound. We hypothesized that AST encapsulated within liposomes (LA) apparently shows improved stability and transportability compared to that of free AST. To investigate whether LA administration can efficiently prevent the LPS-induced acute hepatotoxicity, male Sprague-Dawley rats (n = six per group) were orally administered liposome-encapsulated AST at 2, 5 or 10 mg/kg-day (LA-2, LA-5, and LA-10) for seven days and then were LPS-challenged (i.p., 5 mg/kg). The LA-10 administered group, but not the other groups, exhibited a significant amelioration of serum glutamic pyruvic transaminase (GPT), glutamic oxaloacetic transaminase (GOT), blood urea nitrogen (BUN), creatinine (CRE), hepatic malondialdehyde (MDA) and glutathione peroxidase (GSH-Px), IL-6, and hepatic nuclear NF-κB and inducible nitric oxide synthase (iNOS), suggesting that LA at a 10 mg/kg-day dosage renders hepatoprotective effects. Moreover, the protective effects were even superior to that of positive control N-acetylcysteine (NAC, 200 mg/kg-day). Histopathologically, NAC, free AST, LA-2 and LA-5 partially, but LA-10 completely, alleviated the acute inflammatory status. These results indicate that hydrophobic AST after being properly encapsulated by liposomes improves bioavailability and can also function as potential drug delivery system in treating hepatotoxicity. PMID:27428953

  5. Point contacts in encapsulated graphene

    SciTech Connect

    Handschin, Clevin; Fülöp, Bálint; Csonka, Szabolcs; Makk, Péter; Blanter, Sofya; Weiss, Markus; Schönenberger, Christian; Watanabe, Kenji; Taniguchi, Takashi

    2015-11-02

    We present a method to establish inner point contacts with dimensions as small as 100 nm on hexagonal boron nitride (hBN) encapsulated graphene heterostructures by pre-patterning the top-hBN in a separate step prior to dry-stacking. 2- and 4-terminal field effect measurements between different lead combinations are in qualitative agreement with an electrostatic model assuming point-like contacts. The measured contact resistances are 0.5–1.5 kΩ per contact, which is quite low for such small contacts. By applying a perpendicular magnetic field, an insulating behaviour in the quantum Hall regime was observed, as expected for inner contacts. The fabricated contacts are compatible with high mobility graphene structures and open up the field for the realization of several electron optical proposals.

  6. Ice adhesion on super-hydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Kulinich, S. A.; Farzaneh, M.

    2009-06-01

    In this study, ice adhesion strength on flat hydrophobic and rough super-hydrophobic coatings with similar surface chemistry (based on same fluoropolymer) is compared. Glaze ice, similar to naturally accreted, was prepared on the surfaces by spraying super-cooled water microdroplets at subzero temperature. Ice adhesion was evaluated by spinning the samples at constantly increasing speed until ice delamination occurred. Super-hydrophobic surfaces with different contact angle hysteresis were tested, clearly showing that the latter, along with the contact angle, also influences the ice-solid adhesion strength.

  7. Super-hydrophobic fluorine containing aerogels

    DOEpatents

    Coronado, Paul R.; Poco, John F.; Hrubesh, Lawrence W.

    2007-05-01

    An aerogel material with surfaces containing fluorine atoms which exhibits exceptional hydrophobicity, or the ability to repel liquid water. Hydrophobic aerogels are efficient absorbers of solvents from water. Solvents miscible with water are separated from it because the solvents are more volatile than water and they enter the porous aerogel as a vapor across the liquid water/solid interface. Solvents that are immisicble with water are separated from it by selectively wetting the aerogel. The hydrophobic property is achieved by formulating the aerogel using fluorine containing molecules either directly by addition in the sol-gel process, or by treating a standard dried aerogel using the vapor of fluorine containing molecules.

  8. Liposome encapsulation of curcumin: physico-chemical characterizations and effects on MCF7 cancer cell proliferation.

    PubMed

    Hasan, M; Belhaj, N; Benachour, H; Barberi-Heyob, M; Kahn, C J F; Jabbari, E; Linder, M; Arab-Tehrany, E

    2014-01-30

    The role of curcumin (diferuloylmethane), for cancer treatment has been an area of growing interest. However, due to its low absorption, the poor bioavailability of curcumin limits its clinical use. In this study, we reported an approach of encapsulation a curcumin by nanoliposome to achieve an improved bioavailability of a poorly absorbed hydrophobic compound. We demonstrated that liposomal preparations to deliver curcumin increase its bioavailability. Liposomes composed of salmon's lecithin also improved curcumin bioavailability compared to those constituted of rapeseed and soya lecithins. A real-time label-free cell analysis system based on real-time cell impedance monitoring was used to investigate the in vitro cytotoxicity of liposomal preparations.

  9. Hydrophobic interactions increase attachment of gum Arabic- and PVP-coated Ag nanoparticles to hydrophobic surfaces.

    PubMed

    Song, Jee Eun; Phenrat, Tanapon; Marinakos, Stella; Xiao, Yao; Liu, Jie; Wiesner, Mark R; Tilton, Robert D; Lowry, Gregory V

    2011-07-15

    A fundamental understanding of attachment of surface-coated nanoparticles (NPs) is essential to predict the distribution and potential risks of NPs in the environment. Column deposition studies were used to examine the effect of surface-coating hydrophobicity on NP attachment to collector surfaces in mixtures with varying ratios of octadecylichlorosilane (OTS)-coated (hydrophobic) glass beads and clean silica (hydrophilic) glass beads. Silver nanoparticles (AgNPs) coated with organic coatings of varying hydrophobicity, including citrate, polyvinylpyrrolidone (PVP), and gum arabic (GA), were used. The attachment efficiencies of GA and PVP AgNPs increased by 2- and 4-fold, respectively, for OTS-coated glass beads compared to clean glass beads. Citrate AgNPs showed no substantial change in attachment efficiency for hydrophobic compared to hydrophilic surfaces. The attachment efficiency of PVP-, GA-, and citrate-coated AgNPs to hydrophobic collector surfaces correlated with the relative hydrophobicity of the coatings. The differences in the observed attachment efficiencies among AgNPs could not be explained by classical DLVO, suggesting that hydrophobic interactions between AgNPs and OTS-coated glass beads were responsible for the increase in attachment of surface-coated AgNPs with greater hydrophobicity. This study indicates that the overall attachment efficiency of AgNPs will be influenced by the hydrophobicity of the NP coating and the fraction of hydrophobic surfaces in the environment.

  10. Nano- and micro-structured assemblies for encapsulation of food ingredients.

    PubMed

    Augustin, Mary Ann; Hemar, Yacine

    2009-04-01

    This tutorial review provides an overview of the science of food materials and encapsulation techniques that underpin the development of delivery vehicles for functional food components, nutrients and bioactives. Examples of how the choice of materials, formulation and process affect the structure of micro- and nano-encapsulated ingredients and the release of the core are provided. The review is of relevance to chemists, material scientists, food scientists, engineers and nutritionists who are interested in addressing delivery challenges in the food and health industries.

  11. Encapsulation of caesium-loaded Ionsiv in cement

    SciTech Connect

    Jenni, A.; Hyatt, N.C.

    2010-08-15

    The microporous material Ionsiv is used for {sup 137}Cs removal from aqueous nuclear waste streams. In the UK, Cs-loaded Ionsiv is classed as an intermediate-level waste; no sentencing and disposal route is yet defined for this material and it is currently held in safe interim storage on several nuclear sites. In this study, the suitability of fly ash and blast furnace slag blended cements for encapsulation of Cs-Ionsiv in a monolithic wasteform was investigated. No evidence of reaction or dissolution of the Cs-Ionsiv in the cementitious environment was found by scanning electron microscopy and X-ray diffraction. However, a small fraction ({<=} 1.6 wt.%) of the Cs inventory was released from the encapsulated Ionsiv during leaching experiments carried out on hydrated samples. Furthermore, it was evident that K and Na present in the cementitious pore water exchanged with Cs and H in the Ionsiv. Therefore, cement systems lower in K and Na, such as slag based cements, showed lower Cs release than the fly ash based cements.

  12. Chitosan grafted low molecular weight polylactic acid for protein encapsulation and burst effect reduction.

    PubMed

    Di Martino, Antonio; Kucharczyk, Pavel; Zednik, Jiri; Sedlarik, Vladimir

    2015-12-30

    Chitosan and chitosan-grafted polylactic acid as a matrix for BSA encapsulation in a nanoparticle structure were prepared through a polyelectrolyte complexation method with dextran sulfate. Polylactic acid was synthetized via a polycondensation reaction using the non-metal-based initiator methanesulfonic acid and grafted to the chitosan backbone by a coupling reaction, with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide as the condensing agent. The effect of concentration of the polymer matrix utilized herein on particle diameter, ζ-potential, encapsulation efficiency, and the release kinetic of the model protein bovine serum albumin at differing pH levels was investigated. The influence of pH and ionic strength on the behavior of the nanoparticles prepared was also researched. Results showed that grafting polylactic acid to chitosan chains reduced the initial burst effect in the kinetics of BSA release from the structure of the nanoparticles. Furthermore, a rise in encapsulation efficiency of the bovine serum albumin and diminishment in nanoparticle diameter were observed due to chitosan modification. The results suggest that both polymers actually show appreciable encapsulation efficiency; and release rate of BSA. CS-g-PLA is more suitable than unmodified CS as a carrier for controlled protein delivery.

  13. Synthesis of nanoporous carbohydrate metal-organic framework and encapsulation of acetaldehyde

    NASA Astrophysics Data System (ADS)

    Al-Ghamdi, Saleh; Kathuria, Ajay; Abiad, Mohamad; Auras, Rafael

    2016-10-01

    Gamma cyclodextrin (γ-CD) metal organic frameworks (CDMOFs) were synthesized by coordinating γ-CDs with potassium hydroxide (KOH), referred hereafter as CDMOF-a, and potassium benzoate (C7H5KO2), denoted as CDMOF-b. The obtained CDMOF structures were characterized using nitrogen sorption isotherm, thermo-gravimetric analysis (TGA), X-ray diffraction (XRD), and scanning electron microscopy (SEM). High surface areas were achieved by the γ-CD based MOF structures where the Langmuir specific surface areas (SSA) of CDMOF-a and CDMOF-b were determined as 1376 m2 g-1 and 607 m2 g-1; respectively. The dehydrated CDMOF structures demonstrated good thermal stability up to 250 °C as observed by the TGA studies. XRD results for CDMOF-a and CDMOF-b reveal a body centered-cubic (BCC) and trigonal crystal system; respectively. Due to its accessible porous structure and high surface area, acetaldehyde was successfully encapsulated in CDMOF-b. During the release kinetic studies, we observed peak release of 53 μg of acetaldehyde per g of CDMOF-b, which was 100 times greater than previously reported encapsulation in β-CD. However, aldol condensation reaction occurred during encapsulation of acetaldehyde into CDMOF-a. This research work demonstrates the potential to encapsulate volatile organic compounds in CDMOF-b, and their associated release for applications including food, pharmaceuticals and packaging.

  14. Encapsulation of flaxseed oil using a benchtop spray dryer for legume protein-maltodextrin microcapsule preparation.

    PubMed

    Can Karaca, Asli; Low, Nicholas; Nickerson, Michael

    2013-05-29

    Flaxseed oil was microencapsulated employing a wall material matrix of either chickpea (CPI) or lentil protein isolate (LPI) and maltodextrin using a benchtop spray dryer. Effects of emulsion formulation (oil, protein and maltodextrin levels) and protein source (CPI vs LPI) on the physicochemical characteristics, oxidative stability, and release properties of the resulting capsules were investigated. Microcapsule formulations containing higher oil levels (20% oil, 20% protein, 60% maltodextrin) were found to have higher surface oil and lower encapsulation efficiencies. Overall, LPI-maltodextrin capsules gave higher flaxseed oil encapsulation efficiencies (∼88.0%) relative to CPI-maltodextrin matrices (∼86.3%). However, both designs were found to provide encapsulated flaxseed oil protection against oxidation over a 25 d room temperature storage study relative to free oil. Overall, ∼37.6% of encapsulated flaxseed oil was released after 2 h under simulated gastric fluid, followed by the release of an additional ∼46.6% over a 3 h period under simulated intestinal fluid conditions.

  15. Erosion and flow of hydrophobic granular materials

    NASA Astrophysics Data System (ADS)

    Utter, Brian; Benns, Thomas; Foltz, Benjamin; Mahler, Joseph

    2015-03-01

    We experimentally investigate submerged granular flows of hydrophobic and hydrophilic grains both in a rotating drum geometry and under erosion by a surface water flow. While slurry and suspension flows are common in nature and industry, effects of surface chemistry on flow behavior have received relatively little attention. In the rotating drum, we use varying concentrations of hydrophobic and hydrophilic grains of sand submerged in water rotated at a constant angular velocity. Sequential images of the resulting avalanches are taken and analyzed. High concentrations of hydrophobic grains result in an effectively cohesive interaction between the grains forming aggregates, with aggregate size and repose angle increasing with hydrophobic concentration. However, the formation and nature of the aggregates depends significantly on the presence of air in the system. We present results from a related experiment on erosion by a surface water flow designed to characterize the effects of heterogeneous granular surfaces on channelization and erosion.

  16. Erosion and flow of hydrophobic granular materials

    NASA Astrophysics Data System (ADS)

    Utter, Brian; Benns, Thomas; Mahler, Joseph

    2013-11-01

    We experimentally investigate submerged granular flows of hydrophobic and hydrophilic grains both in a rotating drum geometry and under erosion by a surface water flow. While slurry and suspension flows are common in nature and industry, effects of surface chemistry on flow behavior have received relatively little attention. In the rotating drum , we use varying concentrations of hydrophobic and hydrophilic grains of sand submerged in water rotated at a constant angular velocity. Sequential images of the resulting avalanches are taken and analyzed. High concentrations of hydrophobic grains result in an effectively cohesive interaction between the grains forming aggregates, with aggregate size and repose angle increasing with hydrophobic concentration. However, the formation and nature of the aggregates depends significantly on the presence of air in the system. We present results from a related experiment on erosion by a surface water flow designed to characterize the effects of heterogeneous granular surfaces on channelization and erosion. Supported by NSF CBET Award 1067598.

  17. Hydrophobic hydrophilic phenomena in biochemical processes.

    PubMed

    Ben-Naim, Arieh

    2003-09-01

    The evolution of concepts developed in the study of the hydrophobic affect is surveyed, within the more general context of solvent-induced effects. A systematic analysis of the solvent-induced contribution to the driving force for the process of protein folding has led to two important modifications in our understanding of these effects. First, the conventional concepts of hydrophobic solvation and hydrophobic interactions had to be replaced by their respective conditional effects. Second, each of the hydrophobic effects has also a corresponding hydrophilic counterpart. Some of the latter effects could contribute significantly to the total driving force for the process of protein folding, and perhaps even dominate the driving force for biochemical processes.

  18. Heat-Driven Release of a Drug Molecule From Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Chaban, Vitaly; Prezhdo, Oleg

    2011-03-01

    Hydrophobicity and ability to absorb light that penetrates through living tissues make carbon nanotubes (CNTs) promising intracellular drug delivery agents. Following insertion of a drug molecule into a CNT, the latter is delivered into a tissue, is heated by near infrared radiation, and releases the drug. In order to assess the feasibility of this scheme, we investigate the rates of energy transfer between CNT, water and the drug molecule, and study the temperature and concentration dependence of the diffusion coefficient of the drug molecule inside CNTs. We use ciprofloxacin (CIP) as a sample drug: direct penetration of CIP through cell membranes is problematic due to its high polarity. The simulations show that a heated CNT rapidly deposits its energy to CIP and water. All estimated timescales for the vibrational energy exchange between CNT, CIP and water are less than 10 ps at 298 K. As the system temperature grows from 278 K to 363 K, the diffusion coefficient of the confined CIP increases 5-7 times, depending on CIP concentration. The diffusion coefficient slightly drops with increasing CIP concentration. This effect is more pronounced at higher temperatures. The simulations support the idea that optical heating of CNTs can assist in releasing encapsulated drugs.

  19. Surface analysis of selected hydrophobic materials

    NASA Astrophysics Data System (ADS)

    Wisniewska, Sylwia Katarzyna

    This dissertation contains a series of studies on hydrophobic surfaces by various surface sensitive techniques such as contact angle measurements, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and atomic force microscopy (AFM). Hydrophobic surfaces have been classified as mineral surfaces, organic synthetic surfaces, or natural biological surfaces. As a model hydrophobic mineral surface, elemental sulfur has been selected. The sulfur surface has been characterized for selected allotropic forms of sulfur such as rhombic, monoclinic, plastic, and cyclohexasulfur. Additionally, dextrin adsorption at the sulfur surface was measured. The structure of a dextrin molecule showing hydrophobic sites has been presented to support the proposed hydrophobic bonding nature of dextrin adsorption at the sulfur surface. As a model organic hydrophobic surface, primary fatty amines such as dodecylamine, hexadecylamine, and octadecylamine were chosen. An increase of hydrophobicity, significant changes of infrared bands, and surface topographical changes with time were observed for each amine. Based on the results it was concluded that hydrocarbon chain rearrangement associated with recrystallization took place at the surface during contact with air. A barley straw surface was selected as a model of biological hydrophobic surfaces. The differences in the contact angles for various straw surfaces were explained by the presence of a wax layer. SEM images confirmed the heterogeneity and complexity of the wax crystal structure. AFM measurements provided additional structural details including a measure of surface roughness. Additionally, straw degradation as a result of conditioning in an aqueous environment was studied. Significant contact angle changes were observed as soon as one day after conditioning. FTIR studies showed a gradual wax layer removal due to straw surface decomposition. SEM and AFM images revealed topographical changes and biological

  20. Free energetics of rigid body association of ubiquitin binding domains: a biochemical model for binding mediated by hydrophobic interaction.

    PubMed

    Cui, Di; Ou, Shuching; Patel, Sandeep

    2014-07-01

    Weak intermolecular interactions, such as hydrophobic associations, underlie numerous biomolecular recognition processes. Ubiquitin is a small protein that represents a biochemical model for exploring thermodynamic signatures of hydrophobic association as it is widely held that a major component of ubiquitin's binding to numerous partners is mediated by hydrophobic regions on both partners. Here, we use atomistic molecular dynamics simulations in conjunction with the Adaptive Biasing Force sampling method to compute potentials of mean force (the reversible work, or free energy, associated with the binding process) to investigate the thermodynamic signature of complexation in this well-studied biochemical model of hydrophobic association. We observe that much like in the case of a purely hydrophobic solute (i.e., graphene, carbon nanotubes), association is favored by entropic contributions from release of water from the interprotein regions. Moreover, association is disfavored by loss of enthalpic interactions, but unlike in the case of purely hydrophobic solutes, in this case protein-water interactions are lost and not compensated for by additional water-water interactions generated upon release of interprotein and moreso, hydration, water. We further find that relative orientations of the proteins that mutually present hydrophobic regions of each protein to its partner are favored over those that do not. In fact, the free energy minimum as predicted by a force field based method recapitulates the experimental NMR solution structure of the complex.

  1. Encapsulation of protein drugs in biodegradable microparticles by co-axial electrospray.

    PubMed

    Xie, Jingwei; Ng, Wei Jun; Lee, Lai Yeng; Wang, Chi-Hwa

    2008-01-15

    A co-axial electrospray process was developed to encapsulate protein-based drugs in biodegradable polymeric microparticles eliminating the key problem faced by other conventional methods of protein encapsulation--the primary emulsion being a major cause for protein denaturation and aggregation. Bovine serum albumin (BSA) and lysozyme were chosen as model protein drugs for this study. Scanning electron microscopy observation of the morphology of particles showed spherical microparticles of several microns could be achieved. In vitro release profiles measured using Micro-BCA assay indicated sustained release of proteins for more than 30 days. The results of circular dichroism suggested that the secondary structure of released BSA can be retained. The bioactivity of released lysozyme was found to be more than 90% which is higher than the values reported from most literatures. Therefore, co-axial electrospray could be a very promising approach to encapsulate biomacromolecules such as proteins, enzymes, DNA plasmids or living cells inside microparticles for controlled release drug delivery applications.

  2. Integral Glass Encapsulation for Solar Arrays

    NASA Technical Reports Server (NTRS)

    Younger, P. R.; Tobin, R. G.; Kreisman, W. S.

    1979-01-01

    Work reported was performed during the period from August 1977 to December 1978. The program objective was to continue the development of electrostatic bonding (ESB) as an encapsulation technique for terrestrial cells. Economic analyses shows that this process can be a cost-effective method of producing reliable, long lifetime solar modules. When considered in sufficient volume, both material and equipment costs are competitive with conventional encapsulation systems. In addition, the possibility of integrating cell fabrication into the encapsulation process, as in the case of the preformed cell contacts discussed in this report, offers the potential of significant overall systems cost reduction.

  3. Hermetic encapsulation technique for solar arrays

    NASA Technical Reports Server (NTRS)

    Deminet, C.; Horne, W. E.

    1980-01-01

    A concept is presented for encapsulating solar cells between two layers of glass either individually, in panels, or in a continuous process. The concept yields an integral unit that is hermetically sealed and that is tolerant to high temperature thermal cycling and to particulate radiation. Data are presented on both high temperature solar cells and special glasses that soften at low temperatures for use with the concept. The results of encapsulating experiments are presented which show the successful application of the concept to the special high temperature cells. The mechanical feasibility of encapsulating 2 mil cells between two layers of 2 mil glass is also demonstrated.

  4. Hydrophobicity of silver surfaces with microparticle geometry

    NASA Astrophysics Data System (ADS)

    Macko, Ján; Oriňaková, Renáta; Oriňak, Andrej; Kovaľ, Karol; Kupková, Miriam; Erdélyi, Branislav; Kostecká, Zuzana; Smith, Roger M.

    2016-11-01

    The effect of the duration of the current deposition cycle and the number of current pulses on the geometry of silver microstructured surfaces and on the free surface energy, polarizability, hydrophobicity and thus adhesion force of the silver surfaces has been investigated. The changes in surface hydrophobicity were entirely dependent on the size and density of the microparticles on the surface. The results showed that formation of the silver microparticles was related to number of current pulses, while the duration of one current pulse played only a minor effect on the final surface microparticle geometry and thus on the surface tension and hydrophobicity. The conventional geometry of the silver particles has been transformed to the fractal dimension D. The surface hydrophobicity depended predominantly on the length of the dendrites not on their width. The highest silver surface hydrophobicity was observed on a surface prepared by 30 current pulses with a pulse duration of 1 s, the lowest one when deposition was performed by 10 current pulses with a duration of 0.1 s. The partial surface tension coefficients γDS and polarizability kS of the silver surfaces were calculated. Both parameters can be applied in future applications in living cells adhesion prediction and spectral method selection. Silver films with microparticle geometry showed a lower variability in final surface hydrophobicity when compared to nanostructured surfaces. The comparisons could be used to modify surfaces and to modulate human cells and bacterial adhesion on body implants, surgery instruments and clean surfaces.

  5. Characterization of surface hydrophobicity of engineered nanoparticles.

    PubMed

    Xiao, Yao; Wiesner, Mark R

    2012-05-15

    The surface chemistry of nanoparticles, including their hydrophobicity, is a key determinant of their fate, transport and toxicity. Engineered NPs often have surface coatings that control the surface chemistry of NPs and may dominate the effects of the nanoparticle core. Suitable characterization methods for surface hydrophobicity at the nano-scale are needed. Three types of methods, surface adsorption, affinity coefficient and contact angle, were investigated in this study with seven carbon and metal based NPs with and without coatings. The adsorption of hydrophobic molecules, Rose Bengal dye and naphthalene, on NPs was used as one measure of hydrophobicity and was compared with the relative affinity of NPs for octanol or water phases, analogous to the determination of octanol-water partition coefficients for organic molecules. The sessile drop method was adapted for measuring contact angle of a thin film of NPs. Results for these three methods were qualitatively in agreement. Aqueous-nC(60) and tetrahydrofuran-nC(60) were observed to be more hydrophobic than nano-Ag coated with polyvinylpyrrolidone or gum arabic, followed by nano-Ag or nano-Au with citrate-functionalized surfaces. Fullerol was shown to be the least hydrophobic of seven NPs tested. The advantages and limitations of each method were also discussed.

  6. Evaporation-induced failure of hydrophobicity

    NASA Astrophysics Data System (ADS)

    Luo, H.; Liu, T.; Ma, J.; Wang, P.; Wang, Y.; Leprince-Wang, Y.; Jing, G.

    2016-09-01

    Hydrophobic coatings have tremendous applications in many fields of industries, and their robustness is an important subject of investigation. Here we experimentally demonstrate the detachment of hydrophobic coating and the formation of the residual deposit resulting from an evaporating drop of water. A hydrophobic octadecanethiol (ODT) coating is employed to enhance the hydrophobicity of ZnO nanowire arrays (advancing and receding contact angle of 165° and 128°, respectively). Being a model system of the unique bonding interaction between ODT and ZnO, water drop drying on the structure of ODT/ZnO is examined. Our experimental results showed the significant depression and even failure of the hydrophobicity on this composite surface resulting from collecting the deposits of ODT molecules during the drop drying. By analyzing energy criterion and force balance, surface tension at the moving contact line is identified as a dominating destructive force to unstick the coating molecules. Interestingly, a normal rinsing stream does not damage this coating to alter its hydrophobicity, but rather is overshadowed by the evaporation of the tinny water drop. The drops of rain or condensed water outdoor may thus play the same role to damage the functional coatings after their evaporation. Our findings indicate that more delicate designs are needed to prevent the destructive effects of drop evaporation on superhydrophobic surfaces.

  7. Designing a hydrophobic barrier within biomimetic nanopores.

    PubMed

    Trick, Jemma L; Wallace, E Jayne; Bayley, Hagan; Sansom, Mark S P

    2014-11-25

    Nanopores in membranes have a range of potential applications. Biomimetic design of nanopores aims to mimic key functions of biological pores within a stable template structure. Molecular dynamics simulations have been used to test whether a simple β-barrel protein nanopore can be modified to incorporate a hydrophobic barrier to permeation. Simulations have been used to evaluate functional properties of such nanopores, using water flux as a proxy for ionic conductance. The behavior of these model pores has been characterized as a function of pore size and of the hydrophobicity of the amino acid side chains lining the narrow central constriction of the pore. Potential of mean force calculations have been used to calculate free energy landscapes for water and for ion permeation in selected models. These studies demonstrate that a hydrophobic barrier can indeed be designed into a β-barrel protein nanopore, and that the height of the barrier can be adjusted by modifying the number of consecutive rings of hydrophobic side chains. A hydrophobic barrier prevents both water and ion permeation even though the pore is sterically unoccluded. These results both provide insights into the nature of hydrophobic gating in biological pores and channels, and furthermore demonstrate that simple design features may be computationally transplanted into β-barrel membrane proteins to generate functionally complex nanopores.

  8. Sonication-induced gelation of silk fibroin for cell encapsulation.

    PubMed

    Wang, Xiaoqin; Kluge, Jonathan A; Leisk, Gary G; Kaplan, David L

    2008-03-01

    Purified native silk fibroin forms beta-sheet-rich, physically cross-linked, hydrogels from aqueous solution, in a process influenced by environmental parameters. Previously we reported gelation times of days to weeks for aqueous native silk protein solutions, with high ionic strength and temperature and low pH responsible for increasing gelation kinetics. Here we report a novel method to accelerate the process and control silk fibroin gelation through ultrasonication. Depending on the sonication parameters, including power output and time, along with silk fibroin concentration, gelation could be controlled from minutes to hours, allowing the post-sonication addition of cells prior to final gel setting. Mechanistically, ultrasonication initiated the formation of beta-sheets by alteration in hydrophobic hydration, thus accelerating the formation of physical cross-links responsible for gel stabilization. K(+) at physiological concentrations and low pH promoted gelation, which was not observed in the presence of Ca(2+). The hydrogels were assessed for mechanical properties and proteolytic degradation; reported values matched or exceeded other cell-encapsulating gel material systems. Human bone marrow derived mesenchymal stem cells (hMSCs) were successfully incorporated into these silk fibroin hydrogels after sonication, followed by rapid gelation and sustained cell function. Sonicated silk fibroin solutions at 4%, 8%, and 12% (w/v), followed by mixing in hMSCs, gelled within 0.5-2 h. The cells grew and proliferated in the 4% gels over 21 days, while survival was lower in the gels with higher protein content. Thus, sonication provides a useful new tool with which to initiate rapid sol-gel transitions, such as for cell encapsulation.

  9. Encapsulated nano-heat-sinks for thermal management of heterogeneous chemical reactions.

    PubMed

    Zhang, Minghui; Hong, Yan; Ding, Shujiang; Hu, Jianjun; Fan, Yunxiao; Voevodin, Andrey A; Su, Ming

    2010-12-01

    This paper describes a new way to control temperatures of heterogeneous exothermic reactions such as heterogeneous catalytic reaction and polymerization by using encapsulated nanoparticles of phase change materials as thermally functional additives. Silica-encapsulated indium nanoparticles and silica encapsulated paraffin nanoparticles are used to absorb heat released in catalytic reaction and to mitigate gel effect of polymerization, respectively. The local hot spots that are induced by non-homogenous catalyst packing, reactant concentration fluctuation, and abrupt change of polymerization rate lead to solid to liquid phase change of nanoparticle cores so as to avoid thermal runaway by converting energies from exothermic reactions to latent heat of fusion. By quenching local hot spots at initial stage, reaction rates do not rise significantly because the thermal energy produced in reaction is isothermally removed. Nanoparticles of phase change materials will open a new dimension for thermal management of exothermic reactions to quench local hot spots, prevent thermal runaway of reaction, and change product distribution.

  10. Encapsulated nano-heat-sinks for thermal management of heterogeneous chemical reactions

    NASA Astrophysics Data System (ADS)

    Zhang, Minghui; Hong, Yan; Ding, Shujiang; Hu, Jianjun; Fan, Yunxiao; Voevodin, Andrey A.; Su, Ming

    2010-12-01

    This paper describes a new way to control temperatures of heterogeneous exothermic reactions such as heterogeneous catalytic reaction and polymerization by using encapsulated nanoparticles of phase change materials as thermally functional additives. Silica-encapsulated indiumnanoparticles and silica encapsulated paraffin nanoparticles are used to absorb heat released in catalytic reaction and to mitigate gel effect of polymerization, respectively. The local hot spots that are induced by non-homogenous catalyst packing, reactant concentration fluctuation, and abrupt change of polymerization rate lead to solid to liquid phase change of nanoparticle cores so as to avoid thermal runaway by converting energies from exothermic reactions to latent heat of fusion. By quenching local hot spots at initial stage, reaction rates do not rise significantly because the thermal energy produced in reaction is isothermally removed. Nanoparticles of phase change materials will open a new dimension for thermal management of exothermic reactions to quench local hot spots, prevent thermal runaway of reaction, and change product distribution.

  11. Polymeric photoresist nanoparticles: light-induced degradation of hydrophobic polymers in aqueous dispersion.

    PubMed

    Klinger, Daniel; Landfester, Katharina

    2011-12-15

    Nanoparticles consisting of a photoreactive polymer able to radically switch its hydrophobicity are successfully prepared by miniemulsion polymerization. Irradiation with UV light causes degradation of the particles where at complete dissolution is achieved by changing the initial hydrophobic photoresist polymer into hydrophilic poly(methacrylic acid). Incorporation of the fluorescence-sensitive Nile red serves as a solvatochromic probe to study the particle degradation. Diffusion of either Nile red out from or water into the former hard spherical nanoparticles is studied and not only renders the described material an ideal system for applications, where in situ dissolution of nanoparticles may be needed, but also bears the additional advantage of performing controlled burst release.

  12. Thiolated graphene oxide as promising mucoadhesive carrier for hydrophobic drugs.

    PubMed

    Pereira de Sousa, Irene; Buttenhauser, Katrin; Suchaoin, Wongsakorn; Partenhauser, Alexandra; Perrone, Mara; Matuszczak, Barbara; Bernkop-Schnürch, Andreas

    2016-07-25

    The aim of this study was to improve the mucoadhesive properties of graphene by conjugating thiol ligands, in order to formulate an oral delivery system for hydrophobic drugs showing long mucus residence time. Graphene oxide was obtained by oxidation of graphite and then was thiolated following two synthetic paths. On the one hand, the hydroxyl groups were conjugated with thiourea passing through the formation of a brominated intermediate. On the other hand, the carboxylic acid groups were conjugated with cysteamine via carbodiimide chemistry. The mucoadhesive properties of thiolated graphene were evaluated by rheological measurements and by residence time assay. Then, valsartan was loaded on thiolated graphene and the release profile was evaluated in simulated intestinal fluid. Following both synthetic paths it was possible to obtain thiolated graphene bearing 215-302μmol SH/g product. Both products induced after 1h incubation an increase of mucus viscosity of about 22-33-fold compared to unmodified graphite. The residence time assay confirmed that 60% of thiolated graphene could be retained on intestinal mucosa after 4h incubation, whereas just 20% of unmodified graphite could be retained. Valsartan could be loaded with a drug loading of about 31±0.3% and a sustained release profile was observed for both formulations. According to the presented data, the thiolation of graphene could improve its mucoadhesive properties. Therefore, thiolated graphene represents a promising platform for oral delivery of hydrophobic drugs, possessing a long residence time on intestinal mucosa which allows the release of the loaded drug close to the adsorptive epithelium.

  13. Förster resonance energy transfer between pyrene and bovine serum albumin: Effect of the hydrophobic pockets of cyclodextrins

    NASA Astrophysics Data System (ADS)

    Maity, Arnab; Mukherjee, Puspal; Das, Tarasankar; Ghosh, Prasun; Purkayastha, Pradipta

    The phenomenon of Förster resonance energy transfer (FRET) between pyrene and bovine serum albumin (BSA) protein in presence of cyclodextrins (CDs) is explored in the present work. CDs provide hydrophobic environment and thus the aromatic molecules get encapsulated in them depending on the relative size and space. In this work we revealed that along with pyrene monomer, the side chains of amino acids in BSA can get trapped partly in the hydrophobic cavities of CDs if space permits. While being encapsulated by β-CD as pyrene monomer, it can interact with the BSA tryptophan moiety exposed toward the aqueous environment to form a dimer through π-π interaction. This, in turn, affects the energy transfer process by reducing the efficiency. On the other hand, pyrene excimer gets encapsulated in a γ-CD molecule due to availability of enough space. The excimer shows a new band at a higher wavelength. This further reduces FRET efficiency due to scarcity of acceptor for the tryptophan moieties in BSA.

  14. Laboratory evaluation of PCBs encapsulation method

    EPA Science Inventory

    Effectiveness and limitations of the encapsulation method for reducing polychlorinated biphenyls (PCBs) concentrations in indoor air and contaminated surface have been evaluated in the laboratory study. Ten coating materials such as epoxy and polyurethane coatings, latex paint, a...

  15. Lipid encapsulated phenolic compounds by fluidization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phenolic compounds exhibit antioxidant and antimicrobial activities with applications as functional food and feed additives. Ferulic acid, a phenolic compound present in grain crops and lignocellulose biomass, was encapsulated with saturated triglycerides using a laboratory fluidizer. Stability of t...

  16. Statistical modeling of single target cell encapsulation.

    PubMed

    Moon, SangJun; Ceyhan, Elvan; Gurkan, Umut Atakan; Demirci, Utkan

    2011-01-01

    High throughput drop-on-demand systems for separation and encapsulation of individual target cells from heterogeneous mixtures of multiple cell types is an emerging method in biotechnology that has broad applications in tissue engineering and regenerative medicine, genomics, and cryobiology. However, cell encapsulation in droplets is a random process that is hard to control. Statistical models can provide an understanding of the underlying processes and estimation of the relevant parameters, and enable reliable and repeatable control over the encapsulation of cells in droplets during the isolation process with high confidence level. We have modeled and experimentally verified a microdroplet-based cell encapsulation process for various combinations of cell loading and target cell concentrations. Here, we explain theoretically and validate experimentally a model to isolate and pattern single target cells from heterogeneous mixtures without using complex peripheral systems.

  17. Encapsulation of isohexenylnaphthazarins in cyclodextrins.

    PubMed

    Assimopoulou, A N; Papageorgiou, V P

    2004-05-01

    Naturally occurring isohexenylnaphthazarins (IHN), such as Alkannin, Shikonin (A/S) and their derivatives, are potent pharmaceutical substances with a wide spectrum of biological activity. In the present study, inclusion complexes of alkannin and shikonin commercial samples and IHN derivatives in the form of an oily extract of Alkanna tinctoria roots were formed with beta-cyclodextrin (CD) and beta-HPCD. These complexes were investigated to evaluate the effect of complexation on their aqueous solubility, decoloration, and also the percentage of polymeric A/S and IHN derivatives enclosed in the CDs cavity, since these decrease the active monomeric IHN. Both beta-CD and beta-HPCD increased the aqueous solubility of A/S and IHN derivatives and thus inclusion complexes can be used as drug delivery systems for A/S in both internal (capsules, tablets) and external hydrophilic pharmaceutical and cosmetic preparations (creams, gels, sprays) with enhanced bioavailability. The inclusion complexes formed had a pale purple colour, contributing to the partial decoloration of the A/S and thus of the fi nal pharmaceutical preparations. Finally, CDs selectively included more monomeric and less polymeric IHN, compared with the initial each time sample that is encapsulated; thus inclusion complexes may present enhanced biological activity.

  18. Palisaded Encapsulated Neuroma of the Trunk: A Case Report and Review of Palisaded Encapsulated Neuroma

    PubMed Central

    Cohen, Philip R

    2016-01-01

    Palisaded encapsulated neuroma is a rare, benign cutaneous tumor. It most commonly presents as a solitary, flesh-colored, dome-shaped nodule affecting the face. However, albeit rarely, palisaded encapsulated neuroma may also appear on the trunk, genitals, or extremities. We describe the clinical and pathologic findings of a male patient who presented with a palisaded encapsulated neuroma on his left flank. In addition, we review the characteristics of patients with truncal palisaded encapsulated neuromas and summarize the clinical and histologic differential diagnosis of this tumor. PMID:27630799

  19. Nanovesicle encapsulation of antimicrobial peptide P34: physicochemical characterization and mode of action on Listeria monocytogenes

    NASA Astrophysics Data System (ADS)

    da Silva Malheiros, Patrícia; Sant'Anna, Voltaire; Micheletto, Yasmine Miguel Serafini; da Silveira, Nadya Pesce; Brandelli, Adriano

    2011-08-01

    Antimicrobial peptide P34, a substance showing antibacterial activity against pathogenic and food spoilage bacteria, was encapsulated in liposomes prepared from partially purified soybean phosphatidylcholine, and their physicochemical characteristics were evaluated. The antimicrobial activity was estimated by agar diffusion assay using Listeria monocytogenes ATCC 7644 as indicator strain. A concentration of 3,200 AU/mL of P34 was encapsulated in nanovesicles and stocked at 4 °C. No significant difference ( p > 0.05) in the biological activity of free and encapsulated P34 was observed through 24 days. Size and PDI of liposomes, investigated by light scattering analysis, were on average 150 nm and 0.22 respectively. Zeta potential was -27.42 mV. There was no significant change ( p > 0.05) in the physicochemical properties of liposomes during the time of evaluation. The liposomes presented closed spherical morphology as visualized by transmission electron microscopy (TEM). The mode of action of liposome-encapsulated P34 under L. monocytogenes cells was investigated by TEM. Liposomes appeared to adhere but not fuse with the bacterial cell wall, suggesting that the antimicrobial is released from nanovesicles to act against the microorganism. The effect of free and encapsulated P34 was tested against L. monocytogenes, showing that free bacteriocin inhibited the pathogen more quickly than the encapsulated P34. Liposomes prepared with low-cost lipid showed high encapsulation efficiency for a new antimicrobial peptide and were stable during storage. The mode of action against the pathogen L. monocytogenes was characterized.

  20. Encapsulation of sex sorted boar semen: sperm membrane status and oocyte penetration parameters.

    PubMed

    Spinaci, Marcella; Chlapanidas, Theodora; Bucci, Diego; Vallorani, Claudia; Perteghella, Sara; Lucconi, Giulia; Communod, Ricardo; Vigo, Daniele; Galeati, Giovanna; Faustini, Massimo; Torre, Maria Luisa

    2013-03-01

    Although sorted semen is experimentally used for artificial, intrauterine, and intratubal insemination and in vitro fertilization, its commercial application in swine species is still far from a reality. This is because of the low sort rate and the large number of sperm required for routine artificial insemination in the pig, compared with other production animals, and the greater susceptibility of porcine spermatozoa to stress induced by the different sex sorting steps and the postsorting handling protocols. The encapsulation technology could overcome this limitation in vivo, protecting and allowing the slow release of low-dose sorted semen. The aim of this work was to evaluate the impact of the encapsulation process on viability, acrosome integrity, and on the in vitro fertilizing potential of sorted boar semen. Our results indicate that the encapsulation technique does not damage boar sorted semen; in fact, during a 72-hour storage, no differences were observed between liquid-stored sorted semen and encapsulated sorted semen in terms of plasma membrane (39.98 ± 14.38% vs. 44.32 ± 11.72%, respectively) and acrosome integrity (74.32 ± 12.17% vs. 66.07 ± 10.83%, respectively). Encapsulated sorted spermatozoa presented a lower penetration potential than nonencapsulated ones (47.02% vs. 24.57%, respectively, P < 0.0001), and a significant reduction of polyspermic fertilization (60.76% vs. 36.43%, respectively, polyspermic ova/total ova; P < 0.0001). However, no difference (P > 0.05) was observed in terms of total efficiency of fertilization expressed as normospermic oocytes/total oocytes (18.45% vs. 15.43% for sorted diluted and sorted encapsulated semen, respectively). The encapsulation could be an alternative method of storing of pig sex sorted spermatozoa and is potentially a promising technique in order to optimize the use of low dose of sexed spermatozoa in vivo.

  1. Formulation, characterization, and expression of a recombinant MOMP Chlamydia trachomatis DNA vaccine encapsulated in chitosan nanoparticles

    PubMed Central

    Cambridge, Chino D; Singh, Shree R; Waffo, Alain B; Fairley, Stacie J; Dennis, Vida A

    2013-01-01

    Chlamydia trachomatis is a bacterial sexually transmitted infection affecting millions of people worldwide. Previous vaccination attempts have employed the recombinant major outer membrane protein (MOMP) of C. trachomatis nonetheless, with limited success, perhaps, due to stability, degradation, and delivery issues. In this study we cloned C. trachomatis recombinant MOMP DNA (DMOMP) and encapsulated it in chitosan nanoparticles (DMCNP) using the complex coacervation technique. Physiochemical characterizations of DMCNP included transmission and scanning electron microcopy, Fourier transform infrared and ultraviolet-visible spectroscopy, and zeta potential. Encapsulated DMOMP was 167–250 nm, with a uniform spherical shape and homogenous morphology, and an encapsulation efficiency > 90%. A slow release pattern of encapsulated DMOMP, especially in acidic solution, was observed over 7 days. The zeta potential of DMCNP was ~8.80 mV, which indicated that it was highly stable. Toxicity studies of DMCNP (25–400 μg/mL) to Cos-7 cells using the MTT assay revealed minimal toxicity over 24–72 hours with >90% viable cells. Ultra-violet visible (UV-vis) spectra indicated encapsulated DMOMP protection by chitosan, whereas agarose gel electrophoresis verified its protection from enzymatic degradation. Expression of MOMP protein in DMCNP-transfected Cos-7 cells was demonstrated via Western blotting and immunofluorescence microscopy. Significantly, intramuscular injection of BALB/c mice with DMCNP confirmed the delivery of encapsulated DMOMP, and expression of the MOMP gene transcript in thigh muscles and spleens. Our data show that encapsulation of DMOMP in biodegradable chitosan nanoparticles imparts stability and protection from enzymatic digestion, and enhances delivery and expression of DMOMP in vitro and in mice. Further investigations of the nanoencapsulated DMCNP vaccine formulation against C. trachomatis in mice are warranted. PMID:23690681

  2. Formulation, characterization, and expression of a recombinant MOMP Chlamydia trachomatis DNA vaccine encapsulated in chitosan nanoparticles.

    PubMed

    Cambridge, Chino D; Singh, Shree R; Waffo, Alain B; Fairley, Stacie J; Dennis, Vida A

    2013-01-01

    Chlamydia trachomatis is a bacterial sexually transmitted infection affecting millions of people worldwide. Previous vaccination attempts have employed the recombinant major outer membrane protein (MOMP) of C. trachomatis nonetheless, with limited success, perhaps, due to stability, degradation, and delivery issues. In this study we cloned C. trachomatis recombinant MOMP DNA (DMOMP) and encapsulated it in chitosan nanoparticles (DMCNP) using the complex coacervation technique. Physiochemical characterizations of DMCNP included transmission and scanning electron microcopy, Fourier transform infrared and ultraviolet-visible spectroscopy, and zeta potential. Encapsulated DMOMP was 167-250 nm, with a uniform spherical shape and homogenous morphology, and an encapsulation efficiency > 90%. A slow release pattern of encapsulated DMOMP, especially in acidic solution, was observed over 7 days. The zeta potential of DMCNP was ~8.80 mV, which indicated that it was highly stable. Toxicity studies of DMCNP (25-400 μg/mL) to Cos-7 cells using the MTT assay revealed minimal toxicity over 24-72 hours with >90% viable cells. Ultra-violet visible (UV-vis) spectra indicated encapsulated DMOMP protection by chitosan, whereas agarose gel electrophoresis verified its protection from enzymatic degradation. Expression of MOMP protein in DMCNP-transfected Cos-7 cells was demonstrated via Western blotting and immunofluorescence microscopy. Significantly, intramuscular injection of BALB/c mice with DMCNP confirmed the delivery of encapsulated DMOMP, and expression of the MOMP gene transcript in thigh muscles and spleens. Our data show that encapsulation of DMOMP in biodegradable chitosan nanoparticles imparts stability and protection from enzymatic digestion, and enhances delivery and expression of DMOMP in vitro and in mice. Further investigations of the nanoencapsulated DMCNP vaccine formulation against C. trachomatis in mice are warranted.

  3. Encapsulated Thermoelectric Modules for Advanced Thermoelectric Systems

    NASA Astrophysics Data System (ADS)

    Kambe, Mitsuru; Jinushi, Takahiro; Ishijima, Zenzo

    2014-06-01

    An encapsulated thermoelectric (TE) module consists of a vacuum-tight stainless-steel container in which an SiGe or BiTe TE module is encapsulated. This construction enables maximum performance and durability because: the thermal expansion mismatch between the hot and cold sides of the container can be accommodated by a sliding sheet in the container; the TE module inside is always kept in a vacuum environment, therefore no oxidation can occur; and the pressure difference between the inside and outside of the container reduces thermal contact resistance inside the container. Our encapsulated SiGe module features higher operating temperature—up to 650°C for both hot and cold sides. Other high-temperature modules and conventional BiTe modules, including both-sides and one-side skeleton types, have been encapsulated. Several variants of the encapsulated module are available. Encapsulated thermoelectric modules with integrated coolers contain cooling panels through which water can pass. If the module hot side is heated by a radiating heat source (radiation coupling) or convection of a hot gas or fluid (convection coupling), no pressing force on the module is necessary. It therefore features minimum contact resistance with the cooling duct, because no pressure is applied, maximum TE power, and minimum installation cost. Another, larger, variant is a quadruple flexible container in which four modules (each of maximum size 40 mm × 40 mm) are encapsulated. These encapsulated modules were used in a powder metallurgy furnace and were in use for more than 3000 h. Application to cryogenic temperatures simulating the liquid nitrogen gas vaporizer has been also attempted.

  4. Contribution of Hydrophobic Interactions to Protein Stability

    PubMed Central

    Pace, C. Nick; Fu, Hailong; Fryar, Katrina Lee; Landua, John; Trevino, Saul R.; Shirley, Bret A.; Hendricks, Marsha McNutt; Iimura, Satoshi; Gajiwala, Ketan; Scholtz, J. Martin; Grimsley, Gerald R.

    2011-01-01

    Our goal was to gain a better understanding of the contribution of hydrophobic interactions to protein stability. We measured the change in conformational stability, Δ(ΔG), for hydrophobic mutants of four proteins: villin head piece subdomain (VHP) with 36 residues, a surface protein from Borrelia burgdorferi (VlsE) with 341 residues, and two proteins previously studied in our laboratory, ribonucleases Sa and T1. We compare our results with previous studies and reach the following conclusions. 1. Hydrophobic interactions contribute less to the stability of a small protein, VHP (0.6 ± 0.3 kcal/mole per –CH2– group), than to the stability of a large protein, VlsE (1.6 ± 0.3 kcal/mol per –CH2– group). 2. Hydrophobic interactions make the major contribution to the stability of VHP (40 kcal/mol) and the major contributors are (in kcal/mol): Phe 18 (3.9), Met 13 (3.1), Phe 7 (2.9), Phe 11 (2.7), and Leu 21 (2.7). 3. Based on Δ(ΔG) values for 148 hydrophobic mutants in 13 proteins, burying a –CH2– group on folding contributes, on average, 1.1 ± 0.5 kcal/mol to protein stability. 4. The experimental Δ(ΔG) values for aliphatic side chains (Ala, Val, Ile, and Leu) are in good agreement with their ΔGtr values from water to cyclohexane. 5. For 22 proteins with 36 to 534 residues, hydrophobic interactions contribute 60 ± 4% and hydrogen bonds 40 ± 4% to protein stability. 6. Conformational entropy contributes about 2.4 kcal/mol per residue to protein instability. The globular conformation of proteins is stabilized predominately by hydrophobic interactions. PMID:21377472

  5. Encapsulated Multifunction Corrosion Inhibitive Primer.

    DTIC Science & Technology

    1983-11-01

    Optimization of Microcapsule Preparation ...................... 162 24 Optimized Procedure for Polyurea Microencapsulation ................... 166 25... microcapsules , which suggests that a nearly quantitative yield of microencapsulated inhibitor was achieved. The burst ratio is defined as the conductivity after...effectiveness of the microencapsulation approach in achieving sustained release. 4. Loading Determination of Polyurea Microcapsules In studies relating

  6. Composite polymeric magnetic nanoparticles for co-delivery of hydrophobic and hydrophilic anticancer drugs and MRI imaging for cancer therapy.

    PubMed

    Singh, Abhalaxmi; Dilnawaz, Fahima; Mewar, Sujeet; Sharma, Uma; Jagannathan, N R; Sahoo, Sanjeeb Kumar

    2011-03-01

    Exercising complementary roles of polymer-coated magnetic nanoparticles for precise drug delivery and image contrast agents has attracted significant attention in biomedical applications. The objective of this study was to prepare and characterize magnetic nanoparticles embedded in polylactide-co-glycolide matrixes (PLGA-MNPs) as a dual drug delivery and imaging system capable of encapsulating both hydrophilic and hydrophobic drugs. PLGA-MNPs were capable of encapsulating both hydrophobic and hydrophilic drugs in a 2:1 ratio. Biocompatibility, cellular uptake, cytotoxicity, membrane potential, and apoptosis were carried out in two different cancer cell lines (MCF-7 and PANC-1). The molecular basis of induction of apoptosis was validated by Western blotting analysis. For targeted delivery of drugs, targeting ligand such as Herceptin was used, and such a conjugated system demonstrated enhanced cellular uptake and an augmented synergistic effect in an in vitro system when compared with native drugs. Magnetic resonance imaging was carried out both in vitro and in vivo to assess the efficacy of PLGA-MNPs as contrast agents. PLGA-MNPs showed a better contrast effect than commercial contrast agents due to higher T(2) relaxivity with a blood circulation half-life ∼ 47 min in the rat model. Thus, our results demonstrated the dual usable purpose of formulated PLGA-MNPs toward either, in therapeutics by delivering different hydrophobic or hydrophilic drugs individually or in combination and imaging for cancer therapeutics in the near future.

  7. Anthelmintic activity of Eucalyptus staigeriana encapsulated oil on sheep gastrointestinal nematodes.

    PubMed

    de Aquino Mesquita, Mayara; E Silva Júnior, João Batista; Panassol, Andressa Machado; de Oliveira, Erick Falcão; Vasconcelos, Ana Lourdes Camurça Fernandes; de Paula, Haroldo Cesar Beserra; Bevilaqua, Claudia Maria Leal

    2013-09-01

    The anthelmintic activity of Eucalyptus staigeriana essential oil has previously been inferred through both in vitro and in vivo tests. Thus, the encapsulation process generally improves oil stability, promotes controlled release in target organs, reduces dosage, and increases efficacy. The aims of this study were to analyze and encapsulate E. staigeriana essential oil and to verify its anthelmintic activity in sheep. The encapsulation process was accomplished through emulsion using a 4% chitosan solution as the matrix. Anthelmintic activity was established through controlled testing using 18 sheep that were separated into three groups: group 1 was treated with a single dose of 365 mg/kg of E. staigeriana encapsulated oil, group 2 was treated with 200 μg/kg of ivermectin, and group 3 was treated with a 4% chitosan solution as a negative control. The sheep were euthanized and necropsied 13 days posttreatment to evaluate worm burden. Limonene was the major oil component (72.91%). The final product was a hydrogel with 36.5% (m/m) E. staigeriana essential oil per gram. Its efficacy on gastrointestinal nematodes was 60.79%. The highest efficacy was against abomasal nematodes, with 83.75% efficacy. Further studies are necessary to explore the possibility of increasing the hydrogel efficacy; nevertheless, we can state that E. staigeriana encapsulated oil had anthelmintic activity and can be used in gastrointestinal nematode control.

  8. Effect of Encapsulation on Antimicrobial Activity of
Herbal Extracts with Lysozyme

    PubMed Central

    Matouskova, Petra; Bokrova, Jitka; Benesova, Pavla

    2016-01-01

    Summary Resistance of microorganisms to antibiotics has increased. The use of natural components with antimicrobial properties can be of great signi