Wang, Lishi; Huang, Yue; Jiao, Yan; Chen, Hong; Cao, Yanhong; Bennett, Beth; Wang, Yongjun; Gu, Weikuan
2013-01-01
The purpose of this study is to investigate whether expression profiles of alcoholism-relevant genes in different parts of the brain are correlated differently with those in the liver. Four experiments were conducted. First, we used gene expression profiles from five parts of the brain (striatum, prefrontal cortex, nucleus accumbens, hippocampus, and cerebellum) and from liver in a population of recombinant inbred mouse strains to examine the expression association of 10 alcoholism-relevant genes. Second, we conducted the same association analysis between brain structures and the lung. Third, using five randomly selected, nonalcoholism-relevant genes, we conducted the association analysis between brain and liver. Finally, we compared the expression of 10 alcoholism-relevant genes in hippocampus and cerebellum between an alcohol preference strain and a wild-type control. We observed a difference in correlation patterns in expression levels of 10 alcoholism-relevant genes between different parts of the brain with those of liver. We then examined the association of gene expression between alcohol dehydrogenases (Adh1, Adh2, Adh5, and Adh7) and different parts of the brain. The results were similar to those of the 10 genes. Then, we found that the association of those genes between brain structures and lung was different from that of liver. Next, we found that the association patterns of five alcoholism-nonrelevant genes were different from those of 10 alcoholism-relevant genes. Finally, we found that the expression level of 10 alcohol-relevant genes is influenced more in hippocampus than in cerebellum in the alcohol preference strain. Our results show that the expression of alcoholism-relevant genes in liver is differently associated with the expression of genes in different parts of the brain. Because different structural changes in different parts of the brain in alcoholism have been reported, it is important to investigate whether those structural differences in the brains of those with alcoholism are due to the difference in the associations of gene expression between genes in liver and in different parts of the brain.
Microarray data from independent labs and studies can be compared to potentially identify toxicologically and biologically relevant genes. The Baseline Animal Database working group of HESI was formed to assess baseline gene expression from microarray data derived from control or...
Comparative Evaluation of Two Serial Gene Expression Experiments | Division of Cancer Prevention
Stuart G. Baker, 2014 Introduction This program fits biologically relevant response curves in comparative analysis of the two gene expression experiments involving same genes but under different scenarios and at least 12 responses. The program outputs gene pairs with biologically relevant response curve shapes including flat, linear, sigmoid, hockey stick, impulse and step
Changes in gene expression profile following short-term exposure to an environmentally relevant mixture of PHAHs
Polyhalogenated aromatic hydrocarbons (PHAH) including, polychlorinated biphenyls (PCBs), polychlorinated dibenzodioxins (PCDDS) and polychlorinated dibenzofurans...
Prom-On, Santitham; Chanthaphan, Atthawut; Chan, Jonathan Hoyin; Meechai, Asawin
2011-02-01
Relationships among gene expression levels may be associated with the mechanisms of the disease. While identifying a direct association such as a difference in expression levels between case and control groups links genes to disease mechanisms, uncovering an indirect association in the form of a network structure may help reveal the underlying functional module associated with the disease under scrutiny. This paper presents a method to improve the biological relevance in functional module identification from the gene expression microarray data by enhancing the structure of a weighted gene co-expression network using minimum spanning tree. The enhanced network, which is called a backbone network, contains only the essential structural information to represent the gene co-expression network. The entire backbone network is decoupled into a number of coherent sub-networks, and then the functional modules are reconstructed from these sub-networks to ensure minimum redundancy. The method was tested with a simulated gene expression dataset and case-control expression datasets of autism spectrum disorder and colorectal cancer studies. The results indicate that the proposed method can accurately identify clusters in the simulated dataset, and the functional modules of the backbone network are more biologically relevant than those obtained from the original approach.
Moretti, Stefano; van Leeuwen, Danitsja; Gmuender, Hans; Bonassi, Stefano; van Delft, Joost; Kleinjans, Jos; Patrone, Fioravante; Merlo, Domenico Franco
2008-01-01
Background In gene expression analysis, statistical tests for differential gene expression provide lists of candidate genes having, individually, a sufficiently low p-value. However, the interpretation of each single p-value within complex systems involving several interacting genes is problematic. In parallel, in the last sixty years, game theory has been applied to political and social problems to assess the power of interacting agents in forcing a decision and, more recently, to represent the relevance of genes in response to certain conditions. Results In this paper we introduce a Bootstrap procedure to test the null hypothesis that each gene has the same relevance between two conditions, where the relevance is represented by the Shapley value of a particular coalitional game defined on a microarray data-set. This method, which is called Comparative Analysis of Shapley value (shortly, CASh), is applied to data concerning the gene expression in children differentially exposed to air pollution. The results provided by CASh are compared with the results from a parametric statistical test for testing differential gene expression. Both lists of genes provided by CASh and t-test are informative enough to discriminate exposed subjects on the basis of their gene expression profiles. While many genes are selected in common by CASh and the parametric test, it turns out that the biological interpretation of the differences between these two selections is more interesting, suggesting a different interpretation of the main biological pathways in gene expression regulation for exposed individuals. A simulation study suggests that CASh offers more power than t-test for the detection of differential gene expression variability. Conclusion CASh is successfully applied to gene expression analysis of a data-set where the joint expression behavior of genes may be critical to characterize the expression response to air pollution. We demonstrate a synergistic effect between coalitional games and statistics that resulted in a selection of genes with a potential impact in the regulation of complex pathways. PMID:18764936
Mining functionally relevant gene sets for analyzing physiologically novel clinical expression data.
Turcan, Sevin; Vetter, Douglas E; Maron, Jill L; Wei, Xintao; Slonim, Donna K
2011-01-01
Gene set analyses have become a standard approach for increasing the sensitivity of transcriptomic studies. However, analytical methods incorporating gene sets require the availability of pre-defined gene sets relevant to the underlying physiology being studied. For novel physiological problems, relevant gene sets may be unavailable or existing gene set databases may bias the results towards only the best-studied of the relevant biological processes. We describe a successful attempt to mine novel functional gene sets for translational projects where the underlying physiology is not necessarily well characterized in existing annotation databases. We choose targeted training data from public expression data repositories and define new criteria for selecting biclusters to serve as candidate gene sets. Many of the discovered gene sets show little or no enrichment for informative Gene Ontology terms or other functional annotation. However, we observe that such gene sets show coherent differential expression in new clinical test data sets, even if derived from different species, tissues, and disease states. We demonstrate the efficacy of this method on a human metabolic data set, where we discover novel, uncharacterized gene sets that are diagnostic of diabetes, and on additional data sets related to neuronal processes and human development. Our results suggest that our approach may be an efficient way to generate a collection of gene sets relevant to the analysis of data for novel clinical applications where existing functional annotation is relatively incomplete.
Mallik, Saurav; Bhadra, Tapas; Maulik, Ujjwal
2017-01-01
Epigenetic Biomarker discovery is an important task in bioinformatics. In this article, we develop a new framework of identifying statistically significant epigenetic biomarkers using maximal-relevance and minimal-redundancy criterion based feature (gene) selection for multi-omics dataset. Firstly, we determine the genes that have both expression as well as methylation values, and follow normal distribution. Similarly, we identify the genes which consist of both expression and methylation values, but do not follow normal distribution. For each case, we utilize a gene-selection method that provides maximal-relevant, but variable-weighted minimum-redundant genes as top ranked genes. For statistical validation, we apply t-test on both the expression and methylation data consisting of only the normally distributed top ranked genes to determine how many of them are both differentially expressed andmethylated. Similarly, we utilize Limma package for performing non-parametric Empirical Bayes test on both expression and methylation data comprising only the non-normally distributed top ranked genes to identify how many of them are both differentially expressed and methylated. We finally report the top-ranking significant gene-markerswith biological validation. Moreover, our framework improves positive predictive rate and reduces false positive rate in marker identification. In addition, we provide a comparative analysis of our gene-selection method as well as othermethods based on classificationperformances obtained using several well-known classifiers.
Muff, Roman; Rath, Prisni; Ram Kumar, Ram Mohan; Husmann, Knut; Born, Walter; Baudis, Michael; Fuchs, Bruno
2015-01-01
Osteosarcoma is a rare but highly malignant cancer of the bone. As a consequence, the number of established cell lines used for experimental in vitro and in vivo osteosarcoma research is limited and the value of these cell lines relies on their stability during culture. Here we investigated the stability in gene expression by microarray analysis and array genomic hybridization of three low metastatic cell lines and derivatives thereof with increased metastatic potential using cells of different passages. The osteosarcoma cell lines showed altered gene expression during in vitro culture, and it was more pronounced in two metastatic cell lines compared to the respective parental cells. Chromosomal instability contributed in part to the altered gene expression in SAOS and LM5 cells with low and high metastatic potential. To identify metastasis-relevant genes in a background of passage-dependent altered gene expression, genes involved in "Pathways in cancer" that were consistently regulated under all passage comparisons were evaluated. Genes belonging to "Hedgehog signaling pathway" and "Wnt signaling pathway" were significantly up-regulated, and IHH, WNT10B and TCF7 were found up-regulated in all three metastatic compared to the parental cell lines. Considerable instability during culture in terms of gene expression and chromosomal aberrations was observed in osteosarcoma cell lines. The use of cells from different passages and a search for genes consistently regulated in early and late passages allows the analysis of metastasis-relevant genes despite the observed instability in gene expression in osteosarcoma cell lines during culture.
Building predictive gene signatures through simultaneous assessment of transcription factor activation and gene expression Exposure to many drugs and environmentally-relevant chemicals can cause adverse outcomes. These adverse outcomes, such as cancer, have been linked to mol...
Hsiang, Chien-Yun; Lin, Li-Jen; Kao, Shung-Te; Lo, Hsin-Yi; Chou, Shun-Ting; Ho, Tin-Yun
2015-07-15
Glycyrrhizin, silymarin, and ursodeoxycholic acid are widely used hepatoprotectants for the treatment of liver disorders, such as hepatitis C virus infection, primary biliary cirrhosis, and hepatocellular carcinoma. The gene expression profiles of HepG2 cells responsive to glycyrrhizin, silymarin, and ursodeoxycholic acid were analyzed in this study. HepG2 cells were treated with 25 µM hepatoprotectants for 24 h. Gene expression profiles of hepatoprotectants-treated cells were analyzed by oligonucleotide microarray in triplicates. Nuclear factor-κB (NF-κB) activities were assessed by luciferase assay. Among a total of 30,968 genes, 252 genes were commonly regulated by glycyrrhizin, silymarin, and ursodeoxycholic acid. These compounds affected the expression of genes relevant various biological pathways, such as neurotransmission, and glucose and lipid metabolism. Genes involved in hepatocarcinogenesis, apoptosis, and anti-oxidative pathways were differentially regulated by all compounds. Moreover, interaction networks showed that NF-κB might play a central role in the regulation of gene expression. Further analysis revealed that these hepatoprotectants inhibited NF-κB activities in a dose-dependent manner. Our data suggested that glycyrrhizin, silymarin, and ursodeoxycholic acid regulated the expression of genes relevant to apoptosis and oxidative stress in HepG2 cells. Moreover, the regulation by these hepatoprotectants might be relevant to the suppression of NF-κB activities. Copyright © 2015 Elsevier GmbH. All rights reserved.
We propose the use of gene expression profiling to complement the chemical characterization currently based on HTS assay data and present a case study relevant to the Endocrine Disruptor Screening Program. We have developed computational methods to identify estrogen receptor &alp...
USDA-ARS?s Scientific Manuscript database
Our understanding of the mechanisms controlling insect diapause has increased dramatically with the introduction of global gene expression techniques, such as RNAseq. However, little attention has been given to how ecologically relevant field conditions may affect gene expression during diapause dev...
ERIC Educational Resources Information Center
Naumova, Oksana Yu.; Lee, Maria; Rychkov, Sergei Yu.; Vlasova, Natalia V.; Grigorenko, Elena L.
2013-01-01
Gene expression is one of the main molecular processes regulating the differentiation, development, and functioning of cells and tissues. In this review a handful of relevant terms and concepts are introduced and the most common techniques used in studies of gene expression/expression profiling (also referred to as studies of the transcriptome or…
Statistical approach for selection of biologically informative genes.
Das, Samarendra; Rai, Anil; Mishra, D C; Rai, Shesh N
2018-05-20
Selection of informative genes from high dimensional gene expression data has emerged as an important research area in genomics. Many gene selection techniques have been proposed so far are either based on relevancy or redundancy measure. Further, the performance of these techniques has been adjudged through post selection classification accuracy computed through a classifier using the selected genes. This performance metric may be statistically sound but may not be biologically relevant. A statistical approach, i.e. Boot-MRMR, was proposed based on a composite measure of maximum relevance and minimum redundancy, which is both statistically sound and biologically relevant for informative gene selection. For comparative evaluation of the proposed approach, we developed two biological sufficient criteria, i.e. Gene Set Enrichment with QTL (GSEQ) and biological similarity score based on Gene Ontology (GO). Further, a systematic and rigorous evaluation of the proposed technique with 12 existing gene selection techniques was carried out using five gene expression datasets. This evaluation was based on a broad spectrum of statistically sound (e.g. subject classification) and biological relevant (based on QTL and GO) criteria under a multiple criteria decision-making framework. The performance analysis showed that the proposed technique selects informative genes which are more biologically relevant. The proposed technique is also found to be quite competitive with the existing techniques with respect to subject classification and computational time. Our results also showed that under the multiple criteria decision-making setup, the proposed technique is best for informative gene selection over the available alternatives. Based on the proposed approach, an R Package, i.e. BootMRMR has been developed and available at https://cran.r-project.org/web/packages/BootMRMR. This study will provide a practical guide to select statistical techniques for selecting informative genes from high dimensional expression data for breeding and system biology studies. Published by Elsevier B.V.
Human relevance of an in vitro gene signature in HaCaT for skin sensitization.
van der Veen, Jochem W; Hodemaekers, Henny; Reus, Astrid A; Maas, Wilfred J M; van Loveren, Henk; Ezendam, Janine
2015-02-01
The skin sensitizing potential of chemicals is mainly assessed using animal methods, such as the murine local lymph node assay. Recently, an in vitro assay based on a gene expression signature in the HaCaT keratinocyte cell line was proposed as an alternative to these animal methods. Here, the human relevance of this gene signature is assessed through exposure of freshly isolated human skin to the chemical allergens dinitrochlorobenzene (DNCB) and diphenylcyclopropenone (DCP). In human skin, the gene signature shows similar direction of regulation as was previously observed in vitro, suggesting that the molecular processes that drive expression of these genes are similar between the HaCaT cell line and freshly isolated skin, providing evidence for the human relevance of the gene signature. Copyright © 2014 Elsevier Ltd. All rights reserved.
Discovery and validation of a glioblastoma co-expressed gene module
Dunwoodie, Leland J.; Poehlman, William L.; Ficklin, Stephen P.; Feltus, Frank Alexander
2018-01-01
Tumors exhibit complex patterns of aberrant gene expression. Using a knowledge-independent, noise-reducing gene co-expression network construction software called KINC, we created multiple RNAseq-based gene co-expression networks relevant to brain and glioblastoma biology. In this report, we describe the discovery and validation of a glioblastoma-specific gene module that contains 22 co-expressed genes. The genes are upregulated in glioblastoma relative to normal brain and lower grade glioma samples; they are also hypo-methylated in glioblastoma relative to lower grade glioma tumors. Among the proneural, neural, mesenchymal, and classical glioblastoma subtypes, these genes are most-highly expressed in the mesenchymal subtype. Furthermore, high expression of these genes is associated with decreased survival across each glioblastoma subtype. These genes are of interest to glioblastoma biology and our gene interaction discovery and validation workflow can be used to discover and validate co-expressed gene modules derived from any co-expression network. PMID:29541392
Discovery and validation of a glioblastoma co-expressed gene module.
Dunwoodie, Leland J; Poehlman, William L; Ficklin, Stephen P; Feltus, Frank Alexander
2018-02-16
Tumors exhibit complex patterns of aberrant gene expression. Using a knowledge-independent, noise-reducing gene co-expression network construction software called KINC, we created multiple RNAseq-based gene co-expression networks relevant to brain and glioblastoma biology. In this report, we describe the discovery and validation of a glioblastoma-specific gene module that contains 22 co-expressed genes. The genes are upregulated in glioblastoma relative to normal brain and lower grade glioma samples; they are also hypo-methylated in glioblastoma relative to lower grade glioma tumors. Among the proneural, neural, mesenchymal, and classical glioblastoma subtypes, these genes are most-highly expressed in the mesenchymal subtype. Furthermore, high expression of these genes is associated with decreased survival across each glioblastoma subtype. These genes are of interest to glioblastoma biology and our gene interaction discovery and validation workflow can be used to discover and validate co-expressed gene modules derived from any co-expression network.
Query-based biclustering of gene expression data using Probabilistic Relational Models.
Zhao, Hui; Cloots, Lore; Van den Bulcke, Tim; Wu, Yan; De Smet, Riet; Storms, Valerie; Meysman, Pieter; Engelen, Kristof; Marchal, Kathleen
2011-02-15
With the availability of large scale expression compendia it is now possible to view own findings in the light of what is already available and retrieve genes with an expression profile similar to a set of genes of interest (i.e., a query or seed set) for a subset of conditions. To that end, a query-based strategy is needed that maximally exploits the coexpression behaviour of the seed genes to guide the biclustering, but that at the same time is robust against the presence of noisy genes in the seed set as seed genes are often assumed, but not guaranteed to be coexpressed in the queried compendium. Therefore, we developed ProBic, a query-based biclustering strategy based on Probabilistic Relational Models (PRMs) that exploits the use of prior distributions to extract the information contained within the seed set. We applied ProBic on a large scale Escherichia coli compendium to extend partially described regulons with potentially novel members. We compared ProBic's performance with previously published query-based biclustering algorithms, namely ISA and QDB, from the perspective of bicluster expression quality, robustness of the outcome against noisy seed sets and biological relevance.This comparison learns that ProBic is able to retrieve biologically relevant, high quality biclusters that retain their seed genes and that it is particularly strong in handling noisy seeds. ProBic is a query-based biclustering algorithm developed in a flexible framework, designed to detect biologically relevant, high quality biclusters that retain relevant seed genes even in the presence of noise or when dealing with low quality seed sets.
Regulation of gene expression in the mammalian eye and its relevance to eye disease.
Scheetz, Todd E; Kim, Kwang-Youn A; Swiderski, Ruth E; Philp, Alisdair R; Braun, Terry A; Knudtson, Kevin L; Dorrance, Anne M; DiBona, Gerald F; Huang, Jian; Casavant, Thomas L; Sheffield, Val C; Stone, Edwin M
2006-09-26
We used expression quantitative trait locus mapping in the laboratory rat (Rattus norvegicus) to gain a broad perspective of gene regulation in the mammalian eye and to identify genetic variation relevant to human eye disease. Of >31,000 gene probes represented on an Affymetrix expression microarray, 18,976 exhibited sufficient signal for reliable analysis and at least 2-fold variation in expression among 120 F(2) rats generated from an SR/JrHsd x SHRSP intercross. Genome-wide linkage analysis with 399 genetic markers revealed significant linkage with at least one marker for 1,300 probes (alpha = 0.001; estimated empirical false discovery rate = 2%). Both contiguous and noncontiguous loci were found to be important in regulating mammalian eye gene expression. We investigated one locus of each type in greater detail and identified putative transcription-altering variations in both cases. We found an inserted cREL binding sequence in the 5' flanking sequence of the Abca4 gene associated with an increased expression level of that gene, and we found a mutation of the gene encoding thyroid hormone receptor beta2 associated with a decreased expression level of the gene encoding short-wavelength sensitive opsin (Opn1sw). In addition to these positional studies, we performed a pairwise analysis of gene expression to identify genes that are regulated in a coordinated manner and used this approach to validate two previously undescribed genes involved in the human disease Bardet-Biedl syndrome. These data and analytical approaches can be used to facilitate the discovery of additional genes and regulatory elements involved in human eye disease.
Approximate geodesic distances reveal biologically relevant structures in microarray data.
Nilsson, Jens; Fioretos, Thoas; Höglund, Mattias; Fontes, Magnus
2004-04-12
Genome-wide gene expression measurements, as currently determined by the microarray technology, can be represented mathematically as points in a high-dimensional gene expression space. Genes interact with each other in regulatory networks, restricting the cellular gene expression profiles to a certain manifold, or surface, in gene expression space. To obtain knowledge about this manifold, various dimensionality reduction methods and distance metrics are used. For data points distributed on curved manifolds, a sensible distance measure would be the geodesic distance along the manifold. In this work, we examine whether an approximate geodesic distance measure captures biological similarities better than the traditionally used Euclidean distance. We computed approximate geodesic distances, determined by the Isomap algorithm, for one set of lymphoma and one set of lung cancer microarray samples. Compared with the ordinary Euclidean distance metric, this distance measure produced more instructive, biologically relevant, visualizations when applying multidimensional scaling. This suggests the Isomap algorithm as a promising tool for the interpretation of microarray data. Furthermore, the results demonstrate the benefit and importance of taking nonlinearities in gene expression data into account.
Gene Expression Analysis to Assess the Relevance of Rodent Models to Human Lung Injury.
Sweeney, Timothy E; Lofgren, Shane; Khatri, Purvesh; Rogers, Angela J
2017-08-01
The relevance of animal models to human diseases is an area of intense scientific debate. The degree to which mouse models of lung injury recapitulate human lung injury has never been assessed. Integrating data from both human and animal expression studies allows for increased statistical power and identification of conserved differential gene expression across organisms and conditions. We sought comprehensive integration of gene expression data in experimental acute lung injury (ALI) in rodents compared with humans. We performed two separate gene expression multicohort analyses to determine differential gene expression in experimental animal and human lung injury. We used correlational and pathway analyses combined with external in vitro gene expression data to identify both potential drivers of underlying inflammation and therapeutic drug candidates. We identified 21 animal lung tissue datasets and three human lung injury bronchoalveolar lavage datasets. We show that the metasignatures of animal and human experimental ALI are significantly correlated despite these widely varying experimental conditions. The gene expression changes among mice and rats across diverse injury models (ozone, ventilator-induced lung injury, LPS) are significantly correlated with human models of lung injury (Pearson r = 0.33-0.45, P < 1E -16 ). Neutrophil signatures are enriched in both animal and human lung injury. Predicted therapeutic targets, peptide ligand signatures, and pathway analyses are also all highly overlapping. Gene expression changes are similar in animal and human experimental ALI, and provide several physiologic and therapeutic insights to the disease.
Statistical inference for time course RNA-Seq data using a negative binomial mixed-effect model.
Sun, Xiaoxiao; Dalpiaz, David; Wu, Di; S Liu, Jun; Zhong, Wenxuan; Ma, Ping
2016-08-26
Accurate identification of differentially expressed (DE) genes in time course RNA-Seq data is crucial for understanding the dynamics of transcriptional regulatory network. However, most of the available methods treat gene expressions at different time points as replicates and test the significance of the mean expression difference between treatments or conditions irrespective of time. They thus fail to identify many DE genes with different profiles across time. In this article, we propose a negative binomial mixed-effect model (NBMM) to identify DE genes in time course RNA-Seq data. In the NBMM, mean gene expression is characterized by a fixed effect, and time dependency is described by random effects. The NBMM is very flexible and can be fitted to both unreplicated and replicated time course RNA-Seq data via a penalized likelihood method. By comparing gene expression profiles over time, we further classify the DE genes into two subtypes to enhance the understanding of expression dynamics. A significance test for detecting DE genes is derived using a Kullback-Leibler distance ratio. Additionally, a significance test for gene sets is developed using a gene set score. Simulation analysis shows that the NBMM outperforms currently available methods for detecting DE genes and gene sets. Moreover, our real data analysis of fruit fly developmental time course RNA-Seq data demonstrates the NBMM identifies biologically relevant genes which are well justified by gene ontology analysis. The proposed method is powerful and efficient to detect biologically relevant DE genes and gene sets in time course RNA-Seq data.
Lombardo, M V; Moon, H M; Su, J; Palmer, T D; Courchesne, E; Pramparo, T
2018-04-01
Maternal immune activation (MIA) via infection during pregnancy is known to increase risk for autism spectrum disorder (ASD). However, it is unclear how MIA disrupts fetal brain gene expression in ways that may explain this increased risk. Here we examine how MIA dysregulates rat fetal brain gene expression (at a time point analogous to the end of the first trimester of human gestation) in ways relevant to ASD-associated pathophysiology. MIA downregulates expression of ASD-associated genes, with the largest enrichments in genes known to harbor rare highly penetrant mutations. MIA also downregulates expression of many genes also known to be persistently downregulated in the ASD cortex later in life and which are canonically known for roles in affecting prenatally late developmental processes at the synapse. Transcriptional and translational programs that are downstream targets of highly ASD-penetrant FMR1 and CHD8 genes are also heavily affected by MIA. MIA strongly upregulates expression of a large number of genes involved in translation initiation, cell cycle, DNA damage and proteolysis processes that affect multiple key neural developmental functions. Upregulation of translation initiation is common to and preserved in gene network structure with the ASD cortical transcriptome throughout life and has downstream impact on cell cycle processes. The cap-dependent translation initiation gene, EIF4E, is one of the most MIA-dysregulated of all ASD-associated genes and targeted network analyses demonstrate prominent MIA-induced transcriptional dysregulation of mTOR and EIF4E-dependent signaling. This dysregulation of translation initiation via alteration of the Tsc2-mTor-Eif4e axis was further validated across MIA rodent models. MIA may confer increased risk for ASD by dysregulating key aspects of fetal brain gene expression that are highly relevant to pathophysiology affecting ASD.
Hoppe, T; Kraus, D; Novak, N; Probstmeier, R; Frentzen, M; Wenghoefer, M; Jepsen, S; Winter, J
2016-10-01
The impact of oral pathogens onto the generation and variability of oral tumors has only recently been investigated. To get further insights, oral cancer cells were treated with pathogens and additionally, as a result of this bacterial cellular infection, with human defensins, which are as anti-microbial peptide members of the innate immune system. After cell stimulation, proliferation behavior, expression analysis of oncogenic relevant defensin genes, and effects on EGFR signaling were investigated. The expression of oncogenic relevant anti-microbial peptides was analyzed with real-time PCR and immunohistochemistry. Cell culture experiments were performed to examine cellular impacts caused by stimulation, i.e., altered gene expression, proliferation rate, and EGF receptor-dependent signaling. Incubation of oral tumor cells with an oral pathogen (Porphyromonas gingivalis) and human α-defensins led to an increase in cell proliferation. In contrast, another oral bacterium used, Aggregatibacter actinomycetemcomitans, enhanced cell death. The bacteria and anti-microbial peptides exhibited diverse effects on the transcript levels of oncogenic relevant defensin genes and epidermal growth factor receptor signaling. These two oral pathogens exhibited opposite primary effects on the proliferation behavior of oral tumor cells. Nevertheless, both microbe species led to similar secondary impacts on the proliferation rate by modifying expression levels of oncogenic relevant α-defensin genes. In this respect, oral pathogens exerted multiplying effects on tumor cell proliferation. Additionally, human defensins were shown to differently influence epidermal growth factor receptor signaling, supporting the hypothesis that these anti-microbial peptides serve as ligands of EGFR, thus modifying the proliferation behavior of oral tumor cells.
Periodontal therapy alters gene expression of peripheral blood monocytes
Papapanou, Panos N.; Sedaghatfar, Michael H.; Demmer, Ryan T.; Wolf, Dana L.; Yang, Jun; Roth, Georg A.; Celenti, Romanita; Belusko, Paul B.; Lalla, Evanthia; Pavlidis, Paul
2009-01-01
Aims We investigated the effects of periodontal therapy on gene expression of peripheral blood monocytes. Methods Fifteen patients with periodontitis gave blood samples at four time points: 1 week before periodontal treatment (#1), at treatment initiation (baseline, #2), 6-week (#3) and 10-week post-baseline (#4). At baseline and 10 weeks, periodontal status was recorded and subgingival plaque samples were obtained. Periodontal therapy (periodontal surgery and extractions without adjunctive antibiotics) was completed within 6 weeks. At each time point, serum concentrations of 19 biomarkers were determined. Peripheral blood monocytes were purified, RNA was extracted, reverse-transcribed, labelled and hybridized with AffymetrixU133Plus2.0 chips. Expression profiles were analysed using linear random-effects models. Further analysis of gene ontology terms summarized the expression patterns into biologically relevant categories. Differential expression of selected genes was confirmed by real-time reverse transcriptase-polymerase chain reaction in a subset of patients. Results Treatment resulted in a substantial improvement in clinical periodontal status and reduction in the levels of several periodontal pathogens. Expression profiling over time revealed more than 11,000 probe sets differentially expressed at a false discovery rate of <0.05. Approximately 1/3 of the patients showed substantial changes in expression in genes relevant to innate immunity, apoptosis and cell signalling. Conclusions The data suggest that periodontal therapy may alter monocytic gene expression in a manner consistent with a systemic anti-inflammatory effect. PMID:17716309
Regulation of gene expression in the mammalian eye and its relevance to eye disease
Scheetz, Todd E.; Kim, Kwang-Youn A.; Swiderski, Ruth E.; Philp, Alisdair R.; Braun, Terry A.; Knudtson, Kevin L.; Dorrance, Anne M.; DiBona, Gerald F.; Huang, Jian; Casavant, Thomas L.; Sheffield, Val C.; Stone, Edwin M.
2006-01-01
We used expression quantitative trait locus mapping in the laboratory rat (Rattus norvegicus) to gain a broad perspective of gene regulation in the mammalian eye and to identify genetic variation relevant to human eye disease. Of >31,000 gene probes represented on an Affymetrix expression microarray, 18,976 exhibited sufficient signal for reliable analysis and at least 2-fold variation in expression among 120 F2 rats generated from an SR/JrHsd × SHRSP intercross. Genome-wide linkage analysis with 399 genetic markers revealed significant linkage with at least one marker for 1,300 probes (α = 0.001; estimated empirical false discovery rate = 2%). Both contiguous and noncontiguous loci were found to be important in regulating mammalian eye gene expression. We investigated one locus of each type in greater detail and identified putative transcription-altering variations in both cases. We found an inserted cREL binding sequence in the 5′ flanking sequence of the Abca4 gene associated with an increased expression level of that gene, and we found a mutation of the gene encoding thyroid hormone receptor β2 associated with a decreased expression level of the gene encoding short-wavelength sensitive opsin (Opn1sw). In addition to these positional studies, we performed a pairwise analysis of gene expression to identify genes that are regulated in a coordinated manner and used this approach to validate two previously undescribed genes involved in the human disease Bardet–Biedl syndrome. These data and analytical approaches can be used to facilitate the discovery of additional genes and regulatory elements involved in human eye disease. PMID:16983098
Gene Discovery in Bladder Cancer Progression using cDNA Microarrays
Sanchez-Carbayo, Marta; Socci, Nicholas D.; Lozano, Juan Jose; Li, Wentian; Charytonowicz, Elizabeth; Belbin, Thomas J.; Prystowsky, Michael B.; Ortiz, Angel R.; Childs, Geoffrey; Cordon-Cardo, Carlos
2003-01-01
To identify gene expression changes along progression of bladder cancer, we compared the expression profiles of early-stage and advanced bladder tumors using cDNA microarrays containing 17,842 known genes and expressed sequence tags. The application of bootstrapping techniques to hierarchical clustering segregated early-stage and invasive transitional carcinomas into two main clusters. Multidimensional analysis confirmed these clusters and more importantly, it separated carcinoma in situ from papillary superficial lesions and subgroups within early-stage and invasive tumors displaying different overall survival. Additionally, it recognized early-stage tumors showing gene profiles similar to invasive disease. Different techniques including standard t-test, single-gene logistic regression, and support vector machine algorithms were applied to identify relevant genes involved in bladder cancer progression. Cytokeratin 20, neuropilin-2, p21, and p33ING1 were selected among the top ranked molecular targets differentially expressed and validated by immunohistochemistry using tissue microarrays (n = 173). Their expression patterns were significantly associated with pathological stage, tumor grade, and altered retinoblastoma (RB) expression. Moreover, p33ING1 expression levels were significantly associated with overall survival. Analysis of the annotation of the most significant genes revealed the relevance of critical genes and pathways during bladder cancer progression, including the overexpression of oncogenic genes such as DEK in superficial tumors or immune response genes such as Cd86 antigen in invasive disease. Gene profiling successfully classified bladder tumors based on their progression and clinical outcome. The present study has identified molecular biomarkers of potential clinical significance and critical molecular targets associated with bladder cancer progression. PMID:12875971
Chen, Hong; Chen, Daiwen; Qin, Wen; Liu, Yuntao; Che, Lianqiang; Huang, Zhiqing; Luo, Yuheng; Zhang, Qing; Lin, Derong; Liu, Yaowen; Han, Guoquan; DeSmet, Stefaan; Michiels, Joris
2017-02-01
The objective of this study was to determine the impact of wheat bran and its main polysaccharides on intestinal bacteria and gene expression of intestinal barrier function relevant proteins. Thirty freshly weaned male piglets were assigned randomly to five dietary treatment groups with six piglets per group. Accordingly, five synthetic diets including a basal control diet without fiber components (CON), wheat bran diet (10% wheat bran, WB), arabinoxylan diet (AX), cellulose diet (CEL) and combined diet of arabinoxylan and cellulose (CB) were studied. The piglets were fed ad libitum for 30 d. Lower Escherichia coli (E. coli) populations in WB group and higher probiotic (Lactobacillus and Bifidobacterium) populations in groups fed diets containing arabinoxylan (WB, AX and CB) were observed and compared with CON group. Compared with CON group, the gene expressions of cystic fibrosis transmembrane conductance regulator (CFTR), calcium-activated chloride channel regulator 1 (CLCA1) and voltage-gated chloride channel 2 (CIC2) were suppressed in the WB group. And wheat bran down-regulated gene expression of pro-inflammation (TNF-α, IL-1β, IL-6) and TLRs/MyD88/NF-κB pathway compared with CON group. In conclusion, wheat bran and its main polysaccharides could change intestinal microflora and down-regulate the gene expression of intestinal barrier function relevant proteins in the distal small intestinal mucosa.
Canonical Genetic Signatures of the Adult Human Brain
Hawrylycz, Michael; Miller, Jeremy A.; Menon, Vilas; Feng, David; Dolbeare, Tim; Guillozet-Bongaarts, Angela L.; Jegga, Anil G.; Aronow, Bruce J.; Lee, Chang-Kyu; Bernard, Amy; Glasser, Matthew F.; Dierker, Donna L.; Menche, Jörge; Szafer, Aaron; Collman, Forrest; Grange, Pascal; Berman, Kenneth A.; Mihalas, Stefan; Yao, Zizhen; Stewart, Lance; Barabási, Albert-László; Schulkin, Jay; Phillips, John; Ng, Lydia; Dang, Chinh; Haynor, David R.; Jones, Allan; Van Essen, David C.; Koch, Christof; Lein, Ed
2015-01-01
The structure and function of the human brain are highly stereotyped, implying a conserved molecular program responsible for its development, cellular structure, and function. We applied a correlation-based metric of “differential stability” (DS) to assess reproducibility of gene expression patterning across 132 structures in six individual brains, revealing meso-scale genetic organization. The highest DS genes are highly biologically relevant, with enrichment for brain-related biological annotations, disease associations, drug targets, and literature citations. Using high DS genes we identified 32 anatomically diverse and reproducible gene expression signatures, which represent distinct cell types, intracellular components, and/or associations with neurodevelopmental and neurodegenerative disorders. Genes in neuron-associated compared to non-neuronal networks showed higher preservation between human and mouse; however, many diversely-patterned genes displayed dramatic shifts in regulation between species. Finally, highly consistent transcriptional architecture in neocortex is correlated with resting state functional connectivity, suggesting a link between conserved gene expression and functionally relevant circuitry. PMID:26571460
Characterization of candidate genes in inflammatory bowel disease–associated risk loci
Peloquin, Joanna M.; Sartor, R. Balfour; Newberry, Rodney D.; McGovern, Dermot P.; Yajnik, Vijay; Lira, Sergio A.
2016-01-01
GWAS have linked SNPs to risk of inflammatory bowel disease (IBD), but a systematic characterization of disease-associated genes has been lacking. Prior studies utilized microarrays that did not capture many genes encoded within risk loci or defined expression quantitative trait loci (eQTLs) using peripheral blood, which is not the target tissue in IBD. To address these gaps, we sought to characterize the expression of IBD-associated risk genes in disease-relevant tissues and in the setting of active IBD. Terminal ileal (TI) and colonic mucosal tissues were obtained from patients with Crohn’s disease or ulcerative colitis and from healthy controls. We developed a NanoString code set to profile 678 genes within IBD risk loci. A subset of patients and controls were genotyped for IBD-associated risk SNPs. Analyses included differential expression and variance analysis, weighted gene coexpression network analysis, and eQTL analysis. We identified 116 genes that discriminate between healthy TI and colon samples and uncovered patterns in variance of gene expression that highlight heterogeneity of disease. We identified 107 coexpressed gene pairs for which transcriptional regulation is either conserved or reversed in an inflammation-independent or -dependent manner. We demonstrate that on average approximately 60% of disease-associated genes are differentially expressed in inflamed tissue. Last, we identified eQTLs with either genotype-only effects on expression or an interaction effect between genotype and inflammation. Our data reinforce tissue specificity of expression in disease-associated candidate genes, highlight genes and gene pairs that are regulated in disease-relevant tissue and inflammation, and provide a foundation to advance the understanding of IBD pathogenesis. PMID:27668286
Anand Brown, Andrew; Ding, Zhihao; Viñuela, Ana; Glass, Dan; Parts, Leopold; Spector, Tim; Winn, John; Durbin, Richard
2015-03-09
Statistical factor analysis methods have previously been used to remove noise components from high-dimensional data prior to genetic association mapping and, in a guided fashion, to summarize biologically relevant sources of variation. Here, we show how the derived factors summarizing pathway expression can be used to analyze the relationships between expression, heritability, and aging. We used skin gene expression data from 647 twins from the MuTHER Consortium and applied factor analysis to concisely summarize patterns of gene expression to remove broad confounding influences and to produce concise pathway-level phenotypes. We derived 930 "pathway phenotypes" that summarized patterns of variation across 186 KEGG pathways (five phenotypes per pathway). We identified 69 significant associations of age with phenotype from 57 distinct KEGG pathways at a stringent Bonferroni threshold ([Formula: see text]). These phenotypes are more heritable ([Formula: see text]) than gene expression levels. On average, expression levels of 16% of genes within these pathways are associated with age. Several significant pathways relate to metabolizing sugars and fatty acids; others relate to insulin signaling. We have demonstrated that factor analysis methods combined with biological knowledge can produce more reliable phenotypes with less stochastic noise than the individual gene expression levels, which increases our power to discover biologically relevant associations. These phenotypes could also be applied to discover associations with other environmental factors. Copyright © 2015 Brown et al.
Anand Brown, Andrew; Ding, Zhihao; Viñuela, Ana; Glass, Dan; Parts, Leopold; Spector, Tim; Winn, John; Durbin, Richard
2015-01-01
Statistical factor analysis methods have previously been used to remove noise components from high-dimensional data prior to genetic association mapping and, in a guided fashion, to summarize biologically relevant sources of variation. Here, we show how the derived factors summarizing pathway expression can be used to analyze the relationships between expression, heritability, and aging. We used skin gene expression data from 647 twins from the MuTHER Consortium and applied factor analysis to concisely summarize patterns of gene expression to remove broad confounding influences and to produce concise pathway-level phenotypes. We derived 930 “pathway phenotypes” that summarized patterns of variation across 186 KEGG pathways (five phenotypes per pathway). We identified 69 significant associations of age with phenotype from 57 distinct KEGG pathways at a stringent Bonferroni threshold (P<5.38×10−5). These phenotypes are more heritable (h2=0.32) than gene expression levels. On average, expression levels of 16% of genes within these pathways are associated with age. Several significant pathways relate to metabolizing sugars and fatty acids; others relate to insulin signaling. We have demonstrated that factor analysis methods combined with biological knowledge can produce more reliable phenotypes with less stochastic noise than the individual gene expression levels, which increases our power to discover biologically relevant associations. These phenotypes could also be applied to discover associations with other environmental factors. PMID:25758824
Bekiaris, Pavlos Stephanos; Tekath, Tobias; Staiger, Dorothee; Danisman, Selahattin
2018-01-01
Understanding the effect of cis-regulatory elements (CRE) and clusters of CREs, which are called cis-regulatory modules (CRM), in eukaryotic gene expression is a challenge of computational biology. We developed two programs that allow simple, fast and reliable analysis of candidate CREs and CRMs that may affect specific gene expression and that determine positional features between individual CREs within a CRM. The first program, "Exploration of Distinctive CREs and CRMs" (EDCC), correlates candidate CREs and CRMs with specific gene expression patterns. For pairs of CREs, EDCC also determines positional preferences of the single CREs in relation to each other and to the transcriptional start site. The second program, "CRM Network Generator" (CNG), prioritizes these positional preferences using a neural network and thus allows unbiased rating of the positional preferences that were determined by EDCC. We tested these programs with data from a microarray study of circadian gene expression in Arabidopsis thaliana. Analyzing more than 1.5 million pairwise CRE combinations, we found 22 candidate combinations, of which several contained known clock promoter elements together with elements that had not been identified as relevant to circadian gene expression before. CNG analysis further identified positional preferences of these CRE pairs, hinting at positional information that may be relevant for circadian gene expression. Future wet lab experiments will have to determine which of these combinations confer daytime specific circadian gene expression.
Staiger, Dorothee
2018-01-01
Understanding the effect of cis-regulatory elements (CRE) and clusters of CREs, which are called cis-regulatory modules (CRM), in eukaryotic gene expression is a challenge of computational biology. We developed two programs that allow simple, fast and reliable analysis of candidate CREs and CRMs that may affect specific gene expression and that determine positional features between individual CREs within a CRM. The first program, “Exploration of Distinctive CREs and CRMs” (EDCC), correlates candidate CREs and CRMs with specific gene expression patterns. For pairs of CREs, EDCC also determines positional preferences of the single CREs in relation to each other and to the transcriptional start site. The second program, “CRM Network Generator” (CNG), prioritizes these positional preferences using a neural network and thus allows unbiased rating of the positional preferences that were determined by EDCC. We tested these programs with data from a microarray study of circadian gene expression in Arabidopsis thaliana. Analyzing more than 1.5 million pairwise CRE combinations, we found 22 candidate combinations, of which several contained known clock promoter elements together with elements that had not been identified as relevant to circadian gene expression before. CNG analysis further identified positional preferences of these CRE pairs, hinting at positional information that may be relevant for circadian gene expression. Future wet lab experiments will have to determine which of these combinations confer daytime specific circadian gene expression. PMID:29298348
2010-01-01
Background Similar to human breast cancer mammary tumors of the female dog are commonly associated with a fatal outcome due to the development of distant metastases. However, the molecular defects leading to metastasis are largely unknown and the value of canine mammary carcinoma as a model for human breast cancer is unclear. In this study, we analyzed the gene expression signatures associated with mammary tumor metastasis and asked for parallels with the human equivalent. Methods Messenger RNA expression profiles of twenty-seven lymph node metastasis positive or negative canine mammary carcinomas were established by microarray analysis. Differentially expressed genes were functionally characterized and associated with molecular pathways. The findings were also correlated with published data on human breast cancer. Results Metastatic canine mammary carcinomas had 1,011 significantly differentially expressed genes when compared to non-metastatic carcinomas. Metastatic carcinomas had a significant up-regulation of genes associated with cell cycle regulation, matrix modulation, protein folding and proteasomal degradation whereas cell differentiation genes, growth factor pathway genes and regulators of actin organization were significantly down-regulated. Interestingly, 265 of the 1,011 differentially expressed canine genes are also related to human breast cancer and, vice versa, parts of a human prognostic gene signature were identified in the expression profiles of the metastatic canine tumors. Conclusions Metastatic canine mammary carcinomas can be discriminated from non-metastatic carcinomas by their gene expression profiles. More than one third of the differentially expressed genes are also described of relevance for human breast cancer. Many of the differentially expressed genes are linked to functions and pathways which appear to be relevant for the induction and maintenance of metastatic progression and may represent new therapeutic targets. Furthermore, dogs are in some aspects suitable as a translational model for human breast tumors in order to identify prognostic molecular signatures and potential therapeutic targets. PMID:21062462
The Fanconi anemia/BRCA gene network in zebrafish: embryonic expression and comparative genomics.
Titus, Tom A; Yan, Yi-Lin; Wilson, Catherine; Starks, Amber M; Frohnmayer, Jonathan D; Bremiller, Ruth A; Cañestro, Cristian; Rodriguez-Mari, Adriana; He, Xinjun; Postlethwait, John H
2009-07-31
Fanconi anemia (FA) is a genetic disease resulting in bone marrow failure, high cancer risks, and infertility, and developmental anomalies including microphthalmia, microcephaly, hypoplastic radius and thumb. Here we present cDNA sequences, genetic mapping, and genomic analyses for the four previously undescribed zebrafish FA genes (fanci, fancj, fancm, and fancn), and show that they reverted to single copy after the teleost genome duplication. We tested the hypothesis that FA genes are expressed during embryonic development in tissues that are disrupted in human patients by investigating fanc gene expression patterns. We found fanc gene maternal message, which can provide Fanc proteins to repair DNA damage encountered in rapid cleavage divisions. Zygotic expression was broad but especially strong in eyes, central nervous system and hematopoietic tissues. In the pectoral fin bud at hatching, fanc genes were expressed specifically in the apical ectodermal ridge, a signaling center for fin/limb development that may be relevant to the radius/thumb anomaly of FA patients. Hatching embryos expressed fanc genes strongly in the oral epithelium, a site of squamous cell carcinomas in FA patients. Larval and adult zebrafish expressed fanc genes in proliferative regions of the brain, which may be related to microcephaly in FA. Mature ovaries and testes expressed fanc genes in specific stages of oocyte and spermatocyte development, which may be related to DNA repair during homologous recombination in meiosis and to infertility in human patients. The intestine strongly expressed some fanc genes specifically in proliferative zones. Our results show that zebrafish has a complete complement of fanc genes in single copy and that these genes are expressed in zebrafish embryos and adults in proliferative tissues that are often affected in FA patients. These results support the notion that zebrafish offers an attractive experimental system to help unravel mechanisms relevant not only to FA, but also to breast cancer, given the involvement of fancj (brip1), fancn (palb2) and fancd1 (brca2) in both conditions.
The Fanconi anemia/BRCA gene network in zebrafish: Embryonic expression and comparative genomics
Titus, Tom A.; Yan, Yi-Lin; Wilson, Catherine; Starks, Amber M.; Frohnmayer, Jonathan D.; Canestro, Cristian; Rodriguez-Mari, Adriana; He, Xinjun; Postlethwait, John H.
2008-01-01
Fanconi anemia (FA) is a genic disease resulting in bone marrow failure, high cancer risks, and infertility, and developmental anomalies including microphthalmia, microcephaly, hypoplastic radius and thumb. Here we present cDNA sequences, genetic mapping, and genomic analyses for the four previously undescribed zebrafish FA genes (fanci, fancj, fancm, and fancn, and show that they reverted to single copy after the teleost genome duplication. We tested the hypothesis that FA genes are expressed during embryonic development in tissues that are disrupted in human patients by investigating fanc gene expression patterns. We found fanc gene maternal message, which can provide Fanc proteins to repair DNA damage encountered in rapid cleavage divisions. Zygotic expression was broad but especially strong in eyes, central nervous system and hematopoietic tissues. In the pectoral fin bud at hatching, fanc genes were expressed specifically in the apical ectodermal ridge, a signaling center for fin/limb development that may be relevant to the radius/thumb anomaly of FA patients. Hatching embryos expressed fanc genes strongly in the oral epithelium, a site of squamous cell carcinomas in FA patients. Larval and adult zebrafish expressed fanc genes in proliferative regions of the brain, which may be related to microcephaly in FA. Mature ovaries and testes expressed fanc genes in specific stages of oocyte and spermatocyte development, which may be related to DNA repair during homologous recombination in meiosis and to infertility in human patients. The intestine strongly expressed some fanc genes specifically in proliferative zones. Our results show that zebrafish has a complete complement of fanc genes in single copy and that these genes are expressed in zebrafish embryos and adults in proliferative tissues that are often affected in FA patients. These results support the notion that zebrafish offers an attractive experimental system to help unravel mechanisms relevant not only to FA, but also to breast cancer, given the involvement of fancj (brip1), fancn (palb2) and fancd1 (brca2) in both conditions. PMID:19101574
Plasticity of the Chemoreceptor Repertoire in Drosophila melanogaster
Zhou, Shanshan; Stone, Eric A.; Mackay, Trudy F. C.; Anholt, Robert R. H.
2009-01-01
For most organisms, chemosensation is critical for survival and is mediated by large families of chemoreceptor proteins, whose expression must be tuned appropriately to changes in the chemical environment. We asked whether expression of chemoreceptor genes that are clustered in the genome would be regulated independently; whether expression of certain chemoreceptor genes would be especially sensitive to environmental changes; whether groups of chemoreceptor genes undergo coordinated rexpression; and how plastic the expression of chemoreceptor genes is with regard to sex, development, reproductive state, and social context. To answer these questions we used Drosophila melanogaster, because its chemosensory systems are well characterized and both the genotype and environment can be controlled precisely. Using customized cDNA microarrays, we showed that chemoreceptor genes that are clustered in the genome undergo independent transcriptional regulation at different developmental stages and between sexes. Expression of distinct subgroups of chemoreceptor genes is sensitive to reproductive state and social interactions. Furthermore, exposure of flies only to odor of the opposite sex results in altered transcript abundance of chemoreceptor genes. These genes are distinct from those that show transcriptional plasticity when flies are allowed physical contact with same or opposite sex members. We analyzed covariance in transcript abundance of chemosensory genes across all environmental conditions and found that they segregated into 20 relatively small, biologically relevant modules of highly correlated transcripts. This finely pixilated modular organization of the chemosensory subgenome enables fine tuning of the expression of the chemoreceptor repertoire in response to ecologically relevant environmental and physiological conditions. PMID:19816562
Changes in global gene expression during in vitro decidualization of rat endometrial stromal cells
Vallejo, Griselda; Maschi, Darío; Citrinovitz, Ana Cecilia Mestre; Aiba, Kazuhiro; Maronna, Ricardo; Yohai, Victor; Ko, Minoru S. H.; Beato, Miguel; Saragüeta, Patricia
2009-01-01
During the preimplantation phase of pregnancy the endometrial stroma differentiates into decidua, a process that implies numerous morphological changes and is an example of physiological transdifferentiation. Here we show that UIII rat endometrial stromal cells cultured in the presence of calf serum acquired morphological features of decidual cells and expressed decidual markers. To identify genes involved in decidualization we compared gene expression patterns of control and decidualized UIII cells using cDNA microarray. We found 322 annotated genes exhibiting significant differences in expression (>3 fold, FDR > 0.005), of which 312 have not been previously related to decidualization. Analysis of overrepresented functions revealed that protein synthesis, gene expression and chromatin architecture and remodeling are the most relevant modified functions during decidualization. Relevant genes are also found in the functional terms differentiation, cell proliferation, signal transduction, and matrix/structural proteins. Several of these new genes involved in decidualization (Csdc2, Trim27, Eef1a1, Bmp1, Wt1, Aes, Gna12, and Men1) are shown to be also regulated in uterine decidua during normal pregnancy. Thus, the UIII cell culture model will allow future mechanistic studies to define the transcriptional network regulating reprogramming of stromal cells into decidual cells. PMID:19780023
Li, Yunhai; Lee, Kee Khoon; Walsh, Sean; Smith, Caroline; Hadingham, Sophie; Sorefan, Karim; Cawley, Gavin; Bevan, Michael W
2006-03-01
Establishing transcriptional regulatory networks by analysis of gene expression data and promoter sequences shows great promise. We developed a novel promoter classification method using a Relevance Vector Machine (RVM) and Bayesian statistical principles to identify discriminatory features in the promoter sequences of genes that can correctly classify transcriptional responses. The method was applied to microarray data obtained from Arabidopsis seedlings treated with glucose or abscisic acid (ABA). Of those genes showing >2.5-fold changes in expression level, approximately 70% were correctly predicted as being up- or down-regulated (under 10-fold cross-validation), based on the presence or absence of a small set of discriminative promoter motifs. Many of these motifs have known regulatory functions in sugar- and ABA-mediated gene expression. One promoter motif that was not known to be involved in glucose-responsive gene expression was identified as the strongest classifier of glucose-up-regulated gene expression. We show it confers glucose-responsive gene expression in conjunction with another promoter motif, thus validating the classification method. We were able to establish a detailed model of glucose and ABA transcriptional regulatory networks and their interactions, which will help us to understand the mechanisms linking metabolism with growth in Arabidopsis. This study shows that machine learning strategies coupled to Bayesian statistical methods hold significant promise for identifying functionally significant promoter sequences.
Gaurnier-Hausser, Anita; Patel, Reema; Baldwin, Albert S.; May, Michael J.; Mason, Nicola J.
2011-01-01
Purpose Activated B-Cell Diffuse Large B-Cell Lymphoma (ABC-DLBCL) is an aggressive, poorly chemoresponsive lymphoid malignancy characterized by constitutive canonical NF-κB activity that promotes lymphomagenesis and chemotherapy resistance via over-expression of anti-apoptotic NF-κB target genes. Inhibition of the canonical NF-κB pathway may therefore have therapeutic relevance in ABC-DLBCL. Here we set out to determine whether dogs with spontaneous DLBCL have comparative aberrant constitutive NF-κB activity and to determine the therapeutic relevance of NF-κB inhibition in dogs with relapsed, resistant DLBCL. Experimental Design Canonical NF-κB activity was evaluated by electrophoretic mobility shift assays and immunoblot analyses, and NF-κB target gene expression was measured by qRT-PCR. Primary malignant canine B lymphocytes were treated with the selective IKK complex inhibitor Nemo Binding Domain (NBD) peptide, and evaluated for NF-κB activity and apoptosis. NBD peptide was administered intra-nodally to dogs with relapsed B-cell lymphoma and NF-κB target gene expression and tumor burden were evaluated pre and post treatment. Results Constitutive canonical NF-κB activity and increased NF-κB target gene expression was detected in primary DLBCL tissue. NBD peptide inhibited this activity and induced apoptosis of primary malignant B cells in vitro. Intra-tumoral injections of NBD peptide to dogs with relapsed DLBCL inhibited NF-κB target gene expression and reduced tumor burden. Conclusions This work shows that dogs with spontaneous DLBCL represent a clinically relevant, spontaneous, large animal model for human ABC-DLBCL and demonstrates the therapeutic relevance of NF-κB inhibition in the treatment of ABC-DLBCL. These results have important translational relevance for ABC-DLBCL treatment in human patients. PMID:21610150
Pey, Jon; Valgepea, Kaspar; Rubio, Angel; Beasley, John E; Planes, Francisco J
2013-12-08
The study of cellular metabolism in the context of high-throughput -omics data has allowed us to decipher novel mechanisms of importance in biotechnology and health. To continue with this progress, it is essential to efficiently integrate experimental data into metabolic modeling. We present here an in-silico framework to infer relevant metabolic pathways for a particular phenotype under study based on its gene/protein expression data. This framework is based on the Carbon Flux Path (CFP) approach, a mixed-integer linear program that expands classical path finding techniques by considering additional biophysical constraints. In particular, the objective function of the CFP approach is amended to account for gene/protein expression data and influence obtained paths. This approach is termed integrative Carbon Flux Path (iCFP). We show that gene/protein expression data also influences the stoichiometric balancing of CFPs, which provides a more accurate picture of active metabolic pathways. This is illustrated in both a theoretical and real scenario. Finally, we apply this approach to find novel pathways relevant in the regulation of acetate overflow metabolism in Escherichia coli. As a result, several targets which could be relevant for better understanding of the phenomenon leading to impaired acetate overflow are proposed. A novel mathematical framework that determines functional pathways based on gene/protein expression data is presented and validated. We show that our approach is able to provide new insights into complex biological scenarios such as acetate overflow in Escherichia coli.
Lamontagne, Maxime; Timens, Wim; Hao, Ke; Bossé, Yohan; Laviolette, Michel; Steiling, Katrina; Campbell, Joshua D; Couture, Christian; Conti, Massimo; Sherwood, Karen; Hogg, James C; Brandsma, Corry-Anke; van den Berge, Maarten; Sandford, Andrew; Lam, Stephen; Lenburg, Marc E; Spira, Avrum; Paré, Peter D; Nickle, David; Sin, Don D; Postma, Dirkje S
2014-11-01
COPD is a complex chronic disease with poorly understood pathogenesis. Integrative genomic approaches have the potential to elucidate the biological networks underlying COPD and lung function. We recently combined genome-wide genotyping and gene expression in 1111 human lung specimens to map expression quantitative trait loci (eQTL). To determine causal associations between COPD and lung function-associated single nucleotide polymorphisms (SNPs) and lung tissue gene expression changes in our lung eQTL dataset. We evaluated causality between SNPs and gene expression for three COPD phenotypes: FEV(1)% predicted, FEV(1)/FVC and COPD as a categorical variable. Different models were assessed in the three cohorts independently and in a meta-analysis. SNPs associated with a COPD phenotype and gene expression were subjected to causal pathway modelling and manual curation. In silico analyses evaluated functional enrichment of biological pathways among newly identified causal genes. Biologically relevant causal genes were validated in two separate gene expression datasets of lung tissues and bronchial airway brushings. High reliability causal relations were found in SNP-mRNA-phenotype triplets for FEV(1)% predicted (n=169) and FEV(1)/FVC (n=80). Several genes of potential biological relevance for COPD were revealed. eQTL-SNPs upregulating cystatin C (CST3) and CD22 were associated with worse lung function. Signalling pathways enriched with causal genes included xenobiotic metabolism, apoptosis, protease-antiprotease and oxidant-antioxidant balance. By using integrative genomics and analysing the relationships of COPD phenotypes with SNPs and gene expression in lung tissue, we identified CST3 and CD22 as potential causal genes for airflow obstruction. This study also augmented the understanding of previously described COPD pathways. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Validation of Biomarkers Predictive of Recurrence Following Prostatectomy
2011-04-14
Bergerheim U, Ekman P, DeMarzo AM, Tibshirani R, Botstein D, Brown PO, Brooks JD, Pollack JR: Gene expression profiling identifies clinically...P, DeMarzo AM, Tibshirani R, Botstein D, Brown PO, Brooks JD, Pollack JR: Gene expression profiling identifies clinically relevant subtypes of
USDA-ARS?s Scientific Manuscript database
A GeXP multiplex, RT-PCR assay was developed and optimized that simultaneously measures expression of a suite of immune-relevant genes in rainbow trout (Oncorhynchus mykiss), concentrating on tumor necrosis factor and interleukin-1 ligand/receptor systems and acute phase response genes. The dataset ...
A Review of Feature Extraction Software for Microarray Gene Expression Data
Tan, Ching Siang; Ting, Wai Soon; Mohamad, Mohd Saberi; Chan, Weng Howe; Deris, Safaai; Ali Shah, Zuraini
2014-01-01
When gene expression data are too large to be processed, they are transformed into a reduced representation set of genes. Transforming large-scale gene expression data into a set of genes is called feature extraction. If the genes extracted are carefully chosen, this gene set can extract the relevant information from the large-scale gene expression data, allowing further analysis by using this reduced representation instead of the full size data. In this paper, we review numerous software applications that can be used for feature extraction. The software reviewed is mainly for Principal Component Analysis (PCA), Independent Component Analysis (ICA), Partial Least Squares (PLS), and Local Linear Embedding (LLE). A summary and sources of the software are provided in the last section for each feature extraction method. PMID:25250315
Hlavacova, Natasa; Wes, Paul D; Ondrejcakova, Maria; Flynn, Marianne E; Poundstone, Patricia K; Babic, Stanislav; Murck, Harald; Jezova, Daniela
2012-03-01
The potential role of aldosterone in the pathophysiology of depression is unclear. The aim of this study was to test the hypothesis that prolonged elevation of circulating aldosterone induces depression-like behaviour accompanied by disease-relevant changes in gene expression in the hippocampus. Subchronic (2-wk) treatment with aldosterone (2 μg/100 g body weight per day) or vehicle via subcutaneous osmotic minipumps was used to induce hyperaldosteronism in male rats. All rats (n = 20/treatment group) underwent a modified sucrose preference test. Half of the animals from each treatment group were exposed to the forced swim test (FST), which served both as a tool to assess depression-like behaviour and as a stress stimulus. Affymetrix microarray analysis was used to screen the entire rat genome for gene expression changes in the hippocampus. Aldosterone treatment induced an anhedonic state manifested by decreased sucrose preference. In the FST, depressogenic action of aldosterone was manifested by decreased latency to immobility and increased time spent immobile. Aldosterone treatment resulted in transcriptional changes of genes in the hippocampus involved in inflammation, glutamatergic activity, and synaptic and neuritic remodelling. Furthermore, aldosterone-regulated genes substantially overlapped with genes affected by stress in the FST. This study demonstrates the existence of a causal relationship between the hyperaldosteronism and depressive behaviour. In addition, aldosterone treatment induced changes in gene expression that may be relevant to the aetiology of major depressive disorder. Subchronic treatment with aldosterone represents a new animal model of depression, which may contribute to the development of novel targets for the treatment of depression.
Prediction of Human Disease Genes by Human-Mouse Conserved Coexpression Analysis
Grassi, Elena; Damasco, Christian; Silengo, Lorenzo; Oti, Martin; Provero, Paolo; Di Cunto, Ferdinando
2008-01-01
Background Even in the post-genomic era, the identification of candidate genes within loci associated with human genetic diseases is a very demanding task, because the critical region may typically contain hundreds of positional candidates. Since genes implicated in similar phenotypes tend to share very similar expression profiles, high throughput gene expression data may represent a very important resource to identify the best candidates for sequencing. However, so far, gene coexpression has not been used very successfully to prioritize positional candidates. Methodology/Principal Findings We show that it is possible to reliably identify disease-relevant relationships among genes from massive microarray datasets by concentrating only on genes sharing similar expression profiles in both human and mouse. Moreover, we show systematically that the integration of human-mouse conserved coexpression with a phenotype similarity map allows the efficient identification of disease genes in large genomic regions. Finally, using this approach on 850 OMIM loci characterized by an unknown molecular basis, we propose high-probability candidates for 81 genetic diseases. Conclusion Our results demonstrate that conserved coexpression, even at the human-mouse phylogenetic distance, represents a very strong criterion to predict disease-relevant relationships among human genes. PMID:18369433
Discovery of functional non-coding conserved regions in the α-synuclein gene locus
Sterling, Lori; Walter, Michael; Ting, Dennis; Schüle, Birgitt
2014-01-01
Several single nucleotide polymorphisms (SNPs) and the Rep-1 microsatellite marker of the α-synuclein ( SNCA) gene have consistently been shown to be associated with Parkinson’s disease, but the functional relevance is unclear. Based on these findings we hypothesized that conserved cis-regulatory elements in the SNCA genomic region regulate expression of SNCA, and that SNPs in these regions could be functionally modulating the expression of SNCA, thus contributing to neuronal demise and predisposing to Parkinson’s disease. In a pair-wise comparison of a 206kb genomic region encompassing the SNCA gene, we revealed 34 evolutionary conserved DNA sequences between human and mouse. All elements were cloned into reporter vectors and assessed for expression modulation in dual luciferase reporter assays. We found that 12 out of 34 elements exhibited either an enhancement or reduction of the expression of the reporter gene. Three elements upstream of the SNCA gene displayed an approximately 1.5 fold (p<0.009) increase in expression. Of the intronic regions, three showed a 1.5 fold increase and two others indicated a 2 and 2.5 fold increase in expression (p<0.002). Three elements downstream of the SNCA gene showed 1.5 fold and 2.5 fold increase (p<0.0009). One element downstream of SNCA had a reduced expression of the reporter gene of 0.35 fold (p<0.0009) of normal activity. Our results demonstrate that the SNCA gene contains cis-regulatory regions that might regulate the transcription and expression of SNCA. Further studies in disease-relevant tissue types will be important to understand the functional impact of regulatory regions and specific Parkinson’s disease-associated SNPs and its function in the disease process. PMID:25566351
Differential Effect of Active Smoking on Gene Expression in Male and Female Smokers
Paul, Sunirmal; Amundson, Sally A
2015-01-01
Smoking is the second leading cause of preventable death in the United States. Cohort epidemiological studies have demonstrated that women are more vulnerable to cigarette-smoking induced diseases than their male counterparts, however, the molecular basis of these differences has remained unknown. In this study, we explored if there were differences in the gene expression patterns between male and female smokers, and how these patterns might reflect different sex-specific responses to the stress of smoking. Using whole genome microarray gene expression profiling, we found that a substantial number of oxidant related genes were expressed in both male and female smokers, however, smoking-responsive genes did indeed differ greatly between male and female smokers. Gene set enrichment analysis (GSEA) against reference oncogenic signature gene sets identified a large number of oncogenic pathway gene-sets that were significantly altered in female smokers compared to male smokers. In addition, functional annotation with Ingenuity Pathway Analysis (IPA) identified smoking-correlated genes associated with biological functions in male and female smokers that are directly relevant to well-known smoking related pathologies. However, these relevant biological functions were strikingly overrepresented in female smokers compared to male smokers. IPA network analysis with the functional categories of immune and inflammatory response gene products suggested potential interactions between smoking response and female hormones. Our results demonstrate a striking dichotomy between male and female gene expression responses to smoking. This is the first genome-wide expression study to compare the sex-specific impacts of smoking at a molecular level and suggests a novel potential connection between sex hormone signaling and smoking-induced diseases in female smokers. PMID:25621181
Integrative approaches for large-scale transcriptome-wide association studies
Gusev, Alexander; Ko, Arthur; Shi, Huwenbo; Bhatia, Gaurav; Chung, Wonil; Penninx, Brenda W J H; Jansen, Rick; de Geus, Eco JC; Boomsma, Dorret I; Wright, Fred A; Sullivan, Patrick F; Nikkola, Elina; Alvarez, Marcus; Civelek, Mete; Lusis, Aldons J.; Lehtimäki, Terho; Raitoharju, Emma; Kähönen, Mika; Seppälä, Ilkka; Raitakari, Olli T.; Kuusisto, Johanna; Laakso, Markku; Price, Alkes L.; Pajukanta, Päivi; Pasaniuc, Bogdan
2016-01-01
Many genetic variants influence complex traits by modulating gene expression, thus altering the abundance levels of one or multiple proteins. Here, we introduce a powerful strategy that integrates gene expression measurements with summary association statistics from large-scale genome-wide association studies (GWAS) to identify genes whose cis-regulated expression is associated to complex traits. We leverage expression imputation to perform a transcriptome wide association scan (TWAS) to identify significant expression-trait associations. We applied our approaches to expression data from blood and adipose tissue measured in ~3,000 individuals overall. We imputed gene expression into GWAS data from over 900,000 phenotype measurements to identify 69 novel genes significantly associated to obesity-related traits (BMI, lipids, and height). Many of the novel genes are associated with relevant phenotypes in the Hybrid Mouse Diversity Panel. Our results showcase the power of integrating genotype, gene expression and phenotype to gain insights into the genetic basis of complex traits. PMID:26854917
Wen, Qing; Kim, Chang-Sik; Hamilton, Peter W; Zhang, Shu-Dong
2016-05-11
Gene expression connectivity mapping has gained much popularity recently with a number of successful applications in biomedical research testifying its utility and promise. Previously methodological research in connectivity mapping mainly focused on two of the key components in the framework, namely, the reference gene expression profiles and the connectivity mapping algorithms. The other key component in this framework, the query gene signature, has been left to users to construct without much consensus on how this should be done, albeit it has been an issue most relevant to end users. As a key input to the connectivity mapping process, gene signature is crucially important in returning biologically meaningful and relevant results. This paper intends to formulate a standardized procedure for constructing high quality gene signatures from a user's perspective. We describe a two-stage process for making quality gene signatures using gene expression data as initial inputs. First, a differential gene expression analysis comparing two distinct biological states; only the genes that have passed stringent statistical criteria are considered in the second stage of the process, which involves ranking genes based on statistical as well as biological significance. We introduce a "gene signature progression" method as a standard procedure in connectivity mapping. Starting from the highest ranked gene, we progressively determine the minimum length of the gene signature that allows connections to the reference profiles (drugs) being established with a preset target false discovery rate. We use a lung cancer dataset and a breast cancer dataset as two case studies to demonstrate how this standardized procedure works, and we show that highly relevant and interesting biological connections are returned. Of particular note is gefitinib, identified as among the candidate therapeutics in our lung cancer case study. Our gene signature was based on gene expression data from Taiwan female non-smoker lung cancer patients, while there is evidence from independent studies that gefitinib is highly effective in treating women, non-smoker or former light smoker, advanced non-small cell lung cancer patients of Asian origin. In summary, we introduced a gene signature progression method into connectivity mapping, which enables a standardized procedure for constructing high quality gene signatures. This progression method is particularly useful when the number of differentially expressed genes identified is large, and when there is a need to prioritize them to be included in the query signature. The results from two case studies demonstrate that the approach we have developed is capable of obtaining pertinent candidate drugs with high precision.
Genetics and Beyond – The Transcriptome of Human Monocytes and Disease Susceptibility
Zeller, Tanja; Wild, Philipp; Szymczak, Silke; Rotival, Maxime; Schillert, Arne; Castagne, Raphaele; Maouche, Seraya; Germain, Marine; Lackner, Karl; Rossmann, Heidi; Eleftheriadis, Medea; Sinning, Christoph R.; Schnabel, Renate B.; Lubos, Edith; Mennerich, Detlev; Rust, Werner; Perret, Claire; Proust, Carole; Nicaud, Viviane; Loscalzo, Joseph; Hübner, Norbert; Tregouet, David; Münzel, Thomas; Ziegler, Andreas; Tiret, Laurence
2010-01-01
Background Variability of gene expression in human may link gene sequence variability and phenotypes; however, non-genetic variations, alone or in combination with genetics, may also influence expression traits and have a critical role in physiological and disease processes. Methodology/Principal Findings To get better insight into the overall variability of gene expression, we assessed the transcriptome of circulating monocytes, a key cell involved in immunity-related diseases and atherosclerosis, in 1,490 unrelated individuals and investigated its association with >675,000 SNPs and 10 common cardiovascular risk factors. Out of 12,808 expressed genes, 2,745 expression quantitative trait loci were detected (P<5.78×10−12), most of them (90%) being cis-modulated. Extensive analyses showed that associations identified by genome-wide association studies of lipids, body mass index or blood pressure were rarely compatible with a mediation by monocyte expression level at the locus. At a study-wide level (P<3.9×10−7), 1,662 expression traits (13.0%) were significantly associated with at least one risk factor. Genome-wide interaction analyses suggested that genetic variability and risk factors mostly acted additively on gene expression. Because of the structure of correlation among expression traits, the variability of risk factors could be characterized by a limited set of independent gene expressions which may have biological and clinical relevance. For example expression traits associated with cigarette smoking were more strongly associated with carotid atherosclerosis than smoking itself. Conclusions/Significance This study demonstrates that the monocyte transcriptome is a potent integrator of genetic and non-genetic influences of relevance for disease pathophysiology and risk assessment. PMID:20502693
Molecular Subtypes of Glioblastoma Are Relevant to Lower Grade Glioma
Sloan, Andrew E.; Chen, Yanwen; Brat, Daniel J.; O’Neill, Brian Patrick; de Groot, John; Yust-Katz, Shlomit; Yung, Wai-Kwan Alfred; Cohen, Mark L.; Aldape, Kenneth D.; Rosenfeld, Steven; Verhaak, Roeland G. W.; Barnholtz-Sloan, Jill S.
2014-01-01
Background Gliomas are the most common primary malignant brain tumors in adults with great heterogeneity in histopathology and clinical course. The intent was to evaluate the relevance of known glioblastoma (GBM) expression and methylation based subtypes to grade II and III gliomas (ie. lower grade gliomas). Methods Gene expression array, single nucleotide polymorphism (SNP) array and clinical data were obtained for 228 GBMs and 176 grade II/II gliomas (GII/III) from the publically available Rembrandt dataset. Two additional datasets with IDH1 mutation status were utilized as validation datasets (one publicly available dataset and one newly generated dataset from MD Anderson). Unsupervised clustering was performed and compared to gene expression subtypes assigned using the Verhaak et al 840-gene classifier. The glioma-CpG Island Methylator Phenotype (G-CIMP) was assigned using prediction models by Fine et al. Results Unsupervised clustering by gene expression aligned with the Verhaak 840-gene subtype group assignments. GII/IIIs were preferentially assigned to the proneural subtype with IDH1 mutation and G-CIMP. GBMs were evenly distributed among the four subtypes. Proneural, IDH1 mutant, G-CIMP GII/III s had significantly better survival than other molecular subtypes. Only 6% of GBMs were proneural and had either IDH1 mutation or G-CIMP but these tumors had significantly better survival than other GBMs. Copy number changes in chromosomes 1p and 19q were associated with GII/IIIs, while these changes in CDKN2A, PTEN and EGFR were more commonly associated with GBMs. Conclusions GBM gene-expression and methylation based subtypes are relevant for GII/III s and associate with overall survival differences. A better understanding of the association between these subtypes and GII/IIIs could further knowledge regarding prognosis and mechanisms of glioma progression. PMID:24614622
Immunological network signatures of cancer progression and survival
2011-01-01
Background The immune contribution to cancer progression is complex and difficult to characterize. For example in tumors, immune gene expression is detected from the combination of normal, tumor and immune cells in the tumor microenvironment. Profiling the immune component of tumors may facilitate the characterization of the poorly understood roles immunity plays in cancer progression. However, the current approaches to analyze the immune component of a tumor rely on incomplete identification of immune factors. Methods To facilitate a more comprehensive approach, we created a ranked immunological relevance score for all human genes, developed using a novel strategy that combines text mining and information theory. We used this score to assign an immunological grade to gene expression profiles, and thereby quantify the immunological component of tumors. This immunological relevance score was benchmarked against existing manually curated immune resources as well as high-throughput studies. To further characterize immunological relevance for genes, the relevance score was charted against both the human interactome and cancer information, forming an expanded interactome landscape of tumor immunity. We applied this approach to expression profiles in melanomas, thus identifying and grading their immunological components, followed by identification of their associated protein interactions. Results The power of this strategy was demonstrated by the observation of early activation of the adaptive immune response and the diversity of the immune component during melanoma progression. Furthermore, the genome-wide immunological relevance score classified melanoma patient groups, whose immunological grade correlated with clinical features, such as immune phenotypes and survival. Conclusions The assignment of a ranked immunological relevance score to all human genes extends the content of existing immune gene resources and enriches our understanding of immune involvement in complex biological networks. The application of this approach to tumor immunity represents an automated systems strategy that quantifies the immunological component in complex disease. In so doing, it stratifies patients according to their immune profiles, which may lead to effective computational prognostic and clinical guides. PMID:21453479
Genetics of Sputum Gene Expression in Chronic Obstructive Pulmonary Disease
Qiu, Weiliang; Cho, Michael H.; Riley, John H.; Anderson, Wayne H.; Singh, Dave; Bakke, Per; Gulsvik, Amund; Litonjua, Augusto A.; Lomas, David A.; Crapo, James D.; Beaty, Terri H.; Celli, Bartolome R.; Rennard, Stephen; Tal-Singer, Ruth; Fox, Steven M.; Silverman, Edwin K.; Hersh, Craig P.
2011-01-01
Previous expression quantitative trait loci (eQTL) studies have performed genetic association studies for gene expression, but most of these studies examined lymphoblastoid cell lines from non-diseased individuals. We examined the genetics of gene expression in a relevant disease tissue from chronic obstructive pulmonary disease (COPD) patients to identify functional effects of known susceptibility genes and to find novel disease genes. By combining gene expression profiling on induced sputum samples from 131 COPD cases from the ECLIPSE Study with genomewide single nucleotide polymorphism (SNP) data, we found 4315 significant cis-eQTL SNP-probe set associations (3309 unique SNPs). The 3309 SNPs were tested for association with COPD in a genomewide association study (GWAS) dataset, which included 2940 COPD cases and 1380 controls. Adjusting for 3309 tests (p<1.5e-5), the two SNPs which were significantly associated with COPD were located in two separate genes in a known COPD locus on chromosome 15: CHRNA5 and IREB2. Detailed analysis of chromosome 15 demonstrated additional eQTLs for IREB2 mapping to that gene. eQTL SNPs for CHRNA5 mapped to multiple linkage disequilibrium (LD) bins. The eQTLs for IREB2 and CHRNA5 were not in LD. Seventy-four additional eQTL SNPs were associated with COPD at p<0.01. These were genotyped in two COPD populations, finding replicated associations with a SNP in PSORS1C1, in the HLA-C region on chromosome 6. Integrative analysis of GWAS and gene expression data from relevant tissue from diseased subjects has located potential functional variants in two known COPD genes and has identified a novel COPD susceptibility locus. PMID:21949713
Wu, Qiuli; Li, Yiping; Tang, Meng; Ye, Boping; Wang, Dayong
2012-01-01
With growing concerns of the safety of nanotechnology, the in vivo toxicity of nanoparticles (NPs) at environmental relevant concentrations has drawn increasing attentions. We investigated the possible molecular mechanisms of titanium nanoparticles (Ti-NPs) in the induction of toxicity at predicted environmental relevant concentrations. In nematodes, small sizes (4 nm and 10 nm) of TiO2-NPs induced more severe toxicities than large sizes (60 nm and 90 nm) of TiO2-NPs on animals using lethality, growth, reproduction, locomotion behavior, intestinal autofluorescence, and reactive oxygen species (ROS) production as endpoints. Locomotion behaviors could be significantly decreased by exposure to 4-nm and 10-nm TiO2-NPs at concentration of 1 ng/L in nematodes. Among genes required for the control of oxidative stress, only the expression patterns of sod-2 and sod-3 genes encoding Mn-SODs in animals exposed to small sizes of TiO2-NPs were significantly different from those in animals exposed to large sizes of TiO2-NPs. sod-2 and sod-3 gene expressions were closely correlated with lethality, growth, reproduction, locomotion behavior, intestinal autofluorescence, and ROS production in TiO2-NPs-exposed animals. Ectopically expression of human and nematode Mn-SODs genes effectively prevented the induction of ROS production and the development of toxicity of TiO2-NPs. Therefore, the altered expression patterns of Mn-SODs may explain the toxicity formation for different sizes of TiO2-NPs at predicted environmental relevant concentrations. In addition, we demonstrated here a strategy to investigate the toxicological effects of exposure to NPs upon humans by generating transgenic strains in nematodes for specific human genes. PMID:22973466
Rai, M F; Sandell, L J; Cheverud, J M; Brophy, R H
2013-09-01
Aging and obesity contribute to the initiation and progression of osteoarthritis with little information on their relation to gene expression in joint tissues, particularly the meniscus. Here, we test the hypothesis that patient age and body mass index (BMI) correlate with the expression of osteoarthritis- and obesity-related gene signatures in the meniscus. Meniscus was obtained from patients (N=68) undergoing arthroscopic partial meniscectomy. The mRNA expression of 24 osteoarthritis-related and 4 obesity-related genes in meniscus was assessed by quantitative real-time PCR. The relationship between gene expression and patient age and BMI was analyzed using Spearman's rank-order correlation. Hierarchical cluster dendrogram and heat map were generated to study inter-gene associations. Age was negatively correlated (P<0.05) with the expression of MMP-1 (r=-0.447), NFκB2 (r=-0.361), NFκBIA (r=-0.312), IκBA (r=-0.308), IL-8 (r=-0.305), ADAMTS-4 (r=-0.294), APLN (apelin) (r=-0.250) and IL-6 (r=-0.244). Similarly, BMI was negatively correlated with the expression of APLN (r=-0.328), ACAN (r=-0.268) and MMP-1 (r=-0.261). After adjusting for the correlation between age and BMI (r=0.310; P=0.008), the only independent effect of BMI on gene expression was for APLN (r=-0.272). However, age had an independent effect on the expression on ADAMTS-4 (r=-0.253), MMP-1 (r=-0.399), IL-8 (r=-0.327), COL1A1 (r=-0.287), NFκBIA (r=-0.278), NFκB2 (r=-0.312) and IκBA (r=-0.299). The gene correlation analysis identified four clusters of potentially relevant genes: transcription factors, matrix-degrading enzymes, cytokines and chemokines, and obesity genes. Age and BMI were negatively correlated with several osteoarthritis- and obesity-related genes. Although the bulk of these changes appeared to be driven by age, expression of APLN was related to BMI. Inter-gene correlation analysis implicated a common role for strongly correlated genes. Although age-related variations in gene expression appear to be more relevant than obesity-related differences for the role of the meniscus in osteoarthritis development, further investigation into the role of APLN in meniscus and joint health is warranted.
Mateu-Huertas, Elisabet; Rodriguez-Revenga, Laia; Alvarez-Mora, Maria Isabel; Madrigal, Irene; Willemsen, Rob; Milà, Montserrat; Martí, Eulàlia; Estivill, Xavier
2014-05-01
Male premutation carriers presenting between 55 and 200 CGG repeats in the Fragile-X-associated (FMR1) gene are at risk of developing Fragile X Tremor/Ataxia Syndrome (FXTAS), and females undergo Premature Ovarian Failure (POF1). Here, we have evaluated gene expression profiles from blood in male FMR1 premutation carriers and detected a strong deregulation of genes enriched in FXTAS relevant biological pathways, including inflammation, neuronal homeostasis and viability. Gene expression profiling distinguished between control individuals, carriers with FXTAS and carriers without FXTAS, with levels of expanded FMR1 mRNA being increased in FXTAS patients. In vitro studies in a neuronal cell model indicate that expression levels of expanded FMR1 5'-UTR are relevant in modulating the transcriptome. Thus, perturbations of the transcriptome may be an interplay between the CGG expansion size and FMR1 expression levels. Several deregulated genes (DFFA, BCL2L11, BCL2L1, APP, SOD1, RNF10, HDAC5, KCNC3, ATXN7, ATXN3 and EAP1) were validated in brain samples of a FXTAS mouse model. Downregulation of EAP1, a gene involved in the female reproductive system physiology, was confirmed in female carriers. Decreased levels were detected in female carriers with POF1 compared to those without POF1, suggesting that EAP1 levels contribute to ovarian insufficiency. In summary, gene expression profiling in blood has uncovered mechanisms that may underlie different pathological aspects of the premutation. A better understanding of the transcriptome dynamics in relation with expanded FMR1 mRNA expression levels and CGG expansion size may provide mechanistic insights into the disease process and a more accurate FXTAS diagnosis to the myriad of phenotypes associated with the premutation. Copyright © 2014. Published by Elsevier Inc.
Yu, Yao; Tu, Kang; Zheng, Siyuan; Li, Yun; Ding, Guohui; Ping, Jie; Hao, Pei; Li, Yixue
2009-08-25
In the post-genomic era, the development of high-throughput gene expression detection technology provides huge amounts of experimental data, which challenges the traditional pipelines for data processing and analyzing in scientific researches. In our work, we integrated gene expression information from Gene Expression Omnibus (GEO), biomedical ontology from Medical Subject Headings (MeSH) and signaling pathway knowledge from sigPathway entries to develop a context mining tool for gene expression analysis - GEOGLE. GEOGLE offers a rapid and convenient way for searching relevant experimental datasets, pathways and biological terms according to multiple types of queries: including biomedical vocabularies, GDS IDs, gene IDs, pathway names and signature list. Moreover, GEOGLE summarizes the signature genes from a subset of GDSes and estimates the correlation between gene expression and the phenotypic distinction with an integrated p value. This approach performing global searching of expression data may expand the traditional way of collecting heterogeneous gene expression experiment data. GEOGLE is a novel tool that provides researchers a quantitative way to understand the correlation between gene expression and phenotypic distinction through meta-analysis of gene expression datasets from different experiments, as well as the biological meaning behind. The web site and user guide of GEOGLE are available at: http://omics.biosino.org:14000/kweb/workflow.jsp?id=00020.
Estimation of gene induction enables a relevance-based ranking of gene sets.
Bartholomé, Kilian; Kreutz, Clemens; Timmer, Jens
2009-07-01
In order to handle and interpret the vast amounts of data produced by microarray experiments, the analysis of sets of genes with a common biological functionality has been shown to be advantageous compared to single gene analyses. Some statistical methods have been proposed to analyse the differential gene expression of gene sets in microarray experiments. However, most of these methods either require threshhold values to be chosen for the analysis, or they need some reference set for the determination of significance. We present a method that estimates the number of differentially expressed genes in a gene set without requiring a threshold value for significance of genes. The method is self-contained (i.e., it does not require a reference set for comparison). In contrast to other methods which are focused on significance, our approach emphasizes the relevance of the regulation of gene sets. The presented method measures the degree of regulation of a gene set and is a useful tool to compare the induction of different gene sets and place the results of microarray experiments into the biological context. An R-package is available.
Kreiner, Frederik Flindt; Borup, Rehannah; Nielsen, Finn Cilius; Schjerling, Peter; Galbo, Henrik
2017-08-07
The pathophysiology, including the impact of gene expression, of polymyalgia rheumatica (PMR) remains elusive. We profiled the gene expression in muscle tissue in PMR patients before and after glucocorticoid treatment. Gene expression was measured using Affymetrix Human Genome U133 Plus 2.0 arrays in muscle biopsies from 8 glucocorticoid-naive patients with PMR and 10 controls before and after prednisolone-treatment for 14 days. For 14 genes, quantitative real-time PCR (qRT-PCR, n = 9 in both groups) was used to validate the microarray findings and to further investigate the expression of genes of particular interest. Prednisolone normalized erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) in PMR patients. A total of 165 putatively clinically relevant, differentially expressed genes were identified (cut-off: fold difference > ±1.2, difference of mean > 30, and p < 0.05); of these, 78 genes differed between patients and controls before treatment, 131 genes responded to treatment in a given direction only in patients, and 44 fulfilled both these criteria. In 43 of the 44 genes, treatment counteracted the initial difference. Functional clustering identified themes of biological function, including regulation of protein biosynthesis, and regulation of transcription and of extracellular matrix processes. Overall, qRT-PCR confirmed the microarray findings: Microarray-detected group differences were confirmed for 9 genes in 17 of 18 comparisons (same magnitude and direction of change); lack of group differences in microarray testing was confirmed for 5 genes in 8 of 10 comparisons. Before treatment, using qRT-PCR, expression of interleukin 6 (IL-6) was found to be 4-fold higher in patients (p < 0.05). This study identifies genes in muscle, the expression of which may impact the pathophysiology of PMR. Moreover, the study adds further evidence of the importance of IL-6 in the disease. Follow-up studies are needed to establish the exact pathophysiological relevance of the identified genes. The study was retrospectively listed on the ISRCTN registry with study ID ISRCTN69503018 and date of registration the 26th of July 2017.
Folate, Alcohol, and Liver Disease
Medici, Valentina; Halsted, Charles H.
2013-01-01
Alcoholic liver disease (ALD) is typically associated with folate deficiency, which is the result of reduced dietary folate intake, intestinal malabsorption, reduced liver uptake and storage, and increased urinary folate excretion. Folate deficiency favors the progression of liver disease through mechanisms that include its effects on methionine metabolism with consequences for DNA synthesis and stability and the epigenetic regulation of gene expression involved in pathways of liver injury. This paper reviews the pathogenesis of alcoholic liver disease with particular focus on ethanol-induced alterations in methionine metabolism which may act in synergy with folate deficiency to decrease antioxidant defense as well as DNA stability while regulating epigenetic mechanisms of relevant gene expressions. We also review the current evidence available on potential treatments of alcoholic liver disease based on correcting abnormalities in methionine metabolism and the methylation regulation of relevant gene expressions. PMID:23136133
Guerriero, Gea; Legay, Sylvain; Hausman, Jean-Francois
2014-01-01
Abiotic stress represents a serious threat affecting both plant fitness and productivity. One of the promptest responses that plants trigger following abiotic stress is the differential expression of key genes, which enable to face the adverse conditions. It is accepted and shown that the cell wall senses and broadcasts the stress signal to the interior of the cell, by triggering a cascade of reactions leading to resistance. Therefore the study of wall-related genes is particularly relevant to understand the metabolic remodeling triggered by plants in response to exogenous stresses. Despite the agricultural and economical relevance of alfalfa (Medicago sativa L.), no study, to our knowledge, has addressed specifically the wall-related gene expression changes in response to exogenous stresses in this important crop, by monitoring the dynamics of wall biosynthetic gene expression. We here identify and analyze the expression profiles of nine cellulose synthases, together with other wall-related genes, in stems of alfalfa plants subjected to different abiotic stresses (cold, heat, salt stress) at various time points (e.g. 0, 24, 72 and 96 h). We identify 2 main responses for specific groups of genes, i.e. a salt/heat-induced and a cold/heat-repressed group of genes. Prior to this analysis we identified appropriate reference genes for expression analyses in alfalfa, by evaluating the stability of 10 candidates across different tissues (namely leaves, stems, roots), under the different abiotic stresses and time points chosen. The results obtained confirm an active role played by the cell wall in response to exogenous stimuli and constitute a step forward in delineating the complex pathways regulating the response of plants to abiotic stresses. PMID:25084115
Kirsten, Holger; Al-Hasani, Hoor; Holdt, Lesca; Gross, Arnd; Beutner, Frank; Krohn, Knut; Horn, Katrin; Ahnert, Peter; Burkhardt, Ralph; Reiche, Kristin; Hackermüller, Jörg; Löffler, Markus; Teupser, Daniel; Thiery, Joachim; Scholz, Markus
2015-01-01
Genetics of gene expression (eQTLs or expression QTLs) has proved an indispensable tool for understanding biological pathways and pathomechanisms of trait-associated SNPs. However, power of most genome-wide eQTL studies is still limited. We performed a large eQTL study in peripheral blood mononuclear cells of 2112 individuals increasing the power to detect trans-effects genome-wide. Going beyond univariate SNP-transcript associations, we analyse relations of eQTLs to biological pathways, polygenetic effects of expression regulation, trans-clusters and enrichment of co-localized functional elements. We found eQTLs for about 85% of analysed genes, and 18% of genes were trans-regulated. Local eSNPs were enriched up to a distance of 5 Mb to the transcript challenging typically implemented ranges of cis-regulations. Pathway enrichment within regulated genes of GWAS-related eSNPs supported functional relevance of identified eQTLs. We demonstrate that nearest genes of GWAS-SNPs might frequently be misleading functional candidates. We identified novel trans-clusters of potential functional relevance for GWAS-SNPs of several phenotypes including obesity-related traits, HDL-cholesterol levels and haematological phenotypes. We used chromatin immunoprecipitation data for demonstrating biological effects. Yet, we show for strongly heritable transcripts that still little trans-chromosomal heritability is explained by all identified trans-eSNPs; however, our data suggest that most cis-heritability of these transcripts seems explained. Dissection of co-localized functional elements indicated a prominent role of SNPs in loci of pseudogenes and non-coding RNAs for the regulation of coding genes. In summary, our study substantially increases the catalogue of human eQTLs and improves our understanding of the complex genetic regulation of gene expression, pathways and disease-related processes. PMID:26019233
Gene therapy for prostate cancer: where are we now?
Steiner, M S; Gingrich, J R
2000-10-01
The ability to recombine specifically and alter DNA sequences followed by techniques to transfer these sequences or even whole genes into normal and diseased cells has revolutionized medical research and ushered the clinicians of today into the age of gene therapy. We provide urologists a review of relevant background information, outline current treatment strategies and clinical trials, and delineate current challenges facing the field of gene therapy for advanced prostate cancer. We comprehensively reviewed the literature, including PubMed and recent abstract proceedings from national meetings, relevant to gene therapy and advanced prostate cancer. We selected for review literature representative of the principal scientific background for current gene therapy strategies and National Institutes of Health Recombinant DNA Advisory Committee approved clinical trials. Current prostate cancer gene therapy strategies include correcting aberrant gene expression, exploiting programmed cell death pathways, targeting critical cell biological functions, introducing toxic or cell lytic suicide genes, enhancing the immune system antitumor response and combining treatment with conventional cytotoxic chemotherapy or radiation therapy. Many challenges lie ahead for gene therapy, including improving DNA transfer efficiency to cells locally and at distant sites, enhancing levels of gene expression and overcoming immune responses that limit the time that genes are expressed. Nevertheless, despite these current challenges it is almost certain that gene therapy will be part of the urological armamentarium against prostate cancer in this century.
The expression of antibiotic resistance genes in antibiotic-producing bacteria.
Mak, Stefanie; Xu, Ye; Nodwell, Justin R
2014-08-01
Antibiotic-producing bacteria encode antibiotic resistance genes that protect them from the biologically active molecules that they produce. The expression of these genes needs to occur in a timely manner: either in advance of or concomitantly with biosynthesis. It appears that there have been at least two general solutions to this problem. In many cases, the expression of resistance genes is tightly linked to that of antibiotic biosynthetic genes. In others, the resistance genes can be induced by their cognate antibiotics or by intermediate molecules from their biosynthetic pathways. The regulatory mechanisms that couple resistance to antibiotic biosynthesis are mechanistically diverse and potentially relevant to the origins of clinical antibiotic resistance. © 2014 John Wiley & Sons Ltd.
Generation of a foveomacular transcriptome
Bernstein, Steven; Wong, Paul W.
2014-01-01
Purpose Organizing molecular biologic data is a growing challenge since the rate of data accumulation is steadily increasing. Information relevant to a particular biologic query can be difficult to extract from the comprehensive databases currently available. We present a data collection and organization model designed to ameliorate these problems and applied it to generate an expressed sequence tag (EST)–based foveomacular transcriptome. Methods Using Perl, MySQL, EST libraries, screening, and human foveomacular gene expression as a model system, we generated a foveomacular transcriptome database enriched for molecularly relevant data. Results Using foveomacula as a gene expression model tissue, we identified and organized 6,056 genes expressed in that tissue. Of those identified genes, 3,480 had not been previously described as expressed in the foveomacula. Internal experimental controls as well as comparison of our data set to published data sets suggest we do not yet have a complete description of the foveomacula transcriptome. Conclusions We present an organizational method designed to amplify the utility of data pertinent to a specific research interest. Our method is generic enough to be applicable to a variety of conditions yet focused enough to allow for specialized study. PMID:24991187
Epigenetics and depression: return of the repressed.
Dalton, Victoria S; Kolshus, Erik; McLoughlin, Declan M
2014-02-01
Epigenetics has recently emerged as a potential mechanism by which adverse environmental stimuli can result in persistent changes in gene expression. Epigenetic mechanisms function alongside the DNA sequence to modulate gene expression and ultimately influence protein production. The current review provides an introduction and overview of epigenetics with a particular focus on preclinical and clinical studies relevant to major depressive disorder (MDD). PubMed and Web of Science databases were interrogated from January 1995 up to December 2012 using combinations of search terms, including "epigenetic", "microRNA" and "DNA methylation" cross referenced with "depression", "early life stress" and "antidepressant". There is an association between adverse environmental stimuli, such as early life stress, and epigenetic modification of gene expression. Epigenetic changes have been reported in humans with MDD and may serve as biomarkers to improve diagnosis. Antidepressant treatments appear to reverse or initiate compensatory epigenetic alterations that may be relevant to their mechanism of action. As a narrative review, the current report was interpretive and qualitative in nature. Epigenetic modification of gene expression provides a mechanism for understanding the link between long-term effects of adverse life events and the changes in gene expression that are associated with depression. Although still a developing field, in the future, epigenetic modifications of gene expression may provide novel biomarkers to predict future susceptibility and/or onset of MDD, improve diagnosis, and aid in the development of epigenetics-based therapies for depression. © 2013 Published by Elsevier B.V.
Archacki, Stephen R; Angheloiu, George; Moravec, Christine S; Liu, Hui; Topol, Eric J; Wang, Qing Kenneth
2012-03-15
Coronary artery disease (CAD) is the leading cause of death worldwide. It has been established that internal mammary arteries (IMA) are resistant to the development of atherosclerosis, whereas left anterior descending (LAD) coronary arteries are athero-prone. The contrasting properties of these two arteries provide an innovative strategy to identify the genes that play important roles in the development of atherosclerosis. We carried out microarray analysis to identify genes differentially expressed between IMA and LAD. Twenty-nine genes showed significant differences in their expression levels between IMA and LAD, which included the TES gene encoding Testin. The role of TES in the cardiovascular system is unknown. Here we show that TES is involved in endothelial cell (EC) functions relevant to atherosclerosis. Western blot analysis showed higher TES expression in IMA than in LAD. Reverse transcription polymerase chain reaction and western blot analyses showed that TES was consistently and markedly down-regulated by more than 6-fold at both mRNA and protein levels in patients with CAD compared with controls without CAD (P= 0.000049). The data suggest that reduced TES expression is associated with the development of CAD. Knockdown of TES expression by small-interfering RNA promoted oxidized-LDL-mediated monocyte adhesion to ECs, EC migration and the transendothelial migration of monocytes, while the over-expression of TES in ECs blunted these processes. These results demonstrate association between reduced TES expression and CAD, establish a novel role for TES in EC functions and raise the possibility that reduced TES expression increases susceptibility to the development of CAD.
Das, Shibsankar; Roymondal, Uttam; Sahoo, Satyabrata
2009-08-15
Based on the hypothesis that highly expressed genes are often characterized by strong compositional bias in terms of codon usage, there are a number of measures currently in use that quantify codon usage bias in genes, and hence provide numerical indices to predict the expression levels of genes. With the recent advent of expression measure from the score of the relative codon usage bias (RCBS), we have explicitly tested the performance of this numerical measure to predict the gene expression level and illustrate this with an analysis of Yeast genomes. In contradiction with previous other studies, we observe a weak correlations between GC content and RCBS, but a selective pressure on the codon preferences in highly expressed genes. The assertion that the expression of a given gene depends on the score of relative codon usage bias (RCBS) is supported by the data. We further observe a strong correlation between RCBS and protein length indicating natural selection in favour of shorter genes to be expressed at higher level. We also attempt a statistical analysis to assess the strength of relative codon bias in genes as a guide to their likely expression level, suggesting a decrease of the informational entropy in the highly expressed genes.
Roy, Janine; Aust, Daniela; Knösel, Thomas; Rümmele, Petra; Jahnke, Beatrix; Hentrich, Vera; Rückert, Felix; Niedergethmann, Marco; Weichert, Wilko; Bahra, Marcus; Schlitt, Hans J.; Settmacher, Utz; Friess, Helmut; Büchler, Markus; Saeger, Hans-Detlev; Schroeder, Michael; Pilarsky, Christian; Grützmann, Robert
2012-01-01
Predicting the clinical outcome of cancer patients based on the expression of marker genes in their tumors has received increasing interest in the past decade. Accurate predictors of outcome and response to therapy could be used to personalize and thereby improve therapy. However, state of the art methods used so far often found marker genes with limited prediction accuracy, limited reproducibility, and unclear biological relevance. To address this problem, we developed a novel computational approach to identify genes prognostic for outcome that couples gene expression measurements from primary tumor samples with a network of known relationships between the genes. Our approach ranks genes according to their prognostic relevance using both expression and network information in a manner similar to Google's PageRank. We applied this method to gene expression profiles which we obtained from 30 patients with pancreatic cancer, and identified seven candidate marker genes prognostic for outcome. Compared to genes found with state of the art methods, such as Pearson correlation of gene expression with survival time, we improve the prediction accuracy by up to 7%. Accuracies were assessed using support vector machine classifiers and Monte Carlo cross-validation. We then validated the prognostic value of our seven candidate markers using immunohistochemistry on an independent set of 412 pancreatic cancer samples. Notably, signatures derived from our candidate markers were independently predictive of outcome and superior to established clinical prognostic factors such as grade, tumor size, and nodal status. As the amount of genomic data of individual tumors grows rapidly, our algorithm meets the need for powerful computational approaches that are key to exploit these data for personalized cancer therapies in clinical practice. PMID:22615549
Bustamante, Paula; Covarrubias, Paulo C; Levicán, Gloria; Katz, Assaf; Tapia, Pablo; Holmes, David; Quatrini, Raquel; Orellana, Omar
2012-01-01
Integrative conjugative elements (ICEs) are self-transferred mobile genetic elements that contribute to horizontal gene transfer. An ICE (ICEAfe1) was identified in the genome of Acidithiobacillus ferrooxidans ATCC 23270. Excision of the element and expression of relevant genes under normal and DNA-damaging growth conditions was analyzed. Bioinformatic tools and DNA amplification methods were used to identify and to assess the excision and expression of genes related to the mobility of the element. Both basal and mitomycin C-inducible excision as well as expression and induction of the genes for integration/excision are demonstrated, suggesting that ICEAfe1 is an actively excising SOS-regulated mobile genetic element. The presence of a complete set of genes encoding self-transfer functions that are induced in response to DNA damage caused by mitomycin C additionally suggests that this element is capable of conjugative transfer to suitable recipient strains. Transfer of ICEAfe1 may provide selective advantages to other acidophiles in this ecological niche through dissemination of gene clusters expressing transfer RNAs, CRISPRs, and exopolysaccharide biosynthesis enzymes, probably by modification of translation efficiency, resistance to bacteriophage infection and biofilm formation, respectively. These data open novel avenues of research on conjugative transformation of biotechnologically relevant microorganisms recalcitrant to genetic manipulation. Copyright © 2013 S. Karger AG, Basel.
de Ramón-Carbonell, Marta; Sánchez-Torres, Paloma
2017-12-01
The Slt2 mitogen-activated protein (MAP) kinase homologue of Penicillium digitatum, the most relevant pathogen-producing citrus green mould decay during postharvest, was identified and explored. The P. digitatum Slt2-MAPK coding gene (PdSlt2) was functionally characterized by homologous gene elimination and transcriptomic evaluation. The absence of PdSlt2 gene resulted in significantly reduced virulence during citrus infection. The ΔPdSlt2 mutants were also defective in asexual reproduction, showing impairment of sporulation during citrus infection. Gene expression analysis revealed that PdSlt2 was highly induced during citrus fruit infection at early stages (1 dpi). Moreover, PdSlt2 deletion altered gene expression profiles. The relative gene expression (RGE) of fungicide resistance- and fungal virulence-related genes showed that PdSlt2 acts as negative regulator of several transporter encoding genes (ABC and MFS transporters) and a positive regulator of two sterol demethylases. This study indicates that PdSlt2 MAPK is functionally preserved in P. digitatum and highlights the relevant role of the PdSlt2 MAP kinase-mediated signalling pathway in regulating diverse genes crucial for infection and asexual reproduction. Copyright © 2017 British Mycological Society. Published by Elsevier Ltd. All rights reserved.
Gatta, V; Zizzari, V L; Dd ' Amico, V; Salini, L; D' Aurora, M; Franchi, S; Antonucci, I; Sberna, M T; Gherlone, E; Stuppia, L; Tetè, S
2012-01-01
Dental pulp undergoes a number of changes passing from healthy status to inflammation due to deep decay. These changes are regulated by several genes resulting differently expressed in inflamed and healthy dental pulp, and the knowledge of the processes underlying this differential expression is of great relevance in the identification of the pathogenesis of the disease. In this study, the gene expression profile of inflamed and healthy dental pulps were compared by microarray analysis, and data obtained were analyzed by Ingenuity Pathway Analysis (IPA) software. This analysis allows to focus on a variety of genes, typically expressed in inflamed tissues. The comparison analysis showed an increased expression of several genes in inflamed pulp, among which IL1β and CD40 resulted of particular interest. These results indicate that gene expression profile of human dental pulp in different physiological and pathological conditions may become an useful tool for improving our knowledge about processes regulating pulp inflammation.
Csatlós, Éva; Máté, Szabolcs; Laky, Marcella; Rigó, János; Joó, József Gábor
2015-07-01
To describe gene expression patterns of the apoptotic regulatory genes Bcl and Bax in human uterine leiomyoma tissue. To investigate the relationship between alterations of gene expression patterns and several relevant clinical parameters. We obtained samples from 101 cases undergoing surgery for uterine leiomyoma for gene expression analysis of the Bcl-2 and Bax genes. Gene expression was quantified using RT-PCR technique. In the leiomyoma group, the Bcl-2 gene was significantly overexpressed compared with the control group although there was no such difference in the gene expression of Bax. Gene activity of Bcl-2 positively correlated with the tumor number in individual uterine leiomyoma cases. Although there was no significant correlation between the length of the cumulative lactation period before the development of uterine leiomyoma and Bcl-2 gene expression in the leiomyoma tissue, we observed a trend for a shorter cumulative lactation period to be associated with overexpression of the Bcl-2 gene. Overexpression of the antiapoptotic Bcl-2 gene appeared to be a factor in the development of uterine leiomyoma, whereas gene activity of the proapoptotic Bax gene did not seem to play a role in the process.
Milenkovic, Dragan; Deval, Christiane; Dubray, Claude; Mazur, Andrzej; Morand, Christine
2011-01-01
We previously showed, in healthy, middle-aged, moderately overweight men, that orange juice decreases diastolic blood pressure and significantly improves postprandial microvascular endothelial reactivity and that hesperidin could be causally linked to the observed beneficial effect of orange juice. The objective was to determine the effect of chronic consumption of orange juice on the gene expression profile of leukocytes in healthy volunteers and to assess to what extent hesperidin is involved in the effect of orange juice. Volunteers were included in a randomized, controlled, crossover study. Throughout three 4-week periods, volunteers consumed daily: 500 ml orange juice, 500 ml control drink plus hesperidin or 500 ml control drink and placebo. Blood samplings were performed on 10 overnight-fasted subjects after the 4-week treatment period. Global gene expression profiles were determined using human whole genome cDNA microarrays. Both orange juice and hesperidin consumption significantly affected leukocyte gene expression. Orange juice consumption induced changes in expression of, 3,422 genes, while hesperidin intake modulated the expression of 1,819 genes. Between the orange juice and hesperidin consumption groups, 1,582 regulated genes were in common. Many of these genes are implicated in chemotaxis, adhesion, infiltration and lipid transport, which is suggestive of lower recruitment and infiltration of circulating cells to vascular wall and lower lipid accumulation. This study shows that regular consumption of orange juice for 4 weeks alters leukocyte gene expression to an anti-inflammatory and anti-atherogenic profile, and hesperidin displays a relevant role in the genomic effect of this beverage. ClinicalTrials.gov NCT 00983086.
Milenkovic, Dragan; Deval, Christiane; Dubray, Claude; Mazur, Andrzej; Morand, Christine
2011-01-01
Background We previously showed, in healthy, middle-aged, moderately overweight men, that orange juice decreases diastolic blood pressure and significantly improves postprandial microvascular endothelial reactivity and that hesperidin could be causally linked to the observed beneficial effect of orange juice. The objective was to determine the effect of chronic consumption of orange juice on the gene expression profile of leukocytes in healthy volunteers and to assess to what extent hesperidin is involved in the effect of orange juice. Methodology/Principal Findings Volunteers were included in a randomized, controlled, crossover study. Throughout three 4-week periods, volunteers consumed daily: 500 ml orange juice, 500 ml control drink plus hesperidin or 500 ml control drink and placebo. Blood samplings were performed on 10 overnight-fasted subjects after the 4-week treatment period. Global gene expression profiles were determined using human whole genome cDNA microarrays. Both orange juice and hesperidin consumption significantly affected leukocyte gene expression. Orange juice consumption induced changes in expression of, 3,422 genes, while hesperidin intake modulated the expression of 1,819 genes. Between the orange juice and hesperidin consumption groups, 1,582 regulated genes were in common. Many of these genes are implicated in chemotaxis, adhesion, infiltration and lipid transport, which is suggestive of lower recruitment and infiltration of circulating cells to vascular wall and lower lipid accumulation. Conclusions This study shows that regular consumption of orange juice for 4 weeks alters leukocyte gene expression to an anti-inflammatory and anti-atherogenic profile, and hesperidin displays a relevant role in the genomic effect of this beverage. Trial Registration ClinicalTrials.gov NCT 00983086 PMID:22110589
2013-01-01
Background The development of new therapies for orphan genetic diseases represents an extremely important medical and social challenge. Drug repositioning, i.e. finding new indications for approved drugs, could be one of the most cost- and time-effective strategies to cope with this problem, at least in a subset of cases. Therefore, many computational approaches based on the analysis of high throughput gene expression data have so far been proposed to reposition available drugs. However, most of these methods require gene expression profiles directly relevant to the pathologic conditions under study, such as those obtained from patient cells and/or from suitable experimental models. In this work we have developed a new approach for drug repositioning, based on identifying known drug targets showing conserved anti-correlated expression profiles with human disease genes, which is completely independent from the availability of ‘ad hoc’ gene expression data-sets. Results By analyzing available data, we provide evidence that the genes displaying conserved anti-correlation with drug targets are antagonistically modulated in their expression by treatment with the relevant drugs. We then identified clusters of genes associated to similar phenotypes and showing conserved anticorrelation with drug targets. On this basis, we generated a list of potential candidate drug-disease associations. Importantly, we show that some of the proposed associations are already supported by independent experimental evidence. Conclusions Our results support the hypothesis that the identification of gene clusters showing conserved anticorrelation with drug targets can be an effective method for drug repositioning and provide a wide list of new potential drug-disease associations for experimental validation. PMID:24088245
Wang, Zhanwei; Katsaros, Dionyssios; Shen, Yi; Fu, Yuanyuan; Canuto, Emilie Marion; Benedetto, Chiara; Lu, Lingeng; Chu, Wen-Ming; Risch, Harvey A.; Yu, Herbert
2015-01-01
To investigate the biologic relevance and clinical implication of genes involved in multiple gene expression signatures for breast cancer prognosis, we identified 16 published gene expression signatures, and selected two genes, MAD2L1 and BUB1. These genes appeared in 5 signatures and were involved in cell-cycle regulation. We analyzed the expression of these genes in relation to tumor features and disease outcomes. In vitro experiments were also performed in two breast cancer cell lines, MDA-MB-231 and MDA-MB-468, to assess cell proliferation, migration and invasion after knocking down the expression of these genes. High expression of these genes was found to be associated with aggressive tumors and poor disease-free survival of 203 breast cancer patients in our study, and the association with survival was confirmed in an online database consisting of 914 patients. In vitro experiments demonstrated that lowering the expression of these genes by siRNAs reduced tumor cell growth and inhibited cell migration and invasion. Our investigation suggests that MAD2L1 and BUB1 may play important roles in breast cancer progression, and measuring the expression of these genes may assist the prediction of breast cancer prognosis. PMID:26287798
Blanco, Eduardo; Galeano, Pablo; Palomino, Ana; Pavón, Francisco J; Rivera, Patricia; Serrano, Antonia; Alen, Francisco; Rubio, Leticia; Vargas, Antonio; Castilla-Ortega, Estela; Decara, Juan; Bilbao, Ainhoa; de Fonseca, Fernando Rodríguez; Suárez, Juan
2016-03-01
In the reward mesocorticolimbic circuits, the glutamatergic and endocannabinoid systems are implicated in neurobiological mechanisms underlying cocaine addiction. However, the involvement of both systems in the hippocampus, a critical region to process relational information relevant for encoding drug-associated memories, in cocaine-related behaviors remains unknown. In the present work, we studied whether the hippocampal gene/protein expression of relevant glutamate signaling components, including glutamate-synthesizing enzymes and metabotropic and ionotropic receptors, and the hippocampal gene/protein expression of cannabinoid type 1 (CB1) receptor and endocannabinoid metabolic enzymes were altered following acute and/or repeated cocaine administration resulting in conditioned locomotion and locomotor sensitization. Results showed that acute cocaine administration induced an overall down-regulation of glutamate-related gene expression and, specifically, a low phosphorylation level of GluA1. In contrast, locomotor sensitization to cocaine produced an up-regulation of several glutamate receptor-related genes and, specifically, an increased protein expression of the GluN1 receptor subunit. Regarding the endocannabinoid system, acute and repeated cocaine administration were associated with an increased gene/protein expression of CB1 receptors and a decreased gene/protein expression of the endocannabinoid-synthesis enzymes N-acyl phosphatidylethanolamine D (NAPE-PLD) and diacylglycerol lipase alpha (DAGLα). These changes resulted in an overall decrease in endocannabinoid synthesis/degradation ratios, especially NAPE-PLD/fatty acid amide hydrolase and DAGLα/monoacylglycerol lipase, suggesting a reduced endocannabinoid production associated with a compensatory up-regulation of CB1 receptor. Overall, these findings suggest that repeated cocaine administration resulting in locomotor sensitization induces a down-regulation of the endocannabinoid signaling that could contribute to the specifically increased GluN1 expression observed in the hippocampus of cocaine-sensitized mice. Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.
Richter, Karin; Wirta, Valtteri; Dahl, Lina; Bruce, Sara; Lundeberg, Joakim; Carlsson, Leif; Williams, Cecilia
2006-01-01
Background Expression of the LIM-homeobox gene Lhx2 in murine hematopoietic cells allows for the generation of hematopoietic stem cell (HSC)-like cell lines. To address the molecular basis of Lhx2 function, we generated HSC-like cell lines where Lhx2 expression is regulated by a tet-on system and hence dependent on the presence of doxycyclin (dox). These cell lines efficiently down-regulate Lhx2 expression upon dox withdrawal leading to a rapid differentiation into various myeloid cell types. Results Global gene expression of these cell lines cultured in dox was compared to different time points after dox withdrawal using microarray technology. We identified 267 differentially expressed genes. The majority of the genes overlapping with HSC-specific databases were those down-regulated after turning off Lhx2 expression and a majority of the genes overlapping with those defined as late progenitor-specific genes were the up-regulated genes, suggesting that these cell lines represent a relevant model system for normal HSCs also at the level of global gene expression. Moreover, in situ hybridisations of several genes down-regulated after dox withdrawal showed overlapping expression patterns with Lhx2 in various tissues during embryonic development. Conclusion Global gene expression analysis of HSC-like cell lines with inducible Lhx2 expression has identified genes putatively linked to self-renewal / differentiation of HSCs, and function of Lhx2 in organ development and stem / progenitor cells of non-hematopoietic origin. PMID:16600034
Bozzato, Andrea; Barlati, Sergio; Borsani, Giuseppe
2008-04-01
Mucolipidosis type IV (MLIV, MIM 252650) is an autosomal recessive lysosomal storage disorder that causes mental and motor retardation as well as visual impairment. The lysosomal storage defect in MLIV is consistent with abnormalities of membrane traffic and organelle dynamics in the late endocytic pathway. MLIV is caused by mutations in the MCOLN1 gene, which codes for mucolipin-1 (MLN1), a member of the large family of transient receptor potential (TRP) cation channels. Although a number of studies have been performed on mucolipin-1, the pathological mechanisms underlying MLIV are not fully understood. To identify genes that characterize pathogenic changes in mucolipidosis type IV, we compared the expression profiles of three MLIV and three normal skin fibroblasts cell lines using oligonucleotide microarrays. Genes that were differentially expressed in patients' cells were identified. 231 genes were up-regulated, and 116 down-regulated. Real-Time RT-PCR performed on selected genes in six independent MLIV fibroblasts cell lines was generally consistent with the microarray findings. This study allowed to evidence the modulation at the transcriptional level of a discrete number of genes relevant in biological processes which are altered in the disease such as endosome/lysosome trafficking, lysosome biogenesis, organelle acidification and lipid metabolism.
Msx homeobox gene family and craniofacial development.
Alappat, Sylvia; Zhang, Zun Yi; Chen, Yi Ping
2003-12-01
Vertebrate Msx genes are unlinked, homeobox-containing genes that bear homology to the Drosophila muscle segment homeobox gene. These genes are expressed at multiple sites of tissue-tissue interactions during vertebrate embryonic development. Inductive interactions mediated by the Msx genes are essential for normal craniofacial, limb and ectodermal organ morphogenesis, and are also essential to survival in mice, as manifested by the phenotypic abnormalities shown in knockout mice and in humans. This review summarizes studies on the expression, regulation, and functional analysis of Msx genes that bear relevance to craniofacial development in humans and mice. Key words: Msx genes, craniofacial, tooth, cleft palate, suture, development, transcription factor, signaling molecule.
Pereira, Francisco B; Guimarães, Pedro Mr; Gomes, Daniel G; Mira, Nuno P; Teixeira, Miguel C; Sá-Correia, Isabel; Domingues, Lucília
2011-12-09
The optimization of industrial bioethanol production will depend on the rational design and manipulation of industrial strains to improve their robustness against the many stress factors affecting their performance during very high gravity (VHG) or lignocellulosic fermentations. In this study, a set of Saccharomyces cerevisiae genes found, through genome-wide screenings, to confer resistance to the simultaneous presence of different relevant stresses were identified as required for maximal fermentation performance under industrial conditions. Chemogenomics data were used to identify eight genes whose expression confers simultaneous resistance to high concentrations of glucose, acetic acid and ethanol, chemical stresses relevant for VHG fermentations; and eleven genes conferring simultaneous resistance to stresses relevant during lignocellulosic fermentations. These eleven genes were identified based on two different sets: one with five genes granting simultaneous resistance to ethanol, acetic acid and furfural, and the other with six genes providing simultaneous resistance to ethanol, acetic acid and vanillin. The expression of Bud31 and Hpr1 was found to lead to the increase of both ethanol yield and fermentation rate, while Pho85, Vrp1 and Ygl024w expression is required for maximal ethanol production in VHG fermentations. Five genes, Erg2, Prs3, Rav1, Rpb4 and Vma8, were found to contribute to the maintenance of cell viability in wheat straw hydrolysate and/or the maximal fermentation rate of this substrate. The identified genes stand as preferential targets for genetic engineering manipulation in order to generate more robust industrial strains, able to cope with the most significant fermentation stresses and, thus, to increase ethanol production rate and final ethanol titers.
Dosunmu, Remi; Alashwal, Hany; Zawia, Nasser H
2012-06-01
In this study, we assessed global gene expression patterns in adolescent mice exposed to lead (Pb) as infants and their aged siblings to identify reprogrammed genes. Global expression on postnatal day 20 and 700 was analyzed and genes that were down- and up-regulated (≥2 fold) were identified, clustered and analyzed for their relationship to DNA methylation. About 150 genes were differentially expressed in old age. In normal aging, we observed an up-regulation of genes related to the immune response, metal-binding, metabolism and transcription/transduction coupling. Prior exposure to Pb revealed a repression in these genes suggesting that disturbances in developmental stages of the brain compromise the ability to defend against age-related stressors, thus promoting the neurodegenerative process. Overexpression and repression of genes corresponded with their DNA methylation profile. Published by Elsevier Ireland Ltd.
Gene Expression Elucidates Functional Impact of Polygenic Risk for Schizophrenia
Fromer, Menachem; Roussos, Panos; Sieberts, Solveig K; Johnson, Jessica S; Kavanagh, David H; Perumal, Thanneer M; Ruderfer, Douglas M; Oh, Edwin C; Topol, Aaron; Shah, Hardik R; Klei, Lambertus L; Kramer, Robin; Pinto, Dalila; Gümüş, Zeynep H; Cicek, A. Ercument; Dang, Kristen K; Browne, Andrew; Lu, Cong; Xie, Lu; Readhead, Ben; Stahl, Eli A; Parvizi, Mahsa; Hamamsy, Tymor; Fullard, John F; Wang, Ying-Chih; Mahajan, Milind C; Derry, Jonathan M J; Dudley, Joel; Hemby, Scott E; Logsdon, Benjamin A; Talbot, Konrad; Raj, Towfique; Bennett, David A; De Jager, Philip L; Zhu, Jun; Zhang, Bin; Sullivan, Patrick F; Chess, Andrew; Purcell, Shaun M; Shinobu, Leslie A; Mangravite, Lara M; Toyoshiba, Hiroyoshi; Gur, Raquel E; Hahn, Chang-Gyu; Lewis, David A; Haroutunian, Vahram; Peters, Mette A; Lipska, Barbara K; Buxbaum, Joseph D; Schadt, Eric E; Hirai, Keisuke; Roeder, Kathryn; Brennand, Kristen J; Katsanis, Nicholas; Domenici, Enrico; Devlin, Bernie; Sklar, Pamela
2016-01-01
Over 100 genetic loci harbor schizophrenia associated variants, yet how these variants confer liability is uncertain. The CommonMind Consortium sequenced RNA from dorsolateral prefrontal cortex of schizophrenia cases (N = 258) and control subjects (N = 279), creating a resource of gene expression and its genetic regulation. Using this resource, ~20% of schizophrenia loci have variants that could contribute to altered gene expression and liability. In five loci, only a single gene was involved: FURIN, TSNARE1, CNTN4, CLCN3, or SNAP91. Altering expression of FURIN, TSNARE1, or CNTN4 changes neurodevelopment in zebrafish; knockdown of FURIN in human neural progenitor cells yields abnormal migration. Of 693 genes showing significant case/control differential expression, their fold changes are ≤ 1.33, and an independent cohort yields similar results. Gene co-expression implicates a network relevant for schizophrenia. Our findings show schizophrenia is polygenic and highlight the utility of this resource for mechanistic interpretations of genetic liability for brain diseases. PMID:27668389
Gene expression elucidates functional impact of polygenic risk for schizophrenia.
Fromer, Menachem; Roussos, Panos; Sieberts, Solveig K; Johnson, Jessica S; Kavanagh, David H; Perumal, Thanneer M; Ruderfer, Douglas M; Oh, Edwin C; Topol, Aaron; Shah, Hardik R; Klei, Lambertus L; Kramer, Robin; Pinto, Dalila; Gümüş, Zeynep H; Cicek, A Ercument; Dang, Kristen K; Browne, Andrew; Lu, Cong; Xie, Lu; Readhead, Ben; Stahl, Eli A; Xiao, Jianqiu; Parvizi, Mahsa; Hamamsy, Tymor; Fullard, John F; Wang, Ying-Chih; Mahajan, Milind C; Derry, Jonathan M J; Dudley, Joel T; Hemby, Scott E; Logsdon, Benjamin A; Talbot, Konrad; Raj, Towfique; Bennett, David A; De Jager, Philip L; Zhu, Jun; Zhang, Bin; Sullivan, Patrick F; Chess, Andrew; Purcell, Shaun M; Shinobu, Leslie A; Mangravite, Lara M; Toyoshiba, Hiroyoshi; Gur, Raquel E; Hahn, Chang-Gyu; Lewis, David A; Haroutunian, Vahram; Peters, Mette A; Lipska, Barbara K; Buxbaum, Joseph D; Schadt, Eric E; Hirai, Keisuke; Roeder, Kathryn; Brennand, Kristen J; Katsanis, Nicholas; Domenici, Enrico; Devlin, Bernie; Sklar, Pamela
2016-11-01
Over 100 genetic loci harbor schizophrenia-associated variants, yet how these variants confer liability is uncertain. The CommonMind Consortium sequenced RNA from dorsolateral prefrontal cortex of people with schizophrenia (N = 258) and control subjects (N = 279), creating a resource of gene expression and its genetic regulation. Using this resource, ∼20% of schizophrenia loci have variants that could contribute to altered gene expression and liability. In five loci, only a single gene was involved: FURIN, TSNARE1, CNTN4, CLCN3 or SNAP91. Altering expression of FURIN, TSNARE1 or CNTN4 changed neurodevelopment in zebrafish; knockdown of FURIN in human neural progenitor cells yielded abnormal migration. Of 693 genes showing significant case-versus-control differential expression, their fold changes were ≤ 1.33, and an independent cohort yielded similar results. Gene co-expression implicates a network relevant for schizophrenia. Our findings show that schizophrenia is polygenic and highlight the utility of this resource for mechanistic interpretations of genetic liability for brain diseases.
Utility and Limitations of Using Gene Expression Data to Identify Functional Associations
Peng, Cheng; Shiu, Shin-Han
2016-01-01
Gene co-expression has been widely used to hypothesize gene function through guilt-by association. However, it is not clear to what degree co-expression is informative, whether it can be applied to genes involved in different biological processes, and how the type of dataset impacts inferences about gene functions. Here our goal is to assess the utility and limitations of using co-expression as a criterion to recover functional associations between genes. By determining the percentage of gene pairs in a metabolic pathway with significant expression correlation, we found that many genes in the same pathway do not have similar transcript profiles and the choice of dataset, annotation quality, gene function, expression similarity measure, and clustering approach significantly impacts the ability to recover functional associations between genes using Arabidopsis thaliana as an example. Some datasets are more informative in capturing coordinated expression profiles and larger data sets are not always better. In addition, to recover the maximum number of known pathways and identify candidate genes with similar functions, it is important to explore rather exhaustively multiple dataset combinations, similarity measures, clustering algorithms and parameters. Finally, we validated the biological relevance of co-expression cluster memberships with an independent phenomics dataset and found that genes that consistently cluster with leucine degradation genes tend to have similar leucine levels in mutants. This study provides a framework for obtaining gene functional associations by maximizing the information that can be obtained from gene expression datasets. PMID:27935950
McKinney, Brett A.; White, Bill C.; Grill, Diane E.; Li, Peter W.; Kennedy, Richard B.; Poland, Gregory A.; Oberg, Ann L.
2013-01-01
Relief-F is a nonparametric, nearest-neighbor machine learning method that has been successfully used to identify relevant variables that may interact in complex multivariate models to explain phenotypic variation. While several tools have been developed for assessing differential expression in sequence-based transcriptomics, the detection of statistical interactions between transcripts has received less attention in the area of RNA-seq analysis. We describe a new extension and assessment of Relief-F for feature selection in RNA-seq data. The ReliefSeq implementation adapts the number of nearest neighbors (k) for each gene to optimize the Relief-F test statistics (importance scores) for finding both main effects and interactions. We compare this gene-wise adaptive-k (gwak) Relief-F method with standard RNA-seq feature selection tools, such as DESeq and edgeR, and with the popular machine learning method Random Forests. We demonstrate performance on a panel of simulated data that have a range of distributional properties reflected in real mRNA-seq data including multiple transcripts with varying sizes of main effects and interaction effects. For simulated main effects, gwak-Relief-F feature selection performs comparably to standard tools DESeq and edgeR for ranking relevant transcripts. For gene-gene interactions, gwak-Relief-F outperforms all comparison methods at ranking relevant genes in all but the highest fold change/highest signal situations where it performs similarly. The gwak-Relief-F algorithm outperforms Random Forests for detecting relevant genes in all simulation experiments. In addition, Relief-F is comparable to the other methods based on computational time. We also apply ReliefSeq to an RNA-Seq study of smallpox vaccine to identify gene expression changes between vaccinia virus-stimulated and unstimulated samples. ReliefSeq is an attractive tool for inclusion in the suite of tools used for analysis of mRNA-Seq data; it has power to detect both main effects and interaction effects. Software Availability: http://insilico.utulsa.edu/ReliefSeq.php. PMID:24339943
Expression of inflammation-related genes in aldosterone-producing adenomas with KCNJ5 mutation.
Murakami, Masanori; Yoshimoto, Takanobu; Nakano, Yujiro; Tsuchiya, Kyoichiro; Minami, Isao; Bouchi, Ryotaro; Fujii, Yasuhisa; Nakabayashi, Kazuhiko; Hashimoto, Koshi; Hata, Ken-Ichiro; Kihara, Kazunori; Ogawa, Yoshihiro
2016-08-05
The adrenocortical cells have been shown to produce various inflammatory cytokines such as TNFα and IL-6, which could modulate steroidogenesis. However, the role of inflammatory cytokines in aldosterone-producing adenomas (APAs) is not fully understood. In the present study, we examined the relationships between mRNA expression levels of the inflammation-related genes and somatic mutations in APA tissues. We evaluated mRNA expression levels of TNFA, IL6, and NFKB1 in APA tissues obtained from 44 Japanese APA patients. We revealed that mRNA expression patterns of the inflammation-related genes depended on a KCNJ5 somatic mutation. In addition, we showed that mRNA expression levels of the inflammation-related genes correlated with those of the steroidogenic enzyme CYP11B1 in the patients with APAs. The present study documented for the first time the expression of inflammation-related genes in APAs and the correlation of their expression levels with the KCNJ5 mutation status and mRNA expression levels of steroidogenic enzymes, indicating the pathophysiological relevance of inflammation-related genes in APAs. Copyright © 2016 Elsevier Inc. All rights reserved.
Integrative Approach to Pain Genetics Identifies Pain Sensitivity Loci across Diseases
Ruau, David; Dudley, Joel T.; Chen, Rong; Phillips, Nicholas G.; Swan, Gary E.; Lazzeroni, Laura C.; Clark, J. David
2012-01-01
Identifying human genes relevant for the processing of pain requires difficult-to-conduct and expensive large-scale clinical trials. Here, we examine a novel integrative paradigm for data-driven discovery of pain gene candidates, taking advantage of the vast amount of existing disease-related clinical literature and gene expression microarray data stored in large international repositories. First, thousands of diseases were ranked according to a disease-specific pain index (DSPI), derived from Medical Subject Heading (MESH) annotations in MEDLINE. Second, gene expression profiles of 121 of these human diseases were obtained from public sources. Third, genes with expression variation significantly correlated with DSPI across diseases were selected as candidate pain genes. Finally, selected candidate pain genes were genotyped in an independent human cohort and prospectively evaluated for significant association between variants and measures of pain sensitivity. The strongest signal was with rs4512126 (5q32, ABLIM3, P = 1.3×10−10) for the sensitivity to cold pressor pain in males, but not in females. Significant associations were also observed with rs12548828, rs7826700 and rs1075791 on 8q22.2 within NCALD (P = 1.7×10−4, 1.8×10−4, and 2.2×10−4 respectively). Our results demonstrate the utility of a novel paradigm that integrates publicly available disease-specific gene expression data with clinical data curated from MEDLINE to facilitate the discovery of pain-relevant genes. This data-derived list of pain gene candidates enables additional focused and efficient biological studies validating additional candidates. PMID:22685391
Koneva, Lada A; Zhang, Yanxiao; Virani, Shama; Hall, Pelle B; McHugh, Jonathan B; Chepeha, Douglas B; Wolf, Gregory T; Carey, Thomas E; Rozek, Laura S; Sartor, Maureen A
2018-01-01
The incidence of human papillomavirus (HPV)-related oropharynx cancer has steadily increased over the past two decades and now represents a majority of oropharyngeal cancer cases. Integration of the HPV genome into the host genome is a common event during carcinogenesis that has clinically relevant effects if the viral early genes are transcribed. Understanding the impact of HPV integration on clinical outcomes of head and neck squamous cell carcinoma (HNSCC) is critical for implementing deescalated treatment approaches for HPV + HNSCC patients. RNA sequencing (RNA-seq) data from HNSCC tumors ( n = 84) were used to identify and characterize expressed integration events, which were overrepresented near known head and neck, lung, and urogenital cancer genes. Five genes were recurrent, including CD274 (PD-L1) A significant number of genes detected to have integration events were found to interact with Tp63, ETS, and/or FOX1A. Patients with no detected integration had better survival than integration-positive and HPV - patients. Furthermore, integration-negative tumors were characterized by strongly heightened signatures for immune cells, including CD4 + , CD3 + , regulatory, CD8 + T cells, NK cells, and B cells, compared with integration-positive tumors. Finally, genes with elevated expression in integration-negative specimens were strongly enriched with immune-related gene ontology terms, while upregulated genes in integration-positive tumors were enriched for keratinization, RNA metabolism, and translation. Implications: These findings demonstrate the clinical relevancy of expressed HPV integration, which is characterized by a change in immune response and/or aberrant expression of the integration-harboring cancer-related genes, and suggest strong natural selection for tumor cells with expressed integration events in key carcinogenic genes. Mol Cancer Res; 16(1); 90-102. ©2017 AACR . ©2017 American Association for Cancer Research.
Maouche, Seraya; Poirier, Odette; Godefroy, Tiphaine; Olaso, Robert; Gut, Ivo; Collet, Jean-Phillipe; Montalescot, Gilles; Cambien, François
2008-01-01
Background In this study we assessed the respective ability of Affymetrix and Illumina microarray methodologies to answer a relevant biological question, namely the change in gene expression between resting monocytes and macrophages derived from these monocytes. Five RNA samples for each type of cell were hybridized to the two platforms in parallel. In addition, a reference list of differentially expressed genes (DEG) was generated from a larger number of hybridizations (mRNA from 86 individuals) using the RNG/MRC two-color platform. Results Our results show an important overlap of the Illumina and Affymetrix DEG lists. In addition, more than 70% of the genes in these lists were also present in the reference list. Overall the two platforms had very similar performance in terms of biological significance, evaluated by the presence in the DEG lists of an excess of genes belonging to Gene Ontology (GO) categories relevant for the biology of monocytes and macrophages. Our results support the conclusion of the MicroArray Quality Control (MAQC) project that the criteria used to constitute the DEG lists strongly influence the degree of concordance among platforms. However the importance of prioritizing genes by magnitude of effect (fold change) rather than statistical significance (p-value) to enhance cross-platform reproducibility recommended by the MAQC authors was not supported by our data. Conclusion Functional analysis based on GO enrichment demonstrates that the 2 compared technologies delivered very similar results and identified most of the relevant GO categories enriched in the reference list. PMID:18578872
Pek, Han Bin; Klement, Maximilian; Ang, Kok Siong; Chung, Bevan Kai-Sheng; Ow, Dave Siak-Wei; Lee, Dong-Yup
2015-01-01
Various isoforms of invertases from prokaryotes, fungi, and higher plants has been expressed in Escherichia coli, and codon optimisation is a widely-adopted strategy for improvement of heterologous enzyme expression. Successful synthetic gene design for recombinant protein expression can be done by matching its translational elongation rate against heterologous host organisms via codon optimization. Amongst the various design parameters considered for the gene synthesis, codon context bias has been relatively overlooked compared to individual codon usage which is commonly adopted in most of codon optimization tools. In addition, matching the rates of transcription and translation based on secondary structure may lead to enhanced protein folding. In this study, we evaluated codon context fitness as design criterion for improving the expression of thermostable invertase from Thermotoga maritima in Escherichia coli and explored the relevance of secondary structure regions for folding and expression. We designed three coding sequences by using (1) a commercial vendor optimized gene algorithm, (2) codon context for the whole gene, and (3) codon context based on the secondary structure regions. Then, the codon optimized sequences were transformed and expressed in E. coli. From the resultant enzyme activities and protein yield data, codon context fitness proved to have the highest activity as compared to the wild-type control and other criteria while secondary structure-based strategy is comparable to the control. Codon context bias was shown to be a relevant parameter for enhancing enzyme production in Escherichia coli by codon optimization. Thus, we can effectively design synthetic genes within heterologous host organisms using this criterion. Copyright © 2015 Elsevier Inc. All rights reserved.
Gattiker, Alexandre; Niederhauser-Wiederkehr, Christa; Moore, James; Hermida, Leandro; Primig, Michael
2007-01-01
We report a novel release of the GermOnline knowledgebase covering genes relevant for the cell cycle, gametogenesis and fertility. GermOnline was extended into a cross-species systems browser including information on DNA sequence annotation, gene expression and the function of gene products. The database covers eight model organisms and Homo sapiens, for which complete genome annotation data are available. The database is now built around a sophisticated genome browser (Ensembl), our own microarray information management and annotation system (MIMAS) used to extensively describe experimental data obtained with high-density oligonucleotide microarrays (GeneChips) and a comprehensive system for online editing of database entries (MediaWiki). The RNA data include results from classical microarrays as well as tiling arrays that yield information on RNA expression levels, transcript start sites and lengths as well as exon composition. Members of the research community are solicited to help GermOnline curators keep database entries on genes and gene products complete and accurate. The database is accessible at http://www.germonline.org/.
IDENTIFICATION OF DIFFERENTIALLY EXPRESSED GENES IN THE KIDNEYS OF GROWTH HORMONE TRANSGENIC MICE
Coschigano, K.T.; Wetzel, A.N.; Obichere, N.; Sharma, A.; Lee, S.; Rasch, R.; Guigneaux, M.M.; Flyvbjerg, A.; Wood, T.G.; Kopchick, J.J.
2010-01-01
Objective Bovine growth hormone (bGH) transgenic mice develop severe kidney damage. This damage may be due, at least in part, to changes in gene expression. Identification of genes with altered expression in the bGH kidney may identify mechanisms leading to damage in this system that may also be relevant to other models of kidney damage. Design cDNA subtraction libraries, northern blot analyses, microarray analyses and real-time reverse transcription polymerase chain reaction (RT/PCR) assays were used to identify and verify specific genes exhibiting differential RNA expression between kidneys of bGH mice and their non-transgenic (NT) littermates. Results Immunoglobulins were the vast majority of genes identified by the cDNA subtractions and the microarray analyses as being up-regulated in bGH. Several glycoprotein genes and inflammation-related genes also showed increased RNA expression in the bGH kidney. In contrast, only a few genes were identified as being significantly down-regulated in the bGH kidney. The most notable decrease in RNA expression was for the gene encoding kidney androgen-regulated protein. Conclusions A number of genes were identified as being differentially expressed in the bGH kidney. Inclusion of two groups, immunoglobulins and inflammation-related genes, suggests a role of the immune system in bGH kidney damage. PMID:20655258
Baker, Valerie A; Harries, Helen M; Waring, Jeff F; Duggan, Colette M; Ni, Hong A; Jolly, Robert A; Yoon, Lawrence W; De Souza, Angus T; Schmid, Judith E; Brown, Roger H; Ulrich, Roger G; Rockett, John C
2004-01-01
Microarrays have the potential to significantly impact our ability to identify toxic hazards by the identification of mechanistically relevant markers of toxicity. To be useful for risk assessment, however, microarray data must be challenged to determine reliability and interlaboratory reproducibility. As part of a series of studies conducted by the International Life Sciences Institute Health and Environmental Science Institute Technical Committee on the Application of Genomics to Mechanism-Based Risk Assessment, the biological response in rats to the hepatotoxin clofibrate was investigated. Animals were treated with high (250 mg/kg/day) or low (25 mg/kg/day) doses for 1, 3, or 7 days in two laboratories. Clinical chemistry parameters were measured, livers removed for histopathological assessment, and gene expression analysis was conducted using cDNA arrays. Expression changes in genes involved in fatty acid metabolism (e.g., acyl-CoA oxidase), cell proliferation (e.g., topoisomerase II-Alpha), and fatty acid oxidation (e.g., cytochrome P450 4A1), consistent with the mechanism of clofibrate hepatotoxicity, were detected. Observed differences in gene expression levels correlated with the level of biological response induced in the two in vivo studies. Generally, there was a high level of concordance between the gene expression profiles generated from pooled and individual RNA samples. Quantitative real-time polymerase chain reaction was used to confirm modulations for a number of peroxisome proliferator marker genes. Though the results indicate some variability in the quantitative nature of the microarray data, this appears due largely to differences in experimental and data analysis procedures used within each laboratory. In summary, this study demonstrates the potential for gene expression profiling to identify toxic hazards by the identification of mechanistically relevant markers of toxicity. PMID:15033592
Rivero, Javier; Henríquez-Hernández, Luis Alberto; Luzardo, Octavio P; Pestano, José; Zumbado, Manuel; Boada, Luis D; Valerón, Pilar F
2016-03-30
Organochlorine pesticides (OCs) have been associated with breast cancer development and progression, but the mechanisms underlying this phenomenon are not well known. In this work, we evaluated the effects exerted on normal human mammary epithelial cells (HMEC) by the OC mixtures most frequently detected in healthy women (H-mixture) and in women diagnosed with breast cancer (BC-mixture), as identified in a previous case-control study developed in Spain. Cytotoxicity and gene expression profile of human kinases (n=68) and non-kinases (n=26) were tested at concentrations similar to those described in the serum of those cases and controls. Although both mixtures caused a down-regulation of genes involved in the ATP binding process, our results clearly indicate that both mixtures may exert a very different effect on the gene expression profile of HMEC. Thus, while BC-mixture up-regulated the expression of oncogenes associated to breast cancer (GFRA1 and BHLHB8), the H-mixture down-regulated the expression of tumor suppressor genes (EPHA4 and EPHB2). Our results indicate that the composition of the OC mixture could play a role in the initiation processes of breast cancer. In addition, the present results suggest that subtle changes in the composition and levels of pollutants involved in environmentally relevant mixtures might induce very different biological effects, which explain, at least partially, why some mixtures seem to be more carcinogenic than others. Nonetheless, our findings confirm that environmentally relevant pollutants may modulate the expression of genes closely related to carcinogenic processes in the breast, reinforcing the role exerted by environment in the regulation of genes involved in breast carcinogenesis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Niedoszytko, Marek; Bruinenberg, Marcel; de Monchy, Jan; Weersma, Rinse K; Wijmenga, Cisca; Jassem, Ewa; Elberink, Joanne N G Oude
2011-06-01
Insect venom immunotherapy (VIT) is the only causative treatment of insect venom allergy (IVA). The immunological mechanism(s) responsible for long-term protection achieved by VIT are largely unknown. A better understanding is relevant for improving the diagnosis, prediction of anaphylaxis, and monitoring and simplifying treatment of IVA. To find genes that are differentially expressed during the maintenance phase of VIT and after stopping, to get clues about the pathways involved in the long-term protective effect of immunotherapy. Whole genome gene expression analysis was performed on RNA samples from 50 patients treated with VIT and 43 healthy controls. Patients were divided into three groups: (1) before the start of VIT; (2) on maintenance phase of VIT for at least 3 years still receiving injections; and (3) after VIT. Of all 48,804 probes present in the array, 48,773 transcripts had sufficient data for further analysis. The list of genes that were differentially expressed (at least log2 FC > 2; P < .05 corrected for multiple testing) during the maintenance phase of VIT as well as after successful VIT contains 89 entities. The function of these genes affects cell signaling, cell differentiation, and ion transport. This study shows that a group of genes is differentially expressed both during and after VIT in comparison with gene expression in patients before VIT. Although the results of this study should be confirmed prospectively, the relevance of these findings is supported by the fact that they are related to putative mechanisms of immunotherapy. Copyright © 2011 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Zhang, Ai; Li, Ning; Gong, Lei; Gou, Xiaowan; Wang, Bin; Deng, Xin; Li, Changping; Dong, Qianli; Zhang, Huakun
2017-01-01
Aneuploidy, a condition of unbalanced chromosome content, represents a large-effect mutation that bears significant relevance to human health and microbe adaptation. As such, extensive studies of aneuploidy have been conducted in unicellular model organisms and cancer cells. Aneuploidy also frequently is associated with plant polyploidization, but its impact on gene expression and its relevance to polyploid genome evolution/functional innovation remain largely unknown. Here, we used a panel of diverse types of whole-chromosome aneuploidy of hexaploid wheat (Triticum aestivum), all under the common genetic background of cv Chinese Spring, to systemically investigate the impact of aneuploidy on genome-, subgenome-, and chromosome-wide gene expression. Compared with prior findings in haploid or diploid aneuploid systems, we unravel additional and novel features of alteration in global gene expression resulting from the two major impacts of aneuploidy, cis- and trans-regulation, as well as dosage compensation. We show that the expression-altered genes map evenly along each chromosome, with no evidence for coregulating aggregated expression domains. However, chromosomes and subgenomes in hexaploid wheat are unequal in their responses to aneuploidy with respect to the number of genes being dysregulated. Strikingly, homeologous chromosomes do not differ from nonhomologous chromosomes in terms of aneuploidy-induced trans-acting effects, suggesting that the three constituent subgenomes of hexaploid wheat are largely uncoupled at the transcriptional level of gene regulation. Together, our findings shed new insights into the functional interplay between homeologous chromosomes and interactions between subgenomes in hexaploid wheat, which bear implications to further our understanding of allopolyploid genome evolution and efforts in breeding new allopolyploid crops. PMID:28821592
Reynier, Frédéric; Petit, Fabien; Paye, Malick; Turrel-Davin, Fanny; Imbert, Pierre-Emmanuel; Hot, Arnaud; Mougin, Bruno; Miossec, Pierre
2011-01-01
The analysis of gene expression data shows that many genes display similarity in their expression profiles suggesting some co-regulation. Here, we investigated the co-expression patterns in gene expression data and proposed a correlation-based research method to stratify individuals. Using blood from rheumatoid arthritis (RA) patients, we investigated the gene expression profiles from whole blood using Affymetrix microarray technology. Co-expressed genes were analyzed by a biclustering method, followed by gene ontology analysis of the relevant biclusters. Taking the type I interferon (IFN) pathway as an example, a classification algorithm was developed from the 102 RA patients and extended to 10 systemic lupus erythematosus (SLE) patients and 100 healthy volunteers to further characterize individuals. We developed a correlation-based algorithm referred to as Classification Algorithm Based on a Biological Signature (CABS), an alternative to other approaches focused specifically on the expression levels. This algorithm applied to the expression of 35 IFN-related genes showed that the IFN signature presented a heterogeneous expression between RA, SLE and healthy controls which could reflect the level of global IFN signature activation. Moreover, the monitoring of the IFN-related genes during the anti-TNF treatment identified changes in type I IFN gene activity induced in RA patients. In conclusion, we have proposed an original method to analyze genes sharing an expression pattern and a biological function showing that the activation levels of a biological signature could be characterized by its overall state of correlation.
Gene co-expression networks shed light into diseases of brain iron accumulation
Bettencourt, Conceição; Forabosco, Paola; Wiethoff, Sarah; Heidari, Moones; Johnstone, Daniel M.; Botía, Juan A.; Collingwood, Joanna F.; Hardy, John; Milward, Elizabeth A.; Ryten, Mina; Houlden, Henry
2016-01-01
Aberrant brain iron deposition is observed in both common and rare neurodegenerative disorders, including those categorized as Neurodegeneration with Brain Iron Accumulation (NBIA), which are characterized by focal iron accumulation in the basal ganglia. Two NBIA genes are directly involved in iron metabolism, but whether other NBIA-related genes also regulate iron homeostasis in the human brain, and whether aberrant iron deposition contributes to neurodegenerative processes remains largely unknown. This study aims to expand our understanding of these iron overload diseases and identify relationships between known NBIA genes and their main interacting partners by using a systems biology approach. We used whole-transcriptome gene expression data from human brain samples originating from 101 neuropathologically normal individuals (10 brain regions) to generate weighted gene co-expression networks and cluster the 10 known NBIA genes in an unsupervised manner. We investigated NBIA-enriched networks for relevant cell types and pathways, and whether they are disrupted by iron loading in NBIA diseased tissue and in an in vivo mouse model. We identified two basal ganglia gene co-expression modules significantly enriched for NBIA genes, which resemble neuronal and oligodendrocytic signatures. These NBIA gene networks are enriched for iron-related genes, and implicate synapse and lipid metabolism related pathways. Our data also indicates that these networks are disrupted by excessive brain iron loading. We identified multiple cell types in the origin of NBIA disorders. We also found unforeseen links between NBIA networks and iron-related processes, and demonstrate convergent pathways connecting NBIAs and phenotypically overlapping diseases. Our results are of further relevance for these diseases by providing candidates for new causative genes and possible points for therapeutic intervention. PMID:26707700
Gene co-expression networks shed light into diseases of brain iron accumulation.
Bettencourt, Conceição; Forabosco, Paola; Wiethoff, Sarah; Heidari, Moones; Johnstone, Daniel M; Botía, Juan A; Collingwood, Joanna F; Hardy, John; Milward, Elizabeth A; Ryten, Mina; Houlden, Henry
2016-03-01
Aberrant brain iron deposition is observed in both common and rare neurodegenerative disorders, including those categorized as Neurodegeneration with Brain Iron Accumulation (NBIA), which are characterized by focal iron accumulation in the basal ganglia. Two NBIA genes are directly involved in iron metabolism, but whether other NBIA-related genes also regulate iron homeostasis in the human brain, and whether aberrant iron deposition contributes to neurodegenerative processes remains largely unknown. This study aims to expand our understanding of these iron overload diseases and identify relationships between known NBIA genes and their main interacting partners by using a systems biology approach. We used whole-transcriptome gene expression data from human brain samples originating from 101 neuropathologically normal individuals (10 brain regions) to generate weighted gene co-expression networks and cluster the 10 known NBIA genes in an unsupervised manner. We investigated NBIA-enriched networks for relevant cell types and pathways, and whether they are disrupted by iron loading in NBIA diseased tissue and in an in vivo mouse model. We identified two basal ganglia gene co-expression modules significantly enriched for NBIA genes, which resemble neuronal and oligodendrocytic signatures. These NBIA gene networks are enriched for iron-related genes, and implicate synapse and lipid metabolism related pathways. Our data also indicates that these networks are disrupted by excessive brain iron loading. We identified multiple cell types in the origin of NBIA disorders. We also found unforeseen links between NBIA networks and iron-related processes, and demonstrate convergent pathways connecting NBIAs and phenotypically overlapping diseases. Our results are of further relevance for these diseases by providing candidates for new causative genes and possible points for therapeutic intervention. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Auger, Catherine J.; Coss, Dylan; Auger, Anthony P.; Forbes-Lorman, Robin M.
2011-01-01
Although some DNA methylation patterns are altered by steroid hormone exposure in the developing brain, less is known about how changes in steroid hormone levels influence DNA methylation patterns in the adult brain. Steroid hormones act in the adult brain to regulate gene expression. Specifically, the expression of the socially relevant peptide vasopressin (AVP) within the bed nucleus of the stria terminalis (BST) of adult brain is dependent upon testosterone exposure. Castration dramatically reduces and testosterone replacement restores AVP expression within the BST. As decreases in mRNA expression are associated with increases in DNA promoter methylation, we explored the hypothesis that AVP expression in the adult brain is maintained through sustained epigenetic modifications of the AVP gene promoter. We find that castration of adult male rats resulted in decreased AVP mRNA expression and increased methylation of specific CpG sites within the AVP promoter in the BST. Similarly, castration significantly increased estrogen receptor α (ERα) mRNA expression and decreased ERα promoter methylation within the BST. These changes were prevented by testosterone replacement. This suggests that the DNA promoter methylation status of some steroid responsive genes in the adult brain is actively maintained by the presence of circulating steroid hormones. The maintenance of methylated or demethylated states of some genes in the adult brain by the presence of steroid hormones may play a role in the homeostatic regulation of behaviorally relevant systems. PMID:21368111
Bowen, Lizabeth; Riva, F.; Mohr, C.; Aldridge, B.; Schwartz, J.; Miles, A. Keith; Stott, J.L.
2007-01-01
Free-ranging sea otters are subject to hydrocarbon exposure from a variety of sources, both natural and anthropogenic. Effects of direct exposure to unrefined crude oil, such as that associated with the Exxon Valdez oil spill, are readily apparent. However, the impact of subtle but pathophysiologically relevant concentrations of crude oil on sea otters is difficult to assess. The present study was directed at developing a model for assessing the impact of low concentrations of fuel oil on sea otters. Quantitative PCR was used to identify differential gene expression in American mink that were exposed to low concentrations of bunker C fuel oil. A total of 23 genes, representing 10 different physiological systems, were analyzed for perturbation. Six genes with immunological relevance were differentially expressed in oil-fed mink. Interleukin-18 (IL-18), IL-10, inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX-2), and complement cytolysis inhibitor (CLI) were down-regulated while IL-2 was up-regulated. Expression of two additional genes was affected; heat shock protein 70 (HSP70) was up-regulated and thyroid hormone receptor (THR) was down-regulated. While the significance of each perturbation is not immediately evident, we identified differential expression of genes that would be consistent with the presence of immune system-modifying and endocrine-disrupting compounds in fuel oil. Application of this approach to identify effects of petroleum contamination on sea otters should be possible following expansion of this mink model to identify a greater number of affected genes in peripheral blood leukocytes.
Fractal Clustering and Knowledge-driven Validation Assessment for Gene Expression Profiling.
Wang, Lu-Yong; Balasubramanian, Ammaiappan; Chakraborty, Amit; Comaniciu, Dorin
2005-01-01
DNA microarray experiments generate a substantial amount of information about the global gene expression. Gene expression profiles can be represented as points in multi-dimensional space. It is essential to identify relevant groups of genes in biomedical research. Clustering is helpful in pattern recognition in gene expression profiles. A number of clustering techniques have been introduced. However, these traditional methods mainly utilize shape-based assumption or some distance metric to cluster the points in multi-dimension linear Euclidean space. Their results shows poor consistence with the functional annotation of genes in previous validation study. From a novel different perspective, we propose fractal clustering method to cluster genes using intrinsic (fractal) dimension from modern geometry. This method clusters points in such a way that points in the same clusters are more self-affine among themselves than to the points in other clusters. We assess this method using annotation-based validation assessment for gene clusters. It shows that this method is superior in identifying functional related gene groups than other traditional methods.
Sémon, Marie; Mouchiroud, Dominique; Duret, Laurent
2005-02-01
Mammalian chromosomes are characterized by large-scale variations of DNA base composition (the so-called isochores). In contradiction with previous studies, Lercher et al. (Hum. Mol. Genet., 12, 2411, 2003) recently reported a strong correlation between gene expression breadth and GC-content, suggesting that there might be a selective pressure favoring the concentration of housekeeping genes in GC-rich isochores. We reassessed this issue by examining in human and mouse the correlation between gene expression and GC-content, using different measures of gene expression (EST, SAGE and microarray) and different measures of GC-content. We show that correlations between GC-content and expression are very weak, and may vary according to the method used to measure expression. Such weak correlations have a very low predictive value. The strong correlations reported by Lercher et al. (2003) are because of the fact that they measured variables over neighboring genes windows. We show here that using gene windows artificially enhances the correlation. The assertion that the expression of a given gene depends on the GC-content of the region where it is located is therefore not supported by the data.
Commonly dysregulated genes in murine APL cells
Yuan, Wenlin; Payton, Jacqueline E.; Holt, Matthew S.; Link, Daniel C.; Watson, Mark A.; DiPersio, John F.; Ley, Timothy J.
2007-01-01
To identify genes that are commonly dysregulated in a murine model of acute promyelocytic leukemia (APL), we first defined gene expression patterns during normal murine myeloid development; serial gene expression profiling studies were performed with primary murine hematopoietic progenitors that were induced to undergo myeloid maturation in vitro with G-CSF. Many genes were reproducibly expressed in restricted developmental “windows,” suggesting a structured hierarchy of expression that is relevant for the induction of developmental fates and/or differentiated cell functions. We compared the normal myeloid developmental transcriptome with that of APL cells derived from mice expressing PML-RARα under control of the murine cathepsin G locus. While many promyelocyte-specific genes were highly expressed in all APL samples, 116 genes were reproducibly dysregulated in many independent APL samples, including Fos, Jun, Egr1, Tnf, and Vcam1. However, this set of commonly dysregulated genes was expressed normally in preleukemic, early myeloid cells from the same mouse model, suggesting that dysregulation occurs as a “downstream” event during disease progression. These studies suggest that the genetic events that lead to APL progression may converge on common pathways that are important for leukemia pathogenesis. PMID:17008535
Repressor-mediated tissue-specific gene expression in plants
Meagher, Richard B [Athens, GA; Balish, Rebecca S [Oxford, OH; Tehryung, Kim [Athens, GA; McKinney, Elizabeth C [Athens, GA
2009-02-17
Plant tissue specific gene expression by way of repressor-operator complexes, has enabled outcomes including, without limitation, male sterility and engineered plants having root-specific gene expression of relevant proteins to clean environmental pollutants from soil and water. A mercury hyperaccumulation strategy requires that mercuric ion reductase coding sequence is strongly expressed. The actin promoter vector, A2pot, engineered to contain bacterial lac operator sequences, directed strong expression in all plant vegetative organs and tissues. In contrast, the expression from the A2pot construct was restricted primarily to root tissues when a modified bacterial repressor (LacIn) was coexpressed from the light-regulated rubisco small subunit promoter in above-ground tissues. Also provided are analogous repressor operator complexes for selective expression in other plant tissues, for example, to produce male sterile plants.
GEM-TREND: a web tool for gene expression data mining toward relevant network discovery
Feng, Chunlai; Araki, Michihiro; Kunimoto, Ryo; Tamon, Akiko; Makiguchi, Hiroki; Niijima, Satoshi; Tsujimoto, Gozoh; Okuno, Yasushi
2009-01-01
Background DNA microarray technology provides us with a first step toward the goal of uncovering gene functions on a genomic scale. In recent years, vast amounts of gene expression data have been collected, much of which are available in public databases, such as the Gene Expression Omnibus (GEO). To date, most researchers have been manually retrieving data from databases through web browsers using accession numbers (IDs) or keywords, but gene-expression patterns are not considered when retrieving such data. The Connectivity Map was recently introduced to compare gene expression data by introducing gene-expression signatures (represented by a set of genes with up- or down-regulated labels according to their biological states) and is available as a web tool for detecting similar gene-expression signatures from a limited data set (approximately 7,000 expression profiles representing 1,309 compounds). In order to support researchers to utilize the public gene expression data more effectively, we developed a web tool for finding similar gene expression data and generating its co-expression networks from a publicly available database. Results GEM-TREND, a web tool for searching gene expression data, allows users to search data from GEO using gene-expression signatures or gene expression ratio data as a query and retrieve gene expression data by comparing gene-expression pattern between the query and GEO gene expression data. The comparison methods are based on the nonparametric, rank-based pattern matching approach of Lamb et al. (Science 2006) with the additional calculation of statistical significance. The web tool was tested using gene expression ratio data randomly extracted from the GEO and with in-house microarray data, respectively. The results validated the ability of GEM-TREND to retrieve gene expression entries biologically related to a query from GEO. For further analysis, a network visualization interface is also provided, whereby genes and gene annotations are dynamically linked to external data repositories. Conclusion GEM-TREND was developed to retrieve gene expression data by comparing query gene-expression pattern with those of GEO gene expression data. It could be a very useful resource for finding similar gene expression profiles and constructing its gene co-expression networks from a publicly available database. GEM-TREND was designed to be user-friendly and is expected to support knowledge discovery. GEM-TREND is freely available at . PMID:19728865
GEM-TREND: a web tool for gene expression data mining toward relevant network discovery.
Feng, Chunlai; Araki, Michihiro; Kunimoto, Ryo; Tamon, Akiko; Makiguchi, Hiroki; Niijima, Satoshi; Tsujimoto, Gozoh; Okuno, Yasushi
2009-09-03
DNA microarray technology provides us with a first step toward the goal of uncovering gene functions on a genomic scale. In recent years, vast amounts of gene expression data have been collected, much of which are available in public databases, such as the Gene Expression Omnibus (GEO). To date, most researchers have been manually retrieving data from databases through web browsers using accession numbers (IDs) or keywords, but gene-expression patterns are not considered when retrieving such data. The Connectivity Map was recently introduced to compare gene expression data by introducing gene-expression signatures (represented by a set of genes with up- or down-regulated labels according to their biological states) and is available as a web tool for detecting similar gene-expression signatures from a limited data set (approximately 7,000 expression profiles representing 1,309 compounds). In order to support researchers to utilize the public gene expression data more effectively, we developed a web tool for finding similar gene expression data and generating its co-expression networks from a publicly available database. GEM-TREND, a web tool for searching gene expression data, allows users to search data from GEO using gene-expression signatures or gene expression ratio data as a query and retrieve gene expression data by comparing gene-expression pattern between the query and GEO gene expression data. The comparison methods are based on the nonparametric, rank-based pattern matching approach of Lamb et al. (Science 2006) with the additional calculation of statistical significance. The web tool was tested using gene expression ratio data randomly extracted from the GEO and with in-house microarray data, respectively. The results validated the ability of GEM-TREND to retrieve gene expression entries biologically related to a query from GEO. For further analysis, a network visualization interface is also provided, whereby genes and gene annotations are dynamically linked to external data repositories. GEM-TREND was developed to retrieve gene expression data by comparing query gene-expression pattern with those of GEO gene expression data. It could be a very useful resource for finding similar gene expression profiles and constructing its gene co-expression networks from a publicly available database. GEM-TREND was designed to be user-friendly and is expected to support knowledge discovery. GEM-TREND is freely available at http://cgs.pharm.kyoto-u.ac.jp/services/network.
Repression of anti-proliferative factor Tob1 in osteoarthritic cartilage
Gebauer, Mathias; Saas, Joachim; Haag, Jochen; Dietz, Uwe; Takigawa, Masaharu; Bartnik, Eckart; Aigner, Thomas
2005-01-01
Osteoarthritis is the most common degenerative disorder of the modern world. However, many basic cellular features and molecular processes of the disease are poorly understood. In the present study we used oligonucleotide-based microarray analysis of genes of known or assumed relevance to the cellular phenotype to screen for relevant differences in gene expression between normal and osteoarthritic chondrocytes. Custom made oligonucleotide DNA arrays were used to screen for differentially expressed genes in normal (n = 9) and osteoarthritic (n = 10) cartilage samples. Real-time polymerase chain reaction (PCR) with gene-specific primers was used for quantification. Primary human adult articular chondrocytes and chondrosarcoma cell line HCS-2/8 were used to study changes in gene expression levels after stimulation with interleukin-1β and bone morphogenetic protein, as well as the dependence on cell differentiation. In situ hybridization with a gene-specific probe was applied to detect mRNA expression levels in fetal growth plate cartilage. Overall, more than 200 significantly regulated genes were detected between normal and osteoarthritic cartilage (P < 0.01). One of the significantly repressed genes, Tob1, encodes a protein belonging to a family involved in silencing cells in terms of proliferation and functional activity. The repression of Tob1 was confirmed by quantitative PCR and correlated to markers of chondrocyte activity and proliferation in vivo. Tob1 expression was also detected at a decreased level in isolated chondrocytes and in the chondrosarcoma cell line HCS-2/8. Again, in these cells it was negatively correlated with proliferative activity and positively with cellular differentiation. Altogether, the downregulation of the expression of Tob1 in osteoarthritic chondrocytes might be an important aspect of the cellular processes taking place during osteoarthritic cartilage degeneration. Activation, the reinitiation of proliferative activity and the loss of a stable phenotype are three major changes in osteoarthritic chondrocytes that are highly significantly correlated with the repression of Tob1 expression. PMID:15743474
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pelch, Katherine E.; Tokar, Erik J.; Merrick, B. Alex
Previous work shows altered methylation patterns in inorganic arsenic (iAs)- or cadmium (Cd)-transformed epithelial cells. Here, the methylation status near the transcriptional start site was assessed in the normal human prostate epithelial cell line (RWPE-1) that was malignantly transformed by 10 μM Cd for 11 weeks (CTPE) or 5 μM iAs for 29 weeks (CAsE-PE), at which time cells showed multiple markers of acquired cancer phenotype. Next generation sequencing of the transcriptome of CAsE-PE cells identified multiple dysregulated genes. Of the most highly dysregulated genes, five genes that can be relevant to the carcinogenic process (S100P, HYAL1, NTM, NES, ALDH1A1)more » were chosen for an in-depth analysis of the DNA methylation profile. DNA was isolated, bisulfite converted, and combined bisulfite restriction analysis was used to identify differentially methylated CpG sites, which was confirmed with bisulfite sequencing. Four of the five genes showed differential methylation in transformants relative to control cells that was inversely related to altered gene expression. Increased expression of HYAL1 (> 25-fold) and S100P (> 40-fold) in transformants was correlated with hypomethylation near the transcriptional start site. Decreased expression of NES (> 15-fold) and NTM (> 1000-fold) in transformants was correlated with hypermethylation near the transcriptional start site. ALDH1A1 expression was differentially expressed in transformed cells but was not differentially methylated relative to control. In conclusion, altered gene expression observed in Cd and iAs transformed cells may result from altered DNA methylation status. - Highlights: • Cd and iAs are known human carcinogens, yet neither appears directly mutagenic. • Prior data suggest epigenetic modification plays a role in Cd or iAs induced cancer. • Altered methylation of four misregulated genes was found in Cd or iAs transformants. • The resulting altered gene expression may be relevant to cellular transformation.« less
Diekjürgen, Dorina; Grainger, David W
2018-05-09
Given currently poor toxicity translational predictions for drug candidates, improved mechanistic understanding underlying nephrotoxicity and drug renal clearance is needed to improve drug development and safety screening. Therefore, better relevant and well-characterized in vitro screening models are required to reliably predict human nephrotoxicity. Because kidney proximal tubules are central to active drug uptake and secretion processes and therefore to nephrotoxicity, this study acquired regio-specific expression data from recently reported primary proximal tubule three-dimensional (3D) hyaluronic acid gel culture and non-gel embedded cultured murine proximal tubule suspensions used in nephrotoxicity assays. Quantitative assessment of the mRNA expression of 21 known kidney tubule markers and important proximal tubule transporters with known roles in drug transport was obtained. Asserting superior gene expression levels over current commonly used two-dimensional (2D) kidney cell culture lines was the study objective. Hence, we compare previously published gel-based 3D proximal tubule fragment culture and their non-gel suspensions for up to 1 week. We demonstrate that 3D tubule culture exhibits superior gene expression levels and profiles compared to published commonly used 2D kidney cell lines (Caki-1 and HK-2) in plastic plate monocultures. Additionally, nearly all tested genes retain mRNA expression after 7 days in both proximal tubule cultures, a limitation of 2D cell culture lines. Importantly, gel presence is shown not to interfere with the gene expression assay. Western blots confirm protein expression of OAT1 and 3 and OCT2. Functional transport assays confirm their respective transporter functions in vitro. Overall, results validate retention of essential toxicity-relevant transporters in this published 3D proximal tubule model over conventional 2D kidney cell cultures, producing opportunities for more reliable, sensitive, and comprehensive drug toxicity studies relevant to drug development and nephrotoxicity goals.
Kerkentzes, Konstantinos; Lagani, Vincenzo; Tsamardinos, Ioannis; Vyberg, Mogens; Røe, Oluf Dimitri
2014-01-01
Novel statistical methods and increasingly more accurate gene annotations can transform "old" biological data into a renewed source of knowledge with potential clinical relevance. Here, we provide an in silico proof-of-concept by extracting novel information from a high-quality mRNA expression dataset, originally published in 2001, using state-of-the-art bioinformatics approaches. The dataset consists of histologically defined cases of lung adenocarcinoma (AD), squamous (SQ) cell carcinoma, small-cell lung cancer, carcinoid, metastasis (breast and colon AD), and normal lung specimens (203 samples in total). A battery of statistical tests was used for identifying differential gene expressions, diagnostic and prognostic genes, enriched gene ontologies, and signaling pathways. Our results showed that gene expressions faithfully recapitulate immunohistochemical subtype markers, as chromogranin A in carcinoids, cytokeratin 5, p63 in SQ, and TTF1 in non-squamous types. Moreover, biological information with putative clinical relevance was revealed as potentially novel diagnostic genes for each subtype with specificity 93-100% (AUC = 0.93-1.00). Cancer subtypes were characterized by (a) differential expression of treatment target genes as TYMS, HER2, and HER3 and (b) overrepresentation of treatment-related pathways like cell cycle, DNA repair, and ERBB pathways. The vascular smooth muscle contraction, leukocyte trans-endothelial migration, and actin cytoskeleton pathways were overexpressed in normal tissue. Reanalysis of this public dataset displayed the known biological features of lung cancer subtypes and revealed novel pathways of potentially clinical importance. The findings also support our hypothesis that even old omics data of high quality can be a source of significant biological information when appropriate bioinformatics methods are used.
Beger, Carmela; Pierce, Leigh N.; Krüger, Martin; Marcusson, Eric G.; Robbins, Joan M.; Welcsh, Piri; Welch, Peter J.; Welte, Karl; King, Mary-Claire; Barber, Jack R.; Wong-Staal, Flossie
2001-01-01
Expression of the breast and ovarian cancer susceptibility gene BRCA1 is down-regulated in sporadic breast and ovarian cancer cases. Therefore, the identification of genes involved in the regulation of BRCA1 expression might lead to new insights into the pathogenesis and treatment of these tumors. In the present study, an “inverse genomics” approach based on a randomized ribozyme gene library was applied to identify cellular genes regulating BRCA1 expression. A ribozyme gene library with randomized target recognition sequences was introduced into human ovarian cancer-derived cells stably expressing a selectable marker [enhanced green fluorescence protein (EGFP)] under the control of the BRCA1 promoter. Cells in which BRCA1 expression was upregulated by particular ribozymes were selected through their concomitant increase in EGFP expression. The cellular target gene of one ribozyme was identified to be the dominant negative transcriptional regulator Id4. Modulation of Id4 expression resulted in inversely regulated expression of BRCA1. In addition, increase in Id4 expression was associated with the ability of cells to exhibit anchorage-independent growth, demonstrating the biological relevance of this gene. Our data suggest that Id4 is a crucial gene regulating BRCA1 expression and might therefore be important for the BRCA1 regulatory pathway involved in the pathogenesis of sporadic breast and ovarian cancer. PMID:11136250
A chronological expression profile of gene activity during embryonic mouse brain development.
Goggolidou, P; Soneji, S; Powles-Glover, N; Williams, D; Sethi, S; Baban, D; Simon, M M; Ragoussis, I; Norris, D P
2013-12-01
The brain is a functionally complex organ, the patterning and development of which are key to adult health. To help elucidate the genetic networks underlying mammalian brain patterning, we conducted detailed transcriptional profiling during embryonic development of the mouse brain. A total of 2,400 genes were identified as showing differential expression between three developmental stages. Analysis of the data identified nine gene clusters to demonstrate analogous expression profiles. A significant group of novel genes of as yet undiscovered biological function were detected as being potentially relevant to brain development and function, in addition to genes that have previously identified roles in the brain. Furthermore, analysis for genes that display asymmetric expression between the left and right brain hemispheres during development revealed 35 genes as putatively asymmetric from a combined data set. Our data constitute a valuable new resource for neuroscience and neurodevelopment, exposing possible functional associations between genes, including novel loci, and encouraging their further investigation in human neurological and behavioural disorders.
Identification of apoptosis-related PLZF target genes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernardo, Maria Victoria; Yelo, Estefania; Gimeno, Lourdes
2007-07-27
The PLZF gene encodes a BTB/POZ-zinc finger-type transcription factor, involved in physiological development, proliferation, differentiation, and apoptosis. In this paper, we investigate proliferation, survival, and gene expression regulation in stable clones from the human haematopoietic K562, DG75, and Jurkat cell lines with inducible expression of PLZF. In Jurkat cells, but not in K562 and DG75 cells, PLZF induced growth suppression and apoptosis in a cell density-dependent manner. Deletion of the BTB/POZ domain of PLZF abrogated growth suppression and apoptosis. PLZF was expressed with a nuclear speckled pattern distinctively in the full-length PLZF-expressing Jurkat clones, suggesting that the nuclear speckled localizationmore » is required for PLZF-induced apoptosis. By microarray analysis, we identified that the apoptosis-inducer TP53INP1, ID1, and ID3 genes were upregulated, and the apoptosis-inhibitor TERT gene was downregulated. The identification of apoptosis-related PLZF target genes may have biological and clinical relevance in cancer typified by altered PLZF expression.« less
Mapping heterogeneity in patient-derived melanoma cultures by single-cell RNA-seq
Loeffler-Wirth, Henry; Hopp, Lydia; Schadendorf, Dirk; Schartl, Manfred; Anderegg, Ulf; Camp, Gray; Treutlein, Barbara; Binder, Hans; Kunz, Manfred
2017-01-01
Recent technological advances in single-cell genomics make it possible to analyze cellular heterogeneity of tumor samples. Here, we applied single-cell RNA-seq to measure the transcriptomes of 307 single cells cultured from three biopsies of three different patients with a BRAF/NRAS wild type, BRAF mutant/NRAS wild type and BRAF wild type/NRAS mutant melanoma metastasis, respectively. Analysis based on self-organizing maps identified sub-populations defined by multiple gene expression modules involved in proliferation, oxidative phosphorylation, pigmentation and cellular stroma. Gene expression modules had prognostic relevance when compared with gene expression data from published melanoma samples and patient survival data. We surveyed kinome expression patterns across sub-populations of the BRAF/NRAS wild type sample and found that CDK4 and CDK2 were consistently highly expressed in the majority of cells, suggesting that these kinases might be involved in melanoma progression. Treatment of cells with the CDK4 inhibitor palbociclib restricted cell proliferation to a similar, and in some cases greater, extent than MAPK inhibitors. Finally, we identified a low abundant sub-population in this sample that highly expressed a module containing ABC transporter ABCB5, surface markers CD271 and CD133, and multiple aldehyde dehydrogenases (ALDHs). Patient-derived cultures of the BRAF mutant/NRAS wild type and BRAF wild type/NRAS mutant metastases showed more homogeneous single-cell gene expression patterns with gene expression modules for proliferation and ABC transporters. Taken together, our results describe an intertumor and intratumor heterogeneity in melanoma short-term cultures which might be relevant for patient survival, and suggest promising targets for new treatment approaches in melanoma therapy. PMID:27903987
Persistent organic pollutants alter DNA methylation during human adipocyte differentiation.
van den Dungen, Myrthe W; Murk, Albertinka J; Kok, Dieuwertje E; Steegenga, Wilma T
2017-04-01
Ubiquitous persistent organic pollutants (POPs) can accumulate in humans where they might influence differentiation of adipocytes. The aim of this study was to investigate whether DNA methylation is one of the underlying mechanisms by which POPs affect adipocyte differentiation, and to what extent DNA methylation can be related to gene transcription. Adipocyte differentiation was induced in two human cell models with continuous exposure to different POPs throughout differentiation. From the seven tested POPs, perfluorooctanesulfonic acid (PFOS) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) decreased lipid accumulation, while tributyltin (TBT) increased lipid accumulation. In human mesenchymal stem cells (hMSCs), TCDD and TBT induced opposite gene expression profiles, whereas after PFOS exposure gene expression remained relatively stable. Genome-wide DNA methylation analysis showed that all three POPs affected DNA methylation patterns in adipogenic and other genes, possibly related to the phenotypic outcome, but without concomitant gene expression changes. Differential methylation was predominantly detected in intergenic regions, where the biological relevance of alterations in DNA methylation is unclear. This study demonstrates that POPs, at environmentally relevant levels, are able to induce differential DNA methylation in human differentiating adipocytes. Copyright © 2017 Wageningen University. Published by Elsevier Ltd.. All rights reserved.
Kirsten, Holger; Al-Hasani, Hoor; Holdt, Lesca; Gross, Arnd; Beutner, Frank; Krohn, Knut; Horn, Katrin; Ahnert, Peter; Burkhardt, Ralph; Reiche, Kristin; Hackermüller, Jörg; Löffler, Markus; Teupser, Daniel; Thiery, Joachim; Scholz, Markus
2015-08-15
Genetics of gene expression (eQTLs or expression QTLs) has proved an indispensable tool for understanding biological pathways and pathomechanisms of trait-associated SNPs. However, power of most genome-wide eQTL studies is still limited. We performed a large eQTL study in peripheral blood mononuclear cells of 2112 individuals increasing the power to detect trans-effects genome-wide. Going beyond univariate SNP-transcript associations, we analyse relations of eQTLs to biological pathways, polygenetic effects of expression regulation, trans-clusters and enrichment of co-localized functional elements. We found eQTLs for about 85% of analysed genes, and 18% of genes were trans-regulated. Local eSNPs were enriched up to a distance of 5 Mb to the transcript challenging typically implemented ranges of cis-regulations. Pathway enrichment within regulated genes of GWAS-related eSNPs supported functional relevance of identified eQTLs. We demonstrate that nearest genes of GWAS-SNPs might frequently be misleading functional candidates. We identified novel trans-clusters of potential functional relevance for GWAS-SNPs of several phenotypes including obesity-related traits, HDL-cholesterol levels and haematological phenotypes. We used chromatin immunoprecipitation data for demonstrating biological effects. Yet, we show for strongly heritable transcripts that still little trans-chromosomal heritability is explained by all identified trans-eSNPs; however, our data suggest that most cis-heritability of these transcripts seems explained. Dissection of co-localized functional elements indicated a prominent role of SNPs in loci of pseudogenes and non-coding RNAs for the regulation of coding genes. In summary, our study substantially increases the catalogue of human eQTLs and improves our understanding of the complex genetic regulation of gene expression, pathways and disease-related processes. © The Author 2015. Published by Oxford University Press.
Trauer-Kizilelma, Ute; Hilker, Monika
2015-09-01
Insect parents that experienced an immune challenge are known to prepare (prime) the immune activity of their offspring for improved defence. This phenomenon has intensively been studied by analysing especially immunity-related proteins. However, it is unknown how transgenerational immune priming affects transcript levels of immune-relevant genes of the offspring upon an actual threat. Here, we investigated how an immune challenge of Manduca sexta parents affects the expression of immune-related genes in their eggs that are attacked by parasitoids. Furthermore, we addressed the question whether the transgenerational immune priming of expression of genes in the eggs is still traceable in adult offspring. Our study revealed that a parental immune challenge did not affect the expression of immune-related genes in unparasitised eggs. However, immune-related genes in parasitised eggs of immune-challenged parents were upregulated to a higher level than those in parasitised eggs of unchallenged parents. Hence, this transgenerational immune priming of the eggs was detected only "on demand", i.e. upon parasitoid attack. The priming effects were also traceable in adult female progeny of immune-challenged parents which showed higher transcript levels of several immune-related genes in their ovaries than non-primed progeny. Some of the primed genes showed enhanced expression even when the progeny was left unchallenged, whereas other genes were upregulated to a greater extent in primed female progeny than non-primed ones only when the progeny itself was immune-challenged. Thus, the detection of transgenerational immune priming strongly depends on the analysed genes and the presence or absence of an actual threat for the offspring. We suggest that M. sexta eggs laid by immune-challenged parents "afford" to upregulate the transcription of immunity-related genes only upon attack, because they have the chance to be endowed by parentally directly transferred protective proteins. Copyright © 2015 Elsevier Ltd. All rights reserved.
On Relevance of Codon Usage to Expression of Synthetic and Natural Genes in Escherichia coli
Supek, Fran; Šmuc, Tomislav
2010-01-01
A recent investigation concluded that codon bias did not affect expression of green fluorescent protein (GFP) variants in Escherichia coli, while stability of an mRNA secondary structure near the 5′ end played a dominant role. We demonstrate that combining the two variables using regression trees or support vector regression yields a biologically plausible model with better support in the GFP data set and in other experimental data: codon usage is relevant for protein levels if the 5′ mRNA structures are not strong. Natural E. coli genes had weaker 5′ mRNA structures than the examined set of GFP variants and did not exhibit a correlation between the folding free energy of 5′ mRNA structures and protein expression. PMID:20421604
Yamburenko, Maria V; Kieber, Joseph J; Schaller, G Eric
2017-01-01
Inflorescence development in cereals, including such important crops as rice, maize, and wheat, directly affects grain number and size and is a key determinant of yield. Cytokinin regulates meristem size and activity and, as a result, has profound effects on inflorescence development and architecture. To clarify the role of cytokinin action in inflorescence development, we used the NanoString nCounter system to analyze gene expression in the early stages of rice panicle development, focusing on 67 genes involved in cytokinin biosynthesis, degradation, and signaling. Results point toward key members of these gene families involved in panicle development and indicate that the expression of many genes involved in cytokinin action differs between the panicle and vegetative tissues. Dynamic patterns of gene expression suggest that subnetworks mediate cytokinin action during different stages of panicle development. The variation of expression during panicle development is greater among genes encoding proteins involved in cytokinin metabolism and negative regulators of the pathway than for the genes in the primary response pathway. These results provide insight into the expression patterns of genes involved in cytokinin action during inflorescence development in a crop of agricultural importance, with relevance to similar processes in other monocots. The identification of subnetworks of genes expressed at different stages of early panicle development suggests that manipulation of their expression could have substantial effects on inflorescence architecture.
Genetics, gene expression and bioinformatics of the pituitary gland.
Davis, Shannon W; Potok, Mary Anne; Brinkmeier, Michelle L; Carninci, Piero; Lyons, Robert H; MacDonald, James W; Fleming, Michelle T; Mortensen, Amanda H; Egashira, Noboru; Ghosh, Debashis; Steel, Karen P; Osamura, Robert Y; Hayashizaki, Yoshihide; Camper, Sally A
2009-04-01
Genetic cases of congenital pituitary hormone deficiency are common and many are caused by transcription factor defects. Mouse models with orthologous mutations are invaluable for uncovering the molecular mechanisms that lead to problems in organ development and typical patient characteristics. We are using mutant mice defective in the transcription factors PROP1 and POU1F1 for gene expression profiling to identify target genes for these critical transcription factors and candidates for cases of pituitary hormone deficiency of unknown aetiology. These studies reveal critical roles for Wnt signalling pathways, including the TCF/LEF transcription factors and interacting proteins of the groucho family, bone morphogenetic protein antagonists and targets of notch signalling. Current studies are investigating the roles of novel homeobox genes and pathways that regulate the transition from proliferation to differentiation, cell adhesion and cell migration. Pituitary adenomas are a common human health problem, yet most cases are sporadic, necessitating alternative approaches to traditional Mendelian genetic studies. Mouse models of adenoma formation offer the opportunity for gene expression profiling during progressive stages of hyperplasia, adenoma and tumorigenesis. This approach holds promise for the identification of relevant pathways and candidate genes as risk factors for adenoma formation, understanding mechanisms of progression, and identifying drug targets and clinically relevant biomarkers. Copyright 2009 S. Karger AG, Basel.
Genetics, Gene Expression and Bioinformatics of the Pituitary Gland
Davis, Shannon W; Potok, Mary Anne; Brinkmeier, Michelle L; Carninci, Piero; Lyons, Robert H; MacDonald, James W.; Fleming, Michelle T; Mortensen, Amanda H; Egashira, Noboru; Ghosh, Debashis; Steel, Karen P.; Osamura, Robert Y; Hayashizaki, Yoshihide; Camper, Sally A
2011-01-01
Genetic cases of congenital pituitary hormone deficiency are common and many are caused by transcription factor defects. Mouse models with orthologous mutations are invaluable for uncovering the molecular mechanisms that lead to problems in organ development and typical patient characteristics. We are using mutant mice defective in the transcription factors PROP1 and POU1F1 for gene expression profiling to identify target genes for these critical transcription factors and candidates for cases of pituitary hormone deficiency of unknown etiology. These studies reveal critical roles for Wnt signalling pathways including the TCF/LEF transcription factors and interacting proteins of the groucho family, bone morphogenetic proteins antagonists, and targets of notch signalling. Current studies are investigating roles of novel homeobox genes and pathways that regulate the transition from proliferation to differentiation, cell adhesion and cell migration. Pituitary adenomas are a common human health problem, yet most cases are sporadic, necessitating alternative approaches to traditional Mendelian genetic studies. Mouse models of adenoma formation offer the opportunity for gene expression profiling during progressive stages of hyperplasia, adenoma and tumorigenesis. This approach holds promise for identification of relevant pathways and candidate genes as risk factors for adenoma formation, understanding mechanisms of progression, and identifying drug targets and clinically relevant biomarkers. PMID:19407506
Transcriptomics analysis of lungs and peripheral blood of crystalline silica-exposed rats
Sellamuthu, Rajendran; Umbright, Christina; Roberts, Jenny R.; Chapman, Rebecca; Young, Shih-Houng; Richardson, Diana; Cumpston, Jared; McKinney, Walter; Chen, Bean T.; Frazer, David; Li, Shengqiao; Kashon, Michael; Joseph, Pius
2015-01-01
Minimally invasive approaches to detect/predict target organ toxicity have significant practical applications in occupational toxicology. The potential application of peripheral blood transcriptomics as a practical approach to study the mechanisms of silica-induced pulmonary toxicity was investigated. Rats were exposed by inhalation to crystalline silica (15 mg/m3, 6 h/day, 5 days) and pulmonary toxicity and global gene expression profiles of lungs and peripheral blood were determined at 32 weeks following termination of exposure. A significant elevation in bronchoalveolar lavage fluid lactate dehydrogenase activity and moderate histological changes in the lungs, including type II pneumocyte hyperplasia and fibrosis, indicated pulmonary toxicity in the rats. Similarly, significant infiltration of neutrophils and elevated monocyte chemotactic protein-1 levels in the lungs showed pulmonary inflammation in the rats. Microarray analysis of global gene expression profiles identified significant differential expression [>1.5-fold change and false discovery rate (FDR) p < 0.01] of 520 and 537 genes, respectively, in the lungs and blood of the exposed rats. Bioinformatics analysis of the differentially expressed genes demonstrated significant similarity in the biological processes, molecular networks, and canonical pathways enriched by silica exposure in the lungs and blood of the rats. Several genes involved in functions relevant to silica-induced pulmonary toxicity such as inflammation, respiratory diseases, cancer, cellular movement, fibrosis, etc, were found significantly differentially expressed in the lungs and blood of the silica-exposed rats. The results of this study suggested the potential application of peripheral blood gene expression profiling as a toxicologically relevant and minimally invasive surrogate approach to study the mechanisms underlying silica-induced pulmonary toxicity. PMID:22861000
Veiga-Lopez, Almudena; Luense, Lacey J; Christenson, Lane K; Padmanabhan, Vasantha
2013-05-01
Bisphenol-A (BPA), a ubiquitous environmental endocrine disrupting chemical, is a component of polycarbonate plastic and epoxy resins. Because of its estrogenic properties, there is increasing concern relative to risks from exposures during critical periods of early organ differentiation. Prenatal BPA treatment in sheep results in low birth weight, hypergonadotropism, and ovarian cycle disruptions. This study tested the hypothesis that gestational exposure to bisphenol A, at an environmentally relevant dose, induces early perturbations in the ovarian transcriptome (mRNA and microRNA). Pregnant Suffolk ewes were treated with bisphenol A (0.5 mg/kg, sc, daily, produced ∼2.6 ng/mL of unconjugated BPA in umbilical arterial samples of BPA treated fetuses approaching median levels of BPA measured in maternal circulation) from days 30 to 90 of gestation. Expression of steroidogenic enzymes, steroid/gonadotropin receptors, key ovarian regulators, and microRNA biogenesis components were measured by RT-PCR using RNA derived from fetal ovaries collected on gestational days 65 and 90. An age-dependent effect was evident in most steroidogenic enzymes, steroid receptors, and key ovarian regulators. Prenatal BPA increased Cyp19 and 5α-reductase expression in day 65, but not day 90, ovaries. Fetal ovarian microRNA expression was altered by prenatal BPA with 45 down-regulated (>1.5-fold) at day 65 and 11 down-regulated at day 90 of gestation. These included microRNAs targeting Sry-related high-mobility-group box (SOX) family genes, kit ligand, and insulin-related genes. The results of this study demonstrate that exposure to BPA at an environmentally relevant dose alters fetal ovarian steroidogenic gene and microRNA expression of relevance to gonadal differentiation, folliculogenesis, and insulin homeostasis.
Microarray expression profiling in adhesion and normal peritoneal tissues.
Ambler, Dana R; Golden, Alicia M; Gell, Jennifer S; Saed, Ghassan M; Carey, David J; Diamond, Michael P
2012-05-01
To identify molecular markers associated with adhesion and normal peritoneal tissue using microarray expression profiling. Comparative study. University hospital. Five premenopausal women. Adhesion and normal peritoneal tissue samples were obtained from premenopausal women. Ribonucleic acid was extracted using standard protocols and processed for hybridization to Affymetrix Whole Transcript Human Gene Expression Chips. Microarray data were obtained from five different patients, each with adhesion tissue and normal peritoneal samples. Real-time polymerase chain reaction was performed for confirmation using standard protocols. Gene expression in postoperative adhesion and normal peritoneal tissues. A total of 1,263 genes were differentially expressed between adhesion and normal tissues. One hundred seventy-three genes were found to be up-regulated and 56 genes were down-regulated in the adhesion tissues compared with normal peritoneal tissues. The genes were sorted into functional categories according to Gene Ontology annotations. Twenty-six up-regulated genes and 11 down-regulated genes were identified with functions potentially relevant to the pathophysiology of postoperative adhesions. We evaluated and confirmed expression of 12 of these specific genes via polymerase chain reaction. The pathogenesis, natural history, and optimal treatment of postoperative adhesive disease remains unanswered. Microarray analysis of adhesions identified specific genes with increased and decreased expression when compared with normal peritoneum. Knowledge of these genes and ontologic pathways with altered expression provide targets for new therapies to treat patients who have or are at risk for postoperative adhesions. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Garcia-Garcia, L; Llewellyn-Jones, V; Fernandez Fernandez, I; Fuentes, J A; Manzanares, J
1998-01-05
The purpose of this study was to investigate the effects of acute and repeated electroconvulsive shock (ECS) on corticotropin releasing factor (CRF), proopiomelanocortin (POMC) and proenkephalin (PENK) gene expression in selected regions of the brain and pituitary of the rat. Acute ECS increased CRF gene expression in the paraventricular nucleus (PVN) by 20%, an effect that was further enhanced to 38% when rats received repeated ECS treatment. Acute and repeated ECS increased POMC gene expression in the arcuate nucleus (ARC) by 49-59% but failed to alter these mRNA levels in the anterior lobe (AL) of the pituitary gland. PENK gene expression was increased by 35% in the nucleus accumbens (NA) and by 180% the ventromedial nucleus (VMN) after acute or repeated ECS treatment but no significant changes were found in the PVN or striatum (ST). Taken together, these results indicate a differential CRF and opioid gene expression regulation after acute or repeated ECS treatment that may be relevant to their therapeutic or side effects in depression.
Tong, Mengsha; Zheng, Weicheng; Lu, Xingrong; Ao, Lu; Li, Xiangyu; Guan, Qingzhou; Cai, Hao; Li, Mengyao; Yan, Haidan; Guo, You; Chi, Pan; Guo, Zheng
2015-12-01
Until recently, few molecular signatures of drug resistance identified in drug-induced resistant cancer cell models can be translated into clinical practice. Here, we defined differentially expressed genes (DEGs) between pre-chemotherapy colorectal cancer (CRC) tissue samples of non-responders and responders for 5-fluorouracil and oxaliplatin-based therapy as clinically relevant drug resistance genes (CRG5-FU/L-OHP). Taking CRG5-FU/L-OHP as reference, we evaluated the clinical relevance of several types of genes derived from HCT116 CRC cells with resistance to 5-fluorouracil and oxaliplatin, respectively. The results revealed that DEGs between parental and resistant cells, when both were treated with the corresponding drug for a certain time, were significantly consistent with the CRG5-FU/L-OHP as well as the DEGs between the post-chemotherapy CRC specimens of responders and non-responders. This study suggests a novel strategy to extract clinically relevant drug resistance genes from both drug-induced resistant cell models and post-chemotherapy cancer tissue specimens.
Daum, Janine M; Keles, Özkan; Holwerda, Sjoerd JB; Kohler, Hubertus; Rijli, Filippo M
2017-01-01
High-resolution daylight vision is mediated by cone photoreceptors. The molecular program responsible for the formation of their light sensor, the outer segment, is not well understood. We correlated daily changes in ultrastructure and gene expression in postmitotic mouse cones, between birth and eye opening, using serial block-face electron microscopy (EM) and RNA sequencing. Outer segments appeared rapidly at postnatal day six and their appearance coincided with a switch in gene expression. The switch affected over 14% of all expressed genes. Genes that switched off were rich in transcription factors and neurogenic genes. Those that switched on contained genes relevant for cone function. Chromatin rearrangements in enhancer regions occurred before the switch was completed, but not after. We provide a resource comprised of correlated EM, RNAseq, and ATACseq data, showing that the growth of a key compartment of a postmitotic cell involves an extensive switch in gene expression and chromatin accessibility. PMID:29106373
Cathomas, F; Azzinnari, D; Bergamini, G; Sigrist, H; Buerge, M; Hoop, V; Wicki, B; Goetze, L; Soares, S; Kukelova, D; Seifritz, E; Goebbels, S; Nave, K-A; Ghandour, M S; Seoighe, C; Hildebrandt, T; Leparc, G; Klein, H; Stupka, E; Hengerer, B; Pryce, C R
2018-03-22
Oligodendrocyte gene expression is downregulated in stress-related neuropsychiatric disorders, including depression. In mice, chronic social stress (CSS) leads to depression-relevant changes in brain and emotional behavior, and the present study shows the involvement of oligodendrocytes in this model. In C57BL/6 (BL/6) mice, RNA-sequencing (RNA-Seq) was conducted with prefrontal cortex, amygdala and hippocampus from CSS and controls; a gene enrichment database for neurons, astrocytes and oligodendrocytes was used to identify cell origin of deregulated genes, and cell deconvolution was applied. To assess the potential causal contribution of reduced oligodendrocyte gene expression to CSS effects, mice heterozygous for the oligodendrocyte gene cyclic nucleotide phosphodiesterase (Cnp1) on a BL/6 background were studied; a 2 genotype (wildtype, Cnp1 +/- ) × 2 environment (control, CSS) design was used to investigate effects on emotional behavior and amygdala microglia. In BL/6 mice, in prefrontal cortex and amygdala tissue comprising gray and white matter, CSS downregulated expression of multiple oligodendroycte genes encoding myelin and myelin-axon-integrity proteins, and cell deconvolution identified a lower proportion of oligodendrocytes in amygdala. Quantification of oligodendrocyte proteins in amygdala gray matter did not yield evidence for reduced translation, suggesting that CSS impacts primarily on white matter oligodendrocytes or the myelin transcriptome. In Cnp1 mice, social interaction was reduced by CSS in Cnp1 +/- mice specifically; using ionized calcium-binding adaptor molecule 1 (IBA1) expression, microglia activity was increased additively by Cnp1 +/- and CSS in amygdala gray and white matter. This study provides back-translational evidence that oligodendrocyte changes are relevant to the pathophysiology and potentially the treatment of stress-related neuropsychiatric disorders. © 2018 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
Foy, Jean-Philippe; Tortereau, Antonin; Caulin, Carlos; Le Texier, Vincent; Lavergne, Emilie; Thomas, Emilie; Chabaud, Sylvie; Perol, David; Lachuer, Joël; Lang, Wenhua; Hong, Waun Ki; Goudot, Patrick; Lippman, Scott M; Bertolus, Chloé; Saintigny, Pierre
2016-06-14
A better understanding of the dynamics of molecular changes occurring during the early stages of oral tumorigenesis may help refine prevention and treatment strategies. We generated genome-wide expression profiles of microdissected normal mucosa, hyperplasia, dysplasia and tumors derived from the 4-NQO mouse model of oral tumorigenesis. Genes differentially expressed between tumor and normal mucosa defined the "tumor gene set" (TGS), including 4 non-overlapping gene subsets that characterize the dynamics of gene expression changes through different stages of disease progression. The majority of gene expression changes occurred early or progressively. The relevance of these mouse gene sets to human disease was tested in multiple datasets including the TCGA and the Genomics of Drug Sensitivity in Cancer project. The TGS was able to discriminate oral squamous cell carcinoma (OSCC) from normal oral mucosa in 3 independent datasets. The OSCC samples enriched in the mouse TGS displayed high frequency of CASP8 mutations, 11q13.3 amplifications and low frequency of PIK3CA mutations. Early changes observed in the 4-NQO model were associated with a trend toward a shorter oral cancer-free survival in patients with oral preneoplasia that was not seen in multivariate analysis. Progressive changes observed in the 4-NQO model were associated with an increased sensitivity to 4 different MEK inhibitors in a panel of 51 squamous cell carcinoma cell lines of the areodigestive tract. In conclusion, the dynamics of molecular changes in the 4-NQO model reveal that MEK inhibition may be relevant to prevention and treatment of a specific molecularly-defined subgroup of OSCC.
Morimoto, Kinuyo; Satake, Honoo
2013-01-01
Lignans of Forsythia spp. are essential components of various Chinese medicines and health diets. However, the seasonal alteration in lignan amounts and the gene expression profile of lignan-biosynthetic enzymes has yet to be investigated. In this study, we have assessed seasonal alteration in amounts of major lignans, such as pinoresinol, matairesinol, and arctigenin, and examined the gene expression profile of pinoresinol/lariciresinol reductase (PLR), pinoresinol-glucosylating enzyme (UGT71A18), and secoisolariciresinol dehydrogenase (SIRD) in the leaf of Forsythia suspense from April to November. All of the lignans in the leaf continuously increased from April to June, reached the maximal level in June, and then decreased. Ninety percent of pinoresinol and matairesinol was converted into glucosides, while approximately 50% of arctigenin was aglycone. PLR was stably expressed from April to August, whereas the PLR expression was not detected from September to November. In contrast, the UGT71A18 expression was found from August to November, but not from April to July. The SIRD expression was prominent from April to May, not detected in June to July, and then increased again from September to November. These expression profiles of the lignan-synthetic enzymes are largely compatible with the alteration in lignan contents. Furthermore, such seasonal lignan profiles are in good agreement with the fact that the Forsythia leaves for Chinese medicinal tea are harvested in June. This is the first report on seasonal alteration in lignans and the relevant biosynthetic enzyme genes in the leaf of Forsythia species.
Discovering functions of unannotated genes from a transcriptome survey of wild fungal isolates.
Ellison, Christopher E; Kowbel, David; Glass, N Louise; Taylor, John W; Brem, Rachel B
2014-04-01
Most fungal genomes are poorly annotated, and many fungal traits of industrial and biomedical relevance are not well suited to classical genetic screens. Assigning genes to phenotypes on a genomic scale thus remains an urgent need in the field. We developed an approach to infer gene function from expression profiles of wild fungal isolates, and we applied our strategy to the filamentous fungus Neurospora crassa. Using transcriptome measurements in 70 strains from two well-defined clades of this microbe, we first identified 2,247 cases in which the expression of an unannotated gene rose and fell across N. crassa strains in parallel with the expression of well-characterized genes. We then used image analysis of hyphal morphologies, quantitative growth assays, and expression profiling to test the functions of four genes predicted from our population analyses. The results revealed two factors that influenced regulation of metabolism of nonpreferred carbon and nitrogen sources, a gene that governed hyphal architecture, and a gene that mediated amino acid starvation resistance. These findings validate the power of our population-transcriptomic approach for inference of novel gene function, and we suggest that this strategy will be of broad utility for genome-scale annotation in many fungal systems. IMPORTANCE Some fungal species cause deadly infections in humans or crop plants, and other fungi are workhorses of industrial chemistry, including the production of biofuels. Advances in medical and industrial mycology require an understanding of the genes that control fungal traits. We developed a method to infer functions of uncharacterized genes by observing correlated expression of their mRNAs with those of known genes across wild fungal isolates. We applied this strategy to a filamentous fungus and predicted functions for thousands of unknown genes. In four cases, we experimentally validated the predictions from our method, discovering novel genes involved in the metabolism of nutrient sources relevant for biofuel production, as well as colony morphology and starvation resistance. Our strategy is straightforward, inexpensive, and applicable for predicting gene function in many fungal species.
Ferrari, Raffaele; Forabosco, Paola; Vandrovcova, Jana; Botía, Juan A; Guelfi, Sebastian; Warren, Jason D; Momeni, Parastoo; Weale, Michael E; Ryten, Mina; Hardy, John
2016-02-24
In frontotemporal dementia (FTD) there is a critical lack in the understanding of biological and molecular mechanisms involved in disease pathogenesis. The heterogeneous genetic features associated with FTD suggest that multiple disease-mechanisms are likely to contribute to the development of this neurodegenerative condition. We here present a systems biology approach with the scope of i) shedding light on the biological processes potentially implicated in the pathogenesis of FTD and ii) identifying novel potential risk factors for FTD. We performed a gene co-expression network analysis of microarray expression data from 101 individuals without neurodegenerative diseases to explore regional-specific co-expression patterns in the frontal and temporal cortices for 12 genes (MAPT, GRN, CHMP2B, CTSC, HLA-DRA, TMEM106B, C9orf72, VCP, UBQLN2, OPTN, TARDBP and FUS) associated with FTD and we then carried out gene set enrichment and pathway analyses, and investigated known protein-protein interactors (PPIs) of FTD-genes products. Gene co-expression networks revealed that several FTD-genes (such as MAPT and GRN, CTSC and HLA-DRA, TMEM106B, and C9orf72, VCP, UBQLN2 and OPTN) were clustering in modules of relevance in the frontal and temporal cortices. Functional annotation and pathway analyses of such modules indicated enrichment for: i) DNA metabolism, i.e. transcription regulation, DNA protection and chromatin remodelling (MAPT and GRN modules); ii) immune and lysosomal processes (CTSC and HLA-DRA modules), and; iii) protein meta/catabolism (C9orf72, VCP, UBQLN2 and OPTN, and TMEM106B modules). PPI analysis supported the results of the functional annotation and pathway analyses. This work further characterizes known FTD-genes and elaborates on their biological relevance to disease: not only do we indicate likely impacted regional-specific biological processes driven by FTD-genes containing modules, but also do we suggest novel potential risk factors among the FTD-genes interactors as targets for further mechanistic characterization in hypothesis driven cell biology work.
Discretization provides a conceptually simple tool to build expression networks.
Vass, J Keith; Higham, Desmond J; Mudaliar, Manikhandan A V; Mao, Xuerong; Crowther, Daniel J
2011-04-18
Biomarker identification, using network methods, depends on finding regular co-expression patterns; the overall connectivity is of greater importance than any single relationship. A second requirement is a simple algorithm for ranking patients on how relevant a gene-set is. For both of these requirements discretized data helps to first identify gene cliques, and then to stratify patients.We explore a biologically intuitive discretization technique which codes genes as up- or down-regulated, with values close to the mean set as unchanged; this allows a richer description of relationships between genes than can be achieved by positive and negative correlation. We find a close agreement between our results and the template gene-interactions used to build synthetic microarray-like data by SynTReN, which synthesizes "microarray" data using known relationships which are successfully identified by our method.We are able to split positive co-regulation into up-together and down-together and negative co-regulation is considered as directed up-down relationships. In some cases these exist in only one direction, with real data, but not with the synthetic data. We illustrate our approach using two studies on white blood cells and derived immortalized cell lines and compare the approach with standard correlation-based computations. No attempt is made to distinguish possible causal links as the search for biomarkers would be crippled by losing highly significant co-expression relationships. This contrasts with approaches like ARACNE and IRIS.The method is illustrated with an analysis of gene-expression for energy metabolism pathways. For each discovered relationship we are able to identify the samples on which this is based in the discretized sample-gene matrix, along with a simplified view of the patterns of gene expression; this helps to dissect the gene-sample relevant to a research topic--identifying sets of co-regulated and anti-regulated genes and the samples or patients in which this relationship occurs.
Suo, Chen; Hrydziuszko, Olga; Lee, Donghwan; Pramana, Setia; Saputra, Dhany; Joshi, Himanshu; Calza, Stefano; Pawitan, Yudi
2015-08-15
Genome and transcriptome analyses can be used to explore cancers comprehensively, and it is increasingly common to have multiple omics data measured from each individual. Furthermore, there are rich functional data such as predicted impact of mutations on protein coding and gene/protein networks. However, integration of the complex information across the different omics and functional data is still challenging. Clinical validation, particularly based on patient outcomes such as survival, is important for assessing the relevance of the integrated information and for comparing different procedures. An analysis pipeline is built for integrating genomic and transcriptomic alterations from whole-exome and RNA sequence data and functional data from protein function prediction and gene interaction networks. The method accumulates evidence for the functional implications of mutated potential driver genes found within and across patients. A driver-gene score (DGscore) is developed to capture the cumulative effect of such genes. To contribute to the score, a gene has to be frequently mutated, with high or moderate mutational impact at protein level, exhibiting an extreme expression and functionally linked to many differentially expressed neighbors in the functional gene network. The pipeline is applied to 60 matched tumor and normal samples of the same patient from The Cancer Genome Atlas breast-cancer project. In clinical validation, patients with high DGscores have worse survival than those with low scores (P = 0.001). Furthermore, the DGscore outperforms the established expression-based signatures MammaPrint and PAM50 in predicting patient survival. In conclusion, integration of mutation, expression and functional data allows identification of clinically relevant potential driver genes in cancer. The documented pipeline including annotated sample scripts can be found in http://fafner.meb.ki.se/biostatwiki/driver-genes/. yudi.pawitan@ki.se Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Aberrant Gene Expression in Humans
Yang, Ence; Ji, Guoli; Brinkmeyer-Langford, Candice L.; Cai, James J.
2015-01-01
Gene expression as an intermediate molecular phenotype has been a focus of research interest. In particular, studies of expression quantitative trait loci (eQTL) have offered promise for understanding gene regulation through the discovery of genetic variants that explain variation in gene expression levels. Existing eQTL methods are designed for assessing the effects of common variants, but not rare variants. Here, we address the problem by establishing a novel analytical framework for evaluating the effects of rare or private variants on gene expression. Our method starts from the identification of outlier individuals that show markedly different gene expression from the majority of a population, and then reveals the contributions of private SNPs to the aberrant gene expression in these outliers. Using population-scale mRNA sequencing data, we identify outlier individuals using a multivariate approach. We find that outlier individuals are more readily detected with respect to gene sets that include genes involved in cellular regulation and signal transduction, and less likely to be detected with respect to the gene sets with genes involved in metabolic pathways and other fundamental molecular functions. Analysis of polymorphic data suggests that private SNPs of outlier individuals are enriched in the enhancer and promoter regions of corresponding aberrantly-expressed genes, suggesting a specific regulatory role of private SNPs, while the commonly-occurring regulatory genetic variants (i.e., eQTL SNPs) show little evidence of involvement. Additional data suggest that non-genetic factors may also underlie aberrant gene expression. Taken together, our findings advance a novel viewpoint relevant to situations wherein common eQTLs fail to predict gene expression when heritable, rare inter-individual variation exists. The analytical framework we describe, taking into consideration the reality of differential phenotypic robustness, may be valuable for investigating complex traits and conditions. PMID:25617623
Expression of Innate Immune Response Genes in Liver and Three Types of Adipose Tissue in Cloned Pigs
Rødgaard, Tina; Skovgaard, Kerstin; Stagsted, Jan
2012-01-01
Abstract The pig has been proposed as a relevant model for human obesity-induced inflammation, and cloning may improve the applicability of this model. We tested the assumptions that cloning would reduce interindividual variation in gene expression of innate immune factors and that their expression would remain unaffected by the cloning process. We investigated the expression of 40 innate immune factors by high-throughput quantitative real-time PCR in samples from liver, abdominal subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT), and neck SAT in cloned pigs compared to normal outbred pigs. The variation in gene expression was found to be similar for the two groups, and the expression of a small number of genes was significantly affected by cloning. In the VAT and abdominal SAT, six out of seven significantly differentially expressed genes were downregulated in the clones. In contrast, most differently expressed genes in both liver and neck SAT were upregulated (seven out of eight). Remarkably, acute phase proteins (APPs) dominated the upregulated genes in the liver, whereas APP expression was either unchanged or downregulated in abdominal SAT and VAT. The general conclusion from this work is that cloning leads to subtle changes in specific subsets of innate immune genes. Such changes, even if minor, may have phenotypic effects over time, e.g., in models of long-term inflammation related to obesity. PMID:22928970
Bourquin, Jean-Pierre; Subramanian, Aravind; Langebrake, Claudia; Reinhardt, Dirk; Bernard, Olivier; Ballerini, Paola; Baruchel, André; Cavé, Hélène; Dastugue, Nicole; Hasle, Henrik; Kaspers, Gertjan L.; Lessard, Michel; Michaux, Lucienne; Vyas, Paresh; van Wering, Elisabeth; Zwaan, Christian M.; Golub, Todd R.; Orkin, Stuart H.
2006-01-01
Individuals with Down syndrome (DS) are predisposed to develop acute megakaryoblastic leukemia (AMKL), characterized by expression of truncated GATA1 transcription factor protein (GATA1s) due to somatic mutation. The treatment outcome for DS-AMKL is more favorable than for AMKL in non-DS patients. To gain insight into gene expression differences in AMKL, we compared 24 DS and 39 non-DS AMKL samples. We found that non-DS-AMKL samples cluster in two groups, characterized by differences in expression of HOX/TALE family members. Both of these groups are distinct from DS-AMKL, independent of chromosome 21 gene expression. To explore alterations of the GATA1 transcriptome, we used cross-species comparison with genes regulated by GATA1 expression in murine erythroid precursors. Genes repressed after GATA1 induction in the murine system, most notably GATA-2, MYC, and KIT, show increased expression in DS-AMKL, suggesting that GATA1s fail to repress this class of genes. Only a subset of genes that are up-regulated upon GATA1 induction in the murine system show increased expression in DS-AMKL, including GATA1 and BACH1, a probable negative regulator of megakaryocytic differentiation located on chromosome 21. Surprisingly, expression of the chromosome 21 gene RUNX1, a known regulator of megakaryopoiesis, was not elevated in DS-AMKL. Our results identify relevant signatures for distinct AMKL entities and provide insight into gene expression changes associated with these related leukemias. PMID:16492768
Growth-rate dependent global effects on gene expression in bacteria
Klumpp, Stefan; Zhang, Zhongge; Hwa, Terence
2010-01-01
Summary Bacterial gene expression depends not only on specific regulations but also directly on bacterial growth, because important global parameters such as the abundance of RNA polymerases and ribosomes are all growth-rate dependent. Understanding these global effects is necessary for a quantitative understanding of gene regulation and for the robust design of synthetic genetic circuits. The observed growth-rate dependence of constitutive gene expression can be explained by a simple model using the measured growth-rate dependence of the relevant cellular parameters. More complex growth dependences for genetic circuits involving activators, repressors and feedback control were analyzed, and salient features were verified experimentally using synthetic circuits. The results suggest a novel feedback mechanism mediated by general growth-dependent effects and not requiring explicit gene regulation, if the expressed protein affects cell growth. This mechanism can lead to growth bistability and promote the acquisition of important physiological functions such as antibiotic resistance and tolerance (persistence). PMID:20064380
DOE Office of Scientific and Technical Information (OSTI.GOV)
SacconePhD, Scott F; Chesler, Elissa J; Bierut, Laura J
Commercial SNP microarrays now provide comprehensive and affordable coverage of the human genome. However, some diseases have biologically relevant genomic regions that may require additional coverage. Addiction, for example, is thought to be influenced by complex interactions among many relevant genes and pathways. We have assembled a list of 486 biologically relevant genes nominated by a panel of experts on addiction. We then added 424 genes that showed evidence of association with addiction phenotypes through mouse QTL mappings and gene co-expression analysis. We demonstrate that there are a substantial number of SNPs in these genes that are not well representedmore » by commercial SNP platforms. We address this problem by introducing a publicly available SNP database for addiction. The database is annotated using numeric prioritization scores indicating the extent of biological relevance. The scores incorporate a number of factors such as SNP/gene functional properties (including synonymy and promoter regions), data from mouse systems genetics and measures of human/mouse evolutionary conservation. We then used HapMap genotyping data to determine if a SNP is tagged by a commercial microarray through linkage disequilibrium. This combination of biological prioritization scores and LD tagging annotation will enable addiction researchers to supplement commercial SNP microarrays to ensure comprehensive coverage of biologically relevant regions.« less
Altered Expression of Diabetes-Related Genes in Alzheimer's Disease Brains: The Hisayama Study
Hokama, Masaaki; Oka, Sugako; Leon, Julio; Ninomiya, Toshiharu; Honda, Hiroyuki; Sasaki, Kensuke; Iwaki, Toru; Ohara, Tomoyuki; Sasaki, Tomio; LaFerla, Frank M.; Kiyohara, Yutaka; Nakabeppu, Yusaku
2014-01-01
Diabetes mellitus (DM) is considered to be a risk factor for dementia including Alzheimer's disease (AD). However, the molecular mechanism underlying this risk is not well understood. We examined gene expression profiles in postmortem human brains donated for the Hisayama study. Three-way analysis of variance of microarray data from frontal cortex, temporal cortex, and hippocampus was performed with the presence/absence of AD and vascular dementia, and sex, as factors. Comparative analyses of expression changes in the brains of AD patients and a mouse model of AD were also performed. Relevant changes in gene expression identified by microarray analysis were validated by quantitative real-time reverse-transcription polymerase chain reaction and western blotting. The hippocampi of AD brains showed the most significant alteration in gene expression profile. Genes involved in noninsulin-dependent DM and obesity were significantly altered in both AD brains and the AD mouse model, as were genes related to psychiatric disorders and AD. The alterations in the expression profiles of DM-related genes in AD brains were independent of peripheral DM-related abnormalities. These results indicate that altered expression of genes related to DM in AD brains is a result of AD pathology, which may thereby be exacerbated by peripheral insulin resistance or DM. PMID:23595620
van Uitert, Miranda; Moerland, Perry D; Enquobahrie, Daniel A; Laivuori, Hannele; van der Post, Joris A M; Ris-Stalpers, Carrie; Afink, Gijs B
2015-01-01
Studies using the placental transcriptome to identify key molecules relevant for preeclampsia are hampered by a relatively small sample size. In addition, they use a variety of bioinformatics and statistical methods, making comparison of findings challenging. To generate a more robust preeclampsia gene expression signature, we performed a meta-analysis on the original data of 11 placenta RNA microarray experiments, representing 139 normotensive and 116 preeclamptic pregnancies. Microarray data were pre-processed and analyzed using standardized bioinformatics and statistical procedures and the effect sizes were combined using an inverse-variance random-effects model. Interactions between genes in the resulting gene expression signature were identified by pathway analysis (Ingenuity Pathway Analysis, Gene Set Enrichment Analysis, Graphite) and protein-protein associations (STRING). This approach has resulted in a comprehensive list of differentially expressed genes that led to a 388-gene meta-signature of preeclamptic placenta. Pathway analysis highlights the involvement of the previously identified hypoxia/HIF1A pathway in the establishment of the preeclamptic gene expression profile, while analysis of protein interaction networks indicates CREBBP/EP300 as a novel element central to the preeclamptic placental transcriptome. In addition, there is an apparent high incidence of preeclampsia in women carrying a child with a mutation in CREBBP/EP300 (Rubinstein-Taybi Syndrome). The 388-gene preeclampsia meta-signature offers a vital starting point for further studies into the relevance of these genes (in particular CREBBP/EP300) and their concomitant pathways as biomarkers or functional molecules in preeclampsia. This will result in a better understanding of the molecular basis of this disease and opens up the opportunity to develop rational therapies targeting the placental dysfunction causal to preeclampsia.
2013-01-01
Background Pachysolen tannophilus is a non-conventional yeast, which can metabolize many of the carbon sources found in low cost feedstocks including glycerol and xylose. The xylose utilisation pathways have been extensively studied in this organism. However, the mechanism behind glycerol metabolism is poorly understood. Using the recently published genome sequence of P. tannophilus CBS4044, we searched for genes with functions in glycerol transport and metabolism by performing a BLAST search using the sequences of the relevant genes from Saccharomyces cerevisiae as queries. Results Quantitative real-time PCR was performed to unveil the expression patterns of these genes during growth of P. tannophilus on glycerol and glucose as sole carbon sources. The genes predicted to be involved in glycerol transport in P. tannophilus were expressed in S. cerevisiae to validate their function. The S. cerevisiae strains transformed with heterologous genes showed improved growth and glycerol consumption rates with glycerol as the sole carbon source. Conclusions P. tannophilus has characteristics relevant for a microbial cell factory to be applied in a biorefinery setting, i.e. its ability to utilise the carbon sources such as xylose and glycerol. However, the strain is not currently amenable to genetic modification and transformation. Heterologous expression of the glycerol transporters from P. tannophilus, which has a relatively high growth rate on glycerol, could be used as an approach for improving the efficiency of glycerol assimilation in other well characterized and applied cell factories such as S. cerevisiae. PMID:23514356
Korashy, Hesham M; Attafi, Ibraheem M; Famulski, Konrad S; Bakheet, Saleh A; Hafez, Mohammed M; Alsaad, Abdulaziz M S; Al-Ghadeer, Abdul Rahman M
2017-02-01
Heavy metals are the most commonly encountered toxic substances that increase susceptibility to various diseases after prolonged exposure. We have previously shown that healthy volunteers living near a mining area had significant contamination with heavy metals associated with significant changes in the expression of some detoxifying genes, xenobiotic metabolizing enzymes, and DNA repair genes. However, alterations of most of the molecular target genes associated with diseases are still unknown. Thus, the aims of this study were to (a) evaluate the gene expression profile and (b) identify the toxicities and potentially relevant human disease outcomes associated with long-term human exposure to environmental heavy metals in mining area using microarray analysis. For this purpose, 40 healthy male volunteers who were residents of a heavy metal-polluted area (Mahd Al-Dhahab city, Saudi Arabia) and 20 healthy male volunteers who were residents of a non-heavy metal-polluted area were included in the study. Total RNA was isolated from whole blood using PAXgene Blood RNA tubes and then reversed transcribed and hybridized to the gene array using the Affymetrix U219 GeneChip. Microarray analysis showed about 2129 genes were identified and differentially altered, among which a shared set of 425 genes was differentially expressed in the heavy metal-exposed groups. Ingenuity pathway analysis revealed that the most altered gene-regulated diseases in heavy metal-exposed groups included hematological and developmental disorders and mostly renal and urological diseases. Quantitative real-time polymerase chain reaction closely matched the microarray data for some genes tested. Importantly, changes in gene-related diseases were attributed to alterations in the genes encoded for protein synthesis. Renal and urological diseases were the diseases that were most frequently associated with the heavy metal-exposed group. Therefore, there is a need for further studies to validate these genes, which could be used as early biomarkers to prevent renal injury. Copyright © 2016 Elsevier Ltd. All rights reserved.
Chen, Geng; Yin, Kangping; Shi, Leming; Fang, Yuanzhang; Qi, Ya; Li, Peng; Luo, Jian; He, Bing; Liu, Mingyao; Shi, Tieliu
2011-01-01
In their expression process, different genes can generate diverse functional products, including various protein-coding or noncoding RNAs. Here, we investigated the protein-coding capacities and the expression levels of their isoforms for human known genes, the conservation and disease association of long noncoding RNAs (ncRNAs) with two transcriptome sequencing datasets from human brain tissues and 10 mixed cell lines. Comparative analysis revealed that about two-thirds of the genes expressed between brain and cell lines are the same, but less than one-third of their isoforms are identical. Besides those genes specially expressed in brain and cell lines, about 66% of genes expressed in common encoded different isoforms. Moreover, most genes dominantly expressed one isoform and some genes only generated protein-coding (or noncoding) RNAs in one sample but not in another. We found 282 human genes could encode both protein-coding and noncoding RNAs through alternative splicing in the two samples. We also identified more than 1,000 long ncRNAs, and most of those long ncRNAs contain conserved elements across either 46 vertebrates or 33 placental mammals or 10 primates. Further analysis showed that some long ncRNAs differentially expressed in human breast cancer or lung cancer, several of those differentially expressed long ncRNAs were validated by RT-PCR. In addition, those validated differentially expressed long ncRNAs were found significantly correlated with certain breast cancer or lung cancer related genes, indicating the important biological relevance between long ncRNAs and human cancers. Our findings reveal that the differences of gene expression profile between samples mainly result from the expressed gene isoforms, and highlight the importance of studying genes at the isoform level for completely illustrating the intricate transcriptome.
Length bias correction in gene ontology enrichment analysis using logistic regression.
Mi, Gu; Di, Yanming; Emerson, Sarah; Cumbie, Jason S; Chang, Jeff H
2012-01-01
When assessing differential gene expression from RNA sequencing data, commonly used statistical tests tend to have greater power to detect differential expression of genes encoding longer transcripts. This phenomenon, called "length bias", will influence subsequent analyses such as Gene Ontology enrichment analysis. In the presence of length bias, Gene Ontology categories that include longer genes are more likely to be identified as enriched. These categories, however, are not necessarily biologically more relevant. We show that one can effectively adjust for length bias in Gene Ontology analysis by including transcript length as a covariate in a logistic regression model. The logistic regression model makes the statistical issue underlying length bias more transparent: transcript length becomes a confounding factor when it correlates with both the Gene Ontology membership and the significance of the differential expression test. The inclusion of the transcript length as a covariate allows one to investigate the direct correlation between the Gene Ontology membership and the significance of testing differential expression, conditional on the transcript length. We present both real and simulated data examples to show that the logistic regression approach is simple, effective, and flexible.
Cavaiuolo, Marina; Cocetta, Giacomo; Spadafora, Natasha Damiana; Müller, Carsten T.; Rogers, Hilary J.
2017-01-01
Diplotaxis tenuifolia L. is of important economic value in the fresh-cut industry for its nutraceutical and sensorial properties. However, information on the molecular mechanisms conferring tolerance of harvested leaves to pre- and postharvest stresses during processing and shelf-life have never been investigated. Here, we provide the first transcriptomic resource of rocket by de novo RNA sequencing assembly, functional annotation and stress-induced expression analysis of 33874 transcripts. Transcriptomic changes in leaves subjected to commercially-relevant pre-harvest (salinity, heat and nitrogen starvation) and postharvest stresses (cold, dehydration, dark, wounding) known to affect quality and shelf-life were analysed 24h after stress treatment, a timing relevant to subsequent processing of salad leaves. Transcription factors and genes involved in plant growth regulator signaling, autophagy, senescence and glucosinolate metabolism were the most affected by the stresses. Hundreds of genes with unknown function but uniquely expressed under stress were identified, providing candidates to investigate stress responses in rocket. Dehydration and wounding had the greatest effect on the transcriptome and different stresses elicited changes in the expression of genes related to overlapping groups of hormones. These data will allow development of approaches targeted at improving stress tolerance, quality and shelf-life of rocket with direct applications in the fresh-cut industries. PMID:28558066
Cavaiuolo, Marina; Cocetta, Giacomo; Spadafora, Natasha Damiana; Müller, Carsten T; Rogers, Hilary J; Ferrante, Antonio
2017-01-01
Diplotaxis tenuifolia L. is of important economic value in the fresh-cut industry for its nutraceutical and sensorial properties. However, information on the molecular mechanisms conferring tolerance of harvested leaves to pre- and postharvest stresses during processing and shelf-life have never been investigated. Here, we provide the first transcriptomic resource of rocket by de novo RNA sequencing assembly, functional annotation and stress-induced expression analysis of 33874 transcripts. Transcriptomic changes in leaves subjected to commercially-relevant pre-harvest (salinity, heat and nitrogen starvation) and postharvest stresses (cold, dehydration, dark, wounding) known to affect quality and shelf-life were analysed 24h after stress treatment, a timing relevant to subsequent processing of salad leaves. Transcription factors and genes involved in plant growth regulator signaling, autophagy, senescence and glucosinolate metabolism were the most affected by the stresses. Hundreds of genes with unknown function but uniquely expressed under stress were identified, providing candidates to investigate stress responses in rocket. Dehydration and wounding had the greatest effect on the transcriptome and different stresses elicited changes in the expression of genes related to overlapping groups of hormones. These data will allow development of approaches targeted at improving stress tolerance, quality and shelf-life of rocket with direct applications in the fresh-cut industries.
A-MADMAN: Annotation-based microarray data meta-analysis tool
Bisognin, Andrea; Coppe, Alessandro; Ferrari, Francesco; Risso, Davide; Romualdi, Chiara; Bicciato, Silvio; Bortoluzzi, Stefania
2009-01-01
Background Publicly available datasets of microarray gene expression signals represent an unprecedented opportunity for extracting genomic relevant information and validating biological hypotheses. However, the exploitation of this exceptionally rich mine of information is still hampered by the lack of appropriate computational tools, able to overcome the critical issues raised by meta-analysis. Results This work presents A-MADMAN, an open source web application which allows the retrieval, annotation, organization and meta-analysis of gene expression datasets obtained from Gene Expression Omnibus. A-MADMAN addresses and resolves several open issues in the meta-analysis of gene expression data. Conclusion A-MADMAN allows i) the batch retrieval from Gene Expression Omnibus and the local organization of raw data files and of any related meta-information, ii) the re-annotation of samples to fix incomplete, or otherwise inadequate, metadata and to create user-defined batches of data, iii) the integrative analysis of data obtained from different Affymetrix platforms through custom chip definition files and meta-normalization. Software and documentation are available on-line at . PMID:19563634
Employing conservation of co-expression to improve functional inference
Daub, Carsten O; Sonnhammer, Erik LL
2008-01-01
Background Observing co-expression between genes suggests that they are functionally coupled. Co-expression of orthologous gene pairs across species may improve function prediction beyond the level achieved in a single species. Results We used orthology between genes of the three different species S. cerevisiae, D. melanogaster, and C. elegans to combine co-expression across two species at a time. This led to increased function prediction accuracy when we incorporated expression data from either of the other two species and even further increased when conservation across both of the two other species was considered at the same time. Employing the conservation across species to incorporate abundant model organism data for the prediction of protein interactions in poorly characterized species constitutes a very powerful annotation method. Conclusion To be able to employ the most suitable co-expression distance measure for our analysis, we evaluated the ability of four popular gene co-expression distance measures to detect biologically relevant interactions between pairs of genes. For the expression datasets employed in our co-expression conservation analysis above, we used the GO and the KEGG PATHWAY databases as gold standards. While the differences between distance measures were small, Spearman correlation showed to give most robust results. PMID:18808668
Asai, Hiroaki; Fujiwara, Hiroshi; An, Jun; Ochi, Toshiki; Miyazaki, Yukihiro; Nagai, Kozo; Okamoto, Sachiko; Mineno, Junichi; Kuzushima, Kiyotaka; Shiku, Hiroshi; Inoue, Hirofumi; Yasukawa, Masaki
2013-01-01
Background and Purpose Although gene-modification of T cells to express tumor-related antigen-specific T-cell receptor (TCR) or chimeric antigen receptor (CAR) has clinically proved promise, there still remains room to improve the clinical efficacy of re-directed T-cell based antitumor adoptive therapy. In order to achieve more objective clinical responses using ex vivo-expanded tumor-responsive T cells, the infused T cells need to show adequate localized infiltration into the tumor. Methodology/Principal Findings Human lung cancer cells variously express a tumor antigen, Wilms' Tumor gene product 1 (WT1), and an inflammatory chemokine, CCL2. However, CCR2, the relevant receptor for CCL2, is rarely expressed on activated T-lymphocytes. A HLA-A2402+ human lung cancer cell line, LK79, which expresses high amounts of both CCL2 and WT1 mRNA, was employed as a target. Normal CD8+ T cells were retrovirally gene-modified to express both CCR2 and HLA-A*2402-restricted and WT1235–243 nonapeptide-specific TCR as an effector. Anti-tumor functionality mediated by these effector cells against LK79 cells was assessed both in vitro and in vivo. Finally the impact of CCL2 on WT1 epitope-responsive TCR signaling mediated by the effector cells was studied. Introduced CCR2 was functionally validated using gene-modified Jurkat cells and human CD3+ T cells both in vitro and in vivo. Double gene-modified CD3+ T cells successfully demonstrated both CCL2-tropic tumor trafficking and cytocidal reactivity against LK79 cells in vitro and in vivo. CCL2 augmented the WT1 epitope-responsive TCR signaling shown by relevant luciferase production in double gene-modified Jurkat/MA cells to express luciferase and WT1-specific TCR, and CCL2 also dose-dependently augmented WT1 epitope-responsive IFN-γ production and CD107a expression mediated by these double gene-modifiedCD3+ T cells. Conclusion/Significance Introduction of the CCL2/CCR2 axis successfully potentiated in vivo anti-lung cancer reactivity mediated by CD8+ T cells double gene-modified to express WT1-specific TCR and CCR2 not only via CCL2-tropic tumor trafficking, but also CCL2-enhanced WT1-responsiveness. PMID:23441216
Kienle, Dirk; Katzenberger, Tiemo; Ott, German; Saupe, Doreen; Benner, Axel; Kohlhammer, Holger; Barth, Thomas F E; Höller, Sylvia; Kalla, Jörg; Rosenwald, Andreas; Müller-Hermelink, Hans Konrad; Möller, Peter; Lichter, Peter; Döhner, Hartmut; Stilgenbauer, Stephan
2007-07-01
There is evidence for a direct role of quantitative gene expression deregulation in mantle-cell lymphoma (MCL) pathogenesis. Our aim was to investigate gene expression associations with other pathogenic factors and the significance of gene expression in a multivariate survival analysis. Quantitative expression of 20 genes of potential relevance for MCL prognosis and pathogenesis were analyzed using real-time reverse transcriptase polymerase chain reaction and correlated with clinical and genetic factors, tumor morphology, and Ki-67 index in 65 MCL samples. Genomic losses at the loci of TP53, RB1, and P16 were associated with reduced transcript levels of the respective genes, indicating a gene-dosage effect as the pathomechanism. Analysis of gene expression correlations between the candidate genes revealed a separation into two clusters, one dominated by proliferation activators, another by proliferation inhibitors and regulators of apoptosis. Whereas only weak associations were identified between gene expression and clinical parameters or blastoid morphology, several genes were correlated closely with the Ki-67 index, including the short CCND1 variant (positive correlation) and RB1, ATM, P27, and BMI (negative correlation). In multivariate survival analysis, expression levels of MYC, MDM2, EZH2, and CCND1 were the strongest prognostic factors independently of tumor proliferation and clinical factors. These results indicate a pathogenic contribution of several gene transcript levels to the biology and clinical course of MCL. Genes can be differentiated into factors contributing to proliferation deregulation, either by enhancement or loss of inhibition, and proliferation-independent factors potentially contributing to MCL pathogenesis by apoptosis impairment.
The prospect of gene therapy for prostate cancer: update on theory and status.
Koeneman, K S; Hsieh, J T
2001-09-01
Molecularly based novel therapeutic agents are needed to address the problem of locally recurrent, or metastatic, advanced hormone-refractory prostate cancer. Recent basic science advances in mechanisms of gene expression, vector delivery, and targeting have rendered clinically relevant gene therapy to the prostatic fossa and distant sites feasible in the near future. Current research and clinical investigative efforts involving methods for more effective vector delivery and targeting, with enhanced gene expression to selected (specific) sites, are reviewed. These areas of research involve tissue-specific promoters, transgene exploration, vector design and delivery, and selective vector targeting. The 'vectorology' involved mainly addresses selective tissue homing with ligands, mechanisms of innate immune system evasion for durable transgene expression, and the possibility of repeat administration.
2014-01-01
Background A thorough investigation of the neurobiology of HIV-induced neuronal dysfunction and its evolving phenotype in the setting of viral suppression has been limited by the lack of validated small animal models to probe the effects of concomitant low level expression of multiple HIV-1 products in disease-relevant cells in the CNS. Results We report the results of gene expression profiling of the hippocampus of HIV-1 Tg rats, a rodent model of HIV infection in which multiple HIV-1 proteins are expressed under the control of the viral LTR promoter in disease-relevant cells including microglia and astrocytes. The Gene Set Enrichment Analysis (GSEA) algorithm was used for pathway analysis. Gene expression changes observed are consistent with astrogliosis and microgliosis and include evidence of inflammation and cell proliferation. Among the genes with increased expression in HIV-1 Tg rats was the interferon stimulated gene 15 (ISG-15), which was previously shown to be increased in the cerebrospinal fluid (CSF) of HIV patients and to correlate with neuropsychological impairment and neuropathology, and prostaglandin D2 (PGD2) synthase (Ptgds), which has been associated with immune activation and the induction of astrogliosis and microgliosis. GSEA-based pathway analysis highlighted a broad dysregulation of genes involved in neuronal trophism and neurodegenerative disorders. Among the latter are genesets associated with Huntington’s disease, Parkinson’s disease, mitochondrial, peroxisome function, and synaptic trophism and plasticity, such as IGF, ErbB and netrin signaling and the PI3K signal transduction pathway, a mediator of neural plasticity and of a vast array of trophic signals. Additionally, gene expression analyses also show altered lipid metabolism and peroxisomes dysfunction. Supporting the functional significance of these gene expression alterations, HIV-1 Tg rats showed working memory impairments in spontaneous alternation behavior in the T-Maze, a paradigm sensitive to prefrontal cortex and hippocampal function. Conclusions Altogether, differentially regulated genes and pathway analysis identify specific pathways that can be targeted therapeutically to increase trophic support, e.g. IGF, ErbB and netrin signaling, and reduce neuroinflammation, e.g. PGD2 synthesis, which may be beneficial in the treatment of chronic forms of HIV-associated neurocognitive disorders in the setting of viral suppression. PMID:24980976
Environmental Adaptation Contributes to Gene Polymorphism across the Arabidopsis thaliana Genome
Lee, Cheng-Ruei
2012-01-01
The level of within-species polymorphism differs greatly among genes in a genome. Many genomic studies have investigated the relationship between gene polymorphism and factors such as recombination rate or expression pattern. However, the polymorphism of a gene is affected not only by its physical properties or functional constraints but also by natural selection on organisms in their environments. Specifically, if functionally divergent alleles enable adaptation to different environments, locus-specific polymorphism may be maintained by spatially heterogeneous natural selection. To test this hypothesis and estimate the extent to which environmental selection shapes the pattern of genome-wide polymorphism, we define the "environmental relevance" of a gene as the proportion of genetic variation explained by environmental factors, after controlling for population structure. We found substantial effects of environmental relevance on patterns of polymorphism among genes. In addition, the correlation between environmental relevance and gene polymorphism is positive, consistent with the expectation that balancing selection among heterogeneous environments maintains genetic variation at ecologically important genes. Comparison of the gene ontology annotations shows that genes with high environmental relevance are enriched in unknown function categories. These results suggest an important role for environmental factors in shaping genome-wide patterns of polymorphism and indicate another direction of genomic study. PMID:22798389
A mixture model-based approach to the clustering of microarray expression data.
McLachlan, G J; Bean, R W; Peel, D
2002-03-01
This paper introduces the software EMMIX-GENE that has been developed for the specific purpose of a model-based approach to the clustering of microarray expression data, in particular, of tissue samples on a very large number of genes. The latter is a nonstandard problem in parametric cluster analysis because the dimension of the feature space (the number of genes) is typically much greater than the number of tissues. A feasible approach is provided by first selecting a subset of the genes relevant for the clustering of the tissue samples by fitting mixtures of t distributions to rank the genes in order of increasing size of the likelihood ratio statistic for the test of one versus two components in the mixture model. The imposition of a threshold on the likelihood ratio statistic used in conjunction with a threshold on the size of a cluster allows the selection of a relevant set of genes. However, even this reduced set of genes will usually be too large for a normal mixture model to be fitted directly to the tissues, and so the use of mixtures of factor analyzers is exploited to reduce effectively the dimension of the feature space of genes. The usefulness of the EMMIX-GENE approach for the clustering of tissue samples is demonstrated on two well-known data sets on colon and leukaemia tissues. For both data sets, relevant subsets of the genes are able to be selected that reveal interesting clusterings of the tissues that are either consistent with the external classification of the tissues or with background and biological knowledge of these sets. EMMIX-GENE is available at http://www.maths.uq.edu.au/~gjm/emmix-gene/
Systems Genetic Analysis of Osteoblast-Lineage Cells
Calabrese, Gina; Bennett, Brian J.; Orozco, Luz; Kang, Hyun M.; Eskin, Eleazar; Dombret, Carlos; De Backer, Olivier; Lusis, Aldons J.; Farber, Charles R.
2012-01-01
The osteoblast-lineage consists of cells at various stages of maturation that are essential for skeletal development, growth, and maintenance. Over the past decade, many of the signaling cascades that regulate this lineage have been elucidated; however, little is known of the networks that coordinate, modulate, and transmit these signals. Here, we identify a gene network specific to the osteoblast-lineage through the reconstruction of a bone co-expression network using microarray profiles collected on 96 Hybrid Mouse Diversity Panel (HMDP) inbred strains. Of the 21 modules that comprised the bone network, module 9 (M9) contained genes that were highly correlated with prototypical osteoblast maker genes and were more highly expressed in osteoblasts relative to other bone cells. In addition, the M9 contained many of the key genes that define the osteoblast-lineage, which together suggested that it was specific to this lineage. To use the M9 to identify novel osteoblast genes and highlight its biological relevance, we knocked-down the expression of its two most connected “hub” genes, Maged1 and Pard6g. Their perturbation altered both osteoblast proliferation and differentiation. Furthermore, we demonstrated the mice deficient in Maged1 had decreased bone mineral density (BMD). It was also discovered that a local expression quantitative trait locus (eQTL) regulating the Wnt signaling antagonist Sfrp1 was a key driver of the M9. We also show that the M9 is associated with BMD in the HMDP and is enriched for genes implicated in the regulation of human BMD through genome-wide association studies. In conclusion, we have identified a physiologically relevant gene network and used it to discover novel genes and regulatory mechanisms involved in the function of osteoblast-lineage cells. Our results highlight the power of harnessing natural genetic variation to generate co-expression networks that can be used to gain insight into the function of specific cell-types. PMID:23300464
Yin, Jingjing; Li, Liangjun; Chen, Xuehao
2013-01-01
Lotus root is a popular wetland vegetable which produces edible rhizome. At the molecular level, the regulation of rhizome formation is very complex, which has not been sufficiently addressed in research. In this study, to identify differentially expressed genes (DEGs) in lotus root, four libraries (L1 library: stolon stage, L2 library: initial swelling stage, L3 library: middle swelling stage, L4: later swelling stage) were constructed from the rhizome development stages. High-throughput tag-sequencing technique was used which is based on Solexa Genome Analyzer Platform. Approximately 5.0 million tags were sequenced, and 4542104, 4474755, 4777919, and 4750348 clean tags including 151282, 137476, 215872, and 166005 distinct tags were obtained after removal of low quality tags from each library respectively. More than 43% distinct tags were unambiguous tags mapping to the reference genes, and 40% were unambiguous tag-mapped genes. From L1, L2, L3, and L4, total 20471, 18785, 23448, and 21778 genes were annotated, after mapping their functions in existing databases. Profiling of gene expression in L1/L2, L2/L3, and L3/L4 libraries were different among most of the selected 20 DEGs. Most of the DEGs in L1/L2 libraries were relevant to fiber development and stress response, while in L2/L3 and L3/L4 libraries, major of the DEGs were involved in metabolism of energy and storage. All up-regulated transcriptional factors in four libraries and 14 important rhizome formation-related genes in four libraries were also identified. In addition, the expression of 9 genes from identified DEGs was performed by qRT-PCR method. In a summary, this study provides a comprehensive understanding of gene expression during the rhizome formation in lotus root. PMID:23840598
Thakur, Archana; Bollig, Aliccia; Wu, Jiusheng; Liao, Dezhong J
2008-01-24
Pancreatic carcinoma usually is a fatal disease with no cure, mainly due to its invasion and metastasis prior to diagnosis. We analyzed the gene expression profiles of paired primary pancreatic tumors and metastatic lesions from Ela-c-myc transgenic mice in order to identify genes that may be involved in the pancreatic cancer progression. Differentially expressed selected genes were verified by semi-quantitative and quantitative RT-PCR. To further evaluate the relevance of some of the selected differentially expressed genes, we investigated their expression pattern in human pancreatic cancer cell lines with high and low metastatic potentials. Data indicate that genes involved in posttranscriptional regulation were a major functional category of upregulated genes in both primary pancreatic tumors (PT) and liver metastatic lesions (LM) compared to normal pancreas (NP). In particular, differential expression for splicing factors, RNA binding/pre-mRNA processing factors and spliceosome related genes were observed, indicating that RNA processing and editing related events may play critical roles in pancreatic tumor development and progression. High expression of insulin growth factor binding protein-1 (Igfbp1) and Serine proteinase inhibitor A1 (Serpina1), and low levels or absence of Wt1 gene expression were exclusive to liver metastatic lesion samples. We identified Igfbp1, Serpina1 and Wt1 genes that are likely to be clinically useful biomarkers for prognostic or therapeutic purposes in metastatic pancreatic cancer, particularly in pancreatic cancer where c-Myc is overexpressed.
Biological interpretation of genome-wide association studies using predicted gene functions.
Pers, Tune H; Karjalainen, Juha M; Chan, Yingleong; Westra, Harm-Jan; Wood, Andrew R; Yang, Jian; Lui, Julian C; Vedantam, Sailaja; Gustafsson, Stefan; Esko, Tonu; Frayling, Tim; Speliotes, Elizabeth K; Boehnke, Michael; Raychaudhuri, Soumya; Fehrmann, Rudolf S N; Hirschhorn, Joel N; Franke, Lude
2015-01-19
The main challenge for gaining biological insights from genetic associations is identifying which genes and pathways explain the associations. Here we present DEPICT, an integrative tool that employs predicted gene functions to systematically prioritize the most likely causal genes at associated loci, highlight enriched pathways and identify tissues/cell types where genes from associated loci are highly expressed. DEPICT is not limited to genes with established functions and prioritizes relevant gene sets for many phenotypes.
DGEM--a microarray gene expression database for primary human disease tissues.
Xia, Yuni; Campen, Andrew; Rigsby, Dan; Guo, Ying; Feng, Xingdong; Su, Eric W; Palakal, Mathew; Li, Shuyu
2007-01-01
Gene expression patterns can reflect gene regulations in human tissues under normal or pathologic conditions. Gene expression profiling data from studies of primary human disease samples are particularly valuable since these studies often span many years in order to collect patient clinical information and achieve a large sample size. Disease-to-Gene Expression Mapper (DGEM) provides a beneficial community resource to access and analyze these data; it currently includes Affymetrix oligonucleotide array datasets for more than 40 human diseases and 1400 samples. The data are normalized to the same scale and stored in a relational database. A statistical-analysis pipeline was implemented to identify genes abnormally expressed in disease tissues or genes whose expressions are associated with clinical parameters such as cancer patient survival. Data-mining results can be queried through a web-based interface at http://dgem.dhcp.iupui.edu/. The query tool enables dynamic generation of graphs and tables that are further linked to major gene and pathway resources that connect the data to relevant biology, including Entrez Gene and Kyoto Encyclopedia of Genes and Genomes (KEGG). In summary, DGEM provides scientists and physicians a valuable tool to study disease mechanisms, to discover potential disease biomarkers for diagnosis and prognosis, and to identify novel gene targets for drug discovery. The source code is freely available for non-profit use, on request to the authors.
Picking Cell Lines for High-Throughput Transcriptomic Toxicity ...
High throughput, whole genome transcriptomic profiling is a promising approach to comprehensively evaluate chemicals for potential biological effects. To be useful for in vitro toxicity screening, gene expression must be quantified in a set of representative cell types that captures the diversity of potential responses across chemicals. The ideal dataset to select these cell types would consist of hundreds of cell types treated with thousands of chemicals, but does not yet exist. However, basal gene expression data may be useful as a surrogate for representing the relevant biological space necessary for cell type selection. The goal of this study was to identify a small (< 20) number of cell types that capture a large, quantifiable fraction of basal gene expression diversity. Three publicly available collections of Affymetrix U133+2.0 cellular gene expression data were used: 1) 59 cell lines from the NCI60 set; 2) 303 primary cell types from the Mabbott et al (2013) expression atlas; and 3) 1036 cell lines from the Cancer Cell Line Encyclopedia. The data were RMA normalized, log-transformed, and the probe sets mapped to HUGO gene identifiers. The results showed that <20 cell lines capture only a small fraction of the total diversity in basal gene expression when evaluated using either the entire set of 20960 HUGO genes or a subset of druggable genes likely to be chemical targets. The fraction of the total gene expression variation explained was consistent when
The transcriptional landscape of age in human peripheral blood
Peters, Marjolein J.; Joehanes, Roby; Pilling, Luke C.; Schurmann, Claudia; Conneely, Karen N.; Powell, Joseph; Reinmaa, Eva; Sutphin, George L.; Zhernakova, Alexandra; Schramm, Katharina; Wilson, Yana A.; Kobes, Sayuko; Tukiainen, Taru; Nalls, Michael A.; Hernandez, Dena G.; Cookson, Mark R.; Gibbs, Raphael J.; Hardy, John; Ramasamy, Adaikalavan; Zonderman, Alan B.; Dillman, Allissa; Traynor, Bryan; Smith, Colin; Longo, Dan L.; Trabzuni, Daniah; Troncoso, Juan; van der Brug, Marcel; Weale, Michael E.; O'Brien, Richard; Johnson, Robert; Walker, Robert; Zielke, Ronald H.; Arepalli, Sampath; Ryten, Mina; Singleton, Andrew B.; Ramos, Yolande F.; Göring, Harald H. H.; Fornage, Myriam; Liu, Yongmei; Gharib, Sina A.; Stranger, Barbara E.; De Jager, Philip L.; Aviv, Abraham; Levy, Daniel; Murabito, Joanne M.; Munson, Peter J.; Huan, Tianxiao; Hofman, Albert; Uitterlinden, André G.; Rivadeneira, Fernando; van Rooij, Jeroen; Stolk, Lisette; Broer, Linda; Verbiest, Michael M. P. J.; Jhamai, Mila; Arp, Pascal; Metspalu, Andres; Tserel, Liina; Milani, Lili; Samani, Nilesh J.; Peterson, Pärt; Kasela, Silva; Codd, Veryan; Peters, Annette; Ward-Caviness, Cavin K.; Herder, Christian; Waldenberger, Melanie; Roden, Michael; Singmann, Paula; Zeilinger, Sonja; Illig, Thomas; Homuth, Georg; Grabe, Hans-Jörgen; Völzke, Henry; Steil, Leif; Kocher, Thomas; Murray, Anna; Melzer, David; Yaghootkar, Hanieh; Bandinelli, Stefania; Moses, Eric K.; Kent, Jack W.; Curran, Joanne E.; Johnson, Matthew P.; Williams-Blangero, Sarah; Westra, Harm-Jan; McRae, Allan F.; Smith, Jennifer A.; Kardia, Sharon L. R.; Hovatta, Iiris; Perola, Markus; Ripatti, Samuli; Salomaa, Veikko; Henders, Anjali K.; Martin, Nicholas G.; Smith, Alicia K.; Mehta, Divya; Binder, Elisabeth B.; Nylocks, K Maria; Kennedy, Elizabeth M.; Klengel, Torsten; Ding, Jingzhong; Suchy-Dicey, Astrid M.; Enquobahrie, Daniel A.; Brody, Jennifer; Rotter, Jerome I.; Chen, Yii-Der I.; Houwing-Duistermaat, Jeanine; Kloppenburg, Margreet; Slagboom, P. Eline; Helmer, Quinta; den Hollander, Wouter; Bean, Shannon; Raj, Towfique; Bakhshi, Noman; Wang, Qiao Ping; Oyston, Lisa J.; Psaty, Bruce M.; Tracy, Russell P.; Montgomery, Grant W.; Turner, Stephen T.; Blangero, John; Meulenbelt, Ingrid; Ressler, Kerry J.; Yang, Jian; Franke, Lude; Kettunen, Johannes; Visscher, Peter M.; Neely, G. Gregory; Korstanje, Ron; Hanson, Robert L.; Prokisch, Holger; Ferrucci, Luigi; Esko, Tonu; Teumer, Alexander; van Meurs, Joyce B. J.; Johnson, Andrew D.
2015-01-01
Disease incidences increase with age, but the molecular characteristics of ageing that lead to increased disease susceptibility remain inadequately understood. Here we perform a whole-blood gene expression meta-analysis in 14,983 individuals of European ancestry (including replication) and identify 1,497 genes that are differentially expressed with chronological age. The age-associated genes do not harbor more age-associated CpG-methylation sites than other genes, but are instead enriched for the presence of potentially functional CpG-methylation sites in enhancer and insulator regions that associate with both chronological age and gene expression levels. We further used the gene expression profiles to calculate the ‘transcriptomic age' of an individual, and show that differences between transcriptomic age and chronological age are associated with biological features linked to ageing, such as blood pressure, cholesterol levels, fasting glucose, and body mass index. The transcriptomic prediction model adds biological relevance and complements existing epigenetic prediction models, and can be used by others to calculate transcriptomic age in external cohorts. PMID:26490707
Zhang, Dingxiao; Park, Daechan; Zhong, Yi; Lu, Yue; Rycaj, Kiera; Gong, Shuai; Chen, Xin; Liu, Xin; Chao, Hsueh-Ping; Whitney, Pamela; Calhoun-Davis, Tammy; Takata, Yoko; Shen, Jianjun; Iyer, Vishwanath R.; Tang, Dean G.
2016-01-01
The prostate gland mainly contains basal and luminal cells constructed as a pseudostratified epithelium. Annotation of prostate epithelial transcriptomes provides a foundation for discoveries that can impact disease understanding and treatment. Here we describe a genome-wide transcriptome analysis of human benign prostatic basal and luminal epithelial populations using deep RNA sequencing. Through molecular and biological characterizations, we show that the differential gene-expression profiles account for their distinct functional properties. Strikingly, basal cells preferentially express gene categories associated with stem cells, neurogenesis and ribosomal RNA (rRNA) biogenesis. Consistent with this profile, basal cells functionally exhibit intrinsic stem-like and neurogenic properties with enhanced rRNA transcription activity. Of clinical relevance, the basal cell gene-expression profile is enriched in advanced, anaplastic, castration-resistant and metastatic prostate cancers. Therefore, we link the cell-type-specific gene signatures to aggressive subtypes of prostate cancer and identify gene signatures associated with adverse clinical features. PMID:26924072
Zhang, Dingxiao; Park, Daechan; Zhong, Yi; Lu, Yue; Rycaj, Kiera; Gong, Shuai; Chen, Xin; Liu, Xin; Chao, Hsueh-Ping; Whitney, Pamela; Calhoun-Davis, Tammy; Takata, Yoko; Shen, Jianjun; Iyer, Vishwanath R; Tang, Dean G
2016-02-29
The prostate gland mainly contains basal and luminal cells constructed as a pseudostratified epithelium. Annotation of prostate epithelial transcriptomes provides a foundation for discoveries that can impact disease understanding and treatment. Here we describe a genome-wide transcriptome analysis of human benign prostatic basal and luminal epithelial populations using deep RNA sequencing. Through molecular and biological characterizations, we show that the differential gene-expression profiles account for their distinct functional properties. Strikingly, basal cells preferentially express gene categories associated with stem cells, neurogenesis and ribosomal RNA (rRNA) biogenesis. Consistent with this profile, basal cells functionally exhibit intrinsic stem-like and neurogenic properties with enhanced rRNA transcription activity. Of clinical relevance, the basal cell gene-expression profile is enriched in advanced, anaplastic, castration-resistant and metastatic prostate cancers. Therefore, we link the cell-type-specific gene signatures to aggressive subtypes of prostate cancer and identify gene signatures associated with adverse clinical features.
Function and expression pattern of nonsyndromic deafness genes
Hilgert, Nele; Smith, Richard J.H.; Van Camp, Guy
2010-01-01
Hearing loss is the most common sensory disorder, present in 1 of every 500 newborns. To date, 46 genes have been identified that cause nonsyndromic hearing loss, making it an extremely heterogeneous trait. This review provides a comprehensive overview of the inner ear function and expression pattern of these genes. In general, they are involved in hair bundle morphogenesis, form constituents of the extracellular matrix, play a role in cochlear ion homeostasis or serve as transcription factors. During the past few years, our knowledge of genes involved in hair bundle morphogenesis has increased substantially. We give an up-to-date overview of both the nonsyndromic and Usher syndrome genes involved in this process, highlighting proteins that interact to form macromolecular complexes. For every gene, we also summarize its expression pattern and impact on hearing at the functional level. Gene-specific cochlear expression is summarized in a unique table by structure/cell type and is illustrated on a cochlear cross-section, which is available online via the Hereditary Hearing Loss Homepage. This review should provide auditory scientists the most relevant information for all identified nonsyndromic deafness genes. PMID:19601806
An efficient method to identify differentially expressed genes in microarray experiments
Qin, Huaizhen; Feng, Tao; Harding, Scott A.; Tsai, Chung-Jui; Zhang, Shuanglin
2013-01-01
Motivation Microarray experiments typically analyze thousands to tens of thousands of genes from small numbers of biological replicates. The fact that genes are normally expressed in functionally relevant patterns suggests that gene-expression data can be stratified and clustered into relatively homogenous groups. Cluster-wise dimensionality reduction should make it feasible to improve screening power while minimizing information loss. Results We propose a powerful and computationally simple method for finding differentially expressed genes in small microarray experiments. The method incorporates a novel stratification-based tight clustering algorithm, principal component analysis and information pooling. Comprehensive simulations show that our method is substantially more powerful than the popular SAM and eBayes approaches. We applied the method to three real microarray datasets: one from a Populus nitrogen stress experiment with 3 biological replicates; and two from public microarray datasets of human cancers with 10 to 40 biological replicates. In all three analyses, our method proved more robust than the popular alternatives for identification of differentially expressed genes. Availability The C++ code to implement the proposed method is available upon request for academic use. PMID:18453554
2014-01-01
Background Clinically useful biomarkers for patient stratification and monitoring of disease progression and drug response are in big demand in drug development and for addressing potential safety concerns. Many diseases influence the frequency and phenotype of cells found in the peripheral blood and the transcriptome of blood cells. Changes in cell type composition influence whole blood gene expression analysis results and thus the discovery of true transcript level changes remains a challenge. We propose a robust and reproducible procedure, which includes whole transcriptome gene expression profiling of major subsets of immune cell cells directly sorted from whole blood. Methods Target cells were enriched using magnetic microbeads and an autoMACS® Pro Separator (Miltenyi Biotec). Flow cytometric analysis for purity was performed before and after magnetic cell sorting. Total RNA was hybridized on HGU133 Plus 2.0 expression microarrays (Affymetrix, USA). CEL files signal intensity values were condensed using RMA and a custom CDF file (EntrezGene-based). Results Positive selection by use of MACS® Technology coupled to transcriptomics was assessed for eight different peripheral blood cell types, CD14+ monocytes, CD3+, CD4+, or CD8+ T cells, CD15+ granulocytes, CD19+ B cells, CD56+ NK cells, and CD45+ pan leukocytes. RNA quality from enriched cells was above a RIN of eight. GeneChip analysis confirmed cell type specific transcriptome profiles. Storing whole blood collected in an EDTA Vacutainer® tube at 4°C followed by MACS does not activate sorted cells. Gene expression analysis supports cell enrichment measurements by MACS. Conclusions The proposed workflow generates reproducible cell-type specific transcriptome data which can be translated to clinical settings and used to identify clinically relevant gene expression biomarkers from whole blood samples. This procedure enables the integration of transcriptomics of relevant immune cell subsets sorted directly from whole blood in clinical trial protocols. PMID:25984272
DOE Office of Scientific and Technical Information (OSTI.GOV)
Labib, Sarah, E-mail: Sarah.Labib@hc-sc.gc.ca; Guo, Charles H., E-mail: Charles.Guo@hc-sc.gc.ca; Williams, Andrew, E-mail: Andrew.Williams@hc-sc.gc.ca
2013-12-01
Forestomach tumors are observed in mice exposed to environmental carcinogens. However, the relevance of this data to humans is controversial because humans lack a forestomach. We hypothesize that an understanding of early molecular changes after exposure to a carcinogen in the forestomach will provide mode-of-action information to evaluate the applicability of forestomach cancers to human cancer risk assessment. In the present study we exposed mice to benzo(a)pyrene (BaP), an environmental carcinogen commonly associated with tumors of the rodent forestomach. Toxicogenomic tools were used to profile gene expression response in the forestomach. Adult Muta™Mouse males were orally exposed to 25, 50,more » and 75 mg BaP/kg-body-weight/day for 28 consecutive days. The forestomach was collected three days post-exposure. DNA microarrays, real-time RT-qPCR arrays, and protein analyses were employed to characterize responses in the forestomach. Microarray results showed altered expression of 414 genes across all treatment groups (± 1.5 fold; false discovery rate adjusted P ≤ 0.05). Significant downregulation of genes associated with phase II xenobiotic metabolism and increased expression of genes implicated in antigen processing and presentation, immune response, chemotaxis, and keratinocyte differentiation were observed in treated groups in a dose-dependent manner. A systematic comparison of the differentially expressed genes in the forestomach from the present study to differentially expressed genes identified in human diseases including human gastrointestinal tract cancers using the NextBio Human Disease Atlas showed significant commonalities between the two models. Our results provide molecular evidence supporting the use of the mouse forestomach model to evaluate chemically-induced gastrointestinal carcinogenesis in humans. - Highlights: • Benzo(a)pyrene-mediated transcriptomic response in the forestomach was examined. • The immunoproteosome subunits and MHC class I pathway were the most affected. • Keratinocyte differentiation associated gene expression changes were dose-dependent. • Molecular similarities exist between cancers of the forestomach and human stomach.« less
Rubiolo, Juan Andrés; Vale, Carmen; Boente-Juncal, Andrea; Hirama, Masahiro; Yamashita, Shuji; Camiña, Mercedes; Vieytes, Mercedes R; Botana, Luis M
2018-05-10
Ciguatoxins are polyether marine toxins that act as sodium channel activators. These toxins cause ciguatera, one of the most widespread nonbacterial forms of food poisoning, which presents several symptoms in humans including long-term neurological alterations. Earlier work has shown that both acute and chronic exposure of primary cortical neurons to synthetic ciguatoxin CTX3C have profound impacts on neuronal function. Thus, the present work aimed to identify relevant neuronal genes and metabolic pathways that could be altered by ciguatoxin exposure. To study the effect of ciguatoxins in primary neurons in culture, we performed a transcriptomic analysis using whole mouse genome microarrays, for primary cortical neurons exposed during 6, 24, or 72 h in culture to CTX3C. Here, we have shown that the effects of the toxin on gene expression differ with the exposure time. The results presented here have identified several relevant genes and pathways related to the effect of ciguatoxins on neurons and may assist in future research or even treatment of ciguatera. Moreover, we demonstrated that the effects of the toxin on gene expression were exclusively consequential of its action as a voltage-gated sodium channel activator, since all the effects of CTX3C were avoided by preincubation of the neurons with the sodium channel blocker tetrodotoxin.
Global miRNA expression and correlation with mRNA levels in primary human bone cells
Laxman, Navya; Rubin, Carl-Johan; Mallmin, Hans; Nilsson, Olle; Pastinen, Tomi; Grundberg, Elin; Kindmark, Andreas
2015-01-01
MicroRNAs (miRNAs) are important post-transcriptional regulators that have recently introduced an additional level of intricacy to our understanding of gene regulation. The aim of this study was to investigate miRNA–mRNA interactions that may be relevant for bone metabolism by assessing correlations and interindividual variability in miRNA levels as well as global correlations between miRNA and mRNA levels in a large cohort of primary human osteoblasts (HOBs) obtained during orthopedic surgery in otherwise healthy individuals. We identified differential expression (DE) of 24 miRNAs, and found 9 miRNAs exhibiting DE between males and females. We identified hsa-miR-29b, hsa-miR-30c2, and hsa-miR-125b and their target genes as important modulators of bone metabolism. Further, we used an integrated analysis of global miRNA–mRNA correlations, mRNA-expression profiling, DE, bioinformatics analysis, and functional studies to identify novel target genes for miRNAs with the potential to regulate osteoblast differentiation and extracellular matrix production. Functional studies by overexpression and knockdown of miRNAs showed that, the differentially expressed miRNAs hsa-miR-29b, hsa-miR-30c2, and hsa-miR-125b target genes highly relevant to bone metabolism, e.g., collagen, type I, α1 (COL1A1), osteonectin (SPARC), Runt-related transcription factor 2 (RUNX2), osteocalcin (BGLAP), and frizzled-related protein (FRZB). These miRNAs orchestrate the activities of key regulators of osteoblast differentiation and extracellular matrix proteins by their convergent action on target genes and pathways to control the skeletal gene expression. PMID:26078267
Martínez, Isidoro; Oliveros, Juan C.; Cuesta, Isabel; de la Barrera, Jorge; Ausina, Vicente; Casals, Cristina; de Lorenzo, Alba; García, Ernesto; García-Fojeda, Belén; Garmendia, Junkal; González-Nicolau, Mar; Lacoma, Alicia; Menéndez, Margarita; Moranta, David; Nieto, Amelia; Ortín, Juan; Pérez-González, Alicia; Prat, Cristina; Ramos-Sevillano, Elisa; Regueiro, Verónica; Rodriguez-Frandsen, Ariel; Solís, Dolores; Yuste, José; Bengoechea, José A.; Melero, José A.
2017-01-01
Lower respiratory tract infections are among the top five leading causes of human death. Fighting these infections is therefore a world health priority. Searching for induced alterations in host gene expression shared by several relevant respiratory pathogens represents an alternative to identify new targets for wide-range host-oriented therapeutics. With this aim, alveolar macrophages were independently infected with three unrelated bacterial (Streptococcus pneumoniae, Klebsiella pneumoniae, and Staphylococcus aureus) and two dissimilar viral (respiratory syncytial virus and influenza A virus) respiratory pathogens, all of them highly relevant for human health. Cells were also activated with bacterial lipopolysaccharide (LPS) as a prototypical pathogen-associated molecular pattern. Patterns of differentially expressed cellular genes shared by the indicated pathogens were searched by microarray analysis. Most of the commonly up-regulated host genes were related to the innate immune response and/or apoptosis, with Toll-like, RIG-I-like and NOD-like receptors among the top 10 signaling pathways with over-expressed genes. These results identify new potential broad-spectrum targets to fight the important human infections caused by the bacteria and viruses studied here. PMID:28298903
Ozerov, Ivan V; Lezhnina, Ksenia V; Izumchenko, Evgeny; Artemov, Artem V; Medintsev, Sergey; Vanhaelen, Quentin; Aliper, Alexander; Vijg, Jan; Osipov, Andreyan N; Labat, Ivan; West, Michael D; Buzdin, Anton; Cantor, Charles R; Nikolsky, Yuri; Borisov, Nikolay; Irincheeva, Irina; Khokhlovich, Edward; Sidransky, David; Camargo, Miguel Luiz; Zhavoronkov, Alex
2016-11-16
Signalling pathway activation analysis is a powerful approach for extracting biologically relevant features from large-scale transcriptomic and proteomic data. However, modern pathway-based methods often fail to provide stable pathway signatures of a specific phenotype or reliable disease biomarkers. In the present study, we introduce the in silico Pathway Activation Network Decomposition Analysis (iPANDA) as a scalable robust method for biomarker identification using gene expression data. The iPANDA method combines precalculated gene coexpression data with gene importance factors based on the degree of differential gene expression and pathway topology decomposition for obtaining pathway activation scores. Using Microarray Analysis Quality Control (MAQC) data sets and pretreatment data on Taxol-based neoadjuvant breast cancer therapy from multiple sources, we demonstrate that iPANDA provides significant noise reduction in transcriptomic data and identifies highly robust sets of biologically relevant pathway signatures. We successfully apply iPANDA for stratifying breast cancer patients according to their sensitivity to neoadjuvant therapy.
Ozerov, Ivan V.; Lezhnina, Ksenia V.; Izumchenko, Evgeny; Artemov, Artem V.; Medintsev, Sergey; Vanhaelen, Quentin; Aliper, Alexander; Vijg, Jan; Osipov, Andreyan N.; Labat, Ivan; West, Michael D.; Buzdin, Anton; Cantor, Charles R.; Nikolsky, Yuri; Borisov, Nikolay; Irincheeva, Irina; Khokhlovich, Edward; Sidransky, David; Camargo, Miguel Luiz; Zhavoronkov, Alex
2016-01-01
Signalling pathway activation analysis is a powerful approach for extracting biologically relevant features from large-scale transcriptomic and proteomic data. However, modern pathway-based methods often fail to provide stable pathway signatures of a specific phenotype or reliable disease biomarkers. In the present study, we introduce the in silico Pathway Activation Network Decomposition Analysis (iPANDA) as a scalable robust method for biomarker identification using gene expression data. The iPANDA method combines precalculated gene coexpression data with gene importance factors based on the degree of differential gene expression and pathway topology decomposition for obtaining pathway activation scores. Using Microarray Analysis Quality Control (MAQC) data sets and pretreatment data on Taxol-based neoadjuvant breast cancer therapy from multiple sources, we demonstrate that iPANDA provides significant noise reduction in transcriptomic data and identifies highly robust sets of biologically relevant pathway signatures. We successfully apply iPANDA for stratifying breast cancer patients according to their sensitivity to neoadjuvant therapy. PMID:27848968
The relevance of epigenetics to PTSD: implications for the DSM-V.
Yehuda, Rachel; Bierer, Linda M
2009-10-01
Epigenetic modifications, such as DNA methylation, can occur in response to environmental influences to alter the functional expression of genes in an enduring and potentially, intergenerationally transmissible manner. As such, they may explain interindividual variation, as well as the long-lasting effects of trauma exposure. Although there are currently no findings that suggest epigenetic modifications that are specific to posttraumatic stress disorder (PTSD) or PTSD risk, many recent observations are compatible with epigenetic explanations. These include recent findings of stress-related gene expression, in utero contributions to infant biology, the association of PTSD risk with maternal PTSD, and the relevance of childhood adversity to the development of PTSD. The relevance of epigenetic mechanisms to formulations of PTSD for the fifth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-V) is described. Copyright © 2009 International Society for Traumatic Stress Studies.
The SGBS cell strain as a model for the in vitro study of obesity and cancer.
Allott, Emma H; Oliver, Elizabeth; Lysaght, Joanne; Gray, Steven G; Reynolds, John V; Roche, Helen M; Pidgeon, Graham P
2012-10-01
The murine adipocyte cell line 3T3-L1 is well characterised and used widely, while the human pre-adipocyte cell strain, Simpson-Golabi-Behmel Syndrome (SGBS), requires validation for use in human studies. Obesity is currently estimated to account for up to 41 % of the worldwide cancer burden. A human in vitro model system is required to elucidate the molecular mechanisms for this poorly understood association. This work investigates the relevance of the SGBS cell strain for obesity and cancer research in humans. Pre-adipocyte 3T3-L1 and SGBS were differentiated according to standard protocols. Morphology was assessed by Oil Red O staining. Adipocyte-specific gene expression was measured by qPCR and biochemical function was assessed by glycerol-3-phosphate dehydrogenase (GPDH) enzyme activity. Differential gene expression in oesophageal adenocarcinoma cell line OE33 following co-culture with SGBS or primary omental human adipocytes was investigated using Human Cancer Profiler qPCR arrays. During the process of differentiation, SGBS expressed higher levels of adipocyte-specific transcripts and fully differentiated SGBS expressed more similar morphology, transcript levels and biochemical function to primary omental adipocytes, relative to 3T3-L1. Co-culture with SGBS or primary omental adipocytes induced differential expression of genes involved in adhesion (ITGB3), angiogenesis (IGF1, TEK, TNF, VEGFA), apoptosis (GZMA, TERT) and invasion and metastasis (MMP9, TIMP3) in OE33 tumour cells. Comparable adipocyte-specific gene expression, biochemical function and a shared induced gene signature in co-cultured OE33 cells indicate that SGBS is a relevant in vitro model for obesity and cancer research in humans.
A transversal approach to predict gene product networks from ontology-based similarity
Chabalier, Julie; Mosser, Jean; Burgun, Anita
2007-01-01
Background Interpretation of transcriptomic data is usually made through a "standard" approach which consists in clustering the genes according to their expression patterns and exploiting Gene Ontology (GO) annotations within each expression cluster. This approach makes it difficult to underline functional relationships between gene products that belong to different expression clusters. To address this issue, we propose a transversal analysis that aims to predict functional networks based on a combination of GO processes and data expression. Results The transversal approach presented in this paper consists in computing the semantic similarity between gene products in a Vector Space Model. Through a weighting scheme over the annotations, we take into account the representativity of the terms that annotate a gene product. Comparing annotation vectors results in a matrix of gene product similarities. Combined with expression data, the matrix is displayed as a set of functional gene networks. The transversal approach was applied to 186 genes related to the enterocyte differentiation stages. This approach resulted in 18 functional networks proved to be biologically relevant. These results were compared with those obtained through a standard approach and with an approach based on information content similarity. Conclusion Complementary to the standard approach, the transversal approach offers new insight into the cellular mechanisms and reveals new research hypotheses by combining gene product networks based on semantic similarity, and data expression. PMID:17605807
Genome-wide expression profiling in the peripheral blood of patients with fibromyalgia
Jones, Kim D.; Gelbart, Terri; Whisenant, Thomas C.; Waalen, Jill; Mondala, Tony S.; Iklé, David N.; Salomon, Daniel R.; Bennett, Robert M.; Kurian, Sunil M.
2016-01-01
Objective Fibromyalgia (FM) is a common pain disorder characterised by nociceptive dysregulation. The basic biology of FM is poorly understood. Herein we have used agnostic gene expression as a potential probe for informing its underlying biology and the development of a proof-of-concept diagnostic gene expression signature. Methods We analysed RNA expression in 70 FM patients and 70 healthy controls. The isolated RNA was amplified and hybridised to Affymetrix® Human Gene 1.1 ST Peg arrays. The data was analysed using Partek Genomics Suite v. 6.6. Results Fibromyalgia patients exhibited a differential expression of 421 genes (p<0.001), several relevant to pathways for pain processing, such as glutamine/glutamate signaling and axonal development. There was also an upregulation of several inflammatory pathways and downregulation of pathways related to hypersensitivity and allergy. Using rigorous diagnostic modeling strategies, we show “locked” gene signatures discovered on Training and Test cohorts, that have a mean Area Under the Curve (AUC) of 0.81 on randomised, independent external data cohorts. Lastly, we identified a subset of 10 probesets that provided a diagnostic sensitivity for FM of 95% and a specificity of 96%. We also show that the signatures for FM were very specific to FM rather than common FM comorbidities. Conclusion These findings provide new insights relevant to the pathogenesis of FM, and provide several testable hypotheses that warrant further exploration and also establish the foundation for a first blood-based molecular signature in FM that needs to be validated in larger cohorts of patients. PMID:27157394
Gene network biological validity based on gene-gene interaction relevance.
Gómez-Vela, Francisco; Díaz-Díaz, Norberto
2014-01-01
In recent years, gene networks have become one of the most useful tools for modeling biological processes. Many inference gene network algorithms have been developed as techniques for extracting knowledge from gene expression data. Ensuring the reliability of the inferred gene relationships is a crucial task in any study in order to prove that the algorithms used are precise. Usually, this validation process can be carried out using prior biological knowledge. The metabolic pathways stored in KEGG are one of the most widely used knowledgeable sources for analyzing relationships between genes. This paper introduces a new methodology, GeneNetVal, to assess the biological validity of gene networks based on the relevance of the gene-gene interactions stored in KEGG metabolic pathways. Hence, a complete KEGG pathway conversion into a gene association network and a new matching distance based on gene-gene interaction relevance are proposed. The performance of GeneNetVal was established with three different experiments. Firstly, our proposal is tested in a comparative ROC analysis. Secondly, a randomness study is presented to show the behavior of GeneNetVal when the noise is increased in the input network. Finally, the ability of GeneNetVal to detect biological functionality of the network is shown.
Albuquerque, Lindomar J C; Alavarse, Alex C; Carlan da Silva, Maria C; Zilse, Morgana S; Barth, Maitê T; Bellettini, Ismael C; Giacomelli, Fernando C
2018-02-01
The use of sugar-functionalized polyplexes as a nonviral gene delivery vector with lower cytotoxicity than the well-known polymeric carrier branched polyethyleneimine (BPEI) is investigated. The substitution of primary amine groups in the BPEI chains with lactose residues leads to larger polyplexes, presumably due to the higher amount of polymer required to complete DNA condensation. Nevertheless, the sugar functionalization substantially reduces the cytotoxicity of the assemblies. The nanocomplexes are taken up by the cells to a greater extent, whereas the levels of gene expression are maintained compared to those obtained using BPEI, which is known for its excellent transfection efficiency. Accordingly, the preparation of lower-cytotoxicity polyplexes while maintaining gene expression, which is highly relevant to the field, is demonstrated. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tokar, Tomas; Pastrello, Chiara; Ramnarine, Varune R.; Zhu, Chang-Qi; Craddock, Kenneth J.; Pikor, Larrisa A.; Vucic, Emily A.; Vary, Simon; Shepherd, Frances A.; Tsao, Ming-Sound; Lam, Wan L.; Jurisica, Igor
2018-01-01
In many cancers, significantly down- or upregulated genes are found within chromosomal regions with DNA copy number alteration opposite to the expression changes. Generally, this paradox has been overlooked as noise, but can potentially be a consequence of interference of epigenetic regulatory mechanisms, including microRNA-mediated control of mRNA levels. To explore potential associations between microRNAs and paradoxes in non-small-cell lung cancer (NSCLC) we curated and analyzed lung adenocarcinoma (LUAD) data, comprising gene expressions, copy number aberrations (CNAs) and microRNA expressions. We integrated data from 1,062 tumor samples and 241 normal lung samples, including newly-generated array comparative genomic hybridization (aCGH) data from 63 LUAD samples. We identified 85 “paradoxical” genes whose differential expression consistently contrasted with aberrations of their copy numbers. Paradoxical status of 70 out of 85 genes was validated on sample-wise basis using The Cancer Genome Atlas (TCGA) LUAD data. Of these, 41 genes are prognostic and form a clinically relevant signature, which we validated on three independent datasets. By meta-analysis of results from 9 LUAD microRNA expression studies we identified 24 consistently-deregulated microRNAs. Using TCGA-LUAD data we showed that deregulation of 19 of these microRNAs explains differential expression of the paradoxical genes. Our results show that deregulation of paradoxical genes is crucial in LUAD and their expression pattern is maintained epigenetically, defying gene copy number status. PMID:29507679
Lepre, Jorge; Rice, J Jeremy; Tu, Yuhai; Stolovitzky, Gustavo
2004-05-01
Despite the growing literature devoted to finding differentially expressed genes in assays probing different tissues types, little attention has been paid to the combinatorial nature of feature selection inherent to large, high-dimensional gene expression datasets. New flexible data analysis approaches capable of searching relevant subgroups of genes and experiments are needed to understand multivariate associations of gene expression patterns with observed phenotypes. We present in detail a deterministic algorithm to discover patterns of multivariate gene associations in gene expression data. The patterns discovered are differential with respect to a control dataset. The algorithm is exhaustive and efficient, reporting all existent patterns that fit a given input parameter set while avoiding enumeration of the entire pattern space. The value of the pattern discovery approach is demonstrated by finding a set of genes that differentiate between two types of lymphoma. Moreover, these genes are found to behave consistently in an independent dataset produced in a different laboratory using different arrays, thus validating the genes selected using our algorithm. We show that the genes deemed significant in terms of their multivariate statistics will be missed using other methods. Our set of pattern discovery algorithms including a user interface is distributed as a package called Genes@Work. This package is freely available to non-commercial users and can be downloaded from our website (http://www.research.ibm.com/FunGen).
Vital, Marius; Chai, Benli; Østman, Bjørn; Cole, James; Konstantinidis, Konstantinos T; Tiedje, James M
2015-01-01
Escherichia coli spans a genetic continuum from enteric strains to several phylogenetically distinct, atypical lineages that are rare in humans, but more common in extra-intestinal environments. To investigate the link between gene regulation, phylogeny and diversification in this species, we analyzed global gene expression profiles of four strains representing distinct evolutionary lineages, including a well-studied laboratory strain, a typical commensal (enteric) strain and two environmental strains. RNA-Seq was employed to compare the whole transcriptomes of strains grown under batch, chemostat and starvation conditions. Highly differentially expressed genes showed a significantly lower nucleotide sequence identity compared with other genes, indicating that gene regulation and coding sequence conservation are directly connected. Overall, distances between the strains based on gene expression profiles were largely dependent on the culture condition and did not reflect phylogenetic relatedness. Expression differences of commonly shared genes (all four strains) and E. coli core genes were consistently smaller between strains characterized by more similar primary habitats. For instance, environmental strains exhibited increased expression of stress defense genes under carbon-limited growth and entered a more pronounced survival-like phenotype during starvation compared with other strains, which stayed more alert for substrate scavenging and catabolism during no-growth conditions. Since those environmental strains show similar genetic distance to each other and to the other two strains, these findings cannot be simply attributed to genetic relatedness but suggest physiological adaptations. Our study provides new insights into ecologically relevant gene-expression and underscores the role of (differential) gene regulation for the diversification of the model bacterial species. PMID:25343512
Biological interpretation of genome-wide association studies using predicted gene functions
Pers, Tune H.; Karjalainen, Juha M.; Chan, Yingleong; Westra, Harm-Jan; Wood, Andrew R.; Yang, Jian; Lui, Julian C.; Vedantam, Sailaja; Gustafsson, Stefan; Esko, Tonu; Frayling, Tim; Speliotes, Elizabeth K.; Boehnke, Michael; Raychaudhuri, Soumya; Fehrmann, Rudolf S.N.; Hirschhorn, Joel N.; Franke, Lude
2015-01-01
The main challenge for gaining biological insights from genetic associations is identifying which genes and pathways explain the associations. Here we present DEPICT, an integrative tool that employs predicted gene functions to systematically prioritize the most likely causal genes at associated loci, highlight enriched pathways and identify tissues/cell types where genes from associated loci are highly expressed. DEPICT is not limited to genes with established functions and prioritizes relevant gene sets for many phenotypes. PMID:25597830
Jung, Ha-Na; Zerin, Tamanna; Podder, Biswajit; Song, Ho-Yeon; Kim, Yong-Sik
2014-06-01
In Korea, lung disease of children and pregnant women associated with humidifier disinfectant use has become a major concern. A common sterilizer is polyhexamethylene guanidine (PHMG), a member of the guanidine family of antiseptics. This study was done to elucidate the putative cytotoxic effect of PHMG and the PHMG-mediated altered gene expression in human alveolar epithelial A549 cells in vitro. Cell viability analyses revealed the potent cytotoxicity of PHMG, with cell death evident at as low as 5 μg/mL. Death was dose- and time-dependent, and was associated with formation of intracellular reactive oxygen species, and apoptosis significantly, at even 2 μg/mL concentration. The gene expression profile in A549 cells following 24 h exposure to 5 μg/mL of PHMG was investigated using DNA microarray analysis. Changes in gene expression relevant to the progression of cell death included induction of genes related to apoptosis, autophagy, fibrosis, and cell cycle. However, the expressions of genes encoding antioxidant and detoxifying enzymes were down-regulated or not affected. The altered expression of selected genes was confirmed by quantitative reverse transcription-polymerase chain reaction and Western blot analyses. The collective data suggest that PHMG confers cellular toxicity through the generation of intracellular reactive oxygen species and alteration of gene expression. Copyright © 2014 Elsevier Ltd. All rights reserved.
Zhu, Jia-Hong; Xu, Jing; Chang, Wen-Jun; Zhang, Zhi-Li
2015-01-01
Ethylene is an important factor that stimulates Hevea brasiliensis to produce natural rubber. 1-Aminocyclopropane-1-carboxylic acid synthase (ACS) is a rate-limiting enzyme in ethylene biosynthesis. However, knowledge of the ACS gene family of H. brasiliensis is limited. In this study, nine ACS-like genes were identified in H. brasiliensis. Sequence and phylogenetic analysis results confirmed that seven isozymes (HbACS1–7) of these nine ACS-like genes were similar to ACS isozymes with ACS activity in other plants. Expression analysis results showed that seven ACS genes were differentially expressed in roots, barks, flowers, and leaves of H. brasiliensis. However, no or low ACS gene expression was detected in the latex of H. brasiliensis. Moreover, seven genes were differentially up-regulated by ethylene treatment.These results provided relevant information to help determine the functions of the ACS gene in H. brasiliensis, particularly the functions in regulating ethylene stimulation of latex production. PMID:25690030
Chow, M L; Moler, E J; Mian, I S
2001-03-08
Transcription profiling experiments permit the expression levels of many genes to be measured simultaneously. Given profiling data from two types of samples, genes that most distinguish the samples (marker genes) are good candidates for subsequent in-depth experimental studies and developing decision support systems for diagnosis, prognosis, and monitoring. This work proposes a mixture of feature relevance experts as a method for identifying marker genes and illustrates the idea using published data from samples labeled as acute lymphoblastic and myeloid leukemia (ALL, AML). A feature relevance expert implements an algorithm that calculates how well a gene distinguishes samples, reorders genes according to this relevance measure, and uses a supervised learning method [here, support vector machines (SVMs)] to determine the generalization performances of different nested gene subsets. The mixture of three feature relevance experts examined implement two existing and one novel feature relevance measures. For each expert, a gene subset consisting of the top 50 genes distinguished ALL from AML samples as completely as all 7,070 genes. The 125 genes at the union of the top 50s are plausible markers for a prototype decision support system. Chromosomal aberration and other data support the prediction that the three genes at the intersection of the top 50s, cystatin C, azurocidin, and adipsin, are good targets for investigating the basic biology of ALL/AML. The same data were employed to identify markers that distinguish samples based on their labels of T cell/B cell, peripheral blood/bone marrow, and male/female. Selenoprotein W may discriminate T cells from B cells. Results from analysis of transcription profiling data from tumor/nontumor colon adenocarcinoma samples support the general utility of the aforementioned approach. Theoretical issues such as choosing SVM kernels and their parameters, training and evaluating feature relevance experts, and the impact of potentially mislabeled samples on marker identification (feature selection) are discussed.
Reeve, J. G.; Xiong, J.; Morgan, J.; Bleehen, N. M.
1996-01-01
As a first step towards elucidating the potential role(s) of bcl-2 and bcl-2-related genes in lung tumorigenesis and therapeutic responsiveness, the expression of these genes has been examined in a panel of lung cancer cell lines derived from untreated and treated patients, and in cell lines selected in vitro for multidrug resistance. Bcl-2 was hyperexpressed in 15 of 16 small-cell lung cancer (SCLC) cell lines and two of five non-small-cell lung cancer (NSCLC) lines compared with normal lung and brain, and hyperexpression was not chemotherapy related. Bcl-x was hyperexpressed in the majority of SCLC and NSCLC cell lines as compared with normal tissues, and all lung tumour lines preferentially expressed bcl-x1-mRNA, the splice variant form that inhibits apoptosis. Bax gene transcripts were hyperexpressed in most SCLC and NSCLC cell lines examined compared with normal adult tissues. Mutant p53 gene expression was detected in the majority of the cell lines and no relationship between p53 gene expression and the expression of either bcl-2, bcl-x or bax was observed. No changes in bcl-2, bcl-x and bax gene expression were observed in multidrug-resistant cell lines compared with their drug-sensitive counterparts. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:8630278
Network-Induced Classification Kernels for Gene Expression Profile Analysis
Dror, Gideon; Shamir, Ron
2012-01-01
Abstract Computational classification of gene expression profiles into distinct disease phenotypes has been highly successful to date. Still, robustness, accuracy, and biological interpretation of the results have been limited, and it was suggested that use of protein interaction information jointly with the expression profiles can improve the results. Here, we study three aspects of this problem. First, we show that interactions are indeed relevant by showing that co-expressed genes tend to be closer in the network of interactions. Second, we show that the improved performance of one extant method utilizing expression and interactions is not really due to the biological information in the network, while in another method this is not the case. Finally, we develop a new kernel method—called NICK—that integrates network and expression data for SVM classification, and demonstrate that overall it achieves better results than extant methods while running two orders of magnitude faster. PMID:22697242
Tong, Mengsha; Zheng, Weicheng; Lu, Xingrong; Ao, Lu; Li, Xiangyu; Guan, Qingzhou; Cai, Hao; Li, Mengyao; Yan, Haidan; Guo, You; Chi, Pan; Guo, Zheng
2015-01-01
Until recently, few molecular signatures of drug resistance identified in drug-induced resistant cancer cell models can be translated into clinical practice. Here, we defined differentially expressed genes (DEGs) between pre-chemotherapy colorectal cancer (CRC) tissue samples of non-responders and responders for 5-fluorouracil and oxaliplatin-based therapy as clinically relevant drug resistance genes (CRG5-FU/L-OHP). Taking CRG5-FU/L-OHP as reference, we evaluated the clinical relevance of several types of genes derived from HCT116 CRC cells with resistance to 5-fluorouracil and oxaliplatin, respectively. The results revealed that DEGs between parental and resistant cells, when both were treated with the corresponding drug for a certain time, were significantly consistent with the CRG5-FU/L-OHP as well as the DEGs between the post-chemotherapy CRC specimens of responders and non-responders. This study suggests a novel strategy to extract clinically relevant drug resistance genes from both drug-induced resistant cell models and post-chemotherapy cancer tissue specimens. PMID:26515599
Absorption, distribution, metabolism, and excretion (ADME) impact chemical concentration and activation of molecular initiating events of Adverse Outcome Pathways (AOPs) in cellular, tissue, and organ level targets. In order to better describe ADME parameters and how they modulat...
Absorption, distribution, metabolism, and excretion (ADME) parameters represent important connections between exposure to chemicals and the activation of molecular initiating events of Adverse Outcome Pathways (AOPs) in cellular, tissue, and organ level targets. ADME parameters u...
Hypertension and cancer are prevalent diseases. Epidemiological studies suggest that hypertension may increase the long term risk of cancer. Identification of resistance and/or susceptibility genes using rodent models could provide important insights into the management and treat...
Deonovic, Benjamin; Wang, Yunhao; Weirather, Jason; Wang, Xiu-Jie; Au, Kin Fai
2017-01-01
Abstract Allele-specific expression (ASE) is a fundamental problem in studying gene regulation and diploid transcriptome profiles, with two key challenges: (i) haplotyping and (ii) estimation of ASE at the gene isoform level. Existing ASE analysis methods are limited by a dependence on haplotyping from laborious experiments or extra genome/family trio data. In addition, there is a lack of methods for gene isoform level ASE analysis. We developed a tool, IDP-ASE, for full ASE analysis. By innovative integration of Third Generation Sequencing (TGS) long reads with Second Generation Sequencing (SGS) short reads, the accuracy of haplotyping and ASE quantification at the gene and gene isoform level was greatly improved as demonstrated by the gold standard data GM12878 data and semi-simulation data. In addition to methodology development, applications of IDP-ASE to human embryonic stem cells and breast cancer cells indicate that the imbalance of ASE and non-uniformity of gene isoform ASE is widespread, including tumorigenesis relevant genes and pluripotency markers. These results show that gene isoform expression and allele-specific expression cooperate to provide high diversity and complexity of gene regulation and expression, highlighting the importance of studying ASE at the gene isoform level. Our study provides a robust bioinformatics solution to understand ASE using RNA sequencing data only. PMID:27899656
Identification of hypertension-related genes through an integrated genomic-transcriptomic approach.
Yagil, Chana; Hubner, Norbert; Monti, Jan; Schulz, Herbert; Sapojnikov, Marina; Luft, Friedrich C; Ganten, Detlev; Yagil, Yoram
2005-04-01
In search for the genetic basis of hypertension, we applied an integrated genomic-transcriptomic approach to identify genes involved in the pathogenesis of hypertension in the Sabra rat model of salt-susceptibility. In the genomic arm of the project, we previously detected in male rats two salt-susceptibility QTLs on chromosome 1, SS1a (D1Mgh2-D1Mit11; span 43.1 cM) and SS1b (D1Mit11-D1Mit4; span 18 cM). In the transcriptomic arm, we studied differential gene expression in kidneys of SBH/y and SBN/y rats that had been fed regular diet or salt-loaded. We used the Affymetrix Rat Genome RAE230 GeneChip and probed >30,000 transcripts. The research algorithm called for an initial genome-wide screen for differentially expressed transcripts between the study groups. This step was followed by cluster analysis based on 2x2 ANOVA to identify transcripts that were of relevance specifically to salt-sensitivity and hypertension and to salt-resistance. The two arms of the project were integrated by identifying those differentially expressed transcripts that showed an allele-specific hypertensive effect on salt-loading and that mapped within the defined boundaries of the salt-susceptibility QTLs on chromosome 1. The differentially expressed transcripts were confirmed by RT-PCR. Of the 2933 genes annotated to rat chromosome 1, 1102 genes were identified within the boundaries of the two blood pressure QTLs. The microarray identified 2470 transcripts that were differentially expressed between the study groups. Cluster analysis identified genome-wide 192 genes that were relevant to salt-susceptibility and/or hypertension, 19 of which mapped to chromosome 1. Eight of these genes mapped within the boundaries of QTLs SS1a and SS1b. RT-PCR confirmed 7 genes, leaving TcTex1, Myadm, Lisch7, Axl-like, Fah, PRC1-like, and Serpinh1. None of these genes has been implicated in hypertension before. These genes become henceforth targets for our continuing search for the genetic basis of hypertension.
Characterization of Novel Genes Within 8P11-12 Amplicon in Breast Cancer
2007-06-01
C-myc amplification in breast cancer: a meta - analysis of its occurrence and prognostic relevance. Br J Cancer, 83: 1688-1695, 2000. 2. Hui, R...Nass SJ, Dickson RB, Trock BJ. C-myc amplification in breast cancer: a meta - analysis of its occurrence and prognostic relevance. Br J Cancer 2000;83...a detailed genomic and expression analysis of the 8p11-p12 amplicon in breast cancer cell lines and identified several novel candidate genes
Shchetynsky, Klementy; Diaz-Gallo, Lina-Marcella; Folkersen, Lasse; Hensvold, Aase Haj; Catrina, Anca Irinel; Berg, Louise; Klareskog, Lars; Padyukov, Leonid
2017-02-02
Here we integrate verified signals from previous genetic association studies with gene expression and pathway analysis for discovery of new candidate genes and signaling networks, relevant for rheumatoid arthritis (RA). RNA-sequencing-(RNA-seq)-based expression analysis of 377 genes from previously verified RA-associated loci was performed in blood cells from 5 newly diagnosed, non-treated patients with RA, 7 patients with treated RA and 12 healthy controls. Differentially expressed genes sharing a similar expression pattern in treated and untreated RA sub-groups were selected for pathway analysis. A set of "connector" genes derived from pathway analysis was tested for differential expression in the initial discovery cohort and validated in blood cells from 73 patients with RA and in 35 healthy controls. There were 11 qualifying genes selected for pathway analysis and these were grouped into two evidence-based functional networks, containing 29 and 27 additional connector molecules. The expression of genes, corresponding to connector molecules was then tested in the initial RNA-seq data. Differences in the expression of ERBB2, TP53 and THOP1 were similar in both treated and non-treated patients with RA and an additional nine genes were differentially expressed in at least one group of patients compared to healthy controls. The ERBB2, TP53. THOP1 expression profile was successfully replicated in RNA-seq data from peripheral blood mononuclear cells from healthy controls and non-treated patients with RA, in an independent collection of samples. Integration of RNA-seq data with findings from association studies, and consequent pathway analysis implicate new candidate genes, ERBB2, TP53 and THOP1 in the pathogenesis of RA.
Transcriptome architecture across tissues in the pig
Ferraz, André LJ; Ojeda, Ana; López-Béjar, Manel; Fernandes, Lana T; Castelló, Anna; Folch, Josep M; Pérez-Enciso, Miguel
2008-01-01
Background Artificial selection has resulted in animal breeds with extreme phenotypes. As an organism is made up of many different tissues and organs, each with its own genetic programme, it is pertinent to ask: How relevant is tissue in terms of total transcriptome variability? Which are the genes most distinctly expressed between tissues? Does breed or sex equally affect the transcriptome across tissues? Results In order to gain insight on these issues, we conducted microarray expression profiling of 16 different tissues from four animals of two extreme pig breeds, Large White and Iberian, two males and two females. Mixed model analysis and neighbor – joining trees showed that tissues with similar developmental origin clustered closer than those with different embryonic origins. Often a sound biological interpretation was possible for overrepresented gene ontology categories within differentially expressed genes between groups of tissues. For instance, an excess of nervous system or muscle development genes were found among tissues of ectoderm or mesoderm origins, respectively. Tissue accounted for ~11 times more variability than sex or breed. Nevertheless, we were able to confidently identify genes with differential expression across tissues between breeds (33 genes) and between sexes (19 genes). The genes primarily affected by sex were overall different than those affected by breed or tissue. Interaction with tissue can be important for differentially expressed genes between breeds but not so much for genes whose expression differ between sexes. Conclusion Embryonic development leaves an enduring footprint on the transcriptome. The interaction in gene × tissue for differentially expressed genes between breeds suggests that animal breeding has targeted differentially each tissue's transcriptome. PMID:18416811
Divergence of Gene Body DNA Methylation and Evolution of Plant Duplicate Genes
Wang, Jun; Marowsky, Nicholas C.; Fan, Chuanzhu
2014-01-01
It has been shown that gene body DNA methylation is associated with gene expression. However, whether and how deviation of gene body DNA methylation between duplicate genes can influence their divergence remains largely unexplored. Here, we aim to elucidate the potential role of gene body DNA methylation in the fate of duplicate genes. We identified paralogous gene pairs from Arabidopsis and rice (Oryza sativa ssp. japonica) genomes and reprocessed their single-base resolution methylome data. We show that methylation in paralogous genes nonlinearly correlates with several gene properties including exon number/gene length, expression level and mutation rate. Further, we demonstrated that divergence of methylation level and pattern in paralogs indeed positively correlate with their sequence and expression divergences. This result held even after controlling for other confounding factors known to influence the divergence of paralogs. We observed that methylation level divergence might be more relevant to the expression divergence of paralogs than methylation pattern divergence. Finally, we explored the mechanisms that might give rise to the divergence of gene body methylation in paralogs. We found that exonic methylation divergence more closely correlates with expression divergence than intronic methylation divergence. We show that genomic environments (e.g., flanked by transposable elements and repetitive sequences) of paralogs generated by various duplication mechanisms are associated with the methylation divergence of paralogs. Overall, our results suggest that the changes in gene body DNA methylation could provide another avenue for duplicate genes to develop differential expression patterns and undergo different evolutionary fates in plant genomes. PMID:25310342
Smith, Caroline L; Anthony, Shelagh; Hubank, Mike; Leiper, James M; Vallance, Patrick
2005-01-01
Background Asymmetric dimethylarginine (ADMA) is a naturally occurring inhibitor of nitric oxide synthesis that accumulates in a wide range of diseases associated with endothelial dysfunction and enhanced atherosclerosis. Clinical studies implicate plasma ADMA as a major novel cardiovascular risk factor, but the mechanisms by which low concentrations of ADMA produce adverse effects on the cardiovascular system are unclear. Methods and Findings We treated human coronary artery endothelial cells with pathophysiological concentrations of ADMA and assessed the effects on gene expression using U133A GeneChips (Affymetrix). Changes in several genes, including bone morphogenetic protein 2 inducible kinase (BMP2K), SMA-related protein 5 (Smad5), bone morphogenetic protein receptor 1A, and protein arginine methyltransferase 3 (PRMT3; also known as HRMT1L3), were confirmed by Northern blotting, quantitative PCR, and in some instances Western blotting analysis to detect changes in protein expression. To determine whether these changes also occurred in vivo, tissue from gene deletion mice with raised ADMA levels was examined. More than 50 genes were significantly altered in endothelial cells after treatment with pathophysiological concentrations of ADMA (2 μM). We detected specific patterns of changes that identify pathways involved in processes relevant to cardiovascular risk and pulmonary hypertension. Changes in BMP2K and PRMT3 were confirmed at mRNA and protein levels, in vitro and in vivo. Conclusion Pathophysiological concentrations of ADMA are sufficient to elicit significant changes in coronary artery endothelial cell gene expression. Changes in bone morphogenetic protein signalling, and in enzymes involved in arginine methylation, may be particularly relevant to understanding the pathophysiological significance of raised ADMA levels. This study identifies the mechanisms by which increased ADMA may contribute to common cardiovascular diseases and thereby indicates possible targets for therapies. PMID:16190779
Completing the cycle: maternal effects as the missing link in plant life histories.
Donohue, Kathleen
2009-04-27
Maternal effects on seed traits such as germination are important components of the life histories of plants because they represent the pathway from adult to offspring: the pathway that completes the life cycle. Maternal environmental effects on germination influence basic life-history expression, natural selection on germination, the expression of genetic variation for germination and even the genes involved in germination. Maternal effects on seed traits can even influence generation time and projected population growth rates. Whether these maternal environmental effects are imposed by the maternal genotype, the endosperm genotype or the embryonic genotype, however, is as yet unknown. Patterns of gene expression and protein synthesis in seeds indicate that the maternal genotype has the opportunity to influence its progeny's germination behaviour. Investigation of the phenotypic consequences of maternal environmental effects, regardless of its genetic determination, is relevant for understanding the variation in plant life cycles. Distinguishing the genotype(s) that control them is relevant for predicting the evolutionary trajectories and patterns of selection on progeny phenotypes and the genes underlying them.
eMBI: Boosting Gene Expression-based Clustering for Cancer Subtypes.
Chang, Zheng; Wang, Zhenjia; Ashby, Cody; Zhou, Chuan; Li, Guojun; Zhang, Shuzhong; Huang, Xiuzhen
2014-01-01
Identifying clinically relevant subtypes of a cancer using gene expression data is a challenging and important problem in medicine, and is a necessary premise to provide specific and efficient treatments for patients of different subtypes. Matrix factorization provides a solution by finding checker-board patterns in the matrices of gene expression data. In the context of gene expression profiles of cancer patients, these checkerboard patterns correspond to genes that are up- or down-regulated in patients with particular cancer subtypes. Recently, a new matrix factorization framework for biclustering called Maximum Block Improvement (MBI) is proposed; however, it still suffers several problems when applied to cancer gene expression data analysis. In this study, we developed many effective strategies to improve MBI and designed a new program called enhanced MBI (eMBI), which is more effective and efficient to identify cancer subtypes. Our tests on several gene expression profiling datasets of cancer patients consistently indicate that eMBI achieves significant improvements in comparison with MBI, in terms of cancer subtype prediction accuracy, robustness, and running time. In addition, the performance of eMBI is much better than another widely used matrix factorization method called nonnegative matrix factorization (NMF) and the method of hierarchical clustering, which is often the first choice of clinical analysts in practice.
eMBI: Boosting Gene Expression-based Clustering for Cancer Subtypes
Chang, Zheng; Wang, Zhenjia; Ashby, Cody; Zhou, Chuan; Li, Guojun; Zhang, Shuzhong; Huang, Xiuzhen
2014-01-01
Identifying clinically relevant subtypes of a cancer using gene expression data is a challenging and important problem in medicine, and is a necessary premise to provide specific and efficient treatments for patients of different subtypes. Matrix factorization provides a solution by finding checker-board patterns in the matrices of gene expression data. In the context of gene expression profiles of cancer patients, these checkerboard patterns correspond to genes that are up- or down-regulated in patients with particular cancer subtypes. Recently, a new matrix factorization framework for biclustering called Maximum Block Improvement (MBI) is proposed; however, it still suffers several problems when applied to cancer gene expression data analysis. In this study, we developed many effective strategies to improve MBI and designed a new program called enhanced MBI (eMBI), which is more effective and efficient to identify cancer subtypes. Our tests on several gene expression profiling datasets of cancer patients consistently indicate that eMBI achieves significant improvements in comparison with MBI, in terms of cancer subtype prediction accuracy, robustness, and running time. In addition, the performance of eMBI is much better than another widely used matrix factorization method called nonnegative matrix factorization (NMF) and the method of hierarchical clustering, which is often the first choice of clinical analysts in practice. PMID:25374455
Whole transcriptome profiling of taste bud cells.
Sukumaran, Sunil K; Lewandowski, Brian C; Qin, Yumei; Kotha, Ramana; Bachmanov, Alexander A; Margolskee, Robert F
2017-08-08
Analysis of single-cell RNA-Seq data can provide insights into the specific functions of individual cell types that compose complex tissues. Here, we examined gene expression in two distinct subpopulations of mouse taste cells: Tas1r3-expressing type II cells and physiologically identified type III cells. Our RNA-Seq libraries met high quality control standards and accurately captured differential expression of marker genes for type II (e.g. the Tas1r genes, Plcb2, Trpm5) and type III (e.g. Pkd2l1, Ncam, Snap25) taste cells. Bioinformatics analysis showed that genes regulating responses to stimuli were up-regulated in type II cells, while pathways related to neuronal function were up-regulated in type III cells. We also identified highly expressed genes and pathways associated with chemotaxis and axon guidance, providing new insights into the mechanisms underlying integration of new taste cells into the taste bud. We validated our results by immunohistochemically confirming expression of selected genes encoding synaptic (Cplx2 and Pclo) and semaphorin signalling pathway (Crmp2, PlexinB1, Fes and Sema4a) components. The approach described here could provide a comprehensive map of gene expression for all taste cell subpopulations and will be particularly relevant for cell types in taste buds and other tissues that can be identified only by physiological methods.
Li, Wenliang; Kessler, Patricia; Williams, Bryan R G
2005-01-13
Anaplasia (unfavorable histology) is associated with therapy resistance and poor prognosis of Wilms tumor, but the molecular basis for this phenotype is unclear. Here, we used a cDNA array with 9240 clones relevant to cancer biology and/or kidney development to examine the expression profiles of 54 Wilms tumors, five normal kidneys and fetal kidney. By linking genes differentially expressed between fetal kidney and Wilms tumors to kidney morphogenesis, we found that genes expressed at a higher level in Wilms tumors tend to be expressed more in uninduced metanephrogenic mesenchyme or blastema than in their differentiated structures. Conversely, genes expressed at a lower level in Wilms tumors tend to be expressed less in uninduced metanephrogenic mesenchyme or blastema. We also identified 97 clones representing 76 Unigenes or unclustered ESTs that clearly separate anaplastic Wilms tumors from tumors with favorable histology. Genes in this set provide insight into the nature of the abnormal nuclear morphology of anaplastic tumors and may facilitate identification of molecular targets to improve their responsiveness to treatment.
Jasinska, Anna J; Zelaya, Ivette; Service, Susan K; Peterson, Christine B; Cantor, Rita M; Choi, Oi-Wa; DeYoung, Joseph; Eskin, Eleazar; Fairbanks, Lynn A; Fears, Scott; Furterer, Allison E; Huang, Yu S; Ramensky, Vasily; Schmitt, Christopher A; Svardal, Hannes; Jorgensen, Matthew J; Kaplan, Jay R; Villar, Diego; Aken, Bronwen L; Flicek, Paul; Nag, Rishi; Wong, Emily S; Blangero, John; Dyer, Thomas D; Bogomolov, Marina; Benjamini, Yoav; Weinstock, George M; Dewar, Ken; Sabatti, Chiara; Wilson, Richard K; Jentsch, J David; Warren, Wesley; Coppola, Giovanni; Woods, Roger P; Freimer, Nelson B
2017-12-01
By analyzing multitissue gene expression and genome-wide genetic variation data in samples from a vervet monkey pedigree, we generated a transcriptome resource and produced the first catalog of expression quantitative trait loci (eQTLs) in a nonhuman primate model. This catalog contains more genome-wide significant eQTLs per sample than comparable human resources and identifies sex- and age-related expression patterns. Findings include a master regulatory locus that likely has a role in immune function and a locus regulating hippocampal long noncoding RNAs (lncRNAs), whose expression correlates with hippocampal volume. This resource will facilitate genetic investigation of quantitative traits, including brain and behavioral phenotypes relevant to neuropsychiatric disorders.
Yocum, George D; Childers, Anna K; Rinehart, Joseph P; Rajamohan, Arun; Pitts-Singer, Theresa L; Greenlee, Kendra J; Bowsher, Julia H
2018-05-10
Our understanding of the mechanisms controlling insect diapause has increased dramatically with the introduction of global gene expression techniques, such as RNA-seq. However, little attention has been given to how ecologically relevant field conditions may affect gene expression during diapause development because previous studies have focused on laboratory reared and maintained insects. To determine whether gene expression differs between laboratory and field conditions, prepupae of the alfalfa leafcutting bee, Megachile rotundata , entering diapause early or late in the growing season were collected. These two groups were further subdivided in early autumn into laboratory and field maintained groups, resulting in four experimental treatments of diapausing prepupae: early and late field, and early and late laboratory. RNA-seq and differential expression analyses were performed on bees from the four treatment groups in November, January, March and May. The number of treatment-specific differentially expressed genes (97 to 1249) outnumbered the number of differentially regulated genes common to all four treatments (14 to 229), indicating that exposure to laboratory or field conditions had a major impact on gene expression during diapause development. Principle component analysis and hierarchical cluster analysis yielded similar grouping of treatments, confirming that the treatments form distinct clusters. Our results support the conclusion that gene expression during the course of diapause development is not a simple ordered sequence, but rather a highly plastic response determined primarily by the environmental history of the individual insect. © 2018. Published by The Company of Biologists Ltd.
Kudo, Itsuhiro; Esumi, Mariko; Kida, Akihiro; Ikeda, Minoru
2010-10-01
To predict the efficacy of cisplatin and radiation therapy for maxillary squamous cell carcinoma, we examined the mRNA expression of 14 cisplatin-resistant genes and p53 mutation in specimens biopsied from patients prior to initiation of therapy. Five of 10 patients had mutations in the p53 gene, of whom four had residual tumors pathologically following chemoradiotherapy (p=0.0476). Of 14 genes examined, the mRNA expression of ATP7B was significantly lower in cases that were resistant to chemoradiotherapy. Six genes including multidrug resistance protein 1 (MDR-1), multidrug resistance associated protein 1 (MRP-1), Cu++ transporting, beta polypeptide (ATP7B), xeroderma pigmentosum, complementation group A (XPA), excision repair cross-complementing rodent repair deficiency, complementation group 1 (ERCC-1) and B-cell CLL/lymphoma 2 (BCL2) were down-regulated in cases of recurrent cancers. These results show that the evaluation of p53 mutation provides the most useful predictor of therapeutic effects. In responder cases, the drug-resistant genes that were determined in cell lines by culture do not necessarily translate into clinical relevance.
Multiscale Embedded Gene Co-expression Network Analysis
Song, Won-Min; Zhang, Bin
2015-01-01
Gene co-expression network analysis has been shown effective in identifying functional co-expressed gene modules associated with complex human diseases. However, existing techniques to construct co-expression networks require some critical prior information such as predefined number of clusters, numerical thresholds for defining co-expression/interaction, or do not naturally reproduce the hallmarks of complex systems such as the scale-free degree distribution of small-worldness. Previously, a graph filtering technique called Planar Maximally Filtered Graph (PMFG) has been applied to many real-world data sets such as financial stock prices and gene expression to extract meaningful and relevant interactions. However, PMFG is not suitable for large-scale genomic data due to several drawbacks, such as the high computation complexity O(|V|3), the presence of false-positives due to the maximal planarity constraint, and the inadequacy of the clustering framework. Here, we developed a new co-expression network analysis framework called Multiscale Embedded Gene Co-expression Network Analysis (MEGENA) by: i) introducing quality control of co-expression similarities, ii) parallelizing embedded network construction, and iii) developing a novel clustering technique to identify multi-scale clustering structures in Planar Filtered Networks (PFNs). We applied MEGENA to a series of simulated data and the gene expression data in breast carcinoma and lung adenocarcinoma from The Cancer Genome Atlas (TCGA). MEGENA showed improved performance over well-established clustering methods and co-expression network construction approaches. MEGENA revealed not only meaningful multi-scale organizations of co-expressed gene clusters but also novel targets in breast carcinoma and lung adenocarcinoma. PMID:26618778
Multiscale Embedded Gene Co-expression Network Analysis.
Song, Won-Min; Zhang, Bin
2015-11-01
Gene co-expression network analysis has been shown effective in identifying functional co-expressed gene modules associated with complex human diseases. However, existing techniques to construct co-expression networks require some critical prior information such as predefined number of clusters, numerical thresholds for defining co-expression/interaction, or do not naturally reproduce the hallmarks of complex systems such as the scale-free degree distribution of small-worldness. Previously, a graph filtering technique called Planar Maximally Filtered Graph (PMFG) has been applied to many real-world data sets such as financial stock prices and gene expression to extract meaningful and relevant interactions. However, PMFG is not suitable for large-scale genomic data due to several drawbacks, such as the high computation complexity O(|V|3), the presence of false-positives due to the maximal planarity constraint, and the inadequacy of the clustering framework. Here, we developed a new co-expression network analysis framework called Multiscale Embedded Gene Co-expression Network Analysis (MEGENA) by: i) introducing quality control of co-expression similarities, ii) parallelizing embedded network construction, and iii) developing a novel clustering technique to identify multi-scale clustering structures in Planar Filtered Networks (PFNs). We applied MEGENA to a series of simulated data and the gene expression data in breast carcinoma and lung adenocarcinoma from The Cancer Genome Atlas (TCGA). MEGENA showed improved performance over well-established clustering methods and co-expression network construction approaches. MEGENA revealed not only meaningful multi-scale organizations of co-expressed gene clusters but also novel targets in breast carcinoma and lung adenocarcinoma.
Ooi, Chia Huey; Chetty, Madhu; Teng, Shyh Wei
2006-06-23
Due to the large number of genes in a typical microarray dataset, feature selection looks set to play an important role in reducing noise and computational cost in gene expression-based tissue classification while improving accuracy at the same time. Surprisingly, this does not appear to be the case for all multiclass microarray datasets. The reason is that many feature selection techniques applied on microarray datasets are either rank-based and hence do not take into account correlations between genes, or are wrapper-based, which require high computational cost, and often yield difficult-to-reproduce results. In studies where correlations between genes are considered, attempts to establish the merit of the proposed techniques are hampered by evaluation procedures which are less than meticulous, resulting in overly optimistic estimates of accuracy. We present two realistically evaluated correlation-based feature selection techniques which incorporate, in addition to the two existing criteria involved in forming a predictor set (relevance and redundancy), a third criterion called the degree of differential prioritization (DDP). DDP functions as a parameter to strike the balance between relevance and redundancy, providing our techniques with the novel ability to differentially prioritize the optimization of relevance against redundancy (and vice versa). This ability proves useful in producing optimal classification accuracy while using reasonably small predictor set sizes for nine well-known multiclass microarray datasets. For multiclass microarray datasets, especially the GCM and NCI60 datasets, DDP enables our filter-based techniques to produce accuracies better than those reported in previous studies which employed similarly realistic evaluation procedures.
DFP: a Bioconductor package for fuzzy profile identification and gene reduction of microarray data
Glez-Peña, Daniel; Álvarez, Rodrigo; Díaz, Fernando; Fdez-Riverola, Florentino
2009-01-01
Background Expression profiling assays done by using DNA microarray technology generate enormous data sets that are not amenable to simple analysis. The greatest challenge in maximizing the use of this huge amount of data is to develop algorithms to interpret and interconnect results from different genes under different conditions. In this context, fuzzy logic can provide a systematic and unbiased way to both (i) find biologically significant insights relating to meaningful genes, thereby removing the need for expert knowledge in preliminary steps of microarray data analyses and (ii) reduce the cost and complexity of later applied machine learning techniques being able to achieve interpretable models. Results DFP is a new Bioconductor R package that implements a method for discretizing and selecting differentially expressed genes based on the application of fuzzy logic. DFP takes advantage of fuzzy membership functions to assign linguistic labels to gene expression levels. The technique builds a reduced set of relevant genes (FP, Fuzzy Pattern) able to summarize and represent each underlying class (pathology). A last step constructs a biased set of genes (DFP, Discriminant Fuzzy Pattern) by intersecting existing fuzzy patterns in order to detect discriminative elements. In addition, the software provides new functions and visualisation tools that summarize achieved results and aid in the interpretation of differentially expressed genes from multiple microarray experiments. Conclusion DFP integrates with other packages of the Bioconductor project, uses common data structures and is accompanied by ample documentation. It has the advantage that its parameters are highly configurable, facilitating the discovery of biologically relevant connections between sets of genes belonging to different pathologies. This information makes it possible to automatically filter irrelevant genes thereby reducing the large volume of data supplied by microarray experiments. Based on these contributions GENECBR, a successful tool for cancer diagnosis using microarray datasets, has recently been released. PMID:19178723
DFP: a Bioconductor package for fuzzy profile identification and gene reduction of microarray data.
Glez-Peña, Daniel; Alvarez, Rodrigo; Díaz, Fernando; Fdez-Riverola, Florentino
2009-01-29
Expression profiling assays done by using DNA microarray technology generate enormous data sets that are not amenable to simple analysis. The greatest challenge in maximizing the use of this huge amount of data is to develop algorithms to interpret and interconnect results from different genes under different conditions. In this context, fuzzy logic can provide a systematic and unbiased way to both (i) find biologically significant insights relating to meaningful genes, thereby removing the need for expert knowledge in preliminary steps of microarray data analyses and (ii) reduce the cost and complexity of later applied machine learning techniques being able to achieve interpretable models. DFP is a new Bioconductor R package that implements a method for discretizing and selecting differentially expressed genes based on the application of fuzzy logic. DFP takes advantage of fuzzy membership functions to assign linguistic labels to gene expression levels. The technique builds a reduced set of relevant genes (FP, Fuzzy Pattern) able to summarize and represent each underlying class (pathology). A last step constructs a biased set of genes (DFP, Discriminant Fuzzy Pattern) by intersecting existing fuzzy patterns in order to detect discriminative elements. In addition, the software provides new functions and visualisation tools that summarize achieved results and aid in the interpretation of differentially expressed genes from multiple microarray experiments. DFP integrates with other packages of the Bioconductor project, uses common data structures and is accompanied by ample documentation. It has the advantage that its parameters are highly configurable, facilitating the discovery of biologically relevant connections between sets of genes belonging to different pathologies. This information makes it possible to automatically filter irrelevant genes thereby reducing the large volume of data supplied by microarray experiments. Based on these contributions GENECBR, a successful tool for cancer diagnosis using microarray datasets, has recently been released.
Taguchi, Y-H
2018-05-08
Even though coexistence of multiple phenotypes sharing the same genomic background is interesting, it remains incompletely understood. Epigenomic profiles may represent key factors, with unknown contributions to the development of multiple phenotypes, and social-insect castes are a good model for elucidation of the underlying mechanisms. Nonetheless, previous studies have failed to identify genes associated with aberrant gene expression and methylation profiles because of the lack of suitable methodology that can address this problem properly. A recently proposed principal component analysis (PCA)-based and tensor decomposition (TD)-based unsupervised feature extraction (FE) can solve this problem because these two approaches can deal with gene expression and methylation profiles even when a small number of samples is available. PCA-based and TD-based unsupervised FE methods were applied to the analysis of gene expression and methylation profiles in the brains of two social insects, Polistes canadensis and Dinoponera quadriceps. Genes associated with differential expression and methylation between castes were identified, and analysis of enrichment of Gene Ontology terms confirmed reliability of the obtained sets of genes from the biological standpoint. Biologically relevant genes, shown to be associated with significant differential gene expression and methylation between castes, were identified here for the first time. The identification of these genes may help understand the mechanisms underlying epigenetic control of development of multiple phenotypes under the same genomic conditions.
Association of abnormal morphology and altered gene expression in human preimplantation embryos.
Wells, Dagan; Bermúdez, Mercedes G; Steuerwald, Nury; Malter, Henry E; Thornhill, Alan R; Cohen, Jacques
2005-08-01
We set out to characterize the expression of nine genes in human preimplantation embryos and determine whether abnormal morphology is associated with altered gene activity. Reverse transcription and real-time polymerase chain reaction were used to quantify the expression of multiple genes in each embryo. The genes studied have various important cellular roles (e.g., cell cycle regulation, DNA repair, and apoptosis). Research laboratory working closely with a clinical IVF practice. Over 50 embryos were donated by infertile patients (various etiologies). Among these, all major stages of preimplantation development and a variety of common morphologic abnormalities were represented. None. Quantification of mRNA transcripts. We detected an association between certain forms of abnormal morphology and disturbances of gene activity. Cellular fragmentation was associated with altered expression of several genes, including TP53, suggesting that fragmenting blastomeres are suffering stress of a type monitored by p53, possibly as a consequence of suboptimal culture conditions. Appropriate gene expression is vital for the regulation of metabolic pathways and key developmental events. Our data indicates a possible causal relationship between changes in gene expression and the formation of clinically relevant abnormal embryo morphologies. We hypothesize that embryos with expression profiles characteristic of good morphology and appropriate for their developmental stage have the greatest potential for implantation. If confirmed, this could lead to a new generation of preimplantation genetic diagnosis (PGD) tests for assessing embryo viability and predicting implantation potential.
Zhang, Y; Ohyashiki, J H; Takaku, T; Shimizu, N; Ohyashiki, K
2006-01-01
Nasal NK/T-cell lymphoma is an aggressive subtype of non-Hodgkin lymphoma (NHL) that is closely associated with Epstein–Barr virus (EBV). The clonal expansion of EBV-infected NK or T cells is also seen in patients with chronic active EBV (CAEBV) infection, suggesting that two diseases might share a partially similar mechanism by which EBV affects host cellular gene expression. To understand the pathogenesis of EBV-associated NK/T-cell lymphoproliferative disorders (LPD) and design new therapies, we employed a novel EBV DNA microarray to compare patterns of EBV expression in six cell lines established from EBV-associated NK/T-cell LPD. We found that expression of BZLF1, which encodes the immediate-early gene product Zta, was expressed in SNK/T cells and the expression levels were preferentially high in cell lines from CAEBV infection. We also analyzsd the gene expression patterns of host cellular genes using a human oligonucleotide DNA microarray. We identified a subset of pathogenically and clinically relevant host cellular genes, including TNFRSF10D, CDK2, HSPCA, IL12A as a common molecular biological properties of EBV-associated NK/T-cell LPD and a subset of genes, such as PDCD4 as a putative contributor for disease progression. This study describes a novel approach from the aspects of viral and host gene expression, which could identify novel therapeutic targets in EBV-associated NK/T-cell LPD. PMID:16449999
Raju, Hemalatha B.; Tsinoremas, Nicholas F.; Capobianco, Enrico
2016-01-01
Regeneration of injured nerves is likely occurring in the peripheral nervous system, but not in the central nervous system. Although protein-coding gene expression has been assessed during nerve regeneration, little is currently known about the role of non-coding RNAs (ncRNAs). This leaves open questions about the potential effects of ncRNAs at transcriptome level. Due to the limited availability of human neuropathic pain (NP) data, we have identified the most comprehensive time-course gene expression profile referred to sciatic nerve (SN) injury and studied in a rat model using two neuronal tissues, namely dorsal root ganglion (DRG) and SN. We have developed a methodology to identify differentially expressed bioentities starting from microarray probes and repurposing them to annotate ncRNAs, while analyzing the expression profiles of protein-coding genes. The approach is designed to reuse microarray data and perform first profiling and then meta-analysis through three main steps. First, we used contextual analysis to identify what we considered putative or potential protein-coding targets for selected ncRNAs. Relevance was therefore assigned to differential expression of neighbor protein-coding genes, with neighborhood defined by a fixed genomic distance from long or antisense ncRNA loci, and of parental genes associated with pseudogenes. Second, connectivity among putative targets was used to build networks, in turn useful to conduct inference at interactomic scale. Last, network paths were annotated to assess relevance to NP. We found significant differential expression in long-intergenic ncRNAs (32 lincRNAs in SN and 8 in DRG), antisense RNA (31 asRNA in SN and 12 in DRG), and pseudogenes (456 in SN and 56 in DRG). In particular, contextual analysis centered on pseudogenes revealed some targets with known association to neurodegeneration and/or neurogenesis processes. While modules of the olfactory receptors were clearly identified in protein–protein interaction networks, other connectivity paths were identified between proteins already investigated in studies on disorders, such as Parkinson, Down syndrome, Huntington disease, and Alzheimer. Our findings suggest the importance of reusing gene expression data by meta-analysis approaches. PMID:27803687
Raju, Hemalatha B; Tsinoremas, Nicholas F; Capobianco, Enrico
2016-01-01
Regeneration of injured nerves is likely occurring in the peripheral nervous system, but not in the central nervous system. Although protein-coding gene expression has been assessed during nerve regeneration, little is currently known about the role of non-coding RNAs (ncRNAs). This leaves open questions about the potential effects of ncRNAs at transcriptome level. Due to the limited availability of human neuropathic pain (NP) data, we have identified the most comprehensive time-course gene expression profile referred to sciatic nerve (SN) injury and studied in a rat model using two neuronal tissues, namely dorsal root ganglion (DRG) and SN. We have developed a methodology to identify differentially expressed bioentities starting from microarray probes and repurposing them to annotate ncRNAs, while analyzing the expression profiles of protein-coding genes. The approach is designed to reuse microarray data and perform first profiling and then meta-analysis through three main steps. First, we used contextual analysis to identify what we considered putative or potential protein-coding targets for selected ncRNAs. Relevance was therefore assigned to differential expression of neighbor protein-coding genes, with neighborhood defined by a fixed genomic distance from long or antisense ncRNA loci, and of parental genes associated with pseudogenes. Second, connectivity among putative targets was used to build networks, in turn useful to conduct inference at interactomic scale. Last, network paths were annotated to assess relevance to NP. We found significant differential expression in long-intergenic ncRNAs (32 lincRNAs in SN and 8 in DRG), antisense RNA (31 asRNA in SN and 12 in DRG), and pseudogenes (456 in SN and 56 in DRG). In particular, contextual analysis centered on pseudogenes revealed some targets with known association to neurodegeneration and/or neurogenesis processes. While modules of the olfactory receptors were clearly identified in protein-protein interaction networks, other connectivity paths were identified between proteins already investigated in studies on disorders, such as Parkinson, Down syndrome, Huntington disease, and Alzheimer. Our findings suggest the importance of reusing gene expression data by meta-analysis approaches.
2012-01-01
Background In spite of its high clinical relevance, the relationship between disc degeneration and low back pain is still not well understood. Recent studies have shown that genome-wide gene expression studies utilizing ontology searches provide an efficient and valuable methodology for identification of clinically relevant genes. Here we use this approach in analysis of pain-, nerve-, and neurotrophin-related gene expression patterns in specimens of human disc tissue. Control, non-herniated clinical, and herniated clinical specimens of human annulus tissue were studied following Institutional Review Board approval. Results Analyses were performed on more generated (Thompson grade IV and V) discs vs. less degenerated discs (grades I-III), on surgically operated discs vs. control discs, and on herniated vs. control discs. Analyses of more degenerated vs. less degenerated discs identified significant upregulation of well-recognized pain-related genes (bradykinin receptor B1, calcitonin gene-related peptide and catechol-0-methyltransferase). Nerve growth factor was significantly upregulated in surgical vs. control and in herniated vs. control discs. All three analyses also found significant changes in numerous proinflammatory cytokine- and chemokine-related genes. Nerve, neurotrophin and pain-ontology searches identified many matrix, signaling and functional genes which have known importance in the disc. Immunohistochemistry was utilized to confirm the presence of calcitonin gene-related peptide, catechol-0-methyltransferase and bradykinin receptor B1 at the protein level in the human annulus. Conclusions Findings point to the utility of microarray analyses in identification of pain-, neurotrophin and nerve-related genes in the disc, and point to the importance of future work exploring functional interactions between nerve and disc cells in vitro and in vivo. Nerve, pain and neurotrophin ontology searches identified numerous changes in proinflammatory cytokines and chemokines which also have significant relevance to disc biology. Since the degenerating human disc is primarily an avascular tissue site into which disc cells have contributed high levels of proinflammatory cytokines, these substances are not cleared from the tissue and remain there over time. We hypothesize that as nerves grow into the human annulus, they encounter a proinflammatory cytokine-rich milieu which may sensitize nociceptors and exacerbate pain production. PMID:22963171
The nuclear receptor family member peroxisome proliferator-activated receptor α (PPARα) is activated by therapeutic hypolipidemic drugs and environmentally-relevant chemicals to regulate genes involved in lipid transport and catabolism. Chronic activation of PPARα in rodents inc...
Derous, Davina; Mitchell, Sharon E; Green, Cara L; Wang, Yingchun; Han, Jing Dong J; Chen, Luonan; Promislow, Daniel E L; Lusseau, David; Speakman, John R; Douglas, Alex
2016-05-01
Connectivity in a gene-gene network declines with age, typically within gene clusters. We explored the effect of short-term (3 months) graded calorie restriction (CR) (up to 40 %) on network structure of aging-associated genes in the murine hypothalamus by using conditional mutual information. The networks showed a topological rearrangement when exposed to graded CR with a higher relative within cluster connectivity at 40CR. We observed changes in gene centrality concordant with changes in CR level, with Ppargc1a, and Ppt1 having increased centrality and Etfdh, Traf3 and Abcc1 decreased centrality as CR increased. This change in gene centrality in a graded manner with CR, occurred in the absence of parallel changes in gene expression levels. This study emphasizes the importance of augmenting traditional differential gene expression analyses to better understand structural changes in the transcriptome. Overall our results suggested that CR induced changes in centrality of biological relevant genes that play an important role in preventing the age-associated loss of network integrity irrespective of their gene expression levels.
Derous, Davina; Mitchell, Sharon E.; Green, Cara L.; Wang, Yingchun; Han, Jing Dong J.; Chen, Luonan; Promislow, Daniel E.L.; Lusseau, David; Speakman, John R.; Douglas, Alex
2016-01-01
Connectivity in a gene-gene network declines with age, typically within gene clusters. We explored the effect of short-term (3 months) graded calorie restriction (CR) (up to 40 %) on network structure of aging-associated genes in the murine hypothalamus by using conditional mutual information. The networks showed a topological rearrangement when exposed to graded CR with a higher relative within cluster connectivity at 40CR. We observed changes in gene centrality concordant with changes in CR level, with Ppargc1a, and Ppt1 having increased centrality and Etfdh, Traf3 and Abcc1 decreased centrality as CR increased. This change in gene centrality in a graded manner with CR, occurred in the absence of parallel changes in gene expression levels. This study emphasizes the importance of augmenting traditional differential gene expression analyses to better understand structural changes in the transcriptome. Overall our results suggested that CR induced changes in centrality of biological relevant genes that play an important role in preventing the age-associated loss of network integrity irrespective of their gene expression levels. PMID:27115072
Hodgins-Davis, Andrea; Adomas, Aleksandra B.; Warringer, Jonas; Townsend, Jeffrey P.
2012-01-01
Genetic variation for plastic phenotypes potentially contributes phenotypic variation to populations that can be selected during adaptation to novel ecological contexts. However, the basis and extent of plastic variation that manifests in diverse environments remains elusive. Here, we characterize copper reaction norms for mRNA abundance among five Saccharomyces cerevisiae strains to 1) describe population variation across the full range of ecologically relevant copper concentrations, from starvation to toxicity, and 2) to test the hypothesis that plastic networks exhibit increased population variation for gene expression. We find that although the vast majority of the variation is small in magnitude (considerably <2-fold), not just some, but most genes demonstrate variable expression across environments, across genetic backgrounds, or both. Plastically expressed genes included both genes regulated directly by copper-binding transcription factors Mac1 and Ace1 and genes indirectly responding to the downstream metabolic consequences of the copper gradient, particularly genes involved in copper, iron, and sulfur homeostasis. Copper-regulated gene networks exhibited more similar behavior within the population in environments where those networks have a large impact on fitness. Nevertheless, expression variation in genes like Cup1, important to surviving copper stress, was linked with variation in mitotic fitness and in the breadth of differential expression across the genome. By revealing a broader and deeper range of population variation, our results provide further evidence for the interconnectedness of genome-wide mRNA levels, their dependence on environmental context and genetic background, and the abundance of variation in gene expression that can contribute to future evolution. PMID:23019066
Hashimoto, Takuma; Horikawa, Daiki D.; Saito, Yuki; Kuwahara, Hirokazu; Kozuka-Hata, Hiroko; Shin-I, Tadasu; Minakuchi, Yohei; Ohishi, Kazuko; Motoyama, Ayuko; Aizu, Tomoyuki; Enomoto, Atsushi; Kondo, Koyuki; Tanaka, Sae; Hara, Yuichiro; Koshikawa, Shigeyuki; Sagara, Hiroshi; Miura, Toru; Yokobori, Shin-ichi; Miyagawa, Kiyoshi; Suzuki, Yutaka; Kubo, Takeo; Oyama, Masaaki; Kohara, Yuji; Fujiyama, Asao; Arakawa, Kazuharu; Katayama, Toshiaki; Toyoda, Atsushi; Kunieda, Takekazu
2016-01-01
Tardigrades, also known as water bears, are small aquatic animals. Some tardigrade species tolerate almost complete dehydration and exhibit extraordinary tolerance to various physical extremes in the dehydrated state. Here we determine a high-quality genome sequence of Ramazzottius varieornatus, one of the most stress-tolerant tardigrade species. Precise gene repertoire analyses reveal the presence of a small proportion (1.2% or less) of putative foreign genes, loss of gene pathways that promote stress damage, expansion of gene families related to ameliorating damage, and evolution and high expression of novel tardigrade-unique proteins. Minor changes in the gene expression profiles during dehydration and rehydration suggest constitutive expression of tolerance-related genes. Using human cultured cells, we demonstrate that a tardigrade-unique DNA-associating protein suppresses X-ray-induced DNA damage by ∼40% and improves radiotolerance. These findings indicate the relevance of tardigrade-unique proteins to tolerability and tardigrades could be a bountiful source of new protection genes and mechanisms. PMID:27649274
Hashimoto, Takuma; Horikawa, Daiki D; Saito, Yuki; Kuwahara, Hirokazu; Kozuka-Hata, Hiroko; Shin-I, Tadasu; Minakuchi, Yohei; Ohishi, Kazuko; Motoyama, Ayuko; Aizu, Tomoyuki; Enomoto, Atsushi; Kondo, Koyuki; Tanaka, Sae; Hara, Yuichiro; Koshikawa, Shigeyuki; Sagara, Hiroshi; Miura, Toru; Yokobori, Shin-Ichi; Miyagawa, Kiyoshi; Suzuki, Yutaka; Kubo, Takeo; Oyama, Masaaki; Kohara, Yuji; Fujiyama, Asao; Arakawa, Kazuharu; Katayama, Toshiaki; Toyoda, Atsushi; Kunieda, Takekazu
2016-09-20
Tardigrades, also known as water bears, are small aquatic animals. Some tardigrade species tolerate almost complete dehydration and exhibit extraordinary tolerance to various physical extremes in the dehydrated state. Here we determine a high-quality genome sequence of Ramazzottius varieornatus, one of the most stress-tolerant tardigrade species. Precise gene repertoire analyses reveal the presence of a small proportion (1.2% or less) of putative foreign genes, loss of gene pathways that promote stress damage, expansion of gene families related to ameliorating damage, and evolution and high expression of novel tardigrade-unique proteins. Minor changes in the gene expression profiles during dehydration and rehydration suggest constitutive expression of tolerance-related genes. Using human cultured cells, we demonstrate that a tardigrade-unique DNA-associating protein suppresses X-ray-induced DNA damage by ∼40% and improves radiotolerance. These findings indicate the relevance of tardigrade-unique proteins to tolerability and tardigrades could be a bountiful source of new protection genes and mechanisms.
Friedenberg, Steven G; Chdid, Lhoucine; Keene, Bruce; Sherry, Barbara; Motsinger-Reif, Alison; Meurs, Kathryn M
2016-07-01
OBJECTIVE To identify cardiac tissue genes and gene pathways differentially expressed between dogs with and without dilated cardiomyopathy (DCM). ANIMALS 8 dogs with and 5 dogs without DCM. PROCEDURES Following euthanasia, samples of left ventricular myocardium were collected from each dog. Total RNA was extracted from tissue samples, and RNA sequencing was performed on each sample. Samples from dogs with and without DCM were grouped to identify genes that were differentially regulated between the 2 populations. Overrepresentation analysis was performed on upregulated and downregulated gene sets to identify altered molecular pathways in dogs with DCM. RESULTS Genes involved in cellular energy metabolism, especially metabolism of carbohydrates and fats, were significantly downregulated in dogs with DCM. Expression of cardiac structural proteins was also altered in affected dogs. CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that RNA sequencing may provide important insights into the pathogenesis of DCM in dogs and highlight pathways that should be explored to identify causative mutations and develop novel therapeutic interventions.
Vaseghi, Golnaz; Taki, Mohamad Javad; Javanmard, Shaghayegh Haghjooy
2017-10-01
Metastasis is the main cause of death in patients with melanoma. Cannabis-based medicines are effective adjunctive drugs in cancer patients. Tau and Stathmin proteins are the key proteins in cancer metastasis. Here we have investigated the effect of a standardized Cannabis sativa extract on cell migration and Tau and Stathmin gene expression in the melanoma cell line. In the treatment group, melanoma (B1617) was treated 48 hr with various concentrations of standardized C. sativa extract. Cells with no treatment were considered as the control group, then study was followed by Quantitative RT-Real Time PCR assay. Relative gene expression was calculated by the ΔΔct method. Migration assay was used to evaluate cancer metastasis. Tau and stathmin gene expression was significantly decreased compared to the control group. Cell migration was also significantly reduced compared to controls. C. sativa decreased tau and stathmin gene expression and cancer metastasis. The results may have some clinical relevance for the use of cannabis-based medicines in patients with metastatic melanoma.
Specific c-Jun target genes in malignant melanoma.
Schummer, Patrick; Kuphal, Silke; Vardimon, Lily; Bosserhoff, Anja K; Kappelmann, Melanie
2016-05-03
A fundamental event in the development and progression of malignant melanoma is the de-regulation of cancer-relevant transcription factors. We recently showed that c-Jun is a main regulator of melanoma progression and, thus, is the most important member of the AP-1 transcription factor family in this disease. Surprisingly, no cancer-related specific c-Jun target genes in melanoma were described in the literature, so far. Therefore, we focused on pre-existing ChIP-Seq data (Encyclopedia of DNA Elements) of 3 different non-melanoma cell lines to screen direct c-Jun target genes. Here, a specific c-Jun antibody to immunoprecipitate the associated promoter DNA was used. Consequently, we identified 44 direct c-Jun targets and a detailed analysis of 6 selected genes confirmed their deregulation in malignant melanoma. The identified genes were differentially regulated comparing 4 melanoma cell lines and normal human melanocytes and we confirmed their c-Jun dependency. Direct interaction between c-Jun and the promoter/enhancer regions of the identified genes was confirmed by us via ChIP experiments. Interestingly, we revealed that the direct regulation of target gene expression via c-Jun can be independent of the existence of the classical AP-1 (5´-TGA(C/G)TCA-3´) consensus sequence allowing for the subsequent down- or up-regulation of the expression of these cancer-relevant genes. In summary, the results of this study indicate that c-Jun plays a crucial role in the development and progression of malignant melanoma via direct regulation of cancer-relevant target genes and that inhibition of direct c-Jun targets through inhibition of c-Jun is a potential novel therapeutic option for treatment of malignant melanoma.
[Effect of andrographolide on quorum sensing and relevant virulence genes of Candida albicans].
Yan, Yuan-yuan; Shi, Gao-xiang; Shao, Jing; Lu, Ke-qiao; Zhang, Meng-xiang; Wang, Tian-ming; Wang, Bin; Wang, Chang-zhong
2015-01-01
To investigate the effect of andrographolide (AG) on quroum sensing (QS) and relevant virulence genes of Candida albicans. Gas-chromatography-mass spectrometry (GC-MS) was applied to detect the changes in the content of farnesol and tyrosol in C. albicans intervened by AG. The real-time quantitative PCR (qRT-PCR) was adopted to inspect the expressions of relevant virulence genes such as CHK1, PBS2 and HOG1 regulated by QS. At 2 h after the growth of C. albican, the farnesol and tyrosol secretions reduced, without notable change after intervention with AG. The secretions were highest at 12 h and decreased at 24 h. After the intervention with different concentrations of AG, the farnesol content reduces, whereas tyrosol increased, indicating a dose-dependence, particularly with 1 000 mg x L(-1) AG. qRT-PCR revealed that 1 000 mg x L(-1) AG could down-regulate CHK1 by 2.375, 3.330 and 4.043 times and PBS2 by 2.010, 4.210 and 4.760 times, with no significant change in HOG1. AG could inhibit the farnesol secretion, promote the tyrosol secretion and down-regulate QS-related virulence genes CHK1 and PBS2 expressions.
Viral Vectors for in Vivo Gene Transfer
NASA Astrophysics Data System (ADS)
Thévenot, E.; Dufour, N.; Déglon, N.
The transfer of DNA into the nucleus of a eukaryotic cell (gene transfer) is a central theme of modern biology. The transfer is said to be somatic when it refers to non-germline organs of a developed individual, and germline when it concerns gametes or the fertilised egg of an animal, with the aim of transmitting the relevant genetic modification to its descendents [1]. The efficient introduction of genetic material into a somatic or germline cell and the control of its expression over time have led to major advances in understanding how genes work in vivo, i.e., in living organisms (functional genomics), but also to the development of innovative therapeutic methods (gene therapy). The efficiency of gene transfer is conditioned by the vehicle used, called the vector. Desirable features for a vector are as follows: Easy to produce high titer stocks of the vector in a reproducible way. Absence of toxicity related to transduction (transfer of genetic material into the target cell, and its expression there) and no immune reaction of the organism against the vector and/or therapeutic protein. Stability in the expression of the relevant gene over time, and the possibility of regulation, e.g., to control expression of the therapeutic protein on the physiological level, or to end expression at the end of treatment. Transduction of quiescent cells should be as efficient as transduction of dividing cells. Vectors currently used fall into two categories: non-viral and viral vectors. In non-viral vectors, the DNA is complexed with polymers, lipids, or cationic detergents (described in Chap. 3). These vectors have a low risk of toxicity and immune reaction. However, they are less efficient in vivo than viral vectors when it comes to the number of cells transduced and long-term transgene expression. (Naked DNA transfer or electroporation is rather inefficient in the organism. This type of gene transfer will not be discussed here, and the interested reader is referred to the review [2].) For this reason, it is mainly viral vectors that are used for gene transfer in animals and humans.
Clinical significance of In vivo Cytarabine Induced Gene Expression Signature in AML
Lamba, Jatinder K.; Pounds, Stanley; Cao, Xueyuan; Crews, Kristine R.; Cogle, Christopher R.; Bhise, Neha; Raimondi, Susana C.; Downing, James R.; Baker, Sharyn D.; Ribeiro, Raul C.; Rubnitz, Jeffrey E.
2016-01-01
Despite initial remission, approximately 60-70% of adult and 30% of pediatric patients experience relapse or refractory AML. Studies so far have identified base line gene expression profiles of pathogenic and prognostic significance in AML, however extent of change in gene expression post-initiation of treatment has not been investigated. Exposure of leukemic cells to chemotherapeutic agents such as cytarabine, a mainstay of AML chemotherapy can trigger adaptive response by influencing leukemic cell transcriptome and hence development of resistance or refractory disease. It is however challenging to perform such a study due to lack of availability of specimens post-drug treatment. In this study our primary objective was to identify in vivo cytarabine induced changes in leukemia cell transcriptome and to evaluate their impact on clinical outcome. Our results highlight genes relevant to cytarabine resistance and support the concept of targeting cytarabine-induced genes as a means of improving response. PMID:26366682
Clinical significance of in vivo cytarabine-induced gene expression signature in AML.
Lamba, Jatinder K; Pounds, Stanley; Cao, Xueyuan; Crews, Kristine R; Cogle, Christopher R; Bhise, Neha; Raimondi, Susana C; Downing, James R; Baker, Sharyn D; Ribeiro, Raul C; Rubnitz, Jeffrey E
2016-01-01
Despite initial remission, ∼60-70% of adult and 30% of pediatric patients experience relapse or refractory AML. Studies so far have identified base line gene expression profiles of pathogenic and prognostic significance in AML; however, the extent of change in gene expression post-initiation of treatment has not been investigated. Exposure of leukemic cells to chemotherapeutic agents such as cytarabine, a mainstay of AML chemotherapy, can trigger adaptive response by influencing leukemic cell transcriptome and, hence, development of resistance or refractory disease. It is, however, challenging to perform such a study due to lack of availability of specimens post-drug treatment. The primary objective of this study was to identify in vivo cytarabine-induced changes in leukemia cell transcriptome and to evaluate their impact on clinical outcome. The results highlight genes relevant to cytarabine resistance and support the concept of targeting cytarabine-induced genes as a means of improving response.
Investigating the transcriptional control of cardiovascular development
Kathiriya, Irfan S.; Nora, Elphege P.; Bruneau, Benoit G.
2015-01-01
Transcriptional regulation of thousands of genes instructs complex morphogenetic and molecular events for heart development. Cardiac transcription factors (TFs) choreograph gene expression at each stage of differentiation by interacting with co-factors, including chromatin-modifying enzymes, and by binding to a constellation of regulatory DNA elements. Here, we present salient examples relevant to cardiovascular development and heart disease and review techniques that can sharpen our understanding of cardiovascular biology. We discuss the interplay between cardiac TFs, cis-regulatory elements and chromatin as dynamic regulatory networks, to orchestrate sequential deployment of the cardiac gene expression program. PMID:25677518
Gene expression profiles in whole blood and associations with metabolic dysregulation in obesity.
Cox, Amanda J; Zhang, Ping; Evans, Tiffany J; Scott, Rodney J; Cripps, Allan W; West, Nicholas P
Gene expression data provides one tool to gain further insight into the complex biological interactions linking obesity and metabolic disease. This study examined associations between blood gene expression profiles and metabolic disease in obesity. Whole blood gene expression profiles, performed using the Illumina HT-12v4 Human Expression Beadchip, were compared between (i) individuals with obesity (O) or lean (L) individuals (n=21 each), (ii) individuals with (M) or without (H) Metabolic Syndrome (n=11 each) matched on age and gender. Enrichment of differentially expressed genes (DEG) into biological pathways was assessed using Ingenuity Pathway Analysis. Association between sets of genes from biological pathways considered functionally relevant and Metabolic Syndrome were further assessed using an area under the curve (AUC) and cross-validated classification rate (CR). For OvL, only 50 genes were significantly differentially expressed based on the selected differential expression threshold (1.2-fold, p<0.05). For MvH, 582 genes were significantly differentially expressed (1.2-fold, p<0.05) and pathway analysis revealed enrichment of DEG into a diverse set of pathways including immune/inflammatory control, insulin signalling and mitochondrial function pathways. Gene sets from the mTOR signalling pathways demonstrated the strongest association with Metabolic Syndrome (p=8.1×10 -8 ; AUC: 0.909, CR: 72.7%). These results support the use of expression profiling in whole blood in the absence of more specific tissue types for investigations of metabolic disease. Using a pathway analysis approach it was possible to identify an enrichment of DEG into biological pathways that could be targeted for in vitro follow-up. Copyright © 2017 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.
Literature-based discovery of diabetes- and ROS-related targets
2010-01-01
Background Reactive oxygen species (ROS) are known mediators of cellular damage in multiple diseases including diabetic complications. Despite its importance, no comprehensive database is currently available for the genes associated with ROS. Methods We present ROS- and diabetes-related targets (genes/proteins) collected from the biomedical literature through a text mining technology. A web-based literature mining tool, SciMiner, was applied to 1,154 biomedical papers indexed with diabetes and ROS by PubMed to identify relevant targets. Over-represented targets in the ROS-diabetes literature were obtained through comparisons against randomly selected literature. The expression levels of nine genes, selected from the top ranked ROS-diabetes set, were measured in the dorsal root ganglia (DRG) of diabetic and non-diabetic DBA/2J mice in order to evaluate the biological relevance of literature-derived targets in the pathogenesis of diabetic neuropathy. Results SciMiner identified 1,026 ROS- and diabetes-related targets from the 1,154 biomedical papers (http://jdrf.neurology.med.umich.edu/ROSDiabetes/). Fifty-three targets were significantly over-represented in the ROS-diabetes literature compared to randomly selected literature. These over-represented targets included well-known members of the oxidative stress response including catalase, the NADPH oxidase family, and the superoxide dismutase family of proteins. Eight of the nine selected genes exhibited significant differential expression between diabetic and non-diabetic mice. For six genes, the direction of expression change in diabetes paralleled enhanced oxidative stress in the DRG. Conclusions Literature mining compiled ROS-diabetes related targets from the biomedical literature and led us to evaluate the biological relevance of selected targets in the pathogenesis of diabetic neuropathy. PMID:20979611
MCCORKLE, JOSEPH R.; LEONARD, MARY K.; KRANER, SUSAN D.; BLALOCK, ERIC M.; DEQIN, MA; ZIMMER, STEPHEN G.; KAETZEL, DAVID M.
2015-01-01
NME1 is a well-documented metastasis suppressor gene, with suppressor activity demonstrated across a wide spectrum of human cancers including melanoma and carcinomas of the breast, stomach and thyroid. A primary aim of the current study was to identify profiles of genes whose expression is regulated by NME1 in cell lines of melanoma and thyroid carcinoma origin. Impact of NME1 was determined by forcing its expression transiently in cell lines using a novel Ad5-based adenoviral vector (Ad5-NME1), followed 48 h later by analysis of RNA expression profiles using the U133A microarray chip. Robust NME1 expression was achieved following infection with the Ad5-NME1 adenovirus in the human metastasis-derived cell lines WM1158 (melanoma) and WRO82 (follicular thyroid carcinoma), resulting in wide-ranging effects on gene expression in both settings. A substantial proportion of the NME1-regulated genes identified in the analyses were of clear potential relevance to metastasis, such as matrix metalloproteinase-1 (MMP1), angiopoeitin-2 (ANGPT2), SERPINB9 and colony stimulating factor receptor-2B (CSFR2B). Nine genes were identified (false discovery rate ≥0.1) that were regulated by NME1 in both the WM1158 and WRO82 cell lines, each possessing one of more such metastasis-relevant activities as stress fiber formation and focal adhesion (PPM1E, ZYX, PFN1), chemotaxis (CCR1) epithelial-mesenchymal signaling (WNT1), differentiation and morphogenesis (TBX4, ZFP36L2), and G protein modulation (GPR52 and PFN1). In addition, a number of the NME1-regulated genes were shown to be of prognostic value for distant disease-free survival and overall survival in melanoma and breast cancer. The combined expression of three NME1-regulated genes CSFR2B, MSF4A1 and SERPINB9 provided a strongly synergistic correlation with distant disease-free survival in the basal subtype of breast cancer (p<3.5e−5, hazard ratio=0.33). Our study demonstrates that analysis of NME1-dependent gene expression is a powerful approach for identifying potential modulators of metastatic potential in multiple cancer types, which in turn may represent useful therapeutic targets. The study also highlights NME1-dependent genes as potential prognostic/diagnostic indices, which are profoundly lacking at present in melanoma. PMID:25048347
McCorkle, Joseph R; Leonard, Mary K; Kraner, Susan D; Blalock, Eric M; Ma, Deqin; Zimmer, Stephen G; Kaetzel, David M
2014-01-01
NME1 is a well-documented metastasis suppressor gene, with suppressor activity demonstrated across a wide spectrum of human cancers including melanoma and carcinomas of the breast, stomach and thyroid. A primary aim of the current study was to identify profiles of genes whose expression is regulated by NME1 in cell lines of melanoma and thyroid carcinoma origin. Impact of NME1 was determined by forcing its expression transiently in cell lines using a novel Ad5-based adenoviral vector (Ad5-NME1), followed 48 h later by analysis of RNA expression profiles using the U133A microarray chip. Robust NME1 expression was achieved following infection with the Ad5-NME1 adenovirus in the human metastasis-derived cell lines WM1158 (melanoma) and WRO82 (follicular thyroid carcinoma), resulting in wide-ranging effects on gene expression in both settings. A substantial proportion of the NME1-regulated genes identified in the analyses were of clear potential relevance to metastasis, such as matrix metalloproteinase-1 (MMP1), angiopoietin-2 (ANGPT2), SERPINB9 and colony stimulating factor receptor-2B (CSFR2B). Nine genes were identified (false discovery rate <0.1) that were regulated by NME1 in both the WM1158 and WRO82 cell lines, each possessing one or more such metastasis-relevant activities as stress fiber formation and focal adhesion (PPM1E, ZYX, PFN1), chemotaxis (CCR1) epithelial-mesenchymal signaling (WNT6), differentiation and morphogenesis (TBX4, ZFP36L2), and G protein modulation (GPR52 and PFN1). In addition, a number of the NME1-regulated genes were shown to be of prognostic value for distant disease-free survival and overall survival in melanoma and breast cancer. The combined expression of three NME1-regulated genes CSFR2B, MSF4A1 and SERPINB9 provided a strongly synergistic correlation with distant disease-free survival in the basal subtype of breast cancer (p<3.5e(-5), hazard ratio=0.33). Our study demonstrates that analysis of NME1-dependent gene expression is a powerful approach for identifying potential modulators of metastatic potential in multiple cancer types, which in turn may represent useful therapeutic targets. The study also highlights NME1-dependent genes as potential prognostic/diagnostic indices, which are profoundly lacking at present in melanoma. Copyright© 2014, International Institute of Anticancer Research (Dr. John G. Delinasios), All rights reserved.
A qRT-PCR assay for the expression of all Mal d 1 isoallergen genes
2013-01-01
Background A considerable number of individuals suffer from oral allergy syndrome (OAS) to apple, resulting in the avoidance of apple consumption. Apple cultivars differ greatly in their allergenic properties, but knowledge of the causes for such differences is incomplete. Mal d 1 is considered the major apple allergen. For Mal d 1, a wide range of isoallergens and variants exist, and they are encoded by a large gene family. To identify the specific proteins/genes that are potentially involved in the allergy, we developed a PCR assay to monitor the expression of each individual Mal d 1 gene. Gene-specific primer pairs were designed for the exploitation of sequence differences among Mal d 1 genes. The specificity of these primers was validated using both in silico and in vitro techniques. Subsequently, this assay was applied to the peel and flesh of fruits from the two cultivars ‘Florina’ and ‘Gala’. Results We successfully developed gene-specific primer pairs for each of the 31 Mal d 1 genes and incorporated them into a qRT-PCR assay. The results from the application of the assay showed that 11 genes were not expressed in fruit. In addition, differential expression was observed among the Mal d 1 genes that were expressed in the fruit. Moreover, the expression levels were tissue and cultivar dependent. Conclusion The assay developed in this study facilitated the first characterisation of the expression levels of all known Mal d 1 genes in a gene-specific manner. Using this assay on different fruit tissues and cultivars, we obtained knowledge concerning gene relevance in allergenicity. This study provides new perspectives for research on both plant breeding and immunotherapy. PMID:23522122
Lukashin, A V; Fuchs, R
2001-05-01
Cluster analysis of genome-wide expression data from DNA microarray hybridization studies has proved to be a useful tool for identifying biologically relevant groupings of genes and samples. In the present paper, we focus on several important issues related to clustering algorithms that have not yet been fully studied. We describe a simple and robust algorithm for the clustering of temporal gene expression profiles that is based on the simulated annealing procedure. In general, this algorithm guarantees to eventually find the globally optimal distribution of genes over clusters. We introduce an iterative scheme that serves to evaluate quantitatively the optimal number of clusters for each specific data set. The scheme is based on standard approaches used in regular statistical tests. The basic idea is to organize the search of the optimal number of clusters simultaneously with the optimization of the distribution of genes over clusters. The efficiency of the proposed algorithm has been evaluated by means of a reverse engineering experiment, that is, a situation in which the correct distribution of genes over clusters is known a priori. The employment of this statistically rigorous test has shown that our algorithm places greater than 90% genes into correct clusters. Finally, the algorithm has been tested on real gene expression data (expression changes during yeast cell cycle) for which the fundamental patterns of gene expression and the assignment of genes to clusters are well understood from numerous previous studies.
The evolution of duplicate gene expression in mammalian organs
Guschanski, Katerina; Warnefors, Maria; Kaessmann, Henrik
2017-01-01
Gene duplications generate genomic raw material that allows the emergence of novel functions, likely facilitating adaptive evolutionary innovations. However, global assessments of the functional and evolutionary relevance of duplicate genes in mammals were until recently limited by the lack of appropriate comparative data. Here, we report a large-scale study of the expression evolution of DNA-based functional gene duplicates in three major mammalian lineages (placental mammals, marsupials, egg-laying monotremes) and birds, on the basis of RNA sequencing (RNA-seq) data from nine species and eight organs. We observe dynamic changes in tissue expression preference of paralogs with different duplication ages, suggesting differential contribution of paralogs to specific organ functions during vertebrate evolution. Specifically, we show that paralogs that emerged in the common ancestor of bony vertebrates are enriched for genes with brain-specific expression and provide evidence for differential forces underlying the preferential emergence of young testis- and liver-specific expressed genes. Further analyses uncovered that the overall spatial expression profiles of gene families tend to be conserved, with several exceptions of pronounced tissue specificity shifts among lineage-specific gene family expansions. Finally, we trace new lineage-specific genes that may have contributed to the specific biology of mammalian organs, including the little-studied placenta. Overall, our study provides novel and taxonomically broad evidence for the differential contribution of duplicate genes to tissue-specific transcriptomes and for their importance for the phenotypic evolution of vertebrates. PMID:28743766
Zagrijchuk, Elizaveta A.; Sabirov, Marat A.; Holloway, David M.; Spirov, Alexander V.
2014-01-01
Biological development depends on the coordinated expression of genes in time and space. Developmental genes have extensive cis-regulatory regions which control their expression. These regions are organized in a modular manner, with different modules controlling expression at different times and locations. Both how modularity evolved and what function it serves are open questions. We present a computational model for the cis-regulation of the hunchback (hb) gene in the fruit fly (Drosophila). We simulate evolution (using an evolutionary computation approach from computer science) to find the optimal cis-regulatory arrangements for fitting experimental hb expression patterns. We find that the cis-regulatory region tends to readily evolve modularity. These cis-regulatory modules (CRMs) do not tend to control single spatial domains, but show a multi-CRM/multi-domain correspondence. We find that the CRM-domain correspondence seen in Drosophila evolves with a high probability in our model, supporting the biological relevance of the approach. The partial redundancy resulting from multi-CRM control may confer some biological robustness against corruption of regulatory sequences. The technique developed on hb could readily be applied to other multi-CRM developmental genes. PMID:24712536
Cario, Gunnar; Stanulla, Martin; Fine, Bernard M; Teuffel, Oliver; Neuhoff, Nils V; Schrauder, André; Flohr, Thomas; Schäfer, Beat W; Bartram, Claus R; Welte, Karl; Schlegelberger, Brigitte; Schrappe, Martin
2005-01-15
Treatment resistance, as indicated by the presence of high levels of minimal residual disease (MRD) after induction therapy and induction consolidation, is associated with a poor prognosis in childhood acute lymphoblastic leukemia (ALL). We hypothesized that treatment resistance is an intrinsic feature of ALL cells reflected in the gene expression pattern and that resistance to chemotherapy can be predicted before treatment. To test these hypotheses, gene expression signatures of ALL samples with high MRD load were compared with those of samples without measurable MRD during treatment. We identified 54 genes that clearly distinguished resistant from sensitive ALL samples. Genes with low expression in resistant samples were predominantly associated with cell-cycle progression and apoptosis, suggesting that impaired cell proliferation and apoptosis are involved in treatment resistance. Prediction analysis using randomly selected samples as a training set and the remaining samples as a test set revealed an accuracy of 84%. We conclude that resistance to chemotherapy seems at least in part to be an intrinsic feature of ALL cells. Because treatment response could be predicted with high accuracy, gene expression profiling could become a clinically relevant tool for treatment stratification in the early course of childhood ALL.
Ma, Thong C.; Barco, Angel; Ratan, Rajiv R.; Willis, Dianna E.
2014-01-01
To regenerate damaged axons, neurons must express a cassette of regeneration-associated genes (RAGs) that increases intrinsic growth capacity and confers resistance to extrinsic inhibitory cues. Here we show that dibutyrl-cAMP or forskolin combined with constitutive-active CREB are superior to either agent alone in driving neurite growth on permissive and inhibitory substrates. Of the RAGs examined, only arginase 1 (Arg1) expression correlated with the increased neurite growth induced by the cAMP/CREB combination, both of which were AP1-dependent. This suggests that cAMP-induced AP1 activity is necessary and interacts with CREB to drive expression of RAGs relevant for regeneration and demonstrates that combining a small molecule (cAMP) with an activated transcription factor (CREB) stimulates the gene expression necessary to enhance axonal regeneration. PMID:25296755
Ohlsen, Knut; Ziebuhr, Wilma; Koller, Klaus-Peter; Hell, Wolfgang; Wichelhaus, Thomas A.; Hacker, Jörg
1998-01-01
Concentrations of antibiotics below the MIC are able to modulate the expression of virulence-associated genes. In this study, the influence of subinhibitory doses of 31 antibiotics on the expression of the gene encoding the staphylococcal alpha-toxin (hla), a major virulence factor of Staphylococcus aureus, was investigated with a novel gene fusion protocol. The most striking observation was a strong induction of hla expression by subinhibitory concentrations of β-lactams and an almost complete inhibition of alpha-toxin expression by clindamycin. Whereas glycopeptide antibiotics had no effect, the macrolide erythromycin and several aminoglycosides reduced and fluoroquinolones slightly stimulated hla expression. Furthermore, Northern blot analysis of hla mRNA and Western blot (immunoblot) analysis of culture supernatants of both methicillin-sensitive and methicillin-resistant S. aureus strains revealed that methicillin-induced alpha-toxin expression is a common phenomenon of alpha-toxin-producing strains. Some methicillin-resistant S. aureus isolates produced up to 30-fold more alpha-toxin in the presence of 10 μg of methicillin per ml than in its absence. The results indicate that the novel gene fusion technique is a useful tool for studying the modulation of virulence gene expression by antibiotics. Moreover, the results suggest that the effects of certain antibiotics on virulence properties may be relevant for the management of S. aureus infections. PMID:9797209
Raaphorst, Frank M.; Vermeer, Maarten; Fieret, Elly; Blokzijl, Tjasso; Dukers, Danny; Sewalt, Richard G.A.B.; Otte, Arie P.; Willemze, Rein; Meijer, Chris J.L.M.
2004-01-01
Polycomb-group (PcG) genes preserve cell identity by gene silencing, and contribute to regulation of lymphopoiesis and malignant transformation. We show that primary nodal large B-cell lymphomas (LBCLs), and secondary cutaneous deposits from such lymphomas, abnormally express the BMI-1, RING1, and HPH1 PcG genes in cycling neoplastic cells. By contrast, tumor cells in primary cutaneous LBCLs lacked BMI-1 expression, whereas RING1 was variably detected. Lack of BMI-1 expression was characteristic for primary cutaneous LBCLs, because other primary extranodal LBCLs originating from brain, testes, and stomach were BMI-1-positive. Expression of HPH1 was rarely detected in primary cutaneous LBCLs of the head or trunk and abundant in primary cutaneous LBCLs of the legs, which fits well with its earlier recognition as a distinct clinical pathological entity with different clinical behavior. We conclude that clinically defined subclasses of primary LBCLs display site-specific abnormal expression patterns of PcG genes of the HPC-HPH/PRC1 PcG complex. Some of these patterns (such as the expression profile of BMI-1) may be diagnostically relevant. We propose that distinct expression profiles of PcG genes results in abnormal formation of HPC-HPH/PRC1 PcG complexes, and that this contributes to lymphomagenesis and different clinical behavior of clinically defined LBCLs. PMID:14742259
Interaction between sleep and the immune response in Drosophila: a role for the NFkappaB relish.
Williams, Julie A; Sathyanarayanan, Sriram; Hendricks, Joan C; Sehgal, Amita
2007-04-01
The regulation of sleep is poorly understood. While some molecules, including those involved in inflammatory/immune responses, have been implicated in the control of sleep, their role in this process remains unclear. The Drosophila model for sleep provides a powerful system to identify and test the role of sleep-relevant molecules. We conducted an unbiased screen for molecular candidates involved in sleep regulation by analyzing genome-wide changes in gene expression associated with sleep deprivation in Drosophila. To further examine a role of immune-related genes identified in the screen, we performed molecular assays, analysis of sleep behavior in relevant mutant and transgenic flies, and quantitative analysis of the immune response following sleep deprivation. A major class of genes that increased expression with sleep deprivation was that involved in the immune response. We found that immune genes were also upregulated during baseline conditions in the cyc01 sleep mutant. Since the expression of an NFkappaB, Relish, a central player in the inflammatory response, was increased with all manipulations that reduced sleep, we focused on this gene. Flies deficient in, but not lacking, Relish expression exhibited reduced levels of nighttime sleep, supporting a role for Relish in the control of sleep. This mutant phenotype was rescued by expression of a Relish transgene in fat bodies, which are the major site of inflammatory responses in Drosophila. Finally, sleep deprivation also affected the immune response, such that flies deprived of sleep for several hours were more resistant to bacterial infection than those flies not deprived of sleep. These results demonstrate a conserved interaction between sleep and the immune system. Genetic manipulation of an immune component alters sleep, and likewise, acute sleep deprivation alters the immune response.
Interaction Between Sleep and the Immune Response in Drosophila: A Role for the NFκB Relish
Williams, Julie A.; Sathyanarayanan, Sriram; Hendricks, Joan C.; Sehgal, Amita
2010-01-01
Study Objectives The regulation of sleep is poorly understood. While some molecules, including those involved in inflammatory/immune responses, have been implicated in the control of sleep, their role in this process remains unclear. The Drosophila model for sleep provides a powerful system to identify and test the role of sleep-relevant molecules. Design We conducted an unbiased screen for molecular candidates involved in sleep regulation by analyzing genome-wide changes in gene expression associated with sleep deprivation in Drosophila. To further examine a role of immune-related genes identified in the screen, we performed molecular assays, analysis of sleep behavior in relevant mutant and transgenic flies, and quantitative analysis of the immune response following sleep deprivation. Results A major class of genes that increased expression with sleep deprivation was that involved in the immune response. We found that immune genes were also upregulated during baseline conditions in the cyc01 sleep mutant. Since the expression of an NFκB, Relish, a central player in the inflammatory response, was increased with all manipulations that reduced sleep, we focused on this gene. Flies deficient in, but not lacking, Relish expression exhibited reduced levels of nighttime sleep, supporting a role for Relish in the control of sleep. This mutant phenotype was rescued by expression of a Relish transgene in fat bodies, which are the major site of inflammatory responses in Drosophila. Finally, sleep deprivation also affected the immune response, such that flies deprived of sleep for several hours were more resistant to bacterial infection than those flies not deprived of sleep. Conclusion These results demonstrate a conserved interaction between sleep and the immune system. Genetic manipulation of an immune component alters sleep, and likewise, acute sleep deprivation alters the immune response. PMID:17520783
Zhu, Ya; Su, Guanyong; Yang, Dandong; Zhang, Yongkang; Yu, Liqin; Li, Yufei; Giesy, John P; Letcher, Robert J; Liu, Chunsheng
2017-10-01
Growth curves were used to determine sensitive exposure windows for evaluation of developmental toxicity of chemicals to zebrafish. Dose- and time-dependent effects on body mass, body length and expression of genes involved in the growth hormone/insulin-like growth factor (GH/IGF) axis and the hypothalamic-pituitary-thyroid (HPT) axis were examined after exposure to environmentally relevant concentrations of tris(1,3-dichloro-2-propyl) phosphate (TDCIPP). Based on growth curves, zebrafish grew most rapidly between 60 and 90 days post fertilization (dpf). Exposure to environmentally relevant concentrations of TDCIPP significantly decreased body mass and body length and down-regulated expression of several genes involved in the GH/IGF axis of female zebrafish, but no such effects were observed in male zebrafish. Exposure to TDCIPP did not change concentrations of thyroid hormones or expression of genes along the HPT axis in female and male zebrafish. These results suggest that growth stages of zebrafish between 60 and 90 dpf might be most appropriate for evaluation of developmental toxicity of chemicals, and down-regulation of genes involved in the GH/IGF axis, but not the HPT axis, might be responsible for the observed growth inhibition in females exposed to TDCIPP. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rubiolo, Juan Andrés; Boente-Juncal, Andrea; Hirama, Masahiro; Yamashita, Shuji; Camiña, Mercedes; Vieytes, Mercedes R.
2018-01-01
Ciguatoxins are polyether marine toxins that act as sodium channel activators. These toxins cause ciguatera, one of the most widespread nonbacterial forms of food poisoning, which presents several symptoms in humans including long-term neurological alterations. Earlier work has shown that both acute and chronic exposure of primary cortical neurons to synthetic ciguatoxin CTX3C have profound impacts on neuronal function. Thus, the present work aimed to identify relevant neuronal genes and metabolic pathways that could be altered by ciguatoxin exposure. To study the effect of ciguatoxins in primary neurons in culture, we performed a transcriptomic analysis using whole mouse genome microarrays, for primary cortical neurons exposed during 6, 24, or 72 h in culture to CTX3C. Here, we have shown that the effects of the toxin on gene expression differ with the exposure time. The results presented here have identified several relevant genes and pathways related to the effect of ciguatoxins on neurons and may assist in future research or even treatment of ciguatera. Moreover, we demonstrated that the effects of the toxin on gene expression were exclusively consequential of its action as a voltage-gated sodium channel activator, since all the effects of CTX3C were avoided by preincubation of the neurons with the sodium channel blocker tetrodotoxin. PMID:29748486
Crosstalk between Wnt Signaling and RNA Processing in Colorectal Cancer.
Bordonaro, Michael
2013-01-01
RNA processing involves a variety of processes affecting gene expression, including the removal of introns through RNA splicing, as well as 3' end processing (cleavage and polyadenylation). Alternative RNA processing is fundamentally important for gene regulation, and aberrant processing is associated with the initiation and progression of cancer. Deregulated Wnt signaling, which is the initiating event in the development of most cases of human colorectal cancer (CRC), has been linked to modified RNA processing, which may contribute to Wnt-mediated colonic carcinogenesis. Crosstalk between Wnt signaling and alternative RNA splicing with relevance to CRC includes effects on the expression of Rac1b, an alternatively spliced gene associated with tumorigenesis, which exhibits alternative RNA splicing that is influenced by Wnt activity. In addition, Tcf4, a crucial component of Wnt signaling, also exhibits alternative splicing, which is likely involved in colonic tumorigenesis. Modulation of 3' end formation, including of the Wnt target gene COX-2, also can influence the neoplastic process, with implications for CRC. While many human genes are dependent on introns and splicing for normal levels of gene expression, naturally intronless genes exist with a unique metabolism that allows for intron-independent gene expression. Effects of Wnt activity on the RNA metabolism of the intronless Wnt-target gene c-jun is a likely contributor to cancer development. Further, butyrate, a breakdown product of dietary fiber and a histone deacetylase inhibitor, upregulates Wnt activity in CRC cells, and also modulates RNA processing; therefore, the interplay between Wnt activity, the modulation of this activity by butyrate, and differential RNA metabolism in colonic cells can significantly influence tumorigenesis. Determining the role played by altered RNA processing in Wnt-mediated neoplasia may lead to novel interventions aimed at restoring normal RNA metabolism for therapeutic benefit. Therefore, this minireview presents a brief overview of several aspects of RNA processing of relevance to cancer, which potentially influence, or are influenced by, Wnt signaling activity.
Deregulation of an imprinted gene network in prostate cancer
Ribarska, Teodora; Goering, Wolfgang; Droop, Johanna; Bastian, Klaus-Marius; Ingenwerth, Marc; Schulz, Wolfgang A
2014-01-01
Multiple epigenetic alterations contribute to prostate cancer progression by deregulating gene expression. Epigenetic mechanisms, especially differential DNA methylation at imprinting control regions (termed DMRs), normally ensure the exclusive expression of imprinted genes from one specific parental allele. We therefore wondered to which extent imprinted genes become deregulated in prostate cancer and, if so, whether deregulation is due to altered DNA methylation at DMRs. Therefore, we selected presumptive deregulated imprinted genes from a previously conducted in silico analysis and from the literature and analyzed their expression in prostate cancer tissues by qRT-PCR. We found significantly diminished expression of PLAGL1/ZAC1, MEG3, NDN, CDKN1C, IGF2, and H19, while LIT1 was significantly overexpressed. The PPP1R9A gene, which is imprinted in selected tissues only, was strongly overexpressed, but was expressed biallelically in benign and cancerous prostatic tissues. Expression of many of these genes was strongly correlated, suggesting co-regulation, as in an imprinted gene network (IGN) reported in mice. Deregulation of the network genes also correlated with EZH2 and HOXC6 overexpression. Pyrosequencing analysis of all relevant DMRs revealed generally stable DNA methylation between benign and cancerous prostatic tissues, but frequent hypo- and hyper-methylation was observed at the H19 DMR in both benign and cancerous tissues. Re-expression of the ZAC1 transcription factor induced H19, CDKN1C and IGF2, supporting its function as a nodal regulator of the IGN. Our results indicate that a group of imprinted genes are coordinately deregulated in prostate cancers, independently of DNA methylation changes. PMID:24513574
Deregulation of an imprinted gene network in prostate cancer.
Ribarska, Teodora; Goering, Wolfgang; Droop, Johanna; Bastian, Klaus-Marius; Ingenwerth, Marc; Schulz, Wolfgang A
2014-05-01
Multiple epigenetic alterations contribute to prostate cancer progression by deregulating gene expression. Epigenetic mechanisms, especially differential DNA methylation at imprinting control regions (termed DMRs), normally ensure the exclusive expression of imprinted genes from one specific parental allele. We therefore wondered to which extent imprinted genes become deregulated in prostate cancer and, if so, whether deregulation is due to altered DNA methylation at DMRs. Therefore, we selected presumptive deregulated imprinted genes from a previously conducted in silico analysis and from the literature and analyzed their expression in prostate cancer tissues by qRT-PCR. We found significantly diminished expression of PLAGL1/ZAC1, MEG3, NDN, CDKN1C, IGF2, and H19, while LIT1 was significantly overexpressed. The PPP1R9A gene, which is imprinted in selected tissues only, was strongly overexpressed, but was expressed biallelically in benign and cancerous prostatic tissues. Expression of many of these genes was strongly correlated, suggesting co-regulation, as in an imprinted gene network (IGN) reported in mice. Deregulation of the network genes also correlated with EZH2 and HOXC6 overexpression. Pyrosequencing analysis of all relevant DMRs revealed generally stable DNA methylation between benign and cancerous prostatic tissues, but frequent hypo- and hyper-methylation was observed at the H19 DMR in both benign and cancerous tissues. Re-expression of the ZAC1 transcription factor induced H19, CDKN1C and IGF2, supporting its function as a nodal regulator of the IGN. Our results indicate that a group of imprinted genes are coordinately deregulated in prostate cancers, independently of DNA methylation changes.
Miyamoto, Tadashi; Furusawa, Chikara; Kaneko, Kunihiko
2015-01-01
Embryonic stem cells exhibit pluripotency: they can differentiate into all types of somatic cells. Pluripotent genes such as Oct4 and Nanog are activated in the pluripotent state, and their expression decreases during cell differentiation. Inversely, expression of differentiation genes such as Gata6 and Gata4 is promoted during differentiation. The gene regulatory network controlling the expression of these genes has been described, and slower-scale epigenetic modifications have been uncovered. Although the differentiation of pluripotent stem cells is normally irreversible, reprogramming of cells can be experimentally manipulated to regain pluripotency via overexpression of certain genes. Despite these experimental advances, the dynamics and mechanisms of differentiation and reprogramming are not yet fully understood. Based on recent experimental findings, we constructed a simple gene regulatory network including pluripotent and differentiation genes, and we demonstrated the existence of pluripotent and differentiated states from the resultant dynamical-systems model. Two differentiation mechanisms, interaction-induced switching from an expression oscillatory state and noise-assisted transition between bistable stationary states, were tested in the model. The former was found to be relevant to the differentiation process. We also introduced variables representing epigenetic modifications, which controlled the threshold for gene expression. By assuming positive feedback between expression levels and the epigenetic variables, we observed differentiation in expression dynamics. Additionally, with numerical reprogramming experiments for differentiated cells, we showed that pluripotency was recovered in cells by imposing overexpression of two pluripotent genes and external factors to control expression of differentiation genes. Interestingly, these factors were consistent with the four Yamanaka factors, Oct4, Sox2, Klf4, and Myc, which were necessary for the establishment of induced pluripotent stem cells. These results, based on a gene regulatory network and expression dynamics, contribute to our wider understanding of pluripotency, differentiation, and reprogramming of cells, and they provide a fresh viewpoint on robustness and control during development. PMID:26308610
Gene Expression in Human Accessory Lacrimal Glands of Wolfring
Ubels, John L.; Gipson, Ilene K.; Spurr-Michaud, Sandra J.; Tisdale, Ann S.; Van Dyken, Rachel E.; Hatton, Mark P.
2012-01-01
Purpose. The accessory lacrimal glands are assumed to contribute to the production of tear fluid, but little is known about their function. The goal of this study was to conduct an analysis of gene expression by glands of Wolfring that would provide a more complete picture of the function of these glands. Methods. Glands of Wolfring were isolated from frozen sections of human eyelids by laser microdissection. RNA was extracted from the cells and hybridized to gene expression arrays. The expression of several of the major genes was confirmed by immunohistochemistry. Results. Of the 24 most highly expressed genes, 9 were of direct relevance to lacrimal function. These included lysozyme, lactoferrin, tear lipocalin, and lacritin. The glands of Wolfring are enriched in genes related to protein synthesis, targeting, and secretion, and a large number of genes for proteins with antimicrobial activity were detected. Ion channels and transporters, carbonic anhydrase, and aquaporins were abundantly expressed. Genes for control of lacrimal function, including cholinergic, adrenergic, vasoactive intestinal polypeptide, purinergic, androgen, and prolactin receptors were also expressed in gland of Wolfring. Conclusions. The data suggest that the function of glands of Wolfring is similar to that of main lacrimal glands and are consistent with secretion electrolytes, fluid, and protein under nervous and hormonal control. Since these glands secrete directly onto the ocular surface, their location may allow rapid response to exogenous stimuli and makes them readily accessible to topical drugs. PMID:22956620
Alkio, Merianne; Jonas, Uwe; Declercq, Myriam; Van Nocker, Steven; Knoche, Moritz
2014-01-01
The exocarp, or skin, of fleshy fruit is a specialized tissue that protects the fruit, attracts seed dispersing fruit eaters, and has large economical relevance for fruit quality. Development of the exocarp involves regulated activities of many genes. This research analyzed global gene expression in the exocarp of developing sweet cherry (Prunus avium L., ‘Regina’), a fruit crop species with little public genomic resources. A catalog of transcript models (contigs) representing expressed genes was constructed from de novo assembled short complementary DNA (cDNA) sequences generated from developing fruit between flowering and maturity at 14 time points. Expression levels in each sample were estimated for 34 695 contigs from numbers of reads mapping to each contig. Contigs were annotated functionally based on BLAST, gene ontology and InterProScan analyses. Coregulated genes were detected using partitional clustering of expression patterns. The results are discussed with emphasis on genes putatively involved in cuticle deposition, cell wall metabolism and sugar transport. The high temporal resolution of the expression patterns presented here reveals finely tuned developmental specialization of individual members of gene families. Moreover, the de novo assembled sweet cherry fruit transcriptome with 7760 full-length protein coding sequences and over 20 000 other, annotated cDNA sequences together with their developmental expression patterns is expected to accelerate molecular research on this important tree fruit crop. PMID:26504533
A Functional and Regulatory Network Associated with PIP Expression in Human Breast Cancer
Debily, Marie-Anne; Marhomy, Sandrine El; Boulanger, Virginie; Eveno, Eric; Mariage-Samson, Régine; Camarca, Alessandra; Auffray, Charles; Piatier-Tonneau, Dominique; Imbeaud, Sandrine
2009-01-01
Background The PIP (prolactin-inducible protein) gene has been shown to be expressed in breast cancers, with contradictory results concerning its implication. As both the physiological role and the molecular pathways in which PIP is involved are poorly understood, we conducted combined gene expression profiling and network analysis studies on selected breast cancer cell lines presenting distinct PIP expression levels and hormonal receptor status, to explore the functional and regulatory network of PIP co-modulated genes. Principal Findings Microarray analysis allowed identification of genes co-modulated with PIP independently of modulations resulting from hormonal treatment or cell line heterogeneity. Relevant clusters of genes that can discriminate between [PIP+] and [PIP−] cells were identified. Functional and regulatory network analyses based on a knowledge database revealed a master network of PIP co-modulated genes, including many interconnecting oncogenes and tumor suppressor genes, half of which were detected as differentially expressed through high-precision measurements. The network identified appears associated with an inhibition of proliferation coupled with an increase of apoptosis and an enhancement of cell adhesion in breast cancer cell lines, and contains many genes with a STAT5 regulatory motif in their promoters. Conclusions Our global exploratory approach identified biological pathways modulated along with PIP expression, providing further support for its good prognostic value of disease-free survival in breast cancer. Moreover, our data pointed to the importance of a regulatory subnetwork associated with PIP expression in which STAT5 appears as a potential transcriptional regulator. PMID:19262752
Hou, Liping; Xu, Hongyan; Ying, Guangguo; Yang, Yang; Shu, Hu; Zhao, Jianliang; Cheng, Xuemei
2017-11-01
Progesterone (P4) is a natural and synthetic steroid, widely distributed in the aquatic environments. It can lead to adverse effects on the endocrine system in aquatic organisms. This study investigated the toxicological effects of exposure to environmentally relevant concentrations (4, 44, and 410ng/L) of progesterone for 42 d on adult female mosquitofish, Gambusia affinis. We performed morphological and histological analyses on gonads, anal fins, liver, and gills after the exposure of mosquito fish to P4. The expression levels of genes (vtg, er, and ar isoforms) related to fish reproduction and detoxification (cyp1a) in the liver were quantified by quantitative real-time polymerase chain reaction. The results showed that the progesterone exposure induced slight masculinization in female mosquitofish, influenced the oocyte maturation as revealed by histology of the ovaries, and caused severe damages to the liver and gills of adult female mosquitofish. It also suppressed the mRNAs expression of vtg, er, cyp1a, and significantly enhanced the expression of ar mRNA in the liver. This study reveals the molecular and physiological effects of progesterone at environmentally relevant concentrations, which might further be translated to alterations in the reproduction of mosquitofish. Copyright © 2017 Elsevier B.V. All rights reserved.
Mank, Nils N; Berghoff, Bork A; Klug, Gabriele
2013-03-01
Living cells use a variety of regulatory network motifs for accurate gene expression in response to changes in their environment or during differentiation processes. In Rhodobacter sphaeroides, a complex regulatory network controls expression of photosynthesis genes to guarantee optimal energy supply on one hand and to avoid photooxidative stress on the other hand. Recently, we identified a mixed incoherent feed-forward loop comprising the transcription factor PrrA, the sRNA PcrZ and photosynthesis target genes as part of this regulatory network. This point-of-view provides a comparison to other described feed-forward loops and discusses the physiological relevance of PcrZ in more detail.
A mixed incoherent feed-forward loop contributes to the regulation of bacterial photosynthesis genes
Mank, Nils N.; Berghoff, Bork A.; Klug, Gabriele
2013-01-01
Living cells use a variety of regulatory network motifs for accurate gene expression in response to changes in their environment or during differentiation processes. In Rhodobacter sphaeroides, a complex regulatory network controls expression of photosynthesis genes to guarantee optimal energy supply on one hand and to avoid photooxidative stress on the other hand. Recently, we identified a mixed incoherent feed-forward loop comprising the transcription factor PrrA, the sRNA PcrZ and photosynthesis target genes as part of this regulatory network. This point-of-view provides a comparison to other described feed-forward loops and discusses the physiological relevance of PcrZ in more detail. PMID:23392242
Gene-expression signatures can distinguish gastric cancer grades and stages.
Cui, Juan; Li, Fan; Wang, Guoqing; Fang, Xuedong; Puett, J David; Xu, Ying
2011-03-18
Microarray gene-expression data of 54 paired gastric cancer and adjacent noncancerous gastric tissues were analyzed, with the aim to establish gene signatures for cancer grades (well-, moderately-, poorly- or un-differentiated) and stages (I, II, III and IV), which have been determined by pathologists. Our statistical analysis led to the identification of a number of gene combinations whose expression patterns serve well as signatures of different grades and different stages of gastric cancer. A 19-gene signature was found to have discerning power between high- and low-grade gastric cancers in general, with overall classification accuracy at 79.6%. An expanded 198-gene panel allows the stratification of cancers into four grades and control, giving rise to an overall classification agreement of 74.2% between each grade designated by the pathologists and our prediction. Two signatures for cancer staging, consisting of 10 genes and 9 genes, respectively, provide high classification accuracies at 90.0% and 84.0%, among early-, advanced-stage cancer and control. Functional and pathway analyses on these signature genes reveal the significant relevance of the derived signatures to cancer grades and progression. To the best of our knowledge, this represents the first study on identification of genes whose expression patterns can serve as markers for cancer grades and stages.
Valle-Maldonado, Marco I; Jácome-Galarza, Irvin E; Gutiérrez-Corona, Félix; Ramírez-Díaz, Martha I; Campos-García, Jesús; Meza-Carmen, Víctor
2015-03-01
Mucor circinelloides is a dimorphic fungal model for studying several biological processes including cell differentiation (yeast-mold transitions) as well as biodiesel and carotene production. The recent release of the first draft sequence of the M. circinelloides genome, combined with the availability of analytical methods to determine patterns of gene expression, such as quantitative Reverse transcription-Polymerase chain reaction (qRT-PCR), and the development of molecular genetic tools for the manipulation of the fungus, may help identify M. circinelloides gene products and analyze their relevance in different biological processes. However, no information is available on M. circinelloides genes of stable expression that could serve as internal references in qRT-PCR analyses. One approach to solve this problem consists in the use of housekeeping genes as internal references. However, validation of the usability of these reference genes is a fundamental step prior to initiating qRT-PCR assays. This work evaluates expression of several constitutive genes by qRT-PCR throughout the morphological differentiation stages of M. circinelloides; our results indicate that tfc-1 and ef-1 are the most stable genes for qRT-PCR assays during differentiation studies and they are proposed as reference genes to carry out gene expression studies in this fungus.
Zhang, Guo-dong; Yang, Kai; Mei, Jie
2010-05-01
To examine and analyze the global gene expression at the different stages of golden hamster cheek pouch mucosa carcinomatous change induced by 9,10-dimethylene-1,2 benzanthracene (DMBA). The model of golden hamster cheek pouch squamous cell carcinoma was induced by DMBA. The RNA of normal mucosa, precancerous lesions and squamous cell carcinoma of fresh tissue of golden hamsters was extracted and purified and the cRNA labeled by fluorescent Cy3 synthesized, which respectively hybridized with the agilent rat cDNA microarray containing 41 000 genes-expressed sequence tags, scanning with Agilent G2565AA fluorescence scanner. The Ratio>or=2 and Ratio
RUNX1 and FOXP3 interplay regulates expression of breast cancer related genes
Recouvreux, María Sol; Grasso, Esteban Nicolás; Echeverria, Pablo Christian; Rocha-Viegas, Luciana; Castilla, Lucio Hernán; Schere-Levy, Carolina; Tocci, Johanna Melisa; Kordon, Edith Claudia; Rubinstein, Natalia
2016-01-01
Runx1 participation in epithelial mammary cells is still under review. Emerging data indicates that Runx1 could be relevant for breast tumor promotion. However, to date no studies have specifically evaluated the functional contribution of Runx1 to control gene expression in mammary epithelial tumor cells. It has been described that Runx1 activity is defined by protein context interaction. Interestingly, Foxp3 is a breast tumor suppressor gene. Here we show that endogenous Runx1 and Foxp3 physically interact in normal mammary cells and this interaction blocks Runx1 transcriptional activity. Furthermore we demonstrate that Runx1 is able to bind to R-spondin 3 (RSPO3) and Gap Junction protein Alpha 1 (GJA1) promoters. This binding upregulates Rspo3 oncogene expression and downregulates GJA1 tumor suppressor gene expression in a Foxp3-dependent manner. Moreover, reduced Runx1 transcriptional activity decreases tumor cell migration properties. Collectively, these data provide evidence of a new mechanism for breast tumor gene expression regulation, in which Runx1 and Foxp3 physically interact to control mammary epithelial cell gene expression fate. Our work suggests for the first time that Runx1 could be involved in breast tumor progression depending on Foxp3 availability. PMID:26735887
RUNX1 and FOXP3 interplay regulates expression of breast cancer related genes.
Recouvreux, María Sol; Grasso, Esteban Nicolás; Echeverria, Pablo Christian; Rocha-Viegas, Luciana; Castilla, Lucio Hernán; Schere-Levy, Carolina; Tocci, Johanna Melisa; Kordon, Edith Claudia; Rubinstein, Natalia
2016-02-09
Runx1 participation in epithelial mammary cells is still under review. Emerging data indicates that Runx1 could be relevant for breast tumor promotion. However, to date no studies have specifically evaluated the functional contribution of Runx1 to control gene expression in mammary epithelial tumor cells. It has been described that Runx1 activity is defined by protein context interaction. Interestingly, Foxp3 is a breast tumor suppressor gene. Here we show that endogenous Runx1 and Foxp3 physically interact in normal mammary cells and this interaction blocks Runx1 transcriptional activity. Furthermore we demonstrate that Runx1 is able to bind to R-spondin 3 (RSPO3) and Gap Junction protein Alpha 1 (GJA1) promoters. This binding upregulates Rspo3 oncogene expression and downregulates GJA1 tumor suppressor gene expression in a Foxp3-dependent manner. Moreover, reduced Runx1 transcriptional activity decreases tumor cell migration properties. Collectively, these data provide evidence of a new mechanism for breast tumor gene expression regulation, in which Runx1 and Foxp3 physically interact to control mammary epithelial cell gene expression fate. Our work suggests for the first time that Runx1 could be involved in breast tumor progression depending on Foxp3 availability.
2017-01-01
Although in recent years the study of gene expression variation in the absence of genetic or environmental cues or gene expression heterogeneity has intensified considerably, many basic and applied biological fields still remain unaware of how useful the study of gene expression heterogeneity patterns might be for the characterization of biological systems and/or processes. Largely based on the modulator effect chromatin compaction has for gene expression heterogeneity and the extensive changes in chromatin compaction known to occur for specialized cells that are naturally or artificially induced to revert to less specialized states or dedifferentiate, I recently hypothesized that processes that concur with cell dedifferentiation would show an extensive reduction in gene expression heterogeneity. The confirmation of the existence of such trend could be of wide interest because of the biomedical and biotechnological relevance of cell dedifferentiation-based processes, i.e., regenerative development, cancer, human induced pluripotent stem cells, or plant somatic embryogenesis. Here, I report the first empirical evidence consistent with the existence of an extensive reduction in gene expression heterogeneity for processes that concur with cell dedifferentiation by analyzing transcriptome dynamics along forearm regenerative development in Ambystoma mexicanum or axolotl. Also, I briefly discuss on the utility of the study of gene expression heterogeneity dynamics might have for the characterization of cell dedifferentiation-based processes, and the engineering of tools that afforded better monitoring and modulating such processes. Finally, I reflect on how a transitional reduction in gene expression heterogeneity for dedifferentiated cells can promote a long-term increase in phenotypic heterogeneity following cell dedifferentiation with potential adverse effects for biomedical and biotechnological applications. PMID:29134148
Pollak, Julia; Rai, Karan G; Funk, Cory C; Arora, Sonali; Lee, Eunjee; Zhu, Jun; Price, Nathan D; Paddison, Patrick J; Ramirez, Jan-Marino; Rostomily, Robert C
2017-01-01
Ion channels and transporters have increasingly recognized roles in cancer progression through the regulation of cell proliferation, migration, and death. Glioblastoma stem-like cells (GSCs) are a source of tumor formation and recurrence in glioblastoma multiforme, a highly aggressive brain cancer, suggesting that ion channel expression may be perturbed in this population. However, little is known about the expression and functional relevance of ion channels that may contribute to GSC malignancy. Using RNA sequencing, we assessed the enrichment of ion channels in GSC isolates and non-tumor neural cell types. We identified a unique set of GSC-enriched ion channels using differential expression analysis that is also associated with distinct gene mutation signatures. In support of potential clinical relevance, expression of selected GSC-enriched ion channels evaluated in human glioblastoma databases of The Cancer Genome Atlas and Ivy Glioblastoma Atlas Project correlated with patient survival times. Finally, genetic knockdown as well as pharmacological inhibition of individual or classes of GSC-enriched ion channels constrained growth of GSCs compared to normal neural stem cells. This first-in-kind global examination characterizes ion channels enriched in GSCs and explores their potential clinical relevance to glioblastoma molecular subtypes, gene mutations, survival outcomes, regional tumor expression, and experimental responses to loss-of-function. Together, the data support the potential biological and therapeutic impact of ion channels on GSC malignancy and provide strong rationale for further examination of their mechanistic and therapeutic importance.
Pollak, Julia; Rai, Karan G.; Funk, Cory C.; Arora, Sonali; Lee, Eunjee; Zhu, Jun; Price, Nathan D.; Paddison, Patrick J.; Ramirez, Jan-Marino; Rostomily, Robert C.
2017-01-01
Ion channels and transporters have increasingly recognized roles in cancer progression through the regulation of cell proliferation, migration, and death. Glioblastoma stem-like cells (GSCs) are a source of tumor formation and recurrence in glioblastoma multiforme, a highly aggressive brain cancer, suggesting that ion channel expression may be perturbed in this population. However, little is known about the expression and functional relevance of ion channels that may contribute to GSC malignancy. Using RNA sequencing, we assessed the enrichment of ion channels in GSC isolates and non-tumor neural cell types. We identified a unique set of GSC-enriched ion channels using differential expression analysis that is also associated with distinct gene mutation signatures. In support of potential clinical relevance, expression of selected GSC-enriched ion channels evaluated in human glioblastoma databases of The Cancer Genome Atlas and Ivy Glioblastoma Atlas Project correlated with patient survival times. Finally, genetic knockdown as well as pharmacological inhibition of individual or classes of GSC-enriched ion channels constrained growth of GSCs compared to normal neural stem cells. This first-in-kind global examination characterizes ion channels enriched in GSCs and explores their potential clinical relevance to glioblastoma molecular subtypes, gene mutations, survival outcomes, regional tumor expression, and experimental responses to loss-of-function. Together, the data support the potential biological and therapeutic impact of ion channels on GSC malignancy and provide strong rationale for further examination of their mechanistic and therapeutic importance. PMID:28264064
2012-01-01
Background During sexual development, filamentous ascomycetes form complex, three-dimensional fruiting bodies for the protection and dispersal of sexual spores. Fruiting bodies contain a number of cell types not found in vegetative mycelium, and these morphological differences are thought to be mediated by changes in gene expression. However, little is known about the spatial distribution of gene expression in fungal development. Here, we used laser microdissection (LM) and RNA-seq to determine gene expression patterns in young fruiting bodies (protoperithecia) and non-reproductive mycelia of the ascomycete Sordaria macrospora. Results Quantitative analysis showed major differences in the gene expression patterns between protoperithecia and total mycelium. Among the genes strongly up-regulated in protoperithecia were the pheromone precursor genes ppg1 and ppg2. The up-regulation was confirmed by fluorescence microscopy of egfp expression under the control of ppg1 regulatory sequences. RNA-seq analysis of protoperithecia from the sterile mutant pro1 showed that many genes that are differentially regulated in these structures are under the genetic control of transcription factor PRO1. Conclusions We have generated transcriptional profiles of young fungal sexual structures using a combination of LM and RNA-seq. This allowed a high spatial resolution and sensitivity, and yielded a detailed picture of gene expression during development. Our data revealed significant differences in gene expression between protoperithecia and non-reproductive mycelia, and showed that the transcription factor PRO1 is involved in the regulation of many genes expressed specifically in sexual structures. The LM/RNA-seq approach will also be relevant to other eukaryotic systems in which multicellular development is investigated. PMID:23016559
Stochastic model of transcription factor-regulated gene expression
NASA Astrophysics Data System (ADS)
Karmakar, Rajesh; Bose, Indrani
2006-09-01
We consider a stochastic model of transcription factor (TF)-regulated gene expression. The model describes two genes, gene A and gene B, which synthesize the TFs and the target gene proteins, respectively. We show through analytic calculations that the TF fluctuations have a significant effect on the distribution of the target gene protein levels when the mean TF level falls in the highest sensitive region of the dose-response curve. We further study the effect of reducing the copy number of gene A from two to one. The enhanced TF fluctuations yield results different from those in the deterministic case. The probability that the target gene protein level exceeds a threshold value is calculated with the knowledge of the probability density functions associated with the TF and target gene protein levels. Numerical simulation results for a more detailed stochastic model are shown to be in agreement with those obtained through analytic calculations. The relevance of these results in the context of the genetic disorder haploinsufficiency is pointed out. Some experimental observations on the haploinsufficiency of the tumour suppressor gene, Nkx 3.1, are explained with the help of the stochastic model of TF-regulated gene expression.
Loohuis, Nikkie FM Olde; Kasri, Nael Nadif; Glennon, Jeffrey C; van Bokhoven, Hans; Hébert, Sébastien S; Kaplan, Barry B.; Martens, Gerard JM; Aschrafi, Armaz
2016-01-01
MicroRNAs (miRs) are small regulatory molecules, which orchestrate neuronal development and plasticity through modulation of complex gene networks. microRNA-137 (miR-137) is a brain-enriched RNA with a critical role in regulating brain development and in mediating synaptic plasticity. Importantly, mutations in this miR are associated with the pathoetiology of schizophrenia (SZ), and there is a widespread assumption that disruptions in miR-137 expression lead to aberrant expression of gene regulatory networks associated with SZ. To systematically identify the mRNA targets for this miR, we performed miR-137 gain- and loss-of-function experiments in primary rat hippocampal neurons and profiled differentially expressed mRNAs through next-generation sequencing. We identified 500 genes that were bidirectionally activated or repressed in their expression by the modulation of miR-137 levels. Gene ontology analysis using two independent software resources suggested functions for these miR-137-regulated genes in neurodevelopmental processes, neuronal maturation processes and cell maintenance, all of which known to be critical for proper brain circuitry formation. Since many of the putative miR-137 targets identified here also have been previously shown to be associated with SZ, we propose that this miR acts as a critical gene network hub contributing to the pathophysiology of this neurodevelopmental disorder. PMID:26925706
Fang, Peng; Lu, Rongfei; Sun, Feng; Lan, Ying; Shen, Wenbiao; Du, Linlin; Zhou, Yijun; Zhou, Tong
2015-10-24
Stably expressed reference gene(s) normalization is important for the understanding of gene expression patterns by quantitative Real-time PCR (RT-qPCR), particularly for Rice stripe virus (RSV) and Rice black streaked dwarf virus (RBSDV) that caused seriously damage on rice plants in China and Southeast Asia. The expression of fourteen common used reference genes of Oryza sativa L. were evaluated by RT-qPCR in RSV and RBSDV infected rice plants. Suitable normalization reference gene(s) were identified by geNorm and NormFinder algorithms. UBQ 10 + GAPDH and UBC + Actin1 were identified as suitable reference genes for RT-qPCR normalization under RSV and RBSDV infection, respectively. When using multiple reference genes, the expression patterns of OsPRIb and OsWRKY, two virus resistance genes, were approximately similar with that reported previously. Comparatively, by using single reference gene (TIP41-Like), a weaker inducible response was observed. We proposed that the combination of two reference genes could obtain more accurate and reliable normalization of RT-qPCR results in RSV- and RBSDV-infected plants. This work therefore sheds light on establishing a standardized RT-qPCR procedure in RSV- and RBSDV-infected rice plants, and might serve as an important point for discovering complex regulatory networks and identifying genes relevant to biological processes or implicated in virus.
Jasinska, Anna J.; Zelaya, Ivette; Service, Susan K.; Peterson, Christine B.; Cantor, Rita M.; Choi, Oi-Wa; DeYoung, Joseph; Eskin, Eleazar; Fairbanks, Lynn A.; Fears, Scott; Furterer, Allison E.; Huang, Yu S.; Ramensky, Vasily; Schmitt, Christopher A.; Svardal, Hannes; Jorgensen, Matthew J.; Kaplan, Jay R.; Villar, Diego; Aken, Bronwen L.; Flicek, Paul; Nag, Rishi; Wong, Emily S.; Blangero, John; Dyer, Thomas D.; Bogomolov, Marina; Benjamini, Yoav; Weinstock, George M.; Dewar, Ken; Sabatti, Chiara; Wilson, Richard K.; Jentsch, J. David; Warren, Wesley; Coppola, Giovanni; Woods, Roger P.; Freimer, Nelson B.
2017-01-01
By analyzing multi-tissue gene expression and genome-wide genetic variation data in samples from a vervet monkey pedigree, we generated a transcriptome resource and produced the first catalogue of expression quantitative trait loci (eQTLs) in a non-human primate model. This catalogue contains more genome-wide significant eQTLs, per sample, than comparable human resources, and reveals sex and age-related expression patterns. Findings include a master regulatory locus that likely plays a role in immune function, and a locus regulating hippocampal long non-coding RNAs (lncRNAs), whose expression correlates with hippocampal volume. This resource will facilitate genetic investigation of quantitative traits, including brain and behavioral phenotypes relevant to neuropsychiatric disorders. PMID:29083405
Gene expression profiles of fin regeneration in loach (Paramisgurnus dabryanu).
Li, Li; He, Jingya; Wang, Linlin; Chen, Weihua; Chang, Zhongjie
2017-11-01
Teleost fins can regenerate accurate position-matched structure and function after amputation. However, we still lack systematic transcriptional profiling and methodologies to understand the molecular basis of fin regeneration. After histological analysis, we established a suppression subtraction hybridization library containing 418 distinct sequences expressed differentially during the process of blastema formation and differentiation in caudal fin regeneration. Genome ontology and comparative analysis of differential distribution of our data and the reference zebrafish genome showed notable subcategories, including multi-organism processes, response to stimuli, extracellular matrix, antioxidant activity, and cell junction function. KEGG pathway analysis allowed the effective identification of relevant genes in those pathways involved in tissue morphogenesis and regeneration, including tight junction, cell adhesion molecules, mTOR and Jak-STAT signaling pathway. From relevant function subcategories and signaling pathways, 78 clones were examined for further Southern-blot hybridization. Then, 17 genes were chosen and characterized using semi-quantitative PCR. Then 4 candidate genes were identified, including F11r, Mmp9, Agr2 and one without a match to any database. After real-time quantitative PCR, the results showed obvious expression changes in different periods of caudal fin regeneration. We can assume that the 4 candidates, likely valuable genes associated with fin regeneration, deserve additional attention. Thus, our study demonstrated how to investigate the transcript profiles with an emphasis on bioinformatics intervention and how to identify potential genes related to fin regeneration processes. The results also provide a foundation or knowledge for further research into genes and molecular mechanisms of fin regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.
Radeke, Monte J; Peterson, Katie E; Johnson, Lincoln V; Anderson, Don H
2007-09-01
The discoveries of gene variants associated with macular diseases have provided valuable insight into their molecular mechanisms, but they have not clarified why the macula is particularly vulnerable to degenerative disease. Its predisposition may be attributable to specialized structural features and/or functional properties of the underlying macular RPE/choroid. To examine the molecular basis for the macula's disease susceptibility, we compared the gene expression profile of the human RPE/choroid in the macula with the profile in the extramacular region using DNA microarrays. Seventy-five candidate genes with differences in macular:extramacular expression levels were identified by microarray analysis, of which 29 were selected for further analysis. Quantitative PCR confirmed that 21 showed statistically significant differences in expression. Five genes were expressed at higher levels in the macula. Two showed significant changes in the macular:extramacular expression ratio; another two exhibited changes in absolute expression level, as a function of age or AMD. Several of the differentially expressed genes have potential relevance to AMD pathobiology. One is an RPE cell growth factor (TFPI2), five are extracellular matrix components (DCN, MYOC, OGN, SMOC2, TFPI2), and six are related to inflammation (CCL19, CCL26, CXCL14, SLIT2) and/or angiogenesis (CXCL14, SLIT2, TFPI2, WFDC1). The identification of regional differences in gene expression in the RPE/choroid is a first step in clarifying the macula's propensity for degeneration. These findings lay the groundwork for further studies into the roles of the corresponding gene products in the normal, aged, and diseased macula.
The structure of a gene co-expression network reveals biological functions underlying eQTLs.
Villa-Vialaneix, Nathalie; Liaubet, Laurence; Laurent, Thibault; Cherel, Pierre; Gamot, Adrien; SanCristobal, Magali
2013-01-01
What are the commonalities between genes, whose expression level is partially controlled by eQTL, especially with regard to biological functions? Moreover, how are these genes related to a phenotype of interest? These issues are particularly difficult to address when the genome annotation is incomplete, as is the case for mammalian species. Moreover, the direct link between gene expression and a phenotype of interest may be weak, and thus difficult to handle. In this framework, the use of a co-expression network has proven useful: it is a robust approach for modeling a complex system of genetic regulations, and to infer knowledge for yet unknown genes. In this article, a case study was conducted with a mammalian species. It showed that the use of a co-expression network based on partial correlation, combined with a relevant clustering of nodes, leads to an enrichment of biological functions of around 83%. Moreover, the use of a spatial statistics approach allowed us to superimpose additional information related to a phenotype; this lead to highlighting specific genes or gene clusters that are related to the network structure and the phenotype. Three main results are worth noting: first, key genes were highlighted as a potential focus for forthcoming biological experiments; second, a set of biological functions, which support a list of genes under partial eQTL control, was set up by an overview of the global structure of the gene expression network; third, pH was found correlated with gene clusters, and then with related biological functions, as a result of a spatial analysis of the network topology.
Ferreira de Carvalho, Julie; Oplaat, Carla; Pappas, Nikolaos; Derks, Martijn; de Ridder, Dick; Verhoeven, Koen J F
2016-03-08
Asexual reproduction has the potential to enhance deleterious mutation accumulation and to constrain adaptive evolution. One source of mutations that can be especially relevant in recent asexuals is activity of transposable elements (TEs), which may have experienced selection for high transposition rates in sexual ancestor populations. Predictions of genomic divergence under asexual reproduction therefore likely include a large contribution of transposable elements but limited adaptive divergence. For plants empirical insight into genome divergence under asexual reproduction remains limited. Here, we characterize expression divergence between clone members of a single apomictic lineage of the common dandelion (Taraxacum officinale) to contribute to our knowledge of genome evolution under asexuality. Using RNA-Seq, we show that about one third of heritable divergence within the apomictic lineage is driven by TEs and TE-related gene activity. In addition, we identify non-random transcriptional differences in pathways related to acyl-lipid and abscisic acid metabolisms which might reflect functional divergence within the apomictic lineage. We analyze SNPs in the transcriptome to assess genetic divergence between the apomictic clone members and reveal that heritable expression differences between the accessions are not explained simply by genome-wide genetic divergence. The present study depicts a first effort towards a more complete understanding of apomictic plant genome evolution. We identify abundant TE activity and ecologically relevant functional genes and pathways affecting heritable within-lineage expression divergence. These findings offer valuable resources for future work looking at epigenetic silencing and Cis-regulation of gene expression with particular emphasis on the effects of TE activity on asexual species' genome.
2012-01-01
Background Alteration in gene expression resulting from allopolyploidization is a prominent feature in plants, but its spectrum and extent are not fully known. Common wheat (Triticum aestivum) was formed via allohexaploidization about 10,000 years ago, and became the most important crop plant. To gain further insights into the genome-wide transcriptional dynamics associated with the onset of common wheat formation, we conducted microarray-based genome-wide gene expression analysis on two newly synthesized allohexaploid wheat lines with chromosomal stability and a genome constitution analogous to that of the present-day common wheat. Results Multi-color GISH (genomic in situ hybridization) was used to identify individual plants from two nascent allohexaploid wheat lines between Triticum turgidum (2n = 4x = 28; genome BBAA) and Aegilops tauschii (2n = 2x = 14; genome DD), which had a stable chromosomal constitution analogous to that of common wheat (2n = 6x = 42; genome BBAADD). Genome-wide analysis of gene expression was performed for these allohexaploid lines along with their parental plants from T. turgidum and Ae. tauschii, using the Affymetrix Gene Chip Wheat Genome-Array. Comparison with the parental plants coupled with inclusion of empirical mid-parent values (MPVs) revealed that whereas the great majority of genes showed the expected parental additivity, two major patterns of alteration in gene expression in the allohexaploid lines were identified: parental dominance expression and non-additive expression. Genes involved in each of the two altered expression patterns could be classified into three distinct groups, stochastic, heritable and persistent, based on their transgenerational heritability and inter-line conservation. Strikingly, whereas both altered patterns of gene expression showed a propensity of inheritance, identity of the involved genes was highly stochastic, consistent with the involvement of diverse Gene Ontology (GO) terms. Nonetheless, those genes showing non-additive expression exhibited a significant enrichment for vesicle-function. Conclusions Our results show that two patterns of global alteration in gene expression are conditioned by allohexaploidization in wheat, that is, parental dominance expression and non-additive expression. Both altered patterns of gene expression but not the identity of the genes involved are likely to play functional roles in stabilization and establishment of the newly formed allohexaploid plants, and hence, relevant to speciation and evolution of T. aestivum. PMID:22277161
A Compendium of Canine Normal Tissue Gene Expression
Chen, Qing-Rong; Wen, Xinyu; Khan, Javed; Khanna, Chand
2011-01-01
Background Our understanding of disease is increasingly informed by changes in gene expression between normal and abnormal tissues. The release of the canine genome sequence in 2005 provided an opportunity to better understand human health and disease using the dog as clinically relevant model. Accordingly, we now present the first genome-wide, canine normal tissue gene expression compendium with corresponding human cross-species analysis. Methodology/Principal Findings The Affymetrix platform was utilized to catalogue gene expression signatures of 10 normal canine tissues including: liver, kidney, heart, lung, cerebrum, lymph node, spleen, jejunum, pancreas and skeletal muscle. The quality of the database was assessed in several ways. Organ defining gene sets were identified for each tissue and functional enrichment analysis revealed themes consistent with known physio-anatomic functions for each organ. In addition, a comparison of orthologous gene expression between matched canine and human normal tissues uncovered remarkable similarity. To demonstrate the utility of this dataset, novel canine gene annotations were established based on comparative analysis of dog and human tissue selective gene expression and manual curation of canine probeset mapping. Public access, using infrastructure identical to that currently in use for human normal tissues, has been established and allows for additional comparisons across species. Conclusions/Significance These data advance our understanding of the canine genome through a comprehensive analysis of gene expression in a diverse set of tissues, contributing to improved functional annotation that has been lacking. Importantly, it will be used to inform future studies of disease in the dog as a model for human translational research and provides a novel resource to the community at large. PMID:21655323
Maratou, Klio; Wallace, Victoria C.J.; Hasnie, Fauzia S.; Okuse, Kenji; Hosseini, Ramine; Jina, Nipurna; Blackbeard, Julie; Pheby, Timothy; Orengo, Christine; Dickenson, Anthony H.; McMahon, Stephen B.; Rice, Andrew S.C.
2009-01-01
To elucidate the mechanisms underlying peripheral neuropathic pain in the context of HIV infection and antiretroviral therapy, we measured gene expression in dorsal root ganglia (DRG) of rats subjected to systemic treatment with the anti-retroviral agent, ddC (Zalcitabine) and concomitant delivery of HIV-gp120 to the rat sciatic nerve. L4 and L5 DRGs were collected at day 14 (time of peak behavioural change) and changes in gene expression were measured using Affymetrix whole genome rat arrays. Conventional analysis of this data set and Gene Set Enrichment Analysis (GSEA) was performed to discover biological processes altered in this model. Transcripts associated with G protein coupled receptor signalling and cell adhesion were enriched in the treated animals, while ribosomal proteins and proteasome pathways were associated with gene down-regulation. To identify genes that are directly relevant to neuropathic mechanical hypersensitivity, as opposed to epiphenomena associated with other aspects of the response to a sciatic nerve lesion, we compared the gp120 + ddC-evoked gene expression with that observed in a model of traumatic neuropathic pain (L5 spinal nerve transection), where hypersensitivity to a static mechanical stimulus is also observed. We identified 39 genes/expressed sequence tags that are differentially expressed in the same direction in both models. Most of these have not previously been implicated in mechanical hypersensitivity and may represent novel targets for therapeutic intervention. As an external control, the RNA expression of three genes was examined by RT-PCR, while the protein levels of two were studied using western blot analysis. PMID:18606552
Gene expression profiles of metabolic aggressiveness and tumor recurrence in benign meningioma.
Serna, Eva; Morales, José Manuel; Mata, Manuel; Gonzalez-Darder, José; San Miguel, Teresa; Gil-Benso, Rosario; Lopez-Gines, Concha; Cerda-Nicolas, Miguel; Monleon, Daniel
2013-01-01
Around 20% of meningiomas histologically benign may be clinically aggressive and recur. This strongly affects management of meningioma patients. There is a need to evaluate the potential aggressiveness of an individual meningioma. Additional criteria for better classification of meningiomas will improve clinical decisions as well as patient follow up strategy after surgery. The aim of this study was to determine the relationship between gene expression profiles and new metabolic subgroups of benign meningioma with potential clinical relevance. Forty benign and fourteen atypical meningioma tissue samples were included in the study. We obtained metabolic profiles by NMR and recurrence after surgery information for all of them. We measured gene expression by oligonucleotide microarray measurements on 19 of them. To our knowledge, this is the first time that distinct gene expression profiles are reported for benign meningioma molecular subgroups with clinical correlation. Our results show that metabolic aggressiveness in otherwise histological benign meningioma proceeds mostly through alterations in the expression of genes involved in the regulation of transcription, mainly the LMO3 gene. Genes involved in tumor metabolism, like IGF1R, are also differentially expressed in those meningioma subgroups with higher rates of membrane turnover, higher energy demand and increased resistance to apoptosis. These new subgroups of benign meningiomas exhibit different rates of recurrence. This work shows that benign meningioma with metabolic aggressiveness constitute a subgroup of potentially recurrent tumors in which alterations in genes regulating critical features of aggressiveness, like increased angiogenesis or cell invasion, are still no predominant. The determination of these gene expression biosignatures may allow the early detection of clinically aggressive tumors.
Caffeine exposure alters cardiac gene expression in embryonic cardiomyocytes
Fang, Xiefan; Mei, Wenbin; Barbazuk, William B.; Rivkees, Scott A.
2014-01-01
Previous studies demonstrated that in utero caffeine treatment at embryonic day (E) 8.5 alters DNA methylation patterns, gene expression, and cardiac function in adult mice. To provide insight into the mechanisms, we examined cardiac gene and microRNA (miRNA) expression in cardiomyocytes shortly after exposure to physiologically relevant doses of caffeine. In HL-1 and primary embryonic cardiomyocytes, caffeine treatment for 48 h significantly altered the expression of cardiac structural genes (Myh6, Myh7, Myh7b, Tnni3), hormonal genes (Anp and BnP), cardiac transcription factors (Gata4, Mef2c, Mef2d, Nfatc1), and microRNAs (miRNAs; miR208a, miR208b, miR499). In addition, expressions of these genes were significantly altered in embryonic hearts exposed to in utero caffeine. For in utero experiments, pregnant CD-1 dams were treated with 20–60 mg/kg of caffeine, which resulted in maternal circulation levels of 37.3–65.3 μM 2 h after treatment. RNA sequencing was performed on embryonic ventricles treated with vehicle or 20 mg/kg of caffeine daily from E6.5-9.5. Differential expression (DE) analysis revealed that 124 genes and 849 transcripts were significantly altered, and differential exon usage (DEU) analysis identified 597 exons that were changed in response to prenatal caffeine exposure. Among the DE genes identified by RNA sequencing were several cardiac structural genes and genes that control DNA methylation and histone modification. Pathway analysis revealed that pathways related to cardiovascular development and diseases were significantly affected by caffeine. In addition, global cardiac DNA methylation was reduced in caffeine-treated cardiomyocytes. Collectively, these data demonstrate that caffeine exposure alters gene expression and DNA methylation in embryonic cardiomyocytes. PMID:25354728
Watts, Annabelle M; West, Nicholas P; Cripps, Allan W; Smith, Pete K; Cox, Amanda J
2018-06-19
Investigations of gene expression in allergic rhinitis (AR) typically rely on invasive nasal biopsies (site of inflammation) or blood samples (systemic immunity) to obtain sufficient genetic material for analysis. New methodologies to circumvent the need for invasive sample collection offer promise to further the understanding of local immune mechanisms relevant in AR. A within-subject design was employed to compare immune gene expression profiles obtained from nasal washing/brushing and whole blood samples collected during peak pollen season. Twelve adults (age: 46.3 ± 12.3 years) with more than a 2-year history of AR and a confirmed grass pollen allergy participated in the study. Gene expression analysis was performed using a panel of 760 immune genes with the NanoString nCounter platform on nasal lavage/brushing cell lysates and compared to RNA extracted from blood. A total of 355 genes were significantly differentially expressed between sample types (9.87 to -9.71 log2 fold change). The top 3 genes significantly upregulated in nasal lysate samples were Mucin 1 (MUC1), Tight Junction Protein 1 (TJP1), and Lipocalin-2 (LCN2). The top 3 genes significantly upregulated in blood samples were cluster of differentiation 3e (CD3E), FYN Proto-Oncogene Src Family Tyrosine Kinase (FYN) and cluster of differentiation 3d (CD3D). Overall, the blood and nasal lavage samples showed vastly distinct gene expression profiles and functional gene pathways which reflect their anatomical and functional origins. Evaluating immune gene expression of the nasal mucosa in addition to blood samples may be beneficial in understanding AR pathophysiology and response to allergen challenge. © 2018 S. Karger AG, Basel.
Farawela, Hala M; Khorshied, Mervat M; Kassem, Neemat M; Kassem, Heba A; Zawam, Hamdy M
2014-08-01
Multidrug resistance (MDR1) represents a major obstacle in the chemotherapeutic treatment of acute leukemia (AL). Adenosine triphosphate ATP-binding cassette (ABCB5) and MDR1 genes are integral membrane proteins belonging to ATP-binding cassette transporters superfamily. The present work aimed to investigate the impact of ABCB5 and MDR1 genes expression on the response to chemotherapy in a cohort of Egyptian AL patients. The study included 90 patients: 53 AML cases and 37 ALL cases in addition to 20 healthy volunteers as controls. Quantitative assessment of MDR1 and ABCB5 genes expression was performed by quantitative real-time polymerase chain reaction. Additional prognostic molecular markers were determined as internal tandem duplications of the FLT3 gene (FLT3-ITD) and nucleophosmin gene mutation (NPM1) for AML cases, and mbcr-abl fusion transcript for B-ALL cases. In AML patients, ABCB5 and MDR1 expression levels did not differ significantly between de novo and relapsed cases and did not correlate with the overall survival or disease-free survival. AML patients were stratified according to the studied genetic markers, and complete remission rate was found to be more prominent in patients having low expression of MDR1 and ABCB5 genes together with mutated NPM1 gene. In ALL patients, ABCB5 gene expression level was significantly higher in relapsed cases and MDR1 gene expression was significantly higher in patients with resistant disease. In conclusion, the results obtained by the current study provide additional evidence of the role played by these genes as predictive factors for resistance of leukemic cells to chemotherapy and hence treatment outcome.
Composite transcriptome assembly of RNA-seq data in a sheep model for delayed bone healing.
Jäger, Marten; Ott, Claus-Eric; Grünhagen, Johannes; Hecht, Jochen; Schell, Hanna; Mundlos, Stefan; Duda, Georg N; Robinson, Peter N; Lienau, Jasmin
2011-03-24
The sheep is an important model organism for many types of medically relevant research, but molecular genetic experiments in the sheep have been limited by the lack of knowledge about ovine gene sequences. Prior to our study, mRNA sequences for only 1,556 partial or complete ovine genes were publicly available. Therefore, we developed a composite de novo transcriptome assembly method for next-generation sequence data to combine known ovine mRNA and EST sequences, mRNA sequences from mouse and cow, and sequences assembled de novo from short read RNA-Seq data into a composite reference transcriptome, and identified transcripts from over 12 thousand previously undescribed ovine genes. Gene expression analysis based on these data revealed substantially different expression profiles in standard versus delayed bone healing in an ovine tibial osteotomy model. Hundreds of transcripts were differentially expressed between standard and delayed healing and between the time points of the standard and delayed healing groups. We used the sheep sequences to design quantitative RT-PCR assays with which we validated the differential expression of 26 genes that had been identified by RNA-seq analysis. A number of clusters of characteristic expression profiles could be identified, some of which showed striking differences between the standard and delayed healing groups. Gene Ontology (GO) analysis showed that the differentially expressed genes were enriched in terms including extracellular matrix, cartilage development, contractile fiber, and chemokine activity. Our results provide a first atlas of gene expression profiles and differentially expressed genes in standard and delayed bone healing in a large-animal model and provide a number of clues as to the shifts in gene expression that underlie delayed bone healing. In the course of our study, we identified transcripts of 13,987 ovine genes, including 12,431 genes for which no sequence information was previously available. This information will provide a basis for future molecular research involving the sheep as a model organism.
Composite transcriptome assembly of RNA-seq data in a sheep model for delayed bone healing
2011-01-01
Background The sheep is an important model organism for many types of medically relevant research, but molecular genetic experiments in the sheep have been limited by the lack of knowledge about ovine gene sequences. Results Prior to our study, mRNA sequences for only 1,556 partial or complete ovine genes were publicly available. Therefore, we developed a composite de novo transcriptome assembly method for next-generation sequence data to combine known ovine mRNA and EST sequences, mRNA sequences from mouse and cow, and sequences assembled de novo from short read RNA-Seq data into a composite reference transcriptome, and identified transcripts from over 12 thousand previously undescribed ovine genes. Gene expression analysis based on these data revealed substantially different expression profiles in standard versus delayed bone healing in an ovine tibial osteotomy model. Hundreds of transcripts were differentially expressed between standard and delayed healing and between the time points of the standard and delayed healing groups. We used the sheep sequences to design quantitative RT-PCR assays with which we validated the differential expression of 26 genes that had been identified by RNA-seq analysis. A number of clusters of characteristic expression profiles could be identified, some of which showed striking differences between the standard and delayed healing groups. Gene Ontology (GO) analysis showed that the differentially expressed genes were enriched in terms including extracellular matrix, cartilage development, contractile fiber, and chemokine activity. Conclusions Our results provide a first atlas of gene expression profiles and differentially expressed genes in standard and delayed bone healing in a large-animal model and provide a number of clues as to the shifts in gene expression that underlie delayed bone healing. In the course of our study, we identified transcripts of 13,987 ovine genes, including 12,431 genes for which no sequence information was previously available. This information will provide a basis for future molecular research involving the sheep as a model organism. PMID:21435219
Rathinam, Elanagai; Rajasekharan, Sivaprakash; Chitturi, Ravi Teja; Declercq, Heidi; Martens, Luc; De Coster, Peter
2016-12-01
The aim of this study was to present a systematic review investigating the gene expression of various cells (other than dental pulp cells) in response to different variants of tricalcium silicate cements (TSCs). A systematic search of the literature was performed by 2 independent reviewers followed by article selection and data extraction. Studies analyzing any cell type except dental pulp stem cells and any variant of tricalcium silicate cement either as the experimental or as the control group were included. A total of 41 relevant articles were included in this review. Among the included studies, ProRoot MTA (Dentsply, Tulsa, OK) was the most commonly studied (69.1%) TSC variant, and 11 cell types were identified, with 13 articles investigating gene expression in osteoblasts. A total of 39 different genes/molecules expressed were found in the selected studies. The experimental group (irrespective of the TSC variant) was identified to express significantly increased gene expression compared with the control group (untreated) in all included studies. Recent studies have provided useful insight into the gene expression and molecular signaling of various cells in response to TSCs, and new elements have been supplied on the pathways activated in this process. TSCs are capable of eliciting a favorable cellular response in periapical regeneration. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Song, Minyan; He, Yanghua; Zhou, Huangkai; Zhang, Yi; Li, Xizhi; Yu, Ying
2016-07-14
Subclinical mastitis is a widely spread disease of lactating cows. Its major pathogen is Staphylococcus aureus (S. aureus). In this study, we performed genome-wide integrative analysis of DNA methylation and transcriptional expression to identify candidate genes and pathways relevant to bovine S. aureus subclinical mastitis. The genome-scale DNA methylation profiles of peripheral blood lymphocytes in cows with S. aureus subclinical mastitis (SA group) and healthy controls (CK) were generated by methylated DNA immunoprecipitation combined with microarrays. We identified 1078 differentially methylated genes in SA cows compared with the controls. By integrating DNA methylation and transcriptome data, 58 differentially methylated genes were shared with differently expressed genes, in which 20.7% distinctly hypermethylated genes showed down-regulated expression in SA versus CK, whereas 14.3% dramatically hypomethylated genes showed up-regulated expression. Integrated pathway analysis suggested that these genes were related to inflammation, ErbB signalling pathway and mismatch repair. Further functional analysis revealed that three genes, NRG1, MST1 and NAT9, were strongly correlated with the progression of S. aureus subclinical mastitis and could be used as powerful biomarkers for the improvement of bovine mastitis resistance. Our studies lay the groundwork for epigenetic modification and mechanistic studies on susceptibility of bovine mastitis.
Song, Minyan; He, Yanghua; Zhou, Huangkai; Zhang, Yi; Li, Xizhi; Yu, Ying
2016-01-01
Subclinical mastitis is a widely spread disease of lactating cows. Its major pathogen is Staphylococcus aureus (S. aureus). In this study, we performed genome-wide integrative analysis of DNA methylation and transcriptional expression to identify candidate genes and pathways relevant to bovine S. aureus subclinical mastitis. The genome-scale DNA methylation profiles of peripheral blood lymphocytes in cows with S. aureus subclinical mastitis (SA group) and healthy controls (CK) were generated by methylated DNA immunoprecipitation combined with microarrays. We identified 1078 differentially methylated genes in SA cows compared with the controls. By integrating DNA methylation and transcriptome data, 58 differentially methylated genes were shared with differently expressed genes, in which 20.7% distinctly hypermethylated genes showed down-regulated expression in SA versus CK, whereas 14.3% dramatically hypomethylated genes showed up-regulated expression. Integrated pathway analysis suggested that these genes were related to inflammation, ErbB signalling pathway and mismatch repair. Further functional analysis revealed that three genes, NRG1, MST1 and NAT9, were strongly correlated with the progression of S. aureus subclinical mastitis and could be used as powerful biomarkers for the improvement of bovine mastitis resistance. Our studies lay the groundwork for epigenetic modification and mechanistic studies on susceptibility of bovine mastitis. PMID:27411928
Discovering Functions of Unannotated Genes from a Transcriptome Survey of Wild Fungal Isolates
Ellison, Christopher E.; Kowbel, David; Glass, N. Louise; Taylor, John W.
2014-01-01
ABSTRACT Most fungal genomes are poorly annotated, and many fungal traits of industrial and biomedical relevance are not well suited to classical genetic screens. Assigning genes to phenotypes on a genomic scale thus remains an urgent need in the field. We developed an approach to infer gene function from expression profiles of wild fungal isolates, and we applied our strategy to the filamentous fungus Neurospora crassa. Using transcriptome measurements in 70 strains from two well-defined clades of this microbe, we first identified 2,247 cases in which the expression of an unannotated gene rose and fell across N. crassa strains in parallel with the expression of well-characterized genes. We then used image analysis of hyphal morphologies, quantitative growth assays, and expression profiling to test the functions of four genes predicted from our population analyses. The results revealed two factors that influenced regulation of metabolism of nonpreferred carbon and nitrogen sources, a gene that governed hyphal architecture, and a gene that mediated amino acid starvation resistance. These findings validate the power of our population-transcriptomic approach for inference of novel gene function, and we suggest that this strategy will be of broad utility for genome-scale annotation in many fungal systems. PMID:24692637
2011-01-01
Background Gene regulatory networks play essential roles in living organisms to control growth, keep internal metabolism running and respond to external environmental changes. Understanding the connections and the activity levels of regulators is important for the research of gene regulatory networks. While relevance score based algorithms that reconstruct gene regulatory networks from transcriptome data can infer genome-wide gene regulatory networks, they are unfortunately prone to false positive results. Transcription factor activities (TFAs) quantitatively reflect the ability of the transcription factor to regulate target genes. However, classic relevance score based gene regulatory network reconstruction algorithms use models do not include the TFA layer, thus missing a key regulatory element. Results This work integrates TFA prediction algorithms with relevance score based network reconstruction algorithms to reconstruct gene regulatory networks with improved accuracy over classic relevance score based algorithms. This method is called Gene expression and Transcription factor activity based Relevance Network (GTRNetwork). Different combinations of TFA prediction algorithms and relevance score functions have been applied to find the most efficient combination. When the integrated GTRNetwork method was applied to E. coli data, the reconstructed genome-wide gene regulatory network predicted 381 new regulatory links. This reconstructed gene regulatory network including the predicted new regulatory links show promising biological significances. Many of the new links are verified by known TF binding site information, and many other links can be verified from the literature and databases such as EcoCyc. The reconstructed gene regulatory network is applied to a recent transcriptome analysis of E. coli during isobutanol stress. In addition to the 16 significantly changed TFAs detected in the original paper, another 7 significantly changed TFAs have been detected by using our reconstructed network. Conclusions The GTRNetwork algorithm introduces the hidden layer TFA into classic relevance score-based gene regulatory network reconstruction processes. Integrating the TFA biological information with regulatory network reconstruction algorithms significantly improves both detection of new links and reduces that rate of false positives. The application of GTRNetwork on E. coli gene transcriptome data gives a set of potential regulatory links with promising biological significance for isobutanol stress and other conditions. PMID:21668997
Wingo, Aliza P; Gibson, Greg
2015-01-01
Prospective epidemiological studies found that generalized anxiety disorder (GAD) can impair immune function and increase risk for cardiovascular disease or events. Mechanisms underlying the physiological reverberations of anxiety, however, are still elusive. Hence, we aimed to investigate molecular processes mediating effects of anxiety on physical health using blood gene expression profiles of 336 community participants (157 anxious and 179 control). We examined genome-wide differential gene expression in anxiety, as well as associations between nine major modules of co-regulated transcripts in blood gene expression and anxiety. No significant differential expression was observed in women, but 631 genes were differentially expressed between anxious and control men at the false discovery rate of 0.1 after controlling for age, body mass index, race, and batch effect. Gene set enrichment analysis (GSEA) revealed that genes with altered expression levels in anxious men were involved in response of various immune cells to vaccination and to acute viral and bacterial infection, and in a metabolic network affecting traits of metabolic syndrome. Further, we found one set of 260 co-regulated genes to be significantly associated with anxiety in men after controlling for the relevant covariates, and demonstrate its equivalence to a component of the stress-related conserved transcriptional response to adversity profile. Taken together, our results suggest potential molecular pathways that can explain negative effects of GAD observed in epidemiological studies. Remarkably, even mild anxiety, which most of our participants had, was associated with observable changes in immune-related gene expression levels. Our findings generate hypotheses and provide incremental insights into molecular mechanisms mediating negative physiological effects of GAD. Published by Elsevier Inc.
Huang, Shang-Pen; Chang, Yu-Chan; Low, Qie Hua; Wu, Alexander T.H.; Chen, Chi-Long; Lin, Yuan-Feng; Hsiao, Michael
2017-01-01
There is variation in the survival and therapeutic outcome of patients with glioblastomas (GBMs). Therapy resistance is an important challenge in the treatment of GBM patients. The aim of this study was to identify Temozolomide (TMZ) related genes and confirm their clinical relevance. The TMZ-related genes were discovered by analysis of the gene-expression profiling in our cell-based microarray. Their clinical relevance was verified by in silico meta-analysis of the Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA) datasets. Our results demonstrated that BICD1 expression could predict both prognosis and response to therapy in GBM patients. First, high BICD1 expression was correlated with poor prognosis in the TCGA GBM cohort (n=523) and in the CGGA glioma cohort (n=220). Second, high BICD1 expression predicted poor outcome in patients with TMZ treatment (n=301) and radiation therapy (n=405). Third, multivariable Cox regression analysis confirmed BICD1 expression as an independent factor affecting the prognosis and therapeutic response of TMZ and radiation in GBM patients. Additionally, age, MGMT and BICD1 expression were combinedly utilized to stratify GBM patients into more distinct risk groups, which may provide better outcome assessment. Finally, we observed a strong correlation between BICD1 expression and epithelial-mesenchymal transition (EMT) in GBMs, and proposed a possible mechanism of BICD1-associated survival or therapeutic resistance in GBMs accordingly. In conclusion, our study suggests that high BICD1 expression may result in worse prognosis and could be a predictor of poor response to TMZ and radiation therapies in GBM patients. PMID:29371945
Dunne, Philip D.; Alderdice, Matthew; O'Reilly, Paul G.; Roddy, Aideen C.; McCorry, Amy M. B.; Richman, Susan; Maughan, Tim; McDade, Simon S.; Johnston, Patrick G.; Longley, Daniel B.; Kay, Elaine; McArt, Darragh G.; Lawler, Mark
2017-01-01
Stromal-derived intratumoural heterogeneity (ITH) has been shown to undermine molecular stratification of patients into appropriate prognostic/predictive subgroups. Here, using several clinically relevant colorectal cancer (CRC) gene expression signatures, we assessed the susceptibility of these signatures to the confounding effects of ITH using gene expression microarray data obtained from multiple tumour regions of a cohort of 24 patients, including central tumour, the tumour invasive front and lymph node metastasis. Sample clustering alongside correlative assessment revealed variation in the ability of each signature to cluster samples according to patient-of-origin rather than region-of-origin within the multi-region dataset. Signatures focused on cancer-cell intrinsic gene expression were found to produce more clinically useful, patient-centred classifiers, as exemplified by the CRC intrinsic signature (CRIS), which robustly clustered samples by patient-of-origin rather than region-of-origin. These findings highlight the potential of cancer-cell intrinsic signatures to reliably stratify CRC patients by minimising the confounding effects of stromal-derived ITH. PMID:28561046
The Gene Expression Omnibus Database.
Clough, Emily; Barrett, Tanya
2016-01-01
The Gene Expression Omnibus (GEO) database is an international public repository that archives and freely distributes high-throughput gene expression and other functional genomics data sets. Created in 2000 as a worldwide resource for gene expression studies, GEO has evolved with rapidly changing technologies and now accepts high-throughput data for many other data applications, including those that examine genome methylation, chromatin structure, and genome-protein interactions. GEO supports community-derived reporting standards that specify provision of several critical study elements including raw data, processed data, and descriptive metadata. The database not only provides access to data for tens of thousands of studies, but also offers various Web-based tools and strategies that enable users to locate data relevant to their specific interests, as well as to visualize and analyze the data. This chapter includes detailed descriptions of methods to query and download GEO data and use the analysis and visualization tools. The GEO homepage is at http://www.ncbi.nlm.nih.gov/geo/.
The Gene Expression Omnibus database
Clough, Emily; Barrett, Tanya
2016-01-01
The Gene Expression Omnibus (GEO) database is an international public repository that archives and freely distributes high-throughput gene expression and other functional genomics data sets. Created in 2000 as a worldwide resource for gene expression studies, GEO has evolved with rapidly changing technologies and now accepts high-throughput data for many other data applications, including those that examine genome methylation, chromatin structure, and genome–protein interactions. GEO supports community-derived reporting standards that specify provision of several critical study elements including raw data, processed data, and descriptive metadata. The database not only provides access to data for tens of thousands of studies, but also offers various Web-based tools and strategies that enable users to locate data relevant to their specific interests, as well as to visualize and analyze the data. This chapter includes detailed descriptions of methods to query and download GEO data and use the analysis and visualization tools. The GEO homepage is at http://www.ncbi.nlm.nih.gov/geo/. PMID:27008011
Elbahesh, Husni; Schughart, Klaus
2016-05-19
Influenza A viruses (IAV) are zoonotic pathogens that pose a major threat to human and animal health. Influenza virus disease severity is influenced by viral virulence factors as well as individual differences in host response. We analyzed gene expression changes in the blood of infected mice using a previously defined set of signature genes that was derived from changes in the blood transcriptome of IAV-infected human volunteers. We found that the human signature was reproduced well in the founder strains of the Collaborative Cross (CC) mice, thus demonstrating the relevance and importance of mouse experimental model systems for studying human influenza disease.
Dzneladze, Irakli; Woolley, John F; Rossell, Carla; Han, Youqi; Rashid, Ayesha; Jain, Michael; Reimand, Jüri; Minden, Mark D; Salmena, Leonardo
2018-01-01
Our previous studies demonstrated that INPP4B, a member of the PI3K/Akt signaling pathway, is overexpressed in a subset of AML patients and is associated with lower response to chemotherapy and shorter survival. INPP4B expression analysis in AML revealed a right skewed frequency distribution with 25% of patients expressing significantly higher levels than the majority. The 75% low/25% high cut-off revealed the prognostic power of INPP4B expression status in AML, which would not have been apparent with a standard median cut-off approach. Our identification of a clinically relevant non-median cut-off for INPP4B indicated a need for a generalizable non-median dichotomization approach to optimally study clinically relevant genes. To address this need, we developed Subgroup Identifier (SubID), a tool which examines the relationship between a continuous variable (e.g. gene expression), and a test parameter (e.g. CoxPH or Fisher's exact P values). In our study, Fisher's exact SubID was used to reveal EVI1 as a transcriptional regulator of INPP4B in AML; a finding which was validated in vitro. Next, we used CoxPH SubID to conduct a pan-cancer analysis of INPP4B's prognostic significance. Our analysis revealed that INPP4Blow is associated with shorter survival in kidney clear cell, liver hepatocellular, and bladder urothelial carcinomas. Conversely, INPP4Blow was shown to be associated with increased survival in pancreatic adenocarcinoma in three independent datasets. Overall, our study describes the development and application of a novel subgroup identification tool used to identify prognostically significant rare subgroups based upon gene expression, and for investigating the association between a gene with skewed frequency distribution and potentially important upstream and downstream genes that relate to the index gene.
Han, Youqi; Rashid, Ayesha; Jain, Michael; Reimand, Jüri; Minden, Mark D.; Salmena, Leonardo
2018-01-01
Our previous studies demonstrated that INPP4B, a member of the PI3K/Akt signaling pathway, is overexpressed in a subset of AML patients and is associated with lower response to chemotherapy and shorter survival. INPP4B expression analysis in AML revealed a right skewed frequency distribution with 25% of patients expressing significantly higher levels than the majority. The 75% low/25% high cut-off revealed the prognostic power of INPP4B expression status in AML, which would not have been apparent with a standard median cut-off approach. Our identification of a clinically relevant non-median cut-off for INPP4B indicated a need for a generalizable non-median dichotomization approach to optimally study clinically relevant genes. To address this need, we developed Subgroup Identifier (SubID), a tool which examines the relationship between a continuous variable (e.g. gene expression), and a test parameter (e.g. CoxPH or Fisher’s exact P values). In our study, Fisher’s exact SubID was used to reveal EVI1 as a transcriptional regulator of INPP4B in AML; a finding which was validated in vitro. Next, we used CoxPH SubID to conduct a pan-cancer analysis of INPP4B’s prognostic significance. Our analysis revealed that INPP4Blow is associated with shorter survival in kidney clear cell, liver hepatocellular, and bladder urothelial carcinomas. Conversely, INPP4Blow was shown to be associated with increased survival in pancreatic adenocarcinoma in three independent datasets. Overall, our study describes the development and application of a novel subgroup identification tool used to identify prognostically significant rare subgroups based upon gene expression, and for investigating the association between a gene with skewed frequency distribution and potentially important upstream and downstream genes that relate to the index gene. PMID:29415082
Comprehensive gene expression analysis of canine invasive urothelial bladder carcinoma by RNA-Seq.
Maeda, Shingo; Tomiyasu, Hirotaka; Tsuboi, Masaya; Inoue, Akiko; Ishihara, Genki; Uchikai, Takao; Chambers, James K; Uchida, Kazuyuki; Yonezawa, Tomohiro; Matsuki, Naoaki
2018-04-27
Invasive urothelial carcinoma (iUC) is a major cause of death in humans, and approximately 165,000 individuals succumb to this cancer annually worldwide. Comparative oncology using relevant animal models is necessary to improve our understanding of progression, diagnosis, and treatment of iUC. Companion canines are a preferred animal model of iUC due to spontaneous tumor development and similarity to human disease in terms of histopathology, metastatic behavior, and treatment response. However, the comprehensive molecular characterization of canine iUC is not well documented. In this study, we performed transcriptome analysis of tissue samples from canine iUC and normal bladders using an RNA sequencing (RNA-Seq) approach to identify key molecular pathways in canine iUC. Total RNA was extracted from bladder tissues of 11 dogs with iUC and five healthy dogs, and RNA-Seq was conducted. Ingenuity Pathway Analysis (IPA) was used to assign differentially expressed genes to known upstream regulators and functional networks. Differential gene expression analysis of the RNA-Seq data revealed 2531 differentially expressed genes, comprising 1007 upregulated and 1524 downregulated genes, in canine iUC. IPA revealed that the most activated upstream regulator was PTGER2 (encoding the prostaglandin E 2 receptor EP2), which is consistent with the therapeutic efficiency of cyclooxygenase inhibitors in canine iUC. Similar to human iUC, canine iUC exhibited upregulated ERBB2 and downregulated TP53 pathways. Biological functions associated with cancer, cell proliferation, and leukocyte migration were predicted to be activated, while muscle functions were predicted to be inhibited, indicating muscle-invasive tumor property. Our data confirmed similarities in gene expression patterns between canine and human iUC and identified potential therapeutic targets (PTGER2, ERBB2, CCND1, Vegf, and EGFR), suggesting the value of naturally occurring canine iUC as a relevant animal model for human iUC.
Vitamin D for Cancer Prevention: Global Perspective
2009-07-01
selfish gene . New York: Oxford University Press; 2006. 106. Armitage P, Doll R. The two-stage theory of carcinogenesis in relation to the age...cadherin and beta-catenin in the action of vitamin D metabolites against colon cancer cells. in tissue culture and identified several relevant genes ...specific to a particular gene , but its hallmark is persistent alteration in the DNA molecule or in factors that influence the expression of various regions
Sass, Gabriele; Shembade, Noula D.; Tiegs, Gisa
2004-01-01
TNF (tumour necrosis factor α) induces tolerance towards itself in experimental liver injury. Tolerance induction has been shown to be dependent on TNFR1 (TNF receptor 1) signalling, but mechanisms and mediators of TNF-induced hepatic tolerance are unknown. We investigated the TNF-inducible gene-expression profile in livers of TNFR2−/− mice, using cDNA array technology. We found that, out of 793 investigated genes involved in inflammation, cell cycle and signal transduction, 282 were expressed in the mouse liver in response to TNF via TNFR1. Among those, expression of 78 genes was induced, while expression of 60 genes was reduced. We investigated further the cellular expression of the 27 most prominently induced genes, and found that 20 of these genes were up-regulated directly in parenchymal liver cells, representing potentially protective proteins and possible mediators of TNF tolerance. In vitro experiments revealed that overexpression of SOCS1 (silencer of cytokine signalling 1), a member of the SOCS family of proteins, as well as of HO-1 (haem oxygenase-1), but not of SOCS2 or SOCS3, protected isolated primary mouse hepatocytes from TNF-induced apoptosis. The identification of protective genes in hepatocytes is the prerequisite for future development of gene therapies for immune-mediated liver diseases. PMID:15554901
Wang, Gaiping; Chen, Shasha; Zhao, Congcong; Li, Xiaofang; Zhao, Weiming; Yang, Jing; Chang, Cuifang; Xu, Cunshuan
2016-09-01
To explore the relevance of OPN signalling pathway to the occurrence and development of nonalcoholic fatty liver disease (NAFLD), liver cirrhosis (LC), hepatic cancer (HC) and acute hepatic failure (AHF) at transcriptional level, Rat Genome 230 2.0 Array was used to detect expression profiles of OPN signalling pathway-related genes in four kinds of liver diseases. The results showed that 23, 33, 59 and 74 genes were significantly changed in the above four kinds of liver diseases, respectively. H-clustering analysis showed that the expression profiles of OPN signalling-related genes were notably different in four kinds of liver diseases. Subsequently, a total of above-mentioned 147 genes were categorized into four clusters by k-means according to the similarity of gene expression, and expression analysis systematic explorer (EASE) functional enrichment analysis revealed that OPN signalling pathway-related genes were involved in cell adhesion and migration, cell proliferation, apoptosis, stress and inflammatory reaction, etc. Finally, ingenuity pathway analysis (IPA) software was used to predict the functions of OPN signalling-related genes, and the results indicated that the activities of ROS production, cell adhesion and migration, cell proliferation were remarkably increased, while that of apoptosis, stress and inflammatory reaction were reduced in four kinds of liver diseases. In summary, the above physiological activities changed more obviously in LC, HC and AHF than in NAFLD.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pena-Castillo, Lourdes; Mercer, Ryan; Gurinovich, Anastasia
2014-08-28
The genus Rhodobacter contains purple nonsulfur bacteria found mostly in freshwater environments. Representative strains of two Rhodobacter species, R. capsulatus and R. sphaeroides, have had their genomes fully sequenced and both have been the subject of transcriptional profiling studies. Gene co-expression networks can be used to identify modules of genes with similar expression profiles. Functional analysis of gene modules can then associate co-expressed genes with biological pathways, and network statistics can determine the degree of module preservation in related networks. In this paper, we constructed an R. capsulatus gene co-expression network, performed functional analysis of identified gene modules, and investigatedmore » preservation of these modules in R. capsulatus proteomics data and in R. sphaeroides transcriptomics data. Results: The analysis identified 40 gene co-expression modules in R. capsulatus. Investigation of the module gene contents and expression profiles revealed patterns that were validated based on previous studies supporting the biological relevance of these modules. We identified two R. capsulatus gene modules preserved in the protein abundance data. We also identified several gene modules preserved between both Rhodobacter species, which indicate that these cellular processes are conserved between the species and are candidates for functional information transfer between species. Many gene modules were non-preserved, providing insight into processes that differentiate the two species. In addition, using Local Network Similarity (LNS), a recently proposed metric for expression divergence, we assessed the expression conservation of between-species pairs of orthologs, and within-species gene-protein expression profiles. Conclusions: Our analyses provide new sources of information for functional annotation in R. capsulatus because uncharacterized genes in modules are now connected with groups of genes that constitute a joint functional annotation. We identified R. capsulatus modules enriched with genes for ribosomal proteins, porphyrin and bacteriochlorophyll anabolism, and biosynthesis of secondary metabolites to be preserved in R. sphaeroides whereas modules related to RcGTA production and signalling showed lack of preservation in R. sphaeroides. In addition, we demonstrated that network statistics may also be applied within-species to identify congruence between mRNA expression and protein abundance data for which simple correlation measurements have previously had mixed results.« less
Use of keyword hierarchies to interpret gene expression patterns.
Masys, D R; Welsh, J B; Lynn Fink, J; Gribskov, M; Klacansky, I; Corbeil, J
2001-04-01
High-density microarray technology permits the quantitative and simultaneous monitoring of thousands of genes. The interpretation challenge is to extract relevant information from this large amount of data. A growing variety of statistical analysis approaches are available to identify clusters of genes that share common expression characteristics, but provide no information regarding the biological similarities of genes within clusters. The published literature provides a potential source of information to assist in interpretation of clustering results. We describe a data mining method that uses indexing terms ('keywords') from the published literature linked to specific genes to present a view of the conceptual similarity of genes within a cluster or group of interest. The method takes advantage of the hierarchical nature of Medical Subject Headings used to index citations in the MEDLINE database, and the registry numbers applied to enzymes.
Jorgensen, Elisa M.; Alderman, Myles H.; Taylor, Hugh S.
2016-01-01
Bisphenol-A (BPA) is an environmentally ubiquitous estrogen-like endocrine-disrupting compound. Exposure to BPA in utero has been linked to female reproductive disorders, including endometrial hyperplasia and breast cancer. Estrogens are an etiological factor in many of these conditions. We sought to determine whether in utero exposure to BPA altered the global CpG methylation pattern of the uterine genome, subsequent gene expression, and estrogen response. Pregnant mice were exposed to an environmentally relevant dose of BPA or DMSO control. Uterine DNA and RNA were examined by using methylated DNA immunoprecipitation methylation microarray, expression microarray, and quantitative PCR. In utero BPA exposure altered the global CpG methylation profile of the uterine genome and subsequent gene expression. The effect on gene expression was not apparent until sexual maturation, which suggested that estrogen response was the primary alteration. Indeed, prenatal BPA exposure preferentially altered adult estrogen-responsive gene expression. Changes in estrogen response were accompanied by altered methylation that preferentially affected estrogen receptor-α (ERα)–binding genes. The majority of genes that demonstrated both altered expression and ERα binding had decreased methylation. BPA selectively altered the normal developmental programming of estrogen-responsive genes via modification of the genes that bind ERα. Gene–environment interactions driven by early life xenoestrogen exposure likely contributes to increased risk of estrogen-related disease in adults.—Jorgensen, E. M., Alderman, M. H., III, Taylor, H. S. Preferential epigenetic programming of estrogen response after in utero xenoestrogen (bisphenol-A) exposure. PMID:27312807
p21 as a Transcriptional Co-Repressor of S-Phase and Mitotic Control Genes
Ferrándiz, Nuria; Caraballo, Juan M.; García-Gutierrez, Lucía; Devgan, Vikram; Rodriguez-Paredes, Manuel; Lafita, M. Carmen; Bretones, Gabriel; Quintanilla, Andrea; Muñoz-Alonso, M. Jose; Blanco, Rosa; Reyes, Jose C.; Agell, Neus; Delgado, M. Dolores; Dotto, G. Paolo; León, Javier
2012-01-01
It has been previously described that p21 functions not only as a CDK inhibitor but also as a transcriptional co-repressor in some systems. To investigate the roles of p21 in transcriptional control, we studied the gene expression changes in two human cell systems. Using a human leukemia cell line (K562) with inducible p21 expression and human primary keratinocytes with adenoviral-mediated p21 expression, we carried out microarray-based gene expression profiling. We found that p21 rapidly and strongly repressed the mRNA levels of a number of genes involved in cell cycle and mitosis. One of the most strongly down-regulated genes was CCNE2 (cyclin E2 gene). Mutational analysis in K562 cells showed that the N-terminal region of p21 is required for repression of gene expression of CCNE2 and other genes. Chromatin immunoprecipitation assays indicated that p21 was bound to human CCNE2 and other p21-repressed genes gene in the vicinity of the transcription start site. Moreover, p21 repressed human CCNE2 promoter-luciferase constructs in K562 cells. Bioinformatic analysis revealed that the CDE motif is present in most of the promoters of the p21-regulated genes. Altogether, the results suggest that p21 exerts a repressive effect on a relevant number of genes controlling S phase and mitosis. Thus, p21 activity as inhibitor of cell cycle progression would be mediated not only by the inhibition of CDKs but also by the transcriptional down-regulation of key genes. PMID:22662213
Wang, Luman; Mo, Qiaochu; Wang, Jianxin
2015-01-01
Most current gene coexpression databases support the analysis for linear correlation of gene pairs, but not nonlinear correlation of them, which hinders precisely evaluating the gene-gene coexpression strengths. Here, we report a new database, MIrExpress, which takes advantage of the information theory, as well as the Pearson linear correlation method, to measure the linear correlation, nonlinear correlation, and their hybrid of cell-specific gene coexpressions in immune cells. For a given gene pair or probe set pair input by web users, both mutual information (MI) and Pearson correlation coefficient (r) are calculated, and several corresponding values are reported to reflect their coexpression correlation nature, including MI and r values, their respective rank orderings, their rank comparison, and their hybrid correlation value. Furthermore, for a given gene, the top 10 most relevant genes to it are displayed with the MI, r, or their hybrid perspective, respectively. Currently, the database totally includes 16 human cell groups, involving 20,283 human genes. The expression data and the calculated correlation results from the database are interactively accessible on the web page and can be implemented for other related applications and researches. PMID:26881263
Wang, Luman; Mo, Qiaochu; Wang, Jianxin
2015-01-01
Most current gene coexpression databases support the analysis for linear correlation of gene pairs, but not nonlinear correlation of them, which hinders precisely evaluating the gene-gene coexpression strengths. Here, we report a new database, MIrExpress, which takes advantage of the information theory, as well as the Pearson linear correlation method, to measure the linear correlation, nonlinear correlation, and their hybrid of cell-specific gene coexpressions in immune cells. For a given gene pair or probe set pair input by web users, both mutual information (MI) and Pearson correlation coefficient (r) are calculated, and several corresponding values are reported to reflect their coexpression correlation nature, including MI and r values, their respective rank orderings, their rank comparison, and their hybrid correlation value. Furthermore, for a given gene, the top 10 most relevant genes to it are displayed with the MI, r, or their hybrid perspective, respectively. Currently, the database totally includes 16 human cell groups, involving 20,283 human genes. The expression data and the calculated correlation results from the database are interactively accessible on the web page and can be implemented for other related applications and researches.
Update of the Diatom EST Database: a new tool for digital transcriptomics
Maheswari, Uma; Mock, Thomas; Armbrust, E. Virginia; Bowler, Chris
2009-01-01
The Diatom Expressed Sequence Tag (EST) Database was constructed to provide integral access to ESTs from these ecologically and evolutionarily interesting microalgae. It has now been updated with 130 000 Phaeodactylum tricornutum ESTs from 16 cDNA libraries and 77 000 Thalassiosira pseudonana ESTs from seven libraries, derived from cells grown in different nutrient and stress regimes. The updated relational database incorporates results from statistical analyses such as log-likelihood ratios and hierarchical clustering, which help to identify differentially expressed genes under different conditions, and allow similarities in gene expression in different libraries to be investigated in a functional context. The database also incorporates links to the recently sequenced genomes of P. tricornutum and T. pseudonana, enabling an easy cross-talk between the expression pattern of diatom orthologs and the genome browsers. These improvements will facilitate exploration of diatom responses to conditions of ecological relevance and will aid gene function identification of diatom-specific genes and in silico gene prediction in this largely unexplored class of eukaryotes. The updated Diatom EST Database is available at http://www.biologie.ens.fr/diatomics/EST3. PMID:19029140
Elena, Claudia; Ravasi, Pablo; Castelli, María E.; Peirú, Salvador; Menzella, Hugo G.
2014-01-01
The efficient production of functional proteins in heterologous hosts is one of the major bases of modern biotechnology. Unfortunately, many genes are difficult to express outside their original context. Due to their apparent “silent” nature, synonymous codon substitutions have long been thought to be trivial. In recent years, this dogma has been refuted by evidence that codon replacement can have a significant impact on gene expression levels and protein folding. In the past decade, considerable advances in the speed and cost of gene synthesis have facilitated the complete redesign of entire gene sequences, dramatically improving the likelihood of high protein expression. This technology significantly impacts the economic feasibility of microbial-based biotechnological processes by, for example, increasing the volumetric productivities of recombinant proteins or facilitating the redesign of novel biosynthetic routes for the production of metabolites. This review discusses the current applications of this technology, particularly those regarding the production of small molecules and industrially relevant recombinant enzymes. Suggestions for future research and potential uses are provided as well. PMID:24550894
Bar-Shir, Amnon; Liu, Guanshu; Greenberg, Marc M; Bulte, Jeff W M; Gilad, Assaf A
2013-01-01
In experiments involving transgenic animals or animals treated with transgenic cells, it is important to have a method to monitor the expression of the relevant genes longitudinally and noninvasively. An MRI-based reporter gene enables monitoring of gene expression in the deep tissues of living subjects. This information can be co-registered with detailed high-resolution anatomical and functional information. We describe here the synthesis of the reporter probe, 5-methyl-5,6-dihydrothymidine (5-MDHT), which can be used for imaging of the herpes simplex virus type 1 thymidine kinase (HSV1-tk) reporter gene expression in rodents by MRI. The protocol also includes data acquisition and data processing routines customized for chemical exchange saturation transfer (CEST) contrast mechanisms. The dihydropyrimidine 5-MDHT is synthesized through a catalytic hydrogenation of the 5,6-double bond of thymidine to yield 5,6-dihydrothymidine, which is methylated on the C-5 position of the resulting saturated pyrimidine ring. The synthesis of 5-MDHT can be completed within 5 d, and the compound is stable for more than 1 year. PMID:24177294
Co-expression analysis identifies CRC and AP1 the regulator of Arabidopsis fatty acid biosynthesis.
Han, Xinxin; Yin, Linlin; Xue, Hongwei
2012-07-01
Fatty acids (FAs) play crucial rules in signal transduction and plant development, however, the regulation of FA metabolism is still poorly understood. To study the relevant regulatory network, fifty-eight FA biosynthesis genes including de novo synthases, desaturases and elongases were selected as "guide genes" to construct the co-expression network. Calculation of the correlation between all Arabidopsis thaliana (L.) genes with each guide gene by Arabidopsis co-expression dating mining tools (ACT) identifies 797 candidate FA-correlated genes. Gene ontology (GO) analysis of these co-expressed genes showed they are tightly correlated to photosynthesis and carbohydrate metabolism, and function in many processes. Interestingly, 63 transcription factors (TFs) were identified as candidate FA biosynthesis regulators and 8 TF families are enriched. Two TF genes, CRC and AP1, both correlating with 8 FA guide genes, were further characterized. Analyses of the ap1 and crc mutant showed the altered total FA composition of mature seeds. The contents of palmitoleic acid, stearic acid, arachidic acid and eicosadienoic acid are decreased, whereas that of oleic acid is increased in ap1 and crc seeds, which is consistent with the qRT-PCR analysis revealing the suppressed expression of the corresponding guide genes. In addition, yeast one-hybrid analysis and electrophoretic mobility shift assay (EMSA) revealed that CRC can bind to the promoter regions of KCS7 and KCS15, indicating that CRC may directly regulate FA biosynthesis. © 2012 Institute of Botany, Chinese Academy of Sciences.
Screening key candidate genes and pathways involved in insulinoma by microarray analysis.
Zhou, Wuhua; Gong, Li; Li, Xuefeng; Wan, Yunyan; Wang, Xiangfei; Li, Huili; Jiang, Bin
2018-06-01
Insulinoma is a rare type tumor and its genetic features remain largely unknown. This study aimed to search for potential key genes and relevant enriched pathways of insulinoma.The gene expression data from GSE73338 were downloaded from Gene Expression Omnibus database. Differentially expressed genes (DEGs) were identified between insulinoma tissues and normal pancreas tissues, followed by pathway enrichment analysis, protein-protein interaction (PPI) network construction, and module analysis. The expressions of candidate key genes were validated by quantitative real-time polymerase chain reaction (RT-PCR) in insulinoma tissues.A total of 1632 DEGs were obtained, including 1117 upregulated genes and 514 downregulated genes. Pathway enrichment results showed that upregulated DEGs were significantly implicated in insulin secretion, and downregulated DEGs were mainly enriched in pancreatic secretion. PPI network analysis revealed 7 hub genes with degrees more than 10, including GCG (glucagon), GCGR (glucagon receptor), PLCB1 (phospholipase C, beta 1), CASR (calcium sensing receptor), F2R (coagulation factor II thrombin receptor), GRM1 (glutamate metabotropic receptor 1), and GRM5 (glutamate metabotropic receptor 5). DEGs involved in the significant modules were enriched in calcium signaling pathway, protein ubiquitination, and platelet degranulation. Quantitative RT-PCR data confirmed that the expression trends of these hub genes were similar to the results of bioinformatic analysis.The present study demonstrated that candidate DEGs and enriched pathways were the potential critical molecule events involved in the development of insulinoma, and these findings were useful for better understanding of insulinoma genesis.
Soreq, Lilach; Lobo, Patrícia P.; Mestre, Tiago; Coelho, Miguel; Rosa, Mário M.; Gonçalves, Nilza; Wales, Pauline; Mendes, Tiago; Gerhardt, Ellen; Fahlbusch, Christiane; Bonifati, Vincenzo; Bonin, Michael; Miltenberger-Miltényi, Gabriel; Borovecki, Fran; Soreq, Hermona; Ferreira, Joaquim J.; F. Outeiro, Tiago
2016-01-01
The prognosis of neurodegenerative disorders is clinically challenging due to the inexistence of established biomarkers for predicting disease progression. Here, we performed an exploratory cross-sectional, case-control study aimed at determining whether gene expression differences in peripheral blood may be used as a signature of Parkinson’s disease (PD) progression, thereby shedding light into potential molecular mechanisms underlying disease development. We compared transcriptional profiles in the blood from 34 PD patients who developed postural instability within ten years with those of 33 patients who did not develop postural instability within this time frame. Our study identified >200 differentially expressed genes between the two groups. The expression of several of the genes identified was previously found deregulated in animal models of PD and in PD patients. Relevant genes were selected for validation by real-time PCR in a subset of patients. The genes validated were linked to nucleic acid metabolism, mitochondria, immune response and intracellular-transport. Interestingly, we also found deregulation of these genes in a dopaminergic cell model of PD, a simple paradigm that can now be used to further dissect the role of these molecular players on dopaminergic cell loss. Altogether, our study provides preliminary evidence that expression changes in specific groups of genes and pathways, detected in peripheral blood samples, may be correlated with differential PD progression. Our exploratory study suggests that peripheral gene expression profiling may prove valuable for assisting in prediction of PD prognosis, and identifies novel culprits possibly involved in dopaminergic cell death. Given the exploratory nature of our study, further investigations using independent, well-characterized cohorts will be essential in order to validate our candidates as predictors of PD prognosis and to definitively confirm the value of gene expression analysis in aiding patient stratification and therapeutic intervention. PMID:27322389
Population- and individual-specific regulatory variation in Sardinia.
Pala, Mauro; Zappala, Zachary; Marongiu, Mara; Li, Xin; Davis, Joe R; Cusano, Roberto; Crobu, Francesca; Kukurba, Kimberly R; Gloudemans, Michael J; Reinier, Frederic; Berutti, Riccardo; Piras, Maria G; Mulas, Antonella; Zoledziewska, Magdalena; Marongiu, Michele; Sorokin, Elena P; Hess, Gaelen T; Smith, Kevin S; Busonero, Fabio; Maschio, Andrea; Steri, Maristella; Sidore, Carlo; Sanna, Serena; Fiorillo, Edoardo; Bassik, Michael C; Sawcer, Stephen J; Battle, Alexis; Novembre, John; Jones, Chris; Angius, Andrea; Abecasis, Gonçalo R; Schlessinger, David; Cucca, Francesco; Montgomery, Stephen B
2017-05-01
Genetic studies of complex traits have mainly identified associations with noncoding variants. To further determine the contribution of regulatory variation, we combined whole-genome and transcriptome data for 624 individuals from Sardinia to identify common and rare variants that influence gene expression and splicing. We identified 21,183 expression quantitative trait loci (eQTLs) and 6,768 splicing quantitative trait loci (sQTLs), including 619 new QTLs. We identified high-frequency QTLs and found evidence of selection near genes involved in malarial resistance and increased multiple sclerosis risk, reflecting the epidemiological history of Sardinia. Using family relationships, we identified 809 segregating expression outliers (median z score of 2.97), averaging 13.3 genes per individual. Outlier genes were enriched for proximal rare variants, providing a new approach to study large-effect regulatory variants and their relevance to traits. Our results provide insight into the effects of regulatory variants and their relationship to population history and individual genetic risk.
Biologic consequences of Stat1-independent IFN signaling
Gil, M. Pilar; Bohn, Erwin; O'Guin, Andrew K.; Ramana, Chilakamarti V.; Levine, Beth; Stark, George R.; Virgin, Herbert W.; Schreiber, Robert D.
2001-01-01
Although Stat1 is required for many IFN-dependent responses, recent work has shown that IFNγ functions independently of Stat1 to affect the growth of tumor cells or immortalized fibroblasts. We now demonstrate that both IFNγ and IFNα/β regulate proliferative responses in cells of the mononuclear phagocyte lineage derived from Stat1-null mice. Using both representational difference analysis and gene arrays, we show that IFNγ exerts its Stat1-independent actions on mononuclear phagocytes by regulating the expression of many genes. This result was confirmed by monitoring changes in expression and function of the corresponding gene products. Regulation of the expression of these genes requires the IFNγ receptor and Jak1. The physiologic relevance of IFN-dependent, Stat1-independent signaling was demonstrated by monitoring antiviral responses in Stat1-null mice. Thus, the IFN receptors engage alternative Stat1-independent signaling pathways that have important physiological consequences. PMID:11390995
Gibson, Scott M; Ficklin, Stephen P; Isaacson, Sven; Luo, Feng; Feltus, Frank A; Smith, Melissa C
2013-01-01
The study of gene relationships and their effect on biological function and phenotype is a focal point in systems biology. Gene co-expression networks built using microarray expression profiles are one technique for discovering and interpreting gene relationships. A knowledge-independent thresholding technique, such as Random Matrix Theory (RMT), is useful for identifying meaningful relationships. Highly connected genes in the thresholded network are then grouped into modules that provide insight into their collective functionality. While it has been shown that co-expression networks are biologically relevant, it has not been determined to what extent any given network is functionally robust given perturbations in the input sample set. For such a test, hundreds of networks are needed and hence a tool to rapidly construct these networks. To examine functional robustness of networks with varying input, we enhanced an existing RMT implementation for improved scalability and tested functional robustness of human (Homo sapiens), rice (Oryza sativa) and budding yeast (Saccharomyces cerevisiae). We demonstrate dramatic decrease in network construction time and computational requirements and show that despite some variation in global properties between networks, functional similarity remains high. Moreover, the biological function captured by co-expression networks thresholded by RMT is highly robust.
Yao, Sheng; Bee, Alix; Brewer, Daniel; Dodson, Andrew; Beesley, Carol; Ke, Youqiang; Ambroisine, Laurence; Fisher, Gabrielle; Møller, Heinrich; Dickinson, Tim; Gerard, Patricia; Lian, Lu-Yu; Risk, Janet; Lane, Brian; Smith, Paul; Reuter, Victor; Berney, Daniel; Gosden, Christine; Scardino, Peter; Cuzick, Jack; Djamgoz, Mustafa B.A.; Cooper, Colin; Foster, Christopher S.
2010-01-01
We show protein kinase C–zeta (PKC-ζ) to be a novel predictive biomarker for survival from prostate cancer (P < 0.001). We also confirm that transcription of the PRKC-ζ gene is crucial to the malignant phenotype of human prostate cancer. Following siRNA silencing of PRKC-ζ in PC3-M prostate cancer cells, stable transfectant cell line si-PRKC-ζ-PC3-MT1-6 is phenotypically nonmalignant in vitro and in vivo. Genome-wide expression analysis identified 373 genes to be differentially expressed in the knockdown cells and 4 key gene networks to be significantly perturbed during phenotype modulation. Functional interconnection between some of the modulated genes is revealed, although these may be within different regulatory pathways, emphasizing the complexity of their mutual interdependence. Genes with altered expression following PRKC-ζ knockdown include HSPB1, RAD51, and ID1 that we have previously described to be critical in prostatic malignancy. Because expression of PRKC-ζ is functionally involved in promoting the malignant phenotype, we propose PKC-ζ as a novel and biologically relevant target for therapeutic intervention in prostate cancer. PMID:21779455
An all-in-one, Tet-On 3G inducible PiggyBac system for human pluripotent stem cells and derivatives.
Randolph, Lauren N; Bao, Xiaoping; Zhou, Chikai; Lian, Xiaojun
2017-05-08
Human pluripotent stem cells (hPSCs) offer tremendous promise in tissue engineering and cell-based therapies due to their unique combination of two properties: pluripotency and unlimited proliferative capacity. However, directed differentiation of hPSCs to clinically relevant cell lineages is needed to achieve the goal of hPSC-based therapies. This requires a deep understanding of how cell signaling pathways converge on the nucleus to control differentiation and the ability to dissect gene function in a temporal manner. Here, we report the use of the PiggyBac transposon and a Tet-On 3G drug-inducible gene expression system to achieve versatile inducible gene expression in hPSC lines. Our new system, XLone, offers improvement over previous Tet-On systems with significantly reduced background expression and increased sensitivity to doxycycline. Transgene expression in hPSCs is tightly regulated in response to doxycycline treatment. In addition, the PiggyBac elements in our XLone construct provide a rapid and efficient strategy for generating stable transgenic hPSCs. Our inducible gene expression PiggyBac transposon system should facilitate the study of gene function and directed differentiation in human stem cells.
DCGL v2.0: an R package for unveiling differential regulation from differential co-expression.
Yang, Jing; Yu, Hui; Liu, Bao-Hong; Zhao, Zhongming; Liu, Lei; Ma, Liang-Xiao; Li, Yi-Xue; Li, Yuan-Yuan
2013-01-01
Differential co-expression analysis (DCEA) has emerged in recent years as a novel, systematic investigation into gene expression data. While most DCEA studies or tools focus on the co-expression relationships among genes, some are developing a potentially more promising research domain, differential regulation analysis (DRA). In our previously proposed R package DCGL v1.0, we provided functions to facilitate basic differential co-expression analyses; however, the output from DCGL v1.0 could not be translated into differential regulation mechanisms in a straightforward manner. To advance from DCEA to DRA, we upgraded the DCGL package from v1.0 to v2.0. A new module named "Differential Regulation Analysis" (DRA) was designed, which consists of three major functions: DRsort, DRplot, and DRrank. DRsort selects differentially regulated genes (DRGs) and differentially regulated links (DRLs) according to the transcription factor (TF)-to-target information. DRrank prioritizes the TFs in terms of their potential relevance to the phenotype of interest. DRplot graphically visualizes differentially co-expressed links (DCLs) and/or TF-to-target links in a network context. In addition to these new modules, we streamlined the codes from v1.0. The evaluation results proved that our differential regulation analysis is able to capture the regulators relevant to the biological subject. With ample functions to facilitate differential regulation analysis, DCGL v2.0 was upgraded from a DCEA tool to a DRA tool, which may unveil the underlying differential regulation from the observed differential co-expression. DCGL v2.0 can be applied to a wide range of gene expression data in order to systematically identify novel regulators that have not yet been documented as critical. DCGL v2.0 package is available at http://cran.r-project.org/web/packages/DCGL/index.html or at our project home page http://lifecenter.sgst.cn/main/en/dcgl.jsp.
Mest but Not MiR-335 Affects Skeletal Muscle Growth and Regeneration
Hiramuki, Yosuke; Sato, Takahiko; Furuta, Yasuhide; Surani, M. Azim; Sehara-Fujisawa, Atsuko
2015-01-01
When skeletal muscle fibers are injured, they regenerate and grow until their sizes are adjusted to surrounding muscle fibers and other relevant organs. In this study, we examined whether Mest, one of paternally expressed imprinted genes that regulates body size during development, and miR-335 located in the second intron of the Mest gene play roles in muscle regeneration. We generated miR-335-deficient mice, and found that miR-335 is a paternally expressed imprinted microRNA. Although both Mest and miR-335 are highly expressed during muscle development and regeneration, only Mest+/- (maternal/paternal) mice show retardation of body growth. In addition to reduced body weight in Mest+/-; DMD-null mice, decreased muscle growth was observed in Mest+/- mice during cardiotoxin-induced regeneration, suggesting roles of Mest in muscle regeneration. Moreover, expressions of H19 and Igf2r, maternally expressed imprinted genes were affected in tibialis anterior muscle of Mest+/-; DMD-null mice compared to DMD-null mice. Thus, Mest likely mediates muscle regeneration through regulation of imprinted gene networks in skeletal muscle. PMID:26098312
Mest but Not MiR-335 Affects Skeletal Muscle Growth and Regeneration.
Hiramuki, Yosuke; Sato, Takahiko; Furuta, Yasuhide; Surani, M Azim; Sehara-Fujisawa, Atsuko
2015-01-01
When skeletal muscle fibers are injured, they regenerate and grow until their sizes are adjusted to surrounding muscle fibers and other relevant organs. In this study, we examined whether Mest, one of paternally expressed imprinted genes that regulates body size during development, and miR-335 located in the second intron of the Mest gene play roles in muscle regeneration. We generated miR-335-deficient mice, and found that miR-335 is a paternally expressed imprinted microRNA. Although both Mest and miR-335 are highly expressed during muscle development and regeneration, only Mest+/- (maternal/paternal) mice show retardation of body growth. In addition to reduced body weight in Mest+/-; DMD-null mice, decreased muscle growth was observed in Mest+/- mice during cardiotoxin-induced regeneration, suggesting roles of Mest in muscle regeneration. Moreover, expressions of H19 and Igf2r, maternally expressed imprinted genes were affected in tibialis anterior muscle of Mest+/-; DMD-null mice compared to DMD-null mice. Thus, Mest likely mediates muscle regeneration through regulation of imprinted gene networks in skeletal muscle.
Richhariya, Shlesha; Jayakumar, Siddharth; Abruzzi, Katharine; Rosbash, Michael; Hasan, Gaiti
2017-02-14
Transcriptional regulation by Store-operated Calcium Entry (SOCE) is well studied in non-excitable cells. However, the role of SOCE has been poorly documented in neuronal cells with more complicated calcium dynamics. Previous reports demonstrated a requirement for SOCE in neurons that regulate Drosophila flight bouts. We refine this requirement temporally to the early pupal stage and use RNA-sequencing to identify SOCE mediated gene expression changes in the developing Drosophila pupal nervous system. Down regulation of dStim, the endoplasmic reticular calcium sensor and a principal component of SOCE in the nervous system, altered the expression of 131 genes including Ral, a small GTPase. Disruption of Ral function in neurons impaired flight, whereas ectopic expression of Ral in SOCE-compromised neurons restored flight. Through live imaging of calcium transients from cultured pupal neurons, we confirmed that Ral does not participate in SOCE, but acts downstream of it. These results identify neuronal SOCE as a mechanism that regulates expression of specific genes during development of the pupal nervous system and emphasizes the relevance of SOCE-regulated gene expression to flight circuit maturation.
Zhang, Quan; Zhang, Yi; Du, Jie; Zhao, Meirong
2017-10-01
Synthetic pyrethroids (SPs) are one of the most widely used pesticides and frequently detected in the aquatic environment. Previous studies have shown that SPs posed high aquatic toxicity, but information on the developmental toxicity and endocrine disruption on zebrafish (Danio rerio) at environmentally relevant concentrations is limited. In this study, zebrafish embryos were employed to examine the adverse effects of λ-cyhalothrin (LCT), fenvalerate (FEN), and permethrin (PM) at 2.5, 10, 25, 125, 500 nM for 96 h. The results showed these 3 SPs caused dose-dependent mortality, malformation rate, and hatching rate. Thyroid hormone triiodothyronine (T 3 ) levels were significantly decreased after exposure to LCT and FEN. Quantitative real-time PCR analysis was then performed on a series of nuclear receptors (NRs) genes involved in the hypothalamic-pituitary-gonadal (HPG), hypothalamic-pituitary-thyroid (HPT), hypothalamic-pituitary-adrenocortical (HPA) axes, and oxidative-stress-related system. Our results showed that LCT, FEN, and PM downregulated AR expression while upregulated ER1 expression, and caused alteration to ER2a and ER2b expression. As for the expression of TRα and TRβ, they were both decreased following exposure to the 3 SPs. LCT and PM downregulated the MR expression and FEN induced MR expression. In addition, the expression of GR was increased after treating with LCT, while it was suppressed after exposure to FEN and PM. The 3 SPs also caused various alterations to the expression of genes including AhRs, PPARα, and PXR. These findings suggest that these 3 SPs may cause developmental toxicity to zebrafish larvae by disrupting endocrine signaling at environmentally relevant concentrations. Copyright © 2017. Published by Elsevier Ltd.
The road ahead: working towards effective clinical translation of myocardial gene therapies
Katz, Michael G; Fargnoli, Anthony S; Williams, Richard D; Bridges, Charles R
2014-01-01
During the last two decades the fields of molecular and cellular cardiology, and more recently molecular cardiac surgery, have developed rapidly. The concept of delivering cDNA encoding a therapeutic gene to cardiomyocytes using a vector system with substantial cardiac tropism, allowing for long-term expression of a therapeutic protein, has moved from hypothesis to bench to clinical application. However, the clinical results to date are still disappointing. The ideal gene transfer method should be explored in clinically relevant animal models of heart disease to evaluate the relative roles of specific molecular pathways in disease pathogenesis, helping to validate the potential targets for therapeutic intervention. Successful clinical cardiovascular gene therapy also requires the use of nonimmunogenic cardiotropic vectors capable of expressing the requisite amount of therapeutic protein in vivo and in situ. Depending on the desired application either regional or global myocardial gene delivery is required. Cardiac-specific delivery techniques incorporating mapping technologies for regional delivery and highly efficient methodologies for global delivery should improve the precision and specificity of gene transfer to the areas of interest and minimize collateral organ gene expression. PMID:24341816
Friedenberg, Steven G.; Chdid, Lhoucine; Keene, Bruce; Sherry, Barbara; Motsinger-Reif, Alison; Meurs, Kathryn M.
2017-01-01
OBJECTIVE To identify cardiac tissue genes and gene pathways differentially expressed between dogs with and without dilated cardiomyopathy (DCM). ANIMALS 8 dogs with and 5 dogs without DCM. PROCEDURES Following euthanasia, samples of left ventricular myocardium were collected from each dog. Total RNA was extracted from tissue samples, and RNA sequencing was performed on each sample. Samples from dogs with and without DCM were grouped to identify genes that were differentially regulated between the 2 populations. Overrepresentation analysis was performed on upregulated and downregulated gene sets to identify altered molecular pathways in dogs with DCM. RESULTS Genes involved in cellular energy metabolism, especially metabolism of carbohydrates and fats, were significantly downregulated in dogs with DCM. Expression of cardiac structural proteins was also altered in affected dogs. CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that RNA sequencing may provide important insights into the pathogenesis of DCM in dogs and highlight pathways that should be explored to identify causative mutations and develop novel therapeutic interventions. PMID:27347821
NASA Astrophysics Data System (ADS)
Mason, Charles J.; Scully, Erin D.; Geib, Scott M.; Hoover, Kelli
2016-09-01
Wood-feeding insects encounter challenging diets containing low protein quantities, recalcitrant carbohydrate sources, and plant defensive compounds. The Asian longhorned beetle (Anoplophora glabripennis) is a wood-feeding insect that attacks and kills a diversity of hardwood tree species. We compared gene expression of midguts collected from larvae feeding in a preferred tree, sugar maple, to those consuming a nutrient-rich artificial diet, to identify genes putatively involved in host plant utilization. Anoplophora glabripennis larvae exhibited differential expression of ~3600 genes in response to different diets. Genes with predicted capacity for plant and microbial carbohydrate usage, detoxification, nutrient recycling, and immune-related genes relevant for facilitating interactions with microbial symbionts were upregulated in wood-feeding larvae compared to larvae feeding in artificial diet. Upregulation of genes involved in protein degradation and synthesis was also observed, suggesting that proteins incur more rapid turnover in insects consuming wood. Additionally, wood-feeding individuals exhibited elevated expression of several mitochondrial cytochrome C oxidase genes, suggesting increased aerobic respiration compared to diet-fed larvae. These results indicate that A. glabripennis modulates digestive and basal gene expression when larvae are feeding in a nutrient-poor, yet suitable host plant compared to a tractable and nutrient-rich diet that is free of plant defensive compounds.
Schrader, Alexandra; Meyer, Katharina; Walther, Neele; Stolz, Ailine; Feist, Maren; Hand, Elisabeth; von Bonin, Frederike; Evers, Maurits; Kohler, Christian; Shirneshan, Katayoon; Vockerodt, Martina; Klapper, Wolfram; Szczepanowski, Monika; Murray, Paul G.; Bastians, Holger; Trümper, Lorenz; Spang, Rainer; Kube, Dieter
2016-01-01
To discover new regulatory pathways in B lymphoma cells, we performed a combined analysis of experimental, clinical and global gene expression data. We identified a specific cluster of genes that was coherently expressed in primary lymphoma samples and suppressed by activation of the B cell receptor (BCR) through αIgM treatment of lymphoma cells in vitro. This gene cluster, which we called BCR.1, includes numerous cell cycle regulators. A reduced expression of BCR.1 genes after BCR activation was observed in different cell lines and also in CD10+ germinal center B cells. We found that BCR activation led to a delayed entry to and progression of mitosis and defects in metaphase. Cytogenetic changes were detected upon long-term αIgM treatment. Furthermore, an inverse correlation of BCR.1 genes with c-Myc co-regulated genes in distinct groups of lymphoma patients was observed. Finally, we showed that the BCR.1 index discriminates activated B cell-like and germinal centre B cell-like diffuse large B cell lymphoma supporting the functional relevance of this new regulatory circuit and the power of guided clustering for biomarker discovery. PMID:27166259
Novel transcriptional networks regulated by CLOCK in human neurons.
Fontenot, Miles R; Berto, Stefano; Liu, Yuxiang; Werthmann, Gordon; Douglas, Connor; Usui, Noriyoshi; Gleason, Kelly; Tamminga, Carol A; Takahashi, Joseph S; Konopka, Genevieve
2017-11-01
The molecular mechanisms underlying human brain evolution are not fully understood; however, previous work suggested that expression of the transcription factor CLOCK in the human cortex might be relevant to human cognition and disease. In this study, we investigated this novel transcriptional role for CLOCK in human neurons by performing chromatin immunoprecipitation sequencing for endogenous CLOCK in adult neocortices and RNA sequencing following CLOCK knockdown in differentiated human neurons in vitro. These data suggested that CLOCK regulates the expression of genes involved in neuronal migration, and a functional assay showed that CLOCK knockdown increased neuronal migratory distance. Furthermore, dysregulation of CLOCK disrupts coexpressed networks of genes implicated in neuropsychiatric disorders, and the expression of these networks is driven by hub genes with human-specific patterns of expression. These data support a role for CLOCK-regulated transcriptional cascades involved in human brain evolution and function. © 2017 Fontenot et al.; Published by Cold Spring Harbor Laboratory Press.
Retrieving relevant time-course experiments: a study on Arabidopsis microarrays.
Şener, Duygu Dede; Oğul, Hasan
2016-06-01
Understanding time-course regulation of genes in response to a stimulus is a major concern in current systems biology. The problem is usually approached by computational methods to model the gene behaviour or its networked interactions with the others by a set of latent parameters. The model parameters can be estimated through a meta-analysis of available data obtained from other relevant experiments. The key question here is how to find the relevant experiments which are potentially useful in analysing current data. In this study, the authors address this problem in the context of time-course gene expression experiments from an information retrieval perspective. To this end, they introduce a computational framework that takes a time-course experiment as a query and reports a list of relevant experiments retrieved from a given repository. These retrieved experiments can then be used to associate the environmental factors of query experiment with the findings previously reported. The model is tested using a set of time-course Arabidopsis microarrays. The experimental results show that relevant experiments can be successfully retrieved based on content similarity.
Expression of the G72/G30 gene in transgenic mice induces behavioral changes
Cheng, Lijun; Hattori, Eiji; Nakajima, Akira; Woehrle, Nancy S.; Opal, Mark D.; Zhang, Chunling; Grennan, Kay; Dulawa, Stephanie C.; Tang, Ya-Ping; Gershon, Elliot S.; Liu, Chunyu
2012-01-01
The G72/G30 gene complex is a candidate gene for schizophrenia and bipolar disorder. However, G72 and G30 mRNAs are expressed at very low levels in human brain, with only rare splicing forms observed. We report here G72/G30 expression profiles and behavioral changes in a G72/G30 transgenic mouse model. A human BAC clone containing the G72/G30 genomic region was used to establish the transgenic mouse model, on which gene expression studies, Western blot and behavioral tests were performed. Relative to their minimal expression in humans, G72 and G30 mRNAs were highly expressed in the transgenic mice, and had a more complex splicing pattern. The highest G72 transcript levels were found in testis, followed by cerebral cortex, with very low or undetectable levels in other tissues. No LG72 (the long putative isoform of G72) protein was detected in the transgenic mice. Whole-genome expression profiling identified 361 genes differentially-expressed in transgenic mice compared to wild-type, including genes previously implicated in neurological and psychological disorders. Relative to wild-type mice, the transgenic mice exhibited fewer stereotypic movements in the open field test, higher baseline startle responses in the course of the prepulse inhibition test, and lower hedonic responses in the sucrose preference test. The transcriptome profile changes and multiple mouse behavioral effects suggest that the G72 gene may play a role in modulating behaviors relevant to psychiatric disorders. PMID:23337943
Su, Honghua; Cheng, Yuming; Wang, Zhongyang; Li, Zhong; Stanley, David; Yang, Yizhong
2015-01-01
The cotton leaf roller, Sylepta derogata, is a silk-producing insect pest. While young larvae feed on the underside of leaves, the older ones roll cotton leaves and feed on the leaf edges, which defoliates cotton plants. The larvae produce silk to stabilize the rolled leaf and to balloon from used to new leaves. Despite the significance of silk in the biology of pest insect species, there is virtually no information on the genes involved in their silk production. This is a substantial knowledge gap because some of these genes may be valuable targets for developing molecular pest management technologies. We addressed the gap by posing the hypothesis that silk gland gene expression changes during the transition from larvae to pupae. We tested our hypothesis using RNA-seq to investigate changes in silk gland gene expression at three developmental stages, 5th instar larvae (silk producing; 15,445,926 clean reads), prepupae (reduced silk producing; 13,758,154) and pupae (beyond silk producing; 16,787,792). We recorded 60,298 unigenes and mapped 50,158 (larvae), 48,415 (prepupae) and 46,623 (pupae) of them to the NCBI database. Most differentially expressed genes in the 5th instar larvae/prepupae libraries were relevant to nucleotide synthesis and maintenance of silk gland function. We identified down-regulated transcriptional factors and several genes involved in silk formation in the three libraries and verified the expression pattern of eight genes by qPCR. The developmental- and tissue-specific expression patterns of the fibroin light chain gene showed it was highly expressed during the larval silk-producing stage. We recorded highest expression of this gene in the larval silk gland, compared to other tissues, including midgut, hindgut, epidermis, Malpighian tubes, hemolymph and fat body. These data are a genetic resource to guide selection of key genes that may be targeted for in planta and other gene-silencing technologies for sustainable cotton agriculture. PMID:26352931
Su, Honghua; Cheng, Yuming; Wang, Zhongyang; Li, Zhong; Stanley, David; Yang, Yizhong
2015-01-01
The cotton leaf roller, Sylepta derogata, is a silk-producing insect pest. While young larvae feed on the underside of leaves, the older ones roll cotton leaves and feed on the leaf edges, which defoliates cotton plants. The larvae produce silk to stabilize the rolled leaf and to balloon from used to new leaves. Despite the significance of silk in the biology of pest insect species, there is virtually no information on the genes involved in their silk production. This is a substantial knowledge gap because some of these genes may be valuable targets for developing molecular pest management technologies. We addressed the gap by posing the hypothesis that silk gland gene expression changes during the transition from larvae to pupae. We tested our hypothesis using RNA-seq to investigate changes in silk gland gene expression at three developmental stages, 5th instar larvae (silk producing; 15,445,926 clean reads), prepupae (reduced silk producing; 13,758,154) and pupae (beyond silk producing; 16,787,792). We recorded 60,298 unigenes and mapped 50,158 (larvae), 48,415 (prepupae) and 46,623 (pupae) of them to the NCBI database. Most differentially expressed genes in the 5th instar larvae/prepupae libraries were relevant to nucleotide synthesis and maintenance of silk gland function. We identified down-regulated transcriptional factors and several genes involved in silk formation in the three libraries and verified the expression pattern of eight genes by qPCR. The developmental- and tissue-specific expression patterns of the fibroin light chain gene showed it was highly expressed during the larval silk-producing stage. We recorded highest expression of this gene in the larval silk gland, compared to other tissues, including midgut, hindgut, epidermis, Malpighian tubes, hemolymph and fat body. These data are a genetic resource to guide selection of key genes that may be targeted for in planta and other gene-silencing technologies for sustainable cotton agriculture.
Haitsma, Jack J.; Furmli, Suleiman; Masoom, Hussain; Liu, Mingyao; Imai, Yumiko; Slutsky, Arthur S.; Beyene, Joseph; Greenwood, Celia M. T.; dos Santos, Claudia
2012-01-01
Objectives To perform a meta-analysis of gene expression microarray data from animal studies of lung injury, and to identify an injury-specific gene expression signature capable of predicting the development of lung injury in humans. Methods We performed a microarray meta-analysis using 77 microarray chips across six platforms, two species and different animal lung injury models exposed to lung injury with or/and without mechanical ventilation. Individual gene chips were classified and grouped based on the strategy used to induce lung injury. Effect size (change in gene expression) was calculated between non-injurious and injurious conditions comparing two main strategies to pool chips: (1) one-hit and (2) two-hit lung injury models. A random effects model was used to integrate individual effect sizes calculated from each experiment. Classification models were built using the gene expression signatures generated by the meta-analysis to predict the development of lung injury in human lung transplant recipients. Results Two injury-specific lists of differentially expressed genes generated from our meta-analysis of lung injury models were validated using external data sets and prospective data from animal models of ventilator-induced lung injury (VILI). Pathway analysis of gene sets revealed that both new and previously implicated VILI-related pathways are enriched with differentially regulated genes. Classification model based on gene expression signatures identified in animal models of lung injury predicted development of primary graft failure (PGF) in lung transplant recipients with larger than 80% accuracy based upon injury profiles from transplant donors. We also found that better classifier performance can be achieved by using meta-analysis to identify differentially-expressed genes than using single study-based differential analysis. Conclusion Taken together, our data suggests that microarray analysis of gene expression data allows for the detection of “injury" gene predictors that can classify lung injury samples and identify patients at risk for clinically relevant lung injury complications. PMID:23071521
Wong, Kayleigh; Sun, Fangui; Trudel, Guy; Sebastiani, Paola; Laneuville, Odette
2015-05-26
Contractures of the knee joint cause disability and handicap. Recovering range of motion is recognized by arthritic patients as their preference for improved health outcome secondary only to pain management. Clinical and experimental studies provide evidence that the posterior knee capsule prevents the knee from achieving full extension. This study was undertaken to investigate the dynamic changes of the joint capsule transcriptome during the progression of knee joint contractures induced by immobilization. We performed a microarray analysis of genes expressed in the posterior knee joint capsule following induction of a flexion contracture by rigidly immobilizing the rat knee joint over a time-course of 16 weeks. Fold changes of expression values were measured and co-expressed genes were identified by clustering based on time-series analysis. Genes associated with immobilization were further analyzed to reveal pathways and biological significance and validated by immunohistochemistry on sagittal sections of knee joints. Changes in expression with a minimum of 1.5 fold changes were dominated by a decrease in expression for 7732 probe sets occurring at week 8 while the expression of 2251 probe sets increased. Clusters of genes with similar profiles of expression included a total of 162 genes displaying at least a 2 fold change compared to week 1. Functional analysis revealed ontology categories corresponding to triglyceride metabolism, extracellular matrix and muscle contraction. The altered expression of selected genes involved in the triglyceride biosynthesis pathway; AGPAT-9, and of the genes P4HB and HSP47, both involved in collagen synthesis, was confirmed by immunohistochemistry. Gene expression in the knee joint capsule was sensitive to joint immobility and provided insights into molecular mechanisms relevant to the pathophysiology of knee flexion contractures. Capsule responses to immobilization was dynamic and characterized by modulation of at least three reaction pathways; down regulation of triglyceride biosynthesis, alteration of extracellular matrix degradation and muscle contraction gene expression. The posterior knee capsule may deploy tissue-specific patterns of mRNA regulatory responses to immobilization. The identification of altered expression of genes and biochemical pathways in the joint capsule provides potential targets for the therapy of knee flexion contractures.
NASA Astrophysics Data System (ADS)
Sun, Dong; Chen, Qi; He, Ning; Diao, Pan-Pan; Jia, Li-Xing; Duan, Shun-Shan
2017-02-01
Nonylphenol (NP) is a persistent environmental chemical that can disrupt the organism’s endocrine system, and is detected in the surface water and sea. In this study, we investigated whether NP can alter transcriptional expression of sexual differentiation-related genes. Three generations of zebrafish were exposed to 0, 2, 20 and 200 μg·L-1 of NP, and transcriptional expression of sexual differentiation genes were assessed in 10, 20 and 40 dpf in the F1 and F2 generations. Growth of zebrafish exposed to 200 μg·L-1 of NP was inhibited at 125 dpf in the F1 generation. 20 μg·L-1 of NP resulted in 80% females in the F1 generation, but had no effect on the F2 generation. In terms of the sexual differentiation genes, the transcriptional expression of cyp19a1a and esr1 genes were upregulated in 20 μg·L-1 of NP in the F1 generation. But expression of the sexual differentiation genes were not affected in the F2 generation. Overall, NP could affect sexual differentiation and gene transcriptional expression in the F1 generation. The tolerance of contaminant in the offsprings was improved at low concentration.
Brodsky, Leonid; Leontovich, Andrei; Shtutman, Michael; Feinstein, Elena
2004-01-01
Mathematical methods of analysis of microarray hybridizations deal with gene expression profiles as elementary units. However, some of these profiles do not reflect a biologically relevant transcriptional response, but rather stem from technical artifacts. Here, we describe two technically independent but rationally interconnected methods for identification of such artifactual profiles. Our diagnostics are based on detection of deviations from uniformity, which is assumed as the main underlying principle of microarray design. Method 1 is based on detection of non-uniformity of microarray distribution of printed genes that are clustered based on the similarity of their expression profiles. Method 2 is based on evaluation of the presence of gene-specific microarray spots within the slides’ areas characterized by an abnormal concentration of low/high differential expression values, which we define as ‘patterns of differentials’. Applying two novel algorithms, for nested clustering (method 1) and for pattern detection (method 2), we can make a dual estimation of the profile’s quality for almost every printed gene. Genes with artifactual profiles detected by method 1 may then be removed from further analysis. Suspicious differential expression values detected by method 2 may be either removed or weighted according to the probabilities of patterns that cover them, thus diminishing their input in any further data analysis. PMID:14999086
Epigenetics mediate environment : gene effects on occupational sensitization.
Pacheco, Karin A
2012-04-01
Epigenetics is the study of stable modifications of fixed genomes that direct which genes are expressed and which are silenced. Epigenetic changes are modulated by environmental exposures, making epigenetics the interface between genes and environment. This has particular relevance in understanding the effect of occupational exposures on the expression of allergic disease. The goal of this review is to describe how epigenetic changes affect transcription potential, and to examine more closely the effect of specific environmental and occupational exposures on epigenetic variations that alter allergy gene transcripts and the inflammatory milieu. Gene transcription is activated when specific CpG sites are demethylated and histones are acetylated, and, conversely, silenced when sites are methylated and histones deacetylated. The development of Th1 and Th2 phenotypes, and expression of Treg cells, are now known to be modulated by epigenetic mechanisms. Workplace exposures such as tobacco smoke, particulates, diesel exhaust, polyaromatic hydrocarbons, ozone, and endotoxin, among others, suppress Treg development, and enhance expression of inflammatory cytokines and allergic phenotypes by epigenetic means. Epigenetic manipulation to open and close transcription sites provides flexibility of gene expression in response to changing environmental cues. It may also be the window whereby allergic disease in the workplace can be reduced by targeted environmental interventions.
NASA Astrophysics Data System (ADS)
Abdala, Z. M.; Powell, K.; Cronin, D.; Chappell, D.
2016-02-01
A comparative gene expression analysis of iron-limited cultures of Chaetoceros socialis and Pseudo-nitzschia arenysensisusing newly developed iron assays Zuzanna M. Abdala, Kimberly Powell, Dylan P. Cronin, P. Dreux Chappell Diatoms, accounting for about 40% of the primary production in marine ecosystems, play a vital role in the dynamics of marine systems. Iron availability is understood to be a driving factor controlling productivity of many marine phytoplankton, including diatoms, as it functions as a cofactor for many proteins including several involved with photosynthetic processes. Previous work examining transcriptomes of diatoms of the Thalassiosira genus grown in controlled laboratory settings has identified genes whose expression can be used as sensitive markers of iron status. Data mining publically available diatom transcriptome data for these genes enables development of additional iron status assays for environmentally-relevant diatoms. For the present study, gene expression analysis of iron-limited laboratory cultures of Chaetoceros socialis and Pseudo-nitzschia arenysensis grown in continuous light was done using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). C. socialis and P. arenysensis serve as comparative models for analyzing gene expression in iron limitation in different ecological community assemblages. These data may ultimately assist to illuminate the function of iron in photosynthetic activity in diatoms.
Jiang, Xiangying; Ringwald, Martin; Blake, Judith; Shatkay, Hagit
2017-01-01
The Gene Expression Database (GXD) is a comprehensive online database within the Mouse Genome Informatics resource, aiming to provide available information about endogenous gene expression during mouse development. The information stems primarily from many thousands of biomedical publications that database curators must go through and read. Given the very large number of biomedical papers published each year, automatic document classification plays an important role in biomedical research. Specifically, an effective and efficient document classifier is needed for supporting the GXD annotation workflow. We present here an effective yet relatively simple classification scheme, which uses readily available tools while employing feature selection, aiming to assist curators in identifying publications relevant to GXD. We examine the performance of our method over a large manually curated dataset, consisting of more than 25 000 PubMed abstracts, of which about half are curated as relevant to GXD while the other half as irrelevant to GXD. In addition to text from title-and-abstract, we also consider image captions, an important information source that we integrate into our method. We apply a captions-based classifier to a subset of about 3300 documents, for which the full text of the curated articles is available. The results demonstrate that our proposed approach is robust and effectively addresses the GXD document classification. Moreover, using information obtained from image captions clearly improves performance, compared to title and abstract alone, affirming the utility of image captions as a substantial evidence source for automatically determining the relevance of biomedical publications to a specific subject area. www.informatics.jax.org. © The Author(s) 2017. Published by Oxford University Press.
An integrated -omics analysis of the epigenetic landscape of gene expression in human blood cells.
Kennedy, Elizabeth M; Goehring, George N; Nichols, Michael H; Robins, Chloe; Mehta, Divya; Klengel, Torsten; Eskin, Eleazar; Smith, Alicia K; Conneely, Karen N
2018-06-19
Gene expression can be influenced by DNA methylation 1) distally, at regulatory elements such as enhancers, as well as 2) proximally, at promoters. Our current understanding of the influence of distal DNA methylation changes on gene expression patterns is incomplete. Here, we characterize genome-wide methylation and expression patterns for ~ 13 k genes to explore how DNA methylation interacts with gene expression, throughout the genome. We used a linear mixed model framework to assess the correlation of DNA methylation at ~ 400 k CpGs with gene expression changes at ~ 13 k transcripts in two independent datasets from human blood cells. Among CpGs at which methylation significantly associates with transcription (eCpGs), > 50% are distal (> 50 kb) or trans (different chromosome) to the correlated gene. Many eCpG-transcript pairs are consistent between studies and ~ 90% of neighboring eCpGs associate with the same gene, within studies. We find that enhancers (P < 5e-18) and microRNA genes (P = 9e-3) are overrepresented among trans eCpGs, and insulators and long intergenic non-coding RNAs are enriched among cis and distal eCpGs. Intragenic-eCpG-transcript correlations are negative in 60-70% of occurrences and are enriched for annotated gene promoters and enhancers (P < 0.002), highlighting the importance of intragenic regulation. Gene Ontology analysis indicates that trans eCpGs are enriched for transcription factor genes and chromatin modifiers, suggesting that some trans eCpGs represent the influence of gene networks and higher-order transcriptional control. This work sheds new light on the interplay between epigenetic changes and gene expression, and provides useful data for mining biologically-relevant results from epigenome-wide association studies.
Microarray Data Mining for Potential Selenium Targets in Chemoprevention of Prostate Cancer
ZHANG, HAITAO; DONG, YAN; ZHAO, HONGJUAN; BROOKS, JAMES D.; HAWTHORN, LESLEYANN; NOWAK, NORMA; MARSHALL, JAMES R.; GAO, ALLEN C.; IP, CLEMENT
2008-01-01
Background A previous clinical trial showed that selenium supplementation significantly reduced the incidence of prostate cancer. We report here a bioinformatics approach to gain new insights into selenium molecular targets that might be relevant to prostate cancer chemoprevention. Materials and Methods We first performed data mining analysis to identify genes which are consistently dysregulated in prostate cancer using published datasets from gene expression profiling of clinical prostate specimens. We then devised a method to systematically analyze three selenium microarray datasets from the LNCaP human prostate cancer cells, and to match the analysis to the cohort of genes implicated in prostate carcinogenesis. Moreover, we compared the selenium datasets with two datasets obtained from expression profiling of androgen-stimulated LNCaP cells. Results We found that selenium reverses the expression of genes implicated in prostate carcinogenesis. In addition, we found that selenium could counteract the effect of androgen on the expression of a subset obtained from androgen-regulated genes. Conclusions The above information provides us with a treasure of new clues to investigate the mechanism of selenium chemoprevention of prostate cancer. Furthermore, these selenium target genes could also serve as biomarkers in future clinical trials to gauge the efficacy of selenium intervention. PMID:18548127
DNA methylation and childhood asthma in the inner city.
Yang, Ivana V; Pedersen, Brent S; Liu, Andrew; O'Connor, George T; Teach, Stephen J; Kattan, Meyer; Misiak, Rana Tawil; Gruchalla, Rebecca; Steinbach, Suzanne F; Szefler, Stanley J; Gill, Michelle A; Calatroni, Agustin; David, Gloria; Hennessy, Corinne E; Davidson, Elizabeth J; Zhang, Weiming; Gergen, Peter; Togias, Alkis; Busse, William W; Schwartz, David A
2015-07-01
Epigenetic marks are heritable, influenced by the environment, direct the maturation of T lymphocytes, and in mice enhance the development of allergic airway disease. Thus it is important to define epigenetic alterations in asthmatic populations. We hypothesize that epigenetic alterations in circulating PBMCs are associated with allergic asthma. We compared DNA methylation patterns and gene expression in inner-city children with persistent atopic asthma versus healthy control subjects by using DNA and RNA from PBMCs. Results were validated in an independent population of asthmatic patients. Comparing asthmatic patients (n = 97) with control subjects (n = 97), we identified 81 regions that were differentially methylated. Several immune genes were hypomethylated in asthma, including IL13, RUNX3, and specific genes relevant to T lymphocytes (TIGIT). Among asthmatic patients, 11 differentially methylated regions were associated with higher serum IgE concentrations, and 16 were associated with percent predicted FEV1. Hypomethylated and hypermethylated regions were associated with increased and decreased gene expression, respectively (P < 6 × 10(-12) for asthma and P < .01 for IgE). We further explored the relationship between DNA methylation and gene expression using an integrative analysis and identified additional candidates relevant to asthma (IL4 and ST2). Methylation marks involved in T-cell maturation (RUNX3), TH2 immunity (IL4), and oxidative stress (catalase) were validated in an independent asthmatic cohort of children living in the inner city. Our results demonstrate that DNA methylation marks in specific gene loci are associated with asthma and suggest that epigenetic changes might play a role in establishing the immune phenotype associated with asthma. Published by Elsevier Inc.
Genomewide analysis of TCP transcription factor gene family in Malus domestica.
Xu, Ruirui; Sun, Peng; Jia, Fengjuan; Lu, Longtao; Li, Yuanyuan; Zhang, Shizhong; Huang, Jinguang
2014-12-01
Teosinte branched 1/cycloidea/proliferating cell factor 1 (TCP) proteins are a large family of transcriptional regulators in angiosperms. They are involved in various biological processes, including development and plant metabolism pathways. In this study, a total of 52 TCP genes were identified in apple (Malus domestica) genome. Bioinformatic methods were employed to predicate and analyse their relevant gene classification, gene structure, chromosome location, sequence alignment and conserved domains of MdTCP proteins. Expression analysis from microarray data showed that the expression levels of 28 and 51 MdTCP genes changed during the ripening and rootstock-scion interaction processes, respectively. The expression patterns of 12 selected MdTCP genes were analysed in different tissues and in response to abiotic stresses. All of the selected genes were detected in at least one of the tissues tested, and most of them were modulated by adverse treatments indicating that the MdTCPs were involved in various developmental and physiological processes. To the best of our knowledge, this is the first study of a genomewide analysis of apple TCP gene family. These results provide valuable information for studies on functions of the TCP transcription factor genes in apple.
Chen, Jihua; Uto, Takuhiro; Tanigawa, Shunsuke; Yamada-Kato, Tomeo; Fujii, Makoto; Hou, DE-Xing
2010-01-01
6-(Methylsulfinyl)hexyl isothiocyanate (6-MSITC) is a bioactive ingredient of wasabi [Wasabia japonica (Miq.) Matsumura], which is a popular pungent spice of Japan. To evaluate the anti-inflammatory function and underlying genes targeted by 6-MSITC, gene expression profiling through DNA microarray was performed in mouse macrophages. Among 22,050 oligonucleotides, the expression levels of 406 genes were increased by ≥3-fold in lipopolysaccharide (LPS)-activated RAW264 cells, 238 gene signals of which were attenuated by 6-MSITC (≥2-fold). Expression levels of 717 genes were decreased by ≥3-fold in LPS-activated cells, of which 336 gene signals were restored by 6-MSITC (≥2-fold). Utilizing group analysis, 206 genes affected by 6-MSITC with a ≥2-fold change were classified into 35 categories relating to biological processes (81), molecular functions (108) and signaling pathways (17). The genes were further categorized as 'defense, inflammatory response, cytokine activities and receptor activities' and some were confirmed by real-time polymerase chain reaction. Ingenuity pathway analysis further revealed that wasabi 6-MSITC regulated the relevant networks of chemokines, interleukins and interferons to exert its anti-inflammatory function.
CHEN, JIHUA; UTO, TAKUHIRO; TANIGAWA, SHUNSUKE; YAMADA-KATO, TOMEO; FUJII, MAKOTO; HOU, DE-XING
2010-01-01
6-(Methylsulfinyl)hexyl isothiocyanate (6-MSITC) is a bioactive ingredient of wasabi [Wasabia japonica (Miq.) Matsumura], which is a popular pungent spice of Japan. To evaluate the anti-inflammatory function and underlying genes targeted by 6-MSITC, gene expression profiling through DNA microarray was performed in mouse macrophages. Among 22,050 oligonucleotides, the expression levels of 406 genes were increased by ≥3-fold in lipopolysaccharide (LPS)-activated RAW264 cells, 238 gene signals of which were attenuated by 6-MSITC (≥2-fold). Expression levels of 717 genes were decreased by ≥3-fold in LPS-activated cells, of which 336 gene signals were restored by 6-MSITC (≥2-fold). Utilizing group analysis, 206 genes affected by 6-MSITC with a ≥2-fold change were classified into 35 categories relating to biological processes (81), molecular functions (108) and signaling pathways (17). The genes were further categorized as ‘defense, inflammatory response, cytokine activities and receptor activities’ and some were confirmed by real-time polymerase chain reaction. Ingenuity pathway analysis further revealed that wasabi 6-MSITC regulated the relevant networks of chemokines, interleukins and interferons to exert its anti-inflammatory function. PMID:23136589
Gene Circuit Analysis of the Terminal Gap Gene huckebein
Ashyraliyev, Maksat; Siggens, Ken; Janssens, Hilde; Blom, Joke; Akam, Michael; Jaeger, Johannes
2009-01-01
The early embryo of Drosophila melanogaster provides a powerful model system to study the role of genes in pattern formation. The gap gene network constitutes the first zygotic regulatory tier in the hierarchy of the segmentation genes involved in specifying the position of body segments. Here, we use an integrative, systems-level approach to investigate the regulatory effect of the terminal gap gene huckebein (hkb) on gap gene expression. We present quantitative expression data for the Hkb protein, which enable us to include hkb in gap gene circuit models. Gap gene circuits are mathematical models of gene networks used as computational tools to extract regulatory information from spatial expression data. This is achieved by fitting the model to gap gene expression patterns, in order to obtain estimates for regulatory parameters which predict a specific network topology. We show how considering variability in the data combined with analysis of parameter determinability significantly improves the biological relevance and consistency of the approach. Our models are in agreement with earlier results, which they extend in two important respects: First, we show that Hkb is involved in the regulation of the posterior hunchback (hb) domain, but does not have any other essential function. Specifically, Hkb is required for the anterior shift in the posterior border of this domain, which is now reproduced correctly in our models. Second, gap gene circuits presented here are able to reproduce mutants of terminal gap genes, while previously published models were unable to reproduce any null mutants correctly. As a consequence, our models now capture the expression dynamics of all posterior gap genes and some variational properties of the system correctly. This is an important step towards a better, quantitative understanding of the developmental and evolutionary dynamics of the gap gene network. PMID:19876378
Gene circuit analysis of the terminal gap gene huckebein.
Ashyraliyev, Maksat; Siggens, Ken; Janssens, Hilde; Blom, Joke; Akam, Michael; Jaeger, Johannes
2009-10-01
The early embryo of Drosophila melanogaster provides a powerful model system to study the role of genes in pattern formation. The gap gene network constitutes the first zygotic regulatory tier in the hierarchy of the segmentation genes involved in specifying the position of body segments. Here, we use an integrative, systems-level approach to investigate the regulatory effect of the terminal gap gene huckebein (hkb) on gap gene expression. We present quantitative expression data for the Hkb protein, which enable us to include hkb in gap gene circuit models. Gap gene circuits are mathematical models of gene networks used as computational tools to extract regulatory information from spatial expression data. This is achieved by fitting the model to gap gene expression patterns, in order to obtain estimates for regulatory parameters which predict a specific network topology. We show how considering variability in the data combined with analysis of parameter determinability significantly improves the biological relevance and consistency of the approach. Our models are in agreement with earlier results, which they extend in two important respects: First, we show that Hkb is involved in the regulation of the posterior hunchback (hb) domain, but does not have any other essential function. Specifically, Hkb is required for the anterior shift in the posterior border of this domain, which is now reproduced correctly in our models. Second, gap gene circuits presented here are able to reproduce mutants of terminal gap genes, while previously published models were unable to reproduce any null mutants correctly. As a consequence, our models now capture the expression dynamics of all posterior gap genes and some variational properties of the system correctly. This is an important step towards a better, quantitative understanding of the developmental and evolutionary dynamics of the gap gene network.
The prediction of biogenic magnetic nanoparticles biomineralization in human tissues and organs
NASA Astrophysics Data System (ADS)
Medviediev, O.; Gorobets, O. Yu; Gorobets, S. V.; Yadrykhins'ky, V. S.
2017-10-01
In this study, human homologs of magnetosome island proteins basing on pairwise and multiple alignment of amino acid sequences were found. The expression levels of genes, which encode magnetosome island proteins of M. gryphiswaldense MSR-1, that were cultured under oxygen deficiency conditions and also under microaerobic conditions were compared to the expression levels of genes that encode the relevant homologs in human organism. The possibility of BMN biomineralization in human tissues and organs, in which BMN were not experimentally found before, was predicted.
Gene expression changes in uterine myomas in response to ulipristal acetate treatment.
Courtoy, Guillaume E; Donnez, Jacques; Ambroise, Jérôme; Arriagada, Pablo; Luyckx, Mathieu; Marbaix, Etienne; Dolmans, Marie-Madeleine
2018-05-07
Does ulipristal acetate (UPA) modify the expression of genes related to apoptosis or the extracellular matrix in uterine myomas and are any modifications associated with a clinical response? Targeted analysis of 176 apoptosis- or extracellular-matrix-related genes was conducted using polymerase chain reaction (PCR) arrays. Relevant results were validated by quantitative PCR. Four groups were established: responsive short-term (one course, n = 9), responsive long-term (two to four courses, n = 9), non-responsive (n = 9), and the control group who was not given any hormone therapy (n = 9). The clinical response was monitored by medical imagery and considered significant when volume reduction was greater than 25%. Compared with untreated myomas, significant changes in expression of four genes were found in UPA-treated myomas. Gene expression of integrin subunit beta 4 was repressed by UPA treatment (fold change [FC] = -12.50, P < 0.001, q < 0.001), tenascin-C expression was downregulated in UPA-responsive patients (FC = -2.50, P = 0.010, q = 0.090), survivin was repressed in short-term UPA-responsive tumours (FC = -7.69, P < 0.001, q = 0.010), and catenin delta 2 gene expression was upregulated in non-responsive myomas (FC = +7.36, P < 0.001, q = 0.010). This characterization provides the first molecular distinction between myomas responsive or non-responsive to UPA treatment. Copyright © 2018 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ke, Zhang-Hong; Pan, Jie-Xue; Jin, Lu-Yang; Xu, Hai-Yan; Yu, Tian-Tian; Ullah, Kamran; Rahman, Tanzil Ur; Ren, Jun; Cheng, Yi; Dong, Xin-Yan; Sheng, Jian-Zhong; Huang, He-Feng
2016-08-01
Accumulating evidence suggests a role of bisphenol A (BPA) in metabolic disorders. However, the underlying mechanism is still unclear. Using a mouse BPA exposure model, we investigated the effects of long-term BPA exposure on lipid metabolism and the underlying mechanisms. The male mice exposed to BPA (0.5 μg BPA /kg/day, a human relevant dose) for 10 months exhibited significant hepatic accumulation of triglycerides and cholesterol. The liver cells from the BPA-exposed mice showed significantly increased expression levels of the genes related to lipid synthesis. These liver cells showed decreased DNA methylation levels of Srebf1 and Srebf2, and increased expression levels of Srebf1 and Srebf2 that may upregulate the genes related to lipid synthesis. The expression levels of DNA methyltransferases were decreased in BPA-exposed mouse liver. Hepa1-6 cell line treated with BPA showed decreased expression levels of DNA methyltransferases and increased expression levels of genes involved in lipid synthesis. DNA methyltransferase knockdown in Hepa1-6 led to hypo-methylation and increased expression levels of genes involved in lipid synthesis. Our results suggest that long-term BPA exposure could induce hepatic lipid accumulation, which may be due to the epigenetic reprogramming of the genes involved in lipid metabolism, such as the alterations of DNA methylation patterns.
Ke, Zhang-Hong; Pan, Jie-Xue; Jin, Lu-Yang; Xu, Hai-Yan; Yu, Tian-Tian; Ullah, Kamran; Rahman, Tanzil Ur; Ren, Jun; Cheng, Yi; Dong, Xin-Yan; Sheng, Jian-Zhong; Huang, He-Feng
2016-01-01
Accumulating evidence suggests a role of bisphenol A (BPA) in metabolic disorders. However, the underlying mechanism is still unclear. Using a mouse BPA exposure model, we investigated the effects of long-term BPA exposure on lipid metabolism and the underlying mechanisms. The male mice exposed to BPA (0.5 μg BPA /kg/day, a human relevant dose) for 10 months exhibited significant hepatic accumulation of triglycerides and cholesterol. The liver cells from the BPA-exposed mice showed significantly increased expression levels of the genes related to lipid synthesis. These liver cells showed decreased DNA methylation levels of Srebf1 and Srebf2, and increased expression levels of Srebf1 and Srebf2 that may upregulate the genes related to lipid synthesis. The expression levels of DNA methyltransferases were decreased in BPA-exposed mouse liver. Hepa1-6 cell line treated with BPA showed decreased expression levels of DNA methyltransferases and increased expression levels of genes involved in lipid synthesis. DNA methyltransferase knockdown in Hepa1-6 led to hypo-methylation and increased expression levels of genes involved in lipid synthesis. Our results suggest that long-term BPA exposure could induce hepatic lipid accumulation, which may be due to the epigenetic reprogramming of the genes involved in lipid metabolism, such as the alterations of DNA methylation patterns. PMID:27502578
Camphausen, Kevin; Purow, Benjamin; Sproull, Mary; Scott, Tamalee; Ozawa, Tomoko; Deen, Dennis F.; Tofilon, Philip J.
2005-01-01
Defining the molecules that regulate tumor cell survival is an essential prerequisite for the development of targeted approaches to cancer treatment. Whereas many studies aimed at identifying such targets use human tumor cells grown in vitro or as s.c. xenografts, it is unclear whether such experimental models replicate the phenotype of the in situ tumor cell. To begin addressing this issue, we have used microarray analysis to define the gene expression profile of two human glioma cell lines (U251 and U87) when grown in vitro and in vivo as s.c. or as intracerebral (i.c.) xenografts. For each cell line, the gene expression profile generated from tissue culture was significantly different from that generated from the s.c. tumor, which was significantly different from those grown i.c. The disparity between the i.c gene expression profiles and those generated from s.c. xenografts suggests that whereas an in vivo growth environment modulates gene expression, orthotopic growth conditions induce a different set of modifications. In this study the U251 and U87 gene expression profiles generated under the three growth conditions were also compared. As expected, the profiles of the two glioma cell lines were significantly different when grown as monolayer cultures. However, the glioma cell lines had similar gene expression profiles when grown i.c. These results suggest that tumor cell gene expression, and thus phenotype, as defined in vitro is affected not only by in vivo growth but also by orthotopic growth, which may have implications regarding the identification of relevant targets for cancer therapy. PMID:15928080
Complex nature of SNP genotype effects on gene expression in primary human leucocytes.
Heap, Graham A; Trynka, Gosia; Jansen, Ritsert C; Bruinenberg, Marcel; Swertz, Morris A; Dinesen, Lotte C; Hunt, Karen A; Wijmenga, Cisca; Vanheel, David A; Franke, Lude
2009-01-07
Genome wide association studies have been hugely successful in identifying disease risk variants, yet most variants do not lead to coding changes and how variants influence biological function is usually unknown. We correlated gene expression and genetic variation in untouched primary leucocytes (n = 110) from individuals with celiac disease - a common condition with multiple risk variants identified. We compared our observations with an EBV-transformed HapMap B cell line dataset (n = 90), and performed a meta-analysis to increase power to detect non-tissue specific effects. In celiac peripheral blood, 2,315 SNP variants influenced gene expression at 765 different transcripts (< 250 kb from SNP, at FDR = 0.05, cis expression quantitative trait loci, eQTLs). 135 of the detected SNP-probe effects (reflecting 51 unique probes) were also detected in a HapMap B cell line published dataset, all with effects in the same allelic direction. Overall gene expression differences within the two datasets predominantly explain the limited overlap in observed cis-eQTLs. Celiac associated risk variants from two regions, containing genes IL18RAP and CCR3, showed significant cis genotype-expression correlations in the peripheral blood but not in the B cell line datasets. We identified 14 genes where a SNP affected the expression of different probes within the same gene, but in opposite allelic directions. By incorporating genetic variation in co-expression analyses, functional relationships between genes can be more significantly detected. In conclusion, the complex nature of genotypic effects in human populations makes the use of a relevant tissue, large datasets, and analysis of different exons essential to enable the identification of the function for many genetic risk variants in common diseases.
Cruz-Rodriguez, Nataly; Combita, Alba L; Enciso, Leonardo J; Quijano, Sandra M; Pinzon, Paula L; Lozano, Olga C; Castillo, Juan S; Li, Li; Bareño, Jose; Cardozo, Claudia; Solano, Julio; Herrera, Maria V; Cudris, Jennifer; Zabaleta, Jovanny
2016-04-05
B-Acute lymphoblastic leukemia (B-ALL) represents a hematologic malignancy with poor clinical outcome and low survival rates in adult patients. Remission rates in Hispanic population are almost 30% lower and Overall Survival (OS) nearly two years inferior than those reported in other ethnic groups. Only 61% of Colombian adult patients with ALL achieve complete remission (CR), median overall survival is 11.3 months and event-free survival (EFS) is 7.34 months. Identification of prognostic factors is crucial for the application of proper treatment strategies and subsequently for successful outcome. Our goal was to identify a gene expression signature that might correlate with response to therapy and evaluate the utility of these as prognostic tool in hispanic patients. We included 43 adult patients newly diagnosed with B-ALL. We used microarray analysis in order to identify genes that distinguish poor from good response to treatment using differential gene expression analysis. The expression profile was validated by real-time PCR (RT-PCT). We identified 442 differentially expressed genes between responders and non-responders to induction treatment. Hierarchical analysis according to the expression of a 7-gene signature revealed 2 subsets of patients that differed in their clinical characteristics and outcome. Our study suggests that response to induction treatment and clinical outcome of Hispanic patients can be predicted from the onset of the disease and that gene expression profiles can be used to stratify patient risk adequately and accurately. The present study represents the first that shows the gene expression profiling of B-ALL Colombian adults and its relevance for stratification in the early course of disease.
Expression of fourteen novel obesity-related genes in Zucker diabetic fatty rats.
Schmid, Peter M; Heid, Iris; Buechler, Christa; Steege, Andreas; Resch, Markus; Birner, Christoph; Endemann, Dierk H; Riegger, Guenter A; Luchner, Andreas
2012-07-13
Genome-wide association studies (GWAS) are useful to reveal an association between single nucleotide polymorphisms and different measures of obesity. A multitude of new loci has recently been reported, but the exact function of most of the according genes is not known. The aim of our study was to start elucidating the function of some of these genes. We performed an expression analysis of fourteen genes, namely BDNF, ETV5, FAIM2, FTO, GNPDA2, KCTD15, LYPLAL1, MCR4, MTCH2, NEGR1, NRXN3, TMEM18, SEC16B and TFAP2B, via real-time RT-PCR in adipose tissue of the kidney capsule, the mesenterium and subcutaneum as well as the hypothalamus of obese Zucker diabetic fatty (ZDF) and Zucker lean (ZL) rats at an age of 22 weeks. All of our target genes except for SEC16B showed the highest expression in the hypothalamus. This suggests a critical role of these obesity-related genes in the central regulation of energy balance. Interestingly, the expression pattern in the hypothalamus showed no differences between obese ZDF and lean ZL rats. However, LYPLAL1, TFAP2B, SEC16B and FAIM2 were significantly lower expressed in the kidney fat of ZDF than ZL rats. NEGR1 was even lower expressed in subcutaneous and mesenterial fat, while MTCH2 was higher expressed in the subcutaneous and mesenterial fat of ZDF rats. The expression pattern of the investigated obesity genes implies for most of them a role in the central regulation of energy balance, but for some also a role in the adipose tissue itself. For the development of the ZDF phenotype peripheral rather than central mechanisms of the investigated genes seem to be relevant.
Identification of Differentially Expressed Genes in Blood Cells of Narcolepsy Patients
Tanaka, Susumu; Honda, Yutaka; Honda, Makoto
2007-01-01
Study Objective: A close association between the human leukocyte antigen (HLA)-DRB1*1501/DQB1*0602 and abnormalities in some inflammatory cytokines have been demonstrated in narcolepsy. Specific alterations in the immune system have been suggested to occur in this disorder. We attempted to identify alterations in gene expression underlying the abnormalities in the blood cells of narcoleptic patients. Designs: Total RNA from 12 narcolepsy-cataplexy patients and from 12 age- and sex-matched healthy controls were pooled. The pooled samples were initially screened for candidate genes for narcolepsy by differential display analysis using annealing control primers (ACP). The second screening of the samples was carried out by semiquantitative PCR using gene-specific primers. Finally, the expression levels of the candidate genes were further confirmed by quantitative real-time PCR using a new set of samples (20 narcolepsy-cataplexy patients and 20 healthy controls). Results: The second screening revealed differential expression of 4 candidate genes. Among them, MX2 was confirmed as a significantly down-regulated gene in the white blood cells of narcoleptic patients by quantitative real-time PCR. Conclusion: We found the MX2 gene to be significantly less expressed in comparison with normal subjects in the white blood cells of narcoleptic patients. This gene is relevant to the immune system. Although differential display analysis using ACP technology has a limitation in that it does not help in determining the functional mechanism underlying sleep/wakefulness dysregulation, it is useful for identifying novel genetic factors related to narcolepsy, such as HLA molecules. Further studies are required to explore the functional relationship between the MX2 gene and narcolepsy pathophysiology. Citation: Tanaka S; Honda Y; Honda M. Identification of differentially expressed genes in blood cells of narcolepsy patients. SLEEP 2007;30(8):974-979. PMID:17702266
2012-01-01
Background Time-course gene expression data such as yeast cell cycle data may be periodically expressed. To cluster such data, currently used Fourier series approximations of periodic gene expressions have been found not to be sufficiently adequate to model the complexity of the time-course data, partly due to their ignoring the dependence between the expression measurements over time and the correlation among gene expression profiles. We further investigate the advantages and limitations of available models in the literature and propose a new mixture model with autoregressive random effects of the first order for the clustering of time-course gene-expression profiles. Some simulations and real examples are given to demonstrate the usefulness of the proposed models. Results We illustrate the applicability of our new model using synthetic and real time-course datasets. We show that our model outperforms existing models to provide more reliable and robust clustering of time-course data. Our model provides superior results when genetic profiles are correlated. It also gives comparable results when the correlation between the gene profiles is weak. In the applications to real time-course data, relevant clusters of coregulated genes are obtained, which are supported by gene-function annotation databases. Conclusions Our new model under our extension of the EMMIX-WIRE procedure is more reliable and robust for clustering time-course data because it adopts a random effects model that allows for the correlation among observations at different time points. It postulates gene-specific random effects with an autocorrelation variance structure that models coregulation within the clusters. The developed R package is flexible in its specification of the random effects through user-input parameters that enables improved modelling and consequent clustering of time-course data. PMID:23151154
NASA Technical Reports Server (NTRS)
Zhang, Ye; Mehta, Satish; Hammond, Diane; Pierson, Duane; Jeevarajan, Antony; Cucinotta, Francis; Rohde, Larry; Wu, Honglu
2007-01-01
Understanding of the molecular response to low-dose and low-dose-rate radiation exposure is essential for the extrapolation of high-dose radiation risks to those at dose levels relevant to space and other environmental concerns. Most of the reported studies of gene expressions induced by low-dose or low-dose-rate radiation were carried out on exponentially growing cells. In the present study, we analyzed expressions of 84 genes associated with DNA damage sensing using real time PCR in human fibroblasts in mostly G1 phase of the cell cycle. The cells were exposed continuously to gamma rays at a dose rate of 0.8 cGy/hr for 1, 2, 6 or 24 hrs at 37 C throughout the exposure. The total RNA was isolated immediately after the exposure was terminated. Of the 84 genes, only a few showed significant changes of the expression level. Some of the genes (e.g. DDit3 and BTG2) were found to be up or down regulated only after a short period of exposure, while other genes (e.g. PRKDC) displayed a highest expression level at the 24 hr time point. The expression profiles for the exposed cells which had a smaller portion of G1 cells indicated more cell cycle signaling and DNA repair genes either up or down regulated. Interestingly, the panel of genes changed from radiation exposure in G1 cells is different from the panel in cells having less G1 arrest cells. The gene expression profile of the cells responding to low-dose-radiation insult apparently depends on the cell growth stage. The response pathway in G1 cells may differ from that in exponentially growing cells.
Geng, Xiaodong; Wang, Yuanda; Hong, Quan; Yang, Jurong; Zheng, Wei; Zhang, Gang; Cai, Guangyan; Chen, Xiangmei; Wu, Di
2015-01-01
Rhabdomyolysis is a threatening syndrome because it causes the breakdown of skeletal muscle. Muscle destruction leads to the release of myoglobin, intracellular proteins, and electrolytes into the circulation. The aim of this study was to investigate the differences in gene expression profiles and signaling pathways upon rhabdomyolysis-induced acute kidney injury (AKI). In this study, we used glycerol-induced renal injury as a model of rhabdomyolysis-induced AKI. We analyzed data and relevant information from the Gene Expression Omnibus database (No: GSE44925). The gene expression data for three untreated mice were compared to data for five mice with rhabdomyolysis-induced AKI. The expression profiling of the three untreated mice and the five rhabdomyolysis-induced AKI mice was performed using microarray analysis. We examined the levels of Cyp3a13, Rela, Aldh7a1, Jun, CD14. And Cdkn1a using RT-PCR to determine the accuracy of the microarray results. The microarray analysis showed that there were 1050 downregulated and 659 upregulated genes in the rhabdomyolysis-induced AKI mice compared to the control group. The interactions of all differentially expressed genes in the Signal-Net were analyzed. Cyp3a13 and Rela had the most interactions with other genes. The data showed that Rela and Aldh7a1 were the key nodes and had important positions in the Signal-Net. The genes Jun, CD14, and Cdkn1a were also significantly upregulated. The pathway analysis classified the differentially expressed genes into 71 downregulated and 48 upregulated pathways including the PI3K/Akt, MAPK, and NF-κB signaling pathways. The results of this study indicate that the NF-κB, MAPK, PI3K/Akt, and apoptotic pathways are regulated in rhabdomyolysis-induced AKI.
Grissell, Terry V; Chang, Anne B; Gibson, Peter G
2007-04-01
Neuro-immune interactions are increasingly relevant to human health and disease. The neuropeptide Substance P also has antibacterial activity and bears similarities to the innate immune antibacterial defensins. This suggests possible co-regulation of neuropeptide and innate immune mediators. In this study, non-bronchoscopic bronchoalveolar lavage (BAL) was performed on 69 children. BAL was examined for cellular profile, microbiology (bacteria, virus) and gene expression for TLRs 2, 3, 4; chemokine receptors (CCR3, CCR5, CXCR1); neurotrophins and neurokinin genes (TAC1, TAC3, CGRP, NGF). In children with bacterial colonization (n=10) there was an airway inflammatory response with increased BAL neutrophils, IL-8 protein, and CXCR1 expression. Substance P (TAC1) and TLR4 RNA expression were reduced in children with bacterial colonization. TLR3 mRNA was increased in 7.2% (n=5) children with rhinovirus, and there was a non-significant trend to increased TLR2. There is evidence for co-regulation of neurokinin (TAC1) and TLR4 gene expression in airway cells from children with airway bacterial colonization and their reduced expression may be associated with an impaired bacterial clearance. (c) 2007 Wiley-Liss, Inc.
Gene and protein expression following exposure to radiofrequency fields from mobile phones.
Vanderstraeten, Jacques; Verschaeve, Luc
2008-09-01
Since 1999, several articles have been published on genome-wide and/or proteome-wide response after exposure to radiofrequency (RF) fields whose signal and intensities were similar to or typical of those of currently used mobile telephones. These studies were performed using powerful high-throughput screening techniques (HTSTs) of transcriptomics and/or proteomics, which allow for the simultaneous screening of the expression of thousands of genes or proteins. We reviewed these HTST-based studies and compared the results with currently accepted concepts about the effects of RF fields on gene expression. In this article we also discuss these last in light of the recent concept of microwave-assisted chemistry. To date, the results of HTST-based studies of transcriptomics and/or proteomics after exposure to RF fields relevant to human exposure are still inconclusive, as most of the positive reports are flawed by methodologic imperfections or shortcomings. In addition, when positive findings were reported, no precise response pattern could be identified in a reproducible way. In particular, results from HTST studies tend to exclude the role of a cell stressor for exposure to RF fields at nonthermal intensities. However, on the basis of lessons from microwave-assisted chemistry, we can assume that RF fields might affect heat-sensitive gene or protein expression to an extent larger than would be predicted from temperature change only. But in all likelihood, this would concern intensities higher than those relevant to usual human exposure. The precise role of transcriptomics and proteomics in the screening of bioeffects from exposure to RF fields from mobile phones is still uncertain in view of the lack of positively identified phenotypic change and the lack of theoretical, as well as experimental, arguments for specific gene and/or protein response patterns after this kind of exposure.
Erickson, Keesha E; Otoupal, Peter B; Chatterjee, Anushree
2017-01-01
Antibiotic-resistant bacteria are an increasingly serious public health concern, as strains emerge that demonstrate resistance to almost all available treatments. One factor that contributes to the crisis is the adaptive ability of bacteria, which exhibit remarkable phenotypic and gene expression heterogeneity in order to gain a survival advantage in damaging environments. This high degree of variability in gene expression across biological populations makes it a challenging task to identify key regulators of bacterial adaptation. Here, we research the regulation of adaptive resistance by investigating transcriptome profiles of Escherichia coli upon adaptation to disparate toxins, including antibiotics and biofuels. We locate potential target genes via conventional gene expression analysis as well as using a new analysis technique examining differential gene expression variability. By investigating trends across the diverse adaptation conditions, we identify a focused set of genes with conserved behavior, including those involved in cell motility, metabolism, membrane structure, and transport, and several genes of unknown function. To validate the biological relevance of the observed changes, we synthetically perturb gene expression using clustered regularly interspaced short palindromic repeat (CRISPR)-dCas9. Manipulation of select genes in combination with antibiotic treatment promotes adaptive resistance as demonstrated by an increased degree of antibiotic tolerance and heterogeneity in MICs. We study the mechanisms by which identified genes influence adaptation and find that select differentially variable genes have the potential to impact metabolic rates, mutation rates, and motility. Overall, this work provides evidence for a complex nongenetic response, encompassing shifts in gene expression and gene expression variability, which underlies adaptive resistance. IMPORTANCE Even initially sensitive bacteria can rapidly thwart antibiotic treatment through stress response processes known as adaptive resistance. Adaptive resistance fosters transient tolerance increases and the emergence of mutations conferring heritable drug resistance. In order to extend the applicable lifetime of new antibiotics, we must seek to hinder the occurrence of bacterial adaptive resistance; however, the regulation of adaptation is difficult to identify due to immense heterogeneity emerging during evolution. This study specifically seeks to generate heterogeneity by adapting bacteria to different stresses and then examines gene expression trends across the disparate populations in order to pinpoint key genes and pathways associated with adaptive resistance. The targets identified here may eventually inform strategies for impeding adaptive resistance and prolonging the effectiveness of antibiotic treatment.
Wei, Min; Yokoyama, Tadashi; Minamisawa, Kiwamu; Mitsui, Hisayuki; Itakura, Manabu; Kaneko, Takakazu; Tabata, Satoshi; Saeki, Kazuhiko; Omori, Hirofumi; Tajima, Shigeyuki; Uchiumi, Toshiki; Abe, Mikiko; Ohwada, Takuji
2008-08-01
Initial interaction between rhizobia and legumes actually starts via encounters of both partners in the rhizosphere. In this study, the global expression profiles of Bradyrhizobium japonicum USDA 110 in response to soybean (Glycine max) seed extracts (SSE) and genistein, a major soybean-released isoflavone for nod genes induction of B. japonicum, were compared. SSE induced many genomic loci as compared with genistein (5.0 microM), nevertheless SSE-supplemented medium contained 4.7 microM genistein. SSE markedly induced four predominant genomic regions within a large symbiosis island (681 kb), which include tts genes (type III secretion system) and various nod genes. In addition, SSE-treated cells expressed many genomic loci containing genes for polygalacturonase (cell-wall degradation), exopolysaccharide synthesis, 1-aminocyclopropane-1-carboxylate deaminase, ribosome proteins family and energy metabolism even outside symbiosis island. On the other hand, genistein-treated cells exclusively showed one expression cluster including common nod gene operon within symbiosis island and six expression loci including multidrug resistance, which were shared with SSE-treated cells. Twelve putatively regulated genes were indeed validated by quantitative RT-PCR. Several SSE-induced genomic loci likely participate in the initial interaction with legumes. Thus, these results can provide a basic knowledge for screening novel genes relevant to the B. japonicum- soybean symbiosis.
Navarrete, Francisco; García-Gutiérrez, María S; Laborda, Jorge; Manzanares, Jorge
2017-11-01
The purpose of this study was to evaluate the role of the non-canonical DLK2 NOTCH ligand in the regulation of emotional behavior. To this aim, anxiety and depressive-like behaviors were examined in Dlk2 knock-out (Dlk2 -/- ) and its corresponding wild-type (WT) mice. Furthermore, relative gene expression analyses of corticotropin releasing hormone (Crh) in the paraventricular nucleus (PVN), glucocorticoid receptor (NR3C1) and FK506 binding protein 5 (FKBP5) in the hippocampus (HIPP), and the transcription factors Hes1, Hes5 and Hey1 in the PVN, HIPP and amygdala (AMY) were carried out in Dlk2 -/- and WT mice under basal conditions and after exposure to restraint stress. The anxiolytic action of alprazolam and the relative gene expression levels of the GABA-A alpha 2 and gamma 2 receptor subunits (Gabra2 and Gabrg2) were also evaluated in the HIPP and AMY of WT and Dlk2 -/- mice. The results reveal that deletion of Dlk2 increased anxiety and depressive-like behaviors and altered the vulnerability to restraint stress on Crh gene expression in the PVN, Nr3c1 and Fkbp5 gene expression in the HIPP, and Hes1, Hes5 and Hey1 gene expression in the PVN, HIPP and AMY. Interestingly, the administration of alprazolam failed to produce an anxiolytic action in Dlk2 -/- mice. Indeed, Gabra2 and Gabrg2 gene expression levels were significantly affected under basal conditions and after stress exposure in Dlk2 -/- mice compared with WT mice. In conclusion, the results suggest that DLK2 plays an important role in the regulation of emotional behaviors and relevant targets of the stress axis, NOTCH pathway and GABAergic neurotransmission. In addition, the deletion of Dlk2 blocked the anxiolytic response to alprazolam. Future studies are needed to determine the relevance of DLK2 as a potential therapeutic target for the treatment of neuropsychiatric disorders with anxiety or depressive-like behaviors. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiu, Wenhui
Antidepressants, having been applied for the treatment of major depressive disorder and other conditions for decades, are among the most commonly detected human pharmaceuticals in the aquatic environment. This study evaluated the immunotoxicity of acute exposure to environmentally relevant concentrations of amitriptyline, fluoxetine and mianserin using an in vitro primary macrophage model isolated from red common carp (Cyprinus carpio), and also explored their potential mechanisms of action. A potential suppressive immunoregulatory effect of antidepressant exposure was suggested based on the observed suppressive effects on oxidative stress parameters, bactericidal activity, NO production, and NO synthase activity, as well as pro-inflammatory cytokinemore » gene expression, and a significant stimulatory effect on anti-inflammatory interleukin-10 and interferon cytokine gene expression and ATPase activities in macrophages after 6 h-exposure to three individual antidepressants and a combination thereof. Notably, we also found these effects were significantly associated with a corresponding decrease in nuclear factor-κB (NF-κB) activity after antidepressants exposure, and the NF-κB antagonist significantly restrained the effects of antidepressants on gene expression of cytokines, indicating that antidepressants could alter the response of various immune-associated components via the inhibition of NF-κB. Moreover, time-dependent lethal concentrations of three antidepressants on primary macrophages were firstly determined at mg/L levels, and the synergetic effects of antidepressant mixtures were suggested and in particular, for some parameters including total antioxidant capacity and cytokine genes expression, they could be significantly affected by antidepressants exposure at concentrations as low as 10 ng/L, which together thereby revealed the potential risk of antidepressants to aquatic life. - Highlights: • Three different antidepressants all have immunoregulatory effects on macrophages. • Pro-inflammatory cytokine gene expression was inhibited by drug exposure. • Anti-inflammatory cytokine gene expression was induced by drug exposure. • NF-κB pathway was involved in the effects of antidepressants. • Synergetic effects occurred at environmentally relevant concentration of 10 ng/L.« less
Gladka, Monika M; Molenaar, Bas; de Ruiter, Hesther; van der Elst, Stefan; Tsui, Hoyee; Versteeg, Danielle; Lacraz, Grègory P A; Huibers, Manon M H; van Oudenaarden, Alexander; van Rooij, Eva
2018-01-31
Background -Genome-wide transcriptome analysis has greatly advanced our understanding of the regulatory networks underlying basic cardiac biology and mechanisms driving disease. However, so far, the resolution of studying gene expression patterns in the adult heart has been limited to the level of extracts from whole tissues. The use of tissue homogenates inherently causes the loss of any information on cellular origin or cell type-specific changes in gene expression. Recent developments in RNA amplification strategies provide a unique opportunity to use small amounts of input RNA for genome-wide sequencing of single cells. Methods -Here, we present a method to obtain high quality RNA from digested cardiac tissue from adult mice for automated single-cell sequencing of both the healthy and diseased heart. Results -After optimization, we were able to perform single-cell sequencing on adult cardiac tissue under both homeostatic conditions and after ischemic injury. Clustering analysis based on differential gene expression unveiled known and novel markers of all main cardiac cell types. Based on differential gene expression we were also able to identify multiple subpopulations within a certain cell type. Furthermore, applying single-cell sequencing on both the healthy and the injured heart indicated the presence of disease-specific cell subpopulations. As such, we identified cytoskeleton associated protein 4 ( Ckap4 ) as a novel marker for activated fibroblasts that positively correlates with known myofibroblast markers in both mouse and human cardiac tissue. Ckap4 inhibition in activated fibroblasts treated with TGFβ triggered a greater increase in the expression of genes related to activated fibroblasts compared to control, suggesting a role of Ckap4 in modulating fibroblast activation in the injured heart. Conclusions -Single-cell sequencing on both the healthy and diseased adult heart allows us to study transcriptomic differences between cardiac cells, as well as cell type-specific changes in gene expression during cardiac disease. This new approach provides a wealth of novel insights into molecular changes that underlie the cellular processes relevant for cardiac biology and pathophysiology. Applying this technology could lead to the discovery of new therapeutic targets relevant for heart disease.
Methylomics of gene expression in human monocytes
Liu, Yongmei; Ding, Jingzhong; Reynolds, Lindsay M.; Lohman, Kurt; Register, Thomas C.; De La Fuente, Alberto; Howard, Timothy D.; Hawkins, Greg A.; Cui, Wei; Morris, Jessica; Smith, Shelly G.; Barr, R. Graham; Kaufman, Joel D.; Burke, Gregory L.; Post, Wendy; Shea, Steven; Mccall, Charles E.; Siscovick, David; Jacobs, David R.; Tracy, Russell P.; Herrington, David M.; Hoeschele, Ina
2013-01-01
DNA methylation is one of several epigenetic mechanisms that contribute to the regulation of gene expression; however, the extent to which methylation of CpG dinucleotides correlates with gene expression at the genome-wide level is still largely unknown. Using purified primary monocytes from subjects in a large community-based cohort (n = 1264), we characterized methylation (>485 000 CpG sites) and mRNA expression (>48K transcripts) and carried out genome-wide association analyses of 8370 expression phenotypes. We identified 11 203 potential cis-acting CpG loci whose degree of methylation was associated with gene expression (eMS) at a false discovery rate threshold of 0.001. Most of the associations were consistent in effect size and direction of effect across sex and three ethnicities. Contrary to expectation, these eMS were not predominately enriched in promoter regions, or CpG islands, but rather in the 3′ UTR, gene bodies, CpG shores or ‘offshore’ sites, and both positive and negative correlations between methylation and expression were observed across all locations. eMS were enriched for regions predicted to be regulatory by ENCODE (Encyclopedia of DNA Elements) data in multiple cell types, particularly enhancers. One of the strongest association signals detected (P < 2.2 × 10−308) was a methylation probe (cg17005068) in the promoter/enhancer region of the glutathione S-transferase theta 1 gene (GSTT1, encoding the detoxification enzyme) with GSTT1 mRNA expression. Our study provides a detailed description of the epigenetic architecture in human monocytes and its relationship to gene expression. These data may help prioritize interrogation of biologically relevant methylation loci and provide new insights into the epigenetic basis of human health and diseases. PMID:23900078
Wanka, Franziska; Arentshorst, Mark; Cairns, Timothy C; Jørgensen, Thomas; Ram, Arthur F J; Meyer, Vera
2016-08-20
The filamentous ascomycete Aspergillus niger is used in many industrial processes for the production of enzymes and organic acids by batch and fed-batch cultivation. An alternative technique is continuous cultivation, which promises improved yield and optimized pipeline efficiency. In this work, we have used perfusion (retentostat) cultivation to validate two promoters that are suitable for A. niger continuous cultivation of industrially relevant products. Firstly, promoters of genes encoding either an antifungal protein (Panafp) or putative hydrophobin (PhfbD) were confirmed as active throughout retentostat culture by assessing mRNA and protein levels using a luciferase (mluc) reporter system. This demonstrated the anafp promoter mediates a high but temporally variable expression profile, whereas the hfbD promoter mediates a semi-constant, moderate-to-high protein expression during retentostat culture. In order to assess whether these promoters were suitable to produce heterologous proteins during retentostat cultivation, the secreted antifungal protein (AFP) from Aspergillus giganteus, which has many potential biotechnological applications, was expressed in A. niger during retentostat cultivation. Additionally, this assay was used to concomitantly validate that native secretion signals encoded in anafp and hfbD genes can be harnessed for secretion of heterologous proteins. Afp mRNA and protein abundance were comparable to luciferase measurements throughout retentostat cultivation, validating the use of Panafp and PhfbD for perfusion cultivation. Finally, a gene encoding the highly commercially relevant thermal hysteresis protein (THP) was expressed in this system, which did not yield detectable protein. Both hfbD and anafp promoters are suitable for production of useful products in A. niger during perfusion cultivation. These findings provide a platform for further optimisations for high production of heterologous proteins with industrial relevance.
Exploring Transcription Factors-microRNAs Co-regulation Networks in Schizophrenia.
Xu, Yong; Yue, Weihua; Yao Shugart, Yin; Li, Sheng; Cai, Lei; Li, Qiang; Cheng, Zaohuo; Wang, Guoqiang; Zhou, Zhenhe; Jin, Chunhui; Yuan, Jianmin; Tian, Lin; Wang, Jun; Zhang, Kai; Zhang, Kerang; Liu, Sha; Song, Yuqing; Zhang, Fuquan
2016-07-01
Transcriptional factors (TFs) and microRNAs (miRNAs) have been recognized as 2 classes of principal gene regulators that may be responsible for genome coexpression changes observed in schizophrenia (SZ). This study aims to (1) identify differentially coexpressed genes (DCGs) in 3 mRNA expression microarray datasets; (2) explore potential interactions among the DCGs, and differentially expressed miRNAs identified in our dataset composed of early-onset SZ patients and healthy controls; (3) validate expression levels of some key transcripts; and (4) explore the druggability of DCGs using the curated database. We detected a differential coexpression network associated with SZ and found that 9 out of the 12 regulators were replicated in either of the 2 other datasets. Leveraging the differentially expressed miRNAs identified in our previous dataset, we constructed a miRNA-TF-gene network relevant to SZ, including an EGR1-miR-124-3p-SKIL feed-forward loop. Our real-time quantitative PCR analysis indicated the overexpression of miR-124-3p, the under expression of SKIL and EGR1 in the blood of SZ patients compared with controls, and the direction of change of miR-124-3p and SKIL mRNA levels in SZ cases were reversed after a 12-week treatment cycle. Our druggability analysis revealed that many of these genes have the potential to be drug targets. Together, our results suggest that coexpression network abnormalities driven by combinatorial and interactive action from TFs and miRNAs may contribute to the development of SZ and be relevant to the clinical treatment of the disease. © The Author 2015. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Exploring Transcription Factors-microRNAs Co-regulation Networks in Schizophrenia
Xu, Yong; Yue, Weihua; Yao Shugart, Yin; Li, Sheng; Cai, Lei; Li, Qiang; Cheng, Zaohuo; Wang, Guoqiang; Zhou, Zhenhe; Jin, Chunhui; Yuan, Jianmin; Tian, Lin; Wang, Jun; Zhang, Kai; Zhang, Kerang; Liu, Sha; Song, Yuqing; Zhang, Fuquan
2016-01-01
Background: Transcriptional factors (TFs) and microRNAs (miRNAs) have been recognized as 2 classes of principal gene regulators that may be responsible for genome coexpression changes observed in schizophrenia (SZ). Methods: This study aims to (1) identify differentially coexpressed genes (DCGs) in 3 mRNA expression microarray datasets; (2) explore potential interactions among the DCGs, and differentially expressed miRNAs identified in our dataset composed of early-onset SZ patients and healthy controls; (3) validate expression levels of some key transcripts; and (4) explore the druggability of DCGs using the curated database. Results: We detected a differential coexpression network associated with SZ and found that 9 out of the 12 regulators were replicated in either of the 2 other datasets. Leveraging the differentially expressed miRNAs identified in our previous dataset, we constructed a miRNA–TF–gene network relevant to SZ, including an EGR1–miR-124-3p–SKIL feed-forward loop. Our real-time quantitative PCR analysis indicated the overexpression of miR-124-3p, the under expression of SKIL and EGR1 in the blood of SZ patients compared with controls, and the direction of change of miR-124-3p and SKIL mRNA levels in SZ cases were reversed after a 12-week treatment cycle. Our druggability analysis revealed that many of these genes have the potential to be drug targets. Conclusions: Together, our results suggest that coexpression network abnormalities driven by combinatorial and interactive action from TFs and miRNAs may contribute to the development of SZ and be relevant to the clinical treatment of the disease. PMID:26609121
Gene Regulatory Network Inferences Using a Maximum-Relevance and Maximum-Significance Strategy
Liu, Wei; Zhu, Wen; Liao, Bo; Chen, Xiangtao
2016-01-01
Recovering gene regulatory networks from expression data is a challenging problem in systems biology that provides valuable information on the regulatory mechanisms of cells. A number of algorithms based on computational models are currently used to recover network topology. However, most of these algorithms have limitations. For example, many models tend to be complicated because of the “large p, small n” problem. In this paper, we propose a novel regulatory network inference method called the maximum-relevance and maximum-significance network (MRMSn) method, which converts the problem of recovering networks into a problem of how to select the regulator genes for each gene. To solve the latter problem, we present an algorithm that is based on information theory and selects the regulator genes for a specific gene by maximizing the relevance and significance. A first-order incremental search algorithm is used to search for regulator genes. Eventually, a strict constraint is adopted to adjust all of the regulatory relationships according to the obtained regulator genes and thus obtain the complete network structure. We performed our method on five different datasets and compared our method to five state-of-the-art methods for network inference based on information theory. The results confirm the effectiveness of our method. PMID:27829000
Martini, Martina; Dobrowolny, Gabriella; Aucello, Michela; Musarò, Antonio
2015-01-01
To determine the role of mutant SOD1 gene (SOD1G93A) on muscle cell differentiation, we derived C2C12 muscle cell lines carrying a stably transfected SOD1G93A gene under the control of a myosin light chain (MLC) promoter-enhancer cassette. Expression of MLC/SOD1G93A in C2C12 cells resulted in dramatic inhibition of myoblast differentiation. Transfected SOD1G93A gene expression in postmitotic skeletal myocytes downregulated the expression of relevant markers of committed and differentiated myoblasts such as MyoD, Myogenin, MRF4, and the muscle specific miRNA expression. The inhibitory effects of SOD1G93A gene on myogenic program perturbed Akt/p70 and MAPK signaling pathways which promote differentiation cascade. Of note, the inhibition of the myogenic program, by transfected SOD1G93A gene expression, impinged also the identity of myogenic cells. Expression of MLC/SOD1G93A in C2C12 myogenic cells promoted a fibro-adipogenic progenitors (FAPs) phenotype, upregulating HDAC4 protein and preventing the myogenic commitment complex BAF60C-SWI/SNF. We thus identified potential molecular mediators of the inhibitory effects of SOD1G93A on myogenic program and disclosed potential signaling, activated by SOD1G93A, that affect the identity of the myogenic cell population. PMID:26491230
Martini, Martina; Dobrowolny, Gabriella; Aucello, Michela; Musarò, Antonio
2015-01-01
To determine the role of mutant SOD1 gene (SOD1(G93A)) on muscle cell differentiation, we derived C2C12 muscle cell lines carrying a stably transfected SOD1(G93A) gene under the control of a myosin light chain (MLC) promoter-enhancer cassette. Expression of MLC/SOD1(G93A) in C2C12 cells resulted in dramatic inhibition of myoblast differentiation. Transfected SOD1(G93A) gene expression in postmitotic skeletal myocytes downregulated the expression of relevant markers of committed and differentiated myoblasts such as MyoD, Myogenin, MRF4, and the muscle specific miRNA expression. The inhibitory effects of SOD1(G93A) gene on myogenic program perturbed Akt/p70 and MAPK signaling pathways which promote differentiation cascade. Of note, the inhibition of the myogenic program, by transfected SOD1(G93A) gene expression, impinged also the identity of myogenic cells. Expression of MLC/SOD1(G93A) in C2C12 myogenic cells promoted a fibro-adipogenic progenitors (FAPs) phenotype, upregulating HDAC4 protein and preventing the myogenic commitment complex BAF60C-SWI/SNF. We thus identified potential molecular mediators of the inhibitory effects of SOD1(G93A) on myogenic program and disclosed potential signaling, activated by SOD1(G93A), that affect the identity of the myogenic cell population.
Random forests-based differential analysis of gene sets for gene expression data.
Hsueh, Huey-Miin; Zhou, Da-Wei; Tsai, Chen-An
2013-04-10
In DNA microarray studies, gene-set analysis (GSA) has become the focus of gene expression data analysis. GSA utilizes the gene expression profiles of functionally related gene sets in Gene Ontology (GO) categories or priori-defined biological classes to assess the significance of gene sets associated with clinical outcomes or phenotypes. Many statistical approaches have been proposed to determine whether such functionally related gene sets express differentially (enrichment and/or deletion) in variations of phenotypes. However, little attention has been given to the discriminatory power of gene sets and classification of patients. In this study, we propose a method of gene set analysis, in which gene sets are used to develop classifications of patients based on the Random Forest (RF) algorithm. The corresponding empirical p-value of an observed out-of-bag (OOB) error rate of the classifier is introduced to identify differentially expressed gene sets using an adequate resampling method. In addition, we discuss the impacts and correlations of genes within each gene set based on the measures of variable importance in the RF algorithm. Significant classifications are reported and visualized together with the underlying gene sets and their contribution to the phenotypes of interest. Numerical studies using both synthesized data and a series of publicly available gene expression data sets are conducted to evaluate the performance of the proposed methods. Compared with other hypothesis testing approaches, our proposed methods are reliable and successful in identifying enriched gene sets and in discovering the contributions of genes within a gene set. The classification results of identified gene sets can provide an valuable alternative to gene set testing to reveal the unknown, biologically relevant classes of samples or patients. In summary, our proposed method allows one to simultaneously assess the discriminatory ability of gene sets and the importance of genes for interpretation of data in complex biological systems. The classifications of biologically defined gene sets can reveal the underlying interactions of gene sets associated with the phenotypes, and provide an insightful complement to conventional gene set analyses. Copyright © 2012 Elsevier B.V. All rights reserved.
Weber, David; Heisig, Julia; Kneitz, Susanne; Wolf, Elmar; Eilers, Martin; Gessler, Manfred
2015-02-01
Hey bHLH transcription factors are critical effectors of Notch signaling. During mammalian heart development they are expressed in atrial and ventricular cardiomyocytes and in the developing endocardium. Hey knockout mice suffer from lethal cardiac defects, such as ventricular septum defects, valve defects and cardiomyopathy. Despite this functional relevance, little is known about the regulation of downstream targets in relevant cell types. The objective of this study was to elucidate the regulatory mechanisms by which Hey proteins affect gene expression in a cell type specific manner. We used an in vitro cardiomyocyte differentiation system with inducible Hey1 or Hey2 expression to study target gene regulation in cardiomyocytes (CM) generated from murine embryonic stem cells (ESC). The effects of Hey1 and Hey2 are largely redundant, but cell type specific. The number of regulated genes is comparable between ESC and CM, but the total number of binding sites is much higher, especially in ESC, targeting mainly genes involved in transcriptional regulation and developmental processes. Repression by Hey proteins generally correlates with the extent of Hey-binding to target promoters, Hdac recruitment and lower histone acetylation. Functionally, treatment with the Hdac inhibitor TSA abolished Hey target gene regulation. However, in CM the repressive effect of Hey-binding is lost for a subset of genes. These also lack Hey-dependent histone deacetylation in CM and are enriched for binding sites of cardiac specific activators like Srf, Nkx2-5, and Gata4. Ectopic Nkx2-5 overexpression in ESC blocks Hey-mediated repression of these genes. Thus, Hey proteins mechanistically repress target genes via Hdac recruitment and histone deacetylation. In CM Hey-repression is counteracted by cardiac activators, which recruit histone acetylases and prevent Hey mediated deacetylation and subsequent repression for a subset of genes. Copyright © 2014 Elsevier Ltd. All rights reserved.
Su, Yuhua; Nielsen, Dahlia; Zhu, Lei; Richards, Kristy; Suter, Steven; Breen, Matthew; Motsinger-Reif, Alison; Osborne, Jason
2013-01-05
: A bivariate mixture model utilizing information across two species was proposed to solve the fundamental problem of identifying differentially expressed genes in microarray experiments. The model utility was illustrated using a dog and human lymphoma data set prepared by a group of scientists in the College of Veterinary Medicine at North Carolina State University. A small number of genes were identified as being differentially expressed in both species and the human genes in this cluster serve as a good predictor for classifying diffuse large-B-cell lymphoma (DLBCL) patients into two subgroups, the germinal center B-cell-like diffuse large B-cell lymphoma and the activated B-cell-like diffuse large B-cell lymphoma. The number of human genes that were observed to be significantly differentially expressed (21) from the two-species analysis was very small compared to the number of human genes (190) identified with only one-species analysis (human data). The genes may be clinically relevant/important, as this small set achieved low misclassification rates of DLBCL subtypes. Additionally, the two subgroups defined by this cluster of human genes had significantly different survival functions, indicating that the stratification based on gene-expression profiling using the proposed mixture model provided improved insight into the clinical differences between the two cancer subtypes.
Saavedra, Carlos; Milan, Massimo; Leite, Ricardo B.; Cordero, David; Patarnello, Tomaso; Cancela, M. Leonor; Bargelloni, Luca
2017-01-01
Growth rate is one of the most important traits from the point of view of individual fitness and commercial production in mollusks, but its molecular and physiological basis is poorly known. We have studied differential gene expression related to differences in growth rate in adult individuals of the commercial marine clam Ruditapes decussatus. Gene expression in the gills and the digestive gland was analyzed in 5 fast-growing and five slow-growing animals by means of an oligonucleotide microarray containing 14,003 probes. A total of 356 differentially expressed genes (DEG) were found. We tested the hypothesis that differential expression might be concentrated at the growth control gene core (GCGC), i.e., the set of genes that underlie the molecular mechanisms of genetic control of tissue and organ growth and body size, as demonstrated in model organisms. The GCGC includes the genes coding for enzymes of the insulin/insulin-like growth factor signaling pathway (IIS), enzymes of four additional signaling pathways (Raf/Ras/Mapk, Jnk, TOR, and Hippo), and transcription factors acting at the end of those pathways. Only two out of 97 GCGC genes present in the microarray showed differential expression, indicating a very little contribution of GCGC genes to growth-related differential gene expression. Forty eight DEGs were shared by both organs, with gene ontology (GO) annotations corresponding to transcription regulation, RNA splicing, sugar metabolism, protein catabolism, immunity, defense against pathogens, and fatty acid biosynthesis. GO term enrichment tests indicated that genes related to growth regulation, development and morphogenesis, extracellular matrix proteins, and proteolysis were overrepresented in the gills. In the digestive gland overrepresented GO terms referred to gene expression control through chromatin rearrangement, RAS-related small GTPases, glucolysis, and energy metabolism. These analyses suggest a relevant role of, among others, some genes related to the IIS, such as the ParaHox gene Xlox, CCAR and the CCN family of secreted proteins, in the regulation of growth in bivalves. PMID:29234285
Shakoor, Nadia; Nair, Ramesh; Crasta, Oswald; Morris, Geoffrey; Feltus, Alex; Kresovich, Stephen
2014-01-23
Effective improvement in sorghum crop development necessitates a genomics-based approach to identify functional genes and QTLs. Sequenced in 2009, a comprehensive annotation of the sorghum genome and the development of functional genomics resources is key to enable the discovery and deployment of regulatory and metabolic genes and gene networks for crop improvement. This study utilizes the first commercially available whole-transcriptome sorghum microarray (Sorgh-WTa520972F) to identify tissue and genotype-specific expression patterns for all identified Sorghum bicolor exons and UTRs. The genechip contains 1,026,373 probes covering 149,182 exons (27,577 genes) across the Sorghum bicolor nuclear, chloroplast, and mitochondrial genomes. Specific probesets were also included for putative non-coding RNAs that may play a role in gene regulation (e.g., microRNAs), and confirmed functional small RNAs in related species (maize and sugarcane) were also included in our array design. We generated expression data for 78 samples with a combination of four different tissue types (shoot, root, leaf and stem), two dissected stem tissues (pith and rind) and six diverse genotypes, which included 6 public sorghum lines (R159, Atlas, Fremont, PI152611, AR2400 and PI455230) representing grain, sweet, forage, and high biomass ideotypes. Here we present a summary of the microarray dataset, including analysis of tissue-specific gene expression profiles and associated expression profiles of relevant metabolic pathways. With an aim to enable identification and functional characterization of genes in sorghum, this expression atlas presents a new and valuable resource to the research community.
2014-01-01
Background Effective improvement in sorghum crop development necessitates a genomics-based approach to identify functional genes and QTLs. Sequenced in 2009, a comprehensive annotation of the sorghum genome and the development of functional genomics resources is key to enable the discovery and deployment of regulatory and metabolic genes and gene networks for crop improvement. Results This study utilizes the first commercially available whole-transcriptome sorghum microarray (Sorgh-WTa520972F) to identify tissue and genotype-specific expression patterns for all identified Sorghum bicolor exons and UTRs. The genechip contains 1,026,373 probes covering 149,182 exons (27,577 genes) across the Sorghum bicolor nuclear, chloroplast, and mitochondrial genomes. Specific probesets were also included for putative non-coding RNAs that may play a role in gene regulation (e.g., microRNAs), and confirmed functional small RNAs in related species (maize and sugarcane) were also included in our array design. We generated expression data for 78 samples with a combination of four different tissue types (shoot, root, leaf and stem), two dissected stem tissues (pith and rind) and six diverse genotypes, which included 6 public sorghum lines (R159, Atlas, Fremont, PI152611, AR2400 and PI455230) representing grain, sweet, forage, and high biomass ideotypes. Conclusions Here we present a summary of the microarray dataset, including analysis of tissue-specific gene expression profiles and associated expression profiles of relevant metabolic pathways. With an aim to enable identification and functional characterization of genes in sorghum, this expression atlas presents a new and valuable resource to the research community. PMID:24456189
Guarnieri, Douglas J.; Brayton, Catherine E.; Richards, Sarah M.; Maldonado-Aviles, Jaime; Trinko, Joseph R.; Nelson, Jessica; Taylor, Jane R.; Gourley, Shannon L.; DiLeone, Ralph J.
2011-01-01
Background Food restriction is known to enhance learning and motivation. The neural mechanisms underlying these responses likely involve alterations in gene expression in brain regions mediating the motivation to feed. Methods Analysis of gene expression profiles in male C57BL6/J mice using whole-genome microarrays was completed in the medial prefrontal cortex, nucleus accumbens, ventral tegmental area, and the hypothalamus following a five day food restriction. Quantitative PCR was used to validate these findings and determine the time-course of expression changes. Plasma levels of the stress hormone corticosterone (CORT) were measured by ELISA. Expression changes were measured in adrenalectomized animals that underwent food restriction, as well as in animals receiving daily injections of CORT. Progressive ratio responding for food, a measure of motivated behavior, was assessed after CORT treatment in restricted and fed animals. Results Brief food restriction results in an upregulation of peripheral stress responsive genes in the mammalian brain. Time-course analysis demonstrated rapid and persistent expression changes in all four brain regions under study. Administration of CORT to non-restricted animals was sufficient to induce a subset of the genes, and alterations in gene expression after food restriction were dependent on intact adrenal glands. CORT can increase the motivation to work for food only in the restricted state. Conclusions These data demonstrate a central role for CORT in mediating both molecular and behavioral responses to food restriction. The stress hormone-induced alterations in gene expression described here may be relevant for both adaptive and pathological responses to stress. PMID:21855858
Rohmer, Stanimira; Mainka, Astrid; Knippertz, Ilka; Hesse, Andrea; Nettelbeck, Dirk M
2008-04-01
Key to the realization of gene therapy is the development of efficient and targeted gene transfer vectors. Therapeutic gene transfer by replication-deficient or more recently by conditionally replication-competent/oncolytic adenoviruses has shown much promise. For specific applications, however, it will be advantageous to provide vectors that allow for external control of gene expression. The efficient cellular heat shock system in combination with available technology for focused and controlled hyperthermia suggests heat-regulated transcription control as a promising tool for this purpose. We investigated the feasibility of a short fragment of the human hsp70B' promoter, with and without upstream insulator elements, for the regulation of transgene expression by replication-deficient or oncolytic adenoviruses. Two novel adenoviral vectors with an insulated hsp70B' promoter were developed and showed stringent heat-inducible gene expression with induction ratios up to 8000-fold. In contrast, regulation of gene expression from the hsp70B' promoter without insulation was suboptimal. In replication-competent/oncolytic adenoviruses regulation of the hsp70B' promoter was lost specifically during late replication in permissive cells and could not be restored by the insulators. We developed novel adenovirus gene transfer vectors that feature improved and stringent regulation of transgene expression from the hsp70B' promoter using promoter insulation. These vectors have potential for gene therapy applications that benefit from external modulation of therapeutic gene expression or for combination therapy with hyperthermia. Furthermore, our study reveals that vector replication can deregulate inserted cellular promoters, an observation which is of relevance for the development of replication-competent/oncolytic gene transfer vectors. (c) 2008 John Wiley & Sons, Ltd.
Changes in gene expression linked to methamphetamine-induced dopaminergic neurotoxicity.
Xie, Tao; Tong, Liqiong; Barrett, Tanya; Yuan, Jie; Hatzidimitriou, George; McCann, Una D; Becker, Kevin G; Donovan, David M; Ricaurte, George A
2002-01-01
The purpose of these studies was to examine the role of gene expression in methamphetamine (METH)-induced dopamine (DA) neurotoxicity. First, the effects of the mRNA synthesis inhibitor, actinomycin-D, and the protein synthesis inhibitor, cycloheximide, were examined. Both agents afforded complete protection against METH-induced DA neurotoxicity and did so independently of effects on core temperature, DA transporter function, or METH brain levels, suggesting that gene transcription and mRNA translation play a role in METH neurotoxicity. Next, microarray technology, in combination with an experimental approach designed to facilitate recognition of relevant gene expression patterns, was used to identify gene products linked to METH-induced DA neurotoxicity. This led to the identification of several genes in the ventral midbrain associated with the neurotoxic process, including genes for energy metabolism [cytochrome c oxidase subunit 1 (COX1), reduced nicotinamide adenine dinucleotide ubiquinone oxidoreductase chain 2, and phosphoglycerate mutase B], ion regulation (members of sodium/hydrogen exchanger and sodium/bile acid cotransporter family), signal transduction (adenylyl cyclase III), and cell differentiation and degeneration (N-myc downstream-regulated gene 3 and tau protein). Of these differentially expressed genes, we elected to further examine the increase in COX1 expression, because of data implicating energy utilization in METH neurotoxicity and the known role of COX1 in energy metabolism. On the basis of time course studies, Northern blot analyses, in situ hybridization results, and temperature studies, we now report that increased COX1 expression in the ventral midbrain is linked to METH-induced DA neuronal injury. The precise role of COX1 and other genes in METH neurotoxicity remains to be elucidated.
Nonis, Alberto; Vezzaro, Alice; Ruperti, Benedetto
2012-07-11
Genome wide transcriptomic surveys together with targeted molecular studies are uncovering an ever increasing number of differentially expressed genes in relation to agriculturally relevant processes in olive (Olea europaea L). These data need to be supported by quantitative approaches enabling the precise estimation of transcript abundance. qPCR being the most widely adopted technique for mRNA quantification, preliminary work needs to be done to set up robust methods for extraction of fully functional RNA and for the identification of the best reference genes to obtain reliable quantification of transcripts. In this work, we have assessed different methods for their suitability for RNA extraction from olive fruits and leaves and we have evaluated thirteen potential candidate reference genes on 21 RNA samples belonging to fruit developmental/ripening series and to leaves subjected to wounding. By using two different algorithms, GAPDH2 and PP2A1 were identified as the best reference genes for olive fruit development and ripening, and their effectiveness for normalization of expression of two ripening marker genes was demonstrated.
Differential allelic expression of IL13 and CSF2 genes associated with asthma.
Burkhardt, Jana; Kirsten, Holger; Wolfram, Grit; Quente, Elfi; Ahnert, Peter
2012-07-01
An important area of genetic research is the identification of functional mechanisms in polymorphisms associated with diseases. A highly relevant functional mechanism is the influence of polymorphisms on gene expression levels (differential allelic expression, DAE). The coding single nucleotide polymorphisms (SNPs) CSF2(rs25882) and IL13(rs20541) have been associated with asthma. In this work, we investigated whether the mRNA expression levels of CSF2 or IL13 were correlated with these SNPs. Samples were analyzed by mass spectrometry-based quantification of gene expression. Both SNPs influenced gene expression levels (CSF2(rs25882): p(overall) = 0.008 and p(DAE samples) = 0.00006; IL13(rs20541): p(overall) = 0.059 and p(DAE samples) = 0.036). For CSF2, the expression level was increased by 27.4% (95% CI: 18.5%-35.4%) in samples with significant DAE in the presence of one copy of risk variant CSF2(rs25882-T). The average expression level of IL13 was increased by 29.8% (95% CI: 3.1%-63.4%) in samples with significant DAE in the presence of one copy of risk variant IL13(rs20541-A). Enhanced expression of CSF2 could stimulate macrophages and neutrophils during inflammation and may be related to the etiology of asthma. For IL-13, higher expression could enhance the functional activity of the asthma-associated isoform. Overall, the analysis of DAE provides an efficient approach for identifying possible functional mechanisms that link disease-associated variants with altered gene expression levels.
Access and use of the GUDMAP database of genitourinary development.
Davies, Jamie A; Little, Melissa H; Aronow, Bruce; Armstrong, Jane; Brennan, Jane; Lloyd-MacGilp, Sue; Armit, Chris; Harding, Simon; Piu, Xinjun; Roochun, Yogmatee; Haggarty, Bernard; Houghton, Derek; Davidson, Duncan; Baldock, Richard
2012-01-01
The Genitourinary Development Molecular Atlas Project (GUDMAP) aims to document gene expression across time and space in the developing urogenital system of the mouse, and to provide access to a variety of relevant practical and educational resources. Data come from microarray gene expression profiling (from laser-dissected and FACS-sorted samples) and in situ hybridization at both low (whole-mount) and high (section) resolutions. Data are annotated to a published, high-resolution anatomical ontology and can be accessed using a variety of search interfaces. Here, we explain how to run typical queries on the database, by gene or anatomical location, how to view data, how to perform complex queries, and how to submit data.
Zahoor, Imran; de Koning, Dirk-Jan; Hocking, Paul M
2017-09-20
In recent years, the commercial importance of changes in muscle function of broiler chickens and of the corresponding effects on meat quality has increased. Furthermore, broilers are more sensitive to heat stress during transport and at high ambient temperatures than smaller egg-laying chickens. We hypothesised that heat stress would amplify muscle damage and expression of genes that are involved in such changes and, thus, lead to the identification of pathways and networks associated with broiler muscle and meat quality traits. Broiler and layer chickens were exposed to control or high ambient temperatures to characterise differences in gene expression between the two genotypes and the two environments. Whole-genome expression studies in breast muscles of broiler and layer chickens were conducted before and after heat stress; 2213 differentially-expressed genes were detected based on a significant (P < 0.05) genotype × treatment interaction. This gene set was analysed with the BioLayout Express 3D and Ingenuity Pathway Analysis software and relevant biological pathways and networks were identified. Genes involved in functions related to inflammatory reactions, cell death, oxidative stress and tissue damage were upregulated in control broilers compared with control and heat-stressed layers. Expression of these genes was further increased in heat-stressed broilers. Differences in gene expression between broiler and layer chickens under control and heat stress conditions suggest that damage of breast muscles in broilers at normal ambient temperatures is similar to that in heat-stressed layers and is amplified when broilers are exposed to heat stress. The patterns of gene expression of the two genotypes under heat stress were almost the polar opposite of each other, which is consistent with the conclusion that broiler chickens were not able to cope with heat stress by dissipating their body heat. The differentially expressed gene networks and pathways were consistent with the pathological changes that are observed in the breast muscle of heat-stressed broilers.
Informatics approaches in the Biological Characterization of ...
Adverse Outcome Pathways (AOPs) are a conceptual framework to characterize toxicity pathways by a series of mechanistic steps from a molecular initiating event to population outcomes. This framework helps to direct risk assessment research, for example by aiding in computational prioritization of chemicals, genes, and tissues relevant to an adverse health outcome. We have designed and implemented a computational workflow to access a wealth of public data relating genes, chemicals, diseases, pathways, and species, to provide a biological context for putative AOPs. We selected three AOP case studies: ER/Aromatase Antagonism Leading to Reproductive Dysfunction, AHR1 Activation Leading to Cardiotoxicity, and AChE Inhibition Leading to Acute Mortality, and deduced a taxonomic range of applicability for each AOP. We developed computational tools to automatically access and analyze the pathway activity of AOP-relevant protein orthologs, finding broad similarity among vertebrate species for the ER/Aromatase and AHR1 AOPs, and similarity extending to invertebrate animal species for AChE inhibition. Additionally, we used public gene expression data to find groups of highly co-expressed genes, and compared those groups across organisms. To interpret these findings at a higher level of biological organization, we created the AOPdb, a relational database that mines results from sources including NCBI, KEGG, Reactome, CTD, and OMIM. This multi-source database connects genes,
Xing, Zhuqing; Geng, Weitao; Li, Chao; Sun, Ye; Wang, Yanping
2017-10-09
It is important for probiotics that are currently utilized in the dairy industry to have clear genetic backgrounds. In this study, the genetic characteristics of Lactobacillus kefiranofaciens ZW3 were studied by undertaking a comparative genomics study, and key genes for adaptation to different environments were investigated and validated in vitro. Evidence for horizontal gene transfer resulting in strong self-defense mechanisms was detected in the ZW3 genome. We identified a series of genes relevant for dairy environments and the intestinal tract, particularly for extracellular polysaccharide (EPS) production. Reverse transcription-qPCR (RT-qPCR) revealed significant increases in the relative expression of pgm, ugp, and uge during the mid-logarithmic phase, whereas the expression of pgi was higher at the beginning of the stationary phase. The enzymes encoded by these four genes concertedly regulated carbon flux, which in turn modulated the production of EPS precursors. Moreover, ZW3 tolerated pH 3.5 and 3% bile salt and retained cell surface hydrophobicity and auto-aggregation. In conclusion, we explored the potential of ZW3 for utilization in both the dairy industry and in probiotic applications. Additionally, we elucidated the regulation of the relevant genes involved in EPS production.
2010-01-01
Background Strict regulation of caste differentiation, at the molecular level, is thought to be important to maintain social structure in insect societies. Previously, a number of extrinsic and intrinsic factors have been shown to influence caste composition in termite colonies. One important factor is the influence of nestmates; in particular, soldier termites are known to inhibit hormone-dependent worker-to-soldier differentiation. However, soldier influences on nestmates at the molecular level are virtually unknown. Here, to test the hypothesis that soldiers can influence nestmate gene expression, we investigated the impact of four treatments on whole-body gene expression in totipotent Reticulitermes flavipes workers: (i) juvenile hormone III (JHIII; a morphogenetic hormone), (ii) soldier head extracts (SHE), (iii) JHIII+SHE, and (iv) live soldiers. Results Using quantitative-real-time PCR we determined the expression patterns of 49 previously identified candidate genes in response to the four treatments at assay days 1, 5, and 10. Thirty-eight total genes from three categories (chemical production/degradation, hemolymph protein, and developmental) showed significant differential expression among treatments. Most importantly, SHE and live soldier treatments had a significant impact on a number of genes from families known to play roles in insect development, supporting previous findings and hypotheses that soldiers regulate nestmate caste differentiation via terpene primer pheromones contained in their heads. Conclusions This research provides new insights into the impacts that socio-environmental factors (JH, soldiers, primer pheromones) can have on termite gene expression and caste differentiation, and reveals a number of socially-relevant genes for investigation in subsequent caste differentiation research. PMID:20416061
Tarver, Matthew R; Zhou, Xuguo; Scharf, Michael E
2010-04-23
Strict regulation of caste differentiation, at the molecular level, is thought to be important to maintain social structure in insect societies. Previously, a number of extrinsic and intrinsic factors have been shown to influence caste composition in termite colonies. One important factor is the influence of nestmates; in particular, soldier termites are known to inhibit hormone-dependent worker-to-soldier differentiation. However, soldier influences on nestmates at the molecular level are virtually unknown. Here, to test the hypothesis that soldiers can influence nestmate gene expression, we investigated the impact of four treatments on whole-body gene expression in totipotent Reticulitermes flavipes workers: (i) juvenile hormone III (JHIII; a morphogenetic hormone), (ii) soldier head extracts (SHE), (iii) JHIII+SHE, and (iv) live soldiers. Using quantitative-real-time PCR we determined the expression patterns of 49 previously identified candidate genes in response to the four treatments at assay days 1, 5, and 10. Thirty-eight total genes from three categories (chemical production/degradation, hemolymph protein, and developmental) showed significant differential expression among treatments. Most importantly, SHE and live soldier treatments had a significant impact on a number of genes from families known to play roles in insect development, supporting previous findings and hypotheses that soldiers regulate nestmate caste differentiation via terpene primer pheromones contained in their heads. This research provides new insights into the impacts that socio-environmental factors (JH, soldiers, primer pheromones) can have on termite gene expression and caste differentiation, and reveals a number of socially-relevant genes for investigation in subsequent caste differentiation research.
Increased expression of neutrophil-related genes in patients with early sepsis-induced ARDS.
Kangelaris, Kirsten Neudoerffer; Prakash, Arun; Liu, Kathleen D; Aouizerat, Bradley; Woodruff, Prescott G; Erle, David J; Rogers, Angela; Seeley, Eric J; Chu, Jeffrey; Liu, Tom; Osterberg-Deiss, Thomas; Zhuo, Hanjing; Matthay, Michael A; Calfee, Carolyn S
2015-06-01
The early sequence of events leading to the development of the acute respiratory distress syndrome (ARDS) in patients with sepsis remains inadequately understood. The purpose of this study was to identify changes in gene expression early in the course of illness, when mechanisms of injury may provide the most relevant treatment and prognostic targets. We collected whole blood RNA in critically ill patients admitted from the Emergency Department to the intensive care unit within 24 h of admission at a tertiary care center. Whole genome expression was compared in patients with sepsis and ARDS to patients with sepsis alone. We selected genes with >1 log2 fold change and false discovery rate <0.25, determined their significance in the literature, and performed pathway analysis. Several genes were upregulated in 29 patients with sepsis with ARDS compared with 28 patients with sepsis alone. The most differentially expressed genes included key mediators of the initial neutrophil response to infection: olfactomedin 4, lipocalin 2, CD24, and bactericidal/permeability-increasing protein. These gene expression differences withstood adjustment for age, sex, study batch, white blood cell count, and presence of pneumonia or aspiration. Pathway analysis demonstrated overrepresentation of genes involved in known respiratory and infection pathways. These data indicate that several neutrophil-related pathways may be involved in the early pathogenesis of sepsis-related ARDS. In addition, identifiable gene expression differences occurring early in the course of sepsis-related ARDS may further elucidate understanding of the neutrophil-related mechanisms in progression to ARDS. Copyright © 2015 the American Physiological Society.
Increased expression of neutrophil-related genes in patients with early sepsis-induced ARDS
Prakash, Arun; Liu, Kathleen D.; Aouizerat, Bradley; Woodruff, Prescott G.; Erle, David J.; Rogers, Angela; Seeley, Eric J.; Chu, Jeffrey; Liu, Tom; Osterberg-Deiss, Thomas; Zhuo, Hanjing; Matthay, Michael A.; Calfee, Carolyn S.
2015-01-01
The early sequence of events leading to the development of the acute respiratory distress syndrome (ARDS) in patients with sepsis remains inadequately understood. The purpose of this study was to identify changes in gene expression early in the course of illness, when mechanisms of injury may provide the most relevant treatment and prognostic targets. We collected whole blood RNA in critically ill patients admitted from the Emergency Department to the intensive care unit within 24 h of admission at a tertiary care center. Whole genome expression was compared in patients with sepsis and ARDS to patients with sepsis alone. We selected genes with >1 log2 fold change and false discovery rate <0.25, determined their significance in the literature, and performed pathway analysis. Several genes were upregulated in 29 patients with sepsis with ARDS compared with 28 patients with sepsis alone. The most differentially expressed genes included key mediators of the initial neutrophil response to infection: olfactomedin 4, lipocalin 2, CD24, and bactericidal/permeability-increasing protein. These gene expression differences withstood adjustment for age, sex, study batch, white blood cell count, and presence of pneumonia or aspiration. Pathway analysis demonstrated overrepresentation of genes involved in known respiratory and infection pathways. These data indicate that several neutrophil-related pathways may be involved in the early pathogenesis of sepsis-related ARDS. In addition, identifiable gene expression differences occurring early in the course of sepsis-related ARDS may further elucidate understanding of the neutrophil-related mechanisms in progression to ARDS. PMID:25795726
Jha, Prabhash Kumar; Sahu, Anita; Prabhakar, Amit; Tyagi, Tarun; Chatterjee, Tathagata; Arvind, Prathima; Nair, Jiny; Gupta, Neha; Kumari, Babita; Nair, Velu; Bajaj, Nitin; Shanker, Jayashree; Sharma, Manish; Kumar, Bhuvnesh; Ashraf, Mohammad Zahid
2018-06-04
Venous thromboembolism (VTE), a multi-factorial disease, is the third most common cardiovascular disease. Established genetic and acquired risk factors are responsible for the onset of VTE. High altitude (HA) also poses as an additional risk factor, predisposing individuals to VTE; however, its molecular mechanism remains elusive. This study aimed to identify genes/pathways associated with the pathophysiology of deep vein thrombosis (DVT) at HA. Gene expression profiling of DVT patients, who developed the disease, either at sea level or at HA-DVT locations, resulted in differential expression of 378 and 875 genes, respectively. Gene expression profiles were subjected to bioinformatic analysis, followed by technical and biological validation of selected genes using quantitative reverse transcription-polymerase chain reaction. Both gene ontology and pathway analysis showed enrichment of genes involved in haemostasis and platelet activation in HA-DVT patients with the most relevant pathway being 'response to hypoxia'. Thus, given the environmental condition the differential expression of hypoxia-responsive genes (angiogenin, ribonuclease, RNase A family, 5; early growth response 1; lamin A; matrix metallopeptidase 14 [membrane-inserted]; neurofibromin 1; PDZ and LIM domain 1; procollagen-lysine 1, 2-oxoglutarate 5-dioxygenase 1; solute carrier family 6 [neurotransmitter transporter, serotonin], member 4; solute carrier family 9 [sodium/hydrogen exchanger], member 1; and TEK tyrosine kinase, endothelial) in HA-DVT could be a determining factor to understand the pathophysiology of DVT at HA. Schattauer GmbH Stuttgart.
Baranasic, Damir; Oppermann, Timo; Cheaib, Miriam; Cullum, John; Schmidt, Helmut
2014-01-01
ABSTRACT Antigenic or phenotypic variation is a widespread phenomenon of expression of variable surface protein coats on eukaryotic microbes. To clarify the mechanism behind mutually exclusive gene expression, we characterized the genetic properties of the surface antigen multigene family in the ciliate Paramecium tetraurelia and the epigenetic factors controlling expression and silencing. Genome analysis indicated that the multigene family consists of intrachromosomal and subtelomeric genes; both classes apparently derive from different gene duplication events: whole-genome and intrachromosomal duplication. Expression analysis provides evidence for telomere position effects, because only subtelomeric genes follow mutually exclusive transcription. Microarray analysis of cultures deficient in Rdr3, an RNA-dependent RNA polymerase, in comparison to serotype-pure wild-type cultures, shows cotranscription of a subset of subtelomeric genes, indicating that the telomere position effect is due to a selective occurrence of Rdr3-mediated silencing in subtelomeric regions. We present a model of surface antigen evolution by intrachromosomal gene duplication involving the maintenance of positive selection of structurally relevant regions. Further analysis of chromosome heterogeneity shows that alternative telomere addition regions clearly affect transcription of closely related genes. Consequently, chromosome fragmentation appears to be of crucial importance for surface antigen expression and evolution. Our data suggest that RNAi-mediated control of this genetic network by trans-acting RNAs allows rapid epigenetic adaptation by phenotypic variation in combination with long-term genetic adaptation by Darwinian evolution of antigen genes. PMID:25389173
Pan, Deyun; Sun, Ning; Cheung, Kei-Hoi; Guan, Zhong; Ma, Ligeng; Holford, Matthew; Deng, Xingwang; Zhao, Hongyu
2003-11-07
To date, many genomic and pathway-related tools and databases have been developed to analyze microarray data. In published web-based applications to date, however, complex pathways have been displayed with static image files that may not be up-to-date or are time-consuming to rebuild. In addition, gene expression analyses focus on individual probes and genes with little or no consideration of pathways. These approaches reveal little information about pathways that are key to a full understanding of the building blocks of biological systems. Therefore, there is a need to provide useful tools that can generate pathways without manually building images and allow gene expression data to be integrated and analyzed at pathway levels for such experimental organisms as Arabidopsis. We have developed PathMAPA, a web-based application written in Java that can be easily accessed over the Internet. An Oracle database is used to store, query, and manipulate the large amounts of data that are involved. PathMAPA allows its users to (i) upload and populate microarray data into a database; (ii) integrate gene expression with enzymes of the pathways; (iii) generate pathway diagrams without building image files manually; (iv) visualize gene expressions for each pathway at enzyme, locus, and probe levels; and (v) perform statistical tests at pathway, enzyme and gene levels. PathMAPA can be used to examine Arabidopsis thaliana gene expression patterns associated with metabolic pathways. PathMAPA provides two unique features for the gene expression analysis of Arabidopsis thaliana: (i) automatic generation of pathways associated with gene expression and (ii) statistical tests at pathway level. The first feature allows for the periodical updating of genomic data for pathways, while the second feature can provide insight into how treatments affect relevant pathways for the selected experiment(s).
Pan, Deyun; Sun, Ning; Cheung, Kei-Hoi; Guan, Zhong; Ma, Ligeng; Holford, Matthew; Deng, Xingwang; Zhao, Hongyu
2003-01-01
Background To date, many genomic and pathway-related tools and databases have been developed to analyze microarray data. In published web-based applications to date, however, complex pathways have been displayed with static image files that may not be up-to-date or are time-consuming to rebuild. In addition, gene expression analyses focus on individual probes and genes with little or no consideration of pathways. These approaches reveal little information about pathways that are key to a full understanding of the building blocks of biological systems. Therefore, there is a need to provide useful tools that can generate pathways without manually building images and allow gene expression data to be integrated and analyzed at pathway levels for such experimental organisms as Arabidopsis. Results We have developed PathMAPA, a web-based application written in Java that can be easily accessed over the Internet. An Oracle database is used to store, query, and manipulate the large amounts of data that are involved. PathMAPA allows its users to (i) upload and populate microarray data into a database; (ii) integrate gene expression with enzymes of the pathways; (iii) generate pathway diagrams without building image files manually; (iv) visualize gene expressions for each pathway at enzyme, locus, and probe levels; and (v) perform statistical tests at pathway, enzyme and gene levels. PathMAPA can be used to examine Arabidopsis thaliana gene expression patterns associated with metabolic pathways. Conclusion PathMAPA provides two unique features for the gene expression analysis of Arabidopsis thaliana: (i) automatic generation of pathways associated with gene expression and (ii) statistical tests at pathway level. The first feature allows for the periodical updating of genomic data for pathways, while the second feature can provide insight into how treatments affect relevant pathways for the selected experiment(s). PMID:14604444
Stepanova, Maria; Hossain, Noreen; Afendy, Arian; Perry, Kellie; Goodman, Zachary D; Baranova, Ancha; Younossi, Zobair
2010-05-01
There is increasing data suggesting that African Americans with NAFLD tend to have less progressive liver disease. The aim of this study is to assess differences in the hepatic gene expression of African-American and Caucasian patients with NAFLD who had undergone bariatric surgery. A total of 94 patients (81 NAFLD and 13 weight-matched controls with normal liver biopsy) were included. Of the entire cohort, 73 were Caucasians and 21 were African Americans. All patients were undergoing bariatric surgery. Two liver biopsies were obtained at the time of surgery. One biopsy was snap-frozen for gene expression and the other biopsy was stained for pathologic assessment. Liver biopsy confirmed that 24 patients from our cohort had NASH while 57 had only simple steatosis. Snap-frozen liver biopsy specimens of these patients were then used for the RNA extraction. cDNA probes were hybridized with customized microarray gene chips containing 5,220 relevant genes. Gene expression profiles were compared between groups using significance analysis of microarrays algorithm. In comparison to all Caucasian patients, African-American patients had over-expression of EPB41L1, IGF2, FAH, ACSL4, FUT4, CYP3A (q values < 10(-4)). In comparison to Caucasian NAFLD patients, African-American NAFLD patients showed over-expression of EPB41L1 and ACSL4 genes. Finally, in comparison to Caucasian NASH patients, African-American NASH patients showed over-expression of GSTM 2, GSTM4 and GSTM5 as well as FH and ASCL4 genes. Some genes highlighted by this analysis, particularly cytochrome CYP3A and glutathione transferases GSTM2, 4, 5, were previously implicated in the pathogenesis of NASH. African-American patients with biopsy-proven obesity-related NAFLD and NASH have a specific hepatic gene expression pattern that may explain their differences from Caucasian patients with NAFLD in developing progressive liver disease.
Riddy, Darren M; Goy, Emily; Delerive, Philippe; Summers, Roger J; Sexton, Patrick M; Langmead, Christopher J
2018-01-01
Monocyte-like cell lines (MCLCs), including THP-1, HL-60 and U-937 cells, are used routinely as surrogates for isolated human peripheral blood mononuclear cells (PBMCs). To systematically evaluate these immortalised cells and PBMCs as model systems to study inflammation relevant to the pathogenesis of type II diabetes and immuno-metabolism, we compared mRNA expression of inflammation-relevant genes, cell surface expression of cluster of differentiation (CD) markers, and chemotactic responses to inflammatory stimuli. Messenger RNA expression analysis suggested most genes were present at similar levels across all undifferentiated cells, though notably, IDO1, which encodes for indoleamine 2,3-dioxygenase and catabolises tryptophan to kynureninase (shown to be elevated in serum from diabetic patients), was not expressed in any PMA-treated MCLC, but present in GM-CSF-treated PBMCs. There was little overall difference in the pattern of expression of CD markers across all cells, though absolute expression levels varied considerably and the correlation between MCLCs and PBMCs was improved upon MCLC differentiation. Functionally, THP-1 and PBMCs migrated in response to chemoattractants in a transwell assay, with varying sensitivity to MCP-1, MIP-1α and LTB-4. However, despite similar gene and CD expression profiles, U-937 cells were functionally impaired as no migration was observed to any chemoattractant. Our analysis reveals that the MCLCs examined only partly replicate the genotypic and phenotypic properties of human PBMCs. To overcome such issues a universal differentiation protocol should be implemented for these cell lines, similar to those already used with isolated monocytes. Although not perfect, in our hands the THP-1 cells represent the closest, simplified surrogate model of PBMCs for study of inflammatory cell migration.
Cary, J. W.; Han, Z.; Yin, Y.; Lohmar, J. M.; Shantappa, S.; Harris-Coward, P. Y.; Mack, B.; Ehrlich, K. C.; Wei, Q.; Arroyo-Manzanares, N.; Uka, V.; Vanhaecke, L.; Bhatnagar, D.; Yu, J.; Nierman, W. C.; Johns, M. A.; Sorensen, D.; Shen, H.; De Saeger, S.; Diana Di Mavungu, J.
2015-01-01
The global regulatory veA gene governs development and secondary metabolism in numerous fungal species, including Aspergillus flavus. This is especially relevant since A. flavus infects crops of agricultural importance worldwide, contaminating them with potent mycotoxins. The most well-known are aflatoxins, which are cytotoxic and carcinogenic polyketide compounds. The production of aflatoxins and the expression of genes implicated in the production of these mycotoxins are veA dependent. The genes responsible for the synthesis of aflatoxins are clustered, a signature common for genes involved in fungal secondary metabolism. Studies of the A. flavus genome revealed many gene clusters possibly connected to the synthesis of secondary metabolites. Many of these metabolites are still unknown, or the association between a known metabolite and a particular gene cluster has not yet been established. In the present transcriptome study, we show that veA is necessary for the expression of a large number of genes. Twenty-eight out of the predicted 56 secondary metabolite gene clusters include at least one gene that is differentially expressed depending on presence or absence of veA. One of the clusters under the influence of veA is cluster 39. The absence of veA results in a downregulation of the five genes found within this cluster. Interestingly, our results indicate that the cluster is expressed mainly in sclerotia. Chemical analysis of sclerotial extracts revealed that cluster 39 is responsible for the production of aflavarin. PMID:26209694
Dang, Wei; Sun, Li
2011-02-01
In recent years, quantitative real time reverse transcriptase-PCR (qRT-PCR) has been used frequently in the study of gene expression in turbot (Scophthalmus maximus) in relation to bacterial infection. However, no investigations on appropriate qRT-PCR reference genes have been documented. In this report, we determined the potential of eight housekeeping genes, i.e. β-actin (ACTB), ribosomal protein L17 (RPL17), α-tubulin (TUBA), elongation factor-1-α(EF1A), β-2-Microglobulin (B2M), RNA polymerase II subunit D (RPSD), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and 18S ribosomal RNA (18S rRNA), as internal standards for qRT-PCR analysis of gene expression in turbot as a function of bacterial infection. For this purpose, the expression of the eight housekeeping genes in seven turbot tissues was determined by qRT-PCR before and after bacterial challenge, and the data were analyzed with the geNorm and NormFinder algorisms. The results showed that the expression of all the examined genes exhibited tissue-dependent variations both before and after bacterial challenge. Before bacterial challenge, geNorm and NormFinder identified RPSD as the gene that showed least tissue specific expression. At 12 h post-bacterial infection, geNorm ranked ACTB/GAPDH, 18S rRNA/ACTB, ACTB/GAPDH, 18S rRNA/ACTB, RPL17/TUBA, RPSD/GAPDH, and RPSD/B2M, respectively, as the most stably expressed genes in liver, spleen, kidney, gill, heart, muscle, and brain. Comparable ranking orders were produced by NormFinder. Similar results were obtained at 24 h post-bacterial infection. Taken together, these results indicate that RPSD is the most stable gene across tissue types under normal physiological conditions and that, during bacterial infection, ACTB might be used as an internal standard for the normalization of gene expression in immune relevant organs; however, no single gene or single pair of genes in the examined set of housekeeping genes can serve as a universal reference across all tissue types under the condition of bacterial infection. Copyright © 2011 Elsevier Ltd. All rights reserved.
Bouras, Toula; Southey, Melissa C; Chang, Andy C; Reddel, Roger R; Willhite, Dorian; Glynne, Richard; Henderson, Michael A; Armes, Jane E; Venter, Deon J
2002-03-01
Differences in gene expression are likely to explain the phenotypic variation between hormone-responsive and hormone-unresponsive breast cancers. In this study, DNA microarray analysis of approximately 10,000 known genes and 25,000 expressed sequence tag clusters was performed to identify genes induced by estrogen and repressed by the pure antiestrogen ICI 182 780 in vitro that correlated with estrogen receptor (ER) expression in primary breast carcinomas in vivo. Stanniocalcin (STC) 2 was identified as one of the genes that fulfilled these criteria. DNA microarray hybridization showed a 3-fold induction of STC2 mRNA expression in MCF-7 cells in < or = 3 h of estrogen exposure and a 3-fold repression in the presence of antiestrogen (one-way ANOVA, P < 0.0005). In 13 ER-positive and 12 ER-negative breast carcinomas, the microarray-derived mRNA levels observed for STC2 correlated with tumor ER mRNA (Pearson's correlation, r = 0.85; P < 0.0001) and ER protein status (Spearman's rank correlation, r = 0.73; P < 0.0001). The expression profile of STC2 was further confirmed by in situ hybridization and immunohistochemistry on a larger cohort of 236 unselected breast carcinomas using tissue microarrays. STC2 mRNA and protein expression were found to be associated with tumor ER status (Fisher's exact test, P < 0.005). The related gene, STC1, was also examined and shown to be associated with ER status in breast carcinomas (Fisher's exact test, P < 0.05). This study demonstrates the feasibility of using global gene expression data derived from an in vitro model to pinpoint novel estrogen-responsive genes of potential clinical relevance.
Klaper, Rebecca; Rees, Christopher B.; Drevnick, Paul; Weber, Daniel; Sandheinrich, Mark; Carvan, Michael J.
2006-01-01
Background Methylmercury (MeHg) is a known neurotoxic agent, but the mechanisms by which MeHg may act on reproductive pathways are relatively unknown. Several studies have indicated potential changes in hormone levels as well as declines in vertebrates with increasing dietary MeHg exposure. Objectives The purpose of this study was to identify alterations in gene expression associated with MeHg exposure, specifically those associated with previously observed changes in reproduction and reproductive biomarkers. Fathead minnows, Pimephales promelas, were fed one of three diets that were similar to documented concentrations of MeHg in the diets of wild invertivorous and piscivorous fish. We used a commercial macroarray in conjunction with quantitative polymerase chain reaction to examine gene expression in fish in relation to exposure to these environmentally relevant doses of MeHg. Results Expression of genes commonly associated with endocrine disruption was altered with Hg exposure. Specifically, we observed a marked up-regulation in vitellogenin mRNA in individual Hg-exposed males and a significant decline in vitellogenin gene expression in female fish with increasing Hg concentrations. Other genes identified by the macroarray experiment included those associated with egg fertilization and development, sugar metabolism, apoptosis, and electron transport. We also observed differences in expression patterns between male and female fish not related to genes specifically associated with reproduction, indicating a potential physiological difference in the reaction of males and females to MeHg. Conclusion Gene expression data may provide insight into the mechanisms by which MeHg affects reproduction in fish and indicate how MeHg differs in its effect from other heavy metals and endocrine-disrupting compounds. PMID:16966085
Differential expression of cysteine desulfurases in soybean
2011-01-01
Background Iron-sulfur [Fe-S] clusters are prosthetic groups required to sustain fundamental life processes including electron transfer, metabolic reactions, sensing, signaling, gene regulation and stabilization of protein structures. In plants, the biogenesis of Fe-S protein is compartmentalized and adapted to specific needs of the cell. Many environmental factors affect plant development and limit productivity and geographical distribution. The impact of these limiting factors is particularly relevant for major crops, such as soybean, which has worldwide economic importance. Results Here we analyze the transcriptional profile of the soybean cysteine desulfurases NFS1, NFS2 and ISD11 genes, involved in the biogenesis of [Fe-S] clusters, by quantitative RT-PCR. NFS1, ISD11 and NFS2 encoding two mitochondrial and one plastid located proteins, respectively, are duplicated and showed distinct transcript levels considering tissue and stress response. NFS1 and ISD11 are highly expressed in roots, whereas NFS2 showed no differential expression in tissues. Cold-treated plants showed a decrease in NFS2 and ISD11 transcript levels in roots, and an increased expression of NFS1 and ISD11 genes in leaves. Plants treated with salicylic acid exhibited increased NFS1 transcript levels in roots but lower levels in leaves. In silico analysis of promoter regions indicated the presence of different cis-elements in cysteine desulfurase genes, in good agreement with differential expression of each locus. Our data also showed that increasing of transcript levels of mitochondrial genes, NFS1/ISD11, are associated with higher activities of aldehyde oxidase and xanthine dehydrogenase, two cytosolic Fe-S proteins. Conclusions Our results suggest a relationship between gene expression pattern, biochemical effects, and transcription factor binding sites in promoter regions of cysteine desulfurase genes. Moreover, data show proportionality between NFS1 and ISD11 genes expression. PMID:22099069
Greif, Gonzalo; Rodriguez, Matias; Alvarez-Valin, Fernando
2017-01-01
American trypanosomiasis is a chronic and endemic disease which affects millions of people. Trypanosoma cruzi, its causative agent, has a life cycle that involves complex morphological and functional transitions, as well as a variety of environmental conditions. This requires a tight regulation of gene expression, which is achieved mainly by post-transcriptional regulation. In this work we conducted an RNAseq analysis of the three major life cycle stages of T. cruzi: amastigotes, epimastigotes and trypomastigotes. This analysis allowed us to delineate specific transcriptomic profiling for each stage, and also to identify those biological processes of major relevance in each state. Stage specific expression profiling evidenced the plasticity of T. cruzi to adapt quickly to different conditions, with particular focus on membrane remodeling and metabolic shifts along the life cycle. Epimastigotes, which replicate in the gut of insect vectors, showed higher expression of genes related to energy metabolism, mainly Krebs cycle, respiratory chain and oxidative phosphorylation related genes, and anabolism related genes associated to nucleotide and steroid biosynthesis; also, a general down-regulation of surface glycoprotein coding genes was seen at this stage. Trypomastigotes, living extracellularly in the bloodstream of mammals, express a plethora of surface proteins and signaling genes involved in invasion and evasion of immune response. Amastigotes mostly express membrane transporters and genes involved in regulation of cell cycle, and also express a specific subset of surface glycoprotein coding genes. In addition, these results allowed us to improve the annotation of the Dm28c genome, identifying new ORFs and set the stage for construction of networks of co-expression, which can give clues about coded proteins of unknown functions. PMID:28286708
Lara-Diaz, V J; Castilla-Cortazar, I; Martín-Estal, I; García-Magariño, M; Aguirre, G A; Puche, J E; de la Garza, R G; Morales, L A; Muñoz, U
2017-05-01
Even though the liver synthesizes most of circulating IGF-1, it lacks its receptor under physiological conditions. However, according to previous studies, a damaged liver expresses the receptor. For this reason, herein, we examine hepatic histology and expression of genes encoding proteins of the cytoskeleton, extracellular matrix, and cell-cell molecules and inflammation-related proteins. A partial IGF-1 deficiency murine model was used to investigate IGF-1's effects on liver by comparing wild-type controls, heterozygous igf1 +/- , and heterozygous mice treated with IGF-1 for 10 days. Histology, microarray for mRNA gene expression, RT-qPCR, and lipid peroxidation were assessed. Microarray analyses revealed significant underexpression of igf1 in heterozygous mice compared to control mice, restoring normal liver expression after treatment, which then normalized its circulating levels. IGF-1 receptor mRNA was overexpressed in Hz mice liver, while treated mice displayed a similar expression to that of the controls. Heterozygous mice showed overexpression of several genes encoding proteins related to inflammatory and acute-phase proteins and underexpression or overexpression of genes which coded for extracellular matrix, cytoskeleton, and cell junction components. Histology revealed an altered hepatic architecture. In addition, liver oxidative damage was found increased in the heterozygous group. The mere IGF-1 partial deficiency is associated with relevant alterations of the hepatic architecture and expression of genes involved in cytoskeleton, hepatocyte polarity, cell junctions, and extracellular matrix proteins. Moreover, it induces hepatic expression of the IGF-1 receptor and elevated acute-phase and inflammation mediators, which all resulted in liver oxidative damage.
Blatti, Charles; Sinha, Saurabh
2016-07-15
Analysis of co-expressed gene sets typically involves testing for enrichment of different annotations or 'properties' such as biological processes, pathways, transcription factor binding sites, etc., one property at a time. This common approach ignores any known relationships among the properties or the genes themselves. It is believed that known biological relationships among genes and their many properties may be exploited to more accurately reveal commonalities of a gene set. Previous work has sought to achieve this by building biological networks that combine multiple types of gene-gene or gene-property relationships, and performing network analysis to identify other genes and properties most relevant to a given gene set. Most existing network-based approaches for recognizing genes or annotations relevant to a given gene set collapse information about different properties to simplify (homogenize) the networks. We present a network-based method for ranking genes or properties related to a given gene set. Such related genes or properties are identified from among the nodes of a large, heterogeneous network of biological information. Our method involves a random walk with restarts, performed on an initial network with multiple node and edge types that preserve more of the original, specific property information than current methods that operate on homogeneous networks. In this first stage of our algorithm, we find the properties that are the most relevant to the given gene set and extract a subnetwork of the original network, comprising only these relevant properties. We then re-rank genes by their similarity to the given gene set, based on a second random walk with restarts, performed on the above subnetwork. We demonstrate the effectiveness of this algorithm for ranking genes related to Drosophila embryonic development and aggressive responses in the brains of social animals. DRaWR was implemented as an R package available at veda.cs.illinois.edu/DRaWR. blatti@illinois.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.
Rani, Lata; Mathur, Nitin; Gupta, Ritu; Gogia, Ajay; Kaur, Gurvinder; Dhanjal, Jaspreet Kaur; Sundar, Durai; Kumar, Lalit; Sharma, Atul
2017-01-01
In chronic lymphocytic leukemia (CLL), epigenomic and genomic studies have expanded the existing knowledge about the disease biology and led to the identification of potential biomarkers relevant for implementation of personalized medicine. In this study, an attempt has been made to examine and integrate the global DNA methylation changes with gene expression profile and their impact on clinical outcome in early stage CLL patients. The integration of DNA methylation profile ( n = 14) with the gene expression profile ( n = 21) revealed 142 genes as hypermethylated-downregulated and; 62 genes as hypomethylated-upregulated in early stage CLL patients compared to CD19+ B-cells from healthy individuals. The mRNA expression levels of 17 genes identified to be differentially methylated and/or differentially expressed was further examined in early stage CLL patients ( n = 93) by quantitative real time PCR (RQ-PCR). Significant differences were observed in the mRNA expression of MEIS1 , PMEPA1 , SOX7 , SPRY1 , CDK6 , TBX2 , and SPRY2 genes in CLL cells as compared to B-cells from healthy individuals. The analysis in the IGHV mutation based categories (Unmutated = 39, Mutated = 54) revealed significantly higher mRNA expression of CRY1 and PAX9 genes in the IGHV unmutated subgroup ( p < 0.001). The relative risk of treatment initiation was significantly higher among patients with high expression of CRY1 (RR = 1.91, p = 0.005) or PAX9 (RR = 1.87, p = 0.001). High expression of CRY1 (HR: 3.53, p < 0.001) or PAX9 (HR: 3.14, p < 0.001) gene was significantly associated with shorter time to first treatment. The high expression of PAX9 gene (HR: 3.29, 95% CI 1.172-9.272, p = 0.016) was also predictive of shorter overall survival in CLL. The DNA methylation changes associated with mRNA expression of CRY1 and PAX9 genes allow risk stratification of early stage CLL patients. This comprehensive analysis supports the concept that the epigenetic changes along with the altered expression of genes have the potential to predict clinical outcome in early stage CLL patients.
Vertyporokh, Lidiia; Wojda, Iwona
2017-01-01
The inducible metalloproteinase inhibitor (IMPI) discovered in Galleria mellonella is currently the only specific inhibitor of metalloproteinases found in animals. Its role is to inhibit the activity of metalloproteinases secreted by pathogenic organisms as virulence factors to degrade immune-relevant polypeptides of the infected host. This is a good example of an evolutionary arms race between the insect hosts and their natural pathogens. In this report, we analyze the expression of a gene encoding an inducible metalloproteinase inhibitor (IMPI) in fat bodies of the greater wax moth larvae Galleria mellonella infected with an entomopathogenic fungus Beauveria bassiana. We have used a natural infection, i.e. covering larval integument with fungal aerospores, as well as injection of fungal blastospores directly into the larval hemocel. We compare the expression of IMPI with the expression of genes encoding proteins with fungicidal activity, gallerimycin and galiomycin, whose expression reflects the stimulation of Galleria mellonella defense mechanisms. Also, gene expression is analyzed in the light of survival of animals after spore injection.
Genome-wide expression profiling in pediatric septic shock
Wong, Hector R.
2013-01-01
For nearly a decade, our research group has had the privilege of developing and mining a multi-center, microarray-based, genome-wide expression database of critically ill children (≤ 10 years of age) with septic shock. Using bioinformatic and systems biology approaches, the expression data generated through this discovery-oriented, exploratory approach have been leveraged for a variety of objectives, which will be reviewed. Fundamental observations include wide spread repression of gene programs corresponding to the adaptive immune system, and biologically significant differential patterns of gene expression across developmental age groups. The data have also identified gene expression-based subclasses of pediatric septic shock having clinically relevant phenotypic differences. The data have also been leveraged for the discovery of novel therapeutic targets, and for the discovery and development of novel stratification and diagnostic biomarkers. Almost a decade of genome-wide expression profiling in pediatric septic shock is now demonstrating tangible results. The studies have progressed from an initial discovery-oriented and exploratory phase, to a new phase where the data are being translated and applied to address several areas of clinical need. PMID:23329198
Swathy, Babu; Banerjee, Moinak
2017-01-01
Haloperidol has been extensively used in various psychiatric conditions. It has also been reported to induce severe side effects. We aimed to evaluate whether haloperidol can influence host methylome, and if so what are the possible mechanisms for it in neuronal cells. Impact on host methylome and miRNAs can have wide spread alterations in gene expression, which might possibly help in understanding how haloperidol may impact treatment response or induce side effects. SK-N-SH, a neuroblasoma cell line was treated with haloperidol at 10μm concentration for 24 hours and global DNA methylation was evaluated. Methylation at global level is maintained by methylation maintenance machinery and certain miRNAs. Therefore, the expression of methylation maintenance genes and their putative miRNA expression profiles were assessed. These global methylation alterations could result in gene expression changes. Therefore genes expressions for neurotransmitter receptors, regulators, ion channels and transporters were determined. Subsequently, we were also keen to identify a strong candidate miRNA based on biological and in-silico approach which can reflect on the pharmacoepigenetic trait of haloperidol and can also target the altered neuroscience panel of genes used in the study. Haloperidol induced increase in global DNA methylation which was found to be associated with corresponding increase in expression of various epigenetic modifiers that include DNMT1, DNMT3A, DNMT3B and MBD2. The expression of miR-29b that is known to putatively regulate the global methylation by modulating the expression of epigenetic modifiers was observed to be down regulated by haloperidol. In addition to miR-29b, miR-22 was also found to be downregulated by haloperidol treatment. Both these miRNA are known to putatively target several genes associated with various epigenetic modifiers, pharmacogenes and neurotransmission. Interestingly some of these putative target genes involved in neurotransmission were observed to be upregulated while CHRM2 gene expression was down regulated. Haloperidol can influence methylation traits thereby inducing a pharmacoepigenomic response, which seems to be regulated by DNMTs and their putative miRNA expression. Increased methylation seems to influence CHRM2 gene expression while microRNA could influence neurotransmission, pharmacogene expression and methylation events. Altered expression of various therapeutically relevant genes and miRNA expression, could account for their role in therapeutic response or side effects.
Swathy, Babu
2017-01-01
Introduction Haloperidol has been extensively used in various psychiatric conditions. It has also been reported to induce severe side effects. We aimed to evaluate whether haloperidol can influence host methylome, and if so what are the possible mechanisms for it in neuronal cells. Impact on host methylome and miRNAs can have wide spread alterations in gene expression, which might possibly help in understanding how haloperidol may impact treatment response or induce side effects. Methods SK-N-SH, a neuroblasoma cell line was treated with haloperidol at 10μm concentration for 24 hours and global DNA methylation was evaluated. Methylation at global level is maintained by methylation maintenance machinery and certain miRNAs. Therefore, the expression of methylation maintenance genes and their putative miRNA expression profiles were assessed. These global methylation alterations could result in gene expression changes. Therefore genes expressions for neurotransmitter receptors, regulators, ion channels and transporters were determined. Subsequently, we were also keen to identify a strong candidate miRNA based on biological and in-silico approach which can reflect on the pharmacoepigenetic trait of haloperidol and can also target the altered neuroscience panel of genes used in the study. Results Haloperidol induced increase in global DNA methylation which was found to be associated with corresponding increase in expression of various epigenetic modifiers that include DNMT1, DNMT3A, DNMT3B and MBD2. The expression of miR-29b that is known to putatively regulate the global methylation by modulating the expression of epigenetic modifiers was observed to be down regulated by haloperidol. In addition to miR-29b, miR-22 was also found to be downregulated by haloperidol treatment. Both these miRNA are known to putatively target several genes associated with various epigenetic modifiers, pharmacogenes and neurotransmission. Interestingly some of these putative target genes involved in neurotransmission were observed to be upregulated while CHRM2 gene expression was down regulated. Conclusions Haloperidol can influence methylation traits thereby inducing a pharmacoepigenomic response, which seems to be regulated by DNMTs and their putative miRNA expression. Increased methylation seems to influence CHRM2 gene expression while microRNA could influence neurotransmission, pharmacogene expression and methylation events. Altered expression of various therapeutically relevant genes and miRNA expression, could account for their role in therapeutic response or side effects. PMID:28886082
Pathway analysis from lists of microRNAs: common pitfalls and alternative strategy
Godard, Patrice; van Eyll, Jonathan
2015-01-01
MicroRNAs (miRNAs) are involved in the regulation of gene expression at a post-transcriptional level. As such, monitoring miRNA expression has been increasingly used to assess their role in regulatory mechanisms of biological processes. In large scale studies, once miRNAs of interest have been identified, the target genes they regulate are often inferred using algorithms or databases. A pathway analysis is then often performed in order to generate hypotheses about the relevant biological functions controlled by the miRNA signature. Here we show that the method widely used in scientific literature to identify these pathways is biased and leads to inaccurate results. In addition to describing the bias and its origin we present an alternative strategy to identify potential biological functions specifically impacted by a miRNA signature. More generally, our study exemplifies the crucial need of relevant negative controls when developing, and using, bioinformatics methods. PMID:25800743
Li, Qiyuan; Eklund, Aron C.; Juul, Nicolai; Haibe-Kains, Benjamin; Workman, Christopher T.; Richardson, Andrea L.; Szallasi, Zoltan; Swanton, Charles
2010-01-01
Background Expression of the oestrogen receptor (ER) in breast cancer predicts benefit from endocrine therapy. Minimising the frequency of false negative ER status classification is essential to identify all patients with ER positive breast cancers who should be offered endocrine therapies in order to improve clinical outcome. In routine oncological practice ER status is determined by semi-quantitative methods such as immunohistochemistry (IHC) or other immunoassays in which the ER expression level is compared to an empirical threshold[1], [2]. The clinical relevance of gene expression-based ER subtypes as compared to IHC-based determination has not been systematically evaluated. Here we attempt to reduce the frequency of false negative ER status classification using two gene expression approaches and compare these methods to IHC based ER status in terms of predictive and prognostic concordance with clinical outcome. Methodology/Principal Findings Firstly, ER status was discriminated by fitting the bimodal expression of ESR1 to a mixed Gaussian model. The discriminative power of ESR1 suggested bimodal expression as an efficient way to stratify breast cancer; therefore we identified a set of genes whose expression was both strongly bimodal, mimicking ESR expression status, and highly expressed in breast epithelial cell lines, to derive a 23-gene ER expression signature-based classifier. We assessed our classifiers in seven published breast cancer cohorts by comparing the gene expression-based ER status to IHC-based ER status as a predictor of clinical outcome in both untreated and tamoxifen treated cohorts. In untreated breast cancer cohorts, the 23 gene signature-based ER status provided significantly improved prognostic power compared to IHC-based ER status (P = 0.006). In tamoxifen-treated cohorts, the 23 gene ER expression signature predicted clinical outcome (HR = 2.20, P = 0.00035). These complementary ER signature-based strategies estimated that between 15.1% and 21.8% patients of IHC-based negative ER status would be classified with ER positive breast cancer. Conclusion/Significance Expression-based ER status classification may complement IHC to minimise false negative ER status classification and optimise patient stratification for endocrine therapies. PMID:21152022
Wang, Luwen; Jiang, Ning; Wang, Lin; Fang, Ou; Leach, Lindsey J; Hu, Xiaohua; Luo, Zewei
2014-01-01
Paired sense and antisense (S/AS) genes located in cis represent a structural feature common to the genomes of both prokaryotes and eukaryotes, and produce partially complementary transcripts. We used published genome and transcriptome sequence data and found that over 20% of genes (645 pairs) in the budding yeast Saccharomyces cerevisiae genome are arranged in convergent pairs with overlapping 3'-UTRs. Using published microarray transcriptome data from the standard laboratory strain of S. cerevisiae, our analysis revealed that expression levels of convergent pairs are significantly negatively correlated across a broad range of environments. This implies an important role for convergent genes in the regulation of gene expression, which may compensate for the absence of RNA-dependent mechanisms such as micro RNAs in budding yeast. We selected four representative convergent gene pairs and used expression assays in wild type yeast and its genetically modified strains to explore the underlying patterns of gene expression. Results showed that convergent genes are reciprocally regulated in yeast populations and in single cells, whereby an increase in expression of one gene produces a decrease in the expression of the other, and vice-versa. Time course analysis of the cell cycle illustrated the functional significance of this relationship for the three pairs with relevant functional roles. Furthermore, a series of genetic modifications revealed that the 3'-UTR sequence plays an essential causal role in mediating transcriptional interference, which requires neither the sequence of the open reading frame nor the translation of fully functional proteins. More importantly, transcriptional interference persisted even when one of the convergent genes was expressed ectopically (in trans) and therefore does not depend on the cis arrangement of convergent genes; we conclude that the mechanism of transcriptional interference cannot be explained by the transcriptional collision model, which postulates a clash between simultaneous transcriptional processes occurring on opposite DNA strands.
Wang, Luwen; Jiang, Ning; Wang, Lin; Fang, Ou; Leach, Lindsey J.; Hu, Xiaohua; Luo, Zewei
2014-01-01
Paired sense and antisense (S/AS) genes located in cis represent a structural feature common to the genomes of both prokaryotes and eukaryotes, and produce partially complementary transcripts. We used published genome and transcriptome sequence data and found that over 20% of genes (645 pairs) in the budding yeast Saccharomyces cerevisiae genome are arranged in convergent pairs with overlapping 3′-UTRs. Using published microarray transcriptome data from the standard laboratory strain of S. cerevisiae, our analysis revealed that expression levels of convergent pairs are significantly negatively correlated across a broad range of environments. This implies an important role for convergent genes in the regulation of gene expression, which may compensate for the absence of RNA-dependent mechanisms such as micro RNAs in budding yeast. We selected four representative convergent gene pairs and used expression assays in wild type yeast and its genetically modified strains to explore the underlying patterns of gene expression. Results showed that convergent genes are reciprocally regulated in yeast populations and in single cells, whereby an increase in expression of one gene produces a decrease in the expression of the other, and vice-versa. Time course analysis of the cell cycle illustrated the functional significance of this relationship for the three pairs with relevant functional roles. Furthermore, a series of genetic modifications revealed that the 3′-UTR sequence plays an essential causal role in mediating transcriptional interference, which requires neither the sequence of the open reading frame nor the translation of fully functional proteins. More importantly, transcriptional interference persisted even when one of the convergent genes was expressed ectopically (in trans) and therefore does not depend on the cis arrangement of convergent genes; we conclude that the mechanism of transcriptional interference cannot be explained by the transcriptional collision model, which postulates a clash between simultaneous transcriptional processes occurring on opposite DNA strands. PMID:24465217
Effect of storage time on gene expression data acquired from unfrozen archived newborn blood spots.
Ho, Nhan T; Busik, Julia V; Resau, James H; Paneth, Nigel; Khoo, Sok Kean
2016-11-01
Unfrozen archived newborn blood spots (NBS) have been shown to retain sufficient messenger RNA (mRNA) for gene expression profiling. However, the effect of storage time at ambient temperature for NBS samples in relation to the quality of gene expression data is relatively unknown. Here, we evaluated mRNA expression from quantitative real-time PCR (qRT-PCR) and microarray data obtained from NBS samples stored at ambient temperature to determine the effect of storage time on the quality of gene expression. These data were generated in a previous case-control study examining NBS in 53 children with cerebral palsy (CP) and 53 matched controls. NBS sample storage period ranged from 3 to 16years at ambient temperature. We found persistently low RNA integrity numbers (RIN=2.3±0.71) and 28S/18S rRNA ratios (~0) across NBS samples for all storage periods. In both qRT-PCR and microarray data, the expression of three common housekeeping genes-beta cytoskeletal actin (ACTB), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and peptidylprolyl isomerase A (PPIA)-decreased with increased storage time. Median values of each microarray probe intensity at log 2 scale also decreased over time. After eight years of storage, probe intensity values were largely reduced to background intensity levels. Of 21,500 genes tested, 89% significantly decreased in signal intensity, with 13,551, 10,730, and 9925 genes detected within 5years, > 5 to <10years, and >10years of storage, respectively. We also examined the expression of two gender-specific genes (X inactivation-specific transcript, XIST and lysine-specific demethylase 5D, KDM5D) and seven gene sets representing the inflammatory, hypoxic, coagulative, and thyroidal pathways hypothesized to be related to CP risk to determine the effect of storage time on the detection of these biologically relevant genes. We found the gender-specific genes and CP-related gene sets detectable in all storage periods, but exhibited differential expression (between male vs. female or CP vs. control) only within the first six years of storage. We concluded that gene expression data quality deteriorates in unfrozen archived NBS over time and that differential gene expression profiling and analysis is recommended for those NBS samples collected and stored within six years at ambient temperature. Copyright © 2016 Elsevier Inc. All rights reserved.
Isaacson, Sven; Luo, Feng; Feltus, Frank A.; Smith, Melissa C.
2013-01-01
The study of gene relationships and their effect on biological function and phenotype is a focal point in systems biology. Gene co-expression networks built using microarray expression profiles are one technique for discovering and interpreting gene relationships. A knowledge-independent thresholding technique, such as Random Matrix Theory (RMT), is useful for identifying meaningful relationships. Highly connected genes in the thresholded network are then grouped into modules that provide insight into their collective functionality. While it has been shown that co-expression networks are biologically relevant, it has not been determined to what extent any given network is functionally robust given perturbations in the input sample set. For such a test, hundreds of networks are needed and hence a tool to rapidly construct these networks. To examine functional robustness of networks with varying input, we enhanced an existing RMT implementation for improved scalability and tested functional robustness of human (Homo sapiens), rice (Oryza sativa) and budding yeast (Saccharomyces cerevisiae). We demonstrate dramatic decrease in network construction time and computational requirements and show that despite some variation in global properties between networks, functional similarity remains high. Moreover, the biological function captured by co-expression networks thresholded by RMT is highly robust. PMID:23409071
Bagger, Frederik Otzen; Sasivarevic, Damir; Sohi, Sina Hadi; Laursen, Linea Gøricke; Pundhir, Sachin; Sønderby, Casper Kaae; Winther, Ole; Rapin, Nicolas; Porse, Bo T.
2016-01-01
Research on human and murine haematopoiesis has resulted in a vast number of gene-expression data sets that can potentially answer questions regarding normal and aberrant blood formation. To researchers and clinicians with limited bioinformatics experience, these data have remained available, yet largely inaccessible. Current databases provide information about gene-expression but fail to answer key questions regarding co-regulation, genetic programs or effect on patient survival. To address these shortcomings, we present BloodSpot (www.bloodspot.eu), which includes and greatly extends our previously released database HemaExplorer, a database of gene expression profiles from FACS sorted healthy and malignant haematopoietic cells. A revised interactive interface simultaneously provides a plot of gene expression along with a Kaplan–Meier analysis and a hierarchical tree depicting the relationship between different cell types in the database. The database now includes 23 high-quality curated data sets relevant to normal and malignant blood formation and, in addition, we have assembled and built a unique integrated data set, BloodPool. Bloodpool contains more than 2000 samples assembled from six independent studies on acute myeloid leukemia. Furthermore, we have devised a robust sample integration procedure that allows for sensitive comparison of user-supplied patient samples in a well-defined haematopoietic cellular space. PMID:26507857
Evans, Tyler G.; Hofmann, Gretchen E.
2012-01-01
Anthropogenic stressors, such as climate change, are driving fundamental shifts in the abiotic characteristics of marine ecosystems. As the environmental aspects of our world's oceans deviate from evolved norms, of major concern is whether extant marine species possess the capacity to cope with such rapid change. In what many scientists consider the post-genomic era, tools that exploit the availability of DNA sequence information are being increasingly recognized as relevant to questions surrounding ocean change and marine conservation. In this review, we highlight the application of high-throughput gene-expression profiling, primarily transcriptomics, to the field of marine conservation physiology. Through the use of case studies, we illustrate how gene expression can be used to standardize metrics of sub-lethal stress, track organism condition in natural environments and bypass phylogenetic barriers that hinder the application of other physiological techniques to conservation. When coupled with fine-scale monitoring of environmental variables, gene-expression profiling provides a powerful approach to conservation capable of informing diverse issues related to ocean change, from coral bleaching to the spread of invasive species. Integrating novel approaches capable of improving existing conservation strategies, including gene-expression profiling, will be critical to ensuring the ecological and economic health of the global ocean. PMID:22566679
Kale, Shiv D; Ayubi, Tariq; Chung, Dawoon; Tubau-Juni, Nuria; Leber, Andrew; Dang, Ha X; Karyala, Saikumar; Hontecillas, Raquel; Lawrence, Christopher B; Cramer, Robert A; Bassaganya-Riera, Josep
2017-12-06
Incidences of invasive pulmonary aspergillosis, an infection caused predominantly by Aspergillus fumigatus, have increased due to the growing number of immunocompromised individuals. While A. fumigatus is reliant upon deficiencies in the host to facilitate invasive disease, the distinct mechanisms that govern the host-pathogen interaction remain enigmatic, particularly in the context of distinct immune modulating therapies. To gain insights into these mechanisms, RNA-Seq technology was utilized to sequence RNA derived from lungs of 2 clinically relevant, but immunologically distinct murine models of IPA on days 2 and 3 post inoculation when infection is established and active disease present. Our findings identify notable differences in host gene expression between the chemotherapeutic and steroid models at the interface of immunity and metabolism. RT-qPCR verified model specific and nonspecific expression of 23 immune-associated genes. Deep sequencing facilitated identification of highly expressed fungal genes. We utilized sequence similarity and gene expression to categorize the A. fumigatus putative in vivo secretome. RT-qPCR suggests model specific gene expression for nine putative fungal secreted proteins. Our analysis identifies contrasting responses by the host and fungus from day 2 to 3 between the two models. These differences may help tailor the identification, development, and deployment of host- and/or fungal-targeted therapeutics.
Engström, Patrik; Bailey, Leslie; Onskog, Thomas; Bergström, Sven; Johansson, Jörgen
2010-03-01
Many microbial pathogens invade and proliferate within host cells and the molecular mechanism underlying this behavior is currently being revealed for several bacterial species. Testing clinically relevant antibacterial compounds and elucidating their effects on gene expression requires adequate controls, especially when studying genetically intractable organisms such as Chlamydia spp., for which various gene fusions cannot be constructed. Until now, relative mRNA levels in Chlamydia have been measured using different internal gene expression controls, including 16S rRNA, mRNAs, and DNA. Here, we compared the advantages and disadvantages of various internal expression controls during the early phase of Chlamydia pneumoniae development. The relative abundance of target mRNAs varied using the different internal control RNAs. This was partly due to variation in the transcript stability of the RNA species. Also, seven out of nine of the analyzed RNAs increased fivefold or more between 2 and 14 h postinfection, while the amount of DNA and number of cells remained essentially unaltered. Our results suggest that RNA should not be used as a gene expression control during the early phase of Chlamydia development, and that intrinsic bacterial DNA is preferable for that purpose because it is stable, abundant, and its relative amount is generally correlated with bacterial numbers.
ABC gene expression profiles have clinical importance and possibly form a new hallmark of cancer.
Dvorak, Pavel; Pesta, Martin; Soucek, Pavel
2017-05-01
Adenosine triphosphate-binding cassette proteins constitute a large family of active transporters through extracellular and intracellular membranes. Increased drug efflux based on adenosine triphosphate-binding cassette protein activity is related to the development of cancer cell chemoresistance. Several articles have focused on adenosine triphosphate-binding cassette gene expression profiles (signatures), based on the expression of all 49 human adenosine triphosphate-binding cassette genes, in individual tumor types and reported connections to established clinicopathological features. The aim of this study was to test our theory about the existence of adenosine triphosphate-binding cassette gene expression profiles common to multiple types of tumors, which may modify tumor progression and provide clinically relevant information. Such general adenosine triphosphate-binding cassette profiles could constitute a new attribute of carcinogenesis. Our combined cohort consisted of tissues from 151 cancer patients-breast, colorectal, and pancreatic carcinomas. Standard protocols for RNA isolation and quantitative real-time polymerase chain reaction were followed. Gene expression data from individual tumor types as well as a merged tumor dataset were analyzed by bioinformatics tools. Several general adenosine triphosphate-binding cassette profiles, with differences in gene functions, were established and shown to have significant relations to clinicopathological features such as tumor size, histological grade, or clinical stage. Genes ABCC7, A3, A8, A12, and C8 prevailed among the most upregulated or downregulated ones. In conclusion, the results supported our theory about general adenosine triphosphate-binding cassette gene expression profiles and their importance for cancer on clinical as well as research levels. The presence of ABCC7 (official symbol CFTR) among the genes with key roles in the profiles supports the emerging evidence about its crucial role in various cancers. Graphical abstract.
Chouteau, Mathieu; Whibley, Annabel; Joron, Mathieu; Llaurens, Violaine
2016-01-01
Identifying the genetic basis of adaptive variation is challenging in non-model organisms and quantitative real time PCR. is a useful tool for validating predictions regarding the expression of candidate genes. However, comparing expression levels in different conditions requires rigorous experimental design and statistical analyses. Here, we focused on the neotropical passion-vine butterflies Heliconius, non-model species studied in evolutionary biology for their adaptive variation in wing color patterns involved in mimicry and in the signaling of their toxicity to predators. We aimed at selecting stable reference genes to be used for normalization of gene expression data in RT-qPCR analyses from developing wing discs according to the minimal guidelines described in Minimum Information for publication of Quantitative Real-Time PCR Experiments (MIQE). To design internal RT-qPCR controls, we studied the stability of expression of nine candidate reference genes (actin, annexin, eF1α, FK506BP, PolyABP, PolyUBQ, RpL3, RPS3A, and tubulin) at two developmental stages (prepupal and pupal) using three widely used programs (GeNorm, NormFinder and BestKeeper). Results showed that, despite differences in statistical methods, genes RpL3, eF1α, polyABP, and annexin were stably expressed in wing discs in late larval and pupal stages of Heliconius numata. This combination of genes may be used as a reference for a reliable study of differential expression in wings for instance for genes involved in important phenotypic variation, such as wing color pattern variation. Through this example, we provide general useful technical recommendations as well as relevant statistical strategies for evolutionary biologists aiming to identify candidate-genes involved adaptive variation in non-model organisms. PMID:27271971
Mutations in the Katnb1 gene cause left-right asymmetry and heart defects.
Furtado, Milena B; Merriner, D Jo; Berger, Silke; Rhodes, Danielle; Jamsai, Duangporn; O'Bryan, Moira K
2017-12-01
The microtubule-severing protein complex katanin is composed two subunits, the ATPase subunit, KATNA1, and the noncatalytic regulatory subunit, KATNB1. Recently, the Katnb1 gene has been linked to infertility, regulation of centriole and cilia formation in fish and mammals, as well as neocortical brain development. KATNB1 protein is expressed in germ cells in humans and mouse, mitotic/meiotic spindles and cilia, although the full expression pattern of the Katnb1 gene has not been described. Using a knockin-knockout mouse model of Katnb1 dysfunction we demonstrate that Katnb1 is ubiquitously expressed during embryonic development, although a stronger expression is seen in the crown cells of the gastrulation organizer, the murine node. Furthermore, null and hypomorphic Katnb1 gene mutations show a novel correlation between Katnb1 dysregulation and the development of impaired left-right signaling, including cardiac malformations. Katanin function is a critical regulator of heart development in mice. These findings are potentially relevant to human cardiac development. Developmental Dynamics 246:1027-1035, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Sadeghi, Mostafa; Najafpanah, Mohammad Javad
2013-12-01
Chromium is a biologically important element for humans and laboratory animals. Although the favorable effects of trivalent chromiumon immune responses of studied animals have been well documented, the precise mechanisms by which the chromium acts on immune system is relatively poor studied. In this study, real-time qPCR technique was employed to evaluate the expression profiles of four immune-related genes (B2M, MHCA, MHCB, and Rap2A) in spleens of the domestic goats, Capra hircus, feeding on four different levels of supplemental chromium (0, 0.5, 1, and 1.5 mg/day) as chromium– methionine. The results showed that 1.5 mg/day of supplemental chromium significantly increased the expression of the four studied genes (P <0.01). Since the studied genes play important roles in development, activation, and migration of lymphocytes, their increased expression seems to be an unknown mechanism by which chromium impose reinforcing effects on immune system. Therefore, supplemental chromium can be potentially used to improve immune responses especially in animals experiencing any type of stress such as invasion by a pathogen.
Xu, Kai; Niu, Qingsheng; Zhao, Huiting; Du, Yali; Jiang, Yusuo
2017-01-01
The biological activity and geographical distribution of honey bees is strongly temperature-dependent, due to their ectothermic physiology. In China, the endemic Apis cerana cerana exhibits stronger cold hardiness than Western honey bees, making the former species important pollinators of winter-flowering plants. Although studies have examined behavioral and physiological mechanisms underlying cold resistance in bees, data are scarce regarding the exact molecular mechanisms. Here, we investigated gene expression in A. c. cerana under two temperature treatments, using transcriptomic analysis to identify differentially expressed genes (DEGs) and relevant biological processes, respectively. Across the temperature treatments, 501 DEGs were identified. A gene ontology analysis showed that DEGs were enriched in pathways related to sugar and amino acid biosynthesis and metabolism, as well as calcium ion channel activity. Additionally, heat shock proteins, zinc finger proteins, and serine/threonine-protein kinases were differentially expressed between the two treatments. The results of this study provide a general digital expression profile of thermoregulation genes responding to cold hardiness in A. c. cerana. Our data should prove valuable for future research on cold tolerance mechanisms in insects, and may be beneficial in breeding efforts to improve bee hardiness.
Insights into the noncoding RNome of nitrogen-fixing endosymbiotic α-proteobacteria.
Jiménez-Zurdo, José I; Valverde, Claudio; Becker, Anke
2013-02-01
Symbiotic chronic infection of legumes by rhizobia involves transition of invading bacteria from a free-living environment in soil to an intracellular state as differentiated nitrogen-fixing bacteroids within the nodules elicited in the host plant. The adaptive flexibility demanded by this complex lifestyle is likely facilitated by the large set of regulatory proteins encoded by rhizobial genomes. However, proteins are not the only relevant players in the regulation of gene expression in bacteria. Large-scale high-throughput analysis of prokaryotic genomes is evidencing the expression of an unexpected plethora of small untranslated transcripts (sRNAs) with housekeeping or regulatory roles. sRNAs mostly act in response to environmental cues as post-transcriptional regulators of gene expression through protein-assisted base-pairing interactions with target mRNAs. Riboregulation contributes to fine-tune a wide range of bacterial processes which, in intracellular animal pathogens, largely compromise virulence traits. Here, we summarize the incipient knowledge about the noncoding RNome structure of nitrogen-fixing endosymbiotic bacteria as inferred from genome-wide searches for sRNA genes in the alfalfa partner Sinorhizobium meliloti and further comparative genomics analysis. The biology of relevant S. meliloti RNA chaperones (e.g., Hfq) is also reviewed as a first global indicator of the impact of riboregulation in the establishment of the symbiotic interaction.
PRK1/PKN1 controls migration and metastasis of androgen-independent prostate cancer cells
Jilg, Cordula A.; Ketscher, Anett; Metzger, Eric; Hummel, Barbara; Willmann, Dominica; Rüsseler, Vanessa; Drendel, Vanessa; Imhof, Axel; Jung, Manfred; Franz, Henriette; Hölz, Stefanie; Krönig, Malte; Müller, Judith M.; Schüle, Roland
2014-01-01
The major threat in prostate cancer is the occurrence of metastases in androgen-independent tumor stage, for which no causative cure is available. Here we show that metastatic behavior of androgen-independent prostate tumor cells requires the protein-kinase-C-related kinase (PRK1/PKN1) in vitro and in vivo. PRK1 regulates cell migration and gene expression through its kinase activity, but does not affect cell proliferation. Transcriptome and interactome analyses uncover that PRK1 regulates expression of migration-relevant genes by interacting with the scaffold protein sperm-associated antigen 9 (SPAG9/JIP4). SPAG9 and PRK1 colocalize in human cancer tissue and are required for p38-phosphorylation and cell migration. Accordingly, depletion of either ETS domain-containing protein Elk-1 (ELK1), an effector of p38-signalling or p38 depletion hinders cell migration and changes expression of migration-relevant genes as observed upon PRK1-depletion. Importantly, a PRK1 inhibitor prevents metastases in mice, showing that the PRK1-pathway is a promising target to hamper prostate cancer metastases in vivo. Statement of significance Here we describe a novel mechanism controlling the metastatic behavior of PCa cells and identify PRK1 as a promising therapeutic target to treat androgen-independent metastatic prostate cancer. PMID:25504435
O'Tuathaigh, Colm M P; Fumagalli, Fabio; Desbonnet, Lieve; Perez-Branguli, Francesc; Moloney, Gerard; Loftus, Samim; O'Leary, Claire; Petit, Emilie; Cox, Rachel; Tighe, Orna; Clarke, Gerard; Lai, Donna; Harvey, Richard P; Cryan, John F; Mitchell, Kevin J; Dinan, Timothy G; Riva, Marco A; Waddington, John L
2017-01-01
Few studies have addressed likely gene × gene (ie, epistatic) interactions in mediating risk for schizophrenia. Using a preclinical genetic approach, we investigated whether simultaneous disruption of the risk factors Neuregulin-1 (NRG1) and Disrupted-in-schizophrenia 1 (DISC1) would produce a disease-relevant phenotypic profile different from that observed following disruption to either gene alone. NRG1 heterozygotes exhibited hyperactivity and disruption to prepulse inhibition, both reversed by antipsychotic treatment, and accompanied by reduced striatal dopamine D2 receptor protein expression, impaired social cognition, and altered glutamatergic synaptic protein expression in selected brain areas. Single gene DISC1 mutants demonstrated a disruption in social cognition and nest-building, altered brain 5-hydroxytryptamine levels and hippocampal ErbB4 expression, and decreased cortical expression of the schizophrenia-associated microRNA miR-29b. Co-disruption of DISC1 and NRG1, indicative of epistasis, evoked an impairment in sociability and enhanced self-grooming, accompanied by changes in hypothalamic oxytocin/vasopressin gene expression. The findings indicate specific behavioral correlates and underlying cellular pathways downstream of main effects of DNA variation in the schizophrenia-associated genes NRG1 and DISC1. © The Author 2016. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Bessonov, Kyrylo; Walkey, Christopher J.; Shelp, Barry J.; van Vuuren, Hennie J. J.; Chiu, David; van der Merwe, George
2013-01-01
Analyzing time-course expression data captured in microarray datasets is a complex undertaking as the vast and complex data space is represented by a relatively low number of samples as compared to thousands of available genes. Here, we developed the Interdependent Correlation Clustering (ICC) method to analyze relationships that exist among genes conditioned on the expression of a specific target gene in microarray data. Based on Correlation Clustering, the ICC method analyzes a large set of correlation values related to gene expression profiles extracted from given microarray datasets. ICC can be applied to any microarray dataset and any target gene. We applied this method to microarray data generated from wine fermentations and selected NSF1, which encodes a C2H2 zinc finger-type transcription factor, as the target gene. The validity of the method was verified by accurate identifications of the previously known functional roles of NSF1. In addition, we identified and verified potential new functions for this gene; specifically, NSF1 is a negative regulator for the expression of sulfur metabolism genes, the nuclear localization of Nsf1 protein (Nsf1p) is controlled in a sulfur-dependent manner, and the transcription of NSF1 is regulated by Met4p, an important transcriptional activator of sulfur metabolism genes. The inter-disciplinary approach adopted here highlighted the accuracy and relevancy of the ICC method in mining for novel gene functions using complex microarray datasets with a limited number of samples. PMID:24130853
Johnstone, Daniel M.; Riveros, Carlos; Heidari, Moones; Graham, Ross M.; Trinder, Debbie; Berretta, Regina; Olynyk, John K.; Scott, Rodney J.; Moscato, Pablo; Milward, Elizabeth A.
2013-01-01
While Illumina microarrays can be used successfully for detecting small gene expression changes due to their high degree of technical replicability, there is little information on how different normalization and differential expression analysis strategies affect outcomes. To evaluate this, we assessed concordance across gene lists generated by applying different combinations of normalization strategy and analytical approach to two Illumina datasets with modest expression changes. In addition to using traditional statistical approaches, we also tested an approach based on combinatorial optimization. We found that the choice of both normalization strategy and analytical approach considerably affected outcomes, in some cases leading to substantial differences in gene lists and subsequent pathway analysis results. Our findings suggest that important biological phenomena may be overlooked when there is a routine practice of using only one approach to investigate all microarray datasets. Analytical artefacts of this kind are likely to be especially relevant for datasets involving small fold changes, where inherent technical variation—if not adequately minimized by effective normalization—may overshadow true biological variation. This report provides some basic guidelines for optimizing outcomes when working with Illumina datasets involving small expression changes. PMID:27605185
Richhariya, Shlesha; Jayakumar, Siddharth; Abruzzi, Katharine; Rosbash, Michael; Hasan, Gaiti
2017-01-01
Transcriptional regulation by Store-operated Calcium Entry (SOCE) is well studied in non-excitable cells. However, the role of SOCE has been poorly documented in neuronal cells with more complicated calcium dynamics. Previous reports demonstrated a requirement for SOCE in neurons that regulate Drosophila flight bouts. We refine this requirement temporally to the early pupal stage and use RNA-sequencing to identify SOCE mediated gene expression changes in the developing Drosophila pupal nervous system. Down regulation of dStim, the endoplasmic reticular calcium sensor and a principal component of SOCE in the nervous system, altered the expression of 131 genes including Ral, a small GTPase. Disruption of Ral function in neurons impaired flight, whereas ectopic expression of Ral in SOCE-compromised neurons restored flight. Through live imaging of calcium transients from cultured pupal neurons, we confirmed that Ral does not participate in SOCE, but acts downstream of it. These results identify neuronal SOCE as a mechanism that regulates expression of specific genes during development of the pupal nervous system and emphasizes the relevance of SOCE-regulated gene expression to flight circuit maturation. PMID:28195208
Vallat, Laurent; Kemper, Corey A; Jung, Nicolas; Maumy-Bertrand, Myriam; Bertrand, Frédéric; Meyer, Nicolas; Pocheville, Arnaud; Fisher, John W; Gribben, John G; Bahram, Seiamak
2013-01-08
Cellular behavior is sustained by genetic programs that are progressively disrupted in pathological conditions--notably, cancer. High-throughput gene expression profiling has been used to infer statistical models describing these cellular programs, and development is now needed to guide orientated modulation of these systems. Here we develop a regression-based model to reverse-engineer a temporal genetic program, based on relevant patterns of gene expression after cell stimulation. This method integrates the temporal dimension of biological rewiring of genetic programs and enables the prediction of the effect of targeted gene disruption at the system level. We tested the performance accuracy of this model on synthetic data before reverse-engineering the response of primary cancer cells to a proliferative (protumorigenic) stimulation in a multistate leukemia biological model (i.e., chronic lymphocytic leukemia). To validate the ability of our method to predict the effects of gene modulation on the global program, we performed an intervention experiment on a targeted gene. Comparison of the predicted and observed gene expression changes demonstrates the possibility of predicting the effects of a perturbation in a gene regulatory network, a first step toward an orientated intervention in a cancer cell genetic program.
Feltus, F Alex
2014-06-01
Understanding the control of any trait optimally requires the detection of causal genes, gene interaction, and mechanism of action to discover and model the biochemical pathways underlying the expressed phenotype. Functional genomics techniques, including RNA expression profiling via microarray and high-throughput DNA sequencing, allow for the precise genome localization of biological information. Powerful genetic approaches, including quantitative trait locus (QTL) and genome-wide association study mapping, link phenotype with genome positions, yet genetics is less precise in localizing the relevant mechanistic information encoded in DNA. The coupling of salient functional genomic signals with genetically mapped positions is an appealing approach to discover meaningful gene-phenotype relationships. Techniques used to define this genetic-genomic convergence comprise the field of systems genetics. This short review will address an application of systems genetics where RNA profiles are associated with genetically mapped genome positions of individual genes (eQTL mapping) or as gene sets (co-expression network modules). Both approaches can be applied for knowledge independent selection of candidate genes (and possible control mechanisms) underlying complex traits where multiple, likely unlinked, genomic regions might control specific complex traits. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hui, Min; Cui, Zhaoxia; Liu, Yuan; Song, Chengwen
2017-07-01
In crab, embryogenesis is a complicated developmental program marked by a series of critical events. RNA-Sequencing technology offers developmental biologists a way to identify many more developmental genes than ever before. Here, we present a comprehensive analysis of the transcriptomes of Eriocheir sinensis oosperms (Os) and embryos at the 2-4 cell stage (Cs), which are separated by a cleavage event. A total of 18 923 unigenes were identified, and 403 genes matched with gene ontology (GO) terms related to developmental processes. In total, 432 differentially expressed genes (DEGs) were detected between the two stages. Nine DEGs were specifically expressed at only one stage. These DEGs may be relevant to stage-specific molecular events during development. A number of DEGs related to `hedgehog signaling pathway', `Wnt signaling pathway' `germplasm', `nervous system', `sensory perception' and `segment polarity' were identified as being up-regulated at the Cs stage. The results suggest that these embryonic developmental events begin before the early cleavage event in crabs, and that many of the genes expressed in the two transcriptomes might be maternal genes. Our study provides ample information for further research on the molecular mechanisms underlying crab development.
Liu, Shuang; Zhu, Pengfei; Zhang, Ling; Ding, Shanlong; Zheng, Sujun; Wang, Yang; Lu, Fengmin
2013-01-01
Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) has been widely used to quantify relative gene expression because of the high specificity, sensitivity and accuracy of this technique. However, its reliability is strongly depends on the expression stability of reference gene used for data normalization. Therefore, identification of reliable and condition specific reference genes is critical for the success of RT-qPCR. Hepatitis B virus (HBV) infection, male gender and the presence of cirrhosis are widely recognized as the leading independent risk factors for the development of hepatocellular carcinoma (HCC). This study aimed to select reliable reference gene for RT-qPCR analysis in HCC patients with all of those risk factors. Six candidate reference genes were analyzed in 33 paired tumor and non-tumor tissues from untreated HCC patients. The genes expression stabilities were assessed by geNorm and NormFinder. C-terminal binding protein 1(CTBP1) was the most stable gene among the 6 candidate genes evaluated by both geNorm and NormFinder. The expression stability values were 0.08 for CTBP1 and UBC, 0.09 for HPRT1, 0.12 for HMBS, 0.14 for GAPDH and 0.18 for 18S with geNorm analysis. The stability values suggested by NormFinder software were CTBP1: 0.044, UBC: 0.063, HMBS: 0.072, HPRT1: 0.072, GAPDH: 0.098 and 18S rRNA: 0.161. This is the first systematic analysis which suggested CTBP1 as the highest expression-stable gene in human male HBV infection related-HCC with cirrhosis. We recommend CTBP1 as the best candidate reference gene when RT-qPCR was used to determine gene(s) expression in HCC. This may facilitate the relevant HBV related HCC studies in the future.
Verdugo, Ricardo A; Zeller, Tanja; Rotival, Maxime; Wild, Philipp S; Münzel, Thomas; Lackner, Karl J; Weidmann, Henri; Ninio, Ewa; Trégouët, David-Alexandre; Cambien, François; Blankenberg, Stefan; Tiret, Laurence
2013-01-01
Smoking is a risk factor for atherosclerosis with reported widespread effects on gene expression in circulating blood cells. We hypothesized that a molecular signature mediating the relation between smoking and atherosclerosis may be found in the transcriptome of circulating monocytes. Genome-wide expression profiles and counts of atherosclerotic plaques in carotid arteries were collected in 248 smokers and 688 non-smokers from the general population. Patterns of co-expressed genes were identified by Independent Component Analysis (ICA) and network structure of the pattern-specific gene modules was inferred by the PC-algorithm. A likelihood-based causality test was implemented to select patterns that fit models containing a path "smoking→gene expression→plaques". Robustness of the causal inference was assessed by bootstrapping. At a FDR ≤0.10, 3,368 genes were associated to smoking or plaques, of which 93% were associated to smoking only. SASH1 showed the strongest association to smoking and PPARG the strongest association to plaques. Twenty-nine gene patterns were identified by ICA. Modules containing SASH1 and PPARG did not show evidence for the "smoking→gene expression→plaques" causality model. Conversely, three modules had good support for causal effects and exhibited a network topology consistent with gene expression mediating the relation between smoking and plaques. The network with the strongest support for causal effects was connected to plaques through SLC39A8, a gene with known association to HDL-cholesterol and cellular uptake of cadmium from tobacco, while smoking was directly connected to GAS6, a gene reported to have anti-inflammatory effects in atherosclerosis and to be up-regulated in the placenta of women smoking during pregnancy. Our analysis of the transcriptome of monocytes recovered genes relevant for association to smoking and atherosclerosis, and connected genes that before, were only studied in separate contexts. Inspection of correlation structure revealed candidates that would be missed by expression-phenotype association analysis alone.
Verdugo, Ricardo A.; Zeller, Tanja; Rotival, Maxime; Wild, Philipp S.; Münzel, Thomas; Lackner, Karl J.; Weidmann, Henri; Ninio, Ewa; Trégouët, David-Alexandre; Cambien, François; Blankenberg, Stefan; Tiret, Laurence
2013-01-01
Smoking is a risk factor for atherosclerosis with reported widespread effects on gene expression in circulating blood cells. We hypothesized that a molecular signature mediating the relation between smoking and atherosclerosis may be found in the transcriptome of circulating monocytes. Genome-wide expression profiles and counts of atherosclerotic plaques in carotid arteries were collected in 248 smokers and 688 non-smokers from the general population. Patterns of co-expressed genes were identified by Independent Component Analysis (ICA) and network structure of the pattern-specific gene modules was inferred by the PC-algorithm. A likelihood-based causality test was implemented to select patterns that fit models containing a path “smoking→gene expression→plaques”. Robustness of the causal inference was assessed by bootstrapping. At a FDR ≤0.10, 3,368 genes were associated to smoking or plaques, of which 93% were associated to smoking only. SASH1 showed the strongest association to smoking and PPARG the strongest association to plaques. Twenty-nine gene patterns were identified by ICA. Modules containing SASH1 and PPARG did not show evidence for the “smoking→gene expression→plaques” causality model. Conversely, three modules had good support for causal effects and exhibited a network topology consistent with gene expression mediating the relation between smoking and plaques. The network with the strongest support for causal effects was connected to plaques through SLC39A8, a gene with known association to HDL-cholesterol and cellular uptake of cadmium from tobacco, while smoking was directly connected to GAS6, a gene reported to have anti-inflammatory effects in atherosclerosis and to be up-regulated in the placenta of women smoking during pregnancy. Our analysis of the transcriptome of monocytes recovered genes relevant for association to smoking and atherosclerosis, and connected genes that before, were only studied in separate contexts. Inspection of correlation structure revealed candidates that would be missed by expression-phenotype association analysis alone. PMID:23372645
Dean, Jeffry L; Zhao, Q Jay; Lambert, Jason C; Hawkins, Belinda S; Thomas, Russell S; Wesselkamper, Scott C
2017-05-01
The rate of new chemical development in commerce combined with a paucity of toxicity data for legacy chemicals presents a unique challenge for human health risk assessment. There is a clear need to develop new technologies and incorporate novel data streams to more efficiently inform derivation of toxicity values. One avenue of exploitation lies in the field of transcriptomics and the application of gene expression analysis to characterize biological responses to chemical exposures. In this context, gene set enrichment analysis (GSEA) was employed to evaluate tissue-specific, dose-response gene expression data generated following exposure to multiple chemicals for various durations. Patterns of transcriptional enrichment were evident across time and with increasing dose, and coordinated enrichment plausibly linked to the etiology of the biological responses was observed. GSEA was able to capture both transient and sustained transcriptional enrichment events facilitating differentiation between adaptive versus longer term molecular responses. When combined with benchmark dose (BMD) modeling of gene expression data from key drivers of biological enrichment, GSEA facilitated characterization of dose ranges required for enrichment of biologically relevant molecular signaling pathways, and promoted comparison of the activation dose ranges required for individual pathways. Median transcriptional BMD values were calculated for the most sensitive enriched pathway as well as the overall median BMD value for key gene members of significantly enriched pathways, and both were observed to be good estimates of the most sensitive apical endpoint BMD value. Together, these efforts support the application of GSEA to qualitative and quantitative human health risk assessment. Published by Oxford University Press on behalf of the Society of Toxicology 2017. This work is written by US Government employees and is in the public domain in the US.
NASA Astrophysics Data System (ADS)
Ballantyne, F.; Medeiros, P. M.; Moran, M. A.; Song, C.; Whitman, W. B.; Washington, B.; Yu, M.; Lee, J.
2017-12-01
Despite the advent of methods enabling high resolution characterization of metabolic activity and of organic matter, linking microbial metabolism to organic matter transformations remains a challenge. By sequencing metatranscriptomes and using Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FTICR-MS) to characterize organic matter (OM) at the beginning and at the end of incubations of estuarine water across tide and season, we sought to link observed a changes in OM composition to microbial metabolism. We used linear models and K means clustering to identify clusters of genes that responded coherently across season, which accounted for most of the variability in gene expression, over tidal regime, which explained the majority of the remaining variation, and over time during the 24 hour incubations. We used an approach from the field of signal processing, that to our knowledge has not been used to analyze FTICR-MS data, to identify formulae of compounds that changed in concentration during the incubations. This approach, based on the discrete wavelet transform (DWT), allowed us to overcome some of the challenges associated with analyzing FTICR-MS data: variable ionization of organic compounds, signal suppression by high concentration compounds, and uncertainty about how to normalize changes across spectra. We were able to link clusters of metabolic and transporter genes to changes in OM composition, and uniquely identify genes based on their cross correlation with changes in FTICR mass spectra. Our approach for analyzing FTICR- MS data enables more robust inference about OM transformations, and linking high resolution changes in gene expression and in OM data during incubations represents an important step toward formulating models of microbial metabolism relevant for predicting biogeochemically relevant C fluxes.
Agarwala, Prachi; Pandey, Satyaprakash; Mapa, Koyeli; Maiti, Souvik
2013-03-05
Transforming growth factor β2 (TGFβ2) is a versatile cytokine with a prominent role in cell migration, invasion, cellular development, and immunomodulation. TGFβ2 promotes the malignancy of tumors by inducing epithelial-mesenchymal transition, angiogenesis, and immunosuppression. As it is well-documented that nucleic acid secondary structure can regulate gene expression, we assessed whether any secondary motif regulates its expression at the post-transcriptional level. Bioinformatics analysis predicts an existence of a 23-nucleotide putative G-quadruplex sequence (PG4) in the 5' untranslated region (UTR) of TGFβ2 mRNA. The ability of this stretch of sequence to form a highly stable, intramolecular parallel quadruplex was demonstrated using ultraviolet and circular dichroism spectroscopy. Footprinting studies further validated its existence in the presence of a neighboring nucleotide sequence. Following structural characterization, we evaluated the biological relevance of this secondary motif using a dual luciferase assay. Although PG4 inhibits the expression of the reporter gene, its presence in the context of the entire 5' UTR sequence interestingly enhances gene expression. Mutation or removal of the G-quadruplex sequence from the 5' UTR of the gene diminished the level of expression of this gene at the translational level. Thus, here we highlight an activating role of the G-quadruplex in modulating gene expression of TGFβ2 at the translational level and its potential to be used as a target for the development of therapeutics against cancer.
Tsimakouridze, Elena V; Straume, Marty; Podobed, Peter S; Chin, Heather; LaMarre, Jonathan; Johnson, Ron; Antenos, Monica; Kirby, Gordon M; Mackay, Allison; Huether, Patsy; Simpson, Jeremy A; Sole, Michael; Gadal, Gerard; Martino, Tami A
2012-08-01
There is critical demand in contemporary medicine for gene expression markers in all areas of human disease, for early detection of disease, classification, prognosis, and response to therapy. The integrity of circadian gene expression underlies cardiovascular health and disease; however time-of-day profiling in heart disease has never been examined. We hypothesized that a time-of-day chronomic approach using samples collected across 24-h cycles and analyzed by microarrays and bioinformatics advances contemporary approaches, because it includes sleep-time and/or wake-time molecular responses. As proof of concept, we demonstrate the value of this approach in cardiovascular disease using a murine Transverse Aortic Constriction (TAC) model of pressure overload-induced cardiac hypertrophy in mice. First, microarrays and a novel algorithm termed DeltaGene were used to identify time-of-day differences in gene expression in cardiac hypertrophy 8 wks post-TAC. The top 300 candidates were further analyzed using knowledge-based platforms, paring the list to 20 candidates, which were then validated by real-time polymerase chain reaction (RTPCR). Next, we tested whether the time-of-day gene expression profiles could be indicative of disease progression by comparing the 1- vs. 8-wk TAC. Lastly, since protein expression is functionally relevant, we monitored time-of-day cycling for the analogous cardiac proteins. This approach is generally applicable and can lead to new understanding of disease.
Crowther, Lisa M; Wang, Shu-Ching Mary; Eriksson, Natalie A; Myers, Stephen A; Murray, Lauren A; Muscat, George E O
2011-02-24
We demonstrate that chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII) mRNA is more abundantly expressed (than COUP-TFI mRNA) in skeletal muscle C2C12 cells and in (type I and II) skeletal muscle tissue from C57BL/10 mice. Consequently, we have utilized the ABI TaqMan Low Density Array (TLDA) platform to analyze gene expression changes specifically attributable to ectopic COUP-TFII (relative to vector only) expression in muscle cells. Utilizing a TLDA-based platform and 5 internal controls, we analyze the entire NR superfamily, 96 critical metabolic genes, and 48 important myogenic regulatory genes on the TLDA platform utilizing 5 internal controls. The low density arrays were analyzed by rigorous statistical analysis (with Genorm normalization, Bioconductor R, and the Empirical Bayes statistic) using the (integromics) statminer software. In addition, we validated the differentially expressed patho-physiologically relevant gene (identified on the TLDA platform) glucose transporter type 4 (Glut4). We demonstrated that COUP-TFII expression increased the steady state levels of Glut4 mRNA and protein, while ectopic expression of truncated COUP-TFII lacking helix 12 (COUP-TFΔH12) reduced Glut4 mRNA expression in C2C12 cells. Moreover, COUP-TFII expression trans-activated the Glut4 promoter (-997/+3), and ChIP analysis identified selective recruitment of COUP-TFII to a region encompassing a highly conserved SP1 binding site (in mouse, rat, and human) at nt positions -131/-118. Mutation of the SpI site ablated COUP-TFII mediated trans-activation of the Glut4 promoter. In conclusion, this study demonstrates that in skeletal muscle cells, COUP-TFII regulates several nuclear hormone receptors, and critical metabolic and muscle specific genes.
[Effect of ATRA on the expression of genes Hoxb2 and Hoxb4 in cord blood erythroid progenitors].
DU, Cui-Qiong; Huang, Mei-Xian; Liu, Wen-Jun
2009-12-01
This study was aimed to investigate the expressions of genes hoxb2 and hoxb4 after interference of the proliferation and differentiation of hematopoietic stem cells (HSC) to the erythroid progenitors (CFU-E) in vitro by using all-trans retinoic acid (ATRA). The cord blood was collected from 12 cases of fetal placenta umbilical vein and cultured by using culture technique of HSC in vitro. The proliferation and differentiation of HSC to CFU-E were interfered with 6 x 10(-8) mol/L of ATRA. The expression levels of genes hoxb2 and hoxb4 in blank control and ATRA groups were detected by FQ-RT-PCR on day 3, 7 and 10 of culture. The results showed that the expressions of genes Hoxb2 and hoxb4 were a little on day 3, obviously increased on day 7 and reached highest level on day 10 in 2 groups. The expression level of hoxb4 on day 3, 7 and 10 in blank control group was obviously higher than expression level of hoxb2. As compared with blank control group, the expressions of genes hoxb2 and hoxb4 in the ATRA group were significantly up-regulated. It is concluded that the genes hoxb2 and hoxb4 all expressed in process of proliferation and differentiation to erythroid progenitors, which suggests that hoxb2 and hoxb4 relate to erythroid hematopoiesis, and the hoxb4 has more great relevance to erythroid hematopoiesis as compared with hoxb2. The ATRA (6 x 10(-8) mol/L) can up-regulate the expression of hoxb2 and hoxb4 significantly.
Brune, Iris; Becker, Anke; Paarmann, Daniel; Albersmeier, Andreas; Kalinowski, Jörn; Pühler, Alfred; Tauch, Andreas
2006-12-15
A 70mer oligonucleotide microarray was constructed to analyze genome-wide expression profiles of Corynebacterium jeikeium, a skin bacterium that is predominantly present in the human axilla and involved in axillary odor formation. Oligonucleotides representing 100% of the predicted coding regions of the C. jeikeium K411 genome were designed and spotted in quadruplicate onto epoxy-coated glass slides. The quality of the printed microarray was demonstrated by co-hybridization with fluorescently labeled cDNA probes obtained from exponentially growing C. jeikeium cultures. Accordingly, genes detected with different intensities resulting in log(2) transformed ratios greater than 0.8 or smaller than -0.8 can be regarded as differentially expressed with a confidence level greater than 99%. In an application example, we measured global changes of gene expression during growth of C. jeikeium in the presence of different concentrations of the deodorant component 4-hydroxy-3-methoxybenzyl alcohol that is active in preventing body odor formation. Global expression profiling revealed that low concentrations of 4-hydroxy-3-methoxybenzyl alcohol (0.5 and 2.5mg/ml) had almost no detectable effect on the transcriptome of C. jeikeium. A slightly higher concentration of 4-hydroxy-3-methoxybenzyl alcohol (5mg/ml) resulted in differential expression of 95 genes, 86 of which showed an enhanced expression when compared to a control culture. Besides many genes encoding proteins that apparently participate in transcription and translation, the drug resistance determinant cmx and the predicted virulence factors sapA and sapD showed significantly enhanced expression levels. Differential expression of relevant genes was validated by real-time reverse transcription PCR assays.
Xu, Y; Ehringer, M; Yang, F; Sikela, J M
2001-06-01
Inbred long-sleep (ILS) and short-sleep (ISS) mice show significant central nervous system-mediated differences in sleep time for sedative dose of ethanol and are frequently used as a rodent model for ethanol sensitivity. In this study, we have used complementary DNA (cDNA) array hybridization methodology to identify genes that are differentially expressed between the brains of ILS and ISS mice. To carry out this analysis, we used both the gene discovery array (GDA) and the Mouse GEM 1 Microarray. GDA consists of 18,378 nonredundant mouse cDNA clones on a single nylon filter. Complex probes were prepared from total brain mRNA of ILS or ISS mice by using reverse transcription and 33P labeling. The labeled probes were hybridized in parallel to the gene array filters. Data from GDA experiments were analyzed with SQL-Plus and Oracle 8. The GEM microarray includes 8,730 sequence-verified clones on a glass chip. Two fluorescently labeled probes were used to hybridize a microarray simultaneously. Data from GEM experiments were analyzed by using the GEMTools software package (Incyte). Differentially expressed genes identified from each method were confirmed by relative quantitative reverse transcription-polymerase chain reaction (RT-PCR). A total of 41 genes or expressed sequence tags (ESTs) display significant expression level differences between brains of ILS and ISS mice after GDA, GEM1 hybridization, and quantitative RT-PCR confirmation. Among them, 18 clones were expressed higher in ILS mice, and 23 clones were expressed higher in ISS mice. The individual gene or EST's function and mapping information have been analyzed. This study identified 41 genes that are differentially expressed between brains of ILS and ISS mice. Some of them may have biological relevance in mediation of phenotypic variation between ILS and ISS mice for ethanol sensitivity. This study also demonstrates that parallel gene expression comparison with high-density cDNA arrays is a rapid and efficient way to discover potential genes and pathways involved in alcoholism and alcohol-related physiologic processes.
Chronic LSD alters gene expression profiles in the mPFC relevant to schizophrenia.
Martin, David A; Marona-Lewicka, Danuta; Nichols, David E; Nichols, Charles D
2014-08-01
Chronic administration of lysergic acid diethylamide (LSD) every other day to rats results in a variety of abnormal behaviors. These build over the 90 day course of treatment and can persist at full strength for at least several months after cessation of treatment. The behaviors are consistent with those observed in animal models of schizophrenia and include hyperactivity, reduced sucrose-preference, and decreased social interaction. In order to elucidate molecular changes that underlie these aberrant behaviors, we chronically treated rats with LSD and performed RNA-sequencing on the medial prefrontal cortex (mPFC), an area highly associated with both the actions of LSD and the pathophysiology of schizophrenia and other psychiatric illnesses. We observed widespread changes in the neurogenetic state of treated animals four weeks after cessation of LSD treatment. QPCR was used to validate a subset of gene expression changes observed with RNA-Seq, and confirmed a significant correlation between the two methods. Functional clustering analysis indicates differentially expressed genes are enriched in pathways involving neurotransmission (Drd2, Gabrb1), synaptic plasticity (Nr2a, Krox20), energy metabolism (Atp5d, Ndufa1) and neuropeptide signaling (Npy, Bdnf), among others. Many processes identified as altered by chronic LSD are also implicated in the pathogenesis of schizophrenia, and genes affected by LSD are enriched with putative schizophrenia genes. Our results provide a relatively comprehensive analysis of mPFC transcriptional regulation in response to chronic LSD, and indicate that the long-term effects of LSD may bear relevance to psychiatric illnesses, including schizophrenia. Copyright © 2014 Elsevier Ltd. All rights reserved.
Chronic LSD alters gene expression profiles in the mPFC relevant to schizophrenia
Martin, David A.; Marona-Lewicka, Danuta; Nichols, David E.; Nichols, Charles D.
2014-01-01
Chronic administration of lysergic acid diethylamide (LSD) every other day to rats results in a variety of abnormal behaviors. These build over the 90 day course of treatment and can persist at full strength for at least several months after cessation of treatment. The behaviors are consistent with those observed in animal models of schizophrenia and include hyperactivity, reduced sucrose-preference, and decreased social interaction. In order to elucidate molecular changes that underlie these aberrant behaviors, we chronically treated rats with LSD and performed RNA-Sequencing on the medial prefrontal cortex (mPFC), an area highly associated with both the actions of LSD and the pathophysiology of schizophrenia and other psychiatric illnesses. We observed widespread changes in the neurogenetic state of treated animals four weeks after cessation of LSD treatment. QPCR was used to validate a subset of gene expression changes observed with RNA-Seq, and confirmed a significant correlation between the two methods. Functional clustering analysis indicates differentially expressed genes are enriched in pathways involving neurotransmission (Drd2, Gabrb1), synaptic plasticity (Nr2a, Krox20), energy metabolism (Atp5d, Ndufa1) and neuropeptide signaling (Npy, Bdnf), among others. Many processes identified as altered by chronic LSD are also implicated in the pathogenesis of schizophrenia, and genes affected by LSD are enriched with putative schizophrenia genes. Our results provide a relatively comprehensive analysis of mPFC transcriptional regulation in response to chronic LSD, and indicate that the long-term effects of LSD may bear relevance to psychiatric illnesses, including schizophrenia. PMID:24704148
Bohannon, Meredith E; Porter, Tom E; Lavoie, Emma T; Ottinger, Mary Ann
2018-06-22
The upper Hudson River was contaminated with polychlorinated biphenyls (PCB) Aroclor mixtures from the 1940s until the late 1970s. Several well-established biomarkers, such as induction of hepatic cytochrome P450 monooxygenases, were used to measure exposure to PCBs and similar contaminants in birds. In the present study, Japanese quail eggs were injected with a PCB mixture based upon a congener profile found in spotted sandpiper eggs at the upper Hudson River and subsequently, RNA was extracted from hatchling liver tissue for hybridization to a customized chicken cDNA microarray. Nominal concentrations of the mixture used for microarray hybridization were 0, 6, 12, or 49 μg/g egg. Hepatic gene expression profiles were analyzed using cluster and pathway analyses. Results showed potentially useful biomarkers of both exposure and effect attributed to PCB mixture. Biorag and Ingenuity Pathway Analysis® analyses revealed differentially expressed genes including those involved in glycolysis, xenobiotic metabolism, replication, protein degradation, and tumor regulation. These genes included cytochrome P450 1A5 (CYP1A5), cytochrome b5 (CYB5), NADH-cytochrome b5 reductase, glutathione S-transferase (GSTA), fructose bisphosphate aldolase (ALDOB), glycogen phosphorylase, carbonic anhydrase, and DNA topoisomerase II. CYP1A5, CYB5, GSTA, and ALDOB were chosen for quantitative real-time polymerase chain reaction confirmation, as these genes exhibited a clear dose response on the array. Data demonstrated that an initial transcriptional profile associated with an environmentally relevant PCB mixture in Japanese quail occurred.
Verma, Jitendra Kumar; Wardhan, Vijay; Singh, Deepali; Chakraborty, Subhra; Chakraborty, Niranjan
2018-03-28
Architectural proteins play key roles in genome construction and regulate the expression of many genes, albeit the modulation of genome plasticity by these proteins is largely unknown. A critical screening of the architectural proteins in five crop species, viz., Oryza sativa , Zea mays , Sorghum bicolor , Cicer arietinum , and Vitis vinifera , and in the model plant Arabidopsis thaliana along with evolutionary relevant species such as Chlamydomonas reinhardtii , Physcomitrella patens , and Amborella trichopoda , revealed 9, 20, 10, 7, 7, 6, 1, 4, and 4 Alba (acetylation lowers binding affinity) genes, respectively. A phylogenetic analysis of the genes and of their counterparts in other plant species indicated evolutionary conservation and diversification. In each group, the structural components of the genes and motifs showed significant conservation. The chromosomal location of the Alba genes of rice ( OsAlba ), showed an unequal distribution on 8 of its 12 chromosomes. The expression profiles of the OsAlba genes indicated a distinct tissue-specific expression in the seedling, vegetative, and reproductive stages. The quantitative real-time PCR (qRT-PCR) analysis of the OsAlba genes confirmed their stress-inducible expression under multivariate environmental conditions and phytohormone treatments. The evaluation of the regulatory elements in 68 Alba genes from the 9 species studied led to the identification of conserved motifs and overlapping microRNA (miRNA) target sites, suggesting the conservation of their function in related proteins and a divergence in their biological roles across species. The 3D structure and the prediction of putative ligands and their binding sites for OsAlba proteins offered a key insight into the structure-function relationship. These results provide a comprehensive overview of the subtle genetic diversification of the OsAlba genes, which will help in elucidating their functional role in plants.
Molecular profiles to biology and pathways: a systems biology approach.
Van Laere, Steven; Dirix, Luc; Vermeulen, Peter
2016-06-16
Interpreting molecular profiles in a biological context requires specialized analysis strategies. Initially, lists of relevant genes were screened to identify enriched concepts associated with pathways or specific molecular processes. However, the shortcoming of interpreting gene lists by using predefined sets of genes has resulted in the development of novel methods that heavily rely on network-based concepts. These algorithms have the advantage that they allow a more holistic view of the signaling properties of the condition under study as well as that they are suitable for integrating different data types like gene expression, gene mutation, and even histological parameters.
Toulis, Vasileios; Garanto, Alejandro; Marfany, Gemma
2016-01-01
Ubiquitination is a dynamic and reversible posttranslational modification. Much effort has been devoted to characterize the function of ubiquitin pathway genes in the cell context, but much less is known on their functional role in the development and maintenance of organs and tissues in the organism. In fact, several ubiquitin ligases and deubiquitinating enzymes (DUBs) are implicated in human pathological disorders, from cancer to neurodegeneration. The aim of our work is to explore the relevance of DUBs in retinal function in health and disease, particularly since some genes related to the ubiquitin or SUMO pathways cause retinal dystrophies, a group of rare diseases that affect 1:3000 individuals worldwide. We propose zebrafish as an extremely useful and informative genetic model to characterize the function of any particular gene in the retina, and thus complement the expression data from mouse. A preliminary characterization of gene expression in mouse retinas (RT-PCR and in situ hybridization) was performed to select particularly interesting genes, and we later replicated the experiments in zebrafish. As a proof of concept, we selected ups45 to be knocked down by morpholino injection in zebrafish embryos. Morphant phenotypic analysis showed moderate to severe eye morphological defects, with a defective formation of the retinal structures, therefore supporting the relevance of DUBs in the formation and differentiation of the vertebrate retina, and suggesting that genes encoding ubiquitin pathway enzymes are good candidates for causing hereditary retinal dystrophies.
Long-Range Control of Gene Expression: Emerging Mechanisms and Disruption in Disease
Kleinjan, Dirk A.; van Heyningen, Veronica
2005-01-01
Transcriptional control is a major mechanism for regulating gene expression. The complex machinery required to effect this control is still emerging from functional and evolutionary analysis of genomic architecture. In addition to the promoter, many other regulatory elements are required for spatiotemporally and quantitatively correct gene expression. Enhancer and repressor elements may reside in introns or up- and downstream of the transcription unit. For some genes with highly complex expression patterns—often those that function as key developmental control genes—the cis-regulatory domain can extend long distances outside the transcription unit. Some of the earliest hints of this came from disease-associated chromosomal breaks positioned well outside the relevant gene. With the availability of wide-ranging genome sequence comparisons, strong conservation of many noncoding regions became obvious. Functional studies have shown many of these conserved sites to be transcriptional regulatory elements that sometimes reside inside unrelated neighboring genes. Such sequence-conserved elements generally harbor sites for tissue-specific DNA-binding proteins. Developmentally variable chromatin conformation can control protein access to these sites and can regulate transcription. Disruption of these finely tuned mechanisms can cause disease. Some regulatory element mutations will be associated with phenotypes distinct from any identified for coding-region mutations. PMID:15549674
Meier, Jan; Hovestadt, Volker; Zapatka, Marc; Pscherer, Armin; Lichter, Peter; Seiffert, Martina
2013-01-01
MicroRNAs (miRNAs) are single-stranded, small, non-coding RNAs, which fine-tune protein expression by degrading and/or translationally inhibiting mRNAs. Manipulation of miRNA expression in animal models frequently results in severe phenotypes indicating their relevance in controlling cellular functions, most likely by interacting with multiple targets. To better understand the effect of miRNA activities, genome-wide analysis of their targets are required. MicroRNA profiling as well as transcriptome analysis upon enforced miRNA expression were frequently used to investigate their relevance. However, these approaches often fail to identify relevant miRNAs targets. Therefore, we tested the precision of RNA-interacting protein immunoprecipitation (RIP) using AGO2-specific antibodies, a core component of the “RNA-induced silencing complex” (RISC), followed by RNA sequencing (Seq) in a defined cellular system, the HEK293T cells with stable, ectopic expression of miR-155. Thereby, we identified 100 AGO2-associated mRNAs in miR-155-expressing cells, of which 67 were in silico predicted miR-155 target genes. An integrated analysis of the corresponding expression profiles indicated that these targets were either regulated by mRNA decay or by translational repression. Of the identified miR-155 targets, 17 were related to cell cycle control, suggesting their involvement in the observed increase in cell proliferation of HEK293T cells upon miR-155 expression. Additional, secondary changes within the gene expression profile were detected and might contribute to this phenotype as well. Interestingly, by analyzing RIP-Seq data of HEK-293T cells and two B-cell lines we identified a recurrent disproportional enrichment of several miRNAs, including miR-155 and miRNAs of the miR-17-92 cluster, in the AGO2-associated precipitates, suggesting discrepancies in miRNA expression and activity. PMID:23673373
Comparative genomics of Toll-like receptor signalling in five species
Jann, Oliver C; King, Annemarie; Corrales, Nestor Lopez; Anderson, Susan I; Jensen, Kirsty; Ait-ali, Tahar; Tang, Haizhou; Wu, Chunhua; Cockett, Noelle E; Archibald, Alan L; Glass, Elizabeth J
2009-01-01
Background Over the last decade, several studies have identified quantitative trait loci (QTL) affecting variation of immune related traits in mammals. Recent studies in humans and mice suggest that part of this variation may be caused by polymorphisms in genes involved in Toll-like receptor (TLR) signalling. In this project, we used a comparative approach to investigate the importance of TLR-related genes in comparison with other immunologically relevant genes for resistance traits in five species by associating their genomic location with previously published immune-related QTL regions. Results We report the genomic localisation of TLR1-10 and ten associated signalling molecules in sheep and pig using in-silico and/or radiation hybrid (RH) mapping techniques and compare their positions with their annotated homologues in the human, cattle and mouse whole genome sequences. We also report medium-density RH maps for porcine chromosomes 8 and 13. A comparative analysis of the positions of previously published relevant QTLs allowed the identification of homologous regions that are associated with similar health traits in several species and which contain TLR related and other immunologically relevant genes. Additional evidence was gathered by examining relevant gene expression and association studies. Conclusion This comparative genomic approach identified eight genes as potentially causative genes for variations of health related traits. These include susceptibility to clinical mastitis in dairy cattle, general disease resistance in sheep, cattle, humans and mice, and tolerance to protozoan infection in cattle and mice. Four TLR-related genes (TLR1, 6, MyD88, IRF3) appear to be the most likely candidate genes underlying QTL regions which control the resistance to the same or similar pathogens in several species. Further studies are required to investigate the potential role of polymorphisms within these genes. PMID:19432955
Ienasescu, Hans; Li, Kang; Andersson, Robin; Vitezic, Morana; Rennie, Sarah; Chen, Yun; Vitting-Seerup, Kristoffer; Lagoni, Emil; Boyd, Mette; Bornholdt, Jette; de Hoon, Michiel J. L.; Kawaji, Hideya; Lassmann, Timo; Hayashizaki, Yoshihide; Forrest, Alistair R. R.; Carninci, Piero; Sandelin, Albin
2016-01-01
Genomics consortia have produced large datasets profiling the expression of genes, micro-RNAs, enhancers and more across human tissues or cells. There is a need for intuitive tools to select subsets of such data that is the most relevant for specific studies. To this end, we present SlideBase, a web tool which offers a new way of selecting genes, promoters, enhancers and microRNAs that are preferentially expressed/used in a specified set of cells/tissues, based on the use of interactive sliders. With the help of sliders, SlideBase enables users to define custom expression thresholds for individual cell types/tissues, producing sets of genes, enhancers etc. which satisfy these constraints. Changes in slider settings result in simultaneous changes in the selected sets, updated in real time. SlideBase is linked to major databases from genomics consortia, including FANTOM, GTEx, The Human Protein Atlas and BioGPS. Database URL: http://slidebase.binf.ku.dk PMID:28025337
Biological Insights From 108 Schizophrenia-Associated Genetic Loci
Ripke, Stephan; Neale, Benjamin M; Corvin, Aiden; Walters, James TR; Farh, Kai-How; Holmans, Peter A; Lee, Phil; Bulik-Sullivan, Brendan; Collier, David A; Huang, Hailiang; Pers, Tune H; Agartz, Ingrid; Agerbo, Esben; Albus, Margot; Alexander, Madeline; Amin, Farooq; Bacanu, Silviu A; Begemann, Martin; Belliveau, Richard A; Bene, Judit; Bergen, Sarah E; Bevilacqua, Elizabeth; Bigdeli, Tim B; Black, Donald W; Bruggeman, Richard; Buccola, Nancy G; Buckner, Randy L; Byerley, William; Cahn, Wiepke; Cai, Guiqing; Campion, Dominique; Cantor, Rita M; Carr, Vaughan J; Carrera, Noa; Catts, Stanley V; Chambert, Kimberley D; Chan, Raymond CK; Chan, Ronald YL; Chen, Eric YH; Cheng, Wei; Cheung, Eric FC; Chong, Siow Ann; Cloninger, C Robert; Cohen, David; Cohen, Nadine; Cormican, Paul; Craddock, Nick; Crowley, James J; Curtis, David; Davidson, Michael; Davis, Kenneth L; Degenhardt, Franziska; Del Favero, Jurgen; Demontis, Ditte; Dikeos, Dimitris; Dinan, Timothy; Djurovic, Srdjan; Donohoe, Gary; Drapeau, Elodie; Duan, Jubao; Dudbridge, Frank; Durmishi, Naser; Eichhammer, Peter; Eriksson, Johan; Escott-Price, Valentina; Essioux, Laurent; Fanous, Ayman H; Farrell, Martilias S; Frank, Josef; Franke, Lude; Freedman, Robert; Freimer, Nelson B; Friedl, Marion; Friedman, Joseph I; Fromer, Menachem; Genovese, Giulio; Georgieva, Lyudmila; Giegling, Ina; Giusti-Rodríguez, Paola; Godard, Stephanie; Goldstein, Jacqueline I; Golimbet, Vera; Gopal, Srihari; Gratten, Jacob; de Haan, Lieuwe; Hammer, Christian; Hamshere, Marian L; Hansen, Mark; Hansen, Thomas; Haroutunian, Vahram; Hartmann, Annette M; Henskens, Frans A; Herms, Stefan; Hirschhorn, Joel N; Hoffmann, Per; Hofman, Andrea; Hollegaard, Mads V; Hougaard, David M; Ikeda, Masashi; Joa, Inge; Julià, Antonio; Kahn, René S; Kalaydjieva, Luba; Karachanak-Yankova, Sena; Karjalainen, Juha; Kavanagh, David; Keller, Matthew C; Kennedy, James L; Khrunin, Andrey; Kim, Yunjung; Klovins, Janis; Knowles, James A; Konte, Bettina; Kucinskas, Vaidutis; Kucinskiene, Zita Ausrele; Kuzelova-Ptackova, Hana; Kähler, Anna K; Laurent, Claudine; Lee, Jimmy; Lee, S Hong; Legge, Sophie E; Lerer, Bernard; Li, Miaoxin; Li, Tao; Liang, Kung-Yee; Lieberman, Jeffrey; Limborska, Svetlana; Loughland, Carmel M; Lubinski, Jan; Lönnqvist, Jouko; Macek, Milan; Magnusson, Patrik KE; Maher, Brion S; Maier, Wolfgang; Mallet, Jacques; Marsal, Sara; Mattheisen, Manuel; Mattingsdal, Morten; McCarley, Robert W; McDonald, Colm; McIntosh, Andrew M; Meier, Sandra; Meijer, Carin J; Melegh, Bela; Melle, Ingrid; Mesholam-Gately, Raquelle I; Metspalu, Andres; Michie, Patricia T; Milani, Lili; Milanova, Vihra; Mokrab, Younes; Morris, Derek W; Mors, Ole; Murphy, Kieran C; Murray, Robin M; Myin-Germeys, Inez; Müller-Myhsok, Bertram; Nelis, Mari; Nenadic, Igor; Nertney, Deborah A; Nestadt, Gerald; Nicodemus, Kristin K; Nikitina-Zake, Liene; Nisenbaum, Laura; Nordin, Annelie; O’Callaghan, Eadbhard; O’Dushlaine, Colm; O’Neill, F Anthony; Oh, Sang-Yun; Olincy, Ann; Olsen, Line; Van Os, Jim; Pantelis, Christos; Papadimitriou, George N; Papiol, Sergi; Parkhomenko, Elena; Pato, Michele T; Paunio, Tiina; Pejovic-Milovancevic, Milica; Perkins, Diana O; Pietiläinen, Olli; Pimm, Jonathan; Pocklington, Andrew J; Powell, John; Price, Alkes; Pulver, Ann E; Purcell, Shaun M; Quested, Digby; Rasmussen, Henrik B; Reichenberg, Abraham; Reimers, Mark A; Richards, Alexander L; Roffman, Joshua L; Roussos, Panos; Ruderfer, Douglas M; Salomaa, Veikko; Sanders, Alan R; Schall, Ulrich; Schubert, Christian R; Schulze, Thomas G; Schwab, Sibylle G; Scolnick, Edward M; Scott, Rodney J; Seidman, Larry J; Shi, Jianxin; Sigurdsson, Engilbert; Silagadze, Teimuraz; Silverman, Jeremy M; Sim, Kang; Slominsky, Petr; Smoller, Jordan W; So, Hon-Cheong; Spencer, Chris C A; Stahl, Eli A; Stefansson, Hreinn; Steinberg, Stacy; Stogmann, Elisabeth; Straub, Richard E; Strengman, Eric; Strohmaier, Jana; Stroup, T Scott; Subramaniam, Mythily; Suvisaari, Jaana; Svrakic, Dragan M; Szatkiewicz, Jin P; Söderman, Erik; Thirumalai, Srinivas; Toncheva, Draga; Tosato, Sarah; Veijola, Juha; Waddington, John; Walsh, Dermot; Wang, Dai; Wang, Qiang; Webb, Bradley T; Weiser, Mark; Wildenauer, Dieter B; Williams, Nigel M; Williams, Stephanie; Witt, Stephanie H; Wolen, Aaron R; Wong, Emily HM; Wormley, Brandon K; Xi, Hualin Simon; Zai, Clement C; Zheng, Xuebin; Zimprich, Fritz; Wray, Naomi R; Stefansson, Kari; Visscher, Peter M; Adolfsson, Rolf; Andreassen, Ole A; Blackwood, Douglas HR; Bramon, Elvira; Buxbaum, Joseph D; Børglum, Anders D; Cichon, Sven; Darvasi, Ariel; Domenici, Enrico; Ehrenreich, Hannelore; Esko, Tõnu; Gejman, Pablo V; Gill, Michael; Gurling, Hugh; Hultman, Christina M; Iwata, Nakao; Jablensky, Assen V; Jönsson, Erik G; Kendler, Kenneth S; Kirov, George; Knight, Jo; Lencz, Todd; Levinson, Douglas F; Li, Qingqin S; Liu, Jianjun; Malhotra, Anil K; McCarroll, Steven A; McQuillin, Andrew; Moran, Jennifer L; Mortensen, Preben B; Mowry, Bryan J; Nöthen, Markus M; Ophoff, Roel A; Owen, Michael J; Palotie, Aarno; Pato, Carlos N; Petryshen, Tracey L; Posthuma, Danielle; Rietschel, Marcella; Riley, Brien P; Rujescu, Dan; Sham, Pak C; Sklar, Pamela; St Clair, David; Weinberger, Daniel R; Wendland, Jens R; Werge, Thomas; Daly, Mark J; Sullivan, Patrick F; O’Donovan, Michael C
2014-01-01
Summary Schizophrenia is a highly heritable disorder. Genetic risk is conferred by a large number of alleles, including common alleles of small effect that might be detected by genome-wide association studies. Here, we report a multi-stage schizophrenia genome-wide association study of up to 36,989 cases and 113,075 controls. We identify 128 independent associations spanning 108 conservatively defined loci that meet genome-wide significance, 83 of which have not been previously reported. Associations were enriched among genes expressed in brain providing biological plausibility for the findings. Many findings have the potential to provide entirely novel insights into aetiology, but associations at DRD2 and multiple genes involved in glutamatergic neurotransmission highlight molecules of known and potential therapeutic relevance to schizophrenia, and are consistent with leading pathophysiological hypotheses. Independent of genes expressed in brain, associations were enriched among genes expressed in tissues that play important roles in immunity, providing support for the hypothesized link between the immune system and schizophrenia. PMID:25056061
Grosse, Laura; Carvalho, Livia A; Wijkhuijs, Annemarie J M; Bellingrath, Silja; Ruland, Tillmann; Ambrée, Oliver; Alferink, Judith; Ehring, Thomas; Drexhage, Hemmo A; Arolt, Volker
2015-02-01
Increased inflammatory activation might only be present in a subgroup of depressed individuals in which immune processes are especially relevant to disease development. We aimed to analyze demographic, depression, and trauma characteristics of major depressive disorder (MDD) patients with regard to inflammatory monocyte gene expression. Fifty-six naturalistically treated MDD patients (32 ± 12 years) and 57 healthy controls (HC; 31 ± 11 years) were analyzed by the Inventory of Depressive Symptomatology (IDS) and by the Childhood Trauma Questionnaire (CTQ). We determined the expression of 38 inflammatory and immune activation genes including the glucocorticoid receptor (GR)α and GRβ genes in purified CD14(+) monocytes using quantitative-polymerase chain reaction (RT-qPCR). Monocyte gene expression was age-dependent, particularly in MDD patients. Increased monocyte gene expression and decreased GRα/β ratio were only present in MDD patients aged ⩾ 28 years. Post hoc analyses of monocyte immune activation in patients <28 years showed two subgroups: a subgroup with a severe course of depression (recurrent type, onset <15 years) - additionally characterized by panic/arousal symptoms and childhood trauma - that had a monocyte gene expression similar to HC, and a second subgroup with a milder course of the disorder (73% first episode depression, onset ⩾15 years) - additionally characterized by the absence of panic symptoms - that exhibited a strongly reduced inflammatory monocyte activation compared to HC. In conclusion, monocyte immune activation was not uniformly raised in MDD patients but was increased only in patients of 28 years and older. Copyright © 2014 Elsevier Inc. All rights reserved.
Naxerova, Kamila; Bult, Carol J; Peaston, Anne; Fancher, Karen; Knowles, Barbara B; Kasif, Simon; Kohane, Isaac S
2008-01-01
Background In recent years, the molecular underpinnings of the long-observed resemblance between neoplastic and immature tissue have begun to emerge. Genome-wide transcriptional profiling has revealed similar gene expression signatures in several tumor types and early developmental stages of their tissue of origin. However, it remains unclear whether such a relationship is a universal feature of malignancy, whether heterogeneities exist in the developmental component of different tumor types and to which degree the resemblance between cancer and development is a tissue-specific phenomenon. Results We defined a developmental landscape by summarizing the main features of ten developmental time courses and projected gene expression from a variety of human tumor types onto this landscape. This comparison demonstrates a clear imprint of developmental gene expression in a wide range of tumors and with respect to different, even non-cognate developmental backgrounds. Our analysis reveals three classes of cancers with developmentally distinct transcriptional patterns. We characterize the biological processes dominating these classes and validate the class distinction with respect to a new time series of murine embryonic lung development. Finally, we identify a set of genes that are upregulated in most cancers and we show that this signature is active in early development. Conclusion This systematic and quantitative overview of the relationship between the neoplastic and developmental transcriptome spanning dozens of tissues provides a reliable outline of global trends in cancer gene expression, reveals potentially clinically relevant differences in the gene expression of different cancer types and represents a reference framework for interpretation of smaller-scale functional studies. PMID:18611264
2011-01-01
Gene expression analysis has proven to be a very useful tool to gain knowledge of the factors involved in the pathogenesis of diseases, particularly in the initial or preclinical stages. With the aim of finding new data on the events occurring in the Central Nervous System in animals affected with Bovine Spongiform Encephalopathy, a comprehensive genome wide gene expression study was conducted at different time points of the disease on mice genetically modified to model the bovine species brain in terms of cellular prion protein. An accurate analysis of the information generated by microarray technique was the key point to assess the biological relevance of the data obtained in terms of Transmissible Spongiform Encephalopathy pathogenesis. Validation of the microarray technique was achieved by RT-PCR confirming the RNA change and immunohistochemistry techniques that verified that expression changes were translated into variable levels of protein for selected genes. Our study reveals changes in the expression of genes, some of them not previously associated with prion diseases, at early stages of the disease previous to the detection of the pathological prion protein, that might have a role in neuronal degeneration and several transcriptional changes showing an important imbalance in the Central Nervous System homeostasis in advanced stages of the disease. Genes whose expression is altered at early stages of the disease should be considered as possible therapeutic targets and potential disease markers in preclinical diagnostic tool development. Genes non-previously related to prion diseases should be taken into consideration for further investigations. PMID:22035425
GATA1 and PU.1 Bind to Ribosomal Protein Genes in Erythroid Cells: Implications for Ribosomopathies
Amanatiadou, Elsa P.; Papadopoulos, Giorgio L.; Strouboulis, John; Vizirianakis, Ioannis S.
2015-01-01
The clear connection between ribosome biogenesis dysfunction and specific hematopoiesis-related disorders prompted us to examine the role of critical lineage-specific transcription factors in the transcriptional regulation of ribosomal protein (RP) genes during terminal erythroid differentiation. By applying EMSA and ChIP methodologies in mouse erythroleukemia cells we show that GATA1 and PU.1 bind in vitro and in vivo the proximal promoter region of the RPS19 gene which is frequently mutated in Diamond-Blackfan Anemia. Moreover, ChIPseq data analysis also demonstrates that several RP genes are enriched as potential GATA1 and PU.1 gene targets in mouse and human erythroid cells, with GATA1 binding showing an association with higher ribosomal protein gene expression levels during terminal erythroid differentiation in human and mouse. Our results suggest that RP gene expression and hence balanced ribosome biosynthesis may be specifically and selectively regulated by lineage specific transcription factors during hematopoiesis, a finding which may be clinically relevant to ribosomopathies. PMID:26447946
Kertai, Miklos D; Qi, Wenjing; Li, Yi-Ju; Lombard, Frederick W; Liu, Yutao; Smith, Michael P; Stafford-Smith, Mark; Newman, Mark F; Milano, Carmelo A; Mathew, Joseph P; Podgoreanu, Mihai V
2016-03-01
Atrial tissue gene expression profiling may help to determine how differentially expressed genes in the human atrium before cardiopulmonary bypass (CPB) are related to subsequent biologic pathway activation patterns, and whether specific expression profiles are associated with an increased risk for postoperative atrial fibrillation (AF) or altered response to β-blocker (BB) therapy after coronary artery bypass grafting (CABG) surgery. Right atrial appendage (RAA) samples were collected from 45 patients who were receiving perioperative BB treatment, and underwent CABG surgery. The isolated RNA samples were used for microarray gene expression analysis, to identify probes that were expressed differently in patients with and without postoperative AF. Gene expression analysis was performed to identify probes that were expressed differently in patients with and without postoperative AF. Gene set enrichment analysis (GSEA) was performed to determine how sets of genes might be systematically altered in patients with postoperative AF. Of the 45 patients studied, genomic DNA from 42 patients was used for target sequencing of 66 candidate genes potentially associated with AF, and 2,144 single-nucleotide polymorphisms (SNPs) were identified. We then performed expression quantitative trait loci (eQTL) analysis to determine the correlation between SNPs identified in the genotyped patients, and RAA expression. Probes that met a false discovery rate<0.25 were selected for eQTL analysis. Of the 17,678 gene expression probes analyzed, 2 probes met our prespecified significance threshold of false discovery rate<0.25. The most significant probe corresponded to vesicular overexpressed in cancer - prosurvival protein 1 gene (VOPP1; 1.83 fold change; P=3.47×10(-7)), and was up-regulated in patients with postoperative AF, whereas the second most significant probe, which corresponded to the LOC389286 gene (0.49 fold change; P=1.54×10(-5)), was down-regulated in patients with postoperative AF. GSEA highlighted the role of VOPP1 in pathways with biologic relevance to myocardial homeostasis, and oxidative stress and redox modulation. Candidate gene eQTL showed a trans-acting association between variants of G protein-coupled receptor kinase 5 gene, previously linked to altered BB response, and high expression of VOPP1. In patients undergoing CABG surgery, RAA gene expression profiling, and pathway and eQTL analysis suggested that VOPP1 plays a novel etiological role in postoperative AF despite perioperative BB therapy. Copyright © 2016. Published by Elsevier Ltd.
Prabhakaran, Vasudevan; Drevets, Douglas A; Ramajayam, Govindan; Manoj, Josephine J; Anderson, Michael P; Hanas, Jay S; Rajshekhar, Vedantam; Oommen, Anna; Carabin, Hélène
2017-06-01
Neurocysticercosis (NCC), a neglected tropical disease, inflicts substantial health and economic costs on people living in endemic areas such as India. Nevertheless, accurate diagnosis using brain imaging remains poorly accessible and too costly in endemic countries. The goal of this study was to test if blood monocyte gene expression could distinguish patients with NCC-associated epilepsy, from NCC-negative imaging lesion-free patients presenting with idiopathic epilepsy or idiopathic headaches. Patients aged 18 to 51 were recruited from the Department of Neurological Sciences, Christian Medical College and Hospital, Vellore, India, between January 2013 and October 2014. mRNA from CD14+ blood monocytes was isolated from 76 patients with NCC, 10 Recovered NCC (RNCC), 29 idiopathic epilepsy and 17 idiopathic headaches patients. A preliminary microarray analysis was performed on six NCC, six idiopathic epilepsy and four idiopathic headaches patients to identify genes differentially expressed in NCC-associated epilepsy compared with other groups. This analysis identified 1411 upregulated and 733 downregulated genes in patients with NCC compared to Idiopathic Epilepsy. Fifteen genes up-regulated in NCC patients compared with other groups were selected based on possible relevance to NCC, and analyzed by qPCR in all patients' samples. Differential gene expression among patients was assessed using linear regression models. qPCR analysis of 15 selected genes showed generally higher gene expression among NCC patients, followed by RNCC, idiopathic headaches and Idiopathic Epilepsy. Gene expression was also generally higher among NCC patients with single cyst granulomas, followed by mixed lesions and single calcifications. Expression of certain genes in blood monocytes can distinguish patients with NCC-related epilepsy from patients with active Idiopathic Epilepsy and idiopathic headaches. These findings are significant because they may lead to the development of new tools to screen for and monitor NCC patients without brain imaging.
A Drosophila LexA Enhancer-Trap Resource for Developmental Biology and Neuroendocrine Research
Kockel, Lutz; Huq, Lutfi M.; Ayyar, Anika; Herold, Emma; MacAlpine, Elle; Logan, Madeline; Savvides, Christina; Kim, Grace E. S.; Chen, Jiapei; Clark, Theresa; Duong, Trang; Fazel-Rezai, Vahid; Havey, Deanna; Han, Samuel; Jagadeesan, Ravi; Kim, Eun Soo Jackie; Lee, Diane; Lombardo, Kaelina; Piyale, Ida; Shi, Hansen; Stahr, Lydia; Tung, Dana; Tayvah, Uriel; Wang, Flora; Wang, Ja-Hon; Xiao, Sarah; Topper, Sydni M.; Park, Sangbin; Rotondo, Cheryl; Rankin, Anne E.; Chisholm, Townley W.; Kim, Seung K.
2016-01-01
Novel binary gene expression tools like the LexA-LexAop system could powerfully enhance studies of metabolism, development, and neurobiology in Drosophila. However, specific LexA drivers for neuroendocrine cells and many other developmentally relevant systems remain limited. In a unique high school biology course, we generated a LexA-based enhancer trap collection by transposon mobilization. The initial collection provides a source of novel LexA-based elements that permit targeted gene expression in the corpora cardiaca, cells central for metabolic homeostasis, and other neuroendocrine cell types. The collection further contains specific LexA drivers for stem cells and other enteric cells in the gut, and other developmentally relevant tissue types. We provide detailed analysis of nearly 100 new LexA lines, including molecular mapping of insertions, description of enhancer-driven reporter expression in larval tissues, and adult neuroendocrine cells, comparison with established enhancer trap collections and tissue specific RNAseq. Generation of this open-resource LexA collection facilitates neuroendocrine and developmental biology investigations, and shows how empowering secondary school science can achieve research and educational goals. PMID:27527793
A Drosophila LexA Enhancer-Trap Resource for Developmental Biology and Neuroendocrine Research.
Kockel, Lutz; Huq, Lutfi M; Ayyar, Anika; Herold, Emma; MacAlpine, Elle; Logan, Madeline; Savvides, Christina; Kim, Grace E S; Chen, Jiapei; Clark, Theresa; Duong, Trang; Fazel-Rezai, Vahid; Havey, Deanna; Han, Samuel; Jagadeesan, Ravi; Kim, Eun Soo Jackie; Lee, Diane; Lombardo, Kaelina; Piyale, Ida; Shi, Hansen; Stahr, Lydia; Tung, Dana; Tayvah, Uriel; Wang, Flora; Wang, Ja-Hon; Xiao, Sarah; Topper, Sydni M; Park, Sangbin; Rotondo, Cheryl; Rankin, Anne E; Chisholm, Townley W; Kim, Seung K
2016-10-13
Novel binary gene expression tools like the LexA-LexAop system could powerfully enhance studies of metabolism, development, and neurobiology in Drosophila However, specific LexA drivers for neuroendocrine cells and many other developmentally relevant systems remain limited. In a unique high school biology course, we generated a LexA-based enhancer trap collection by transposon mobilization. The initial collection provides a source of novel LexA-based elements that permit targeted gene expression in the corpora cardiaca, cells central for metabolic homeostasis, and other neuroendocrine cell types. The collection further contains specific LexA drivers for stem cells and other enteric cells in the gut, and other developmentally relevant tissue types. We provide detailed analysis of nearly 100 new LexA lines, including molecular mapping of insertions, description of enhancer-driven reporter expression in larval tissues, and adult neuroendocrine cells, comparison with established enhancer trap collections and tissue specific RNAseq. Generation of this open-resource LexA collection facilitates neuroendocrine and developmental biology investigations, and shows how empowering secondary school science can achieve research and educational goals. Copyright © 2016 Kockel et al.
2018-01-01
The cell division rate, size and gene expression programmes change in response to external conditions. These global changes impact on average concentrations of biomolecule and their variability or noise. Gene expression is inherently stochastic, and noise levels of individual proteins depend on synthesis and degradation rates as well as on cell-cycle dynamics. We have modelled stochastic gene expression inside growing and dividing cells to study the effect of division rates on noise in mRNA and protein expression. We use assumptions and parameters relevant to Escherichia coli, for which abundant quantitative data are available. We find that coupling of transcription, but not translation rates to the rate of cell division can result in protein concentration and noise homeostasis across conditions. Interestingly, we find that the increased cell size at fast division rates, observed in E. coli and other unicellular organisms, buffers noise levels even for proteins with decreased expression at faster growth. We then investigate the functional importance of these regulations using gene regulatory networks that exhibit bi-stability and oscillations. We find that network topology affects robustness to changes in division rate in complex and unexpected ways. In particular, a simple model of persistence, based on global physiological feedback, predicts increased proportion of persister cells at slow division rates. Altogether, our study reveals how cell size regulation in response to cell division rate could help controlling gene expression noise. It also highlights that understanding circuits' robustness across growth conditions is key for the effective design of synthetic biological systems. PMID:29657814
Cell-cell contact regulates gene expression in CDK4-transformed mouse podocytes.
Sakairi, Toru; Abe, Yoshifusa; Jat, Parmijit S; Kopp, Jeffrey B
2010-10-01
We transformed mouse podocytes by ectopic expression of cyclin-dependent kinase 4 (CDK4). Compared with podocytes transformed with a thermo-sensitive SV40 large T antigen mutant tsA58U19 (tsT podocytes), podocytes transformed with CDK4 (CDK4 podocytes) exhibited significantly higher expression of nephrin mRNA. Synaptopodin mRNA expression was significantly lower in CDK4 podocytes and in tsT podocytes under growth-permissive conditions (33°C) compared with tsT podocytes under growth-restricted conditions (37°C), which suggests a role for cell cycle arrest in synaptopodin mRNA expression. Confluent CDK4 podocytes showed significantly higher mRNA expression levels for nephrin, synaptopodin, Wilms tumor 1, podocalyxin, and P-cadherin compared with subconfluent cultures. We carried out experiments to clarify roles of various factors in the confluent podocyte cultures; our findings indicate that cell-cell contact promotes expression of five podocyte marker genes studied, that cellular quiescence increases synaptopodin and podocalyxin mRNA expression, and that soluble factors play a role in nephrin mRNA expression. Our findings suggest that CDK4 podocytes are useful tools to study podocyte biology. Furthermore, the role of cell-cell contact in podocyte gene expression may have relevance for podocyte function in vivo.
Prioritizing biological pathways by recognizing context in time-series gene expression data.
Lee, Jusang; Jo, Kyuri; Lee, Sunwon; Kang, Jaewoo; Kim, Sun
2016-12-23
The primary goal of pathway analysis using transcriptome data is to find significantly perturbed pathways. However, pathway analysis is not always successful in identifying pathways that are truly relevant to the context under study. A major reason for this difficulty is that a single gene is involved in multiple pathways. In the KEGG pathway database, there are 146 genes, each of which is involved in more than 20 pathways. Thus activation of even a single gene will result in activation of many pathways. This complex relationship often makes the pathway analysis very difficult. While we need much more powerful pathway analysis methods, a readily available alternative way is to incorporate the literature information. In this study, we propose a novel approach for prioritizing pathways by combining results from both pathway analysis tools and literature information. The basic idea is as follows. Whenever there are enough articles that provide evidence on which pathways are relevant to the context, we can be assured that the pathways are indeed related to the context, which is termed as relevance in this paper. However, if there are few or no articles reported, then we should rely on the results from the pathway analysis tools, which is termed as significance in this paper. We realized this concept as an algorithm by introducing Context Score and Impact Score and then combining the two into a single score. Our method ranked truly relevant pathways significantly higher than existing pathway analysis tools in experiments with two data sets. Our novel framework was implemented as ContextTRAP by utilizing two existing tools, TRAP and BEST. ContextTRAP will be a useful tool for the pathway based analysis of gene expression data since the user can specify the context of the biological experiment in a set of keywords. The web version of ContextTRAP is available at http://biohealth.snu.ac.kr/software/contextTRAP .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shakoor, N; Nair, R; Crasta, O
2014-01-23
Background: Effective improvement in sorghum crop development necessitates a genomics-based approach to identify functional genes and QTLs. Sequenced in 2009, a comprehensive annotation of the sorghum genome and the development of functional genomics resources is key to enable the discovery and deployment of regulatory and metabolic genes and gene networks for crop improvement. Results: This study utilizes the first commercially available whole-transcriptome sorghum microarray (Sorgh-WTa520972F) to identify tissue and genotype-specific expression patterns for all identified Sorghum bicolor exons and UTRs. The genechip contains 1,026,373 probes covering 149,182 exons (27,577 genes) across the Sorghum bicolor nuclear, chloroplast, and mitochondrial genomes. Specificmore » probesets were also included for putative non-coding RNAs that may play a role in gene regulation (e. g., microRNAs), and confirmed functional small RNAs in related species (maize and sugarcane) were also included in our array design. We generated expression data for 78 samples with a combination of four different tissue types (shoot, root, leaf and stem), two dissected stem tissues (pith and rind) and six diverse genotypes, which included 6 public sorghum lines (R159, Atlas, Fremont, PI152611, AR2400 and PI455230) representing grain, sweet, forage, and high biomass ideotypes. Conclusions: Here we present a summary of the microarray dataset, including analysis of tissue-specific gene expression profiles and associated expression profiles of relevant metabolic pathways. With an aim to enable identification and functional characterization of genes in sorghum, this expression atlas presents a new and valuable resource to the research community.« less
Guarnieri, Douglas J; Brayton, Catherine E; Richards, Sarah M; Maldonado-Aviles, Jaime; Trinko, Joseph R; Nelson, Jessica; Taylor, Jane R; Gourley, Shannon L; DiLeone, Ralph J
2012-02-15
Food restriction is known to enhance learning and motivation. The neural mechanisms underlying these responses likely involve alterations in gene expression in brain regions mediating the motivation to feed. Analysis of gene expression profiles in male C57BL/6J mice using whole-genome microarrays was completed in the medial prefrontal cortex, nucleus accumbens, ventral tegmental area, and the hypothalamus following a 5-day food restriction. Quantitative polymerase chain reaction was used to validate these findings and determine the time course of expression changes. Plasma levels of the stress hormone corticosterone (CORT) were measured by enzyme-linked immunosorbent assay. Expression changes were measured in adrenalectomized animals that underwent food restriction, as well as in animals receiving daily injections of CORT. Progressive ratio responding for food, a measure of motivated behavior, was assessed after CORT treatment in restricted and fed animals. Brief food restriction results in an upregulation of peripheral stress responsive genes in the mammalian brain. Time-course analysis demonstrated rapid and persistent expression changes in all four brain regions under study. Administration of CORT to nonrestricted animals was sufficient to induce a subset of the genes, and alterations in gene expression after food restriction were dependent on intact adrenal glands. CORT can increase the motivation to work for food only in the restricted state. These data demonstrate a central role for CORT in mediating both molecular and behavioral responses to food restriction. The stress hormone-induced alterations in gene expression described here may be relevant for both adaptive and pathological responses to stress. Copyright © 2012 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Lin, Jianguo; Tang, Youcai; Kang, Qiaohua; Chen, Anping
2012-01-01
Diabetes is featured by hyperglycemia, which facilitates the formation of advanced glycation end-products (AGEs). AGEs are a causal factor in development of diabetic complications. AGE receptor-1 (AGE-R1) is responsible for detoxification and clearance of AGEs. Type 2 diabetes mellitus is commonly accompanied by non-alcoholic steatohepatitis, which could cause hepatic fibrosis. Little attention has been paid to effects of AGEs on hepatic fibrogenesis. Curcumin, a phytochemical from turmeric, has been reported to inhibit the activation of hepatic stellate cells (HSCs), the major effectors during hepatic fibrogenesis, and to protect against hepatic fibrogenesis in vitro and in vivo. The current study was designed to evaluate effects of AGEs on inducing HSC activation, to assess the role of curcumin in diminishing the AGE effects and to explore the underlying mechanisms. Our results showed that AGEs stimulated HSC activation by inducing cell proliferation and expression of genes relevant to HSC activation, which were abrogated by curcumin. Curcumin induced gene expression of AGE-R1 in passaged HSCs, which might facilitate the attenuation of the stimulatory effects of AGEs on the activation of HSCs. Further experiments revealed that curcumin inhibited the activity of extracellular signal-regulated kinase (ERK) and induced gene expression and the activity of peroxisome proliferator-activated receptor-gamma (PPARγ), leading to the induction of AGE-R1 gene expression. In summary, AGEs stimulated HSC activation. Curcumin eliminated the AGE effects at least partially by inducing AGE-R1 gene expression. The process was mediated by inhibiting ERK activity, inducing gene expression of PPARγ and stimulating its trans-activity. PMID:22449800
de Luis, Daniel Antonio; Almansa, Raquel; Aller, Rocío; Izaola, Olatz; Romero, E
2017-06-10
Understanding molecular basis involved in overweight is an important first step in developing therapeutic pathways against excess in body weight gain. The purpose of our pilot study was to evaluate the gene expression profiles in the peripheral blood of obese patients without other metabolic complications. A sample of 17 obese patients without metabolic syndrome and 15 non obese control subjects was evaluated in a prospective way. Following 'One-Color Microarray-Based Gene Expression Analysis' protocol Version 5.7 (Agilent p/n 4140-90040), cRNA was hybridized with Whole Human Genome Oligo Microarray Kit (Agilent p/n G2519F-014850) containing 41,000+ unique human genes and transcripts. The average age of the study group was 43.6 ± 19.7 years with a sex distribution of 64.7% females and 35.3% males. No statistical differences were detected with healthy controls 41.9 ± 12.3 years with a sex distribution of 70% females and 30% males. Obese patients showed 1436 genes that were differentially expressed compared to control group. Ingenuity Pathway Analysis showed that these genes participated in 13 different categories related to metabolism and cellular functions. In the gene set of cellular function, the most important genes were C-terminal region of Nel-like molecule 1 protein (NELL1) and Pigment epithelium-derived factor (SPEDF), both genes were over-expressed. In the gene set of metabolism, insulin growth factor type 1 (IGF1), ApoA5 (apolipoprotein subtype 5), Foxo4 (Forkhead transcription factor 4), ADIPOR1 (receptor of adiponectin type 1) and AQP7 (aquaporin channel proteins7) were over expressed. Moreover, PIKFYVE (PtdIns(3) P 5-kinase), and ROCK-2 (rho-kinase II) were under expressed. We showed that PBMCs from obese subjects presented significant changes in gene expression, exhibiting 1436 differentially expressed genes compared to PBMCs from non-obese subjects. Furthermore, our data showed a number of genes involved in relevant processes implicated in metabolism, with genes presenting high fold-change values (up-regulation and down regulation) associated with lipid, carbohydrate and protein metabolism. Copyright © 2017 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Ismail, Eman Abdel Rahman; Mahmoud, Hanan Mohamed; Tawfik, Lamis Mohamed; Habashy, Deena Mohamed; Adly, Amira Abdel Moneam; El-Sherif, Nayera Hazaa; Abdelwahab, Mahmoud Ahmed
2012-02-01
Although BIRC6/Apollon seems to play a critical role as an antiapoptotic regulator, its clinical relevance in acute leukemia remains largely elusive. Therefore, we aimed to investigate BIRC6 gene expression in childhood acute leukemia in relation to clinicopathological characteristics at presentation, therapeutic response, and prognosis. BIRC6 expression level was assessed in 75 children with acute leukemia; 30 patients with acute myeloblastic leukemia (AML) and 45 patients with acute lymphoblastic leukemia (ALL) using real-time quantitative reverse transcriptase-polymerase chain reaction. The median level of BIRC6 expression did not differ significantly between AML and ALL patients. BIRC6 expression level was higher in patients with AML and ALL with extramedullary involvement, white blood cell (WBC) count ≥ 10 × 10(9) /L, and unfavorable cytogenetics at diagnosis. BIRC6 gene expression was higher in patients with unfavorable response to therapy at day 14, those who developed relapse or died in both leukemic groups. The best cutoff value of BIRC6 to predict therapeutic response and disease outcome was determined. AML and ALL patients with BIRC6 overexpression had significantly shorter overall and disease free survivals. This is the first report to study BIRC6 gene in pediatric ALL. Our results suggested that BIRC6 gene expression could be considered as an adverse risk factor in childhood acute leukemia and, hence, could be used to guide therapeutic regimens. © 2012 John Wiley & Sons A/S.
Canu, Valeria; Sacconi, Andrea; Lorenzon, Laura; Biagioni, Francesca; Lo Sardo, Federica; Diodoro, Maria Grazia; Muti, Paola; Garofalo, Alfredo; Strano, Sabrina; D'Errico, Antonietta; Grazi, Gian Luca; Cioce, Mario; Blandino, Giovanni
2017-05-02
There is high need of novel diagnostic and prognostic tools for tumors of the digestive system, such as gastric cancer and cholangiocarcinoma. We recently found that miR-204 was deeply downregulated in gastric cancer tissues. Here we investigated whether this was common to other tumors of the digestive system and whether this elicited a miR-204-dependent gene target signature, diagnostically and therapeutically relevant. Finally, we assessed the contribution of the identified target genes to the cell cycle progression and clonogenicity of gastric cancer and cholangiocarcinoma cell lines. We employed quantitative PCR and Affymetrix profiling for gene expression studies. In silico analysis aided us to identifying a miR-204 target signature in publicly available databases (TGCA). We employed transient transfection experiments, clonogenic assays and cell cycle profiling to evaluate the biological consequences of miR-204 perturbation. We identified a novel miR-204 gene target signature perturbed in gastric cancer and in cholangiocarcinoma specimens. We validated its prognostic relevance and mechanistically addressed its biological relevance in GC and CC cell lines. We suggest that restoring the physiological levels of miR-204 in some gastrointestinal cancers might be exploited therapeutically.
CRISPR/Cas9 delivery with one single adenoviral vector devoid of all viral genes.
Ehrke-Schulz, Eric; Schiwon, Maren; Leitner, Theo; Dávid, Stephan; Bergmann, Thorsten; Liu, Jing; Ehrhardt, Anja
2017-12-07
The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 system revolutionized the field of gene editing but viral delivery of the CRISPR/Cas9 system has not been fully explored. Here we adapted clinically relevant high-capacity adenoviral vectors (HCAdV) devoid of all viral genes for the delivery of the CRISPR/Cas9 machinery using a single viral vector. We present a platform enabling fast transfer of the Cas9 gene and gRNA expression units into the HCAdV genome including the option to choose between constitutive or inducible Cas9 expression and gRNA multiplexing. Efficacy and versatility of this pipeline was exemplified by producing different CRISPR/Cas9-HCAdV targeting the human papillomavirus (HPV) 18 oncogene E6, the dystrophin gene causing Duchenne muscular dystrophy (DMD) and the HIV co-receptor C-C chemokine receptor type 5 (CCR5). All CRISPR/Cas9-HCAdV proved to be efficient to deliver the respective CRISPR/Cas9 expression units and to introduce the desired DNA double strand breaks at their intended target sites in immortalized and primary cells.
MicroRNA-181 promotes synaptogenesis and attenuates axonal outgrowth in cortical neurons
Kos, Aron; Olde Loohuis, Nikkie; Meinhardt, Julia; van Bokhoven, Hans; Kaplan, Barry B; Martens, Gerard; Aschrafi, Armaz
2016-01-01
MicroRNAs (miRs) are non-coding gene transcripts abundantly expressed in both the developing and adult mammalian brain. They act as important modulators of complex gene regulatory networks during neuronal development and plasticity. miR-181c is highly abundant in cerebellar cortex and its expression is increased in autism patients as well as in an animal model of autism. To systematically identify putative targets of miR-181c, we repressed this miR in growing cortical neurons and found over 70 differentially expressed target genes using transcriptome profiling. Pathway analysis showed that the miR-181c-modulated genes converge on signaling cascades relevant to neurite and synapse developmental processes. To experimentally examine the significance of these data, we inhibited miR-181c during rat cortical neuronal maturation in vitro; this loss-of miR-181c function resulted in enhanced neurite sprouting and reduced synaptogenesis. Collectively, our findings suggest that miR-181c is a modulator of gene networks associated with cortical neuronal maturation. PMID:27017280
Ghadie, Mohamed A; Japkowicz, Nathalie; Perkins, Theodore J
2015-08-15
Stem cell differentiation is largely guided by master transcriptional regulators, but it also depends on the expression of other types of genes, such as cell cycle genes, signaling genes, metabolic genes, trafficking genes, etc. Traditional approaches to understanding gene expression patterns across multiple conditions, such as principal components analysis or K-means clustering, can group cell types based on gene expression, but they do so without knowledge of the differentiation hierarchy. Hierarchical clustering can organize cell types into a tree, but in general this tree is different from the differentiation hierarchy itself. Given the differentiation hierarchy and gene expression data at each node, we construct a weighted Euclidean distance metric such that the minimum spanning tree with respect to that metric is precisely the given differentiation hierarchy. We provide a set of linear constraints that are provably sufficient for the desired construction and a linear programming approach to identify sparse sets of weights, effectively identifying genes that are most relevant for discriminating different parts of the tree. We apply our method to microarray gene expression data describing 38 cell types in the hematopoiesis hierarchy, constructing a weighted Euclidean metric that uses just 175 genes. However, we find that there are many alternative sets of weights that satisfy the linear constraints. Thus, in the style of random-forest training, we also construct metrics based on random subsets of the genes and compare them to the metric of 175 genes. We then report on the selected genes and their biological functions. Our approach offers a new way to identify genes that may have important roles in stem cell differentiation. tperkins@ohri.ca Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Mentzel, Caroline M Junker; Cardoso, Tainã Figueiredo; Pipper, Christian Bressen; Jacobsen, Mette Juul; Jørgensen, Claus Bøttcher; Cirera, Susanna; Fredholm, Merete
2018-02-01
The aim of this study was to elucidate the relative impact of three phenotypes often used to characterize obesity on perturbation of molecular pathways involved in obesity. The three obesity-related phenotypes are (1) body mass index (BMI), (2) amount of subcutaneous adipose tissue (SATa), and (3) amount of retroperitoneal adipose tissue (RPATa). Although it is generally accepted that increasing amount of RPATa is 'unhealthy', a direct comparison of the relative impact of the three obesity-related phenotypes on gene expression has, to our knowledge, not been performed previously. We have used multiple linear models to analyze altered gene expression of selected obesity-related genes in tissues collected from 19 female pigs phenotypically characterized with respect to the obesity-related phenotypes. Gene expression was assessed by high-throughput qPCR in RNA from liver, skeletal muscle and abdominal adipose tissue. The stringent statistical approach used in the study has increased the power of the analysis compared to the classical approach of analysis in divergent groups of individuals. Our approach led to the identification of key components of cellular pathways that are modulated in the three tissues in association with changes in the three obesity-relevant phenotypes (BMI, SATa and RPATa). The deregulated pathways are involved in biosynthesis and transcript regulation in adipocytes, in lipid transport, lipolysis and metabolism, and in inflammatory responses. Deregulation seemed more comprehensive in liver (23 genes) compared to abdominal adipose tissue (10 genes) and muscle (3 genes). Notably, the study supports the notion that excess amount of intra-abdominal adipose tissue is associated with a greater metabolic disease risk. Our results provide molecular support for this notion by demonstrating that increasing amount of RPATa has a higher impact on perturbation of cellular pathways influencing obesity and obesity-related metabolic traits compared to increase in BMI and amount of SATa.
Finding gene regulatory network candidates using the gene expression knowledge base.
Venkatesan, Aravind; Tripathi, Sushil; Sanz de Galdeano, Alejandro; Blondé, Ward; Lægreid, Astrid; Mironov, Vladimir; Kuiper, Martin
2014-12-10
Network-based approaches for the analysis of large-scale genomics data have become well established. Biological networks provide a knowledge scaffold against which the patterns and dynamics of 'omics' data can be interpreted. The background information required for the construction of such networks is often dispersed across a multitude of knowledge bases in a variety of formats. The seamless integration of this information is one of the main challenges in bioinformatics. The Semantic Web offers powerful technologies for the assembly of integrated knowledge bases that are computationally comprehensible, thereby providing a potentially powerful resource for constructing biological networks and network-based analysis. We have developed the Gene eXpression Knowledge Base (GeXKB), a semantic web technology based resource that contains integrated knowledge about gene expression regulation. To affirm the utility of GeXKB we demonstrate how this resource can be exploited for the identification of candidate regulatory network proteins. We present four use cases that were designed from a biological perspective in order to find candidate members relevant for the gastrin hormone signaling network model. We show how a combination of specific query definitions and additional selection criteria derived from gene expression data and prior knowledge concerning candidate proteins can be used to retrieve a set of proteins that constitute valid candidates for regulatory network extensions. Semantic web technologies provide the means for processing and integrating various heterogeneous information sources. The GeXKB offers biologists such an integrated knowledge resource, allowing them to address complex biological questions pertaining to gene expression. This work illustrates how GeXKB can be used in combination with gene expression results and literature information to identify new potential candidates that may be considered for extending a gene regulatory network.
Cellular dissection of psoriasis for transcriptome analyses and the post-GWAS era
2014-01-01
Background Genome-scale studies of psoriasis have been used to identify genes of potential relevance to disease mechanisms. For many identified genes, however, the cell type mediating disease activity is uncertain, which has limited our ability to design gene functional studies based on genomic findings. Methods We identified differentially expressed genes (DEGs) with altered expression in psoriasis lesions (n = 216 patients), as well as candidate genes near susceptibility loci from psoriasis GWAS studies. These gene sets were characterized based upon their expression across 10 cell types present in psoriasis lesions. Susceptibility-associated variation at intergenic (non-coding) loci was evaluated to identify sites of allele-specific transcription factor binding. Results Half of DEGs showed highest expression in skin cells, although the dominant cell type differed between psoriasis-increased DEGs (keratinocytes, 35%) and psoriasis-decreased DEGs (fibroblasts, 33%). In contrast, psoriasis GWAS candidates tended to have highest expression in immune cells (71%), with a significant fraction showing maximal expression in neutrophils (24%, P < 0.001). By identifying candidate cell types for genes near susceptibility loci, we could identify and prioritize SNPs at which susceptibility variants are predicted to influence transcription factor binding. This led to the identification of potentially causal (non-coding) SNPs for which susceptibility variants influence binding of AP-1, NF-κB, IRF1, STAT3 and STAT4. Conclusions These findings underscore the role of innate immunity in psoriasis and highlight neutrophils as a cell type linked with pathogenetic mechanisms. Assignment of candidate cell types to genes emerging from GWAS studies provides a first step towards functional analysis, and we have proposed an approach for generating hypotheses to explain GWAS hits at intergenic loci. PMID:24885462
Port, M; Herodin, F; Valente, M; Drouet, M; Lamkowski, A; Majewski, M; Abend, M
2016-07-01
We implemented a two-stage study to predict late occurring hematologic acute radiation syndrome (HARS) in a baboon model based on gene expression changes measured in peripheral blood within the first two days after irradiation. Eighteen baboons were irradiated to simulate different patterns of partial-body and total-body exposure, which corresponded to an equivalent dose of 2.5 or 5 Gy. According to changes in blood cell counts the surviving baboons (n = 17) exhibited mild (H1-2, n = 4) or more severe (H2-3, n = 13) HARS. Blood samples taken before irradiation served as unexposed control (H0, n = 17). For stage I of this study, a whole genome screen (mRNA microarrays) was performed using a portion of the samples (H0, n = 5; H1-2, n = 4; H2-3, n = 5). For stage II, using the remaining samples and the more sensitive methodology, qRT-PCR, validation was performed on candidate genes that were differentially up- or down-regulated during the first two days after irradiation. Differential gene expression was defined as significant (P < 0.05) and greater than or equal to a twofold difference above a H0 classification. From approximately 20,000 genes, on average 46% appeared to be expressed. On day 1 postirradiation for H2-3, approximately 2-3 times more genes appeared up-regulated (1,418 vs. 550) or down-regulated (1,603 vs. 735) compared to H1-2. This pattern became more pronounced at day 2 while the number of differentially expressed genes decreased. The specific genes showed an enrichment of biological processes coding for immune system processes, natural killer cell activation and immune response (P = 1 × E-06 up to 9 × E-14). Based on the P values, magnitude and sustained differential gene expression over time, we selected 89 candidate genes for validation using qRT-PCR. Ultimately, 22 genes were confirmed for identification of H1-3 classifications and seven genes for identification of H2-3 classifications using qRT-PCR. For H1-3 classifications, most genes were constantly three to fivefold down-regulated relative to H0 over both days, but some genes appeared 10.3-fold (VSIG4) or even 30.7-fold up-regulated (CD177) over H0. For H2-3, some genes appeared four to sevenfold up-regulated relative to H0 (RNASE3, DAGLA, ARG2), but other genes showed a strong 14- to 33-fold down-regulation relative to H0 (WNT3, POU2AF1, CCR7). All of these genes allowed an almost completely identifiable separation among each of the HARS categories. In summary, clinically relevant HARS can be independently predicted with all 29 irradiated genes examined in the peripheral blood of baboons within the first two days postirradiation. While further studies are needed to confirm these findings, this model shows potential relevance in the prediction of clinical outcomes in exposed humans and as an aid in the prioritizing of medical treatment.
2013-01-01
Background A co-ordinated tissue-independent gene expression profile associated with growth is present in rodent models and this is hypothesised to extend to all mammals. Growth in humans has similarities to other mammals but the return to active long bone growth in the pubertal growth spurt is a distinctly human growth event. The aim of this study was to describe gene expression and biological pathways associated with stages of growth in children and to assess tissue-independent expression patterns in relation to human growth. Results We conducted gene expression analysis on a library of datasets from normal children with age annotation, collated from the NCBI Gene Expression Omnibus (GEO) and EBI Arrayexpress databases. A primary data set was generated using cells of lymphoid origin from normal children; the expression of 688 genes (ANOVA false discovery rate modified p-value, q < 0.1) was associated with age, and subsets of these genes formed clusters that correlated with the phases of growth – infancy, childhood, puberty and final height. Network analysis on these clusters identified evolutionarily conserved growth pathways (NOTCH, VEGF, TGFB, WNT and glucocorticoid receptor – Hyper-geometric test, q < 0.05). The greatest degree of network ‘connectivity’ and hence functional significance was present in infancy (Wilcoxon test, p < 0.05), which then decreased through to adulthood. These observations were confirmed in a separate validation data set from lymphoid tissue. Similar biological pathways were observed to be associated with development-related gene expression in other tissues (conjunctival epithelia, temporal lobe brain tissue and bone marrow) suggesting the existence of a tissue-independent genetic program for human growth and maturation. Conclusions Similar evolutionarily conserved pathways have been associated with gene expression and child growth in multiple tissues. These expression profiles associate with the developmental phases of growth including the return to active long bone growth in puberty, a distinctly human event. These observations also have direct medical relevance to pathological changes that induce disease in children. Taking into account development-dependent gene expression profiles for normal children will be key to the appropriate selection of genes and pathways as potential biomarkers of disease or as drug targets. PMID:23941278
Non-Small-Cell Lung Cancer Molecular Signatures Recapitulate Lung Developmental Pathways
Borczuk, Alain C.; Gorenstein, Lyall; Walter, Kristin L.; Assaad, Adel A.; Wang, Liqun; Powell, Charles A.
2003-01-01
Current paradigms hold that lung carcinomas arise from pleuripotent stem cells capable of differentiation into one or several histological types. These paradigms suggest lung tumor cell ontogeny is determined by consequences of gene expression that recapitulate events important in embryonic lung development. Using oligonucleotide microarrays, we acquired gene profiles from 32 microdissected non-small-cell lung tumors. We determined the 100 top-ranked marker genes for adenocarcinoma, squamous cell, large cell, and carcinoid using nearest neighbor analysis. Results were validated by immunostaining for 11 selected proteins using a tissue microarray representing 80 tumors. Gene expression data of lung development were accessed from a publicly available dataset generated with the murine Mu11k genome microarray. Self-organized mapping identified two temporally distinct clusters of murine orthologues. Supervised clustering of lung development data showed large-cell carcinoma gene orthologues were in a cluster expressed in pseudoglandular and canalicular stages whereas adenocarcinoma homologues were predominantly in a cluster expressed later in the terminal sac and alveolar stages of murine lung development. Representative large-cell genes (E2F3, MYBL2, HDAC2, CDK4, PCNA) are expressed in the nucleus and are associated with cell cycle and proliferation. In contrast, adenocarcinoma genes are associated with lung-specific transcription pathways (SFTPB, TTF-1), cell adhesion, and signal transduction. In sum, non-small-cell lung tumors histology gene profiles suggest mechanisms relevant to ontogeny and clinical course. Adenocarcinoma genes are associated with differentiation and glandular formation whereas large-cell genes are associated with proliferation and differentiation arrest. The identification of developmentally regulated pathways active in tumorigenesis provides insights into lung carcinogenesis and suggests early steps may differ according to the eventual tumor morphology. PMID:14578194
NASA Technical Reports Server (NTRS)
Burns, Fredric J.; Chen, Shuaili; Xu, Guijuan; Wu, Feng; Tang, Moon-Shong
2002-01-01
Current models of radiation carcinogenesis generally assume that the DNA is damaged in a variety of ways by the radiation and that subsequent cell divisions contribute to the conversion of the damage to heritable mutations. Cancer may seem complex and intractable, but its complexity provides multiple opportunities for preventive interventions. Mitotic inhibitors are among the strongest cancer preventive agents, not only slowing the growth rate of preneoplasias but also increasing the fidelity of DNA repair processes. Ionizing radiation, including electrons, is a strong inducer of cancer in rat skin, and dietary retinoids have shown potent cancer preventive activity in the same system. A non-toxic dietary dose of retinyl acetate altered gene expression levels 24 hours after electron irradiation of rat skin. Of the 8740 genes on an Affymetrix rat expression array, the radiation significantly (5 fold or higher) altered 188, while the retinoid altered 231, including 16 radiation-altered genes that were reversely altered. While radiation strongly affected the expression of stress response, immune/inflammation and nucleic acid metabolism genes, the retinoid most strongly affected proliferation-related genes, including some significant reversals, such as, keratin 14, retinol binding protein, and calcium binding proteins. These results point to reversal of proliferation-relevant genes as a likely basis for the anti-radiogenic effects of dietary retinyl acetate.
Functional analysis of the ComK protein of Bacillus coagulans.
Kovács, Ákos T; Eckhardt, Tom H; van Hartskamp, Mariska; van Kranenburg, Richard; Kuipers, Oscar P
2013-01-01
The genes for DNA uptake and recombination in Bacilli are commonly regulated by the transcriptional factor ComK. We have identified a ComK homologue in Bacillus coagulans, an industrial relevant organism that is recalcitrant for transformation. Introduction of B. coagulans comK gene under its own promoter region into Bacillus subtilis comK strain results in low transcriptional induction of the late competence gene comGA, but lacking bistable expression. The promoter regions of B. coagulans comK and the comGA genes are recognized in B. subtilis and expression from these promoters is activated by B. subtilis ComK. Purified ComK protein of B. coagulans showed DNA-binding ability in gel retardation assays with B. subtilis- and B. coagulans-derived probes. These experiments suggest that the function of B. coagulans ComK is similar to that of ComK of B. subtilis. When its own comK is overexpressed in B. coagulans the comGA gene expression increases 40-fold, while the expression of another late competence gene, comC is not elevated and no reproducible DNA-uptake could be observed under these conditions. Our results demonstrate that B. coagulans ComK can recognize several B.subtilis comK-responsive elements, and vice versa, but indicate that the activation of the transcription of complete sets of genes coding for a putative DNA uptake apparatus in B. coagulans might differ from that of B. subtilis.
Widespread antisense transcription of Populus genome under drought.
Yuan, Yinan; Chen, Su
2018-06-06
Antisense transcription is widespread in many genomes and plays important regulatory roles in gene expression. The objective of our study was to investigate the extent and functional relevance of antisense transcription in forest trees. We employed Populus, a model tree species, to probe the antisense transcriptional response of tree genome under drought, through stranded RNA-seq analysis. We detected nearly 48% of annotated Populus gene loci with antisense transcripts and 44% of them with co-transcription from both DNA strands. Global distribution of reads pattern across annotated gene regions uncovered that antisense transcription was enriched in untranslated regions while sense reads were predominantly mapped in coding exons. We further detected 1185 drought-responsive sense and antisense gene loci and identified a strong positive correlation between the expression of antisense and sense transcripts. Additionally, we assessed the antisense expression in introns and found a strong correlation between intronic expression and exonic expression, confirming antisense transcription of introns contributes to transcriptional activity of Populus genome under drought. Finally, we functionally characterized drought-responsive sense-antisense transcript pairs through gene ontology analysis and discovered that functional groups including transcription factors and histones were concordantly regulated at both sense and antisense transcriptional level. Overall, our study demonstrated the extensive occurrence of antisense transcripts of Populus genes under drought and provided insights into genome structure, regulation pattern and functional significance of drought-responsive antisense genes in forest trees. Datasets generated in this study serve as a foundation for future genetic analysis to improve our understanding of gene regulation by antisense transcription.
Löfgren, Maria; Svala, Emilia; Lindahl, Anders; Skiöldebrand, Eva; Ekman, Stina
2018-05-01
Osteoarthritis is an inflammatory and degenerative joint disease commonly affecting horses. To identify genes of relevance for cartilage pathology in osteoarthritis we studied the time-course effects of interleukin (IL)-1β on equine articular cartilage. Articular cartilage explants from the distal third metacarpal bone were collected postmortem from three horses without evidence of joint disease. The explants were stimulated with IL-1β for 27 days and global gene expression was measured by microarray. Gene expression was compared to that of unstimulated explants at days 3, 9, 15, 21 and 27. Release of inflammatory proteins was measured using Proximity Extension Assay. Stimulation with IL-1β led to time-dependent changes in gene expression related to inflammation, the extracellular matrix (ECM), and phenotypic alterations. Gene expression and protein release of cytokines, chemokines, and matrix-degrading enzymes increased in the stimulated explants. Collagen type II was downregulated from day 15, whereas other ECM molecules were downregulated earlier. In contrast molecules involved in ECM signaling (perlecan, chondroitin sulfate proteoglycan 4, and syndecan 4) were upregulated. At the late time points, genes related to a chondrogenic phenotype were downregulated, and genes related to a hypertrophic phenotype were upregulated, suggesting a transition towards hypertrophy later in the culturing period. The data suggest that this in vitro model mimics time course events of in vivo inflammation in OA and it may be valuable as an in vitro tool to test treatments and to study disease mechanisms. Copyright © 2018 Elsevier Ltd. All rights reserved.
The stable traits of melanoma genetics: an alternate approach to target discovery
2012-01-01
Background The weight that gene copy number plays in transcription remains controversial; although in specific cases gene expression correlates with copy number, the relationship cannot be inferred at the global level. We hypothesized that genes steadily expressed by 15 melanoma cell lines (CMs) and their parental tissues (TMs) should be critical for oncogenesis and their expression most frequently influenced by their respective copy number. Results Functional interpretation of 3,030 transcripts concordantly expressed (Pearson's correlation coefficient p-value < 0.05) by CMs and TMs confirmed an enrichment of functions crucial to oncogenesis. Among them, 968 were expressed according to the transcriptional efficiency predicted by copy number analysis (Pearson's correlation coefficient p-value < 0.05). We named these genes, "genomic delegates" as they represent at the transcriptional level the genetic footprint of individual cancers. We then tested whether the genes could categorize 112 melanoma metastases. Two divergent phenotypes were observed: one with prevalent expression of cancer testis antigens, enhanced cyclin activity, WNT signaling, and a Th17 immune phenotype (Class A). This phenotype expressed, therefore, transcripts previously associated to more aggressive cancer. The second class (B) prevalently expressed genes associated with melanoma signaling including MITF, melanoma differentiation antigens, and displayed a Th1 immune phenotype associated with better prognosis and likelihood to respond to immunotherapy. An intermediate third class (C) was further identified. The three phenotypes were confirmed by unsupervised principal component analysis. Conclusions This study suggests that clinically relevant phenotypes of melanoma can be retraced to stable oncogenic properties of cancer cells linked to their genetic back bone, and offers a roadmap for uncovering novel targets for tailored anti-cancer therapy. PMID:22537248
He, Rong-Quan; Yang, Xia; Liang, Liang; Chen, Gang; Ma, Jie
2018-04-01
The present study aimed to explore the potential clinical significance of microRNA (miR)-124-3p expression in the hepatocarcinogenesis and development of hepatocellular carcinoma (HCC), as well as the potential target genes of functional HCC pathways. Reverse transcription-quantitative polymerase chain reaction was performed to evaluate the expression of miR-124-3p in 101 HCC and adjacent non-cancerous tissue samples. Additionally, the association between miR-124-3p expression and clinical parameters was also analyzed. Differentially expressed genes identified following miR-124-3p transfection, the prospective target genes predicted in silico and the key genes of HCC obtained from Natural Language Processing (NLP) were integrated to obtain potential target genes of miR-124-3p in HCC. Relevant signaling pathways were assessed with protein-protein interaction (PPI) networks, Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Protein Annotation Through Evolutionary Relationships (PANTHER) pathway enrichment analysis. miR-124-3p expression was significantly reduced in HCC tissues compared with expression in adjacent non-cancerous liver tissues. In HCC, miR-124-3p was demonstrated to be associated with clinical stage. The mean survival time of the low miR-124-3p expression group was reduced compared with that of the high expression group. A total of 132 genes overlapped from differentially expressed genes, miR-124-3p predicted target genes and NLP identified genes. PPI network construction revealed a total of 109 nodes and 386 edges, and 20 key genes were identified. The major enriched terms of three GO categories included regulation of cell proliferation, positive regulation of cellular biosynthetic processes, cell leading edge, cytosol and cell projection, protein kinase activity, transcription activator activity and enzyme binding. KEGG analysis revealed pancreatic cancer, prostate cancer and non-small cell lung cancer as the top three terms. Angiogenesis, the endothelial growth factor receptor signaling pathway and the fibroblast growth factor signaling pathway were identified as the most significant terms in the PANTHER pathway analysis. The present study confirmed that miR-124-3p acts as a tumor suppressor in HCC. miR-124-3p may target multiple genes, exerting its effect spatiotemporally, or in combination with a diverse range of processes in HCC. Functional characterization of miR-124-3p targets will offer novel insight into the molecular changes that occur in HCC progression.
Spinelli, Lionel; Carpentier, Sabrina; Montañana Sanchis, Frédéric; Dalod, Marc; Vu Manh, Thien-Phong
2015-10-19
Recent advances in the analysis of high-throughput expression data have led to the development of tools that scaled-up their focus from single-gene to gene set level. For example, the popular Gene Set Enrichment Analysis (GSEA) algorithm can detect moderate but coordinated expression changes of groups of presumably related genes between pairs of experimental conditions. This considerably improves extraction of information from high-throughput gene expression data. However, although many gene sets covering a large panel of biological fields are available in public databases, the ability to generate home-made gene sets relevant to one's biological question is crucial but remains a substantial challenge to most biologists lacking statistic or bioinformatic expertise. This is all the more the case when attempting to define a gene set specific of one condition compared to many other ones. Thus, there is a crucial need for an easy-to-use software for generation of relevant home-made gene sets from complex datasets, their use in GSEA, and the correction of the results when applied to multiple comparisons of many experimental conditions. We developed BubbleGUM (GSEA Unlimited Map), a tool that allows to automatically extract molecular signatures from transcriptomic data and perform exhaustive GSEA with multiple testing correction. One original feature of BubbleGUM notably resides in its capacity to integrate and compare numerous GSEA results into an easy-to-grasp graphical representation. We applied our method to generate transcriptomic fingerprints for murine cell types and to assess their enrichments in human cell types. This analysis allowed us to confirm homologies between mouse and human immunocytes. BubbleGUM is an open-source software that allows to automatically generate molecular signatures out of complex expression datasets and to assess directly their enrichment by GSEA on independent datasets. Enrichments are displayed in a graphical output that helps interpreting the results. This innovative methodology has recently been used to answer important questions in functional genomics, such as the degree of similarities between microarray datasets from different laboratories or with different experimental models or clinical cohorts. BubbleGUM is executable through an intuitive interface so that both bioinformaticians and biologists can use it. It is available at http://www.ciml.univ-mrs.fr/applications/BubbleGUM/index.html .
Sexual Dimorphism and Estrogen Action in Mouse Liver.
Torre, Della; Lolli, Federica; Ciana, Paolo; Maggi, Adriana
2017-01-01
Recent studies have demonstrated that in mice, the estrogen receptor alpha (ERα) is expressed in the liver and has a direct effect on the regulation of the hepatic genes relevant for energy metabolism and drug metabolism. The sex-related differential expression of the hepatic ERα raises the questions as to whether this receptor is responsible for the sexual differences observed in the physiopathology of the liver.
A microRNA feedback loop regulates global microRNA abundance during aging.
Inukai, Sachi; Pincus, Zachary; de Lencastre, Alexandre; Slack, Frank J
2018-02-01
Expression levels of many microRNAs (miRNAs) change during aging, notably declining globally in a number of organisms and tissues across taxa. However, little is known about the mechanisms or the biological relevance for this change. We investigated the network of genes that controls miRNA transcription and processing during C. elegans aging. We found that miRNA biogenesis genes are highly networked with transcription factors and aging-associated miRNAs. In particular, miR-71, known to influence life span and itself up-regulated during aging, represses alg-1 /Argonaute expression post-transcriptionally during aging. Increased ALG-1 abundance in mir-71 loss-of-function mutants led to globally increased miRNA expression. Interestingly, these mutants demonstrated widespread mRNA expression dysregulation and diminished levels of variability both in gene expression and in overall life span. Thus, the progressive molecular decline often thought to be the result of accumulated damage over an organism's life may be partially explained by a miRNA-directed mechanism of age-associated decline. © 2018 Inukai et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
Fédrigo, Olivier; Haygood, Ralph; Mukherjee, Sayan; Wray, Gregory A.
2009-01-01
Variation in gene expression is an important contributor to phenotypic diversity within and between species. Although this variation often has a genetic component, identification of the genetic variants driving this relationship remains challenging. In particular, measurements of gene expression usually do not reveal whether the genetic basis for any observed variation lies in cis or in trans to the gene, a distinction that has direct relevance to the physical location of the underlying genetic variant, and which may also impact its evolutionary trajectory. Allelic imbalance measurements identify cis-acting genetic effects by assaying the relative contribution of the two alleles of a cis-regulatory region to gene expression within individuals. Identification of patterns that predict commonly imbalanced genes could therefore serve as a useful tool and also shed light on the evolution of cis-regulatory variation itself. Here, we show that sequence motifs, polymorphism levels, and divergence levels around a gene can be used to predict commonly imbalanced genes in a human data set. Reduction of this feature set to four factors revealed that only one factor significantly differentiated between commonly imbalanced and nonimbalanced genes. We demonstrate that these results are consistent between the original data set and a second published data set in humans obtained using different technical and statistical methods. Finally, we show that variation in the single allelic imbalance-associated factor is partially explained by the density of genes in the region of a target gene (allelic imbalance is less probable for genes in gene-dense regions), and, to a lesser extent, the evenness of expression of the gene across tissues and the magnitude of negative selection on putative regulatory regions of the gene. These results suggest that the genomic distribution of functional cis-regulatory variants in the human genome is nonrandom, perhaps due to local differences in evolutionary constraint. PMID:19506001