USDA-ARS?s Scientific Manuscript database
Tillage management practices have direct impact on water holding capacity, evaporation, carbon sequestration, and water quality. This study examines the feasibility of two statistical learning algorithms, such as Least Square Support Vector Machine (LSSVM) and Relevance Vector Machine (RVM), for cla...
2013-05-28
those of the support vector machine and relevance vector machine, and the model runs more quickly than the other algorithms . When one class occurs...incremental support vector machine algorithm for online learning when fewer than 50 data points are available. (a) Papers published in peer-reviewed journals...learning environments, where data processing occurs one observation at a time and the classification algorithm improves over time with new
VECTOR: A Hands-On Approach that Makes Electromagnetics Relevant to Students
ERIC Educational Resources Information Center
Bunting, C. F.; Cheville, R. A.
2009-01-01
A two-course sequence in electromagnetics (EM) was developed in order to address a perceived lack of student learning and engagement observed in a traditional, lecture-based EM course. The two-course sequence is named VECTOR: Vitalizing Electromagnetic Concepts To Obtain Relevance. This paper reports on the first course of the sequence. VECTOR…
Mwangi, Benson; Ebmeier, Klaus P; Matthews, Keith; Steele, J Douglas
2012-05-01
Quantitative abnormalities of brain structure in patients with major depressive disorder have been reported at a group level for decades. However, these structural differences appear subtle in comparison with conventional radiologically defined abnormalities, with considerable inter-subject variability. Consequently, it has not been possible to readily identify scans from patients with major depressive disorder at an individual level. Recently, machine learning techniques such as relevance vector machines and support vector machines have been applied to predictive classification of individual scans with variable success. Here we describe a novel hybrid method, which combines machine learning with feature selection and characterization, with the latter aimed at maximizing the accuracy of machine learning prediction. The method was tested using a multi-centre dataset of T(1)-weighted 'structural' scans. A total of 62 patients with major depressive disorder and matched controls were recruited from referred secondary care clinical populations in Aberdeen and Edinburgh, UK. The generalization ability and predictive accuracy of the classifiers was tested using data left out of the training process. High prediction accuracy was achieved (~90%). While feature selection was important for maximizing high predictive accuracy with machine learning, feature characterization contributed only a modest improvement to relevance vector machine-based prediction (~5%). Notably, while the only information provided for training the classifiers was T(1)-weighted scans plus a categorical label (major depressive disorder versus controls), both relevance vector machine and support vector machine 'weighting factors' (used for making predictions) correlated strongly with subjective ratings of illness severity. These results indicate that machine learning techniques have the potential to inform clinical practice and research, as they can make accurate predictions about brain scan data from individual subjects. Furthermore, machine learning weighting factors may reflect an objective biomarker of major depressive disorder illness severity, based on abnormalities of brain structure.
The application of vector concepts on two skew lines
NASA Astrophysics Data System (ADS)
Alghadari, F.; Turmudi; Herman, T.
2018-01-01
The purpose of this study is knowing how to apply vector concepts on two skew lines in three-dimensional (3D) coordinate and its utilization. Several mathematical concepts have a related function for the other, but the related between the concept of vector and 3D have not applied in learning classroom. In fact, there are studies show that female students have difficulties in learning of 3D than male. It is because of personal spatial intelligence. The relevance of vector concepts creates both learning achievement and mathematical ability of male and female students enables to be balanced. The distance like on a cube, cuboid, or pyramid whose are drawn on the rectangular coordinates of a point in space. Two coordinate points of the lines can be created a vector. The vector of two skew lines has the shortest distance and the angle. Calculating of the shortest distance is started to create two vectors as a representation of line by vector position concept, next to determining a norm-vector of two vector which was obtained by cross-product, and then to create a vector from two combination of pair-points which was passed by two skew line, the shortest distance is scalar orthogonal projection of norm-vector on a vector which is a combination of pair-points. While calculating the angle are used two vectors as a representation of line to dot-product, and the inverse of cosine is yield. The utilization of its application on mathematics learning and orthographic projection method.
Fernandez, Michael; Abreu, Jose I; Shi, Hongqing; Barnard, Amanda S
2016-11-14
The possibility of band gap engineering in graphene opens countless new opportunities for application in nanoelectronics. In this work, the energy gaps of 622 computationally optimized graphene nanoflakes were mapped to topological autocorrelation vectors using machine learning techniques. Machine learning modeling revealed that the most relevant correlations appear at topological distances in the range of 1 to 42 with prediction accuracy higher than 80%. The data-driven model can statistically discriminate between graphene nanoflakes with different energy gaps on the basis of their molecular topology.
Xie, Hong-Bo; Huang, Hu; Wu, Jianhua; Liu, Lei
2015-02-01
We present a multiclass fuzzy relevance vector machine (FRVM) learning mechanism and evaluate its performance to classify multiple hand motions using surface electromyographic (sEMG) signals. The relevance vector machine (RVM) is a sparse Bayesian kernel method which avoids some limitations of the support vector machine (SVM). However, RVM still suffers the difficulty of possible unclassifiable regions in multiclass problems. We propose two fuzzy membership function-based FRVM algorithms to solve such problems, based on experiments conducted on seven healthy subjects and two amputees with six hand motions. Two feature sets, namely, AR model coefficients and room mean square value (AR-RMS), and wavelet transform (WT) features, are extracted from the recorded sEMG signals. Fuzzy support vector machine (FSVM) analysis was also conducted for wide comparison in terms of accuracy, sparsity, training and testing time, as well as the effect of training sample sizes. FRVM yielded comparable classification accuracy with dramatically fewer support vectors in comparison with FSVM. Furthermore, the processing delay of FRVM was much less than that of FSVM, whilst training time of FSVM much faster than FRVM. The results indicate that FRVM classifier trained using sufficient samples can achieve comparable generalization capability as FSVM with significant sparsity in multi-channel sEMG classification, which is more suitable for sEMG-based real-time control applications.
Distance learning in discriminative vector quantization.
Schneider, Petra; Biehl, Michael; Hammer, Barbara
2009-10-01
Discriminative vector quantization schemes such as learning vector quantization (LVQ) and extensions thereof offer efficient and intuitive classifiers based on the representation of classes by prototypes. The original methods, however, rely on the Euclidean distance corresponding to the assumption that the data can be represented by isotropic clusters. For this reason, extensions of the methods to more general metric structures have been proposed, such as relevance adaptation in generalized LVQ (GLVQ) and matrix learning in GLVQ. In these approaches, metric parameters are learned based on the given classification task such that a data-driven distance measure is found. In this letter, we consider full matrix adaptation in advanced LVQ schemes. In particular, we introduce matrix learning to a recent statistical formalization of LVQ, robust soft LVQ, and we compare the results on several artificial and real-life data sets to matrix learning in GLVQ, a derivation of LVQ-like learning based on a (heuristic) cost function. In all cases, matrix adaptation allows a significant improvement of the classification accuracy. Interestingly, however, the principled behavior of the models with respect to prototype locations and extracted matrix dimensions shows several characteristic differences depending on the data sets.
Visualization and Analysis of Geology Word Vectors for Efficient Information Extraction
NASA Astrophysics Data System (ADS)
Floyd, J. S.
2016-12-01
When a scientist begins studying a new geographic region of the Earth, they frequently begin by gathering relevant scientific literature in order to understand what is known, for example, about the region's geologic setting, structure, stratigraphy, and tectonic and environmental history. Experienced scientists typically know what keywords to seek and understand that if a document contains one important keyword, then other words in the document may be important as well. Word relationships in a document give rise to what is known in linguistics as the context-dependent nature of meaning. For example, the meaning of the word `strike' in geology, as in the strike of a fault, is quite different from its popular meaning in baseball. In addition, word order, such as in the phrase `Cretaceous-Tertiary boundary,' often corresponds to the order of sequences in time or space. The context of words and the relevance of words to each other can be derived quantitatively by machine learning vector representations of words. Here we show the results of training a neural network to create word vectors from scientific research papers from selected rift basins and mid-ocean ridges: the Woodlark Basin of Papua New Guinea, the Hess Deep rift, and the Gulf of Mexico basin. The word vectors are statistically defined by surrounding words within a given window, limited by the length of each sentence. The word vectors are analyzed by their cosine distance to related words (e.g., `axial' and `magma'), classified by high dimensional clustering, and visualized by reducing the vector dimensions and plotting the vectors on a two- or three-dimensional graph. Similarity analysis of `Triassic' and `Cretaceous' returns `Jurassic' as the nearest word vector, suggesting that the model is capable of learning the geologic time scale. Similarity analysis of `basalt' and `minerals' automatically returns mineral names such as `chlorite', `plagioclase,' and `olivine.' Word vector analysis and visualization allow one to extract information from hundreds of papers or more and find relationships in less time than it would take to read all of the papers. As machine learning tools become more commonly available, more and more scientists will be able to use and refine these tools for their individual needs.
NASA Astrophysics Data System (ADS)
Imani, Moslem; Kao, Huan-Chin; Lan, Wen-Hau; Kuo, Chung-Yen
2018-02-01
The analysis and the prediction of sea level fluctuations are core requirements of marine meteorology and operational oceanography. Estimates of sea level with hours-to-days warning times are especially important for low-lying regions and coastal zone management. The primary purpose of this study is to examine the applicability and capability of extreme learning machine (ELM) and relevance vector machine (RVM) models for predicting sea level variations and compare their performances with powerful machine learning methods, namely, support vector machine (SVM) and radial basis function (RBF) models. The input dataset from the period of January 2004 to May 2011 used in the study was obtained from the Dongshi tide gauge station in Chiayi, Taiwan. Results showed that the ELM and RVM models outperformed the other methods. The performance of the RVM approach was superior in predicting the daily sea level time series given the minimum root mean square error of 34.73 mm and the maximum determination coefficient of 0.93 (R2) during the testing periods. Furthermore, the obtained results were in close agreement with the original tide-gauge data, which indicates that RVM approach is a promising alternative method for time series prediction and could be successfully used for daily sea level forecasts.
Relevance Vector Machine Learning for Neonate Pain Intensity Assessment Using Digital Imaging
Gholami, Behnood; Tannenbaum, Allen R.
2011-01-01
Pain assessment in patients who are unable to verbally communicate is a challenging problem. The fundamental limitations in pain assessment in neonates stem from subjective assessment criteria, rather than quantifiable and measurable data. This often results in poor quality and inconsistent treatment of patient pain management. Recent advancements in pattern recognition techniques using relevance vector machine (RVM) learning techniques can assist medical staff in assessing pain by constantly monitoring the patient and providing the clinician with quantifiable data for pain management. The RVM classification technique is a Bayesian extension of the support vector machine (SVM) algorithm, which achieves comparable performance to SVM while providing posterior probabilities for class memberships and a sparser model. If classes represent “pure” facial expressions (i.e., extreme expressions that an observer can identify with a high degree of confidence), then the posterior probability of the membership of some intermediate facial expression to a class can provide an estimate of the intensity of such an expression. In this paper, we use the RVM classification technique to distinguish pain from nonpain in neonates as well as assess their pain intensity levels. We also correlate our results with the pain intensity assessed by expert and nonexpert human examiners. PMID:20172803
Obstacle detection by recognizing binary expansion patterns
NASA Technical Reports Server (NTRS)
Baram, Yoram; Barniv, Yair
1993-01-01
This paper describes a technique for obstacle detection, based on the expansion of the image-plane projection of a textured object, as its distance from the sensor decreases. Information is conveyed by vectors whose components represent first-order temporal and spatial derivatives of the image intensity, which are related to the time to collision through the local divergence. Such vectors may be characterized as patterns corresponding to 'safe' or 'dangerous' situations. We show that essential information is conveyed by single-bit vector components, representing the signs of the relevant derivatives. We use two recently developed, high capacity classifiers, employing neural learning techniques, to recognize the imminence of collision from such patterns.
Bayesian anomaly detection in monitoring data applying relevance vector machine
NASA Astrophysics Data System (ADS)
Saito, Tomoo
2011-04-01
A method for automatically classifying the monitoring data into two categories, normal and anomaly, is developed in order to remove anomalous data included in the enormous amount of monitoring data, applying the relevance vector machine (RVM) to a probabilistic discriminative model with basis functions and their weight parameters whose posterior PDF (probabilistic density function) conditional on the learning data set is given by Bayes' theorem. The proposed framework is applied to actual monitoring data sets containing some anomalous data collected at two buildings in Tokyo, Japan, which shows that the trained models discriminate anomalous data from normal data very clearly, giving high probabilities of being normal to normal data and low probabilities of being normal to anomalous data.
identification. URE from ten MSP430F5529 16-bit microcontrollers were analyzed using: 1) RF distinct native attributes (RF-DNA) fingerprints paired with multiple...discriminant analysis/maximum likelihood (MDA/ML) classification, 2) RF-DNA fingerprints paired with generalized relevance learning vector quantized
Formisano, Elia; De Martino, Federico; Valente, Giancarlo
2008-09-01
Machine learning and pattern recognition techniques are being increasingly employed in functional magnetic resonance imaging (fMRI) data analysis. By taking into account the full spatial pattern of brain activity measured simultaneously at many locations, these methods allow detecting subtle, non-strictly localized effects that may remain invisible to the conventional analysis with univariate statistical methods. In typical fMRI applications, pattern recognition algorithms "learn" a functional relationship between brain response patterns and a perceptual, cognitive or behavioral state of a subject expressed in terms of a label, which may assume discrete (classification) or continuous (regression) values. This learned functional relationship is then used to predict the unseen labels from a new data set ("brain reading"). In this article, we describe the mathematical foundations of machine learning applications in fMRI. We focus on two methods, support vector machines and relevance vector machines, which are respectively suited for the classification and regression of fMRI patterns. Furthermore, by means of several examples and applications, we illustrate and discuss the methodological challenges of using machine learning algorithms in the context of fMRI data analysis.
NASA Astrophysics Data System (ADS)
Stas, Michiel; Dong, Qinghan; Heremans, Stien; Zhang, Beier; Van Orshoven, Jos
2016-08-01
This paper compares two machine learning techniques to predict regional winter wheat yields. The models, based on Boosted Regression Trees (BRT) and Support Vector Machines (SVM), are constructed of Normalized Difference Vegetation Indices (NDVI) derived from low resolution SPOT VEGETATION satellite imagery. Three types of NDVI-related predictors were used: Single NDVI, Incremental NDVI and Targeted NDVI. BRT and SVM were first used to select features with high relevance for predicting the yield. Although the exact selections differed between the prefectures, certain periods with high influence scores for multiple prefectures could be identified. The same period of high influence stretching from March to June was detected by both machine learning methods. After feature selection, BRT and SVM models were applied to the subset of selected features for actual yield forecasting. Whereas both machine learning methods returned very low prediction errors, BRT seems to slightly but consistently outperform SVM.
NASA Astrophysics Data System (ADS)
Paradis, Daniel; Lefebvre, René; Gloaguen, Erwan; Rivera, Alfonso
2015-01-01
The spatial heterogeneity of hydraulic conductivity (K) exerts a major control on groundwater flow and solute transport. The heterogeneous spatial distribution of K can be imaged using indirect geophysical data as long as reliable relations exist to link geophysical data to K. This paper presents a nonparametric learning machine approach to predict aquifer K from cone penetrometer tests (CPT) coupled with a soil moisture and resistivity probe (SMR) using relevance vector machines (RVMs). The learning machine approach is demonstrated with an application to a heterogeneous unconsolidated littoral aquifer in a 12 km2 subwatershed, where relations between K and multiparameters CPT/SMR soundings appear complex. Our approach involved fuzzy clustering to define hydrofacies (HF) on the basis of CPT/SMR and K data prior to the training of RVMs for HFs recognition and K prediction on the basis of CPT/SMR data alone. The learning machine was built from a colocated training data set representative of the study area that includes K data from slug tests and CPT/SMR data up-scaled at a common vertical resolution of 15 cm with K data. After training, the predictive capabilities of the learning machine were assessed through cross validation with data withheld from the training data set and with K data from flowmeter tests not used during the training process. Results show that HF and K predictions from the learning machine are consistent with hydraulic tests. The combined use of CPT/SMR data and RVM-based learning machine proved to be powerful and efficient for the characterization of high-resolution K heterogeneity for unconsolidated aquifers.
Topic detection using paragraph vectors to support active learning in systematic reviews.
Hashimoto, Kazuma; Kontonatsios, Georgios; Miwa, Makoto; Ananiadou, Sophia
2016-08-01
Systematic reviews require expert reviewers to manually screen thousands of citations in order to identify all relevant articles to the review. Active learning text classification is a supervised machine learning approach that has been shown to significantly reduce the manual annotation workload by semi-automating the citation screening process of systematic reviews. In this paper, we present a new topic detection method that induces an informative representation of studies, to improve the performance of the underlying active learner. Our proposed topic detection method uses a neural network-based vector space model to capture semantic similarities between documents. We firstly represent documents within the vector space, and cluster the documents into a predefined number of clusters. The centroids of the clusters are treated as latent topics. We then represent each document as a mixture of latent topics. For evaluation purposes, we employ the active learning strategy using both our novel topic detection method and a baseline topic model (i.e., Latent Dirichlet Allocation). Results obtained demonstrate that our method is able to achieve a high sensitivity of eligible studies and a significantly reduced manual annotation cost when compared to the baseline method. This observation is consistent across two clinical and three public health reviews. The tool introduced in this work is available from https://nactem.ac.uk/pvtopic/. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Learning to rank-based gene summary extraction.
Shang, Yue; Hao, Huihui; Wu, Jiajin; Lin, Hongfei
2014-01-01
In recent years, the biomedical literature has been growing rapidly. These articles provide a large amount of information about proteins, genes and their interactions. Reading such a huge amount of literature is a tedious task for researchers to gain knowledge about a gene. As a result, it is significant for biomedical researchers to have a quick understanding of the query concept by integrating its relevant resources. In the task of gene summary generation, we regard automatic summary as a ranking problem and apply the method of learning to rank to automatically solve this problem. This paper uses three features as a basis for sentence selection: gene ontology relevance, topic relevance and TextRank. From there, we obtain the feature weight vector using the learning to rank algorithm and predict the scores of candidate summary sentences and obtain top sentences to generate the summary. ROUGE (a toolkit for summarization of automatic evaluation) was used to evaluate the summarization result and the experimental results showed that our method outperforms the baseline techniques. According to the experimental result, the combination of three features can improve the performance of summary. The application of learning to rank can facilitate the further expansion of features for measuring the significance of sentences.
"What is relevant in a text document?": An interpretable machine learning approach
Arras, Leila; Horn, Franziska; Montavon, Grégoire; Müller, Klaus-Robert
2017-01-01
Text documents can be described by a number of abstract concepts such as semantic category, writing style, or sentiment. Machine learning (ML) models have been trained to automatically map documents to these abstract concepts, allowing to annotate very large text collections, more than could be processed by a human in a lifetime. Besides predicting the text’s category very accurately, it is also highly desirable to understand how and why the categorization process takes place. In this paper, we demonstrate that such understanding can be achieved by tracing the classification decision back to individual words using layer-wise relevance propagation (LRP), a recently developed technique for explaining predictions of complex non-linear classifiers. We train two word-based ML models, a convolutional neural network (CNN) and a bag-of-words SVM classifier, on a topic categorization task and adapt the LRP method to decompose the predictions of these models onto words. Resulting scores indicate how much individual words contribute to the overall classification decision. This enables one to distill relevant information from text documents without an explicit semantic information extraction step. We further use the word-wise relevance scores for generating novel vector-based document representations which capture semantic information. Based on these document vectors, we introduce a measure of model explanatory power and show that, although the SVM and CNN models perform similarly in terms of classification accuracy, the latter exhibits a higher level of explainability which makes it more comprehensible for humans and potentially more useful for other applications. PMID:28800619
Bowd, Christopher; Medeiros, Felipe A.; Zhang, Zuohua; Zangwill, Linda M.; Hao, Jiucang; Lee, Te-Won; Sejnowski, Terrence J.; Weinreb, Robert N.; Goldbaum, Michael H.
2010-01-01
Purpose To classify healthy and glaucomatous eyes using relevance vector machine (RVM) and support vector machine (SVM) learning classifiers trained on retinal nerve fiber layer (RNFL) thickness measurements obtained by scanning laser polarimetry (SLP). Methods Seventy-two eyes of 72 healthy control subjects (average age = 64.3 ± 8.8 years, visual field mean deviation =−0.71 ± 1.2 dB) and 92 eyes of 92 patients with glaucoma (average age = 66.9 ± 8.9 years, visual field mean deviation =−5.32 ± 4.0 dB) were imaged with SLP with variable corneal compensation (GDx VCC; Laser Diagnostic Technologies, San Diego, CA). RVM and SVM learning classifiers were trained and tested on SLP-determined RNFL thickness measurements from 14 standard parameters and 64 sectors (approximately 5.6° each) obtained in the circumpapillary area under the instrument-defined measurement ellipse (total 78 parameters). Tenfold cross-validation was used to train and test RVM and SVM classifiers on unique subsets of the full 164-eye data set and areas under the receiver operating characteristic (AUROC) curve for the classification of eyes in the test set were generated. AUROC curve results from RVM and SVM were compared to those for 14 SLP software-generated global and regional RNFL thickness parameters. Also reported was the AUROC curve for the GDx VCC software-generated nerve fiber indicator (NFI). Results The AUROC curves for RVM and SVM were 0.90 and 0.91, respectively, and increased to 0.93 and 0.94 when the training sets were optimized with sequential forward and backward selection (resulting in reduced dimensional data sets). AUROC curves for optimized RVM and SVM were significantly larger than those for all individual SLP parameters. The AUROC curve for the NFI was 0.87. Conclusions Results from RVM and SVM trained on SLP RNFL thickness measurements are similar and provide accurate classification of glaucomatous and healthy eyes. RVM may be preferable to SVM, because it provides a Bayesian-derived probability of glaucoma as an output. These results suggest that these machine learning classifiers show good potential for glaucoma diagnosis. PMID:15790898
Statistical downscaling of GCM simulations to streamflow using relevance vector machine
NASA Astrophysics Data System (ADS)
Ghosh, Subimal; Mujumdar, P. P.
2008-01-01
General circulation models (GCMs), the climate models often used in assessing the impact of climate change, operate on a coarse scale and thus the simulation results obtained from GCMs are not particularly useful in a comparatively smaller river basin scale hydrology. The article presents a methodology of statistical downscaling based on sparse Bayesian learning and Relevance Vector Machine (RVM) to model streamflow at river basin scale for monsoon period (June, July, August, September) using GCM simulated climatic variables. NCEP/NCAR reanalysis data have been used for training the model to establish a statistical relationship between streamflow and climatic variables. The relationship thus obtained is used to project the future streamflow from GCM simulations. The statistical methodology involves principal component analysis, fuzzy clustering and RVM. Different kernel functions are used for comparison purpose. The model is applied to Mahanadi river basin in India. The results obtained using RVM are compared with those of state-of-the-art Support Vector Machine (SVM) to present the advantages of RVMs over SVMs. A decreasing trend is observed for monsoon streamflow of Mahanadi due to high surface warming in future, with the CCSR/NIES GCM and B2 scenario.
Arbitrary norm support vector machines.
Huang, Kaizhu; Zheng, Danian; King, Irwin; Lyu, Michael R
2009-02-01
Support vector machines (SVM) are state-of-the-art classifiers. Typically L2-norm or L1-norm is adopted as a regularization term in SVMs, while other norm-based SVMs, for example, the L0-norm SVM or even the L(infinity)-norm SVM, are rarely seen in the literature. The major reason is that L0-norm describes a discontinuous and nonconvex term, leading to a combinatorially NP-hard optimization problem. In this letter, motivated by Bayesian learning, we propose a novel framework that can implement arbitrary norm-based SVMs in polynomial time. One significant feature of this framework is that only a sequence of sequential minimal optimization problems needs to be solved, thus making it practical in many real applications. The proposed framework is important in the sense that Bayesian priors can be efficiently plugged into most learning methods without knowing the explicit form. Hence, this builds a connection between Bayesian learning and the kernel machines. We derive the theoretical framework, demonstrate how our approach works on the L0-norm SVM as a typical example, and perform a series of experiments to validate its advantages. Experimental results on nine benchmark data sets are very encouraging. The implemented L0-norm is competitive with or even better than the standard L2-norm SVM in terms of accuracy but with a reduced number of support vectors, -9.46% of the number on average. When compared with another sparse model, the relevance vector machine, our proposed algorithm also demonstrates better sparse properties with a training speed over seven times faster.
Sparse Bayesian Learning for Identifying Imaging Biomarkers in AD Prediction
Shen, Li; Qi, Yuan; Kim, Sungeun; Nho, Kwangsik; Wan, Jing; Risacher, Shannon L.; Saykin, Andrew J.
2010-01-01
We apply sparse Bayesian learning methods, automatic relevance determination (ARD) and predictive ARD (PARD), to Alzheimer’s disease (AD) classification to make accurate prediction and identify critical imaging markers relevant to AD at the same time. ARD is one of the most successful Bayesian feature selection methods. PARD is a powerful Bayesian feature selection method, and provides sparse models that is easy to interpret. PARD selects the model with the best estimate of the predictive performance instead of choosing the one with the largest marginal model likelihood. Comparative study with support vector machine (SVM) shows that ARD/PARD in general outperform SVM in terms of prediction accuracy. Additional comparison with surface-based general linear model (GLM) analysis shows that regions with strongest signals are identified by both GLM and ARD/PARD. While GLM P-map returns significant regions all over the cortex, ARD/PARD provide a small number of relevant and meaningful imaging markers with predictive power, including both cortical and subcortical measures. PMID:20879451
Sparse Bayesian learning machine for real-time management of reservoir releases
NASA Astrophysics Data System (ADS)
Khalil, Abedalrazq; McKee, Mac; Kemblowski, Mariush; Asefa, Tirusew
2005-11-01
Water scarcity and uncertainties in forecasting future water availabilities present serious problems for basin-scale water management. These problems create a need for intelligent prediction models that learn and adapt to their environment in order to provide water managers with decision-relevant information related to the operation of river systems. This manuscript presents examples of state-of-the-art techniques for forecasting that combine excellent generalization properties and sparse representation within a Bayesian paradigm. The techniques are demonstrated as decision tools to enhance real-time water management. A relevance vector machine, which is a probabilistic model, has been used in an online fashion to provide confident forecasts given knowledge of some state and exogenous conditions. In practical applications, online algorithms should recognize changes in the input space and account for drift in system behavior. Support vectors machines lend themselves particularly well to the detection of drift and hence to the initiation of adaptation in response to a recognized shift in system structure. The resulting model will normally have a structure and parameterization that suits the information content of the available data. The utility and practicality of this proposed approach have been demonstrated with an application in a real case study involving real-time operation of a reservoir in a river basin in southern Utah.
Yan, Kang K; Zhao, Hongyu; Pang, Herbert
2017-12-06
High-throughput sequencing data are widely collected and analyzed in the study of complex diseases in quest of improving human health. Well-studied algorithms mostly deal with single data source, and cannot fully utilize the potential of these multi-omics data sources. In order to provide a holistic understanding of human health and diseases, it is necessary to integrate multiple data sources. Several algorithms have been proposed so far, however, a comprehensive comparison of data integration algorithms for classification of binary traits is currently lacking. In this paper, we focus on two common classes of integration algorithms, graph-based that depict relationships with subjects denoted by nodes and relationships denoted by edges, and kernel-based that can generate a classifier in feature space. Our paper provides a comprehensive comparison of their performance in terms of various measurements of classification accuracy and computation time. Seven different integration algorithms, including graph-based semi-supervised learning, graph sharpening integration, composite association network, Bayesian network, semi-definite programming-support vector machine (SDP-SVM), relevance vector machine (RVM) and Ada-boost relevance vector machine are compared and evaluated with hypertension and two cancer data sets in our study. In general, kernel-based algorithms create more complex models and require longer computation time, but they tend to perform better than graph-based algorithms. The performance of graph-based algorithms has the advantage of being faster computationally. The empirical results demonstrate that composite association network, relevance vector machine, and Ada-boost RVM are the better performers. We provide recommendations on how to choose an appropriate algorithm for integrating data from multiple sources.
Ecological footprint model using the support vector machine technique.
Ma, Haibo; Chang, Wenjuan; Cui, Guangbai
2012-01-01
The per capita ecological footprint (EF) is one of the most widely recognized measures of environmental sustainability. It aims to quantify the Earth's biological resources required to support human activity. In this paper, we summarize relevant previous literature, and present five factors that influence per capita EF. These factors are: National gross domestic product (GDP), urbanization (independent of economic development), distribution of income (measured by the Gini coefficient), export dependence (measured by the percentage of exports to total GDP), and service intensity (measured by the percentage of service to total GDP). A new ecological footprint model based on a support vector machine (SVM), which is a machine-learning method based on the structural risk minimization principle from statistical learning theory was conducted to calculate the per capita EF of 24 nations using data from 123 nations. The calculation accuracy was measured by average absolute error and average relative error. They were 0.004883 and 0.351078% respectively. Our results demonstrate that the EF model based on SVM has good calculation performance.
Reviewing the connection between speech and obstructive sleep apnea.
Espinoza-Cuadros, Fernando; Fernández-Pozo, Rubén; Toledano, Doroteo T; Alcázar-Ramírez, José D; López-Gonzalo, Eduardo; Hernández-Gómez, Luis A
2016-02-20
Sleep apnea (OSA) is a common sleep disorder characterized by recurring breathing pauses during sleep caused by a blockage of the upper airway (UA). The altered UA structure or function in OSA speakers has led to hypothesize the automatic analysis of speech for OSA assessment. In this paper we critically review several approaches using speech analysis and machine learning techniques for OSA detection, and discuss the limitations that can arise when using machine learning techniques for diagnostic applications. A large speech database including 426 male Spanish speakers suspected to suffer OSA and derived to a sleep disorders unit was used to study the clinical validity of several proposals using machine learning techniques to predict the apnea-hypopnea index (AHI) or classify individuals according to their OSA severity. AHI describes the severity of patients' condition. We first evaluate AHI prediction using state-of-the-art speaker recognition technologies: speech spectral information is modelled using supervectors or i-vectors techniques, and AHI is predicted through support vector regression (SVR). Using the same database we then critically review several OSA classification approaches previously proposed. The influence and possible interference of other clinical variables or characteristics available for our OSA population: age, height, weight, body mass index, and cervical perimeter, are also studied. The poor results obtained when estimating AHI using supervectors or i-vectors followed by SVR contrast with the positive results reported by previous research. This fact prompted us to a careful review of these approaches, also testing some reported results over our database. Several methodological limitations and deficiencies were detected that may have led to overoptimistic results. The methodological deficiencies observed after critically reviewing previous research can be relevant examples of potential pitfalls when using machine learning techniques for diagnostic applications. We have found two common limitations that can explain the likelihood of false discovery in previous research: (1) the use of prediction models derived from sources, such as speech, which are also correlated with other patient characteristics (age, height, sex,…) that act as confounding factors; and (2) overfitting of feature selection and validation methods when working with a high number of variables compared to the number of cases. We hope this study could not only be a useful example of relevant issues when using machine learning for medical diagnosis, but it will also help in guiding further research on the connection between speech and OSA.
Mining protein function from text using term-based support vector machines
Rice, Simon B; Nenadic, Goran; Stapley, Benjamin J
2005-01-01
Background Text mining has spurred huge interest in the domain of biology. The goal of the BioCreAtIvE exercise was to evaluate the performance of current text mining systems. We participated in Task 2, which addressed assigning Gene Ontology terms to human proteins and selecting relevant evidence from full-text documents. We approached it as a modified form of the document classification task. We used a supervised machine-learning approach (based on support vector machines) to assign protein function and select passages that support the assignments. As classification features, we used a protein's co-occurring terms that were automatically extracted from documents. Results The results evaluated by curators were modest, and quite variable for different problems: in many cases we have relatively good assignment of GO terms to proteins, but the selected supporting text was typically non-relevant (precision spanning from 3% to 50%). The method appears to work best when a substantial set of relevant documents is obtained, while it works poorly on single documents and/or short passages. The initial results suggest that our approach can also mine annotations from text even when an explicit statement relating a protein to a GO term is absent. Conclusion A machine learning approach to mining protein function predictions from text can yield good performance only if sufficient training data is available, and significant amount of supporting data is used for prediction. The most promising results are for combined document retrieval and GO term assignment, which calls for the integration of methods developed in BioCreAtIvE Task 1 and Task 2. PMID:15960835
Attribute-driven transfer learning for detecting novel buried threats with ground-penetrating radar
NASA Astrophysics Data System (ADS)
Colwell, Kenneth A.; Collins, Leslie M.
2016-05-01
Ground-penetrating radar (GPR) technology is an effective method of detecting buried explosive threats. The system uses a binary classifier to distinguish "targets", or buried threats, from "nontargets" arising from system prescreener false alarms; this classifier is trained on a dataset of previously-observed buried threat types. However, the threat environment is not static, and new threat types that appear must be effectively detected even if they are not highly similar to every previously-observed type. Gathering a new dataset that includes a new threat type is expensive and time-consuming; minimizing the amount of new data required to effectively detect the new type is therefore valuable. This research aims to reduce the number of training examples needed to effectively detect new types using transfer learning, which leverages previous learning tasks to accelerate and improve new ones. Further, new types have attribute data, such as composition, components, construction, and size, which can be observed without GPR and typically are not explicitly included in the learning process. Since attribute tags for buried threats determine many aspects of their GPR representation, a new threat type's attributes can be highly relevant to the transfer-learning process. In this work, attribute data is used to drive transfer learning, both by using attributes to select relevant dataset examples for classifier fusion, and by extending a relevance vector machine (RVM) model to perform intelligent attribute clustering and selection. Classification performance results for both the attribute-only case and the low-data case are presented, using a dataset containing a variety of threat types.
Novel method of finding extreme edges in a convex set of N-dimension vectors
NASA Astrophysics Data System (ADS)
Hu, Chia-Lun J.
2001-11-01
As we published in the last few years, for a binary neural network pattern recognition system to learn a given mapping {Um mapped to Vm, m=1 to M} where um is an N- dimension analog (pattern) vector, Vm is a P-bit binary (classification) vector, the if-and-only-if (IFF) condition that this network can learn this mapping is that each i-set in {Ymi, m=1 to M} (where Ymithere existsVmiUm and Vmi=+1 or -1, is the i-th bit of VR-m).)(i=1 to P and there are P sets included here.) Is POSITIVELY, LINEARLY, INDEPENDENT or PLI. We have shown that this PLI condition is MORE GENERAL than the convexity condition applied to a set of N-vectors. In the design of old learning machines, we know that if a set of N-dimension analog vectors form a convex set, and if the machine can learn the boundary vectors (or extreme edges) of this set, then it can definitely learn the inside vectors contained in this POLYHEDRON CONE. This paper reports a new method and new algorithm to find the boundary vectors of a convex set of ND analog vectors.
Informing the Human Plasma Protein Binding of ...
The free fraction of a xenobiotic in plasma (Fub) is an important determinant of chemical adsorption, distribution, metabolism, elimination, and toxicity, yet experimental plasma protein binding data is scarce for environmentally relevant chemicals. The presented work explores the merit of utilizing available pharmaceutical data to predict Fub for environmentally relevant chemicals via machine learning techniques. Quantitative structure-activity relationship (QSAR) models were constructed with k nearest neighbors (kNN), support vector machines (SVM), and random forest (RF) machine learning algorithms from a training set of 1045 pharmaceuticals. The models were then evaluated with independent test sets of pharmaceuticals (200 compounds) and environmentally relevant ToxCast chemicals (406 total, in two groups of 238 and 168 compounds). The selection of a minimal feature set of 10-15 2D molecular descriptors allowed for both informative feature interpretation and practical applicability domain assessment via a bounded box of descriptor ranges and principal component analysis. The diverse pharmaceutical and environmental chemical sets exhibit similarities in terms of chemical space (99-82% overlap), as well as comparable bias and variance in constructed learning curves. All the models exhibit significant predictability with mean absolute errors (MAE) in the range of 0.10-0.18 Fub. The models performed best for highly bound chemicals (MAE 0.07-0.12), neutrals (MAE 0
Alahmadi, Hanin H; Shen, Yuan; Fouad, Shereen; Luft, Caroline Di B; Bentham, Peter; Kourtzi, Zoe; Tino, Peter
2016-01-01
Early diagnosis of dementia is critical for assessing disease progression and potential treatment. State-or-the-art machine learning techniques have been increasingly employed to take on this diagnostic task. In this study, we employed Generalized Matrix Learning Vector Quantization (GMLVQ) classifiers to discriminate patients with Mild Cognitive Impairment (MCI) from healthy controls based on their cognitive skills. Further, we adopted a "Learning with privileged information" approach to combine cognitive and fMRI data for the classification task. The resulting classifier operates solely on the cognitive data while it incorporates the fMRI data as privileged information (PI) during training. This novel classifier is of practical use as the collection of brain imaging data is not always possible with patients and older participants. MCI patients and healthy age-matched controls were trained to extract structure from temporal sequences. We ask whether machine learning classifiers can be used to discriminate patients from controls and whether differences between these groups relate to individual cognitive profiles. To this end, we tested participants in four cognitive tasks: working memory, cognitive inhibition, divided attention, and selective attention. We also collected fMRI data before and after training on a probabilistic sequence learning task and extracted fMRI responses and connectivity as features for machine learning classifiers. Our results show that the PI guided GMLVQ classifiers outperform the baseline classifier that only used the cognitive data. In addition, we found that for the baseline classifier, divided attention is the only relevant cognitive feature. When PI was incorporated, divided attention remained the most relevant feature while cognitive inhibition became also relevant for the task. Interestingly, this analysis for the fMRI GMLVQ classifier suggests that (1) when overall fMRI signal is used as inputs to the classifier, the post-training session is most relevant; and (2) when the graph feature reflecting underlying spatiotemporal fMRI pattern is used, the pre-training session is most relevant. Taken together these results suggest that brain connectivity before training and overall fMRI signal after training are both diagnostic of cognitive skills in MCI.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dayman, Ken J; Ade, Brian J; Weber, Charles F
High-dimensional, nonlinear function estimation using large datasets is a current area of interest in the machine learning community, and applications may be found throughout the analytical sciences, where ever-growing datasets are making more information available to the analyst. In this paper, we leverage the existing relevance vector machine, a sparse Bayesian version of the well-studied support vector machine, and expand the method to include integrated feature selection and automatic function shaping. These innovations produce an algorithm that is able to distinguish variables that are useful for making predictions of a response from variables that are unrelated or confusing. We testmore » the technology using synthetic data, conduct initial performance studies, and develop a model capable of making position-independent predictions of the coreaveraged burnup using a single specimen drawn randomly from a nuclear reactor core.« less
Machine learning methods in chemoinformatics
Mitchell, John B O
2014-01-01
Machine learning algorithms are generally developed in computer science or adjacent disciplines and find their way into chemical modeling by a process of diffusion. Though particular machine learning methods are popular in chemoinformatics and quantitative structure–activity relationships (QSAR), many others exist in the technical literature. This discussion is methods-based and focused on some algorithms that chemoinformatics researchers frequently use. It makes no claim to be exhaustive. We concentrate on methods for supervised learning, predicting the unknown property values of a test set of instances, usually molecules, based on the known values for a training set. Particularly relevant approaches include Artificial Neural Networks, Random Forest, Support Vector Machine, k-Nearest Neighbors and naïve Bayes classifiers. WIREs Comput Mol Sci 2014, 4:468–481. How to cite this article: WIREs Comput Mol Sci 2014, 4:468–481. doi:10.1002/wcms.1183 PMID:25285160
Segmentation of magnetic resonance images using fuzzy algorithms for learning vector quantization.
Karayiannis, N B; Pai, P I
1999-02-01
This paper evaluates a segmentation technique for magnetic resonance (MR) images of the brain based on fuzzy algorithms for learning vector quantization (FALVQ). These algorithms perform vector quantization by updating all prototypes of a competitive network through an unsupervised learning process. Segmentation of MR images is formulated as an unsupervised vector quantization process, where the local values of different relaxation parameters form the feature vectors which are represented by a relatively small set of prototypes. The experiments evaluate a variety of FALVQ algorithms in terms of their ability to identify different tissues and discriminate between normal tissues and abnormalities.
Hettige, Nuwan C; Nguyen, Thai Binh; Yuan, Chen; Rajakulendran, Thanara; Baddour, Jermeen; Bhagwat, Nikhil; Bani-Fatemi, Ali; Voineskos, Aristotle N; Mallar Chakravarty, M; De Luca, Vincenzo
2017-07-01
Suicide is a major concern for those afflicted by schizophrenia. Identifying patients at the highest risk for future suicide attempts remains a complex problem for psychiatric interventions. Machine learning models allow for the integration of many risk factors in order to build an algorithm that predicts which patients are likely to attempt suicide. Currently it is unclear how to integrate previously identified risk factors into a clinically relevant predictive tool to estimate the probability of a patient with schizophrenia for attempting suicide. We conducted a cross-sectional assessment on a sample of 345 participants diagnosed with schizophrenia spectrum disorders. Suicide attempters and non-attempters were clearly identified using the Columbia Suicide Severity Rating Scale (C-SSRS) and the Beck Suicide Ideation Scale (BSS). We developed four classification algorithms using a regularized regression, random forest, elastic net and support vector machine models with sociocultural and clinical variables as features to train the models. All classification models performed similarly in identifying suicide attempters and non-attempters. Our regularized logistic regression model demonstrated an accuracy of 67% and an area under the curve (AUC) of 0.71, while the random forest model demonstrated 66% accuracy and an AUC of 0.67. Support vector classifier (SVC) model demonstrated an accuracy of 67% and an AUC of 0.70, and the elastic net model demonstrated and accuracy of 65% and an AUC of 0.71. Machine learning algorithms offer a relatively successful method for incorporating many clinical features to predict individuals at risk for future suicide attempts. Increased performance of these models using clinically relevant variables offers the potential to facilitate early treatment and intervention to prevent future suicide attempts. Copyright © 2017 Elsevier Inc. All rights reserved.
Teaching Vectors Through an Interactive Game Based Laboratory
NASA Astrophysics Data System (ADS)
O'Brien, James; Sirokman, Gergely
2014-03-01
In recent years, science and particularly physics education has been furthered by the use of project based interactive learning [1]. There is a tremendous amount of evidence [2] that use of these techniques in a college learning environment leads to a deeper appreciation and understanding of fundamental concepts. Since vectors are the basis for any advancement in physics and engineering courses the cornerstone of any physics regimen is a concrete and comprehensive introduction to vectors. Here, we introduce a new turn based vector game that we have developed to help supplement traditional vector learning practices, which allows students to be creative, work together as a team, and accomplish a goal through the understanding of basic vector concepts.
ERIC Educational Resources Information Center
Yaacob, Yuzita; Wester, Michael; Steinberg, Stanly
2010-01-01
This paper presents a prototype of a computer learning assistant ILMEV (Interactive Learning-Mathematica Enhanced Vector calculus) package with the purpose of helping students to understand the theory and applications of integration in vector calculus. The main problem for students using Mathematica is to convert a textbook description of a…
Lu, Zhao; Sun, Jing; Butts, Kenneth
2014-05-01
Support vector regression for approximating nonlinear dynamic systems is more delicate than the approximation of indicator functions in support vector classification, particularly for systems that involve multitudes of time scales in their sampled data. The kernel used for support vector learning determines the class of functions from which a support vector machine can draw its solution, and the choice of kernel significantly influences the performance of a support vector machine. In this paper, to bridge the gap between wavelet multiresolution analysis and kernel learning, the closed-form orthogonal wavelet is exploited to construct new multiscale asymmetric orthogonal wavelet kernels for linear programming support vector learning. The closed-form multiscale orthogonal wavelet kernel provides a systematic framework to implement multiscale kernel learning via dyadic dilations and also enables us to represent complex nonlinear dynamics effectively. To demonstrate the superiority of the proposed multiscale wavelet kernel in identifying complex nonlinear dynamic systems, two case studies are presented that aim at building parallel models on benchmark datasets. The development of parallel models that address the long-term/mid-term prediction issue is more intricate and challenging than the identification of series-parallel models where only one-step ahead prediction is required. Simulation results illustrate the effectiveness of the proposed multiscale kernel learning.
A machine learning approach to galaxy-LSS classification - I. Imprints on halo merger trees
NASA Astrophysics Data System (ADS)
Hui, Jianan; Aragon, Miguel; Cui, Xinping; Flegal, James M.
2018-04-01
The cosmic web plays a major role in the formation and evolution of galaxies and defines, to a large extent, their properties. However, the relation between galaxies and environment is still not well understood. Here, we present a machine learning approach to study imprints of environmental effects on the mass assembly of haloes. We present a galaxy-LSS machine learning classifier based on galaxy properties sensitive to the environment. We then use the classifier to assess the relevance of each property. Correlations between galaxy properties and their cosmic environment can be used to predict galaxy membership to void/wall or filament/cluster with an accuracy of 93 per cent. Our study unveils environmental information encoded in properties of haloes not normally considered directly dependent on the cosmic environment such as merger history and complexity. Understanding the physical mechanism by which the cosmic web is imprinted in a halo can lead to significant improvements in galaxy formation models. This is accomplished by extracting features from galaxy properties and merger trees, computing feature scores for each feature and then applying support vector machine (SVM) to different feature sets. To this end, we have discovered that the shape and depth of the merger tree, formation time, and density of the galaxy are strongly associated with the cosmic environment. We describe a significant improvement in the original classification algorithm by performing LU decomposition of the distance matrix computed by the feature vectors and then using the output of the decomposition as input vectors for SVM.
Learning and memory in disease vector insects
Vinauger, Clément; Lahondère, Chloé; Cohuet, Anna; Lazzari, Claudio R.; Riffell, Jeffrey A.
2016-01-01
Learning and memory plays an important role in host preference and parasite transmission by disease vector insects. Historically there has been a dearth of standardized protocols that permit testing their learning abilities, thus limiting discussion on the potential epidemiological consequences of learning and memory to a largely speculative extent. However, with increasing evidence that individual experience and associative learning can affect processes such as oviposition site selection and host preference, it is timely to review the recently acquired knowledge, identify research gaps and discuss the implication of learning in disease vector insects in perspective with control strategies. PMID:27450224
Prediction task guided representation learning of medical codes in EHR.
Cui, Liwen; Xie, Xiaolei; Shen, Zuojun
2018-06-18
There have been rapidly growing applications using machine learning models for predictive analytics in Electronic Health Records (EHR) to improve the quality of hospital services and the efficiency of healthcare resource utilization. A fundamental and crucial step in developing such models is to convert medical codes in EHR to feature vectors. These medical codes are used to represent diagnoses or procedures. Their vector representations have a tremendous impact on the performance of machine learning models. Recently, some researchers have utilized representation learning methods from Natural Language Processing (NLP) to learn vector representations of medical codes. However, most previous approaches are unsupervised, i.e. the generation of medical code vectors is independent from prediction tasks. Thus, the obtained feature vectors may be inappropriate for a specific prediction task. Moreover, unsupervised methods often require a lot of samples to obtain reliable results, but most practical problems have very limited patient samples. In this paper, we develop a new method called Prediction Task Guided Health Record Aggregation (PTGHRA), which aggregates health records guided by prediction tasks, to construct training corpus for various representation learning models. Compared with unsupervised approaches, representation learning models integrated with PTGHRA yield a significant improvement in predictive capability of generated medical code vectors, especially for limited training samples. Copyright © 2018. Published by Elsevier Inc.
Yang, Zhutian; Qiu, Wei; Sun, Hongjian; Nallanathan, Arumugam
2016-01-01
Due to the increasing complexity of electromagnetic signals, there exists a significant challenge for radar emitter signal recognition. To address this challenge, multi-component radar emitter recognition under a complicated noise environment is studied in this paper. A novel radar emitter recognition approach based on the three-dimensional distribution feature and transfer learning is proposed. The cubic feature for the time-frequency-energy distribution is proposed to describe the intra-pulse modulation information of radar emitters. Furthermore, the feature is reconstructed by using transfer learning in order to obtain the robust feature against signal noise rate (SNR) variation. Last, but not the least, the relevance vector machine is used to classify radar emitter signals. Simulations demonstrate that the approach proposed in this paper has better performances in accuracy and robustness than existing approaches. PMID:26927111
Yang, Zhutian; Qiu, Wei; Sun, Hongjian; Nallanathan, Arumugam
2016-02-25
Due to the increasing complexity of electromagnetic signals, there exists a significant challenge for radar emitter signal recognition. To address this challenge, multi-component radar emitter recognition under a complicated noise environment is studied in this paper. A novel radar emitter recognition approach based on the three-dimensional distribution feature and transfer learning is proposed. The cubic feature for the time-frequency-energy distribution is proposed to describe the intra-pulse modulation information of radar emitters. Furthermore, the feature is reconstructed by using transfer learning in order to obtain the robust feature against signal noise rate (SNR) variation. Last, but not the least, the relevance vector machine is used to classify radar emitter signals. Simulations demonstrate that the approach proposed in this paper has better performances in accuracy and robustness than existing approaches.
Iterative free-energy optimization for recurrent neural networks (INFERNO).
Pitti, Alexandre; Gaussier, Philippe; Quoy, Mathias
2017-01-01
The intra-parietal lobe coupled with the Basal Ganglia forms a working memory that demonstrates strong planning capabilities for generating robust yet flexible neuronal sequences. Neurocomputational models however, often fails to control long range neural synchrony in recurrent spiking networks due to spontaneous activity. As a novel framework based on the free-energy principle, we propose to see the problem of spikes' synchrony as an optimization problem of the neurons sub-threshold activity for the generation of long neuronal chains. Using a stochastic gradient descent, a reinforcement signal (presumably dopaminergic) evaluates the quality of one input vector to move the recurrent neural network to a desired activity; depending on the error made, this input vector is strengthened to hill-climb the gradient or elicited to search for another solution. This vector can be learned then by one associative memory as a model of the basal-ganglia to control the recurrent neural network. Experiments on habit learning and on sequence retrieving demonstrate the capabilities of the dual system to generate very long and precise spatio-temporal sequences, above two hundred iterations. Its features are applied then to the sequential planning of arm movements. In line with neurobiological theories, we discuss its relevance for modeling the cortico-basal working memory to initiate flexible goal-directed neuronal chains of causation and its relation to novel architectures such as Deep Networks, Neural Turing Machines and the Free-Energy Principle.
Quantum Algorithm for K-Nearest Neighbors Classification Based on the Metric of Hamming Distance
NASA Astrophysics Data System (ADS)
Ruan, Yue; Xue, Xiling; Liu, Heng; Tan, Jianing; Li, Xi
2017-11-01
K-nearest neighbors (KNN) algorithm is a common algorithm used for classification, and also a sub-routine in various complicated machine learning tasks. In this paper, we presented a quantum algorithm (QKNN) for implementing this algorithm based on the metric of Hamming distance. We put forward a quantum circuit for computing Hamming distance between testing sample and each feature vector in the training set. Taking advantage of this method, we realized a good analog for classical KNN algorithm by setting a distance threshold value t to select k - n e a r e s t neighbors. As a result, QKNN achieves O( n 3) performance which is only relevant to the dimension of feature vectors and high classification accuracy, outperforms Llyod's algorithm (Lloyd et al. 2013) and Wiebe's algorithm (Wiebe et al. 2014).
Fast temporal neural learning using teacher forcing
NASA Technical Reports Server (NTRS)
Toomarian, Nikzad (Inventor); Bahren, Jacob (Inventor)
1992-01-01
A neural network is trained to output a time dependent target vector defined over a predetermined time interval in response to a time dependent input vector defined over the same time interval by applying corresponding elements of the error vector, or difference between the target vector and the actual neuron output vector, to the inputs of corresponding output neurons of the network as corrective feedback. This feedback decreases the error and quickens the learning process, so that a much smaller number of training cycles are required to complete the learning process. A conventional gradient descent algorithm is employed to update the neural network parameters at the end of the predetermined time interval. The foregoing process is repeated in repetitive cycles until the actual output vector corresponds to the target vector. In the preferred embodiment, as the overall error of the neural network output decreasing during successive training cycles, the portion of the error fed back to the output neurons is decreased accordingly, allowing the network to learn with greater freedom from teacher forcing as the network parameters converge to their optimum values. The invention may also be used to train a neural network with stationary training and target vectors.
Fast temporal neural learning using teacher forcing
NASA Technical Reports Server (NTRS)
Toomarian, Nikzad (Inventor); Bahren, Jacob (Inventor)
1995-01-01
A neural network is trained to output a time dependent target vector defined over a predetermined time interval in response to a time dependent input vector defined over the same time interval by applying corresponding elements of the error vector, or difference between the target vector and the actual neuron output vector, to the inputs of corresponding output neurons of the network as corrective feedback. This feedback decreases the error and quickens the learning process, so that a much smaller number of training cycles are required to complete the learning process. A conventional gradient descent algorithm is employed to update the neural network parameters at the end of the predetermined time interval. The foregoing process is repeated in repetitive cycles until the actual output vector corresponds to the target vector. In the preferred embodiment, as the overall error of the neural network output decreasing during successive training cycles, the portion of the error fed back to the output neurons is decreased accordingly, allowing the network to learn with greater freedom from teacher forcing as the network parameters converge to their optimum values. The invention may also be used to train a neural network with stationary training and target vectors.
NASA Astrophysics Data System (ADS)
Gao, Wei; Zhu, Linli; Wang, Kaiyun
2015-12-01
Ontology, a model of knowledge representation and storage, has had extensive applications in pharmaceutics, social science, chemistry and biology. In the age of “big data”, the constructed concepts are often represented as higher-dimensional data by scholars, and thus the sparse learning techniques are introduced into ontology algorithms. In this paper, based on the alternating direction augmented Lagrangian method, we present an ontology optimization algorithm for ontological sparse vector learning, and a fast version of such ontology technologies. The optimal sparse vector is obtained by an iterative procedure, and the ontology function is then obtained from the sparse vector. Four simulation experiments show that our ontological sparse vector learning model has a higher precision ratio on plant ontology, humanoid robotics ontology, biology ontology and physics education ontology data for similarity measuring and ontology mapping applications.
Liakhovetskiĭ, V A; Bobrova, E V; Skopin, G N
2012-01-01
Transposition errors during the reproduction of a hand movement sequence make it possible to receive important information on the internal representation of this sequence in the motor working memory. Analysis of such errors showed that learning to reproduce sequences of the left-hand movements improves the system of positional coding (coding ofpositions), while learning of the right-hand movements improves the system of vector coding (coding of movements). Learning of the right-hand movements after the left-hand performance involved the system of positional coding "imposed" by the left hand. Learning of the left-hand movements after the right-hand performance activated the system of vector coding. Transposition errors during learning to reproduce movement sequences can be explained by neural network using either vector coding or both vector and positional coding.
Evidence for instantaneous e-vector detection in the honeybee using an associative learning paradigm
Sakura, Midori; Okada, Ryuichi; Aonuma, Hitoshi
2012-01-01
Many insects use the polarization pattern of the sky for obtaining compass information during orientation or navigation. E-vector information is collected by a specialized area in the dorsal-most part of the compound eye, the dorsal rim area (DRA). We tested honeybees' capability of learning certain e-vector orientations by using a classical conditioning paradigm with the proboscis extension reflex. When one e-vector orientation (CS+) was associated with sugar water, while another orientation (CS−) was not rewarded, the honeybees could discriminate CS+ from CS−. Bees whose DRA was inactivated by painting did not learn CS+. When ultraviolet (UV) polarized light (350 nm) was used for CS, the bees discriminated CS+ from CS−, but no discrimination was observed in blue (442 nm) or green light (546 nm). Our data indicate that honeybees can learn and discriminate between different e-vector orientations, sensed by the UV receptors of the DRA, suggesting that bees can determine their flight direction from polarized UV skylight during foraging. Fixing the bees' heads during the experiments did not prevent learning, indicating that they use an ‘instantaneous’ algorithm of e-vector detection; that is, the bees do not need to actively scan the sky with their DRAs (‘sequential’ method) to determine e-vector orientation. PMID:21733901
Ingle, Brandall L; Veber, Brandon C; Nichols, John W; Tornero-Velez, Rogelio
2016-11-28
The free fraction of a xenobiotic in plasma (F ub ) is an important determinant of chemical adsorption, distribution, metabolism, elimination, and toxicity, yet experimental plasma protein binding data are scarce for environmentally relevant chemicals. The presented work explores the merit of utilizing available pharmaceutical data to predict F ub for environmentally relevant chemicals via machine learning techniques. Quantitative structure-activity relationship (QSAR) models were constructed with k nearest neighbors (kNN), support vector machines (SVM), and random forest (RF) machine learning algorithms from a training set of 1045 pharmaceuticals. The models were then evaluated with independent test sets of pharmaceuticals (200 compounds) and environmentally relevant ToxCast chemicals (406 total, in two groups of 238 and 168 compounds). The selection of a minimal feature set of 10-15 2D molecular descriptors allowed for both informative feature interpretation and practical applicability domain assessment via a bounded box of descriptor ranges and principal component analysis. The diverse pharmaceutical and environmental chemical sets exhibit similarities in terms of chemical space (99-82% overlap), as well as comparable bias and variance in constructed learning curves. All the models exhibit significant predictability with mean absolute errors (MAE) in the range of 0.10-0.18F ub . The models performed best for highly bound chemicals (MAE 0.07-0.12), neutrals (MAE 0.11-0.14), and acids (MAE 0.14-0.17). A consensus model had the highest accuracy across both pharmaceuticals (MAE 0.151-0.155) and environmentally relevant chemicals (MAE 0.110-0.131). The inclusion of the majority of the ToxCast test sets within the AD of the consensus model, coupled with high prediction accuracy for these chemicals, indicates the model provides a QSAR for F ub that is broadly applicable to both pharmaceuticals and environmentally relevant chemicals.
A similarity learning approach to content-based image retrieval: application to digital mammography.
El-Naqa, Issam; Yang, Yongyi; Galatsanos, Nikolas P; Nishikawa, Robert M; Wernick, Miles N
2004-10-01
In this paper, we describe an approach to content-based retrieval of medical images from a database, and provide a preliminary demonstration of our approach as applied to retrieval of digital mammograms. Content-based image retrieval (CBIR) refers to the retrieval of images from a database using information derived from the images themselves, rather than solely from accompanying text indices. In the medical-imaging context, the ultimate aim of CBIR is to provide radiologists with a diagnostic aid in the form of a display of relevant past cases, along with proven pathology and other suitable information. CBIR may also be useful as a training tool for medical students and residents. The goal of information retrieval is to recall from a database information that is relevant to the user's query. The most challenging aspect of CBIR is the definition of relevance (similarity), which is used to guide the retrieval machine. In this paper, we pursue a new approach, in which similarity is learned from training examples provided by human observers. Specifically, we explore the use of neural networks and support vector machines to predict the user's notion of similarity. Within this framework we propose using a hierarchal learning approach, which consists of a cascade of a binary classifier and a regression module to optimize retrieval effectiveness and efficiency. We also explore how to incorporate online human interaction to achieve relevance feedback in this learning framework. Our experiments are based on a database consisting of 76 mammograms, all of which contain clustered microcalcifications (MCs). Our goal is to retrieve mammogram images containing similar MC clusters to that in a query. The performance of the retrieval system is evaluated using precision-recall curves computed using a cross-validation procedure. Our experimental results demonstrate that: 1) the learning framework can accurately predict the perceptual similarity reported by human observers, thereby serving as a basis for CBIR; 2) the learning-based framework can significantly outperform a simple distance-based similarity metric; 3) the use of the hierarchical two-stage network can improve retrieval performance; and 4) relevance feedback can be effectively incorporated into this learning framework to achieve improvement in retrieval precision based on online interaction with users; and 5) the retrieved images by the network can have predicting value for the disease condition of the query.
On Docking, Scoring and Assessing Protein-DNA Complexes in a Rigid-Body Framework
Parisien, Marc; Freed, Karl F.; Sosnick, Tobin R.
2012-01-01
We consider the identification of interacting protein-nucleic acid partners using the rigid body docking method FTdock, which is systematic and exhaustive in the exploration of docking conformations. The accuracy of rigid body docking methods is tested using known protein-DNA complexes for which the docked and undocked structures are both available. Additional tests with large decoy sets probe the efficacy of two published statistically derived scoring functions that contain a huge number of parameters. In contrast, we demonstrate that state-of-the-art machine learning techniques can enormously reduce the number of parameters required, thereby identifying the relevant docking features using a miniscule fraction of the number of parameters in the prior works. The present machine learning study considers a 300 dimensional vector (dependent on only 15 parameters), termed the Chemical Context Profile (CCP), where each dimension reflects a specific type of protein amino acid-nucleic acid base interaction. The CCP is designed to capture the chemical complementarities of the interface and is well suited for machine learning techniques. Our objective function is the Chemical Context Discrepancy (CCD), which is defined as the angle between the native system's CCP vector and the decoy's vector and which serves as a substitute for the more commonly used root mean squared deviation (RMSD). We demonstrate that the CCP provides a useful scoring function when certain dimensions are properly weighted. Finally, we explore how the amino acids on a protein's surface can help guide DNA binding, first through long-range interactions, followed by direct contacts, according to specific preferences for either the major or minor grooves of the DNA. PMID:22393431
Microplastics: addressing ecological risk through lessons learned.
Syberg, Kristian; Khan, Farhan R; Selck, Henriette; Palmqvist, Annemette; Banta, Gary T; Daley, Jennifer; Sano, Larissa; Duhaime, Melissa B
2015-05-01
Plastic litter is an environmental problem of great concern. Despite the magnitude of the plastic pollution in our water bodies, only limited scientific understanding is available about the risk to the environment, particularly for microplastics. The apparent magnitude of the problem calls for quickly developing sound scientific guidance on the ecological risks of microplastics. The authors suggest that future research into microplastics risks should be guided by lessons learned from the more advanced and better understood areas of (eco) toxicology of engineered nanoparticles and mixture toxicity. Relevant examples of advances in these two fields are provided to help accelerate the scientific learning curve within the relatively unexplored area of microplastics risk assessment. Finally, the authors advocate an expansion of the "vector effect" hypothesis with regard to microplastics risk to help focus research of microplastics environmental risk at different levels of biological and environmental organization. © 2015 SETAC.
Support Vector Machines: Relevance Feedback and Information Retrieval.
ERIC Educational Resources Information Center
Drucker, Harris; Shahrary, Behzad; Gibbon, David C.
2002-01-01
Compares support vector machines (SVMs) to Rocchio, Ide regular and Ide dec-hi algorithms in information retrieval (IR) of text documents using relevancy feedback. If the preliminary search is so poor that one has to search through many documents to find at least one relevant document, then SVM is preferred. Includes nine tables. (Contains 24…
NASA Astrophysics Data System (ADS)
Kalayeh, Mahdi M.; Marin, Thibault; Pretorius, P. Hendrik; Wernick, Miles N.; Yang, Yongyi; Brankov, Jovan G.
2011-03-01
In this paper, we present a numerical observer for image quality assessment, aiming to predict human observer accuracy in a cardiac perfusion defect detection task for single-photon emission computed tomography (SPECT). In medical imaging, image quality should be assessed by evaluating the human observer accuracy for a specific diagnostic task. This approach is known as task-based assessment. Such evaluations are important for optimizing and testing imaging devices and algorithms. Unfortunately, human observer studies with expert readers are costly and time-demanding. To address this problem, numerical observers have been developed as a surrogate for human readers to predict human diagnostic performance. The channelized Hotelling observer (CHO) with internal noise model has been found to predict human performance well in some situations, but does not always generalize well to unseen data. We have argued in the past that finding a model to predict human observers could be viewed as a machine learning problem. Following this approach, in this paper we propose a channelized relevance vector machine (CRVM) to predict human diagnostic scores in a detection task. We have previously used channelized support vector machines (CSVM) to predict human scores and have shown that this approach offers better and more robust predictions than the classical CHO method. The comparison of the proposed CRVM with our previously introduced CSVM method suggests that CRVM can achieve similar generalization accuracy, while dramatically reducing model complexity and computation time.
Use of Colour and Interactive Animation in Learning 3D Vectors
ERIC Educational Resources Information Center
Iskander, Wejdan; Curtis, Sharon
2005-01-01
This study investigated the effects of two computer-implemented techniques (colour and interactive animation) on learning 3D vectors. The participants were 43 female Saudi Arabian high school students. They were pre-tested on 3D vectors using a paper questionnaire that consisted of calculation and visualization types of questions. The students…
Plaza-Leiva, Victoria; Gomez-Ruiz, Jose Antonio; Mandow, Anthony; García-Cerezo, Alfonso
2017-03-15
Improving the effectiveness of spatial shape features classification from 3D lidar data is very relevant because it is largely used as a fundamental step towards higher level scene understanding challenges of autonomous vehicles and terrestrial robots. In this sense, computing neighborhood for points in dense scans becomes a costly process for both training and classification. This paper proposes a new general framework for implementing and comparing different supervised learning classifiers with a simple voxel-based neighborhood computation where points in each non-overlapping voxel in a regular grid are assigned to the same class by considering features within a support region defined by the voxel itself. The contribution provides offline training and online classification procedures as well as five alternative feature vector definitions based on principal component analysis for scatter, tubular and planar shapes. Moreover, the feasibility of this approach is evaluated by implementing a neural network (NN) method previously proposed by the authors as well as three other supervised learning classifiers found in scene processing methods: support vector machines (SVM), Gaussian processes (GP), and Gaussian mixture models (GMM). A comparative performance analysis is presented using real point clouds from both natural and urban environments and two different 3D rangefinders (a tilting Hokuyo UTM-30LX and a Riegl). Classification performance metrics and processing time measurements confirm the benefits of the NN classifier and the feasibility of voxel-based neighborhood.
Machine Learning Techniques for Global Sensitivity Analysis in Climate Models
NASA Astrophysics Data System (ADS)
Safta, C.; Sargsyan, K.; Ricciuto, D. M.
2017-12-01
Climate models studies are not only challenged by the compute intensive nature of these models but also by the high-dimensionality of the input parameter space. In our previous work with the land model components (Sargsyan et al., 2014) we identified subsets of 10 to 20 parameters relevant for each QoI via Bayesian compressive sensing and variance-based decomposition. Nevertheless the algorithms were challenged by the nonlinear input-output dependencies for some of the relevant QoIs. In this work we will explore a combination of techniques to extract relevant parameters for each QoI and subsequently construct surrogate models with quantified uncertainty necessary to future developments, e.g. model calibration and prediction studies. In the first step, we will compare the skill of machine-learning models (e.g. neural networks, support vector machine) to identify the optimal number of classes in selected QoIs and construct robust multi-class classifiers that will partition the parameter space in regions with smooth input-output dependencies. These classifiers will be coupled with techniques aimed at building sparse and/or low-rank surrogate models tailored to each class. Specifically we will explore and compare sparse learning techniques with low-rank tensor decompositions. These models will be used to identify parameters that are important for each QoI. Surrogate accuracy requirements are higher for subsequent model calibration studies and we will ascertain the performance of this workflow for multi-site ALM simulation ensembles.
Automated annotation of functional imaging experiments via multi-label classification
Turner, Matthew D.; Chakrabarti, Chayan; Jones, Thomas B.; Xu, Jiawei F.; Fox, Peter T.; Luger, George F.; Laird, Angela R.; Turner, Jessica A.
2013-01-01
Identifying the experimental methods in human neuroimaging papers is important for grouping meaningfully similar experiments for meta-analyses. Currently, this can only be done by human readers. We present the performance of common machine learning (text mining) methods applied to the problem of automatically classifying or labeling this literature. Labeling terms are from the Cognitive Paradigm Ontology (CogPO), the text corpora are abstracts of published functional neuroimaging papers, and the methods use the performance of a human expert as training data. We aim to replicate the expert's annotation of multiple labels per abstract identifying the experimental stimuli, cognitive paradigms, response types, and other relevant dimensions of the experiments. We use several standard machine learning methods: naive Bayes (NB), k-nearest neighbor, and support vector machines (specifically SMO or sequential minimal optimization). Exact match performance ranged from only 15% in the worst cases to 78% in the best cases. NB methods combined with binary relevance transformations performed strongly and were robust to overfitting. This collection of results demonstrates what can be achieved with off-the-shelf software components and little to no pre-processing of raw text. PMID:24409112
Learning with LOGO: Logo and Vectors.
ERIC Educational Resources Information Center
Lough, Tom; Tipps, Steve
1986-01-01
This is the first of a two-part series on the general concept of vector space. Provides tool procedures to allow investigation of vector properties, vector addition and subtraction, and X and Y components. Lists several sources of additional vector ideas. (JM)
Improved Saturated Hydraulic Conductivity Pedotransfer Functions Using Machine Learning Methods
NASA Astrophysics Data System (ADS)
Araya, S. N.; Ghezzehei, T. A.
2017-12-01
Saturated hydraulic conductivity (Ks) is one of the fundamental hydraulic properties of soils. Its measurement, however, is cumbersome and instead pedotransfer functions (PTFs) are often used to estimate it. Despite a lot of progress over the years, generic PTFs that estimate hydraulic conductivity generally don't have a good performance. We develop significantly improved PTFs by applying state of the art machine learning techniques coupled with high-performance computing on a large database of over 20,000 soils—USKSAT and the Florida Soil Characterization databases. We compared the performance of four machine learning algorithms (k-nearest neighbors, gradient boosted model, support vector machine, and relevance vector machine) and evaluated the relative importance of several soil properties in explaining Ks. An attempt is also made to better account for soil structural properties; we evaluated the importance of variables derived from transformations of soil water retention characteristics and other soil properties. The gradient boosted models gave the best performance with root mean square errors less than 0.7 and mean errors in the order of 0.01 on a log scale of Ks [cm/h]. The effective particle size, D10, was found to be the single most important predictor. Other important predictors included percent clay, bulk density, organic carbon percent, coefficient of uniformity and values derived from water retention characteristics. Model performances were consistently better for Ks values greater than 10 cm/h. This study maximizes the extraction of information from a large database to develop generic machine learning based PTFs to estimate Ks. The study also evaluates the importance of various soil properties and their transformations in explaining Ks.
On A Nonlinear Generalization of Sparse Coding and Dictionary Learning.
Xie, Yuchen; Ho, Jeffrey; Vemuri, Baba
2013-01-01
Existing dictionary learning algorithms are based on the assumption that the data are vectors in an Euclidean vector space ℝ d , and the dictionary is learned from the training data using the vector space structure of ℝ d and its Euclidean L 2 -metric. However, in many applications, features and data often originated from a Riemannian manifold that does not support a global linear (vector space) structure. Furthermore, the extrinsic viewpoint of existing dictionary learning algorithms becomes inappropriate for modeling and incorporating the intrinsic geometry of the manifold that is potentially important and critical to the application. This paper proposes a novel framework for sparse coding and dictionary learning for data on a Riemannian manifold, and it shows that the existing sparse coding and dictionary learning methods can be considered as special (Euclidean) cases of the more general framework proposed here. We show that both the dictionary and sparse coding can be effectively computed for several important classes of Riemannian manifolds, and we validate the proposed method using two well-known classification problems in computer vision and medical imaging analysis.
On A Nonlinear Generalization of Sparse Coding and Dictionary Learning
Xie, Yuchen; Ho, Jeffrey; Vemuri, Baba
2013-01-01
Existing dictionary learning algorithms are based on the assumption that the data are vectors in an Euclidean vector space ℝd, and the dictionary is learned from the training data using the vector space structure of ℝd and its Euclidean L2-metric. However, in many applications, features and data often originated from a Riemannian manifold that does not support a global linear (vector space) structure. Furthermore, the extrinsic viewpoint of existing dictionary learning algorithms becomes inappropriate for modeling and incorporating the intrinsic geometry of the manifold that is potentially important and critical to the application. This paper proposes a novel framework for sparse coding and dictionary learning for data on a Riemannian manifold, and it shows that the existing sparse coding and dictionary learning methods can be considered as special (Euclidean) cases of the more general framework proposed here. We show that both the dictionary and sparse coding can be effectively computed for several important classes of Riemannian manifolds, and we validate the proposed method using two well-known classification problems in computer vision and medical imaging analysis. PMID:24129583
Robust support vector regression networks for function approximation with outliers.
Chuang, Chen-Chia; Su, Shun-Feng; Jeng, Jin-Tsong; Hsiao, Chih-Ching
2002-01-01
Support vector regression (SVR) employs the support vector machine (SVM) to tackle problems of function approximation and regression estimation. SVR has been shown to have good robust properties against noise. When the parameters used in SVR are improperly selected, overfitting phenomena may still occur. However, the selection of various parameters is not straightforward. Besides, in SVR, outliers may also possibly be taken as support vectors. Such an inclusion of outliers in support vectors may lead to seriously overfitting phenomena. In this paper, a novel regression approach, termed as the robust support vector regression (RSVR) network, is proposed to enhance the robust capability of SVR. In the approach, traditional robust learning approaches are employed to improve the learning performance for any selected parameters. From the simulation results, our RSVR can always improve the performance of the learned systems for all cases. Besides, it can be found that even the training lasted for a long period, the testing errors would not go up. In other words, the overfitting phenomenon is indeed suppressed.
A Neurocomputational Model of Goal-Directed Navigation in Insect-Inspired Artificial Agents
Goldschmidt, Dennis; Manoonpong, Poramate; Dasgupta, Sakyasingha
2017-01-01
Despite their small size, insect brains are able to produce robust and efficient navigation in complex environments. Specifically in social insects, such as ants and bees, these navigational capabilities are guided by orientation directing vectors generated by a process called path integration. During this process, they integrate compass and odometric cues to estimate their current location as a vector, called the home vector for guiding them back home on a straight path. They further acquire and retrieve path integration-based vector memories globally to the nest or based on visual landmarks. Although existing computational models reproduced similar behaviors, a neurocomputational model of vector navigation including the acquisition of vector representations has not been described before. Here we present a model of neural mechanisms in a modular closed-loop control—enabling vector navigation in artificial agents. The model consists of a path integration mechanism, reward-modulated global learning, random search, and action selection. The path integration mechanism integrates compass and odometric cues to compute a vectorial representation of the agent's current location as neural activity patterns in circular arrays. A reward-modulated learning rule enables the acquisition of vector memories by associating the local food reward with the path integration state. A motor output is computed based on the combination of vector memories and random exploration. In simulation, we show that the neural mechanisms enable robust homing and localization, even in the presence of external sensory noise. The proposed learning rules lead to goal-directed navigation and route formation performed under realistic conditions. Consequently, we provide a novel approach for vector learning and navigation in a simulated, situated agent linking behavioral observations to their possible underlying neural substrates. PMID:28446872
A Neurocomputational Model of Goal-Directed Navigation in Insect-Inspired Artificial Agents.
Goldschmidt, Dennis; Manoonpong, Poramate; Dasgupta, Sakyasingha
2017-01-01
Despite their small size, insect brains are able to produce robust and efficient navigation in complex environments. Specifically in social insects, such as ants and bees, these navigational capabilities are guided by orientation directing vectors generated by a process called path integration. During this process, they integrate compass and odometric cues to estimate their current location as a vector, called the home vector for guiding them back home on a straight path. They further acquire and retrieve path integration-based vector memories globally to the nest or based on visual landmarks. Although existing computational models reproduced similar behaviors, a neurocomputational model of vector navigation including the acquisition of vector representations has not been described before. Here we present a model of neural mechanisms in a modular closed-loop control-enabling vector navigation in artificial agents. The model consists of a path integration mechanism, reward-modulated global learning, random search, and action selection. The path integration mechanism integrates compass and odometric cues to compute a vectorial representation of the agent's current location as neural activity patterns in circular arrays. A reward-modulated learning rule enables the acquisition of vector memories by associating the local food reward with the path integration state. A motor output is computed based on the combination of vector memories and random exploration. In simulation, we show that the neural mechanisms enable robust homing and localization, even in the presence of external sensory noise. The proposed learning rules lead to goal-directed navigation and route formation performed under realistic conditions. Consequently, we provide a novel approach for vector learning and navigation in a simulated, situated agent linking behavioral observations to their possible underlying neural substrates.
NASA Astrophysics Data System (ADS)
Thomas, Stephanie Margarete; Beierkuhnlein, Carl
2013-05-01
The occurrence of ectotherm disease vectors outside of their previous distribution area and the emergence of vector-borne diseases can be increasingly observed at a global scale and are accompanied by a growing number of studies which investigate the vast range of determining factors and their causal links. Consequently, a broad span of scientific disciplines is involved in tackling these complex phenomena. First, we evaluate the citation behaviour of relevant scientific literature in order to clarify the question "do scientists consider results of other disciplines to extend their expertise?" We then highlight emerging tools and concepts useful for risk assessment. Correlative models (regression-based, machine-learning and profile techniques), mechanistic models (basic reproduction number R 0) and methods of spatial regression, interaction and interpolation are described. We discuss further steps towards multidisciplinary approaches regarding new tools and emerging concepts to combine existing approaches such as Bayesian geostatistical modelling, mechanistic models which avoid the need for parameter fitting, joined correlative and mechanistic models, multi-criteria decision analysis and geographic profiling. We take the quality of both occurrence data for vector, host and disease cases, and data of the predictor variables into consideration as both determine the accuracy of risk area identification. Finally, we underline the importance of multidisciplinary research approaches. Even if the establishment of communication networks between scientific disciplines and the share of specific methods is time consuming, it promises new insights for the surveillance and control of vector-borne diseases worldwide.
NASA Technical Reports Server (NTRS)
Garay, Michael J.; Mazzoni, Dominic; Davies, Roger; Wagstaff, Kiri
2004-01-01
Support Vector Machines (SVMs) are a type of supervised learning algorith,, other examples of which are Artificial Neural Networks (ANNs), Decision Trees, and Naive Bayesian Classifiers. Supervised learning algorithms are used to classify objects labled by a 'supervisor' - typically a human 'expert.'.
Toward semantic-based retrieval of visual information: a model-based approach
NASA Astrophysics Data System (ADS)
Park, Youngchoon; Golshani, Forouzan; Panchanathan, Sethuraman
2002-07-01
This paper center around the problem of automated visual content classification. To enable classification based image or visual object retrieval, we propose a new image representation scheme called visual context descriptor (VCD) that is a multidimensional vector in which each element represents the frequency of a unique visual property of an image or a region. VCD utilizes the predetermined quality dimensions (i.e., types of features and quantization level) and semantic model templates mined in priori. Not only observed visual cues, but also contextually relevant visual features are proportionally incorporated in VCD. Contextual relevance of a visual cue to a semantic class is determined by using correlation analysis of ground truth samples. Such co-occurrence analysis of visual cues requires transformation of a real-valued visual feature vector (e.g., color histogram, Gabor texture, etc.,) into a discrete event (e.g., terms in text). Good-feature to track, rule of thirds, iterative k-means clustering and TSVQ are involved in transformation of feature vectors into unified symbolic representations called visual terms. Similarity-based visual cue frequency estimation is also proposed and used for ensuring the correctness of model learning and matching since sparseness of sample data causes the unstable results of frequency estimation of visual cues. The proposed method naturally allows integration of heterogeneous visual or temporal or spatial cues in a single classification or matching framework, and can be easily integrated into a semantic knowledge base such as thesaurus, and ontology. Robust semantic visual model template creation and object based image retrieval are demonstrated based on the proposed content description scheme.
SNPs selection using support vector regression and genetic algorithms in GWAS
2014-01-01
Introduction This paper proposes a new methodology to simultaneously select the most relevant SNPs markers for the characterization of any measurable phenotype described by a continuous variable using Support Vector Regression with Pearson Universal kernel as fitness function of a binary genetic algorithm. The proposed methodology is multi-attribute towards considering several markers simultaneously to explain the phenotype and is based jointly on statistical tools, machine learning and computational intelligence. Results The suggested method has shown potential in the simulated database 1, with additive effects only, and real database. In this simulated database, with a total of 1,000 markers, and 7 with major effect on the phenotype and the other 993 SNPs representing the noise, the method identified 21 markers. Of this total, 5 are relevant SNPs between the 7 but 16 are false positives. In real database, initially with 50,752 SNPs, we have reduced to 3,073 markers, increasing the accuracy of the model. In the simulated database 2, with additive effects and interactions (epistasis), the proposed method matched to the methodology most commonly used in GWAS. Conclusions The method suggested in this paper demonstrates the effectiveness in explaining the real phenotype (PTA for milk), because with the application of the wrapper based on genetic algorithm and Support Vector Regression with Pearson Universal, many redundant markers were eliminated, increasing the prediction and accuracy of the model on the real database without quality control filters. The PUK demonstrated that it can replicate the performance of linear and RBF kernels. PMID:25573332
Applications of Support Vector Machine (SVM) Learning in Cancer Genomics
HUANG, SHUJUN; CAI, NIANGUANG; PACHECO, PEDRO PENZUTI; NARANDES, SHAVIRA; WANG, YANG; XU, WAYNE
2017-01-01
Machine learning with maximization (support) of separating margin (vector), called support vector machine (SVM) learning, is a powerful classification tool that has been used for cancer genomic classification or subtyping. Today, as advancements in high-throughput technologies lead to production of large amounts of genomic and epigenomic data, the classification feature of SVMs is expanding its use in cancer genomics, leading to the discovery of new biomarkers, new drug targets, and a better understanding of cancer driver genes. Herein we reviewed the recent progress of SVMs in cancer genomic studies. We intend to comprehend the strength of the SVM learning and its future perspective in cancer genomic applications. PMID:29275361
Efficient k-Winner-Take-All Competitive Learning Hardware Architecture for On-Chip Learning
Ou, Chien-Min; Li, Hui-Ya; Hwang, Wen-Jyi
2012-01-01
A novel k-winners-take-all (k-WTA) competitive learning (CL) hardware architecture is presented for on-chip learning in this paper. The architecture is based on an efficient pipeline allowing k-WTA competition processes associated with different training vectors to be performed concurrently. The pipeline architecture employs a novel codeword swapping scheme so that neurons failing the competition for a training vector are immediately available for the competitions for the subsequent training vectors. The architecture is implemented by the field programmable gate array (FPGA). It is used as a hardware accelerator in a system on programmable chip (SOPC) for realtime on-chip learning. Experimental results show that the SOPC has significantly lower training time than that of other k-WTA CL counterparts operating with or without hardware support.
Paiva, Joana S; Cardoso, João; Pereira, Tânia
2018-01-01
The main goal of this study was to develop an automatic method based on supervised learning methods, able to distinguish healthy from pathologic arterial pulse wave (APW), and those two from noisy waveforms (non-relevant segments of the signal), from the data acquired during a clinical examination with a novel optical system. The APW dataset analysed was composed by signals acquired in a clinical environment from a total of 213 subjects, including healthy volunteers and non-healthy patients. The signals were parameterised by means of 39pulse features: morphologic, time domain statistics, cross-correlation features, wavelet features. Multiclass Support Vector Machine Recursive Feature Elimination (SVM RFE) method was used to select the most relevant features. A comparative study was performed in order to evaluate the performance of the two classifiers: Support Vector Machine (SVM) and Artificial Neural Network (ANN). SVM achieved a statistically significant better performance for this problem with an average accuracy of 0.9917±0.0024 and a F-Measure of 0.9925±0.0019, in comparison with ANN, which reached the values of 0.9847±0.0032 and 0.9852±0.0031 for Accuracy and F-Measure, respectively. A significant difference was observed between the performances obtained with SVM classifier using a different number of features from the original set available. The comparison between SVM and NN allowed reassert the higher performance of SVM. The results obtained in this study showed the potential of the proposed method to differentiate those three important signal outcomes (healthy, pathologic and noise) and to reduce bias associated with clinical diagnosis of cardiovascular disease using APW. Copyright © 2017 Elsevier B.V. All rights reserved.
Plaza-Leiva, Victoria; Gomez-Ruiz, Jose Antonio; Mandow, Anthony; García-Cerezo, Alfonso
2017-01-01
Improving the effectiveness of spatial shape features classification from 3D lidar data is very relevant because it is largely used as a fundamental step towards higher level scene understanding challenges of autonomous vehicles and terrestrial robots. In this sense, computing neighborhood for points in dense scans becomes a costly process for both training and classification. This paper proposes a new general framework for implementing and comparing different supervised learning classifiers with a simple voxel-based neighborhood computation where points in each non-overlapping voxel in a regular grid are assigned to the same class by considering features within a support region defined by the voxel itself. The contribution provides offline training and online classification procedures as well as five alternative feature vector definitions based on principal component analysis for scatter, tubular and planar shapes. Moreover, the feasibility of this approach is evaluated by implementing a neural network (NN) method previously proposed by the authors as well as three other supervised learning classifiers found in scene processing methods: support vector machines (SVM), Gaussian processes (GP), and Gaussian mixture models (GMM). A comparative performance analysis is presented using real point clouds from both natural and urban environments and two different 3D rangefinders (a tilting Hokuyo UTM-30LX and a Riegl). Classification performance metrics and processing time measurements confirm the benefits of the NN classifier and the feasibility of voxel-based neighborhood. PMID:28294963
Progress in computational toxicology.
Ekins, Sean
2014-01-01
Computational methods have been widely applied to toxicology across pharmaceutical, consumer product and environmental fields over the past decade. Progress in computational toxicology is now reviewed. A literature review was performed on computational models for hepatotoxicity (e.g. for drug-induced liver injury (DILI)), cardiotoxicity, renal toxicity and genotoxicity. In addition various publications have been highlighted that use machine learning methods. Several computational toxicology model datasets from past publications were used to compare Bayesian and Support Vector Machine (SVM) learning methods. The increasing amounts of data for defined toxicology endpoints have enabled machine learning models that have been increasingly used for predictions. It is shown that across many different models Bayesian and SVM perform similarly based on cross validation data. Considerable progress has been made in computational toxicology in a decade in both model development and availability of larger scale or 'big data' models. The future efforts in toxicology data generation will likely provide us with hundreds of thousands of compounds that are readily accessible for machine learning models. These models will cover relevant chemistry space for pharmaceutical, consumer product and environmental applications. Copyright © 2013 Elsevier Inc. All rights reserved.
Discriminative Multi-View Interactive Image Re-Ranking.
Li, Jun; Xu, Chang; Yang, Wankou; Sun, Changyin; Tao, Dacheng
2017-07-01
Given an unreliable visual patterns and insufficient query information, content-based image retrieval is often suboptimal and requires image re-ranking using auxiliary information. In this paper, we propose a discriminative multi-view interactive image re-ranking (DMINTIR), which integrates user relevance feedback capturing users' intentions and multiple features that sufficiently describe the images. In DMINTIR, heterogeneous property features are incorporated in the multi-view learning scheme to exploit their complementarities. In addition, a discriminatively learned weight vector is obtained to reassign updated scores and target images for re-ranking. Compared with other multi-view learning techniques, our scheme not only generates a compact representation in the latent space from the redundant multi-view features but also maximally preserves the discriminative information in feature encoding by the large-margin principle. Furthermore, the generalization error bound of the proposed algorithm is theoretically analyzed and shown to be improved by the interactions between the latent space and discriminant function learning. Experimental results on two benchmark data sets demonstrate that our approach boosts baseline retrieval quality and is competitive with the other state-of-the-art re-ranking strategies.
Learning atoms for materials discovery.
Zhou, Quan; Tang, Peizhe; Liu, Shenxiu; Pan, Jinbo; Yan, Qimin; Zhang, Shou-Cheng
2018-06-26
Exciting advances have been made in artificial intelligence (AI) during recent decades. Among them, applications of machine learning (ML) and deep learning techniques brought human-competitive performances in various tasks of fields, including image recognition, speech recognition, and natural language understanding. Even in Go, the ancient game of profound complexity, the AI player has already beat human world champions convincingly with and without learning from the human. In this work, we show that our unsupervised machines (Atom2Vec) can learn the basic properties of atoms by themselves from the extensive database of known compounds and materials. These learned properties are represented in terms of high-dimensional vectors, and clustering of atoms in vector space classifies them into meaningful groups consistent with human knowledge. We use the atom vectors as basic input units for neural networks and other ML models designed and trained to predict materials properties, which demonstrate significant accuracy. Copyright © 2018 the Author(s). Published by PNAS.
Automatic classification of protein structures using physicochemical parameters.
Mohan, Abhilash; Rao, M Divya; Sunderrajan, Shruthi; Pennathur, Gautam
2014-09-01
Protein classification is the first step to functional annotation; SCOP and Pfam databases are currently the most relevant protein classification schemes. However, the disproportion in the number of three dimensional (3D) protein structures generated versus their classification into relevant superfamilies/families emphasizes the need for automated classification schemes. Predicting function of novel proteins based on sequence information alone has proven to be a major challenge. The present study focuses on the use of physicochemical parameters in conjunction with machine learning algorithms (Naive Bayes, Decision Trees, Random Forest and Support Vector Machines) to classify proteins into their respective SCOP superfamily/Pfam family, using sequence derived information. Spectrophores™, a 1D descriptor of the 3D molecular field surrounding a structure was used as a benchmark to compare the performance of the physicochemical parameters. The machine learning algorithms were modified to select features based on information gain for each SCOP superfamily/Pfam family. The effect of combining physicochemical parameters and spectrophores on classification accuracy (CA) was studied. Machine learning algorithms trained with the physicochemical parameters consistently classified SCOP superfamilies and Pfam families with a classification accuracy above 90%, while spectrophores performed with a CA of around 85%. Feature selection improved classification accuracy for both physicochemical parameters and spectrophores based machine learning algorithms. Combining both attributes resulted in a marginal loss of performance. Physicochemical parameters were able to classify proteins from both schemes with classification accuracy ranging from 90-96%. These results suggest the usefulness of this method in classifying proteins from amino acid sequences.
Product Quality Modelling Based on Incremental Support Vector Machine
NASA Astrophysics Data System (ADS)
Wang, J.; Zhang, W.; Qin, B.; Shi, W.
2012-05-01
Incremental Support vector machine (ISVM) is a new learning method developed in recent years based on the foundations of statistical learning theory. It is suitable for the problem of sequentially arriving field data and has been widely used for product quality prediction and production process optimization. However, the traditional ISVM learning does not consider the quality of the incremental data which may contain noise and redundant data; it will affect the learning speed and accuracy to a great extent. In order to improve SVM training speed and accuracy, a modified incremental support vector machine (MISVM) is proposed in this paper. Firstly, the margin vectors are extracted according to the Karush-Kuhn-Tucker (KKT) condition; then the distance from the margin vectors to the final decision hyperplane is calculated to evaluate the importance of margin vectors, where the margin vectors are removed while their distance exceed the specified value; finally, the original SVs and remaining margin vectors are used to update the SVM. The proposed MISVM can not only eliminate the unimportant samples such as noise samples, but also can preserve the important samples. The MISVM has been experimented on two public data and one field data of zinc coating weight in strip hot-dip galvanizing, and the results shows that the proposed method can improve the prediction accuracy and the training speed effectively. Furthermore, it can provide the necessary decision supports and analysis tools for auto control of product quality, and also can extend to other process industries, such as chemical process and manufacturing process.
Open Source Software in Teaching Physics: A Case Study on Vector Algebra and Visual Representations
ERIC Educational Resources Information Center
Cataloglu, Erdat
2006-01-01
This study aims to report the effort on teaching vector algebra using free open source software (FOSS). Recent studies showed that students have difficulties in learning basic physics concepts. Constructivist learning theories suggest the use of visual and hands-on activities in learning. We will report on the software used for this purpose. The…
Nandi, Sutanu; Subramanian, Abhishek; Sarkar, Ram Rup
2017-07-25
Prediction of essential genes helps to identify a minimal set of genes that are absolutely required for the appropriate functioning and survival of a cell. The available machine learning techniques for essential gene prediction have inherent problems, like imbalanced provision of training datasets, biased choice of the best model for a given balanced dataset, choice of a complex machine learning algorithm, and data-based automated selection of biologically relevant features for classification. Here, we propose a simple support vector machine-based learning strategy for the prediction of essential genes in Escherichia coli K-12 MG1655 metabolism that integrates a non-conventional combination of an appropriate sample balanced training set, a unique organism-specific genotype, phenotype attributes that characterize essential genes, and optimal parameters of the learning algorithm to generate the best machine learning model (the model with the highest accuracy among all the models trained for different sample training sets). For the first time, we also introduce flux-coupled metabolic subnetwork-based features for enhancing the classification performance. Our strategy proves to be superior as compared to previous SVM-based strategies in obtaining a biologically relevant classification of genes with high sensitivity and specificity. This methodology was also trained with datasets of other recent supervised classification techniques for essential gene classification and tested using reported test datasets. The testing accuracy was always high as compared to the known techniques, proving that our method outperforms known methods. Observations from our study indicate that essential genes are conserved among homologous bacterial species, demonstrate high codon usage bias, GC content and gene expression, and predominantly possess a tendency to form physiological flux modules in metabolism.
Person Authentication Using Learned Parameters of Lifting Wavelet Filters
NASA Astrophysics Data System (ADS)
Niijima, Koichi
2006-10-01
This paper proposes a method for identifying persons by the use of the lifting wavelet parameters learned by kurtosis-minimization. Our learning method uses desirable properties of kurtosis and wavelet coefficients of a facial image. Exploiting these properties, the lifting parameters are trained so as to minimize the kurtosis of lifting wavelet coefficients computed for the facial image. Since this minimization problem is an ill-posed problem, it is solved by the aid of Tikhonov's regularization method. Our learning algorithm is applied to each of the faces to be identified to generate its feature vector whose components consist of the learned parameters. The constructed feature vectors are memorized together with the corresponding faces in a feature vectors database. Person authentication is performed by comparing the feature vector of a query face with those stored in the database. In numerical experiments, the lifting parameters are trained for each of the neutral faces of 132 persons (74 males and 58 females) in the AR face database. Person authentication is executed by using the smile and anger faces of the same persons in the database.
Support vector machine incremental learning triggered by wrongly predicted samples
NASA Astrophysics Data System (ADS)
Tang, Ting-long; Guan, Qiu; Wu, Yi-rong
2018-05-01
According to the classic Karush-Kuhn-Tucker (KKT) theorem, at every step of incremental support vector machine (SVM) learning, the newly adding sample which violates the KKT conditions will be a new support vector (SV) and migrate the old samples between SV set and non-support vector (NSV) set, and at the same time the learning model should be updated based on the SVs. However, it is not exactly clear at this moment that which of the old samples would change between SVs and NSVs. Additionally, the learning model will be unnecessarily updated, which will not greatly increase its accuracy but decrease the training speed. Therefore, how to choose the new SVs from old sets during the incremental stages and when to process incremental steps will greatly influence the accuracy and efficiency of incremental SVM learning. In this work, a new algorithm is proposed to select candidate SVs and use the wrongly predicted sample to trigger the incremental processing simultaneously. Experimental results show that the proposed algorithm can achieve good performance with high efficiency, high speed and good accuracy.
Applications of Support Vector Machine (SVM) Learning in Cancer Genomics.
Huang, Shujun; Cai, Nianguang; Pacheco, Pedro Penzuti; Narrandes, Shavira; Wang, Yang; Xu, Wayne
2018-01-01
Machine learning with maximization (support) of separating margin (vector), called support vector machine (SVM) learning, is a powerful classification tool that has been used for cancer genomic classification or subtyping. Today, as advancements in high-throughput technologies lead to production of large amounts of genomic and epigenomic data, the classification feature of SVMs is expanding its use in cancer genomics, leading to the discovery of new biomarkers, new drug targets, and a better understanding of cancer driver genes. Herein we reviewed the recent progress of SVMs in cancer genomic studies. We intend to comprehend the strength of the SVM learning and its future perspective in cancer genomic applications. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Egizi, Andrea; Fefferman, Nina H.; Fonseca, Dina M.
2015-01-01
Projected impacts of climate change on vector-borne disease dynamics must consider many variables relevant to hosts, vectors and pathogens, including how altered environmental characteristics might affect the spatial distributions of vector species. However, many predictive models for vector distributions consider their habitat requirements to be fixed over relevant time-scales, when they may actually be capable of rapid evolutionary change and even adaptation. We examine the genetic signature of a spatial expansion by an invasive vector into locations with novel temperature conditions compared to its native range as a proxy for how existing vector populations may respond to temporally changing habitat. Specifically, we compare invasions into different climate ranges and characterize the importance of selection from the invaded habitat. We demonstrate that vector species can exhibit evolutionary responses (altered allelic frequencies) to a temperature gradient in as little as 7–10 years even in the presence of high gene flow, and further, that this response varies depending on the strength of selection. We interpret these findings in the context of climate change predictions for vector populations and emphasize the importance of incorporating vector evolution into models of future vector-borne disease dynamics. PMID:25688024
A collaborative framework for Distributed Privacy-Preserving Support Vector Machine learning.
Que, Jialan; Jiang, Xiaoqian; Ohno-Machado, Lucila
2012-01-01
A Support Vector Machine (SVM) is a popular tool for decision support. The traditional way to build an SVM model is to estimate parameters based on a centralized repository of data. However, in the field of biomedicine, patient data are sometimes stored in local repositories or institutions where they were collected, and may not be easily shared due to privacy concerns. This creates a substantial barrier for researchers to effectively learn from the distributed data using machine learning tools like SVMs. To overcome this difficulty and promote efficient information exchange without sharing sensitive raw data, we developed a Distributed Privacy Preserving Support Vector Machine (DPP-SVM). The DPP-SVM enables privacy-preserving collaborative learning, in which a trusted server integrates "privacy-insensitive" intermediary results. The globally learned model is guaranteed to be exactly the same as learned from combined data. We also provide a free web-service (http://privacy.ucsd.edu:8080/ppsvm/) for multiple participants to collaborate and complete the SVM-learning task in an efficient and privacy-preserving manner.
NMF-Based Image Quality Assessment Using Extreme Learning Machine.
Wang, Shuigen; Deng, Chenwei; Lin, Weisi; Huang, Guang-Bin; Zhao, Baojun
2017-01-01
Numerous state-of-the-art perceptual image quality assessment (IQA) algorithms share a common two-stage process: distortion description followed by distortion effects pooling. As for the first stage, the distortion descriptors or measurements are expected to be effective representatives of human visual variations, while the second stage should well express the relationship among quality descriptors and the perceptual visual quality. However, most of the existing quality descriptors (e.g., luminance, contrast, and gradient) do not seem to be consistent with human perception, and the effects pooling is often done in ad-hoc ways. In this paper, we propose a novel full-reference IQA metric. It applies non-negative matrix factorization (NMF) to measure image degradations by making use of the parts-based representation of NMF. On the other hand, a new machine learning technique [extreme learning machine (ELM)] is employed to address the limitations of the existing pooling techniques. Compared with neural networks and support vector regression, ELM can achieve higher learning accuracy with faster learning speed. Extensive experimental results demonstrate that the proposed metric has better performance and lower computational complexity in comparison with the relevant state-of-the-art approaches.
NASA Astrophysics Data System (ADS)
Mushlihuddin, R.; Nurafifah; Irvan
2018-01-01
The student’s low ability in mathematics problem solving proved to the less effective of a learning process in the classroom. Effective learning was a learning that affects student’s math skills, one of which is problem-solving abilities. Problem-solving capability consisted of several stages: understanding the problem, planning the settlement, solving the problem as planned, re-examining the procedure and the outcome. The purpose of this research was to know: (1) was there any influence of PBL model in improving ability Problem solving of student math in a subject of vector analysis?; (2) was the PBL model effective in improving students’ mathematical problem-solving skills in vector analysis courses? This research was a quasi-experiment research. The data analysis techniques performed from the test stages of data description, a prerequisite test is the normality test, and hypothesis test using the ANCOVA test and Gain test. The results showed that: (1) there was an influence of PBL model in improving students’ math problem-solving abilities in vector analysis courses; (2) the PBL model was effective in improving students’ problem-solving skills in vector analysis courses with a medium category.
Location-Driven Image Retrieval for Images Collected by a Mobile Robot
NASA Astrophysics Data System (ADS)
Tanaka, Kanji; Hirayama, Mitsuru; Okada, Nobuhiro; Kondo, Eiji
Mobile robot teleoperation is a method for a human user to interact with a mobile robot over time and distance. Successful teleoperation depends on how well images taken by the mobile robot are visualized to the user. To enhance the efficiency and flexibility of the visualization, an image retrieval system on such a robot’s image database would be very useful. The main difference of the robot’s image database from standard image databases is that various relevant images exist due to variety of viewing conditions. The main contribution of this paper is to propose an efficient retrieval approach, named location-driven approach, utilizing correlation between visual features and real world locations of images. Combining the location-driven approach with the conventional feature-driven approach, our goal can be viewed as finding an optimal classifier between relevant and irrelevant feature-location pairs. An active learning technique based on support vector machine is extended for this aim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aldegunde, Manuel, E-mail: M.A.Aldegunde-Rodriguez@warwick.ac.uk; Kermode, James R., E-mail: J.R.Kermode@warwick.ac.uk; Zabaras, Nicholas
This paper presents the development of a new exchange–correlation functional from the point of view of machine learning. Using atomization energies of solids and small molecules, we train a linear model for the exchange enhancement factor using a Bayesian approach which allows for the quantification of uncertainties in the predictions. A relevance vector machine is used to automatically select the most relevant terms of the model. We then test this model on atomization energies and also on bulk properties. The average model provides a mean absolute error of only 0.116 eV for the test points of the G2/97 set butmore » a larger 0.314 eV for the test solids. In terms of bulk properties, the prediction for transition metals and monovalent semiconductors has a very low test error. However, as expected, predictions for types of materials not represented in the training set such as ionic solids show much larger errors.« less
Toward Gene Therapy for Cystic Fibrosis Using a Lentivirus Pseudotyped With Sendai Virus Envelopes
Mitomo, Katsuyuki; Griesenbach, Uta; Inoue, Makoto; Somerton, Lucinda; Meng, Cuixiang; Akiba, Eiji; Tabata, Toshiaki; Ueda, Yasuji; Frankel, Gad M; Farley, Raymond; Singh, Charanjit; Chan, Mario; Munkonge, Felix; Brum, Andrea; Xenariou, Stefania; Escudero-Garcia, Sara; Hasegawa, Mamoru; Alton, Eric WFW
2010-01-01
Gene therapy for cystic fibrosis (CF) is making encouraging progress into clinical trials. However, further improvements in transduction efficiency are desired. To develop a novel gene transfer vector that is improved and truly effective for CF gene therapy, a simian immunodeficiency virus (SIV) was pseudotyped with envelope proteins from Sendai virus (SeV), which is known to efficiently transduce unconditioned airway epithelial cells from the apical side. This novel vector was evaluated in mice in vivo and in vitro directed toward CF gene therapy. Here, we show that (i) we can produce relevant titers of an SIV vector pseudotyped with SeV envelope proteins for in vivo use, (ii) this vector can transduce the respiratory epithelium of the murine nose in vivo at levels that may be relevant for clinical benefit in CF, (iii) this can be achieved in a single formulation, and without the need for preconditioning, (iv) expression can last for 15 months, (v) readministration is feasible, (vi) the vector can transduce human air–liquid interface (ALI) cultures, and (vii) functional CF transmembrane conductance regulator (CFTR) chloride channels can be generated in vitro. Our data suggest that this lentiviral vector may provide a step change in airway transduction efficiency relevant to a clinical programme of gene therapy for CF. PMID:20332767
Kaufhold, John P; Tsai, Philbert S; Blinder, Pablo; Kleinfeld, David
2012-08-01
A graph of tissue vasculature is an essential requirement to model the exchange of gasses and nutriments between the blood and cells in the brain. Such a graph is derived from a vectorized representation of anatomical data, provides a map of all vessels as vertices and segments, and may include the location of nonvascular components, such as neuronal and glial somata. Yet vectorized data sets typically contain erroneous gaps, spurious endpoints, and spuriously merged strands. Current methods to correct such defects only address the issue of connecting gaps and further require manual tuning of parameters in a high dimensional algorithm. To address these shortcomings, we introduce a supervised machine learning method that (1) connects vessel gaps by "learned threshold relaxation"; (2) removes spurious segments by "learning to eliminate deletion candidate strands"; and (3) enforces consistency in the joint space of learned vascular graph corrections through "consistency learning." Human operators are only required to label individual objects they recognize in a training set and are not burdened with tuning parameters. The supervised learning procedure examines the geometry and topology of features in the neighborhood of each vessel segment under consideration. We demonstrate the effectiveness of these methods on four sets of microvascular data, each with >800(3) voxels, obtained with all optical histology of mouse tissue and vectorization by state-of-the-art techniques in image segmentation. Through statistically validated sampling and analysis in terms of precision recall curves, we find that learning with bagged boosted decision trees reduces equal-error error rates for threshold relaxation by 5-21% and strand elimination performance by 18-57%. We benchmark generalization performance across datasets; while improvements vary between data sets, learning always leads to a useful reduction in error rates. Overall, learning is shown to more than halve the total error rate, and therefore, human time spent manually correcting such vectorizations. Copyright © 2012 Elsevier B.V. All rights reserved.
Kaufhold, John P.; Tsai, Philbert S.; Blinder, Pablo; Kleinfeld, David
2012-01-01
A graph of tissue vasculature is an essential requirement to model the exchange of gasses and nutriments between the blood and cells in the brain. Such a graph is derived from a vectorized representation of anatomical data, provides a map of all vessels as vertices and segments, and may include the location of nonvascular components, such as neuronal and glial somata. Yet vectorized data sets typically contain erroneous gaps, spurious endpoints, and spuriously merged strands. Current methods to correct such defects only address the issue of connecting gaps and further require manual tuning of parameters in a high dimensional algorithm. To address these shortcomings, we introduce a supervised machine learning method that (1) connects vessel gaps by “learned threshold relaxation”; (2) removes spurious segments by “learning to eliminate deletion candidate strands”; and (3) enforces consistency in the joint space of learned vascular graph corrections through “consistency learning.” Human operators are only required to label individual objects they recognize in a training set and are not burdened with tuning parameters. The supervised learning procedure examines the geometry and topology of features in the neighborhood of each vessel segment under consideration. We demonstrate the effectiveness of these methods on four sets of microvascular data, each with > 8003 voxels, obtained with all optical histology of mouse tissue and vectorization by state-of-the-art techniques in image segmentation. Through statistically validated sampling and analysis in terms of precision recall curves, we find that learning with bagged boosted decision trees reduces equal-error error rates for threshold relaxation by 5 to 21 % and strand elimination performance by 18 to 57 %. We benchmark generalization performance across datasets; while improvements vary between data sets, learning always leads to a useful reduction in error rates. Overall, learning is shown to more than halve the total error rate, and therefore, human time spent manually correcting such vectorizations. PMID:22854035
NASA Technical Reports Server (NTRS)
Niebur, D.; Germond, A.
1993-01-01
This report investigates the classification of power system states using an artificial neural network model, Kohonen's self-organizing feature map. The ultimate goal of this classification is to assess power system static security in real-time. Kohonen's self-organizing feature map is an unsupervised neural network which maps N-dimensional input vectors to an array of M neurons. After learning, the synaptic weight vectors exhibit a topological organization which represents the relationship between the vectors of the training set. This learning is unsupervised, which means that the number and size of the classes are not specified beforehand. In the application developed in this report, the input vectors used as the training set are generated by off-line load-flow simulations. The learning algorithm and the results of the organization are discussed.
Everson, Elizabeth M; Hocum, Jonah D; Trobridge, Grant D
2018-06-23
Previous studies have shown that foamy viral (FV) vectors are a promising alternative to gammaretroviral and lentiviral vectors and insulators can improve FV vector safety. However, in a previous analysis of insulator effects on FV vector safety, strong viral promoters were used to elicit genotoxic events. Here we developed and analyzed the efficacy and safety of a high-titer, clinically relevant FV vector driven by the housekeeping promoter elongation factor-1α and insulated with an enhancer blocking A1 insulator (FV-EGW-A1). Human CD34 + cord blood cells were exposed to an enhanced green fluorescent protein expressing vector, FV-EGW-A1, at a multiplicity of infection of 10 and then maintained in vitro or transplanted into immunodeficient mice. Flow cytometry was used to measure engraftment and marking in vivo. FV vector integration sites were analyzed to assess safety. FV-EGW-A1 resulted in high-marking, multi-lineage engraftment of human repopulating cells with no evidence of silencing. Engraftment was highly polyclonal with no clonal dominance and a promising safety profile based on integration site analysis. An FV vector with an elongation factor-1α promoter and an A1 insulator is a promising vector design for use in the clinic. This article is protected by copyright. All rights reserved.
Miwa, Makoto; Ohta, Tomoko; Rak, Rafal; Rowley, Andrew; Kell, Douglas B.; Pyysalo, Sampo; Ananiadou, Sophia
2013-01-01
Motivation: To create, verify and maintain pathway models, curators must discover and assess knowledge distributed over the vast body of biological literature. Methods supporting these tasks must understand both the pathway model representations and the natural language in the literature. These methods should identify and order documents by relevance to any given pathway reaction. No existing system has addressed all aspects of this challenge. Method: We present novel methods for associating pathway model reactions with relevant publications. Our approach extracts the reactions directly from the models and then turns them into queries for three text mining-based MEDLINE literature search systems. These queries are executed, and the resulting documents are combined and ranked according to their relevance to the reactions of interest. We manually annotate document-reaction pairs with the relevance of the document to the reaction and use this annotation to study several ranking methods, using various heuristic and machine-learning approaches. Results: Our evaluation shows that the annotated document-reaction pairs can be used to create a rule-based document ranking system, and that machine learning can be used to rank documents by their relevance to pathway reactions. We find that a Support Vector Machine-based system outperforms several baselines and matches the performance of the rule-based system. The success of the query extraction and ranking methods are used to update our existing pathway search system, PathText. Availability: An online demonstration of PathText 2 and the annotated corpus are available for research purposes at http://www.nactem.ac.uk/pathtext2/. Contact: makoto.miwa@manchester.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:23813008
Nonlinear programming for classification problems in machine learning
NASA Astrophysics Data System (ADS)
Astorino, Annabella; Fuduli, Antonio; Gaudioso, Manlio
2016-10-01
We survey some nonlinear models for classification problems arising in machine learning. In the last years this field has become more and more relevant due to a lot of practical applications, such as text and web classification, object recognition in machine vision, gene expression profile analysis, DNA and protein analysis, medical diagnosis, customer profiling etc. Classification deals with separation of sets by means of appropriate separation surfaces, which is generally obtained by solving a numerical optimization model. While linear separability is the basis of the most popular approach to classification, the Support Vector Machine (SVM), in the recent years using nonlinear separating surfaces has received some attention. The objective of this work is to recall some of such proposals, mainly in terms of the numerical optimization models. In particular we tackle the polyhedral, ellipsoidal, spherical and conical separation approaches and, for some of them, we also consider the semisupervised versions.
Limited Rank Matrix Learning, discriminative dimension reduction and visualization.
Bunte, Kerstin; Schneider, Petra; Hammer, Barbara; Schleif, Frank-Michael; Villmann, Thomas; Biehl, Michael
2012-02-01
We present an extension of the recently introduced Generalized Matrix Learning Vector Quantization algorithm. In the original scheme, adaptive square matrices of relevance factors parameterize a discriminative distance measure. We extend the scheme to matrices of limited rank corresponding to low-dimensional representations of the data. This allows to incorporate prior knowledge of the intrinsic dimension and to reduce the number of adaptive parameters efficiently. In particular, for very large dimensional data, the limitation of the rank can reduce computation time and memory requirements significantly. Furthermore, two- or three-dimensional representations constitute an efficient visualization method for labeled data sets. The identification of a suitable projection is not treated as a pre-processing step but as an integral part of the supervised training. Several real world data sets serve as an illustration and demonstrate the usefulness of the suggested method. Copyright © 2011 Elsevier Ltd. All rights reserved.
Poulter, Steven L.; Austen, Joe M.
2015-01-01
In three experiments, the nature of the interaction between multiple memory systems in rats solving a variation of a spatial task in the water maze was investigated. Throughout training rats were able to find a submerged platform at a fixed distance and direction from an intramaze landmark by learning a landmark-goal vector. Extramaze cues were also available for standard place learning, or “cognitive mapping,” but these cues were valid only within each session, as the position of the platform moved around the pool between sessions together with the intramaze landmark. Animals could therefore learn the position of the platform by taking the consistent vector from the landmark across sessions or by rapidly encoding the new platform position on each session with reference to the extramaze cues. Excitotoxic lesions of the dorsolateral striatum impaired vector-based learning but facilitated cognitive map-based rapid place learning when the extramaze cues were relatively poor (Experiment 1) but not when they were more salient (Experiments 2 and 3). The way the lesion effects interacted with cue availability is consistent with the idea that the memory systems involved in the current navigation task are functionally cooperative yet associatively competitive in nature. PMID:25691518
Three learning phases for radial-basis-function networks.
Schwenker, F; Kestler, H A; Palm, G
2001-05-01
In this paper, learning algorithms for radial basis function (RBF) networks are discussed. Whereas multilayer perceptrons (MLP) are typically trained with backpropagation algorithms, starting the training procedure with a random initialization of the MLP's parameters, an RBF network may be trained in many different ways. We categorize these RBF training methods into one-, two-, and three-phase learning schemes. Two-phase RBF learning is a very common learning scheme. The two layers of an RBF network are learnt separately; first the RBF layer is trained, including the adaptation of centers and scaling parameters, and then the weights of the output layer are adapted. RBF centers may be trained by clustering, vector quantization and classification tree algorithms, and the output layer by supervised learning (through gradient descent or pseudo inverse solution). Results from numerical experiments of RBF classifiers trained by two-phase learning are presented in three completely different pattern recognition applications: (a) the classification of 3D visual objects; (b) the recognition hand-written digits (2D objects); and (c) the categorization of high-resolution electrocardiograms given as a time series (ID objects) and as a set of features extracted from these time series. In these applications, it can be observed that the performance of RBF classifiers trained with two-phase learning can be improved through a third backpropagation-like training phase of the RBF network, adapting the whole set of parameters (RBF centers, scaling parameters, and output layer weights) simultaneously. This, we call three-phase learning in RBF networks. A practical advantage of two- and three-phase learning in RBF networks is the possibility to use unlabeled training data for the first training phase. Support vector (SV) learning in RBF networks is a different learning approach. SV learning can be considered, in this context of learning, as a special type of one-phase learning, where only the output layer weights of the RBF network are calculated, and the RBF centers are restricted to be a subset of the training data. Numerical experiments with several classifier schemes including k-nearest-neighbor, learning vector quantization and RBF classifiers trained through two-phase, three-phase and support vector learning are given. The performance of the RBF classifiers trained through SV learning and three-phase learning are superior to the results of two-phase learning, but SV learning often leads to complex network structures, since the number of support vectors is not a small fraction of the total number of data points.
Combining Relevance Vector Machines and exponential regression for bearing residual life estimation
NASA Astrophysics Data System (ADS)
Di Maio, Francesco; Tsui, Kwok Leung; Zio, Enrico
2012-08-01
In this paper we present a new procedure for estimating the bearing Residual Useful Life (RUL) by combining data-driven and model-based techniques. Respectively, we resort to (i) Relevance Vector Machines (RVMs) for selecting a low number of significant basis functions, called Relevant Vectors (RVs), and (ii) exponential regression to compute and continuously update residual life estimations. The combination of these techniques is developed with reference to partially degraded thrust ball bearings and tested on real world vibration-based degradation data. On the case study considered, the proposed procedure outperforms other model-based methods, with the added value of an adequate representation of the uncertainty associated to the estimates of the quantification of the credibility of the results by the Prognostic Horizon (PH) metric.
Feature Vector Construction Method for IRIS Recognition
NASA Astrophysics Data System (ADS)
Odinokikh, G.; Fartukov, A.; Korobkin, M.; Yoo, J.
2017-05-01
One of the basic stages of iris recognition pipeline is iris feature vector construction procedure. The procedure represents the extraction of iris texture information relevant to its subsequent comparison. Thorough investigation of feature vectors obtained from iris showed that not all the vector elements are equally relevant. There are two characteristics which determine the vector element utility: fragility and discriminability. Conventional iris feature extraction methods consider the concept of fragility as the feature vector instability without respect to the nature of such instability appearance. This work separates sources of the instability into natural and encodinginduced which helps deeply investigate each source of instability independently. According to the separation concept, a novel approach of iris feature vector construction is proposed. The approach consists of two steps: iris feature extraction using Gabor filtering with optimal parameters and quantization with separated preliminary optimized fragility thresholds. The proposed method has been tested on two different datasets of iris images captured under changing environmental conditions. The testing results show that the proposed method surpasses all the methods considered as a prior art by recognition accuracy on both datasets.
Simple modification of Oja rule limits L1-norm of weight vector and leads to sparse connectivity.
Aparin, Vladimir
2012-03-01
This letter describes a simple modification of the Oja learning rule, which asymptotically constrains the L1-norm of an input weight vector instead of the L2-norm as in the original rule. This constraining is local as opposed to commonly used instant normalizations, which require the knowledge of all input weights of a neuron to update each one of them individually. The proposed rule converges to a weight vector that is sparser (has more zero weights) than the vector learned by the original Oja rule with or without the zero bound, which could explain the developmental synaptic pruning.
Vector independent transmission of the vector-borne bluetongue virus.
van der Sluijs, Mirjam Tineke Willemijn; de Smit, Abraham J; Moormann, Rob J M
2016-01-01
Bluetongue is an economically important disease of ruminants. The causative agent, Bluetongue virus (BTV), is mainly transmitted by insect vectors. This review focuses on vector-free BTV transmission, and its epizootic and economic consequences. Vector-free transmission can either be vertical, from dam to fetus, or horizontal via direct contract. For several BTV-serotypes, vertical (transplacental) transmission has been described, resulting in severe congenital malformations. Transplacental transmission had been mainly associated with live vaccine strains. Yet, the European BTV-8 strain demonstrated a high incidence of transplacental transmission in natural circumstances. The relevance of transplacental transmission for the epizootiology is considered limited, especially in enzootic areas. However, transplacental transmission can have a substantial economic impact due to the loss of progeny. Inactivated vaccines have demonstrated to prevent transplacental transmission. Vector-free horizontal transmission has also been demonstrated. Since direct horizontal transmission requires close contact of animals, it is considered only relevant for within-farm spreading of BTV. The genetic determinants which enable vector-free transmission are present in virus strains circulating in the field. More research into the genetic changes which enable vector-free transmission is essential to better evaluate the risks associated with outbreaks of new BTV serotypes and to design more appropriate control measures.
Supervised machine learning and active learning in classification of radiology reports.
Nguyen, Dung H M; Patrick, Jon D
2014-01-01
This paper presents an automated system for classifying the results of imaging examinations (CT, MRI, positron emission tomography) into reportable and non-reportable cancer cases. This system is part of an industrial-strength processing pipeline built to extract content from radiology reports for use in the Victorian Cancer Registry. In addition to traditional supervised learning methods such as conditional random fields and support vector machines, active learning (AL) approaches were investigated to optimize training production and further improve classification performance. The project involved two pilot sites in Victoria, Australia (Lake Imaging (Ballarat) and Peter MacCallum Cancer Centre (Melbourne)) and, in collaboration with the NSW Central Registry, one pilot site at Westmead Hospital (Sydney). The reportability classifier performance achieved 98.25% sensitivity and 96.14% specificity on the cancer registry's held-out test set. Up to 92% of training data needed for supervised machine learning can be saved by AL. AL is a promising method for optimizing the supervised training production used in classification of radiology reports. When an AL strategy is applied during the data selection process, the cost of manual classification can be reduced significantly. The most important practical application of the reportability classifier is that it can dramatically reduce human effort in identifying relevant reports from the large imaging pool for further investigation of cancer. The classifier is built on a large real-world dataset and can achieve high performance in filtering relevant reports to support cancer registries. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
A Collaborative Framework for Distributed Privacy-Preserving Support Vector Machine Learning
Que, Jialan; Jiang, Xiaoqian; Ohno-Machado, Lucila
2012-01-01
A Support Vector Machine (SVM) is a popular tool for decision support. The traditional way to build an SVM model is to estimate parameters based on a centralized repository of data. However, in the field of biomedicine, patient data are sometimes stored in local repositories or institutions where they were collected, and may not be easily shared due to privacy concerns. This creates a substantial barrier for researchers to effectively learn from the distributed data using machine learning tools like SVMs. To overcome this difficulty and promote efficient information exchange without sharing sensitive raw data, we developed a Distributed Privacy Preserving Support Vector Machine (DPP-SVM). The DPP-SVM enables privacy-preserving collaborative learning, in which a trusted server integrates “privacy-insensitive” intermediary results. The globally learned model is guaranteed to be exactly the same as learned from combined data. We also provide a free web-service (http://privacy.ucsd.edu:8080/ppsvm/) for multiple participants to collaborate and complete the SVM-learning task in an efficient and privacy-preserving manner. PMID:23304414
Li, Yunhai; Lee, Kee Khoon; Walsh, Sean; Smith, Caroline; Hadingham, Sophie; Sorefan, Karim; Cawley, Gavin; Bevan, Michael W
2006-03-01
Establishing transcriptional regulatory networks by analysis of gene expression data and promoter sequences shows great promise. We developed a novel promoter classification method using a Relevance Vector Machine (RVM) and Bayesian statistical principles to identify discriminatory features in the promoter sequences of genes that can correctly classify transcriptional responses. The method was applied to microarray data obtained from Arabidopsis seedlings treated with glucose or abscisic acid (ABA). Of those genes showing >2.5-fold changes in expression level, approximately 70% were correctly predicted as being up- or down-regulated (under 10-fold cross-validation), based on the presence or absence of a small set of discriminative promoter motifs. Many of these motifs have known regulatory functions in sugar- and ABA-mediated gene expression. One promoter motif that was not known to be involved in glucose-responsive gene expression was identified as the strongest classifier of glucose-up-regulated gene expression. We show it confers glucose-responsive gene expression in conjunction with another promoter motif, thus validating the classification method. We were able to establish a detailed model of glucose and ABA transcriptional regulatory networks and their interactions, which will help us to understand the mechanisms linking metabolism with growth in Arabidopsis. This study shows that machine learning strategies coupled to Bayesian statistical methods hold significant promise for identifying functionally significant promoter sequences.
Semi-automatic feedback using concurrence between mixture vectors for general databases
NASA Astrophysics Data System (ADS)
Larabi, Mohamed-Chaker; Richard, Noel; Colot, Olivier; Fernandez-Maloigne, Christine
2001-12-01
This paper describes how a query system can exploit the basic knowledge by employing semi-automatic relevance feedback to refine queries and runtimes. For general databases, it is often useless to call complex attributes, because we have not sufficient information about images in the database. Moreover, these images can be topologically very different from one to each other and an attribute that is powerful for a database category may be very powerless for the other categories. The idea is to use very simple features, such as color histogram, correlograms, Color Coherence Vectors (CCV), to fill out the signature vector. Then, a number of mixture vectors is prepared depending on the number of very distinctive categories in the database. Knowing that a mixture vector is a vector containing the weight of each attribute that will be used to compute a similarity distance. We post a query in the database using successively all the mixture vectors defined previously. We retain then the N first images for each vector in order to make a mapping using the following information: Is image I present in several mixture vectors results? What is its rank in the results? These informations allow us to switch the system on an unsupervised relevance feedback or user's feedback (supervised feedback).
NASA Astrophysics Data System (ADS)
Kroll, Christine; von der Werth, Monika; Leuck, Holger; Stahl, Christoph; Schertler, Klaus
2017-05-01
For Intelligence, Surveillance, Reconnaissance (ISR) missions of manned and unmanned air systems typical electrooptical payloads provide high-definition video data which has to be exploited with respect to relevant ground targets in real-time by automatic/assisted target recognition software. Airbus Defence and Space is developing required technologies for real-time sensor exploitation since years and has combined the latest advances of Deep Convolutional Neural Networks (CNN) with a proprietary high-speed Support Vector Machine (SVM) learning method into a powerful object recognition system with impressive results on relevant high-definition video scenes compared to conventional target recognition approaches. This paper describes the principal requirements for real-time target recognition in high-definition video for ISR missions and the Airbus approach of combining an invariant feature extraction using pre-trained CNNs and the high-speed training and classification ability of a novel frequency-domain SVM training method. The frequency-domain approach allows for a highly optimized implementation for General Purpose Computation on a Graphics Processing Unit (GPGPU) and also an efficient training of large training samples. The selected CNN which is pre-trained only once on domain-extrinsic data reveals a highly invariant feature extraction. This allows for a significantly reduced adaptation and training of the target recognition method for new target classes and mission scenarios. A comprehensive training and test dataset was defined and prepared using relevant high-definition airborne video sequences. The assessment concept is explained and performance results are given using the established precision-recall diagrams, average precision and runtime figures on representative test data. A comparison to legacy target recognition approaches shows the impressive performance increase by the proposed CNN+SVM machine-learning approach and the capability of real-time high-definition video exploitation.
Wang, Jing; Wu, Chen-Jiang; Bao, Mei-Ling; Zhang, Jing; Wang, Xiao-Ning; Zhang, Yu-Dong
2017-10-01
To investigate whether machine learning-based analysis of MR radiomics can help improve the performance PI-RADS v2 in clinically relevant prostate cancer (PCa). This IRB-approved study included 54 patients with PCa undergoing multi-parametric (mp) MRI before prostatectomy. Imaging analysis was performed on 54 tumours, 47 normal peripheral (PZ) and 48 normal transitional (TZ) zone based on histological-radiological correlation. Mp-MRI was scored via PI-RADS, and quantified by measuring radiomic features. Predictive model was developed using a novel support vector machine trained with: (i) radiomics, (ii) PI-RADS scores, (iii) radiomics and PI-RADS scores. Paired comparison was made via ROC analysis. For PCa versus normal TZ, the model trained with radiomics had a significantly higher area under the ROC curve (Az) (0.955 [95% CI 0.923-0.976]) than PI-RADS (Az: 0.878 [0.834-0.914], p < 0.001). The Az between them was insignificant for PCa versus PZ (0.972 [0.945-0.988] vs. 0.940 [0.905-0.965], p = 0.097). When radiomics was added, performance of PI-RADS was significantly improved for PCa versus PZ (Az: 0.983 [0.960-0.995]) and PCa versus TZ (Az: 0.968 [0.940-0.985]). Machine learning analysis of MR radiomics can help improve the performance of PI-RADS in clinically relevant PCa. • Machine-based analysis of MR radiomics outperformed in TZ cancer against PI-RADS. • Adding MR radiomics significantly improved the performance of PI-RADS. • DKI-derived Dapp and Kapp were two strong markers for the diagnosis of PCa.
Test of understanding of vectors: A reliable multiple-choice vector concept test
NASA Astrophysics Data System (ADS)
Barniol, Pablo; Zavala, Genaro
2014-06-01
In this article we discuss the findings of our research on students' understanding of vector concepts in problems without physical context. First, we develop a complete taxonomy of the most frequent errors made by university students when learning vector concepts. This study is based on the results of several test administrations of open-ended problems in which a total of 2067 students participated. Using this taxonomy, we then designed a 20-item multiple-choice test [Test of understanding of vectors (TUV)] and administered it in English to 423 students who were completing the required sequence of introductory physics courses at a large private Mexican university. We evaluated the test's content validity, reliability, and discriminatory power. The results indicate that the TUV is a reliable assessment tool. We also conducted a detailed analysis of the students' understanding of the vector concepts evaluated in the test. The TUV is included in the Supplemental Material as a resource for other researchers studying vector learning, as well as instructors teaching the material.
Identification of DNA-Binding Proteins Using Mixed Feature Representation Methods.
Qu, Kaiyang; Han, Ke; Wu, Song; Wang, Guohua; Wei, Leyi
2017-09-22
DNA-binding proteins play vital roles in cellular processes, such as DNA packaging, replication, transcription, regulation, and other DNA-associated activities. The current main prediction method is based on machine learning, and its accuracy mainly depends on the features extraction method. Therefore, using an efficient feature representation method is important to enhance the classification accuracy. However, existing feature representation methods cannot efficiently distinguish DNA-binding proteins from non-DNA-binding proteins. In this paper, a multi-feature representation method, which combines three feature representation methods, namely, K-Skip-N-Grams, Information theory, and Sequential and structural features (SSF), is used to represent the protein sequences and improve feature representation ability. In addition, the classifier is a support vector machine. The mixed-feature representation method is evaluated using 10-fold cross-validation and a test set. Feature vectors, which are obtained from a combination of three feature extractions, show the best performance in 10-fold cross-validation both under non-dimensional reduction and dimensional reduction by max-relevance-max-distance. Moreover, the reduced mixed feature method performs better than the non-reduced mixed feature technique. The feature vectors, which are a combination of SSF and K-Skip-N-Grams, show the best performance in the test set. Among these methods, mixed features exhibit superiority over the single features.
a Hyperspectral Image Classification Method Using Isomap and Rvm
NASA Astrophysics Data System (ADS)
Chang, H.; Wang, T.; Fang, H.; Su, Y.
2018-04-01
Classification is one of the most significant applications of hyperspectral image processing and even remote sensing. Though various algorithms have been proposed to implement and improve this application, there are still drawbacks in traditional classification methods. Thus further investigations on some aspects, such as dimension reduction, data mining, and rational use of spatial information, should be developed. In this paper, we used a widely utilized global manifold learning approach, isometric feature mapping (ISOMAP), to address the intrinsic nonlinearities of hyperspectral image for dimension reduction. Considering the impropriety of Euclidean distance in spectral measurement, we applied spectral angle (SA) for substitute when constructed the neighbourhood graph. Then, relevance vector machines (RVM) was introduced to implement classification instead of support vector machines (SVM) for simplicity, generalization and sparsity. Therefore, a probability result could be obtained rather than a less convincing binary result. Moreover, taking into account the spatial information of the hyperspectral image, we employ a spatial vector formed by different classes' ratios around the pixel. At last, we combined the probability results and spatial factors with a criterion to decide the final classification result. To verify the proposed method, we have implemented multiple experiments with standard hyperspectral images compared with some other methods. The results and different evaluation indexes illustrated the effectiveness of our method.
NASA Astrophysics Data System (ADS)
Mikula, Brendon D.; Heckler, Andrew F.
2017-06-01
We propose a framework for improving accuracy, fluency, and retention of basic skills essential for solving problems relevant to STEM introductory courses, and implement the framework for the case of basic vector math skills over several semesters in an introductory physics course. Using an iterative development process, the framework begins with a careful identification of target skills and the study of specific student difficulties with these skills. It then employs computer-based instruction, immediate feedback, mastery grading, and well-researched principles from cognitive psychology such as interleaved training sequences and distributed practice. We implemented this with more than 1500 students over 2 semesters. Students completed the mastery practice for an average of about 13 min /week , for a total of about 2-3 h for the whole semester. Results reveal large (>1 SD ) pretest to post-test gains in accuracy in vector skills, even compared to a control group, and these gains were retained at least 2 months after practice. We also find evidence of improved fluency, student satisfaction, and that awarding regular course credit results in higher participation and higher learning gains than awarding extra credit. In all, we find that simple computer-based mastery practice is an effective and efficient way to improve a set of basic and essential skills for introductory physics.
USDA-ARS?s Scientific Manuscript database
Although specialist herbivorous insects are guided by innate responses to host plant cues, host plant preference may be influenced by experience and is not dictated by instinct alone. The effect of learning on host plant preference was examined in the Asian citrus psyllid, Diaphorina citri, vector ...
NASA Astrophysics Data System (ADS)
An, Fengwei; Akazawa, Toshinobu; Yamasaki, Shogo; Chen, Lei; Jürgen Mattausch, Hans
2015-04-01
This paper reports a VLSI realization of learning vector quantization (LVQ) with high flexibility for different applications. It is based on a hardware/software (HW/SW) co-design concept for on-chip learning and recognition and designed as a SoC in 180 nm CMOS. The time consuming nearest Euclidean distance search in the LVQ algorithm’s competition layer is efficiently implemented as a pipeline with parallel p-word input. Since neuron number in the competition layer, weight values, input and output number are scalable, the requirements of many different applications can be satisfied without hardware changes. Classification of a d-dimensional input vector is completed in n × \\lceil d/p \\rceil + R clock cycles, where R is the pipeline depth, and n is the number of reference feature vectors (FVs). Adjustment of stored reference FVs during learning is done by the embedded 32-bit RISC CPU, because this operation is not time critical. The high flexibility is verified by the application of human detection with different numbers for the dimensionality of the FVs.
A Fast Reduced Kernel Extreme Learning Machine.
Deng, Wan-Yu; Ong, Yew-Soon; Zheng, Qing-Hua
2016-04-01
In this paper, we present a fast and accurate kernel-based supervised algorithm referred to as the Reduced Kernel Extreme Learning Machine (RKELM). In contrast to the work on Support Vector Machine (SVM) or Least Square SVM (LS-SVM), which identifies the support vectors or weight vectors iteratively, the proposed RKELM randomly selects a subset of the available data samples as support vectors (or mapping samples). By avoiding the iterative steps of SVM, significant cost savings in the training process can be readily attained, especially on Big datasets. RKELM is established based on the rigorous proof of universal learning involving reduced kernel-based SLFN. In particular, we prove that RKELM can approximate any nonlinear functions accurately under the condition of support vectors sufficiency. Experimental results on a wide variety of real world small instance size and large instance size applications in the context of binary classification, multi-class problem and regression are then reported to show that RKELM can perform at competitive level of generalized performance as the SVM/LS-SVM at only a fraction of the computational effort incurred. Copyright © 2015 Elsevier Ltd. All rights reserved.
Improved RMR Rock Mass Classification Using Artificial Intelligence Algorithms
NASA Astrophysics Data System (ADS)
Gholami, Raoof; Rasouli, Vamegh; Alimoradi, Andisheh
2013-09-01
Rock mass classification systems such as rock mass rating (RMR) are very reliable means to provide information about the quality of rocks surrounding a structure as well as to propose suitable support systems for unstable regions. Many correlations have been proposed to relate measured quantities such as wave velocity to rock mass classification systems to limit the associated time and cost of conducting the sampling and mechanical tests conventionally used to calculate RMR values. However, these empirical correlations have been found to be unreliable, as they usually overestimate or underestimate the RMR value. The aim of this paper is to compare the results of RMR classification obtained from the use of empirical correlations versus machine-learning methodologies based on artificial intelligence algorithms. The proposed methods were verified based on two case studies located in northern Iran. Relevance vector regression (RVR) and support vector regression (SVR), as two robust machine-learning methodologies, were used to predict the RMR for tunnel host rocks. RMR values already obtained by sampling and site investigation at one tunnel were taken into account as the output of the artificial networks during training and testing phases. The results reveal that use of empirical correlations overestimates the predicted RMR values. RVR and SVR, however, showed more reliable results, and are therefore suggested for use in RMR classification for design purposes of rock structures.
Alvarez-Meza, Andres M.; Orozco-Gutierrez, Alvaro; Castellanos-Dominguez, German
2017-01-01
We introduce Enhanced Kernel-based Relevance Analysis (EKRA) that aims to support the automatic identification of brain activity patterns using electroencephalographic recordings. EKRA is a data-driven strategy that incorporates two kernel functions to take advantage of the available joint information, associating neural responses to a given stimulus condition. Regarding this, a Centered Kernel Alignment functional is adjusted to learning the linear projection that best discriminates the input feature set, optimizing the required free parameters automatically. Our approach is carried out in two scenarios: (i) feature selection by computing a relevance vector from extracted neural features to facilitating the physiological interpretation of a given brain activity task, and (ii) enhanced feature selection to perform an additional transformation of relevant features aiming to improve the overall identification accuracy. Accordingly, we provide an alternative feature relevance analysis strategy that allows improving the system performance while favoring the data interpretability. For the validation purpose, EKRA is tested in two well-known tasks of brain activity: motor imagery discrimination and epileptic seizure detection. The obtained results show that the EKRA approach estimates a relevant representation space extracted from the provided supervised information, emphasizing the salient input features. As a result, our proposal outperforms the state-of-the-art methods regarding brain activity discrimination accuracy with the benefit of enhanced physiological interpretation about the task at hand. PMID:29056897
Margin based ontology sparse vector learning algorithm and applied in biology science.
Gao, Wei; Qudair Baig, Abdul; Ali, Haidar; Sajjad, Wasim; Reza Farahani, Mohammad
2017-01-01
In biology field, the ontology application relates to a large amount of genetic information and chemical information of molecular structure, which makes knowledge of ontology concepts convey much information. Therefore, in mathematical notation, the dimension of vector which corresponds to the ontology concept is often very large, and thus improves the higher requirements of ontology algorithm. Under this background, we consider the designing of ontology sparse vector algorithm and application in biology. In this paper, using knowledge of marginal likelihood and marginal distribution, the optimized strategy of marginal based ontology sparse vector learning algorithm is presented. Finally, the new algorithm is applied to gene ontology and plant ontology to verify its efficiency.
NASA Astrophysics Data System (ADS)
Elarab, Manal; Ticlavilca, Andres M.; Torres-Rua, Alfonso F.; Maslova, Inga; McKee, Mac
2015-12-01
Precision agriculture requires high-resolution information to enable greater precision in the management of inputs to production. Actionable information about crop and field status must be acquired at high spatial resolution and at a temporal frequency appropriate for timely responses. In this study, high spatial resolution imagery was obtained through the use of a small, unmanned aerial system called AggieAirTM. Simultaneously with the AggieAir flights, intensive ground sampling for plant chlorophyll was conducted at precisely determined locations. This study reports the application of a relevance vector machine coupled with cross validation and backward elimination to a dataset composed of reflectance from high-resolution multi-spectral imagery (VIS-NIR), thermal infrared imagery, and vegetative indices, in conjunction with in situ SPAD measurements from which chlorophyll concentrations were derived, to estimate chlorophyll concentration from remotely sensed data at 15-cm resolution. The results indicate that a relevance vector machine with a thin plate spline kernel type and kernel width of 5.4, having LAI, NDVI, thermal and red bands as the selected set of inputs, can be used to spatially estimate chlorophyll concentration with a root-mean-squared-error of 5.31 μg cm-2, efficiency of 0.76, and 9 relevance vectors.
Evaluation of CNN as anthropomorphic model observer
NASA Astrophysics Data System (ADS)
Massanes, Francesc; Brankov, Jovan G.
2017-03-01
Model observers (MO) are widely used in medical imaging to act as surrogates of human observers in task-based image quality evaluation, frequently towards optimization of reconstruction algorithms. In this paper, we explore the use of convolutional neural networks (CNN) to be used as MO. We will compare CNN MO to alternative MO currently being proposed and used such as the relevance vector machine based MO and channelized Hotelling observer (CHO). As the success of the CNN, and other deep learning approaches, is rooted in large data sets availability, which is rarely the case in medical imaging systems task-performance evaluation, we will evaluate CNN performance on both large and small training data sets.
Grimm, Dirk
2011-10-26
For the past five years, evidence has accumulated that vector-mediated robust RNA interference (RNAi) expression can trigger severe side effects in small and large animals, from cytotoxicity and accelerated tumorigenesis to organ failure and death. The recurring notions in these studies that a critical parameter is the strength of RNAi expression and that Exportin-5 and the Argonaute proteins are rate-limiting mammalian RNAi, strongly imply dose-dependent saturation of the endogenous miRNA pathway as one of the underlying mechanisms. This minireview summarizes the relevant work and data leading to this intriguing model and highlights potential avenues by which to alleviate RNAi-induced toxicities in future clinical applications.
Real-time individualized training vectors for experiential learning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willis, Matt; Tucker, Eilish Marie; Raybourn, Elaine Marie
2011-01-01
Military training utilizing serious games or virtual worlds potentially generate data that can be mined to better understand how trainees learn in experiential exercises. Few data mining approaches for deployed military training games exist. Opportunities exist to collect and analyze these data, as well as to construct a full-history learner model. Outcomes discussed in the present document include results from a quasi-experimental research study on military game-based experiential learning, the deployment of an online game for training evidence collection, and results from a proof-of-concept pilot study on the development of individualized training vectors. This Lab Directed Research & Development (LDRD)more » project leveraged products within projects, such as Titan (Network Grand Challenge), Real-Time Feedback and Evaluation System, (America's Army Adaptive Thinking and Leadership, DARWARS Ambush! NK), and Dynamic Bayesian Networks to investigate whether machine learning capabilities could perform real-time, in-game similarity vectors of learner performance, toward adaptation of content delivery, and quantitative measurement of experiential learning.« less
An, Ji-Yong; Meng, Fan-Rong; You, Zhu-Hong; Fang, Yu-Hong; Zhao, Yu-Jun; Zhang, Ming
2016-01-01
We propose a novel computational method known as RVM-LPQ that combines the Relevance Vector Machine (RVM) model and Local Phase Quantization (LPQ) to predict PPIs from protein sequences. The main improvements are the results of representing protein sequences using the LPQ feature representation on a Position Specific Scoring Matrix (PSSM), reducing the influence of noise using a Principal Component Analysis (PCA), and using a Relevance Vector Machine (RVM) based classifier. We perform 5-fold cross-validation experiments on Yeast and Human datasets, and we achieve very high accuracies of 92.65% and 97.62%, respectively, which is significantly better than previous works. To further evaluate the proposed method, we compare it with the state-of-the-art support vector machine (SVM) classifier on the Yeast dataset. The experimental results demonstrate that our RVM-LPQ method is obviously better than the SVM-based method. The promising experimental results show the efficiency and simplicity of the proposed method, which can be an automatic decision support tool for future proteomics research.
Lam, Van K; Nguyen, Thanh C; Chung, Byung M; Nehmetallah, George; Raub, Christopher B
2018-03-01
The noninvasive, fast acquisition of quantitative phase maps using digital holographic microscopy (DHM) allows tracking of rapid cellular motility on transparent substrates. On two-dimensional surfaces in vitro, MDA-MB-231 cancer cells assume several morphologies related to the mode of migration and substrate stiffness, relevant to mechanisms of cancer invasiveness in vivo. The quantitative phase information from DHM may accurately classify adhesive cancer cell subpopulations with clinical relevance. To test this, cells from the invasive breast cancer MDA-MB-231 cell line were cultured on glass, tissue-culture treated polystyrene, and collagen hydrogels, and imaged with DHM followed by epifluorescence microscopy after staining F-actin and nuclei. Trends in cell phase parameters were tracked on the different substrates, during cell division, and during matrix adhesion, relating them to F-actin features. Support vector machine learning algorithms were trained and tested using parameters from holographic phase reconstructions and cell geometric features from conventional phase images, and used to distinguish between elongated and rounded cell morphologies. DHM was able to distinguish between elongated and rounded morphologies of MDA-MB-231 cells with 94% accuracy, compared to 83% accuracy using cell geometric features from conventional brightfield microscopy. This finding indicates the potential of DHM to detect and monitor cancer cell morphologies relevant to cell cycle phase status, substrate adhesion, and motility. © 2017 International Society for Advancement of Cytometry. © 2017 International Society for Advancement of Cytometry.
Test of Understanding of Vectors: A Reliable Multiple-Choice Vector Concept Test
ERIC Educational Resources Information Center
Barniol, Pablo; Zavala, Genaro
2014-01-01
In this article we discuss the findings of our research on students' understanding of vector concepts in problems without physical context. First, we develop a complete taxonomy of the most frequent errors made by university students when learning vector concepts. This study is based on the results of several test administrations of open-ended…
Effects of OCR Errors on Ranking and Feedback Using the Vector Space Model.
ERIC Educational Resources Information Center
Taghva, Kazem; And Others
1996-01-01
Reports on the performance of the vector space model in the presence of OCR (optical character recognition) errors in information retrieval. Highlights include precision and recall, a full-text test collection, smart vector representation, impact of weighting parameters, ranking variability, and the effect of relevance feedback. (Author/LRW)
Taking the Bite Out of Vector-Borne Diseases
... the 'Bite' Out of Vector-Borne Diseases Inside Life Science View All Articles | Inside Life Science Home Page Taking the 'Bite' Out of Vector- ... Science Solving the Sleeping Sickness 'Mystery' This Inside Life Science article also appears on LiveScience . Learn about related ...
Rahman, Md Mahmudur; Bhattacharya, Prabir; Desai, Bipin C
2007-01-01
A content-based image retrieval (CBIR) framework for diverse collection of medical images of different imaging modalities, anatomic regions with different orientations and biological systems is proposed. Organization of images in such a database (DB) is well defined with predefined semantic categories; hence, it can be useful for category-specific searching. The proposed framework consists of machine learning methods for image prefiltering, similarity matching using statistical distance measures, and a relevance feedback (RF) scheme. To narrow down the semantic gap and increase the retrieval efficiency, we investigate both supervised and unsupervised learning techniques to associate low-level global image features (e.g., color, texture, and edge) in the projected PCA-based eigenspace with their high-level semantic and visual categories. Specially, we explore the use of a probabilistic multiclass support vector machine (SVM) and fuzzy c-mean (FCM) clustering for categorization and prefiltering of images to reduce the search space. A category-specific statistical similarity matching is proposed in a finer level on the prefiltered images. To incorporate a better perception subjectivity, an RF mechanism is also added to update the query parameters dynamically and adjust the proposed matching functions. Experiments are based on a ground-truth DB consisting of 5000 diverse medical images of 20 predefined categories. Analysis of results based on cross-validation (CV) accuracy and precision-recall for image categorization and retrieval is reported. It demonstrates the improvement, effectiveness, and efficiency achieved by the proposed framework.
Active Learning Using Hint Information.
Li, Chun-Liang; Ferng, Chun-Sung; Lin, Hsuan-Tien
2015-08-01
The abundance of real-world data and limited labeling budget calls for active learning, an important learning paradigm for reducing human labeling efforts. Many recently developed active learning algorithms consider both uncertainty and representativeness when making querying decisions. However, exploiting representativeness with uncertainty concurrently usually requires tackling sophisticated and challenging learning tasks, such as clustering. In this letter, we propose a new active learning framework, called hinted sampling, which takes both uncertainty and representativeness into account in a simpler way. We design a novel active learning algorithm within the hinted sampling framework with an extended support vector machine. Experimental results validate that the novel active learning algorithm can result in a better and more stable performance than that achieved by state-of-the-art algorithms. We also show that the hinted sampling framework allows improving another active learning algorithm designed from the transductive support vector machine.
Held, Elizabeth; Cape, Joshua; Tintle, Nathan
2016-01-01
Machine learning methods continue to show promise in the analysis of data from genetic association studies because of the high number of variables relative to the number of observations. However, few best practices exist for the application of these methods. We extend a recently proposed supervised machine learning approach for predicting disease risk by genotypes to be able to incorporate gene expression data and rare variants. We then apply 2 different versions of the approach (radial and linear support vector machines) to simulated data from Genetic Analysis Workshop 19 and compare performance to logistic regression. Method performance was not radically different across the 3 methods, although the linear support vector machine tended to show small gains in predictive ability relative to a radial support vector machine and logistic regression. Importantly, as the number of genes in the models was increased, even when those genes contained causal rare variants, model predictive ability showed a statistically significant decrease in performance for both the radial support vector machine and logistic regression. The linear support vector machine showed more robust performance to the inclusion of additional genes. Further work is needed to evaluate machine learning approaches on larger samples and to evaluate the relative improvement in model prediction from the incorporation of gene expression data.
Fuzzy support vector machine: an efficient rule-based classification technique for microarrays.
Hajiloo, Mohsen; Rabiee, Hamid R; Anooshahpour, Mahdi
2013-01-01
The abundance of gene expression microarray data has led to the development of machine learning algorithms applicable for tackling disease diagnosis, disease prognosis, and treatment selection problems. However, these algorithms often produce classifiers with weaknesses in terms of accuracy, robustness, and interpretability. This paper introduces fuzzy support vector machine which is a learning algorithm based on combination of fuzzy classifiers and kernel machines for microarray classification. Experimental results on public leukemia, prostate, and colon cancer datasets show that fuzzy support vector machine applied in combination with filter or wrapper feature selection methods develops a robust model with higher accuracy than the conventional microarray classification models such as support vector machine, artificial neural network, decision trees, k nearest neighbors, and diagonal linear discriminant analysis. Furthermore, the interpretable rule-base inferred from fuzzy support vector machine helps extracting biological knowledge from microarray data. Fuzzy support vector machine as a new classification model with high generalization power, robustness, and good interpretability seems to be a promising tool for gene expression microarray classification.
Design of a universal two-layered neural network derived from the PLI theory
NASA Astrophysics Data System (ADS)
Hu, Chia-Lun J.
2004-05-01
The if-and-only-if (IFF) condition that a set of M analog-to-digital vector-mapping relations can be learned by a one-layered-feed-forward neural network (OLNN) is that all the input analog vectors dichotomized by the i-th output bit must be positively, linearly independent, or PLI. If they are not PLI, then the OLNN just cannot learn no matter what learning rules is employed because the solution of the connection matrix does not exist mathematically. However, in this case, one can still design a parallel-cascaded, two-layered, perceptron (PCTLP) to acheive this general mapping goal. The design principle of this "universal" neural network is derived from the major mathematical properties of the PLI theory - changing the output bits of the dependent relations existing among the dichotomized input vectors to make the PLD relations PLI. Then with a vector concatenation technique, the required mapping can still be learned by this PCTLP system with very high efficiency. This paper will report in detail the mathematical derivation of the general design principle and the design procedures of the PCTLP neural network system. It then will be verified in general by a practical numerical example.
SOLAR FLARE PREDICTION USING SDO/HMI VECTOR MAGNETIC FIELD DATA WITH A MACHINE-LEARNING ALGORITHM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bobra, M. G.; Couvidat, S., E-mail: couvidat@stanford.edu
2015-01-10
We attempt to forecast M- and X-class solar flares using a machine-learning algorithm, called support vector machine (SVM), and four years of data from the Solar Dynamics Observatory's Helioseismic and Magnetic Imager, the first instrument to continuously map the full-disk photospheric vector magnetic field from space. Most flare forecasting efforts described in the literature use either line-of-sight magnetograms or a relatively small number of ground-based vector magnetograms. This is the first time a large data set of vector magnetograms has been used to forecast solar flares. We build a catalog of flaring and non-flaring active regions sampled from a databasemore » of 2071 active regions, comprised of 1.5 million active region patches of vector magnetic field data, and characterize each active region by 25 parameters. We then train and test the machine-learning algorithm and we estimate its performances using forecast verification metrics with an emphasis on the true skill statistic (TSS). We obtain relatively high TSS scores and overall predictive abilities. We surmise that this is partly due to fine-tuning the SVM for this purpose and also to an advantageous set of features that can only be calculated from vector magnetic field data. We also apply a feature selection algorithm to determine which of our 25 features are useful for discriminating between flaring and non-flaring active regions and conclude that only a handful are needed for good predictive abilities.« less
Automatic classification and detection of clinically relevant images for diabetic retinopathy
NASA Astrophysics Data System (ADS)
Xu, Xinyu; Li, Baoxin
2008-03-01
We proposed a novel approach to automatic classification of Diabetic Retinopathy (DR) images and retrieval of clinically-relevant DR images from a database. Given a query image, our approach first classifies the image into one of the three categories: microaneurysm (MA), neovascularization (NV) and normal, and then it retrieves DR images that are clinically-relevant to the query image from an archival image database. In the classification stage, the query DR images are classified by the Multi-class Multiple-Instance Learning (McMIL) approach, where images are viewed as bags, each of which contains a number of instances corresponding to non-overlapping blocks, and each block is characterized by low-level features including color, texture, histogram of edge directions, and shape. McMIL first learns a collection of instance prototypes for each class that maximizes the Diverse Density function using Expectation- Maximization algorithm. A nonlinear mapping is then defined using the instance prototypes and maps every bag to a point in a new multi-class bag feature space. Finally a multi-class Support Vector Machine is trained in the multi-class bag feature space. In the retrieval stage, we retrieve images from the archival database who bear the same label with the query image, and who are the top K nearest neighbors of the query image in terms of similarity in the multi-class bag feature space. The classification approach achieves high classification accuracy, and the retrieval of clinically-relevant images not only facilitates utilization of the vast amount of hidden diagnostic knowledge in the database, but also improves the efficiency and accuracy of DR lesion diagnosis and assessment.
Torii, Manabu; Yin, Lanlan; Nguyen, Thang; Mazumdar, Chand T.; Liu, Hongfang; Hartley, David M.; Nelson, Noele P.
2014-01-01
Purpose Early detection of infectious disease outbreaks is crucial to protecting the public health of a society. Online news articles provide timely information on disease outbreaks worldwide. In this study, we investigated automated detection of articles relevant to disease outbreaks using machine learning classifiers. In a real-life setting, it is expensive to prepare a training data set for classifiers, which usually consists of manually labeled relevant and irrelevant articles. To mitigate this challenge, we examined the use of randomly sampled unlabeled articles as well as labeled relevant articles. Methods Naïve Bayes and Support Vector Machine (SVM) classifiers were trained on 149 relevant and 149 or more randomly sampled unlabeled articles. Diverse classifiers were trained by varying the number of sampled unlabeled articles and also the number of word features. The trained classifiers were applied to 15 thousand articles published over 15 days. Top-ranked articles from each classifier were pooled and the resulting set of 1337 articles was reviewed by an expert analyst to evaluate the classifiers. Results Daily averages of areas under ROC curves (AUCs) over the 15-day evaluation period were 0.841 and 0.836, respectively, for the naïve Bayes and SVM classifier. We referenced a database of disease outbreak reports to confirm that this evaluation data set resulted from the pooling method indeed covered incidents recorded in the database during the evaluation period. Conclusions The proposed text classification framework utilizing randomly sampled unlabeled articles can facilitate a cost-effective approach to training machine learning classifiers in a real-life Internet-based biosurveillance project. We plan to examine this framework further using larger data sets and using articles in non-English languages. PMID:21134784
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nesterenko, A. V.
The dispersive approach to QCD, which properly embodies the intrinsically nonperturbative constraints originating in the kinematic restrictions on relevant physical processes and extends the applicability range of perturbation theory towards the infrared domain, is briefly overviewed. The study of OPAL (update 2012) and ALEPH (update 2014) experimental data on inclusive τ lepton hadronic decay in vector and axial-vector channels within dispersive approach is presented.
Co-Labeling for Multi-View Weakly Labeled Learning.
Xu, Xinxing; Li, Wen; Xu, Dong; Tsang, Ivor W
2016-06-01
It is often expensive and time consuming to collect labeled training samples in many real-world applications. To reduce human effort on annotating training samples, many machine learning techniques (e.g., semi-supervised learning (SSL), multi-instance learning (MIL), etc.) have been studied to exploit weakly labeled training samples. Meanwhile, when the training data is represented with multiple types of features, many multi-view learning methods have shown that classifiers trained on different views can help each other to better utilize the unlabeled training samples for the SSL task. In this paper, we study a new learning problem called multi-view weakly labeled learning, in which we aim to develop a unified approach to learn robust classifiers by effectively utilizing different types of weakly labeled multi-view data from a broad range of tasks including SSL, MIL and relative outlier detection (ROD). We propose an effective approach called co-labeling to solve the multi-view weakly labeled learning problem. Specifically, we model the learning problem on each view as a weakly labeled learning problem, which aims to learn an optimal classifier from a set of pseudo-label vectors generated by using the classifiers trained from other views. Unlike traditional co-training approaches using a single pseudo-label vector for training each classifier, our co-labeling approach explores different strategies to utilize the predictions from different views, biases and iterations for generating the pseudo-label vectors, making our approach more robust for real-world applications. Moreover, to further improve the weakly labeled learning on each view, we also exploit the inherent group structure in the pseudo-label vectors generated from different strategies, which leads to a new multi-layer multiple kernel learning problem. Promising results for text-based image retrieval on the NUS-WIDE dataset as well as news classification and text categorization on several real-world multi-view datasets clearly demonstrate that our proposed co-labeling approach achieves state-of-the-art performance for various multi-view weakly labeled learning problems including multi-view SSL, multi-view MIL and multi-view ROD.
Cui, Zaixu; Gong, Gaolang
2018-06-02
Individualized behavioral/cognitive prediction using machine learning (ML) regression approaches is becoming increasingly applied. The specific ML regression algorithm and sample size are two key factors that non-trivially influence prediction accuracies. However, the effects of the ML regression algorithm and sample size on individualized behavioral/cognitive prediction performance have not been comprehensively assessed. To address this issue, the present study included six commonly used ML regression algorithms: ordinary least squares (OLS) regression, least absolute shrinkage and selection operator (LASSO) regression, ridge regression, elastic-net regression, linear support vector regression (LSVR), and relevance vector regression (RVR), to perform specific behavioral/cognitive predictions based on different sample sizes. Specifically, the publicly available resting-state functional MRI (rs-fMRI) dataset from the Human Connectome Project (HCP) was used, and whole-brain resting-state functional connectivity (rsFC) or rsFC strength (rsFCS) were extracted as prediction features. Twenty-five sample sizes (ranged from 20 to 700) were studied by sub-sampling from the entire HCP cohort. The analyses showed that rsFC-based LASSO regression performed remarkably worse than the other algorithms, and rsFCS-based OLS regression performed markedly worse than the other algorithms. Regardless of the algorithm and feature type, both the prediction accuracy and its stability exponentially increased with increasing sample size. The specific patterns of the observed algorithm and sample size effects were well replicated in the prediction using re-testing fMRI data, data processed by different imaging preprocessing schemes, and different behavioral/cognitive scores, thus indicating excellent robustness/generalization of the effects. The current findings provide critical insight into how the selected ML regression algorithm and sample size influence individualized predictions of behavior/cognition and offer important guidance for choosing the ML regression algorithm or sample size in relevant investigations. Copyright © 2018 Elsevier Inc. All rights reserved.
Time-Frequency Learning Machines for Nonstationarity Detection Using Surrogates
NASA Astrophysics Data System (ADS)
Borgnat, Pierre; Flandrin, Patrick; Richard, Cédric; Ferrari, André; Amoud, Hassan; Honeine, Paul
2012-03-01
Time-frequency representations provide a powerful tool for nonstationary signal analysis and classification, supporting a wide range of applications [12]. As opposed to conventional Fourier analysis, these techniques reveal the evolution in time of the spectral content of signals. In Ref. [7,38], time-frequency analysis is used to test stationarity of any signal. The proposed method consists of a comparison between global and local time-frequency features. The originality is to make use of a family of stationary surrogate signals for defining the null hypothesis of stationarity and, based upon this information, to derive statistical tests. An open question remains, however, about how to choose relevant time-frequency features. Over the last decade, a number of new pattern recognition methods based on reproducing kernels have been introduced. These learning machines have gained popularity due to their conceptual simplicity and their outstanding performance [30]. Initiated by Vapnik’s support vector machines (SVM) [35], they offer now a wide class of supervised and unsupervised learning algorithms. In Ref. [17-19], the authors have shown how the most effective and innovative learning machines can be tuned to operate in the time-frequency domain. This chapter follows this line of research by taking advantage of learning machines to test and quantify stationarity. Based on one-class SVM, our approach uses the entire time-frequency representation and does not require arbitrary feature extraction. Applied to a set of surrogates, it provides the domain boundary that includes most of these stationarized signals. This allows us to test the stationarity of the signal under investigation. This chapter is organized as follows. In Section 22.2, we introduce the surrogate data method to generate stationarized signals, namely, the null hypothesis of stationarity. The concept of time-frequency learning machines is presented in Section 22.3, and applied to one-class SVM in order to derive a stationarity test in Section 22.4. The relevance of the latter is illustrated by simulation results in Section 22.5.
Accurate interatomic force fields via machine learning with covariant kernels
NASA Astrophysics Data System (ADS)
Glielmo, Aldo; Sollich, Peter; De Vita, Alessandro
2017-06-01
We present a novel scheme to accurately predict atomic forces as vector quantities, rather than sets of scalar components, by Gaussian process (GP) regression. This is based on matrix-valued kernel functions, on which we impose the requirements that the predicted force rotates with the target configuration and is independent of any rotations applied to the configuration database entries. We show that such covariant GP kernels can be obtained by integration over the elements of the rotation group SO (d ) for the relevant dimensionality d . Remarkably, in specific cases the integration can be carried out analytically and yields a conservative force field that can be recast into a pair interaction form. Finally, we show that restricting the integration to a summation over the elements of a finite point group relevant to the target system is sufficient to recover an accurate GP. The accuracy of our kernels in predicting quantum-mechanical forces in real materials is investigated by tests on pure and defective Ni, Fe, and Si crystalline systems.
Lei, Tailong; Sun, Huiyong; Kang, Yu; Zhu, Feng; Liu, Hui; Zhou, Wenfang; Wang, Zhe; Li, Dan; Li, Youyong; Hou, Tingjun
2017-11-06
Xenobiotic chemicals and their metabolites are mainly excreted out of our bodies by the urinary tract through the urine. Chemical-induced urinary tract toxicity is one of the main reasons that cause failure during drug development, and it is a common adverse event for medications, natural supplements, and environmental chemicals. Despite its importance, there are only a few in silico models for assessing urinary tract toxicity for a large number of compounds with diverse chemical structures. Here, we developed a series of qualitative and quantitative structure-activity relationship (QSAR) models for predicting urinary tract toxicity. In our study, the recursive feature elimination method incorporated with random forests (RFE-RF) was used for dimension reduction, and then eight machine learning approaches were used for QSAR modeling, i.e., relevance vector machine (RVM), support vector machine (SVM), regularized random forest (RRF), C5.0 trees, eXtreme gradient boosting (XGBoost), AdaBoost.M1, SVM boosting (SVMBoost), and RVM boosting (RVMBoost). For building classification models, the synthetic minority oversampling technique was used to handle the imbalance data set problem. Among all the machine learning approaches, SVMBoost based on the RBF kernel achieves both the best quantitative (q ext 2 = 0.845) and qualitative predictions for the test set (MCC of 0.787, AUC of 0.893, sensitivity of 89.6%, specificity of 94.1%, and global accuracy of 90.8%). The application domains were then analyzed, and all of the tested chemicals fall within the application domain coverage. We also examined the structure features of the chemicals with large prediction errors. In brief, both the regression and classification models developed by the SVMBoost approach have reliable prediction capability for assessing chemical-induced urinary tract toxicity.
Context-Aware Local Binary Feature Learning for Face Recognition.
Duan, Yueqi; Lu, Jiwen; Feng, Jianjiang; Zhou, Jie
2018-05-01
In this paper, we propose a context-aware local binary feature learning (CA-LBFL) method for face recognition. Unlike existing learning-based local face descriptors such as discriminant face descriptor (DFD) and compact binary face descriptor (CBFD) which learn each feature code individually, our CA-LBFL exploits the contextual information of adjacent bits by constraining the number of shifts from different binary bits, so that more robust information can be exploited for face representation. Given a face image, we first extract pixel difference vectors (PDV) in local patches, and learn a discriminative mapping in an unsupervised manner to project each pixel difference vector into a context-aware binary vector. Then, we perform clustering on the learned binary codes to construct a codebook, and extract a histogram feature for each face image with the learned codebook as the final representation. In order to exploit local information from different scales, we propose a context-aware local binary multi-scale feature learning (CA-LBMFL) method to jointly learn multiple projection matrices for face representation. To make the proposed methods applicable for heterogeneous face recognition, we present a coupled CA-LBFL (C-CA-LBFL) method and a coupled CA-LBMFL (C-CA-LBMFL) method to reduce the modality gap of corresponding heterogeneous faces in the feature level, respectively. Extensive experimental results on four widely used face datasets clearly show that our methods outperform most state-of-the-art face descriptors.
NASA Astrophysics Data System (ADS)
Klein, P.; Viiri, J.; Mozaffari, S.; Dengel, A.; Kuhn, J.
2018-06-01
Relating mathematical concepts to graphical representations is a challenging task for students. In this paper, we introduce two visual strategies to qualitatively interpret the divergence of graphical vector field representations. One strategy is based on the graphical interpretation of partial derivatives, while the other is based on the flux concept. We test the effectiveness of both strategies in an instruction-based eye-tracking study with N =41 physics majors. We found that students' performance improved when both strategies were introduced (74% correct) instead of only one strategy (64% correct), and students performed best when they were free to choose between the two strategies (88% correct). This finding supports the idea of introducing multiple representations of a physical concept to foster student understanding. Relevant eye-tracking measures demonstrate that both strategies imply different visual processing of the vector field plots, therefore reflecting conceptual differences between the strategies. Advanced analysis methods further reveal significant differences in eye movements between the best and worst performing students. For instance, the best students performed predominantly horizontal and vertical saccades, indicating correct interpretation of partial derivatives. They also focused on smaller regions when they balanced positive and negative flux. This mixed-method research leads to new insights into student visual processing of vector field representations, highlights the advantages and limitations of eye-tracking methodologies in this context, and discusses implications for teaching and for future research. The introduction of saccadic direction analysis expands traditional methods, and shows the potential to discover new insights into student understanding and learning difficulties.
T-ray relevant frequencies for osteosarcoma classification
NASA Astrophysics Data System (ADS)
Withayachumnankul, W.; Ferguson, B.; Rainsford, T.; Findlay, D.; Mickan, S. P.; Abbott, D.
2006-01-01
We investigate the classification of the T-ray response of normal human bone cells and human osteosarcoma cells, grown in culture. Given the magnitude and phase responses within a reliable spectral range as features for input vectors, a trained support vector machine can correctly classify the two cell types to some extent. Performance of the support vector machine is deteriorated by the curse of dimensionality, resulting from the comparatively large number of features in the input vectors. Feature subset selection methods are used to select only an optimal number of relevant features for inputs. As a result, an improvement in generalization performance is attainable, and the selected frequencies can be used for further describing different mechanisms of the cells, responding to T-rays. We demonstrate a consistent classification accuracy of 89.6%, while the only one fifth of the original features are retained in the data set.
ERIC Educational Resources Information Center
Kosaki, Yutaka; Poulter, Steven L.; Austen, Joe M.; McGregor, Anthony
2015-01-01
In three experiments, the nature of the interaction between multiple memory systems in rats solving a variation of a spatial task in the water maze was investigated. Throughout training rats were able to find a submerged platform at a fixed distance and direction from an intramaze landmark by learning a landmark-goal vector. Extramaze cues were…
NASA Astrophysics Data System (ADS)
Su, Lihong
In remote sensing communities, support vector machine (SVM) learning has recently received increasing attention. SVM learning usually requires large memory and enormous amounts of computation time on large training sets. According to SVM algorithms, the SVM classification decision function is fully determined by support vectors, which compose a subset of the training sets. In this regard, a solution to optimize SVM learning is to efficiently reduce training sets. In this paper, a data reduction method based on agglomerative hierarchical clustering is proposed to obtain smaller training sets for SVM learning. Using a multiple angle remote sensing dataset of a semi-arid region, the effectiveness of the proposed method is evaluated by classification experiments with a series of reduced training sets. The experiments show that there is no loss of SVM accuracy when the original training set is reduced to 34% using the proposed approach. Maximum likelihood classification (MLC) also is applied on the reduced training sets. The results show that MLC can also maintain the classification accuracy. This implies that the most informative data instances can be retained by this approach.
Stoean, Ruxandra; Stoean, Catalin; Lupsor, Monica; Stefanescu, Horia; Badea, Radu
2011-01-01
Hepatic fibrosis, the principal pointer to the development of a liver disease within chronic hepatitis C, can be measured through several stages. The correct evaluation of its degree, based on recent different non-invasive procedures, is of current major concern. The latest methodology for assessing it is the Fibroscan and the effect of its employment is impressive. However, the complex interaction between its stiffness indicator and the other biochemical and clinical examinations towards a respective degree of liver fibrosis is hard to be manually discovered. In this respect, the novel, well-performing evolutionary-powered support vector machines are proposed towards an automated learning of the relationship between medical attributes and fibrosis levels. The traditional support vector machines have been an often choice for addressing hepatic fibrosis, while the evolutionary option has been validated on many real-world tasks and proven flexibility and good performance. The evolutionary approach is simple and direct, resulting from the hybridization of the learning component within support vector machines and the optimization engine of evolutionary algorithms. It discovers the optimal coefficients of surfaces that separate instances of distinct classes. Apart from a detached manner of establishing the fibrosis degree for new cases, a resulting formula also offers insight upon the correspondence between the medical factors and the respective outcome. What is more, a feature selection genetic algorithm can be further embedded into the method structure, in order to dynamically concentrate search only on the most relevant attributes. The data set refers 722 patients with chronic hepatitis C infection and 24 indicators. The five possible degrees of fibrosis range from F0 (no fibrosis) to F4 (cirrhosis). Since the standard support vector machines are among the most frequently used methods in recent artificial intelligence studies for hepatic fibrosis staging, the evolutionary method is viewed in comparison to the traditional one. The multifaceted discrimination into all five degrees of fibrosis and the slightly less difficult common separation into solely three related stages are both investigated. The resulting performance proves the superiority over the standard support vector classification and the attained formula is helpful in providing an immediate calculation of the liver stage for new cases, while establishing the presence/absence and comprehending the weight of each medical factor with respect to a certain fibrosis level. The use of the evolutionary technique for fibrosis degree prediction triggers simplicity and offers a direct expression of the influence of dynamically selected indicators on the corresponding stage. Perhaps most importantly, it significantly surpasses the classical support vector machines, which are both widely used and technically sound. All these therefore confirm the promise of the new methodology towards a dependable support within the medical decision-making. Copyright © 2010 Elsevier B.V. All rights reserved.
Xia, Wenjun; Mita, Yoshio; Shibata, Tadashi
2016-05-01
Aiming at efficient data condensation and improving accuracy, this paper presents a hardware-friendly template reduction (TR) method for the nearest neighbor (NN) classifiers by introducing the concept of critical boundary vectors. A hardware system is also implemented to demonstrate the feasibility of using an field-programmable gate array (FPGA) to accelerate the proposed method. Initially, k -means centers are used as substitutes for the entire template set. Then, to enhance the classification performance, critical boundary vectors are selected by a novel learning algorithm, which is completed within a single iteration. Moreover, to remove noisy boundary vectors that can mislead the classification in a generalized manner, a global categorization scheme has been explored and applied to the algorithm. The global characterization automatically categorizes each classification problem and rapidly selects the boundary vectors according to the nature of the problem. Finally, only critical boundary vectors and k -means centers are used as the new template set for classification. Experimental results for 24 data sets show that the proposed algorithm can effectively reduce the number of template vectors for classification with a high learning speed. At the same time, it improves the accuracy by an average of 2.17% compared with the traditional NN classifiers and also shows greater accuracy than seven other TR methods. We have shown the feasibility of using a proof-of-concept FPGA system of 256 64-D vectors to accelerate the proposed method on hardware. At a 50-MHz clock frequency, the proposed system achieves a 3.86 times higher learning speed than on a 3.4-GHz PC, while consuming only 1% of the power of that used by the PC.
Das, Samarjit; Amoedo, Breogan; De la Torre, Fernando; Hodgins, Jessica
2012-01-01
In this paper, we propose to use a weakly supervised machine learning framework for automatic detection of Parkinson's Disease motor symptoms in daily living environments. Our primary goal is to develop a monitoring system capable of being used outside of controlled laboratory settings. Such a system would enable us to track medication cycles at home and provide valuable clinical feedback. Most of the relevant prior works involve supervised learning frameworks (e.g., Support Vector Machines). However, in-home monitoring provides only coarse ground truth information about symptom occurrences, making it very hard to adapt and train supervised learning classifiers for symptom detection. We address this challenge by formulating symptom detection under incomplete ground truth information as a multiple instance learning (MIL) problem. MIL is a weakly supervised learning framework that does not require exact instances of symptom occurrences for training; rather, it learns from approximate time intervals within which a symptom might or might not have occurred on a given day. Once trained, the MIL detector was able to spot symptom-prone time windows on other days and approximately localize the symptom instances. We monitored two Parkinson's disease (PD) patients, each for four days with a set of five triaxial accelerometers and utilized a MIL algorithm based on axis parallel rectangle (APR) fitting in the feature space. We were able to detect subject specific symptoms (e.g. dyskinesia) that conformed with a daily log maintained by the patients.
NASA Astrophysics Data System (ADS)
Xiao, Guoqiang; Jiang, Yang; Song, Gang; Jiang, Jianmin
2010-12-01
We propose a support-vector-machine (SVM) tree to hierarchically learn from domain knowledge represented by low-level features toward automatic classification of sports videos. The proposed SVM tree adopts a binary tree structure to exploit the nature of SVM's binary classification, where each internal node is a single SVM learning unit, and each external node represents the classified output type. Such a SVM tree presents a number of advantages, which include: 1. low computing cost; 2. integrated learning and classification while preserving individual SVM's learning strength; and 3. flexibility in both structure and learning modules, where different numbers of nodes and features can be added to address specific learning requirements, and various learning models can be added as individual nodes, such as neural networks, AdaBoost, hidden Markov models, dynamic Bayesian networks, etc. Experiments support that the proposed SVM tree achieves good performances in sports video classifications.
Entanglement-Based Machine Learning on a Quantum Computer
NASA Astrophysics Data System (ADS)
Cai, X.-D.; Wu, D.; Su, Z.-E.; Chen, M.-C.; Wang, X.-L.; Li, Li; Liu, N.-L.; Lu, C.-Y.; Pan, J.-W.
2015-03-01
Machine learning, a branch of artificial intelligence, learns from previous experience to optimize performance, which is ubiquitous in various fields such as computer sciences, financial analysis, robotics, and bioinformatics. A challenge is that machine learning with the rapidly growing "big data" could become intractable for classical computers. Recently, quantum machine learning algorithms [Lloyd, Mohseni, and Rebentrost, arXiv.1307.0411] were proposed which could offer an exponential speedup over classical algorithms. Here, we report the first experimental entanglement-based classification of two-, four-, and eight-dimensional vectors to different clusters using a small-scale photonic quantum computer, which are then used to implement supervised and unsupervised machine learning. The results demonstrate the working principle of using quantum computers to manipulate and classify high-dimensional vectors, the core mathematical routine in machine learning. The method can, in principle, be scaled to larger numbers of qubits, and may provide a new route to accelerate machine learning.
GENIUS: web server to predict local gene networks and key genes for biological functions.
Puelma, Tomas; Araus, Viviana; Canales, Javier; Vidal, Elena A; Cabello, Juan M; Soto, Alvaro; Gutiérrez, Rodrigo A
2017-03-01
GENIUS is a user-friendly web server that uses a novel machine learning algorithm to infer functional gene networks focused on specific genes and experimental conditions that are relevant to biological functions of interest. These functions may have different levels of complexity, from specific biological processes to complex traits that involve several interacting processes. GENIUS also enriches the network with new genes related to the biological function of interest, with accuracies comparable to highly discriminative Support Vector Machine methods. GENIUS currently supports eight model organisms and is freely available for public use at http://networks.bio.puc.cl/genius . genius.psbl@gmail.com. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.
Prominent feature extraction for review analysis: an empirical study
NASA Astrophysics Data System (ADS)
Agarwal, Basant; Mittal, Namita
2016-05-01
Sentiment analysis (SA) research has increased tremendously in recent times. SA aims to determine the sentiment orientation of a given text into positive or negative polarity. Motivation for SA research is the need for the industry to know the opinion of the users about their product from online portals, blogs, discussion boards and reviews and so on. Efficient features need to be extracted for machine-learning algorithm for better sentiment classification. In this paper, initially various features are extracted such as unigrams, bi-grams and dependency features from the text. In addition, new bi-tagged features are also extracted that conform to predefined part-of-speech patterns. Furthermore, various composite features are created using these features. Information gain (IG) and minimum redundancy maximum relevancy (mRMR) feature selection methods are used to eliminate the noisy and irrelevant features from the feature vector. Finally, machine-learning algorithms are used for classifying the review document into positive or negative class. Effects of different categories of features are investigated on four standard data-sets, namely, movie review and product (book, DVD and electronics) review data-sets. Experimental results show that composite features created from prominent features of unigram and bi-tagged features perform better than other features for sentiment classification. mRMR is a better feature selection method as compared with IG for sentiment classification. Boolean Multinomial Naïve Bayes) algorithm performs better than support vector machine classifier for SA in terms of accuracy and execution time.
Wang, Yuanjia; Chen, Tianle; Zeng, Donglin
2016-01-01
Learning risk scores to predict dichotomous or continuous outcomes using machine learning approaches has been studied extensively. However, how to learn risk scores for time-to-event outcomes subject to right censoring has received little attention until recently. Existing approaches rely on inverse probability weighting or rank-based regression, which may be inefficient. In this paper, we develop a new support vector hazards machine (SVHM) approach to predict censored outcomes. Our method is based on predicting the counting process associated with the time-to-event outcomes among subjects at risk via a series of support vector machines. Introducing counting processes to represent time-to-event data leads to a connection between support vector machines in supervised learning and hazards regression in standard survival analysis. To account for different at risk populations at observed event times, a time-varying offset is used in estimating risk scores. The resulting optimization is a convex quadratic programming problem that can easily incorporate non-linearity using kernel trick. We demonstrate an interesting link from the profiled empirical risk function of SVHM to the Cox partial likelihood. We then formally show that SVHM is optimal in discriminating covariate-specific hazard function from population average hazard function, and establish the consistency and learning rate of the predicted risk using the estimated risk scores. Simulation studies show improved prediction accuracy of the event times using SVHM compared to existing machine learning methods and standard conventional approaches. Finally, we analyze two real world biomedical study data where we use clinical markers and neuroimaging biomarkers to predict age-at-onset of a disease, and demonstrate superiority of SVHM in distinguishing high risk versus low risk subjects.
A cost-function approach to rival penalized competitive learning (RPCL).
Ma, Jinwen; Wang, Taijun
2006-08-01
Rival penalized competitive learning (RPCL) has been shown to be a useful tool for clustering on a set of sample data in which the number of clusters is unknown. However, the RPCL algorithm was proposed heuristically and is still in lack of a mathematical theory to describe its convergence behavior. In order to solve the convergence problem, we investigate it via a cost-function approach. By theoretical analysis, we prove that a general form of RPCL, called distance-sensitive RPCL (DSRPCL), is associated with the minimization of a cost function on the weight vectors of a competitive learning network. As a DSRPCL process decreases the cost to a local minimum, a number of weight vectors eventually fall into a hypersphere surrounding the sample data, while the other weight vectors diverge to infinity. Moreover, it is shown by the theoretical analysis and simulation experiments that if the cost reduces into the global minimum, a correct number of weight vectors is automatically selected and located around the centers of the actual clusters, respectively. Finally, we apply the DSRPCL algorithms to unsupervised color image segmentation and classification of the wine data.
Online Sequential Projection Vector Machine with Adaptive Data Mean Update
Chen, Lin; Jia, Ji-Ting; Zhang, Qiong; Deng, Wan-Yu; Wei, Wei
2016-01-01
We propose a simple online learning algorithm especial for high-dimensional data. The algorithm is referred to as online sequential projection vector machine (OSPVM) which derives from projection vector machine and can learn from data in one-by-one or chunk-by-chunk mode. In OSPVM, data centering, dimension reduction, and neural network training are integrated seamlessly. In particular, the model parameters including (1) the projection vectors for dimension reduction, (2) the input weights, biases, and output weights, and (3) the number of hidden nodes can be updated simultaneously. Moreover, only one parameter, the number of hidden nodes, needs to be determined manually, and this makes it easy for use in real applications. Performance comparison was made on various high-dimensional classification problems for OSPVM against other fast online algorithms including budgeted stochastic gradient descent (BSGD) approach, adaptive multihyperplane machine (AMM), primal estimated subgradient solver (Pegasos), online sequential extreme learning machine (OSELM), and SVD + OSELM (feature selection based on SVD is performed before OSELM). The results obtained demonstrated the superior generalization performance and efficiency of the OSPVM. PMID:27143958
Online Sequential Projection Vector Machine with Adaptive Data Mean Update.
Chen, Lin; Jia, Ji-Ting; Zhang, Qiong; Deng, Wan-Yu; Wei, Wei
2016-01-01
We propose a simple online learning algorithm especial for high-dimensional data. The algorithm is referred to as online sequential projection vector machine (OSPVM) which derives from projection vector machine and can learn from data in one-by-one or chunk-by-chunk mode. In OSPVM, data centering, dimension reduction, and neural network training are integrated seamlessly. In particular, the model parameters including (1) the projection vectors for dimension reduction, (2) the input weights, biases, and output weights, and (3) the number of hidden nodes can be updated simultaneously. Moreover, only one parameter, the number of hidden nodes, needs to be determined manually, and this makes it easy for use in real applications. Performance comparison was made on various high-dimensional classification problems for OSPVM against other fast online algorithms including budgeted stochastic gradient descent (BSGD) approach, adaptive multihyperplane machine (AMM), primal estimated subgradient solver (Pegasos), online sequential extreme learning machine (OSELM), and SVD + OSELM (feature selection based on SVD is performed before OSELM). The results obtained demonstrated the superior generalization performance and efficiency of the OSPVM.
Passos, Ives Cavalcante; Mwangi, Benson; Cao, Bo; Hamilton, Jane E; Wu, Mon-Ju; Zhang, Xiang Yang; Zunta-Soares, Giovana B; Quevedo, Joao; Kauer-Sant'Anna, Marcia; Kapczinski, Flávio; Soares, Jair C
2016-03-15
A growing body of evidence has put forward clinical risk factors associated with patients with mood disorders that attempt suicide. However, what is not known is how to integrate clinical variables into a clinically useful tool in order to estimate the probability of an individual patient attempting suicide. A total of 144 patients with mood disorders were included. Clinical variables associated with suicide attempts among patients with mood disorders and demographic variables were used to 'train' a machine learning algorithm. The resulting algorithm was utilized in identifying novel or 'unseen' individual subjects as either suicide attempters or non-attempters. Three machine learning algorithms were implemented and evaluated. All algorithms distinguished individual suicide attempters from non-attempters with prediction accuracy ranging between 65% and 72% (p<0.05). In particular, the relevance vector machine (RVM) algorithm correctly predicted 103 out of 144 subjects translating into 72% accuracy (72.1% sensitivity and 71.3% specificity) and an area under the curve of 0.77 (p<0.0001). The most relevant predictor variables in distinguishing attempters from non-attempters included previous hospitalizations for depression, a history of psychosis, cocaine dependence and post-traumatic stress disorder (PTSD) comorbidity. Risk for suicide attempt among patients with mood disorders can be estimated at an individual subject level by incorporating both demographic and clinical variables. Future studies should examine the performance of this model in other populations and its subsequent utility in facilitating selection of interventions to prevent suicide. Copyright © 2015 Elsevier B.V. All rights reserved.
Passos, Ives Cavalcante; Mwangi, Benson; Cao, Bo; Hamilton, Jane E; Wu, Mon-Ju; Zhang, Xiang Yang; Zunta-Soares, Giovana B.; Quevedo, Joao; Kauer-Sant'Anna, Marcia; Kapczinski, Flávio; Soares, Jair C.
2016-01-01
Objective A growing body of evidence has put forward clinical risk factors associated with patients with mood disorders that attempt suicide. However, what is not known is how to integrate clinical variables into a clinically useful tool in order to estimate the probability of an individual patient attempting suicide. Method A total of 144 patients with mood disorders were included. Clinical variables associated with suicide attempts among patients with mood disorders and demographic variables were used to ‘train’ a machine learning algorithm. The resulting algorithm was utilized in identifying novel or ‘unseen’ individual subjects as either suicide attempters or non-attempters. Three machine learning algorithms were implemented and evaluated. Results All algorithms distinguished individual suicide attempters from non-attempters with prediction accuracy ranging between 65%-72% (p<0.05). In particular, the relevance vector machine (RVM) algorithm correctly predicted 103 out of 144 subjects translating into 72% accuracy (72.1% sensitivity and 71.3% specificity) and an area under the curve of 0.77 (p<0.0001). The most relevant predictor variables in distinguishing attempters from non-attempters included previous hospitalizations for depression, a history of psychosis, cocaine dependence and post-traumatic stress disorder (PTSD) comorbidity. Conclusion Risk for suicide attempt among patients with mood disorders can be estimated at an individual subject level by incorporating both demographic and clinical variables. Future studies should examine the performance of this model in other populations and its subsequent utility in facilitating selection of interventions to prevent suicide. PMID:26773901
Learning to merge: a new tool for interactive mapping
NASA Astrophysics Data System (ADS)
Porter, Reid B.; Lundquist, Sheng; Ruggiero, Christy
2013-05-01
The task of turning raw imagery into semantically meaningful maps and overlays is a key area of remote sensing activity. Image analysts, in applications ranging from environmental monitoring to intelligence, use imagery to generate and update maps of terrain, vegetation, road networks, buildings and other relevant features. Often these tasks can be cast as a pixel labeling problem, and several interactive pixel labeling tools have been developed. These tools exploit training data, which is generated by analysts using simple and intuitive paint-program annotation tools, in order to tailor the labeling algorithm for the particular dataset and task. In other cases, the task is best cast as a pixel segmentation problem. Interactive pixel segmentation tools have also been developed, but these tools typically do not learn from training data like the pixel labeling tools do. In this paper we investigate tools for interactive pixel segmentation that also learn from user input. The input has the form of segment merging (or grouping). Merging examples are 1) easily obtained from analysts using vector annotation tools, and 2) more challenging to exploit than traditional labels. We outline the key issues in developing these interactive merging tools, and describe their application to remote sensing.
Learning with incomplete information in the committee machine.
Bergmann, Urs M; Kühn, Reimer; Stamatescu, Ion-Olimpiu
2009-12-01
We study the problem of learning with incomplete information in a student-teacher setup for the committee machine. The learning algorithm combines unsupervised Hebbian learning of a series of associations with a delayed reinforcement step, in which the set of previously learnt associations is partly and indiscriminately unlearnt, to an extent that depends on the success rate of the student on these previously learnt associations. The relevant learning parameter lambda represents the strength of Hebbian learning. A coarse-grained analysis of the system yields a set of differential equations for overlaps of student and teacher weight vectors, whose solutions provide a complete description of the learning behavior. It reveals complicated dynamics showing that perfect generalization can be obtained if the learning parameter exceeds a threshold lambda ( c ), and if the initial value of the overlap between student and teacher weights is non-zero. In case of convergence, the generalization error exhibits a power law decay as a function of the number of examples used in training, with an exponent that depends on the parameter lambda. An investigation of the system flow in a subspace with broken permutation symmetry between hidden units reveals a bifurcation point lambda* above which perfect generalization does not depend on initial conditions. Finally, we demonstrate that cases of a complexity mismatch between student and teacher are optimally resolved in the sense that an over-complex student can emulate a less complex teacher rule, while an under-complex student reaches a state which realizes the minimal generalization error compatible with the complexity mismatch.
Prototype Vector Machine for Large Scale Semi-Supervised Learning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Kai; Kwok, James T.; Parvin, Bahram
2009-04-29
Practicaldataminingrarelyfalls exactlyinto the supervisedlearning scenario. Rather, the growing amount of unlabeled data poses a big challenge to large-scale semi-supervised learning (SSL). We note that the computationalintensivenessofgraph-based SSLarises largely from the manifold or graph regularization, which in turn lead to large models that are dificult to handle. To alleviate this, we proposed the prototype vector machine (PVM), a highlyscalable,graph-based algorithm for large-scale SSL. Our key innovation is the use of"prototypes vectors" for effcient approximation on both the graph-based regularizer and model representation. The choice of prototypes are grounded upon two important criteria: they not only perform effective low-rank approximation of themore » kernel matrix, but also span a model suffering the minimum information loss compared with the complete model. We demonstrate encouraging performance and appealing scaling properties of the PVM on a number of machine learning benchmark data sets.« less
ERIC Educational Resources Information Center
Levine, Robert
2004-01-01
The cross-product is a mathematical operation that is performed between two 3-dimensional vectors. The result is a vector that is orthogonal or perpendicular to both of them. Learning about this for the first time while taking Calculus-III, the class was taught that if AxB = AxC, it does not necessarily follow that B = C. This seemed baffling. The…
Wiimote Experiments: 3-D Inclined Plane Problem for Reinforcing the Vector Concept
ERIC Educational Resources Information Center
Kawam, Alae; Kouh, Minjoon
2011-01-01
In an introductory physics course where students first learn about vectors, they oftentimes struggle with the concept of vector addition and decomposition. For example, the classic physics problem involving a mass on an inclined plane requires the decomposition of the force of gravity into two directions that are parallel and perpendicular to the…
Force Sensor Based Tool Condition Monitoring Using a Heterogeneous Ensemble Learning Model
Wang, Guofeng; Yang, Yinwei; Li, Zhimeng
2014-01-01
Tool condition monitoring (TCM) plays an important role in improving machining efficiency and guaranteeing workpiece quality. In order to realize reliable recognition of the tool condition, a robust classifier needs to be constructed to depict the relationship between tool wear states and sensory information. However, because of the complexity of the machining process and the uncertainty of the tool wear evolution, it is hard for a single classifier to fit all the collected samples without sacrificing generalization ability. In this paper, heterogeneous ensemble learning is proposed to realize tool condition monitoring in which the support vector machine (SVM), hidden Markov model (HMM) and radius basis function (RBF) are selected as base classifiers and a stacking ensemble strategy is further used to reflect the relationship between the outputs of these base classifiers and tool wear states. Based on the heterogeneous ensemble learning classifier, an online monitoring system is constructed in which the harmonic features are extracted from force signals and a minimal redundancy and maximal relevance (mRMR) algorithm is utilized to select the most prominent features. To verify the effectiveness of the proposed method, a titanium alloy milling experiment was carried out and samples with different tool wear states were collected to build the proposed heterogeneous ensemble learning classifier. Moreover, the homogeneous ensemble learning model and majority voting strategy are also adopted to make a comparison. The analysis and comparison results show that the proposed heterogeneous ensemble learning classifier performs better in both classification accuracy and stability. PMID:25405514
Force sensor based tool condition monitoring using a heterogeneous ensemble learning model.
Wang, Guofeng; Yang, Yinwei; Li, Zhimeng
2014-11-14
Tool condition monitoring (TCM) plays an important role in improving machining efficiency and guaranteeing workpiece quality. In order to realize reliable recognition of the tool condition, a robust classifier needs to be constructed to depict the relationship between tool wear states and sensory information. However, because of the complexity of the machining process and the uncertainty of the tool wear evolution, it is hard for a single classifier to fit all the collected samples without sacrificing generalization ability. In this paper, heterogeneous ensemble learning is proposed to realize tool condition monitoring in which the support vector machine (SVM), hidden Markov model (HMM) and radius basis function (RBF) are selected as base classifiers and a stacking ensemble strategy is further used to reflect the relationship between the outputs of these base classifiers and tool wear states. Based on the heterogeneous ensemble learning classifier, an online monitoring system is constructed in which the harmonic features are extracted from force signals and a minimal redundancy and maximal relevance (mRMR) algorithm is utilized to select the most prominent features. To verify the effectiveness of the proposed method, a titanium alloy milling experiment was carried out and samples with different tool wear states were collected to build the proposed heterogeneous ensemble learning classifier. Moreover, the homogeneous ensemble learning model and majority voting strategy are also adopted to make a comparison. The analysis and comparison results show that the proposed heterogeneous ensemble learning classifier performs better in both classification accuracy and stability.
Wen, Zaidao; Hou, Zaidao; Jiao, Licheng
2017-11-01
Discriminative dictionary learning (DDL) framework has been widely used in image classification which aims to learn some class-specific feature vectors as well as a representative dictionary according to a set of labeled training samples. However, interclass similarities and intraclass variances among input samples and learned features will generally weaken the representability of dictionary and the discrimination of feature vectors so as to degrade the classification performance. Therefore, how to explicitly represent them becomes an important issue. In this paper, we present a novel DDL framework with two-level low rank and group sparse decomposition model. In the first level, we learn a class-shared and several class-specific dictionaries, where a low rank and a group sparse regularization are, respectively, imposed on the corresponding feature matrices. In the second level, the class-specific feature matrix will be further decomposed into a low rank and a sparse matrix so that intraclass variances can be separated to concentrate the corresponding feature vectors. Extensive experimental results demonstrate the effectiveness of our model. Compared with the other state-of-the-arts on several popular image databases, our model can achieve a competitive or better performance in terms of the classification accuracy.
ℓ(p)-Norm multikernel learning approach for stock market price forecasting.
Shao, Xigao; Wu, Kun; Liao, Bifeng
2012-01-01
Linear multiple kernel learning model has been used for predicting financial time series. However, ℓ(1)-norm multiple support vector regression is rarely observed to outperform trivial baselines in practical applications. To allow for robust kernel mixtures that generalize well, we adopt ℓ(p)-norm multiple kernel support vector regression (1 ≤ p < ∞) as a stock price prediction model. The optimization problem is decomposed into smaller subproblems, and the interleaved optimization strategy is employed to solve the regression model. The model is evaluated on forecasting the daily stock closing prices of Shanghai Stock Index in China. Experimental results show that our proposed model performs better than ℓ(1)-norm multiple support vector regression model.
Gene delivery strategies for the treatment of mucopolysaccharidoses.
Baldo, Guilherme; Giugliani, Roberto; Matte, Ursula
2014-03-01
Mucopolysaccharidosis (MPS) disorders are genetic diseases caused by deficiencies in the lysosomal enzymes responsible for the degradation of glycosaminoglycans. Current treatments are not able to correct all disease symptoms and are not available for all MPS types, which makes gene therapy especially relevant. Multiple gene therapy approaches have been tested for different types of MPS, and our aim in this study is to critically analyze each of them. In this review, we have included the major studies that describe the use of adeno-associated retroviral and lentiviral vectors, as well as relevant non-viral approaches for MPS disorders. Some protocols such as the use of adeno-associated vectors and lentiviral vectors are approaching the clinic for these disorders and, along with combined approaches, seem to be the future of gene therapy for MPS.
New Term Weighting Formulas for the Vector Space Method in Information Retrieval
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chisholm, E.; Kolda, T.G.
The goal in information retrieval is to enable users to automatically and accurately find data relevant to their queries. One possible approach to this problem i use the vector space model, which models documents and queries as vectors in the term space. The components of the vectors are determined by the term weighting scheme, a function of the frequencies of the terms in the document or query as well as throughout the collection. We discuss popular term weighting schemes and present several new schemes that offer improved performance.
Distance Metric Learning via Iterated Support Vector Machines.
Zuo, Wangmeng; Wang, Faqiang; Zhang, David; Lin, Liang; Huang, Yuchi; Meng, Deyu; Zhang, Lei
2017-07-11
Distance metric learning aims to learn from the given training data a valid distance metric, with which the similarity between data samples can be more effectively evaluated for classification. Metric learning is often formulated as a convex or nonconvex optimization problem, while most existing methods are based on customized optimizers and become inefficient for large scale problems. In this paper, we formulate metric learning as a kernel classification problem with the positive semi-definite constraint, and solve it by iterated training of support vector machines (SVMs). The new formulation is easy to implement and efficient in training with the off-the-shelf SVM solvers. Two novel metric learning models, namely Positive-semidefinite Constrained Metric Learning (PCML) and Nonnegative-coefficient Constrained Metric Learning (NCML), are developed. Both PCML and NCML can guarantee the global optimality of their solutions. Experiments are conducted on general classification, face verification and person re-identification to evaluate our methods. Compared with the state-of-the-art approaches, our methods can achieve comparable classification accuracy and are efficient in training.
Deep learning of support vector machines with class probability output networks.
Kim, Sangwook; Yu, Zhibin; Kil, Rhee Man; Lee, Minho
2015-04-01
Deep learning methods endeavor to learn features automatically at multiple levels and allow systems to learn complex functions mapping from the input space to the output space for the given data. The ability to learn powerful features automatically is increasingly important as the volume of data and range of applications of machine learning methods continues to grow. This paper proposes a new deep architecture that uses support vector machines (SVMs) with class probability output networks (CPONs) to provide better generalization power for pattern classification problems. As a result, deep features are extracted without additional feature engineering steps, using multiple layers of the SVM classifiers with CPONs. The proposed structure closely approaches the ideal Bayes classifier as the number of layers increases. Using a simulation of classification problems, the effectiveness of the proposed method is demonstrated. Copyright © 2014 Elsevier Ltd. All rights reserved.
Rank-Optimized Logistic Matrix Regression toward Improved Matrix Data Classification.
Zhang, Jianguang; Jiang, Jianmin
2018-02-01
While existing logistic regression suffers from overfitting and often fails in considering structural information, we propose a novel matrix-based logistic regression to overcome the weakness. In the proposed method, 2D matrices are directly used to learn two groups of parameter vectors along each dimension without vectorization, which allows the proposed method to fully exploit the underlying structural information embedded inside the 2D matrices. Further, we add a joint [Formula: see text]-norm on two parameter matrices, which are organized by aligning each group of parameter vectors in columns. This added co-regularization term has two roles-enhancing the effect of regularization and optimizing the rank during the learning process. With our proposed fast iterative solution, we carried out extensive experiments. The results show that in comparison to both the traditional tensor-based methods and the vector-based regression methods, our proposed solution achieves better performance for matrix data classifications.
Video data compression using artificial neural network differential vector quantization
NASA Technical Reports Server (NTRS)
Krishnamurthy, Ashok K.; Bibyk, Steven B.; Ahalt, Stanley C.
1991-01-01
An artificial neural network vector quantizer is developed for use in data compression applications such as Digital Video. Differential Vector Quantization is used to preserve edge features, and a new adaptive algorithm, known as Frequency-Sensitive Competitive Learning, is used to develop the vector quantizer codebook. To develop real time performance, a custom Very Large Scale Integration Application Specific Integrated Circuit (VLSI ASIC) is being developed to realize the associative memory functions needed in the vector quantization algorithm. By using vector quantization, the need for Huffman coding can be eliminated, resulting in superior performance against channel bit errors than methods that use variable length codes.
On the use of feature selection to improve the detection of sea oil spills in SAR images
NASA Astrophysics Data System (ADS)
Mera, David; Bolon-Canedo, Veronica; Cotos, J. M.; Alonso-Betanzos, Amparo
2017-03-01
Fast and effective oil spill detection systems are crucial to ensure a proper response to environmental emergencies caused by hydrocarbon pollution on the ocean's surface. Typically, these systems uncover not only oil spills, but also a high number of look-alikes. The feature extraction is a critical and computationally intensive phase where each detected dark spot is independently examined. Traditionally, detection systems use an arbitrary set of features to discriminate between oil spills and look-alikes phenomena. However, Feature Selection (FS) methods based on Machine Learning (ML) have proved to be very useful in real domains for enhancing the generalization capabilities of the classifiers, while discarding the existing irrelevant features. In this work, we present a generic and systematic approach, based on FS methods, for choosing a concise and relevant set of features to improve the oil spill detection systems. We have compared five FS methods: Correlation-based feature selection (CFS), Consistency-based filter, Information Gain, ReliefF and Recursive Feature Elimination for Support Vector Machine (SVM-RFE). They were applied on a 141-input vector composed of features from a collection of outstanding studies. Selected features were validated via a Support Vector Machine (SVM) classifier and the results were compared with previous works. Test experiments revealed that the classifier trained with the 6-input feature vector proposed by SVM-RFE achieved the best accuracy and Cohen's kappa coefficient (87.1% and 74.06% respectively). This is a smaller feature combination with similar or even better classification accuracy than previous works. The presented finding allows to speed up the feature extraction phase without reducing the classifier accuracy. Experiments also confirmed the significance of the geometrical features since 75.0% of the different features selected by the applied FS methods as well as 66.67% of the proposed 6-input feature vector belong to this category.
Dropout Prediction in E-Learning Courses through the Combination of Machine Learning Techniques
ERIC Educational Resources Information Center
Lykourentzou, Ioanna; Giannoukos, Ioannis; Nikolopoulos, Vassilis; Mpardis, George; Loumos, Vassili
2009-01-01
In this paper, a dropout prediction method for e-learning courses, based on three popular machine learning techniques and detailed student data, is proposed. The machine learning techniques used are feed-forward neural networks, support vector machines and probabilistic ensemble simplified fuzzy ARTMAP. Since a single technique may fail to…
Application of two neural network paradigms to the study of voluntary employee turnover.
Somers, M J
1999-04-01
Two neural network paradigms--multilayer perceptron and learning vector quantization--were used to study voluntary employee turnover with a sample of 577 hospital employees. The objectives of the study were twofold. The 1st was to assess whether neural computing techniques offered greater predictive accuracy than did conventional turnover methodologies. The 2nd was to explore whether computer models of turnover based on neural network technologies offered new insights into turnover processes. When compared with logistic regression analysis, both neural network paradigms provided considerably more accurate predictions of turnover behavior, particularly with respect to the correct classification of leavers. In addition, these neural network paradigms captured nonlinear relationships that are relevant for theory development. Results are discussed in terms of their implications for future research.
Wu, Howard G.
2013-01-01
The planning of goal-directed movements is highly adaptable; however, the basic mechanisms underlying this adaptability are not well understood. Even the features of movement that drive adaptation are hotly debated, with some studies suggesting remapping of goal locations and others suggesting remapping of the movement vectors leading to goal locations. However, several previous motor learning studies and the multiplicity of the neural coding underlying visually guided reaching movements stand in contrast to this either/or debate on the modes of motor planning and adaptation. Here we hypothesize that, during visuomotor learning, the target location and movement vector of trained movements are separately remapped, and we propose a novel computational model for how motor plans based on these remappings are combined during the control of visually guided reaching in humans. To test this hypothesis, we designed a set of experimental manipulations that effectively dissociated the effects of remapping goal location and movement vector by examining the transfer of visuomotor adaptation to untrained movements and movement sequences throughout the workspace. The results reveal that (1) motor adaptation differentially remaps goal locations and movement vectors, and (2) separate motor plans based on these features are effectively averaged during motor execution. We then show that, without any free parameters, the computational model we developed for combining movement-vector-based and goal-location-based planning predicts nearly 90% of the variance in novel movement sequences, even when multiple attributes are simultaneously adapted, demonstrating for the first time the ability to predict how motor adaptation affects movement sequence planning. PMID:23804099
[Important vector-borne infectious diseases among humans in Germany. Epidemiological aspects].
Frank, C; Faber, M; Hellenbrand, W; Wilking, H; Stark, K
2014-05-01
Vector-borne infections pathogenic to humans play an important role in Germany. The relevant zoonotic pathogens are either endemic throughout Germany (e.g. Borrelia burgdorferi sensu latu) or only in specific regions, e.g. tick-borne encephalitis (TBE) virus and hantavirus. They cause a substantial burden of disease. Prevention and control largely rely on public advice and the application of personal protective measures (e.g. TBE virus vaccination and protection against vectors). High quality surveillance and targeted epidemiological studies are fundamental for the evaluation of temporal and spatial risks of infection and the effectiveness of preventive measures. Aside from endemic pathogens, vector-borne infections acquired abroad, mostly transmitted by mosquitoes, have to be systematically and intensively monitored as well, to assess the risk of infection for German residents traveling abroad and to adequately evaluate the risk of autochthonous transmission. Related issues, such as invasive species of mosquitoes in Germany and climate change, have to be taken into consideration. Such pathogens include West Nile, dengue and chikungunya viruses, as well as malaria parasites (Plasmodium species). The article presents an overview of the epidemiological situation of selected relevant vector-borne infections in Germany.
Photon and vector meson exchanges in the production of light meson pairs and elementary atoms
NASA Astrophysics Data System (ADS)
Gevorkyan, S. R.; Kuraev, E. A.; Volkov, M. K.
2013-01-01
The production of pseudoscalar and scalar meson pairs ππ, ηη, η‧η‧, σσ as well as bound states in high energy γγ collisions are considered. The exchange by a vector particle in the binary process γ + γ → ha + hb with hadronic states ha, hb in fragmentation regions of the initial particle leads to nondecreasing cross sections with increasing energy, that is a priority of peripheral kinematics. Unlike the photon exchange the vector meson exchange needs a reggeization leading to fall with energy growth. Nevertheless, due to the peripheral kinematics beyond very forward production angles the vector meson exchanges dominate over all possible exchanges. The proposed approach allows one to express the matrix elements of the considered processes through impacting factors, which can be calculated in perturbation models like chiral perturbation theory (ChPT) or the Nambu-Jona-Lasinio (NJL) model. In particular cases the impact factors can be determined from relevant γγ sub-processes or the vector meson radiative decay width. The pionium atom production in the collisions of high energy electrons and pions with protons is considered and the relevant cross sections have been estimated.
NASA Astrophysics Data System (ADS)
Quesada-Barriuso, Pablo; Heras, Dora B.; Argüello, Francisco
2016-10-01
The classification of remote sensing hyperspectral images for land cover applications is a very intensive topic. In the case of supervised classification, Support Vector Machines (SVMs) play a dominant role. Recently, the Extreme Learning Machine algorithm (ELM) has been extensively used. The classification scheme previously published by the authors, and called WT-EMP, introduces spatial information in the classification process by means of an Extended Morphological Profile (EMP) that is created from features extracted by wavelets. In addition, the hyperspectral image is denoised in the 2-D spatial domain, also using wavelets and it is joined to the EMP via a stacked vector. In this paper, the scheme is improved achieving two goals. The first one is to reduce the classification time while preserving the accuracy of the classification by using ELM instead of SVM. The second one is to improve the accuracy results by performing not only a 2-D denoising for every spectral band, but also a previous additional 1-D spectral signature denoising applied to each pixel vector of the image. For each denoising the image is transformed by applying a 1-D or 2-D wavelet transform, and then a NeighShrink thresholding is applied. Improvements in terms of classification accuracy are obtained, especially for images with close regions in the classification reference map, because in these cases the accuracy of the classification in the edges between classes is more relevant.
Machine Learning Methods for Attack Detection in the Smart Grid.
Ozay, Mete; Esnaola, Inaki; Yarman Vural, Fatos Tunay; Kulkarni, Sanjeev R; Poor, H Vincent
2016-08-01
Attack detection problems in the smart grid are posed as statistical learning problems for different attack scenarios in which the measurements are observed in batch or online settings. In this approach, machine learning algorithms are used to classify measurements as being either secure or attacked. An attack detection framework is provided to exploit any available prior knowledge about the system and surmount constraints arising from the sparse structure of the problem in the proposed approach. Well-known batch and online learning algorithms (supervised and semisupervised) are employed with decision- and feature-level fusion to model the attack detection problem. The relationships between statistical and geometric properties of attack vectors employed in the attack scenarios and learning algorithms are analyzed to detect unobservable attacks using statistical learning methods. The proposed algorithms are examined on various IEEE test systems. Experimental analyses show that machine learning algorithms can detect attacks with performances higher than attack detection algorithms that employ state vector estimation methods in the proposed attack detection framework.
Space Object Classification Using Fused Features of Time Series Data
NASA Astrophysics Data System (ADS)
Jia, B.; Pham, K. D.; Blasch, E.; Shen, D.; Wang, Z.; Chen, G.
In this paper, a fused feature vector consisting of raw time series and texture feature information is proposed for space object classification. The time series data includes historical orbit trajectories and asteroid light curves. The texture feature is derived from recurrence plots using Gabor filters for both unsupervised learning and supervised learning algorithms. The simulation results show that the classification algorithms using the fused feature vector achieve better performance than those using raw time series or texture features only.
Progressive Classification Using Support Vector Machines
NASA Technical Reports Server (NTRS)
Wagstaff, Kiri; Kocurek, Michael
2009-01-01
An algorithm for progressive classification of data, analogous to progressive rendering of images, makes it possible to compromise between speed and accuracy. This algorithm uses support vector machines (SVMs) to classify data. An SVM is a machine learning algorithm that builds a mathematical model of the desired classification concept by identifying the critical data points, called support vectors. Coarse approximations to the concept require only a few support vectors, while precise, highly accurate models require far more support vectors. Once the model has been constructed, the SVM can be applied to new observations. The cost of classifying a new observation is proportional to the number of support vectors in the model. When computational resources are limited, an SVM of the appropriate complexity can be produced. However, if the constraints are not known when the model is constructed, or if they can change over time, a method for adaptively responding to the current resource constraints is required. This capability is particularly relevant for spacecraft (or any other real-time systems) that perform onboard data analysis. The new algorithm enables the fast, interactive application of an SVM classifier to a new set of data. The classification process achieved by this algorithm is characterized as progressive because a coarse approximation to the true classification is generated rapidly and thereafter iteratively refined. The algorithm uses two SVMs: (1) a fast, approximate one and (2) slow, highly accurate one. New data are initially classified by the fast SVM, producing a baseline approximate classification. For each classified data point, the algorithm calculates a confidence index that indicates the likelihood that it was classified correctly in the first pass. Next, the data points are sorted by their confidence indices and progressively reclassified by the slower, more accurate SVM, starting with the items most likely to be incorrectly classified. The user can halt this reclassification process at any point, thereby obtaining the best possible result for a given amount of computation time. Alternatively, the results can be displayed as they are generated, providing the user with real-time feedback about the current accuracy of classification.
ℓ p-Norm Multikernel Learning Approach for Stock Market Price Forecasting
Shao, Xigao; Wu, Kun; Liao, Bifeng
2012-01-01
Linear multiple kernel learning model has been used for predicting financial time series. However, ℓ 1-norm multiple support vector regression is rarely observed to outperform trivial baselines in practical applications. To allow for robust kernel mixtures that generalize well, we adopt ℓ p-norm multiple kernel support vector regression (1 ≤ p < ∞) as a stock price prediction model. The optimization problem is decomposed into smaller subproblems, and the interleaved optimization strategy is employed to solve the regression model. The model is evaluated on forecasting the daily stock closing prices of Shanghai Stock Index in China. Experimental results show that our proposed model performs better than ℓ 1-norm multiple support vector regression model. PMID:23365561
ERIC Educational Resources Information Center
Ifenthaler, Dirk; Widanapathirana, Chathuranga
2014-01-01
Interest in collecting and mining large sets of educational data on student background and performance to conduct research on learning and instruction has developed as an area generally referred to as learning analytics. Higher education leaders are recognizing the value of learning analytics for improving not only learning and teaching but also…
Virtual screening by a new Clustering-based Weighted Similarity Extreme Learning Machine approach
Kudisthalert, Wasu
2018-01-01
Machine learning techniques are becoming popular in virtual screening tasks. One of the powerful machine learning algorithms is Extreme Learning Machine (ELM) which has been applied to many applications and has recently been applied to virtual screening. We propose the Weighted Similarity ELM (WS-ELM) which is based on a single layer feed-forward neural network in a conjunction of 16 different similarity coefficients as activation function in the hidden layer. It is known that the performance of conventional ELM is not robust due to random weight selection in the hidden layer. Thus, we propose a Clustering-based WS-ELM (CWS-ELM) that deterministically assigns weights by utilising clustering algorithms i.e. k-means clustering and support vector clustering. The experiments were conducted on one of the most challenging datasets–Maximum Unbiased Validation Dataset–which contains 17 activity classes carefully selected from PubChem. The proposed algorithms were then compared with other machine learning techniques such as support vector machine, random forest, and similarity searching. The results show that CWS-ELM in conjunction with support vector clustering yields the best performance when utilised together with Sokal/Sneath(1) coefficient. Furthermore, ECFP_6 fingerprint presents the best results in our framework compared to the other types of fingerprints, namely ECFP_4, FCFP_4, and FCFP_6. PMID:29652912
Kim, Jongin; Park, Hyeong-jun
2016-01-01
The purpose of this study is to classify EEG data on imagined speech in a single trial. We recorded EEG data while five subjects imagined different vowels, /a/, /e/, /i/, /o/, and /u/. We divided each single trial dataset into thirty segments and extracted features (mean, variance, standard deviation, and skewness) from all segments. To reduce the dimension of the feature vector, we applied a feature selection algorithm based on the sparse regression model. These features were classified using a support vector machine with a radial basis function kernel, an extreme learning machine, and two variants of an extreme learning machine with different kernels. Because each single trial consisted of thirty segments, our algorithm decided the label of the single trial by selecting the most frequent output among the outputs of the thirty segments. As a result, we observed that the extreme learning machine and its variants achieved better classification rates than the support vector machine with a radial basis function kernel and linear discrimination analysis. Thus, our results suggested that EEG responses to imagined speech could be successfully classified in a single trial using an extreme learning machine with a radial basis function and linear kernel. This study with classification of imagined speech might contribute to the development of silent speech BCI systems. PMID:28097128
Alves, Adorama Candido; Fabbro, Amaury Lelis Dal; Passos, Afonso Dinis Costa; Carneiro, Ariadne Fernanda Tesarin Mendes; Jorge, Tatiane Martins; Martinez, Edson Zangiacomi
2016-04-01
This study investigated the knowledge of users of primary healthcare services living in Ribeirão Preto, Brazil, about dengue and its vector. A cross-sectional survey of 605 people was conducted following a major dengue outbreak in 2013. Participants with higher levels of education were more likely to identify correctly the vector of the disease. The results emphasize the relevance of health education programs, the continuous promotion of educational campaigns in the media, the role of the television as a source of information, and the importance of motivating the population to control the vector.
Ranjith, G; Parvathy, R; Vikas, V; Chandrasekharan, Kesavadas; Nair, Suresh
2015-04-01
With the advent of new imaging modalities, radiologists are faced with handling increasing volumes of data for diagnosis and treatment planning. The use of automated and intelligent systems is becoming essential in such a scenario. Machine learning, a branch of artificial intelligence, is increasingly being used in medical image analysis applications such as image segmentation, registration and computer-aided diagnosis and detection. Histopathological analysis is currently the gold standard for classification of brain tumors. The use of machine learning algorithms along with extraction of relevant features from magnetic resonance imaging (MRI) holds promise of replacing conventional invasive methods of tumor classification. The aim of the study is to classify gliomas into benign and malignant types using MRI data. Retrospective data from 28 patients who were diagnosed with glioma were used for the analysis. WHO Grade II (low-grade astrocytoma) was classified as benign while Grade III (anaplastic astrocytoma) and Grade IV (glioblastoma multiforme) were classified as malignant. Features were extracted from MR spectroscopy. The classification was done using four machine learning algorithms: multilayer perceptrons, support vector machine, random forest and locally weighted learning. Three of the four machine learning algorithms gave an area under ROC curve in excess of 0.80. Random forest gave the best performance in terms of AUC (0.911) while sensitivity was best for locally weighted learning (86.1%). The performance of different machine learning algorithms in the classification of gliomas is promising. An even better performance may be expected by integrating features extracted from other MR sequences. © The Author(s) 2015 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Identifying images of handwritten digits using deep learning in H2O
NASA Astrophysics Data System (ADS)
Sadhasivam, Jayakumar; Charanya, R.; Kumar, S. Harish; Srinivasan, A.
2017-11-01
Automatic digit recognition is of popular interest today. Deep learning techniques make it possible for object recognition in image data. Perceiving the digit has turned into a fundamental part as far as certifiable applications. Since, digits are composed in various styles in this way to distinguish the digit it is important to perceive and arrange it with the assistance of machine learning methods. This exploration depends on supervised learning vector quantization neural system arranged under counterfeit artificial neural network. The pictures of digits are perceived, prepared and tried. After the system is made digits are prepared utilizing preparing dataset vectors and testing is connected to the pictures of digits which are separated to each other by fragmenting the picture and resizing the digit picture as needs be for better precision.
Sparse Solutions for Single Class SVMs: A Bi-Criterion Approach
NASA Technical Reports Server (NTRS)
Das, Santanu; Oza, Nikunj C.
2011-01-01
In this paper we propose an innovative learning algorithm - a variation of One-class nu Support Vector Machines (SVMs) learning algorithm to produce sparser solutions with much reduced computational complexities. The proposed technique returns an approximate solution, nearly as good as the solution set obtained by the classical approach, by minimizing the original risk function along with a regularization term. We introduce a bi-criterion optimization that helps guide the search towards the optimal set in much reduced time. The outcome of the proposed learning technique was compared with the benchmark one-class Support Vector machines algorithm which more often leads to solutions with redundant support vectors. Through out the analysis, the problem size for both optimization routines was kept consistent. We have tested the proposed algorithm on a variety of data sources under different conditions to demonstrate the effectiveness. In all cases the proposed algorithm closely preserves the accuracy of standard one-class nu SVMs while reducing both training time and test time by several factors.
New machine-learning algorithms for prediction of Parkinson's disease
NASA Astrophysics Data System (ADS)
Mandal, Indrajit; Sairam, N.
2014-03-01
This article presents an enhanced prediction accuracy of diagnosis of Parkinson's disease (PD) to prevent the delay and misdiagnosis of patients using the proposed robust inference system. New machine-learning methods are proposed and performance comparisons are based on specificity, sensitivity, accuracy and other measurable parameters. The robust methods of treating Parkinson's disease (PD) includes sparse multinomial logistic regression, rotation forest ensemble with support vector machines and principal components analysis, artificial neural networks, boosting methods. A new ensemble method comprising of the Bayesian network optimised by Tabu search algorithm as classifier and Haar wavelets as projection filter is used for relevant feature selection and ranking. The highest accuracy obtained by linear logistic regression and sparse multinomial logistic regression is 100% and sensitivity, specificity of 0.983 and 0.996, respectively. All the experiments are conducted over 95% and 99% confidence levels and establish the results with corrected t-tests. This work shows a high degree of advancement in software reliability and quality of the computer-aided diagnosis system and experimentally shows best results with supportive statistical inference.
Noor, Siti Salwa Md; Michael, Kaleena; Marshall, Stephen; Ren, Jinchang
2017-11-16
In our preliminary study, the reflectance signatures obtained from hyperspectral imaging (HSI) of normal and abnormal corneal epithelium tissues of porcine show similar morphology with subtle differences. Here we present image enhancement algorithms that can be used to improve the interpretability of data into clinically relevant information to facilitate diagnostics. A total of 25 corneal epithelium images without the application of eye staining were used. Three image feature extraction approaches were applied for image classification: (i) image feature classification from histogram using a support vector machine with a Gaussian radial basis function (SVM-GRBF); (ii) physical image feature classification using deep-learning Convolutional Neural Networks (CNNs) only; and (iii) the combined classification of CNNs and SVM-Linear. The performance results indicate that our chosen image features from the histogram and length-scale parameter were able to classify with up to 100% accuracy; particularly, at CNNs and CNNs-SVM, by employing 80% of the data sample for training and 20% for testing. Thus, in the assessment of corneal epithelium injuries, HSI has high potential as a method that could surpass current technologies regarding speed, objectivity, and reliability.
The Design of a Templated C++ Small Vector Class for Numerical Computing
NASA Technical Reports Server (NTRS)
Moran, Patrick J.
2000-01-01
We describe the design and implementation of a templated C++ class for vectors. The vector class is templated both for vector length and vector component type; the vector length is fixed at template instantiation time. The vector implementation is such that for a vector of N components of type T, the total number of bytes required by the vector is equal to N * size of (T), where size of is the built-in C operator. The property of having a size no bigger than that required by the components themselves is key in many numerical computing applications, where one may allocate very large arrays of small, fixed-length vectors. In addition to the design trade-offs motivating our fixed-length vector design choice, we review some of the C++ template features essential to an efficient, succinct implementation. In particular, we highlight some of the standard C++ features, such as partial template specialization, that are not supported by all compilers currently. This report provides an inventory listing the relevant support currently provided by some key compilers, as well as test code one can use to verify compiler capabilities.
Preparation for a first-in-man lentivirus trial in patients with cystic fibrosis
Alton, Eric W F W; Beekman, Jeffery M; Boyd, A Christopher; Brand, June; Carlon, Marianne S; Connolly, Mary M; Chan, Mario; Conlon, Sinead; Davidson, Heather E; Davies, Jane C; Davies, Lee A; Dekkers, Johanna F; Doherty, Ann; Gea-Sorli, Sabrina; Gill, Deborah R; Griesenbach, Uta; Hasegawa, Mamoru; Higgins, Tracy E; Hironaka, Takashi; Hyndman, Laura; McLachlan, Gerry; Inoue, Makoto; Hyde, Stephen C; Innes, J Alastair; Maher, Toby M; Moran, Caroline; Meng, Cuixiang; Paul-Smith, Michael C; Pringle, Ian A; Pytel, Kamila M; Rodriguez-Martinez, Andrea; Schmidt, Alexander C; Stevenson, Barbara J; Sumner-Jones, Stephanie G; Toshner, Richard; Tsugumine, Shu; Wasowicz, Marguerite W; Zhu, Jie
2017-01-01
We have recently shown that non-viral gene therapy can stabilise the decline of lung function in patients with cystic fibrosis (CF). However, the effect was modest, and more potent gene transfer agents are still required. Fuson protein (F)/Hemagglutinin/Neuraminidase protein (HN)-pseudotyped lentiviral vectors are more efficient for lung gene transfer than non-viral vectors in preclinical models. In preparation for a first-in-man CF trial using the lentiviral vector, we have undertaken key translational preclinical studies. Regulatory-compliant vectors carrying a range of promoter/enhancer elements were assessed in mice and human air–liquid interface (ALI) cultures to select the lead candidate; cystic fibrosis transmembrane conductance receptor (CFTR) expression and function were assessed in CF models using this lead candidate vector. Toxicity was assessed and ‘benchmarked’ against the leading non-viral formulation recently used in a Phase IIb clinical trial. Integration site profiles were mapped and transduction efficiency determined to inform clinical trial dose-ranging. The impact of pre-existing and acquired immunity against the vector and vector stability in several clinically relevant delivery devices was assessed. A hybrid promoter hybrid cytosine guanine dinucleotide (CpG)- free CMV enhancer/elongation factor 1 alpha promoter (hCEF) consisting of the elongation factor 1α promoter and the cytomegalovirus enhancer was most efficacious in both murine lungs and human ALI cultures (both at least 2-log orders above background). The efficacy (at least 14% of airway cells transduced), toxicity and integration site profile supports further progression towards clinical trial and pre-existing and acquired immune responses do not interfere with vector efficacy. The lead rSIV.F/HN candidate expresses functional CFTR and the vector retains 90–100% transduction efficiency in clinically relevant delivery devices. The data support the progression of the F/HN-pseudotyped lentiviral vector into a first-in-man CF trial in 2017. PMID:27852956
Using a binaural biomimetic array to identify bottom objects ensonified by echolocating dolphins
Heiweg, D.A.; Moore, P.W.; Martin, S.W.; Dankiewicz, L.A.
2006-01-01
The development of a unique dolphin biomimetic sonar produced data that were used to study signal processing methods for object identification. Echoes from four metallic objects proud on the bottom, and a substrate-only condition, were generated by bottlenose dolphins trained to ensonify the targets in very shallow water. Using the two-element ('binaural') receive array, object echo spectra were collected and submitted for identification to four neural network architectures. Identification accuracy was evaluated over two receive array configurations, and five signal processing schemes. The four neural networks included backpropagation, learning vector quantization, genetic learning and probabilistic network architectures. The processing schemes included four methods that capitalized on the binaural data, plus a monaural benchmark process. All the schemes resulted in above-chance identification accuracy when applied to learning vector quantization and backpropagation. Beam-forming or concatenation of spectra from both receive elements outperformed the monaural benchmark, with higher sensitivity and lower bias. Ultimately, best object identification performance was achieved by the learning vector quantization network supplied with beam-formed data. The advantages of multi-element signal processing for object identification are clearly demonstrated in this development of a first-ever dolphin biomimetic sonar. ?? 2006 IOP Publishing Ltd.
NASA Astrophysics Data System (ADS)
Heidari, Morteza; Zargari Khuzani, Abolfazl; Danala, Gopichandh; Mirniaharikandehei, Seyedehnafiseh; Qian, Wei; Zheng, Bin
2018-03-01
Both conventional and deep machine learning has been used to develop decision-support tools applied in medical imaging informatics. In order to take advantages of both conventional and deep learning approach, this study aims to investigate feasibility of applying a locally preserving projection (LPP) based feature regeneration algorithm to build a new machine learning classifier model to predict short-term breast cancer risk. First, a computer-aided image processing scheme was used to segment and quantify breast fibro-glandular tissue volume. Next, initially computed 44 image features related to the bilateral mammographic tissue density asymmetry were extracted. Then, an LLP-based feature combination method was applied to regenerate a new operational feature vector using a maximal variance approach. Last, a k-nearest neighborhood (KNN) algorithm based machine learning classifier using the LPP-generated new feature vectors was developed to predict breast cancer risk. A testing dataset involving negative mammograms acquired from 500 women was used. Among them, 250 were positive and 250 remained negative in the next subsequent mammography screening. Applying to this dataset, LLP-generated feature vector reduced the number of features from 44 to 4. Using a leave-onecase-out validation method, area under ROC curve produced by the KNN classifier significantly increased from 0.62 to 0.68 (p < 0.05) and odds ratio was 4.60 with a 95% confidence interval of [3.16, 6.70]. Study demonstrated that this new LPP-based feature regeneration approach enabled to produce an optimal feature vector and yield improved performance in assisting to predict risk of women having breast cancer detected in the next subsequent mammography screening.
Maximum margin semi-supervised learning with irrelevant data.
Yang, Haiqin; Huang, Kaizhu; King, Irwin; Lyu, Michael R
2015-10-01
Semi-supervised learning (SSL) is a typical learning paradigms training a model from both labeled and unlabeled data. The traditional SSL models usually assume unlabeled data are relevant to the labeled data, i.e., following the same distributions of the targeted labeled data. In this paper, we address a different, yet formidable scenario in semi-supervised classification, where the unlabeled data may contain irrelevant data to the labeled data. To tackle this problem, we develop a maximum margin model, named tri-class support vector machine (3C-SVM), to utilize the available training data, while seeking a hyperplane for separating the targeted data well. Our 3C-SVM exhibits several characteristics and advantages. First, it does not need any prior knowledge and explicit assumption on the data relatedness. On the contrary, it can relieve the effect of irrelevant unlabeled data based on the logistic principle and maximum entropy principle. That is, 3C-SVM approaches an ideal classifier. This classifier relies heavily on labeled data and is confident on the relevant data lying far away from the decision hyperplane, while maximally ignoring the irrelevant data, which are hardly distinguished. Second, theoretical analysis is provided to prove that in what condition, the irrelevant data can help to seek the hyperplane. Third, 3C-SVM is a generalized model that unifies several popular maximum margin models, including standard SVMs, Semi-supervised SVMs (S(3)VMs), and SVMs learned from the universum (U-SVMs) as its special cases. More importantly, we deploy a concave-convex produce to solve the proposed 3C-SVM, transforming the original mixed integer programming, to a semi-definite programming relaxation, and finally to a sequence of quadratic programming subproblems, which yields the same worst case time complexity as that of S(3)VMs. Finally, we demonstrate the effectiveness and efficiency of our proposed 3C-SVM through systematical experimental comparisons. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hepworth, Philip J.; Nefedov, Alexey V.; Muchnik, Ilya B.; Morgan, Kenton L.
2012-01-01
Machine-learning algorithms pervade our daily lives. In epidemiology, supervised machine learning has the potential for classification, diagnosis and risk factor identification. Here, we report the use of support vector machine learning to identify the features associated with hock burn on commercial broiler farms, using routinely collected farm management data. These data lend themselves to analysis using machine-learning techniques. Hock burn, dermatitis of the skin over the hock, is an important indicator of broiler health and welfare. Remarkably, this classifier can predict the occurrence of high hock burn prevalence with accuracy of 0.78 on unseen data, as measured by the area under the receiver operating characteristic curve. We also compare the results with those obtained by standard multi-variable logistic regression and suggest that this technique provides new insights into the data. This novel application of a machine-learning algorithm, embedded in poultry management systems could offer significant improvements in broiler health and welfare worldwide. PMID:22319115
Hepworth, Philip J; Nefedov, Alexey V; Muchnik, Ilya B; Morgan, Kenton L
2012-08-07
Machine-learning algorithms pervade our daily lives. In epidemiology, supervised machine learning has the potential for classification, diagnosis and risk factor identification. Here, we report the use of support vector machine learning to identify the features associated with hock burn on commercial broiler farms, using routinely collected farm management data. These data lend themselves to analysis using machine-learning techniques. Hock burn, dermatitis of the skin over the hock, is an important indicator of broiler health and welfare. Remarkably, this classifier can predict the occurrence of high hock burn prevalence with accuracy of 0.78 on unseen data, as measured by the area under the receiver operating characteristic curve. We also compare the results with those obtained by standard multi-variable logistic regression and suggest that this technique provides new insights into the data. This novel application of a machine-learning algorithm, embedded in poultry management systems could offer significant improvements in broiler health and welfare worldwide.
Rondina, Jane Maryam; Ferreira, Luiz Kobuti; de Souza Duran, Fabio Luis; Kubo, Rodrigo; Ono, Carla Rachel; Leite, Claudia Costa; Smid, Jerusa; Nitrini, Ricardo; Buchpiguel, Carlos Alberto; Busatto, Geraldo F
2018-01-01
Machine learning techniques such as support vector machine (SVM) have been applied recently in order to accurately classify individuals with neuropsychiatric disorders such as Alzheimer's disease (AD) based on neuroimaging data. However, the multivariate nature of the SVM approach often precludes the identification of the brain regions that contribute most to classification accuracy. Multiple kernel learning (MKL) is a sparse machine learning method that allows the identification of the most relevant sources for the classification. By parcelating the brain into regions of interest (ROI) it is possible to use each ROI as a source to MKL (ROI-MKL). We applied MKL to multimodal neuroimaging data in order to: 1) compare the diagnostic performance of ROI-MKL and whole-brain SVM in discriminating patients with AD from demographically matched healthy controls and 2) identify the most relevant brain regions to the classification. We used two atlases (AAL and Brodmann's) to parcelate the brain into ROIs and applied ROI-MKL to structural (T1) MRI, 18 F-FDG-PET and regional cerebral blood flow SPECT (rCBF-SPECT) data acquired from the same subjects (20 patients with early AD and 18 controls). In ROI-MKL, each ROI received a weight (ROI-weight) that indicated the region's relevance to the classification. For each ROI, we also calculated whether there was a predominance of voxels indicating decreased or increased regional activity (for 18 F-FDG-PET and rCBF-SPECT) or volume (for T1-MRI) in AD patients. Compared to whole-brain SVM, the ROI-MKL approach resulted in better accuracies (with either atlas) for classification using 18 F-FDG-PET (92.5% accuracy for ROI-MKL versus 84% for whole-brain), but not when using rCBF-SPECT or T1-MRI. Although several cortical and subcortical regions contributed to discrimination, high ROI-weights and predominance of hypometabolism and atrophy were identified specially in medial parietal and temporo-limbic cortical regions. Also, the weight of discrimination due to a pattern of increased voxel-weight values in AD individuals was surprisingly high (ranging from approximately 20% to 40% depending on the imaging modality), located mainly in primary sensorimotor and visual cortices and subcortical nuclei. The MKL-ROI approach highlights the high discriminative weight of a subset of brain regions of known relevance to AD, the selection of which contributes to increased classification accuracy when applied to 18 F-FDG-PET data. Moreover, the MKL-ROI approach demonstrates that brain regions typically spared in mild stages of AD also contribute substantially in the individual discrimination of AD patients from controls.
Online estimation of lithium-ion battery capacity using sparse Bayesian learning
NASA Astrophysics Data System (ADS)
Hu, Chao; Jain, Gaurav; Schmidt, Craig; Strief, Carrie; Sullivan, Melani
2015-09-01
Lithium-ion (Li-ion) rechargeable batteries are used as one of the major energy storage components for implantable medical devices. Reliability of Li-ion batteries used in these devices has been recognized as of high importance from a broad range of stakeholders, including medical device manufacturers, regulatory agencies, patients and physicians. To ensure a Li-ion battery operates reliably, it is important to develop health monitoring techniques that accurately estimate the capacity of the battery throughout its life-time. This paper presents a sparse Bayesian learning method that utilizes the charge voltage and current measurements to estimate the capacity of a Li-ion battery used in an implantable medical device. Relevance Vector Machine (RVM) is employed as a probabilistic kernel regression method to learn the complex dependency of the battery capacity on the characteristic features that are extracted from the charge voltage and current measurements. Owing to the sparsity property of RVM, the proposed method generates a reduced-scale regression model that consumes only a small fraction of the CPU time required by a full-scale model, which makes online capacity estimation computationally efficient. 10 years' continuous cycling data and post-explant cycling data obtained from Li-ion prismatic cells are used to verify the performance of the proposed method.
Feng, Xinyu; Zhang, Shaosen; Huang, Fang; Zhang, Li; Feng, Jun; Xia, Zhigui; Zhou, Hejun; Hu, Wei; Zhou, Shuisen
2017-01-01
China has set a goal to eliminate all malaria in the country by 2020, but it is unclear if current understanding of malaria vectors and transmission is sufficient to achieve this objective. Anopheles sinensis is the most widespread malaria vector specie in China, which is also responsible for vivax malaria outbreak in central China. We reviewed literature from 1954 to 2016 on An. sinensis with emphasis on biology, bionomics, and molecular biology. A total of 538 references were relevant and included. An. sienesis occurs in 29 Chinese provinces. Temperature can affect most life-history parameters. Most An. sinensis are zoophilic, but sometimes they are facultatively anthropophilic. Sporozoite analysis demonstrated An. sinensis efficacy on Plasmodium vivax transmission. An. sinensis was not stringently refractory to P. falciparum under experimental conditions, however, sporozoite was not found in salivary glands of field collected An. sinensis. The literature on An. sienesis biology and bionomics was abundant, but molecular studies, such as gene functions and mechanisms, were limited. Only 12 molecules (genes, proteins or enzymes) have been studied. In addition, there were considerable untapped omics resources for potential vector control tools. Existing information on An. sienesis could serve as a baseline for advanced research on biology, bionomics and genetics relevant to vector control strategies. PMID:28848504
Feng, Xinyu; Zhang, Shaosen; Huang, Fang; Zhang, Li; Feng, Jun; Xia, Zhigui; Zhou, Hejun; Hu, Wei; Zhou, Shuisen
2017-01-01
China has set a goal to eliminate all malaria in the country by 2020, but it is unclear if current understanding of malaria vectors and transmission is sufficient to achieve this objective. Anopheles sinensis is the most widespread malaria vector specie in China, which is also responsible for vivax malaria outbreak in central China. We reviewed literature from 1954 to 2016 on An. sinensis with emphasis on biology, bionomics, and molecular biology. A total of 538 references were relevant and included. An. sienesis occurs in 29 Chinese provinces. Temperature can affect most life-history parameters. Most An. sinensis are zoophilic, but sometimes they are facultatively anthropophilic. Sporozoite analysis demonstrated An. sinensis efficacy on Plasmodium vivax transmission. An. sinensis was not stringently refractory to P. falciparum under experimental conditions, however, sporozoite was not found in salivary glands of field collected An. sinensis . The literature on An. sienesis biology and bionomics was abundant, but molecular studies, such as gene functions and mechanisms, were limited. Only 12 molecules (genes, proteins or enzymes) have been studied. In addition, there were considerable untapped omics resources for potential vector control tools. Existing information on An. sienesis could serve as a baseline for advanced research on biology, bionomics and genetics relevant to vector control strategies.
Chi-square-based scoring function for categorization of MEDLINE citations.
Kastrin, A; Peterlin, B; Hristovski, D
2010-01-01
Text categorization has been used in biomedical informatics for identifying documents containing relevant topics of interest. We developed a simple method that uses a chi-square-based scoring function to determine the likelihood of MEDLINE citations containing genetic relevant topic. Our procedure requires construction of a genetic and a nongenetic domain document corpus. We used MeSH descriptors assigned to MEDLINE citations for this categorization task. We compared frequencies of MeSH descriptors between two corpora applying chi-square test. A MeSH descriptor was considered to be a positive indicator if its relative observed frequency in the genetic domain corpus was greater than its relative observed frequency in the nongenetic domain corpus. The output of the proposed method is a list of scores for all the citations, with the highest score given to those citations containing MeSH descriptors typical for the genetic domain. Validation was done on a set of 734 manually annotated MEDLINE citations. It achieved predictive accuracy of 0.87 with 0.69 recall and 0.64 precision. We evaluated the method by comparing it to three machine-learning algorithms (support vector machines, decision trees, naïve Bayes). Although the differences were not statistically significantly different, results showed that our chi-square scoring performs as good as compared machine-learning algorithms. We suggest that the chi-square scoring is an effective solution to help categorize MEDLINE citations. The algorithm is implemented in the BITOLA literature-based discovery support system as a preprocessor for gene symbol disambiguation process.
Image segmentation using fuzzy LVQ clustering networks
NASA Technical Reports Server (NTRS)
Tsao, Eric Chen-Kuo; Bezdek, James C.; Pal, Nikhil R.
1992-01-01
In this note we formulate image segmentation as a clustering problem. Feature vectors extracted from a raw image are clustered into subregions, thereby segmenting the image. A fuzzy generalization of a Kohonen learning vector quantization (LVQ) which integrates the Fuzzy c-Means (FCM) model with the learning rate and updating strategies of the LVQ is used for this task. This network, which segments images in an unsupervised manner, is thus related to the FCM optimization problem. Numerical examples on photographic and magnetic resonance images are given to illustrate this approach to image segmentation.
Meiring, Gys Albertus Marthinus; Myburgh, Hermanus Carel
2015-01-01
In this paper the various driving style analysis solutions are investigated. An in-depth investigation is performed to identify the relevant machine learning and artificial intelligence algorithms utilised in current driver behaviour and driving style analysis systems. This review therefore serves as a trove of information, and will inform the specialist and the student regarding the current state of the art in driver style analysis systems, the application of these systems and the underlying artificial intelligence algorithms applied to these applications. The aim of the investigation is to evaluate the possibilities for unique driver identification utilizing the approaches identified in other driver behaviour studies. It was found that Fuzzy Logic inference systems, Hidden Markov Models and Support Vector Machines consist of promising capabilities to address unique driver identification algorithms if model complexity can be reduced. PMID:26690164
Meiring, Gys Albertus Marthinus; Myburgh, Hermanus Carel
2015-12-04
In this paper the various driving style analysis solutions are investigated. An in-depth investigation is performed to identify the relevant machine learning and artificial intelligence algorithms utilised in current driver behaviour and driving style analysis systems. This review therefore serves as a trove of information, and will inform the specialist and the student regarding the current state of the art in driver style analysis systems, the application of these systems and the underlying artificial intelligence algorithms applied to these applications. The aim of the investigation is to evaluate the possibilities for unique driver identification utilizing the approaches identified in other driver behaviour studies. It was found that Fuzzy Logic inference systems, Hidden Markov Models and Support Vector Machines consist of promising capabilities to address unique driver identification algorithms if model complexity can be reduced.
The Role of Innate Immunity in Conditioning Mosquito Susceptibility to West Nile Virus
Prasad, Abhishek N.; Brackney, Doug. E.; Ebel, Gregory D.
2013-01-01
Arthropod-borne viruses (arboviruses) represent an emerging threat to human and livestock health globally. In particular, those transmitted by mosquitoes present the greatest challenges to disease control efforts. An understanding of the molecular basis for mosquito innate immunity to arbovirus infection is therefore critical to investigations regarding arbovirus evolution, virus-vector ecology, and mosquito vector competence. In this review, we discuss the current state of understanding regarding mosquito innate immunity to West Nile virus. We draw from the literature with respect to other virus-vector pairings to attempt to draw inferences to gaps in our knowledge about West Nile virus and relevant vectors. PMID:24351797
Application of Classification Models to Pharyngeal High-Resolution Manometry
ERIC Educational Resources Information Center
Mielens, Jason D.; Hoffman, Matthew R.; Ciucci, Michelle R.; McCulloch, Timothy M.; Jiang, Jack J.
2012-01-01
Purpose: The authors present 3 methods of performing pattern recognition on spatiotemporal plots produced by pharyngeal high-resolution manometry (HRM). Method: Classification models, including the artificial neural networks (ANNs) multilayer perceptron (MLP) and learning vector quantization (LVQ), as well as support vector machines (SVM), were…
2011-01-01
Background The final article in a series of three publications examining the global distribution of 41 dominant vector species (DVS) of malaria is presented here. The first publication examined the DVS from the Americas, with the second covering those species present in Africa, Europe and the Middle East. Here we discuss the 19 DVS of the Asian-Pacific region. This region experiences a high diversity of vector species, many occurring sympatrically, which, combined with the occurrence of a high number of species complexes and suspected species complexes, and behavioural plasticity of many of these major vectors, adds a level of entomological complexity not comparable elsewhere globally. To try and untangle the intricacy of the vectors of this region and to increase the effectiveness of vector control interventions, an understanding of the contemporary distribution of each species, combined with a synthesis of the current knowledge of their behaviour and ecology is needed. Results Expert opinion (EO) range maps, created with the most up-to-date expert knowledge of each DVS distribution, were combined with a contemporary database of occurrence data and a suite of open access, environmental and climatic variables. Using the Boosted Regression Tree (BRT) modelling method, distribution maps of each DVS were produced. The occurrence data were abstracted from the formal, published literature, plus other relevant sources, resulting in the collation of DVS occurrence at 10116 locations across 31 countries, of which 8853 were successfully geo-referenced and 7430 were resolved to spatial areas that could be included in the BRT model. A detailed summary of the information on the bionomics of each species and species complex is also presented. Conclusions This article concludes a project aimed to establish the contemporary global distribution of the DVS of malaria. The three articles produced are intended as a detailed reference for scientists continuing research into the aspects of taxonomy, biology and ecology relevant to species-specific vector control. This research is particularly relevant to help unravel the complicated taxonomic status, ecology and epidemiology of the vectors of the Asia-Pacific region. All the occurrence data, predictive maps and EO-shape files generated during the production of these publications will be made available in the public domain. We hope that this will encourage data sharing to improve future iterations of the distribution maps. PMID:21612587
Sinka, Marianne E; Bangs, Michael J; Manguin, Sylvie; Chareonviriyaphap, Theeraphap; Patil, Anand P; Temperley, William H; Gething, Peter W; Elyazar, Iqbal R F; Kabaria, Caroline W; Harbach, Ralph E; Hay, Simon I
2011-05-25
The final article in a series of three publications examining the global distribution of 41 dominant vector species (DVS) of malaria is presented here. The first publication examined the DVS from the Americas, with the second covering those species present in Africa, Europe and the Middle East. Here we discuss the 19 DVS of the Asian-Pacific region. This region experiences a high diversity of vector species, many occurring sympatrically, which, combined with the occurrence of a high number of species complexes and suspected species complexes, and behavioural plasticity of many of these major vectors, adds a level of entomological complexity not comparable elsewhere globally. To try and untangle the intricacy of the vectors of this region and to increase the effectiveness of vector control interventions, an understanding of the contemporary distribution of each species, combined with a synthesis of the current knowledge of their behaviour and ecology is needed. Expert opinion (EO) range maps, created with the most up-to-date expert knowledge of each DVS distribution, were combined with a contemporary database of occurrence data and a suite of open access, environmental and climatic variables. Using the Boosted Regression Tree (BRT) modelling method, distribution maps of each DVS were produced. The occurrence data were abstracted from the formal, published literature, plus other relevant sources, resulting in the collation of DVS occurrence at 10116 locations across 31 countries, of which 8853 were successfully geo-referenced and 7430 were resolved to spatial areas that could be included in the BRT model. A detailed summary of the information on the bionomics of each species and species complex is also presented. This article concludes a project aimed to establish the contemporary global distribution of the DVS of malaria. The three articles produced are intended as a detailed reference for scientists continuing research into the aspects of taxonomy, biology and ecology relevant to species-specific vector control. This research is particularly relevant to help unravel the complicated taxonomic status, ecology and epidemiology of the vectors of the Asia-Pacific region. All the occurrence data, predictive maps and EO-shape files generated during the production of these publications will be made available in the public domain. We hope that this will encourage data sharing to improve future iterations of the distribution maps.
NASA Astrophysics Data System (ADS)
Yoshida, Yuki; Karakida, Ryo; Okada, Masato; Amari, Shun-ichi
2017-04-01
Weight normalization, a newly proposed optimization method for neural networks by Salimans and Kingma (2016), decomposes the weight vector of a neural network into a radial length and a direction vector, and the decomposed parameters follow their steepest descent update. They reported that learning with the weight normalization achieves better converging speed in several tasks including image recognition and reinforcement learning than learning with the conventional parameterization. However, it remains theoretically uncovered how the weight normalization improves the converging speed. In this study, we applied a statistical mechanical technique to analyze on-line learning in single layer linear and nonlinear perceptrons with weight normalization. By deriving order parameters of the learning dynamics, we confirmed quantitatively that weight normalization realizes fast converging speed by automatically tuning the effective learning rate, regardless of the nonlinearity of the neural network. This property is realized when the initial value of the radial length is near the global minimum; therefore, our theory suggests that it is important to choose the initial value of the radial length appropriately when using weight normalization.
Features: Real-Time Adaptive Feature and Document Learning for Web Search.
ERIC Educational Resources Information Center
Chen, Zhixiang; Meng, Xiannong; Fowler, Richard H.; Zhu, Binhai
2001-01-01
Describes Features, an intelligent Web search engine that is able to perform real-time adaptive feature (i.e., keyword) and document learning. Explains how Features learns from users' document relevance feedback and automatically extracts and suggests indexing keywords relevant to a search query, and learns from users' keyword relevance feedback…
ERIC Educational Resources Information Center
Mikula, Brendon D.; Heckler, Andrew F.
2017-01-01
We propose a framework for improving accuracy, fluency, and retention of basic skills essential for solving problems relevant to STEM introductory courses, and implement the framework for the case of basic vector math skills over several semesters in an introductory physics course. Using an iterative development process, the framework begins with…
Learning Compact Binary Face Descriptor for Face Recognition.
Lu, Jiwen; Liong, Venice Erin; Zhou, Xiuzhuang; Zhou, Jie
2015-10-01
Binary feature descriptors such as local binary patterns (LBP) and its variations have been widely used in many face recognition systems due to their excellent robustness and strong discriminative power. However, most existing binary face descriptors are hand-crafted, which require strong prior knowledge to engineer them by hand. In this paper, we propose a compact binary face descriptor (CBFD) feature learning method for face representation and recognition. Given each face image, we first extract pixel difference vectors (PDVs) in local patches by computing the difference between each pixel and its neighboring pixels. Then, we learn a feature mapping to project these pixel difference vectors into low-dimensional binary vectors in an unsupervised manner, where 1) the variance of all binary codes in the training set is maximized, 2) the loss between the original real-valued codes and the learned binary codes is minimized, and 3) binary codes evenly distribute at each learned bin, so that the redundancy information in PDVs is removed and compact binary codes are obtained. Lastly, we cluster and pool these binary codes into a histogram feature as the final representation for each face image. Moreover, we propose a coupled CBFD (C-CBFD) method by reducing the modality gap of heterogeneous faces at the feature level to make our method applicable to heterogeneous face recognition. Extensive experimental results on five widely used face datasets show that our methods outperform state-of-the-art face descriptors.
An efficient scheme for automatic web pages categorization using the support vector machine
NASA Astrophysics Data System (ADS)
Bhalla, Vinod Kumar; Kumar, Neeraj
2016-07-01
In the past few years, with an evolution of the Internet and related technologies, the number of the Internet users grows exponentially. These users demand access to relevant web pages from the Internet within fraction of seconds. To achieve this goal, there is a requirement of an efficient categorization of web page contents. Manual categorization of these billions of web pages to achieve high accuracy is a challenging task. Most of the existing techniques reported in the literature are semi-automatic. Using these techniques, higher level of accuracy cannot be achieved. To achieve these goals, this paper proposes an automatic web pages categorization into the domain category. The proposed scheme is based on the identification of specific and relevant features of the web pages. In the proposed scheme, first extraction and evaluation of features are done followed by filtering the feature set for categorization of domain web pages. A feature extraction tool based on the HTML document object model of the web page is developed in the proposed scheme. Feature extraction and weight assignment are based on the collection of domain-specific keyword list developed by considering various domain pages. Moreover, the keyword list is reduced on the basis of ids of keywords in keyword list. Also, stemming of keywords and tag text is done to achieve a higher accuracy. An extensive feature set is generated to develop a robust classification technique. The proposed scheme was evaluated using a machine learning method in combination with feature extraction and statistical analysis using support vector machine kernel as the classification tool. The results obtained confirm the effectiveness of the proposed scheme in terms of its accuracy in different categories of web pages.
Permutation importance: a corrected feature importance measure.
Altmann, André; Toloşi, Laura; Sander, Oliver; Lengauer, Thomas
2010-05-15
In life sciences, interpretability of machine learning models is as important as their prediction accuracy. Linear models are probably the most frequently used methods for assessing feature relevance, despite their relative inflexibility. However, in the past years effective estimators of feature relevance have been derived for highly complex or non-parametric models such as support vector machines and RandomForest (RF) models. Recently, it has been observed that RF models are biased in such a way that categorical variables with a large number of categories are preferred. In this work, we introduce a heuristic for normalizing feature importance measures that can correct the feature importance bias. The method is based on repeated permutations of the outcome vector for estimating the distribution of measured importance for each variable in a non-informative setting. The P-value of the observed importance provides a corrected measure of feature importance. We apply our method to simulated data and demonstrate that (i) non-informative predictors do not receive significant P-values, (ii) informative variables can successfully be recovered among non-informative variables and (iii) P-values computed with permutation importance (PIMP) are very helpful for deciding the significance of variables, and therefore improve model interpretability. Furthermore, PIMP was used to correct RF-based importance measures for two real-world case studies. We propose an improved RF model that uses the significant variables with respect to the PIMP measure and show that its prediction accuracy is superior to that of other existing models. R code for the method presented in this article is available at http://www.mpi-inf.mpg.de/ approximately altmann/download/PIMP.R CONTACT: altmann@mpi-inf.mpg.de, laura.tolosi@mpi-inf.mpg.de Supplementary data are available at Bioinformatics online.
Viral Vectors for in Vivo Gene Transfer
NASA Astrophysics Data System (ADS)
Thévenot, E.; Dufour, N.; Déglon, N.
The transfer of DNA into the nucleus of a eukaryotic cell (gene transfer) is a central theme of modern biology. The transfer is said to be somatic when it refers to non-germline organs of a developed individual, and germline when it concerns gametes or the fertilised egg of an animal, with the aim of transmitting the relevant genetic modification to its descendents [1]. The efficient introduction of genetic material into a somatic or germline cell and the control of its expression over time have led to major advances in understanding how genes work in vivo, i.e., in living organisms (functional genomics), but also to the development of innovative therapeutic methods (gene therapy). The efficiency of gene transfer is conditioned by the vehicle used, called the vector. Desirable features for a vector are as follows: Easy to produce high titer stocks of the vector in a reproducible way. Absence of toxicity related to transduction (transfer of genetic material into the target cell, and its expression there) and no immune reaction of the organism against the vector and/or therapeutic protein. Stability in the expression of the relevant gene over time, and the possibility of regulation, e.g., to control expression of the therapeutic protein on the physiological level, or to end expression at the end of treatment. Transduction of quiescent cells should be as efficient as transduction of dividing cells. Vectors currently used fall into two categories: non-viral and viral vectors. In non-viral vectors, the DNA is complexed with polymers, lipids, or cationic detergents (described in Chap. 3). These vectors have a low risk of toxicity and immune reaction. However, they are less efficient in vivo than viral vectors when it comes to the number of cells transduced and long-term transgene expression. (Naked DNA transfer or electroporation is rather inefficient in the organism. This type of gene transfer will not be discussed here, and the interested reader is referred to the review [2].) For this reason, it is mainly viral vectors that are used for gene transfer in animals and humans.
Relevance of Web Documents:Ghosts Consensus Method.
ERIC Educational Resources Information Center
Gorbunov, Andrey L.
2002-01-01
Discusses how to improve the quality of Internet search systems and introduces the Ghosts Consensus Method which is free from the drawbacks of digital democracy algorithms and is based on linear programming tasks. Highlights include vector space models; determining relevant documents; and enriching query terms. (LRW)
Dobson, Andrew D M; Auld, Stuart K J R
2016-04-01
Models used to investigate the relationship between biodiversity change and vector-borne disease risk often do not explicitly include the vector; they instead rely on a frequency-dependent transmission function to represent vector dynamics. However, differences between classes of vector (e.g., ticks and insects) can cause discrepancies in epidemiological responses to environmental change. Using a pair of disease models (mosquito- and tick-borne), we simulated substitutive and additive biodiversity change (where noncompetent hosts replaced or were added to competent hosts, respectively), while considering different relationships between vector and host densities. We found important differences between classes of vector, including an increased likelihood of amplified disease risk under additive biodiversity change in mosquito models, driven by higher vector biting rates. We also draw attention to more general phenomena, such as a negative relationship between initial infection prevalence in vectors and likelihood of dilution, and the potential for a rise in density of infected vectors to occur simultaneously with a decline in proportion of infected hosts. This has important implications; the density of infected vectors is the most valid metric for primarily zoonotic infections, while the proportion of infected hosts is more relevant for infections where humans are a primary host.
Enabling multi-level relevance feedback on PubMed by integrating rank learning into DBMS.
Yu, Hwanjo; Kim, Taehoon; Oh, Jinoh; Ko, Ilhwan; Kim, Sungchul; Han, Wook-Shin
2010-04-16
Finding relevant articles from PubMed is challenging because it is hard to express the user's specific intention in the given query interface, and a keyword query typically retrieves a large number of results. Researchers have applied machine learning techniques to find relevant articles by ranking the articles according to the learned relevance function. However, the process of learning and ranking is usually done offline without integrated with the keyword queries, and the users have to provide a large amount of training documents to get a reasonable learning accuracy. This paper proposes a novel multi-level relevance feedback system for PubMed, called RefMed, which supports both ad-hoc keyword queries and a multi-level relevance feedback in real time on PubMed. RefMed supports a multi-level relevance feedback by using the RankSVM as the learning method, and thus it achieves higher accuracy with less feedback. RefMed "tightly" integrates the RankSVM into RDBMS to support both keyword queries and the multi-level relevance feedback in real time; the tight coupling of the RankSVM and DBMS substantially improves the processing time. An efficient parameter selection method for the RankSVM is also proposed, which tunes the RankSVM parameter without performing validation. Thereby, RefMed achieves a high learning accuracy in real time without performing a validation process. RefMed is accessible at http://dm.postech.ac.kr/refmed. RefMed is the first multi-level relevance feedback system for PubMed, which achieves a high accuracy with less feedback. It effectively learns an accurate relevance function from the user's feedback and efficiently processes the function to return relevant articles in real time.
Enabling multi-level relevance feedback on PubMed by integrating rank learning into DBMS
2010-01-01
Background Finding relevant articles from PubMed is challenging because it is hard to express the user's specific intention in the given query interface, and a keyword query typically retrieves a large number of results. Researchers have applied machine learning techniques to find relevant articles by ranking the articles according to the learned relevance function. However, the process of learning and ranking is usually done offline without integrated with the keyword queries, and the users have to provide a large amount of training documents to get a reasonable learning accuracy. This paper proposes a novel multi-level relevance feedback system for PubMed, called RefMed, which supports both ad-hoc keyword queries and a multi-level relevance feedback in real time on PubMed. Results RefMed supports a multi-level relevance feedback by using the RankSVM as the learning method, and thus it achieves higher accuracy with less feedback. RefMed "tightly" integrates the RankSVM into RDBMS to support both keyword queries and the multi-level relevance feedback in real time; the tight coupling of the RankSVM and DBMS substantially improves the processing time. An efficient parameter selection method for the RankSVM is also proposed, which tunes the RankSVM parameter without performing validation. Thereby, RefMed achieves a high learning accuracy in real time without performing a validation process. RefMed is accessible at http://dm.postech.ac.kr/refmed. Conclusions RefMed is the first multi-level relevance feedback system for PubMed, which achieves a high accuracy with less feedback. It effectively learns an accurate relevance function from the user’s feedback and efficiently processes the function to return relevant articles in real time. PMID:20406504
Area-wide management of Aedes albopictus: lessons learned.
USDA-ARS?s Scientific Manuscript database
Aedes albopictus, the Asian tiger mosquito, is the principal vector of chikungunya fever and a critical vector of dengue. This daytime biting pest often causes the majority of service requests from urban and suburban residents in New Jersey and many other states and nations where it has spread. Ou...
Learning semantic and visual similarity for endomicroscopy video retrieval.
Andre, Barbara; Vercauteren, Tom; Buchner, Anna M; Wallace, Michael B; Ayache, Nicholas
2012-06-01
Content-based image retrieval (CBIR) is a valuable computer vision technique which is increasingly being applied in the medical community for diagnosis support. However, traditional CBIR systems only deliver visual outputs, i.e., images having a similar appearance to the query, which is not directly interpretable by the physicians. Our objective is to provide a system for endomicroscopy video retrieval which delivers both visual and semantic outputs that are consistent with each other. In a previous study, we developed an adapted bag-of-visual-words method for endomicroscopy retrieval, called "Dense-Sift," that computes a visual signature for each video. In this paper, we present a novel approach to complement visual similarity learning with semantic knowledge extraction, in the field of in vivo endomicroscopy. We first leverage a semantic ground truth based on eight binary concepts, in order to transform these visual signatures into semantic signatures that reflect how much the presence of each semantic concept is expressed by the visual words describing the videos. Using cross-validation, we demonstrate that, in terms of semantic detection, our intuitive Fisher-based method transforming visual-word histograms into semantic estimations outperforms support vector machine (SVM) methods with statistical significance. In a second step, we propose to improve retrieval relevance by learning an adjusted similarity distance from a perceived similarity ground truth. As a result, our distance learning method allows to statistically improve the correlation with the perceived similarity. We also demonstrate that, in terms of perceived similarity, the recall performance of the semantic signatures is close to that of visual signatures and significantly better than those of several state-of-the-art CBIR methods. The semantic signatures are thus able to communicate high-level medical knowledge while being consistent with the low-level visual signatures and much shorter than them. In our resulting retrieval system, we decide to use visual signatures for perceived similarity learning and retrieval, and semantic signatures for the output of an additional information, expressed in the endoscopist own language, which provides a relevant semantic translation of the visual retrieval outputs.
Signal detection using support vector machines in the presence of ultrasonic speckle
NASA Astrophysics Data System (ADS)
Kotropoulos, Constantine L.; Pitas, Ioannis
2002-04-01
Support Vector Machines are a general algorithm based on guaranteed risk bounds of statistical learning theory. They have found numerous applications, such as in classification of brain PET images, optical character recognition, object detection, face verification, text categorization and so on. In this paper we propose the use of support vector machines to segment lesions in ultrasound images and we assess thoroughly their lesion detection ability. We demonstrate that trained support vector machines with a Radial Basis Function kernel segment satisfactorily (unseen) ultrasound B-mode images as well as clinical ultrasonic images.
Zhang, Daqing; Xiao, Jianfeng; Zhou, Nannan; Luo, Xiaomin; Jiang, Hualiang; Chen, Kaixian
2015-01-01
Blood-brain barrier (BBB) is a highly complex physical barrier determining what substances are allowed to enter the brain. Support vector machine (SVM) is a kernel-based machine learning method that is widely used in QSAR study. For a successful SVM model, the kernel parameters for SVM and feature subset selection are the most important factors affecting prediction accuracy. In most studies, they are treated as two independent problems, but it has been proven that they could affect each other. We designed and implemented genetic algorithm (GA) to optimize kernel parameters and feature subset selection for SVM regression and applied it to the BBB penetration prediction. The results show that our GA/SVM model is more accurate than other currently available log BB models. Therefore, to optimize both SVM parameters and feature subset simultaneously with genetic algorithm is a better approach than other methods that treat the two problems separately. Analysis of our log BB model suggests that carboxylic acid group, polar surface area (PSA)/hydrogen-bonding ability, lipophilicity, and molecular charge play important role in BBB penetration. Among those properties relevant to BBB penetration, lipophilicity could enhance the BBB penetration while all the others are negatively correlated with BBB penetration. PMID:26504797
Family leader empowerment program using participatory learning process for dengue vector control.
Pengvanich, Veerapong
2011-02-01
Assess the performance of the empowerment program using participatory learning process for the control of Dengue vector The program focuses on using the leaders of families as the main executer of the vector control protocol. This quasi-experimental research utilized the two-group pretest-posttest design. The sample group consisted of 120 family leaders from two communities in Mueang Municipality, Chachoengsao Province. The research was conducted during an 8-week period between April and June 2010. The data were collected and analyzed based on frequency, percentage, mean, paired t-test, and independent t-test. The result was evaluated by comparing the difference between the mean prevalence index of mosquito larvae before and after the process implementation in terms of the container index (CI) and the house index (HI). After spending eight weeks in the empowerment program, the family leader's behavior in the aspect of Dengue vector control has improved. The Container Index and the House Index were found to decrease with p = 0.05 statistical significance. The reduction of CI and HI suggested that the program worked well in the selected communities. The success of the Dengue vector control program depended on cooperation and participation of many groups, especially the families in the community When the family leaders have good attitude and are capable of carrying out the vector control protocol, the risk factor leading to the incidence of Dengue rims infection can be reduced.
An implementation of support vector machine on sentiment classification of movie reviews
NASA Astrophysics Data System (ADS)
Yulietha, I. M.; Faraby, S. A.; Adiwijaya; Widyaningtyas, W. C.
2018-03-01
With technological advances, all information about movie is available on the internet. If the information is processed properly, it will get the quality of the information. This research proposes to the classify sentiments on movie review documents. This research uses Support Vector Machine (SVM) method because it can classify high dimensional data in accordance with the data used in this research in the form of text. Support Vector Machine is a popular machine learning technique for text classification because it can classify by learning from a collection of documents that have been classified previously and can provide good result. Based on number of datasets, the 90-10 composition has the best result that is 85.6%. Based on SVM kernel, kernel linear with constant 1 has the best result that is 84.9%
ISBDD Model for Classification of Hyperspectral Remote Sensing Imagery
Li, Na; Xu, Zhaopeng; Zhao, Huijie; Huang, Xinchen; Drummond, Jane; Wang, Daming
2018-01-01
The diverse density (DD) algorithm was proposed to handle the problem of low classification accuracy when training samples contain interference such as mixed pixels. The DD algorithm can learn a feature vector from training bags, which comprise instances (pixels). However, the feature vector learned by the DD algorithm cannot always effectively represent one type of ground cover. To handle this problem, an instance space-based diverse density (ISBDD) model that employs a novel training strategy is proposed in this paper. In the ISBDD model, DD values of each pixel are computed instead of learning a feature vector, and as a result, the pixel can be classified according to its DD values. Airborne hyperspectral data collected by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor and the Push-broom Hyperspectral Imager (PHI) are applied to evaluate the performance of the proposed model. Results show that the overall classification accuracy of ISBDD model on the AVIRIS and PHI images is up to 97.65% and 89.02%, respectively, while the kappa coefficient is up to 0.97 and 0.88, respectively. PMID:29510547
A novel logic-based approach for quantitative toxicology prediction.
Amini, Ata; Muggleton, Stephen H; Lodhi, Huma; Sternberg, Michael J E
2007-01-01
There is a pressing need for accurate in silico methods to predict the toxicity of molecules that are being introduced into the environment or are being developed into new pharmaceuticals. Predictive toxicology is in the realm of structure activity relationships (SAR), and many approaches have been used to derive such SAR. Previous work has shown that inductive logic programming (ILP) is a powerful approach that circumvents several major difficulties, such as molecular superposition, faced by some other SAR methods. The ILP approach reasons with chemical substructures within a relational framework and yields chemically understandable rules. Here, we report a general new approach, support vector inductive logic programming (SVILP), which extends the essentially qualitative ILP-based SAR to quantitative modeling. First, ILP is used to learn rules, the predictions of which are then used within a novel kernel to derive a support-vector generalization model. For a highly heterogeneous dataset of 576 molecules with known fathead minnow fish toxicity, the cross-validated correlation coefficients (R2CV) from a chemical descriptor method (CHEM) and SVILP are 0.52 and 0.66, respectively. The ILP, CHEM, and SVILP approaches correctly predict 55, 58, and 73%, respectively, of toxic molecules. In a set of 165 unseen molecules, the R2 values from the commercial software TOPKAT and SVILP are 0.26 and 0.57, respectively. In all calculations, SVILP showed significant improvements in comparison with the other methods. The SVILP approach has a major advantage in that it uses ILP automatically and consistently to derive rules, mostly novel, describing fragments that are toxicity alerts. The SVILP is a general machine-learning approach and has the potential of tackling many problems relevant to chemoinformatics including in silico drug design.
Li, Man; Ling, Cheng; Xu, Qi; Gao, Jingyang
2018-02-01
Sequence classification is crucial in predicting the function of newly discovered sequences. In recent years, the prediction of the incremental large-scale and diversity of sequences has heavily relied on the involvement of machine-learning algorithms. To improve prediction accuracy, these algorithms must confront the key challenge of extracting valuable features. In this work, we propose a feature-enhanced protein classification approach, considering the rich generation of multiple sequence alignment algorithms, N-gram probabilistic language model and the deep learning technique. The essence behind the proposed method is that if each group of sequences can be represented by one feature sequence, composed of homologous sites, there should be less loss when the sequence is rebuilt, when a more relevant sequence is added to the group. On the basis of this consideration, the prediction becomes whether a query sequence belonging to a group of sequences can be transferred to calculate the probability that the new feature sequence evolves from the original one. The proposed work focuses on the hierarchical classification of G-protein Coupled Receptors (GPCRs), which begins by extracting the feature sequences from the multiple sequence alignment results of the GPCRs sub-subfamilies. The N-gram model is then applied to construct the input vectors. Finally, these vectors are imported into a convolutional neural network to make a prediction. The experimental results elucidate that the proposed method provides significant performance improvements. The classification error rate of the proposed method is reduced by at least 4.67% (family level I) and 5.75% (family Level II), in comparison with the current state-of-the-art methods. The implementation program of the proposed work is freely available at: https://github.com/alanFchina/CNN .
ERIC Educational Resources Information Center
Jeffrey, Bob
2008-01-01
Making learning relevant involves many aspects of teaching such as attention to levels of maturity, individual inclinations, emotional, physical, aesthetic and cognitive activity and group dynamics. However, making learning relevant is not only a teacher led activity, for learners make activities relevant by the identification of connections with…
Craig, Nathaniel; Knapen, Simon; Longhi, Pietro; ...
2016-07-01
Here, we present a version of the twin Higgs mechanism with vector-like top partners. In this setup all gauge anomalies automatically cancel, even without twin leptons. The matter content of the most minimal twin sector is therefore just two twin tops and one twin bottom. The LHC phenomenology, illustrated with two example models, is dominated by twin glueball decays, possibly in association with Higgs bosons. We further construct an explicit four-dimensional UV completion and discuss a variety of UV completions relevant for both vector-like and fraternal twin Higgs models.
Parodi, Stefano; Manneschi, Chiara; Verda, Damiano; Ferrari, Enrico; Muselli, Marco
2018-03-01
This study evaluates the performance of a set of machine learning techniques in predicting the prognosis of Hodgkin's lymphoma using clinical factors and gene expression data. Analysed samples from 130 Hodgkin's lymphoma patients included a small set of clinical variables and more than 54,000 gene features. Machine learning classifiers included three black-box algorithms ( k-nearest neighbour, Artificial Neural Network, and Support Vector Machine) and two methods based on intelligible rules (Decision Tree and the innovative Logic Learning Machine method). Support Vector Machine clearly outperformed any of the other methods. Among the two rule-based algorithms, Logic Learning Machine performed better and identified a set of simple intelligible rules based on a combination of clinical variables and gene expressions. Decision Tree identified a non-coding gene ( XIST) involved in the early phases of X chromosome inactivation that was overexpressed in females and in non-relapsed patients. XIST expression might be responsible for the better prognosis of female Hodgkin's lymphoma patients.
Dhimal, Meghnath; Ahrens, Bodo; Kuch, Ulrich
2015-01-01
Despite its largely mountainous terrain for which this Himalayan country is a popular tourist destination, Nepal is now endemic for five major vector-borne diseases (VBDs), namely malaria, lymphatic filariasis, Japanese encephalitis, visceral leishmaniasis and dengue fever. There is increasing evidence about the impacts of climate change on VBDs especially in tropical highlands and temperate regions. Our aim is to explore whether the observed spatiotemporal distributions of VBDs in Nepal can be related to climate change. A systematic literature search was performed and summarized information on climate change and the spatiotemporal distribution of VBDs in Nepal from the published literature until December 2014 following providing items for systematic review and meta-analysis (PRISMA) guidelines. We found 12 studies that analysed the trend of climatic data and are relevant for the study of VBDs, 38 studies that dealt with the spatial and temporal distribution of disease vectors and disease transmission. Among 38 studies, only eight studies assessed the association of VBDs with climatic variables. Our review highlights a pronounced warming in the mountains and an expansion of autochthonous cases of VBDs to non-endemic areas including mountain regions (i.e., at least 2,000 m above sea level). Furthermore, significant relationships between climatic variables and VBDs and their vectors are found in short-term studies. Taking into account the weak health care systems and difficult geographic terrain of Nepal, increasing trade and movements of people, a lack of vector control interventions, observed relationships between climatic variables and VBDs and their vectors and the establishment of relevant disease vectors already at least 2,000 m above sea level, we conclude that climate change can intensify the risk of VBD epidemics in the mountain regions of Nepal if other non-climatic drivers of VBDs remain constant.
An, Ji-Young
2016-01-01
Objectives This article reviews an evaluation vector model driven from a participatory action research leveraging a collective inquiry system named SMILE (Stanford Mobile Inquiry-based Learning Environment). Methods SMILE has been implemented in a diverse set of collective inquiry generation and analysis scenarios including community health care-specific professional development sessions and community-based participatory action research projects. In each scenario, participants are given opportunities to construct inquiries around physical and emotional health-related phenomena in their own community. Results Participants formulated inquiries as well as potential clinical treatments and hypothetical scenarios to address health concerns or clarify misunderstandings or misdiagnoses often found in their community practices. From medical universities to rural village health promotion organizations, all participatory inquiries and potential solutions can be collected and analyzed. The inquiry and solution sets represent an evaluation vector which helps educators better understand community health issues at a much deeper level. Conclusions SMILE helps collect problems that are most important and central to their community health concerns. The evaluation vector, consisting participatory and collective inquiries and potential solutions, helps the researchers assess the participants' level of understanding on issues around health concerns and practices while helping the community adequately formulate follow-up action plans. The method used in SMILE requires much further enhancement with machine learning and advanced data visualization. PMID:27525157
Robustness-Based Simplification of 2D Steady and Unsteady Vector Fields.
Skraba, Primoz; Bei Wang; Guoning Chen; Rosen, Paul
2015-08-01
Vector field simplification aims to reduce the complexity of the flow by removing features in order of their relevance and importance, to reveal prominent behavior and obtain a compact representation for interpretation. Most existing simplification techniques based on the topological skeleton successively remove pairs of critical points connected by separatrices, using distance or area-based relevance measures. These methods rely on the stable extraction of the topological skeleton, which can be difficult due to instability in numerical integration, especially when processing highly rotational flows. In this paper, we propose a novel simplification scheme derived from the recently introduced topological notion of robustness which enables the pruning of sets of critical points according to a quantitative measure of their stability, that is, the minimum amount of vector field perturbation required to remove them. This leads to a hierarchical simplification scheme that encodes flow magnitude in its perturbation metric. Our novel simplification algorithm is based on degree theory and has minimal boundary restrictions. Finally, we provide an implementation under the piecewise-linear setting and apply it to both synthetic and real-world datasets. We show local and complete hierarchical simplifications for steady as well as unsteady vector fields.
The Adenovirus Genome Contributes to the Structural Stability of the Virion
Saha, Bratati; Wong, Carmen M.; Parks, Robin J.
2014-01-01
Adenovirus (Ad) vectors are currently the most commonly used platform for therapeutic gene delivery in human gene therapy clinical trials. Although these vectors are effective, many researchers seek to further improve the safety and efficacy of Ad-based vectors through detailed characterization of basic Ad biology relevant to its function as a vector system. Most Ad vectors are deleted of key, or all, viral protein coding sequences, which functions to not only prevent virus replication but also increase the cloning capacity of the vector for foreign DNA. However, radical modifications to the genome size significantly decreases virion stability, suggesting that the virus genome plays a role in maintaining the physical stability of the Ad virion. Indeed, a similar relationship between genome size and virion stability has been noted for many viruses. This review discusses the impact of the genome size on Ad virion stability and emphasizes the need to consider this aspect of virus biology in Ad-based vector design. PMID:25254384
Huang, Qi; Yang, Dapeng; Jiang, Li; Zhang, Huajie; Liu, Hong; Kotani, Kiyoshi
2017-01-01
Performance degradation will be caused by a variety of interfering factors for pattern recognition-based myoelectric control methods in the long term. This paper proposes an adaptive learning method with low computational cost to mitigate the effect in unsupervised adaptive learning scenarios. We presents a particle adaptive classifier (PAC), by constructing a particle adaptive learning strategy and universal incremental least square support vector classifier (LS-SVC). We compared PAC performance with incremental support vector classifier (ISVC) and non-adapting SVC (NSVC) in a long-term pattern recognition task in both unsupervised and supervised adaptive learning scenarios. Retraining time cost and recognition accuracy were compared by validating the classification performance on both simulated and realistic long-term EMG data. The classification results of realistic long-term EMG data showed that the PAC significantly decreased the performance degradation in unsupervised adaptive learning scenarios compared with NSVC (9.03% ± 2.23%, p < 0.05) and ISVC (13.38% ± 2.62%, p = 0.001), and reduced the retraining time cost compared with ISVC (2 ms per updating cycle vs. 50 ms per updating cycle). PMID:28608824
Huang, Qi; Yang, Dapeng; Jiang, Li; Zhang, Huajie; Liu, Hong; Kotani, Kiyoshi
2017-06-13
Performance degradation will be caused by a variety of interfering factors for pattern recognition-based myoelectric control methods in the long term. This paper proposes an adaptive learning method with low computational cost to mitigate the effect in unsupervised adaptive learning scenarios. We presents a particle adaptive classifier (PAC), by constructing a particle adaptive learning strategy and universal incremental least square support vector classifier (LS-SVC). We compared PAC performance with incremental support vector classifier (ISVC) and non-adapting SVC (NSVC) in a long-term pattern recognition task in both unsupervised and supervised adaptive learning scenarios. Retraining time cost and recognition accuracy were compared by validating the classification performance on both simulated and realistic long-term EMG data. The classification results of realistic long-term EMG data showed that the PAC significantly decreased the performance degradation in unsupervised adaptive learning scenarios compared with NSVC (9.03% ± 2.23%, p < 0.05) and ISVC (13.38% ± 2.62%, p = 0.001), and reduced the retraining time cost compared with ISVC (2 ms per updating cycle vs. 50 ms per updating cycle).
Extracting laboratory test information from biomedical text
Kang, Yanna Shen; Kayaalp, Mehmet
2013-01-01
Background: No previous study reported the efficacy of current natural language processing (NLP) methods for extracting laboratory test information from narrative documents. This study investigates the pathology informatics question of how accurately such information can be extracted from text with the current tools and techniques, especially machine learning and symbolic NLP methods. The study data came from a text corpus maintained by the U.S. Food and Drug Administration, containing a rich set of information on laboratory tests and test devices. Methods: The authors developed a symbolic information extraction (SIE) system to extract device and test specific information about four types of laboratory test entities: Specimens, analytes, units of measures and detection limits. They compared the performance of SIE and three prominent machine learning based NLP systems, LingPipe, GATE and BANNER, each implementing a distinct supervised machine learning method, hidden Markov models, support vector machines and conditional random fields, respectively. Results: Machine learning systems recognized laboratory test entities with moderately high recall, but low precision rates. Their recall rates were relatively higher when the number of distinct entity values (e.g., the spectrum of specimens) was very limited or when lexical morphology of the entity was distinctive (as in units of measures), yet SIE outperformed them with statistically significant margins on extracting specimen, analyte and detection limit information in both precision and F-measure. Its high recall performance was statistically significant on analyte information extraction. Conclusions: Despite its shortcomings against machine learning methods, a well-tailored symbolic system may better discern relevancy among a pile of information of the same type and may outperform a machine learning system by tapping into lexically non-local contextual information such as the document structure. PMID:24083058
Guo, Yufan; Silins, Ilona; Stenius, Ulla; Korhonen, Anna
2013-06-01
Techniques that are capable of automatically analyzing the information structure of scientific articles could be highly useful for improving information access to biomedical literature. However, most existing approaches rely on supervised machine learning (ML) and substantial labeled data that are expensive to develop and apply to different sub-fields of biomedicine. Recent research shows that minimal supervision is sufficient for fairly accurate information structure analysis of biomedical abstracts. However, is it realistic for full articles given their high linguistic and informational complexity? We introduce and release a novel corpus of 50 biomedical articles annotated according to the Argumentative Zoning (AZ) scheme, and investigate active learning with one of the most widely used ML models-Support Vector Machines (SVM)-on this corpus. Additionally, we introduce two novel applications that use AZ to support real-life literature review in biomedicine via question answering and summarization. We show that active learning with SVM trained on 500 labeled sentences (6% of the corpus) performs surprisingly well with the accuracy of 82%, just 2% lower than fully supervised learning. In our question answering task, biomedical researchers find relevant information significantly faster from AZ-annotated than unannotated articles. In the summarization task, sentences extracted from particular zones are significantly more similar to gold standard summaries than those extracted from particular sections of full articles. These results demonstrate that active learning of full articles' information structure is indeed realistic and the accuracy is high enough to support real-life literature review in biomedicine. The annotated corpus, our AZ classifier and the two novel applications are available at http://www.cl.cam.ac.uk/yg244/12bioinfo.html
Detection of distorted frames in retinal video-sequences via machine learning
NASA Astrophysics Data System (ADS)
Kolar, Radim; Liberdova, Ivana; Odstrcilik, Jan; Hracho, Michal; Tornow, Ralf P.
2017-07-01
This paper describes detection of distorted frames in retinal sequences based on set of global features extracted from each frame. The feature vector is consequently used in classification step, in which three types of classifiers are tested. The best classification accuracy 96% has been achieved with support vector machine approach.
Prediction of hourly PM2.5 using a space-time support vector regression model
NASA Astrophysics Data System (ADS)
Yang, Wentao; Deng, Min; Xu, Feng; Wang, Hang
2018-05-01
Real-time air quality prediction has been an active field of research in atmospheric environmental science. The existing methods of machine learning are widely used to predict pollutant concentrations because of their enhanced ability to handle complex non-linear relationships. However, because pollutant concentration data, as typical geospatial data, also exhibit spatial heterogeneity and spatial dependence, they may violate the assumptions of independent and identically distributed random variables in most of the machine learning methods. As a result, a space-time support vector regression model is proposed to predict hourly PM2.5 concentrations. First, to address spatial heterogeneity, spatial clustering is executed to divide the study area into several homogeneous or quasi-homogeneous subareas. To handle spatial dependence, a Gauss vector weight function is then developed to determine spatial autocorrelation variables as part of the input features. Finally, a local support vector regression model with spatial autocorrelation variables is established for each subarea. Experimental data on PM2.5 concentrations in Beijing are used to verify whether the results of the proposed model are superior to those of other methods.
Multiple mechanisms in the perception of face gender: Effect of sex-irrelevant features.
Komori, Masashi; Kawamura, Satoru; Ishihara, Shigekazu
2011-06-01
Effects of sex-relevant and sex-irrelevant facial features on the evaluation of facial gender were investigated. Participants rated masculinity of 48 male facial photographs and femininity of 48 female facial photographs. Eighty feature points were measured on each of the facial photographs. Using a generalized Procrustes analysis, facial shapes were converted into multidimensional vectors, with the average face as a starting point. Each vector was decomposed into a sex-relevant subvector and a sex-irrelevant subvector which were, respectively, parallel and orthogonal to the main male-female axis. Principal components analysis (PCA) was performed on the sex-irrelevant subvectors. One principal component was negatively correlated with both perceived masculinity and femininity, and another was correlated only with femininity, though both components were orthogonal to the male-female dimension (and thus by definition sex-irrelevant). These results indicate that evaluation of facial gender depends on sex-irrelevant as well as sex-relevant facial features.
NASA Astrophysics Data System (ADS)
Jia, Huizhen; Sun, Quansen; Ji, Zexuan; Wang, Tonghan; Chen, Qiang
2014-11-01
The goal of no-reference/blind image quality assessment (NR-IQA) is to devise a perceptual model that can accurately predict the quality of a distorted image as human opinions, in which feature extraction is an important issue. However, the features used in the state-of-the-art "general purpose" NR-IQA algorithms are usually natural scene statistics (NSS) based or are perceptually relevant; therefore, the performance of these models is limited. To further improve the performance of NR-IQA, we propose a general purpose NR-IQA algorithm which combines NSS-based features with perceptually relevant features. The new method extracts features in both the spatial and gradient domains. In the spatial domain, we extract the point-wise statistics for single pixel values which are characterized by a generalized Gaussian distribution model to form the underlying features. In the gradient domain, statistical features based on neighboring gradient magnitude similarity are extracted. Then a mapping is learned to predict quality scores using a support vector regression. The experimental results on the benchmark image databases demonstrate that the proposed algorithm correlates highly with human judgments of quality and leads to significant performance improvements over state-of-the-art methods.
NASA Astrophysics Data System (ADS)
Zahed, I.; Brown, G. E.
We review the recent developments on the Skyrme model in the context of OCD, and analyze their relevance to low-energy phenomenology. The fundamentals of chiral symmetry and PCAC are presented, and their importance in effective chiral models of the Skyrme type discussed. The nature and properties of skyrmions are thoroughly investigated, with particular stress on the basic role of the Wess-Zumino term. The conventional Skyrme model is extended to the low-lying vector meson resonances, and the rudiments of vector meson dominance are elucidated. A detailed account of the static and dynamical properties of nucleons and Δ-isobars is presented. The relevance of the Skyrme model to the nuclear many-body problem is outlined and its importance for boson exchange models stressed.
Navigational potential of e-vector sensing by marine animals
NASA Astrophysics Data System (ADS)
Waterman, Talbot H.
1993-02-01
This essay documents an informal talk about the central theme in the author's research career. That has mainly related to the visual physiology and orientation of aquatic animals, particularly with regard to underwater polarized light. This required pioneer measurements of underwater polarized light patterns, proof that oriented behavior could be determined by e- vector direction independently of intensity patterns or other secondary clues and a demonstration of the retinal dichroic mechanism involved, at least in crustacean compound eyes. The relevant visual data processing by two orthogonal channels was also analyzed with regard to oriented swimming behavior. Some current research by others and major unsolved problems are mentioned and the relevant part of the author's bibliography is appended.
The Anopheles gambiae transcriptome - a turning point for malaria control.
Domingos, A; Pinheiro-Silva, R; Couto, J; do Rosário, V; de la Fuente, J
2017-04-01
Mosquitoes are important vectors of several pathogens and thereby contribute to the spread of diseases, with social, economic and public health impacts. Amongst the approximately 450 species of Anopheles, about 60 are recognized as vectors of human malaria, the most important parasitic disease. In Africa, Anopheles gambiae is the main malaria vector mosquito. Current malaria control strategies are largely focused on drugs and vector control measures such as insecticides and bed-nets. Improvement of current, and the development of new, mosquito-targeted malaria control methods rely on a better understanding of mosquito vector biology. An organism's transcriptome is a reflection of its physiological state and transcriptomic analyses of different conditions that are relevant to mosquito vector competence can therefore yield important information. Transcriptomic analyses have contributed significant information on processes such as blood-feeding parasite-vector interaction, insecticide resistance, and tissue- and stage-specific gene regulation, thereby facilitating the path towards the development of new malaria control methods. Here, we discuss the main applications of transcriptomic analyses in An. gambiae that have led to a better understanding of mosquito vector competence. © 2017 The Royal Entomological Society.
Combining fungal biopesticides and insecticide-treated bednets to enhance malaria control.
Hancock, Penelope A
2009-10-01
In developing strategies to control malaria vectors, there is increased interest in biological methods that do not cause instant vector mortality, but have sublethal and lethal effects at different ages and stages in the mosquito life cycle. These techniques, particularly if integrated with other vector control interventions, may produce substantial reductions in malaria transmission due to the total effect of alterations to multiple life history parameters at relevant points in the life-cycle and transmission-cycle of the vector. To quantify this effect, an analytically tractable gonotrophic cycle model of mosquito-malaria interactions is developed that unites existing continuous and discrete feeding cycle approaches. As a case study, the combined use of fungal biopesticides and insecticide treated bednets (ITNs) is considered. Low values of the equilibrium EIR and human prevalence were obtained when fungal biopesticides and ITNs were combined, even for scenarios where each intervention acting alone had relatively little impact. The effect of the combined interventions on the equilibrium EIR was at least as strong as the multiplicative effect of both interventions. For scenarios representing difficult conditions for malaria control, due to high transmission intensity and widespread insecticide resistance, the effect of the combined interventions on the equilibrium EIR was greater than the multiplicative effect, as a result of synergistic interactions between the interventions. Fungal biopesticide application was found to be most effective when ITN coverage was high, producing significant reductions in equilibrium prevalence for low levels of biopesticide coverage. By incorporating biological mechanisms relevant to vectorial capacity, continuous-time vector population models can increase their applicability to integrated vector management.
Anopheles atroparvus density modeling using MODIS NDVI in a former malarious area in Portugal.
Lourenço, Pedro M; Sousa, Carla A; Seixas, Júlia; Lopes, Pedro; Novo, Maria T; Almeida, A Paulo G
2011-12-01
Malaria is dependent on environmental factors and considered as potentially re-emerging in temperate regions. Remote sensing data have been used successfully for monitoring environmental conditions that influence the patterns of such arthropod vector-borne diseases. Anopheles atroparvus density data were collected from 2002 to 2005, on a bimonthly basis, at three sites in a former malarial area in Southern Portugal. The development of the Remote Vector Model (RVM) was based upon two main variables: temperature and the Normalized Differential Vegetation Index (NDVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS) Terra satellite. Temperature influences the mosquito life cycle and affects its intra-annual prevalence, and MODIS NDVI was used as a proxy for suitable habitat conditions. Mosquito data were used for calibration and validation of the model. For areas with high mosquito density, the model validation demonstrated a Pearson correlation of 0.68 (p<0.05) and a modelling efficiency/Nash-Sutcliffe of 0.44 representing the model's ability to predict intra- and inter-annual vector density trends. RVM estimates the density of the former malarial vector An. atroparvus as a function of temperature and of MODIS NDVI. RVM is a satellite data-based assimilation algorithm that uses temperature fields to predict the intra- and inter-annual densities of this mosquito species using MODIS NDVI. RVM is a relevant tool for vector density estimation, contributing to the risk assessment of transmission of mosquito-borne diseases and can be part of the early warning system and contingency plans providing support to the decision making process of relevant authorities. © 2011 The Society for Vector Ecology.
A comparative study of machine learning models for ethnicity classification
NASA Astrophysics Data System (ADS)
Trivedi, Advait; Bessie Amali, D. Geraldine
2017-11-01
This paper endeavours to adopt a machine learning approach to solve the problem of ethnicity recognition. Ethnicity identification is an important vision problem with its use cases being extended to various domains. Despite the multitude of complexity involved, ethnicity identification comes naturally to humans. This meta information can be leveraged to make several decisions, be it in target marketing or security. With the recent development of intelligent systems a sub module to efficiently capture ethnicity would be useful in several use cases. Several attempts to identify an ideal learning model to represent a multi-ethnic dataset have been recorded. A comparative study of classifiers such as support vector machines, logistic regression has been documented. Experimental results indicate that the logical classifier provides a much accurate classification than the support vector machine.
A Novel Clustering Method Curbing the Number of States in Reinforcement Learning
NASA Astrophysics Data System (ADS)
Kotani, Naoki; Nunobiki, Masayuki; Taniguchi, Kenji
We propose an efficient state-space construction method for a reinforcement learning. Our method controls the number of categories with improving the clustering method of Fuzzy ART which is an autonomous state-space construction method. The proposed method represents weight vector as the mean value of input vectors in order to curb the number of new categories and eliminates categories whose state values are low to curb the total number of categories. As the state value is updated, the size of category becomes small to learn policy strictly. We verified the effectiveness of the proposed method with simulations of a reaching problem for a two-link robot arm. We confirmed that the number of categories was reduced and the agent achieved the complex task quickly.
Tobin, Kenneth W; Karnowski, Thomas P; Chaum, Edward
2013-08-06
A method for diagnosing diseases having retinal manifestations including retinal pathologies includes the steps of providing a CBIR system including an archive of stored digital retinal photography images and diagnosed patient data corresponding to the retinal photography images, the stored images each indexed in a CBIR database using a plurality of feature vectors, the feature vectors corresponding to distinct descriptive characteristics of the stored images. A query image of the retina of a patient is obtained. Using image processing, regions or structures in the query image are identified. The regions or structures are then described using the plurality of feature vectors. At least one relevant stored image from the archive based on similarity to the regions or structures is retrieved, and an eye disease or a disease having retinal manifestations in the patient is diagnosed based on the diagnosed patient data associated with the relevant stored image(s).
Deep Hashing for Scalable Image Search.
Lu, Jiwen; Liong, Venice Erin; Zhou, Jie
2017-05-01
In this paper, we propose a new deep hashing (DH) approach to learn compact binary codes for scalable image search. Unlike most existing binary codes learning methods, which usually seek a single linear projection to map each sample into a binary feature vector, we develop a deep neural network to seek multiple hierarchical non-linear transformations to learn these binary codes, so that the non-linear relationship of samples can be well exploited. Our model is learned under three constraints at the top layer of the developed deep network: 1) the loss between the compact real-valued code and the learned binary vector is minimized, 2) the binary codes distribute evenly on each bit, and 3) different bits are as independent as possible. To further improve the discriminative power of the learned binary codes, we extend DH into supervised DH (SDH) and multi-label SDH by including a discriminative term into the objective function of DH, which simultaneously maximizes the inter-class variations and minimizes the intra-class variations of the learned binary codes with the single-label and multi-label settings, respectively. Extensive experimental results on eight widely used image search data sets show that our proposed methods achieve very competitive results with the state-of-the-arts.
Godino-Llorente, J I; Gómez-Vilda, P
2004-02-01
It is well known that vocal and voice diseases do not necessarily cause perceptible changes in the acoustic voice signal. Acoustic analysis is a useful tool to diagnose voice diseases being a complementary technique to other methods based on direct observation of the vocal folds by laryngoscopy. Through the present paper two neural-network based classification approaches applied to the automatic detection of voice disorders will be studied. Structures studied are multilayer perceptron and learning vector quantization fed using short-term vectors calculated accordingly to the well-known Mel Frequency Coefficient cepstral parameterization. The paper shows that these architectures allow the detection of voice disorders--including glottic cancer--under highly reliable conditions. Within this context, the Learning Vector quantization methodology demonstrated to be more reliable than the multilayer perceptron architecture yielding 96% frame accuracy under similar working conditions.
Shimizu, Yu; Yoshimoto, Junichiro; Takamura, Masahiro; Okada, Go; Okamoto, Yasumasa; Yamawaki, Shigeto; Doya, Kenji
2017-01-01
In diagnostic applications of statistical machine learning methods to brain imaging data, common problems include data high-dimensionality and co-linearity, which often cause over-fitting and instability. To overcome these problems, we applied partial least squares (PLS) regression to resting-state functional magnetic resonance imaging (rs-fMRI) data, creating a low-dimensional representation that relates symptoms to brain activity and that predicts clinical measures. Our experimental results, based upon data from clinically depressed patients and healthy controls, demonstrated that PLS and its kernel variants provided significantly better prediction of clinical measures than ordinary linear regression. Subsequent classification using predicted clinical scores distinguished depressed patients from healthy controls with 80% accuracy. Moreover, loading vectors for latent variables enabled us to identify brain regions relevant to depression, including the default mode network, the right superior frontal gyrus, and the superior motor area. PMID:28700672
Vector-based navigation using grid-like representations in artificial agents.
Banino, Andrea; Barry, Caswell; Uria, Benigno; Blundell, Charles; Lillicrap, Timothy; Mirowski, Piotr; Pritzel, Alexander; Chadwick, Martin J; Degris, Thomas; Modayil, Joseph; Wayne, Greg; Soyer, Hubert; Viola, Fabio; Zhang, Brian; Goroshin, Ross; Rabinowitz, Neil; Pascanu, Razvan; Beattie, Charlie; Petersen, Stig; Sadik, Amir; Gaffney, Stephen; King, Helen; Kavukcuoglu, Koray; Hassabis, Demis; Hadsell, Raia; Kumaran, Dharshan
2018-05-01
Deep neural networks have achieved impressive successes in fields ranging from object recognition to complex games such as Go 1,2 . Navigation, however, remains a substantial challenge for artificial agents, with deep neural networks trained by reinforcement learning 3-5 failing to rival the proficiency of mammalian spatial behaviour, which is underpinned by grid cells in the entorhinal cortex 6 . Grid cells are thought to provide a multi-scale periodic representation that functions as a metric for coding space 7,8 and is critical for integrating self-motion (path integration) 6,7,9 and planning direct trajectories to goals (vector-based navigation) 7,10,11 . Here we set out to leverage the computational functions of grid cells to develop a deep reinforcement learning agent with mammal-like navigational abilities. We first trained a recurrent network to perform path integration, leading to the emergence of representations resembling grid cells, as well as other entorhinal cell types 12 . We then showed that this representation provided an effective basis for an agent to locate goals in challenging, unfamiliar, and changeable environments-optimizing the primary objective of navigation through deep reinforcement learning. The performance of agents endowed with grid-like representations surpassed that of an expert human and comparison agents, with the metric quantities necessary for vector-based navigation derived from grid-like units within the network. Furthermore, grid-like representations enabled agents to conduct shortcut behaviours reminiscent of those performed by mammals. Our findings show that emergent grid-like representations furnish agents with a Euclidean spatial metric and associated vector operations, providing a foundation for proficient navigation. As such, our results support neuroscientific theories that see grid cells as critical for vector-based navigation 7,10,11 , demonstrating that the latter can be combined with path-based strategies to support navigation in challenging environments.
Precision global health in the digital age.
Flahault, Antoine; Geissbuhler, Antoine; Guessous, Idris; Guérin, Philippe; Bolon, Isabelle; Salathé, Marcel; Escher, Gérard
2017-04-19
Precision global health is an approach similar to precision medicine, which facilitates, through innovation and technology, better targeting of public health interventions on a global scale, for the purpose of maximising their effectiveness and relevance. Illustrative examples include: the use of remote sensing data to fight vector-borne diseases; large databases of genomic sequences of foodborne pathogens helping to identify origins of outbreaks; social networks and internet search engines for tracking communicable diseases; cell phone data in humanitarian actions; drones to deliver healthcare services in remote and secluded areas. Open science and data sharing platforms are proposed for fostering international research programmes under fair, ethical and respectful conditions. Innovative education, such as massive open online courses or serious games, can promote wider access to training in public health and improving health literacy. The world is moving towards learning healthcare systems. Professionals are equipped with data collection and decision support devices. They share information, which are complemented by external sources, and analysed in real time using machine learning techniques. They allow for the early detection of anomalies, and eventually guide appropriate public health interventions. This article shows how information-driven approaches, enabled by digital technologies, can help improving global health with greater equity.
Md Noor, Siti Salwa; Michael, Kaleena; Marshall, Stephen; Ren, Jinchang
2017-01-01
In our preliminary study, the reflectance signatures obtained from hyperspectral imaging (HSI) of normal and abnormal corneal epithelium tissues of porcine show similar morphology with subtle differences. Here we present image enhancement algorithms that can be used to improve the interpretability of data into clinically relevant information to facilitate diagnostics. A total of 25 corneal epithelium images without the application of eye staining were used. Three image feature extraction approaches were applied for image classification: (i) image feature classification from histogram using a support vector machine with a Gaussian radial basis function (SVM-GRBF); (ii) physical image feature classification using deep-learning Convolutional Neural Networks (CNNs) only; and (iii) the combined classification of CNNs and SVM-Linear. The performance results indicate that our chosen image features from the histogram and length-scale parameter were able to classify with up to 100% accuracy; particularly, at CNNs and CNNs-SVM, by employing 80% of the data sample for training and 20% for testing. Thus, in the assessment of corneal epithelium injuries, HSI has high potential as a method that could surpass current technologies regarding speed, objectivity, and reliability. PMID:29144388
Enhancing clinical concept extraction with distributional semantics
Cohen, Trevor; Wu, Stephen; Gonzalez, Graciela
2011-01-01
Extracting concepts (such as drugs, symptoms, and diagnoses) from clinical narratives constitutes a basic enabling technology to unlock the knowledge within and support more advanced reasoning applications such as diagnosis explanation, disease progression modeling, and intelligent analysis of the effectiveness of treatment. The recent release of annotated training sets of de-identified clinical narratives has contributed to the development and refinement of concept extraction methods. However, as the annotation process is labor-intensive, training data are necessarily limited in the concepts and concept patterns covered, which impacts the performance of supervised machine learning applications trained with these data. This paper proposes an approach to minimize this limitation by combining supervised machine learning with empirical learning of semantic relatedness from the distribution of the relevant words in additional unannotated text. The approach uses a sequential discriminative classifier (Conditional Random Fields) to extract the mentions of medical problems, treatments and tests from clinical narratives. It takes advantage of all Medline abstracts indexed as being of the publication type “clinical trials” to estimate the relatedness between words in the i2b2/VA training and testing corpora. In addition to the traditional features such as dictionary matching, pattern matching and part-of-speech tags, we also used as a feature words that appear in similar contexts to the word in question (that is, words that have a similar vector representation measured with the commonly used cosine metric, where vector representations are derived using methods of distributional semantics). To the best of our knowledge, this is the first effort exploring the use of distributional semantics, the semantics derived empirically from unannotated text often using vector space models, for a sequence classification task such as concept extraction. Therefore, we first experimented with different sliding window models and found the model with parameters that led to best performance in a preliminary sequence labeling task. The evaluation of this approach, performed against the i2b2/VA concept extraction corpus, showed that incorporating features based on the distribution of words across a large unannotated corpus significantly aids concept extraction. Compared to a supervised-only approach as a baseline, the micro-averaged f-measure for exact match increased from 80.3% to 82.3% and the micro-averaged f-measure based on inexact match increased from 89.7% to 91.3%. These improvements are highly significant according to the bootstrap resampling method and also considering the performance of other systems. Thus, distributional semantic features significantly improve the performance of concept extraction from clinical narratives by taking advantage of word distribution information obtained from unannotated data. PMID:22085698
ERIC Educational Resources Information Center
Barrett, Angeline M.; Bainton, David
2016-01-01
The 2030 education goal privileges "relevant learning outcomes" as the evaluative space for quality improvement. Whilst the goal was designed for global level monitoring, its influence cuts across different scales. Implementation of the goal involves reinterpreting "relevant learning" at the local level. One way that small…
Early Error Detection: An Action-Research Experience Teaching Vector Calculus
ERIC Educational Resources Information Center
Añino, María Magdalena; Merino, Gabriela; Miyara, Alberto; Perassi, Marisol; Ravera, Emiliano; Pita, Gustavo; Waigandt, Diana
2014-01-01
This paper describes an action-research experience carried out with second year students at the School of Engineering of the National University of Entre Ríos, Argentina. Vector calculus students played an active role in their own learning process. They were required to present weekly reports, in both oral and written forms, on the topics studied,…
Automated Creation of Labeled Pointcloud Datasets in Support of Machine-Learning Based Perception
2017-12-01
computationally intensive 3D vector math and took more than ten seconds to segment a single LIDAR frame from the HDL-32e with the Dell XPS15 9650’s Intel...Core i7 CPU. Depth Clustering avoids the computationally intensive 3D vector math of Euclidean Clustering-based DON segmentation and, instead
Jeffrey T. Walton
2008-01-01
Three machine learning subpixel estimation methods (Cubist, Random Forests, and support vector regression) were applied to estimate urban cover. Urban forest canopy cover and impervious surface cover were estimated from Landsat-7 ETM+ imagery using a higher resolution cover map resampled to 30 m as training and reference data. Three different band combinations (...
Usability Evaluation of an Augmented Reality System for Teaching Euclidean Vectors
ERIC Educational Resources Information Center
Martin-Gonzalez, Anabel; Chi-Poot, Angel; Uc-Cetina, Victor
2016-01-01
Augmented reality (AR) is one of the emerging technologies that has demonstrated to be an efficient technological tool to enhance learning techniques. In this paper, we describe the development and evaluation of an AR system for teaching Euclidean vectors in physics and mathematics. The goal of this pedagogical tool is to facilitate user's…
Summary of lessons learned from USDA-ARS Area-Wide Asian Tiger Mosquito Management Project
USDA-ARS?s Scientific Manuscript database
Aedes albopictus, the Asian tiger mosquito, is the principal vector of chikungunya and a critical vector of dengue viruses. This daytime biting pest is now distributed over much of the eastern quadrant of the continental U.S. all the way north to coastal New York, and often causes the majority of se...
Chow, M L; Moler, E J; Mian, I S
2001-03-08
Transcription profiling experiments permit the expression levels of many genes to be measured simultaneously. Given profiling data from two types of samples, genes that most distinguish the samples (marker genes) are good candidates for subsequent in-depth experimental studies and developing decision support systems for diagnosis, prognosis, and monitoring. This work proposes a mixture of feature relevance experts as a method for identifying marker genes and illustrates the idea using published data from samples labeled as acute lymphoblastic and myeloid leukemia (ALL, AML). A feature relevance expert implements an algorithm that calculates how well a gene distinguishes samples, reorders genes according to this relevance measure, and uses a supervised learning method [here, support vector machines (SVMs)] to determine the generalization performances of different nested gene subsets. The mixture of three feature relevance experts examined implement two existing and one novel feature relevance measures. For each expert, a gene subset consisting of the top 50 genes distinguished ALL from AML samples as completely as all 7,070 genes. The 125 genes at the union of the top 50s are plausible markers for a prototype decision support system. Chromosomal aberration and other data support the prediction that the three genes at the intersection of the top 50s, cystatin C, azurocidin, and adipsin, are good targets for investigating the basic biology of ALL/AML. The same data were employed to identify markers that distinguish samples based on their labels of T cell/B cell, peripheral blood/bone marrow, and male/female. Selenoprotein W may discriminate T cells from B cells. Results from analysis of transcription profiling data from tumor/nontumor colon adenocarcinoma samples support the general utility of the aforementioned approach. Theoretical issues such as choosing SVM kernels and their parameters, training and evaluating feature relevance experts, and the impact of potentially mislabeled samples on marker identification (feature selection) are discussed.
USDA-ARS?s Scientific Manuscript database
A key strategy to reduce insect-borne disease is to reduce contact between disease vectors and hosts. In the current study, residual pesticide application and misting system were applied on militarily relevant materials and evaluated against medically important mosquitoes. Field evaluations were car...
The prospect of gene therapy for prostate cancer: update on theory and status.
Koeneman, K S; Hsieh, J T
2001-09-01
Molecularly based novel therapeutic agents are needed to address the problem of locally recurrent, or metastatic, advanced hormone-refractory prostate cancer. Recent basic science advances in mechanisms of gene expression, vector delivery, and targeting have rendered clinically relevant gene therapy to the prostatic fossa and distant sites feasible in the near future. Current research and clinical investigative efforts involving methods for more effective vector delivery and targeting, with enhanced gene expression to selected (specific) sites, are reviewed. These areas of research involve tissue-specific promoters, transgene exploration, vector design and delivery, and selective vector targeting. The 'vectorology' involved mainly addresses selective tissue homing with ligands, mechanisms of innate immune system evasion for durable transgene expression, and the possibility of repeat administration.
NASA Astrophysics Data System (ADS)
Fauzi, Ahmad; Ratna Kawuri, Kunthi; Pratiwi, Retno
2017-01-01
Researchers of students’ conceptual change usually collects data from written tests and interviews. Moreover, reports of conceptual change often simply refer to changes in concepts, such as on a test, without any identification of the learning processes that have taken place. Research has shown that students have difficulties with vectors in university introductory physics courses and high school physics courses. In this study, we intended to explore students’ understanding of one-dimensional and two-dimensional vector in multi perspective views. In this research, we explore students’ understanding through test perspective and interviews perspective. Our research study adopted the mixed-methodology design. The participants of this research were sixty students of third semester of physics education department. The data of this research were collected by testand interviews. In this study, we divided the students’ understanding of one-dimensional vector and two-dimensional vector in two categories, namely vector skills of the addition of one-dimensionaland two-dimensional vector and the relation between vector skills and conceptual understanding. From the investigation, only 44% of students provided correct answer for vector skills of the addition of one-dimensional and two-dimensional vector and only 27% students provided correct answer for the relation between vector skills and conceptual understanding.
Applications of Support Vector Machines In Chemo And Bioinformatics
NASA Astrophysics Data System (ADS)
Jayaraman, V. K.; Sundararajan, V.
2010-10-01
Conventional linear & nonlinear tools for classification, regression & data driven modeling are being replaced on a rapid scale by newer techniques & tools based on artificial intelligence and machine learning. While the linear techniques are not applicable for inherently nonlinear problems, newer methods serve as attractive alternatives for solving real life problems. Support Vector Machine (SVM) classifiers are a set of universal feed-forward network based classification algorithms that have been formulated from statistical learning theory and structural risk minimization principle. SVM regression closely follows the classification methodology. In this work recent applications of SVM in Chemo & Bioinformatics will be described with suitable illustrative examples.
[Machine Learning-based Prediction of Seizure-inducing Action as an Adverse Drug Effect].
Gao, Mengxuan; Sato, Motoshige; Ikegaya, Yuji
2018-01-01
During the preclinical research period of drug development, animal testing is widely used to help screen out a drug's dangerous side effects. However, it remains difficult to predict side effects within the central nervous system. Here, we introduce a machine learning-based in vitro system designed to detect seizure-inducing side effects before clinical trial. We recorded local field potentials from the CA1 alveus in acute mouse neocortico-hippocampal slices that were bath-perfused with each of 14 different drugs, and at 5 different concentrations of each drug. For each of these experimental conditions, we collected seizure-like neuronal activity and merged their waveforms as one graphic image, which was further converted into a feature vector using Caffe, an open framework for deep learning. In the space of the first two principal components, the support vector machine completely separated the vectors (i.e., doses of individual drugs) that induced seizure-like events, and identified diphenhydramine, enoxacin, strychnine and theophylline as "seizure-inducing" drugs, which have indeed been reported to induce seizures in clinical situations. Thus, this artificial intelligence-based classification may provide a new platform to pre-clinically detect seizure-inducing side effects of drugs.
Machine learning-based prediction of adverse drug effects: An example of seizure-inducing compounds.
Gao, Mengxuan; Igata, Hideyoshi; Takeuchi, Aoi; Sato, Kaoru; Ikegaya, Yuji
2017-02-01
Various biological factors have been implicated in convulsive seizures, involving side effects of drugs. For the preclinical safety assessment of drug development, it is difficult to predict seizure-inducing side effects. Here, we introduced a machine learning-based in vitro system designed to detect seizure-inducing side effects. We recorded local field potentials from the CA1 alveus in acute mouse neocortico-hippocampal slices, while 14 drugs were bath-perfused at 5 different concentrations each. For each experimental condition, we collected seizure-like neuronal activity and merged their waveforms as one graphic image, which was further converted into a feature vector using Caffe, an open framework for deep learning. In the space of the first two principal components, the support vector machine completely separated the vectors (i.e., doses of individual drugs) that induced seizure-like events and identified diphenhydramine, enoxacin, strychnine and theophylline as "seizure-inducing" drugs, which indeed were reported to induce seizures in clinical situations. Thus, this artificial intelligence-based classification may provide a new platform to detect the seizure-inducing side effects of preclinical drugs. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.
Active Learning with Irrelevant Examples
NASA Technical Reports Server (NTRS)
Mazzoni, Dominic; Wagstaff, Kiri L.; Burl, Michael
2006-01-01
Active learning algorithms attempt to accelerate the learning process by requesting labels for the most informative items first. In real-world problems, however, there may exist unlabeled items that are irrelevant to the user's classification goals. Queries about these points slow down learning because they provide no information about the problem of interest. We have observed that when irrelevant items are present, active learning can perform worse than random selection, requiring more time (queries) to achieve the same level of accuracy. Therefore, we propose a novel approach, Relevance Bias, in which the active learner combines its default selection heuristic with the output of a simultaneously trained relevance classifier to favor items that are likely to be both informative and relevant. In our experiments on a real-world problem and two benchmark datasets, the Relevance Bias approach significantly improved the learning rate of three different active learning approaches.
A general framework to learn surrogate relevance criterion for atlas based image segmentation
NASA Astrophysics Data System (ADS)
Zhao, Tingting; Ruan, Dan
2016-09-01
Multi-atlas based image segmentation sees great opportunities in the big data era but also faces unprecedented challenges in identifying positive contributors from extensive heterogeneous data. To assess data relevance, image similarity criteria based on various image features widely serve as surrogates for the inaccessible geometric agreement criteria. This paper proposes a general framework to learn image based surrogate relevance criteria to better mimic the behaviors of segmentation based oracle geometric relevance. The validity of its general rationale is verified in the specific context of fusion set selection for image segmentation. More specifically, we first present a unified formulation for surrogate relevance criteria and model the neighborhood relationship among atlases based on the oracle relevance knowledge. Surrogates are then trained to be small for geometrically relevant neighbors and large for irrelevant remotes to the given targets. The proposed surrogate learning framework is verified in corpus callosum segmentation. The learned surrogates demonstrate superiority in inferring the underlying oracle value and selecting relevant fusion set, compared to benchmark surrogates.
Vector-Based Data Services for NASA Earth Science
NASA Astrophysics Data System (ADS)
Rodriguez, J.; Roberts, J. T.; Ruvane, K.; Cechini, M. F.; Thompson, C. K.; Boller, R. A.; Baynes, K.
2016-12-01
Vector data sources offer opportunities for mapping and visualizing science data in a way that allows for more customizable rendering and deeper data analysis than traditional raster images, and popular formats like GeoJSON and Mapbox Vector Tiles allow diverse types of geospatial data to be served in a high-performance and easily consumed-package. Vector data is especially suited to highly dynamic mapping applications and visualization of complex datasets, while growing levels of support for vector formats and features in open-source mapping clients has made utilizing them easier and more powerful than ever. NASA's Global Imagery Browse Services (GIBS) is working to make NASA data more easily and conveniently accessible than ever by serving vector datasets via GeoJSON, Mapbox Vector Tiles, and raster images. This presentation will review these output formats, the services, including WFS, WMS, and WMTS, that can be used to access the data, and some ways in which vector sources can be utilized in popular open-source mapping clients like OpenLayers. Lessons learned from GIBS' recent move towards serving vector will be discussed, as well as how to use GIBS open source software to create, configure, and serve vector data sources using Mapserver and the GIBS OnEarth Apache module.
NASA Astrophysics Data System (ADS)
Lesieur, Thibault; Krzakala, Florent; Zdeborová, Lenka
2017-07-01
This article is an extended version of previous work of Lesieur et al (2015 IEEE Int. Symp. on Information Theory Proc. pp 1635-9 and 2015 53rd Annual Allerton Conf. on Communication, Control and Computing (IEEE) pp 680-7) on low-rank matrix estimation in the presence of constraints on the factors into which the matrix is factorized. Low-rank matrix factorization is one of the basic methods used in data analysis for unsupervised learning of relevant features and other types of dimensionality reduction. We present a framework to study the constrained low-rank matrix estimation for a general prior on the factors, and a general output channel through which the matrix is observed. We draw a parallel with the study of vector-spin glass models—presenting a unifying way to study a number of problems considered previously in separate statistical physics works. We present a number of applications for the problem in data analysis. We derive in detail a general form of the low-rank approximate message passing (Low-RAMP) algorithm, that is known in statistical physics as the TAP equations. We thus unify the derivation of the TAP equations for models as different as the Sherrington-Kirkpatrick model, the restricted Boltzmann machine, the Hopfield model or vector (xy, Heisenberg and other) spin glasses. The state evolution of the Low-RAMP algorithm is also derived, and is equivalent to the replica symmetric solution for the large class of vector-spin glass models. In the section devoted to result we study in detail phase diagrams and phase transitions for the Bayes-optimal inference in low-rank matrix estimation. We present a typology of phase transitions and their relation to performance of algorithms such as the Low-RAMP or commonly used spectral methods.
ERIC Educational Resources Information Center
Nagengast, Benjamin; Brisson, Brigitte M.; Hulleman, Chris S.; Gaspard, Hanna; Häfner, Isabelle; Trautwein, Ulrich
2018-01-01
An emerging literature demonstrates that relevance interventions, which ask students to produce written reflections on how what they are learning relates to their lives, improve student learning outcomes. As part of a randomized evaluation of a relevance intervention (N = 1,978 students from 82 ninth-grade classes), we used Complier Average Causal…
Linear time relational prototype based learning.
Gisbrecht, Andrej; Mokbel, Bassam; Schleif, Frank-Michael; Zhu, Xibin; Hammer, Barbara
2012-10-01
Prototype based learning offers an intuitive interface to inspect large quantities of electronic data in supervised or unsupervised settings. Recently, many techniques have been extended to data described by general dissimilarities rather than Euclidean vectors, so-called relational data settings. Unlike the Euclidean counterparts, the techniques have quadratic time complexity due to the underlying quadratic dissimilarity matrix. Thus, they are infeasible already for medium sized data sets. The contribution of this article is twofold: On the one hand we propose a novel supervised prototype based classification technique for dissimilarity data based on popular learning vector quantization (LVQ), on the other hand we transfer a linear time approximation technique, the Nyström approximation, to this algorithm and an unsupervised counterpart, the relational generative topographic mapping (GTM). This way, linear time and space methods result. We evaluate the techniques on three examples from the biomedical domain.
A regularized approach for geodesic-based semisupervised multimanifold learning.
Fan, Mingyu; Zhang, Xiaoqin; Lin, Zhouchen; Zhang, Zhongfei; Bao, Hujun
2014-05-01
Geodesic distance, as an essential measurement for data dissimilarity, has been successfully used in manifold learning. However, most geodesic distance-based manifold learning algorithms have two limitations when applied to classification: 1) class information is rarely used in computing the geodesic distances between data points on manifolds and 2) little attention has been paid to building an explicit dimension reduction mapping for extracting the discriminative information hidden in the geodesic distances. In this paper, we regard geodesic distance as a kind of kernel, which maps data from linearly inseparable space to linear separable distance space. In doing this, a new semisupervised manifold learning algorithm, namely regularized geodesic feature learning algorithm, is proposed. The method consists of three techniques: a semisupervised graph construction method, replacement of original data points with feature vectors which are built by geodesic distances, and a new semisupervised dimension reduction method for feature vectors. Experiments on the MNIST, USPS handwritten digit data sets, MIT CBCL face versus nonface data set, and an intelligent traffic data set show the effectiveness of the proposed algorithm.
Quantum Support Vector Machine for Big Data Classification
NASA Astrophysics Data System (ADS)
Rebentrost, Patrick; Mohseni, Masoud; Lloyd, Seth
2014-09-01
Supervised machine learning is the classification of new data based on already classified training examples. In this work, we show that the support vector machine, an optimized binary classifier, can be implemented on a quantum computer, with complexity logarithmic in the size of the vectors and the number of training examples. In cases where classical sampling algorithms require polynomial time, an exponential speedup is obtained. At the core of this quantum big data algorithm is a nonsparse matrix exponentiation technique for efficiently performing a matrix inversion of the training data inner-product (kernel) matrix.
Carter, Michael J; Ste-Marie, Diane M
2017-12-01
Lewthwaite et al. (2015) reported that the learning benefits of exercising choice (i.e., their self-controlled condition) are not restricted to task-relevant features (e.g., feedback). They found that choosing one's golf ball color (Exp. 1) or choosing which of two tasks to perform at a later time plus which of two artworks to hang (Exp. 2) resulted in better retention than did being denied these same choices (i.e., yoked condition). The researchers concluded that the learning benefits derived from choice, whether irrelevant or relevant to the to-be-learned task, are predominantly motivational because choice is intrinsically rewarding and satisfies basic psychological needs. However, the absence of a group that made task-relevant choices and the lack of psychological measures significantly weakened their conclusions. Here, we investigated how task-relevant and task-irrelevant choices affect motor-skill learning. Participants practiced a spatiotemporal motor task in either a task-relevant group (choice over feedback schedule), a task-irrelevant group (choice over the color of an arm-wrap plus game selection), or a no-choice group. The results showed significantly greater learning in the task-relevant group than in both the task-irrelevant and no-choice groups, who did not differ significantly. Critically, these learning differences were not attributed to differences in perceptions of competence or autonomy, but instead to superior error-estimation abilities. These results challenge the perspective that motivational influences are the root cause of self-controlled learning advantages. Instead, the findings add to the growing evidence highlighting that the informational value gained from task-relevant choices makes a greater relative contribution to these advantages than motivational influences do.
[What makes an insect a vector?].
Kampen, Helge
2009-01-01
Blood-feeding insects transmit numerous viruses, bacteria, protozoans and helminths to vertebrates. The developmental cycles of the microorganisms in their vectors and the mechanisms of transmission are generally extremely complex and the result of a long-lasting coevolution of vector and vectored pathogen based on mutual adaptation. The conditions necessary for an insect to become a vector are multiple but require an innate vector competence as a genetic basis. Next to the vector competence plenty of entomological, ecological and pathogen-related factors are decisive, given the availability of infection sources. The various modes of pathogen transmission by vectors are connected to the developmental routes of the microorganisms in their vectors. In particular, pathogens transmitted by saliva encounter a lot of cellular and acellular barriers during their migration from the insect's midgut through the hemocele into the salivary fluid, including components of the insect's immune system. With regard to intracellular development, receptor-mediated invasion mechanisms are of relevance. As an environmental factor, the temperature has a paramount impact on the vectorial roles of hematophagous insects. Not only has it a considerable influence on the duration of a pathogen's development in its vector (extrinsic incubation period) but it can render putatively vector-incompetent insects to vectors ("leaky gut" phenomenon). Equally crucial are behavioural aspects of both the insect and the pathogen such as blood host preferences, seasonal appearance and circadian biting activity on the vector's side and diurnal/nocturnal periodicity on the pathogen's side which facilitate a contact in the first place.
Monsalve, Yoman; Panzera, Francisco; Herrera, Leidi; Triana-Chávez, Omar; Gómez-Palacio, Andrés
2016-06-01
The emerging vector of Chagas disease, Triatoma maculata (Hemiptera, Reduviidae), is one of the most widely distributed Triatoma species in northern South America. Despite its increasing relevance as a vector, no consistent picture of the magnitude of genetic and phenetic diversity has yet been developed. Here, several populations of T. maculata from eleven Colombia and Venezuela localities were analyzed based on the morphometry of wings and the mitochondrial NADH dehydrogenase subunit 4 (ND4) gene sequences. Our results showed clear morphometric and genetic differences among Colombian and Venezuelan populations, indicating high intraspecific diversity. Inter-population divergence is suggested related to East Cordillera in Colombia. Analyses of other populations from Colombia, Venezuela, and Brazil from distinct eco-geographic regions are still needed to understand its systematics and phylogeography as well as its actual role as a vector of Chagas disease. © 2016 The Society for Vector Ecology.
Han, Te; Jiang, Dongxiang; Zhang, Xiaochen; Sun, Yankui
2017-03-27
Rotating machinery is widely used in industrial applications. With the trend towards more precise and more critical operating conditions, mechanical failures may easily occur. Condition monitoring and fault diagnosis (CMFD) technology is an effective tool to enhance the reliability and security of rotating machinery. In this paper, an intelligent fault diagnosis method based on dictionary learning and singular value decomposition (SVD) is proposed. First, the dictionary learning scheme is capable of generating an adaptive dictionary whose atoms reveal the underlying structure of raw signals. Essentially, dictionary learning is employed as an adaptive feature extraction method regardless of any prior knowledge. Second, the singular value sequence of learned dictionary matrix is served to extract feature vector. Generally, since the vector is of high dimensionality, a simple and practical principal component analysis (PCA) is applied to reduce dimensionality. Finally, the K -nearest neighbor (KNN) algorithm is adopted for identification and classification of fault patterns automatically. Two experimental case studies are investigated to corroborate the effectiveness of the proposed method in intelligent diagnosis of rotating machinery faults. The comparison analysis validates that the dictionary learning-based matrix construction approach outperforms the mode decomposition-based methods in terms of capacity and adaptability for feature extraction.
Correlated Topic Vector for Scene Classification.
Wei, Pengxu; Qin, Fei; Wan, Fang; Zhu, Yi; Jiao, Jianbin; Ye, Qixiang
2017-07-01
Scene images usually involve semantic correlations, particularly when considering large-scale image data sets. This paper proposes a novel generative image representation, correlated topic vector, to model such semantic correlations. Oriented from the correlated topic model, correlated topic vector intends to naturally utilize the correlations among topics, which are seldom considered in the conventional feature encoding, e.g., Fisher vector, but do exist in scene images. It is expected that the involvement of correlations can increase the discriminative capability of the learned generative model and consequently improve the recognition accuracy. Incorporated with the Fisher kernel method, correlated topic vector inherits the advantages of Fisher vector. The contributions to the topics of visual words have been further employed by incorporating the Fisher kernel framework to indicate the differences among scenes. Combined with the deep convolutional neural network (CNN) features and Gibbs sampling solution, correlated topic vector shows great potential when processing large-scale and complex scene image data sets. Experiments on two scene image data sets demonstrate that correlated topic vector improves significantly the deep CNN features, and outperforms existing Fisher kernel-based features.
Palaniyandi, M
2012-12-01
There have been several attempts made to the appreciation of remote sensing and GIS for the study of vectors, biodiversity, vector presence, vector abundance and the vector-borne diseases with respect to space and time. This study was made for reviewing and appraising the potential use of remote sensing and GIS applications for spatial prediction of vector-borne diseases transmission. The nature of the presence and the abundance of vectors and vector-borne diseases, disease infection and the disease transmission are not ubiquitous and are confined with geographical, environmental and climatic factors, and are localized. The presence of vectors and vector-borne diseases is most complex in nature, however, it is confined and fueled by the geographical, climatic and environmental factors including man-made factors. The usefulness of the present day availability of the information derived from the satellite data including vegetation indices of canopy cover and its density, soil types, soil moisture, soil texture, soil depth, etc. is integrating the information in the expert GIS engine for the spatial analysis of other geoclimatic and geoenvironmental variables. The present study gives the detailed information on the classical studies of the past and present, and the future role of remote sensing and GIS for the vector-borne diseases control. The ecological modeling directly gives us the relevant information to understand the spatial variation of the vector biodiversity, vector presence, vector abundance and the vector-borne diseases in association with geoclimatic and the environmental variables. The probability map of the geographical distribution and seasonal variations of horizontal and vertical distribution of vector abundance and its association with vector -borne diseases can be obtained with low cost remote sensing and GIS tool with reliable data and speed.
NASA Astrophysics Data System (ADS)
Nishizuka, N.; Sugiura, K.; Kubo, Y.; Den, M.; Watari, S.; Ishii, M.
2017-02-01
We developed a flare prediction model using machine learning, which is optimized to predict the maximum class of flares occurring in the following 24 hr. Machine learning is used to devise algorithms that can learn from and make decisions on a huge amount of data. We used solar observation data during the period 2010-2015, such as vector magnetograms, ultraviolet (UV) emission, and soft X-ray emission taken by the Solar Dynamics Observatory and the Geostationary Operational Environmental Satellite. We detected active regions (ARs) from the full-disk magnetogram, from which ˜60 features were extracted with their time differentials, including magnetic neutral lines, the current helicity, the UV brightening, and the flare history. After standardizing the feature database, we fully shuffled and randomly separated it into two for training and testing. To investigate which algorithm is best for flare prediction, we compared three machine-learning algorithms: the support vector machine, k-nearest neighbors (k-NN), and extremely randomized trees. The prediction score, the true skill statistic, was higher than 0.9 with a fully shuffled data set, which is higher than that for human forecasts. It was found that k-NN has the highest performance among the three algorithms. The ranking of the feature importance showed that previous flare activity is most effective, followed by the length of magnetic neutral lines, the unsigned magnetic flux, the area of UV brightening, and the time differentials of features over 24 hr, all of which are strongly correlated with the flux emergence dynamics in an AR.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishizuka, N.; Kubo, Y.; Den, M.
We developed a flare prediction model using machine learning, which is optimized to predict the maximum class of flares occurring in the following 24 hr. Machine learning is used to devise algorithms that can learn from and make decisions on a huge amount of data. We used solar observation data during the period 2010–2015, such as vector magnetograms, ultraviolet (UV) emission, and soft X-ray emission taken by the Solar Dynamics Observatory and the Geostationary Operational Environmental Satellite . We detected active regions (ARs) from the full-disk magnetogram, from which ∼60 features were extracted with their time differentials, including magnetic neutralmore » lines, the current helicity, the UV brightening, and the flare history. After standardizing the feature database, we fully shuffled and randomly separated it into two for training and testing. To investigate which algorithm is best for flare prediction, we compared three machine-learning algorithms: the support vector machine, k-nearest neighbors (k-NN), and extremely randomized trees. The prediction score, the true skill statistic, was higher than 0.9 with a fully shuffled data set, which is higher than that for human forecasts. It was found that k-NN has the highest performance among the three algorithms. The ranking of the feature importance showed that previous flare activity is most effective, followed by the length of magnetic neutral lines, the unsigned magnetic flux, the area of UV brightening, and the time differentials of features over 24 hr, all of which are strongly correlated with the flux emergence dynamics in an AR.« less
ERIC Educational Resources Information Center
Sandoval, Ivonne; Possani, Edgar
2016-01-01
The purpose of this paper is to present an analysis of the difficulties faced by students when working with different representations of vectors, planes and their intersections in R[superscript 3]. Duval's theoretical framework on semiotic representations is used to design a set of evaluating activities, and later to analyze student work. The…
Interpreting support vector machine models for multivariate group wise analysis in neuroimaging
Gaonkar, Bilwaj; Shinohara, Russell T; Davatzikos, Christos
2015-01-01
Machine learning based classification algorithms like support vector machines (SVMs) have shown great promise for turning a high dimensional neuroimaging data into clinically useful decision criteria. However, tracing imaging based patterns that contribute significantly to classifier decisions remains an open problem. This is an issue of critical importance in imaging studies seeking to determine which anatomical or physiological imaging features contribute to the classifier’s decision, thereby allowing users to critically evaluate the findings of such machine learning methods and to understand disease mechanisms. The majority of published work addresses the question of statistical inference for support vector classification using permutation tests based on SVM weight vectors. Such permutation testing ignores the SVM margin, which is critical in SVM theory. In this work we emphasize the use of a statistic that explicitly accounts for the SVM margin and show that the null distributions associated with this statistic are asymptotically normal. Further, our experiments show that this statistic is a lot less conservative as compared to weight based permutation tests and yet specific enough to tease out multivariate patterns in the data. Thus, we can better understand the multivariate patterns that the SVM uses for neuroimaging based classification. PMID:26210913
Extraction and classification of 3D objects from volumetric CT data
NASA Astrophysics Data System (ADS)
Song, Samuel M.; Kwon, Junghyun; Ely, Austin; Enyeart, John; Johnson, Chad; Lee, Jongkyu; Kim, Namho; Boyd, Douglas P.
2016-05-01
We propose an Automatic Threat Detection (ATD) algorithm for Explosive Detection System (EDS) using our multistage Segmentation Carving (SC) followed by Support Vector Machine (SVM) classifier. The multi-stage Segmentation and Carving (SC) step extracts all suspect 3-D objects. The feature vector is then constructed for all extracted objects and the feature vector is classified by the Support Vector Machine (SVM) previously learned using a set of ground truth threat and benign objects. The learned SVM classifier has shown to be effective in classification of different types of threat materials. The proposed ATD algorithm robustly deals with CT data that are prone to artifacts due to scatter, beam hardening as well as other systematic idiosyncrasies of the CT data. Furthermore, the proposed ATD algorithm is amenable for including newly emerging threat materials as well as for accommodating data from newly developing sensor technologies. Efficacy of the proposed ATD algorithm with the SVM classifier is demonstrated by the Receiver Operating Characteristics (ROC) curve that relates Probability of Detection (PD) as a function of Probability of False Alarm (PFA). The tests performed using CT data of passenger bags shows excellent performance characteristics.
Environmental management: a re-emerging vector control strategy.
Ault, S K
1994-01-01
Vector control may be accomplished by environmental management (EM), which consists of permanent or long-term modification of the environment, temporary or seasonal manipulation of the environment, and modifying or changing our life styles and practices to reduce human contact with infective vectors. The primary focus of this paper is EM in the control of human malaria, filariasis, arboviruses, Chagas' disease, and schistosomiasis. Modern EM developed as a discipline based primarily in ecologic principles and lessons learned from the adverse environmental impacts of rural development projects. Strategies such as the suppression of vector populations through the provision of safe water supplies, proper sanitation, solid waste management facilities, sewerage and excreta disposal systems, water manipulation in dams and irrigation systems, vector diversion by zooprophylaxis, and vector exclusion by improved housing, are discussed with appropriate examples. Vectors of malaria, filariasis, Chagas' disease, and schistosomiasis have been controlled by drainage or filling aquatic breeding sites, improved housing and sanitation, the use of expanded polystyrene beads, zooprophylaxis, or the provision of household water supplies. Community participation has been effective in the suppression of dengue vectors in Mexico and the Dominican Republic. Alone or combined with other vector control methods, EM has been proven to be a successful approach to vector control in a number of places. The future of EM in vector control looks promising.
NASA Astrophysics Data System (ADS)
Ruske, S. T.; Topping, D. O.; Foot, V. E.; Kaye, P. H.; Stanley, W. R.; Morse, A. P.; Crawford, I.; Gallagher, M. W.
2016-12-01
Characterisation of bio-aerosols has important implications within Environment and Public Health sectors. Recent developments in Ultra-Violet Light Induced Fluorescence (UV-LIF) detectors such as the Wideband Integrated bio-aerosol Spectrometer (WIBS) and the newly introduced Multiparameter bio-aerosol Spectrometer (MBS) has allowed for the real time collection of fluorescence, size and morphology measurements for the purpose of discriminating between bacteria, fungal Spores and pollen. This new generation of instruments has enabled ever-larger data sets to be compiled with the aim of studying more complex environments, yet the algorithms used for specie classification remain largely invalidated. It is therefore imperative that we validate the performance of different algorithms that can be used for the task of classification, which is the focus of this study. For unsupervised learning we test Hierarchical Agglomerative Clustering with various different linkages. For supervised learning, ten methods were tested; including decision trees, ensemble methods: Random Forests, Gradient Boosting and AdaBoost; two implementations for support vector machines: libsvm and liblinear; Gaussian methods: Gaussian naïve Bayesian, quadratic and linear discriminant analysis and finally the k-nearest neighbours algorithm. The methods were applied to two different data sets measured using a new Multiparameter bio-aerosol Spectrometer. We find that clustering, in general, performs slightly worse than the supervised learning methods correctly classifying, at best, only 72.7 and 91.1 percent for the two data sets. For supervised learning the gradient boosting algorithm was found to be the most effective, on average correctly classifying 88.1 and 97.8 percent of the testing data respectively across the two data sets. We discuss the wider relevance of these results with regards to challenging existing classification in real-world environments.
Memarian, Negar; Kim, Sally; Dewar, Sandra; Engel, Jerome; Staba, Richard J
2015-09-01
This study sought to predict postsurgical seizure freedom from pre-operative diagnostic test results and clinical information using a rapid automated approach, based on supervised learning methods in patients with drug-resistant focal seizures suspected to begin in temporal lobe. We applied machine learning, specifically a combination of mutual information-based feature selection and supervised learning classifiers on multimodal data, to predict surgery outcome retrospectively in 20 presurgical patients (13 female; mean age±SD, in years 33±9.7 for females, and 35.3±9.4 for males) who were diagnosed with mesial temporal lobe epilepsy (MTLE) and subsequently underwent standard anteromesial temporal lobectomy. The main advantage of the present work over previous studies is the inclusion of the extent of ipsilateral neocortical gray matter atrophy and spatiotemporal properties of depth electrode-recorded seizures as training features for individual patient surgery planning. A maximum relevance minimum redundancy (mRMR) feature selector identified the following features as the most informative predictors of postsurgical seizure freedom in this study's sample of patients: family history of epilepsy, ictal EEG onset pattern (positive correlation with seizure freedom), MRI-based gray matter thickness reduction in the hemisphere ipsilateral to seizure onset, proportion of seizures that first appeared in ipsilateral amygdala to total seizures, age, epilepsy duration, delay in the spread of ipsilateral ictal discharges from site of onset, gender, and number of electrode contacts at seizure onset (negative correlation with seizure freedom). Using these features in combination with a least square support vector machine (LS-SVM) classifier compared to other commonly used classifiers resulted in very high surgical outcome prediction accuracy (95%). Supervised machine learning using multimodal compared to unimodal data accurately predicted postsurgical outcome in patients with atypical MTLE. Published by Elsevier Ltd.
Kernel learning at the first level of inference.
Cawley, Gavin C; Talbot, Nicola L C
2014-05-01
Kernel learning methods, whether Bayesian or frequentist, typically involve multiple levels of inference, with the coefficients of the kernel expansion being determined at the first level and the kernel and regularisation parameters carefully tuned at the second level, a process known as model selection. Model selection for kernel machines is commonly performed via optimisation of a suitable model selection criterion, often based on cross-validation or theoretical performance bounds. However, if there are a large number of kernel parameters, as for instance in the case of automatic relevance determination (ARD), there is a substantial risk of over-fitting the model selection criterion, resulting in poor generalisation performance. In this paper we investigate the possibility of learning the kernel, for the Least-Squares Support Vector Machine (LS-SVM) classifier, at the first level of inference, i.e. parameter optimisation. The kernel parameters and the coefficients of the kernel expansion are jointly optimised at the first level of inference, minimising a training criterion with an additional regularisation term acting on the kernel parameters. The key advantage of this approach is that the values of only two regularisation parameters need be determined in model selection, substantially alleviating the problem of over-fitting the model selection criterion. The benefits of this approach are demonstrated using a suite of synthetic and real-world binary classification benchmark problems, where kernel learning at the first level of inference is shown to be statistically superior to the conventional approach, improves on our previous work (Cawley and Talbot, 2007) and is competitive with Multiple Kernel Learning approaches, but with reduced computational expense. Copyright © 2014 Elsevier Ltd. All rights reserved.
Rapid Parallel Screening for Strain Optimization
2013-08-16
fermentation yields of industrially relevant biological compounds. Screening of the desired chemicals was completed previously. Microbes that can...reporter, and, 2) a yeast TAR cloning shuttle vector for transferring catabolic clusters to E. coli. 15. SUBJECT TERMS NA 16. SECURITY CLASSIFICATION OF... fermentation yields of industrially relevant biological compounds. Screening of the desired chemicals was completed previously. Microbes that can utilize
Rapid Parallel Screening for Strain Optimization
2013-05-16
fermentation yields of industrially relevant biological compounds. Screening of the desired chemicals was completed previously. Microbes that can...reporter, and, 2) a yeast TAR cloning shuttle vector for transferring catabolic clusters to E. coli. 15. SUBJECT TERMS NA 16. SECURITY CLASSIFICATION OF... fermentation yields of industrially relevant biological compounds. Screening of the desired chemicals was completed previously. Microbes that can utilize
Deep Learning for Automated Extraction of Primary Sites From Cancer Pathology Reports.
Qiu, John X; Yoon, Hong-Jun; Fearn, Paul A; Tourassi, Georgia D
2018-01-01
Pathology reports are a primary source of information for cancer registries which process high volumes of free-text reports annually. Information extraction and coding is a manual, labor-intensive process. In this study, we investigated deep learning and a convolutional neural network (CNN), for extracting ICD-O-3 topographic codes from a corpus of breast and lung cancer pathology reports. We performed two experiments, using a CNN and a more conventional term frequency vector approach, to assess the effects of class prevalence and inter-class transfer learning. The experiments were based on a set of 942 pathology reports with human expert annotations as the gold standard. CNN performance was compared against a more conventional term frequency vector space approach. We observed that the deep learning models consistently outperformed the conventional approaches in the class prevalence experiment, resulting in micro- and macro-F score increases of up to 0.132 and 0.226, respectively, when class labels were well populated. Specifically, the best performing CNN achieved a micro-F score of 0.722 over 12 ICD-O-3 topography codes. Transfer learning provided a consistent but modest performance boost for the deep learning methods but trends were contingent on the CNN method and cancer site. These encouraging results demonstrate the potential of deep learning for automated abstraction of pathology reports.
Learn the Lagrangian: A Vector-Valued RKHS Approach to Identifying Lagrangian Systems.
Cheng, Ching-An; Huang, Han-Pang
2016-12-01
We study the modeling of Lagrangian systems with multiple degrees of freedom. Based on system dynamics, canonical parametric models require ad hoc derivations and sometimes simplification for a computable solution; on the other hand, due to the lack of prior knowledge in the system's structure, modern nonparametric models in machine learning face the curse of dimensionality, especially in learning large systems. In this paper, we bridge this gap by unifying the theories of Lagrangian systems and vector-valued reproducing kernel Hilbert space. We reformulate Lagrangian systems with kernels that embed the governing Euler-Lagrange equation-the Lagrangian kernels-and show that these kernels span a subspace capturing the Lagrangian's projection as inverse dynamics. By such property, our model uses only inputs and outputs as in machine learning and inherits the structured form as in system dynamics, thereby removing the need for the mundane derivations for new systems as well as the generalization problem in learning from scratches. In effect, it learns the system's Lagrangian, a simpler task than directly learning the dynamics. To demonstrate, we applied the proposed kernel to identify the robot inverse dynamics in simulations and experiments. Our results present a competitive novel approach to identifying Lagrangian systems, despite using only inputs and outputs.
AAV Vectorization of DSB-mediated Gene Editing Technologies.
Moser, Rachel J; Hirsch, Matthew L
2016-01-01
Recent work both at the bench and the bedside demonstrate zinc-finger nucleases (ZFNs), CRISPR/Cas9, and other programmable site-specific endonuclease technologies are being successfully utilized within and alongside AAV vectors to induce therapeutically relevant levels of directed gene editing within the human chromosome. Studies from past decades acknowledge that AAV vector genomes are enhanced substrates for homology-directed repair in the presence or absence of targeted DNA damage within the host genome. Additionally, AAV vectors are currently the most efficient format for in vivo gene delivery with no vector related complications in >100 clinical trials for diverse diseases. At the same time, advancements in the design of custom-engineered site-specific endonucleases and the utilization of elucidated endonuclease formats have resulted in efficient and facile genetic engineering for basic science and for clinical therapies. AAV vectors and gene editing technologies are an obvious marriage, using AAV for the delivery of repair substrate and/or a gene encoding a designer endonuclease; however, while efficient delivery and enhanced gene targeting by vector genomes are advantageous, other attributes of AAV vectors are less desirable for gene editing technologies. This review summarizes the various roles that AAV vectors play in gene editing technologies and provides insight into its trending applications for the treatment of genetic diseases.
A Re-Unification of Two Competing Models for Document Retrieval.
ERIC Educational Resources Information Center
Bodoff, David
1999-01-01
Examines query-oriented versus document-oriented information retrieval and feedback learning. Highlights include a reunification of the two approaches for probabilistic document retrieval and for vector space model (VSM) retrieval; learning in VSM and in probabilistic models; multi-dimensional scaling; and ongoing field studies. (LRW)
Dhimal, Meghnath; Ahrens, Bodo; Kuch, Ulrich
2015-01-01
Background Despite its largely mountainous terrain for which this Himalayan country is a popular tourist destination, Nepal is now endemic for five major vector-borne diseases (VBDs), namely malaria, lymphatic filariasis, Japanese encephalitis, visceral leishmaniasis and dengue fever. There is increasing evidence about the impacts of climate change on VBDs especially in tropical highlands and temperate regions. Our aim is to explore whether the observed spatiotemporal distributions of VBDs in Nepal can be related to climate change. Methodology A systematic literature search was performed and summarized information on climate change and the spatiotemporal distribution of VBDs in Nepal from the published literature until December2014 following providing items for systematic review and meta-analysis (PRISMA) guidelines. Principal Findings We found 12 studies that analysed the trend of climatic data and are relevant for the study of VBDs, 38 studies that dealt with the spatial and temporal distribution of disease vectors and disease transmission. Among 38 studies, only eight studies assessed the association of VBDs with climatic variables. Our review highlights a pronounced warming in the mountains and an expansion of autochthonous cases of VBDs to non-endemic areas including mountain regions (i.e., at least 2,000 m above sea level). Furthermore, significant relationships between climatic variables and VBDs and their vectors are found in short-term studies. Conclusion Taking into account the weak health care systems and difficult geographic terrain of Nepal, increasing trade and movements of people, a lack of vector control interventions, observed relationships between climatic variables and VBDs and their vectors and the establishment of relevant disease vectors already at least 2,000 m above sea level, we conclude that climate change can intensify the risk of VBD epidemics in the mountain regions of Nepal if other non-climatic drivers of VBDs remain constant. PMID:26086887
Method and system of filtering and recommending documents
Patton, Robert M.; Potok, Thomas E.
2016-02-09
Disclosed is a method and system for discovering documents using a computer and providing a small set of the most relevant documents to the attention of a human observer. Using the method, the computer obtains a seed document from the user and generates a seed document vector using term frequency-inverse corpus frequency weighting. A keyword index for a plurality of source documents can be compared with the weighted terms of the seed document vector. The comparison is then filtered to reduce the number of documents, which define an initial subset of the source documents. Initial subset vectors are generated and compared to the seed document vector to obtain a similarity value for each comparison. Based on the similarity value, the method then recommends one or more of the source documents.
Lissek, Silke; Glaubitz, Benjamin; Schmidt-Wilcke, Tobias; Tegenthoff, Martin
2016-05-01
Renewal is defined as the recovery of an extinguished response if extinction and retrieval contexts differ. The context dependency of extinction, as demonstrated by renewal, has important implications for extinction-based therapies. Persons showing renewal (REN) exhibit higher hippocampal activation during extinction in associative learning than those without renewal (NOREN), demonstrating hippocampal context processing, and recruit ventromedial pFC in retrieval. Apart from these findings, brain processes generating renewal remain largely unknown. Conceivably, processing differences in task-relevant brain regions that ultimately lead to renewal may occur already in initial acquisition of associations. Therefore, in two fMRI studies, we investigated overall brain activation and hippocampal activation in REN and NOREN during acquisition of an associative learning task in response to presentation of a context alone or combined with a cue. Results of two studies demonstrated significant activation differences between the groups: In Study 1, a support vector machine classifier correctly assigned participants' brain activation patterns to REN and NOREN groups, respectively. In Study 2, REN and NOREN showed similar hippocampal involvement during context-only presentation, suggesting processing of novelty, whereas overall hippocampal activation to the context-cue compound, suggesting compound encoding, was higher in REN. Positive correlations between hippocampal activation and renewal level indicated more prominent hippocampal processing in REN. Results suggest that hippocampal processing of the context-cue compound rather than of context only during initial learning is related to a subsequent renewal effect. Presumably, REN participants use distinct encoding strategies during acquisition of context-related tasks, which reflect in their brain activation patterns and contribute to a renewal effect.
Epidemic spreading and global stability of an SIS model with an infective vector on complex networks
NASA Astrophysics Data System (ADS)
Kang, Huiyan; Fu, Xinchu
2015-10-01
In this paper, we present a new SIS model with delay on scale-free networks. The model is suitable to describe some epidemics which are not only transmitted by a vector but also spread between individuals by direct contacts. In view of the biological relevance and real spreading process, we introduce a delay to denote average incubation period of disease in a vector. By mathematical analysis, we obtain the epidemic threshold and prove the global stability of equilibria. The simulation shows the delay will effect the epidemic spreading. Finally, we investigate and compare two major immunization strategies, uniform immunization and targeted immunization.
Best, Catherine A.; Yim, Hyungwook; Sloutsky, Vladimir M.
2013-01-01
Selective attention plays an important role in category learning. However, immaturities of top-down attentional control during infancy coupled with successful category learning suggest that early category learning is achieved without attending selectively. Research presented here examines this possibility by focusing on category learning in infants (6–8 months old) and adults. Participants were trained on a novel visual category. Halfway through the experiment, unbeknownst to participants, the to-be-learned category switched to another category, where previously relevant features became irrelevant and previously irrelevant features became relevant. If participants attend selectively to the relevant features of the first category, they should incur a cost of selective attention immediately after the unknown category switch. Results revealed that adults demonstrated a cost, as evidenced by a decrease in accuracy and response time on test trials as well as a decrease in visual attention to newly relevant features. In contrast, infants did not demonstrate a similar cost of selective attention as adults despite evidence of learning both to-be-learned categories. Findings are discussed as supporting multiple systems of category learning and as suggesting that learning mechanisms engaged by adults may be different from those engaged by infants. PMID:23773914
Molecular Cardiac Surgery with Recirculating Delivery (MCARD): Procedure and Vector Transfer.
Katz, Michael G; Fargnoli, Anthony S; Kendle, Andrew P; Bridges, Charles R
2017-01-01
Despite progress in clinical treatment, cardiovascular diseases are still the leading cause of morbidity and mortality worldwide. Therefore, novel therapeutic approaches are needed, targeting the underlying molecular mechanisms of disease with improved outcomes for patients. Gene therapy is one of the most promising fields for the development of new treatments for the advanced stages of cardiovascular diseases. The establishment of clinically relevant methods of gene transfer remains one of the principal limitations on the effectiveness of gene therapy. Recently, there have been significant advances in direct and transvascular gene delivery methods. The ideal gene transfer method should be explored in clinically relevant large animal models of heart disease to evaluate the roles of specific molecular pathways in disease pathogenesis. Characteristics of the optimal technique for gene delivery include low morbidity, an increased myocardial transcapillary gradient, esxtended vector residence time in the myocytes, and the exclusion of residual vector from the systemic circulation after delivery to minimize collateral expression and immune response. Here we describe myocardial gene transfer techniques with molecular cardiac surgery with recirculating delivery in a large animal model of post ischemic heart failure.
Manoharan, Vinoth K; Khattar, Sunil K; LaBranche, Celia C; Montefiori, David C; Samal, Siba K
2018-06-12
SIV infection in macaques is a relevant animal model for HIV pathogenesis and vaccine study in humans. To design a safe and effective vaccine against HIV, we evaluated the suitability of naturally-occurring avirulent Newcastle disease virus (NDV) strains and several modified versions of NDV as vectors for the expression and immunogenicity of SIV envelope protein gp160. All the NDV vectors expressed gp160 protein in infected cells. The gp160 expressed by these vectors formed oligomers and was incorporated into the NDV envelope. All the NDV vectors expressing gp160 were attenuated in chickens. Intranasal immunization of guinea pigs with modified NDV vectors such as rNDV-APMV-2CS/gp160 and rNDV-APMV-8CS/gp160 (NDV strain LaSota containing the cleavage site sequences of F protein of avian paramyxovirus (APMV) serotype 2 and 8, respectively), and rNDV-BC-F-HN/gp160 (NDV strain BC containing LaSota F cleavage site and LaSota F and HN genes) elicited improved SIV-specific humoral and mucosal immune responses compared to other NDV vectors. These modified vectors were also efficient in inducing neutralizing antibody responses to tier 1 A SIVmac251.6 and tier 1B SIVmac251/M766 strains. This study suggests that our novel modified NDV vectors are safe and immunogenic and can be used as vaccine vector to control HIV.
Early error detection: an action-research experience teaching vector calculus
NASA Astrophysics Data System (ADS)
Magdalena Añino, María; Merino, Gabriela; Miyara, Alberto; Perassi, Marisol; Ravera, Emiliano; Pita, Gustavo; Waigandt, Diana
2014-04-01
This paper describes an action-research experience carried out with second year students at the School of Engineering of the National University of Entre Ríos, Argentina. Vector calculus students played an active role in their own learning process. They were required to present weekly reports, in both oral and written forms, on the topics studied, instead of merely sitting and watching as the teacher solved problems on the blackboard. The students were also asked to perform computer assignments, and their learning process was continuously monitored. Among many benefits, this methodology has allowed students and teachers to identify errors and misconceptions that might have gone unnoticed under a more passive approach.
An assessment of support vector machines for land cover classification
Huang, C.; Davis, L.S.; Townshend, J.R.G.
2002-01-01
The support vector machine (SVM) is a group of theoretically superior machine learning algorithms. It was found competitive with the best available machine learning algorithms in classifying high-dimensional data sets. This paper gives an introduction to the theoretical development of the SVM and an experimental evaluation of its accuracy, stability and training speed in deriving land cover classifications from satellite images. The SVM was compared to three other popular classifiers, including the maximum likelihood classifier (MLC), neural network classifiers (NNC) and decision tree classifiers (DTC). The impacts of kernel configuration on the performance of the SVM and of the selection of training data and input variables on the four classifiers were also evaluated in this experiment.
NASA Astrophysics Data System (ADS)
Liu, Tuo; Chen, Changshui; Shi, Xingzhe; Liu, Chengyong
2016-05-01
The Raman spectra of tissue of 20 brain tumor patients was recorded using a confocal microlaser Raman spectroscope with 785 nm excitation in vitro. A total of 133 spectra were investigated. Spectra peaks from normal white matter tissue and tumor tissue were analyzed. Algorithms, such as principal component analysis, linear discriminant analysis, and the support vector machine, are commonly used to analyze spectral data. However, in this study, we employed the learning vector quantization (LVQ) neural network, which is typically used for pattern recognition. By applying the proposed method, a normal diagnosis accuracy of 85.7% and a glioma diagnosis accuracy of 89.5% were achieved. The LVQ neural network is a recent approach to excavating Raman spectra information. Moreover, it is fast and convenient, does not require the spectra peak counterpart, and achieves a relatively high accuracy. It can be used in brain tumor prognostics and in helping to optimize the cutting margins of gliomas.
A Simple Deep Learning Method for Neuronal Spike Sorting
NASA Astrophysics Data System (ADS)
Yang, Kai; Wu, Haifeng; Zeng, Yu
2017-10-01
Spike sorting is one of key technique to understand brain activity. With the development of modern electrophysiology technology, some recent multi-electrode technologies have been able to record the activity of thousands of neuronal spikes simultaneously. The spike sorting in this case will increase the computational complexity of conventional sorting algorithms. In this paper, we will focus spike sorting on how to reduce the complexity, and introduce a deep learning algorithm, principal component analysis network (PCANet) to spike sorting. The introduced method starts from a conventional model and establish a Toeplitz matrix. Through the column vectors in the matrix, we trains a PCANet, where some eigenvalue vectors of spikes could be extracted. Finally, support vector machine (SVM) is used to sort spikes. In experiments, we choose two groups of simulated data from public databases availably and compare this introduced method with conventional methods. The results indicate that the introduced method indeed has lower complexity with the same sorting errors as the conventional methods.
Erraguntla, Madhav; Zapletal, Josef; Lawley, Mark
2017-12-01
The impact of infectious disease on human populations is a function of many factors including environmental conditions, vector dynamics, transmission mechanics, social and cultural behaviors, and public policy. A comprehensive framework for disease management must fully connect the complete disease lifecycle, including emergence from reservoir populations, zoonotic vector transmission, and impact on human societies. The Framework for Infectious Disease Analysis is a software environment and conceptual architecture for data integration, situational awareness, visualization, prediction, and intervention assessment. Framework for Infectious Disease Analysis automatically collects biosurveillance data using natural language processing, integrates structured and unstructured data from multiple sources, applies advanced machine learning, and uses multi-modeling for analyzing disease dynamics and testing interventions in complex, heterogeneous populations. In the illustrative case studies, natural language processing from social media, news feeds, and websites was used for information extraction, biosurveillance, and situation awareness. Classification machine learning algorithms (support vector machines, random forests, and boosting) were used for disease predictions.
An artificial neural network model for periodic trajectory generation
NASA Astrophysics Data System (ADS)
Shankar, S.; Gander, R. E.; Wood, H. C.
A neural network model based on biological systems was developed for potential robotic application. The model consists of three interconnected layers of artificial neurons or units: an input layer subdivided into state and plan units, an output layer, and a hidden layer between the two outer layers which serves to implement nonlinear mappings between the input and output activation vectors. Weighted connections are created between the three layers, and learning is effected by modifying these weights. Feedback connections between the output and the input state serve to make the network operate as a finite state machine. The activation vector of the plan units of the input layer emulates the supraspinal commands in biological central pattern generators in that different plan activation vectors correspond to different sequences or trajectories being recalled, even with different frequencies. Three trajectories were chosen for implementation, and learning was accomplished in 10,000 trials. The fault tolerant behavior, adaptiveness, and phase maintenance of the implemented network are discussed.
Zhang, Yanjun; Zhang, Xiangmin; Liu, Wenhui; Luo, Yuxi; Yu, Enjia; Zou, Keju; Liu, Xiaoliang
2014-01-01
This paper employed the clinical Polysomnographic (PSG) data, mainly including all-night Electroencephalogram (EEG), Electrooculogram (EOG) and Electromyogram (EMG) signals of subjects, and adopted the American Academy of Sleep Medicine (AASM) clinical staging manual as standards to realize automatic sleep staging. Authors extracted eighteen different features of EEG, EOG and EMG in time domains and frequency domains to construct the vectors according to the existing literatures as well as clinical experience. By adopting sleep samples self-learning, the linear combination of weights and parameters of multiple kernels of the fuzzy support vector machine (FSVM) were learned and the multi-kernel FSVM (MK-FSVM) was constructed. The overall agreement between the experts' scores and the results presented was 82.53%. Compared with previous results, the accuracy of N1 was improved to some extent while the accuracies of other stages were approximate, which well reflected the sleep structure. The staging algorithm proposed in this paper is transparent, and worth further investigation.
Cosmic string detection with tree-based machine learning
NASA Astrophysics Data System (ADS)
Vafaei Sadr, A.; Farhang, M.; Movahed, S. M. S.; Bassett, B.; Kunz, M.
2018-07-01
We explore the use of random forest and gradient boosting, two powerful tree-based machine learning algorithms, for the detection of cosmic strings in maps of the cosmic microwave background (CMB), through their unique Gott-Kaiser-Stebbins effect on the temperature anisotropies. The information in the maps is compressed into feature vectors before being passed to the learning units. The feature vectors contain various statistical measures of the processed CMB maps that boost cosmic string detectability. Our proposed classifiers, after training, give results similar to or better than claimed detectability levels from other methods for string tension, Gμ. They can make 3σ detection of strings with Gμ ≳ 2.1 × 10-10 for noise-free, 0.9'-resolution CMB observations. The minimum detectable tension increases to Gμ ≳ 3.0 × 10-8 for a more realistic, CMB S4-like (II) strategy, improving over previous results.
Cosmic String Detection with Tree-Based Machine Learning
NASA Astrophysics Data System (ADS)
Vafaei Sadr, A.; Farhang, M.; Movahed, S. M. S.; Bassett, B.; Kunz, M.
2018-05-01
We explore the use of random forest and gradient boosting, two powerful tree-based machine learning algorithms, for the detection of cosmic strings in maps of the cosmic microwave background (CMB), through their unique Gott-Kaiser-Stebbins effect on the temperature anisotropies. The information in the maps is compressed into feature vectors before being passed to the learning units. The feature vectors contain various statistical measures of the processed CMB maps that boost cosmic string detectability. Our proposed classifiers, after training, give results similar to or better than claimed detectability levels from other methods for string tension, Gμ. They can make 3σ detection of strings with Gμ ≳ 2.1 × 10-10 for noise-free, 0.9΄-resolution CMB observations. The minimum detectable tension increases to Gμ ≳ 3.0 × 10-8 for a more realistic, CMB S4-like (II) strategy, improving over previous results.
Modeling Time Series Data for Supervised Learning
ERIC Educational Resources Information Center
Baydogan, Mustafa Gokce
2012-01-01
Temporal data are increasingly prevalent and important in analytics. Time series (TS) data are chronological sequences of observations and an important class of temporal data. Fields such as medicine, finance, learning science and multimedia naturally generate TS data. Each series provide a high-dimensional data vector that challenges the learning…
ERIC Educational Resources Information Center
Vansteenkiste, Maarten; Aelterman, Nathalie; De Muynck, Gert-Jan; Haerens, Leen; Patall, Erika; Reeve, Johnmarshall
2018-01-01
Central to self-determination theory (SDT) is the notion that autonomously motivated learning relates to greater learning benefits. While learners' intrinsic motivation has received substantial attention, learners also display volitional learning when they come to endorse the personal meaning or self-relevance of the learning task. In Part I of…
ERIC Educational Resources Information Center
Chernyavskaya, Yana S.; Kiselev, Sergey V.; Rassolov, Ilya M.; Kurushin, Viktor V.; Chernikova, Lyudmila I.; Faizova, Guzel R.
2016-01-01
The relevance of research: The relevance of the problem studied is caused by the acceleration of transition of the Russian economy on an innovative way of development, which depends on the vector of innovative sphere of services and, to a large extent, information and communication services, as well as it is caused by the poor drafting of…
Method for indexing and retrieving manufacturing-specific digital imagery based on image content
Ferrell, Regina K.; Karnowski, Thomas P.; Tobin, Jr., Kenneth W.
2004-06-15
A method for indexing and retrieving manufacturing-specific digital images based on image content comprises three steps. First, at least one feature vector can be extracted from a manufacturing-specific digital image stored in an image database. In particular, each extracted feature vector corresponds to a particular characteristic of the manufacturing-specific digital image, for instance, a digital image modality and overall characteristic, a substrate/background characteristic, and an anomaly/defect characteristic. Notably, the extracting step includes generating a defect mask using a detection process. Second, using an unsupervised clustering method, each extracted feature vector can be indexed in a hierarchical search tree. Third, a manufacturing-specific digital image associated with a feature vector stored in the hierarchicial search tree can be retrieved, wherein the manufacturing-specific digital image has image content comparably related to the image content of the query image. More particularly, can include two data reductions, the first performed based upon a query vector extracted from a query image. Subsequently, a user can select relevant images resulting from the first data reduction. From the selection, a prototype vector can be calculated, from which a second-level data reduction can be performed. The second-level data reduction can result in a subset of feature vectors comparable to the prototype vector, and further comparable to the query vector. An additional fourth step can include managing the hierarchical search tree by substituting a vector average for several redundant feature vectors encapsulated by nodes in the hierarchical search tree.
The ecological foundations of transmission potential and vector-borne disease in urban landscapes.
LaDeau, Shannon L; Allan, Brian F; Leisnham, Paul T; Levy, Michael Z
2015-07-01
Urban transmission of arthropod-vectored disease has increased in recent decades. Understanding and managing transmission potential in urban landscapes requires integration of sociological and ecological processes that regulate vector population dynamics, feeding behavior, and vector-pathogen interactions in these unique ecosystems. Vectorial capacity is a key metric for generating predictive understanding about transmission potential in systems with obligate vector transmission. This review evaluates how urban conditions, specifically habitat suitability and local temperature regimes, and the heterogeneity of urban landscapes can influence the biologically-relevant parameters that define vectorial capacity: vector density, survivorship, biting rate, extrinsic incubation period, and vector competence.Urban landscapes represent unique mosaics of habitat. Incidence of vector-borne disease in urban host populations is rarely, if ever, evenly distributed across an urban area. The persistence and quality of vector habitat can vary significantly across socio-economic boundaries to influence vector species composition and abundance, often generating socio-economically distinct gradients of transmission potential across neighborhoods.Urban regions often experience unique temperature regimes, broadly termed urban heat islands (UHI). Arthropod vectors are ectothermic organisms and their growth, survival, and behavior are highly sensitive to environmental temperatures. Vector response to UHI conditions is dependent on regional temperature profiles relative to the vector's thermal performance range. In temperate climates UHI can facilitate increased vector development rates while having countervailing influence on survival and feeding behavior. Understanding how urban heat island (UHI) conditions alter thermal and moisture constraints across the vector life cycle to influence transmission processes is an important direction for both empirical and modeling research.There remain persistent gaps in understanding of vital rates and drivers in mosquito-vectored disease systems, and vast holes in understanding for other arthropod vectored diseases. Empirical studies are needed to better understand the physiological constraints and socio-ecological processes that generate heterogeneity in critical transmission parameters, including vector survival and fitness. Likewise, laboratory experiments and transmission models must evaluate vector response to realistic field conditions, including variability in sociological and environmental conditions.
Two generalizations of Kohonen clustering
NASA Technical Reports Server (NTRS)
Bezdek, James C.; Pal, Nikhil R.; Tsao, Eric C. K.
1993-01-01
The relationship between the sequential hard c-means (SHCM), learning vector quantization (LVQ), and fuzzy c-means (FCM) clustering algorithms is discussed. LVQ and SHCM suffer from several major problems. For example, they depend heavily on initialization. If the initial values of the cluster centers are outside the convex hull of the input data, such algorithms, even if they terminate, may not produce meaningful results in terms of prototypes for cluster representation. This is due in part to the fact that they update only the winning prototype for every input vector. The impact and interaction of these two families with Kohonen's self-organizing feature mapping (SOFM), which is not a clustering method, but which often leads ideas to clustering algorithms is discussed. Then two generalizations of LVQ that are explicitly designed as clustering algorithms are presented; these algorithms are referred to as generalized LVQ = GLVQ; and fuzzy LVQ = FLVQ. Learning rules are derived to optimize an objective function whose goal is to produce 'good clusters'. GLVQ/FLVQ (may) update every node in the clustering net for each input vector. Neither GLVQ nor FLVQ depends upon a choice for the update neighborhood or learning rate distribution - these are taken care of automatically. Segmentation of a gray tone image is used as a typical application of these algorithms to illustrate the performance of GLVQ/FLVQ.
Toxicity challenges in environmental chemicals: Prediction of ...
Physiologically based pharmacokinetic (PBPK) models bridge the gap between in vitro assays and in vivo effects by accounting for the adsorption, distribution, metabolism, and excretion of xenobiotics, which is especially useful in the assessment of human toxicity. Quantitative structure-activity relationships (QSAR) serve as a vital tool for the high-throughput prediction of chemical-specific PBPK parameters, such as the fraction of a chemical unbound by plasma protein (Fub). The presented work explores the merit of utilizing experimental pharmaceutical Fub data for the construction of a universal QSAR model, in order to compensate for the limited range of high-quality experimental Fub data for environmentally relevant chemicals, such as pollutants, pesticides, and consumer products. Independent QSAR models were constructed with three machine-learning algorithms, k nearest neighbors (kNN), random forest (RF), and support vector machine (SVM) regression, from a large pharmaceutical training set (~1000) and assessed with independent test sets of pharmaceuticals (~200) and environmentally relevant chemicals in the ToxCast program (~400). Small descriptor sets yielded the optimal balance of model complexity and performance, providing insight into the biochemical factors of plasma protein binding, while preventing over fitting to the training set. Overlaps in chemical space between pharmaceutical and environmental compounds were considered through applicability of do
Buckley, Matthew G.; Smith, Alastair D.; Haselgrove, Mark
2015-01-01
A number of navigational theories state that learning about landmark information should not interfere with learning about shape information provided by the boundary walls of an environment. A common test of such theories has been to assess whether landmark information will overshadow, or restrict, learning about shape information. Whilst a number of studies have shown that landmarks are not able to overshadow learning about shape information, some have shown that landmarks can, in fact, overshadow learning about shape information. Given the continued importance of theories that grant the shape information that is provided by the boundary of an environment a special status during learning, the experiments presented here were designed to assess whether the relative salience of shape and landmark information could account for the discrepant results of overshadowing studies. In Experiment 1, participants were first trained that either the landmarks within an arena (landmark-relevant), or the shape information provided by the boundary walls of an arena (shape-relevant), were relevant to finding a hidden goal. In a subsequent stage, when novel landmark and shape information were made relevant to finding the hidden goal, landmarks dominated behaviour for those given landmark-relevant training, whereas shape information dominated behaviour for those given shape-relevant training. Experiment 2, which was conducted without prior relevance training, revealed that the landmark cues, unconditionally, dominated behaviour in our task. The results of the present experiments, and the conflicting results from previous overshadowing experiments, are explained in terms of associative models that incorporate an attention variant. PMID:25409751
How Attention Can Create Synaptic Tags for the Learning of Working Memories in Sequential Tasks
Rombouts, Jaldert O.; Bohte, Sander M.; Roelfsema, Pieter R.
2015-01-01
Intelligence is our ability to learn appropriate responses to new stimuli and situations. Neurons in association cortex are thought to be essential for this ability. During learning these neurons become tuned to relevant features and start to represent them with persistent activity during memory delays. This learning process is not well understood. Here we develop a biologically plausible learning scheme that explains how trial-and-error learning induces neuronal selectivity and working memory representations for task-relevant information. We propose that the response selection stage sends attentional feedback signals to earlier processing levels, forming synaptic tags at those connections responsible for the stimulus-response mapping. Globally released neuromodulators then interact with tagged synapses to determine their plasticity. The resulting learning rule endows neural networks with the capacity to create new working memory representations of task relevant information as persistent activity. It is remarkably generic: it explains how association neurons learn to store task-relevant information for linear as well as non-linear stimulus-response mappings, how they become tuned to category boundaries or analog variables, depending on the task demands, and how they learn to integrate probabilistic evidence for perceptual decisions. PMID:25742003
Alcaide-Leon, P; Dufort, P; Geraldo, A F; Alshafai, L; Maralani, P J; Spears, J; Bharatha, A
2017-06-01
Accurate preoperative differentiation of primary central nervous system lymphoma and enhancing glioma is essential to avoid unnecessary neurosurgical resection in patients with primary central nervous system lymphoma. The purpose of the study was to evaluate the diagnostic performance of a machine-learning algorithm by using texture analysis of contrast-enhanced T1-weighted images for differentiation of primary central nervous system lymphoma and enhancing glioma. Seventy-one adult patients with enhancing gliomas and 35 adult patients with primary central nervous system lymphomas were included. The tumors were manually contoured on contrast-enhanced T1WI, and the resulting volumes of interest were mined for textural features and subjected to a support vector machine-based machine-learning protocol. Three readers classified the tumors independently on contrast-enhanced T1WI. Areas under the receiver operating characteristic curves were estimated for each reader and for the support vector machine classifier. A noninferiority test for diagnostic accuracy based on paired areas under the receiver operating characteristic curve was performed with a noninferiority margin of 0.15. The mean areas under the receiver operating characteristic curve were 0.877 (95% CI, 0.798-0.955) for the support vector machine classifier; 0.878 (95% CI, 0.807-0.949) for reader 1; 0.899 (95% CI, 0.833-0.966) for reader 2; and 0.845 (95% CI, 0.757-0.933) for reader 3. The mean area under the receiver operating characteristic curve of the support vector machine classifier was significantly noninferior to the mean area under the curve of reader 1 ( P = .021), reader 2 ( P = .035), and reader 3 ( P = .007). Support vector machine classification based on textural features of contrast-enhanced T1WI is noninferior to expert human evaluation in the differentiation of primary central nervous system lymphoma and enhancing glioma. © 2017 by American Journal of Neuroradiology.
Curate, F; Umbelino, C; Perinha, A; Nogueira, C; Silva, A M; Cunha, E
2017-11-01
The assessment of sex is of paramount importance in the establishment of the biological profile of a skeletal individual. Femoral relevance for sex estimation is indisputable, particularly when other exceedingly dimorphic skeletal regions are missing. As such, this study intended to generate population-specific osteometric models for the estimation of sex with the femur and to compare the accuracy of the models obtained through classical and machine-learning classifiers. A set of 15 standard femoral measurements was acquired in a training sample (100 females; 100 males) from the Coimbra Identified Skeletal Collection (University of Coimbra, Portugal) and models for sex classification were produced with logistic regression (LR), linear discriminant analysis (LDA), support vector machines (SVM), and reduce error pruning trees (REPTree). Under cross-validation, univariable sectioning points generated with REPTree correctly estimated sex in 60.0-87.5% of cases (systematic error ranging from 0.0 to 37.0%), while multivariable models correctly classified sex in 84.0-92.5% of cases (bias from 0.0 to 7.0%). All models were assessed in a holdout sample (24 females; 34 males) from the 21st Century Identified Skeletal Collection (University of Coimbra, Portugal), with an allocation accuracy ranging from 56.9 to 86.2% (bias from 4.4 to 67.0%) in the univariable models, and from 84.5 to 89.7% (bias from 3.7 to 23.3%) in the multivariable models. This study makes available a detailed description of sexual dimorphism in femoral linear dimensions in two Portuguese identified skeletal samples, emphasizing the relevance of the femur for the estimation of sex in skeletal remains in diverse conditions of completeness and preservation. Copyright © 2017 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
Hollingsworth, T. Déirdre; Pulliam, Juliet R.C.; Funk, Sebastian; Truscott, James E.; Isham, Valerie; Lloyd, Alun L.
2015-01-01
Many of the challenges which face modellers of directly transmitted pathogens also arise when modelling the epidemiology of pathogens with indirect transmission – whether through environmental stages, vectors, intermediate hosts or multiple hosts. In particular, understanding the roles of different hosts, how to measure contact and infection patterns, heterogeneities in contact rates, and the dynamics close to elimination are all relevant challenges, regardless of the mode of transmission. However, there remain a number of challenges that are specific and unique to modelling vector-borne diseases and macroparasites. Moreover, many of the neglected tropical diseases which are currently targeted for control and elimination are vector-borne, macroparasitic, or both, and so this article includes challenges which will assist in accelerating the control of these high-burden diseases. Here, we discuss the challenges of indirect measures of infection in humans, whether through vectors or transmission life stages and in estimating the contribution of different host groups to transmission. We also discuss the issues of “evolution-proof” interventions against vector-borne disease. PMID:25843376
Hollingsworth, T Déirdre; Pulliam, Juliet R C; Funk, Sebastian; Truscott, James E; Isham, Valerie; Lloyd, Alun L
2015-03-01
Many of the challenges which face modellers of directly transmitted pathogens also arise when modelling the epidemiology of pathogens with indirect transmission--whether through environmental stages, vectors, intermediate hosts or multiple hosts. In particular, understanding the roles of different hosts, how to measure contact and infection patterns, heterogeneities in contact rates, and the dynamics close to elimination are all relevant challenges, regardless of the mode of transmission. However, there remain a number of challenges that are specific and unique to modelling vector-borne diseases and macroparasites. Moreover, many of the neglected tropical diseases which are currently targeted for control and elimination are vector-borne, macroparasitic, or both, and so this article includes challenges which will assist in accelerating the control of these high-burden diseases. Here, we discuss the challenges of indirect measures of infection in humans, whether through vectors or transmission life stages and in estimating the contribution of different host groups to transmission. We also discuss the issues of "evolution-proof" interventions against vector-borne disease. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
Sawamura, Jitsuki; Morishita, Shigeru; Ishigooka, Jun
2016-02-09
Previously, we applied basic group theory and related concepts to scales of measurement of clinical disease states and clinical findings (including laboratory data). To gain a more concrete comprehension, we here apply the concept of matrix representation, which was not explicitly exploited in our previous work. Starting with a set of orthonormal vectors, called the basis, an operator Rj (an N-tuple patient disease state at the j-th session) was expressed as a set of stratified vectors representing plural operations on individual components, so as to satisfy the group matrix representation. The stratified vectors containing individual unit operations were combined into one-dimensional square matrices [Rj]s. The [Rj]s meet the matrix representation of a group (ring) as a K-algebra. Using the same-sized matrix of stratified vectors, we can also express changes in the plural set of [Rj]s. The method is demonstrated on simple examples. Despite the incompleteness of our model, the group matrix representation of stratified vectors offers a formal mathematical approach to clinical medicine, aligning it with other branches of natural science.
Expected energy-based restricted Boltzmann machine for classification.
Elfwing, S; Uchibe, E; Doya, K
2015-04-01
In classification tasks, restricted Boltzmann machines (RBMs) have predominantly been used in the first stage, either as feature extractors or to provide initialization of neural networks. In this study, we propose a discriminative learning approach to provide a self-contained RBM method for classification, inspired by free-energy based function approximation (FE-RBM), originally proposed for reinforcement learning. For classification, the FE-RBM method computes the output for an input vector and a class vector by the negative free energy of an RBM. Learning is achieved by stochastic gradient-descent using a mean-squared error training objective. In an earlier study, we demonstrated that the performance and the robustness of FE-RBM function approximation can be improved by scaling the free energy by a constant that is related to the size of network. In this study, we propose that the learning performance of RBM function approximation can be further improved by computing the output by the negative expected energy (EE-RBM), instead of the negative free energy. To create a deep learning architecture, we stack several RBMs on top of each other. We also connect the class nodes to all hidden layers to try to improve the performance even further. We validate the classification performance of EE-RBM using the MNIST data set and the NORB data set, achieving competitive performance compared with other classifiers such as standard neural networks, deep belief networks, classification RBMs, and support vector machines. The purpose of using the NORB data set is to demonstrate that EE-RBM with binary input nodes can achieve high performance in the continuous input domain. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Ben Salem, Samira; Bacha, Khmais; Chaari, Abdelkader
2012-09-01
In this work we suggest an original fault signature based on an improved combination of Hilbert and Park transforms. Starting from this combination we can create two fault signatures: Hilbert modulus current space vector (HMCSV) and Hilbert phase current space vector (HPCSV). These two fault signatures are subsequently analysed using the classical fast Fourier transform (FFT). The effects of mechanical faults on the HMCSV and HPCSV spectrums are described, and the related frequencies are determined. The magnitudes of spectral components, relative to the studied faults (air-gap eccentricity and outer raceway ball bearing defect), are extracted in order to develop the input vector necessary for learning and testing the support vector machine with an aim of classifying automatically the various states of the induction motor. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.
CRISPR/Cas9-Advancing Orthopoxvirus Genome Editing for Vaccine and Vector Development.
Okoli, Arinze; Okeke, Malachy I; Tryland, Morten; Moens, Ugo
2018-01-22
The clustered regularly interspaced short palindromic repeat (CRISPR)/associated protein 9 (Cas9) technology is revolutionizing genome editing approaches. Its high efficiency, specificity, versatility, flexibility, simplicity and low cost have made the CRISPR/Cas9 system preferable to other guided site-specific nuclease-based systems such as TALENs (Transcription Activator-like Effector Nucleases) and ZFNs (Zinc Finger Nucleases) in genome editing of viruses. CRISPR/Cas9 is presently being applied in constructing viral mutants, preventing virus infections, eradicating proviral DNA, and inhibiting viral replication in infected cells. The successful adaptation of CRISPR/Cas9 to editing the genome of Vaccinia virus paves the way for its application in editing other vaccine/vector-relevant orthopoxvirus (OPXV) strains. Thus, CRISPR/Cas9 can be used to resolve some of the major hindrances to the development of OPXV-based recombinant vaccines and vectors, including sub-optimal immunogenicity; transgene and genome instability; reversion of attenuation; potential of spread of transgenes to wildtype strains and close contacts, which are important biosafety and risk assessment considerations. In this article, we review the published literature on the application of CRISPR/Cas9 in virus genome editing and discuss the potentials of CRISPR/Cas9 in advancing OPXV-based recombinant vaccines and vectors. We also discuss the application of CRISPR/Cas9 in combating viruses of clinical relevance, the limitations of CRISPR/Cas9 and the current strategies to overcome them.
Gold nanoparticles - against parasites and insect vectors.
Benelli, Giovanni
2018-02-01
Nanomaterials are currently considered for many biological, biomedical and environmental purposes, due to their outstanding physical and chemical properties. The synthesis of gold nanoparticles (Au NPs) is of high interest for research in parasitology and entomology, since these nanomaterials showed promising applications, ranging from detection techniques to drug development, against a rather wide range of parasites of public health relevance, as well as on insect vectors. Here, I reviewed current knowledge about the bioactivity of Au NPs on selected insect species of public health relevance, including major mosquito vectors, such as Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus. The toxicity of Au NPs against helminths was reviewed, covering Schistosoma mansoni trematodes as well as Raillietina cestodes. Furthermore, I summarized the information available on the antiparasitic role of Au NPs in the fight against malaria, leishmaniosis, toxoplasmosis, trypanosomiasis, cryptosporidiosis, and microsporidian parasites affecting human and animals health. Besides, I examined the employ of Au NPs as biomarkers, tools for diagnostics and adjuvants for the induction of transmission blocking immunity in malaria vaccine research. In the final section, major challenges and future outlooks for further research are discussed, with special reference to the pressing need of further knowledge about the effect of Au NPs on other arthropod vectors, such as ticks, tsetse flies, tabanids, sandflies and blackflies, and related ecotoxicology assays. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Zuhe; Fan, Yangyu; Liu, Weihua; Yu, Zeqi; Wang, Fengqin
2017-01-01
We aim to apply sparse autoencoder-based unsupervised feature learning to emotional semantic analysis for textile images. To tackle the problem of limited training data, we present a cross-domain feature learning scheme for emotional textile image classification using convolutional autoencoders. We further propose a correlation-analysis-based feature selection method for the weights learned by sparse autoencoders to reduce the number of features extracted from large size images. First, we randomly collect image patches on an unlabeled image dataset in the source domain and learn local features with a sparse autoencoder. We then conduct feature selection according to the correlation between different weight vectors corresponding to the autoencoder's hidden units. We finally adopt a convolutional neural network including a pooling layer to obtain global feature activations of textile images in the target domain and send these global feature vectors into logistic regression models for emotional image classification. The cross-domain unsupervised feature learning method achieves 65% to 78% average accuracy in the cross-validation experiments corresponding to eight emotional categories and performs better than conventional methods. Feature selection can reduce the computational cost of global feature extraction by about 50% while improving classification performance.
Semisupervised Support Vector Machines With Tangent Space Intrinsic Manifold Regularization.
Sun, Shiliang; Xie, Xijiong
2016-09-01
Semisupervised learning has been an active research topic in machine learning and data mining. One main reason is that labeling examples is expensive and time-consuming, while there are large numbers of unlabeled examples available in many practical problems. So far, Laplacian regularization has been widely used in semisupervised learning. In this paper, we propose a new regularization method called tangent space intrinsic manifold regularization. It is intrinsic to data manifold and favors linear functions on the manifold. Fundamental elements involved in the formulation of the regularization are local tangent space representations, which are estimated by local principal component analysis, and the connections that relate adjacent tangent spaces. Simultaneously, we explore its application to semisupervised classification and propose two new learning algorithms called tangent space intrinsic manifold regularized support vector machines (TiSVMs) and tangent space intrinsic manifold regularized twin SVMs (TiTSVMs). They effectively integrate the tangent space intrinsic manifold regularization consideration. The optimization of TiSVMs can be solved by a standard quadratic programming, while the optimization of TiTSVMs can be solved by a pair of standard quadratic programmings. The experimental results of semisupervised classification problems show the effectiveness of the proposed semisupervised learning algorithms.
A Deep Similarity Metric Learning Model for Matching Text Chunks to Spatial Entities
NASA Astrophysics Data System (ADS)
Ma, K.; Wu, L.; Tao, L.; Li, W.; Xie, Z.
2017-12-01
The matching of spatial entities with related text is a long-standing research topic that has received considerable attention over the years. This task aims at enrich the contents of spatial entity, and attach the spatial location information to the text chunk. In the data fusion field, matching spatial entities with the corresponding describing text chunks has a big range of significance. However, the most traditional matching methods often rely fully on manually designed, task-specific linguistic features. This work proposes a Deep Similarity Metric Learning Model (DSMLM) based on Siamese Neural Network to learn similarity metric directly from the textural attributes of spatial entity and text chunk. The low-dimensional feature representation of the space entity and the text chunk can be learned separately. By employing the Cosine distance to measure the matching degree between the vectors, the model can make the matching pair vectors as close as possible. Mearnwhile, it makes the mismatching as far apart as possible through supervised learning. In addition, extensive experiments and analysis on geological survey data sets show that our DSMLM model can effectively capture the matching characteristics between the text chunk and the spatial entity, and achieve state-of-the-art performance.
Accurate Monitoring Leads to Effective Control and Greater Learning of Patient Education Materials
ERIC Educational Resources Information Center
Rawson, Katherine A.; O'Neil, Rochelle; Dunlosky, John
2011-01-01
Effective management of chronic diseases (e.g., diabetes) can depend on the extent to which patients can learn and remember disease-relevant information. In two experiments, we explored a technique motivated by theories of self-regulated learning for improving people's learning of information relevant to managing a chronic disease. Materials were…
Vaidya, Avinash R; Fellows, Lesley K
2016-09-21
Real-world decisions are typically made between options that vary along multiple dimensions, requiring prioritization of the important dimensions to support optimal choice. Learning in this setting depends on attributing decision outcomes to the dimensions with predictive relevance rather than to dimensions that are irrelevant and nonpredictive. This attribution problem is computationally challenging, and likely requires an interplay between selective attention and reward learning. Both these processes have been separately linked to the prefrontal cortex, but little is known about how they combine to support learning the reward value of multidimensional stimuli. Here, we examined the necessary contributions of frontal lobe subregions in attributing feedback to relevant and irrelevant dimensions on a trial-by-trial basis in humans. Patients with focal frontal lobe damage completed a demanding reward learning task where options varied on three dimensions, only one of which predicted reward. Participants with left lateral frontal lobe damage attributed rewards to irrelevant dimensions, rather than the relevant dimension. Damage to the ventromedial frontal lobe also impaired learning about the relevant dimension, but did not increase reward attribution to irrelevant dimensions. The results argue for distinct roles for these two regions in learning the value of multidimensional decision options under dynamic conditions, with the lateral frontal lobe required for selecting the relevant dimension to associate with reward, and the ventromedial frontal lobe required to learn the reward association itself. The real world is complex and multidimensional; how do we attribute rewards to predictive features when surrounded by competing cues? Here, we tested the critical involvement of human frontal lobe subregions in a probabilistic, multidimensional learning environment, asking whether focal lesions affected trial-by-trial attribution of feedback to relevant and irrelevant dimensions. The left lateral frontal lobe was required for filtering option dimensions to allow appropriate feedback attribution, while the ventromedial frontal lobe was necessary for learning the value of features in the relevant dimension. These findings argue that selective attention and associative learning processes mediated by anatomically distinct frontal lobe subregions are both critical for adaptive choice in more complex, ecologically valid settings. Copyright © 2016 the authors 0270-6474/16/369843-16$15.00/0.
Sparse Modeling of Human Actions from Motion Imagery
2011-09-02
is here developed. Spatio-temporal features that char- acterize local changes in the image are rst extracted. This is followed by the learning of a...video comes from the optimal sparse linear com- bination of the learned basis vectors (action primitives) representing the actions. A low...computational cost deep-layer model learning the inter- class correlations of the data is added for increasing discriminative power. In spite of its simplicity
Self-Taught Learning Based on Sparse Autoencoder for E-Nose in Wound Infection Detection
He, Peilin; Jia, Pengfei; Qiao, Siqi; Duan, Shukai
2017-01-01
For an electronic nose (E-nose) in wound infection distinguishing, traditional learning methods have always needed large quantities of labeled wound infection samples, which are both limited and expensive; thus, we introduce self-taught learning combined with sparse autoencoder and radial basis function (RBF) into the field. Self-taught learning is a kind of transfer learning that can transfer knowledge from other fields to target fields, can solve such problems that labeled data (target fields) and unlabeled data (other fields) do not share the same class labels, even if they are from entirely different distribution. In our paper, we obtain numerous cheap unlabeled pollutant gas samples (benzene, formaldehyde, acetone and ethylalcohol); however, labeled wound infection samples are hard to gain. Thus, we pose self-taught learning to utilize these gas samples, obtaining a basis vector θ. Then, using the basis vector θ, we reconstruct the new representation of wound infection samples under sparsity constraint, which is the input of classifiers. We compare RBF with partial least squares discriminant analysis (PLSDA), and reach a conclusion that the performance of RBF is superior to others. We also change the dimension of our data set and the quantity of unlabeled data to search the input matrix that produces the highest accuracy. PMID:28991154
NASA Astrophysics Data System (ADS)
Furfaro, R.; Linares, R.; Gaylor, D.; Jah, M.; Walls, R.
2016-09-01
In this paper, we present an end-to-end approach that employs machine learning techniques and Ontology-based Bayesian Networks (BN) to characterize the behavior of resident space objects. State-of-the-Art machine learning architectures (e.g. Extreme Learning Machines, Convolutional Deep Networks) are trained on physical models to learn the Resident Space Object (RSO) features in the vectorized energy and momentum states and parameters. The mapping from measurements to vectorized energy and momentum states and parameters enables behavior characterization via clustering in the features space and subsequent RSO classification. Additionally, Space Object Behavioral Ontologies (SOBO) are employed to define and capture the domain knowledge-base (KB) and BNs are constructed from the SOBO in a semi-automatic fashion to execute probabilistic reasoning over conclusions drawn from trained classifiers and/or directly from processed data. Such an approach enables integrating machine learning classifiers and probabilistic reasoning to support higher-level decision making for space domain awareness applications. The innovation here is to use these methods (which have enjoyed great success in other domains) in synergy so that it enables a "from data to discovery" paradigm by facilitating the linkage and fusion of large and disparate sources of information via a Big Data Science and Analytics framework.
Han, Te; Jiang, Dongxiang; Zhang, Xiaochen; Sun, Yankui
2017-01-01
Rotating machinery is widely used in industrial applications. With the trend towards more precise and more critical operating conditions, mechanical failures may easily occur. Condition monitoring and fault diagnosis (CMFD) technology is an effective tool to enhance the reliability and security of rotating machinery. In this paper, an intelligent fault diagnosis method based on dictionary learning and singular value decomposition (SVD) is proposed. First, the dictionary learning scheme is capable of generating an adaptive dictionary whose atoms reveal the underlying structure of raw signals. Essentially, dictionary learning is employed as an adaptive feature extraction method regardless of any prior knowledge. Second, the singular value sequence of learned dictionary matrix is served to extract feature vector. Generally, since the vector is of high dimensionality, a simple and practical principal component analysis (PCA) is applied to reduce dimensionality. Finally, the K-nearest neighbor (KNN) algorithm is adopted for identification and classification of fault patterns automatically. Two experimental case studies are investigated to corroborate the effectiveness of the proposed method in intelligent diagnosis of rotating machinery faults. The comparison analysis validates that the dictionary learning-based matrix construction approach outperforms the mode decomposition-based methods in terms of capacity and adaptability for feature extraction. PMID:28346385
Mikhchi, Abbas; Honarvar, Mahmood; Kashan, Nasser Emam Jomeh; Aminafshar, Mehdi
2016-06-21
Genotype imputation is an important tool for prediction of unknown genotypes for both unrelated individuals and parent-offspring trios. Several imputation methods are available and can either employ universal machine learning methods, or deploy algorithms dedicated to infer missing genotypes. In this research the performance of eight machine learning methods: Support Vector Machine, K-Nearest Neighbors, Extreme Learning Machine, Radial Basis Function, Random Forest, AdaBoost, LogitBoost, and TotalBoost compared in terms of the imputation accuracy, computation time and the factors affecting imputation accuracy. The methods employed using real and simulated datasets to impute the un-typed SNPs in parent-offspring trios. The tested methods show that imputation of parent-offspring trios can be accurate. The Random Forest and Support Vector Machine were more accurate than the other machine learning methods. The TotalBoost performed slightly worse than the other methods.The running times were different between methods. The ELM was always most fast algorithm. In case of increasing the sample size, the RBF requires long imputation time.The tested methods in this research can be an alternative for imputation of un-typed SNPs in low missing rate of data. However, it is recommended that other machine learning methods to be used for imputation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Predicting complications of percutaneous coronary intervention using a novel support vector method.
Lee, Gyemin; Gurm, Hitinder S; Syed, Zeeshan
2013-01-01
To explore the feasibility of a novel approach using an augmented one-class learning algorithm to model in-laboratory complications of percutaneous coronary intervention (PCI). Data from the Blue Cross Blue Shield of Michigan Cardiovascular Consortium (BMC2) multicenter registry for the years 2007 and 2008 (n=41 016) were used to train models to predict 13 different in-laboratory PCI complications using a novel one-plus-class support vector machine (OP-SVM) algorithm. The performance of these models in terms of discrimination and calibration was compared to the performance of models trained using the following classification algorithms on BMC2 data from 2009 (n=20 289): logistic regression (LR), one-class support vector machine classification (OC-SVM), and two-class support vector machine classification (TC-SVM). For the OP-SVM and TC-SVM approaches, variants of the algorithms with cost-sensitive weighting were also considered. The OP-SVM algorithm and its cost-sensitive variant achieved the highest area under the receiver operating characteristic curve for the majority of the PCI complications studied (eight cases). Similar improvements were observed for the Hosmer-Lemeshow χ(2) value (seven cases) and the mean cross-entropy error (eight cases). The OP-SVM algorithm based on an augmented one-class learning problem improved discrimination and calibration across different PCI complications relative to LR and traditional support vector machine classification. Such an approach may have value in a broader range of clinical domains.
Predicting complications of percutaneous coronary intervention using a novel support vector method
Lee, Gyemin; Gurm, Hitinder S; Syed, Zeeshan
2013-01-01
Objective To explore the feasibility of a novel approach using an augmented one-class learning algorithm to model in-laboratory complications of percutaneous coronary intervention (PCI). Materials and methods Data from the Blue Cross Blue Shield of Michigan Cardiovascular Consortium (BMC2) multicenter registry for the years 2007 and 2008 (n=41 016) were used to train models to predict 13 different in-laboratory PCI complications using a novel one-plus-class support vector machine (OP-SVM) algorithm. The performance of these models in terms of discrimination and calibration was compared to the performance of models trained using the following classification algorithms on BMC2 data from 2009 (n=20 289): logistic regression (LR), one-class support vector machine classification (OC-SVM), and two-class support vector machine classification (TC-SVM). For the OP-SVM and TC-SVM approaches, variants of the algorithms with cost-sensitive weighting were also considered. Results The OP-SVM algorithm and its cost-sensitive variant achieved the highest area under the receiver operating characteristic curve for the majority of the PCI complications studied (eight cases). Similar improvements were observed for the Hosmer–Lemeshow χ2 value (seven cases) and the mean cross-entropy error (eight cases). Conclusions The OP-SVM algorithm based on an augmented one-class learning problem improved discrimination and calibration across different PCI complications relative to LR and traditional support vector machine classification. Such an approach may have value in a broader range of clinical domains. PMID:23599229
Transcriptome of the adult female malaria mosquito vector Anopheles albimanus.
Martínez-Barnetche, Jesús; Gómez-Barreto, Rosa E; Ovilla-Muñoz, Marbella; Téllez-Sosa, Juan; García López, David E; Dinglasan, Rhoel R; Ubaida Mohien, Ceereena; MacCallum, Robert M; Redmond, Seth N; Gibbons, John G; Rokas, Antonis; Machado, Carlos A; Cazares-Raga, Febe E; González-Cerón, Lilia; Hernández-Martínez, Salvador; Rodríguez López, Mario H
2012-05-30
Human Malaria is transmitted by mosquitoes of the genus Anopheles. Transmission is a complex phenomenon involving biological and environmental factors of humans, parasites and mosquitoes. Among more than 500 anopheline species, only a few species from different branches of the mosquito evolutionary tree transmit malaria, suggesting that their vectorial capacity has evolved independently. Anopheles albimanus (subgenus Nyssorhynchus) is an important malaria vector in the Americas. The divergence time between Anopheles gambiae, the main malaria vector in Africa, and the Neotropical vectors has been estimated to be 100 My. To better understand the biological basis of malaria transmission and to develop novel and effective means of vector control, there is a need to explore the mosquito biology beyond the An. gambiae complex. We sequenced the transcriptome of the An. albimanus adult female. By combining Sanger, 454 and Illumina sequences from cDNA libraries derived from the midgut, cuticular fat body, dorsal vessel, salivary gland and whole body, we generated a single, high-quality assembly containing 16,669 transcripts, 92% of which mapped to the An. darlingi genome and covered 90% of the core eukaryotic genome. Bidirectional comparisons between the An. gambiae, An. darlingi and An. albimanus predicted proteomes allowed the identification of 3,772 putative orthologs. More than half of the transcripts had a match to proteins in other insect vectors and had an InterPro annotation. We identified several protein families that may be relevant to the study of Plasmodium-mosquito interaction. An open source transcript annotation browser called GDAV (Genome-Delinked Annotation Viewer) was developed to facilitate public access to the data generated by this and future transcriptome projects. We have explored the adult female transcriptome of one important New World malaria vector, An. albimanus. We identified protein-coding transcripts involved in biological processes that may be relevant to the Plasmodium lifecycle and can serve as the starting point for searching targets for novel control strategies. Our data increase the available genomic information regarding An. albimanus several hundred-fold, and will facilitate molecular research in medical entomology, evolutionary biology, genomics and proteomics of anopheline mosquito vectors. The data reported in this manuscript is accessible to the community via the VectorBase website (http://www.vectorbase.org/Other/AdditionalOrganisms/).
Best, Catherine A; Yim, Hyungwook; Sloutsky, Vladimir M
2013-10-01
Selective attention plays an important role in category learning. However, immaturities of top-down attentional control during infancy coupled with successful category learning suggest that early category learning is achieved without attending selectively. Research presented here examines this possibility by focusing on category learning in infants (6-8months old) and adults. Participants were trained on a novel visual category. Halfway through the experiment, unbeknownst to participants, the to-be-learned category switched to another category, where previously relevant features became irrelevant and previously irrelevant features became relevant. If participants attend selectively to the relevant features of the first category, they should incur a cost of selective attention immediately after the unknown category switch. Results revealed that adults demonstrated a cost, as evidenced by a decrease in accuracy and response time on test trials as well as a decrease in visual attention to newly relevant features. In contrast, infants did not demonstrate a similar cost of selective attention as adults despite evidence of learning both to-be-learned categories. Findings are discussed as supporting multiple systems of category learning and as suggesting that learning mechanisms engaged by adults may be different from those engaged by infants. Copyright © 2013 Elsevier Inc. All rights reserved.
Feedback in Videogame-based Adaptive Training
2011-05-01
participants on the pretest and posttest may lead to bias. This is especially the case in this research because the time lapse between the pretest and...experiment was the posttest which took 15 minutes to complete. The entire experiment took between 1 and 2 hours. Measures. Pretest and Posttest VECTOR...Scenario Questionnaire. The pretest and posttest were made specifically to measure the learning objectives of VECTOR and was used as a measure of
Vector quantizer based on brightness maps for image compression with the polynomial transform
NASA Astrophysics Data System (ADS)
Escalante-Ramirez, Boris; Moreno-Gutierrez, Mauricio; Silvan-Cardenas, Jose L.
2002-11-01
We present a vector quantization scheme acting on brightness fields based on distance/distortion criteria correspondent with psycho-visual aspects. These criteria quantify sensorial distortion between vectors that represent either portions of a digital image or alternatively, coefficients of a transform-based coding system. In the latter case, we use an image representation model, namely the Hermite transform, that is based on some of the main perceptual characteristics of the human vision system (HVS) and in their response to light stimulus. Energy coding in the brightness domain, determination of local structure, code-book training and local orientation analysis are all obtained by means of the Hermite transform. This paper, for thematic reasons, is divided in four sections. The first one will shortly highlight the importance of having newer and better compression algorithms. This section will also serve to explain briefly the most relevant characteristics of the HVS, advantages and disadvantages related with the behavior of our vision in front of ocular stimulus. The second section shall go through a quick review of vector quantization techniques, focusing their performance on image treatment, as a preview for the image vector quantizer compressor actually constructed in section 5. Third chapter was chosen to concentrate the most important data gathered on brightness models. The building of this so-called brightness maps (quantification of the human perception on the visible objects reflectance), in a bi-dimensional model, will be addressed here. The Hermite transform, a special case of polynomial transforms, and its usefulness, will be treated, in an applicable discrete form, in the fourth chapter. As we have learned from previous works 1, Hermite transform has showed to be a useful and practical solution to efficiently code the energy within an image block, deciding which kind of quantization is to be used upon them (whether scalar or vector). It will also be a unique tool to structurally classify the image block within a given lattice. This particular operation intends to be one of the main contributions of this work. The fifth section will fuse the proposals derived from the study of the three main topics- addressed in the last sections- in order to propose an image compression model that takes advantage of vector quantizers inside the brightness transformed domain to determine the most important structures, finding the energy distribution inside the Hermite domain. Sixth and last section will show some results obtained while testing the coding-decoding model. The guidelines to evaluate the image compressing performance were the compression ratio, SNR and psycho-visual quality. Some conclusions derived from the research and possible unexplored paths will be shown on this section as well.
An, Ji‐Yong; Meng, Fan‐Rong; Chen, Xing; Yan, Gui‐Ying; Hu, Ji‐Pu
2016-01-01
Abstract Predicting protein–protein interactions (PPIs) is a challenging task and essential to construct the protein interaction networks, which is important for facilitating our understanding of the mechanisms of biological systems. Although a number of high‐throughput technologies have been proposed to predict PPIs, there are unavoidable shortcomings, including high cost, time intensity, and inherently high false positive rates. For these reasons, many computational methods have been proposed for predicting PPIs. However, the problem is still far from being solved. In this article, we propose a novel computational method called RVM‐BiGP that combines the relevance vector machine (RVM) model and Bi‐gram Probabilities (BiGP) for PPIs detection from protein sequences. The major improvement includes (1) Protein sequences are represented using the Bi‐gram probabilities (BiGP) feature representation on a Position Specific Scoring Matrix (PSSM), in which the protein evolutionary information is contained; (2) For reducing the influence of noise, the Principal Component Analysis (PCA) method is used to reduce the dimension of BiGP vector; (3) The powerful and robust Relevance Vector Machine (RVM) algorithm is used for classification. Five‐fold cross‐validation experiments executed on yeast and Helicobacter pylori datasets, which achieved very high accuracies of 94.57 and 90.57%, respectively. Experimental results are significantly better than previous methods. To further evaluate the proposed method, we compare it with the state‐of‐the‐art support vector machine (SVM) classifier on the yeast dataset. The experimental results demonstrate that our RVM‐BiGP method is significantly better than the SVM‐based method. In addition, we achieved 97.15% accuracy on imbalance yeast dataset, which is higher than that of balance yeast dataset. The promising experimental results show the efficiency and robust of the proposed method, which can be an automatic decision support tool for future proteomics research. For facilitating extensive studies for future proteomics research, we developed a freely available web server called RVM‐BiGP‐PPIs in Hypertext Preprocessor (PHP) for predicting PPIs. The web server including source code and the datasets are available at http://219.219.62.123:8888/BiGP/. PMID:27452983
Learning to Estimate Slide Comprehension in Classrooms with Support Vector Machines
ERIC Educational Resources Information Center
Pattanasri, N.; Mukunoki, M.; Minoh, M.
2012-01-01
Comprehension assessment is an essential tool in classroom learning. However, the judgment often relies on experience of an instructor who makes observation of students' behavior during the lessons. We argue that students should report their own comprehension explicitly in a classroom. With students' comprehension made available at the slide…
Adam, I; Mendoza, E; Kobalz, U; Wohlgemuth, S; Scharff, C
2017-07-01
Mutations of FOXP2 are associated with altered brain structure, including the striatal part of the basal ganglia, and cause a severe speech and language disorder. Songbirds serve as a tractable neurobiological model for speech and language research. Experimental downregulation of FoxP2 in zebra finch Area X, a nucleus of the striatal song control circuitry, affects synaptic transmission and spine densities. It also renders song learning and production inaccurate and imprecise, similar to the speech impairment of patients carrying FOXP2 mutations. Here we show that experimental downregulation of FoxP2 in Area X using lentiviral vectors leads to reduced expression of CNTNAP2, a FOXP2 target gene in humans. In addition, natural downregulation of FoxP2 by age or by singing also downregulated CNTNAP2 expression. Furthermore, we report that FoxP2 binds to and activates the avian CNTNAP2 promoter in vitro. Taken together these data establish CNTNAP2 as a direct FoxP2 target gene in songbirds, likely affecting synaptic function relevant for song learning and song maintenance. © 2017 The Authors. Genes, Brain and Behavior published by International Behavioural and Neural Genetics Society and John Wiley & Sons Ltd.
Enhancing the Biological Relevance of Machine Learning Classifiers for Reverse Vaccinology.
Heinson, Ashley I; Gunawardana, Yawwani; Moesker, Bastiaan; Hume, Carmen C Denman; Vataga, Elena; Hall, Yper; Stylianou, Elena; McShane, Helen; Williams, Ann; Niranjan, Mahesan; Woelk, Christopher H
2017-02-01
Reverse vaccinology (RV) is a bioinformatics approach that can predict antigens with protective potential from the protein coding genomes of bacterial pathogens for subunit vaccine design. RV has become firmly established following the development of the BEXSERO® vaccine against Neisseria meningitidis serogroup B. RV studies have begun to incorporate machine learning (ML) techniques to distinguish bacterial protective antigens (BPAs) from non-BPAs. This research contributes significantly to the RV field by using permutation analysis to demonstrate that a signal for protective antigens can be curated from published data. Furthermore, the effects of the following on an ML approach to RV were also assessed: nested cross-validation, balancing selection of non-BPAs for subcellular localization, increasing the training data, and incorporating greater numbers of protein annotation tools for feature generation. These enhancements yielded a support vector machine (SVM) classifier that could discriminate BPAs (n = 200) from non-BPAs (n = 200) with an area under the curve (AUC) of 0.787. In addition, hierarchical clustering of BPAs revealed that intracellular BPAs clustered separately from extracellular BPAs. However, no immediate benefit was derived when training SVM classifiers on data sets exclusively containing intra- or extracellular BPAs. In conclusion, this work demonstrates that ML classifiers have great utility in RV approaches and will lead to new subunit vaccines in the future.
NASA Astrophysics Data System (ADS)
Velez, Daniel Ortiz; Mack, Hannah; Jupe, Julietta; Hawker, Sinead; Kulkarni, Ninad; Hedayatnia, Behnam; Zhang, Yang; Lawrence, Shelley; Fraley, Stephanie I.
2017-02-01
In clinical diagnostics and pathogen detection, profiling of complex samples for low-level genotypes represents a significant challenge. Advances in speed, sensitivity, and extent of multiplexing of molecular pathogen detection assays are needed to improve patient care. We report the development of an integrated platform enabling the identification of bacterial pathogen DNA sequences in complex samples in less than four hours. The system incorporates a microfluidic chip and instrumentation to accomplish universal PCR amplification, High Resolution Melting (HRM), and machine learning within 20,000 picoliter scale reactions, simultaneously. Clinically relevant concentrations of bacterial DNA molecules are separated by digitization across 20,000 reactions and amplified with universal primers targeting the bacterial 16S gene. Amplification is followed by HRM sequence fingerprinting in all reactions, simultaneously. The resulting bacteria-specific melt curves are identified by Support Vector Machine learning, and individual pathogen loads are quantified. The platform reduces reaction volumes by 99.995% and achieves a greater than 200-fold increase in dynamic range of detection compared to traditional PCR HRM approaches. Type I and II error rates are reduced by 99% and 100% respectively, compared to intercalating dye-based digital PCR (dPCR) methods. This technology could impact a number of quantitative profiling applications, especially infectious disease diagnostics.
Nonlinear Deep Kernel Learning for Image Annotation.
Jiu, Mingyuan; Sahbi, Hichem
2017-02-08
Multiple kernel learning (MKL) is a widely used technique for kernel design. Its principle consists in learning, for a given support vector classifier, the most suitable convex (or sparse) linear combination of standard elementary kernels. However, these combinations are shallow and often powerless to capture the actual similarity between highly semantic data, especially for challenging classification tasks such as image annotation. In this paper, we redefine multiple kernels using deep multi-layer networks. In this new contribution, a deep multiple kernel is recursively defined as a multi-layered combination of nonlinear activation functions, each one involves a combination of several elementary or intermediate kernels, and results into a positive semi-definite deep kernel. We propose four different frameworks in order to learn the weights of these networks: supervised, unsupervised, kernel-based semisupervised and Laplacian-based semi-supervised. When plugged into support vector machines (SVMs), the resulting deep kernel networks show clear gain, compared to several shallow kernels for the task of image annotation. Extensive experiments and analysis on the challenging ImageCLEF photo annotation benchmark, the COREL5k database and the Banana dataset validate the effectiveness of the proposed method.
Weng, Wei-Hung; Wagholikar, Kavishwar B; McCray, Alexa T; Szolovits, Peter; Chueh, Henry C
2017-12-01
The medical subdomain of a clinical note, such as cardiology or neurology, is useful content-derived metadata for developing machine learning downstream applications. To classify the medical subdomain of a note accurately, we have constructed a machine learning-based natural language processing (NLP) pipeline and developed medical subdomain classifiers based on the content of the note. We constructed the pipeline using the clinical NLP system, clinical Text Analysis and Knowledge Extraction System (cTAKES), the Unified Medical Language System (UMLS) Metathesaurus, Semantic Network, and learning algorithms to extract features from two datasets - clinical notes from Integrating Data for Analysis, Anonymization, and Sharing (iDASH) data repository (n = 431) and Massachusetts General Hospital (MGH) (n = 91,237), and built medical subdomain classifiers with different combinations of data representation methods and supervised learning algorithms. We evaluated the performance of classifiers and their portability across the two datasets. The convolutional recurrent neural network with neural word embeddings trained-medical subdomain classifier yielded the best performance measurement on iDASH and MGH datasets with area under receiver operating characteristic curve (AUC) of 0.975 and 0.991, and F1 scores of 0.845 and 0.870, respectively. Considering better clinical interpretability, linear support vector machine-trained medical subdomain classifier using hybrid bag-of-words and clinically relevant UMLS concepts as the feature representation, with term frequency-inverse document frequency (tf-idf)-weighting, outperformed other shallow learning classifiers on iDASH and MGH datasets with AUC of 0.957 and 0.964, and F1 scores of 0.932 and 0.934 respectively. We trained classifiers on one dataset, applied to the other dataset and yielded the threshold of F1 score of 0.7 in classifiers for half of the medical subdomains we studied. Our study shows that a supervised learning-based NLP approach is useful to develop medical subdomain classifiers. The deep learning algorithm with distributed word representation yields better performance yet shallow learning algorithms with the word and concept representation achieves comparable performance with better clinical interpretability. Portable classifiers may also be used across datasets from different institutions.
Deep Learning for Automated Extraction of Primary Sites from Cancer Pathology Reports
Qiu, John; Yoon, Hong-Jun; Fearn, Paul A.; ...
2017-05-03
Pathology reports are a primary source of information for cancer registries which process high volumes of free-text reports annually. Information extraction and coding is a manual, labor-intensive process. Here in this study we investigated deep learning and a convolutional neural network (CNN), for extracting ICDO- 3 topographic codes from a corpus of breast and lung cancer pathology reports. We performed two experiments, using a CNN and a more conventional term frequency vector approach, to assess the effects of class prevalence and inter-class transfer learning. The experiments were based on a set of 942 pathology reports with human expert annotations asmore » the gold standard. CNN performance was compared against a more conventional term frequency vector space approach. We observed that the deep learning models consistently outperformed the conventional approaches in the class prevalence experiment, resulting in micro and macro-F score increases of up to 0.132 and 0.226 respectively when class labels were well populated. Specifically, the best performing CNN achieved a micro-F score of 0.722 over 12 ICD-O-3 topography codes. Transfer learning provided a consistent but modest performance boost for the deep learning methods but trends were contingent on CNN method and cancer site. Finally, these encouraging results demonstrate the potential of deep learning for automated abstraction of pathology reports.« less
Deep Learning for Automated Extraction of Primary Sites from Cancer Pathology Reports
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiu, John; Yoon, Hong-Jun; Fearn, Paul A.
Pathology reports are a primary source of information for cancer registries which process high volumes of free-text reports annually. Information extraction and coding is a manual, labor-intensive process. Here in this study we investigated deep learning and a convolutional neural network (CNN), for extracting ICDO- 3 topographic codes from a corpus of breast and lung cancer pathology reports. We performed two experiments, using a CNN and a more conventional term frequency vector approach, to assess the effects of class prevalence and inter-class transfer learning. The experiments were based on a set of 942 pathology reports with human expert annotations asmore » the gold standard. CNN performance was compared against a more conventional term frequency vector space approach. We observed that the deep learning models consistently outperformed the conventional approaches in the class prevalence experiment, resulting in micro and macro-F score increases of up to 0.132 and 0.226 respectively when class labels were well populated. Specifically, the best performing CNN achieved a micro-F score of 0.722 over 12 ICD-O-3 topography codes. Transfer learning provided a consistent but modest performance boost for the deep learning methods but trends were contingent on CNN method and cancer site. Finally, these encouraging results demonstrate the potential of deep learning for automated abstraction of pathology reports.« less
Analysis of spectrally resolved autofluorescence images by support vector machines
NASA Astrophysics Data System (ADS)
Mateasik, A.; Chorvat, D.; Chorvatova, A.
2013-02-01
Spectral analysis of the autofluorescence images of isolated cardiac cells was performed to evaluate and to classify the metabolic state of the cells in respect to the responses to metabolic modulators. The classification was done using machine learning approach based on support vector machine with the set of the automatically calculated features from recorded spectral profile of spectral autofluorescence images. This classification method was compared with the classical approach where the individual spectral components contributing to cell autofluorescence were estimated by spectral analysis, namely by blind source separation using non-negative matrix factorization. Comparison of both methods showed that machine learning can effectively classify the spectrally resolved autofluorescence images without the need of detailed knowledge about the sources of autofluorescence and their spectral properties.
Karayiannis, N B
2000-01-01
This paper presents the development and investigates the properties of ordered weighted learning vector quantization (LVQ) and clustering algorithms. These algorithms are developed by using gradient descent to minimize reformulation functions based on aggregation operators. An axiomatic approach provides conditions for selecting aggregation operators that lead to admissible reformulation functions. Minimization of admissible reformulation functions based on ordered weighted aggregation operators produces a family of soft LVQ and clustering algorithms, which includes fuzzy LVQ and clustering algorithms as special cases. The proposed LVQ and clustering algorithms are used to perform segmentation of magnetic resonance (MR) images of the brain. The diagnostic value of the segmented MR images provides the basis for evaluating a variety of ordered weighted LVQ and clustering algorithms.
Filamentation instability in a quantum plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bret, A.
2007-08-15
The growth rate of the filamentation instability triggered when a diluted cold electron beam passes through a cold plasma is evaluated using the quantum hydrodynamic equations. Compared with a cold fluid model, quantum effects reduce both the unstable wave vector domain and the maximum growth rate. Stabilization of large wave vector modes is always achieved, but significant reduction of the maximum growth rate depends on a dimensionless parameter that is provided. Although calculations are extended to the relativistic regime, they are mostly relevant to the nonrelativistic one.
Geomagnetic field models for satellite angular motion studies
NASA Astrophysics Data System (ADS)
Ovchinnikov, M. Yu.; Penkov, V. I.; Roldugin, D. S.; Pichuzhkina, A. V.
2018-03-01
Four geomagnetic field models are discussed: IGRF, inclined, direct and simplified dipoles. Geomagnetic induction vector expressions are provided in different reference frames. Induction vector behavior is compared for different models. Models applicability for the analysis of satellite motion is studied from theoretical and engineering perspectives. Relevant satellite dynamics analysis cases using analytical and numerical techniques are provided. These cases demonstrate the benefit of a certain model for a specific dynamics study. Recommendations for models usage are summarized in the end.
Thrust vector control algorithm design for the Cassini spacecraft
NASA Technical Reports Server (NTRS)
Enright, Paul J.
1993-01-01
This paper describes a preliminary design of the thrust vector control algorithm for the interplanetary spacecraft, Cassini. Topics of discussion include flight software architecture, modeling of sensors, actuators, and vehicle dynamics, and controller design and analysis via classical methods. Special attention is paid to potential interactions with structural flexibilities and propellant dynamics. Controller performance is evaluated in a simulation environment built around a multi-body dynamics model, which contains nonlinear models of the relevant hardware and preliminary versions of supporting attitude determination and control functions.
What is the risk for exposure to vector-borne pathogens in United States national parks?
Eisen, Lars; Wong, David; Shelus, Victoria; Eisen, Rebecca J
2013-03-01
United States national parks attract > 275 million visitors annually and collectively present risk of exposure for staff and visitors to a wide range of arthropod vector species (most notably fleas, mosquitoes, and ticks) and their associated bacterial, protozoan, or viral pathogens. We assessed the current state of knowledge for risk of exposure to vector-borne pathogens in national parks through a review of relevant literature, including internal National Park Service documents and organismal databases. We conclude that, because of lack of systematic surveillance for vector-borne pathogens in national parks, the risk of pathogen exposure for staff and visitors is unclear. Existing data for vectors within national parks were not based on systematic collections and rarely include evaluation for pathogen infection. Extrapolation of human-based surveillance data from neighboring communities likely provides inaccurate estimates for national parks because landscape differences impact transmission of vector-borne pathogens and human-vector contact rates likely differ inside versus outside the parks because of differences in activities or behaviors. Vector-based pathogen surveillance holds promise to define when and where within national parks the risk of exposure to infected vectors is elevated. A pilot effort, including 5-10 strategic national parks, would greatly improve our understanding of the scope and magnitude of vector-borne pathogen transmission in these high-use public settings. Such efforts also will support messaging to promote personal protection measures and inform park visitors and staff of their responsibility for personal protection, which the National Park Service preservation mission dictates as the core strategy to reduce exposure to vector-borne pathogens in national parks.
An Overview of data science uses in bioimage informatics.
Chessel, Anatole
2017-02-15
This review aims at providing a practical overview of the use of statistical features and associated data science methods in bioimage informatics. To achieve a quantitative link between images and biological concepts, one typically replaces an object coming from an image (a segmented cell or intracellular object, a pattern of expression or localisation, even a whole image) by a vector of numbers. They range from carefully crafted biologically relevant measurements to features learnt through deep neural networks. This replacement allows for the use of practical algorithms for visualisation, comparison and inference, such as the ones from machine learning or multivariate statistics. While originating mainly, for biology, in high content screening, those methods are integral to the use of data science for the quantitative analysis of microscopy images to gain biological insight, and they are sure to gather more interest as the need to make sense of the increasing amount of acquired imaging data grows more pressing. Copyright © 2017 Elsevier Inc. All rights reserved.
Local Kernel for Brains Classification in Schizophrenia
NASA Astrophysics Data System (ADS)
Castellani, U.; Rossato, E.; Murino, V.; Bellani, M.; Rambaldelli, G.; Tansella, M.; Brambilla, P.
In this paper a novel framework for brain classification is proposed in the context of mental health research. A learning by example method is introduced by combining local measurements with non linear Support Vector Machine. Instead of considering a voxel-by-voxel comparison between patients and controls, we focus on landmark points which are characterized by local region descriptors, namely Scale Invariance Feature Transform (SIFT). Then, matching is obtained by introducing the local kernel for which the samples are represented by unordered set of features. Moreover, a new weighting approach is proposed to take into account the discriminative relevance of the detected groups of features. Experiments have been performed including a set of 54 patients with schizophrenia and 54 normal controls on which region of interest (ROI) have been manually traced by experts. Preliminary results on Dorso-lateral PreFrontal Cortex (DLPFC) region are promising since up to 75% of successful classification rate has been obtained with this technique and the performance has improved up to 85% when the subjects have been stratified by sex.
EEG-based emotion recognition in music listening.
Lin, Yuan-Pin; Wang, Chi-Hong; Jung, Tzyy-Ping; Wu, Tien-Lin; Jeng, Shyh-Kang; Duann, Jeng-Ren; Chen, Jyh-Horng
2010-07-01
Ongoing brain activity can be recorded as electroencephalograph (EEG) to discover the links between emotional states and brain activity. This study applied machine-learning algorithms to categorize EEG dynamics according to subject self-reported emotional states during music listening. A framework was proposed to optimize EEG-based emotion recognition by systematically 1) seeking emotion-specific EEG features and 2) exploring the efficacy of the classifiers. Support vector machine was employed to classify four emotional states (joy, anger, sadness, and pleasure) and obtained an averaged classification accuracy of 82.29% +/- 3.06% across 26 subjects. Further, this study identified 30 subject-independent features that were most relevant to emotional processing across subjects and explored the feasibility of using fewer electrodes to characterize the EEG dynamics during music listening. The identified features were primarily derived from electrodes placed near the frontal and the parietal lobes, consistent with many of the findings in the literature. This study might lead to a practical system for noninvasive assessment of the emotional states in practical or clinical applications.
An introduction to kernel-based learning algorithms.
Müller, K R; Mika, S; Rätsch, G; Tsuda, K; Schölkopf, B
2001-01-01
This paper provides an introduction to support vector machines, kernel Fisher discriminant analysis, and kernel principal component analysis, as examples for successful kernel-based learning methods. We first give a short background about Vapnik-Chervonenkis theory and kernel feature spaces and then proceed to kernel based learning in supervised and unsupervised scenarios including practical and algorithmic considerations. We illustrate the usefulness of kernel algorithms by discussing applications such as optical character recognition and DNA analysis.
ERIC Educational Resources Information Center
Cooper, Nic; Garner, Betty K.
2012-01-01
All too often, managing a classroom means gaining control, dictating guidelines, and implementing rules. Designed for any teacher struggling with student behavior, motivation, and engagement, "Developing a Learning Classroom" explores how to create a thriving, learning-centered classroom through three critical concepts: relationships, relevance,…
International Service Learning: Analytical Review of Published Research Literature
ERIC Educational Resources Information Center
Dixon, Brett
2015-01-01
International service learning (ISL) is an emerging area of international education. This paper summarizes academic journal articles on ISL programs and organizes the relevant publications by academic disciplines, service learning project areas, and other topics. The basis for this review is relevant literature from full-text scholarly peer…
Autonomous learning derived from experimental modeling of physical laws.
Grabec, Igor
2013-05-01
This article deals with experimental description of physical laws by probability density function of measured data. The Gaussian mixture model specified by representative data and related probabilities is utilized for this purpose. The information cost function of the model is described in terms of information entropy by the sum of the estimation error and redundancy. A new method is proposed for searching the minimum of the cost function. The number of the resulting prototype data depends on the accuracy of measurement. Their adaptation resembles a self-organized, highly non-linear cooperation between neurons in an artificial NN. A prototype datum corresponds to the memorized content, while the related probability corresponds to the excitability of the neuron. The method does not include any free parameters except objectively determined accuracy of the measurement system and is therefore convenient for autonomous execution. Since representative data are generally less numerous than the measured ones, the method is applicable for a rather general and objective compression of overwhelming experimental data in automatic data-acquisition systems. Such compression is demonstrated on analytically determined random noise and measured traffic flow data. The flow over a day is described by a vector of 24 components. The set of 365 vectors measured over one year is compressed by autonomous learning to just 4 representative vectors and related probabilities. These vectors represent the flow in normal working days and weekends or holidays, while the related probabilities correspond to relative frequencies of these days. This example reveals that autonomous learning yields a new basis for interpretation of representative data and the optimal model structure. Copyright © 2012 Elsevier Ltd. All rights reserved.
Recognizing Activities via Bag of Words for Attribute Dynamics (Open Access)
2013-10-03
56.4% 73.4% clean-jerk 83.2% 84.1% 78.2% 79.4% 85.1% 78.2% 85.4% javelin throw 61.1% 74.6% 79.5% 62.1% 87.5% 56.6% 76.7% ham. throw 65.1% 77.5% 70.5...1 ∈ Rτ is the vector of all ones. Each column of C is a basis vector of a latent subspace and the t-th column of X contains the coordinates of the yt...binary PCA is first applied to all attribute score vectors in P ′. The parame- ters of the hidden Gauss-Markov process are then learned by solving a least
Bayesian analogy with relational transformations.
Lu, Hongjing; Chen, Dawn; Holyoak, Keith J
2012-07-01
How can humans acquire relational representations that enable analogical inference and other forms of high-level reasoning? Using comparative relations as a model domain, we explore the possibility that bottom-up learning mechanisms applied to objects coded as feature vectors can yield representations of relations sufficient to solve analogy problems. We introduce Bayesian analogy with relational transformations (BART) and apply the model to the task of learning first-order comparative relations (e.g., larger, smaller, fiercer, meeker) from a set of animal pairs. Inputs are coded by vectors of continuous-valued features, based either on human magnitude ratings, normed feature ratings (De Deyne et al., 2008), or outputs of the topics model (Griffiths, Steyvers, & Tenenbaum, 2007). Bootstrapping from empirical priors, the model is able to induce first-order relations represented as probabilistic weight distributions, even when given positive examples only. These learned representations allow classification of novel instantiations of the relations and yield a symbolic distance effect of the sort obtained with both humans and other primates. BART then transforms its learned weight distributions by importance-guided mapping, thereby placing distinct dimensions into correspondence. These transformed representations allow BART to reliably solve 4-term analogies (e.g., larger:smaller::fiercer:meeker), a type of reasoning that is arguably specific to humans. Our results provide a proof-of-concept that structured analogies can be solved with representations induced from unstructured feature vectors by mechanisms that operate in a largely bottom-up fashion. We discuss potential implications for algorithmic and neural models of relational thinking, as well as for the evolution of abstract thought. Copyright 2012 APA, all rights reserved.
Behura, Susanta K.; Severson, David W.
2014-01-01
The mosquito Aedes aegypti is the primary vector of dengue virus (DENV) infection in most of the subtropical and tropical countries. Besides DENV, yellow fever virus (YFV) is also transmitted by A. aegypti. Susceptibility of A. aegypti to West Nile virus (WNV) has also been confirmed. Although studies have indicated correlation of codon bias between flaviviridae and their animal/insect hosts, it is not clear if codon sequences have any relation to susceptibility of A. aegypti to DENV, YFV and WNV. In the current study, usages of codon context sequences (codon pairs for neighboring amino acids) of the vector (A. aegypti) genome as well as the flaviviral genomes are investigated. We used bioinformatics methods to quantify codon context bias in a genome-wide manner of A. aegypti as well as DENV, WNV and YFV sequences. Mutual information statistics was applied to perform bicluster analysis of codon context bias between vector and flaviviral sequences. Functional relevance of the bicluster pattern was inferred from published microarray data. Our study shows that codon context bias of DENV, WNV and YFV sequences varies in a bicluster manner with that of specific sets of genes of A. aegypti. Many of these mosquito genes are known to be differentially expressed in response to flaviviral infection suggesting that codon context sequences of A. aegypti and the flaviviruses may play a role in the susceptible interaction between flaviviruses and this mosquito. The bias inusages of codon context sequences likely has a functional association with susceptibility of A. aegypti to flaviviral infection. The results from this study will allow us to conduct hypothesis driven tests to examine the role of codon contexts bias in evolution of vector-virus interactions at the molecular level. PMID:24838953
Parity partners in the baryon resonance spectrum
Lu, Ya; Chen, Chen; Roberts, Craig D.; ...
2017-07-28
Here, we describe a calculation of the spectrum of flavor-SU(3) octet and decuplet baryons, their parity partners, and the radial excitations of these systems, made using a symmetry-preserving treatment of a vector x vector contact interaction as the foundation for the relevant few-body equations. Dynamical chiral symmetry breaking generates nonpointlike diquarks within these baryons and hence, using the contact interaction, flavor-antitriplet scalar, pseudoscalar, vector, and flavor-sextet axial-vector quark-quark correlations can all play active roles. The model yields reasonable masses for all systems studied and Faddeev amplitudes for ground states and associated parity partners that sketch a realistic picture of theirmore » internal structure: ground-state, even-parity baryons are constituted, almost exclusively, from like-parity diquark correlations, but orbital angular momentum plays an important role in the rest-frame wave functions of odd-parity baryons, whose Faddeev amplitudes are dominated by odd-parity diquarks.« less
Parity partners in the baryon resonance spectrum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Ya; Chen, Chen; Roberts, Craig D.
Here, we describe a calculation of the spectrum of flavor-SU(3) octet and decuplet baryons, their parity partners, and the radial excitations of these systems, made using a symmetry-preserving treatment of a vector x vector contact interaction as the foundation for the relevant few-body equations. Dynamical chiral symmetry breaking generates nonpointlike diquarks within these baryons and hence, using the contact interaction, flavor-antitriplet scalar, pseudoscalar, vector, and flavor-sextet axial-vector quark-quark correlations can all play active roles. The model yields reasonable masses for all systems studied and Faddeev amplitudes for ground states and associated parity partners that sketch a realistic picture of theirmore » internal structure: ground-state, even-parity baryons are constituted, almost exclusively, from like-parity diquark correlations, but orbital angular momentum plays an important role in the rest-frame wave functions of odd-parity baryons, whose Faddeev amplitudes are dominated by odd-parity diquarks.« less
Spectrum of perturbations in anisotropic inflationary universe with vector hair
DOE Office of Scientific and Technical Information (OSTI.GOV)
Himmetoglu, Burak, E-mail: burak@physics.umn.edu
2010-03-01
We study both the background evolution and cosmological perturbations of anisotropic inflationary models supported by coupled scalar and vector fields. The models we study preserve the U(1) gauge symmetry associated with the vector field, and therefore do not possess instabilities associated with longitudinal modes (which instead plague some recently proposed models of vector inflation and curvaton). We first intoduce a model in which the background anisotropy slowly decreases during inflation; we then confirm the stability of the background solution by studying the quadratic action for all the perturbations of the model. We then compute the spectrum of the h{sub ×}more » gravitational wave polarization. The spectrum we find breaks statistical isotropy at the largest scales and reduces to the standard nearly scale invariant form at small scales. We finally discuss the possible relevance of our results to the large scale CMB anomalies.« less
Gallaher, Sean D.; Berk, Arnold J.
2013-01-01
Adenoviruses are employed in the study of cellular processes and as expression vectors used in gene therapy. The success and reproducibility of these studies is dependent in part on having accurate and meaningful titers of replication competent and helper-dependent adenovirus stocks, which is problematic due to the use of varied and divergent titration protocols. Physical titration methods, which quantify the total number of viral particles, are used by many, but are poor at estimating activity. Biological titration methods, such as plaque assays, are more biologically relevant, but are time consuming and not applicable to helper-dependent gene therapy vectors. To address this, a protocol was developed called “infectious genome titration” in which viral DNA is isolated from the nuclei of cells ~3 h post-infection, and then quantified by Q-PCR. This approach ensures that only biologically active virions are counted as part of the titer determination. This approach is rapid, robust, sensitive, reproducible, and applicable to all forms of adenovirus. Unlike other Q-PCR-based methods, titers determined by this protocol are well correlated with biological activity. PMID:23624118
Moradi, Elaheh; Hallikainen, Ilona; Hänninen, Tuomo; Tohka, Jussi
2017-01-01
Rey's Auditory Verbal Learning Test (RAVLT) is a powerful neuropsychological tool for testing episodic memory, which is widely used for the cognitive assessment in dementia and pre-dementia conditions. Several studies have shown that an impairment in RAVLT scores reflect well the underlying pathology caused by Alzheimer's disease (AD), thus making RAVLT an effective early marker to detect AD in persons with memory complaints. We investigated the association between RAVLT scores (RAVLT Immediate and RAVLT Percent Forgetting) and the structural brain atrophy caused by AD. The aim was to comprehensively study to what extent the RAVLT scores are predictable based on structural magnetic resonance imaging (MRI) data using machine learning approaches as well as to find the most important brain regions for the estimation of RAVLT scores. For this, we built a predictive model to estimate RAVLT scores from gray matter density via elastic net penalized linear regression model. The proposed approach provided highly significant cross-validated correlation between the estimated and observed RAVLT Immediate (R = 0.50) and RAVLT Percent Forgetting (R = 0.43) in a dataset consisting of 806 AD, mild cognitive impairment (MCI) or healthy subjects. In addition, the selected machine learning method provided more accurate estimates of RAVLT scores than the relevance vector regression used earlier for the estimation of RAVLT based on MRI data. The top predictors were medial temporal lobe structures and amygdala for the estimation of RAVLT Immediate and angular gyrus, hippocampus and amygdala for the estimation of RAVLT Percent Forgetting. Further, the conversion of MCI subjects to AD in 3-years could be predicted based on either observed or estimated RAVLT scores with an accuracy comparable to MRI-based biomarkers.
Zu, Chen; Jie, Biao; Liu, Mingxia; Chen, Songcan
2015-01-01
Multimodal classification methods using different modalities of imaging and non-imaging data have recently shown great advantages over traditional single-modality-based ones for diagnosis and prognosis of Alzheimer’s disease (AD), as well as its prodromal stage, i.e., mild cognitive impairment (MCI). However, to the best of our knowledge, most existing methods focus on mining the relationship across multiple modalities of the same subjects, while ignoring the potentially useful relationship across different subjects. Accordingly, in this paper, we propose a novel learning method for multimodal classification of AD/MCI, by fully exploring the relationships across both modalities and subjects. Specifically, our proposed method includes two subsequent components, i.e., label-aligned multi-task feature selection and multimodal classification. In the first step, the feature selection learning from multiple modalities are treated as different learning tasks and a group sparsity regularizer is imposed to jointly select a subset of relevant features. Furthermore, to utilize the discriminative information among labeled subjects, a new label-aligned regularization term is added into the objective function of standard multi-task feature selection, where label-alignment means that all multi-modality subjects with the same class labels should be closer in the new feature-reduced space. In the second step, a multi-kernel support vector machine (SVM) is adopted to fuse the selected features from multi-modality data for final classification. To validate our method, we perform experiments on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database using baseline MRI and FDG-PET imaging data. The experimental results demonstrate that our proposed method achieves better classification performance compared with several state-of-the-art methods for multimodal classification of AD/MCI. PMID:26572145
Deep kernel learning method for SAR image target recognition
NASA Astrophysics Data System (ADS)
Chen, Xiuyuan; Peng, Xiyuan; Duan, Ran; Li, Junbao
2017-10-01
With the development of deep learning, research on image target recognition has made great progress in recent years. Remote sensing detection urgently requires target recognition for military, geographic, and other scientific research. This paper aims to solve the synthetic aperture radar image target recognition problem by combining deep and kernel learning. The model, which has a multilayer multiple kernel structure, is optimized layer by layer with the parameters of Support Vector Machine and a gradient descent algorithm. This new deep kernel learning method improves accuracy and achieves competitive recognition results compared with other learning methods.
Development and Evaluation of the Effectiveness of Computer-Assisted Physics Instruction
ERIC Educational Resources Information Center
Rahman, Mohd. Jasmy Abd; Ismail, Mohd. Arif. Hj.; Nasir, Muhammad
2014-01-01
This study aims to design and develop an interactive software for teaching and learning physics about motion and vectors analysis. This study also assesses its effectiveness in classroom and assesses the learning motivation of SMA Pekanbaru's students. The software is developed using ADDIE Model design and Life Cycle Model and built using the…
Using remote sensing and machine learning for the spatial modelling of a bluetongue virus vector
NASA Astrophysics Data System (ADS)
Van doninck, J.; Peters, J.; De Baets, B.; Ducheyne, E.; Verhoest, N. E. C.
2012-04-01
Bluetongue is a viral vector-borne disease transmitted between hosts, mostly cattle and small ruminants, by some species of Culicoides midges. Within the Mediterranean basin, C. imicola is the main vector of the bluetongue virus. The spatial distribution of this species is limited by a number of environmental factors, including temperature, soil properties and land cover. The identification of zones at risk of bluetongue outbreaks thus requires detailed information on these environmental factors, as well as appropriate epidemiological modelling techniques. We here give an overview of the environmental factors assumed to be constraining the spatial distribution of C. imicola, as identified in different studies. Subsequently, remote sensing products that can be used as proxies for these environmental constraints are presented. Remote sensing data are then used together with species occurrence data from the Spanish Bluetongue National Surveillance Programme to calibrate a supervised learning model, based on Random Forests, to model the probability of occurrence of the C. imicola midge. The model will then be applied for a pixel-based prediction over the Iberian peninsula using remote sensing products for habitat characterization.
"Sankofa" Teaching and Learning: Evaluating Relevance for Today's African-American Student
ERIC Educational Resources Information Center
Talpade, Medha; Talpade, Salil
2014-01-01
The intent of this project was to identify and relate the values and perceptions of today's African American students to culturally relevant teaching and learning practices. The reason for relating student culture with teaching practices is to improve pedagogical processes for African American students. Culturally relevant pedagogy, according to…
Bayesian data assimilation provides rapid decision support for vector-borne diseases
Jewell, Chris P.; Brown, Richard G.
2015-01-01
Predicting the spread of vector-borne diseases in response to incursions requires knowledge of both host and vector demographics in advance of an outbreak. Although host population data are typically available, for novel disease introductions there is a high chance of the pathogen using a vector for which data are unavailable. This presents a barrier to estimating the parameters of dynamical models representing host–vector–pathogen interaction, and hence limits their ability to provide quantitative risk forecasts. The Theileria orientalis (Ikeda) outbreak in New Zealand cattle demonstrates this problem: even though the vector has received extensive laboratory study, a high degree of uncertainty persists over its national demographic distribution. Addressing this, we develop a Bayesian data assimilation approach whereby indirect observations of vector activity inform a seasonal spatio-temporal risk surface within a stochastic epidemic model. We provide quantitative predictions for the future spread of the epidemic, quantifying uncertainty in the model parameters, case infection times and the disease status of undetected infections. Importantly, we demonstrate how our model learns sequentially as the epidemic unfolds and provide evidence for changing epidemic dynamics through time. Our approach therefore provides a significant advance in rapid decision support for novel vector-borne disease outbreaks. PMID:26136225
A deep learning method for lincRNA detection using auto-encoder algorithm.
Yu, Ning; Yu, Zeng; Pan, Yi
2017-12-06
RNA sequencing technique (RNA-seq) enables scientists to develop novel data-driven methods for discovering more unidentified lincRNAs. Meantime, knowledge-based technologies are experiencing a potential revolution ignited by the new deep learning methods. By scanning the newly found data set from RNA-seq, scientists have found that: (1) the expression of lincRNAs appears to be regulated, that is, the relevance exists along the DNA sequences; (2) lincRNAs contain some conversed patterns/motifs tethered together by non-conserved regions. The two evidences give the reasoning for adopting knowledge-based deep learning methods in lincRNA detection. Similar to coding region transcription, non-coding regions are split at transcriptional sites. However, regulatory RNAs rather than message RNAs are generated. That is, the transcribed RNAs participate the biological process as regulatory units instead of generating proteins. Identifying these transcriptional regions from non-coding regions is the first step towards lincRNA recognition. The auto-encoder method achieves 100% and 92.4% prediction accuracy on transcription sites over the putative data sets. The experimental results also show the excellent performance of predictive deep neural network on the lincRNA data sets compared with support vector machine and traditional neural network. In addition, it is validated through the newly discovered lincRNA data set and one unreported transcription site is found by feeding the whole annotated sequences through the deep learning machine, which indicates that deep learning method has the extensive ability for lincRNA prediction. The transcriptional sequences of lincRNAs are collected from the annotated human DNA genome data. Subsequently, a two-layer deep neural network is developed for the lincRNA detection, which adopts the auto-encoder algorithm and utilizes different encoding schemes to obtain the best performance over intergenic DNA sequence data. Driven by those newly annotated lincRNA data, deep learning methods based on auto-encoder algorithm can exert their capability in knowledge learning in order to capture the useful features and the information correlation along DNA genome sequences for lincRNA detection. As our knowledge, this is the first application to adopt the deep learning techniques for identifying lincRNA transcription sequences.
Prediction of cell penetrating peptides by support vector machines.
Sanders, William S; Johnston, C Ian; Bridges, Susan M; Burgess, Shane C; Willeford, Kenneth O
2011-07-01
Cell penetrating peptides (CPPs) are those peptides that can transverse cell membranes to enter cells. Once inside the cell, different CPPs can localize to different cellular components and perform different roles. Some generate pore-forming complexes resulting in the destruction of cells while others localize to various organelles. Use of machine learning methods to predict potential new CPPs will enable more rapid screening for applications such as drug delivery. We have investigated the influence of the composition of training datasets on the ability to classify peptides as cell penetrating using support vector machines (SVMs). We identified 111 known CPPs and 34 known non-penetrating peptides from the literature and commercial vendors and used several approaches to build training data sets for the classifiers. Features were calculated from the datasets using a set of basic biochemical properties combined with features from the literature determined to be relevant in the prediction of CPPs. Our results using different training datasets confirm the importance of a balanced training set with approximately equal number of positive and negative examples. The SVM based classifiers have greater classification accuracy than previously reported methods for the prediction of CPPs, and because they use primary biochemical properties of the peptides as features, these classifiers provide insight into the properties needed for cell-penetration. To confirm our SVM classifications, a subset of peptides classified as either penetrating or non-penetrating was selected for synthesis and experimental validation. Of the synthesized peptides predicted to be CPPs, 100% of these peptides were shown to be penetrating.
Symbolic rule-based classification of lung cancer stages from free-text pathology reports.
Nguyen, Anthony N; Lawley, Michael J; Hansen, David P; Bowman, Rayleen V; Clarke, Belinda E; Duhig, Edwina E; Colquist, Shoni
2010-01-01
To classify automatically lung tumor-node-metastases (TNM) cancer stages from free-text pathology reports using symbolic rule-based classification. By exploiting report substructure and the symbolic manipulation of systematized nomenclature of medicine-clinical terms (SNOMED CT) concepts in reports, statements in free text can be evaluated for relevance against factors relating to the staging guidelines. Post-coordinated SNOMED CT expressions based on templates were defined and populated by concepts in reports, and tested for subsumption by staging factors. The subsumption results were used to build logic according to the staging guidelines to calculate the TNM stage. The accuracy measure and confusion matrices were used to evaluate the TNM stages classified by the symbolic rule-based system. The system was evaluated against a database of multidisciplinary team staging decisions and a machine learning-based text classification system using support vector machines. Overall accuracy on a corpus of pathology reports for 718 lung cancer patients against a database of pathological TNM staging decisions were 72%, 78%, and 94% for T, N, and M staging, respectively. The system's performance was also comparable to support vector machine classification approaches. A system to classify lung TNM stages from free-text pathology reports was developed, and it was verified that the symbolic rule-based approach using SNOMED CT can be used for the extraction of key lung cancer characteristics from free-text reports. Future work will investigate the applicability of using the proposed methodology for extracting other cancer characteristics and types.
NASA Astrophysics Data System (ADS)
Gloger, Oliver; Tönnies, Klaus; Mensel, Birger; Völzke, Henry
2015-11-01
In epidemiological studies as well as in clinical practice the amount of produced medical image data strongly increased in the last decade. In this context organ segmentation in MR volume data gained increasing attention for medical applications. Especially in large-scale population-based studies organ volumetry is highly relevant requiring exact organ segmentation. Since manual segmentation is time-consuming and prone to reader variability, large-scale studies need automatized methods to perform organ segmentation. Fully automatic organ segmentation in native MR image data has proven to be a very challenging task. Imaging artifacts as well as inter- and intrasubject MR-intensity differences complicate the application of supervised learning strategies. Thus, we propose a modularized framework of a two-stepped probabilistic approach that generates subject-specific probability maps for renal parenchyma tissue, which are refined subsequently by using several, extended segmentation strategies. We present a three class-based support vector machine recognition system that incorporates Fourier descriptors as shape features to recognize and segment characteristic parenchyma parts. Probabilistic methods use the segmented characteristic parenchyma parts to generate high quality subject-specific parenchyma probability maps. Several refinement strategies including a final shape-based 3D level set segmentation technique are used in subsequent processing modules to segment renal parenchyma. Furthermore, our framework recognizes and excludes renal cysts from parenchymal volume, which is important to analyze renal functions. Volume errors and Dice coefficients show that our presented framework outperforms existing approaches.
Gloger, Oliver; Tönnies, Klaus; Mensel, Birger; Völzke, Henry
2015-11-21
In epidemiological studies as well as in clinical practice the amount of produced medical image data strongly increased in the last decade. In this context organ segmentation in MR volume data gained increasing attention for medical applications. Especially in large-scale population-based studies organ volumetry is highly relevant requiring exact organ segmentation. Since manual segmentation is time-consuming and prone to reader variability, large-scale studies need automatized methods to perform organ segmentation. Fully automatic organ segmentation in native MR image data has proven to be a very challenging task. Imaging artifacts as well as inter- and intrasubject MR-intensity differences complicate the application of supervised learning strategies. Thus, we propose a modularized framework of a two-stepped probabilistic approach that generates subject-specific probability maps for renal parenchyma tissue, which are refined subsequently by using several, extended segmentation strategies. We present a three class-based support vector machine recognition system that incorporates Fourier descriptors as shape features to recognize and segment characteristic parenchyma parts. Probabilistic methods use the segmented characteristic parenchyma parts to generate high quality subject-specific parenchyma probability maps. Several refinement strategies including a final shape-based 3D level set segmentation technique are used in subsequent processing modules to segment renal parenchyma. Furthermore, our framework recognizes and excludes renal cysts from parenchymal volume, which is important to analyze renal functions. Volume errors and Dice coefficients show that our presented framework outperforms existing approaches.
Will, Elke; Bailey, Jeff; Schuesler, Todd; Modlich, Ute; Balcik, Brenden; Burzynski, Ben; Witte, David; Layh-Schmitt, Gerlinde; Rudolph, Cornelia; Schlegelberger, Brigitte; von Kalle, Christof; Baum, Christopher; Sorrentino, Brian P; Wagner, Lars M; Kelly, Patrick; Reeves, Lilith; Williams, David A
2007-04-01
Although retroviral vectors are one of the most widely used vehicles for gene transfer, there is no uniformly accepted pre-clinical model defined to assess their safety, in particular their risk related to insertional mutagenesis. In the murine pre-clinical study presented here, 40 test and 10 control mice were transplanted with ex vivo manipulated bone marrow cells to assess the long-term effects of the transduction of hematopoietic cells with the retroviral vector MSCV-MGMT(P140K)wc. Test mice had significant gene marking 8-12 months post-transplantation with an average of 0.93 vector copies per cell and 41.5% of peripheral blood cells expressing the transgene MGMT(P140K), thus confirming persistent vector expression. Unexpectedly, six test mice developed malignant lymphoma. No vector was detected in the tumor cells of five animals with malignancies, indicating that the malignancies were not caused by insertional mutagenesis or MGMT(P140K) expression. Mice from a concurrent study with a different transgene also revealed additional cases of vector-negative lymphomas of host origin. We conclude that the background tumor formation in this mouse model complicates safety determination of retroviral vectors and propose an improved study design that we predict will increase the relevance and accuracy of interpretation of pre-clinical mouse studies.
CD25 Preselective Anti-HIV Vectors for Improved HIV Gene Therapy
Kalomoiris, Stefanos; Lawson, Je'Tai; Chen, Rachel X.; Bauer, Gerhard; Nolta, Jan A.
2012-01-01
Abstract As HIV continues to be a global public health problem with no effective vaccine available, new and innovative therapies, including HIV gene therapies, need to be developed. Due to low transduction efficiencies that lead to low in vivo gene marking, therapeutically relevant efficacy of HIV gene therapy has been difficult to achieve in a clinical setting. Methods to improve the transplantation of enriched populations of anti-HIV vector-transduced cells may greatly increase the in vivo efficacy of HIV gene therapies. Here we describe the development of preselective anti-HIV lentiviral vectors that allow for the purification of vector-transduced cells to achieve an enriched population of HIV-resistant cells. A selectable protein, human CD25, not normally found on CD34+ hematopoietic progenitor cells (HPCs), was incorporated into a triple combination anti-HIV lentiviral vector. Upon purification of cells transduced with the preselective anti-HIV vector, safety was demonstrated in CD34+ HPCs and in HPC-derived macrophages in vitro. Upon challenge with HIV-1, improved efficacy was observed in purified preselective anti-HIV vector-transduced macrophages compared to unpurified cells. These proof-of-concept results highlight the potential use of this method to improve HIV stem cell gene therapy for future clinical applications. PMID:23216020
Biosafety challenges for use of lentiviral vectors in gene therapy.
Rothe, Michael; Modlich, Ute; Schambach, Axel
2013-12-01
Lentiviral vectors are promising tools for the genetic modification of cells in biomedical research and gene therapy. Their use in recent clinical trials for the treatment of adrenoleukodystrophy, β-thalassemia, Wiskott-Aldrich- Syndrome and metachromatic leukodystrophy underlined their efficacy for therapies especially in case of hereditary diseases. In comparison to gammaretroviral LTR-driven vectors, which were employed in the first clinical trials, lentiviral vectors present with some favorable features like the ability to transduce also non-dividing cells and a potentially safer insertion profile. However, genetic modification with viral vectors in general and stable integration of the therapeutic gene into the host cell genome bear concerns with respect to different levels of personal or environmental safety. Among them, insertional mutagenesis by enhancer mediated dysregulation of neighboring genes or aberrant splicing is still the biggest concern. However, also risks like immunogenicity of vector particles, the phenotoxicity of the transgene and potential vertical or horizontal transmission by replication competent retroviruses need to be taken into account. This review will give an overview on biosafety aspects that are relevant to the use of lentiviral vectors for genetic modification and gene therapy. Furthermore, assay systems aiming at evaluating biosafety in preclinical settings and recent promising clinical trials including efforts of monitoring of patients after gene therapy will be discussed.
Bayesian data assimilation provides rapid decision support for vector-borne diseases.
Jewell, Chris P; Brown, Richard G
2015-07-06
Predicting the spread of vector-borne diseases in response to incursions requires knowledge of both host and vector demographics in advance of an outbreak. Although host population data are typically available, for novel disease introductions there is a high chance of the pathogen using a vector for which data are unavailable. This presents a barrier to estimating the parameters of dynamical models representing host-vector-pathogen interaction, and hence limits their ability to provide quantitative risk forecasts. The Theileria orientalis (Ikeda) outbreak in New Zealand cattle demonstrates this problem: even though the vector has received extensive laboratory study, a high degree of uncertainty persists over its national demographic distribution. Addressing this, we develop a Bayesian data assimilation approach whereby indirect observations of vector activity inform a seasonal spatio-temporal risk surface within a stochastic epidemic model. We provide quantitative predictions for the future spread of the epidemic, quantifying uncertainty in the model parameters, case infection times and the disease status of undetected infections. Importantly, we demonstrate how our model learns sequentially as the epidemic unfolds and provide evidence for changing epidemic dynamics through time. Our approach therefore provides a significant advance in rapid decision support for novel vector-borne disease outbreaks. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Support Vector Machine algorithm for regression and classification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Chenggang; Zavaljevski, Nela
2001-08-01
The software is an implementation of the Support Vector Machine (SVM) algorithm that was invented and developed by Vladimir Vapnik and his co-workers at AT&T Bell Laboratories. The specific implementation reported here is an Active Set method for solving a quadratic optimization problem that forms the major part of any SVM program. The implementation is tuned to specific constraints generated in the SVM learning. Thus, it is more efficient than general-purpose quadratic optimization programs. A decomposition method has been implemented in the software that enables processing large data sets. The size of the learning data is virtually unlimited by themore » capacity of the computer physical memory. The software is flexible and extensible. Two upper bounds are implemented to regulate the SVM learning for classification, which allow users to adjust the false positive and false negative rates. The software can be used either as a standalone, general-purpose SVM regression or classification program, or be embedded into a larger software system.« less
Shao, Feng; Li, Kemeng; Lin, Weisi; Jiang, Gangyi; Yu, Mei; Dai, Qionghai
2015-10-01
Quality assessment of 3D images encounters more challenges than its 2D counterparts. Directly applying 2D image quality metrics is not the solution. In this paper, we propose a new full-reference quality assessment for stereoscopic images by learning binocular receptive field properties to be more in line with human visual perception. To be more specific, in the training phase, we learn a multiscale dictionary from the training database, so that the latent structure of images can be represented as a set of basis vectors. In the quality estimation phase, we compute sparse feature similarity index based on the estimated sparse coefficient vectors by considering their phase difference and amplitude difference, and compute global luminance similarity index by considering luminance changes. The final quality score is obtained by incorporating binocular combination based on sparse energy and sparse complexity. Experimental results on five public 3D image quality assessment databases demonstrate that in comparison with the most related existing methods, the devised algorithm achieves high consistency with subjective assessment.
An ultra low power feature extraction and classification system for wearable seizure detection.
Page, Adam; Pramod Tim Oates, Siddharth; Mohsenin, Tinoosh
2015-01-01
In this paper we explore the use of a variety of machine learning algorithms for designing a reliable and low-power, multi-channel EEG feature extractor and classifier for predicting seizures from electroencephalographic data (scalp EEG). Different machine learning classifiers including k-nearest neighbor, support vector machines, naïve Bayes, logistic regression, and neural networks are explored with the goal of maximizing detection accuracy while minimizing power, area, and latency. The input to each machine learning classifier is a 198 feature vector containing 9 features for each of the 22 EEG channels obtained over 1-second windows. All classifiers were able to obtain F1 scores over 80% and onset sensitivity of 100% when tested on 10 patients. Among five different classifiers that were explored, logistic regression (LR) proved to have minimum hardware complexity while providing average F-1 score of 91%. Both ASIC and FPGA implementations of logistic regression are presented and show the smallest area, power consumption, and the lowest latency when compared to the previous work.
Zimmermann, Karel; Gibrat, Jean-François
2010-01-04
Sequence comparisons make use of a one-letter representation for amino acids, the necessary quantitative information being supplied by the substitution matrices. This paper deals with the problem of finding a representation that provides a comprehensive description of amino acid intrinsic properties consistent with the substitution matrices. We present a Euclidian vector representation of the amino acids, obtained by the singular value decomposition of the substitution matrices. The substitution matrix entries correspond to the dot product of amino acid vectors. We apply this vector encoding to the study of the relative importance of various amino acid physicochemical properties upon the substitution matrices. We also characterize and compare the PAM and BLOSUM series substitution matrices. This vector encoding introduces a Euclidian metric in the amino acid space, consistent with substitution matrices. Such a numerical description of the amino acid is useful when intrinsic properties of amino acids are necessary, for instance, building sequence profiles or finding consensus sequences, using machine learning algorithms such as Support Vector Machine and Neural Networks algorithms.
The Relevance of Workplace Learning in Guiding Student and Curriculum Development
ERIC Educational Resources Information Center
Nduna, N. J.
2012-01-01
In an attempt to demonstrate the relevance of workplace learning (previously known as "cooperative education") in guiding student and curriculum development, this article presents findings from a research project on the current practice of workplace learning, drawn from an analysis of evaluation reports in a university of technology.…
Towards Increased Relevance: Context-Adapted Models of the Learning Organization
ERIC Educational Resources Information Center
Örtenblad, Anders
2015-01-01
Purpose: The purposes of this paper are to take a closer look at the relevance of the idea of the learning organization for organizations in different generalized organizational contexts; to open up for the existence of multiple, context-adapted models of the learning organization; and to suggest a number of such models.…
Science Spots AR: A Platform for Science Learning Games with Augmented Reality
ERIC Educational Resources Information Center
Laine, Teemu H.; Nygren, Eeva; Dirin, Amir; Suk, Hae-Jung
2016-01-01
Lack of motivation and of real-world relevance have been identified as reasons for low interest in science among children. Game-based learning and storytelling are prominent methods for generating intrinsic motivation in learning. Real-world relevance requires connecting abstract scientific concepts with the real world. This can be done by…
Some New Theoretical Issues in Systems Thinking Relevant for Modelling Corporate Learning
ERIC Educational Resources Information Center
Minati, Gianfranco
2007-01-01
Purpose: The purpose of this paper is to describe fundamental concepts and theoretical challenges with regard to systems, and to build on these in proposing new theoretical frameworks relevant to learning, for example in so-called learning organizations. Design/methodology/approach: The paper focuses on some crucial fundamental aspects introduced…
van den Berg, Henk; Hii, Jeffrey; Soares, Agnes; Mnzava, Abraham; Ameneshewa, Birkinesh; Dash, Aditya P; Ejov, Mikhail; Tan, Soo Hian; Matthews, Graham; Yadav, Rajpal S; Zaim, Morteza
2011-05-14
It is critical that vector control pesticides are used for their acceptable purpose without causing adverse effects on health and the environment. This paper provides a global overview of the current status of pesticides management in the practice of vector control. A questionnaire was distributed to WHO member states and completed either by the director of the vector-borne disease control programme or by the national manager for vector control. In all, 113 countries responded to the questionnaire (80% response rate), representing 94% of the total population of the countries targeted. Major gaps were evident in countries in pesticide procurement practices, training on vector control decision making, certification and quality control of pesticide application, monitoring of worker safety, public awareness programmes, and safe disposal of pesticide-related waste. Nevertheless, basic conditions of policy and coordination have been established in many countries through which the management of vector control pesticides could potentially be improved. Most countries responded that they have adopted relevant recommendations by the WHO. Given the deficiencies identified in this first global survey on public health pesticide management and the recent rise in pesticide use for malaria control, the effectiveness and safety of pesticide use are being compromised. This highlights the urgent need for countries to strengthen their capacity on pesticide management and evidence-based decision making within the context of an integrated vector management approach.
2011-01-01
Background It is critical that vector control pesticides are used for their acceptable purpose without causing adverse effects on health and the environment. This paper provides a global overview of the current status of pesticides management in the practice of vector control. Methods A questionnaire was distributed to WHO member states and completed either by the director of the vector-borne disease control programme or by the national manager for vector control. In all, 113 countries responded to the questionnaire (80% response rate), representing 94% of the total population of the countries targeted. Results Major gaps were evident in countries in pesticide procurement practices, training on vector control decision making, certification and quality control of pesticide application, monitoring of worker safety, public awareness programmes, and safe disposal of pesticide-related waste. Nevertheless, basic conditions of policy and coordination have been established in many countries through which the management of vector control pesticides could potentially be improved. Most countries responded that they have adopted relevant recommendations by the WHO. Conclusions Given the deficiencies identified in this first global survey on public health pesticide management and the recent rise in pesticide use for malaria control, the effectiveness and safety of pesticide use are being compromised. This highlights the urgent need for countries to strengthen their capacity on pesticide management and evidence-based decision making within the context of an integrated vector management approach. PMID:21569601
QCD next-to-leading-order predictions matched to parton showers for vector-like quark models.
Fuks, Benjamin; Shao, Hua-Sheng
2017-01-01
Vector-like quarks are featured by a wealth of beyond the Standard Model theories and are consequently an important goal of many LHC searches for new physics. Those searches, as well as most related phenomenological studies, however, rely on predictions evaluated at the leading-order accuracy in QCD and consider well-defined simplified benchmark scenarios. Adopting an effective bottom-up approach, we compute next-to-leading-order predictions for vector-like-quark pair production and single production in association with jets, with a weak or with a Higgs boson in a general new physics setup. We additionally compute vector-like-quark contributions to the production of a pair of Standard Model bosons at the same level of accuracy. For all processes under consideration, we focus both on total cross sections and on differential distributions, most these calculations being performed for the first time in our field. As a result, our work paves the way to precise extraction of experimental limits on vector-like quarks thanks to an accurate control of the shapes of the relevant observables and emphasise the extra handles that could be provided by novel vector-like-quark probes never envisaged so far.
Vector fields in a tight laser focus: comparison of models.
Peatross, Justin; Berrondo, Manuel; Smith, Dallas; Ware, Michael
2017-06-26
We assess several widely used vector models of a Gaussian laser beam in the context of more accurate vector diffraction integration. For the analysis, we present a streamlined derivation of the vector fields of a uniformly polarized beam reflected from an ideal parabolic mirror, both inside and outside of the resulting focus. This exact solution to Maxwell's equations, first developed in 1920 by V. S. Ignatovsky, is highly relevant to high-intensity laser experiments since the boundary conditions at a focusing optic dictate the form of the focus in a manner analogous to a physical experiment. In contrast, many models simply assume a field profile near the focus and develop the surrounding vector fields consistent with Maxwell's equations. In comparing the Ignatovsky result with popular closed-form analytic vector models of a Gaussian beam, we find that the relatively simple model developed by Erikson and Singh in 1994 provides good agreement in the paraxial limit. Models involving a Lax expansion introduce a divergences outside of the focus while providing little if any improvement in the focal region. Extremely tight focusing produces a somewhat complicated structure in the focus, and requires the Ignatovsky model for accurate representation.
Correlation between polar values and vector analysis.
Naeser, K; Behrens, J K
1997-01-01
To evaluate the possible correlation between polar value and vector analysis assessment of surgically induced astigmatism. Department of Ophthalmology, Aalborg Sygehus Syd, Denmark. The correlation between polar values and vector analysis was evaluated by simple mathematical and optical methods using accepted principles of trigonometry and first-order optics. Vector analysis and polar values report different aspects of surgically induced astigmatism. Vector analysis describes the total astigmatic change, characterized by both astigmatic magnitude and direction, while the polar value method produces a single, reduced figure that reports flattening or steepening in preselected directions, usually the plane of the surgical meridian. There is a simple Pythagorean correlation between vector analysis and two polar values separated by an arch of 45 degrees. The polar value calculated in the surgical meridian indicates the power or the efficacy of the surgical procedure. The polar value calculated in a plane inclined 45 degrees to the surgical meridian indicates the degree of cylinder rotation induced by surgery. These two polar values can be used to obtain other relevant data such as magnitude, direction, and sphere of an induced cylinder. Consistent use of these methods will enable surgeons to control and in many cases reduce preoperative astigmatism.
CRISPR/Cas9—Advancing Orthopoxvirus Genome Editing for Vaccine and Vector Development
Okoli, Arinze; Okeke, Malachy I.; Tryland, Morten; Moens, Ugo
2018-01-01
The clustered regularly interspaced short palindromic repeat (CRISPR)/associated protein 9 (Cas9) technology is revolutionizing genome editing approaches. Its high efficiency, specificity, versatility, flexibility, simplicity and low cost have made the CRISPR/Cas9 system preferable to other guided site-specific nuclease-based systems such as TALENs (Transcription Activator-like Effector Nucleases) and ZFNs (Zinc Finger Nucleases) in genome editing of viruses. CRISPR/Cas9 is presently being applied in constructing viral mutants, preventing virus infections, eradicating proviral DNA, and inhibiting viral replication in infected cells. The successful adaptation of CRISPR/Cas9 to editing the genome of Vaccinia virus paves the way for its application in editing other vaccine/vector-relevant orthopoxvirus (OPXV) strains. Thus, CRISPR/Cas9 can be used to resolve some of the major hindrances to the development of OPXV-based recombinant vaccines and vectors, including sub-optimal immunogenicity; transgene and genome instability; reversion of attenuation; potential of spread of transgenes to wildtype strains and close contacts, which are important biosafety and risk assessment considerations. In this article, we review the published literature on the application of CRISPR/Cas9 in virus genome editing and discuss the potentials of CRISPR/Cas9 in advancing OPXV-based recombinant vaccines and vectors. We also discuss the application of CRISPR/Cas9 in combating viruses of clinical relevance, the limitations of CRISPR/Cas9 and the current strategies to overcome them. PMID:29361752
Speckle-learning-based object recognition through scattering media.
Ando, Takamasa; Horisaki, Ryoichi; Tanida, Jun
2015-12-28
We experimentally demonstrated object recognition through scattering media based on direct machine learning of a number of speckle intensity images. In the experiments, speckle intensity images of amplitude or phase objects on a spatial light modulator between scattering plates were captured by a camera. We used the support vector machine for binary classification of the captured speckle intensity images of face and non-face data. The experimental results showed that speckles are sufficient for machine learning.
Incremental Support Vector Machine Framework for Visual Sensor Networks
NASA Astrophysics Data System (ADS)
Awad, Mariette; Jiang, Xianhua; Motai, Yuichi
2006-12-01
Motivated by the emerging requirements of surveillance networks, we present in this paper an incremental multiclassification support vector machine (SVM) technique as a new framework for action classification based on real-time multivideo collected by homogeneous sites. The technique is based on an adaptation of least square SVM (LS-SVM) formulation but extends beyond the static image-based learning of current SVM methodologies. In applying the technique, an initial supervised offline learning phase is followed by a visual behavior data acquisition and an online learning phase during which the cluster head performs an ensemble of model aggregations based on the sensor nodes inputs. The cluster head then selectively switches on designated sensor nodes for future incremental learning. Combining sensor data offers an improvement over single camera sensing especially when the latter has an occluded view of the target object. The optimization involved alleviates the burdens of power consumption and communication bandwidth requirements. The resulting misclassification error rate, the iterative error reduction rate of the proposed incremental learning, and the decision fusion technique prove its validity when applied to visual sensor networks. Furthermore, the enabled online learning allows an adaptive domain knowledge insertion and offers the advantage of reducing both the model training time and the information storage requirements of the overall system which makes it even more attractive for distributed sensor networks communication.
NASA Astrophysics Data System (ADS)
Li, Tao
2018-06-01
The complexity of aluminum electrolysis process leads the temperature for aluminum reduction cells hard to measure directly. However, temperature is the control center of aluminum production. To solve this problem, combining some aluminum plant's practice data, this paper presents a Soft-sensing model of temperature for aluminum electrolysis process on Improved Twin Support Vector Regression (ITSVR). ITSVR eliminates the slow learning speed of Support Vector Regression (SVR) and the over-fit risk of Twin Support Vector Regression (TSVR) by introducing a regularization term into the objective function of TSVR, which ensures the structural risk minimization principle and lower computational complexity. Finally, the model with some other parameters as auxiliary variable, predicts the temperature by ITSVR. The simulation result shows Soft-sensing model based on ITSVR has short time-consuming and better generalization.
A hypothetical learning trajectory for conceptualizing matrices as linear transformations
NASA Astrophysics Data System (ADS)
Andrews-Larson, Christine; Wawro, Megan; Zandieh, Michelle
2017-08-01
In this paper, we present a hypothetical learning trajectory (HLT) aimed at supporting students in developing flexible ways of reasoning about matrices as linear transformations in the context of introductory linear algebra. In our HLT, we highlight the integral role of the instructor in this development. Our HLT is based on the 'Italicizing N' task sequence, in which students work to generate, compose, and invert matrices that correspond to geometric transformations specified within the problem context. In particular, we describe the ways in which the students develop local transformation views of matrix multiplication (focused on individual mappings of input vectors to output vectors) and extend these local views to more global views in which matrices are conceptualized in terms of how they transform a space in a coordinated way.
The Unconscious Allocation of Cognitive Resources to Task-Relevant and Task-Irrelevant Thoughts
ERIC Educational Resources Information Center
Kuldas, Seffetullah; Hashim, Shahabuddin; Ismail, Hairul Nizam; Samsudin, Mohd Ali; Bakar, Zainudin Abu
2014-01-01
Conscious allocation of cognitive resources to task-relevant thoughts is necessary for learning. However, task-irrelevant thoughts often associated with fear of failure can enter the mind and interfere with learning. Effects like this prompt the question of whether or not learners consciously shift their cognitive resources from task-relevant to…
Bringing Relevance to Elearning--A Gender Perspective
ERIC Educational Resources Information Center
Wallace, Ann; Panteli, Niki
2018-01-01
In this paper, we discuss the importance of relevance in the provision of eLearning for the pursuit of higher education (HE). In particular, we argue how the extant literature focuses on quality and security in the design of eLearning platforms, but pays scant attention to how relevant the platform and the programme contents are to the needs of…
Liu, Bin; Wang, Shanyi; Dong, Qiwen; Li, Shumin; Liu, Xuan
2016-04-20
DNA-binding proteins play a pivotal role in various intra- and extra-cellular activities ranging from DNA replication to gene expression control. With the rapid development of next generation of sequencing technique, the number of protein sequences is unprecedentedly increasing. Thus it is necessary to develop computational methods to identify the DNA-binding proteins only based on the protein sequence information. In this study, a novel method called iDNA-KACC is presented, which combines the Support Vector Machine (SVM) and the auto-cross covariance transformation. The protein sequences are first converted into profile-based protein representation, and then converted into a series of fixed-length vectors by the auto-cross covariance transformation with Kmer composition. The sequence order effect can be effectively captured by this scheme. These vectors are then fed into Support Vector Machine (SVM) to discriminate the DNA-binding proteins from the non DNA-binding ones. iDNA-KACC achieves an overall accuracy of 75.16% and Matthew correlation coefficient of 0.5 by a rigorous jackknife test. Its performance is further improved by employing an ensemble learning approach, and the improved predictor is called iDNA-KACC-EL. Experimental results on an independent dataset shows that iDNA-KACC-EL outperforms all the other state-of-the-art predictors, indicating that it would be a useful computational tool for DNA binding protein identification. .
A Unified Mathematical Definition of Classical Information Retrieval.
ERIC Educational Resources Information Center
Dominich, Sandor
2000-01-01
Presents a unified mathematical definition for the classical models of information retrieval and identifies a mathematical structure behind relevance feedback. Highlights include vector information retrieval; probabilistic information retrieval; and similarity information retrieval. (Contains 118 references.) (Author/LRW)
What is the Risk for Exposure to Vector-Borne Pathogens in United States National Parks?
EISEN, LARS; WONG, DAVID; SHELUS, VICTORIA; EISEN, REBECCA J.
2015-01-01
United States national parks attract >275 million visitors annually and collectively present risk of exposure for staff and visitors to a wide range of arthropod vector species (most notably fleas, mosquitoes, and ticks) and their associated bacterial, protozoan, or viral pathogens. We assessed the current state of knowledge for risk of exposure to vector-borne pathogens in national parks through a review of relevant literature, including internal National Park Service documents and organismal databases. We conclude that, because of lack of systematic surveillance for vector-borne pathogens in national parks, the risk of pathogen exposure for staff and visitors is unclear. Existing data for vectors within national parks were not based on systematic collections and rarely include evaluation for pathogen infection. Extrapolation of human-based surveillance data from neighboring communities likely provides inaccurate estimates for national parks because landscape differences impact transmission of vector-borne pathogens and human-vector contact rates likely differ inside versus outside the parks because of differences in activities or behaviors. Vector-based pathogen surveillance holds promise to define when and where within national parks the risk of exposure to infected vectors is elevated. A pilot effort, including 5–10 strategic national parks, would greatly improve our understanding of the scope and magnitude of vector-borne pathogen transmission in these high-use public settings. Such efforts also will support messaging to promote personal protection measures and inform park visitors and staff of their responsibility for personal protection, which the National Park Service preservation mission dictates as the core strategy to reduce exposure to vector-borne pathogens in national parks. PMID:23540107
A Relevance Vector Machine-Based Approach with Application to Oil Sand Pump Prognostics
Hu, Jinfei; Tse, Peter W.
2013-01-01
Oil sand pumps are widely used in the mining industry for the delivery of mixtures of abrasive solids and liquids. Because they operate under highly adverse conditions, these pumps usually experience significant wear. Consequently, equipment owners are quite often forced to invest substantially in system maintenance to avoid unscheduled downtime. In this study, an approach combining relevance vector machines (RVMs) with a sum of two exponential functions was developed to predict the remaining useful life (RUL) of field pump impellers. To handle field vibration data, a novel feature extracting process was proposed to arrive at a feature varying with the development of damage in the pump impellers. A case study involving two field datasets demonstrated the effectiveness of the developed method. Compared with standalone exponential fitting, the proposed RVM-based model was much better able to predict the remaining useful life of pump impellers. PMID:24051527
Hybrid Radar Emitter Recognition Based on Rough k-Means Classifier and Relevance Vector Machine
Yang, Zhutian; Wu, Zhilu; Yin, Zhendong; Quan, Taifan; Sun, Hongjian
2013-01-01
Due to the increasing complexity of electromagnetic signals, there exists a significant challenge for recognizing radar emitter signals. In this paper, a hybrid recognition approach is presented that classifies radar emitter signals by exploiting the different separability of samples. The proposed approach comprises two steps, namely the primary signal recognition and the advanced signal recognition. In the former step, a novel rough k-means classifier, which comprises three regions, i.e., certain area, rough area and uncertain area, is proposed to cluster the samples of radar emitter signals. In the latter step, the samples within the rough boundary are used to train the relevance vector machine (RVM). Then RVM is used to recognize the samples in the uncertain area; therefore, the classification accuracy is improved. Simulation results show that, for recognizing radar emitter signals, the proposed hybrid recognition approach is more accurate, and presents lower computational complexity than traditional approaches. PMID:23344380
Content-Based Discovery for Web Map Service using Support Vector Machine and User Relevance Feedback
Cheng, Xiaoqiang; Qi, Kunlun; Zheng, Jie; You, Lan; Wu, Huayi
2016-01-01
Many discovery methods for geographic information services have been proposed. There are approaches for finding and matching geographic information services, methods for constructing geographic information service classification schemes, and automatic geographic information discovery. Overall, the efficiency of the geographic information discovery keeps improving., There are however, still two problems in Web Map Service (WMS) discovery that must be solved. Mismatches between the graphic contents of a WMS and the semantic descriptions in the metadata make discovery difficult for human users. End-users and computers comprehend WMSs differently creating semantic gaps in human-computer interactions. To address these problems, we propose an improved query process for WMSs based on the graphic contents of WMS layers, combining Support Vector Machine (SVM) and user relevance feedback. Our experiments demonstrate that the proposed method can improve the accuracy and efficiency of WMS discovery. PMID:27861505
A relevance vector machine-based approach with application to oil sand pump prognostics.
Hu, Jinfei; Tse, Peter W
2013-09-18
Oil sand pumps are widely used in the mining industry for the delivery of mixtures of abrasive solids and liquids. Because they operate under highly adverse conditions, these pumps usually experience significant wear. Consequently, equipment owners are quite often forced to invest substantially in system maintenance to avoid unscheduled downtime. In this study, an approach combining relevance vector machines (RVMs) with a sum of two exponential functions was developed to predict the remaining useful life (RUL) of field pump impellers. To handle field vibration data, a novel feature extracting process was proposed to arrive at a feature varying with the development of damage in the pump impellers. A case study involving two field datasets demonstrated the effectiveness of the developed method. Compared with standalone exponential fitting, the proposed RVM-based model was much better able to predict the remaining useful life of pump impellers.
Hu, Kai; Gui, Zhipeng; Cheng, Xiaoqiang; Qi, Kunlun; Zheng, Jie; You, Lan; Wu, Huayi
2016-01-01
Many discovery methods for geographic information services have been proposed. There are approaches for finding and matching geographic information services, methods for constructing geographic information service classification schemes, and automatic geographic information discovery. Overall, the efficiency of the geographic information discovery keeps improving., There are however, still two problems in Web Map Service (WMS) discovery that must be solved. Mismatches between the graphic contents of a WMS and the semantic descriptions in the metadata make discovery difficult for human users. End-users and computers comprehend WMSs differently creating semantic gaps in human-computer interactions. To address these problems, we propose an improved query process for WMSs based on the graphic contents of WMS layers, combining Support Vector Machine (SVM) and user relevance feedback. Our experiments demonstrate that the proposed method can improve the accuracy and efficiency of WMS discovery.
NASA Astrophysics Data System (ADS)
Thompson, Jessica J.; Windschitl, Mark
Contemporary critiques of science education have noted that girls often fail to engage in science learning because the activities lack relevance for them, and they cannot "see themselves" in the work of science. Despite the empirical support for these claims, theory around the important connections between relevance, emerging self-identity, and engagement for girls remains underdeveloped. This qualitative, exploratory investigation examines engagement in science learning among five underachieving high school girls. Data sources include in-depth interviews, classroom observations, and teacher surveys. The girls were asked to describe engagement within three learning contexts: science class, a favorite class, and an extracurricular activity. From the girls' voices emerge three themes reflecting the centrality of self: "who I am," "who I am becoming," and "the importance of relationships." It is important that these themes of self and of identity negotiation are integrated with the ways these girls find learning personally relevant. One pattern of extracurricular engagement and two patterns of science engagement (integrated and situational) are described. This study attempts to expand the dialogue around the relationships between identity, relevance, and engagement among underachieving girls and suggests ways in which curriculum can be grounded in students' lives and developing identities.
"The Learning Sticks": Reflections on a Case Study of Role-Playing for Sustainability
ERIC Educational Resources Information Center
Gordon, Sue; Thomas, Ian
2018-01-01
Use of role-plays to develop deep student-learning has many advocates. Role-play is a powerful approach for learning that develops relevant skills in a range of disciplines and situations. In Higher Education, sustainability programmes role-play pedagogy appears to have great relevance for developing the competencies that these graduates will…
Plague epizootic cycles in Central Asia.
Reijniers, Jonas; Begon, Mike; Ageyev, Vladimir S; Leirs, Herwig
2014-06-01
Infection thresholds, widely used in disease epidemiology, may operate on host abundance and, if present, on vector abundance. For wildlife populations, host and vector abundances often vary greatly across years and consequently the threshold may be crossed regularly, both up- and downward. Moreover, vector and host abundances may be interdependent, which may affect the infection dynamics. Theory predicts that if the relevant abundance, or combination of abundances, is above the threshold, then the infection is able to spread; if not, it is bound to fade out. In practice, though, the observed level of infection may depend more on past than on current abundances. Here, we study the temporal dynamics of plague (Yersinia pestis infection), its vector (flea) and its host (great gerbil) in the PreBalkhash region in Kazakhstan. We describe how host and vector abundances interact over time and how this interaction drives the dynamics of the system around the infection threshold, consequently affecting the proportion of plague-infected sectors. We also explore the importance of the interplay between biological and detectability delays in generating the observed dynamics.
Perturbation vectors to evaluate air quality using lichens and bromeliads: a Brazilian case study.
Monna, F; Marques, A N; Guillon, R; Losno, R; Couette, S; Navarro, N; Dongarra, G; Tamburo, E; Varrica, D; Chateau, C; Nepomuceno, F O
2017-10-17
Samples of one lichen species, Parmotrema crinitum, and one bromeliad species, Tillandsia usneoides, were collected in the state of Rio de Janeiro, Brazil, at four sites differently affected by anthropogenic pollution. The concentrations of aluminum, cadmium, copper, iron, lanthanum, lead, sulfur, titanium, zinc, and zirconium were determined by inductively coupled plasma-atomic emission spectroscopy. The environmental diagnosis was established by examining compositional changes via perturbation vectors, an underused family of methods designed to circumvent the problem of closure in any compositional dataset. The perturbation vectors between the reference site and the other three sites were similar for both species, although body concentration levels were different. At each site, perturbation vectors between lichens and bromeliads were approximately the same, whatever the local pollution level. It should thus be possible to combine these organisms, though physiologically different, for air quality surveys, after making all results comparable with appropriate correction. The use of perturbation vectors seems particularly suitable for assessing pollution level by biomonitoring, and for many frequently met situations in environmental geochemistry, where elemental ratios are more relevant than absolute concentrations.
Fourier transform inequalities for phylogenetic trees.
Matsen, Frederick A
2009-01-01
Phylogenetic invariants are not the only constraints on site-pattern frequency vectors for phylogenetic trees. A mutation matrix, by its definition, is the exponential of a matrix with non-negative off-diagonal entries; this positivity requirement implies non-trivial constraints on the site-pattern frequency vectors. We call these additional constraints "edge-parameter inequalities". In this paper, we first motivate the edge-parameter inequalities by considering a pathological site-pattern frequency vector corresponding to a quartet tree with a negative internal edge. This site-pattern frequency vector nevertheless satisfies all of the constraints described up to now in the literature. We next describe two complete sets of edge-parameter inequalities for the group-based models; these constraints are square-free monomial inequalities in the Fourier transformed coordinates. These inequalities, along with the phylogenetic invariants, form a complete description of the set of site-pattern frequency vectors corresponding to bona fide trees. Said in mathematical language, this paper explicitly presents two finite lists of inequalities in Fourier coordinates of the form "monomial < or = 1", each list characterizing the phylogenetically relevant semialgebraic subsets of the phylogenetic varieties.
Barua, Shaibal; Begum, Shahina; Ahmed, Mobyen Uddin
2015-01-01
Machine learning algorithms play an important role in computer science research. Recent advancement in sensor data collection in clinical sciences lead to a complex, heterogeneous data processing, and analysis for patient diagnosis and prognosis. Diagnosis and treatment of patients based on manual analysis of these sensor data are difficult and time consuming. Therefore, development of Knowledge-based systems to support clinicians in decision-making is important. However, it is necessary to perform experimental work to compare performances of different machine learning methods to help to select appropriate method for a specific characteristic of data sets. This paper compares classification performance of three popular machine learning methods i.e., case-based reasoning, neutral networks and support vector machine to diagnose stress of vehicle drivers using finger temperature and heart rate variability. The experimental results show that case-based reasoning outperforms other two methods in terms of classification accuracy. Case-based reasoning has achieved 80% and 86% accuracy to classify stress using finger temperature and heart rate variability. On contrary, both neural network and support vector machine have achieved less than 80% accuracy by using both physiological signals.
Reduced multiple empirical kernel learning machine.
Wang, Zhe; Lu, MingZhe; Gao, Daqi
2015-02-01
Multiple kernel learning (MKL) is demonstrated to be flexible and effective in depicting heterogeneous data sources since MKL can introduce multiple kernels rather than a single fixed kernel into applications. However, MKL would get a high time and space complexity in contrast to single kernel learning, which is not expected in real-world applications. Meanwhile, it is known that the kernel mapping ways of MKL generally have two forms including implicit kernel mapping and empirical kernel mapping (EKM), where the latter is less attracted. In this paper, we focus on the MKL with the EKM, and propose a reduced multiple empirical kernel learning machine named RMEKLM for short. To the best of our knowledge, it is the first to reduce both time and space complexity of the MKL with EKM. Different from the existing MKL, the proposed RMEKLM adopts the Gauss Elimination technique to extract a set of feature vectors, which is validated that doing so does not lose much information of the original feature space. Then RMEKLM adopts the extracted feature vectors to span a reduced orthonormal subspace of the feature space, which is visualized in terms of the geometry structure. It can be demonstrated that the spanned subspace is isomorphic to the original feature space, which means that the dot product of two vectors in the original feature space is equal to that of the two corresponding vectors in the generated orthonormal subspace. More importantly, the proposed RMEKLM brings a simpler computation and meanwhile needs a less storage space, especially in the processing of testing. Finally, the experimental results show that RMEKLM owns a much efficient and effective performance in terms of both complexity and classification. The contributions of this paper can be given as follows: (1) by mapping the input space into an orthonormal subspace, the geometry of the generated subspace is visualized; (2) this paper first reduces both the time and space complexity of the EKM-based MKL; (3) this paper adopts the Gauss Elimination, one of the on-the-shelf techniques, to generate a basis of the original feature space, which is stable and efficient.
Grimm, Lisa R; Maddox, W Todd
2013-11-01
Research has identified multiple category-learning systems with each being "tuned" for learning categories with different task demands and each governed by different neurobiological systems. Rule-based (RB) classification involves testing verbalizable rules for category membership while information-integration (II) classification requires the implicit learning of stimulus-response mappings. In the first study to directly test rule priming with RB and II category learning, we investigated the influence of the availability of information presented at the beginning of the task. Participants viewed lines that varied in length, orientation, and position on the screen, and were primed to focus on stimulus dimensions that were relevant or irrelevant to the correct classification rule. In Experiment 1, we used an RB category structure, and in Experiment 2, we used an II category structure. Accuracy and model-based analyses suggested that a focus on relevant dimensions improves RB task performance later in learning while a focus on an irrelevant dimension improves II task performance early in learning. © 2013.
Machine Learning in Intrusion Detection
2005-07-01
machine learning tasks. Anomaly detection provides the core technology for a broad spectrum of security-centric applications. In this dissertation, we examine various aspects of anomaly based intrusion detection in computer security. First, we present a new approach to learn program behavior for intrusion detection. Text categorization techniques are adopted to convert each process to a vector and calculate the similarity between two program activities. Then the k-nearest neighbor classifier is employed to classify program behavior as normal or intrusive. We demonstrate
Feature saliency and feedback information interactively impact visual category learning
Hammer, Rubi; Sloutsky, Vladimir; Grill-Spector, Kalanit
2015-01-01
Visual category learning (VCL) involves detecting which features are most relevant for categorization. VCL relies on attentional learning, which enables effectively redirecting attention to object’s features most relevant for categorization, while ‘filtering out’ irrelevant features. When features relevant for categorization are not salient, VCL relies also on perceptual learning, which enables becoming more sensitive to subtle yet important differences between objects. Little is known about how attentional learning and perceptual learning interact when VCL relies on both processes at the same time. Here we tested this interaction. Participants performed VCL tasks in which they learned to categorize novel stimuli by detecting the feature dimension relevant for categorization. Tasks varied both in feature saliency (low-saliency tasks that required perceptual learning vs. high-saliency tasks), and in feedback information (tasks with mid-information, moderately ambiguous feedback that increased attentional load, vs. tasks with high-information non-ambiguous feedback). We found that mid-information and high-information feedback were similarly effective for VCL in high-saliency tasks. This suggests that an increased attentional load, associated with the processing of moderately ambiguous feedback, has little effect on VCL when features are salient. In low-saliency tasks, VCL relied on slower perceptual learning; but when the feedback was highly informative participants were able to ultimately attain the same performance as during the high-saliency VCL tasks. However, VCL was significantly compromised in the low-saliency mid-information feedback task. We suggest that such low-saliency mid-information learning scenarios are characterized by a ‘cognitive loop paradox’ where two interdependent learning processes have to take place simultaneously. PMID:25745404
Peridomestic Aedes malayensis and Aedes albopictus are capable vectors of arboviruses in cities.
Mendenhall, Ian H; Manuel, Menchie; Moorthy, Mahesh; Lee, Theodore T M; Low, Dolyce H W; Missé, Dorothée; Gubler, Duane J; Ellis, Brett R; Ooi, Eng Eong; Pompon, Julien
2017-06-01
Dengue and chikungunya are global re-emerging mosquito-borne diseases. In Singapore, sustained vector control coupled with household improvements reduced domestic mosquito populations for the past 45 years, particularly the primary vector Aedes aegypti. However, while disease incidence was low for the first 30 years following vector control implementation, outbreaks have re-emerged in the past 15 years. Epidemiological observations point to the importance of peridomestic infection in areas not targeted by control programs. We investigated the role of vectors in peri-domestic areas. We carried out entomological surveys to identify the Aedes species present in vegetated sites in highly populated areas and determine whether mosquitoes were present in open-air areas frequented by people. We compared vector competence of Aedes albopictus and Aedes malayensis with Ae. aegypti after oral infection with sympatric dengue serotype 2 and chikungunya viruses. Mosquito saliva was tested for the presence of infectious virus particles as a surrogate for transmission following oral infection. We identified Aedes albopictus and Aedes malayensis throughout Singapore and quantified their presence in forested and opened grassy areas. Both Ae. albopictus and Ae. malayensis can occupy sylvatic niches and were highly susceptible to both arboviruses. A majority of saliva of infected Ae. malayensis contained infectious particles for both viruses. Our study reveals the prevalence of competent vectors in peri-domestic areas, including Ae. malayensis for which we established the vector status. Epidemics can be driven by infection foci, which are epidemiologically enhanced in the context of low herd immunity, selective pressure on arbovirus transmission and the presence of infectious asymptomatic persons, all these conditions being present in Singapore. Learning from Singapore's vector control success that reduced domestic vector populations, but has not sustainably reduced arboviral incidence, we suggest including peri-domestic vectors in the scope of vector management.
NASA Astrophysics Data System (ADS)
Lee, Donghoon; Kim, Ye-seul; Choi, Sunghoon; Lee, Haenghwa; Jo, Byungdu; Choi, Seungyeon; Shin, Jungwook; Kim, Hee-Joung
2017-03-01
The chest digital tomosynthesis(CDT) is recently developed medical device that has several advantage for diagnosing lung disease. For example, CDT provides depth information with relatively low radiation dose compared to computed tomography (CT). However, a major problem with CDT is the image artifacts associated with data incompleteness resulting from limited angle data acquisition in CDT geometry. For this reason, the sensitivity of lung disease was not clear compared to CT. In this study, to improve sensitivity of lung disease detection in CDT, we developed computer aided diagnosis (CAD) systems based on machine learning. For design CAD systems, we used 100 cases of lung nodules cropped images and 100 cases of normal lesion cropped images acquired by lung man phantoms and proto type CDT. We used machine learning techniques based on support vector machine and Gabor filter. The Gabor filter was used for extracting characteristics of lung nodules and we compared performance of feature extraction of Gabor filter with various scale and orientation parameters. We used 3, 4, 5 scales and 4, 6, 8 orientations. After extracting features, support vector machine (SVM) was used for classifying feature of lesions. The linear, polynomial and Gaussian kernels of SVM were compared to decide the best SVM conditions for CDT reconstruction images. The results of CAD system with machine learning showed the capability of automatically lung lesion detection. Furthermore detection performance was the best when Gabor filter with 5 scale and 8 orientation and SVM with Gaussian kernel were used. In conclusion, our suggested CAD system showed improving sensitivity of lung lesion detection in CDT and decide Gabor filter and SVM conditions to achieve higher detection performance of our developed CAD system for CDT.
Multivariate outcome prediction in traumatic brain injury with focus on laboratory values.
Nelson, David W; Rudehill, Anders; MacCallum, Robert M; Holst, Anders; Wanecek, Michael; Weitzberg, Eddie; Bellander, Bo-Michael
2012-11-20
Traumatic brain injury (TBI) is a major cause of morbidity and mortality. Identifying factors relevant to outcome can provide a better understanding of TBI pathophysiology, in addition to aiding prognostication. Many common laboratory variables have been related to outcome but may not be independent predictors in a multivariate setting. In this study, 757 patients were identified in the Karolinska TBI database who had retrievable early laboratory variables. These were analyzed towards a dichotomized Glasgow Outcome Scale (GOS) with logistic regression and relevance vector machines, a non-linear machine learning method, univariately and controlled for the known important predictors in TBI outcome: age, Glasgow Coma Score (GCS), pupil response, and computed tomography (CT) score. Accuracy was assessed with Nagelkerke's pseudo R². Of the 18 investigated laboratory variables, 15 were found significant (p<0.05) towards outcome in univariate analyses. In contrast, when adjusting for other predictors, few remained significant. Creatinine was found an independent predictor of TBI outcome. Glucose, albumin, and osmolarity levels were also identified as predictors, depending on analysis method. A worse outcome related to increasing osmolarity may warrant further study. Importantly, hemoglobin was not found significant when adjusted for post-resuscitation GCS as opposed to an admission GCS, and timing of GCS can thus have a major impact on conclusions. In total, laboratory variables added an additional 1.3-4.4% to pseudo R².
Application of machine learning for the evaluation of turfgrass plots using aerial images
NASA Astrophysics Data System (ADS)
Ding, Ke; Raheja, Amar; Bhandari, Subodh; Green, Robert L.
2016-05-01
Historically, investigation of turfgrass characteristics have been limited to visual ratings. Although relevant information may result from such evaluations, final inferences may be questionable because of the subjective nature in which the data is collected. Recent advances in computer vision techniques allow researchers to objectively measure turfgrass characteristics such as percent ground cover, turf color, and turf quality from the digital images. This paper focuses on developing a methodology for automated assessment of turfgrass quality from aerial images. Images of several turfgrass plots of varying quality were gathered using a camera mounted on an unmanned aerial vehicle. The quality of these plots were also evaluated based on visual ratings. The goal was to use the aerial images to generate quality evaluations on a regular basis for the optimization of water treatment. Aerial images are used to train a neural network so that appropriate features such as intensity, color, and texture of the turfgrass are extracted from these images. Neural network is a nonlinear classifier commonly used in machine learning. The output of the neural network trained model is the ratings of the grass, which is compared to the visual ratings. Currently, the quality and the color of turfgrass, measured as the greenness of the grass, are evaluated. The textures are calculated using the Gabor filter and co-occurrence matrix. Other classifiers such as support vector machines and simpler linear regression models such as Ridge regression and LARS regression are also used. The performance of each model is compared. The results show encouraging potential for using machine learning techniques for the evaluation of turfgrass quality and color.
A Note about Information Science Research.
ERIC Educational Resources Information Center
Salton, Gerard
1985-01-01
Discusses the relationship between information science research and practice and briefly describes current research on 10 topics in information retrieval literature: vector processing retrieval strategy, probabilistic retrieval models, inverted file procedures, relevance feedback, Boolean query formulations, front-end procedures, citation…
Grosse, Stefanie; Penaud-Budloo, Magalie; Herrmann, Anne-Kathrin; Börner, Kathleen; Fakhiri, Julia; Laketa, Vibor; Krämer, Chiara; Wiedtke, Ellen; Gunkel, Manuel; Ménard, Lucie; Ayuso, Eduard; Grimm, Dirk
2017-10-15
The discovery that adeno-associated virus 2 (AAV2) encodes an eighth protein, called assembly-activating protein (AAP), transformed our understanding of wild-type AAV biology. Concurrently, it raised questions about the role of AAP during production of recombinant vectors based on natural or molecularly engineered AAV capsids. Here, we show that AAP is indeed essential for generation of functional recombinant AAV2 vectors in both mammalian and insect cell-based vector production systems. Surprisingly, we observed that AAV2 capsid proteins VP1 to -3 are unstable in the absence of AAP2, likely due to rapid proteasomal degradation. Inhibition of the proteasome led to an increase of intracellular VP1 to -3 but neither triggered assembly of functional capsids nor promoted nuclear localization of the capsid proteins. Together, this underscores the crucial and unique role of AAP in the AAV life cycle, where it rapidly chaperones capsid assembly, thus preventing degradation of free capsid proteins. An expanded analysis comprising nine alternative AAV serotypes (1, 3 to 9, and rh10) showed that vector production always depends on the presence of AAP, with the exceptions of AAV4 and AAV5, which exhibited AAP-independent, albeit low-level, particle assembly. Interestingly, AAPs from all 10 serotypes could cross-complement AAP-depleted helper plasmids during vector production, despite there being distinct intracellular AAP localization patterns. These were most pronounced for AAP4 and AAP5, congruent with their inability to rescue an AAV2/AAP2 knockout. We conclude that AAP is key for assembly of genuine capsids from at least 10 different AAV serotypes, which has implications for vectors derived from wild-type or synthetic AAV capsids. IMPORTANCE Assembly of adeno-associated virus 2 (AAV2) is regulated by the assembly-activating protein (AAP), whose open reading frame overlaps with that of the viral capsid proteins. As the majority of evidence was obtained using virus-like particles composed solely of the major capsid protein VP3, AAP's role in and relevance for assembly of genuine AAV capsids have remained largely unclear. Thus, we established a trans -complementation assay permitting assessment of AAP functionality during production of recombinant vectors based on complete AAV capsids and derived from any serotype. We find that AAP is indeed a critical factor not only for AAV2, but also for generation of vectors derived from nine other AAV serotypes. Moreover, we identify a new role of AAP in maintaining capsid protein stability in mammalian and insect cells. Thereby, our study expands our current understanding of AAV/AAP biology, and it concomitantly provides insights into the importance of AAP for AAV vector production. Copyright © 2017 American Society for Microbiology.
Grosse, Stefanie; Penaud-Budloo, Magalie; Herrmann, Anne-Kathrin; Börner, Kathleen; Fakhiri, Julia; Laketa, Vibor; Krämer, Chiara; Wiedtke, Ellen; Gunkel, Manuel; Ménard, Lucie; Ayuso, Eduard
2017-01-01
ABSTRACT The discovery that adeno-associated virus 2 (AAV2) encodes an eighth protein, called assembly-activating protein (AAP), transformed our understanding of wild-type AAV biology. Concurrently, it raised questions about the role of AAP during production of recombinant vectors based on natural or molecularly engineered AAV capsids. Here, we show that AAP is indeed essential for generation of functional recombinant AAV2 vectors in both mammalian and insect cell-based vector production systems. Surprisingly, we observed that AAV2 capsid proteins VP1 to -3 are unstable in the absence of AAP2, likely due to rapid proteasomal degradation. Inhibition of the proteasome led to an increase of intracellular VP1 to -3 but neither triggered assembly of functional capsids nor promoted nuclear localization of the capsid proteins. Together, this underscores the crucial and unique role of AAP in the AAV life cycle, where it rapidly chaperones capsid assembly, thus preventing degradation of free capsid proteins. An expanded analysis comprising nine alternative AAV serotypes (1, 3 to 9, and rh10) showed that vector production always depends on the presence of AAP, with the exceptions of AAV4 and AAV5, which exhibited AAP-independent, albeit low-level, particle assembly. Interestingly, AAPs from all 10 serotypes could cross-complement AAP-depleted helper plasmids during vector production, despite there being distinct intracellular AAP localization patterns. These were most pronounced for AAP4 and AAP5, congruent with their inability to rescue an AAV2/AAP2 knockout. We conclude that AAP is key for assembly of genuine capsids from at least 10 different AAV serotypes, which has implications for vectors derived from wild-type or synthetic AAV capsids. IMPORTANCE Assembly of adeno-associated virus 2 (AAV2) is regulated by the assembly-activating protein (AAP), whose open reading frame overlaps with that of the viral capsid proteins. As the majority of evidence was obtained using virus-like particles composed solely of the major capsid protein VP3, AAP's role in and relevance for assembly of genuine AAV capsids have remained largely unclear. Thus, we established a trans-complementation assay permitting assessment of AAP functionality during production of recombinant vectors based on complete AAV capsids and derived from any serotype. We find that AAP is indeed a critical factor not only for AAV2, but also for generation of vectors derived from nine other AAV serotypes. Moreover, we identify a new role of AAP in maintaining capsid protein stability in mammalian and insect cells. Thereby, our study expands our current understanding of AAV/AAP biology, and it concomitantly provides insights into the importance of AAP for AAV vector production. PMID:28768875
SU-E-P-04: Transport Theory Learning Module in the Maple Environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Both, J
2014-06-01
Purpose: The medical physics graduate program at the University of Miami is developing a computerized instructional module which provides an interactive mechanism for students to learn transport theory. While not essential in the medical physics curriculum, transport theory should be taught because the conceptual level of transport theory is fundamental, a substantial literature exists and ought to be accessible, and students should understand commercial software which solves the Boltzmann equation.But conventional teaching and learning of transport theory is challenging. Students may be under prepared to appreciate its methods, results, and relevance, and it is not substantially addressed in textbooks formore » the medical physicists. Other resources an instructor might reasonably use, while excellent, may be too briskly paced for beginning students. The purpose of this work is to render teaching of transport theory more tractable by making learning highly interactive. Methods: The module is being developed in the Maple mathematics environment by instructors and graduate students. It will refresh the students' knowledge of vector calculus and differential equations, and will develop users' intuition for phase space concepts. Scattering concepts will be developed with animated simulations using tunable parameters characterizing interactions, so that students may develop a “feel” for cross section. Transport equations for one and multiple types of radiation will be illustrated with phase space animations. Numerical methods of solution will be illustrated. Results: Attempts to teach rudiments of transport theory in radiation physics and dosimetry courses using conventional classroom techniques at the University of Miami have had small success, because classroom time is limited and the material has been hard for our students to appreciate intuitively. Conclusion: A joint effort of instructor and students to teach and learn transport theory by building an interactive description of it will lead to deeper appreciation of the transport theoretical underpinnings of dosimetry.« less
An ensemble deep learning based approach for red lesion detection in fundus images.
Orlando, José Ignacio; Prokofyeva, Elena; Del Fresno, Mariana; Blaschko, Matthew B
2018-01-01
Diabetic retinopathy (DR) is one of the leading causes of preventable blindness in the world. Its earliest sign are red lesions, a general term that groups both microaneurysms (MAs) and hemorrhages (HEs). In daily clinical practice, these lesions are manually detected by physicians using fundus photographs. However, this task is tedious and time consuming, and requires an intensive effort due to the small size of the lesions and their lack of contrast. Computer-assisted diagnosis of DR based on red lesion detection is being actively explored due to its improvement effects both in clinicians consistency and accuracy. Moreover, it provides comprehensive feedback that is easy to assess by the physicians. Several methods for detecting red lesions have been proposed in the literature, most of them based on characterizing lesion candidates using hand crafted features, and classifying them into true or false positive detections. Deep learning based approaches, by contrast, are scarce in this domain due to the high expense of annotating the lesions manually. In this paper we propose a novel method for red lesion detection based on combining both deep learned and domain knowledge. Features learned by a convolutional neural network (CNN) are augmented by incorporating hand crafted features. Such ensemble vector of descriptors is used afterwards to identify true lesion candidates using a Random Forest classifier. We empirically observed that combining both sources of information significantly improve results with respect to using each approach separately. Furthermore, our method reported the highest performance on a per-lesion basis on DIARETDB1 and e-ophtha, and for screening and need for referral on MESSIDOR compared to a second human expert. Results highlight the fact that integrating manually engineered approaches with deep learned features is relevant to improve results when the networks are trained from lesion-level annotated data. An open source implementation of our system is publicly available at https://github.com/ignaciorlando/red-lesion-detection. Copyright © 2017 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Roelle, Julian; Lehmkuhl, Nina; Beyer, Martin-Uwe; Berthold, Kirsten
2015-01-01
In 2 experiments we examined the role of (a) specificity, (b) the type of targeted learning activities, and (c) learners' prior knowledge for the effects of relevance instructions on learning from instructional explanations. In Experiment 1, we recruited novices regarding the topic of atomic structure (N = 80) and found that "specific"…
ERIC Educational Resources Information Center
Whitley, Meredith A.
2014-01-01
While the quality and quantity of research on service-learning has increased considerably over the past 20 years, researchers as well as governmental and funding agencies have called for more rigor in service-learning research. One key variable in improving rigor is using relevant existing theories to improve the research. The purpose of this…
Motor-visual neurons and action recognition in social interactions.
de la Rosa, Stephan; Bülthoff, Heinrich H
2014-04-01
Cook et al. suggest that motor-visual neurons originate from associative learning. This suggestion has interesting implications for the processing of socially relevant visual information in social interactions. Here, we discuss two aspects of the associative learning account that seem to have particular relevance for visual recognition of social information in social interactions - namely, context-specific and contingency based learning.
Defense Acquisition Review Journal. Volume 16, Number 3, Issue 52
2009-10-01
This is also theorized to lead to increased ability for a student to transfer that learning experience into their everyday workplace experiences. In...hands-on, apprenticeship -type learning environment, increased motivation, and increased relevance for students through interactivity and...vation to learn and increasing perceived relevance of the instruction . This article covers the use of games and simulations in three different
An, Ji-Yong; Meng, Fan-Rong; You, Zhu-Hong; Chen, Xing; Yan, Gui-Ying; Hu, Ji-Pu
2016-10-01
Predicting protein-protein interactions (PPIs) is a challenging task and essential to construct the protein interaction networks, which is important for facilitating our understanding of the mechanisms of biological systems. Although a number of high-throughput technologies have been proposed to predict PPIs, there are unavoidable shortcomings, including high cost, time intensity, and inherently high false positive rates. For these reasons, many computational methods have been proposed for predicting PPIs. However, the problem is still far from being solved. In this article, we propose a novel computational method called RVM-BiGP that combines the relevance vector machine (RVM) model and Bi-gram Probabilities (BiGP) for PPIs detection from protein sequences. The major improvement includes (1) Protein sequences are represented using the Bi-gram probabilities (BiGP) feature representation on a Position Specific Scoring Matrix (PSSM), in which the protein evolutionary information is contained; (2) For reducing the influence of noise, the Principal Component Analysis (PCA) method is used to reduce the dimension of BiGP vector; (3) The powerful and robust Relevance Vector Machine (RVM) algorithm is used for classification. Five-fold cross-validation experiments executed on yeast and Helicobacter pylori datasets, which achieved very high accuracies of 94.57 and 90.57%, respectively. Experimental results are significantly better than previous methods. To further evaluate the proposed method, we compare it with the state-of-the-art support vector machine (SVM) classifier on the yeast dataset. The experimental results demonstrate that our RVM-BiGP method is significantly better than the SVM-based method. In addition, we achieved 97.15% accuracy on imbalance yeast dataset, which is higher than that of balance yeast dataset. The promising experimental results show the efficiency and robust of the proposed method, which can be an automatic decision support tool for future proteomics research. For facilitating extensive studies for future proteomics research, we developed a freely available web server called RVM-BiGP-PPIs in Hypertext Preprocessor (PHP) for predicting PPIs. The web server including source code and the datasets are available at http://219.219.62.123:8888/BiGP/. © 2016 The Authors Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.
Compositional Verification with Abstraction, Learning, and SAT Solving
2015-05-01
arithmetic, and bit-vectors (currently, via bit-blasting). The front-end is based on an existing tool called UFO [8] which converts C programs to the Horn...supports propositional logic, linear arithmetic, and bit-vectors (via bit-blasting). The front-end is based on the tool UFO [8]. It encodes safety of...tool UFO [8]. The encoding in Horn-SMT only uses the theory of Linear Rational Arithmetic. All experiments were carried out on an Intel R© CoreTM2 Quad
2014-03-27
and machine learning for a range of research including such topics as medical imaging [10] and handwriting recognition [11]. The type of feature...1989. [11] C. Bahlmann, B. Haasdonk, and H. Burkhardt, “Online handwriting recognition with support vector machines-a kernel approach,” in Eighth...International Workshop on Frontiers in Handwriting Recognition, pp. 49–54, IEEE, 2002. [12] C. Cortes and V. Vapnik, “Support-vector networks,” Machine
Vector Quantization Algorithm Based on Associative Memories
NASA Astrophysics Data System (ADS)
Guzmán, Enrique; Pogrebnyak, Oleksiy; Yáñez, Cornelio; Manrique, Pablo
This paper presents a vector quantization algorithm for image compression based on extended associative memories. The proposed algorithm is divided in two stages. First, an associative network is generated applying the learning phase of the extended associative memories between a codebook generated by the LBG algorithm and a training set. This associative network is named EAM-codebook and represents a new codebook which is used in the next stage. The EAM-codebook establishes a relation between training set and the LBG codebook. Second, the vector quantization process is performed by means of the recalling stage of EAM using as associative memory the EAM-codebook. This process generates a set of the class indices to which each input vector belongs. With respect to the LBG algorithm, the main advantages offered by the proposed algorithm is high processing speed and low demand of resources (system memory); results of image compression and quality are presented.
The boundary vector cell model of place cell firing and spatial memory
Barry, Caswell; Lever, Colin; Hayman, Robin; Hartley, Tom; Burton, Stephen; O'Keefe, John; Jeffery, Kate; Burgess, Neil
2009-01-01
We review evidence for the boundary vector cell model of the environmental determinants of the firing of hippocampal place cells. Preliminary experimental results are presented concerning the effects of addition or removal of environmental boundaries on place cell firing and evidence that boundary vector cells may exist in the subiculum. We review and update computational simulations predicting the location of human search within a virtual environment of variable geometry, assuming that boundary vector cells provide one of the input representations of location used in mammalian spatial memory. Finally, we extend the model to include experience-dependent modification of connection strengths through a BCM-like learning rule, and compare the effects to experimental data on the firing of place cells under geometrical manipulations to their environment. The relationship between neurophysiological results in rats and spatial behaviour in humans is discussed. PMID:16703944
Boosting with Averaged Weight Vectors
NASA Technical Reports Server (NTRS)
Oza, Nikunj C.; Clancy, Daniel (Technical Monitor)
2002-01-01
AdaBoost is a well-known ensemble learning algorithm that constructs its constituent or base models in sequence. A key step in AdaBoost is constructing a distribution over the training examples to create each base model. This distribution, represented as a vector, is constructed to be orthogonal to the vector of mistakes made by the previous base model in the sequence. The idea is to make the next base model's errors uncorrelated with those of the previous model. Some researchers have pointed out the intuition that it is probably better to construct a distribution that is orthogonal to the mistake vectors of all the previous base models, but that this is not always possible. We present an algorithm that attempts to come as close as possible to this goal in an efficient manner. We present experimental results demonstrating significant improvement over AdaBoost and the Totally Corrective boosting algorithm, which also attempts to satisfy this goal.
Current strategies and successes in engaging women in vector control: a systematic review
Gunn, Jayleen K L; Ernst, Kacey C; Center, Katherine E; Bischoff, Kristi; Nuñez, Annabelle V; Huynh, Megan; Okello, Amanda; Hayden, Mary H
2018-01-01
Introduction Vector-borne diseases (VBDs) cause significant mortality and morbidity in low-income and middle-income countries and present a risk to high-income countries. Vector control programmes may confront social and cultural norms that impede their execution. Anecdotal evidence suggests that incorporating women in the design, delivery and adoption of health interventions increases acceptance and compliance. A better understanding of programmes that have attempted to increase women’s involvement in vector control could help shape best practices. The objective of this systematic review was to assess and critically summarise evidence regarding the effectiveness of women participating in vector control. Methods Seven databases were searched from inception to 21 December 2015. Two investigators independently reviewed all titles and abstracts for relevant articles. Grey literature was searched by assessing websites that focus on international development and vector control. Results In total, 23 articles representing 17 unique studies were included in this review. Studies discussed the involvement of women in the control of vectors for malaria (n=10), dengue (n=8), human African trypanosomiasis (n=3), schistosomiasis (n=1) and a combination (malaria and schistosomiasis, n=1). Seven programmes were found in the grey literature or through personal communications. Available literature indicates that women can be successfully engaged in vector control programmes and, when given the opportunity, they can create and sustain businesses that aim to decrease the burden of VBDs in their communities. Conclusion This systematic review demonstrated that women can be successfully engaged in vector control programmes at the community level. However, rigorous comparative effectiveness studies need to be conducted. PMID:29515913
Varying irrelevant phonetic features hinders learning of the feature being trained.
Antoniou, Mark; Wong, Patrick C M
2016-01-01
Learning to distinguish nonnative words that differ in a critical phonetic feature can be difficult. Speech training studies typically employ methods that explicitly direct the learner's attention to the relevant nonnative feature to be learned. However, studies on vision have demonstrated that perceptual learning may occur implicitly, by exposing learners to stimulus features, even if they are irrelevant to the task, and it has recently been suggested that this task-irrelevant perceptual learning framework also applies to speech. In this study, subjects took part in a seven-day training regimen to learn to distinguish one of two nonnative features, namely, voice onset time or lexical tone, using explicit training methods consistent with most speech training studies. Critically, half of the subjects were exposed to stimuli that varied not only in the relevant feature, but in the irrelevant feature as well. The results showed that subjects who were trained with stimuli that varied in the relevant feature and held the irrelevant feature constant achieved the best learning outcomes. Varying both features hindered learning and generalization to new stimuli.
Peng, Hui; Lan, Chaowang; Liu, Yuansheng; Liu, Tao; Blumenstein, Michael; Li, Jinyan
2017-10-03
Disease-related protein-coding genes have been widely studied, but disease-related non-coding genes remain largely unknown. This work introduces a new vector to represent diseases, and applies the newly vectorized data for a positive-unlabeled learning algorithm to predict and rank disease-related long non-coding RNA (lncRNA) genes. This novel vector representation for diseases consists of two sub-vectors, one is composed of 45 elements, characterizing the information entropies of the disease genes distribution over 45 chromosome substructures. This idea is supported by our observation that some substructures (e.g., the chromosome 6 p-arm) are highly preferred by disease-related protein coding genes, while some (e.g., the 21 p-arm) are not favored at all. The second sub-vector is 30-dimensional, characterizing the distribution of disease gene enriched KEGG pathways in comparison with our manually created pathway groups. The second sub-vector complements with the first one to differentiate between various diseases. Our prediction method outperforms the state-of-the-art methods on benchmark datasets for prioritizing disease related lncRNA genes. The method also works well when only the sequence information of an lncRNA gene is known, or even when a given disease has no currently recognized long non-coding genes.
Peng, Hui; Lan, Chaowang; Liu, Yuansheng; Liu, Tao; Blumenstein, Michael; Li, Jinyan
2017-01-01
Disease-related protein-coding genes have been widely studied, but disease-related non-coding genes remain largely unknown. This work introduces a new vector to represent diseases, and applies the newly vectorized data for a positive-unlabeled learning algorithm to predict and rank disease-related long non-coding RNA (lncRNA) genes. This novel vector representation for diseases consists of two sub-vectors, one is composed of 45 elements, characterizing the information entropies of the disease genes distribution over 45 chromosome substructures. This idea is supported by our observation that some substructures (e.g., the chromosome 6 p-arm) are highly preferred by disease-related protein coding genes, while some (e.g., the 21 p-arm) are not favored at all. The second sub-vector is 30-dimensional, characterizing the distribution of disease gene enriched KEGG pathways in comparison with our manually created pathway groups. The second sub-vector complements with the first one to differentiate between various diseases. Our prediction method outperforms the state-of-the-art methods on benchmark datasets for prioritizing disease related lncRNA genes. The method also works well when only the sequence information of an lncRNA gene is known, or even when a given disease has no currently recognized long non-coding genes. PMID:29108274
Hajeri, Subhas; Killiny, Nabil; El-Mohtar, Choaa; Dawson, William O; Gowda, Siddarame
2014-04-20
A transient expression vector based on Citrus tristeza virus (CTV) is unusually stable. Because of its stability it is being considered for use in the field to control Huanglongbing (HLB), which is caused by Candidatus Liberibacter asiaticus (CLas) and vectored by Asian citrus psyllid, Diaphorina citri. In the absence of effective control strategies for CLas, emphasis has been on control of D. citri. Coincident cohabitation in phloem tissue by CLas, D. citri and CTV was exploited to develop a novel method to mitigate HLB through RNA interference (RNAi). Since CTV has three RNA silencing suppressors, it was not known if CTV-based vector could induce RNAi in citrus. Yet, expression of sequences targeting citrus phytoene desaturase gene by CTV-RNAi resulted in photo-bleaching phenotype. CTV-RNAi vector, engineered with truncated abnormal wing disc (Awd) gene of D. citri, induced altered Awd expression when silencing triggers ingested by feeding D. citri nymphs. Decreased Awd in nymphs resulted in malformed-wing phenotype in adults and increased adult mortality. This impaired ability of D. citri to fly would potentially limit the successful vectoring of CLas bacteria between citrus trees in the grove. CTV-RNAi vector would be relevant for fast-track screening of candidate sequences for RNAi-mediated pest control. Copyright © 2014. Published by Elsevier B.V.
AAVPG: A vigilant vector where transgene expression is induced by p53
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bajgelman, Marcio C.; Medrano, Ruan F.V.; Carvalho, Anna Carolina P.V.
2013-12-15
Using p53 to drive transgene expression from viral vectors may provide on demand expression in response to physiologic stress, such as hypoxia or DNA damage. Here we introduce AAVPG, an adeno-associated viral (AAV) vector where a p53-responsive promoter, termed PG, is used to control transgene expression. In vitro assays show that expression from the AAVPG-luc vector was induced specifically in the presence of functional p53 (1038±202 fold increase, p<0.001). The AAVPG-luc vector was an effective biosensor of p53 activation in response to hypoxia (4.48±0.6 fold increase in the presence of 250 µM CoCl{sub 2}, p<0.001) and biomechanical stress (2.53±0.4 foldmore » increase with stretching, p<0.05). In vivo, the vigilant nature of the AAVPG-luc vector was revealed after treatment of tumor-bearing mice with doxorubicin (pre-treatment, 3.4×10{sup 5}±0.43×10{sup 5} photons/s; post-treatment, 6.6×10{sup 5}±2.1×10{sup 5} photons/s, p<0.05). These results indicate that the AAVPG vector is an interesting option for detecting p53 activity both in vitro and in vivo. - Highlights: • AAV vector where transgene expression is controlled by the tumor suppressor p53. • The new vector, AAVPG, shown to function as a biosensor of p53 activity, in vitro and in vivo. • The p53 activity monitored by the AAVPG vector is relevant to cancer and other diseases. • AAVPG reporter gene expression was activated upon DNA damage, hypoxia and mechanical stress.« less
Modeling Dengue vector population using remotely sensed data and machine learning.
Scavuzzo, Juan M; Trucco, Francisco; Espinosa, Manuel; Tauro, Carolina B; Abril, Marcelo; Scavuzzo, Carlos M; Frery, Alejandro C
2018-05-16
Mosquitoes are vectors of many human diseases. In particular, Aedes ægypti (Linnaeus) is the main vector for Chikungunya, Dengue, and Zika viruses in Latin America and it represents a global threat. Public health policies that aim at combating this vector require dependable and timely information, which is usually expensive to obtain with field campaigns. For this reason, several efforts have been done to use remote sensing due to its reduced cost. The present work includes the temporal modeling of the oviposition activity (measured weekly on 50 ovitraps in a north Argentinean city) of Aedes ægypti (Linnaeus), based on time series of data extracted from operational earth observation satellite images. We use are NDVI, NDWI, LST night, LST day and TRMM-GPM rain from 2012 to 2016 as predictive variables. In contrast to previous works which use linear models, we employ Machine Learning techniques using completely accessible open source toolkits. These models have the advantages of being non-parametric and capable of describing nonlinear relationships between variables. Specifically, in addition to two linear approaches, we assess a support vector machine, an artificial neural networks, a K-nearest neighbors and a decision tree regressor. Considerations are made on parameter tuning and the validation and training approach. The results are compared to linear models used in previous works with similar data sets for generating temporal predictive models. These new tools perform better than linear approaches, in particular nearest neighbor regression (KNNR) performs the best. These results provide better alternatives to be implemented operatively on the Argentine geospatial risk system that is running since 2012. Copyright © 2018 Elsevier B.V. All rights reserved.
Interpreting linear support vector machine models with heat map molecule coloring
2011-01-01
Background Model-based virtual screening plays an important role in the early drug discovery stage. The outcomes of high-throughput screenings are a valuable source for machine learning algorithms to infer such models. Besides a strong performance, the interpretability of a machine learning model is a desired property to guide the optimization of a compound in later drug discovery stages. Linear support vector machines showed to have a convincing performance on large-scale data sets. The goal of this study is to present a heat map molecule coloring technique to interpret linear support vector machine models. Based on the weights of a linear model, the visualization approach colors each atom and bond of a compound according to its importance for activity. Results We evaluated our approach on a toxicity data set, a chromosome aberration data set, and the maximum unbiased validation data sets. The experiments show that our method sensibly visualizes structure-property and structure-activity relationships of a linear support vector machine model. The coloring of ligands in the binding pocket of several crystal structures of a maximum unbiased validation data set target indicates that our approach assists to determine the correct ligand orientation in the binding pocket. Additionally, the heat map coloring enables the identification of substructures important for the binding of an inhibitor. Conclusions In combination with heat map coloring, linear support vector machine models can help to guide the modification of a compound in later stages of drug discovery. Particularly substructures identified as important by our method might be a starting point for optimization of a lead compound. The heat map coloring should be considered as complementary to structure based modeling approaches. As such, it helps to get a better understanding of the binding mode of an inhibitor. PMID:21439031
Support Vector Machines for Hyperspectral Remote Sensing Classification
NASA Technical Reports Server (NTRS)
Gualtieri, J. Anthony; Cromp, R. F.
1998-01-01
The Support Vector Machine provides a new way to design classification algorithms which learn from examples (supervised learning) and generalize when applied to new data. We demonstrate its success on a difficult classification problem from hyperspectral remote sensing, where we obtain performances of 96%, and 87% correct for a 4 class problem, and a 16 class problem respectively. These results are somewhat better than other recent results on the same data. A key feature of this classifier is its ability to use high-dimensional data without the usual recourse to a feature selection step to reduce the dimensionality of the data. For this application, this is important, as hyperspectral data consists of several hundred contiguous spectral channels for each exemplar. We provide an introduction to this new approach, and demonstrate its application to classification of an agriculture scene.
Banno, Masaki; Komiyama, Yusuke; Cao, Wei; Oku, Yuya; Ueki, Kokoro; Sumikoshi, Kazuya; Nakamura, Shugo; Terada, Tohru; Shimizu, Kentaro
2017-02-01
Several methods have been proposed for protein-sugar binding site prediction using machine learning algorithms. However, they are not effective to learn various properties of binding site residues caused by various interactions between proteins and sugars. In this study, we classified sugars into acidic and nonacidic sugars and showed that their binding sites have different amino acid occurrence frequencies. By using this result, we developed sugar-binding residue predictors dedicated to the two classes of sugars: an acid sugar binding predictor and a nonacidic sugar binding predictor. We also developed a combination predictor which combines the results of the two predictors. We showed that when a sugar is known to be an acidic sugar, the acidic sugar binding predictor achieves the best performance, and showed that when a sugar is known to be a nonacidic sugar or is not known to be either of the two classes, the combination predictor achieves the best performance. Our method uses only amino acid sequences for prediction. Support vector machine was used as a machine learning algorithm and the position-specific scoring matrix created by the position-specific iterative basic local alignment search tool was used as the feature vector. We evaluated the performance of the predictors using five-fold cross-validation. We have launched our system, as an open source freeware tool on the GitHub repository (https://doi.org/10.5281/zenodo.61513). Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Advances in satellite remote sensing of environmental variables for epidemiological applications.
Goetz, S J; Prince, S D; Small, J
2000-01-01
Earth-observing satellites have provided an unprecedented view of the land surface but have been exploited relatively little for the measurement of environmental variables of particular relevance to epidemiology. Recent advances in techniques to recover continuous fields of air temperature, humidity, and vapour pressure deficit from remotely sensed observations have significant potential for disease vector monitoring and related epidemiological applications. We report on the development of techniques to map environmental variables with relevance to the prediction of the relative abundance of disease vectors and intermediate hosts. Improvements to current methods of obtaining information on vegetation properties, canopy and surface temperature and soil moisture over large areas are also discussed. Algorithms used to measure these variables incorporate visible, near-infrared and thermal infrared radiation observations derived from time series of satellite-based sensors, focused here primarily but not exclusively on the Advanced Very High Resolution Radiometer (AVHRR) instruments. The variables compare favourably with surface measurements over a broad array of conditions at several study sites, and maps of retrieved variables captured patterns of spatial variability comparable to, and locally more accurate than, spatially interpolated meteorological observations. Application of multi-temporal maps of these variables are discussed in relation to current epidemiological research on the distribution and abundance of some common disease vectors.
repRNA: a web server for generating various feature vectors of RNA sequences.
Liu, Bin; Liu, Fule; Fang, Longyun; Wang, Xiaolong; Chou, Kuo-Chen
2016-02-01
With the rapid growth of RNA sequences generated in the postgenomic age, it is highly desired to develop a flexible method that can generate various kinds of vectors to represent these sequences by focusing on their different features. This is because nearly all the existing machine-learning methods, such as SVM (support vector machine) and KNN (k-nearest neighbor), can only handle vectors but not sequences. To meet the increasing demands and speed up the genome analyses, we have developed a new web server, called "representations of RNA sequences" (repRNA). Compared with the existing methods, repRNA is much more comprehensive, flexible and powerful, as reflected by the following facts: (1) it can generate 11 different modes of feature vectors for users to choose according to their investigation purposes; (2) it allows users to select the features from 22 built-in physicochemical properties and even those defined by users' own; (3) the resultant feature vectors and the secondary structures of the corresponding RNA sequences can be visualized. The repRNA web server is freely accessible to the public at http://bioinformatics.hitsz.edu.cn/repRNA/ .
Generalizing on Multiple Grounds: Performance Learning in Model-Based Troubleshooting
1989-02-01
Aritificial Intelligence , 24, 1984. [Ble88] Guy E. Blelloch. Scan Primitives and Parallel Vector Models. PhD thesis, Artificial Intelligence Laboratory...Diagnostic reasoning based on strcture and behavior. Aritificial Intelligence , 24, 1984. [dK86] J. de Kleer. An assumption-based truth maintenance system...diagnosis. Aritificial Intelligence , 24. . )3 94 BIBLIOGRAPHY [Ham87] Kristian J. Hammond. Learning to anticipate and avoid planning prob- lems
Machine Learning for Biological Trajectory Classification Applications
NASA Technical Reports Server (NTRS)
Sbalzarini, Ivo F.; Theriot, Julie; Koumoutsakos, Petros
2002-01-01
Machine-learning techniques, including clustering algorithms, support vector machines and hidden Markov models, are applied to the task of classifying trajectories of moving keratocyte cells. The different algorithms axe compared to each other as well as to expert and non-expert test persons, using concepts from signal-detection theory. The algorithms performed very well as compared to humans, suggesting a robust tool for trajectory classification in biological applications.
Jones, Tamara Bertrand; Guthrie, Kathy L; Osteen, Laura
2016-12-01
This chapter introduces the critical domains of culturally relevant leadership learning. The model explores how capacity, identity, and efficacy of student leaders interact with dimensions of campus climate. © 2016 Wiley Periodicals, Inc., A Wiley Company.
Effect of tDCS on task relevant and irrelevant perceptual learning of complex objects.
Van Meel, Chayenne; Daniels, Nicky; de Beeck, Hans Op; Baeck, Annelies
2016-01-01
During perceptual learning the visual representations in the brain are altered, but these changes' causal role has not yet been fully characterized. We used transcranial direct current stimulation (tDCS) to investigate the role of higher visual regions in lateral occipital cortex (LO) in perceptual learning with complex objects. We also investigated whether object learning is dependent on the relevance of the objects for the learning task. Participants were trained in two tasks: object recognition using a backward masking paradigm and an orientation judgment task. During both tasks, an object with a red line on top of it were presented in each trial. The crucial difference between both tasks was the relevance of the object: the object was relevant for the object recognition task, but not for the orientation judgment task. During training, half of the participants received anodal tDCS stimulation targeted at the lateral occipital cortex (LO). Afterwards, participants were tested on how well they recognized the trained objects, the irrelevant objects presented during the orientation judgment task and a set of completely new objects. Participants stimulated with tDCS during training showed larger improvements of performance compared to participants in the sham condition. No learning effect was found for the objects presented during the orientation judgment task. To conclude, this study suggests a causal role of LO in relevant object learning, but given the rather low spatial resolution of tDCS, more research on the specificity of this effect is needed. Further, mere exposure is not sufficient to train object recognition in our paradigm.
ERIC Educational Resources Information Center
Wiggins, Sally; Chiriac, Eva Hammar; Abbad, Gunvor Larsson; Pauli, Regina; Worrell, Marcia
2016-01-01
Problem-based learning (PBL) is an internationally recognised pedagogical approach that is implemented within a number of disciplines. The relevance and uptake of PBL in psychology has to date, however, received very limited attention. The aim of this paper is therefore to review published accounts of how PBL is being used to deliver psychology…
Efficient solution of parabolic equations by Krylov approximation methods
NASA Technical Reports Server (NTRS)
Gallopoulos, E.; Saad, Y.
1990-01-01
Numerical techniques for solving parabolic equations by the method of lines is addressed. The main motivation for the proposed approach is the possibility of exploiting a high degree of parallelism in a simple manner. The basic idea of the method is to approximate the action of the evolution operator on a given state vector by means of a projection process onto a Krylov subspace. Thus, the resulting approximation consists of applying an evolution operator of a very small dimension to a known vector which is, in turn, computed accurately by exploiting well-known rational approximations to the exponential. Because the rational approximation is only applied to a small matrix, the only operations required with the original large matrix are matrix-by-vector multiplications, and as a result the algorithm can easily be parallelized and vectorized. Some relevant approximation and stability issues are discussed. We present some numerical experiments with the method and compare its performance with a few explicit and implicit algorithms.
Cosmology in generalized Proca theories
NASA Astrophysics Data System (ADS)
De Felice, Antonio; Heisenberg, Lavinia; Kase, Ryotaro; Mukohyama, Shinji; Tsujikawa, Shinji; Zhang, Ying-li
2016-06-01
We consider a massive vector field with derivative interactions that propagates only the 3 desired polarizations (besides two tensor polarizations from gravity) with second-order equations of motion in curved space-time. The cosmological implications of such generalized Proca theories are investigated for both the background and the linear perturbation by taking into account the Lagrangian up to quintic order. In the presence of a matter fluid with a temporal component of the vector field, we derive the background equations of motion and show the existence of de Sitter solutions relevant to the late-time cosmic acceleration. We also obtain conditions for the absence of ghosts and Laplacian instabilities of tensor, vector, and scalar perturbations in the small-scale limit. Our results are applied to concrete examples of the general functions in the theory, which encompass vector Galileons as a specific case. In such examples, we show that the de Sitter fixed point is always a stable attractor and study viable parameter spaces in which the no-ghost and stability conditions are satisfied during the cosmic expansion history.
Lie-Hamilton systems on the plane: Properties, classification and applications
NASA Astrophysics Data System (ADS)
Ballesteros, A.; Blasco, A.; Herranz, F. J.; de Lucas, J.; Sardón, C.
2015-04-01
We study Lie-Hamilton systems on the plane, i.e. systems of first-order differential equations describing the integral curves of a t-dependent vector field taking values in a finite-dimensional real Lie algebra of planar Hamiltonian vector fields with respect to a Poisson structure. We start with the local classification of finite-dimensional real Lie algebras of vector fields on the plane obtained in González-López, Kamran, and Olver (1992) [23] and we interpret their results as a local classification of Lie systems. By determining which of these real Lie algebras consist of Hamiltonian vector fields relative to a Poisson structure, we provide the complete local classification of Lie-Hamilton systems on the plane. We present and study through our results new Lie-Hamilton systems of interest which are used to investigate relevant non-autonomous differential equations, e.g. we get explicit local diffeomorphisms between such systems. We also analyse biomathematical models, the Milne-Pinney equations, second-order Kummer-Schwarz equations, complex Riccati equations and Buchdahl equations.
2018-01-01
ABSTRACT V920, rVSVΔG-ZEBOV-GP, is a recombinant vesicular stomatitis-Zaire ebolavirus vaccine which has shown an acceptable safety profile and provides a protective immune response against Ebola virus disease (EVD) induced by Zaire ebolavirus in humans. The purpose of this study was to determine whether the V920 vaccine is capable of replicating in arthropod cell cultures of relevant vector species and of replicating in live mosquitoes. While the V920 vaccine replicated well in Vero cells, no replication was observed in Anopheles or Aedes mosquito, Culicoides biting midge, or Lutzomyia sand fly cells, nor in live Culex or Aedes mosquitoes following exposure through intrathoracic inoculation or feeding on a high-titer infectious blood meal. The insect taxa selected for use in this study represent actual and potential epidemic vectors of VSV. V920 vaccine inoculated into Cx. quinquefasciatus and Ae. aegypti mosquitoes demonstrated persistence of replication-competent virus following inoculation, consistent with the recognized biological stability of the vaccine, but no evidence for active virus replication in live mosquitoes was observed. Following administration of an infectious blood meal to Ae. aegypti and Cx. quinquefasciatus mosquitoes at a titer several log10 PFU more concentrated than would be observed in vaccinated individuals, no infection or dissemination of V920 was observed in either mosquito species. In vitro and in vivo data gathered during this study support minimal risk of the vector-borne potential of the V920 vaccine. PMID:29206076
Bergren, Nicholas A; Miller, Megan R; Monath, Thomas P; Kading, Rebekah C
2018-04-03
V920, rVSVΔG-ZEBOV-GP, is a recombinant vesicular stomatitis-Zaire ebolavirus vaccine which has shown an acceptable safety profile and provides a protective immune response against Ebola virus disease (EVD) induced by Zaire ebolavirus in humans. The purpose of this study was to determine whether the V920 vaccine is capable of replicating in arthropod cell cultures of relevant vector species and of replicating in live mosquitoes. While the V920 vaccine replicated well in Vero cells, no replication was observed in Anopheles or Aedes mosquito, Culicoides biting midge, or Lutzomyia sand fly cells, nor in live Culex or Aedes mosquitoes following exposure through intrathoracic inoculation or feeding on a high-titer infectious blood meal. The insect taxa selected for use in this study represent actual and potential epidemic vectors of VSV. V920 vaccine inoculated into Cx. quinquefasciatus and Ae. aegypti mosquitoes demonstrated persistence of replication-competent virus following inoculation, consistent with the recognized biological stability of the vaccine, but no evidence for active virus replication in live mosquitoes was observed. Following administration of an infectious blood meal to Ae. aegypti and Cx. quinquefasciatus mosquitoes at a titer several log 10 PFU more concentrated than would be observed in vaccinated individuals, no infection or dissemination of V920 was observed in either mosquito species. In vitro and in vivo data gathered during this study support minimal risk of the vector-borne potential of the V920 vaccine.
Kim, Dong Wook; Kim, Hwiyoung; Nam, Woong; Kim, Hyung Jun; Cha, In-Ho
2018-04-23
The aim of this study was to build and validate five types of machine learning models that can predict the occurrence of BRONJ associated with dental extraction in patients taking bisphosphonates for the management of osteoporosis. A retrospective review of the medical records was conducted to obtain cases and controls for the study. Total 125 patients consisting of 41 cases and 84 controls were selected for the study. Five machine learning prediction algorithms including multivariable logistic regression model, decision tree, support vector machine, artificial neural network, and random forest were implemented. The outputs of these models were compared with each other and also with conventional methods, such as serum CTX level. Area under the receiver operating characteristic (ROC) curve (AUC) was used to compare the results. The performance of machine learning models was significantly superior to conventional statistical methods and single predictors. The random forest model yielded the best performance (AUC = 0.973), followed by artificial neural network (AUC = 0.915), support vector machine (AUC = 0.882), logistic regression (AUC = 0.844), decision tree (AUC = 0.821), drug holiday alone (AUC = 0.810), and CTX level alone (AUC = 0.630). Machine learning methods showed superior performance in predicting BRONJ associated with dental extraction compared to conventional statistical methods using drug holiday and serum CTX level. Machine learning can thus be applied in a wide range of clinical studies. Copyright © 2017. Published by Elsevier Inc.
György, Bence; Fitzpatrick, Zachary; Crommentuijn, Matheus HW; Mu, Dakai; Maguire, Casey A.
2014-01-01
Recently adeno-associated virus (AAV) became the first clinically approved gene therapy product in the western world. To develop AAV for future clinical application in a widespread patient base, particularly in therapies which require intravenous (i.v.) administration of vector, the virus must be able to evade pre-existing antibodies to the wild type virus. Here we demonstrate that in mice, AAV vectors associated with extracellular vesicles (EVs) can evade human anti-AAV neutralizing antibodies. We observed different antibody evasion and gene transfer abilities with populations of EVs isolated by different centrifugal forces. EV-associated AAV vector (ev-AAV) was up to 136-fold more resistant over a range of neutralizing antibody concentrations relative to standard AAV vector in vitro. Importantly in mice, at a concentration of passively transferred human antibodies which decreased i.v. administered standard AAV transduction of brain by 80%, transduction of ev-AAV transduction was not reduced and was 4,000-fold higher. Finally, we show that expressing a brain targeting peptide on the EV surface allowed significant enhancement of transduction compared to untargeted ev-AAV. Using ev-AAV represents an effective, clinically relevant approach to evade human neutralizing anti-AAV antibodies after systemic administration of vector. PMID:24917028
Foamy virus–mediated gene transfer to canine repopulating cells
Kiem, Hans-Peter; Allen, James; Trobridge, Grant; Olson, Erik; Keyser, Kirsten; Peterson, Laura; Russell, David W.
2007-01-01
Foamy virus (FV) vectors are particularly attractive gene-transfer vectors for stem-cell gene therapy because they form a stable transduction intermediate in quiescent cells and can efficiently transduce hematopoietic stem cells. Here, we studied the use of FV vectors to transduce long-term hematopoietic repopulating cells in the dog, a clinically relevant large animal model. Mobilized canine peripheral blood (PB) CD34+ cells were transduced with an enhanced green fluorescent protein (EGFP)–expressing FV vector in an 18-hour transduction protocol. All 3 dogs studied had rapid neutrophil engraftment to greater than 500/μL with a median of 10 days. Transgene expression was detected in all cell lineages (B cells, T cells, granulocytes, red blood cells, and platelets), indicating multilineage engraftment of transduced cells. Up to 19% of blood cells were EGFP+, and this was confirmed at the DNA level by real-time polymerase chain reaction (PCR) and Southern blot analysis. These transduction rates were higher than the best results we obtained previously with lentiviral vectors in a similar transduction protocol. Integration site analysis also demonstrated polyclonal repopulation and the transduction of multipotential hematopoietic repopulating cells. These data suggest that FV vectors should be useful for stem-cell gene therapy, particularly for applications in which short transduction protocols are critical. PMID:16968897
Ibrahim, Wisam; Abadeh, Mohammad Saniee
2017-05-21
Protein fold recognition is an important problem in bioinformatics to predict three-dimensional structure of a protein. One of the most challenging tasks in protein fold recognition problem is the extraction of efficient features from the amino-acid sequences to obtain better classifiers. In this paper, we have proposed six descriptors to extract features from protein sequences. These descriptors are applied in the first stage of a three-stage framework PCA-DELM-LDA to extract feature vectors from the amino-acid sequences. Principal Component Analysis PCA has been implemented to reduce the number of extracted features. The extracted feature vectors have been used with original features to improve the performance of the Deep Extreme Learning Machine DELM in the second stage. Four new features have been extracted from the second stage and used in the third stage by Linear Discriminant Analysis LDA to classify the instances into 27 folds. The proposed framework is implemented on the independent and combined feature sets in SCOP datasets. The experimental results show that extracted feature vectors in the first stage could improve the performance of DELM in extracting new useful features in second stage. Copyright © 2017 Elsevier Ltd. All rights reserved.
Agent Collaborative Target Localization and Classification in Wireless Sensor Networks
Wang, Xue; Bi, Dao-wei; Ding, Liang; Wang, Sheng
2007-01-01
Wireless sensor networks (WSNs) are autonomous networks that have been frequently deployed to collaboratively perform target localization and classification tasks. Their autonomous and collaborative features resemble the characteristics of agents. Such similarities inspire the development of heterogeneous agent architecture for WSN in this paper. The proposed agent architecture views WSN as multi-agent systems and mobile agents are employed to reduce in-network communication. According to the architecture, an energy based acoustic localization algorithm is proposed. In localization, estimate of target location is obtained by steepest descent search. The search algorithm adapts to measurement environments by dynamically adjusting its termination condition. With the agent architecture, target classification is accomplished by distributed support vector machine (SVM). Mobile agents are employed for feature extraction and distributed SVM learning to reduce communication load. Desirable learning performance is guaranteed by combining support vectors and convex hull vectors. Fusion algorithms are designed to merge SVM classification decisions made from various modalities. Real world experiments with MICAz sensor nodes are conducted for vehicle localization and classification. Experimental results show the proposed agent architecture remarkably facilitates WSN designs and algorithm implementation. The localization and classification algorithms also prove to be accurate and energy efficient.
Prepared stimuli enhance aversive learning without weakening the impact of verbal instructions
2018-01-01
Fear-relevant stimuli such as snakes and spiders are thought to capture attention due to evolutionary significance. Classical conditioning experiments indicate that these stimuli accelerate learning, while instructed extinction experiments suggest they may be less responsive to instructions. We manipulated stimulus type during instructed aversive reversal learning and used quantitative modeling to simultaneously test both hypotheses. Skin conductance reversed immediately upon instruction in both groups. However, fear-relevant stimuli enhanced dynamic learning, as measured by higher learning rates in participants conditioned with images of snakes and spiders. Results are consistent with findings that dissociable neural pathways underlie feedback-driven and instructed aversive learning. PMID:29339561
Fear conditioning to subliminal fear relevant and non fear relevant stimuli.
Lipp, Ottmar V; Kempnich, Clare; Jee, Sang Hoon; Arnold, Derek H
2014-01-01
A growing body of evidence suggests that conscious visual awareness is not a prerequisite for human fear learning. For instance, humans can learn to be fearful of subliminal fear relevant images--images depicting stimuli thought to have been fear relevant in our evolutionary context, such as snakes, spiders, and angry human faces. Such stimuli could have a privileged status in relation to manipulations used to suppress usually salient images from awareness, possibly due to the existence of a designated sub-cortical 'fear module'. Here we assess this proposition, and find it wanting. We use binocular masking to suppress awareness of images of snakes and wallabies (particularly cute, non-threatening marsupials). We find that subliminal presentations of both classes of image can induce differential fear conditioning. These data show that learning, as indexed by fear conditioning, is neither contingent on conscious visual awareness nor on subliminal conditional stimuli being fear relevant.
Perceptual learning: toward a comprehensive theory.
Watanabe, Takeo; Sasaki, Yuka
2015-01-03
Visual perceptual learning (VPL) is long-term performance increase resulting from visual perceptual experience. Task-relevant VPL of a feature results from training of a task on the feature relevant to the task. Task-irrelevant VPL arises as a result of exposure to the feature irrelevant to the trained task. At least two serious problems exist. First, there is the controversy over which stage of information processing is changed in association with task-relevant VPL. Second, no model has ever explained both task-relevant and task-irrelevant VPL. Here we propose a dual plasticity model in which feature-based plasticity is a change in a representation of the learned feature, and task-based plasticity is a change in processing of the trained task. Although the two types of plasticity underlie task-relevant VPL, only feature-based plasticity underlies task-irrelevant VPL. This model provides a new comprehensive framework in which apparently contradictory results could be explained.
NASA Astrophysics Data System (ADS)
Lutich, Andrey
2017-07-01
This research considers the problem of generating compact vector representations of physical design patterns for analytics purposes in semiconductor patterning domain. PatterNet uses a deep artificial neural network to learn mapping of physical design patterns to a compact Euclidean hyperspace. Distances among mapped patterns in this space correspond to dissimilarities among patterns defined at the time of the network training. Once the mapping network has been trained, PatterNet embeddings can be used as feature vectors with standard machine learning algorithms, and pattern search, comparison, and clustering become trivial problems. PatterNet is inspired by the concepts developed within the framework of generative adversarial networks as well as the FaceNet. Our method facilitates a deep neural network (DNN) to learn directly the compact representation by supplying it with pairs of design patterns and dissimilarity among these patterns defined by a user. In the simplest case, the dissimilarity is represented by an area of the XOR of two patterns. Important to realize that our PatterNet approach is very different to the methods developed for deep learning on image data. In contrast to "conventional" pictures, the patterns in the CAD world are the lists of polygon vertex coordinates. The method solely relies on the promise of deep learning to discover internal structure of the incoming data and learn its hierarchical representations. Artificial intelligence arising from the combination of PatterNet and clustering analysis very precisely follows intuition of patterning/optical proximity correction experts paving the way toward human-like and human-friendly engineering tools.
Which Features Make Illustrations in Multimedia Learning Interesting?
ERIC Educational Resources Information Center
Magner, Ulrike Irmgard Elisabeth; Glogger, Inga; Renkl, Alexander
2016-01-01
How can illustrations motivate learners in multimedia learning? Which features make illustrations interesting? Beside the theoretical relevance of addressing these questions, these issues are practically relevant when instructional designers are to decide which features of illustrations can trigger situational interest irrespective of individual…
Assessment of Relevant Learning Processes.
ERIC Educational Resources Information Center
Kim, JinGyu
Criteria for relevant classroom assessments are discussed, and a biofunctional model of learning assessment is presented. In classroom assessment, the following criteria must be considered: (1) assessment approach (process-oriented and outcome-oriented); (2) assessment context (knowledge and higher-order thinking skills); (3) assessment method…
Online Bayesian Learning with Natural Sequential Prior Distribution Used for Wind Speed Prediction
NASA Astrophysics Data System (ADS)
Cheggaga, Nawal
2017-11-01
Predicting wind speed is one of the most important and critic tasks in a wind farm. All approaches, which directly describe the stochastic dynamics of the meteorological data are facing problems related to the nature of its non-Gaussian statistics and the presence of seasonal effects .In this paper, Online Bayesian learning has been successfully applied to online learning for three-layer perceptron's used for wind speed prediction. First a conventional transition model based on the squared norm of the difference between the current parameter vector and the previous parameter vector has been used. We noticed that the transition model does not adequately consider the difference between the current and the previous wind speed measurement. To adequately consider this difference, we use a natural sequential prior. The proposed transition model uses a Fisher information matrix to consider the difference between the observation models more naturally. The obtained results showed a good agreement between both series, measured and predicted. The mean relative error over the whole data set is not exceeding 5 %.
Witoonchart, Peerajak; Chongstitvatana, Prabhas
2017-08-01
In this study, for the first time, we show how to formulate a structured support vector machine (SSVM) as two layers in a convolutional neural network, where the top layer is a loss augmented inference layer and the bottom layer is the normal convolutional layer. We show that a deformable part model can be learned with the proposed structured SVM neural network by backpropagating the error of the deformable part model to the convolutional neural network. The forward propagation calculates the loss augmented inference and the backpropagation calculates the gradient from the loss augmented inference layer to the convolutional layer. Thus, we obtain a new type of convolutional neural network called an Structured SVM convolutional neural network, which we applied to the human pose estimation problem. This new neural network can be used as the final layers in deep learning. Our method jointly learns the structural model parameters and the appearance model parameters. We implemented our method as a new layer in the existing Caffe library. Copyright © 2017 Elsevier Ltd. All rights reserved.
Shan, Juan; Alam, S Kaisar; Garra, Brian; Zhang, Yingtao; Ahmed, Tahira
2016-04-01
This work identifies effective computable features from the Breast Imaging Reporting and Data System (BI-RADS), to develop a computer-aided diagnosis (CAD) system for breast ultrasound. Computerized features corresponding to ultrasound BI-RADs categories were designed and tested using a database of 283 pathology-proven benign and malignant lesions. Features were selected based on classification performance using a "bottom-up" approach for different machine learning methods, including decision tree, artificial neural network, random forest and support vector machine. Using 10-fold cross-validation on the database of 283 cases, the highest area under the receiver operating characteristic (ROC) curve (AUC) was 0.84 from a support vector machine with 77.7% overall accuracy; the highest overall accuracy, 78.5%, was from a random forest with the AUC 0.83. Lesion margin and orientation were optimum features common to all of the different machine learning methods. These features can be used in CAD systems to help distinguish benign from worrisome lesions. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. All rights reserved.
NASA Astrophysics Data System (ADS)
Karsi, Redouane; Zaim, Mounia; El Alami, Jamila
2017-07-01
Thanks to the development of the internet, a large community now has the possibility to communicate and express its opinions and preferences through multiple media such as blogs, forums, social networks and e-commerce sites. Today, it becomes clearer that opinions published on the web are a very valuable source for decision-making, so a rapidly growing field of research called “sentiment analysis” is born to address the problem of automatically determining the polarity (Positive, negative, neutral,…) of textual opinions. People expressing themselves in a particular domain often use specific domain language expressions, thus, building a classifier, which performs well in different domains is a challenging problem. The purpose of this paper is to evaluate the impact of domain for sentiment classification when using machine learning techniques. In our study three popular machine learning techniques: Support Vector Machines (SVM), Naive Bayes and K nearest neighbors(KNN) were applied on datasets collected from different domains. Experimental results show that Support Vector Machines outperforms other classifiers in all domains, since it achieved at least 74.75% accuracy with a standard deviation of 4,08.
Khan, Adil G; Poort, Jasper; Chadwick, Angus; Blot, Antonin; Sahani, Maneesh; Mrsic-Flogel, Thomas D; Hofer, Sonja B
2018-06-01
How learning enhances neural representations for behaviorally relevant stimuli via activity changes of cortical cell types remains unclear. We simultaneously imaged responses of pyramidal cells (PYR) along with parvalbumin (PV), somatostatin (SOM), and vasoactive intestinal peptide (VIP) inhibitory interneurons in primary visual cortex while mice learned to discriminate visual patterns. Learning increased selectivity for task-relevant stimuli of PYR, PV and SOM subsets but not VIP cells. Strikingly, PV neurons became as selective as PYR cells, and their functional interactions reorganized, leading to the emergence of stimulus-selective PYR-PV ensembles. Conversely, SOM activity became strongly decorrelated from the network, and PYR-SOM coupling before learning predicted selectivity increases in individual PYR cells. Thus, learning differentially shapes the activity and interactions of multiple cell classes: while SOM inhibition may gate selectivity changes, PV interneurons become recruited into stimulus-specific ensembles and provide more selective inhibition as the network becomes better at discriminating behaviorally relevant stimuli.